Science.gov

Sample records for genes including receptor

  1. SOX9 Regulates Multiple Genes in Chondrocytes, Including Genes Encoding ECM Proteins, ECM Modification Enzymes, Receptors, and Transporters

    PubMed Central

    Oh, Chun-do; Lu, Yue; Liang, Shoudan; Mori-Akiyama, Yuko; Chen, Di; de Crombrugghe, Benoit; Yasuda, Hideyo

    2014-01-01

    The transcription factor SOX9 plays an essential role in determining the fate of several cell types and is a master factor in regulation of chondrocyte development. Our aim was to determine which genes in the genome of chondrocytes are either directly or indirectly controlled by SOX9. We used RNA-Seq to identify genes whose expression levels were affected by SOX9 and used SOX9 ChIP-Seq to identify those genes that harbor SOX9-interaction sites. For RNA-Seq, the RNA expression profile of primary Sox9flox/flox mouse chondrocytes infected with Ad-CMV-Cre was compared with that of the same cells infected with a control adenovirus. Analysis of RNA-Seq data indicated that, when the levels of Sox9 mRNA were decreased more than 8-fold by infection with Ad-CMV-Cre, 196 genes showed a decrease in expression of at least 4-fold. These included many cartilage extracellular matrix (ECM) genes and a number of genes for ECM modification enzymes (transferases), membrane receptors, transporters, and others. In ChIP-Seq, 75% of the SOX9-interaction sites had a canonical inverted repeat motif within 100 bp of the top of the peak. SOX9-interaction sites were found in 55% of the genes whose expression was decreased more than 8-fold in SOX9-depleted cells and in somewhat fewer of the genes whose expression was reduced more than 4-fold, suggesting that these are direct targets of SOX9. The combination of RNA-Seq and ChIP-Seq has provided a fuller understanding of the SOX9-controlled genetic program of chondrocytes. PMID:25229425

  2. Cooperative transcriptional activation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 genes by nuclear receptors including Liver-X-Receptor

    PubMed Central

    Back, Su Sun; Kim, Jinsu; Choi, Daehyung; Lee, Eui Sup; Choi, Soo Young; Han, Kyuhyung

    2013-01-01

    The ATP-binding cassette transporters ABCG5 and ABCG8 form heterodimers that limit absorption of dietary sterols in the intestine and promote cholesterol elimination from the body through hepatobiliary secretion. To identify cis-regulatory elements of the two genes, we have cloned and analyzed twenty-three evolutionary conserved region (ECR) fragments using the CMV-luciferase reporter system in HepG2 cells. Two ECRs were found to be responsive to the Liver-X-Receptor (LXR). Through elaborate deletion studies, regions containing putative LXREs were identified and the binding of LXR? was demonstrated by EMSA and ChIP assay. When the LXREs were inserted upstream of the intergenic promoter, synergistic activation by LXR?/RXR? in combination with GATA4, HNF4?, and LRH-1, which had been shown to bind to the intergenic region, was observed. In conclusion, we have identified two LXREs in ABCG5/ABCG8 genes for the first time and propose that these LXREs, especially in the ECR20, play major roles in regulating these genes. [BMB Reports 2013; 46(6): 322-327] PMID:23790976

  3. Chromosomal localization of prostanoid receptor genes

    SciTech Connect

    Adam, M.A.; Abramovitz, M.; Anderson, L.L.

    1994-09-01

    Prostanoids such as prostaglandins (PGs) and thromboxane (TXA{sub 2}) are a family of oxygenated metabolites of arachidonic acid. They produce a wide variety of physiological and pathophysiological effects mediated through specific cell surface receptors. Recent cDNA cloning of the prostaglandins and thromboxane receptors indicates that they are a unique family of receptors within the superfamily of G-protein-coupled receptors. Not only are all the prostanoids (PGE{sub 2}, PGF{sub 2{alpha}}, PGI{sub 2}, PGD{sub 2} and TXA{sub 2}) structurally related, but their receptors also show significant (26-47%) amino acid sequence identity. To investigate the evolutionary relationship between the various prostanoid receptors and their involvement in a number of pathophysiological conditions, we have mapped these loci in the human genome. The PGE{sub 2} receptor subtypes Ep{sub 1}, EP{sub 2}, EP{sub 3}, the PGF{sub 2{alpha}} receptor (FP), the PGI{sub 2} receptor (IP) and the TXA{sub 2} receptor (Tbxa2r) were sublocalized by in situ hybridization. EP{sub 1},IP and Tbxa2r were mapped to chromosome 19 at 19p13.1, 19q13.3 and 19p13.3, respectively. EP{sub 3} and FP mapped to 1p13.2 and 1p13.1, respectively. EP{sub 2} mapped to 5p13.1. Mapping the genomic loci of the prostanoid receptor family genes should expand our understanding of the evolution of G-protein-coupled receptor family genes and advance our investigation of the involvement of these genes in various pathophysiological conditions.

  4. Chromosomal organization of adrenergic receptor genes

    SciTech Connect

    Yang-Feng, T.L.; Xue, Feiyu; Zhong, Wuwei ); Cotecchia, S.; Frielle, T.; Caron, M.G.; Lefkowitz, R.J.; Francke, U. )

    1990-02-01

    The adrenergic receptors (ARs) (subtypes {alpha}{sub 1}, {alpha}{sub 2}, {beta}{sub 1}, and {beta}{sub 2}) are a prototypic family of guanine nucleotide binding regulatory protein-coupled receptors that mediate the physiological effects of the hormone epinephrine and the neurotransmitter norepinephrine. The authors have previously assigned the genes for {beta}{sub 2}-and {alpha}{sub 2}-AR to human chromosomes 5 and 10, respectively. By Southern analysis of somatic cell hybrids and in situ chromosomal hybridization, they have now mapped the {alpha}{sub 1}-AR gene to chromosome 5q32{yields}q34, the same position as {beta}{sub 2}-AR, and the {beta}{sub 1}-AR gene to chromosome 10q24{yields}q26, the region where {alpha}{sub 2}-AR, is located. In mouse, both {alpha}{sub 2}-and {beta}{sub 1}-AR genes were assigned to chromosome 19, and the {alpha}{sub 1}-AR locus was localized to chromosome 11. Pulsed field gel electrophoresis has shown that the {alpha}{sub 1}-and {beta}{sub 2}-AR genes in humans are within 300 kilobases (kb) and the distance between the {alpha}{sub 2}- and {beta}{sub 1}-AR genes is <225 kb. The proximity of these two pairs of AR genes and the sequence similarity that exists among all the ARs strongly suggest that they are evolutionarily related. Moreover, they likely arose from a common ancestral receptor gene and subsequently diverged through gene duplication and chromosomal duplication to perform their distinctive roles in mediation the physiological effects of catecholamines. The AR genes thus provide a paradigm for understanding the evolution of such structurally conserved yet functionally divergent families off receptor molecules.

  5. Candidate gene analysis of thyroid hormone receptors in metamorphosing

    E-print Network

    Shaffer, H. Bradley

    Candidate gene analysis of thyroid hormone receptors in metamorphosing vs. nonmetamorphosing experimental approaches to test the hypothesis that thyroid hormone receptor (TR) variation is associated: Ambystoma, metamorphic failure, metamorphosis, thyroid hormone, thyroid hormone receptor. Introduction Post

  6. Induction of Progestin Receptors by Estradiol in the Forebrain of Estrogen Receptor-Gene-Disrupted Mice

    E-print Network

    Induction of Progestin Receptors by Estradiol in the Forebrain of Estrogen Receptor- Gene, rats, and humans have two types of estrogen receptors, estrogen receptor- (ER ) and estrogen receptor- anism or another as yet unidentified estrogen receptor; how- ever, because ER -immunoreactivity and PCR

  7. Selection for Genes Encoding Secreted Proteins and Receptors

    NASA Astrophysics Data System (ADS)

    Klein, Robert D.; Gu, Qimin; Goddard, Audrey; Rosenthal, Arnon

    1996-07-01

    Extracellular proteins play an essential role in the formation, differentiation, and maintenance of multicellular organisms. Despite that, the systematic identification of genes encoding these proteins has not been possible. We describe here a highly efficient method to isolate genes encoding secreted and membrane-bound proteins by using a single-step selection in yeast. Application of this method, termed signal peptide selection, to various tissues yielded 559 clones that appear to encode known or novel extracellular proteins. These include members of the transforming growth factor and epidermal growth factor protein families, endocrine hormones, tyrosine kinase receptors, serine/threonine kinase receptors, seven transmembrane receptors, cell adhesion molecules, extracellular matrix proteins, plasma proteins, and ion channels. The eventual identification of most, or all, extracellular signaling molecules will advance our understanding of fundamental biological processes and our ability to intervene in disease states.

  8. Expression of fibroblast growth factor and FGF-receptor family genes in human myeloma cells, including lines possessing t(4;14)(q16.3;q32. 3) and FGFR3 translocation.

    PubMed

    Otsuki, T; Yamada, O; Yata, K; Sakaguchi, H; Kurebayashi, J; Nakazawa, N; Taniwaki, M; Yawata, Y; Ueki, A

    1999-12-01

    Recently several chromosomal translocations involved in myeloma cases and myeloma cell lines; i.e., t(11;14)(q13;q32), t('8;14)(q24;q32), t(4;14)(q16.3;q32.3), t(6;14)(p25;q32), and t(14;16)(q32.3;q23), have been identified. These translocations are considered to dysregulate genes which may be concerned with myelomagenesis; i.e., PRAD1/cyclin D1, the c-myc oncogene, FGFR3 (fibroblast growth factor receptor 3), MMSET (multiple myeloma SET domain), MUM1 (multiple myeloma oncogene 1)/IRF4 (interferon regulatory factor 4), and the c-maf oncogene, respectively. However, the cellular biological roles of these genes have not yet been elucidated in myeloma cells. Because two of the seven human myeloma cell lines which were established at Kawasaki Medical School, Okayama, Japan, KMS-11 and KMS-18, have been proven to possess t(4;14)(q16.3;q32.3), we studied the expression levels of the FGFR3 gene in these seven cell lines and 13 primary myeloma specimens. The expression levels of 12 known FGF family genes (FGF-1 to 12) and 4 FGFR genes (FGFR1 to 4) were also examined in seven cell lines. In addition, the growth status of the KMS-11 and KMS-18 lines with FGF-1 or anti-FGF-4 neutralizing monoclonal antibody (MoAb) supplementation was investigated because FGF-1 and 4 are known as the principal ligands for FGFR3. FGFR3 overexpression was observed in both of the cell lines possessing t(4;14)(q16.3;q32.3) and in 3 of 13 case specimens. Anti-FGF-4 neutralizing MoAb caused significant growth inhibition in these two cell lines possessing t(4;14)(q16.3;q32.3). These findings indicate that t(4;14) (q16. 3;q32.3) may provide myeloma cells with a growth advantage via an autocrine mechanism between FGFR3 and FGF-4. PMID:10568829

  9. Comparative Genomics of Odorant- and Pheromone Receptor Genes in Rodents

    PubMed Central

    Zhang, Xiaohong; Zhang, Xinmin; Firestein, Stuart

    2007-01-01

    We applied a comprehensive data mining strategy to examine the repertoires of rat and mouse odorant receptors (ORs) and type 1 pheromone receptors (V1Rs) using the mm5 and rn3 genome respectively. 1576 rat OR genes were identified, including 292 pseudogenes. The rat V1R repertoire is composed of 115 intact genes and 72 pseudogenes. The mouse OR and V1R database were updated using the new assembly mm5, from which 1375 mouse ORs and 308 V1Rs were identified, with more than a hundred putative pseudogenes from mm2 now identified as intact because of the higher sequence quality. With this new data we have conducted a series of genomic analyses of the OR and V1R genes from mouse and rat. Orthologous OR clusters were identified in mouse and rat and comparison analysis was performed at three incremental levels: families, coding sequences, and motifs. At the family level, we found that V1R genes have more species-specific families than OR genes. About 20 percent of intact V1R genes have no orthologous counterpart in the same family, whereas less than 1 percent of intact ORs are similarly isolated. At the coding sequence level, OR genes are more conserved between mouse and rat than V1R genes. OR genes share greater similarity with their orthologous counterparts than with their closest neighbor, whereas V1R genes show the opposite tendency. Motifs were identified to obtain biological insights. Motifs specific for species or families were found in OR and V1R genes, which may result in the differential pheromone-dependent behaviors and perception of odors between mouse and rat. PMID:17303377

  10. Copyright 2001 by the Genetics Society of America Genes Affecting the Activity of Nicotinic Receptors Involved in

    E-print Network

    Schafer, William R.

    Copyright © 2001 by the Genetics Society of America Genes Affecting the Activity of Nicotinic of nicotinic acetylcholine receptors such as nicotine and levamisole stimulate egg laying; however, the genetic of levamisole-sensitive nicotinic receptors in nematodes. Seven of these genes, including the nicotinic receptor

  11. The Androgen Receptor Gene Mutations Database.

    PubMed Central

    Gottlieb, B; Lehvaslaiho, H; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M

    1998-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 272 to 309 in the past year. We have expanded the database: (i) by giving each entry an accession number; (ii) by adding information on the length of polymorphic polyglutamine (polyGln) and polyglycine (polyGly) tracts in exon 1; (iii) by adding information on large gene deletions; (iv) by providing a direct link with a completely searchable database (courtesy EMBL-European Bioinformatics Institute). The addition of the exon 1 polymorphisms is discussed in light of their possible relevance as markers for predisposition to prostate or breast cancer. The database is also available on the internet (http://www.mcgill. ca/androgendb/ ), from EMBL-European Bioinformatics Institute (ftp. ebi.ac.uk/pub/databases/androgen ), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca). PMID:9399843

  12. Androgen receptor gene polymorphism in zebra species.

    PubMed

    Ito, Hideyuki; Langenhorst, Tanya; Ogden, Rob; Inoue-Murayama, Miho

    2015-09-01

    Androgen receptor genes (AR) have been found to have associations with reproductive development, behavioral traits, and disorders in humans. However, the influence of similar genetic effects on the behavior of other animals is scarce. We examined the loci AR glutamine repeat (ARQ) in 44 Grevy's zebras, 23 plains zebras, and three mountain zebras, and compared them with those of domesticated horses. We observed polymorphism among zebra species and between zebra and horse. As androgens such as testosterone influence aggressiveness, AR polymorphism among equid species may be associated with differences in levels of aggression and tameness. Our findings indicate that it would be useful to conduct further studies focusing on the potential association between AR and personality traits, and to understand domestication of equid species. PMID:26236645

  13. Androgen receptor gene polymorphism in zebra species

    PubMed Central

    Ito, Hideyuki; Langenhorst, Tanya; Ogden, Rob; Inoue-Murayama, Miho

    2015-01-01

    Androgen receptor genes (AR) have been found to have associations with reproductive development, behavioral traits, and disorders in humans. However, the influence of similar genetic effects on the behavior of other animals is scarce. We examined the loci AR glutamine repeat (ARQ) in 44 Grevy's zebras, 23 plains zebras, and three mountain zebras, and compared them with those of domesticated horses. We observed polymorphism among zebra species and between zebra and horse. As androgens such as testosterone influence aggressiveness, AR polymorphism among equid species may be associated with differences in levels of aggression and tameness. Our findings indicate that it would be useful to conduct further studies focusing on the potential association between AR and personality traits, and to understand domestication of equid species. PMID:26236645

  14. The androgen receptor gene mutations database.

    PubMed Central

    Gottlieb, B; Trifiro, M; Lumbroso, R; Vasiliou, D M; Pinsky, L

    1996-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. We have added (if available) data on the androgen binding phenotype of the mutant AR, the clinical phenotype of the affected persons, the family history and whether the pathogenicity of a mutation has been proven. Exonic mutations are now listed in 5'-->3' sequence regardless of type and single base pair changes are presented in codon context. Splice site and intronic mutations are listed separately. The database has allowed us to substantiate and amplify the observation of mutational hot spots within exons encoding the AR androgen binding domain. The database is available from EML (ftp://www.ebi.ac.uk/pub/databases/androgen) or as a Macintosh Filemaker file (MC33@musica.mcgill.ca). PMID:8594566

  15. Includes pre-computed gene families, multiple sequence

    E-print Network

    Gent, Universiteit

    genomes from flowering plants, (club-)mosses and several green algae · All data can be downloaded PLAZA release 2.5 · Includes >900,000 genes from 25 plants covering 13 dicots, 5 monocots, 2 (club-)mosses

  16. Carbon dioxide receptor genes in cotton bollworm Helicoverpa armigera

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Anderson, Alisha

    2015-04-01

    Carbon dioxide (CO2) is important in insect ecology, eliciting a range of behaviours across different species. Interestingly, the numbers of CO2 gustatory receptors (GRs) vary among insect species. In the model organism Drosophila melanogaster, two GRs (DmelGR21a and DmelGR63a) have been shown to detect CO2. In the butterfly, moth, beetle and mosquito species studied so far, three CO2 GR genes have been identified, while in tsetse flies, four CO2 GR genes have been identified. In other species including honeybees, pea aphids, ants, locusts and wasps, no CO2 GR genes have been identified from the genome. These genomic differences may suggest different mechanisms for CO2 detection exist in different insects but, with the exception of Drosophila and mosquitoes, limited attention has been paid to the CO2 GRs in insects. Here, we cloned three putative CO2 GR genes from the cotton bollworm Helicoverpa armigera and performed phylogenetic and expression analysis. All three H. armigera CO2 GRs (HarmGR1, HarmGR2 and HarmGR3) are specifically expressed in labial palps, the CO2-sensing tissue of this moth. HarmGR3 is significantly activated by NaHCO3 when expressed in insect Sf9 cells but HarmGR1 and HarmGR2 are not. This is the first report characterizing the function of lepidopteran CO2 receptors, which contributes to our general understanding of the molecular mechanisms of insect CO2 gustatory receptors.

  17. Gene Transfer and Molecular Cloning of the Human NGF Receptor

    NASA Astrophysics Data System (ADS)

    Chao, Moses V.; Bothwell, Mark A.; Ross, Alonzo H.; Koprowski, Hilary; Lanahan, Anthony A.; Buck, C. Randall; Sehgal, Amita

    1986-04-01

    Nerve growth factor (NGF) and its receptor are important in the development of cells derived from the neural crest. Mouse L cell transformants have been generated that stably express the human NGF receptor gene transfer with total human DNA. Affinity cross-linking, metabolic labeling and immunoprecipitation, and equilibrium binding with 125I-labeled NGF revealed that this NGF receptor had the same size and binding characteristics as the receptor from human melanoma cells and rat PC12 cells. The sequences encoding the NGF receptor were molecularly cloned using the human Alu repetitive sequence as a probe. A cosmid clone that contained the human NGF receptor gene allowed efficient transfection and expression of the receptor.

  18. Structure and sequence variation at the human leptin receptor gene in lean and obese Pima Indians.

    PubMed

    Thompson, D B; Ravussin, E; Bennett, P H; Bogardus, C

    1997-05-01

    The cloning of human and mouse cDNAs from brain that encode high affinity leptin receptors was recently reported. We have physically localized the human leptin receptor gene (LEPR) to a region at 1p31, between the anonymous microsatellite markers D1S515 and D1S198. The genomic structure of the human leptin receptor gene, corresponding to the published human brain cDNA sequence, spans over 70 kb and includes 20 exons. Since the leptin receptor gene is a candidate gene for obesity, and because of its proximity to D1S198, a marker previously linked to insulin secretion, the LEPR gene was sequenced in 20 non-diabetic Pima Indians chosen for extremes in percent body fat and in their acute insulin response to intravenous glucose. Seven polymorphic sites were identified. Two of these polymorphisms, Lys109Arg and Gln223Arg, are amino acid substitutions in the extracellular domain of the leptin receptor, one polymorphism is a silent substitution, and four occur in non-coding regions of the leptin receptor. Four of these sites are in linkage disequilibrium with one another. Nucleotides at three noncoding polymorphic sites were found exclusively in obese Pima Indians. This demonstrates an association between variation at the leptin receptor gene and obesity in humans. PMID:9158141

  19. Profiling of Olfactory Receptor Gene Expression in Whole Human Olfactory Mucosa

    PubMed Central

    Tarabichi, Maxime; Gregoire, Françoise; Dumont, Jacques E.; Chatelain, Pierre

    2014-01-01

    Olfactory perception is mediated by a large array of olfactory receptor genes. The human genome contains 851 olfactory receptor gene loci. More than 50% of the loci are annotated as nonfunctional due to frame-disrupting mutations. Furthermore haplotypic missense alleles can be nonfunctional resulting from substitution of key amino acids governing protein folding or interactions with signal transduction components. Beyond their role in odor recognition, functional olfactory receptors are also required for a proper targeting of olfactory neuron axons to their corresponding glomeruli in the olfactory bulb. Therefore, we anticipate that profiling of olfactory receptor gene expression in whole human olfactory mucosa and analysis in the human population of their expression should provide an opportunity to select the frequently expressed and potentially functional olfactory receptors in view of a systematic deorphanization. To address this issue, we designed a TaqMan Low Density Array (Applied Biosystems), containing probes for 356 predicted human olfactory receptor loci to investigate their expression in whole human olfactory mucosa tissues from 26 individuals (13 women, 13 men; aged from 39 to 81 years, with an average of 67±11 years for women and 63±12 years for men). Total RNA isolation, DNase treatment, RNA integrity evaluation and reverse transcription were performed for these 26 samples. Then 384 targeted genes (including endogenous control genes and reference genes specifically expressed in olfactory epithelium for normalization purpose) were analyzed using the same real-time reverse transcription PCR platform. On average, the expression of 273 human olfactory receptor genes was observed in the 26 selected whole human olfactory mucosa analyzed, of which 90 were expressed in all 26 individuals. Most of the olfactory receptors deorphanized to date on the basis of sensitivity to known odorant molecules, which are described in the literature, were found in the expressed olfactory receptors gene set. PMID:24800820

  20. Killer cell immunoglobulin-like receptor gene association with cryptorchidism.

    PubMed

    Niepiek?o-Miniewska, Wanda; Ku?nierczyk, Piotr; Havrylyuk, Anna; Kamieniczna, Marzena; Nakonechnyy, Andrij; Chopyak, Valentyna; Kurpisz, Maciej

    2015-12-01

    Cryptorchidism is a condition where a testis persists in the abdominal cavity. Thus, due to elevated temperature we may expect induction of aberrant immune reactions depending on genetic constitution of individual. This may be reflected by development of anti-sperm antibodies (ASA) in cryptorchid males. Also, natural killer (NK) cells which belong to innate immunity may control adaptive immunity. Therefore, the gene system encoding polymorphic NK cell immunoglobulin receptors (KIRs) has been studied. 109 prepubertal boys with cryptorchidism and 136 ethnically matched young male donors were selected to study NK cell KIRs. DNA was isolated using automatic Maxwell(®) system from the peripheral venous blood drawn onto anticoagulant. Olerup SSP KIR Genotyping kit including Taq polymerase was used for detection of KIR genes. Human leukocyte antigen-C (HLA-C) groups, C1 and C2 were established using a Olerup SSP KIR HLA Ligand kit. KIR2DL2 (killer immunoglobulin-like receptor two-domain long 2) and KIR2DS2 (killer immunoglobulin-like receptor two-domain short 2) genes were less frequent in patients than in control individuals (corrected p values: 0.0110 and 0.0383, respectively). However, no significant differences were observed between ASA-positive and ASA-negative patients, or between bilateral or unilateral cryptorchidism. No association between KIR ligands C1 and C2, alone or together with KIR2DL2, was found. However, the results suggest that KIR2DL2+/KIR2DS2+ genotype may be, to some extent, protective against cryptorchidism. PMID:26679162

  1. Acoustic trauma triggers upregulation of serotonin receptor genes

    PubMed Central

    Smith, Adam R.; Kwon, Jae Hyun; Navarro, Marco; Hurley, Laura M.

    2014-01-01

    Hearing loss induces plasticity in excitatory and inhibitory neurotransmitter systems in auditory brain regions. Excitatory-inhibitory balance is also influenced by a range of neuromodulatory regulatory systems, but less is known about the effects of auditory damage on these networks. In this work, we studied the effects of acoustic trauma on neuromodulatory plasticity in the auditory midbrain of CBA/J mice. Quantitative PCR was used to measure the expression of serotonergic and GABAergic receptor genes in the inferior colliculus (IC) of mice that were unmanipulated, sham controls with no hearing loss, and experimental individuals with hearing loss induced by exposure to a 116 dB, 10 kHz pure tone for 3 hours. Acoustic trauma induced substantial hearing loss that was accompanied by selective upregulation of two serotonin receptor genes in the IC. The Htr1B receptor gene was upregulated tenfold following trauma relative to shams, while the Htr1A gene was upregulated threefold. In contrast, no plasticity in serotonin receptor gene expression was found in the hippocampus, a region also innervated by serotonergic projections. Analyses in the IC demonstrated that acoustic trauma also changed the coexpression of genes in relation to each other, leading to an overexpression of Htr1B compared to other genes.. These data suggest that acoustic trauma induces serotonergic plasticity in the auditory system, and that this plasticity may involve comodulation of functionally-linked receptor genes. PMID:24997228

  2. Evolution of mating pheromone and receptor genes in Pucciniomycotina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mating pheromones and their receptors act as a switch controlling phenotypic changes required for successful mating in fungi. Although basidiomycete mating pheromones and their processing were first described in Rhodosporidium toruloides a “red yeast” in the Sporidiobolales, the receptor gene was ne...

  3. Leptin and leptin receptor genotypes and colon cancer: Gene–gene and gene–lifestyle interactions

    PubMed Central

    Slattery, Martha L.; Wolff, Roger K.; Herrick, Jennifer; Caan, Bette J.; Potter, John D.

    2008-01-01

    Leptin may play an important role in colorectal cancer because of its role in energy balance, insulin and inflammation. We evaluated the LEP rs2167270 (19 G > A) and rs7799039 (?2548 G > A) polymorphisms and the leptin receptor, LEPR rs6588147 (located in intron 2), polymorphism with risk of developing colon cancer in a study of 1,567 cases and 1,965 controls. We evaluated the effects of the polymorphisms with body mass index (BMI), recent use of aspirin/NSAIDs and genetic variations in genes related to insulin signaling pathways including insulin-like growth factor 1 (IGF1), insulin-like growth factor binding protein 3 (IGFBP3), and insulin- related substrates 1 and 2 (IRS1, IRS2) and the vitamin D receptor (VDR). We observed a slight reduction in colon cancer risk with the AA LEP rs2167270 genotype (OR 0.79 95% CI 0.64, 0.98) and although not reaching statistical significance, with the combined GG LEP rs2167270 and GG LEPR rs6588147 (OR 0.70, 95% CI 0.49, 1.02) genotypes. BMI did not interact with any of these polymorphisms to alter colon cancer risk. However, recent aspirin/NSAID use significantly interacted with both LEP polymorphisms. Likewise, variants of IGF1 and IRS2 interacted with the LEP rs2167270 polymorphism. VDR polymorphisms interacted with all LEP and LEPR polymorphisms. These data support an association between LEP and colon cancer. They also suggest that the mechanisms linking leptin to colon cancer may be independent of energy balance. PMID:18059035

  4. Comparative Genomic Analysis of the Interferon/Interleukin-10 Receptor Gene Cluster

    PubMed Central

    Reboul, Jérôme; Gardiner, Katheleen; Monneron, Daničle; Uzé, Gilles; Lutfalla, Georges

    1999-01-01

    Interferons and interleukin-10 are involved in key aspects of the host defence mechanisms. Human chromosome 21 harbors the interferon/interleukin-10 receptor gene cluster linked to the GART gene. This cluster includes both components of the interferon ?/?-receptor (IFNAR1 and IFNAR2) and the second components of the interferon ?-receptor (IFNGR2) and of the IL-10 receptor (IL10R2). We report here the complete gene content of this GART–cytokine receptor gene cluster and the use of comparative genomic analysis to identify chicken IFNAR1, IFNAR2, and IL10R2. We show that the large-scale structure of this locus is conserved in human and chicken but not in the pufferfish Fugu rubripes. This establishes that the receptor components of these host defense mechanisms were fixed in an ancestor of the amniotes. The extraordinary diversification of the interferon ligand family during the evolution of birds and mammals has therefore occured in the context of a fixed receptor structure. [The sequence data described in this paper have been submitted to GenBank under accession nos. AF039904, AF039905, AF039906, AF039907, AF045606, AF082664, AF082665, AF082666, AF082667, and AF083221.] PMID:10077530

  5. Identification of a null mutation in the human dopamine D4 receptor gene

    SciTech Connect

    Noethen, M.M.; Cichon, S.; Hebebrand, J.

    1994-09-01

    Dopamine receptors belong to the family of G protein-coupled receptors. Five different dopamine receptor genes have thus far been identified. These receptors are classified into two main subfamilies: D1, which includes the D1 and D5 receptors, and D2, which includes the D2, D3, and D4 receptors. The dopamine D4 receptor is of great interest for research into neuropsychiatric disorders and psychopharmacology in light of the fact that it binds the antipsychotic medication clozapine with higher affinity than does any other dopamine receptor. In addition, among the dopamine receptors, the D4 receptor shows a uniquely high degree of genetic variation in the human population. We identified a new 13 bp deletion in exon 1 of the D4 gene. This frameshift creates a terminator codon at amino acid position 98. mRNA isolated from brain tissue of two heterozygous persons showed both alleles to be expressed. The deletion occurs with a frequency of 2% in the German population. One person was identified to be homozygous for the deletion. Interestingly, he has a normal intelligence and did not exhibit a major psychiatric disorder as defined by DSM III-R. The 13 bp deletion is the first mutation resulting in premature translation termination reported for a dopamine receptor gene so far. This mutation is a good candidate to test for potential effects on disease and/or individual response to pharmacotherapy. Association studies in patients with various psychiatric illnesses and differences in response to clozapine are underway.

  6. Targeted Disruption of the Estrogen Receptor-Gene in Female Mice: Characterization of Ovarian Responses

    E-print Network

    Mayo, Kelly E.

    Targeted Disruption of the Estrogen Receptor- Gene in Female Mice: Characterization of Ovarian-2137 ABSTRACT Targeted disruption of the mouse estrogen receptor- gene (estro- gen receptor- knockout; ERKO or for ovarian expression of progesterone receptor mRNA. Ovarian estrogen receptor (ER ) was detected immunohisto

  7. The calcium-sensing receptor regulates parathyroid hormone gene expression in transfected HEK293 cells

    PubMed Central

    Galitzer, Hillel; Lavi-Moshayoff, Vardit; Nechama, Morris; Meir, Tomer; Silver, Justin; Naveh-Many, Tally

    2009-01-01

    Background The parathyroid calcium receptor determines parathyroid hormone secretion and the response of parathyroid hormone gene expression to serum Ca2+ in the parathyroid gland. Serum Ca2+ regulates parathyroid hormone gene expression in vivo post-transcriptionally affecting parathyroid hormone mRNA stability through the interaction of trans-acting proteins to a defined cis element in the parathyroid hormone mRNA 3'-untranslated region. These parathyroid hormone mRNA binding proteins include AUF1 which stabilizes and KSRP which destabilizes the parathyroid hormone mRNA. There is no parathyroid cell line; therefore, we developed a parathyroid engineered cell using expression vectors for the full-length human parathyroid hormone gene and the human calcium receptor. Results Co-transfection of the human calcium receptor and the human parathyroid hormone plasmid into HEK293 cells decreased parathyroid hormone mRNA levels and secreted parathyroid hormone compared with cells that do not express the calcium receptor. The decreased parathyroid hormone mRNA correlated with decreased parathyroid hormone mRNA stability in vitro, which was dependent upon the 3'-UTR cis element. Moreover, parathyroid hormone gene expression was regulated by Ca2+ and the calcimimetic R568, in cells co-transfected with the calcium receptor but not in cells without the calcium receptor. RNA immunoprecipitation analysis in calcium receptor-transfected cells showed increased KSRP-parathyroid hormone mRNA binding and decreased binding to AUF1. The calcium receptor led to post-translational modifications in AUF1 as occurs in the parathyroid in vivo after activation of the calcium receptor. Conclusion The expression of the calcium receptor is sufficient to confer the regulation of parathyroid hormone gene expression to these heterologous cells. The calcium receptor decreases parathyroid hormone gene expression in these engineered cells through the parathyroid hormone mRNA 3'-UTR cis element and the balanced interactions of the trans-acting factors KSRP and AUF1 with parathyroid hormone mRNA, as in vivo in the parathyroid. This is the first demonstration that the calcium receptor can regulate parathyroid hormone gene expression in heterologous cells. PMID:19397786

  8. Natural Killer Cell Receptor Genes in the Family Equidae: Not only Ly49

    PubMed Central

    Futas, Jan; Horin, Petr

    2013-01-01

    Natural killer (NK) cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR) and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR) represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA) and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM) domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for evolutionary biology of NKR genes. PMID:23724088

  9. Natural killer cell receptor genes in the family Equidae: not only Ly49.

    PubMed

    Futas, Jan; Horin, Petr

    2013-01-01

    Natural killer (NK) cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR) and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR) represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA) and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM) domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for evolutionary biology of NKR genes. PMID:23724088

  10. Association of the Dopamine D4 Receptor (DRD4) Gene and Approach-Related Personality Traits

    E-print Network

    Association of the Dopamine D4 Receptor (DRD4) Gene and Approach-Related Personality Traits: Meta-related personality traits, including novelty seeking, extraversion, and impulsivity, restricted to adult samples subscale of the Eysenck Personality Questionnaire from a large (n 40,090) population-based sample. Results

  11. Gene number determination and genetic polymorphism of the gamma delta T cell co-receptor WC1 genes

    PubMed Central

    2012-01-01

    Background WC1 co-receptors belong to the scavenger receptor cysteine-rich (SRCR) superfamily and are encoded by a multi-gene family. Expression of particular WC1 genes defines functional subpopulations of WC1+ ?? T cells. We have previously identified partial or complete genomic sequences for thirteen different WC1 genes through annotation of the bovine genome Btau_3.1 build. We also identified two WC1 cDNA sequences from other cattle that did not correspond to sequences in the Btau_3.1 build. Their absence in the Btau_3.1 build may have reflected gaps in the genome assembly or polymorphisms among animals. Since the response of ?? T cells to bacterial challenge is determined by WC1 gene expression, it was critical to understand whether individual cattle or breeds differ in the number of WC1 genes or display polymorphisms. Results Real-time quantitative PCR using DNA from the animal whose genome was sequenced (“Dominette”) and sixteen other animals representing ten breeds of cattle, showed that the number of genes coding for WC1 co-receptors is thirteen. The complete coding sequences of those thirteen WC1 genes is presented, including the correction of an error in the WC1-2 gene due to mis-assembly in the Btau_3.1 build. All other cDNA sequences were found to agree with the previous annotation of complete or partial WC1 genes. PCR amplification and sequencing of the most variable N-terminal SRCR domain (domain 1 which has the SRCR “a” pattern) of each of the thirteen WC1 genes showed that the sequences are highly conserved among individuals and breeds. Of 160 sequences of domain 1 from three breeds of cattle, no additional sequences beyond the thirteen described WC1 genes were found. Analysis of the complete WC1 cDNA sequences indicated that the thirteen WC1 genes code for three distinct WC1 molecular forms. Conclusion The bovine WC1 multi-gene family is composed of thirteen genes coding for three structural forms whose sequences are highly conserved among individual cattle and breeds. The sequence diversity necessary for WC1 genes to function as a multi-genic pattern recognition receptor array is encoded in the genome, rather than generated by recombinatorial diversity or hypermutation. PMID:23072335

  12. The Association of Polymorphisms in Leptin/Leptin Receptor Genes and Ghrelin/Ghrelin Receptor Genes With Overweight/Obesity and the Related Metabolic Disturbances: A Review

    PubMed Central

    Ghalandari, Hamid; Hosseini-Esfahani, Firoozeh; Mirmiran, Parvin

    2015-01-01

    Context: Leptin and ghrelin are two important appetite and energy balance-regulating peptides. Common polymorphisms in the genes coding these peptides and their related receptors are shown to be associated with body weight, different markers of obesity and metabolic abnormalities. This review article aims to investigate the association of common polymorphisms of these genes with overweight/obesity and the metabolic disturbances related to it. Evidence Acquisition: The keywords leptin, ghrelin, polymorphism, single-nucleotide polymorphism (SNP), obesity, overweight, Body Mass Index, metabolic syndrome, and type 2 diabetes mellitus (T2DM) (MeSH headings) were used to search in the following databases: Pubmed, Sciencedirect (Elsevier), and Google scholar. Overall, 24 case-control studies, relevant to our topic, met the criteria and were included in the review. Results: The most prevalent leptin/leptin receptor genes (LEP/LEPR) and ghrelin/ghrelin receptor genes (GHRL/GHSR) single nucleotide polymorphisms studied were LEP G-2548A, LEPR Q223R, and Leu72Met, respectively. Nine studies of the 17 studies on LEP/LEPR, and three studies of the seven studies on GHRL/GHSR showed significant relationships. Conclusions: In general, our study suggests that the association between LEP/LEPR and GHRL/GHSR with overweight/obesity and the related metabolic disturbances is inconclusive. These results may be due to unidentified gene-environment interactions. More investigations are needed to further clarify this association. PMID:26425125

  13. Gene-specific patterns of coregulator requirements by estrogen receptor-? in breast cancer cells.

    PubMed

    Won Jeong, Kwang; Chodankar, Rajas; Purcell, Daniel J; Bittencourt, Danielle; Stallcup, Michael R

    2012-06-01

    Progesterone receptor (PgR) controls the menstrual cycle, pregnancy, embryonic development, and homeostasis, and it plays important roles in breast cancer development and progression. However, the requirement of coregulators for estrogen-induced expression of the PgR gene has not been fully explored. Here we used RNA interference to demonstrate dramatic differences in requirements of 10 different coregulators for estrogen-regulated expression of six different genes, including PgR and the well-studied TFF1 (or pS2) gene in MCF-7 breast cancer cells. Full estrogen-induced expression of TFF1 required all ten coregulators, but PgR induction required only four of the 10 coregulators. Chromatin immunoprecipitation studies demonstrated several mechanisms responsible for the differential coregulator requirements. Actin-binding coregulator Flightless-I, required for TFF1 expression and recruited to that gene by estrogen receptor-? (ER?), is not required for PgR expression and not recruited to that gene. Protein acetyltransferase tat-interactive protein 60 and ATP-dependent chromatin remodeler Brahma Related Gene 1 are recruited to both genes but are required only for TFF1 expression. Histone methyltransferase G9a is recruited to both genes and required for estrogen-induced expression of TFF1 but negatively regulates estrogen-induced expression of PgR. In contrast, histone methyltransferase myeloid/lymphoid or mixed-lineage leukemia 1 (MLL1), pioneer factor Forkhead box A1, and p160 coregulator steroid receptor coactivator-3 are required for expression of and are recruited to both genes. Depletion of MLL1 decreased ER? binding to the PgR and TFF1 genes. In contrast, depletion of G9a enhanced ER? binding to the PgR gene but had no effect on ER? binding to the TFF1 gene. These studies suggest that differential promoter architecture is responsible for promoter-specific mechanisms of gene regulation. PMID:22543272

  14. Molecular Analysis of Mouse T Cell Receptor ? and ? Gene Rearrangements.

    PubMed

    Rupp, Levi J; Chen, Liang; Krangel, Michael S; Bassing, Craig H

    2016-01-01

    PCR on genomic DNA isolated from lymphocyte populations is an invaluable technique to analyze T cell receptor (TCR) ? and ? gene rearrangements. Although this approach is powerful, it also has limitations that must be accounted for in experimental design and data interpretation. Here, we provide background required for understanding these limitations, and then outline standard PCR methods that can be used for analysis of TCR? and ? gene rearrangements in mice. PMID:26294409

  15. Identification of Modulators of the Nuclear Receptor Peroxisome Proliferator-Activated Receptor ? (PPAR?) in a Mouse Liver Gene Expression Compendium

    EPA Science Inventory

    The nuclear receptor family member peroxisome proliferator-activated receptor ? (PPAR?) is activated by therapeutic hypolipidemic drugs and environmentally-relevant chemicals to regulate genes involved in lipid transport and catabolism. Chronic activation of PPAR? in rodents inc...

  16. Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism

    SciTech Connect

    Noble, E.P.; Blum, K.; Ritchie, T.; Montgomery, A.; Sheridan, P.J. )

    1991-07-01

    The allelic association of the human D2 dopamine receptor gene with the binding characteristics of the D2 dopamine receptor was determined in 66 brains of alcoholic and non-alcoholic subjects. In a blinded experiment, DNA from the cerebral cortex was treated with the restriction endonuclease Taql and probed with a 1.5-kilobase (kb) digest of a clone (lambda hD2G1) of the human D2 dopamine receptor gene. The binding characteristics (Kd (binding affinity) and Bmax (number of binding sites)) of the D2 dopamine receptor were determined in the caudate nuclei of these brains using tritiated spiperone as the ligand. The adjusted Kd was significantly lower in alcoholic than in nonalcoholic subjects. In subjects with the A1 allele, in whom a high association with alcoholism was found, the Bmax was significantly reduced compared with the Bmax of subjects with the A2 allele. Moreover, a progressively reduced Bmax was found in subjects with A2/A2, A1/A2, and A1/A1 alleles, with subjects with A2/A2 having the highest mean values, and subjects with A1/A1, the lowest. The polymorphic pattern of the D2 dopamine receptor gene and its differential expression of receptors suggests the involvement of the dopaminergic system in conferring susceptibility to at least one subtype of severe alcoholism.

  17. Mineralocorticoid receptor interaction with SP1 generates a new response element for pathophysiologically relevant gene expression

    PubMed Central

    Meinel, Sandra; Ruhs, Stefanie; Schumann, Katja; Strätz, Nicole; Trenkmann, Kay; Schreier, Barbara; Grosse, Ivo; Keilwagen, Jens; Gekle, Michael; Grossmann, Claudia

    2013-01-01

    The mineralocorticoid receptor (MR) is a ligand-induced transcription factor belonging to the steroid receptor family and involved in water-electrolyte homeostasis, blood pressure regulation, inflammation and fibrosis in the renocardiovascular system. The MR shares a common hormone-response-element with the glucocorticoid receptor but nevertheless elicits MR-specific effects including enhanced epidermal growth factor receptor (EGFR) expression via unknown mechanisms. The EGFR is a receptor tyrosine kinase that leads to activation of MAP kinases, but that can also function as a signal transducer for other signaling pathways. In the present study, we mechanistically investigate the interaction between a newly discovered MR- but not glucocorticoid receptor- responsive-element (=MRE1) of the EGFR promoter, specificity protein 1 (SP1) and MR to gain general insights into MR-specificity. Biological relevance of the interaction for EGFR expression and consequently for different signaling pathways in general is demonstrated in human, rat and murine vascular smooth muscle cells and cells of EGFR knockout mice. A genome-wide promoter search for identical binding regions followed by quantitative PCR validation suggests that the identified MR-SP1–MRE1 interaction might be applicable to other genes. Overall, a novel principle of MR-specific gene expression is explored that applies to the pathophysiologically relevant expression of the EGFR and potentially also to other genes. PMID:23821666

  18. 5-HT1A receptors, gene repression, and depression: guilt by association.

    PubMed

    Albert, Paul R; Lemonde, Sylvie

    2004-12-01

    The serotonin system is implicated in major depression and suicide and is negatively regulated by somatodendritic 5-HT1A autoreceptors. Desensitization of 5-HT1A autoreceptors is implicated in the 2- to 3-week latency for antidepressant treatments. Alterations in 5-HT1A receptor levels are reported in depression and suicide, and gene knockout of the 5-HT1A receptor results in an anxiety phenotype, suggesting that abnormal transcriptional regulation of this receptor gene may underlie these disorders. The 5-HT1A receptor gene is negatively regulated in neurons by repressors including REST/NRSF, Freud-1, NUDR/Deaf-1, and Hes5. The association with major depression, suicide, and panic disorder of a new functional 5-HT1A polymorphism at C(-1019)G that selectively blocks repression of the 5-HT1A autoreceptor by NUDR further suggests a causative role for altered regulation of this receptor in predisposition to mental illness. The authors review evidence that altered transcription of the 5-HT1A receptor can affect the serotonin system and limbic and cortical areas, leading to predisposition to depression. PMID:15534042

  19. Activin Regulates Estrogen Receptor Gene Expression in the Mouse Ovary*

    E-print Network

    Mayo, Kelly E.

    , inflammation, renal tubule morphogenesis, and neuroprotection. In the reproductive system, in addition to regActivin Regulates Estrogen Receptor Gene Expression in the Mouse Ovary* Received for publication of Obstetrics and Gynecology, and § Center for Reproductive Science, Northwestern University, Evanston, Illinois

  20. Characterization of the "CCR5" Chemokine Receptor Gene

    ERIC Educational Resources Information Center

    Thomas, John C.

    2004-01-01

    The life cycle of retroviruses is an essential topic of modern cell biology instruction. Furthermore, the process of HIV viral entry into the cell is a question of great interest in basic and clinical biology. This paper describes how students can easily recover their own DNA, amplify a portion of the "CCR5" chemokine receptor gene, characterize…

  1. Linkage analysis of schizophrenia with five dopamine receptor genes in nine pedigrees

    SciTech Connect

    Coon, H.; Byerley, W.; Holik, J.; Hoff, M.; Myles-Worsley, M.; Plaetke, R. ); Lannfelt, L. ); Sokoloff, P.; Schwartz, J.C. ); Waldo, M.; Freedman, R. )

    1993-02-01

    Alterations in dopamine neurotransmission have been strongly implicated in the pathogenesis of schizophrenia for nearly 2 decades. Recently, the genes for five dopamine receptors have been cloned and characterized, and genetic and physical map information has become available. Using these five loci as candidate genes, the authors have tested for genetic linkage to schizophrenia in nine multigenerational families which include multiple affected individuals. In addition to testing conservative disease models, the have used a neurophysiological indicator variable, the P50 auditory evoked response. Deficits in gating of the P50 response have been shown to segregate with schizophrenia in this sample and may identify carriers of gene(s) predisposing for schizophrenia. Linkage results were consistently negative, indicating that a defect at any of the actual receptor sites is unlikely to be a major contributor to schizophrenia in the nine families studied. 47 refs., 1 fig., 4 tabs.

  2. Identification of chemosensory receptor genes in Manduca sexta and knockdown by RNA interference

    PubMed Central

    2012-01-01

    Background Insects detect environmental chemicals via a large and rapidly evolving family of chemosensory receptor proteins. Although our understanding of the molecular genetic basis for Drosophila chemoreception has increased enormously in the last decade, similar understanding in other insects remains limited. The tobacco hornworm, Manduca sexta, has long been an important model for insect chemosensation, particularly from ecological, behavioral, and physiological standpoints. It is also a major agricultural pest on solanaceous crops. However, little sequence information and lack of genetic tools has prevented molecular genetic analysis in this species. The ability to connect molecular genetic mechanisms, including potential lineage-specific changes in chemosensory genes, to ecologically relevant behaviors and specializations in M. sexta would be greatly beneficial. Results Here, we sequenced transcriptomes from adult and larval chemosensory tissues and identified chemosensory genes based on sequence homology. We also used dsRNA feeding as a method to induce RNA interference in larval chemosensory tissues. Conclusions We report identification of new chemosensory receptor genes including 17 novel odorant receptors and one novel gustatory receptor. Further, we demonstrate that systemic RNA interference can be used in larval olfactory neurons to reduce expression of chemosensory receptor transcripts. Together, our results further the development of M. sexta as a model for functional analysis of insect chemosensation. PMID:22646846

  3. Interspecies Variations in Bordetella Catecholamine Receptor Gene Regulation and Function.

    PubMed

    Brickman, Timothy J; Suhadolc, Ryan J; Armstrong, Sandra K

    2015-12-01

    Bordetella bronchiseptica can use catecholamines to obtain iron from transferrin and lactoferrin via uptake pathways involving the BfrA, BfrD, and BfrE outer membrane receptor proteins, and although Bordetella pertussis has the bfrD and bfrE genes, the role of these genes in iron uptake has not been demonstrated. In this study, the bfrD and bfrE genes of B. pertussis were shown to be functional in B. bronchiseptica, but neither B. bronchiseptica bfrD nor bfrE imparted catecholamine utilization to B. pertussis. Gene fusion analyses found that expression of B. bronchiseptica bfrA was increased during iron starvation, as is common for iron receptor genes, but that expression of the bfrD and bfrE genes of both species was decreased during iron limitation. As shown previously for B. pertussis, bfrD expression in B. bronchiseptica was also dependent on the BvgAS virulence regulatory system; however, in contrast to the case in B. pertussis, the known modulators nicotinic acid and sulfate, which silence Bvg-activated genes, did not silence expression of bfrD in B. bronchiseptica. Further studies using a B. bronchiseptica bvgAS mutant expressing the B. pertussis bvgAS genes revealed that the interspecies differences in bfrD modulation are partly due to BvgAS differences. Mouse respiratory infection experiments determined that catecholamine utilization contributes to the in vivo fitness of B. bronchiseptica and B. pertussis. Additional evidence of the in vivo importance of the B. pertussis receptors was obtained from serologic studies demonstrating pertussis patient serum reactivity with the B. pertussis BfrD and BfrE proteins. PMID:26371128

  4. Folate receptor gene variants and neural tube defect occurrence

    SciTech Connect

    Finnell, R.; Greer, K.; Lammer, E.

    1994-09-01

    Recent epidemiological evidence shows that periconceptional use of folic acid supplements may prevent 40-50% of neural tube defects (NTDs). The FDA has subsequently recommended folic acid supplementation of all women of childbearing potential, even though the mechanism by which folic acid prevents NTDs is unknown. We investigated genetic variation of a candidate gene, the 5-methyltetrahydrofolate (5-MeTHF) receptor, that may mediate this preventive effect. The receptor concentrates folate within cells and we have localized its mRNA to neuroepithelial cells during neurulation. Our hypothesis is that dysfunctional 5-MeTHF receptors inadequately concentrate folate intracellularly, predisposing infants to NTDs. We have completed SSCP analysis on 3 of the 4 coding exons of the 5-MeTHF receptor gene of 474 infants participating in a large population-based epidemiological case-control study of NTDs in California; genotyping of another 500 infants is ongoing. Genomic DNA was extracted from residual blood spots from newborn screening samples of cases and controls. Genotyping was done blinded to case status. Polymorphisms have been detected for exons 4 and 5; fourteen percent of the infants have exon 5 polymorphisms. Data will be presented on the prevalence of 5-MeTHF receptor polymorphisms among cases and controls. Relationships among the polymorphisms and NTD occurrence may shed light on how folic acid supplementation prevents NTDs.

  5. Gene Expression Switching of Receptor Subunits in Human Brain Development

    PubMed Central

    Bar-Shira, Ossnat; Maor, Ronnie; Chechik, Gal

    2015-01-01

    Synaptic receptors in the human brain consist of multiple protein subunits, many of which have multiple variants, coded by different genes, and are differentially expressed across brain regions and developmental stages. The brain can tune the electrophysiological properties of synapses to regulate plasticity and information processing by switching from one protein variant to another. Such condition-dependent variant switch during development has been demonstrated in several neurotransmitter systems including NMDA and GABA. Here we systematically detect pairs of receptor-subunit variants that switch during the lifetime of the human brain by analyzing postmortem expression data collected in a population of donors at various ages and brain regions measured using microarray and RNA-seq. To further detect variant pairs that co-vary across subjects, we present a method to quantify age-corrected expression correlation in face of strong temporal trends. This is achieved by computing the correlations in the residual expression beyond a cubic-spline model of the population temporal trend, and can be seen as a nonlinear version of partial correlations. Using these methods, we detect multiple new pairs of context dependent variants. For instance, we find a switch from GLRA2 to GLRA3 that differs from the known switch in the rat. We also detect an early switch from HTR1A to HTR5A whose trends are negatively correlated and find that their age-corrected expression is strongly positively correlated. Finally, we observe that GRIN2B switch to GRIN2A occurs mostly during embryonic development, presumably earlier than observed in rodents. These results provide a systematic map of developmental switching in the neurotransmitter systems of the human brain. PMID:26636753

  6. Gene Expression Switching of Receptor Subunits in Human Brain Development.

    PubMed

    Bar-Shira, Ossnat; Maor, Ronnie; Chechik, Gal

    2015-12-01

    Synaptic receptors in the human brain consist of multiple protein subunits, many of which have multiple variants, coded by different genes, and are differentially expressed across brain regions and developmental stages. The brain can tune the electrophysiological properties of synapses to regulate plasticity and information processing by switching from one protein variant to another. Such condition-dependent variant switch during development has been demonstrated in several neurotransmitter systems including NMDA and GABA. Here we systematically detect pairs of receptor-subunit variants that switch during the lifetime of the human brain by analyzing postmortem expression data collected in a population of donors at various ages and brain regions measured using microarray and RNA-seq. To further detect variant pairs that co-vary across subjects, we present a method to quantify age-corrected expression correlation in face of strong temporal trends. This is achieved by computing the correlations in the residual expression beyond a cubic-spline model of the population temporal trend, and can be seen as a nonlinear version of partial correlations. Using these methods, we detect multiple new pairs of context dependent variants. For instance, we find a switch from GLRA2 to GLRA3 that differs from the known switch in the rat. We also detect an early switch from HTR1A to HTR5A whose trends are negatively correlated and find that their age-corrected expression is strongly positively correlated. Finally, we observe that GRIN2B switch to GRIN2A occurs mostly during embryonic development, presumably earlier than observed in rodents. These results provide a systematic map of developmental switching in the neurotransmitter systems of the human brain. PMID:26636753

  7. The Rat Growth Hormone-Releasing Hormone Receptor Gene: Structure, Regulation, and Generation of Receptor

    E-print Network

    Mayo, Kelly E.

    The Rat Growth Hormone-Releasing Hormone Receptor Gene: Structure, Regulation, and Generation- matotroph cells of the anterior pituitary is an important step in the regulation of GH synthesis of linear growth in mammals (1). Hypothalamic control of GH syn- thesis and secretion is modulated primarily

  8. Cell line differences in replication timing of human glutamate receptor genes and other large genes associated with neural disease

    PubMed Central

    Watanabe, Yoshihisa; Shibata, Kiyoshi; Maekawa, Masato

    2014-01-01

    There is considerable current interest in the function of epigenetic mechanisms in neuroplasticity with regard to learning and memory formation and to a range of neural diseases. Previously, we described replication timing on human chromosome 21q in the THP-1 human cell line (2n = 46, XY) and showed that several genes associated with neural diseases, such as the neuronal glutamate receptor subunit GluR-5 (GRIK1) and amyloid precursor protein (APP), were located in regions where replication timing transitioned from early to late S phase. Here, we compared replication timing of all known human glutamate receptor genes (26 genes in total) and APP in 6 different human cell lines including human neuron-related cell lines. Replication timings were obtained by integrating our previously reported data with new data generated here and information from the online database ReplicationDomain. We found that many of the glutamate receptor genes were clearly located in replication timing transition zones in neural precursor cells, but this relationship was less clear in embryonic stem cells before neural differentiation; in the latter, the genes were often located in later replication timing zones that displayed DNA hypermethylation. Analysis of selected large glutamate receptor genes (>200 kb), and of APP, showed that their precise replication timing patterns differed among the cell lines. We propose that the transition zones of DNA replication timing are altered by epigenetic mechanisms, and that these changes may affect the neuroplasticity that is important to memory and learning, and may also have a role in the development of neural diseases. PMID:25437050

  9. Symptoms of Attention-Deficit/Hyperactivity Disorder in Down Syndrome: Effects of the Dopamine Receptor D4 Gene

    ERIC Educational Resources Information Center

    Mason, Gina Marie; Spanó, Goffredina; Edgin, Jamie

    2015-01-01

    This study examined individual differences in ADHD symptoms and executive function (EF) in children with Down syndrome (DS) in relation to the dopamine receptor D4 (DRD4) gene, a gene often linked to ADHD in people without DS. Participants included 68 individuals with DS (7-21 years), assessed through laboratory tasks, caregiver reports, and…

  10. Sequence of a second human asialoglycoprotein receptor: conservation of two receptor genes during evolution.

    PubMed Central

    Spiess, M; Lodish, H F

    1985-01-01

    The asialoglycoprotein (ASGP) receptor isolated from human liver and from the human hepatoma cell line HepG2 migrates on NaDodSO4 gel electrophoresis as a single species of 45,000 daltons. Recently, we isolated a cDNA clone encoding this receptor (H1) from a HepG2 lambda gt11 library. From the same library, we have isolated and sequenced a clone encoding a second ASGP receptor, H2, with a protein sequence homology of 58% to H1. There are two subspecies of H2 that differ only by the presence of a five-amino acid insertion in the COOH-terminal extracytoplasmic domain. Comparison with the available sequences of the two rat ASGP receptors R1 and R2 indicates that H1 is more homologous to R1 than to H2, and H2 is more similar to R2 than to H1. Thus, the two receptor genes evolved before the separation of rat and man. As judged by RNA blot hybridization of HepG2 RNA using RNA transcribed in vitro from cDNA clones of the human receptors as standards, H1 and H2 mRNA are present in equimolar amounts, each 0.005-0.01% of the total mRNA. This finding raises the question of whether the three ASGP receptor proteins are functional as heterodimers or whether they might serve different functions in the cell. Images PMID:3863106

  11. Gene number determination and genetic polymorphism of the gamma delta T cell co-receptor WC1 genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background WC1 co-receptors belong to the scavenger receptor cysteine-rich superfamily and are encoded by a multi-gene family. Expression of particular WC1 genes defines functional subpopulations of WC1+ '' T cells. Our previous study identified partial sequences for 13 different WC1 genes by annota...

  12. Effect of ketoconazole on methylprednisolone pharmacokinetics and receptor/gene-mediated pharmacodynamics.

    PubMed

    Haughey, D B; Jusko, W J

    1991-11-01

    The disposition of methylprednisolone (MPL) and its metabolite, methylprednisone, and the receptor/gene-mediated pharmacodynamics of methylprednisolone were examined in control and ketoconazole-treated rats. Oral doses of ketoconazole (50 mg/kg/day) for 3 days increased plasma MPL clearance by 50% (NS) with no change in volumes of distribution. The mean residence time decreased from 0.60 +/- 0.15 (control) to 0.43 +/- 0.10 hr with ketoconazole (P less than .05) after 5 mg/kg of MPL (free alcohol). The methylprednisone to MPL area under the curve ratio decreased from 0.19 +/- 0.04 in control to 0.14 +/- 0.03 in ketoconazole-treated rats (P less than .05) due to altered interconversion between these steroids. An improved pharmacokinetic/dynamic receptor/gene-mediated model characterized the steroid receptor binding and induction of tyrosine aminotransferase activity after i.v. MPL sodium succinate (10 mg/kg). In contrast to previous in vitro studies, ketoconazole at maximally tolerated doses failed to antagonize the steroid receptor-mediated activity of MPL. Although ketoconazole at high concentrations competitively inhibited the in vitro binding of steroid to hepatic receptors, no in vivo inhibition was detected after large p.o. ketoconazole doses. Efficiency of tyrosine aminotransferase induction was slightly enhanced in ketoconazole animals. Pharmacokinetic/dynamic factors accounting for the lack of antiglucocorticoid activity primarily include the low ketoconazole receptor binding affinity. PMID:1941630

  13. Assessing the Dynamics of Nuclear Glucocorticoid-Receptor Complex: Adding Flexibility to Gene Expression Modeling1

    PubMed Central

    Hazra, Anasuya; DuBois, Debra C.; Almon, Richard R.; Jusko, William J.

    2014-01-01

    A retrospective analysis was performed to modify our fourth-generation pharmacodynamic model for glucocorticoid receptor (GR) dynamics with incorporation of more physiological features. This modified model was developed by integrating previously reported free cytosolic GR and GR mRNA data following single (10, 50 mg/kg) and dual (50 mg/kg at 0 and 24 hr) intravenous doses of methylprednisolone (MPL) in adrenalectomized (ADX) male Wistar rats with several in vitro studies describing real-time kinetics of the transfer of rat steroid-receptor complex from the cell cytosol to the nucleus. Additionally, free hepatic cytosolic GR and its mRNA data from a chronic infusion dosing study of MPL (0.1 and 0.3 mg/kg/hr) in male ADX Wistar rats were used to verify the predictability of the model. Incorporation of information regarding in vitro receptor kinetics allowed us to describe the receptor-mediated pharmacogenomic effects of MPL for a larger variety of genes in rat liver from microarray studies. These included early responsive gene like CCAAT/enhancer binding protein-? (CEBP-?), a transcription factor, as well as the later responsive gene for tyrosine aminotransferase (TAT), a classical biomarker of glucocorticoid (GC) genomic effects. This more mechanistic model of GR dynamics can be applied to characterize profiles for a greater number of genes in liver. PMID:17285360

  14. Evolution of the Neuropeptide Y Receptor Family: Gene and Chromosome Duplications Deduced from the Cloning and Mapping of the Five Receptor Subtype Genes in Pig

    PubMed Central

    Wraith, Amanda; Törnsten, Anna; Chardon, Patrick; Harbitz, Ingrid; Chowdhary, Bhanu P.; Andersson, Leif; Lundin, Lars-Gustav; Larhammar, Dan

    2000-01-01

    Neuropeptide Y (NPY) receptors mediate a variety of physiological responses including feeding and vasoconstriction. To investigate the evolutionary events that have generated this receptor family, we have sequenced and determined the chromosomal localizations of all five presently known mammalian NPY receptor subtype genes in the domestic pig, Sus scrofa (SSC). The orthologs of the Y1 and Y2 subtypes display high amino acid sequence identities between pig, human, and mouse (92%–94%), whereas the Y4, Y5, and y6 subtypes display lower identities (76%–87%). The lower identity of Y5 is due to high sequence divergence in the large third intracellular loop. The NPY1R, NPY2R, and NPY5R receptor genes were localized to SSC8, the NPY4R to SSC14, and NPY6R to SSC2. Our comparisons strongly suggest that the tight cluster of NPY1R, NPY2R, and NPY5R on human chromosome 4 (HSA4) represents the ancestral configuration, whereas the porcine cluster has been split by two inversions on SSC8. These 3 genes, along with adjacent genes from 14 other gene families, form a cluster on HSA4 with extensive similarities to a cluster on HSA5, where NPY6R and >13 other paralogs reside, as well as another large cluster on HSA10 that includes NPY4R. Thus, these gene families have expanded through large-scale duplications. The sequence comparisons show that the NPY receptor triplet NPY1R–NPY2R–NPY5R existed before these large-scale duplications. [Sequence data for this article were deposited with the GenBank data library under accession nos. AF106081, PID g6457648 (for Pig Y1 sequence); accession nos. AF106082, PID g4249727 (for Pig Y2 sequence); accession no. AF227955 (for Pig Y4 sequence); accession nos. AF106083, PID g4249729 (for Pig Y5 sequence); accession no. AF227956 (for Pig Y6 sequence).] PMID:10720571

  15. A comparison of reptilian and avian olfactory receptor gene repertoires: Species-specific expansion of group ? genes in birds

    PubMed Central

    Steiger, Silke S; Kuryshev, Vladimir Y; Stensmyr, Marcus C; Kempenaers, Bart; Mueller, Jakob C

    2009-01-01

    Background The detection of odorants is mediated by olfactory receptors (ORs). ORs are G-protein coupled receptors that form a remarkably large protein superfamily in vertebrate genomes. We used data that became available through recent sequencing efforts of reptilian and avian genomes to identify the complete OR gene repertoires in a lizard, the green anole (Anolis carolinensis), and in two birds, the chicken (Gallus gallus) and the zebra finch (Taeniopygia guttata). Results We identified 156 green anole OR genes, including 42 pseudogenes. The OR gene repertoire of the two bird species was substantially larger with 479 and 553 OR gene homologs in the chicken and zebra finch, respectively (including 111 and 221 pseudogenes, respectively). We show that the green anole has a higher fraction of intact OR genes (~72%) compared with the chicken (~66%) and the zebra finch (~38%). We identified a larger number and a substantially higher proportion of intact OR gene homologs in the chicken genome than previously reported (214 versus 82 genes and 66% versus 15%, respectively). Phylogenetic analysis showed that lizard and bird OR gene repertoires consist of group ?, ? and ? genes. Interestingly, the vast majority of the avian OR genes are confined to a large expansion of a single branch (the so called ?-c clade). An analysis of the selective pressure on the paralogous genes of each ?-c clade revealed that they have been subjected to adaptive evolution. This expansion appears to be bird-specific and not sauropsid-specific, as it is lacking from the lizard genome. The ?-c expansions of the two birds do not intermix, i.e., they are lineage-specific. Almost all (group ?-c) OR genes mapped to the unknown chromosome. The remaining OR genes mapped to six homologous chromosomes plus three to four additional chromosomes in the zebra finch and chicken. Conclusion We identified a surprisingly large number of potentially functional avian OR genes. Our data supports recent evidence that avian olfactory ability may be better developed than previously thought. We hypothesize that the radiation of the group ?-c OR genes in each bird lineage parallels the evolution of specific olfactory sensory functions. PMID:19772566

  16. Relationship between adiponectin receptor 1 gene polymorphisms and ischemic stroke

    PubMed Central

    Han, Qian; Shu, Zunhua; Liang, Xuemei; Mi, Rui; Yang, Lei; Li, Peng

    2015-01-01

    Objective: Previous study suggested adiponectin receptor 2 (ADIPOR2) genetic polymorphisms were associated with the risk of ischemic stroke. However, the relation between adiponectin receptor 1 (ADIPOR1) gene polymorphism and stroke remains unclear. Methods: In the present study, we utilized the polymerase chain reaction-sequencing method to detect rs2275737 and s1342387 genotypes of ADIPOR1 gene in 300 cases of ischemic stroke patients and 300 age- and sex- matched healthy controls. Results: For rs2275737, we found A allele carriers have increased risk to ischemic stroke (OR=2.570, 95% CI: 1.999-3.305); also, we found rs1342387 A allele was associated with the risk for stroke (OR=1.351, 95% CI: 1.074-1.699). After adjusted for confounders such as hypertension, diabetes, and smoking, we found the association remains significant. Conclusion: ADIPOR1 genetic polymorphism may increase the risk of ischemic stroke.

  17. Differential expression of olfactory genes in the southern house mosquito and insights into unique odorant receptor gene isoforms

    PubMed Central

    Leal, Walter S.; Choo, Young-Moo; Xu, Pingxi; da Silva, Cherre S. B.; Ueira-Vieira, Carlos

    2013-01-01

    The southern house mosquito, Culex quinquefasciatus, has one of the most acute and eclectic olfactory systems of all mosquito species hitherto studied. Here, we used Illumina sequencing to identify olfactory genes expressed predominantly in antenna, mosquito’s main olfactory organ. Less than 50% of the trimmed reads generated by high-quality libraries aligned to a transcript, but approximately 70% of them aligned to the genome. Differential expression analysis, which was validated by quantitative real-time PCR on a subset of genes, showed that approximately half of the 48 odorant-binding protein genes were enriched in antennae, with the other half being predominantly expressed in legs. Similar patterns were observed with chemosensory proteins, “plus-C” odorant-binding proteins, and sensory neuron membrane proteins. Transcripts for as many as 43 ionotropic receptors were enriched in female antennae, thus making the ionotropic receptor family the largest of antennae-rich olfactory genes, second only to odorant receptor (OR) genes. As many as 177 OR genes have been identified, including 36 unique transcripts. The unique OR genes differed from previously annotated ORs in internal sequences, splice variants, and extended N or C terminus. One of the previously unknown transcripts was validated by cloning and functional expression. When challenged with a large panel of physiologically relevant compounds, CquiOR95b responded in a dose-dependent manner to ethyl 2-phenylacteate, which was demonstrated to repel Culex mosquitoes, and secondarily to citronellal, a known insect repellent. This transcriptome study led to identification of key molecular components and a repellent for the southern house mosquito. PMID:24167245

  18. Gene expression profiling of skeletal muscles treated with a soluble activin type IIB receptor

    PubMed Central

    Rahimov, Fedik; King, Oliver D.; Warsing, Leigh C.; Powell, Rachel E.; Emerson, Charles P.; Kunkel, Louis M.

    2011-01-01

    Inhibition of the myostatin signaling pathway is emerging as a promising therapeutic means to treat muscle wasting and degenerative disorders. Activin type IIB receptor (ActRIIB) is the putative myostatin receptor, and a soluble activin receptor (ActRIIB-Fc) has been demonstrated to potently inhibit a subset of transforming growth factor (TGF)-? family members including myostatin. To determine reliable and valid biomarkers for ActRIIB-Fc treatment, we assessed gene expression profiles for quadriceps muscles from mice treated with ActRIIB-Fc compared with mice genetically lacking myostatin and control mice. Expression of 134 genes was significantly altered in mice treated with ActRIIB-Fc over a 2-wk period relative to control mice (fold change > 1.5, P < 0.001), whereas the number of significantly altered genes in mice treated for 2 days was 38, demonstrating a time-dependent response to ActRIIB-Fc in overall muscle gene expression. The number of significantly altered genes in Mstn?/? mice relative to control mice was substantially higher (360), but for most of these genes the expression levels in the 2-wk treated mice were closer to the levels in the Mstn?/? mice than in control mice (P < 10?30). Expression levels of 30 selected genes were further validated with quantitative real-time polymerase chain reaction (qPCR), and a correlation of ?0.89 was observed between the fold changes from the microarray analysis and the qPCR analysis. These data suggest that treatment with ActRIIB-Fc results in overlapping but distinct gene expression signatures compared with myostatin genetic mutation. Differentially expressed genes identified in this study can be used as potential biomarkers for ActRIIB-Fc treatment, which is currently in clinical trials as a therapeutic agent for muscle wasting and degenerative disorders. PMID:21266502

  19. The oxytocin receptor gene and social perception.

    PubMed

    Melchers, Martin; Montag, Christian; Felten, Andrea; Reuter, Martin

    2015-08-01

    Social perception is an important prerequisite for successful social interaction, because it helps to gain information about behaviors, thoughts, and feelings of interaction partners. Previous pharmacological studies have emphasized the relevance of the oxytocin system for social perception abilities, while knowledge on genetic contributions is still scarce. In the endeavor to fill this gap in the literature, the current study searches for associations between participants' social perception abilities as measured by the interpersonal perception task (IPT) and the rs2268498 polymorphism on the OXTR-gene, which has repeatedly been linked to processes relevant to social functioning. N = 105 healthy participants were experimentally tested with the IPT and genotyped for the rs2268498 polymorphism. T-allele carriers (TT and TC genotypes) exhibited significantly better performance in the IPT than carriers of the CC-genotype. This difference was also significant for the subscales measuring the strength of social bonding (kinship and intimacy). As in previous studies, T-allele carriers exhibited better performance in measures of social processing indicating that the rs2268498 polymorphism is an important candidate for understanding the genetic basis of social functioning. PMID:25646574

  20. SUMOylation regulates the chromatin occupancy and anti-proliferative gene programs of glucocorticoid receptor

    PubMed Central

    Paakinaho, Ville; Kaikkonen, Sanna; Makkonen, Harri; Benes, Vladimir; Palvimo, Jorma J.

    2014-01-01

    In addition to the glucocorticoids, the glucocorticoid receptor (GR) is regulated by post-translational modifications, including SUMOylation. We have analyzed how SUMOylation influences the activity of endogenous GR target genes and the receptor chromatin binding by using isogenic HEK293 cells expressing wild-type GR (wtGR) or SUMOylation-defective GR (GR3KR). Gene expression profiling revealed that both dexamethasone up- and downregulated genes are affected by the GR SUMOylation and that the affected genes are significantly associated with pathways of cellular proliferation and survival. The GR3KR-expressing cells proliferated more rapidly, and their anti-proliferative response to dexamethasone was less pronounced than in the wtGR-expressing cells. ChIP-seq analyses indicated that the SUMOylation modulates the chromatin occupancy of GR on several loci associated with cellular growth in a fashion that parallels with their differential dexamethasone-regulated expression between the two cell lines. Moreover, chromatin SUMO-2/3 marks, which were associated with active GR-binding sites, showed markedly higher overlap with the wtGR cistrome than with the GR3KR cistrome. In sum, our results indicate that the SUMOylation does not simply repress the GR activity, but regulates the activity of the receptor in a target locus selective fashion, playing an important role in controlling the GR activity on genes influencing cell growth. PMID:24194604

  1. Dopamine D1 Receptor Gene Variation Modulates Opioid Dependence Risk by Affecting Transition to

    E-print Network

    Chandy, John A.

    Dopamine D1 Receptor Gene Variation Modulates Opioid Dependence Risk by Affecting Transition'an Mental Health Center, Xi'an, Shaanxi, People's Republic of China Abstract Dopamine D1 receptor (DRD1. Citation: Zhu F, Yan C-x, Wen Y-c, Wang J, Bi J, et al. (2013) Dopamine D1 Receptor Gene Variation

  2. Toll-Like Receptor Gene Expression during Trichinella spiralis Infection

    PubMed Central

    Kim, Sin; Park, Mi Kyung; Yu, Hak Sun

    2015-01-01

    In Trichinella spiralis infection, type 2 helper T (Th2) cell-related and regulatory T (Treg) cell-related immune responses are the most important immune events. In order to clarify which Toll-like receptors (TLRs) are closely associated with these responses, we analyzed the expression of mouse TLR genes in the small intestine and muscle tissue during T. spiralis infection. In addition, the expression of several chemokine- and cytokine-encoding genes, which are related to Th2 and Treg cell mediated immune responses, were analyzed in mouse embryonic fibroblasts (MEFs) isolated from myeloid differentiation factor 88 (MyD88)/TIR-associated proteins (TIRAP) and Toll receptor-associated activator of interferons (TRIF) adapter protein deficient and wild type (WT) mice. The results showed significantly increased TLR4 and TLR9 gene expression in the small intestine after 2 weeks of T. spiralis infection. In the muscle, TLR1, TLR2, TLR5, and TLR9 gene expression significantly increased after 4 weeks of infection. Only the expression of the TLR4 and TLR9 genes was significantly elevated in WT MEF cells after treatment with excretory-secretory (ES) proteins. Gene expression for Th2 chemokine genes were highly enhanced by ES proteins in WT MEF cells, while this elevation was slightly reduced in MyD88/TIRAP-/- MEF cells, and quite substantially decreased in TRIF-/- MEF cells. In contrast, IL-10 and TGF-? expression levels were not elevated in MyD88/TIRAP-/- MEF cells. In conclusion, we suggest that TLR4 and TLR9 might be closely linked to Th2 cell and Treg cell mediated immune responses, although additional data are needed to convincingly prove this observation. PMID:26323841

  3. Characterization of the human growth hormone receptor gene and demonstration of a partial gene deletion in two patients with Laron-type dwarfism.

    PubMed Central

    Godowski, P J; Leung, D W; Meacham, L R; Galgani, J P; Hellmiss, R; Keret, R; Rotwein, P S; Parks, J S; Laron, Z; Wood, W I

    1989-01-01

    Laron-type dwarfism is an autosomal recessive genetic disorder that is characterized by high levels of growth hormone and low levels of insulin-like growth factor I in the circulation. Several lines of evidence suggest that this disease is caused by a defect in the growth hormone receptor. In order to analyze the receptor gene in patients with Laron-type dwarfism and with other growth disorders, we have first determined the gene structure in normal individuals. There are nine exons that encode the receptor and several additional exons in the 5' untranslated region. The coding exons span at least 87 kilobase pairs of chromosome 5. Characterization of the growth hormone receptor gene from nine patients with Laron-type dwarfism shows that two individuals have a deletion of a large portion of the extracellular, hormone binding domain of the receptor gene. Interestingly, this deletion includes nonconsecutive exons, suggesting that an unusual rearrangement may have occurred. Thus, we provide direct evidence that Laron-type dwarfism can result from a defect in the structural gene for the growth hormone receptor. Images PMID:2813379

  4. Smallest bitter taste receptor (T2Rs) gene repertoire in carnivores.

    PubMed

    Hu, Ling-Ling; Shi, Peng

    2013-06-01

    Bitter taste reception is presumably associated with dietary selection, preventing animals from ingesting potentially harmful compounds. Accordingly, carnivores, who encounter these toxic substances less often, should have fewer genes associated with bitter taste reception compared with herbivores and omnivores. To investigate the genetic basis of bitter taste reception, we confirmed bitter taste receptor (T2R) genes previously found in the genome sequences of two herbivores (cow and horse), two omnivores (mouse and rat) and one carnivore (dog). We also identified, for the first time, the T2R repertoire from the genome of other four carnivore species (ferret, giant panda, polar bear and cat) and detected 17-20 bitter receptor genes from the five carnivore genomes, including 12-16 intact genes, 0-1 partial but putatively functional genes, and 3-8 pseudogenes. Both the intact T2R genes and the total T2R gene number among carnivores were the smallest among the tested species, supporting earlier speculations that carnivores have fewer T2R genes, herbivores an intermediate number, and omnivores the largest T2R gene repertoire. To further explain the genetic basis for this disparity, we constructed a phylogenetic tree, which showed most of the T2R genes from the five carnivores were one-to-one orthologs across the tree, suggesting that carnivore T2Rs were conserved among mammals. Similarly, the small carnivore T2R family size was likely due to rare duplication events. Collectively, these results strengthen arguments for the connection between T2R gene family size, diet and habit. PMID:23776004

  5. Control of transcriptional repression of the vitellogenin receptor gene in largemouth bass (Micropterus salmoides) by select estrogen receptors isotypes.

    PubMed

    Dominguez, Gustavo A; Bisesi, Joseph H; Kroll, Kevin J; Denslow, Nancy D; Sabo-Attwood, Tara

    2014-10-01

    The vitellogenin receptor (Vtgr) plays an important role in fish reproduction. This receptor functions to incorporate vitellogenin (Vtg), a macromolecule synthesized and released from the liver in the bloodstream, into oocytes where it is processed into yolk. Although studies have focused on the functional role of Vtgr in fish, the mechanistic control of this gene is still unexplored. Here we report the identification and analysis of the first piscine 5' regulatory region of the vtgr gene which was cloned from largemouth bass (Micropterus salmoides). Using this putative promoter sequence, we investigated a role for hormones, including insulin and 17?-estradiol (E2), in transcriptional regulation through cell-based reporter assays. No effect of insulin was observed, however, E2 was able to repress transcriptional activity of the vtgr promoter through select estrogen receptor subtypes, Esr1 and Esr2a but not Esr2b. Electrophoretic mobility shift assay demonstrated that Esr1 likely interacts with the vtgr promoter region through half ERE and/or SP1 sites, in part. Finally we also show that ethinylestradiol (EE2), but not bisphenol-A (BPA), represses promoter activity similarly to E2. These results reveal for the first time that the Esr1 isoform may play an inhibitory role in the expression of LMB vtgr mRNA under the influence of E2, and potent estrogens such as EE2. In addition, this new evidence suggests that vtgr may be a target of select endocrine disrupting compounds through environmental exposures. PMID:25061109

  6. Ethanol Upregulates NMDA Receptor Subunit Gene Expression in Human Embryonic Stem Cell-Derived Cortical Neurons

    PubMed Central

    Gelernter, Joel; Park, In-Hyun; Zhang, Huiping

    2015-01-01

    Chronic alcohol consumption may result in sustained gene expression alterations in the brain, leading to alcohol abuse or dependence. Because of ethical concerns of using live human brain cells in research, this hypothesis cannot be tested directly in live human brains. In the present study, we used human embryonic stem cell (hESC)-derived cortical neurons as in vitro cellular models to investigate alcohol-induced expression changes of genes involved in alcohol metabolism (ALDH2), anti-apoptosis (BCL2 and CCND2), neurotransmission (NMDA receptor subunit genes: GRIN1, GRIN2A, GRIN2B, and GRIN2D), calcium channel activity (ITPR2), or transcriptional repression (JARID2). hESCs were differentiated into cortical neurons, which were characterized by immunostaining using antibodies against cortical neuron-specific biomarkers. Ethanol-induced gene expression changes were determined by reverse-transcription quantitative polymerase chain reaction (RT-qPCR). After a 7-day ethanol (50 mM) exposure followed by a 24-hour ethanol withdrawal treatment, five of the above nine genes (including all four NMDA receptor subunit genes) were highly upregulated (GRIN1: 1.93-fold, P = 0.003; GRIN2A: 1.40-fold, P = 0.003; GRIN2B: 1.75-fold, P = 0.002; GRIN2D: 1.86-fold, P = 0.048; BCL2: 1.34-fold, P = 0.031), and the results of GRIN1, GRIN2A, and GRIN2B survived multiple comparison correction. Our findings suggest that alcohol responsive genes, particularly NMDA receptor genes, play an important role in regulating neuronal function and mediating chronic alcohol consumption-induced neuroadaptations. PMID:26266540

  7. Amplification of small molecule-inducible gene expression via tuning of intracellular receptor densities

    PubMed Central

    Wang, Baojun; Barahona, Mauricio; Buck, Martin

    2015-01-01

    Ligand-responsive transcription factors in prokaryotes found simple small molecule-inducible gene expression systems. These have been extensively used for regulated protein production and associated biosynthesis of fine chemicals. However, the promoter and protein engineering approaches traditionally used often pose significant restrictions to predictably and rapidly tune the expression profiles of inducible expression systems. Here, we present a new unified and rational tuning method to amplify the sensitivity and dynamic ranges of versatile small molecule-inducible expression systems. We employ a systematic variation of the concentration of intracellular receptors for transcriptional control. We show that a low density of the repressor receptor (e.g. TetR and ArsR) in the cell can significantly increase the sensitivity and dynamic range, whereas a high activator receptor (e.g. LuxR) density achieves the same outcome. The intracellular concentration of receptors can be tuned in both discrete and continuous modes by adjusting the strength of their cognate driving promoters. We exemplified this approach in several synthetic receptor-mediated sensing circuits, including a tunable cell-based arsenic sensor. The approach offers a new paradigm to predictably tune and amplify ligand-responsive gene expression with potential applications in synthetic biology and industrial biotechnology. PMID:25589545

  8. Perilipin, a critical regulator of fat storage and breakdown, is a target gene of estrogen receptor-related receptor {alpha}

    SciTech Connect

    Akter, Mst. Hasina; Yamaguchi, Tomohiro; Hirose, Fumiko; Osumi, Takashi

    2008-04-11

    Perilipin is a protein localized on lipid droplet surfaces in adipocytes and steroidogenic cells, playing a central role in regulated lipolysis. Expression of the perilipin gene is markedly induced during adipogenesis. We found that transcription from the perilipin gene promoter is activated by an orphan nuclear receptor, estrogen receptor-related receptor (ERR){alpha}. A response element to this receptor was identified in the promoter region by a gene reporter assay, the electrophoretic-gel mobility-shift assay and the chromatin immunoprecipitation assay. Peroxisome proliferator-activated receptor {gamma} coactivator (PGC)-1{alpha} enhanced, whereas small heterodimer partner (SHP) repressed, the transactivating function of ERR{alpha} on the promoter. Thus, the perilipin gene expression is regulated by a transcriptional network controlling energy metabolism, substantiating the functional importance of perilipin in the maintenance of body energy balance.

  9. Muscarinic acetylcholine receptor 1 gene polymorphisms associated with high myopia

    PubMed Central

    Lin, Hui-Ju; Wan, Lei; Tsai, Yuhsin; Chen, Wen-Chi; Tsai, Shih-Wei; Tsai, Fuu-Jen

    2009-01-01

    Purpose Numerous studies, including those using animal models of myopia development and human clinical trials, have shown that the non-selective muscarinic antagonist atropine is effective in preventing the axial elongation that leads to myopia development. Among all of the muscarinic acetylcholine receptors (mAChRs), mAChR 1 (M1) was the most effective in preventing myopic eye change. Our specific aim in this study was to examine the association between high myopia and polymorphisms within the muscarinic acetylcholine receptors 1 gene (CHRM1). Methods The participants comprised of a high myopia group (n=194; age range, 17–24 years) having a myopic spherical equivalent greater than 6.5 diopters (D) and a control group (n=109; age range, 17–25 years) having a myopic spherical equivalent less than 0.5 D. Genotyping was performed using an assay-on-demand allelic discrimination assay. Polymerase chain reaction (PCR) was performed using 96 well plates on a thermal cycler. The polymorphisms detected were S1 (CHRM1 rs11823728), S2 (CHRM1 rs544978), S3 (CHRM1 rs2186410), and S4 (CHRM1 rs542269). Results There was a significant difference in the distribution of S2 and S4 between the high myopia and control groups (p=2.40×10?6 and 2.38×10-8, respectively). The odds ratios of AA genotype of S2 and GG genotype of S4 were both 0.08 (95% confidence interval [CI]: 0.02–0.29 and 0.02–0.36, respectively). Logistic regression test revealed S1, S2, and S4 CHRM1 as all being significant in the development of high myopia. Moreover, the distributions of haplotype 4 (Ht4; C/A/A/A) differed significantly between the two groups (p=3.4×10?5, odds ratio: 0.1, 95% CI: 0.03–0.34). Conclusions Our results suggest that the S2 and S4 polymorphisms of CHRM1 are associated with susceptibility for developing high myopia. S1, S2, and S4 CHRM1 had a co-operative association with high myopia. PMID:19753311

  10. Molecular cloning and characterization of a Toll receptor gene from Macrobrachium rosenbergii.

    PubMed

    Srisuk, Chutima; Longyant, Siwaporn; Senapin, Saengchan; Sithigorngul, Paisarn; Chaivisuthangkura, Parin

    2014-02-01

    Toll receptors are cell surface molecules acting as pattern recognition receptors (PRRs) that have been implicated in the signaling pathway of innate immune responses. In this study, the full-length cDNA of a Toll receptor gene of Macrobrachium rosenbergii, designated MrToll, was successfully isolated using designed degenerate primers and the rapid amplification of cDNA ends (RACE). The MrToll gene sequence contained an open reading frame (ORF) of 2799 nucleotides encoding a protein of 932 amino acid residues. The protein contained distinct structural motifs of the Toll-like receptor (TLR) family, including an extracellular domain containing 15 leucine-rich repeats (LRRs), a transmembrane segment of 23 amino acids, and a cytoplasmic Toll/interleukin-1R (TIR) domain of 139 residues. Phylogenetic analysis revealed that MrToll and Toll receptor of Marsupenaeus japonicus (MjToll) evolved closely. However, the MrToll ORF demonstrated only 48-49% identity with shrimp Toll1, suggesting that MrToll isolated from a palaemonid shrimp might belong to a novel class of Toll receptors in shrimp. The transcripts of the MrToll gene were constitutively expressed in various tissues, with high levels in hemocytes, the stomach and muscle. A reverse transcriptase PCR assay demonstrated that the expression patterns of MrToll were distinctly modulated after Aeromonas caviae stimulation, with significant enhancement at 3-12 h post-challenge and a decline to basal levels at 24 h post-challenge. In addition, when MrToll-silenced shrimp were challenged with A. caviae, there was a significant increase in mortality and bacterial CFU counts. These results suggest that MrToll might be involved in host innate defense, especially against the pathogen A. caviae. PMID:24398262

  11. Analysis of the murine Dtk gene identifies conservation of genomic structure within a new receptor tyrosine kinase subfamily

    SciTech Connect

    Lewis, P.M.; Crosier, K.E.; Crosier, P.S.

    1996-01-01

    The receptor tyrosine kinase Dtk/Tyro 3/Sky/rse/brt/tif is a member of a new subfamily of receptors that also includes Axl/Ufo/Ark and Eyk/Mer. These receptors are characterized by the presence of two immunoglobulin-like loops and two fibronectin type III repeats in their extracellular domains. The structure of the murine Dtk gene has been determined. The gene consists of 21 exons that are distributed over 21 kb of genomic DNA. An isoform of Dtk is generated by differential splicing of exons from the 5{prime} region of the gene. The overall genomic structure of Dtk is virtually identical to that determined for the human UFO gene. This particular genomic organization is likely to have been duplicated and closely maintained throughout evolution. 38 refs., 3 figs., 1 tab.

  12. Evolution of Dopamine Receptor Genes of the D1 Class in Vertebrates

    PubMed Central

    Yamamoto, Kei; Mirabeau, Olivier; Bureau, Charlotte; Blin, Maryline; Michon-Coudouel, Sophie; Demarque, Michaël; Vernier, Philippe

    2013-01-01

    The receptors of the dopamine neurotransmitter belong to two unrelated classes named D1 and D2. For the D1 receptor class, only two subtypes are found in mammals, the D1A and D1B, receptors, whereas additional subtypes, named D1C, D1D, and D1X, have been found in other vertebrate species. Here, we analyzed molecular phylogeny, gene synteny, and gene expression pattern of the D1 receptor subtypes in a large range of vertebrate species, which leads us to propose a new view of the evolution of D1 dopamine receptor genes. First, we show that D1C and D1D receptor sequences are encoded by orthologous genes. Second, the previously identified Cypriniform D1X sequence is a teleost-specific paralog of the D1B sequences found in all groups of jawed vertebrates. Third, zebrafish and several sauropsid species possess an additional D1-like gene, which is likely to form another orthology group of vertebrate ancestral genes, which we propose to name D1E. Ancestral jawed vertebrates are thus likely to have possessed four classes of D1 receptor genes—D1A, D1B(X), D1C(D), and D1E—which arose from large-scale gene duplications. The D1C receptor gene would have been secondarily lost in the mammalian lineage, whereas the D1E receptor gene would have been lost independently in several lineages of modern vertebrates. The D1A receptors are well conserved throughout jawed vertebrates, whereas sauropsid D1C receptors have rapidly diverged, to the point that they were misidentified as D1D. The functional significance of the D1C receptor loss is not known. It is possible that the function may have been substituted with D1A or D1B receptors in mammals, following the disappearance of D1C receptors in these species. PMID:23197594

  13. Expression analysis of the estrogen receptor target genes in renal cell carcinoma

    PubMed Central

    LIU, ZHIHONG; LU, YOU; HE, ZONGHAI; CHEN, LIBO; LU, YIPING

    2015-01-01

    The aim of the present study was to investigate the differentially expressed genes (DEGs) and target genes of the estrogen receptor (ER) in renal cell carcinoma. The data (GSE12090) were downloaded from the gene expression omnibus database. Data underwent preprocessing using the affy package for Bioconductor software, then the DEGs were selected via the significance analysis of microarray algorithm within the siggenes package. Subsequently, the DEGs underwent functional and pathway enrichment analysis using Database for Annotation Visualization and Integrated Discovery software. Following data analysis, transcriptional regulatory networks between the DEGs and transcription factors were constructed. Finally, the ER target genes were subjected to gene ontology enrichment analysis. A total of 215 DEGs were identified between the chromophobe renal cell carcinoma samples and the oncocytoma samples, including 126 upregulated and 89 downregulated genes. Functional enrichment analysis indicated that 25% of the DEGs were significantly enriched in functions associated with the plasma membrane. Among those DEGs, 105 were regulated by the ER. Further regulatory network analysis indicated that the ER was mainly involved in the regulation of oncogenes and tumor suppressor genes, including protease serine 8, claudin 7 and Ras-related protein Rab-25. In the present study, the identified ER target genes were demonstrated to be closely associated with tumor development; this knowledge may improve the understanding of the ER regulatory mechanisms during tumor development and promote the discovery of predictive markers for renal cell carcinoma. PMID:25351113

  14. Polymorphism and genetic mapping of the human oxytocin receptor gene on chromosome 3

    SciTech Connect

    Michelini, S.; Urbanek, M.; Goldman, D.

    1995-06-19

    Centrally administered oxytocin has been reported to facilitate affiliative and social behaviors, in functional harmony with its well-known peripheral effects on uterine contraction and milk ejection. The biological effects of oxytocin could be perturbed by mutations occurring in the sequence of the oxytocin receptor gene, and it would be of interest to establish the position of this gene on the human linkage map. Therefore we identified a polymorphism at the human oxytocin receptor gene. A portion of the 3{prime} untranslated region containing a 30 bp CA repeat was amplified by polymerase chain reaction (PCR), revealing a polymorphism with two alleles occurring with frequencies of 0.77 and 0.23 in a sample of Caucasian CEPH parents (n = 70). The CA repeat polymorphism we detected was used to map the human oxytocin receptor to chromosome 3p25-3p26, in a region which contains several important genes, including loci for Von Hippel-Lindau disease (VHL) and renal cell carcinoma. 53 refs., 2 figs., 1 tab.

  15. Metformin suppresses pregnane X receptor (PXR)-regulated transactivation of CYP3A4 gene

    PubMed Central

    Krausova, Lucie; Stejskalova, Lucie; Wang, Hongwei; Vrzal, Radim; Dvorak, Zdenek; Mani, Sridhar; Pavek, Petr

    2011-01-01

    Metformin is widely used in the treatment of type-2 diabetes. The pleotropic effects of metformin on glucose and lipid metabolism have been proposed to be mediated by the activation of AMP-activated protein kinase (AMPK) and the subsequent up-regulation of small heterodimer partner (SHP). SHP suppresses the functions of several nuclear receptors involved in the regulation of hepatic metabolism, including pregnane X receptor (PXR), which is referred to as a “master regulator” of drug/xenobiotic metabolism. In this study, we hypothesize that metformin suppresses the expression of CYP3A4, a main detoxification enzyme and a target gene of PXR, due to SHP up-regulation. We employed various gene reporter assays in cell lines and qRT-PCR in human hepatocytes and in Pxr?/? mice. We show that metformin dramatically suppresses PXR-mediated expression of CYP3A4 in hepatocytes. Consistently, metformin significantly suppressed the up-regulation of Cyp3a11 mRNA in the liver and intestine of wild-type mice, but not in Pxr?/? mice. A mechanistic investigation of the phenomenon showed that metformin does not significantly up-regulate SHP in human hepatocytes. We further demonstrate that AMPK activation is not involved in this process. We show that metformin disrupts PXR’s interaction with steroid receptor coactivator-1 (SRC1) in a two-hybrid assay independently of the PXR ligand binding pocket. Metformin also inhibited vitamin D receptor-, glucocorticoid receptor- and constitutive androstane receptor (CAR)-mediated induction of CYP3A4 mRNA in human hepatocytes. We show, therefore, a suppressive effect of metformin on PXR and other ligand-activated nuclear receptors in transactivation of the main detoxification enzyme CYP3A4 in human hepatocytes. PMID:21920351

  16. Global Analysis of Predicted G Protein?Coupled Receptor Genes in the Filamentous Fungus, Neurospora crassa

    PubMed Central

    Cabrera, Ilva E.; Pacentine, Itallia V.; Lim, Andrew; Guerrero, Nayeli; Krystofova, Svetlana; Li, Liande; Michkov, Alexander V.; Servin, Jacqueline A.; Ahrendt, Steven R.; Carrillo, Alexander J.; Davidson, Liza M.; Barsoum, Andrew H.; Cao, Jackie; Castillo, Ronald; Chen, Wan-Ching; Dinkchian, Alex; Kim, Stephanie; Kitada, Sho M.; Lai, Taffani H.; Mach, Ashley; Malekyan, Cristin; Moua, Toua R.; Torres, Carlos Rojas; Yamamoto, Alaina; Borkovich, Katherine A.

    2015-01-01

    G protein?coupled receptors (GPCRs) regulate facets of growth, development, and environmental sensing in eukaryotes, including filamentous fungi. The largest predicted GPCR class in these organisms is the Pth11-related, with members similar to a protein required for disease in the plant pathogen Magnaporthe oryzae. However, the Pth11-related class has not been functionally studied in any filamentous fungal species. Here, we analyze phenotypes in available mutants for 36 GPCR genes, including 20 Pth11-related, in the model filamentous fungus Neurospora crassa. We also investigate patterns of gene expression for all 43 predicted GPCR genes in available datasets. A total of 17 mutants (47%) possessed at least one growth or developmental phenotype. We identified 18 mutants (56%) with chemical sensitivity or nutritional phenotypes (11 uniquely), bringing the total number of mutants with at least one defect to 28 (78%), including 15 mutants (75%) in the Pth11-related class. Gene expression trends for GPCR genes correlated with the phenotypes observed for many mutants and also suggested overlapping functions for several groups of co-transcribed genes. Several members of the Pth11-related class have phenotypes and/or are differentially expressed on cellulose, suggesting a possible role for this gene family in plant cell wall sensing or utilization. PMID:26464358

  17. Androgen Receptor Gene Polymorphism, Aggression, and Reproduction in Tanzanian Foragers and Pastoralists

    PubMed Central

    Butovskaya, Marina L.; Lazebny, Oleg E.; Vasilyev, Vasiliy A.; Dronova, Daria A.; Karelin, Dmitri V.; Mabulla, Audax Z. P.; Shibalev, Dmitri V.; Shackelford, Todd K.; Fink, Bernhard; Ryskov, Alexey P.

    2015-01-01

    The androgen receptor (AR) gene polymorphism in humans is linked to aggression and may also be linked to reproduction. Here we report associations between AR gene polymorphism and aggression and reproduction in two small-scale societies in northern Tanzania (Africa)—the Hadza (monogamous foragers) and the Datoga (polygynous pastoralists). We secured self-reports of aggression and assessed genetic polymorphism of the number of CAG repeats for the AR gene for 210 Hadza men and 229 Datoga men (aged 17–70 years). We conducted structural equation modeling to identify links between AR gene polymorphism, aggression, and number of children born, and included age and ethnicity as covariates. Fewer AR CAG repeats predicted greater aggression, and Datoga men reported more aggression than did Hadza men. In addition, aggression mediated the identified negative relationship between CAG repeats and number of children born. PMID:26291982

  18. Identification of Modulators of the Nuclear Receptor Peroxisome Proliferator-Activated Receptor ? (PPAR?) in a Mouse Liver Gene Expression Compendium

    PubMed Central

    Oshida, Keiyu; Vasani, Naresh; Thomas, Russell S.; Applegate, Dawn; Rosen, Mitch; Abbott, Barbara; Lau, Christopher; Guo, Grace; Aleksunes, Lauren M.; Klaassen, Curtis; Corton, J. Christopher

    2015-01-01

    The nuclear receptor family member peroxisome proliferator-activated receptor ? (PPAR?) is activated by therapeutic hypolipidemic drugs and environmentally-relevant chemicals to regulate genes involved in lipid transport and catabolism. Chronic activation of PPAR? in rodents increases liver cancer incidence, whereas suppression of PPAR? activity leads to hepatocellular steatosis. Analytical approaches were developed to identify biosets (i.e., gene expression differences between two conditions) in a genomic database in which PPAR? activity was altered. A gene expression signature of 131 PPAR?-dependent genes was built using microarray profiles from the livers of wild-type and PPAR?-null mice after exposure to three structurally diverse PPAR? activators (WY-14,643, fenofibrate and perfluorohexane sulfonate). A fold-change rank-based test (Running Fisher’s test (p-value ? 10-4)) was used to evaluate the similarity between the PPAR? signature and a test set of 48 and 31 biosets positive or negative, respectively for PPAR? activation; the test resulted in a balanced accuracy of 98%. The signature was then used to identify factors that activate or suppress PPAR? in an annotated mouse liver/primary hepatocyte gene expression compendium of ~1850 biosets. In addition to the expected activation of PPAR? by fibrate drugs, di(2-ethylhexyl) phthalate, and perfluorinated compounds, PPAR? was activated by benzofuran, galactosamine, and TCDD and suppressed by hepatotoxins acetaminophen, lipopolysaccharide, silicon dioxide nanoparticles, and trovafloxacin. Additional factors that activate (fasting, caloric restriction) or suppress (infections) PPAR? were also identified. This study 1) developed methods useful for future screening of environmental chemicals, 2) identified chemicals that activate or suppress PPAR?, and 3) identified factors including diets and infections that modulate PPAR? activity and would be hypothesized to affect chemical-induced PPAR? activity.

  19. Enhancement of gene transactivation activity of androgen receptor by hepatitis B virus X protein

    SciTech Connect

    Zheng Yanyan; Chen Wenling; Ma, W.-L. Maverick; Chang Chawnshang; Ou, J.-H. James . E-mail: jamesou@hsc.usc.edu

    2007-07-05

    Hepatitis B virus (HBV) X protein (HBx) is a regulatory protein that is required for efficient replication of HBV in its natural host. In this report, we demonstrate by co-immunoprecipitation experiments that HBx can physically bind to the androgen receptor (AR), which is a nuclear hormone receptor that is expressed in many different tissues including the liver. This observation is further supported by confocal microscopy, which reveals that HBx can alter the subcellular localization of the AR both in the presence and in the absence of dihydrotestosterone (DHT). Further studies indicate that HBx can enhance the gene transactivation activity of AR by enhancing its DNA binding activity in a DHT-dependent manner. However, HBx does not remain associated with AR on the DNA. As AR can regulate the expression of a number of cellular genes, our results raise the possibility that HBV pathogenesis may be mediated in part via the interaction between HBx and AR.

  20. Diversity and impact of rare variants in genes encoding the platelet G protein-coupled receptors

    PubMed Central

    Jones, Matthew L.; Norman, Jane E.; Morgan, Neil V.; Mundell, Stuart J.; Lordkipanidzé, Marie; Lowe, Gillian C.; Daly, Martina E.; Simpson, Michael A.; Drake, Sian; Watson, Steve P.; Mumford, Andrew D.

    2015-01-01

    Summary Platelet responses to activating agonists are influenced by common population variants within or near G protein-coupled receptor (GPCR) genes that affect receptor activity. However, the impact of rare GPCR gene variants is unknown. We describe the rare single nucleotide variants (SNVs) in the coding and splice regions of 18 GPCR genes in 7,595 exomes from the 1,000-genomes and Exome Sequencing Project databases and in 31 cases with inherited platelet function disorders (IPFDs). In the population databases, the GPCR gene target regions contained 740 SNVs (318 synonymous, 410 missense, 7 stop gain and 6 splice region) of which 70% had global minor allele frequency (MAF) < 0.05%. Functional annotation using six computational algorithms, experimental evidence and structural data identified 156/740 (21%) SNVs as potentially damaging to GPCR function, most commonly in regions encoding the transmembrane and C-terminal intracellular receptor domains. In 31 index cases with IPFDs (Gi-pathway defect n=15; secretion defect n=11; thromboxane pathway defect n=3 and complex defect n=2) there were 256 SNVs in the target regions of 15 stimulatory platelet GPCRs (34 unique; 12 with MAF<1% and 22 with MAF?1%). These included rare variants predicting R122H, P258T and V207A substitutions in the P2Y12 receptor that were annotated as potentially damaging, but only partially explained the platelet function defects in each case. Our data highlight that potentially damaging variants in platelet GPCR genes have low individual frequencies, but are collectively abundant in the population. Potentially damaging variants are also present in pedigrees with IPFDs and may contribute to complex laboratory phenotypes. PMID:25567036

  1. A reference gene set for chemosensory receptor genes of Manduca sexta.

    PubMed

    Koenig, Christopher; Hirsh, Ariana; Bucks, Sascha; Klinner, Christian; Vogel, Heiko; Shukla, Aditi; Mansfield, Jennifer H; Morton, Brian; Hansson, Bill S; Grosse-Wilde, Ewald

    2015-11-01

    The order of Lepidoptera has historically been crucial for chemosensory research, with many important advances coming from the analysis of species like Bombyx mori or the tobacco hornworm, Manduca sexta. Specifically M. sexta has long been a major model species in the field, especially regarding the importance of olfaction in an ecological context, mainly the interaction with its host plants. In recent years transcriptomic data has led to the discovery of members of all major chemosensory receptor families in the species, but the data was fragmentary and incomplete. Here we present the analysis of the newly available high-quality genome data for the species, supplemented by additional transcriptome data to generate a high quality reference gene set for the three major chemosensory receptor gene families, the gustatory (GR), olfactory (OR) and antennal ionotropic receptors (IR). Coupled with gene expression analysis our approach allows association of specific receptor types and behaviors, like pheromone and host detection. The dataset will provide valuable support for future analysis of these essential chemosensory modalities in this species and in Lepidoptera in general. PMID:26365739

  2. Isoflavones enhance interleukin-17 gene expression via retinoic acid receptor-related orphan receptors ? and ?.

    PubMed

    Kojima, Hiroyuki; Takeda, Yukimasa; Muromoto, Ryuta; Takahashi, Miki; Hirao, Toru; Takeuchi, Shinji; Jetten, Anton M; Matsuda, Tadashi

    2015-03-01

    The retinoic acid receptor-related orphan receptors ? and ? (ROR? and ROR?), are key regulators of helper T (Th)17 cell differentiation, which is involved in the innate immune system and autoimmune disorders. In this study, we investigated the effects of isoflavones on ROR?/? activity and the gene expression of interleukin (IL)-17, which mediates the function of Th17 cells. In doxycycline-inducible CHO stable cell lines, we found that four isoflavones, biochanin A (BA), genistein, formononetin, and daidzein, enhanced ROR?- or ROR?-mediated transcriptional activity in a dose-dependent manner. In an activation assay of the Il17a promoter using Jurkat cells, these compounds enhanced the ROR?- or ROR?-mediated activation of the Il17a promoter at concentrations of 1 × 10(-6)M to 1 × 10(-5)M. In mammalian two-hybrid assays, the four isoflavones enhanced the interaction between the ROR?- or ROR?-ligand binding domain and the co-activator LXXLL peptide in a dose-dependent manner. In addition, these isoflavones potently enhanced Il17a mRNA expression in mouse T lymphoma EL4 cells treated with phorbol myristate acetate and ionomycin, but showed slight enhancement of Il17a gene expression in ROR?/?-knockdown EL4 cells. Immunoprecipitation and immunoblotting assays also revealed that BA enhanced the interaction between ROR?t and SRC-1, which is a co-activator for nuclear receptors. Taken together, these results suggest that the isoflavones have the ability to enhance IL-17 gene expression by stabilizing the interactions between ROR?/? and co-activators. This also provides the first evidence that dietary chemicals can enhance IL-17 gene expression in immune cells. PMID:25583575

  3. Fc-receptor and M-protein genes of group A streptococci are products of gene duplication.

    PubMed Central

    Heath, D G; Cleary, P P

    1989-01-01

    The partial nucleotide sequence for an Fc-receptor gene from an M-type 76 group A streptococcus was determined. DNA sequence analysis revealed considerable sequence similarity between the Fc-receptor and M-protein genes in their proposed promoter regions, signal sequences, and 3' termini. Additional analysis indicated that the deduced Fc-receptor protein contains a proline-rich region and membrane anchor region highly similar to that of M protein. In view of these results, we postulated that Fc-receptor and M-protein genes of group A streptococci are the products of gene duplication from a common ancestral gene. It is proposed that DNA sequence similarity between these two genes may allow for extragenic homologous recombination as a means of generating antigenic diversity in these two surface proteins. PMID:2660147

  4. Protease activated receptor-1 mediated dual kinase receptor transactivation stimulates the expression of glycosaminoglycan synthesizing genes.

    PubMed

    Kamato, Danielle; Thach, Lyna; Getachew, Robel; Burch, Micah; Hollenberg, Morley D; Zheng, Wenhua; Little, Peter J; Osman, Narin

    2016-01-01

    G protein-coupled receptors (GPCR) are one of the most important targets for therapeutics due to their abundance and diversity. The G protein-coupled receptor for thrombin can transactivate protein tyrosine kinase receptors (PTKR) and we have recently established that it can also transactivate serine/threonine kinase receptors (S/TKR). A comprehensive knowledge of the signalling pathways that GPCR transactivation elicits is necessary to fully understand the implications of both GPCR activation and the impact of target drugs. Here, we demonstrate that thrombin elicits dual transactivation-dependent signalling pathways to stimulate mRNA expression of glycosaminoglycan synthesizing enzymes chondroitin 4-O-sulfotransferase 1 and chondroitin sulfate synthase 1. The PTKR mediated response involves matrix metalloproteinases and the phosphorylation of the MAP kinase Erk. The S/TKR mediated response differs markedly and involves the phosphorylation of Smad2 carboxy terminal serine residues and does not involve matrix metalloproteinases. This work shows that all of the thrombin mediated signalling to glycosaminoglycan synthesizing enzyme gene expression occurs via transactivation-dependent pathways and does not involve transactivation-independent signalling. These findings highlight the complexity of thrombin-mediated transactivation signalling and the broader implications of GPCR targeted therapeutics. PMID:26548632

  5. Novel transcripts of the estrogen receptor ? gene in channel catfish

    USGS Publications Warehouse

    Patino, Reynaldo; Xia, Zhenfang; Gale, William L.; Wu, Chunfa; Maule, Alec G.; Chang, Xiaotian

    2000-01-01

    Complementary DNA libraries from liver and ovary of an immature female channel catfish were screened with a homologous ER? cDNA probe. The hepatic library yielded two new channel catfish ER cDNAs that encode N-terminal ER? variants of different sizes. Relative to the catfish ER? (medium size; 581 residues) previously reported, these new cDNAs encode Long-ER? (36 residues longer) and Short-ER? (389 residues shorter). The 5?-end of Long-ER? cDNA is identical to that of Medium-ER? but has an additional 503-bp segment with an upstream, in-frame translation-start codon. Recombinant Long-ER? binds estrogen with high affinity (Kd = 3.4 nM), similar to that previously reported for Medium-ER? but lower than reported for catfish ER?. Short-ER? cDNA encodes a protein that lacks most of the receptor protein and does not bind estrogen. Northern hybridization confirmed the existence of multiple hepatic ER? RNAs that include the size range of the ER? cDNAs obtained from the libraries as well as additional sizes. Using primers for RT-PCR that target locations internal to the protein-coding sequence, we also established the presence of several ER? cDNA variants with in-frame insertions in the ligand-binding and DNA-binding domains and in-frame or out-of-frame deletions in the ligand-binding domain. These internal variants showed patterns of expression that differed between the ovary and liver. Further, the ovarian library yielded a full-length, ER? antisense cDNA containing a poly(A) signal and tail. A limited survey of histological preparations from juvenile catfish by in situ hybridization using directionally synthesized cRNA probes also suggested the expression of ER? antisense RNA in a tissue-specific manner. In conclusion, channel catfish seemingly have three broad classes of ER? mRNA variants: those encoding N-terminal truncated variants, those encoding internal variants (including C-terminal truncated variants), and antisense mRNA. The sense variants may encode functional ER? or related proteins that modulate ER? or ER? activity. The existence of ER antisense mRNA is reported in this study for the first time. Its role may be to participate in the regulation of ER gene expression.

  6. Chimpanzee sociability is associated with vasopressin (Avpr1a) but not oxytocin receptor gene (OXTR) variation.

    PubMed

    Staes, Nicky; Koski, Sonja E; Helsen, Philippe; Fransen, Erik; Eens, Marcel; Stevens, Jeroen M G

    2015-09-01

    The importance of genes in regulating phenotypic variation of personality traits in humans and animals is becoming increasingly apparent in recent studies. Here we focus on variation in the vasopressin receptor gene 1a (Avpr1a) and oxytocin receptor gene (OXTR) and their effects on social personality traits in chimpanzees. We combine newly available genetic data on Avpr1a and OXTR allelic variation of 62 captive chimpanzees with individual variation in personality, based on behavioral assessments. Our study provides support for the positive association of the Avpr1a promoter region, in particular the presence of DupB, and sociability in chimpanzees. This complements findings of previous studies on adolescent chimpanzees and studies that assessed personality using questionnaire data. In contrast, no significant associations were found for the single nucleotide polymorphism (SNP) ss1388116472 of the OXTR and any of the personality components. Most importantly, our study provides additional evidence for the regulatory function of the 5' promoter region of Avpr1a on social behavior and its evolutionary stable effect across species, including rodents, chimpanzees and humans. Although it is generally accepted that complex social behavior is regulated by a combination of genes, the environment and their interaction, our findings highlight the importance of candidate genes with large effects on behavioral variation. PMID:26299644

  7. Differential regulation of the expression of alpha1-adrenergic receptor subtype genes in brown adipose tissue.

    PubMed Central

    Kikuchi-Utsumi, K; Kikuchi-Utsumi, M; Cannon, B; Nedergaard, J

    1997-01-01

    The physiological control of the expression of the genes for the alpha1-adrenoceptor subtypes was examined in rat brown adipose tissue by analysing Northern blots of poly(A)-enriched RNA with oligonucleotide probes. In control rats, alpha1B-receptor gene expression was much lower in brown adipose tissue than in liver, but the expression of both alpha1A and alpha1D was higher than in the heart, making brown adipose tissue one of the mammalian tissues with the highest expression of these subtypes. During acute exposure to cold, alpha1B-receptor gene expression was essentially unchanged, alpha1A-receptor gene expression was increased and alpha1D-receptor gene expression was transiently decreased. Noradrenaline injection could mimic these effects of acute cold exposure, indicating that the physiologically induced up- and down-regulations were due to the interaction of noradrenaline with cells within the tissue. In chronically cold-acclimated animals, alpha1B-receptor gene expression was decreased but that of the alpha1A-receptor gene remained at a level twice that of controls. alpha1D-Receptor gene expression was also somewhat decreased. It is suggested that the enhanced expression of the alpha1A-receptor gene explains the increased alpha1-receptor density in recruited brown adipose tissue reported previously. The intricate and differential regulation of alpha1-receptor gene expression and the markedly enhanced expression of the alpha1A-receptor may imply that alpha1-receptors are important for the recruitment process or for maintenance of the recruited state in this tissue. PMID:9065758

  8. A constitutive promoter directs expression of the nerve growth factor receptor gene

    SciTech Connect

    Sehgal, A.; Patil, N.; Chao, M.

    1988-08-01

    Expression of nerve growth factor receptor is normally restricted to cells derived from the neural crest in a developmentally regulated manner. The authors analyzed promoter sequences for the human nerve growth factor receptor gene and found that the receptor promoter resembles others which are associated with constitutively expressed genes that have housekeeping and growth-related functions. Unlike these other genes, the initiation of transcription occurred at one major site rather than at multiple sites. The constitutive nature of the nerve growth factor receptor promoter may account for the ability of this gene to be transcribed in a diverse number of heterologous cells after gene transfer. The intron-exon structure of the receptor gene indicated that structural features are precisely divided into discrete domains.

  9. Leptin receptor gene polymorphisms and risk of hypertension: a meta-analysis

    PubMed Central

    Lian, Yingdong; Tang, Zhijun; Xie, Yuxi; Chen, Zongxiang

    2015-01-01

    Objective: To assess the relationship between the polymorphisms of leptin receptor gene and hypertension. Methods: Meta analysis was conducted by using RevMan 5.3. Relevant literatures were retrieved by searching PubMed using the keywords “Hypertension”, “Leptin Receptor”, “OB Receptor”, “LEPR Protein”. Results: Fifteen studies with a total of 5955 patients with hypertension and 3830 healthy controls were included in this meta-analysis. The results showed that Gln223Arg gene polymorphism was significantly higher in hypertension patients than in control (OR=1.36, 95% CI=1.23-1.51, P<0.00001). However, no statistically significant difference was found in Lys109Arg polymorphism between hypertension patients and control (OR=0.99, 95% CI=0.85-1.16, P=0.91). Conclusion: Gln223Arg, but not Lys109Arg gene polymorphism, is higher in hypertension patients, suggesting that patients with Gln223Arg allele carry a higher risk to develop hypertension. PMID:26550411

  10. Rapid, Nonradioactive Detection of Clonal T-Cell Receptor Gene Rearrangements in Lymphoid Neoplasms

    NASA Astrophysics Data System (ADS)

    Bourguin, Anne; Tung, Rosann; Galili, Naomi; Sklar, Jeffrey

    1990-11-01

    Southern blot hybridization analysis of clonal antigen receptor gene rearrangements has proved to be a valuable adjunct to conventional methods for diagnosing lymphoid neoplasia. However, Southern blot analysis suffers from a number of technical disadvantages, including the time necessary to obtain results, the use of radioactivity, and the susceptibility of the method to various artifacts. We have investigated an alternative approach for assessing the clonality of antigen receptor gene rearrangements in lymphoid tissue biopsy specimens. This approach involves the amplification of rearranged ? T-cell receptor genes by the polymerase chain reaction and analysis of the polymerase chain reaction products by denaturing gradient gel electrophoresis. By use of this approach, clonal rearrangements from neoplastic lymphocytes constituting as little as 0.1-1% of the total cells in the tissue are detected as discrete bands in the denaturing gel after the gel is stained with ethidium bromide and viewed under ultraviolet light. In contrast, polyclonal rearrangements from reactive lymphocytes appear as a diffuse smear along the length of the gel. Our findings suggest that polymerase chain reaction combined with denaturing gradient gel electrophoresis may offer a rapid, nonradioactive, and sensitive alternative to Southern blot analysis for the diagnostic evaluation of lymphoid tissue biopsy specimens.

  11. Hypertension in obesity and the leptin receptor gene locus.

    PubMed

    Rosmond, R; Chagnon, Y C; Holm, G; Chagnon, M; Pérusse, L; Lindell, K; Carlsson, B; Bouchard, C; Björntorp, P

    2000-09-01

    Recent animal studies indicate that leptin is involved in the regulation of blood pressure through the leptin receptor. Therefore, 51-yr-old men (N = 284) were selected; and anthropometric, endocrine, metabolic, and hemodynamic variables were examined in relation to polymorphisms of the leptin receptor gene (LEPR), by restriction fragment length polymorphism technique. Three polymorphisms were examined: Lys109Arg in exon 4, Gln223Arg in exon 6, and Lys656Asn in exon 14. In comparison with Lys109 homozygotes, Arg109 homozygotes (9%) showed lower body mass index (BMI) and abdominal sagittal diameter, as well as lower systolic (10.0 mm Hg) and diastolic (7.8 mm Hg) blood pressure. Additionally, Arg223 homozygotes (26.8%) showed lower blood pressure (7.6/5.7 mm Hg) than Gln223 homozygotes. These lower blood pressure levels were independent of other variables. No differences were found with the Lys656Asn polymorphism. Measurements of body fat mass correlated with leptin concentration in Lys109 homozygotes and in Lys109 heterozygotes but not in Arg109 homozygotes. Blood pressure correlated with leptin only in men carrying the wild-type allele Lys109. With both elevated BMI and leptin, Lys109 homozygotes had higher blood pressure than the Arg109 homozygous men (12.4/6.9 mm Hg). Men with blood pressure > or = 140/90 mm Hg had, in comparison with normotensive men, increased BMI and leptin levels, and Lys109 homozygotes were significantly more prevalent. These results suggest that leptin is associated with blood pressure regulation in men through the leptin receptor. When BMI and leptin are elevated, increased blood pressure is found only with the most prevalent LEPR genotype at codons 109 and 223, whereas variants of this receptor seem to protect from hypertension. This might explain why not all obese men are hypertensive. PMID:10999797

  12. The Dopamine D2 Receptor Gene, Perceived Parental Support, and Adolescent Loneliness: Longitudinal Evidence for Gene-Environment Interactions

    ERIC Educational Resources Information Center

    van Roekel, Eeske; Goossens, Luc; Scholte, Ron H. J.; Engels, Rutger C. M. E.; Verhagen, Maaike

    2011-01-01

    Background: Loneliness is a common problem in adolescence. Earlier research focused on genes within the serotonin and oxytocin systems, but no studies have examined the role of dopamine-related genes in loneliness. In the present study, we focused on the dopamine D2 receptor gene (DRD2). Methods: Associations among the DRD2, sex, parental support,…

  13. Identification of chemical modulators of the constitutive activated receptor (CAR) in a gene expression compendium

    PubMed Central

    Oshida, Keiyu; Vasani, Naresh; Jones, Carlton; Moore, Tanya; Hester, Susan; Nesnow, Stephen; Auerbach, Scott; Geter, David R.; Aleksunes, Lauren M.; Thomas, Russell S.; Applegate, Dawn; Klaassen, Curtis D.; Corton, J. Christopher

    2015-01-01

    The nuclear receptor family member constitutive activated receptor (CAR) is activated by structurally diverse drugs and environmentally-relevant chemicals leading to transcriptional regulation of genes involved in xenobiotic metabolism and transport. Chronic activation of CAR increases liver cancer incidence in rodents, whereas suppression of CAR can lead to steatosis and insulin insensitivity. Here, analytical methods were developed to screen for chemical treatments in a gene expression compendium that lead to alteration of CAR activity. A gene expression biomarker signature of 83 CAR-dependent genes was identified using microarray profiles from the livers of wild-type and CAR-null mice after exposure to three structurally-diverse CAR activators (CITCO, phenobarbital, TCPOBOP). A rank-based algorithm (Running Fisher’s algorithm (p-value ? 10-4)) was used to evaluate the similarity between the CAR biomarker signature and a test set of 28 and 32 comparisons positive or negative, respectively, for CAR activation; the test resulted in a balanced accuracy of 97%. The biomarker signature was used to identify chemicals that activate or suppress CAR in an annotated mouse liver/primary hepatocyte gene expression database of ~1850 comparisons. CAR was activated by 1) activators of the aryl hydrocarbon receptor (AhR) in wild-type but not AhR-null mice, 2) pregnane X receptor (PXR) activators in wild-type and to lesser extents in PXR-null mice, and 3) activators of PPAR? in wild-type and PPAR?-null mice. CAR was consistently activated by five conazole fungicides and four perfluorinated compounds. Comparison of effects in wild-type and CAR-null mice showed that the fungicide propiconazole increased liver weight and hepatocyte proliferation in a CAR-dependent manner, whereas the perfluorinated compound perfluorooctanoic acid (PFOA) increased these endpoints in a CAR-independent manner. A number of compounds suppressed CAR coincident with increases in markers of inflammation including acetaminophen, concanavalin A, lipopolysaccharide, and 300 nm silica particles. In conclusion, we have shown that a CAR biomarker signature coupled with a rank-based similarity method accurately predicts CAR activation. This analytical approach, when applied to a gene expression compendium, increased the universe of known chemicals that directly or indirectly activate CAR, highlighting the promiscuous nature of CAR activation and signaling through activation of other xenobiotic-activated receptors. PMID:25949234

  14. Characterization of the porcine melanocortin 2 receptor gene (MC2R)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A porcine BAC clone, containing the melanocortin 2 receptor gene (MC2R)was isolated. The complete coding sequence of the melanocortin 5 receptor gene, contained in 1 exon, was determined. PCR-SSCP was performed on a 241 bp coding fragment. An AluI polymorphism, detecting a silent mutation, was found...

  15. Interaction between immunoglobulin allotypes and NK receptor genes in diabetes post-hepatitis C virus infection

    E-print Network

    Alper, Chester A.

    Interaction between immunoglobulin allotypes and NK receptor genes in diabetes post-hepatitis C-like receptor (KIR) genes and immunoglobulin allotypes have been previously reported in type 2 diabetes mellitus (DM) patients. Puerto Rican Americans with a history of intravenous drug use who developed DM

  16. Noninvasive Repetitive Imaging of Somatostatin Receptor 2 Gene Transfer with Positron Emission Tomography

    PubMed Central

    Cotugno, Gabriella; Aurilio, Michela; Annunziata, Patrizia; Capalbo, Anita; Faella, Armida; Rinaldi, Valentina; Strisciuglio, Caterina; Di Tommaso, Maurizio

    2011-01-01

    Abstract Noninvasive in vivo imaging of gene expression is desirable to monitor gene transfer in both animal models and humans. Reporter transgenes with low endogenous expression levels are instrumental to this end. The human somatostatin receptor 2 (hSSTR2) has low expression levels in a variety of tissues, including muscle and liver. We tested the possibility of noninvasively and quantitatively monitoring hSSTR2 transgene expression, following adeno-associated viral (AAV) vector-mediated gene delivery to murine muscle and liver by positron emission tomography (PET) using 68gallium-DOTA-Tyr3-Thr8-octreotate (68Ga-DOTATATE) as a highly specific SSTR2 ligand. Repetitive PET imaging showed hSSTR2 signal up to 6 months, which corresponds to the last time point of the analysis, after gene delivery in both transduced tissues. The levels of tracer accumulation measured in muscle and liver after gene delivery were significantly higher than in control tissues and correlated with the doses of AAV vector administered. As repetitive, quantitative, noninvasive imaging of AAV-mediated SSTR2 gene transfer to muscle and liver is feasible and efficient using PET, we propose this system to monitor the expression of therapeutic genes coexpressed with SSTR2. PMID:20825281

  17. Correlation between P2X7 receptor gene polymorphisms and gout.

    PubMed

    Gong, Qiong-Yao; Chen, Yong

    2015-08-01

    Not all patients with hyperuricemia will develop acute gouty arthritis, indicating that other initiating factors need to be considered. The P2X7 receptor is an adenosine triphosphate-gated nonselective cation channel that has also been suggested to be a proinflammatory receptor. In the immune system, the P2X7 receptor is involved in the processing and release of various proinflammatory cytokines, including interleukin-1? (IL-1?), IL-18 and tumor necrosis factor-? (TNF-?). IL-1? is a central cytokine in the initiation of the acute inflammatory response, which plays a key role in the pathogenesis of gout and the pathology of acute gouty arthritis. This review will explore single-nucleotide polymorphisms in the P2X7R gene [including rs1718119 (Ala348Thr), rs208294 (His155Tyr), rs3751143 (Glu496Ala), rs28360457 (Arg307Gln) and rs2230911 (Thr357Ser)] and their correlation with the incidence of gout. We conclude that P2X7R gene polymorphisms impact the secretion of IL-1? and thus play a vital role in the pathogenesis of gout. PMID:25800962

  18. Multiple Thyrotropin ?-Subunit and Thyrotropin Receptor-Related Genes Arose during Vertebrate Evolution

    PubMed Central

    Maugars, Gersende; Dufour, Sylvie; Cohen-Tannoudji, Joëlle; Quérat, Bruno

    2014-01-01

    Thyroid-stimulating hormone (TSH) is composed of a specific ? subunit and an ? subunit that is shared with the two pituitary gonadotropins. The three ? subunits derive from a common ancestral gene through two genome duplications (1R and 2R) that took place before the radiation of vertebrates. Analysis of genomic data from phylogenetically relevant species allowed us to identify an additional Tsh? subunit-related gene that was generated through 2R. This gene, named Tsh?2, present in cartilaginous fish, little skate and elephant shark, and in early lobe-finned fish, coelacanth and lungfish, was lost in ray-finned fish and tetrapods. The absence of a second type of TSH receptor (Tshr) gene in these species suggests that both TSHs act through the same receptor. A novel Tsh? sister gene, named Tsh?3, was generated through the third genomic duplication (3R) that occurred early in the teleost lineage. Tsh?3 is present in most teleost groups but was lostin tedraodontiforms. The 3R also generated a second Tshr, named Tshrb. Interestingly, the new Tshrb was translocated from its original chromosomic position after the emergence of eels and was then maintained in its new position. Tshrb was lost in tetraodontiforms and in ostariophysians including zebrafish although the latter species have two TSHs, suggesting that TSHRb may be dispensable. The tissue distribution of duplicated Tsh?s and Tshrs was studied in the European eel. The endocrine thyrotropic function in the eel would be essentially mediated by the classical Tsh? and Tshra, which are mainly expressed in the pituitary and thyroid, respectively. Tsh?3 and Tshrb showed a similar distribution pattern in the brain, pituitary, ovary and adipose tissue, suggesting a possible paracrine/autocrine mode of action in these non-thyroidal tissues. Further studies will be needed to determine the binding specificity of the two receptors and how these two TSH systems are interrelated. PMID:25386660

  19. Multiple thyrotropin ?-subunit and thyrotropin receptor-related genes arose during vertebrate evolution.

    PubMed

    Maugars, Gersende; Dufour, Sylvie; Cohen-Tannoudji, Joëlle; Quérat, Bruno

    2014-01-01

    Thyroid-stimulating hormone (TSH) is composed of a specific ? subunit and an ? subunit that is shared with the two pituitary gonadotropins. The three ? subunits derive from a common ancestral gene through two genome duplications (1R and 2R) that took place before the radiation of vertebrates. Analysis of genomic data from phylogenetically relevant species allowed us to identify an additional Tsh? subunit-related gene that was generated through 2R. This gene, named Tsh?2, present in cartilaginous fish, little skate and elephant shark, and in early lobe-finned fish, coelacanth and lungfish, was lost in ray-finned fish and tetrapods. The absence of a second type of TSH receptor (Tshr) gene in these species suggests that both TSHs act through the same receptor. A novel Tsh? sister gene, named Tsh?3, was generated through the third genomic duplication (3R) that occurred early in the teleost lineage. Tsh?3 is present in most teleost groups but was lostin tedraodontiforms. The 3R also generated a second Tshr, named Tshrb. Interestingly, the new Tshrb was translocated from its original chromosomic position after the emergence of eels and was then maintained in its new position. Tshrb was lost in tetraodontiforms and in ostariophysians including zebrafish although the latter species have two TSHs, suggesting that TSHRb may be dispensable. The tissue distribution of duplicated Tsh?s and Tshrs was studied in the European eel. The endocrine thyrotropic function in the eel would be essentially mediated by the classical Tsh? and Tshra, which are mainly expressed in the pituitary and thyroid, respectively. Tsh?3 and Tshrb showed a similar distribution pattern in the brain, pituitary, ovary and adipose tissue, suggesting a possible paracrine/autocrine mode of action in these non-thyroidal tissues. Further studies will be needed to determine the binding specificity of the two receptors and how these two TSH systems are interrelated. PMID:25386660

  20. An exon variant in insulin receptor gene is associated with susceptibility to colorectal cancer in women.

    PubMed

    Mahmoudi, Touraj; Majidzadeh-A, Keivan; Karimi, Khatoon; Karimi, Negar; Farahani, Hamid; Dabiri, Reza; Nobakht, Hossein; Dolatmoradi, Hesamodin; Arkani, Maral; Zali, Mohammad Reza

    2015-05-01

    Given the role of insulin resistance in colorectal cancer (CRC), we explored whether genetic variants in insulin (INS), insulin receptor (INSR), insulin receptor substrate 1 (IRS1), insulin receptor substrate 2 (IRS2), insulin-like growth factor 1 (IGF1), and insulin-like growth factor binding protein 3 (IGFBP3) genes were associated with CRC risk. A total of 600 subjects, including 261 cases with CRC and 339 controls, were enrolled in this case-control study. Six polymorphisms in INS (rs689), INSR (rs1799817), IRS1 (rs1801278), IRS2 (rs1805097), IGF1 (rs5742612), and IGFBP3 (rs2854744) genes were genotyped using PCR-RFLP method. No significant difference was observed for INS, INSR, IRS1, IRS2, IGF1, and IGFBP3 genes between the cases and controls. However, the INSR rs1799817 "TT + CT" genotype and "CT" genotype compared with "CC" genotype occurred more frequently in the women with CRC than women controls (P = 0.007; OR = 1.93, 95 %CI = 1.20-3.11 and P = 0.002, OR = 2.15, 95 %CI = 1.31-3.53, respectively), and the difference remained significant after adjustment for confounding factors including age, BMI, smoking status, NSAID use, and family history of CRC (P = 0.018; OR = 1.86, 95 %CI = 1.11-3.10 and P = 0.004, OR = 2.18, 95 %CI = 1.28-3.71, respectively). In conclusion, to our knowledge, this study indicated for the first time that the INSR rs1799817 TT + CT genotype and CT genotype compared with the CC genotype had 1.86-fold and 2.18-fold increased risks for CRC among women, respectively. Furthermore, this finding is in line with previous studies which found significant associations between other variants of the INSR gene and CRC risk. Nevertheless, further studies are required to confirm our findings. PMID:25557790

  1. Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression

    PubMed Central

    1989-01-01

    We have investigated the effects of ligation of the fibronectin receptor (FnR) on gene expression in rabbit synovial fibroblasts. Monoclonal antibodies to the FnR that block initial adhesion of fibroblasts to fibronectin induced the expression of genes encoding the secreted extracellular matrix-degrading metalloproteinases collagenase and stromelysin. That induction was a direct consequence of interaction with the FnR was shown by the accumulation of mRNA for stromelysin and collagenase. Monoclonal antibodies to several other membrane glycoprotein receptors had no effect on metalloproteinase gene expression. Less than 2 h of treatment of the fibroblasts with anti-FnR in solution was sufficient to trigger the change in gene expression, and induction was blocked by dexamethasone. Unlike other inducers of metalloproteinase expression, including phorbol diesters and growth factors, addition of the anti-FnR in solution to cells adherent to serum-derived adhesion proteins or collagen produced no detectable change in cell shape or actin microfilament organization. Inductive effects were potentiated by cross-linking of the ligand. Fab fragments of anti-FnR were ineffective unless cross-linked or immobilized on the substrate. Adhesion of fibroblasts to native fibronectin did not induce metallo-proteinases. However, adhesion to covalently immobilized peptides containing the arg-gly-asp sequence that were derived from fibronectin, varying in size from hexapeptides up to 120 kD, induced collagenase and stromelysin gene expression. This suggests that degradation products of fibronectin are the natural inductive ligands for the FnR. These data demonstrate that signals leading to changes in gene expression are transduced by the FnR, a member of the integrin family of extracellular matrix receptors. The signaling of changes in gene expression by the FnR is distinct from signaling involving cell shape and actin cytoarchitecture. At least two distinct signals are generated: the binding of fibronectin-derived fragments and adhesion- blocking antibodies to the FnR triggers events different from those triggered by binding of the native fibronectin ligand. Because the genes regulated by this integrin are for enzymes that degrade the extracellular matrix, these results suggest that information transduced by the binding of various ligands to integrins may orchestrate the expression of genes regulating cell behavior in the extracellular environment. PMID:2547805

  2. Molecular Evidence for a Link between the N363S Glucocorticoid Receptor Polymorphism and Altered Gene Expression

    PubMed Central

    Jewell, Christine M.; Cidlowski, John A.

    2009-01-01

    Context A single-nucleotide polymorphism (SNP) in the human glucocorticoid receptor (hGR) N363S (rs6195) has been the focus of several clinical studies, and some epidemiological data link this SNP to increased glucocorticoid sensitivity, coronary artery disease, and increased body mass index. However, molecular studies in vitro using reporter gene expression systems have failed, for the most part, to define a link between this polymorphism and altered glucocorticoid receptor function. Objective The objective of this study was to address the biological relevancy of N363S SNP in GR function by establishing stable U-2 OS (human osteosarcoma) cell lines expressing wild-type hGR or N363S and examining these receptors under a variety of conditions that probe for GR activity including human gene microarray analysis. Design Functional assays with reporter gene systems, Western blotting, and human microarray analysis were used to evaluate the activity of wild-type and N363S GR in both transiently and stably expressing cells. In addition, quantitative RT-PCR was used to confirm the microarray analysis. Results Functional assays with reporter gene systems and homologous down-regulation revealed only minor differences between the wild-type hGR and N363S receptors in both transiently and stably expressing cell lines. However, examination of the two receptors by human gene microarray analysis revealed a unique gene expression profile for N363S. Conclusions These studies demonstrate that the N363S SNP regulates a novel set of genes with several of the regulated genes supporting a potential role for this GR polymorphism in human diseases. PMID:17535992

  3. Control of Energy Balance by Hypothalamic Gene Circuitry Involving Two Nuclear Receptors, Neuron-Derived Orphan Receptor 1 and Glucocorticoid Receptor

    PubMed Central

    Kim, Sun-Gyun; Lee, Bora; Kim, Dae-Hwan; Kim, Juhee; Lee, Soo-Kyung

    2013-01-01

    Nuclear receptors (NRs) regulate diverse physiological processes, including the central nervous system control of energy balance. However, the molecular mechanisms for the central actions of NRs in energy balance remain relatively poorly defined. Here we report a hypothalamic gene network involving two NRs, neuron-derived orphan receptor 1 (NOR1) and glucocorticoid receptor (GR), which directs the regulated expression of orexigenic neuropeptides agouti-related peptide (AgRP) and neuropeptide Y (NPY) in response to peripheral signals. Our results suggest that the anorexigenic signal leptin induces NOR1 expression likely via the transcription factor cyclic AMP response element-binding protein (CREB), while the orexigenic signal glucocorticoid mobilizes GR to inhibit NOR1 expression by antagonizing the action of CREB. Also, NOR1 suppresses glucocorticoid-dependent expression of AgRP and NPY. Consistently, relative to wild-type mice, NOR1-null mice showed significantly higher levels of AgRP and NPY and were less responsive to leptin in decreasing the expression of AgRP and NPY. These results identify mutual antagonism between NOR1 and GR to be a key rheostat for peripheral metabolic signals to centrally control energy balance. PMID:23897430

  4. Association of estrogen receptor alpha gene polymorphisms with neurofibrillary tangles.

    PubMed

    Kazama, Hirohito; Ruberu, Nyoka N; Murayama, Shigeo; Saito, Yuko; Nakahara, Ken-Ichi; Kanemaru, Kazutomi; Nagura, Hiroshi; Arai, Tomio; Sawabe, Motoji; Yamanouchi, Hiroshi; Orimo, Hajime; Hosoi, Takayuki

    2004-01-01

    Estrogen receptor alpha (ERalpha) may be implicated in the pathogenesis of Alzheimer's disease (AD). The aim of this study was to clarify the association between ERalpha gene polymorphisms and AD-related pathologic changes. The staging of neurofibrillary tangles (NFT) and senile plaques (SP) was performed according to the method by Braak and Braak and two polymorphisms, PvuII (P or p) and XbaI (X or x), of the ERalpha gene were typed in 551 Japanese cadavers (294 men and 257 women; mean age, 80.8 years). Distributions of the NFT and SP stages significantly correlated with age (NFT: r = 0.306, p < 0.0001; SP: r = 0.237, p < 0.0001) and were significantly higher in patients with the apolipoprotein E epsilon4 allele (p < 0.0001). Possession of the P allele showed a trend to be associated with a more serious NFT stage, but had no relationship with the SP stage. In men, a significant association between PvuII polymorphism and the NFT stage (p = 0.002) was found, revealing a gene- dose effect of the P allele. Similar results were obtained in the men without the epsilon4 allele (p = 0.011). Multiple regression analyses demonstrated that age was the strongest determinant of the NFT stage, possession of the epsilon4 allele was the next strongest, and PvuII polymorphism was the third strongest (p < 0.0001, R(2) = 0.144). The XbaI polymorphism did affect neither the NFT stage nor the SP stage. In conclusion, the PvuII polymorphism of the ERalpha gene is associated with Braak NFT stages and possession of the P allele may act as a risk factor for AD in Japanese men, especially in those without the epsilon4 allele. PMID:15211069

  5. Variants in the vitamin D receptor gene and asthma

    PubMed Central

    Wjst, Matthias

    2005-01-01

    Background Early lifetime exposure to dietary or supplementary vitamin D has been predicted to be a risk factor for later allergy. Twin studies suggest that response to vitamin D exposure might be influenced by genetic factors. As these effects are primarily mediated through the vitamin D receptor (VDR), single base variants in this gene may be risk factors for asthma or allergy. Results 951 individuals from 224 pedigrees with at least 2 asthmatic children were analyzed for 13 SNPs in the VDR. There was no preferential transmission to children with asthma. In their unaffected sibs, however, one allele in the 5' region was 0.5-fold undertransmitted (p = 0.049), while two other alleles in the 3' terminal region were 2-fold over-transmitted (p = 0.013 and 0.018). An association was also seen with bronchial hyperreactivity against methacholine and with specific immunoglobulin E serum levels. Conclusion The transmission disequilibrium in unaffected sibs of otherwise multiple-affected families seem to be a powerful statistical test. A preferential transmission of vitamin D receptor variants to children with asthma could not be confirmed but raises the possibility of a protective effect for unaffected children. PMID:15651992

  6. Immunophenotypic and antigen receptor gene rearrangement analysis in T cell neoplasia.

    PubMed Central

    Knowles, D. M.

    1989-01-01

    The author reviews the immunophenotypic profiles displayed by the major clinicopathologic categories of T cell neoplasia, the immunophenotypic criteria useful in the immunodiagnosis of T cell neoplasia, and the contributions made by antigen receptor gene rearrangement analysis to the understanding of T cell neoplasia. Neoplasms belonging to distinct clinicopathologic categories of T cell neoplasia often exhibit characteristic immunophenotypic profiles. Approximately 80% of lymphoblastic lymphomas and 20% of acute lymphoblastic leukemias express phenotypes consistent with prethymic and intrathymic stages of T cell differentiation, including intranuclear terminal deoxynucleotidyl transferase. Cutaneous T cell lymphomas of mycosis fungoides type usually express pan-T cell antigens CD2, CD5, and CD3, often lack the pan-T cell antigen CD7, and usually express the mature, peripheral helper subset phenotype, CD4+ CD8-. Cutaneous T cell lymphomas of nonmycosis fungoides type and peripheral T cell lymphomas often lack one or more pan-T cell antigens and, in addition, occasionally express the anomalous CD4+ CD8+ or CD4- CD8- phenotypes. T gamma-lymphoproliferative disease is divisable into two broad categories: those cases that are CD3 antigen positive and exhibit clonal T cell receptor beta chain (TCR-beta) gene rearrangements and those cases that are CD3 antigen negative and exhibit the TCR-beta gene germline configuration. Human T cell lymphotropic virus-I (HTLV-I) associated Japanese, Carribean, and sporadic adult T cell leukemia/lymphomas usually express pan-T cell antigens, the CD4+ CD8- phenotype, and various T cell-associated activation antigens, including the interleukin-2 receptor (CD25). Immunophenotypic criteria useful in the immunodiagnosis of T cell neoplasia include, in increasing order of utility, T cell predominance, T cell subset antigen restriction, anomalous T cell subset antigen expression, and deletion of one or more pan-T cell antigens. Only in exceptional circumstances do normal, non-neoplastic T cell populations express the CD4- CD8- or the CD4+ CD8+ phenotype and/or lack one or more pan-T cell antigens. T cell receptor beta chain gene rearrangement analysis represents an accurate, objective, and sensitive molecular genetic marker of T cell lineage and clonality that allows discrimination among non-T cell, polyclonal T cell and monoclonal T cell populations. Non-T cells exhibit the TCR-beta gene germline configuration.(ABSTRACT TRUNCATED AT 400 WORDS) Images Figure 3 Figure 6 Figure 7 PMID:2495724

  7. Expression of the human ABCC6 gene is induced by retinoids through the retinoid X receptor.

    PubMed

    Ratajewski, Marcin; Bartosz, Grzegorz; Pulaski, Lukasz

    2006-12-01

    Mutations in the human ABCC6 gene are responsible for the disease pseudoxanthoma elasticum, although the physiological function or substrate of the gene product (an ABC transporter known also as MRP6) is not known. We found that the expression of this gene in cells of hepatic origin (where this gene is predominantly expressed in the body) is significantly upregulated by retinoids, acting as agonists of the retinoid X receptor (RXR) rather than the retinoid A receptor (RAR). The direct involvement of this nuclear receptor in the transcriptional regulation of ABCC6 gene expression was confirmed by transient transfection and chromatin immunoprecipitation assays. This constitutes the first direct proof of previously suggested involvement of nuclear hormone receptors in ABCC6 gene expression and the first identification of a transcription factor which may be relevant to regulation of ABCC6 level in tissues and in some PXE patients. PMID:17045963

  8. GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls

    NASA Technical Reports Server (NTRS)

    Akbarian, S.; Huntsman, M. M.; Kim, J. J.; Tafazzoli, A.; Potkin, S. G.; Bunney, W. E. Jr; Jones, E. G.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The prefrontal cortex of schizophrenics is hypoactive and displays changes related to inhibitory, GABAergic neurons, and GABAergic synapses. These changes include decreased levels of glutamic acid decarboxylase (GAD), the enzyme for GABA synthesis, upregulation of muscimol binding, and downregulation of benzodiazepine binding to GABAA receptors. Studies in the visual cortex of nonhuman primates have demonstrated that gene expression for GAD and for several GABAA receptor subunit polypeptides is under control of neuronal activity, raising the possibility that similar mechanisms in the hypoactive prefrontal cortex of schizophrenics may explain the abnormalities in GAD and in GABAA receptor regulation. In the present study, which is the first of its type on human cerebral cortex, levels of mRNAs for six GABAA receptor subunits (alpha 1, alpha 2, alpha 5, beta 1, beta 2, gamma 2) and their laminar expression patterns were analyzed in the prefrontal cortex of schizophrenics and matched controls, using in situ hybridization histochemistry and densitometry. Three types of laminar expression pattern were observed: mRNAs for the alpha 1, beta 2, and gamma 2 subunits, which are the predominant receptor subunits expressed in the mature cortex, were expressed at comparatively high levels by cells of all six cortical layers, but most intensely by cells in lower layer III and layer IV. mRNAs for the alpha 2, alpha 5, and beta 1 subunits were expressed at lower levels; alpha 2 and beta 1 were expressed predominantly by cells in layers II, III, and IV; alpha 5 was expressed predominantly in layers IV, V, and VI. There were no significant changes in overall mRNA levels for any of the receptor subunits in the prefrontal cortex of schizophrenics, and the laminar expression pattern of all six receptor subunit mRNAs did not differ between schizophrenics and controls. Because gene expression for GABAA receptor subunits is not consistently altered in the prefrontal cortex of schizophrenics, the previously reported upregulation of muscimol binding sites and downregulation of benzodiazepine binding sites in the prefrontal and adjacent cingulate cortex of schizophrenics are possibly due to posttranscriptional modifications of mRNAs and their translated polypeptides.

  9. Vitamin D receptor gene polymorphisms and steroid receptor status among Saudi women with breast cancer.

    PubMed

    Nemenqani, Dalal M; Karam, Rehab A; Amer, Mona G; Abd El Rahman, Tamer M

    2015-03-10

    The vitamin D receptor (VDR) is a mediator for the cellular effects of vitamin D and interacts with other cell signaling pathways that influence cancer development. We evaluated the associations of the FOK1 and Taq1 VDR polymorphisms and breast cancer risk and possible effect modification by steroid receptor status of the tumor. This case-control study includes 95 breast cancer patients and 100 age-matched controls. Genotyping for VDR FOK1 and Taq1 polymorphisms was performed using polymerase chain reaction-based restriction fragment length polymorphism. Level of 25(OH)D in serum was determined using ELISA. Immunohistochemical studies were performed for estrogen receptors (ER) and progesterone receptors (PR). The frequencies of ff genotype were significantly increased in the breast cancer group compared to the control group. Carriers of the f allele were significantly more likely to develop BC. We observed a statistically significant interaction for the Fok1 polymorphism and ER status. Our results demonstrated that FOK1 f. genotype and f allele have an important role in breast cancer risk in Saudi patients. PMID:25560187

  10. On the Origin and Evolution of Vertebrate Olfactory Receptor Genes: Comparative Genome Analysis Among 23 Chordate Species

    PubMed Central

    2009-01-01

    Olfaction is a primitive sense in organisms. Both vertebrates and insects have receptors for detecting odor molecules in the environment, but the evolutionary origins of these genes are different. Among studied vertebrates, mammals have ?1,000 olfactory receptor (OR) genes, whereas teleost fishes have much smaller (?100) numbers of OR genes. To investigate the origin and evolution of vertebrate OR genes, I attempted to determine near-complete OR gene repertoires by searching whole-genome sequences of 14 nonmammalian chordates, including cephalochordates (amphioxus), urochordates (ascidian and larvacean), and vertebrates (sea lamprey, elephant shark, five teleost fishes, frog, lizard, and chicken), followed by a large-scale phylogenetic analysis in conjunction with mammalian OR genes identified from nine species. This analysis showed that the amphioxus has >30 vertebrate-type OR genes though it lacks distinctive olfactory organs, whereas all OR genes appear to have been lost in the urochordate lineage. Some groups of genes (?, ?, and ?) that are phylogenetically nested within vertebrate OR genes showed few gene gains and losses, which is in sharp contrast to the evolutionary pattern of OR genes, suggesting that they are actually non-OR genes. Moreover, the analysis demonstrated a great difference in OR gene repertoires between aquatic and terrestrial vertebrates, reflecting the necessity for the detection of water-soluble and airborne odorants, respectively. However, a minor group (?) of genes that are atypically present in both aquatic and terrestrial vertebrates was also found. These findings should provide a critical foundation for further physiological, behavioral, and evolutionary studies of olfaction in various organisms. PMID:20333175

  11. Liver X Receptor Gene Polymorphisms in Tuberculosis: Effect on Susceptibility

    PubMed Central

    Liu, Li-rong; Yue, Jun; Zhao, Yan-lin; Xiao, He-ping

    2014-01-01

    Objectives The Liver X receptors (LXRs), Liver X receptor A (LXRA) and Liver X receptor B (LXRB), regulate lipid metabolism and antimicrobial response. LXRs have a crucial role in the control of Mycobacterium tuberculosis (M.tb). Lacking LXRs mice is more susceptibility to infection M.tb, developing higher bacterial burdens and an increase in the size and number of granulomatous lesions. We aimed to assess the associations between single nucleotide polymorphisms (SNPs) in LXRs and risk of tuberculosis. Methods We sequenced the LXRs genes to detect SNPs and to examine genotypic frequencies in 600 patients and 620 healthy controls to investigate for associations with tuberculosis (TB) in the Chinese Han population. DNA re-sequencing revealed eight common variants in the LXRs genes. Results The G allele of rs1449627 and the T allele of rs1405655 demonstrated an increased risk of developing TB (p<0.001, p?=?0.002), and the T allele of rs3758673, the T allele of rs2279238, and the C allele of rs1449626 in LXRA and the C allele of rs17373080, the G allele of rs2248949, and the C allele of rs1052677 in LXRB were protective against TB patients compared to healthy controls (p?=?0.0002, p?=?0.006, p<0.001, p?=?0.004, p?=?0.008, p?=?0.003, respectively). All SNP genotypes were significantly associated with TB. An estimation of the frequencies of haplotypes revealed two potential risk haplotypes,GGCG in LXRB (p?=?0.004,) and TTCG in LXRA (p<0.001, p?=?0.004). Moreover, three protective haplotypes, TTAT and CCAT in LXRA and CATC in LXRB, were significantly “protective” (p?=?0.008, p<0.001, p?=?0.031) for TB. Furthermore, we determined that the LXRs SNPs were nominally associated with the clinical pattern of disease. Conclusions Our study data supported that LXRs play a fundamental role in the genetic susceptibility to TB and to different clinical patterns of disease. Thus, further investigation is required in larger populations and in additional areas. PMID:24788534

  12. Characterization of horse (Equus caballus) T-cell receptor beta chain genes

    SciTech Connect

    Schrenzel, M.D.; Watson, J.L.; Ferrick, D.A.

    1994-12-31

    Genes encoding the horse (Equus caballus) T-cell receptor beta chain (TCRB) were cloned and characterized. Of 33 cDNA clones isolated from the mesenteric lymph node, 30 had functionally rearranged gene segments, and three contained germline sequences. Sixteen unique variable segments (TCRBV), 14 joining genes (TCRBJ), and two constant region genes (TCRBC) were identified. Horse TCRBV were grouped into nine families based on similarity to human sequences. TCRBV2 and TCRBV12 were the most commonly represented horse families. Analysis of predicted protein structure revealed the presence of conserved regions similar to those seen in TCRB of other species. A decanucleotide promoter sequence homologous to those found in humans and mice was located in the 5{prime} untranslated region of one horse gene. Germline sequences included the 5{prime} region of the TCRBD2 gene with flanking heptamer/nonamer recombination signals and portions of the TCRBJ2-C2 intro. Southern blot hybridizations demonstrated restriction fragment length polymorphisms at the TCRBC locus among different horse breeds.

  13. FGF receptor genes and breast cancer susceptibility: results from the Breast Cancer Association Consortium

    PubMed Central

    Agarwal, D; Pineda, S; Michailidou, K; Herranz, J; Pita, G; Moreno, L T; Alonso, M R; Dennis, J; Wang, Q; Bolla, M K; Meyer, K B; Menéndez-Rodríguez, P; Hardisson, D; Mendiola, M; González-Neira, A; Lindblom, A; Margolin, S; Swerdlow, A; Ashworth, A; Orr, N; Jones, M; Matsuo, K; Ito, H; Iwata, H; Kondo, N; Hartman, M; Hui, M; Lim, W Y; T-C Iau, P; Sawyer, E; Tomlinson, I; Kerin, M; Miller, N; Kang, D; Choi, J-Y; Park, S K; Noh, D-Y; Hopper, J L; Schmidt, D F; Makalic, E; Southey, M C; Teo, S H; Yip, C H; Sivanandan, K; Tay, W-T; Brauch, H; Brüning, T; Hamann, U; Dunning, A M; Shah, M; Andrulis, I L; Knight, J A; Glendon, G; Tchatchou, S; Schmidt, M K; Broeks, A; Rosenberg, E H; van't Veer, L J; Fasching, P A; Renner, S P; Ekici, A B; Beckmann, M W; Shen, C-Y; Hsiung, C-N; Yu, J-C; Hou, M-F; Blot, W; Cai, Q; Wu, A H; Tseng, C-C; Van Den Berg, D; Stram, D O; Cox, A; Brock, I W; Reed, M W R; Muir, K; Lophatananon, A; Stewart-Brown, S; Siriwanarangsan, P; Zheng, W; Deming-Halverson, S; Shrubsole, M J; Long, J; Shu, X-O; Lu, W; Gao, Y-T; Zhang, B; Radice, P; Peterlongo, P; Manoukian, S; Mariette, F; Sangrajrang, S; McKay, J; Couch, F J; Toland, A E; Yannoukakos, D; Fletcher, O; Johnson, N; Silva, I dos Santos; Peto, J; Marme, F; Burwinkel, B; Guénel, P; Truong, T; Sanchez, M; Mulot, C; Bojesen, S E; Nordestgaard, B G; Flyer, H; Brenner, H; Dieffenbach, A K; Arndt, V; Stegmaier, C; Mannermaa, A; Kataja, V; Kosma, V-M; Hartikainen, J M; Lambrechts, D; Yesilyurt, B T; Floris, G; Leunen, K; Chang-Claude, J; Rudolph, A; Seibold, P; Flesch-Janys, D; Wang, X; Olson, J E; Vachon, C; Purrington, K; Giles, G G; Severi, G; Baglietto, L; Haiman, C A; Henderson, B E; Schumacher, F; Le Marchand, L; Simard, J; Dumont, M; Goldberg, M S; Labrčche, F; Winqvist, R; Pylkäs, K; Jukkola-Vuorinen, A; Grip, M; Devilee, P; Tollenaar, R A E M; Seynaeve, C; García-Closas, M; Chanock, S J; Lissowska, J; Figueroa, J D; Czene, K; Eriksson, M; Humphreys, K; Darabi, H; Hooning, M J; Kriege, M; Collée, J M; Tilanus-Linthorst, M; Li, J; Jakubowska, A; Lubinski, J; Jaworska-Bieniek, K; Durda, K; Nevanlinna, H; Muranen, T A; Aittomäki, K; Blomqvist, C; Bogdanova, N; Dörk, T; Hall, P; Chenevix-Trench, G; Easton, D F; Pharoah, P D P; Arias-Perez, J I; Zamora, P; Benítez, J; Milne, R L

    2014-01-01

    Background: Breast cancer is one of the most common malignancies in women. Genome-wide association studies have identified FGFR2 as a breast cancer susceptibility gene. Common variation in other fibroblast growth factor (FGF) receptors might also modify risk. We tested this hypothesis by studying genotyped single-nucleotide polymorphisms (SNPs) and imputed SNPs in FGFR1, FGFR3, FGFR4 and FGFRL1 in the Breast Cancer Association Consortium. Methods: Data were combined from 49 studies, including 53?835 cases and 50?156 controls, of which 89?050 (46?450 cases and 42?600 controls) were of European ancestry, 12?893 (6269 cases and 6624 controls) of Asian and 2048 (1116 cases and 932 controls) of African ancestry. Associations with risk of breast cancer, overall and by disease sub-type, were assessed using unconditional logistic regression. Results: Little evidence of association with breast cancer risk was observed for SNPs in the FGF receptor genes. The strongest evidence in European women was for rs743682 in FGFR3; the estimated per-allele odds ratio was 1.05 (95% confidence interval=1.02–1.09, P=0.0020), which is substantially lower than that observed for SNPs in FGFR2. Conclusion: Our results suggest that common variants in the other FGF receptors are not associated with risk of breast cancer to the degree observed for FGFR2. PMID:24548884

  14. Modulation of Macrophage Gene Expression via Liver X Receptor ? Serine 198 Phosphorylation

    PubMed Central

    Wu, Chaowei; Hussein, Maryem A.; Shrestha, Elina; Leone, Sarah; Aiyegbo, Mohammed S.; Lambert, W. Marcus; Pourcet, Benoit; Cardozo, Timothy; Gustafson, Jan-Ake; Fisher, Edward A.

    2015-01-01

    In mouse models of atherosclerosis, normalization of hyperlipidemia promotes macrophage emigration and regression of atherosclerotic plaques in part by liver X receptor (LXR)-mediated induction of the chemokine receptor CCR7. Here we report that LXR? serine 198 (S198) phosphorylation modulates CCR7 expression. Low levels of S198 phosphorylation are observed in plaque macrophages in the regression environment where high levels of CCR7 expression are observed. Consistent with these findings, CCR7 gene expression in human and mouse macrophages cell lines is induced when LXR? at S198 is nonphosphorylated. In bone marrow-derived macrophages (BMDMs), we also observed induction of CCR7 by ligands that promote nonphosphorylated LXR? S198, and this was lost in LXR-deficient BMDMs. LXR? occupancy at the CCR7 promoter is enhanced and histone modifications associated with gene repression are reduced in RAW264.7 cells expressing nonphosphorylated LXR? (RAW-LXR? S198A) compared to RAW264.7 cells expressing wild-type (WT) phosphorylated LXR? (RAW-LXR? WT). Expression profiling of ligand-treated RAW-LXR? S198A cells compared to RAW-LXR? WT cells revealed induction of cell migratory and anti-inflammatory genes and repression of proinflammatory genes. Modeling of LXR? S198 in the nonphosphorylated and phosphorylated states identified phosphorylation-dependent conformational changes in the hinge region commensurate with the presence of sites for protein interaction. Therefore, gene transcription is regulated by LXR? S198 phosphorylation, including that of antiatherogenic genes such as CCR7. PMID:25825525

  15. Expression of five acetylcholine receptor subunit genes in Brugia malayi adult worms.

    PubMed

    Li, Ben-Wen; Rush, Amy C; Weil, Gary J

    2015-12-01

    Acetylcholine receptors (AChRs) are required for body movement in parasitic nematodes and are targets of "classical" anthelmintic drugs such as levamisole and pyrantel and of newer drugs such as tribendimidine and derquantel. While neurotransmission explains the effects of these drugs on nematode movement, their effects on parasite reproduction are unexplained. The levamisole AChR type (L-AChRs) in Caenorhabditis elegans is comprised of five subunits: Cel-UNC-29, Cel-UNC-38, Cel-UNC-63, Cel-LEV-1 and Cel-LEV-8. The genome of the filarial parasite Brugia malayi contains nine AChRs subunits including orthologues of Cel-unc-29, Cel-unc-38, and Cel-unc-63. We performed in situ hybridization with RNA probes to localize the expression of five AChR genes (Bm1_35890-Bma-unc-29, Bm1_20330-Bma-unc-38, Bm1_38195-Bma-unc-63, Bm1_48815-Bma-acr-26 and Bm1_40515-Bma-acr-12) in B. malayi adult worms. Four of these genes had similar expression patterns with signals in body muscle, developing embryos, spermatogonia, uterine wall adjacent to stretched microfilariae, wall of V as deferens, and lateral cord. Three L-AChR subunit genes (Bma-unc-29, Bma-unc-38 and Bma-unc-63) were expressed in body muscle, which is a known target of levamisole. Bma-acr-12 was co-expressed with these levamisole subunit genes in muscle, and this suggests that its protein product may form receptors with other alpha subunits. Bma-acr-26 was expressed in male muscle but not in female muscle. Strong expression signals of these genes in early embryos and gametes in uterus and testis suggest that AChRs may have a role in nervous system development of embryogenesis and spermatogenesis. This would be consistent with embryotoxic effects of drugs that target these receptors in filarial worms. Our data show that the expression of these receptor genes is tightly regulated with regard to localization in adult worms and developmental stage in embryos and gametes. These results may help to explain the broad effects of drugs that target AChRs in filarial worms. PMID:26199859

  16. Expression of five acetylcholine receptor subunit genes in Brugia malayi adult worms

    PubMed Central

    Li, Ben-Wen; Rush, Amy C.; Weil, Gary J.

    2015-01-01

    Acetylcholine receptors (AChRs) are required for body movement in parasitic nematodes and are targets of “classical” anthelmintic drugs such as levamisole and pyrantel and of newer drugs such as tribendimidine and derquantel. While neurotransmission explains the effects of these drugs on nematode movement, their effects on parasite reproduction are unexplained. The levamisole AChR type (L-AChRs) in Caenorhabditis elegans is comprised of five subunits: Cel-UNC-29, Cel-UNC-38, Cel-UNC-63, Cel-LEV-1 and Cel-LEV-8. The genome of the filarial parasite Brugia malayi contains nine AChRs subunits including orthologues of Cel-unc-29, Cel-unc-38, and Cel-unc-63. We performed in situ hybridization with RNA probes to localize the expression of five AChR genes (Bm1_35890-Bma-unc-29, Bm1_20330-Bma-unc-38, Bm1_38195-Bma-unc-63, Bm1_48815-Bma-acr-26 and Bm1_40515-Bma-acr-12) in B. malayi adult worms. Four of these genes had similar expression patterns with signals in body muscle, developing embryos, spermatogonia, uterine wall adjacent to stretched microfilariae, wall of Vas deferens, and lateral cord. Three L-AChR subunit genes (Bma-unc-29, Bma-unc-38 and Bma-unc-63) were expressed in body muscle, which is a known target of levamisole. Bma-acr-12 was co-expressed with these levamisole subunit genes in muscle, and this suggests that its protein product may form receptors with other alpha subunits. Bma-acr-26 was expressed in male muscle but not in female muscle. Strong expression signals of these genes in early embryos and gametes in uterus and testis suggest that AChRs may have a role in nervous system development of embryogenesis and spermatogenesis. This would be consistent with embryotoxic effects of drugs that target these receptors in filarial worms. Our data show that the expression of these receptor genes is tightly regulated with regard to localization in adult worms and developmental stage in embryos and gametes. These results may help to explain the broad effects of drugs that target AChRs in filarial worms. PMID:26199859

  17. Fibroblast growth factor receptor 1 gene amplification in gastric adenocarcinoma.

    PubMed

    Schäfer, Manuel H; Lingohr, Philipp; Sträßer, Anke; Lehnen, Nils C; Braun, Martin; Perner, Sven; Höller, Tobias; Kristiansen, Glen; Kalff, Jörg C; Gütgemann, Ines

    2015-10-01

    Gastric adenocarcinomas are associated with a poor prognosis due to the fact that the tumor has often metastasized by the time of diagnosis. Thus, identification of novel therapeutic targets is highly desirable. Here, we examined gene copy number of fibroblast growth factor receptor 1 (FGFR1), a potential target for tyrosine kinase inhibitors, and clinicopathologic parameters in a large cohort of gastric adenocarcinomas. We performed fluorescence in situ hybridization analysis of 293 gastric adenocarcinomas using tissue microarrays. Amplification of the FGFR1 gene is a rare but noticeable event that can be found in 2% (6/293) of cases and was associated with poor 10-year survival (median 15.3 months in FGFR1-amplified cases versus 36 months in nonamplified cases, P = .047) and a higher rate of distant metastasis (P = .025). FGFR1 appears to represent a potential new therapeutic target in a subset of patients with gastric carcinoma. Identification of gastric cancers harboring FGFR1 amplification may be important in preselecting patients and/or interpreting clinical studies using tyrosine kinase inhibitors. PMID:26239623

  18. Variant in oxytocin receptor gene is associated with amygdala volume

    PubMed Central

    Furman, Daniella J.; Chen, Michael C.; Gotlib, Ian H.

    2010-01-01

    The oxytocin system plays a significant role in modulating stress responses in animals and humans; perturbations in this system may contribute to the pathogenesis of psychiatric disorder. Attempts to identify clinically relevant genetic variants in the oxytocin system have yielded associations between polymorphisms of the oxytocin receptor (OXTR) gene and both autism and major depression. To date, however, little is known about how such variants affect brain structures implicated in these disorders. Applying a manual tracing procedure to high-resolution structural magnetic resonance images, amygdala volumes were measured in 51 girls genotyped on OXTR rs2254298(G>A), a single nucleotide polymorphism associated with psychopathology. These results of this study indicate that despite having greater gray matter volume, participants homozygous for the G allele were characterized by smaller volumes of both left and right amygdala than were carriers of the A allele. A subsequent whole-brain voxel-based morphometry analysis revealed additional genotype-mediated volumetric group differences in the posterior brain stem and dorsomedial anterior cingulate cortex. These findings highlight one neurobiological pathway by which oxytocin gene variants may increase risk for psychopathology. Further research is needed to characterize the mechanism by which this polymorphism contributes to anatomical variability and to identify functional correlates of these alterations in regional brain volume. PMID:21208749

  19. Activation of transforming potential of the human insulin receptor gene

    SciTech Connect

    Wang, L.H.; Lin, B.; Jong, S.M.J.; Dixon, D.; Ellis, L.; Roth, R.A.; Rutter, W.J.

    1987-08-01

    A retrovirus containing part of the human insulin receptor (hIR) gene was constructed by replacing ros sequences in the avian sarcoma virus UR2 with hIR cDNA sequences coding for 46 amino acids of the extracellular domain and the entire transmembrane and cytoplasmic domains of the ..beta.. subunit of hIR. The resulting virus, named UIR, contains the hIR sequence fused to the 5' portion of the UR2 gag gene coding for p19. UIR is capable of transforming chicken embryo fibroblasts and promoting formation of colonies in soft agar; however, it does not form tumors in vivo. A variant that arose from the parental UIR is capable of efficiently inducing sarcomas in vivo. UIR-transformed cells exhibit higher rates of glucose uptake and growth than normal cells. The 4-kilobase UIR genome codes for a membrane-associated, glycosylated gag-hIR fusion protein of 75 kDa designated P75/sup gag-hir/. P75/sup gag-hir/ contains a protein tyrosine kinase activity that is capable of undergoing autophosphorylation and of phosphorylating foreign substrates in vitro; it is phosphorylated at both serine and tyrosine residues in vivo

  20. Estrogen-related receptor {alpha} modulates the expression of adipogenesis-related genes during adipocyte differentiation

    SciTech Connect

    Ijichi, Nobuhiro; Ikeda, Kazuhiro; Horie-Inoue, Kuniko; Yagi, Ken; Okazaki, Yasushi; Inoue, Satoshi . E-mail: INOUE-GER@h.u-tokyo.ac.jp

    2007-07-06

    Estrogen-related receptor {alpha} (ERR{alpha}) is an orphan nuclear receptor that regulates cellular energy metabolism by modulating gene expression involved in fatty acid oxidation and mitochondrial biogenesis in brown adipose tissue. However, the physiological role of ERR{alpha} in adipogenesis and white adipose tissue development has not been well studied. Here, we show that ERR{alpha} and ERR{alpha}-related transcriptional coactivators, peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) coactivator-1{alpha} (PGC-1{alpha}) and PGC-1{beta}, can be up-regulated in 3T3-L1 preadipocytes at mRNA levels under the adipogenic differentiation condition including the inducer of cAMP, glucocorticoid, and insulin. Gene knockdown by ERR{alpha}-specific siRNA results in mRNA down-regulation of fatty acid binding protein 4, PPAR{gamma}, and PGC-1{alpha} in 3T3-L1 cells in the adipogenesis medium. ERR{alpha} and PGC-1{beta} mRNA expression can be also up-regulated in another preadipocyte lineage DFAT-D1 cells and a pluripotent mesenchymal cell line C3H10T1/2 under the differentiation condition. Furthermore, stable expression of ERR{alpha} in 3T3-L1 cells up-regulates adipogenic marker genes and promotes triglyceride accumulation during 3T3-L1 differentiation. These results suggest that ERR{alpha} may play a critical role in adipocyte differentiation by modulating the expression of various adipogenesis-related genes.

  1. Guidance Material from Gene Technology Regulations 2001 (including amendments 2011) techniques that are not gene technology

    E-print Network

    New South Wales, University of

    that are not gene technology organisms that are not genetically modified 1 September 2011 Schedule 1A Techniques that are not gene technology organisms that are not genetically modified 2 September 2011 Schedule 1 Organisms that are not genetically modified organisms (regulation 5) Item Description of organism 1 A mutant organism in which

  2. Paternal Uniparental Isodisomy of Chromosome 6 Causing a Complex Syndrome Including Complete IFN-? Receptor 1 Deficiency

    PubMed Central

    Prando, Carolina; Boisson-Dupuis, Stéphanie; Grant, Audrey; Kong, Xiao-Fei; Bustamante, Jacinta; Feinberg, Jacqueline; Chapgier, Ariane; Rose, Yoann; Janničre, Lucile; Rizzardi, Elena; Zhang, Qiuping; Shanahan, Catherine M; Viollet, Louis; Lyonnet, Stanislas; Abel, Laurent; Ruga, Ezia Maria; Casanova, Jean-Laurent

    2010-01-01

    Mendelian susceptibility to mycobacterial disease (MSMD) is a rare primary immunodeficiency associated with clinical disease caused by weakly virulent mycobacterial species. Interferon gamma receptor 1 (IFN-?R1) deficiency is a genetic etiology of MSMD. We describe the clinical and genetic features of a seven-year-old Italian boy suffering from MSMD associated with a complex phenotype, including neonatal hyperglycemia, neuromuscular disease, and dysmorphic features. The child also developed necrotizing pneumonia caused by Rhodococcus equi. The child is homozygous for a nonsense mutation in exon 3 of IFNGR1 as a result of paternal uniparental disomy (UPD) of the entire chromosome 6. This is the first reported case of uniparental disomy resulting in a complex phenotype including MSMD. PMID:20186794

  3. Olfactory Receptor Gene Polymorphisms and Nonallergic Vasomotor Rhinitis

    PubMed Central

    Bernstein, Jonathan A.; Zhang, Ge; Jin, Li; Abbott, Carol; Nebert, Daniel W.

    2009-01-01

    We sought a genotype-phenotype association: between single-nucleotide polymorphisms (SNPs) in olfactory receptor (OR) genes from the two largest OR gene clusters and odor-triggered nonallergic vasomotor rhinitis (nVMR). In the initial pedigree screen, using transmission disequilibrium test (TDT) analysis, six SNPs showed “significant” p-values between 0.0449 and 0.0043. In a second case-control population, the previously identified six SNPs did not re-emerge, whereas four new SNPs showed p-values between 0.0490 and 0.0001. Combining both studies, none of the SNPs in the TDT analysis survived the Bonferroni correction. In the population study, one SNP showed an empirical p-value of 0.0066 by shuffling cases and controls with 105 replicates; however, the p-value for this SNP was 0.83 in the pedigree study. This study emphasizes that underpowered studies having p-values between <0.05 and 0.0001 should be regarded as inconclusive and require further replication before concluding the study is “informative.” However, we believe that our hypothesis that an association between OR genotypes and the nVMR phenotype remains feasible. Future studies using either a genomewide association study of all OR gene-pseudogene regions throughout the genome—at the current recommended density of 2.5 to 5 kb per tag SNP—or studies incorporating microarray analyses of the entire “OR genome” in well-characterized nVMR patients are required. PMID:18446592

  4. Leptin receptor gene polymorphisms in severely pre-eclamptic women.

    PubMed

    Rigó, János; Szendei, György; Rosta, Klára; Fekete, Andrea; Bögi, Krisztina; Molvarec, Attila; Rónai, Zsolt; Vér, Agota

    2006-09-01

    Variants of the leptin receptor gene (LEPR) may modulate the effect of elevated serum leptin levels in pre-eclampsia. The aim of our study was to evaluate the LEPR gene polymorphisms Lys109Arg (A109G) and Gln223Arg (A223G) in severely pre-eclamptic women. In a case-control study, we analyzed blood samples from 124 severely pre-eclamptic patients and 107 healthy control women by the polymerase chain reaction-restriction fragment length polymorphism method. The Pearson chi2 test was used to estimate odds ratios (OR) and 95% confidence intervals (CI). The association was adjusted for maternal age, pre-pregnancy body mass index and primiparity with logistic regression analysis. Pregnant women with the LEPR 223G allele (223A/G or 223G/G genotype) had almost double the risk of developing severe pre-eclampsia compared with patients with the 223A/A genotype (adjusted OR = 1.92, 95% CI: 1.07-3.41). Genotype variants of LEPR A109G alone did not affect the risk of severe pre-eclampsia. Haplotype estimation of A109G and A223G polymorphisms of the LEPR gene revealed that the G-A haplotype versus other pooled haplotypes was significantly less common in the pre-eclamptic group (p < 0.01), while the G-G haplotype versus others was overrepresented among severely pre-eclamptic patients (p < 0.01), compared with controls. In conclusion, our data indicate that LEPR A223G polymorphism may individually modify the risk of severe pre-eclampsia. PMID:17071538

  5. Phosphorylated and sumoylation-deficient progesterone receptors drive proliferative gene signatures during breast cancer progression

    PubMed Central

    2012-01-01

    Introduction Progesterone receptors (PR) are emerging as important breast cancer drivers. Phosphorylation events common to breast cancer cells impact PR transcriptional activity, in part by direct phosphorylation. PR-B but not PR-A isoforms are phosphorylated on Ser294 by mitogen activated protein kinase (MAPK) and cyclin dependent kinase 2 (CDK2). Phospho-Ser294 PRs are resistant to ligand-dependent Lys388 SUMOylation (that is, a repressive modification). Antagonism of PR small ubiquitin-like modifier (SUMO)ylation by mitogenic protein kinases suggests a mechanism for derepression (that is, transcriptional activation) of target genes. As a broad range of PR protein expression is observed clinically, a PR gene signature would provide a valuable marker of PR contribution to early breast cancer progression. Methods Global gene expression patterns were measured in T47D and MCF-7 breast cancer cells expressing either wild-type (SUMOylation-capable) or K388R (SUMOylation-deficient) PRs and subjected to pathway analysis. Gene sets were validated by RT-qPCR. Recruitment of coregulators and histone methylation levels were determined by chromatin immunoprecipitation. Changes in cell proliferation and survival were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays and western blotting. Finally, human breast tumor cohort datasets were probed to identify PR-associated gene signatures; metagene analysis was employed to define survival rates in patients whose tumors express a PR gene signature. Results 'SUMO-sensitive' PR target genes primarily include genes required for proliferative and pro-survival signaling. DeSUMOylated K388R receptors are preferentially recruited to enhancer regions of derepressed genes (that is, MSX2, RGS2, MAP1A, and PDK4) with the steroid receptor coactivator, CREB-(cAMP-response element-binding protein)-binding protein (CBP), and mixed lineage leukemia 2 (MLL2), a histone methyltransferase mediator of nucleosome remodeling. PR SUMOylation blocks these events, suggesting that SUMO modification of PR prevents interactions with mediators of early chromatin remodeling at 'closed' enhancer regions. SUMO-deficient (phospho-Ser294) PR gene signatures are significantly associated with human epidermal growth factor 2 (ERBB2)-positive luminal breast tumors and predictive of early metastasis and shortened survival. Treatment with antiprogestin or MEK inhibitor abrogated expression of SUMO-sensitive PR target-genes and inhibited proliferation in BT-474 (estrogen receptor (ER)+/PR+/ERBB2+) breast cancer cells. Conclusions We conclude that reversible PR SUMOylation/deSUMOylation profoundly alters target gene selection in breast cancer cells. Phosphorylation-induced PR deSUMOylation favors a permissive chromatin environment via recruitment of CBP and MLL2. Patients whose ER+/PR+ tumors are driven by hyperactive (that is, derepressed) phospho-PRs may benefit from endocrine (antiestrogen) therapies that contain an antiprogestin. PMID:22697792

  6. Allelic association of human dopamine D sub 2 receptor gene in alcoholism

    SciTech Connect

    Blum, K.; Sheridan, P.J.; Montgomery, A.; Jagadeeswaran, P.; Nogami, H.; Briggs, A.H. ); Noble, E.P.; Ritchie, T.; Cohn, J.B. )

    1990-04-18

    In a blinded experiment, the authors report the first allelic association of the dopamine D{sub 2} receptor gene in alcoholism. From 70 brain samples of alcoholics and nonalcoholics, DNA was digested with restriction endonucleases and probed with a clone that contained the entire 3{prime} coding exon, the polyadenylation signal, and approximately 16.4 kilobases of noncoding 3{prime} sequence of the human dopamine D{sub 2} receptor gene ({lambda}hD2G1). In the present samples, the presence of A1 allele of the dopamine D{sub 2} receptor gene correctly classified 77% of alcoholics, and its absence classified 72% of nonalcoholics. The polymorphic pattern of this receptor gene suggests that a gene that confers susceptibility to at least one form of alcoholism is located on the q22-q23 region of chromosome 11.

  7. Positive association between a DNA sequence variant in the serotonin 2A receptor gene and schizophrenia

    SciTech Connect

    Inayama, Y.; Yoneda, H.; Sakai, T.

    1996-02-16

    Sixty-two patients with schizophrenia and 96 normal controls were investigated for genetic association with restriction fragment length polymorphisms (RFLPs) in the serotonin receptor genes. A positive association between the serotonin 2A receptor gene (HTR2A) and schizophrenia was found, but not between schizophrenia and the serotonin 1A receptor gene. The positive association we report here would suggest that the DNA region with susceptibility to schizophrenia lies in the HTR2A on the long arm of chromosome 13. 15 refs., 2 tabs.

  8. A novel human gene encoding a G-protein-coupled receptor (GPR15) is located on chromosome 3

    SciTech Connect

    Heiber, M.; Marchese, A.; O`Dowd, B.F.

    1996-03-05

    We used sequence similarities among G-protein-coupled receptor genes to discover a novel receptor gene. Using primers based on conserved regions of the opioid-related receptors, we isolated a PCR product that was used to locate the full-length coding region of a novel human receptor gene, which we have named GPR15. A comparison of the amino acid sequence of the receptor gene, which we have named GPR15. A comparison of the amino acid sequence of the receptor encoded by GPR15 with other receptors revealed that it shared sequence identity with the angiotensin II AT1 and AT2 receptors, the interleukin 8b receptor, and the orphan receptors GPR1 and AGTL1. GPR15 was mapped to human chromosome 3q11.2-q13.1. 12 refs., 2 figs.

  9. Marfan syndrome with a complex chromosomal rearrangement including deletion of the FBN1 gene

    PubMed Central

    2012-01-01

    Background The majority of Marfan syndrome (MFS) cases is caused by mutations in the fibrillin-1 gene (FBN1), mapped to chromosome 15q21.1. Only few reports on deletions including the whole FBN1 gene, detected by molecular cytogenetic techniques, were found in literature. Results We report here on a female patient with clinical symptoms of the MFS spectrum plus craniostenosis, hypothyroidism and intellectual deficiency who presents a 1.9 Mb deletion, including the FBN1 gene and a complex rearrangement with eight breakpoints involving chromosomes 6, 12 and 15. Discussion This is the first report of MFS with a complex chromosome rearrangement involving a deletion of FBN1 and contiguous genes. In addition to the typical clinical findings of the Marfan syndrome due to FBN1 gene haploinsufficiency, the patient presents features which may be due to the other gene deletions and possibly to the complex chromosome rearrangement. PMID:22260333

  10. Pharmacologic Characterization of AMG 334, a Potent and Selective Human Monoclonal Antibody against the Calcitonin Gene-Related Peptide Receptor.

    PubMed

    Shi, Licheng; Lehto, Sonya G; Zhu, Dawn X D; Sun, Hong; Zhang, Jianhua; Smith, Brian P; Immke, David C; Wild, Kenneth D; Xu, Cen

    2016-01-01

    Therapeutic agents that block the calcitonin gene-related peptide (CGRP) signaling pathway are a highly anticipated and promising new drug class for migraine therapy, especially after reports that small-molecule CGRP-receptor antagonists are efficacious for both acute migraine treatment and migraine prevention. Using XenoMouse technology, we successfully generated AMG 334, a fully human monoclonal antibody against the CGRP receptor. Here we show that AMG 334 competes with [(125)I]-CGRP binding to the human CGRP receptor, with a Ki of 0.02 nM. AMG 334 fully inhibited CGRP-stimulated cAMP production with an IC50 of 2.3 nM in cell-based functional assays (human CGRP receptor) and was 5000-fold more selective for the CGRP receptor than other human calcitonin family receptors, including adrenomedullin, calcitonin, and amylin receptors. The potency of AMG 334 at the cynomolgus monkey (cyno) CGRP receptor was similar to that at the human receptor, with an IC50 of 5.7 nM, but its potency at dog, rabbit, and rat receptors was significantly reduced (>5000-fold). Therefore, in vivo target coverage of AMG 334 was assessed in cynos using the capsaicin-induced increase in dermal blood flow model. AMG 334 dose-dependently prevented capsaicin-induced increases in dermal blood flow on days 2 and 4 postdosing. These results indicate AMG 334 is a potent, selective, full antagonist of the CGRP receptor and show in vivo dose-dependent target coverage in cynos. AMG 334 is currently in clinical development for the prevention of migraine. PMID:26559125

  11. Evolutionary History and Functional Characterization of Androgen Receptor Genes in Jawed Vertebrates

    PubMed Central

    Ogino, Yukiko; Katoh, Hironori; Kuraku, Shigehiro; Yamada, Gen

    2009-01-01

    Vertebrates show diverse sexual characters in sexually attractive and reproductive organs, which are regulated by steroid hormones, particularly androgens. However, the evolutionary history of androgen receptor (AR) gene remains largely unknown on the basis of phylogenic and functional analyses. To elucidate the evolutionary history and functional diversification of AR genes in vertebrates, we cloned the AR cDNAs from a shark, basal ray-finned fishes (Actinopterygii), namely bichir and sturgeon (Acipenseriformes), and teleosts including a basal teleost, arowana (Osteoglossiformes). Molecular phylogenetic analysis revealed that the gene duplication event that gave rise to two different teleost ARs (? and ?) likely occurred in the actinopterygian lineage leading to teleosts after the divergence of Acipenseriformes but before the split of Osteoglossiformes, which is compatible with the phylogenetic timing of teleost-specific genome duplication. Searching for AR genes in the medaka genome indicated that the teleost AR gene duplication has been associated with the duplication between chromosomes 10 and 14. Our functional analysis revealed that the shark AR activates the target gene via androgen response element by classical androgens. The teleost AR? showed the unique intracellular localization with a significantly higher transactivating capacity than that by teleost AR?. These findings indicate that the most ancient type of AR, as activated by the classical androgens as ligands, emerged before the Chondrichthyes-Osteichthyes split, and the AR gene was duplicated during the teleost-specific genome duplication event. We report here for the first time the accurate evolutionary history of AR gene and functional characterization of AR duplicates in teleost lineage. PMID:19819965

  12. Evolutionary history and functional characterization of androgen receptor genes in jawed vertebrates.

    PubMed

    Ogino, Yukiko; Katoh, Hironori; Kuraku, Shigehiro; Yamada, Gen

    2009-12-01

    Vertebrates show diverse sexual characters in sexually attractive and reproductive organs, which are regulated by steroid hormones, particularly androgens. However, the evolutionary history of androgen receptor (AR) gene remains largely unknown on the basis of phylogenic and functional analyses. To elucidate the evolutionary history and functional diversification of AR genes in vertebrates, we cloned the AR cDNAs from a shark, basal ray-finned fishes (Actinopterygii), namely bichir and sturgeon (Acipenseriformes), and teleosts including a basal teleost, arowana (Osteoglossiformes). Molecular phylogenetic analysis revealed that the gene duplication event that gave rise to two different teleost ARs (alpha and beta) likely occurred in the actinopterygian lineage leading to teleosts after the divergence of Acipenseriformes but before the split of Osteoglossiformes, which is compatible with the phylogenetic timing of teleost-specific genome duplication. Searching for AR genes in the medaka genome indicated that the teleost AR gene duplication has been associated with the duplication between chromosomes 10 and 14. Our functional analysis revealed that the shark AR activates the target gene via androgen response element by classical androgens. The teleost ARalpha showed the unique intracellular localization with a significantly higher transactivating capacity than that by teleost ARbeta. These findings indicate that the most ancient type of AR, as activated by the classical androgens as ligands, emerged before the Chondrichthyes-Osteichthyes split, and the AR gene was duplicated during the teleost-specific genome duplication event. We report here for the first time the accurate evolutionary history of AR gene and functional characterization of AR duplicates in teleost lineage. PMID:19819965

  13. Identification and Expression Analysis of Putative Chemosensory Receptor Genes in Microplitis mediator by Antennal Transcriptome Screening

    PubMed Central

    Wang, Shan-Ning; Peng, Yong; Lu, Zi-Yun; Dhiloo, Khalid Hussain; Gu, Shao-Hua; Li, Rui-Jun; Zhou, Jing-Jiang; Zhang, Yong-Jun; Guo, Yu-Yuan

    2015-01-01

    Host-seeking, ovipositional behavior and mating of insects are controlled mainly by odor perception through sensory organs such as antennae. Antennal chemoreception is extremely important for insect survival. Several antennal chemosensory receptors are involved in mediating the odor detection in insects, especially the odorant receptors (ORs) and ionotropic receptors (IRs), to ensure the specificity of the olfactory sensory neuron responses. In the present study, we identified the chemosensory receptor gene repertoire of the parasitoid wasp Microplitis mediator, a generalist endoparasitoid that infests more than 40 types of Lepidopterous larvae and is widely distributed in the Palaearctic region. By transcriptome sequencing of male and female antennae we identified 60 candidate odorant receptors, six candidate ionotropic receptors and two gustatory receptors in M. mediator. The full-length sequences of these putative chemosensory receptor genes were obtained by using the rapid amplification of cDNA ends PCR (RACE-PCR) method. We also conducted reverse transcription PCR (RT-PCR) combined with real-time quantitative PCR (qPCR) for investigating the expression profiles of these chemosensory receptor genes in olfactory and non-olfactory tissues. The tissue- and sex-biased expression patterns may provide insights into the roles of the chemosensory receptor in M. mediator. Our findings support possible future study of the chemosensory behavior of M. mediator at the molecular level. PMID:26078716

  14. Deep Conservation of Genes Required for Both Drosophila melanogaster and Caenorhabditis elegans Sleep Includes a Role for Dopaminergic Signaling

    PubMed Central

    Singh, Komudi; Ju, Jennifer Y.; Walsh, Melissa B.; DiIorio, Michael A.; Hart, Anne C.

    2014-01-01

    Objectives: Cross-species conservation of sleep-like behaviors predicts the presence of conserved molecular mechanisms underlying sleep. However, limited experimental evidence of conservation exists. Here, this prediction is tested directly. Measurements and Results: During lethargus, Caenorhabditis elegans spontaneously sleep in short bouts that are interspersed with bouts of spontaneous locomotion. We identified 26 genes required for Drosophila melanogaster sleep. Twenty orthologous C. elegans genes were selected based on similarity. Their effect on C. elegans sleep and arousal during the last larval lethargus was assessed. The 20 most similar genes altered both the quantity of sleep and arousal thresholds. In 18 cases, the direction of change was concordant with Drosophila studies published previously. Additionally, we delineated a conserved genetic pathway by which dopamine regulates sleep and arousal. In C. elegans neurons, G-alpha S, adenylyl cyclase, and protein kinase A act downstream of D1 dopamine receptors to regulate these behaviors. Finally, a quantitative analysis of genes examined herein revealed that C. elegans arousal thresholds were directly correlated with amount of sleep during lethargus. However, bout duration varies little and was not correlated with arousal thresholds. Conclusions: The comprehensive analysis presented here suggests that conserved genes and pathways are required for sleep in invertebrates and, likely, across the entire animal kingdom. The genetic pathway delineated in this study implicates G-alpha S and previously known genes downstream of dopamine signaling in sleep. Quantitative analysis of various components of quiescence suggests that interdependent or identical cellular and molecular mechanisms are likely to regulate both arousal and sleep entry. Citation: Singh K, Ju JY, Walsh MB, Dilorio MA, Hart AC. Deep conservation of genes required for both Drosophila melanogaster and Caenorhabditis elegans sleep includes a role for dopaminergic signaling. SLEEP 2014;37(9):1439-1451. PMID:25142568

  15. Nuclear receptor location analyses in mammalian genomes: from gene regulation to regulatory networks.

    PubMed

    Deblois, Genevičve; Gigučre, Vincent

    2008-09-01

    Rapid progress in mapping nuclear receptor binding sites, referred to as "location analysis," has recently been achieved through the use of chromatin immunoprecipitation approaches. Location analysis can be performed on a single locus or cover a complete genome, and the resulting datasets can be probed to identify direct target genes and/or investigate the molecular mechanisms by which nuclear receptors control gene expression. In addition, when coupled with other genetic and functional genomics investigative methods, location analysis has proven to be a powerful tool with which to identify novel biological functions of nuclear receptors and build transcriptional regulatory networks. Thus, the knowledge gained from several recent chromatin immunoprecipitation-based studies has challenged basic concepts of nuclear receptor action, offered new insights into gene-regulatory mechanisms, and led to the identification of nuclear receptor-controlled biological functions. PMID:18292239

  16. [Novel therapy for malignant lymphoma: adoptive immuno-gene therapy using chimeric antigen receptor(CAR)-expressing T lymphocytes].

    PubMed

    Ozawa, Keiya

    2014-03-01

    Adoptive T-cell therapy using chimeric antigen receptor (CAR) technology is a novel approach to cancer immuno-gene therapy. CARs are hybrid proteins consisting of target-antigen-specific single-chain antibody fragment fused to intracellular T-cell activation domains (CD28 or CD137/CD3 zeta receptor). CAR-expressing engineered T lymphocytes can directly recognize and kill tumor cells in an HLA independent manner. In the United States, promising results have been obtained in the clinical trials of adoptive immuno-gene therapy using CD19-CAR-T lymphocytes for the treatment of refractory B-cell malignancies, including chronic lymphocytic leukemia (CLL) and acute lymphoblastic leukemia (ALL). In this review article, CD19-CAR-T gene therapy for refractory B-cell non-Hodgkin lymphoma is discussed. PMID:24724418

  17. High prevalence iron receptor genes of avian pathogenic Escherichia coli.

    PubMed

    Ons, Ellen; Bleyen, Nele; Tuntufye, Huruma Nelwike; Vandemaele, Fréderic; Goddeeris, Bruno Maria

    2007-10-01

    Avian pathogenic Escherichia coli are known to cause significant losses in the poultry industry worldwide. Although prophylactic measures based on vaccination are advisable, until now no full heterologous protection against colibacillosis has been achieved. Since iron is an essential nutrient to these bacteria, the aim of this study was to investigate the prevalence of 12 outer-membrane iron receptor genes in 239 pathogenic strains isolated from clinical cases of colibacillosis in chickens. Five multiplex polymerase chain reactions were developed as a tool for efficient screening. Among the 239 avian E. coli isolates, 100% were positive for fhuE and fepA, 96.2% for fiu, 92.9% for cir, 92.5% for iroN, 87.4% for iutA, 63.2% for fecA, 53.1% for fyuA, 46.9% for fhuA, 45.6% for ireA, 41.8% for chuA and 4.6% for iha. PMID:17899466

  18. Association study of dopamine D3 receptor gene and schizophrenia

    SciTech Connect

    Kennedy, J.L.; Billett, E.A.; Macciardi, F.M.

    1995-12-18

    Several groups have reported an association between schizophrenia and the MscI polymorphism in the first exon of the dopamine D3 receptor gene (DRD3). We studied this polymorphism using a North American sample (117 patients plus 188 controls) and an Italian sample (97 patients plus 64 controls). In the first part of the study, we compared allele frequencies of schizophrenia patients and unmatched controls and observed a significant difference in the total sample (P = 0.01). The second part of the study involved a case control approach in which each schizophrenia patient was matched to a control of the same sex, and of similar age and ethnic background. The DRD3 allele frequencies of patients and controls revealed no significant difference between the two groups in the Italian (N = 53) or the North American (N = 54) matched populations; however, when these two matched samples were combined, a significant difference was observed (P = 0.026). Our results suggest that the MscI polymorphism may be associated with schizophrenia in the populations studied. 32 refs., 2 tabs.

  19. Characterisation of androgen receptor function in the male reproductive system through conditional gene targeting 

    E-print Network

    O'Hara, Laura

    2011-07-05

    Androgen receptor (AR) signalling is essential for the development and function of the male reproductive system. Conditional gene ablation using the Cre-loxP system has previously assisted in the elucidation of the role ...

  20. An enormous family of over 800 genes encodes receptor proteinsthatarecharacterizedbyasignatureseven-trans-

    E-print Network

    Alford, Simon

    ).Nonetheless,it was only with the cloning2 of the gene and complementary DNA for the mam- malian 2 adrenergic of receptors began to emerge. This idea was rapidly confirmed by the cloning of other members of the adrenergic of membrane receptors, are also the most common target of therapeutic drugs. Recent findings indicate

  1. Estrogen receptors in Xenopus: duplicate genes, splice variants, and tissue-specific expression

    E-print Network

    Kelley, Darcy B.

    Estrogen receptors in Xenopus: duplicate genes, splice variants, and tissue-specific expression The estrogenic steroid hormones, acting primarily through the nuclear estrogen receptors ERa and ERb, regulate sexual dif- ferentiation in a wide variety of vertebrates. In the frog Xenopus laevis, estrogen regulates

  2. Behavioural anomalies in mice evoked by ``Tokyo'' disruption of the Vitamin D receptor gene

    E-print Network

    Kalueff, Allan V.

    Behavioural anomalies in mice evoked by ``Tokyo'' disruption of the Vitamin D receptor gene Allan V December 2005 Available online 19 January 2006 Abstract Vitamin D is a steroid hormone with many important functions in the brain, mediated through the nuclear Vitamin D receptor (VDR). Mounting clinical data link

  3. Differential gene body methylation and reduced expression of cell adhesion and neurotransmitter receptor genes in adverse maternal environment.

    PubMed

    Oh, J-E; Chambwe, N; Klein, S; Gal, J; Andrews, S; Gleason, G; Shaknovich, R; Melnick, A; Campagne, F; Toth, M

    2013-01-01

    Early life adversity, including adverse gestational and postpartum maternal environment, is a contributing factor in the development of autism, attention deficit hyperactivity disorder (ADHD), anxiety and depression but little is known about the underlying molecular mechanism. In a model of gestational maternal adversity that leads to innate anxiety, increased stress reactivity and impaired vocal communication in the offspring, we asked if a specific DNA methylation signature is associated with the emergence of the behavioral phenotype. Genome-wide DNA methylation analyses identified 2.3% of CpGs as differentially methylated (that is, differentially methylated sites, DMSs) by the adverse environment in ventral-hippocampal granule cells, neurons that can be linked to the anxiety phenotype. DMSs were typically clustered and these clusters were preferentially located at gene bodies. Although CpGs are typically either highly methylated or unmethylated, DMSs had an intermediate (20-80%) methylation level that may contribute to their sensitivity to environmental adversity. The adverse maternal environment resulted in either hyper or hypomethylation at DMSs. Clusters of DMSs were enriched in genes that encode cell adhesion molecules and neurotransmitter receptors; some of which were also downregulated, indicating multiple functional deficits at the synapse in adversity. Pharmacological and genetic evidence links many of these genes to anxiety. PMID:23340501

  4. Association between the oxytocin receptor (OXTR) gene and mesolimbic responses to rewards

    PubMed Central

    2014-01-01

    Background There has been significant progress in identifying genes that confer risk for autism spectrum disorders (ASDs). However, the heterogeneity of symptom presentation in ASDs impedes the detection of ASD risk genes. One approach to understanding genetic influences on ASD symptom expression is to evaluate relations between variants of ASD candidate genes and neural endophenotypes in unaffected samples. Allelic variations in the oxytocin receptor (OXTR) gene confer small but significant risk for ASDs for which the underlying mechanisms may involve associations between variability in oxytocin signaling pathways and neural response to rewards. The purpose of this preliminary study was to investigate the influence of allelic variability in the OXTR gene on neural responses to monetary rewards in healthy adults using functional magnetic resonance imaging (fMRI). Methods The moderating effects of three single nucleotide polymorphisms (SNPs) (rs1042778, rs2268493 and rs237887) of the OXTR gene on mesolimbic responses to rewards were evaluated using a monetary incentive delay fMRI task. Results T homozygotes of the rs2268493 SNP demonstrated relatively decreased activation in mesolimbic reward circuitry (including the nucleus accumbens, amygdala, insula, thalamus and prefrontal cortical regions) during the anticipation of rewards but not during the outcome phase of the task. Allelic variation of the rs1042778 and rs237887 SNPs did not moderate mesolimbic activation during either reward anticipation or outcomes. Conclusions This preliminary study suggests that the OXTR SNP rs2268493, which has been previously identified as an ASD risk gene, moderates mesolimbic responses during reward anticipation. Given previous findings of decreased mesolimbic activation during reward anticipation in ASD, the present results suggest that OXTR may confer ASD risk via influences on the neural systems that support reward anticipation. PMID:24485285

  5. Estrogen Receptor 1 Gene Expression and Its Combination with Estrogen Receptor 2 or Aromatase Expression Predicts Survival in Non-Small Cell Lung Cancer

    PubMed Central

    Aresti, Unai; Carrera, Sergio; Iruarrizaga, Eluska; Fuente, Natalia; Marrodan, Ines; de Lobera, Abigail Ruiz; Muńoz, Alberto; Buque, Aitziber; Condori, Elizabeth; Ugalde, Irene; Calvo, Begońa; Vivanco, Guillermo López

    2014-01-01

    The biological roles of estrogen receptor 1 (ERS1), estrogen receptor 2 (ERS2), and aromatase (CYP19A1) genes in the development of non-small cell lung cancer (NSCLC) is unclear, as is the use of their expression as a prognostic factor. The aim of this study was to investigate the prognostic value of estrogen receptors and aromatase mRNA expression, along with aromatase protein concentration, in resected NSCLC patients. Tumor and non-tumor lung tissue samples were analyzed for the mRNA expression of ERS1, ERS2 and CYP19A1 by RT-PCR. Aromatase concentration was measured with an ELISA. A total of 96 patients were included. ERS1 expression was significantly higher in non-tumor tissue than in tumor samples. Two gene expression categories were created for each gene (and protein): high and low. ERS1 high category showed increased overall survival (OS) when compared to the low expression category. Aromatase protein concentration was significantly higher in tumor samples. Higher ERS1 expression in tumor tissues was related to longer overall survival. The analysis of gene expression combinations provides evidence for longer OS when both ERS1 and ERS2 are highly expressed. ESR1, alone or in combination with ERS2 or CYP19A1, is the most determining prognostic factor within the analyzed 3 genes. It seems that ERS1 can play a role in NSCLC prognosis, alone or in combination with other genes such as ERS2 or Cyp19a1. ERS2 in combination with aromatase concentration could have a similar function. PMID:25310221

  6. Cloning of human genes encoding novel G protein-coupled receptors

    SciTech Connect

    Marchese, A.; Docherty, J.M.; Heiber, M.

    1994-10-01

    We report the isolation and characterization of several novel human genes encoding G protein-coupled receptors. Each of the receptors contained the familiar seven transmembrane topography and most closely resembled peptide binding receptors. Gene GPR1 encoded a receptor protein that is intronless in the coding region and that shared identity (43% in the transmembrane regions) with the opioid receptors. Northern blot analysis revealed that GPR1 transcripts were expressed in the human hippocampus, and the gene was localized to chromosome 15q21.6. Gene GPR2 encoded a protein that most closely resembled an interleukin-8 receptor (51% in the transmembrane regions), and this gene, not expressed in the six brain regions examined, was localized to chromosome 17q2.1-q21.3. A third gene, GPR3, showed identity (56% in the transmembrane regions) with a previously characterized cDNA clone from rat and was localized to chromosome 1p35-p36.1. 31 refs., 5 figs., 1 tab.

  7. Evolution of the Sweet Taste Receptor Gene Tas1r2 in Bats Huabin Zhao,1,2

    E-print Network

    Zhang, Jianzhi

    Evolution of the Sweet Taste Receptor Gene Tas1r2 in Bats Huabin Zhao,1,2 Yingying Zhou,1 C. Miguel taste receptors is lacking. Here, we survey the sole sweet taste­specific receptor gene Tas1r2 in 42 bat of the bats studied, with no significant difference in the strength of the selection between insect eaters

  8. Thrombin modulates the expression of a set of genes including thrombospondin-1 in human microvascular endothelial cells.

    PubMed

    McLaughlin, Joseph N; Mazzoni, Maria R; Cleator, John H; Earls, Laurie; Perdigoto, Ana Luisa; Brooks, Joshua D; Muldowney, James A S; Vaughan, Douglas E; Hamm, Heidi E

    2005-06-10

    Thrombospondin-1 (THBS1) is a large extracellular matrix glycoprotein that affects vasculature systems such as platelet activation, angiogenesis, and wound healing. Increases in THBS1 expression have been liked to disease states including tumor progression, atherosclerosis, and arthritis. The present study focuses on the effects of thrombin activation of the G-protein-coupled, protease-activated receptor-1 (PAR-1) on THBS1 gene expression in the microvascular endothelium. Thrombin-induced changes in gene expression were characterized by microarray analysis of approximately 11,000 different human genes in human microvascular endothelial cells (HMEC-1). Thrombin induced the expression of a set of at least 65 genes including THBS1. Changes in THBS1 mRNA correlated with an increase in the extracellular THBS1 protein concentration. The PAR-1-specific agonist peptide (TFLLRNK-PDK) mimicked thrombin stimulation of THBS1 expression, suggesting that thrombin signaling is through PAR-1. Further studies showed THBS1 expression was sensitive to pertussis toxin and protein kinase C inhibition indicating G(i/o)- and G(q)-mediated pathways. THBS1 up-regulation was also confirmed in human umbilical vein endothelial cells stimulated with thrombin. Analysis of the promoter region of THBS1 and other genes of similar expression profile identified from the microarray predicted an EBOX/EGRF transcription model. Expression of members of each family, MYC and EGR1, respectively, correlated with THBS1 expression. These results suggest thrombin formed at sites of vascular injury increases THBS1 expression into the extracellular matrix via activation of a PAR-1, G(i/o), G(q), EBOX/EGRF-signaling cascade, elucidating regulatory points that may play a role in increased THBS1 expression in disease states. PMID:15817447

  9. Structure and chromosomal localization of the human antidiuretic hormone receptor gene

    SciTech Connect

    Seibold, A.; Brabet, P.; Rosenthal, W.; Birnbaumer, M. )

    1992-11-01

    Applying a genomic DNA-expression approach, the authors cloned the gene and cDNA coding for the human antidiuretic hormone receptor, also called vasopressin V2 receptor' (V2R). The nucleotide sequence of both cloned DNAs provided the information to elucidate the structure of the isolated transcriptional unit. The structure of this gene is unusual in that it is the first G protein-coupled receptor gene that contains two very small intervening sequences, the second of which separates the region encoding the seventh transmembrane region from the rest of the open reading frame. The sequence information was used to synthesize appropriate oligonucleotides to be used as primers in the PCR. The V2R gene was localized by PCR using DNA from hybrid cells as template. The gene was found to reside in the q28-qter portion of the human X chromosome, a region identified as the locus for congential nephrogenic diabetes insipidus. 27 refs., 4 figs.

  10. Preliminary Report of a Neurokinin-Like Receptor Gene Sequence for the Nemertean Paranemertes sp.

    PubMed

    Chung, Brian M; Stevens, Rainee C; Thomas, Chelsie L; Palmere, Laura N; Okazaki, Robert K

    2015-12-01

    Tachykinins (TKs) are a family of neurotransmitters that function as signaling molecules for such processes as maintaining homeostasis, regulating stress response, and modulating pain. TKs require the expression of at least one of three receptor subtypes: Neurokinin Receptor-1 (NKR-1), Neurokinin Receptor-2 (NKR-2), or Neurokinin Receptor-3 (NKR-3). We have isolated and cloned a portion of a gene coding for a tachykinin-like receptor from the nemertean Paranemertes sp. This 488-bp portion contains a short 101-bp segment that shares 85% similarity to the mouse substance-K receptor in Mus musculus and 83% similarity to the moth neuropeptide receptor A24 in Bombyx mori. Translated homology analysis aligning the coding sequence with the initial cytoplasmic carboxyl terminus of numerous G-protein coupled neuropeptide receptors also revealed 73% similarity to B. mori neuropeptide receptor A24. Our finding is the first report of a sequence amplified from Paranemertes sp. that may code for a small portion of a G-protein-coupled neuropeptide receptor with significant similarity to the TKR family, particularly the NKR-3 receptor isoform. This novel finding may open new avenues into exploring the role of tachykinin and its receptor in nemertean neurophysiology. PMID:26654039

  11. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells.

    PubMed

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng

    2015-12-01

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. PMID:26471300

  12. Resequencing of the auxiliary GABAB receptor subunit gene KCTD12 in chronic tinnitus

    PubMed Central

    Sand, P. G.; Langguth, B.; Itzhacki, J.; Bauer, A.; Geis, S.; Cárdenas-Conejo, Z. E.; Pimentel, V.; Kleinjung, T.

    2012-01-01

    Tinnitus is a common and often incapacitating hearing disorder marked by the perception of phantom sounds. Susceptibility factors remain largely unknown but GABAB receptor signaling has long been implicated in the response to treatment and, putatively, in the etiology of the disorder. We hypothesized that variation in KCTD12, the gene encoding an auxiliary subunit of GABAB receptors, could help to predict the risk of developing tinnitus. Ninety-five Caucasian outpatients with a diagnosis of chronic tinnitus were systematically screened for mutations in the KCTD12 open reading frame and the adjacent 3? untranslated region by Sanger sequencing. Allele frequencies were determined for 14 known variants of which three (rs73237446, rs34544607, and rs41287030) were polymorphic. When allele frequencies were compared to data from a large reference population of European ancestry, rs34544607 was associated with tinnitus (p = 0.04). However, KCTD12 genotype did not predict tinnitus severity (p = 0.52) and the association with rs34544607 was weakened after screening 50 additional cases (p = 0.07). Pending replication in a larger cohort, KCTD12 may act as a risk modifier in chronic tinnitus. Issues that are yet to be addressed include the effects of neighboring variants, e.g., in the KCTD12 gene regulatory region, plus interactions with variants of GABAB1 and GABAB2. PMID:22654739

  13. A physical map of two clusters containing the genes for six proinflammatory receptors

    SciTech Connect

    Alvarez, V.; Coto, E.; Setien, F.; Lopez-Larrea, C.

    1994-12-31

    The genes encoding for six receptors involved in the proinflammatory response lie on different chromosomes. Two receptors for N-formylpeptides (FPR1, FPR2), one homologue of these (FPRL2), and the receptor for complement fragment C5a (C5aR) are encoded by four genes mapped to human chromosome 19. The genes encoding two receptors for Interleukin-8 (IL8RA, IL8RB) have been located on human chromosome 2. In this report we describe the physical linkage between these genes in two different clusters. DNA fragments obtained by digestion with several restriction enzymes were separated by pulsed field gel electrophoresis. Nylon filters were hybridized with probes corresponding to the complete translated sequences of these genes. These probes were obtained from a human neutrophil cDNA-library. The four genes on chromosome 19 are contained in a 200 kilobase (kb) fragment. Both Interleukin-8 receptors are on a 150 kb fragment. The complete translated sequences for these genes were amplified from genomic DNA, indicating that they are contained in a single exon. 22 refs., 3 figs., 2 tabs.

  14. Oestrogen receptor ? gene polymorphisms in systemic lupus erythematosus

    PubMed Central

    Johansson, M; Arlestig, L; Moller, B; Smedby, T; Rantapaa-Dahlqvis..., S

    2005-01-01

    Objective: To analyse associations of two oestrogen receptor ? (OR?) gene polymorphisms in 260 patients with SLE from northern Sweden. The two polymorphisms, PvuII T/C and the XbaI A/G, are located in the first intron of the OR? gene. Methods: All patients fulfilling at least four of the ACR criteria for SLE were consecutively recruited during one year. The SLEDAI score and SLICC damage index were recorded. 670 individuals from the same geographical area served as controls. DNA from the patients and controls was extracted and genotyped using the 5' nuclease assay with an ABI PRISM 7900HT instrument. The genotype/phenotype relationships were calculated using SPSS. Results: The unusual PvuII C allele was associated with malar rash and the unusual XbaI G allele with photosensitivity (p = 0.001, OR = 2.53, 95% CI = 1.43 to 4.47 and p = 0.007, OR = 2.12, 95% CI = 1.22 to 3.66, respectively). The common XbaI AA genotype was associated with serositis (p = 0.013, OR = 1.92, 95% CI = 1.15 to 3.22). Based on the SLICC damage index associations of the common TT genotype and AA genotype with cognitive impairment were identified (p = 0.018, OR = 2.47, 95% CI = 1.17 to 5.25 and p = 0.018, OR = 2.75, 95% CI = 1.19 to 6.38 respectively). There was also an association of the XbaI AA genotype with the angina/coronary artery bypass variable (p = 0.042, OR = 2.58, 95% CI = 1.03 to 6.43). Of the variables describing disease severity and duration it was found that carriers of the unusual PvuII C allele showed a later onset of SLE (p = 0.02) and carriers of the unusual XbaI G allele a lower SLICC damage index. Conclusions: The unusual PvuII C and XbaI G alleles were associated with a milder form of SLE characterised by skin manifestations, later onset, and less organ damage. PMID:15817658

  15. Definition of the Cattle Killer Cell Ig–like Receptor Gene Family: Comparison with Aurochs and Human Counterparts

    PubMed Central

    Sanderson, Nicholas D.; Norman, Paul J.; Guethlein, Lisbeth A.; Ellis, Shirley A.; Williams, Christina; Breen, Matthew; Park, Steven D. E.; Magee, David A.; Babrzadeh, Farbod; Warry, Andrew; Watson, Mick; Bradley, Daniel G.; MacHugh, David E.; Parham, Peter

    2014-01-01

    Under selection pressure from pathogens, variable NK cell receptors that recognize polymorphic MHC class I evolved convergently in different species of placental mammal. Unexpectedly, diversified killer cell Ig–like receptors (KIRs) are shared by simian primates, including humans, and cattle, but not by other species. Whereas much is known of human KIR genetics and genomics, knowledge of cattle KIR is limited to nine cDNA sequences. To facilitate comparison of the cattle and human KIR gene families, we determined the genomic location, structure, and sequence of two cattle KIR haplotypes and defined KIR sequences of aurochs, the extinct wild ancestor of domestic cattle. Larger than its human counterpart, the cattle KIR locus evolved through successive duplications of a block containing ancestral KIR3DL and KIR3DX genes that existed before placental mammals. Comparison of two cattle KIR haplotypes and aurochs KIR show the KIR are polymorphic and the gene organization and content appear conserved. Of 18 genes, 8 are functional and 10 were inactivated by point mutation. Selective inactivation of KIR3DL and activating receptor genes leaves a functional cohort of one inhibitory KIR3DL, one activating KIR3DX, and six inhibitory KIR3DX. Functional KIR diversity evolved from KIR3DX in cattle and from KIR3DL in simian primates. Although independently evolved, cattle and human KIR gene families share important function-related properties, indicating that cattle KIR are NK cell receptors for cattle MHC class I. Combinations of KIR and MHC class I are the major genetic factors associated with human disease and merit investigation in cattle. PMID:25398326

  16. Different expression of TSH receptor and NIS genes in thyroid cancer: role of epigenetics.

    PubMed

    D'Agostino, Maria; Sponziello, Marialuisa; Puppin, Cinzia; Celano, Marilena; Maggisano, Valentina; Baldan, Federica; Biffoni, Marco; Bulotta, Stefania; Durante, Cosimo; Filetti, Sebastiano; Damante, Giuseppe; Russo, Diego

    2014-04-01

    The TSH receptor (TSHR) and sodium/iodide symporter (NIS) are key players in radioiodine-based treatment of differentiated thyroid cancers. While NIS (SLC5AS) expression is diminished/lost in most thyroid tumors, TSHR is usually preserved. To examine the mechanisms that regulate the expression of NIS and TSHR genes in thyroid tumor cells, we analyzed their expression after inhibition of ras-BRAF-MAPK and PI3K-Akt-mTOR pathways and the epigenetic control occurring at the gene promoter level in four human thyroid cancer cell lines. Quantitative real-time PCR was used to measure NIS and TSHR mRNA in thyroid cancer cell lines (TPC-1, BCPAP, WRO, and FTC-133). Western blotting was used to assess the levels of total and phosphorylated ERK and Akt. Chromatin immunoprecipitation was performed for investigating histone post-translational modifications of the TSHR and NIS genes. ERK and Akt inhibitors elicited different responses of the cells in terms of TSHR and NIS mRNA levels. Akt inhibition increased NIS transcript levels and reduced those of TSHR in FTC-133 cells but had no significant effects in BCPAP. ERK inhibition increased the expression of both genes in BCPAP cells but had no effects in FTC-133. Histone post-translational modifications observed in the basal state of the four cell lines as well as in BCPAP treated with ERK inhibitor and FTC-133 treated with Akt inhibitor show cell- and gene-specific differences. In conclusion, our data indicate that in thyroid cancer cells the expression of TSHR and NIS genes is differently controlled by multiple mechanisms, including epigenetic events elicited by major signaling pathways involved in thyroid tumorigenesis. PMID:24353283

  17. Circulating Her-2/neu extracellular domain in breast cancer patients-correlation with prognosis and clinicopathological parameters including steroid receptor, Her-2/neu receptor coexpression.

    PubMed

    Bari?, Marina; Kuli?, Ana; Sirotkovi?-Skerlev, Maja; Dedi? Plaveti?, Natalija; Vidovi?, Marina; Horvati?-Herceg, Gordana; Vrbanec, Damir

    2015-07-01

    HER-2/neu extracellular domain (ECD) can be detected in blood as a soluble circulating protein. The aim of this study was to analyze the relationship between HER-2/neu extracellular domain in the serum and the prognosis in breast cancer patients. We also correlated HER-2/neu ECD with various clinicopathological factors including steroid receptor, HER-2/neu receptor coexpression. The serum from seventy nine patients with invasive breast cancer and twenty individuals without malignancy was analyzed using the enzyme-linked immune adsorbent assay method. The cut-off value was estimated by the ROC curve analysis (15.86 ?g/L). HER-2/neu ECD values in the serum of patients with breast cancer were significantly higher than in control subjects. Circulating HER-2/neu ECD was significantly associated with the histological grade of tumors and the status of axillary lymph nodes. Negative correlation was observed between HER-2/neu ECD in the serum and estrogen receptor positivity. When we analyzed HER-2/neu ECD in relation with coexpression of steroid receptor and HER-2/neu receptor in tissue, statistically higher values were found in the subgroup of patients with steroid receptor negative, HER-2/neu negative tumors than in the other subgroups. HER-2/neu ECD was not an independent factor in the univariate and multivariate analysis. However, elevated HER-2/neu ECD levels were found in patients with breast cancer possessing more aggressive phenotype. PMID:25367073

  18. Expression of Notch receptors, ligands and target genes during development of the mouse mammary gland

    PubMed Central

    Raafat, Ahmed; Goldhar, Anita S.; Klauzinska, Malgorzata; Xu, Keli; Amirjazil, Idean; McCurdy, David; Lashin, Karim; Salomon, David; Vonderhaar, Barbara K.; Egan, Sean; Callahan, Robert

    2010-01-01

    Notch genes play a critical role in mammary gland growth, development and tumorigenesis. In the present study we have quantitatively determined the levels and mRNA expression patterns of the Notch receptor genes, their ligands and target genes in the postnatal mouse mammary gland. The steady state levels of Notch3 mRNA are the highest among receptor genes, Jagged1 and Dll3 mRNA levels are the highest among ligand genes and Hey2 mRNA levels are highest among expressed Hes/Hey target genes analyzed during different stages of postnatal mammary gland development. Using an immunohistochemical approach with antibodies specific for each Notch receptor, we show that Notch proteins are temporally regulated in mammary epithelial cells during normal mammary gland development in the FVB/N mouse. The loss of ovarian hormones is associated with changes in the levels of Notch receptor mRNAs (Notch2 higher and Notch3 lower) and ligand mRNAs (Dll1 and Dll4 are higher, whereas Dll3 and Jagged1 are lower) in the mammary gland of ovariectomized mice compared to intact mice. These data define expression of the Notch ligand/receptor system throughout development of the mouse mammary gland and help set the stage for genetic analysis of Notch in this context. PMID:21506125

  19. Killer-cell Immunoglobulin-like Receptor gene linkage and copy number variation analysis by droplet digital PCR

    PubMed Central

    2014-01-01

    The Killer-cell Immunoglobulin-like Receptor (KIR) gene complex has considerable biomedical importance. Patterns of polymorphism in the KIR region include variability in the gene content of haplotypes and diverse structural arrangements. Droplet digital PCR (ddPCR) was used to identify different haplotype motifs and to enumerate KIR copy number variants (CNVs). ddPCR detected a variety of KIR haplotype configurations in DNA from well-characterized cell lines. Mendelian segregation of ddPCR-estimated KIR2DL5 CNVs was observed in Gambian families and CNV typing of other KIRs was shown to be accurate when compared to an established quantitative PCR method. PMID:24597950

  20. Knockdown of a Zebrafish Aryl Hydrocarbon Receptor Repressor (AHRRa) Affects Expression of Genes Related to Photoreceptor Development and Hematopoiesis

    PubMed Central

    Aluru, Neelakanteswar; Jenny, Matthew J.; Hahn, Mark E.

    2014-01-01

    The aryl hydrocarbon receptor repressor (AHRR) is a transcriptional repressor of aryl hydrocarbon receptor (AHR) and hypoxia-inducible factor (HIF) and is regulated by an AHR-dependent mechanism. Zebrafish (Danio rerio) possess two AHRR paralogs; AHRRa regulates constitutive AHR signaling during development, whereas AHRRb regulates polyaromatic hydrocarbon-induced gene expression. However, little is known about the endogenous roles and targets of AHRRs. The objective of this study was to elucidate the role of AHRRs during zebrafish development using a loss-of-function approach followed by gene expression analysis. Zebrafish embryos were microinjected with morpholino oligonucleotides against AHRRa or AHRRb to knockdown AHRR protein expression. At 72 h postfertilization (hpf), microarray analysis revealed that the expression of 279 and 116 genes was altered by knockdown of AHRRa and AHRRb, respectively. In AHRRa-morphant embryos, 97 genes were up-regulated and 182 genes were down-regulated. Among the down-regulated genes were several related to photoreceptor function, including cone-specific genes such as several opsins (opn1sw1, opn1sw2, opn1mw1, and opn1lw2), phosphodiesterases (pde6H and pde6C), retinol binding protein (rbp4l), phosducin, and arrestins. Down-regulation was confirmed by RT-PCR and with samples from an independent experiment. The four genes tested (opn1sw1, pde6H, pde6C, and arr3b) were not inducible by 2,3,7,8-tetrachlorodibenzo-p-dioxin. AHRRa knockdown also caused up-regulation of embryonic hemoglobin (hbbe3), suggesting a role for AHRR in regulating hematopoiesis. Knockdown of AHRRb caused up-regulation of 31 genes and down-regulation of 85 genes, without enrichment for any specific biological process. Overall, these results suggest that AHRRs may have important roles in development, in addition to their roles in regulating xenobiotic signaling. PMID:24675095

  1. Gastric carcinomas with microsatellite instability: clinical features and mutations to the TGF-beta type II receptor, IGFII receptor, and BAX genes.

    PubMed

    Iacopetta, B J; Soong, R; House, A K; Hamelin, R

    1999-03-01

    The replication error phenotype (RER+) represents an important new form of genetic alteration characterized by widespread instability in repetitive nucleotide sequences. The aim of this study was to compare the features of RER+ gastric tumours with those of RER+ colonic tumours. RER status was determined by analysis of size alterations in the BAT-26 mononucleotide repeat microsatellite. Twelve of 121 (10 per cent) gastric carcinomas from a low-incidence region were found to be RER+. BAT-26 instability was associated with tumours showing an absence of nodal invasion ( p=0.009) and with a trend for improved prognosis. These tumours were more frequent in older, female patients. Frameshift mutations in mononucleotide repeat sequences within the transforming growth factor-beta receptor II (RII), insulin-like growth factor II receptor (IGFIIR), and BAX genes were observed in 83, 33, and 25 per cent, respectively, of RER+ tumours. Only 1/12 (8 per cent) RER+ tumours contained a p53 gene mutation compared with 29/109 (27 per cent) RER- tumours. RER+ gastric carcinomas therefore share several important features with RER+ colonic tumours, including less frequent nodal invasion, improved prognosis, a similar frequency of mutation in growth control genes containing repetitive nucleotide sequences, and a low frequency of mutation of the p53 tumour suppressor gene. PMID:10398102

  2. The Reelin receptors ApoER2 and VLDLR are direct target genes of HIC1 (Hypermethylated In Cancer 1).

    PubMed

    Dubuissez, Marion; Faiderbe, Perrine; Pinte, Sébastien; Dehennaut, Vanessa; Rood, Brian R; Leprince, Dominique

    2013-10-25

    The tumor suppressor gene HIC1 (Hypermethylated In Cancer 1) is located in 17p13.3 a region frequently hypermethylated or deleted in tumors and in a contiguous-gene syndrome, the Miller-Dieker syndrome which includes classical lissencephaly (smooth brain) and severe developmental defects. HIC1 encodes a transcriptional repressor involved in the regulation of growth control, DNA damage response and cell migration properties. We previously demonstrated that the membrane-associated G-protein-coupled receptors CXCR7, ADRB2 and the tyrosine kinase receptor EphA2 are direct target genes of HIC1. Here we show that ectopic expression of HIC1 in U2OS and MDA-MB-231 cell lines decreases expression of the ApoER2 and VLDLR genes, encoding two canonical tyrosine kinase receptors for Reelin. Conversely, knock-down of endogenous HIC1 in BJ-Tert normal human fibroblasts through RNA interference results in the up-regulation of these two Reelin receptors. Finally, through chromatin immunoprecipitation (ChIP) in BJ-Tert fibroblasts, we demonstrate that HIC1 is a direct transcriptional repressor of ApoER2 and VLDLR. These data provide evidence that HIC1 is a new regulator of the Reelin pathway which is essential for the proper migration of neuronal precursors during the normal development of the cerebral cortex, of Purkinje cells in the cerebellum and of mammary epithelial cells. Deregulation of this pathway through HIC1 inactivation or deletion may contribute to its role in tumor promotion. Moreover, HIC1, through the direct transcriptional repression of ATOH1 and the Reelin receptors ApoER2 and VLDLR, could play an essential role in normal cerebellar development. PMID:24076391

  3. PET/CT imaging of human somatostatin receptor 2 (hsstr2) as reporter gene for gene therapy

    NASA Astrophysics Data System (ADS)

    Hofmann, M.; Gazdhar, A.; Weitzel, T.; Schmid, R.; Krause, T.

    2006-12-01

    Localized information on region-selective gene expression in small animals is widely obtained by use of reporter genes inducing light emission. Using these reporter genes for imaging deep inside the human body fluorescent probes are hindered by attenuation, scattering and possible fluorescence quenching. This can be overcome by use of radio-peptide receptors as reporter genes. Therefore, the feasibility of the somatostatin receptor 2 expression vector system for expression imaging was checked against a control vector containing luciferase gene. For in vivo transduction of vector DNA into the rat forelimb muscles the in vivo electroporation technique was chosen because of its high regio-selectivity. The gene expression was imaged by high-sensitive CCD camera (luciferase activity) and by PET/CT using a Ga-68-DOTATOC as radio peptide probe. The relative sstr2 expression was enhanced by gene transduction at maximum to a factor of 15. The PET/CT images could be fully quantified. The above demonstrated feasibility of radio-peptide PET/CT reporter gene imaging may serve in the future as a tool for full quantitative understanding of regional gene expression, especially in large animals and humans.

  4. Structure and linkage of the D2 dopamine receptor and neural cell adhesion molecule genes on human chromosome 11q23

    SciTech Connect

    Eubanks, J.H.; Djabali, M.; Selleri, L.; McElligott, D.L.; Evans, G.A. ); Grandy, D.K.; Civelli, O. )

    1992-12-01

    The gene encoding the D2 dopamine receptor (DRD2) is located on human chromosome 11q23 and has been circumstantially associated with a number of human disorders including Parkinson's disease, schizophrenia, and susceptibility to alcoholism. To determine the physical structure of the DRD2 gene, the authors utilized cosmid cloning, isolation of yeast artificial chromosomes (YACs), and pulsed-field gel electrophoresis to construct a long-range physical map of human chromosome 11q23 linking the genes for the DRD2 and neural cell adhesion molecule (NCAM). The D2 dopamine receptor gene extends over 270 kb and includes an intron of approximately 250 kb separating the putative first exon from the exons encoding the receptor protein. The resulting physical map spans more than 1.5 mb of chromosome band 11q23 and links the DRD2 gene with the gene encoding the NCAM located 150 kb 3[prime] of the DRD2 gene and transcribed from the same DNA strand. They additionally located the sites of at least four hypomethylated HTF islands within the physical map, which potentially indicate the sites of additional genes. High-resolution fluorescent in situ suppression hybridization using cosmid and YAC clones localized this gene cluster between the ApoAI and STMY loci at the interface of bands 11q22.3 and 11q23.1. 40 refs., 6 figs., 2 tabs.

  5. A multiexon deletion in the human low density lipoprotein receptor gene causes familial hypercholesterolemia

    SciTech Connect

    Mandel`shtam, M.Yu.; Lipovetskii, B.M.; Shvartsman, A.L.; Gaitskhoki, V.S.

    1995-02-01

    Familial hypercholesterolemia (FH) is a widespread human disease. FH is caused by a disturbance in the catabolism of low density lipoproteins (LDL), which results from mutations in the LDL receptor gene (LDLR). The majority of mutations in the LDLR locus is represented by large-scale reorganizations in the above gene. In this study, we describe a novel 5 kb deletion, which eliminates exons 4 to 6 in the LDLR gene. 16 refs., 2 figs., 1 tab.

  6. Transforming growth factor-? receptor 2 gene polymorphisms are associated with end-stage renal disease

    PubMed Central

    Ki, Hye-Jin; Kim, Se Yun; Lee, Sang Ho; Moon, Ju-Young; Jeong, Kyung Hwan; Lee, Tae Won; Ihm, Chun Gyoo; Kim, Su Kang; Chung, Joo-Ho; Kang, Sun Woo; Kim, Tae Hee; Kim, Yeong-Hoon; Kim, Yang Gyun

    2015-01-01

    Background Transforming growth factor-beta (TGF-?) is a multifunctional cytokine involved in immune disorders, cancer, asthma, lung fibrosis, and chronic kidney disease, and its signal pathways are considered crucial mediators of a variety of cellular processes. In addition, several recent studies have reported that TGF-? receptor (TGF-?R) gene polymorphism is associated with chronic kidney disease. However, the association between end-stage renal disease (ESRD) and the TGF-? gene polymorphism has not been sufficiently investigated. In this study, we hypothesized that polymorphisms of the TGF-? ligands or their receptors may be related to ESRD. Methods We assessed the relationship between four single-nucleotide polymorphisms (SNPs) in the TGF-?R2 and TGF-?2 genes and ESRD, in 312 patients with ESRD and 258 controls. Results Compared with the control participants, the frequencies of the TGF-?R2 (rs764522?C) and TGF-?R2 (rs3087465?G) alleles were significantly higher in the patients with ESRD. Genotyping analysis demonstrated that two SNPs in TGF-?R2 of the four SNPs included in the study were significantly associated with ESRD in the codominant 1 [rs764522, odds ratio (OR)=1.65; rs3087465, OR=1.63], dominant (rs764522, OR=1.63; rs3087465, OR=1.57), and log-additive (rs764522, OR=1.54; rs3087465, OR=1.39) models after adjusting for age and sex. Conclusion We suggest that TGF-?R2 polymorphisms (rs764522 and rs3087465) increase the risk of development of ESRD. PMID:26484028

  7. Selection in the dopamine receptor 2 gene: a candidate SNP study

    PubMed Central

    Fieder, Martin

    2015-01-01

    Dopamine is a major neurotransmitter in the human brain and is associated with various diseases. Schizophrenia, for example, is treated by blocking the dopamine receptors type 2. Shaner, Miller & Mintz (2004) stated that schizophrenia was the low fitness variant of a highly variable mental trait. We therefore explore whether the dopamine receptor 2 gene (DRD2) underwent any selection processes. We acquired genotype data of the 1,000 Genomes project (phase I), which contains 1,093 individuals from 14 populations. We included single nucleotide polymorphisms (SNPs) with two minor allele frequencies (MAFs) in the analysis: MAF over 0.05 and over 0.01. This is equivalent to 151 SNPs (MAF > 0.05) and 246 SNPs (MAF > 0.01) for DRD2. We used two different approaches (an outlier approach and a Bayesian approach) to detect loci under selection. The combined results of both approaches yielded nine (MAF > 0.05) and two candidate SNPs (MAF > 0.01), under balancing selection. We also found weak signs for directional selection on DRD2, but in our opinion these were too weak to draw any final conclusions on directional selection in DRD2. All candidates for balancing selection are in the intronic region of the gene and only one (rs12574471) has been mentioned in the literature. Two of our candidate SNPs are located in specific regions of the gene: rs80215768 lies within a promoter flanking region and rs74751335 lies within a transcription factor binding site. We strongly encourage research on our candidate SNPs and their possible effects. PMID:26290802

  8. Analysis of penetrance and expressivity during ontogenesis supports a stochastic choice of zebrafish odorant receptors from predetermined groups of receptor genes.

    PubMed

    Argo, Silke; Weth, Franco; Korsching, Sigrun I

    2003-02-01

    Olfactory receptor neurons select a single odourant receptor gene for expression out of a large gene family. The mechanisms of this extreme selectivity are largely unknown. We have determined in detail the developmental expression dynamics of a representative subset of the zebrafish odourant receptor repertoire, using in situ hybridization analysis. We have thus generated a dataset, which allows us to test hypotheses of odourant receptor gene regulation. The receptors chosen belong to four different groups with respect to ontogenetic onset of expression (onset groups). Statistical analysis of the data supports a model in which the final choice of an individual odourant receptor gene occurs stochastically from within a group of genes sharing a deterministically defined onset of expression. Genomic mapping revealed a pronounced correlation of onset of expression with genomic neighbourhood. During a protracted juvenile developmental period individual regulatory influences seem to modify the expression of odourant receptor genes, a notable example being a transient decrease in expressivity of two odourant receptor genes. PMID:12603273

  9. Role of peroxisome proliferator-activated receptors gene polymorphisms in type 2 diabetes and metabolic syndrome

    PubMed Central

    Dong, Chen; Zhou, Hui; Shen, Chong; Yu, Lu-Gang; Ding, Yi; Zhang, Yong-Hong; Guo, Zhi-Rong

    2015-01-01

    Metabolic syndrome (MetS) and type 2 diabetes mellitus (T2DM) are the serious public health problems worldwide. Moreover, it is estimated that MetS patients have about five-fold greater risk of the T2DM development compared with people without the syndrome. Peroxisome proliferator-activated receptors are a subgroup of the nuclear hormone receptor superfamily of ligand-activated transcription factors which play an important role in the pathogenesis of MetS and T2DM. All three members of the peroxisome proliferator-activated receptor (PPAR) nuclear receptor subfamily, PPAR?, PPAR?/? and PPAR? are critical in regulating insulin sensitivity, adipogenesis, lipid metabolism, and blood pressure. Recently, more and more studies indicated that the gene polymorphism of PPARs, such as Leu162Val and Val227Ala of PPAR?, +294T > C of PPAR?/?, Pro12Ala and C1431T of PPAR?, are significantly associated with the onset and progressing of MetS and T2DM in different population worldwide. Furthermore, a large body of evidence demonstrated that the glucose metabolism and lipid metabolism were influenced by gene-gene interaction among PPARs genes. However, given the complexity pathogenesis of metabolic disease, it is unlikely that genetic variation of a single locus would provide an adequate explanation of inter-individual differences which results in diverse clinical syndromes. Thus, gene-gene interactions and gene-environment interactions associated with T2DM and MetS need future comprehensive studies. PMID:25987964

  10. Genetic mapping of the beta 1 GABA receptor gene to human chromosome 4, using a tetranucleotide repeat polymorphism.

    PubMed Central

    Dean, M; Lucas-Derse, S; Bolos, A; O'Brien, S J; Kirkness, E F; Fraser, C M; Goldman, D

    1991-01-01

    As more coding loci for functional human genes are described, there is a growing need to identify DNA polymorphisms in specific genes. By examining DNA sequences within the introns of the beta 1 subunit of the gamma-aminobutyric acid receptor gene, GABARB1, we found a tetranucleotide repeat sequence (GATA). Amplification of this region by using PCR revealed seven alleles and a high degree of polymorphism (PIC = .75) in human populations. DNAs from the CEPH families were typed for the GABARB1 intron polymorphism and were analyzed with respect to 20 linked markers on chromosome 4. The results permit placement of GABARB1 on the linkage map of chromosome 4, between D4S104 and ALB. These results affirm that sequence analysis of noncoding segments included within or adjacent to functional genes has value as a strategy to detect highly informative polymorphisms. Images Figure 2 PMID:1652891

  11. Two genetic loci participate in the regulation by iron of the gene for the human transferrin receptor.

    PubMed Central

    Casey, J L; Di Jeso, B; Rao, K; Klausner, R D; Harford, J B

    1988-01-01

    Iron regulation of the human transferrin receptor gene was examined in murine cells transformed with chimeric constructs containing the human transferrin receptor gene's promoter and either the structural gene for bacterial chloramphenicol acetyltransferase or the human transferrin receptor cDNA. The activity of the transferrin receptor gene's promoter with the heterologous indicator gene was found to be approximately equal to 3-fold higher in cells treated with the iron chelator desferrioxamine than in cells treated with the iron source, hemin. A higher degree of iron regulation was seen in the expression of the human transferrin receptor cDNA driven by its own promoter. The receptor cDNA under the control of the simian virus 40 early promoter was also iron-regulated. Several human transferrin receptor transcripts differing in their 3' end were produced in the murine cells regardless of the promoter used, with the shorter transcripts being relatively unregulated by iron. Deletion of cDNA corresponding to most of the 3' untranslated portion of the mRNA for the receptor ablated the iron regulation. We conclude that at least two genetic elements exist for the regulation of the transferrin receptor gene by iron. One has its locus in the DNA upstream of the transferrin receptor gene's transcription start site, and the other is dependent upon the integrity of the sequences in the 3' end of the gene. Images PMID:3162307

  12. Elevated gene expression of glutamate receptors in noradrenergic neurons from the locus coeruleus in major depression.

    PubMed

    Chandley, Michelle J; Szebeni, Attila; Szebeni, Katalin; Crawford, Jessica D; Stockmeier, Craig A; Turecki, Gustavo; Kostrzewa, Richard M; Ordway, Gregory A

    2014-10-01

    Glutamate receptors are promising drug targets for the treatment of urgent suicide ideation and chronic major depressive disorder (MDD) that may lead to suicide completion. Antagonists of glutamatergic NMDA receptors reduce depressive symptoms faster than traditional antidepressants, with beneficial effects occurring within hours. Glutamate is the prominent excitatory input to the noradrenergic locus coeruleus (LC). The LC is activated by stress in part through this glutamatergic input. Evidence has accrued demonstrating that the LC may be overactive in MDD, while treatment with traditional antidepressants reduces LC activity. Pathological alterations of both glutamatergic and noradrenergic systems have been observed in depressive disorders, raising the prospect that disrupted glutamate-norepinephrine interactions may be a central component to depression and suicide pathobiology. This study examined the gene expression levels of glutamate receptors in post-mortem noradrenergic LC neurons from subjects with MDD (most died by suicide) and matched psychiatrically normal controls. Gene expression levels of glutamate receptors or receptor subunits were measured in LC neurons collected by laser capture microdissection. MDD subjects exhibited significantly higher expression levels of the NMDA receptor subunit genes, GRIN2B and GRIN2C, and the metabotropic receptor genes, GRM4 and GRM5, in LC neurons. Gene expression levels of these receptors in pyramidal neurons from prefrontal cortex (BA10) did not reveal abnormalities in MDD. These findings implicate disrupted glutamatergic-noradrenergic interactions at the level of the stress-sensitive LC in MDD and suicide, and provide a theoretical mechanism by which glutamate antagonists may exert rapid antidepressant effects. PMID:24925192

  13. NR4A nuclear receptors mediate carnitine palmitoyltransferase 1A gene expression by the rexinoid HX600

    SciTech Connect

    Ishizawa, Michiyasu; Kagechika, Hiroyuki; Makishima, Makoto

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer The function of RXR heterodimers with NR4 receptors remains unknown. Black-Right-Pointing-Pointer The RXR ligand HX600 induces expression of carnitine palmitoyltransferase 1A (CPT1A). Black-Right-Pointing-Pointer HX600-induced CPT1A expression is mediated by the NR4 receptors, Nur77 and NURR1. Black-Right-Pointing-Pointer CPT1A induction by HX600 is not mediated by de novo protein synthesis. Black-Right-Pointing-Pointer CPT1A could be a target of the Nur77-RXR and NURR1-RXR heterodimers. -- Abstract: Retinoid X receptors (RXRs) are members of the nuclear receptor superfamily and can be activated by 9-cis retinoic acid (9CRA). RXRs form homodimers and heterodimers with other nuclear receptors such as the retinoic acid receptor and NR4 subfamily nuclear receptors, Nur77 and NURR1. Potential physiological roles of the Nur77-RXR and NURR1-RXR heterodimers have not been elucidated. In this study, we identified a gene regulated by these heterodimers utilizing HX600, a selective RXR agonist for Nur77-RXR and NURR1-RXR. While 9CRA induced many genes, including RAR-target genes, HX600 effectively induced only carnitine palmitoyltransferase 1A (CPT1A) in human teratocarcinoma NT2/D1 cells, which express RXR{alpha}, Nur77 and NURR1. HX600 also increased CPT1A expression in human embryonic kidney (HEK) 293 cells and hepatocyte-derived HepG2 cells. Although HX600 induced CPT1A less effectively than 9CRA, overexpression of Nur77 or NURR1 increased the HX600 response to levels similar to 9CRA in NT2/D1 and HEK293 cells. A dominant-negative form of Nur77 or NURR1 repressed the induction of CPT1A by HX600. A protein synthesis inhibitor did not alter HX600-dependent CPT1A induction. Thus, the rexinoid HX600 directly induces expression of CPT1A through a Nur77 or NURR1-mediated mechanism. CPT1A, a gene involved in fatty acid {beta}-oxidation, could be a target of RXR-NR4 receptor heterodimers.

  14. Zinc finger transcription factor Slug is a novel target gene of aryl hydrocarbon receptor

    SciTech Connect

    Ikuta, Togo; Kawajiri, Kaname . E-mail: kawajiri@cancer-c.pref.saitama.jp

    2006-11-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor. We previously showed that AhR localizes predominantly in the cytoplasm under high cell densities of a keratinocytes cell line, HaCaT, but accumulates in the nucleus at low cell densities. In the current report, we show that the Slug, which is a member of the snail/slug family of zinc finger transcriptional repressors critical for induction of epithelial-mesenchymal transitions (EMT), is activated transcriptionally in accordance with nuclear accumulation of AhR. By reporter assay of the promoter of the Slug gene, gel shift and chromatin immunoprecipitation analyses showed AhR directly binds to xenobiotic responsive element 5 at - 0.7 kb of the gene. AhR-targeted gene silencing by small interfering RNA duplexes led to the abolishment of not only CYP1A1 but also Slug induction by 3-methycholanthrene. The Slug was co-localized to the AhR at the wound margins of HaCaT cells, where apparent nuclear distribution of AhR and Slug was observed. The induced Slug was associated with reduction of an epithelial marker of cytokeratin-18 and with an increase in the mesenchymal marker, fibronectin. Taken together, these findings suggest that AhR participated in Slug induction, which, in turn, regulates cellular physiology including cell adhesion and migration.

  15. Genetic polymorphism of estrogen receptor alpha gene in Egyptian women with type II diabetes mellitus

    PubMed Central

    Motawi, Tarek M.K.; El-Rehany, Mahmoud A.; Rizk, Sherine M.; Ramzy, Maggie M.; el-Roby, Doaa M.

    2015-01-01

    Estrogen might play an important role in type 2 diabetes mellitus pathogenesis. A number of polymorphisms have been reported in the estrogen receptor alpha gene including the XbaI and PvuII restriction enzyme polymorphisms. The aim of this study was to determine if ESR? gene polymorphisms are associated with type 2 diabetes mellitus and correlated with lipid profile. Ninety diabetic Egyptian patients were compared with forty healthy controls. ESR? genotyping of PvuII and XbaI was performed using restriction fragment length polymorphism analysis. Our study showed that there is more significant difference in the frequency of C and G polymorphic allele between patients and control groups in PvuII and XbaI respectively. Also carriers of minor C and G alleles of PvuII and XbaI gene polymorphisms were associated with increased fasting blood glucose and disturbance in lipid profile as there is an increase in total cholesterol, triglycerides and Low density lipoprotein. So findings of present study suggest the possibility that PvuII and XbaI polymorphisms in ER? are related to T2DM and with increased serum lipids among Egyptian population. PMID:26401488

  16. Dopamine D4 Receptor Gene Associated with Fairness Preference in Ultimatum Game

    PubMed Central

    Zhong, Songfa; Israel, Salomon; Shalev, Idan; Xue, Hong; Ebstein, Richard P.; Chew, Soo Hong

    2010-01-01

    In experimental economics, the preference for reciprocal fairness has been observed in the controlled and incentivized laboratory setting of the ultimatum game, in which two individuals decide on how to divide a sum of money, with one proposing the share while the second deciding whether to accept. Should the proposal be accepted, the amount is divided accordingly. Otherwise, both would receive no money. A recent twin study has shown that fairness preference inferred from responder behavior is heritable, yet its neurogenetic basis remains unknown. The D4 receptor (DRD4) exon3 is a well-characterized functional polymorphism, which is known to be associated with attention deficit hyperactivity disorder and personality traits including novelty seeking and self-report altruism. Applying a neurogenetic approach, we find that DRD4 is significantly associated with fairness preference. Additionally, the interaction among this gene, season of birth, and gender is highly significant. This is the first result to link preference for reciprocal fairness to a specific gene and suggests that gene × environment interactions contribute to economic decision making. PMID:21072167

  17. Genetic polymorphism of estrogen receptor alpha gene in Egyptian women with type II diabetes mellitus.

    PubMed

    Motawi, Tarek M K; El-Rehany, Mahmoud A; Rizk, Sherine M; Ramzy, Maggie M; El-Roby, Doaa M

    2015-12-01

    Estrogen might play an important role in type 2 diabetes mellitus pathogenesis. A number of polymorphisms have been reported in the estrogen receptor alpha gene including the XbaI and PvuII restriction enzyme polymorphisms. The aim of this study was to determine if ESR? gene polymorphisms are associated with type 2 diabetes mellitus and correlated with lipid profile. Ninety diabetic Egyptian patients were compared with forty healthy controls. ESR? genotyping of PvuII and XbaI was performed using restriction fragment length polymorphism analysis. Our study showed that there is more significant difference in the frequency of C and G polymorphic allele between patients and control groups in PvuII and XbaI respectively. Also carriers of minor C and G alleles of PvuII and XbaI gene polymorphisms were associated with increased fasting blood glucose and disturbance in lipid profile as there is an increase in total cholesterol, triglycerides and Low density lipoprotein. So findings of present study suggest the possibility that PvuII and XbaI polymorphisms in ER? are related to T2DM and with increased serum lipids among Egyptian population. PMID:26401488

  18. Androgen receptor repression of GnRH gene transcription.

    PubMed

    Brayman, Melissa J; Pepa, Patricia A; Berdy, Sara E; Mellon, Pamela L

    2012-01-01

    Alterations in androgen levels lead to reproductive defects in both males and females, including hypogonadotropic hypogonadism, anovulation, and infertility. Androgens have been shown to down-regulate GnRH mRNA levels through an androgen receptor (AR)-dependent mechanism. Here, we investigate how androgen regulates expression from the GnRH regulatory region in the GT1-7 cell line, a model of GnRH neurons. A synthetic androgen, R1881, repressed transcription from the GnRH promoter (GnRH-P) in an AR-dependent manner, and liganded AR associated with the chromatin at the GnRH-P in live GT1-7 cells. The three known octamer-binding transcription factor-1 (Oct-1) binding sites in GnRH-P were required for AR-mediated repression, although other sequences were also involved. Although a multimer of the consensus Oct-1 binding site was not repressed, a multimer of the cluster of Oct-1, Pre-B cell leukemia transcription factor (Pbx)/Prep, and NK2 homeobox 1 (Nkx2.1) binding sites, found at -106/-91 in GnRH-P, was sufficient for repression. In fact, overexpression of any of these factors disrupted the androgen response, indicating that a balance of factors in this tripartite complex is required for AR repression. AR bound to this region in EMSA, indicating a direct interaction of AR with DNA or with other transcription factors bound to GnRH-P at this sequence. Collectively, our data demonstrate that GnRH transcription is repressed by AR via multiple sequences in GnRH-P, including three Oct-1 binding sites, and that this repression requires the complex interaction of several transcription factors. PMID:22074952

  19. Massive Losses of Taste Receptor Genes in Toothed and Baleen Whales

    PubMed Central

    Feng, Ping; Zheng, Jinsong; Rossiter, Stephen J.; Wang, Ding; Zhao, Huabin

    2014-01-01

    Taste receptor genes are functionally important in animals, with a surprising exception in the bottlenose dolphin, which shows extensive losses of sweet, umami, and bitter taste receptor genes. To examine the generality of taste gene loss, we examined seven toothed whales and five baleen whales and sequenced the complete repertoire of three sweet/umami (T1Rs) and ten bitter (T2Rs) taste receptor genes. We found all amplified T1Rs and T2Rs to be pseudogenes in all 12 whales, with a shared premature stop codon in 10 of the 13 genes, which demonstrated massive losses of taste receptor genes in the common ancestor of whales. Furthermore, we analyzed three genome sequences from two toothed whales and one baleen whale and found that the sour taste marker gene Pkd2l1 is a pseudogene, whereas the candidate salty taste receptor genes are intact and putatively functional. Additionally, we examined three genes that are responsible for taste signal transduction and found the relaxation of functional constraints on taste signaling pathways along the ancestral branch leading to whales. Together, our results strongly suggest extensive losses of sweet, umami, bitter, and sour tastes in whales, and the relaxation of taste function most likely arose in the common ancestor of whales between 36 and 53 Ma. Therefore, whales represent the first animal group to lack four of five primary tastes, probably driven by the marine environment with high concentration of sodium, the feeding behavior of swallowing prey whole, and the dietary switch from plants to meat in the whale ancestor. PMID:24803572

  20. Varenicline for Smoking Cessation: Nausea Severity and Variation in Nicotinic Receptor Genes

    PubMed Central

    Swan, Gary E.; Javitz, Harold S.; Jack, Lisa M.; Wessel, Jennifer; Michel, Martha; Hinds, David A.; Stokowksi, Renee P.; McClure, Jennifer B.; Catz, Sheryl L.; Richards, Julie; Zbikowski, Susan M.; Deprey, Mona; McAfee, Tim; Conti, David V.; Bergen, Andrew W.

    2012-01-01

    This study evaluated association between common and rare sequence variants in 10 nicotinic acetylcholine receptor subunit genes and the severity of nausea 21 days after initiating the standard, FDA-approved varenicline regimen for smoking cessation. Included in the analysis were 397 participants from a randomized clinical effectiveness trial with complete clinical and DNA resequencing data (mean age = 49.2 years; 68.0% female). Evidence for significant association between common sequence variants in CHRNB2 and nausea severity was obtained after adjusting for age, gender, and correlated tests (all PACT<.05). Individuals with the minor allele of CHRNB2 variants experienced less nausea than did those without the minor allele, consistent with previously reported findings for CHRNB2 and the occurrence of nausea and dizziness as a consequence of first smoking attempt in adolescents, and with the known neurophysiology of nausea. As nausea is the most common reason for discontinuance of varenicline, further pharmacogenetic investigations are warranted. PMID:21606948

  1. The HLA class I gene family includes at least six genes and twelve pseudogenes and gene fragments

    SciTech Connect

    Geraghty, D.E. ); Koller, B.H.; Orr, H.T. ); Hansen, J.A. )

    1992-09-15

    The authors report the characterization of eight HLA class I homologous sequences isolated from cosmid and lambda libraries made from lymphoblastoid cell line 721 DNA. Four of these sequences, each contained within HindIII fragments of 1.7, 2.1, 3.0, and 8.0 kb, have class I homology extending over short intron-exon regions. The remaining four are found within 7.5-, 8.0-, 9.0-, and 16.0-kb HindIII fragments, the first having homology to the 5[prime] half of a class I gene whereas the latter three are homologous to the 3[prime] portion of a class I gene. When combined with the characterization of other class I clones, this work brings the total number of HLA class I homologous sequences cloned and characterized to 18. Restriction mapping of cosmid clones showed that some of these sequences are linked to one another and to other class I pseudogenes and genes within 50-kb regions. Reconstruction experiments using the 18 class I genes and pseudogenes were performed that indicated that all of the members of the HLA class I gene family detectable using HLA-A2 genomic DNA as probe had been cloned. An additional 19th member of the class I gene family was identified using an HLA-E cDNA probe. Further Southern analysis with other class I probes indicated the 19 sequences comprise the entire class I gene family in LCL 721. Locus-specific probes were isolated from five of the eight clones and were used in Southern analysis of diverse genomic DNA to examine the polymorphism of the pseudogene sequences, demonstrating that some of them were highly polymorphic and some were missing entirely in certain haplotypes. An additional class I sequence, not contained within the 721 genome, was identified and may be found in association with the HLA-A11-Bw60 haplotype. Sequence comparisons were carried out to examine the evolutionary relationships among the pseudogenes. Hypothetical events in the evolution of the class I region are discussed. 59 refs., 8 figs., 4 tabs.

  2. Non-Synonymous Single Nucleotide Polymorphisms in the P2X Receptor Genes: Association with Diseases, Impact on Receptor Functions and Potential Use as Diagnosis Biomarkers

    PubMed Central

    Caseley, Emily A.; Muench, Stephen P.; Roger, Sebastien; Mao, Hong-Ju; Baldwin, Stephen A.; Jiang, Lin-Hua

    2014-01-01

    P2X receptors are Ca2+-permeable cationic channels in the cell membranes, where they play an important role in mediating a diversity of physiological and pathophysiological functions of extracellular ATP. Mammalian cells express seven P2X receptor genes. Single nucleotide polymorphisms (SNPs) are widespread in the P2RX genes encoding the human P2X receptors, particularly the human P2X7 receptor. This article will provide an overview of the non-synonymous SNPs (NS-SNPs) that have been associated with or implicated in altering the susceptibility to pathologies or disease conditions, and discuss the consequences of the mutations resulting from such NS-SNPs on the receptor functions. Disease-associated NS-SNPs in the P2RX genes have been valuable in understanding the disease etiology and the receptor function, and are promising as biomarkers to be used for the diagnosis and development of stratified therapeutics. PMID:25079442

  3. Serine 350 of human pregnane X receptor is crucial for its heterodimerization with retinoid X receptor alpha and transactivation of target genes in vitro and in vivo.

    PubMed

    Wang, Yue-Ming; Chai, Sergio C; Lin, Wenwei; Chai, Xiaojuan; Elias, Ayesha; Wu, Jing; Ong, Su Sien; Pondugula, Satyanarayana R; Beard, Jordan A; Schuetz, Erin G; Zeng, Su; Xie, Wen; Chen, Taosheng

    2015-08-15

    The human pregnane X receptor (hPXR), a member of the nuclear receptor superfamily, senses xenobiotics and controls the transcription of genes encoding drug-metabolizing enzymes and transporters. The regulation of hPXR's transcriptional activation of its target genes is important for xenobiotic detoxification and endobiotic metabolism, and hPXR dysregulation can cause various adverse drug effects. Studies have implicated the putative phosphorylation site serine 350 (Ser(350)) in regulating hPXR transcriptional activity, but the mechanism of regulation remains elusive. Here we investigated the transactivation of hPXR target genes in vitro and in vivo by hPXR with a phosphomimetic mutation at Ser(350) (hPXR(S350D)). The S350D phosphomimetic mutation reduced the endogenous expression of cytochrome P450 3A4 (an hPXR target gene) in HepG2 and LS180 cells. Biochemical assays and structural modeling revealed that Ser(350) of hPXR is crucial for formation of the hPXR-retinoid X receptor alpha (RXR?) heterodimer. The S350D mutation abrogated heterodimerization in a ligand-independent manner, impairing hPXR-mediated transactivation. Further, in a novel humanized transgenic mouse model expressing the hPXR(S350D) transgene, we demonstrated that the S350D mutation alone is sufficient to impair hPXR transcriptional activity in mouse liver. This transgenic mouse model provides a unique tool to investigate the regulation and function of hPXR, including its non-genomic function, in vivo. Our finding that phosphorylation regulates hPXR activity has implications for development of novel hPXR antagonists and for safety evaluation during drug development. PMID:26119819

  4. Comparative genomic analysis reveals independent expansion of a lineage-specific gene family in vertebrates: The class II cytokine receptors and their ligands in mammals and fish

    PubMed Central

    Lutfalla, Georges; Crollius, Hugues Roest; Stange-thomann, Nicole; Jaillon, Olivier; Mogensen, Knud; Monneron, Daničle

    2003-01-01

    Background The high degree of sequence conservation between coding regions in fish and mammals can be exploited to identify genes in mammalian genomes by comparison with the sequence of similar genes in fish. Conversely, experimentally characterized mammalian genes may be used to annotate fish genomes. However, gene families that escape this principle include the rapidly diverging cytokines that regulate the immune system, and their receptors. A classic example is the class II helical cytokines (HCII) including type I, type II and lambda interferons, IL10 related cytokines (IL10, IL19, IL20, IL22, IL24 and IL26) and their receptors (HCRII). Despite the report of a near complete pufferfish (Takifugu rubripes) genome sequence, these genes remain undescribed in fish. Results We have used an original strategy based both on conserved amino acid sequence and gene structure to identify HCII and HCRII in the genome of another pufferfish, Tetraodon nigroviridis that is amenable to laboratory experiments. The 15 genes that were identified are highly divergent and include a single interferon molecule, three IL10 related cytokines and their potential receptors together with two Tissue Factor (TF). Some of these genes form tandem clusters on the Tetraodon genome. Their expression pattern was determined in different tissues. Most importantly, Tetraodon interferon was identified and we show that the recombinant protein can induce antiviral MX gene expression in Tetraodon primary kidney cells. Similar results were obtained in Zebrafish which has 7 MX genes. Conclusion We propose a scheme for the evolution of HCII and their receptors during the radiation of bony vertebrates and suggest that the diversification that played an important role in the fine-tuning of the ancestral mechanism for host defense against infections probably followed different pathways in amniotes and fish. PMID:12869211

  5. Identification of Gene Markers for Activation of the Nuclear Receptor Pregnane X Receptor

    EPA Science Inventory

    Many environmentally-relevant chemicals and drugs activate the nuclear receptor pregnane X receptor (PXR). Activation of PXR in the mouse liver can lead to increases in liver weight in part through increased hepatocyte replication similar to chemicals that activate other nuclear ...

  6. Association of Killer Cell Immunoglobulin-Like Receptor Genes with Hodgkin's Lymphoma in a Familial Study

    PubMed Central

    Williams, Fionnuala; Orsi, Laurent; Amiel, Corinne; Lependeven, Catherine; Antoni, Guillemette; Hermine, Olivier; Brice, Pauline; Ferme, Christophe; Carde, Patrice; Canioni, Danielle; Bričre, Josette; Raphael, Martine; Nicolas, Jean-Claude; Clavel, Jacqueline; Middleton, Derek; Vivier, Eric; Abel, Laurent

    2007-01-01

    Background Epstein-Barr virus (EBV) is the major environmental factor associated with Hodgkin's lymphoma (HL), a common lymphoma in young adults. Natural killer (NK) cells are key actors of the innate immune response against viruses. The regulation of NK cell function involves activating and inhibitory Killer cell Immunoglobulin-like receptors (KIRs), which are expressed in variable numbers on NK cells. Various viral and virus-related malignant disorders have been associated with the presence/absence of certain KIR genes in case/control studies. We investigated the role of the KIR cluster in HL in a family-based association study. Methodology We included 90 families with 90 HL index cases (age 16–35 years) and 255 first-degree relatives (parents and siblings). We developed a procedure for reconstructing full genotypic information (number of gene copies) at each KIR locus from the standard KIR gene content. Out of the 90 collected families, 84 were informative and suitable for further analysis. An association study was then carried out with specific family-based analysis methods on these 84 families. Principal Findings Five KIR genes in strong linkage disequilibrium were found significantly associated with HL. Refined haplotype analysis showed that the association was supported by a dominant protective effect of KIR3DS1 and/or KIR2DS1, both of which are activating receptors. The odds ratios for developing HL in subjects with at least one copy of KIR3DS1 or KIR2DS1 with respect to subjects with neither of these genes were 0.44[95% confidence interval 0.23–0.85] and 0.42[0.21–0.85], respectively. No significant association was found in a tentative replication case/control study of 68 HL cases (age 18–71 years). In the familial study, the protective effect of KIR3DS1/KIR2DS1 tended to be stronger in HL patients with detectable EBV in blood or tumour cells. Conclusions This work defines a template for family-based association studies based on full genotypic information for the KIR cluster, and provides the first evidence that activating KIRs can have a protective role in HL. PMID:17476328

  7. Cell proliferation and expression of the transferrin receptor gene: promoter sequence homologies and protein interactions

    PubMed Central

    1986-01-01

    A 365-bp fragment from the 5' region of the human transferrin receptor gene has been subcloned and sequenced. This fragment contains 115 bp of flanking sequence, the first exon, and a portion of the first intron. It contains a TATA box, several GC-rich regions, and is able to efficiently promote expression of the bacterial CAT gene in mouse 3T3 cells. Sequence comparisons demonstrate that this DNA segment has homology to the promoter regions of the human dihydrofolate reductase gene and the mouse interleukin 3 gene, as well as to a monkey DNA sequence that has homology to the SV40 origin and promotes expression of an unidentified gene product. Several high molecular mass proteins that interact with the transferrin receptor gene promoter have been identified. The activity of these proteins is transiently increased in 3T3 cells that have been stimulated by serum addition. This increase precedes a rise in transferrin receptor mRNA levels in the cytoplasm, which in turn precedes entry of the cells into S phase. DNase I footprinting of the transferrin receptor promoter reveals several protein binding sites. Two of the sites are within the conserved GC- rich region of the promoter. One of these binding sites probably interacts with Spl, while the second interacts with an uncharacterized protein. PMID:3491079

  8. Leptin and leptin receptor gene polymorphisms are correlated with production performance in the Arctic fox.

    PubMed

    Zhang, M; Bai, X J

    2015-01-01

    The polymerase chain reaction-single-strand conformation polymorphism technique was employed to measure mononucleotide diversity in the coding region of the leptin and leptin receptor genes in the Arctic fox. The relationships between specific genetic mutations and reproductive performance in Arctic foxes were determined to im-prove breeding strategies. We found that a leptin gene polymorphism was significantly associated with body weight (P < 0.01), abdominal circumference (P < 0.01), and fur length (P < 0.01). Furthermore, a polymorphism in the leptin receptor gene was associated with carcass weight and guard hair length (P < 0.01). Leptin and leptin receptor gene combinatorial genotypes were significantly associated with abdominal circumference, fur length (P < 0.01), and body weight (P < 0.05). The leptin gene is thus a key gene affecting body weight, abdominal circumference, and fur length in Arctic foxes, whereas variations in the leptin receptor mainly affect carcass weight and guard hair. The marker loci identified in this study can be used to assist in the selection of Arctic foxes for breeding to raise the production performance of this species. PMID:26125753

  9. Global footprints of purifying selection on Toll-like receptor genes primarily associated with response to bacterial infections in humans.

    PubMed

    Mukherjee, Souvik; Ganguli, Debdutta; Majumder, Partha P

    2014-03-01

    Toll-like receptors (TLRs) are directly involved in host-pathogen interactions. Polymorphisms in these genes are associated with susceptibility to infectious diseases. To understand the influence of environment and pathogen diversity on the evolution of TLR genes, we have undertaken a large-scale population-genetic study. Our study included two hunter-gatherer tribal populations and one urbanized nontribal population from India with distinct ethnicities (n = 266) and 14 populations inhabiting four different continents (n = 1,092). From the data on DNA sequences of cell-surface TLR genes, we observed an excess of rare variants and a large number of low frequency haplotypes in each gene. Nonsynonymous changes were few in every population and the commonly used statistical tests for detecting natural selection provided evidence of purifying selection. The evidence of purifying selection acting on the cell-surface TLRs of the innate immune system is not consistent with Haldane's theory of coevolution of immunity genes, at least of innate immunity genes, with pathogens. Our study provides evidence that genes of the cell-surface TLRs, that is, TLR2 and TLR4, have been so optimized to defend the host against microbial infections that new mutations in these genes are quickly eliminated. PMID:24554585

  10. Tuning properties of avian and frog bitter taste receptors dynamically fit gene repertoire sizes.

    PubMed

    Behrens, Maik; Korsching, Sigrun I; Meyerhof, Wolfgang

    2014-12-01

    Bitter taste perception in vertebrates relies on a variable number of bitter taste receptor (Tas2r) genes, ranging from only three functional genes in chicken to as many as approximately 50 in frogs. Humans possess a medium-sized Tas2r repertoire encoding three broadly and several narrowly tuned receptors plus receptors with intermediate tuning properties. Such tuning information is not available for bitter taste receptors of other vertebrate species. In particular it is not known, whether a small Tas2r repertoire may be compensated for by broad tuning of these receptors, and on the other side, whether a large repertoire might entail a preponderance of narrowly tuned receptors. To elucidate this question, we cloned all three chicken Tas2rs, the two turkey Tas2rs, three zebra finch Tas2rs, and six Tas2rs of the Western clawed frog representative of major branches of the phylogenetic tree, and screened them with 46 different bitter compounds. All chicken and turkey Tas2rs were broadly tuned, the zebra finch Tas2rs were narrowly tuned, and frog Tas2rs ranged from broadly to narrowly tuned receptors. We conclude that a low number of functional Tas2r genes does not imply a reduced importance of bitter taste per se, as it can be compensated by large tuning width. A high number of functional Tas2r genes appears to allow the evolution of specialized receptors, possibly for toxins with species-specific relevance. In sum, we show that variability in tuning breadth, overlapping agonist profiles, and staggered effective agonist concentration ranges are shared features of human and other vertebrate Tas2rs. PMID:25180257

  11. Association between vitamin D receptor gene polymorphisms and chronic periodontitis among Libyans

    PubMed Central

    El Jilani, Mouna M.; Mohamed, Abdenaser A.; Zeglam, Hamza Ben; Alhudiri, Inas M.; Ramadan, Ahmad M.; Saleh, Saleh S.; Elkabir, Mohamed; Amer, Ibrahim Ben; Ashammakhi, Nureddin; Enattah, Nabil S.

    2015-01-01

    Background Chronic periodontitis (CP) is a common oral disease characterized by inflammation in the supporting tissue of the teeth ‘the periodontium’, periodontal attachment loss, and alveolar bone loss. The disease has a microbial etiology; however, recent findings suggest that the genetic factors, such as vitamin D receptor (VDR) gene polymorphisms, have also been included. Aim Investigation of the relationship between VDR gene polymorphisms and CP among Libyans. Materials and methods In this study, we examined 196 unrelated Libyans between the ages of 25 and 65 years, including 99 patients and 97 controls. An oral examination based on Ramfjord Index was performed at different dental clinics in Tripoli and information were collected using a self-reported questionnaire. DNA was extracted from buccal swabs; the VDR ApaI, BsmI, and FokI polymorphisms were genotyped using polymerase chain reaction and were sequenced using Sanger Method. Results A significant difference in the newly detected ApaI SNP C/T rs#731236 was found (p=0.022), whereas no significant differences were found in ApaI SNP G/T rs#7975232, BsmI SNP A/G rs#1544410, and FokI SNP A/G rs#2228570 between patients and controls (p=0.939, 0.466, 0.239), respectively. Conclusion VDR ApaI SNP C/T rs#731236 may be related to the risk of CP in the Libyan population. PMID:25795245

  12. Research Resource: Gene Profiling of G Protein–Coupled Receptors in the Arcuate Nucleus of the Female

    PubMed Central

    Fang, Yuan; Zhang, Chunguang; Nestor, Casey C.; Mao, Peizhong; Kelly, Martin J.

    2014-01-01

    The hypothalamic arcuate nucleus controls many critical homeostatic functions including energy homeostasis, reproduction, and motivated behavior. Although G protein–coupled receptors (GPCRs) are involved in the regulation of these functions, relatively few of the GPCRs have been identified specifically within the arcuate nucleus. Here, using TaqMan low-density arrays we quantified the mRNA expression of nonolfactory GPCRs in mouse arcuate nucleus. An unprecedented number of GPCRs (total of 292) were found to be expressed, of which 183 were known and 109 were orphan GPCRs. The known GPCR genes expressed were classified into several functional clusters including hormone/neurotransmitter, growth factor, angiogenesis and vasoactivity, inflammation and immune system, and lipid messenger receptors. The plethora of orphan genes expressed in the arcuate nucleus were classified into 5 structure-related classes including class A (rhodopsin-like), class B (adhesion), class C (other GPCRs), nonsignaling 7-transmembrane chemokine-binding proteins, and other 7-transmembrane proteins. Therefore, for the first time, we provide a quantitative estimate of the numerous GPCRs expressed in the hypothalamic arcuate nucleus. Finally, as proof of principle, we documented the expression and function of one of these receptor genes, the glucagon-like peptide 1 receptor (Glp1r), which was highly expressed in the arcuate nucleus. Single-cell RT-PCR revealed that Glp1r mRNA was localized in proopiomelanocortin neurons, and using whole-cell recording we found that the glucagon-like peptide 1-selective agonist exendin-4 robustly excited proopiomelanocortin neurons. Thus, the quantitative GPCR data emphasize the complexity of the hypothalamic arcuate nucleus and furthermore provide a valuable resource for future neuroendocrine/endocrine-related experiments. PMID:24933249

  13. Molecular Characterization of the Aphis gossypii Olfactory Receptor Gene Families

    PubMed Central

    Walker, William B.; Li, Jianhong; Wang, Guirong

    2014-01-01

    The cotton aphid, Aphis gossypii Glover, is a polyphagous pest that inflicts great damage to cotton yields worldwide. Antennal olfaction, which is extremely important for insect survival, mediates key behaviors such as host preference, mate choice, and oviposition site selection. In insects, odor detection is mediated by odorant receptors (ORs) and ionotropic receptors (IRs), which ensure the specificity of the olfactory sensory neuron responses. In this study, our aim is to identify chemosensory receptors in the cotton aphid genome, as a means to uncover olfactory encoding of the polyphagous feeding habits as well as to aid the discovery of new targets for behavioral interference. We identified a total of 45 candidate ORs and 14 IRs in the cotton aphid genome. Among the candidate AgoORs, 9 are apparent pseudogenes, while 19 can be clustered with ORs from the pea aphid, forming 16 AgoOR/ApOR orthologous subgroups. Among the candidate IRs, we identified homologs of the two highly conserved co-receptors IR8a and IR25a; no AgoIR retain the complete glutamic acid binding domain, suggesting that putative AgoIRs bind different ligands. Our results provide the necessary information for functional characterization of the chemosensory receptors of A. gossypii, with potential for new or refined applications of semiochemicals-based control of this pest insect. PMID:24971460

  14. Association of Neurotensin receptor 1 gene polymorphisms with processing speed in healthy Chinese-Han subjects.

    PubMed

    Wang, Man; Ma, Hui; Huang, Ying-lin; Zhu, Gang; Zhao, Jing-ping

    2014-12-01

    Neurotensin modulates dopamine and serotonin transmission in the brain. The study investigated whether genetic polymorphisms in the Neurotensin receptor 1 gene were associated with performance on processing speed and executive function. A total of 129 healthy Chinese-Han volunteers were recruited. Genotyping for three SNPs, including rs6090453, rs6011914, and rs2427422, was analyzed by using a PCR and a restriction fragment length polymorphism analysis. Performances of processing speed and executive function were assessed by using Trail Making Test-A (TMT-A), Wisconsin Card Sorting Test, and Stroop Color-Word Test. We found significant differences in the outcomes of TMT-A score among rs6090453C/G (F(2,126)=4.405, P=0.014) and rs2427422A/G (F(2,126)=7.498, P=0.001) genotypes. Neurotensin receptor 1 SNP polymorphisms were significantly associated with the variance in processing speed performance in a sample of Chinese college students. PMID:25159184

  15. Molecular cloning and functional analysis of Photobacterium damselae subsp. piscicida haem receptor gene.

    PubMed

    Naka, H; Hirono, I; Aoki, T

    2005-02-01

    A haem receptor gene from Photobacterium damselae subsp. piscicida (formerly known as Pasteurella piscicida) has been cloned, sequenced and analysed for its function. The gene, designated as pph, has an open reading frame consisting of 2154 bp, a predicted 718 amino acid residues and exists as a single copy. It is homologous with the haem receptors of Vibrio anguillarum hupA, V. cholerae hutA, V. mimicus mhuA and V. vulnificus hupA at 32.7, 32.7, 45.6 and 30.9%, respectively, and is highly conserved, consisting of a Phe-Arg-Ala-Pro sequence (FRAP), an iron transport related molecule (TonB) and a Asn-Pron-Asn-Leu sequence (NPNL), binding motifs associated with haem receptors. As a single gene knockout mutant P. damselae subsp. piscicida was able to bind haem in the absence of pph, suggesting that other receptors may be involved in its iron transport system. This study shows that the P. damselae subsp. piscicida pph belongs to the haem receptor family, is conserved and that its iron-binding system may involve more than one receptor. PMID:15705153

  16. Identification and interplay of sequence specific DNA binding proteins involved in regulation of human Pregnane and Xenobiotic Receptor gene.

    PubMed

    Saradhi, Mallampati; Kumari, Sangeeta; Rana, Manjul; Mukhopadhyay, Gauranga; Tyagi, Rakesh K

    2015-12-10

    Pregnane and Xenobiotic Receptor (PXR), a member of nuclear receptor superfamily, acts as a 'xenosensor' in our body and modulates a network of genes involved in xenobiotic metabolism and elimination. Expression levels of PXR in certain metabolic disorders including cancer are reported to be altered and its induced expression is associated with the development of resistance towards chemotherapy and adverse drug-drug interactions. Though the transcriptional regulation of PXR target genes have been elucidated in significant details, the structure and functional control of PXR promoter itself remains inadequately explored. In this work, we identify a Composite Element (CE) located within the proximal PXR promoter region that consists of multiple overlapping cis-elements and demonstrated that CE interacts specifically with some critical nuclear proteins. Subsequent DNA-protein interaction studies revealed mutually exclusive interactions on CE occurring between Sp1 and two unidentified DNA binding proteins with molecular masses of 50 and 54kDa. Here, we report the identification of 54kDa CE binding protein as a heterogeneous nuclear ribonucleoprotein K (hnRNPK) and demonstrate the effect of hnRNP K and Sp1 on PXR promoter transcriptional activity. Overall, the study indicates that PXR gene is tightly regulated to maintain a low receptor level. PMID:26586566

  17. Possible association between the prolactin receptor gene and callous-unemotional traits among aggressive children.

    PubMed

    Hirata, Yuko; Zai, Clement C; Nowrouzi, Behdin; Shaikh, Sajid A; Kennedy, James L; Beitchman, Joe H

    2016-02-01

    This study examined the possible association between prolactin (PRL) system genes and callous-unemotional (CU) traits in childhood-onset aggression. Two markers for the PRL peptide gene and three markers for the prolactin receptor (PRLR) gene were genotyped. The participants were assessed on the CU subscale using five items from the Antisocial Process Screening Device. Genotype analysis showed nominally significant results with PRLR_rs187490 (uncorrected P=0.01), with the GG genotype associated with higher CU scores. This is the first paper to evaluate the relationship of PRL system genes with CU traits in childhood-onset aggression. PMID:26513615

  18. Sequence variation in the androgen receptor gene is not a common determinant of male sexual orientation

    SciTech Connect

    Macke, J.P.; Nathans, J.; King, V.L. ); Hu, N.; Hu, S.; Hamer, D.; Bailey, M. ); Brown, T. )

    1993-10-01

    To test the hypothesis that DNA sequence variation in the androgen receptor gene plays a causal role in the development of male sexual orientation, the authors have (1) measured the degree of concordance of androgen receptor alleles in 36 pairs of homosexual brothers, (2) compared the lengths of polyglutamine and polyglycine tracts in the amino-terminal domain of the androgen receptor in a sample of 197 homosexual males and 213 unselected subjects, and (3) screened the entire androgen receptor coding region for sequence variation by PCR and denaturing gradient-gel electrophoresis (DGGE) and/or single-strand conformation polymorphism analysis in 20 homosexual males with homosexual or bisexual brothers and one homosexual male with no homosexual brothers, and screened the amino-terminal domain of the receptor for sequence variation in an additional 44 homosexual males, 37 of whom had one or more first- or second-degree male relatives who were either homosexual or bisexual. These analyses show that (1) homosexual brothers are as likely to be discordant as concordant for androgen receptor alleles; (2) there are no large-scale differences between the distributions of polyglycine or polyglutamine tract lengths in the homosexual and control groups; and (3) coding region sequence variation is not commonly found within the androgen receptor gene of homosexual men. The DGGE screen identified two rare amino acid substitutions, ser[sup 205] -to-arg and glu[sup 793]-to-asp, the biological significance of which is unknown. 32 refs., 2 figs., 2 tabs.

  19. Polymorphisms of the Kappa Opioid Receptor and Prodynorphin Genes: HIV risk and HIV Natural History

    PubMed Central

    Proudnikov, Dmitri; Randesi, Matthew; Levran, Orna; Yuferov, Vadim; Crystal, Howard; Ho, Ann; Ott, Jurg; Kreek, Mary Jeanne

    2013-01-01

    Objective Studies indicate cross-desensitization between opioid receptors (e.g., kappa opioid receptor, OPRK1), and chemokine receptors (e.g., CXCR4) involved in HIV infection. We tested whether gene variants of OPRK1 and its ligand, prodynorphin (PDYN), influence the outcome of HIV therapy. Methods Three study points, admission to the Women’s Interagency HIV Study (WIHS), initiation of highly active antiretroviral therapy (HAART) and the most recent visit were chosen for analysis as crucial events in the clinical history of the HIV patients. Regression analyses of 17 variants of OPRK1, and 11 variants of PDYN with change of viral load (VL) and CD4 count between admission and initiation of HAART, and initiation of HAART to the most recent visit to WIHS were performed in 598 HIV+ subjects including African Americans, Hispanics and Caucasians. Association with HIV status was done in 1009 subjects. Results Before HAART, greater VL decline (improvement) in carriers of PDYN IVS3+189C>T, and greater increase of CD4 count (improvement) in carriers of OPRK1 ?72C>T, were found in African Americans. Also, greater increase of CD4 count in carriers of OPRK1 IVS2+7886A>G, and greater decline of CD4 count (deterioration) in carriers of OPRK1 ?1205G>A, were found in Caucasians. After HAART, greater decline of VL in carriers of OPRK1 IVS2+2225G>A, and greater increase of VL in carriers of OPRK1 IVS2+10658G>T and IVS2+10963A>G, were found in Caucasians. Also, a lesser increase of CD4 count was found in Hispanic carriers of OPRK1 IVS2+2225G>A. Conclusion OPRK1 and PDYN polymorphisms may alter severity of HIV infection and response to treatment. PMID:23392455

  20. Polymorphisms in Toll-like receptor genes are associated with vitiligo

    PubMed Central

    Traks, Tanel; Keermann, Maris; Karelson, Maire; Rätsep, Ranno; Reimann, Ene; Silm, Helgi; Vasar, Eero; Kőks, Sulev; Kingo, Külli

    2015-01-01

    Background: The members of Toll-like receptor (TLR) family are responsible for recognizing various molecular patterns associated with pathogens. Their expression is not confined to immune cells and have been detected in skin cells such as keratinocytes and melanocytes. As part of a generated response to pathogens, TLRs are involved in inducing inflammatory mediators to combat these threats. It is therefore not surprising that TLRs have been implicated in inflammatory skin diseases, including atopic dermatitis and psoriasis. Likewise, as key players in autoimmunity, they have been associated with a number of autoimmune diseases. Based on this, the role of TLRs in vitiligo could be suspected, but is yet to be clearly established. Methods: In order to conduct a genetic association analysis, 30 SNPs were selected from TLR1-TLR8 and TLR10 regions to be genotyped in Estonian case-control cohort consisting of 139 vitiligo patients and 307 healthy control individuals. The patients were further analyzed in subgroups based on sex, age of onset, occurrence of vitiligo among relatives, extent of depigmented areas, vitiligo progression activity, appearance of Köbner's phenomenon, existence of halo naevi, and incidence of spontaneous repigmentation. Results: The most notable finding came with SNP rs179020 situated in TLR7 gene, that was associated in entire vitiligo (Padj = 0.0065) and also several subgroup analyses. Other single marker and haplotype analyses pointed to TLR3, TLR4, and TLR10 genes. Conclusions: This study investigated the genetic regions of nine TLR genes in relation to vitiligo susceptibility. The main results were the associations of TLR7 SNPs with vitiligo, while several other associations were obtained from the remaining TLR gene regions. This suggests that in addition to other inflammatory skin diseases, TLRs affect the development of vitiligo, thus making them interesting targets for future research. PMID:26442097

  1. The Aryl Hydrocarbon Receptor Complex and the Control of Gene Expression

    PubMed Central

    Beischlag, Timothy V.; Morales, J. Luis; Hollingshead, Brett D.; Perdew, Gary H.

    2008-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that controls the expression of a diverse set of genes. The toxicity of the potent AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin is almost exclusively mediated through this receptor. However, the key alterations in gene expression that mediate toxicity are poorly understood. It has been established through characterization of AhR-null mice that the AhR has a required physiological function, yet how endogenous mediators regulate this orphan receptor remains to be established. A picture as to how the AhR/ARNT heterodimer actually mediates gene transcription is starting to emerge. The AhR/ARNT complex can alter transcription both by binding to its cognate response element and through tethering to other transcription factors. In addition, many of the coregulatory proteins necessary for AhR-mediated transcription have been identified. Cross talk between the estrogen receptor and the AhR at the promoter of target genes appears to be an important mode of regulation. Inflammatory signaling pathways and the AhR also appear to be another important site of cross talk at the level of transcription. A major focus of this review is to highlight experimental efforts to characterize nonclassical mechanisms of AhR-mediated modulation of gene transcription. PMID:18540824

  2. Molecular and Cellular Endocrinology 283 (2008) 3848 Auto-regulation of estrogen receptor subtypes and gene expression profiling

    E-print Network

    Xia, Xuhua

    2008-01-01

    Molecular and Cellular Endocrinology 283 (2008) 38­48 Auto-regulation of estrogen receptor subtypes-regulation of the three goldfish estrogen receptor (ER) subtypes was examined simultaneously in multiple tissues. © 2007 Elsevier Ireland Ltd. All rights reserved. Keywords: Estrogen receptors; Fish; Aromatase; Gene

  3. An atypical case of fragile X syndrome caused by a deletion that includes FMRI gene

    SciTech Connect

    Quan, F.; Zonana, J.; Gunter, K.; Peterson, K.L.; Magenis, R.E., Popovich, B.W.

    1995-05-01

    Fragile X syndrome is the most common form of inherited mental retardation and results from the transcriptional inactivation of the FMR1 gene. In the vast majority of cases, this is caused by the expansion of an unstable CGG repeat in the first exon of the FMR1 gene. We describe here a phenotypically atypical case of fragile X syndrome, caused by a deletion that includes the entire FMR1 gene and {ge}9.0 Mb of flanking DNA. The proband, RK, was a 6-year-old mentally retarded male with obesity and anal atresia. A diagnosis of fragile X syndrome was established by the failure of RK`s DNA to hybridize to a 558-bp PstI-XhoI fragment (pfxa3) specific for the 5{prime}-end of the FMR1 gene. The analysis of flanking markers in the interval from Xq26.3-q28 indicated a deletion extending from between 160-500 kb distal and 9.0 Mb proximal to the FMR1 gene. High-resolution chromosome banding confirmed a deletion with breakpoints in Xq26.3 and Xq27.3. This deletion was maternally transmitted and arose as a new mutation on the grandpaternal X chromosome. The maternal transmission of the deletion was confirmed by FISH using a 34-kb cosmid (c31.4) containing most of the FMR1 gene. These results indicated that RK carried a deletion of the FMR1 region with the most proximal breakpoint described to date. This patient`s unusual clinical presentation may indicate the presence of genes located in the deleted interval proximal to the FMR1 locus that are able to modify the fragile X syndrome phenotype. 36 refs., 7 figs.

  4. Cancer Cell AndrogenReceptorGeneExpressioninProstateCancer

    E-print Network

    Liu, Xiaole Shirley

    .09.001 SUMMARY Androgen receptor (AR) is reactivated in castration-resistant prostate cancer (CRPC) through) is surgical or medical castration to reduce circulating androgens (androgen deprivation therapy [ADT castration-resistant prostate cancer (CRPC). Significantly, early studies showed that AR was highly expressed

  5. MAPPING OF TOLL LIKE RECEPTOR (TLR) GENES IN RAINBOW TROUT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Toll-like receptors (TLRs) are a family of transmembrane proteins that recognize conserved pathogen structures to induce innate immune effector molecules. In vertebrates, TLRs can distinguish among classes of pathogens and serve an important role in orchestrating the appropriate adaptive immune resp...

  6. Genetic basis of endocrine disease 4: The spectrum of mutations in the androgen receptor gene that causes androgen resistance

    SciTech Connect

    McPhaul, M.J.; Marcelli, M.; Zoppi, S.; Griffin, J.E.; Wilson, J.D. )

    1993-01-01

    Mutations in the androgen receptor gene cause phenotypic abnormalities of male sexual development that range from a female phenotype (complete testicular feminization) to that of undervirilized or infertile men. Using the tools of molecular biology, the authors have analyzed androgen receptor gene mutations in 31 unrelated subjects with androgen resistance syndromes. Most of the defects are due to nucleotide changes that cause premature termination codons or single amino acid substitutions within the open reading frame encoding the androgen receptor, and the majority of these substitutions are localized in three regions of the androgen receptor: the DNA-binding domain and two segments of the androgen-binding domain. Less frequently, partial or complete gene deletions have been identified. Functional studies and immunoblot assays of the androgen receptors in patients with androgen resistance indicate that in most cases the phenotypic abnormalities are the result of impairment of receptor function or decreases in receptor abundance or both. 34 refs., 2 figs.

  7. White matter abnormalities in 22q11.2 deletion syndrome: Preliminary associations with the Nogo-66 receptor gene and symptoms of psychosis

    E-print Network

    receptor gene and symptoms of psychosis Matthew D. Perlstein a , Moeed R. Chohan a , Ioana L. Coman integrity of these tracts, including an association with prodromal symptoms of psychosis. We further to myelin-mediated axonal growth inhibition. Moreover, the association between psychosis symptoms and ALIC

  8. Differential expression of alpha and beta thyroid hormone receptor genes in rat brain and pituitary.

    PubMed Central

    Bradley, D J; Young, W S; Weinberger, C

    1989-01-01

    Multiple thyroid hormone receptor cDNAs have previously been identified in rat and are classified into alpha and beta subtypes. Alternative splicing of the alpha gene gives rise to the functional receptor, rTR alpha 1, and the non-thyroid hormone-binding isotype, rTR alpha 2. Recent evidence suggests the beta gene encodes two functional receptors, rTR beta 1, and the pituitary-specific receptor, rTR beta 2. By using synthetic DNA probes common to rTR beta transcripts and specific for rTR alpha 1 and rTR alpha 2 mRNAs, we mapped the expression of these transcripts in adult rat brain and pituitary by hybridization histochemistry. We also localized mRNAs encoding the putative nuclear receptor REV-ErbA alpha, a portion of which is derived from the opposite strand of the rTR alpha gene. rTR alpha 1 and rTR alpha 2 transcripts were widely distributed in a similar, if not identical, pattern. Highest levels of rTR alpha 1 and rTR alpha 2 transcripts were found in the olfactory bulb, hippocampus, and granular layer of the cerebellar cortex. REV-ErbA alpha and rTR beta mRNAs were found in more restricted patterns of expression distinct from those of rTR alpha 1 and rTR alpha 2. REV-ErbA alpha mRNA was highest in the neocortex. High levels of rTR beta transcripts in the anterior pituitary and the parvocellular part of the paraventricular hypothalamic nucleus suggest rTR beta gene products may mediate thyroid hormone feedback regulation of thyroid-stimulating hormone and thyrotropin-releasing hormone. Our results identify nuclei and structures in the mammalian central nervous system in which regulation of gene expression by specific thyroid hormone receptor subtypes may occur. Images PMID:2780568

  9. Association of Interleukin-23 receptor gene polymorphisms with susceptibility to Crohn's disease: A meta-analysis.

    PubMed

    Xu, Wang-Dong; Xie, Qi-Bing; Zhao, Yi; Liu, Yi

    2015-01-01

    Studies investigating the association between Interleukin-23 receptor (IL-23R) gene polymorphisms and Crohn's disease (CD) report conflicting results. Thus, a meta-analysis was carried out to assess the association between the IL-23R polymorphisms and CD. A systematic literature search was conducted to identify all relevant studies. Pooled odds ratio (ORs) with 95% confidence interval (CIs) was used to estimate the strength of association. Finally, a total of 60 case-control studies in 56 articles, involving 22,820 CD patients and 27,401 healthy controls, were included in the meta-analysis. Overall, a significant association was found between all CD and the rs7517847 polymorphism (OR?=?0.699, 95% CI?=?0.659?~?0.741, P?gene polymorphisms were associated with CD in the Caucasian group, but not in Asians. In summary, the meta-analysis suggests a significant association between IL-23R polymorphisms and CD, especially in Caucasians. PMID:26678098

  10. Deletion of the NMDA-NR1 receptor subunit gene in the mouse nucleus accumbens attenuates apomorphine-induced dopamine D1 receptor trafficking and acoustic startle behavior

    PubMed Central

    Glass, Michael J.; Robinson, Danielle C.; Waters, Elizabeth; Pickel, Virginia M.

    2013-01-01

    The nucleus accumbens (Acb) contains subpopulations of neurons defined by their receptor content and potential involvement in sensorimotor gating and other behaviors that are dysfunctional in schizophrenia. In Acb neurons, the NMDA NR1 (NR1) subunit is co-expressed not only with the dopamine D1 receptor (D1R), but also with the ?-opioid receptor (?-OR), which mediates certain behaviors that are adversely impacted by schizophrenia. The NMDA-NR1 subunit has been suggested to play a role in the D1R trafficking and behavioral dysfunctions resulting from systemic administration of apomorphine, a D1R and dopamine D2 receptor agonist that impacts prepulse inhibition (PPI) to auditory-evoked startle (AS). Together, this evidence suggests that the NMDA receptor may regulate D1R trafficking in Acb neurons, including those expressing ?-OR, in animals exposed to auditory startle and apomorphine. We tested this hypothesis by combining spatial-temporal gene deletion technology, dual labeling immunocytochemistry, and behavioral analysis. Deleting NR1 in Acb neurons prevented the increase in the dendritic density of plasma membrane D1Rs in single D1R and dual (D1R and ?-OR) labeled dendrites in the Acb in response to apomorphine and AS. Deleting NR1 also attenuated the decrease in AS induced by apomorphine. In the absence of apomorphine and startle, deletion of Acb NR1 diminished social interaction, without affecting novel object recognition, or open field activity. These results suggest that NR1 expression in the Acb is essential for apomorphine-induced D1R surface trafficking and reduction in AS, but also plays an independent role in controling social behaviors that are impaired in multiple psychiatric disorders. PMID:23345061

  11. Specific alleles of bitter receptor genes influence human sensitivity to the bitterness of aloin and saccharin.

    PubMed

    Pronin, Alexey N; Xu, Hong; Tang, Huixian; Zhang, Lan; Li, Qing; Li, Xiaodong

    2007-08-21

    Variation in human taste is a well-known phenomenon. However, little is known about the molecular basis for it. Bitter taste in humans is believed to be mediated by a family of 25 G protein-coupled receptors (hT2Rs, or TAS2Rs). Despite recent progress in the functional expression of hT2Rs in vitro, up until now, hT2R38, a receptor for phenylthiocarbamide (PTC), was the only gene directly linked to variations in human bitter taste. Here we report that polymorphism in two hT2R genes results in different receptor activities and different taste sensitivities to three bitter molecules. The hT2R43 gene allele, which encodes a protein with tryptophan in position 35, makes people very sensitive to the bitterness of the natural plant compounds aloin and aristolochic acid. People who do not possess this allele do not taste these compounds at low concentrations. The same hT2R43 gene allele makes people more sensitive to the bitterness of an artificial sweetener, saccharin. In addition, a closely related gene's (hT2R44's) allele also makes people more sensitive to the bitterness of saccharin. We also demonstrated that some people do not possess certain hT2R genes, contributing to taste variation between individuals. Our findings thus reveal new examples of variations in human taste and provide a molecular basis for them. PMID:17702579

  12. Development of an interleukin 2 receptor targeted gene therapy vehicle 

    E-print Network

    Wattanakaroon, Wanida

    2006-08-16

    diseases associated with aberrant immune response. This study describes the development and optimization of a targeted gene or oligonucleotide therapy vehicle to IL-2R bearing T cells for selective elimination of these cells. In this work, a monoclonal...

  13. Insulin and insulin-like growth factor 1 receptors are required for normal expression of imprinted genes

    PubMed Central

    Boucher, Jeremie; Charalambous, Marika; Zarse, Kim; Mori, Marcelo A.; Kleinridders, Andre; Ristow, Michael; Ferguson-Smith, Anne C.; Kahn, C. Ronald

    2014-01-01

    In addition to signaling through the classical tyrosine kinase pathway, recent studies indicate that insulin receptors (IRs) and insulin-like growth factor 1 (IGF1) receptors (IGF1Rs) can emit signals in the unoccupied state through some yet-to-be-defined noncanonical pathways. Here we show that cells lacking both IRs and IGF1Rs exhibit a major decrease in expression of multiple imprinted genes and microRNAs, which is partially mimicked by inactivation of IR alone in mouse embryonic fibroblasts or in vivo in brown fat in mice. This down-regulation is accompanied by changes in DNA methylation of differentially methylated regions related to these loci. Different from a loss of imprinting pattern, loss of IR and IGF1R causes down-regulated expression of both maternally and paternally expressed imprinted genes and microRNAs, including neighboring reciprocally imprinted genes. Thus, the unoccupied IR and IGF1R generate previously unidentified signals that control expression of imprinted genes and miRNAs through transcriptional mechanisms that are distinct from classical imprinting control. PMID:25246545

  14. Comparative genomics reveals tissue-specific regulation of prolactin receptor gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prolactin (PRL), acting via the prolactin receptor, fulfills a diversity of biological functions including the maintenance of solute balance and mineral homeostasis via tissues such as the heart, kidneys and intestine. Expression and activity of the prolactin receptor (PRLR) is regulated by various ...

  15. Inhibition of leptin and leptin receptor gene expression by silibinin-curcumin combination.

    PubMed

    Nejati-Koshki, Kazem; Akbarzadeh, Abolfazl; Pourhasan-Moghaddam, Mohammad; Abhari, Alireza; Dariushnejad, Hassan

    2014-01-01

    Leptin and its receptor are involved in breast carcinogenesis as mitogenic factors. Therefore, they could be considered as targets for breast cancer therapy. Expression of the leptin receptor gene could be modulated by leptin secretion. Silibinin and curcumin are herbal compounds with anti-cancer activity against breast cancer. The aim of this study was to assess their potential to inhibit of expression of the leptin gene and its receptor and leptin secretion. Cytotoxic effects of the two agents on combination on T47D breast cancer cells was investigated by MTT assay test after 24h treatment. With different concentrations the levels of leptin, leptin receptor genes expression were measured by reverse-transcription real-time PCR. Amount of secreted leptin in the culture medium was determined by ELISA. Data were statistically analyzed by one-way ANOVA test. The silibinin and curcumin combination inhibited growth of T47D cells in a dose dependent manner. There were also significant difference between control and treated cells in leptin expression and the quantity of secreted leptin with a relative decrease in leptin receptor expression. In conclusion, these herbal compounds inhibit the expression and secretion of leptin and it could probably be used as drug candidates for breast cancer therapy through leptin targeting in the future. PMID:24377502

  16. Developmentally Regulated Expression of the Nerve Growth Factor Receptor Gene in the Periphery and Brain

    NASA Astrophysics Data System (ADS)

    Buck, C. R.; Martinez, Humberto J.; Black, Ira B.; Chao, Moses V.

    1987-05-01

    Nerve growth factor (NGF) regulates development and maintenance of function of peripheral sympathetic and sensory neurons. A potential role for the trophic factor in brain has been detected only recently. The ability of a cell to respond to NGF is due, in part, to expression of specific receptors on the cell surface. To study tissue-specific expression of the NGF receptor gene, we have used sensitive cRNA probes for detection of NGF receptor mRNA. Our studies indicate that the receptor gene is selectively and specifically expressed in sympathetic (superior cervical) and sensory (dorsal root) ganglia in the periphery, and by the septum-basal forebrain centrally, in the neonatal rat in vivo. Moreover, examination of tissues from neonatal and adult rats reveals a marked reduction in steady-state NGF receptor mRNA levels in sensory ganglia. In contrast, a 2- to 4-fold increase was observed in the basal forebrain and in the sympathetic ganglia over the same time period. Our observations suggest that NGF receptor mRNA expression is developmentally regulated in specific areas of the nervous system in a differential fashion.

  17. Receptor-mediated gene delivery using chemically modified chitosan

    NASA Astrophysics Data System (ADS)

    Kim, T. H.; Jiang, H. L.; Nah, J. W.; Cho, M. H.; Akaike, T.; Cho, C. S.

    2007-09-01

    Chitosan has been investigated as a non-viral vector because it has several advantages such as biocompatibility, biodegradability and low toxicity with high cationic potential. However, the low specificity and low transfection efficiency of chitosan need to be solved prior to clinical application. In this paper, we focused on the galactose or mannose ligand modification of chitosan for enhancement of cell specificity and transfection efficiency via receptor-mediated endocytosis in vitro and in vivo.

  18. Mapping toll-like receptor signaling pathway genes of Zhikong scallop ( Chlamys farreri) with FISH

    NASA Astrophysics Data System (ADS)

    Zhao, Bosong; Zhao, Liang; Liao, Huan; Cheng, Jie; Lian, Shanshan; Li, Xuan; Huang, Xiaoting; Bao, Zhenmin

    2015-12-01

    Toll-like receptor (TLR) signaling pathway plays a pivotal role in the innate immune system. Studies on TLR signaling pathway genes in Zhikong scallop ( Chlamys farreri) have mainly focused on sequence analysis and expression profiling, no research has been carried out on their localization. The chromosomal position of TLR signaling pathway genes can be valuable for assemblying scallop genome and analysizing gene regulatory networks. In the present study, five key TLR signaling pathway genes ( CfTLR, CfMyd88, CfTRAF6, CfNF?B, and CfI?B) containing bacterial artificial chromosomes (BACs) were isolated and physically mapped through fluorescence in situ hybridization on five non-homologous chromosome pairs, showing a similar distribution to another five model species. The isolation and mapping of these key immune genes of C. farreri will aid to the research on innate immunity, assignment of interested genes to chromosomes, and integration of physical, linkage and cytogenetic maps of this species.

  19. The human insulin receptor substrate-1 gene (IRS1) is localized on 2q36

    SciTech Connect

    Nishiyama, Masaki; Matsufuji, Senya; Hayashi, Shin-ichi; Furusaka, Akihiro; Tanaka, Teruji ); Inazawa, J.; Nakamura, Yusuke ); Ariyama, Takeshi ); Wands, J.R. )

    1994-03-01

    The chromosomal localization of some of the genes participating in the insulin signaling pathway is known. The insulin and insulin receptor genes have been mapped to chromosomes 11 and 19, respectively. To identify the chromosomal localization of the human IRS1 gene, the fluorescence in situ hybridization technique was employed with Genomic Clone B-10. A total of 50 metaphase cells exhibiting either single or double spots of hybridization signals were examined. Among them, 32 showed the specific signals on 2q36. Therefore, the authors assigned the human IRS1 gene to 2q36. The genes for homeobox sequence (HOX4), fibronectin 1, alkaline phosphatase (intestinal), transition protein 1, villin 1, collagen (type IV), Waardenburg syndrome (type 1), alanine-glyoxylate aminotransferase, and glucagon have been localized in the vicinity of the IRS1 gene.

  20. Targeting Adenovirus to the Serotype 3 Receptor Increases Gene Transfer Efficiency to Ovarian Cancer Cells1

    E-print Network

    Hemminki, Akseli

    is retargeted to the Ad3 receptor and, therefore, has different tissue tropism. A novel knob binding assay, and its broad tissue tropism. However, the efficiency of Ad5 gene transfer may closely correlate resistance to Ad5 infection (7­11). On the basis of this concept, strategies to modify Ad tropism

  1. REPRODUCTIONRESEARCH Gonadotropin-inhibitory hormone (GnIH) receptor gene is

    E-print Network

    Ramachandran, Ramesh

    REPRODUCTIONRESEARCH Gonadotropin-inhibitory hormone (GnIH) receptor gene is expressed Ramachandran; Email: rameshr@psu.edu Abstract Gonadotropin-inhibitory hormone (GnIH), an RFamide peptide, has (2008) 135 267­274 Introduction Gonadotropin-inhibitory hormone (GnIH), first isolated from quail

  2. Nuclear Receptor Coactivators Modulate Hormone-Dependent Gene Expression in Brain and Female

    E-print Network

    Nuclear Receptor Coactivators Modulate Hormone- Dependent Gene Expression in Brain and Female of Biology (M.J.T.), Skidmore College, Saratoga Springs, New York 12866 Gonadal steroid hormones act. Furthermore, we found that SRC-1 and CBP function in brain to modulate the expression of hormone

  3. Variation at the mu-opioid receptor gene (OPRM1) influences attachment behavior in infant primates

    E-print Network

    Maestripieri, Dario

    Variation at the mu-opioid receptor gene (OPRM1) influences attachment behavior in infant primates to a caregiver is crucial for infant survival and partly mediated by the endoge- nous opioids. Functional mu-opioid interacting with its mother are thought to be mediated in part by release of the endogenous opioids (4, 5

  4. Association of a nicotinic receptor gene polymorphism with spontaneous eyeblink rates

    PubMed Central

    Nakano, Tamami; Kuriyama, Chiho; Himichi, Toshiyuki; Nomura, Michio

    2015-01-01

    Spontaneous eyeblink rates greatly vary among individuals from several blinks to a few dozen blinks per minute. Because dopamine agonists immediately increase the blink rate, individual differences in blink rate are used as a behavioral index of central dopamine functioning. However, an association of the blink rate with polymorphisms in dopamine-related genes has yet not been found. In this study, we demonstrated that a genetic variation of the nicotinic acetylcholine receptor CHRNA4 (rs1044396) increased the blink rate while watching a video. A receiver operating characteristic analysis revealed that the blink rate predicts a genetic variation in the nicotinic receptor gene with a significant discrimination level (0.66, p < 0.004). The present study suggests that differences in sensitivity to acetylcholine because of the genetic variation of the nicotinic receptor are associated with individual differences in spontaneous eye blink rate. PMID:25729002

  5. Mutational analysis of the extracellular Ca{sup 2+}-sensing receptor gene in human parathyroid tumors

    SciTech Connect

    Hosokawa, Yoshitaka; Arnold, A.; Pollak, M.R.; Brown, E.M.

    1995-10-01

    Despite recent progress, such as the identification of PRAD1/cyclin D1 as a parathyroid oncogene, it is likely that many genes involved in the molecular pathogenesis of parathyroid tumors remain unknown. Individuals heterozygous for inherited mutations in the extracellular Ca{sup 2+}-sensing receptor gene that reduce its biological activity exhibit a disorder termed familial hypocalciuric hypercalcemia or familial benign hypercalcemia, which is characterized by reduced responsiveness of parathyroid and kidney to calcium and by PTH-dependent hypercalcemia. Those who are homozygous for such mutations present with neonatal severe hyperparathyroidism and have marked parathroid hypercellularity. Thus, the Ca{sup 2+}-sensing receptor gene is a candidate parathyroid tumor suppressor gene, with inactivating mutations plausibly explaining set-point abnormalities in the regulation of both parathyroid cellular proliferation and PTH secretion by extracellular Ca{sup 2+} similar to those seen in hyperparathyroidism. Using a ribonuclease A protection assay that has detected multiple mutations in the Ca{sup 2+}-sensing receptor gene in familial hypocalciuric hypercalcemia and covers more than 90% of its coding region, we sought somatic mutations in this gene in a total of 44 human parathyroid tumors (23 adenomas, 4 carcinomas, 5 primary hyperplasias, and 12 secondary hyperplasias). No such mutations were detected in these 44 tumors. Thus, our studies suggest that somatic mutation of the Ca{sup 2+}-sensing receptor gene does not commonly contribute to the pathogenesis of sporadic parathyroid tumors. As such, PTH set-point dysfunction in parathroid tumors may well be secondary to other clonal proliferative defects and/or mutations in other components of the extracellular Ca{sup 2+}-sensing pathway. 29 refs., 2 figs.

  6. Hereditary isolated glucocorticoid deficiency is associated with abnormalities of the adrenocorticotropin receptor gene.

    PubMed Central

    Tsigos, C; Arai, K; Hung, W; Chrousos, G P

    1993-01-01

    Isolated glucocorticoid deficiency (IGD) is an autosomal recessive disorder characterized by progressive primary adrenal insufficiency, without mineralocorticoid deficiency. The cDNA and gene of the human ACTH receptor were recently cloned. The gene encodes a 297-amino acid protein that belongs to the G protein-coupled superfamily of membrane receptors. We hypothesized that the ACTH receptor gene might be defective in IGD. To examine this, we studied its genomic structure by PCR and direct sequencing in a 5-yr-old proband with the disease, his parents, and grandparents. The proband was a compound heterozygote for two different point mutations, one in each allele: (a) a substitution (C-->T), also found in one allele of the mother and maternal grandmother, which introduced a premature stop codon (TGA) at position 201 of the protein; this mutant receptor lacks its entire carboxy-terminal third and, if expressed, should be unable to transduce the signal; and (b) a substitution (C-->G), also found in one of the paternal alleles, which changed neutral serine120 in the apolar third transmembrane domain of the receptor to a positively charged arginine, probably disrupting the ligand-binding site. Standard ovine corticotropin releasing hormone (oCRH) test in the heterozygote parents and maternal grandmother revealed exaggerated and prolonged ACTH responses, suggestive of subclinical resistance to ACTH. We conclude that IGD in this family appears to be due to defects of the ACTH receptor gene. The oCRH test appears to be useful in ascertaining heterozygosity in this syndrome. Images PMID:8227361

  7. Association between estrogen receptor alpha (ESR1) gene polymorphisms and severe preeclampsia.

    PubMed

    Molvarec, Attila; Vér, Agota; Fekete, Andrea; Rosta, Klára; Derzbach, László; Derzsy, Zoltán; Karádi, István; Rigó, János

    2007-03-01

    Associations have been reported between estrogen receptor alpha (ESR1) gene polymorphisms and various pathological conditions, including cardiovascular diseases. Our aim was to investigate whether two polymorphisms of the ESR1 gene (ESR1 c.454 -397T>C: PvuII restriction site and c.454 -351A>G: XbaI restriction site) are associated with preeclampsia. In a case-control study, we analyzed blood samples from 119 severely preeclamptic patients and 103 normotensive, healthy pregnant women using the polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) method. All of the women were Caucasian. There was no association between severe preeclampsia and the PvuII and XbaI ESR1 gene polymorphisms separately. However, with the simultaneous carriage of both polymorphisms, the TT/AA genotype combination was significantly more frequent in severely preeclamptic patients than in healthy control subjects (24.4% vs. 9.7%, p=0.003), whereas the TT/AG combination was significantly less frequent in the severely preeclamptic group than in the control group (5.0% vs. 18.4%, p=0.002). According to the haplotype estimation, the homozygous T-A haplotype carriers had an increased risk of severe preeclampsia independent of maternal age, prepregnancy BMI, primiparity and smoking status (adjusted odds ratio [OR]: 4.36, 95% confidence interval [CI]: 1.65-11.53). The GG genotype of the XbaI polymorphism was associated with a lower risk of fetal growth restriction in patients with severe preeclampsia (OR: 0.23, 95% CI: 0.07-0.73). In conclusion, the homozygous T-A haplotype carriers of ESR1 PvuII and XbaI polymorphisms showed an increased risk of severe preeclampsia. In addition, the GG genotype of the XbaI polymorphism decreased the risk of fetal growth restriction in severely preeclamptic patients. PMID:17510501

  8. Copy number variants including RAS pathway genes-How much RASopathy is in the phenotype?

    PubMed

    Lissewski, Christina; Kant, Sarina G; Stark, Zornitza; Schanze, Ina; Zenker, Martin

    2015-11-01

    The RASopathies comprise a group of clinically overlapping developmental syndromes the common pathogenetic basis of which is dysregulated signal flow through the RAS-MAPK pathway. Mutations in several components or modifiers of the pathway have been identified in Noonan syndrome and related disorders. Over the past years copy number variants (CNVs) encompassing RAS pathway genes (PTPN11, RAF1, MEK2, or SHOC2) have been reported in children with developmental syndromes. These observations raised speculations that the associated phenotypes represent RASopathies, implying that the increased or reduced expression of the respective RAS pathway component and a consecutive dysregulation of RAS pathway signalling is responsible for the clinical picture. Herein, we present two individuals and three of their relatives harboring duplications of either 3p25.2 including the RAF1 locus or 19p13.3 including the MEK2 locus. Duplication carriers exhibited variable clinical phenotypes including non-specific facial dysmorphism, short stature, and learning difficulties. A careful review of the literature supported the impression that phenotypes associated with CNVs including RAS pathway genes commonly share non-specific symptoms with RASopathies, while the characteristic "gestalt" is lacking. Considering the known molecular pathogenesis of RASopathies, it is questionable that a modest increase in the expression of a functionally normal signaling component can mimic the effects of a qualitatively abnormal (hyperactive) mutant protein. We thus argue that current empirical and biological evidence is still insufficient to allow the conclusion that an altered copy number of a RAS pathway component is indeed the mechanism that is critical for the phenotype associated with CNVs including RASopathy genes. © 2015 Wiley Periodicals, Inc. PMID:25974318

  9. Effects of prenatal and postnatal depression, and maternal stroking, at the glucocorticoid receptor gene.

    PubMed

    Murgatroyd, C; Quinn, J P; Sharp, H M; Pickles, A; Hill, J

    2015-01-01

    In animal models, prenatal and postnatal stress is associated with elevated hypothalamic-pituitary axis (HPA) reactivity mediated via altered glucocorticoid receptor (GR) gene expression. Postnatal tactile stimulation is associated with reduced HPA reactivity mediated via increased GR gene expression. In this first study in humans to examine the joint effects of prenatal and postnatal environmental exposures, we report that GR gene (NR3C1) 1-F promoter methylation in infants is elevated in the presence of increased maternal postnatal depression following low prenatal depression, and that this effect is reversed by self-reported stroking of the infants by their mothers over the first weeks of life. PMID:25942041

  10. Effects of prenatal and postnatal depression, and maternal stroking, at the glucocorticoid receptor gene

    PubMed Central

    Murgatroyd, C; Quinn, J P; Sharp, H M; Pickles, A; Hill, J

    2015-01-01

    In animal models, prenatal and postnatal stress is associated with elevated hypothalamic–pituitary axis (HPA) reactivity mediated via altered glucocorticoid receptor (GR) gene expression. Postnatal tactile stimulation is associated with reduced HPA reactivity mediated via increased GR gene expression. In this first study in humans to examine the joint effects of prenatal and postnatal environmental exposures, we report that GR gene (NR3C1) 1-F promoter methylation in infants is elevated in the presence of increased maternal postnatal depression following low prenatal depression, and that this effect is reversed by self-reported stroking of the infants by their mothers over the first weeks of life. PMID:25942041

  11. Identification and Functional Analysis of Pheromone and Receptor Genes in the B3 Mating Locus of Pleurotus eryngii

    PubMed Central

    Kim, Kyung-Hee; Kang, Young Min; Im, Chak Han; Ali, Asjad; Kim, Sun Young; Je, Hee-Jeong; Kim, Min-Keun; Rho, Hyun Su; Lee, Hyun Sook; Kong, Won-Sik; Ryu, Jae-San

    2014-01-01

    Pleurotus eryngii has recently become a major cultivated mushroom; it uses tetrapolar heterothallism as a part of its reproductive process. Sexual development progresses only when the A and B mating types are compatible. Such mating incompatibility occasionally limits the efficiency of breeding programs in which crossing within loci-shared strains or backcrossing strategies are employed. Therefore, understanding the mating system in edible mushroom fungi will help provide a short cut in the development of new strains. We isolated and identified pheromone and receptor genes in the B3 locus of P. eryngii and performed a functional analysis of the genes in the mating process by transformation. A genomic DNA library was constructed to map the entire mating-type locus. The B3 locus was found to contain four pheromone precursor genes and four receptor genes. Remarkably, receptor PESTE3.3.1 has just 34 amino acid residues in its C-terminal cytoplasmic region; therefore, it seems likely to be a receptor-like gene. Real-time quantitative RT-PCR (real-time qRT-PCR) revealed that most pheromone and receptor genes showed significantly higher expression in monokaryotic cells than dikaryotic cells. The pheromone genes PEphb3.1 and PEphb3.3 and the receptor gene PESTE3.3.1 were transformed into P5 (A3B4). The transformants were mated with a tester strain (A4B4), and the progeny showed clamp connections and a normal fruiting body, which indicates the proposed role of these genes in mating and fruiting processes. This result also confirms that PESTE3.3.1 is a receptor gene. In this study, we identified pheromone and receptor genes in the B3 locus of P. eryngii and found that some of those genes appear to play a role in the mating and fruiting processes. These results might help elucidate the mechanism of fruiting differentiation and improve breeding efficiency. PMID:25133513

  12. Identification and functional analysis of pheromone and receptor genes in the B3 mating locus of Pleurotus eryngii.

    PubMed

    Kim, Kyung-Hee; Kang, Young Min; Im, Chak Han; Ali, Asjad; Kim, Sun Young; Je, Hee-Jeong; Kim, Min-Keun; Rho, Hyun Su; Lee, Hyun Sook; Kong, Won-Sik; Ryu, Jae-San

    2014-01-01

    Pleurotus eryngii has recently become a major cultivated mushroom; it uses tetrapolar heterothallism as a part of its reproductive process. Sexual development progresses only when the A and B mating types are compatible. Such mating incompatibility occasionally limits the efficiency of breeding programs in which crossing within loci-shared strains or backcrossing strategies are employed. Therefore, understanding the mating system in edible mushroom fungi will help provide a short cut in the development of new strains. We isolated and identified pheromone and receptor genes in the B3 locus of P. eryngii and performed a functional analysis of the genes in the mating process by transformation. A genomic DNA library was constructed to map the entire mating-type locus. The B3 locus was found to contain four pheromone precursor genes and four receptor genes. Remarkably, receptor PESTE3.3.1 has just 34 amino acid residues in its C-terminal cytoplasmic region; therefore, it seems likely to be a receptor-like gene. Real-time quantitative RT-PCR (real-time qRT-PCR) revealed that most pheromone and receptor genes showed significantly higher expression in monokaryotic cells than dikaryotic cells. The pheromone genes PEphb3.1 and PEphb3.3 and the receptor gene PESTE3.3.1 were transformed into P5 (A3B4). The transformants were mated with a tester strain (A4B4), and the progeny showed clamp connections and a normal fruiting body, which indicates the proposed role of these genes in mating and fruiting processes. This result also confirms that PESTE3.3.1 is a receptor gene. In this study, we identified pheromone and receptor genes in the B3 locus of P. eryngii and found that some of those genes appear to play a role in the mating and fruiting processes. These results might help elucidate the mechanism of fruiting differentiation and improve breeding efficiency. PMID:25133513

  13. Positive Evolutionary Selection On the RIG-I-Like Receptor Genes in Mammals

    PubMed Central

    Lemos de Matos, Ana; McFadden, Grant; Esteves, Pedro J.

    2013-01-01

    The mammalian RIG-I-like receptors, RIG-I, MDA5 and LGP2, are a family of DExD/H box RNA helicases responsible for the cytoplasmic detection of viral RNA. These receptors detect a variety of RNA viruses, or DNA viruses that express unusual RNA species, many of which are responsible for a great number of severe and lethal diseases. Host innate sentinel proteins involved in pathogen recognition must rapidly evolve in a dynamic arms race with pathogens, and thus are subjected to long-term positive selection pressures to avoid potential infections. Using six codon-based Maximum Likelihood methods, we were able to identify specific codons under positive selection in each of these three genes. The highest number of positively selected codons was detected in MDA5, but a great percentage of these codons were located outside of the currently defined protein domains for MDA5, which likely reflects the imposition of both functional and structural constraints. Additionally, our results support LGP2 as being the least prone to evolutionary change, since the lowest number of codons under selection was observed for this gene. On the other hand, the preponderance of positively selected codons for RIG-I were detected in known protein functional domains, suggesting that pressure has been imposed by the vast number of viruses that are recognized by this RNA helicase. Furthermore, the RIG-I repressor domain, the region responsible for recognizing and binding to its RNA substrates, exhibited the strongest evidence of selective pressures. Branch-site analyses were performed and several species branches on the three receptor gene trees showed evidence of episodic positive selection. In conclusion, by looking for evidence of positive evolutionary selection on mammalian RIG-I-like receptor genes, we propose that a multitude of viruses have crafted the receptors biological function in host defense, specifically for the RIG-I gene, contributing to the innate species-specific resistance/susceptibility to diverse viral pathogens. PMID:24312370

  14. Calcitonin Gene-Related Peptide (CGRP) Receptors Are Important to Maintain Cerebrovascular Reactivity in Chronic Hypertension

    PubMed Central

    Wang, Zhenghui; Martorell, Belén Cantó; Wälchli, Thomas; Vogel, Olga; Fischer, Jan; Born, Walter; Vogel, Johannes

    2015-01-01

    Cerebral blood flow autoregulation (CA) shifts to higher blood pressures in chronic hypertensive patients, which increases their risk for brain damage. Although cerebral vascular smooth muscle cells express the potent vasodilatatory peptides calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) and their receptors (calcitonin receptor-like receptor (Calclr), receptor-modifying proteins (RAMP) 1 and 2), their contribution to CA during chronic hypertension is poorly understood. Here we report that chronic (10 weeks) hypertensive (one-kidney-one-clip-method) mice overexpressing the Calclr in smooth muscle cells (CLR-tg), which increases the natural sensitivity of the brain vasculature to CGRP and AM show significantly better blood pressure drop-induced cerebrovascular reactivity than wt controls. Compared to sham mice, this was paralleled by increased cerebral CGRP-binding sites (receptor autoradiography), significantly in CLR-tg but not wt mice. AM-binding sites remained unchanged. Whereas hypertension did not alter RAMP-1 expression (droplet digital (dd) PCR) in either mouse line, RAMP-2 expression dropped significantly in both mouse lines by about 65%. Moreover, in wt only Calclr expression was reduced by about 70% parallel to an increase of smooth muscle actin (Acta2) expression. Thus, chronic hypertension induces a stoichiometric shift between CGRP and AM receptors in favor of the CGRP receptor. However, the parallel reduction of Calclr expression observed in wt mice but not CLR-tg mice appears to be a key mechanism in chronic hypertension impairing cerebrovascular reactivity. PMID:25860809

  15. CHROMOSOMAL LOCATION, STRUCTURE, AND TEMPORAL EXPRESSION OF THE PLATELET-ACTIVATING FACTOR (PAFR) GENE IN PORCINE ENDOMETRIUM AND EMBRYOS RELATIVE TO ESTROGEN RECEPTOR ALPHA GENE EXPRESSION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although platelet-activating factor receptor (PAFr) gene was characterized in the human, little was known about it in domestic animals. Porcine PAFr gene was mapped using fluorescence in situ hybridization (FISH). The structure of this gene was investigated using a 5' rapid amplification of cDNA e...

  16. Structural and phylogenetic analysis of the MHC class I-like Fc receptor gene

    SciTech Connect

    Kandil, Eman; Ishibashi, Teruo; Kasahara, Masanori

    1995-06-01

    The intestinal epithelium of neonatal mice and rats expresses an Fc receptor that mediates selective uptake of IgG in mothers`milk. This receptor (FcRn), which helps newborn animals to acquire passive immunity, is an MHC class I-like heterodimer made up of a heavy chain and {beta}{sub 2}-microglobulin. In the present study, we determined the genomic structure of a mouse gene (FcRn) encoding the heavy of FcRn. The overall exon-intron organization of the Fcrn gene was similar to that of the Fcrn gene, thus providing structural evidence that Fcrn os a bona fide class I gene. The 5{prime}-flanking region of the Fcrn gene contained the binding motifs for two cytokine-inducible transcription factors, NF-IL6 and NF1. However, regulatory elements found in MHC class I genes (enhancer A, enhancer B, and the IFN response element) were absent. Phylogenetic tree analysis suggested that, like the MICA, AZGP1, and CD1 genes, the Fcrn gene diverged form MHC class I genes after the emergence of amphibians but before the split of placental and marsupial mammals. Consistent with this result, Southern blot analysis with a mouse Fcrn cDNA probe detected cross-hybridizing bands in various mammalian species and chickens. Sequence analysis of the Fcrn gene isolated from eight mouse strains showed that the membrane-distal domain of FcRn has at least three amino acid variants. The fact that Fcrn is a single copy gene indicates that it is expressed in both the neonatal intestine and the fetal yolk sac. 74 refs., 7 figs., 2 tabs.

  17. Properties of gene expression including the non-functional binding of transcription factors to DNA

    NASA Astrophysics Data System (ADS)

    Burger, Anat; Walczak, Aleksandra; Wolynes, Peter

    2012-02-01

    Many eukaryotic transcription factors bind to DNA sequences with a remarkable lack of specificity. This suggests that non-functional binding between transcription factors and DNA might not have the detrimental effect on regulation one would naively assume results from competition for binding. In fact, if binding to DNA protects transcription factors from degradation, the number and binding affinity of these 'decoy' binding sites should have no influence on the copy number of transcription factors available for regulation. We calculate the influence of adding decoy binding sites on several important aspects of gene expression including the noise, the time to reach steady state, and bimodal switch rates. Analyzing these effects could shed some light on how a gene functions in the 'dressed' environment of a genomic background.

  18. Genetic variants in mannose receptor gene (MRC1) confer susceptibility to increased risk of sarcoidosis

    PubMed Central

    2010-01-01

    Background Mannose receptor (MR) is a member of the C-type lectin receptor family involved in pathogen molecular-pattern recognition and thought to be critical in shaping host immune response. The aim of this study was to investigate potential associations of genetic variants in the MRC1 gene with sarcoidosis. Methods Nine single nucleotide polymorphisms (SNPs), encompassing the MRC1 gene, were genotyped in a total of 605 Japanese consisting of 181 sarcoidosis patients and 424 healthy controls. Results Suggestive evidence of association between rs691005 SNP and risk of sarcoidosis was observed independent of sex and age in a recessive model (P = 0.001). Conclusions These results suggest that MRC1 is an important candidate gene for sarcoidosis. This is the first study to imply that genetic variants in MRC1, a major member of the C-type lectin, contribute to the development of sarcoidosis. PMID:21029423

  19. Systematic screening for mutations in the human serotonin 1F receptor gene in patients with bipolar affective disorder and schizophrenia

    SciTech Connect

    Shimron-Abarbanell, D.; Harms, H.; Erdmann, J.; Propping, P.; Noethen, M.M.

    1996-04-09

    Using single strand conformational analysis we screened the complete coding sequence of the serotonin 1F (5-HT{sub 1F}) receptor gene for the presence of DNA sequence variation in a sample of 137 unrelated individuals including 45 schizophrenic patients, 46 bipolar patients, as well as 46 healthy controls. We detected only three rare sequence variants which are characterized by single base pair substitutions, namely a silent T{r_arrow}A transversion in the third position of codon 261 (encoding isoleucine), a silent C{r_arrow}T transition in the third position of codon 176 (encoding histidine), and a C{r_arrow}T transition in position -78 upstream from the start codon. The lack of significant mutations in patients suffering from schizophrenia and bipolar affective disorder indicates that the 5-HT{sub 1F} receptor is not commonly involved in the etiology of these diseases. 12 refs., 1 fig., 2 tabs.

  20. Stepwise loss of motilin and its specific receptor genes in rodents.

    PubMed

    He, Jing; Irwin, David M; Chen, Rui; Zhang, Ya-Ping

    2010-01-01

    Specific interactions among biomolecules drive virtually all cellular functions and underlie phenotypic complexity and diversity. Biomolecules are not isolated particles, but are elements of integrated interaction networks, and play their roles through specific interactions. Simultaneous emergence or loss of multiple interacting partners is unlikely. If one of the interacting partners is lost, then what are the evolutionary consequences for the retained partner? Taking advantages of the availability of the large number of mammalian genome sequences and knowledge of phylogenetic relationships of the species, we examined the evolutionary fate of the motilin (MLN) hormone gene, after the pseudogenization of its specific receptor, MLN receptor (MLNR), on the rodent lineage. We speculate that the MLNR gene became a pseudogene before the divergence of the squirrel and other rodents about 75 mya. The evolutionary consequences for the MLN gene were diverse. While an intact open reading frame for the MLN gene, which appears functional, was preserved in the kangaroo rat, the MLN gene became inactivated independently on the lineages leading to the guinea pig and the common ancestor of the mouse and rat. Gain and loss of specific interactions among biomolecules through the birth and death of genes for biomolecules point to a general evolutionary dynamic: gene birth and death are widespread phenomena in genome evolution, at the genetic level; thus, once mutations arise, a stepwise process of elaboration and optimization ensues, which gradually integrates and orders mutations into a coherent pattern. PMID:19696113

  1. Vitamin D Receptor Gene Ablation in the Conceptus Has Limited Effects on Placental Morphology, Function and Pregnancy Outcome

    PubMed Central

    Laurence, Jessica A.; Leemaqz, Shalem; O’Leary, Sean; Bianco-Miotto, Tina; Du, Jing; Anderson, Paul H.; Roberts, Claire T.

    2015-01-01

    Vitamin D deficiency has been implicated in the pathogenesis of several pregnancy complications attributed to impaired or abnormal placental function, but there are few clues indicating the mechanistic role of vitamin D in their pathogenesis. To further understand the role of vitamin D receptor (VDR)-mediated activity in placental function, we used heterozygous Vdr ablated C57Bl6 mice to assess fetal growth, morphological parameters and global gene expression in Vdr null placentae. Twelve Vdr+/- dams were mated at 10–12 weeks of age with Vdr+/- males. At day 18.5 of the 19.5 day gestation in our colony, females were euthanised and placental and fetal samples were collected, weighed and subsequently genotyped as either Vdr+/+, Vdr+/- or Vdr-/-. Morphological assessment of placentae using immunohistochemistry was performed and RNA was extracted and subject to microarray analysis. This revealed 25 genes that were significantly differentially expressed between Vdr+/+ and Vdr-/- placentae. The greatest difference was a 6.47-fold change in expression of Cyp24a1 which was significantly lower in the Vdr-/- placentae (P<0.01). Other differentially expressed genes in Vdr-/- placentae included those involved in RNA modification (Snord123), autophagy (Atg4b), cytoskeletal modification (Shroom4), cell signalling (Plscr1, Pex5) and mammalian target of rapamycin (mTOR) signalling (Deptor and Prr5). Interrogation of the upstream sequence of differentially expressed genes identified that many contain putative vitamin D receptor elements (VDREs). Despite the gene expression differences, this did not contribute to any differences in overall placental morphology, nor was function affected as there was no difference in fetal growth as determined by fetal weight near term. Given our dams still expressed a functional VDR gene, our results suggest that cross-talk between the maternal decidua and the placenta, as well as maternal vitamin D status, may be more important in determining pregnancy outcome than conceptus expression of VDR. PMID:26121239

  2. Extraordinary Diversity of Chemosensory Receptor Gene Repertoires Among Vertebrates

    E-print Network

    Zhang, Jianzhi

    gene repertoires is a result of adaptations of individual species to their environments and diets. 1 and discrimination, toxin and predator avoidance, mating, and territoriality (Prasad and Reed 1999). Vertebrate taste may result in aversion and therefore is a defensive mechanism against ingestion of toxins (Herness

  3. Ontogeny of Odorant Receptor Gene Expression in Zebrafish, Danio rerio

    E-print Network

    Vogt, Richard G.

    of cul- ture, and the promise of genetic manipulation (Westerfield, 1993;Concordet and Inaham. 1994 system is extremely complex in its organization. It would seem desirable to develop a simple model mechanisms governing the ex- pression of OR genes during development of the vertebrate olfactory system

  4. Polo-like kinase 2 gene expression is regulated by the orphan nuclear receptor estrogen receptor-related receptor gamma (ERR{gamma})

    SciTech Connect

    Park, Yun-Yong; Kim, Seok-Ho; Kim, Yong Joo; Kim, Sun Yee; Lee, Tae-Hoon; Lee, In-Kyu; Park, Seung Bum; Choi, Hueng-Sik

    2007-10-12

    Estrogen receptor-related receptor gamma (ERR{gamma}) is a member of the nuclear receptor family of transcriptional activators. To date, the target genes and physiological functions of ERR{gamma} are not well understood. In the current study, we identify that Plk2 is a novel target of ERR{gamma}. Northern blot analysis showed that overexpression of ERR{gamma} induced Plk2 expression in cancer cell lines. ERR{gamma} activated the Plk2 gene promoter, and deletion and mutational analysis of the Plk2 promoter revealed that the ERR{gamma}-response region is located between nucleotides (nt) -2327 and -2229 and -441 and -432 (relative to the transcriptional start site at +1). Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) analysis demonstrated that ERR{gamma} binds directly to the Plk2 promoter. Overexpression of ERR{gamma} in the presence of the mitotic inhibitor nocodazole significantly decreased apoptosis, and induced S-phase cell cycle progression through the induction of Plk2 expression. Taken together, these results demonstrated that Plk2 is a novel target of ERR{gamma}, and suggest that this interaction is crucial for cancer cell proliferation.

  5. Identical Gene Regulation Patterns of T3 and Selective Thyroid Hormone Receptor Modulator GC-1

    PubMed Central

    Yuan, Chaoshen; Lin, Jean Z.H.; Sieglaff, Douglas H.; Ayers, Steven D.; DeNoto-Reynolds, Frances; Baxter, John D.

    2012-01-01

    Synthetic selective thyroid hormone (TH) receptor (TR) modulators (STRM) exhibit beneficial effects on dyslipidemias in animals and humans and reduce obesity, fatty liver, and insulin resistance in preclinical animal models. STRM differ from native TH in preferential binding to the TR? subtype vs. TR?, increased uptake into liver, and reduced uptake into other tissues. However, selective modulators of other nuclear receptors exhibit important gene-selective actions, which are attributed to differential effects on receptor conformation and dynamics and can have profound influences in animals and humans. Although there are suggestions that STRM may exhibit such gene-specific actions, the extent to which they are actually observed in vivo has not been explored. Here, we show that saturating concentrations of the main active form of TH, T3, and the prototype STRM GC-1 induce identical gene sets in livers of euthyroid and hypothyroid mice and a human cultured hepatoma cell line that only expresses TR?, HepG2. We find one case in which GC-1 exhibits a modest gene-specific reduction in potency vs. T3, at angiopoietin-like factor 4 in HepG2. Investigation of the latter effect confirms that GC-1 acts through TR? to directly induce this gene but this gene-selective activity is not related to unusual T3-response element sequence, unlike previously documented promoter-selective STRM actions. Our data suggest that T3 and GC-1 exhibit almost identical gene regulation properties and that gene-selective actions of GC-1 and similar STRM will be subtle and rare. PMID:22067320

  6. The dopamine D2 receptor gene DRD2 and the nicotinic acetylcholine receptor gene CHRNA4 interact on striatal gray matter volume: evidence from a genetic imaging study.

    PubMed

    Markett, Sebastian; Reuter, Martin; Montag, Christian; Weber, Bernd

    2013-01-01

    Dopaminergic activity is modulated by acetylcholine with relevance for cognitive functioning, as shown by pharmacological work in a rodent model. In humans, the two transmitter systems' joint effort on cognition has been described on the molecular genetic level: DRD2 rs6277, a single nucleotide polymorphism (SNP) on the dopamine D2 receptor gene and CHRNA4 rs1044396, a SNP on the nicotinic acetylcholine receptor gene interact on visuo-spatial and phonological working memory. The present study uses structural MRI and voxel based morphometry to extend this behavioral work to an intermediate phenotype on the neural level. We found significantly reduced gray matter volume in the right putamen in carriers of the DRD2 C/C and CHRNA4 T/T groups. This genotype combination has previously proven to be beneficial for working memory capacity. Results are in line with the idea that the two genes jointly influence the gating signals from subcortical structures to the prefrontal cortex. PMID:22947540

  7. The Expression Pattern of Melatonin Receptor 1a Gene during Early Life Stages in the Nile tilapia (Oreochromis niloticus)

    PubMed Central

    Jin, Ye Hwa; Park, Jin Woo; Kim, Jung-Hyun; Kwon, Joon Yeong

    2013-01-01

    The action of melatonin within the body of animals is known to be mediated by melatonin receptors. Three different types of melatonin receptors have been identified so far in fish. However, which of these are specifically involved in puberty onset is not known in fish. We cloned and analyzed the sequence of melatonin receptor 1a (mel 1a) gene in Nile tilapia Oreochromis niloticus. In addition, we examined the tissue distribution of gene expressions for three types of receptors, mel 1a, 1b and lc and investigated which of them is involved in the onset of puberty by comparing their expression with that of gonadotropin-releasing hormone receptor I (GnRHr I) gene using quantitative real-time PCR from 1 week post hatch (wph) to 24 wph. The mel 1a gene of Nile tilapia consisted of two exons and one bulky intron between them. Mel 1a gene was found to be highly conserved gene showing high homology with the corresponding genes from different teleost. All three types of melatonin receptor genes were expressed in the brain, eyes and ovary in common. Expression of mel 1a gene was the most abundant and ubiquitous among 3 receptors in the brain, liver, gill, ovary, muscle, eye, heart, intestine, spleen and kidney. Mel 1b and mel 1c genes were, however, expressed in fewer tissues at low level. During the development post hatch, expressions of both mel 1a and GnRHr I genes significantly increased at 13 wph which was close to the putative timing of puberty onset in this species. These results suggest that among three types of receptors mel 1a is most likely associated with the action of melatonin in the onset of puberty in Nile tilapia. PMID:25949120

  8. Genes expressed in the brain define three distinct neuronal nicotinic acetylcholine receptors.

    PubMed Central

    Nef, P; Oneyser, C; Alliod, C; Couturier, S; Ballivet, M

    1988-01-01

    Four genes encode the related protein subunits that assemble to form the nicotinic acetylcholine receptor (nAChR) at the motor endplate of vertebrates. We have isolated from the chicken genome four additional members of the same gene family whose protein products, termed alpha 2, alpha 3, alpha 4 and n alpha (non-alpha) probably define three distinct neuronal nAChR subtypes. The neuronal nAChR genes have identical structures consisting of six protein-coding exons and specify proteins that are best aligned with the chicken endplate alpha subunit, whose gene we have also characterized. mRNA transcripts encoding alpha 4 and n alpha are abundant in embryonic and in adult avian brain, whereas alpha 2 and alpha 3 transcripts are much scarcer. The same set of neuronal genes probably exists in all vertebrates since their counterparts have also been identified in the rat genome. Images PMID:3267226

  9. Diet Shapes the Evolution of the Vertebrate Bitter Taste Receptor Gene Repertoire

    PubMed Central

    Li, Diyan; Zhang, Jianzhi

    2014-01-01

    Vertebrate Tas2r taste receptors bind to bitter compounds, which are typically poisonous, to elicit bitter sensation to prevent the ingestion of toxins. Previous studies noted a marked variation in the number of Tas2r genes among species, but the underlying cause is unclear. To address this question, we compile the Tas2r gene repertoires from 41 mammals, 4 birds, 2 reptiles, 1 amphibian, and 6 fishes. The number of intact Tas2r genes varies from 0 in the bottlenose dolphin to 51 in the Western clawed frog, with numerous expansions and contractions of the gene family throughout vertebrates, especially among tetrapods. The Tas2r gene number in a species correlates with the fraction of plants in its diet. Because plant tissues contain more toxic compounds than animal tissues do, our observation supports the hypothesis that dietary toxins are a major selective force shaping the diversity of the Tas2r repertoire. PMID:24202612

  10. Lack of imprinting of the human dopamine D4 receptor (DRD4) gene

    SciTech Connect

    Cichon, S.; Noethen, M.M.; Propping, P.; Wolf, H.K.

    1996-04-09

    The term genomic imprinting has been used to refer to the differential expression of genetic material depending on whether it has come from the male or female parent. In humans, the chromosomal region 11p15.5 has been shown to contain 2 imprinted genes (H19 and IGF2). The gene for the dopamine D4 receptor (DRD4), which is of great interest for research into neuropsychiatric disorders and psychopharmacology, is also located in this area. In the present study, we have examined the imprinting status of the DRD4 gene in brain tissue of an epileptic patient who was heterozygous for a 12 bp repeat polymorphism in exon 1 of the DRD4 gene. We show that both alleles are expressed in equivalent amounts. We therefore conclude that the DRD4 gene is not imprinted in the human brain. 30 refs., 1 fig.

  11. Mutation in the V2 vasopressin receptor gene, AVPR2, causes nephrogenic syndrome of inappropriate diuresis.

    PubMed

    Erdélyi, László S; Mann, W Alexander; Morris-Rosendahl, Deborah J; Groß, Ute; Nagel, Mato; Várnai, Péter; Balla, András; Hunyady, László

    2015-11-01

    Nephrogenic syndrome of inappropriate antidiuresis (NSIAD) is a recently discovered rare disease caused by gain-of-function mutations of the V2 vasopressin receptor gene, AVPR2. To date, mutations of Phe229 and Arg137 have been identified as gain-of-function in the V2 vasopressin receptor (V2R). These receptor mutations lead to hyponatremia, which may lead to clinical symptoms in infants. Here we present a newly identified I130N substitution in exon 2 of the V2R gene in a family, causing NSIAD. This I130N mutation resulted in constitutive activity of the V2R with constitutive cyclic adenosine monophosphate (cAMP) generation in HEK293 cells. This basal activity could be blocked by the inverse agonist tolvaptan and arginine-vasopressin stimulation enhanced the cAMP production of I130N-V2R. The mutation causes a biased receptor conformation as the basal cAMP generation activity of I130N does not lead to interaction with ?-arrestin. The constitutive activity of the mutant receptor caused constitutive dynamin-dependent and ?-arrestin-independent internalization. The inhibition of basal internalization using dominant-negative dynamin resulted in an increased cell surface expression. In contrast to the constitutive internalization, agonist-induced endocytosis was ?-arrestin dependent. Thus, tolvaptan could be used for treatment of hyponatremia in patients with NSIAD who carry the I130N-V2R mutation. PMID:26131744

  12. Expression of apoptosis-related genes in liver-specific growth hormone receptor gene-disrupted mice is sex dependent.

    PubMed

    Gesing, Adam; Wang, Feiya; List, Edward O; Berryman, Darlene E; Masternak, Michal M; Lewinski, Andrzej; Karbownik-Lewinska, Malgorzata; Kopchick, John J; Bartke, Andrzej

    2015-01-01

    Apoptosis is a process that affects life span and health. Mice with liver-specific disruption of the growth hormone receptor (GHR) gene (ie, Ghr gene) liver-specific growth hormone receptor knockout [LiGHRKO] mice), as opposed to mice with global deletion of the Ghr gene (GHRKO; Ghr-/-), are characterized by severe hepatic steatosis and lack of improved insulin sensitivity. We have previously shown that levels of proapoptotic factors are decreased in long-lived and insulin-sensitive GHRKO mice. In the current study, expression of specific apoptosis-related genes was assessed in brains, kidneys, and livers of male and female LiGHRKO and wild-type mice using real-time PCR. In the brain, expression of Caspase 3, Caspase 9, Smac/DIABLO, and p53 was decreased in females compared with males. Renal expression of Caspase 3 and Noxa also decreased in female mice. In the liver, no differences were seen between males and females. Also, no significant genotype effects were detected in the examined organs. Lack of significant genotype effect in kidneys contrasts with previous observations in GHRKO mice. Apparently, global GHR deletion induces beneficial changes in apoptotic factors, whereas liver-specific GHR disruption does not. Furthermore, sexual dimorphism may play an important role in regulating apoptosis during liver-specific suppression of the somatotrophic signaling. PMID:24550353

  13. Estrogen receptor gene expression in relation to neuropsychiatric disorders.

    PubMed

    Ostlund, Hanna; Keller, Eva; Hurd, Yasmin L

    2003-12-01

    Compelling evidence now exists for estrogen's involvement in the regulation of mood and cognitive functions. Serum estrogen levels have been shown to play an important role in the expression of psychiatric disorders such as depression and schizophrenia. We have characterized the distribution of the estrogen receptors, ERalpha and ERbeta, in the human brain and showed a preferential limbic-related expression pattern for these transcripts. The ERalpha mRNA dominates in the amygdala and hypothalamus, suggesting estrogen modulation of autonomic and neuroendocrine as well as emotional functions. In contrast, the hippocampal formation, entorhinal cortex, and thalamus appear to be ERbeta-dominant areas, suggesting a role for ERbeta in cognition, non-emotional memory, and motor functions. The role of estradiol can also be examined in regard to its relationship to other neurotransmitter systems known to be linked to specific psychiatric disorders. Estradiol has been shown to regulate the serotonin (5-HT) system, which has been strongly implicated in affective disorders. We have studied a genetic animal model of depression, and found altered 5-HT receptor mRNA levels in discrete brain regions; many of the abnormalities are reversed by estradiol treatment, especially for the 5-HT(2A) receptor subtype. The norepinephrine (NE) system is, similar to serotonin, a target for antidepressant drugs, and projects to mesocorticolimbic structures implicated in mood disorders. We have recently observed that NE neurons in the human locus coeruleus (LC) express moderate levels of both ER transcripts. The possibility of estrogen's regulating LC function has been documented in animal studies. Results from our preliminary experiments have revealed that the ERbeta mRNA is decreased in persons committing suicide, a cause of death that is highly linked to affective disorder. Follow-up studies are currently under way with a much larger population to validate these results. Overall, the discrete anatomical organization of the ER mRNAs in the human brain provide evidence as to the specific neuronal populations in which the actions of ERs could modulate mood and thus underlie the neuropathology of psychiatric disorders such as depression. PMID:14993040

  14. ?-Opioid Receptor Gene A118G Polymorphism Predicts Survival in Patients with Breast Cancer

    PubMed Central

    Bortsov, Andrey V.; Millikan, Robert C.; Belfer, Inna; Boortz-Marx, Richard L.; Arora, Harendra; McLean, Samuel A.

    2012-01-01

    Background Preclinical studies suggest that opioids may promote tumor growth. Genetic polymorphisms have been shown to affect opioid receptor function and to modify the clinical effects of morphine. In this study we assessed the association between six common polymorphisms in the ?-opioid receptor gene, including the well known A118G polymorphism, and breast cancer survival. Methods A total of 2,039 women ages 23–74 yr (38% African American, 62% European American, 55% postmenopausal) diagnosed with breast cancer between 1993 – 2001 were followed through 2006. Genotyping was performed using the TaqMan platform (Applied Biosystems Inc., Foster City, CA). Kaplan-Meyer curves, log-rank tests, and Cox proportional hazard models were used to examine the association between each genotype and survival. Results After Bonferroni adjustment for multiple testing, patient genotype at A118G was associated with breast cancer-specific mortality at 10 yr. Women with one or more copies of the G allele had decreased breast cancer-specific mortality (p < .001). This association was limited to invasive cases only; effect size appeared to increase with clinical stage. Cox regression model adjusted for age and ethnicity also showed decreased mortality in A/G and G/G genotypes compared to A/A genotype (hazard ratio = 0.57 [0.38, 0.85] and 0.32 [0.22, 0.49], respectively; p = .006). Conclusions These results suggest that opioid pathways may be involved in tumor growth. Further studies examining the association between genetic variants influencing opioid system function and cancer survival are warranted. PMID:22433205

  15. Genetic Variation in the Platelet Endothelial Aggregation Receptor 1 Gene Results in Endothelial Dysfunction

    PubMed Central

    Fisch, Adam S.; Yerges-Armstrong, Laura M.; Backman, Joshua D.; Wang, Hong; Donnelly, Patrick; Ryan, Kathleen A.; Parihar, Ankita; Pavlovich, Mary A.; Mitchell, Braxton D.; O’Connell, Jeffrey R.; Herzog, William; Harman, Christopher R.; Wren, Jonathan D.; Lewis, Joshua P.

    2015-01-01

    Platelet Endothelial Aggregation Receptor 1 (PEAR1) is a newly identified membrane protein reported to be involved in multiple vascular and thrombotic processes. While most studies to date have focused on the effects of this receptor in platelets, PEAR1 is located in multiple tissues including the endothelium, where it is most highly expressed. Our first objective was to evaluate the role of PEAR1 in endothelial function by examining flow-mediated dilation of the brachial artery in 641 participants from the Heredity and Phenotype Intervention Heart Study. Our second objective was to further define the impact of PEAR1 on cardiovascular disease computationally through meta-analysis of 75,000 microarrays, yielding insights regarding PEAR1 function, and predictions of phenotypes and diseases affected by PEAR1 dysregulation. Based on the results of this meta-analysis we examined whether genetic variation in PEAR1 influences endothelial function using an ex vivo assay of endothelial cell migration. We observed a significant association between rs12041331 and flow-mediated dilation in participants of the Heredity and Phenotype Intervention Heart Study (P = 0.02). Meta-analysis results revealed that PEAR1 expression is highly correlated with several genes (e.g. ANG2, ACVRL1, ENG) and phenotypes (e.g. endothelial cell migration, angiogenesis) that are integral to endothelial function. Functional validation of these results revealed that PEAR1 rs12041331 is significantly associated with endothelial migration (P = 0.04). Our results suggest for the first time that genetic variation of PEAR1 is a significant determinant of endothelial function through pathways implicated in cardiovascular disease. PMID:26406321

  16. Inhibitory effects of azole-type fungicides on interleukin-17 gene expression via retinoic acid receptor-related orphan receptors ? and ?.

    PubMed

    Kojima, Hiroyuki; Muromoto, Ryuta; Takahashi, Miki; Takeuchi, Shinji; Takeda, Yukimasa; Jetten, Anton M; Matsuda, Tadashi

    2012-03-15

    The retinoic acid receptor-related orphan receptors ? and ? (ROR? and ROR?), are key regulators of helper T (Th)17 cell differentiation, which is involved in the innate immune system and autoimmune disorders. However, it remains unclear whether environmental chemicals, including pesticides, have agonistic and/or antagonistic activity against ROR?/?. In this study, we investigated the ROR?/? activity of several azole-type fungicides, and the effects of these fungicides on the gene expression of interleukin (IL)-17, which mediates the function of Th17 cells. In the ROR-reporter gene assays, five azole-type fungicides (imibenconazole, triflumizole, hexaconazole, tetraconazole and imazalil) suppressed ROR?- and/or ROR?-mediated transcriptional activity as did benzenesulphonamide T0901317, a ROR inverse agonist and a liver X receptor (LXR) agonist. In particular, imibenconazole, triflumizole and hexaconazole showed ROR? inverse agonistic activity at concentrations of 10(-6)M. However, unlike T0901317, these fungicides failed to show any LXR?/? agonistic activity. Next, five azole-type fungicides, showing ROR inverse agonist activity, were tested on IL-17 mRNA expression in mouse T lymphoma EL4 cells treated with phorbol myristate acetate and ionomycin. The quantitative RT-PCR analysis revealed that these fungicides suppressed the expression of IL-17 mRNA without effecting ROR? and ROR? mRNA levels. In addition, the inhibitory effect of imibenconazole as well as that of T0901317 was absorbed in ROR?/?-knocked down EL4 cells. Taken together, these results suggest that some azole-type fungicides inhibit IL-17 production via ROR?/?. This also provides the first evidence that environmental chemicals can act as modulators of IL-17 expression in immune cells. PMID:22289359

  17. Co-regulated gene expression by oestrogen receptor ? and liver receptor homolog-1 is a feature of the oestrogen response in breast cancer cells

    PubMed Central

    Lai, Chun-Fui; Flach, Koen D.; Alexi, Xanthippi; Fox, Stephen P.; Ottaviani, Silvia; Thiruchelvam, Paul T.R.; Kyle, Fiona J.; Thomas, Ross S.; Launchbury, Rosalind; Hua, Hui; Callaghan, Holly B.; Carroll, Jason S.; Charles Coombes, R.; Zwart, Wilbert; Buluwela, Laki; Ali, Simak

    2013-01-01

    Oestrogen receptor ? (ER?) is a nuclear receptor that is the driving transcription factor expressed in the majority of breast cancers. Recent studies have demonstrated that the liver receptor homolog-1 (LRH-1), another nuclear receptor, regulates breast cancer cell proliferation and promotes motility and invasion. To determine the mechanisms of LRH-1 action in breast cancer, we performed gene expression microarray analysis following RNA interference for LRH-1. Interestingly, gene ontology (GO) category enrichment analysis of LRH-1–regulated genes identified oestrogen-responsive genes as the most highly enriched GO categories. Remarkably, chromatin immunoprecipitation coupled to massively parallel sequencing (ChIP-seq) to identify genomic targets of LRH-1 showed LRH-1 binding at many ER? binding sites. Analysis of select binding sites confirmed regulation of ER??regulated genes by LRH-1 through binding to oestrogen response elements, as exemplified by the TFF1/pS2 gene. Finally, LRH-1 overexpression stimulated ER? recruitment, while LRH-1 knockdown reduced ER? recruitment to ER? binding sites. Taken together, our findings establish a key role for LRH-1 in the regulation of ER? target genes in breast cancer cells and identify a mechanism in which co-operative binding of LRH-1 and ER? at oestrogen response elements controls the expression of oestrogen-responsive genes. PMID:24049078

  18. The EMT-activator ZEB1 induces bone metastasis associated genes including BMP-inhibitors

    PubMed Central

    Mock, Kerstin; Preca, Bogdan-Tiberius; Brummer, Tilman; Brabletz, Simone; Stemmler, Marc P.; Brabletz, Thomas

    2015-01-01

    Tumor cell invasion, dissemination and metastasis is triggered by an aberrant activation of epithelial-to-mesenchymal transition (EMT), often mediated by the transcription factor ZEB1. Disseminating tumor cells must acquire specific features that allow them to colonize at different organ sites. Here we identify a set of genes that is highly expressed in breast cancer bone metastasis and activated by ZEB1. This gene set includes various secreted factors, e.g. the BMP-inhibitor FST, that are described to reorganize the bone microenvironment. By inactivating BMP-signaling, BMP-inhibitors are well-known to induce osteolysis in development and disease. We here demonstrate that the expression of ZEB1 and BMP-inhibitors is correlated with bone metastasis, but not with brain or lung metastasis of breast cancer patients. In addition, we show that this correlated expression pattern is causally linked, as ZEB1 induces the expression of the BMP-inhibitors NOG, FST and CHRDL1 both by directly increasing their gene transcription, as well as by indirectly suppressing their reduction via miR-200 family members. Consequently, ZEB1 stimulates BMP-inhibitor mediated osteoclast differentiation. These findings suggest that ZEB1 is not only driving EMT, but also contributes to the formation of osteolytic bone metastases in breast cancer. PMID:25973542

  19. A missense mutation in the Ca-sensing receptor gene causes familial autosomal dominant hypoparathyroidism

    SciTech Connect

    Perry, Y.M.; Finegold, D.N.; Armitage, M.M.

    1994-09-01

    A large family was identified in which hypoparathyroidism was observed to segregate as an autosomal dominant trait in 3 generations. Linkage analysis using short tandem repeat polymorphisms linked the disease phenotype to chromosomal region 3q13. This region contains a newly identified Ca-sensing receptor (PCAR1) gene. This receptor regulates the secretion of parathyroid hormone from parathyroid cells in response to extracellular ionized Ca concentration ([Ca{sup +2}]). PCR-based single stranded conformational analysis of exonic sequences of the PCAR1 gene revealed an abnormal conformer in exon 3 in affected individuals. Direct sequencing of the amplification product from an affected and an unaffected family member showed an A {yields} G transition at nucleotide 770 of the PCAR1 gene [numbering based on the bovine sequence (Genbank accession number S67307)]. This substitution created a Msp1 restriction site which cosegregated with hypoparathyroidism in this family. This substitution was not observed in unaffected family members, unrelated spouses, or unrelated population controls. This substitution is predicted to result in the replacement of a glutamine residue at amino acid 246 by an arginine residue. The Ca-sensing receptor appears to be a member of the family of seven membrane spanning G-protein linked receptors. The extracellular location of this amino acid substitution appears to produce a gain of function mutation increasing the receptor sensitivity to [Ca{sup +2}] and decreasing the calcium {open_quotes}set point{close_quotes}. This is in contrast to the loss of function mutations observed in the PCAR1 gene in pedigrees with familial hypercalcemic hypocalciuria.

  20. Epigenetic modification of the oxytocin receptor gene influences the perception of anger and fear in the human brain

    PubMed Central

    Puglia, Meghan H.; Lillard, Travis S.; Morris, James P.; Connelly, Jessica J.

    2015-01-01

    In humans, the neuropeptide oxytocin plays a critical role in social and emotional behavior. The actions of this molecule are dependent on a protein that acts as its receptor, which is encoded by the oxytocin receptor gene (OXTR). DNA methylation of OXTR, an epigenetic modification, directly influences gene transcription and is variable in humans. However, the impact of this variability on specific social behaviors is unknown. We hypothesized that variability in OXTR methylation impacts social perceptual processes often linked with oxytocin, such as perception of facial emotions. Using an imaging epigenetic approach, we established a relationship between OXTR methylation and neural activity in response to emotional face processing. Specifically, high levels of OXTR methylation were associated with greater amounts of activity in regions associated with face and emotion processing including amygdala, fusiform, and insula. Importantly, we found that these higher levels of OXTR methylation were also associated with decreased functional coupling of amygdala with regions involved in affect appraisal and emotion regulation. These data indicate that the human endogenous oxytocin system is involved in attenuation of the fear response, corroborating research implicating intranasal oxytocin in the same processes. Our findings highlight the importance of including epigenetic mechanisms in the description of the endogenous oxytocin system and further support a central role for oxytocin in social cognition. This approach linking epigenetic variability with neural endophenotypes may broadly explain individual differences in phenotype including susceptibility or resilience to disease. PMID:25675509

  1. Gene structure and expression of serotonin receptor HTR2C in hypothalamic samples from infanticidal and control sows

    E-print Network

    Quilter, Claire R; Bagga, Meenashki; Moinie, Ahmad; Junaid, Fatima; Sargent, Carole A

    2012-04-02

    genes in aggressive and non-aggressive rats. Neurosci Behav Physiol 2010, 40:357-361. 19. Bertelli M, Alushi B, Veicsteinas A, Jinnah HA, Micheli V: Gene expression and mRNA editing of serotonin receptor 2C in brains of HPRT gene knock-out mice...

  2. Molecular diagnostics for congenital hearing loss including 15 deafness genes using a next generation sequencing platform

    PubMed Central

    2012-01-01

    Background Hereditary hearing loss (HL) can originate from mutations in one of many genes involved in the complex process of hearing. Identification of the genetic defects in patients is currently labor intensive and expensive. While screening with Sanger sequencing for GJB2 mutations is common, this is not the case for the other known deafness genes (> 60). Next generation sequencing technology (NGS) has the potential to be much more cost efficient. Published methods mainly use hybridization based target enrichment procedures that are time saving and efficient, but lead to loss in sensitivity. In this study we used a semi-automated PCR amplification and NGS in order to combine high sensitivity, speed and cost efficiency. Results In this proof of concept study, we screened 15 autosomal recessive deafness genes in 5 patients with congenital genetic deafness. 646 specific primer pairs for all exons and most of the UTR of the 15 selected genes were designed using primerXL. Using patient specific identifiers, all amplicons were pooled and analyzed using the Roche 454 NGS technology. Three of these patients are members of families in which a region of interest has previously been characterized by linkage studies. In these, we were able to identify two new mutations in CDH23 and OTOF. For another patient, the etiology of deafness was unclear, and no causal mutation was found. In a fifth patient, included as a positive control, we could confirm a known mutation in TMC1. Conclusions We have developed an assay that holds great promise as a tool for screening patients with familial autosomal recessive nonsyndromal hearing loss (ARNSHL). For the first time, an efficient, reliable and cost effective genetic test, based on PCR enrichment, for newborns with undiagnosed deafness is available. PMID:22607986

  3. Repurposed transcriptomic data facilitate discovery of innate immunity toll-like receptor (TLR) Genes across Lophotrochozoa.

    PubMed

    Halanych, Kenneth M; Kocot, Kevin M

    2014-10-01

    The growing volume of genomic data from across life represents opportunities for deriving valuable biological information from data that were initially collected for another purpose. Here, we use transcriptomes collected for phylogenomic studies to search for toll-like receptor (TLR) genes in poorly sampled lophotrochozoan clades (Annelida, Mollusca, Brachiopoda, Phoronida, and Entoprocta) and one ecdysozoan clade (Priapulida). TLR genes are involved in innate immunity across animals by recognizing potential microbial infection. They have an extracellular leucine-rich repeat (LRR) domain connected to a transmembrane domain and an intracellular toll/interleukin-1 receptor (TIR) domain. Consequently, these genes are important in initiating a signaling pathway to trigger defense. We found at least one TLR ortholog in all but two taxa examined, suggesting that a broad array of lophotrochozoans may have innate immune systems similar to those observed in vertebrates and arthropods. Comparison to the SMART database confirmed the presence of both the LRR and the TIR protein motifs characteristic of TLR genes. Because we looked at only one transcriptome per species, discovery of TLR genes was limited for most taxa. However, several TRL-like genes that vary in the number and placement of LRR domains were found in phoronids. Additionally, several contigs contained LRR domains but lacked TIR domains, suggesting they were not TLRs. Many of these LRR-containing contigs had other domains (e.g., immunoglobin) and are likely involved in innate immunity. PMID:25411377

  4. Sweet taste receptor gene variation and aspartame taste in primates and other species.

    PubMed

    Li, Xia; Bachmanov, Alexander A; Maehashi, Kenji; Li, Weihua; Lim, Raymond; Brand, Joseph G; Beauchamp, Gary K; Reed, Danielle R; Thai, Chloe; Floriano, Wely B

    2011-06-01

    Aspartame is a sweetener added to foods and beverages as a low-calorie sugar replacement. Unlike sugars, which are apparently perceived as sweet and desirable by a range of mammals, the ability to taste aspartame varies, with humans, apes, and Old World monkeys perceiving aspartame as sweet but not other primate species. To investigate whether the ability to perceive the sweetness of aspartame correlates with variations in the DNA sequence of the genes encoding sweet taste receptor proteins, T1R2 and T1R3, we sequenced these genes in 9 aspartame taster and nontaster primate species. We then compared these sequences with sequences of their orthologs in 4 other nontasters species. We identified 9 variant sites in the gene encoding T1R2 and 32 variant sites in the gene encoding T1R3 that distinguish aspartame tasters and nontasters. Molecular docking of aspartame to computer-generated models of the T1R2 + T1R3 receptor dimer suggests that species variation at a secondary, allosteric binding site in the T1R2 protein is the most likely origin of differences in perception of the sweetness of aspartame. These results identified a previously unknown site of aspartame interaction with the sweet receptor and suggest that the ability to taste aspartame might have developed during evolution to exploit a specialized food niche. PMID:21414996

  5. Sweet Taste Receptor Gene Variation and Aspartame Taste in Primates and Other Species

    PubMed Central

    Li, Xia; Bachmanov, Alexander A.; Maehashi, Kenji; Li, Weihua; Lim, Raymond; Brand, Joseph G.; Beauchamp, Gary K.; Reed, Danielle R.; Thai, Chloe

    2011-01-01

    Aspartame is a sweetener added to foods and beverages as a low-calorie sugar replacement. Unlike sugars, which are apparently perceived as sweet and desirable by a range of mammals, the ability to taste aspartame varies, with humans, apes, and Old World monkeys perceiving aspartame as sweet but not other primate species. To investigate whether the ability to perceive the sweetness of aspartame correlates with variations in the DNA sequence of the genes encoding sweet taste receptor proteins, T1R2 and T1R3, we sequenced these genes in 9 aspartame taster and nontaster primate species. We then compared these sequences with sequences of their orthologs in 4 other nontasters species. We identified 9 variant sites in the gene encoding T1R2 and 32 variant sites in the gene encoding T1R3 that distinguish aspartame tasters and nontasters. Molecular docking of aspartame to computer-generated models of the T1R2 + T1R3 receptor dimer suggests that species variation at a secondary, allosteric binding site in the T1R2 protein is the most likely origin of differences in perception of the sweetness of aspartame. These results identified a previously unknown site of aspartame interaction with the sweet receptor and suggest that the ability to taste aspartame might have developed during evolution to exploit a specialized food niche. PMID:21414996

  6. Transferrin receptor levels and polymorphism of its gene in age-related macular degeneration.

    PubMed

    Wysokinski, Daniel; Danisz, Katarzyna; Pawlowska, Elzbieta; Dorecka, Mariola; Romaniuk, Dorota; Robaszkiewicz, Jacek; Szaflik, Marta; Szaflik, Jerzy; Blasiak, Janusz; Szaflik, Jacek P

    2015-01-01

    The aim of the present study was to investigate the association of age related macular degeneration (AMD) risk with some aspects of iron homeostasis: iron concentration in serum, level of soluble transferrin receptor (sTfR), and transferrin receptor (TFRC) genetic variability. Four hundred and ninety one AMD patients and 171 controls were enrolled in the study. Restriction fragment length polymorphism PCR was employed to genotype polymorphisms of the TFRC gene, and colorimetric assays were used to determine the level of iron and sTfR. Multiple logistic regression was applied for all genotype/allele-related analyses and the ANOVA test for iron and sTfR serum level comparison. We found that the genotypes and alleles of the c.-253G > A polymorphism of the TFRC gene were associated with AMD risk and this association was modulated by smoking status, AMD family history, living environment (rural/urban), body mass index and age. The levels of sTfR was higher in AMD patients than controls, whereas concentrations of iron did not differ in these two groups. No association was found between AMD occurrence and the p.Gly142Ser polymorphism of the TRFC gene. The results obtained suggest that transferrin receptor and variability of its gene may influence AMD risk. PMID:25915522

  7. Gene expression changes in GABA(A) receptors and cognition following chronic ketamine administration in mice.

    PubMed

    Tan, Sijie; Rudd, John A; Yew, David T

    2011-01-01

    Ketamine is a well-known anesthetic agent and a drug of abuse. Despite its widespread use and abuse, little is known about its long-term effects on the central nervous system. The present study was designed to evaluate the effect of long-term (1- and 3-month) ketamine administration on learning and memory and associated gene expression levels in the brain. The Morris water maze was used to assess spatial memory and gene expression changes were assayed using Affymetrix Genechips; a focus on the expression of GABA(A) receptors that mediate a tonic inhibition in the brain, was confirmed by quantitative real-time PCR and western blot. Compared with saline controls, there was a decline in learning and memory performance in the ketamine-treated mice. Genechip results showed that 110 genes were up-regulated and 136 genes were down-regulated. An ontology analysis revealed the most significant effects of ketamine were on GABA(A) receptors. In particular, there was a significant up-regulation of both mRNA and protein levels of the alpha 5 subunit (Gabra5) of the GABA(A) receptors in the prefrontal cortex. In conclusion, chronic exposure to ketamine impairs working memory in mice, which may be explained at least partly by up-regulation of Gabra5 subunits in the prefrontal cortex. PMID:21712993

  8. Association study between schizophrenia and dopamine D3 receptor gene polymorphism

    SciTech Connect

    Tanaka, Toshihisa; Takahashi, Makoto; Maeda, Masaya

    1996-07-26

    Crocq et al. reported the existence of an association between schizophrenia and homozygosity of a BalI polymorphism in the first exon of the dopamine D3 receptor (DRD3) gene. In response to this report, further studies were conducted; however, these studies yielded conflicting results. In the present study, we examined 100 unrelated Japanese schizophrenics and 100 normal controls to determine any association between this polymorphism and schizophrenia. Results suggest that neither allele nor genotype frequencies of the DRD3 gene in the schizophrenics as a whole are significantly different from those of the controls. Further, we found no association between any allele or genotype and any clinical subtype based on family history of schizophrenia and age-at-onset. A significantly high frequency of homozygosity of a dopamine D3 receptor gene allele was not observed in the schizophrenics as a whole, or in clinical subtypes. Our results suggest that an association between the dopamine D3 receptor gene and schizophrenia is unlikely to exist. 26 refs., 1 tab.

  9. Lack of association between dopamine D4 receptor gene and schizophrenia

    SciTech Connect

    Tanaka, Toshihisa; Kameda, K.; Ihda, S.

    1995-12-18

    An intriguing property of the dopamine D4 receptor gene is a hypervariable segment in the coding region characterized by a varying number of direct imperfect 48 bp repeats (2-8 or 10 repeats) in the third exon of the gene. The authors analyzed 70 unrelated schizophrenics and 70 normal controls to determine the allele and genotype frequencies created by length polymorphism of dopamine D4 receptor gene. All patients and controls were unrelated and from the Japanese population. Patients were divided into three groups with regard to age at onset, familial loading, and severity of symptoms assessed strictly with Manchester scale. There were no statistically significant differences if the distributions of alleles and genotypes were analyzed in consideration of those clinical subtypes. Lichter and colleagues [1993] have reported that at least 25 haplotypes exist for this polymorphic region of the dopamine receptor D4 gene. In this study only the alleles created by length polymorphism were analyzed, and further investigation to determine the haplotypes of patients and controls on using a much larger sample size will be required. 11 refs., 1 fig., 1 tab.

  10. Arsenic Disruption of Steroid Receptor Gene Activation: Complex Dose-Response Effects Are Shared by Several Steroid Receptors*

    PubMed Central

    Bodwell, Jack E.; Gosse, Julie A.; Nomikos, Athena P.; Hamilton, Joshua W.

    2008-01-01

    Chronic intake of arsenic (As) has been associated with increased risk of cancer, diabetes, developmental and reproductive problems, and cardiovascular disease. Recent studies suggest increased health risks with drinking water levels as low as 5–10 ppb. We previously reported that As disrupts glucocorticoid receptor (GR) mediated transcription in a very complex fashion. Low As levels (0.1 to 0.7 ?M) stimulated transcription whereas slightly higher levels (1 to 3 ?M) were inhibitory. The DNA Binding Domain (DBD) was the minimal region of GR required for the response to As. Mutations in the DBD that alter the conformation of the dimerization domain (D-Loop) to a DNA-bound GR conformation abolished the stimulatory effect and enhanced the inhibitory response to As. Here we report that receptors for progesterone (PR) and mineralocorticoids (MR) display a similar complex As response as the GR, suggesting a common mechanism for this effect. The complex response to As is not due to altered steroid or receptor levels. Moreover, a well-characterized GR dimerization mutant displayed a wild-type biphasic response to As for several divergent reporter genes, suggesting that dimerization is not critical for the response to As. Fluorescence polarization studies with purified PR and GR demonstrated that the specific PR/GR-DNA interaction is not altered in the presence of As. These results indicate that the numerous and diverse human health effects associated with As exposure maybe mediated, at least in part, through its ability to simultaneously disrupt multiple hormone receptor systems. PMID:17173375

  11. DIFFERENTIAL GENE EXPRESSION ACTIVITY AMONG SPECIES-SPECIFIC POLYPYRIMIDINE/POLYPURINE MOTIFS IN MU OPIOID RECEPTOR GENE PROMOTERS

    PubMed Central

    Choe, Chung-youl; Dong, Jinping; Law, Ping-Yee; Loh, Horace H.

    2010-01-01

    The mu opioid receptor (MOR) is the principle molecular target of opioid analgesics. An appropriate understanding of MOR gene expression across species is critical for understanding its analgesic functions in humans. Here, we undertake a cross-species analysis of the polymorphic polypyrimidine/polypurine (PPy/u) motif, a key enhancer of MOR gene expression. The mouse PPy/u motif is highly homologous to those of rat (67%) and human (83%), but drives reporter gene expression tenfold and fivefold more effectively than those of rat and human, respectively. Circular dichroism profiles of PPy/u oligonucleotides from different species showed that they are primarily different in structure. Conformational studies of reporter plasmids using confocal Raman spectra, S1 nuclease and restriction enzymes demonstrated that the structural difference is the result of changes in the phosphodiester backbone. Furthermore, these conformational disparities produce differences in torsional stress, as shown by topoisomerase II relaxation and activation of different levels of gene expression under hypertonic conditions. This study demonstrates that homologous PPy/u motifs adopt unique species-specific conformations with different mechanisms and activities for gene expression. We further discuss how structural aspects of transcription regulatory elements, rather than the sequence itself, are significant when studying functional gene expression regulatory elements. PMID:20946943

  12. Association of Peroxisome Proliferator-Activated Receptor ?/?/? With Obesity, and Gene–Gene Interaction, in the Chinese Han Population

    PubMed Central

    Luo, Wenshu; Guo, Zhirong; Wu, Ming; Hao, Chao; Hu, Xiaoshu; Zhou, Zhengyuan; Zhou, Zhiwu; Yao, Xingjuan; Zhang, Lijun; Liu, Jingchao

    2013-01-01

    Background We investigated the association of 10 single-nucleotide polymorphisms (SNPs) in the peroxisome proliferator-activated receptors (PPARs) with obesity and the additional role of gene–gene interaction. Methods Participants were recruited within the framework of the Prevention of Multiple Metabolic Disorders and MS in Jiangsu Province cohort population survey of an urban community in China. In total, 820 subjects (513 nonobese adults, 307 obese adults) were randomly selected, and no individuals were consanguineous. Ten SNPs (rs135539, rs4253778, rs1800206, rs2016520, rs9794, rs10865710, rs1805192, rs709158, rs3856806, and rs4684847) were genotyped and analyzed. Results After covariate adjustment, minor alleles of rs2016520 in PPAR? and rs10865170 in PPAR? were associated with lower BMI (P < 0.01 for all). Generalized multifactor dimensionality reduction analysis showed significant gene–gene interaction among rs2016520, rs9794, and rs10865170 in 3-dimensional models (P = 0.0010); prediction accuracy was 0.6011 and cross-validation consistency was 9/10. It also showed significant gene–gene interaction between rs2016520 and rs10865170 in all 2-dimensional models (P = 0.0010); prediction accuracy was 0.6072 and cross-validation consistency was 9/10. Conclusions rs2016520 and rs10865170 were associated with lower obesity risk. In addition, interaction was identified among rs2016520, rs9794, and rs10865170 in obesity. PMID:23545576

  13. Identification of natural killer cell receptor genes in the genome of the marsupial Tasmanian devil (Sarcophilus harrisii).

    PubMed

    van der Kraan, Lauren E; Wong, Emily S W; Lo, Nathan; Ujvari, Beata; Belov, Katherine

    2013-01-01

    Within the mammalian immune system, natural killer (NK) cells contribute to the first line of defence against infectious agents and tumours. Their activity is regulated, in part, by cell surface NK cell receptors. NK receptors can be divided into two unrelated, but functionally analogous superfamilies based on the structure of their extracellular ligand-binding domains. Receptors belonging to the C-type lectin superfamily are predominantly encoded in the natural killer complex (NKC), while receptors belonging to the immunoglobulin superfamily are predominantly encoded in the leukocyte receptor complex (LRC). Natural killer cell receptors are emerging as a rapidly evolving gene family which can display significant intra- and interspecific variation. To date, most studies have focused on eutherian mammals, with significantly less known about the evolution of these receptors in marsupials. Here, we describe the identification of 43 immunoglobulin domain-containing LRC genes in the genome of the Tasmanian devil (Sarcophilus harrisii), the largest remaining marsupial carnivore and only the second marsupial species to be studied. We also identify orthologs of NKC genes KLRK1, CD69, CLEC4E, CLEC1B, CLEC1A and an ortholog of an opossum NKC receptor. Characterisation of these regions in a second, distantly related marsupial provides new insights into the dynamic evolutionary histories of these receptors in mammals. Understanding the functional role of these genes is also important for the development of therapeutic agents against Devil Facial Tumour Disease, a contagious cancer that threatens the Tasmanian devil with extinction. PMID:23007952

  14. A Modelling Framework for Gene Regulatory Networks Including Transcription and Translation.

    PubMed

    Edwards, R; Machina, A; McGregor, G; van den Driessche, P

    2015-06-01

    Qualitative models of gene regulatory networks have generally considered transcription factors to regulate directly the expression of other transcription factors, without any intermediate variables. In fact, gene expression always involves transcription, which produces mRNA molecules, followed by translation, which produces protein molecules, which can then act as transcription factors for other genes (in some cases after post-transcriptional modifications). Suppressing these multiple steps implicitly assumes that the qualitative behaviour does not depend on them. Here we explore a class of expanded models that explicitly includes both transcription and translation, keeping track of both mRNA and protein concentrations. We mainly deal with regulation functions that are steep sigmoids or step functions, as is often done in protein-only models. We find that flow cannot be constrained to switching domains, though there can still be asymptotic approach to singular stationary points (fixed points in the vicinity of switching thresholds). This avoids the thorny issue of singular flow, but leads to somewhat more complicated possibilities for flow between threshold crossings. In the infinitely fast limit of either mRNA or protein rates, we find that solutions converge uniformly to solutions of the corresponding protein-only model on arbitrary finite time intervals. This leaves open the possibility that the limit system (with one type of variable infinitely fast) may have different asymptotic behaviour, and indeed, we find an example in which stability of a fixed point in the protein-only model is lost in the expanded model. Our results thus show that including mRNA as a variable may change the behaviour of solutions. PMID:25758753

  15. Novel Growth Hormone-Releasing Hormone Receptor Gene Mutations in Turkish Children with Isolated Growth Hormone Deficiency

    PubMed Central

    Arman, Ahmet; Dündar, Bumin Nuri; Çetinkaya, Ergun; Erzaim, Nilüfer; Büyükgebiz, Atilla

    2014-01-01

    Objective: Isolated growth hormone deficiency (IGHD) is defined as a medical condition associated with growth failure due to insufficient production of GH or lack of GH action. Mutations in the gene encoding for GH-releasing hormone receptor (GHRHR) have been detected in patients with IGHD type IB. However, genetic defects on GHRHR causing IGHD in the Turkish population have not yet been reported. To identify mutations on GHRHR gene in a population of Turkish children with IGHD. Methods: Ninety-six Turkish children with IGHD were included in this study. Exon1-13 and exon/intron boundaries of GHRHR were amplified by suitable primers. The polymerase chain reaction products for GHRHR gene were sequenced with primers. Results: We analyzed the GHRHR gene for mutations in ninety-six patients with IGHD based on sequence results. We identified novel p.K264E, p.S317T, p.S330L, p.G369V, p.T257A and C base insertion on position 380 (c.380inserC) mutations. In 5 of the patients, the mutation was homozygote and in 1-heterozygote (p.S317T). Conclusion: Six new missense mutations and one first case of insertion mutations for the GHRHR gene are reported. PMID:25541890

  16. Decrease of gene expression of astrocytic 5-HT2B receptors parallels development of depressive phenotype in a mouse model of Parkinson’s disease

    PubMed Central

    Zhang, Xique; Song, Dan; Gu, Li; Ren, Yan; Verkhratsky, Alexei; Peng, Liang

    2015-01-01

    Astrocytes contribute to pathogenesis of neuropsychiatric disorders, including major depression. Stimulation of astroglial 5-HT2B receptors transactivates epidermal growth factor receptors (EGFRs) and regulates gene expression. Previously we reported that expression of 5-HT2B receptors in cortical astrocytes is down-regulated in animals, which developed anhedonia in response to chronic stress; moreover this down-regulation as well as anhedonia, are reversed by chronic treatment with fluoxetine. In this study we have investigated whether astrocytic 5-HT2B receptor is involved in anhedonia in C57BL/6 mice model of Parkinson’ disease (PD) induced by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) for 7 days. The MPTP treatment induced anhendonia in 66.7% of animals. The appearance of depressive behavior was accompanied with motor deficiency and decrease of tyrosine hydroxylase (TH) expression. Expression of mRNA and protein of 5-HT2B receptor in animals that became anhedonic decreased to 77.3 and 79.3% of control groups, respectively; in animals that received MPTP but did not develop anhedonia the expression of 5-HT2B receptor did not change. Experiments with FACS-sorted isolated cells demonstrated that decrease in 5-HT2B receptor expression was confined to astrocytes, and did not occur in neurons. Fluoxetine corrected MPTP-induced decrease of 5-HT2B receptor expression and depressive behavior. Our findings indicate that regulation of gene expression of 5-HT2B receptors in astroglia may be associated with pathophysiological evolution of PD-induced depression. PMID:26500493

  17. Symptoms of attention-deficit/hyperactivity disorder in Down syndrome: effects of the dopamine receptor D4 gene.

    PubMed

    Mason, Gina Marie; Spanó, Goffredina; Edgin, Jamie

    2015-01-01

    This study examined individual differences in ADHD symptoms and executive function (EF) in children with Down syndrome (DS) in relation to the dopamine receptor D4 (DRD4) gene, a gene often linked to ADHD in people without DS. Participants included 68 individuals with DS (7-21 years), assessed through laboratory tasks, caregiver reports, and experimenter ratings. Saliva samples were collected from the DS group and 66 children without DS to compare DRD4 allele distribution, showing no difference between the groups. When the sample with DS was stratified for ethnicity (n ?=? 32), the DRD4 7-repeat allele significantly related to parent and experimenter ratings, but not to laboratory assessments. These results suggest that nontrisomy genetic factors may contribute to individual differences in ADHD symptoms in persons with DS. PMID:25551267

  18. Structure of the human receptor tyrosine phosphatase gamma gene (PTPRG) and relation to the familial RCC t(3;8) chromosome translocation.

    PubMed

    Kastury, K; Ohta, M; Lasota, J; Moir, D; Dorman, T; LaForgia, S; Druck, T; Huebner, K

    1996-03-01

    The receptor protein tyrosine phosphatase gamma gene, PTP gamma (locus name PTPRG), was previously mapped to chromosome region 3p14.2, within a 2- to 4-Mb region centromeric to the 3p14.2 breakpoint of the t(3;8) familial renal cell carcinoma (RCC)-associated constitutional chromosome translocation. Because of its chromosomal position, its enzymatic properties as a receptor phosphatase, which might oppose a growth activating kinase activity, its homozygous deletion in murine L cells, and its transcriptional activity in numerous normal tissues, including kidney, the PTP gamma gene was an attractive tumor suppressor gene candidate for renal cell carcinoma. To determine whether the PTP gamma gene was a target of loss of heterozygosity or mutation in RCCs and to determine its map position relative to the t(3;8) break at 3p14.2, we have isolated YAC and lambda genomic clones for the PTP gamma gene and other 3p14.2 markers and determined the relative positions of the t(3;8) break, a 3p14.2 de novo break possibly in a fragile site, and the 5' end of the PTP gamma gene. Additionally, the genomic structure, position of the proximal promotor, and intron-exon border sequences of the 30-exon 780-kb PTP gamma gene have been determined, which will facilitate analysis of the PTP gamma gene in tumors. PMID:8833149

  19. Distress of ostracism: oxytocin receptor gene polymorphism confers sensitivity to social exclusion.

    PubMed

    McQuaid, Robyn J; McInnis, Opal A; Matheson, Kimberly; Anisman, Hymie

    2015-08-01

    A single-nucleotide polymorphism on the oxytocin receptor gene (OXTR), rs53576, involving a guanine (G) to adenine (A) substitution has been associated with altered prosocial features. Specifically, individuals with the GG genotype (i.e. the absence of the polymorphism) display beneficial traits including enhanced trust, empathy and self-esteem. However, because G carriers might also be more socially sensitive, this may render them more vulnerable to the adverse effects of a negative social stressor. The current investigation, conducted among 128 white female undergraduate students, demonstrated that relative to individuals with AA genotype, G carriers were more emotionally sensitive (lower self-esteem) in response to social ostracism promoted through an on-line ball tossing game (Cyberball). Furthermore, GG individuals also exhibited altered blood pressure and cortisol levels following rejection, effects not apparent among A carriers. The data support the view that the presence of the G allele not only promotes prosocial behaviors but also favors sensitivity to a negative social stressor. PMID:25564674

  20. No association between interferon-? receptor-1 gene polymorphism and pulmonary tuberculosis in a Gambian population sample

    PubMed Central

    Awomoyi, A; Nejentsev, S; Richardson, A; Hull, J; Koch, O; Podinovskaia, M; Todd, J; McAdam, K; Blackwell, J; Kwiatkowski, D; Newport, M

    2004-01-01

    Background: Tuberculosis (TB) is a major global cause of mortality and morbidity, and host genetic factors influence disease susceptibility. Interferon-? mediates immunity to mycobacteria and rare mutations in the interferon-? receptor-1 gene (IFNGR1) result in increased susceptibility to mycobacterial infection, including TB, in affected families. The role of genetic variation in IFNGR1 in susceptibility to common mycobacterial diseases such as pulmonary TB in outbred populations has not previously been investigated. Methods: The association between IFNGR1 and susceptibility to pulmonary TB was investigated in a Gambian adult population sample using a case-control study design. The coding and promoter regions of IFNGR1 were sequenced in 32 patients with pulmonary TB, and the frequencies of six common IFNGR1 polymorphisms were determined using PCR based methods in 320 smear positive TB cases and 320 matched controls. Haplotypes were estimated from the genotype data using the expectation-maximisation algorithm. Results: There was no association between the IFNGR1 variants studied and TB in this Gambian population sample. Three common haplotypes were identified within the study population, none of which was associated with TB. Conclusions: These data represent an important negative finding and suggest that, while IFNGR1 is implicated in rare Mendelian susceptibility to mycobacterial disease, the common variants studied here do not have a major influence on susceptibility to pulmonary TB in The Gambian population. PMID:15047947

  1. Oxytocin Receptor Gene (OXTR) Polymorphism, Perceived Social Support, and Psychological Symptoms in Maltreated Adolescents

    PubMed Central

    Hostinar, Camelia E.; Cicchetti, Dante; Rogosch, Fred A.

    2014-01-01

    Despite the detrimental consequences of child maltreatment on developmental processes, some individuals show remarkable resilience, with few signs of psychopathology, while others succumb to dysfunction. Given that oxytocin has been shown to be involved in social affiliation, attachment, social support, trust, empathy, and other social or reproductive behaviors, we chose to examine the possible moderation of maltreatment effects on perceived social support and on psychological symptoms by a common SNP (rs53576) in the oxytocin receptor gene (OXTR). We studied adolescents (N = 425) aged approximately 13-15, including participants with objectively documented maltreatment histories (N = 263) and a non-maltreated comparison group from a comparable low-socioeconomic status background (N = 162). There was a significant genotype by maltreatment interaction such that maltreated adolescents with the G/G genotype perceived significantly lower social support compared to maltreated A-carriers, with no effect of genotype in the comparison group. Maltreated G/Gs also reported higher levels of Internalizing symptoms than A-carriers, even though they did not differ from them on objective measures of maltreatment (type, duration, or severity). G/G homozygotes may be more attuned to negative social experiences such as family maltreatment, while maltreated A-carriers were indistinguishable from non-maltreated adolescents in levels of mental health symptoms. PMID:24621832

  2. A mutation in the DNA-binding domain of the androgen receptor gene causes complete testicular feminization in a patient with receptor-positive androgen resistance.

    PubMed Central

    Marcelli, M; Zoppi, S; Grino, P B; Griffin, J E; Wilson, J D; McPhaul, M J

    1991-01-01

    Androgen resistance is associated with a wide range of quantitative and qualitative defects in the androgen receptor. However, fibroblast cultures from approximately 10% of patients with the clinical, endocrine, and genetic features characteristic of androgen resistance express normal quantities of apparently normal androgen receptor in cultured genital skin fibroblasts (receptor-positive androgen resistance). We have analyzed the androgen receptor gene of one patient (P321) with receptor-positive, complete testicular feminization and detected a single nucleotide substitution at nucleotide 2006 (G----C) within the second "zinc finger" of the DNA-binding domain that results in the conversion of the arginine residue at position 615 into a proline residue. Introduction of this mutation into the androgen receptor cDNA and transfection of the expression plasmid into eukaryotic cells lead to the synthesis of a receptor protein that displays normal binding kinetics but is inactive in functional assays of receptor activity. We conclude that substitution mutations in the DNA-binding domain of the androgen receptor are one cause of "receptor-positive" androgen resistance. Images PMID:1999491

  3. Regulation of AMPA Receptor Function by the Human Memory-Associated Gene KIBRA

    PubMed Central

    Makuch, Lauren; Volk, Lenora; Anggono, Victor; Johnson, Richard C.; Yu, Yilin; Duning, Kerstin; Kremerskothen, Joachim; Xia, Jun; Takamiya, Kogo; Huganir, Richard L.

    2011-01-01

    KIBRA has recently been identified as a gene associated with human memory performance. Despite the elucidation of the role of KIBRA in several diverse processes in non-neuronal cells, the molecular function of KIBRA in neurons is unknown. We found that KIBRA directly binds to the protein interacting with C-kinase 1 (PICK1) and forms a complex with ?-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors (AMPARs), the major excitatory neurotransmitter receptors in the brain. KIBRA knockdown accelerates the rate of AMPAR recycling following N-methyl-D-aspartate receptor induced internalization. Genetic deletion of KIBRA in mice impairs both long-term depression and long-term potentiation at hippocampal Schaffer collateral-CA1 synapses. Moreover, KIBRA knockout mice have severe deficits in contextual fear learning and memory. These results indicate that KIBRA regulates higher brain function by regulating AMPAR trafficking and synaptic plasticity. PMID:21943600

  4. Transferrin protein nanospheres: a nanoplatform for receptor-mediated cancer cell labeling and gene delivery

    NASA Astrophysics Data System (ADS)

    McDonald, Michael A.; Spurlin, Tighe A.; Tona, Alessandro; Elliott, John T.; Halter, Michael; Plant, Anne L.

    2010-02-01

    This paper presents preliminary results on the use of transferrin protein nanospheres (TfpNS) for targeting cancer cells in vitro. Protein nanospheres represent an easily prepared and modifiable nanoplatform for receptor-specific targeting, molecular imaging and gene delivery. Rhodamine B isothiocyanate conjugated TfpNS (RBITC-TfpNS) show significantly enhanced uptake in vitro in SK-MEL-28 human malignant melanoma cells known to overexpress transferrin receptors compared to controls. RBITCTfpNS labeling of the cancer cells is due to transferrin receptor-mediated uptake, as demonstrated by competitive inhibition with native transferrin. Initial fluorescence microscopy studies indicate GFP plasmid can be transfected into melanoma cells via GFP plasmid encapsulated by TfpNS.

  5. Characterization of squamate olfactory receptor genes and their transcripts by the high-throughput sequencing approach.

    PubMed

    Dehara, Yuki; Hashiguchi, Yasuyuki; Matsubara, Kazumi; Yanai, Tokuma; Kubo, Masahito; Kumazawa, Yoshinori

    2012-01-01

    The olfactory receptor (OR) genes represent the largest multigene family in the genome of terrestrial vertebrates. Here, the high-throughput next-generation sequencing (NGS) approach was applied to characterization of OR gene repertoires in the green anole lizard Anolis carolinensis and the Japanese four-lined ratsnake Elaphe quadrivirgata. Tagged polymerase chain reaction (PCR) products amplified from either genomic DNA or cDNA of the two species were used for parallel pyrosequencing, assembling, and screening for errors in PCR and pyrosequencing. Starting from the lizard genomic DNA, we accurately identified 56 of 136 OR genes that were identified from its draft genome sequence. These recovered genes were broadly distributed in the phylogenetic tree of vertebrate OR genes without severe biases toward particular OR families. Ninety-six OR genes were identified from the ratsnake genomic DNA, implying that the snake has more OR gene loci than the anole lizard in response to an increased need for the acuity of olfaction. This view is supported by the estimated number of OR genes in the Burmese python's draft genome (?280), although squamates may generally have fewer OR genes than terrestrial mammals and amphibians. The OR gene repertoire of the python seems unique in that many class I OR genes are retained. The NGS approach also allowed us to identify candidates of highly expressed and silent OR gene copies in the lizard's olfactory epithelium. The approach will facilitate efficient and parallel characterization of considerable unbiased proportions of multigene family members and their transcripts from nonmodel organisms. PMID:22511035

  6. Diversity in the Toll-like receptor genes of the Tasmanian devil (Sarcophilus harrisii).

    PubMed

    Cui, Jian; Cheng, Yuanyuan; Belov, Katherine

    2015-03-01

    The Tasmanian devil is an endangered marsupial species that has survived several historical bottlenecks and now has low genetic diversity. Here we characterize the Toll-like receptor (TLR) genes and their diversity in the Tasmanian devil. TLRs are a key innate immune gene family found in all animals. Ten TLR genes were identified in the Tasmanian devil genome. Unusually low levels of diversity were found in 25 devils from across Tasmania. We found two alleles at TLR2, TLR3 and TLR6. The other seven genes were monomorphic. The insurance population, which safeguards the species from extinction, has successfully managed to capture all of these TLR alleles, but concerns remain for the long-term survival of this species. PMID:25563844

  7. Sequence analysis of the Toll-like receptor 2 gene of old world camels.

    PubMed

    Dahiya, Shyam S; Nagarajan, Govindasamy; Bharti, Vijay K; Swami, Shelesh K; Mehta, Sharat C; Tuteja, Fateh C; Narnaware, Shirish D; Patil, NitinV

    2014-11-01

    The Toll-like receptor 2 (TLR2) gene of old world camels (Camelus dromedarius and Camelus bactrianus) was cloned and sequenced. The TLR2 gene of the dromedary camel had the highest nucleotide and amino acid identity with pig, i.e., 66.8% and 59.6%, respectively. Similarly, the TLR2 gene of the Bactrian camel also had the highest nucleotide and amino acid identity with pig, i.e., 85.7% and 81.4%, respectively. Dromedary and Bactrian camels shared 77.9% nucleotide and 73.6% amino acid identity with each other. Interestingly, the amidation motif is present in camel (Dromedary and Bactrian) TLR2 only, and the TIR domain is absent in Dromedary camel TLR2. This is the first report of the TLR2 gene sequence of Dromedary and Bactrian camels. PMID:25685538

  8. Sequence analysis of the Toll-like receptor 2 gene of old world camels

    PubMed Central

    Dahiya, Shyam S.; Nagarajan, Govindasamy; Bharti, Vijay K.; Swami, Shelesh K.; Mehta, Sharat C.; Tuteja, Fateh C.; Narnaware, Shirish D.; Patil, NitinV.

    2013-01-01

    The Toll-like receptor 2 (TLR2) gene of old world camels (Camelus dromedarius and Camelus bactrianus) was cloned and sequenced. The TLR2 gene of the dromedary camel had the highest nucleotide and amino acid identity with pig, i.e., 66.8% and 59.6%, respectively. Similarly, the TLR2 gene of the Bactrian camel also had the highest nucleotide and amino acid identity with pig, i.e., 85.7% and 81.4%, respectively. Dromedary and Bactrian camels shared 77.9% nucleotide and 73.6% amino acid identity with each other. Interestingly, the amidation motif is present in camel (Dromedary and Bactrian) TLR2 only, and the TIR domain is absent in Dromedary camel TLR2. This is the first report of the TLR2 gene sequence of Dromedary and Bactrian camels. PMID:25685538

  9. Oxytocin and Vasopressin Receptor Gene Variation as a Proximate Base for Inter- and Intraspecific Behavioral Differences in Bonobos and Chimpanzees

    PubMed Central

    Staes, Nicky; Stevens, Jeroen M. G.; Helsen, Philippe; Hillyer, Mia; Korody, Marisa; Eens, Marcel

    2014-01-01

    Recent literature has revealed the importance of variation in neuropeptide receptor gene sequences in the regulation of behavioral phenotypic variation. Here we focus on polymorphisms in the oxytocin receptor gene (OXTR) and vasopressin receptor gene 1a (Avpr1a) in chimpanzees and bonobos. In humans, a single nucleotide polymorphism (SNP) in the third intron of OXTR (rs53576 SNP (A/G)) is linked with social behavior, with the risk allele (A) carriers showing reduced levels of empathy and prosociality. Bonobos and chimpanzees differ in these same traits, therefore we hypothesized that these differences might be reflected in variation at the rs53576 position. We sequenced a 320 bp region surrounding rs53576 but found no indications of this SNP in the genus Pan. However, we identified previously unreported SNP variation in the chimpanzee OXTR sequence that differs from both humans and bonobos. Humans and bonobos have previously been shown to have a more similar 5? promoter region of Avpr1a when compared to chimpanzees, who are polymorphic for the deletion of ?360 bp in this region (+/? DupB) which includes a microsatellite (RS3). RS3 has been linked with variation in levels of social bonding, potentially explaining part of the interspecies behavioral differences found in bonobos, chimpanzees and humans. To date, results for bonobos have been based on small sample sizes. Our results confirmed that there is no DupB deletion in bonobos with a sample size comprising approximately 90% of the captive founder population, whereas in chimpanzees the deletion of DupB had the highest frequency. Because of the higher frequency of DupB alleles in our bonobo population, we suggest that the presence of this microsatellite may partly reflect documented differences in levels of sociability found in bonobos and chimpanzees. PMID:25405348

  10. Dopamine D4 receptor gene DRD4 and its association with psychiatric disorders

    PubMed Central

    Ptá?ek, Radek; Kuželová, Hana; Stefano, George B.

    2011-01-01

    Summary Dopamine receptors control neural signals that modulates behavior. Dopamine plays an important role in normal attention; that is the reason for studying the genes of the dopaminergic system, mainly in connection with disorders of attention. DRD4 influences the postsynaptic action of dopamine and is implicated in many neurological processes, exhibits polymorphism and is one of the most studied genes in connection with psychiatric disorders. Associations were found with ADHD (attention deficit hyperactivity disorder), substance dependences, several specific personality traits, and reaction to stress. These findings have implications for pharmacogenetics. This article reviews the principle published associations of DRD4 variants with psychiatric disorders. PMID:21873960

  11. Dopamine D4 receptor gene DRD4 and its association with psychiatric disorders.

    PubMed

    Ptácek, Radek; Kuzelová, Hana; Stefano, George B

    2011-09-01

    Dopamine receptors control neural signals that modulates behavior. Dopamine plays an important role in normal attention; that is the reason for studying the genes of the dopaminergic system, mainly in connection with disorders of attention. DRD4 influences the postsynaptic action of dopamine and is implicated in many neurological processes, exhibits polymorphism and is one of the most studied genes in connection with psychiatric disorders. Associations were found with ADHD (attention deficit hyperactivity disorder), substance dependences, several specific personality traits, and reaction to stress. These findings have implications for pharmacogenetics. This article reviews the principle published associations of DRD4 variants with psychiatric disorders. PMID:21873960

  12. The dopamine D sub 2 receptor locus as a modifying gene in neuropsychiatric disorders

    SciTech Connect

    Comings, D.E.; Comings, B.G.; Muhleman, D.; Dietz, G.; Shahbahrami, B.; Tast, D.; Knell, E.; Kocsis, P.; Baumgarten, R.; Kovacs, B.W.; Gysin, R.; Flanagan, S.D. ); Levy, D.L. ); Smith, M. ); Klein, D.N. ); MacMurray, J.; Tosk, J.M. ); Sverd, J. Cornell Univ. Medical College, Manhasset, NY ); Borison, R.L.; Evans, D.D. )

    1991-10-02

    The A1 allele of the Taq I polymorphism of the dopamine D{sub 2} receptor (DRD2) gene has been earlier reported to occur in 69% of alcoholics, compared with 20% of controls. Other research has reported no significant difference in the prevalence of the A1 allele in alcoholics vs controls and no evidence that the DRD2 gene was linked to alcoholism. The authors hypothesized that these seemingly conflicting results might be because increases in the prevalence of the A1 allele may not be specific to alcoholism. Thus, they examined other disorders frequently associated with alcoholism or those believed to involve defects in dopaminergic neurotransmission.

  13. Localization of the gene for the ciliary neutrotrophic factor receptor (CNTFR) to human chromosome 9

    SciTech Connect

    Donaldson, D.H.; Jones, C.; Patterson, D. Univ. of Colorado Health Science Center, Denver, CO ); Britt, D.E.; Jackson, C.L. )

    1993-09-01

    Ciliary neurotrophic factor (CNTF) has recently been found to be important for the survival of motor neurons and has shown activity in animal models of amyotrophic lateral sclerosis (ALS). CNTF therefore holds promise as a treatment for ALS, and it and its receptor (CNTFR) are candidates for a gene involved in familial ALS. The CNTFR gene was mapped to chromosome 9 by PCR on a panel of human/CHO somatic cell hybrids and localized to 9p13 by PCR on a panel of radiation hybrids. 18 ref., 1 fig., 2 tabs.

  14. Association study of schizophrenia and IL-2 receptor {beta} chain gene

    SciTech Connect

    Nimgaonkar, V.L.; Yang, Z.W.; Zhang, X.R.; Brar, J.S.

    1995-10-09

    A case-control association study was conducted in Caucasian patients with schizophrenia (DSM-III-R, n = 42) and unaffected controls (n = 47) matched for ethnicity and area of residence. Serum interleukin-2 receptor (IL-2R) concentrations, as well as a dinucleotide repeat polymorphism in the IL-2RP chain gene, were examined in both groups. No significant differences in IL-2R concentrations or in the distribution of the polymorphism were noted. This study does not support an association between schizophrenia and the IL-2RP gene locus, contrary to the suggestive evidence from linkage analysis in multicase families. 17 refs., 2 tabs.

  15. Engineering validamycin production by tandem deletion of ?-butyrolactone receptor genes in Streptomyces hygroscopicus 5008.

    PubMed

    Tan, Gao-Yi; Peng, Yao; Lu, Chenyang; Bai, Linquan; Zhong, Jian-Jiang

    2015-03-01

    Paired homologs of ?-butyrolactone (GBL) biosynthesis gene afsA and GBL receptor gene arpA are located at different positions in genome of Streptomyces hygroscopicus 5008. Inactivation of afsA homologs dramatically decreased biosynthesis of validamycin, an important anti-fungal antibiotic and a critical substrate for antidiabetic drug synthesis, and the deletion of arpA homologs increased validamycin production by 26% (?shbR1) and 20% (?shbR3). By double deletion, the ?shbR1/R3 mutant showed higher transcriptional levels of adpA-H (the S. hygroscopicus ortholog of the global regulatory gene adpA) and validamycin biosynthetic genes, and validamycin production increased by 55%. Furthermore, by engineering a high-producing industrial strain via tandem deletion of GBL receptor genes, validamycin production and productivity were enhanced from 19 to 24 g/L (by 26%) and from 6.7 to 9.7 g/L(-1) d(-1) (by 45%), respectively, which was the highest ever reported. The strategy demonstrated here may be useful to engineering other Streptomyces spp. with multiple pairs of afsA-arpA homologs. PMID:25527439

  16. The neuronal nicotinic acetylcholine receptor {alpha}7 subunit gene: Cloning, mapping, structure, and targeting in mouse

    SciTech Connect

    Orr-Urtreger, A.; Baldini, A.; Beaudet, A.L.

    1994-09-01

    The neuronal nicotinic acetylcholine receptor {alpha}7 subunit is a member of a family of ligand-gated ion channels, and is the only subunit know to bind {alpha}-bungarotoxin in mammalian brain. {alpha}-Bungarotoxin binding sites are known to be more abundant in the hippocampus of mouse strains that are particularly sensitive to nicotine-induced seizures. The {alpha}7 receptor is highly permeable to calcium, which could suggest a role in synaptic plasticity in the nervous system. Auditory gating deficiency, an abnormal response to a second auditory stimulus, is characteristic of schizophrenia. Mouse strains that exhibit a similar gating deficit have reduced hippocampal expression of the {alpha}7 subunit. We have cloned and sequenced the full length cDNA for the mouse {alpha}7 gene (Acra-7) and characterized its gene structure. The murine {alpha}7 shares amino acid identity of 99% and 93% with the rat and human {alpha}7 subunits, respectively. Using an interspecies backcross panel, the murine gene was mapped to chromosome 7 near the p locus, a region syntenic with human chromosome 15; the human gene (CHRNA7) was confirmed to map to 15q13-q14 by FISH. To generate a mouse {alpha}7 mutant by homologous recombination, we have constructed a replacement vector which will delete transmembrane domains II-IV and the cytoplasmic domain from the gene product. Recombinant embryonic stem (ES) cell clones were selected and used to develop mouse chimeras that are currently being bred to obtain germline transmission.

  17. An extended gene protein/products boolean network model including post-transcriptional regulation

    PubMed Central

    2014-01-01

    Background Networks Biology allows the study of complex interactions between biological systems using formal, well structured, and computationally friendly models. Several different network models can be created, depending on the type of interactions that need to be investigated. Gene Regulatory Networks (GRN) are an effective model commonly used to study the complex regulatory mechanisms of a cell. Unfortunately, given their intrinsic complexity and non discrete nature, the computational study of realistic-sized complex GRNs requires some abstractions. Boolean Networks (BNs), for example, are a reliable model that can be used to represent networks where the possible state of a node is a boolean value (0 or 1). Despite this strong simplification, BNs have been used to study both structural and dynamic properties of real as well as randomly generated GRNs. Results In this paper we show how it is possible to include the post-transcriptional regulation mechanism (a key process mediated by small non-coding RNA molecules like the miRNAs) into the BN model of a GRN. The enhanced BN model is implemented in a software toolkit (EBNT) that allows to analyze boolean GRNs from both a structural and a dynamic point of view. The open-source toolkit is compatible with available visualization tools like Cytoscape and allows to run detailed analysis of the network topology as well as of its attractors, trajectories, and state-space. In the paper, a small GRN built around the mTOR gene is used to demonstrate the main capabilities of the toolkit. Conclusions The extended model proposed in this paper opens new opportunities in the study of gene regulation. Several of the successful researches done with the support of BN to understand high-level characteristics of regulatory networks, can now be improved to better understand the role of post-transcriptional regulation for example as a network-wide noise-reduction or stabilization mechanisms. PMID:25080304

  18. Neurodevelopmental disorders among individuals with duplication of 4p13 to 4p12 containing a GABAA receptor subunit gene cluster.

    PubMed

    Polan, Michelle B; Pastore, Matthew T; Steingass, Katherine; Hashimoto, Sayaka; Thrush, Devon L; Pyatt, Robert; Reshmi, Shalini; Gastier-Foster, Julie M; Astbury, Caroline; McBride, Kim L

    2014-01-01

    Recent studies have shown that certain copy number variations (CNV) are associated with a wide range of neurodevelopmental disorders, including autism spectrum disorders (ASD), bipolar disorder and intellectual disabilities. Implicated regions and genes have comprised a variety of post synaptic complex proteins and neurotransmitter receptors, including gamma-amino butyric acid A (GABAA). Clusters of GABAA receptor subunit genes are found on chromosomes 4p12, 5q34, 6q15 and 15q11-13. Maternally inherited 15q11-13 duplications among individuals with neurodevelopmental disorders are well described, but few case reports exist for the other regions. We describe a family with a 2.42 Mb duplication at chromosome 4p13 to 4p12, identified in the index case and other family members by oligonucleotide array comparative genomic hybridization, that contains 13 genes including a cluster of four GABAA receptor subunit genes. Fluorescent in-situ hybridization was used to confirm the duplication. The duplication segregates with a variety of neurodevelopmental disorders in this family, including ASD (index case), developmental delay, dyspraxia and ADHD (brother), global developmental delays (brother), learning disabilities (mother) and bipolar disorder (maternal grandmother). In addition, we identified and describe another individual unrelated to this family, with a similar duplication, who was diagnosed with ASD, ADHD and borderline intellectual disability. The 4p13 to 4p12 duplication appears to confer a susceptibility to a variety of neurodevelopmental disorders in these two families. We hypothesize that the duplication acts through a dosage effect of GABAA receptor subunit genes, adding evidence for alterations in the GABAergic system in the etiology of neurodevelopmental disorders. PMID:23695283

  19. Dynamic changes in the gene expression of zebrafish Reelin receptors during embryogenesis and hatching period.

    PubMed

    Imai, Hideaki; Oomiya, Yoshihiro; Kikkawa, Satoshi; Shoji, Wataru; Hibi, Masahiko; Terashima, Toshio; Katsuyama, Yu

    2012-02-01

    The brain morphology of vertebrates exhibits huge evolutionary diversity, but one of the shared morphological features unique to vertebrate brain is laminar organization of neurons. Because the Reelin signal plays important roles in the development of the laminar structures in mammalian brain, investigation of Reelin signal in lower vertebrates will give some insights into evolution of vertebrate brain morphogenesis. Although zebrafish homologues of Reelin, the ligand, and Dab1, a cytoplasmic component of the signaling pathway, have been reported, the Reelin receptor molecules of zebrafish are not reported yet. Here, we sought cDNA sequence of zebrafish homologue of the receptors, vldlr and apoer2, and examined their expression patterns by in situ hybridization. Developmental gene expression pattern of reelin, dab1, vldlr, and apoer2 in the central nervous system of zebrafish was compared, and their remarkable expression was detected in the developing laminar structures, such as the tectum and the cerebellum, and also non-laminated structures, such as the pallium. The Reelin receptors exhibited different spatial and temporal gene expression. These results suggest a possibility that duplication and subsequent functional diversity of Reelin receptors contributed to the morphological and functional evolution of vertebrate brain. PMID:22364494

  20. Response to Xanthomonas campestris pv. vesicatoria in tomato involves regulation of ethylene receptor gene expression.

    PubMed

    Ciardi, J A; Tieman, D M; Lund, S T; Jones, J B; Stall, R E; Klee, H J

    2000-05-01

    Although ethylene regulates a wide range of defense-related genes, its role in plant defense varies greatly among different plant-microbe interactions. We compared ethylene's role in plant response to virulent and avirulent strains of Xanthomonas campestris pv. vesicatoria in tomato (Lycopersicon esculentum Mill.). The ethylene-insensitive Never ripe (Nr) mutant displays increased tolerance to the virulent strain, while maintaining resistance to the avirulent strain. Expression of the ethylene receptor genes NR and LeETR4 was induced by infection with both virulent and avirulent strains; however, the induction of LeETR4 expression by the avirulent strain was blocked in the Nr mutant. To determine whether ethylene receptor levels affect symptom development, transgenic plants overexpressing a wild-type NR cDNA were infected with virulent X. campestris pv. vesicatoria. Like the Nr mutant, the NR overexpressors displayed greatly reduced necrosis in response to this pathogen. NR overexpression also reduced ethylene sensitivity in seedlings and mature plants, indicating that, like LeETR4, this receptor is a negative regulator of ethylene response. Therefore, pathogen-induced increases in ethylene receptors may limit the spread of necrosis by reducing ethylene sensitivity. PMID:10806227

  1. Comparison of T cell receptor alpha, beta, and gamma gene rearrangement and expression in T cell acute lymphoblastic leukemia.

    E-print Network

    Hara, Junichi; Benedict, Stephen H.; Champagne, Eric; Mak, Tak W.; Minden, Mark; Gelfand, Erwin W.

    1988-04-01

    We have analyzed the configuration of the T cell receptor (TCR) alpha gene using newly developed genomic joining region (J alpha) probes, which cover approximately 80 kb of the J alpha region upstream from the constant region in 19 patients...

  2. Apple contains receptor-like genes homologous to the Cladosporium fulvum resistance gene family of tomato with a cluster of genes cosegregating with Vf apple scab resistance.

    PubMed

    Vinatzer, B A; Patocchi, A; Gianfranceschi, L; Tartarini, S; Zhang, H B; Gessler, C; Sansavini, S

    2001-04-01

    Scab caused by the fungal pathogen Venturia inaequalis is the most common disease of cultivated apple (Malus x domestica Borkh.). Monogenic resistance against scab is found in some small-fruited wild Malus species and has been used in apple breeding for scab resistance. Vf resistance of Malus floribunda 821 is the most widely used scab resistance source. Because breeding a high-quality cultivar in perennial fruit trees takes dozens of years, cloning disease resistance genes and using them in the transformation of high-quality apple varieties would be advantageous. We report the identification of a cluster of receptor-like genes with homology to the Cladosporium fulvum (Cf) resistance gene family of tomato on bacterial artificial chromosome clones derived from the Vf scab resistance locus. Three members of the cluster were sequenced completely. Similar to the Cf gene family of tomato, the deduced amino acid sequences coded by these genes contain an extracellular leucine-rich repeat domain and a transmembrane domain. The transcription of three members of the cluster was determined by reverse transcriptionpolymerase chain reaction to be constitutive, and the transcription and translation start of one member was verified by 5' rapid amplification of cDNA ends. We discuss the parallels between Cf resistance of tomato and Vf resistance of apple and the possibility that one of the members of the gene cluster is the Vf gene. Cf homologs from other regions of the apple genome also were identified and are likely to present other scab resistance genes. PMID:11310738

  3. Characterization of cys-loop receptor genes involved in inhibitory amine neurotransmission in parasitic and free living nematodes.

    PubMed

    Beech, Robin N; Callanan, Micah K; Rao, Vijayaraghava T S; Dawe, George B; Forrester, Sean G

    2013-12-01

    We have isolated two genes, Hco-lgc-53 and Hco-mod-1, from the parasitic nematode Haemonchus contortus, which are orthologs of previously characterized genes that encode dopamine and serotonin-gated chloride channels, respectively, in Caenorhabditis elegans. A search of transcriptome data for the filarial nematode parasites Loa loa, Brugia malayi, and Wucheria bancrofti revealed predicted coding sequences for orthologs of acetylcholine, serotonin and dopamine-gated chloride channels, which correspond to the C. elegans clades acc-1, mod-1 and ggr-3, respectively. Genome data for the more distantly related nematode parasite, Trichinella spiralis, contain genes predicted to encode members of the acc-1 clade only, but all three clades were absent from the trematode Schistosoma mansoni. Analysis of the ratio of non-synonymous to synonymous substitutions (?) for receptor subunit sequences revealed strong selective constraint over the entire protein, consistent with the known highly conserved 3D structure of cys-loop receptors. This constraint was significantly greater for binding loop residues that are predicted to contact bound ligand and residues of the transmembrane domains. The substitution rate for ligand binding residues was significantly higher for branches leading to the acc-1 and mod-1 clades, where the convergent evolution for binding acetylcholine and serotonin, respectively, is thought to have occurred. Homology models of both Hco-MOD-1 and Hco-LGC-53 channels revealed the presence of binding structures typical of the cys-loop receptor family, including the presence of an aromatic box that is important for the formation of the binding pocket. Both receptors contain a tryptophan in loop C that appears to be a key residue important for the binding of amines to ligand-gated chloride channels. As additional ligand-gated chloride-channel sequences become available for a wider range of species the combination of molecular modeling and analysis of sequence evolution should provide an effective tool to understand the wide diversity of neurotransmitters that bind to this unique group of receptors. PMID:23602737

  4. SUPERFAMILY 1.75 including a domain-centric gene ontology method.

    PubMed

    de Lima Morais, David A; Fang, Hai; Rackham, Owen J L; Wilson, Derek; Pethica, Ralph; Chothia, Cyrus; Gough, Julian

    2011-01-01

    The SUPERFAMILY resource provides protein domain assignments at the structural classification of protein (SCOP) superfamily level for over 1400 completely sequenced genomes, over 120 metagenomes and other gene collections such as UniProt. All models and assignments are available to browse and download at http://supfam.org. A new hidden Markov model library based on SCOP 1.75 has been created and a previously ignored class of SCOP, coiled coils, is now included. Our scoring component now uses HMMER3, which is in orders of magnitude faster and produces superior results. A cloud-based pipeline was implemented and is publicly available at Amazon web services elastic computer cloud. The SUPERFAMILY reference tree of life has been improved allowing the user to highlight a chosen superfamily, family or domain architecture on the tree of life. The most significant advance in SUPERFAMILY is that now it contains a domain-based gene ontology (GO) at the superfamily and family levels. A new methodology was developed to ensure a high quality GO annotation. The new methodology is general purpose and has been used to produce domain-based phenotypic ontologies in addition to GO. PMID:21062816

  5. Identification of cDNA encoding Toll receptor, MjToll gene from kuruma shrimp, Marsupenaeus japonicus.

    PubMed

    Mekata, Tohru; Kono, Tomoya; Yoshida, Terutoyo; Sakai, Masahiro; Itami, Toshiaki

    2008-01-01

    Toll receptors are cell-surface receptors acting as pattern recognition receptors (PRRs) that are involved in the signaling pathway for innate immunity activation and are genetically conserved from insects to mammals. Tolls from penaeid shrimp are found in white leg shrimp Litopenaeus vannamei (lToll) and black tiger shrimp Penaeus monodon (PmToll). However, the molecular ligand-recognition patterns and identification of these penaeid Toll classes remain unknown. Here, we report cDNA cloning of a new type of Toll receptor gene (MjToll) from kuruma shrimp, Marsupenaeus japonicus, and the modulation of expression by immunostimulation. The full length cDNA of MjToll gene has 3095 nucleotides coding for a putative protein of 1009 amino acids. The MjToll gene is constitutively expressed in the gill, gut, lymphoid organ, heart, hematopoietic organ, hemocyte, ventral abdominal nerve cord, eyestalk neural ganglia and brain tissues. The MjToll gene expression was significantly increased (76-fold) as compared to a control in lymphoid organ stimulated with peptidoglycan at 12h, in vitro. lToll gene showed high similarity to PmToll gene with 96.9% identity; however, MjToll gene exhibited a percentage identity of 59% with that of penaeid Toll homologues. Therefore, this suggests that the identified MjToll gene belongs to the other class of Toll receptors in shrimp. PMID:18191582

  6. Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells

    NASA Technical Reports Server (NTRS)

    Chen, J.; Fabry, B.; Schiffrin, E. L.; Wang, N.; Ingber, D. E. (Principal Investigator)

    2001-01-01

    A magnetic twisting stimulator was developed based on the previously published technique of magnetic twisting cytometry. Using ligand-coated ferromagnetic microbeads, this device can apply mechanical stresses with varying amplitudes, duration, frequencies, and waveforms to specific cell surface receptors. Biochemical and biological responses of the cells to the mechanical stimulation can be assayed. Twisting integrin receptors with RGD (Arg-Gly-Asp)-containing peptide-coated beads increased endothelin-1 (ET-1) gene expression by >100%. In contrast, twisting scavenger receptors with acetylated low-density lipoprotein-coated beads or twisting HLA antigen with anti-HLA antibody-coated beads did not lead to alterations in ET-1 gene expression. In situ hybridization showed that the increase in ET-1 mRNA was localized in the cells that were stressed with the RGD-coated beads. Blocking stretch-activated ion channels with gadolinium, chelating Ca2+ with EGTA, or inhibiting tyrosine phosphorylation with genistein abolished twist-induced ET-1 mRNA elevation. Abolishing cytoskeletal tension with an inhibitor of the myosin ATPase, with an inhibitor of myosin light chain kinase, or with an actin microfilament disrupter blocked twisted-induced increases in ET-1 expression. Our results are consistent with the hypothesis that the molecular structural linkage of integrin-cytoskeleton is an important pathway for stress-induced ET-1 gene expression.

  7. Susceptibility of gastric cancer according to leptin and leptin receptor gene polymorphisms in Korea

    PubMed Central

    Kim, Eun-Young; Chin, Hyung-Min; Park, Seung-Man; Jeon, Hae-Myung; Chung, Woo-Chul; Paik, Chang-Nyol

    2012-01-01

    Purpose Leptin plays an important role in the control of body weight and also has a growth-factor-like function in epithelial cells. Abnormal expression of leptin and leptin receptor may be associated with cancer development and progression. We evaluated the relationship among leptin and leptin receptors polymorphisms, body mass index (BMI), serum leptin concentrations, and clinicopathologic features with gastric cancer and determined whether they could be the risk factor of gastric cancer. Methods We measured the serum leptin concentrations of 48 Korean patients with gastric cancer and 48 age- and sex-matched controls. By polymerase chain reaction-restriction fragment length polymorphism, we investigated one leptin gene promoter G-2548A genotype and four leptin receptor gene polymorphisms at codons 223, 109, 343, and 656. Results There was no significant difference between the mean leptin concentrations of the patient and control groups, while BMI was significantly lower in gastric cancer cases (22.9 ± 3.6 vs. 24.5 ± 2.8 kg/m2, P = 0.021). There was significant association between the LEPR Lys109Arg genotype and gastric cancer risk, heterozygotes for GA genotype had been proved to increased the risk of gastric cancer, and its corresponding odds ratio was 2.926 (95% confidence interval, 1.248 to 6.861). Conclusion Our results suggested that LEPR gene Lys109Arg polymorphism is associated with gastric cancer in Korean patients. PMID:22792528

  8. Sequence Analysis of Bitter Taste Receptor Gene Repertoires in Different Ruminant Species.

    PubMed

    Monteiro Ferreira, Ana; Tomás Marques, Andreia; Bhide, Mangesh; Cubric-Curik, Vlatka; Hollung, Kristin; Knight, Christopher Harold; Raundrup, Katrine; Lippolis, John; Palmer, Mitchell; Sales-Baptista, Elvira; Araújo, Susana Sousa; de Almeida, André Martinho

    2015-01-01

    Bitter taste has been extensively studied in mammalian species and is associated with sensitivity to toxins and with food choices that avoid dangerous substances in the diet. At the molecular level, bitter compounds are sensed by bitter taste receptor proteins (T2R) present at the surface of taste receptor cells in the gustatory papillae. Our work aims at exploring the phylogenetic relationships of T2R gene sequences within different ruminant species. To accomplish this goal, we gathered a collection of ruminant species with different feeding behaviors and for which no genome data is available: American bison, chamois, elk, European bison, fallow deer, goat, moose, mouflon, muskox, red deer, reindeer and white tailed deer. The herbivores chosen for this study belong to different taxonomic families and habitats, and hence, exhibit distinct foraging behaviors and diet preferences. We describe the first partial repertoires of T2R gene sequences for these species obtained by direct sequencing. We then consider the homology and evolutionary history of these receptors within this ruminant group, and whether it relates to feeding type classification, using MEGA software. Our results suggest that phylogenetic proximity of T2R genes corresponds more to the traditional taxonomic groups of the species rather than reflecting a categorization by feeding strategy. PMID:26061084

  9. Sequence Analysis of Bitter Taste Receptor Gene Repertoires in Different Ruminant Species

    PubMed Central

    Monteiro Ferreira, Ana; Tomás Marques, Andreia; Bhide, Mangesh; Cubric-Curik, Vlatka; Hollung, Kristin; Knight, Christopher Harold; Raundrup, Katrine; Lippolis, John; Palmer, Mitchell; Sales-Baptista, Elvira; Araújo, Susana Sousa; de Almeida, André Martinho

    2015-01-01

    Bitter taste has been extensively studied in mammalian species and is associated with sensitivity to toxins and with food choices that avoid dangerous substances in the diet. At the molecular level, bitter compounds are sensed by bitter taste receptor proteins (T2R) present at the surface of taste receptor cells in the gustatory papillae. Our work aims at exploring the phylogenetic relationships of T2R gene sequences within different ruminant species. To accomplish this goal, we gathered a collection of ruminant species with different feeding behaviors and for which no genome data is available: American bison, chamois, elk, European bison, fallow deer, goat, moose, mouflon, muskox, red deer, reindeer and white tailed deer. The herbivores chosen for this study belong to different taxonomic families and habitats, and hence, exhibit distinct foraging behaviors and diet preferences. We describe the first partial repertoires of T2R gene sequences for these species obtained by direct sequencing. We then consider the homology and evolutionary history of these receptors within this ruminant group, and whether it relates to feeding type classification, using MEGA software. Our results suggest that phylogenetic proximity of T2R genes corresponds more to the traditional taxonomic groups of the species rather than reflecting a categorization by feeding strategy. PMID:26061084

  10. Isolation and characterization of the brassinosteroid receptor gene (GmBRI1) from Glycine max.

    PubMed

    Wang, Miao; Sun, Shi; Wu, Cunxiang; Han, Tianfu; Wang, Qingyu

    2014-01-01

    Brassinosteroids (BRs) constitute a group of steroidal phytohormones that contribute to a wide range of plant growth and development functions. The genetic modulation of BR receptor genes, which play major roles in the BR signaling pathway, can create semi-dwarf plants that have great advantages in crop production. In this study, a brassinosteroid insensitive gene homologous with AtBRI1 and other BRIs was isolated from Glycine max and designated as GmBRI1. A bioinformatic analysis revealed that GmBRI1 shares a conserved kinase domain and 25 tandem leucine-rich repeats (LRRs) that are characteristic of a BR receptor for BR reception and reaction and bear a striking similarity in protein tertiary structure to AtBRI1. GmBRI1 transcripts were more abundant in soybean hypocotyls and could be upregulated in response to exogenous BR treatment. The transformation of GmBRI1 into the Arabidopsis dwarf mutant bri1-5 restored the phenotype, especially regarding pod size and plant height. Additionally, this complementation is a consequence of a restored BR signaling pathway demonstrated in the light/dark analysis, root inhibition assay and BR-response gene expression. Therefore, GmBRI1 functions as a BR receptor to alter BR-mediated signaling and is valuable for improving plant architecture and enhancing the yield of soybean. PMID:24599079

  11. Ethylene and pollination decrease transcript abundance of an ethylene receptor gene in Dendrobium petals.

    PubMed

    Thongkum, Monthathip; Burns, Parichart; Bhunchoth, Anjana; Warin, Nuchnard; Chatchawankanphanich, Orawan; van Doorn, Wouter G

    2015-03-15

    We studied the expression of a gene encoding an ethylene receptor, called Ethylene Response Sensor 1 (Den-ERS1), in the petals of Dendrobium orchid flowers. Transcripts accumulated during the young floral bud stage and declined by the time the flowers had been open for several days. Pollination or exposure to exogenous ethylene resulted in earlier flower senescence, an increase in ethylene production and a lower Den-ERS1 transcript abundance. Treatment with 1-methylcyclopropene (1-MCP), an inhibitor of the ethylene receptor, decreased ethylene production and resulted in high transcript abundance. The literature indicates two kinds of ethylene receptor genes with regard to the effects of ethylene. One group shows ethylene-induced down-regulated transcription, while the other has ethylene-induced up-regulation. The present gene is an example of the first group. The 5' flanking region showed binding sites for Myb and myb-like, homeodomain, MADS domain, NAC, TCP, bHLH and EIN3-like transcription factors. The binding site for the EIN3-like factor might explain the ethylene effect on transcription. A few other transcription factors (RAV1 and NAC) seem also related to ethylene effects. PMID:25590685

  12. IGF TYPE II RECEPTOR GENE EXPRESSION IN GRANULOSA AND THECA CELLS OF CATTLE SELECTED FOR TWIN OVULATIONS AND BIRTHS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Regulation of multiple ovulations in monotocous species such as cattle is not well understood. Therefore, gene expression of the IGF type II receptor (IGF2R) and LH receptor (LHR) in granulosa (GC) and theca (TC) cells as well as estradiol (E2) and progesterone (P4) levels in follicular fluid (FF) ...

  13. Inhibitory effects of azole-type fungicides on interleukin-17 gene expression via retinoic acid receptor-related orphan receptors ? and ?

    SciTech Connect

    Kojima, Hiroyuki; Muromoto, Ryuta; Takahashi, Miki; Takeuchi, Shinji; Takeda, Yukimasa; Jetten, Anton M.; Matsuda, Tadashi

    2012-03-15

    The retinoic acid receptor-related orphan receptors ? and ? (ROR? and ROR?), are key regulators of helper T (Th)17 cell differentiation, which is involved in the innate immune system and autoimmune disorders. However, it remains unclear whether environmental chemicals, including pesticides, have agonistic and/or antagonistic activity against ROR?/?. In this study, we investigated the ROR?/? activity of several azole-type fungicides, and the effects of these fungicides on the gene expression of interleukin (IL)-17, which mediates the function of Th17 cells. In the ROR-reporter gene assays, five azole-type fungicides (imibenconazole, triflumizole, hexaconazole, tetraconazole and imazalil) suppressed ROR?- and/or ROR?-mediated transcriptional activity as did benzenesulphonamide T0901317, a ROR inverse agonist and a liver X receptor (LXR) agonist. In particular, imibenconazole, triflumizole and hexaconazole showed ROR? inverse agonistic activity at concentrations of 10{sup ?6} M. However, unlike T0901317, these fungicides failed to show any LXR?/? agonistic activity. Next, five azole-type fungicides, showing ROR inverse agonist activity, were tested on IL-17 mRNA expression in mouse T lymphoma EL4 cells treated with phorbol myristate acetate and ionomycin. The quantitative RT-PCR analysis revealed that these fungicides suppressed the expression of IL-17 mRNA without effecting ROR? and ROR? mRNA levels. In addition, the inhibitory effect of imibenconazole as well as that of T0901317 was absorbed in ROR?/?-knocked down EL4 cells. Taken together, these results suggest that some azole-type fungicides inhibit IL-17 production via ROR?/?. This also provides the first evidence that environmental chemicals can act as modulators of IL-17 expression in immune cells. -- Highlights: ? Nuclear receptors, ROR? and ROR?, are key regulators of Th17 cell differentiation. ? Five azole-type fungicides act as ROR?/? inverse agonists. ? These fungicides suppress the expression of IL-17 mRNA in mouse EL4 cells. ? Environmental chemicals can act as modulators of IL-17 expression via ROR?/?.

  14. De Novo Mutations in Synaptic Transmission Genes Including DNM1 Cause Epileptic Encephalopathies

    PubMed Central

    Appenzeller, Silke; Balling, Rudi; Barisic, Nina; Baulac, Stéphanie; Caglayan, Hande; Craiu, Dana; De Jonghe, Peter; Depienne, Christel; Dimova, Petia; Djémié, Tania; Gormley, Padhraig; Guerrini, Renzo; Helbig, Ingo; Hjalgrim, Helle; Hoffman-Zacharska, Dorota; Jähn, Johanna; Klein, Karl Martin; Koeleman, Bobby; Komarek, Vladimir; Krause, Roland; Kuhlenbäumer, Gregor; Leguern, Eric; Lehesjoki, Anna-Elina; Lemke, Johannes R.; Lerche, Holger; Linnankivi, Tarja; Marini, Carla; May, Patrick; Mřller, Rikke S.; Muhle, Hiltrud; Pal, Deb; Palotie, Aarno; Pendziwiat, Manuela; Robbiano, Angela; Roelens, Filip; Rosenow, Felix; Selmer, Kaja; Serratosa, Jose M.; Sisodiya, Sanjay; Stephani, Ulrich; Sterbova, Katalin; Striano, Pasquale; Suls, Arvid; Talvik, Tiina; von Spiczak, Sarah; Weber, Yvonne; Weckhuysen, Sarah; Zara, Federico; Abou-Khalil, Bassel; Alldredge, Brian K.; Andermann, Eva; Andermann, Frederick; Amron, Dina; Bautista, Jocelyn F.; Berkovic, Samuel F.; Bluvstein, Judith; Boro, Alex; Cascino, Gregory; Consalvo, Damian; Crumrine, Patricia; Devinsky, Orrin; Dlugos, Dennis; Epstein, Michael P.; Fiol, Miguel; Fountain, Nathan B.; French, Jacqueline; Friedman, Daniel; Geller, Eric B.; Glauser, Tracy; Glynn, Simon; Haas, Kevin; Haut, Sheryl R.; Hayward, Jean; Helmers, Sandra L.; Joshi, Sucheta; Kanner, Andres; Kirsch, Heidi E.; Knowlton, Robert C.; Kossoff, Eric H.; Kuperman, Rachel; Kuzniecky, Ruben; Lowenstein, Daniel H.; McGuire, Shannon M.; Motika, Paul V.; Novotny, Edward J.; Ottman, Ruth; Paolicchi, Juliann M.; Parent, Jack; Park, Kristen; Poduri, Annapurna; Sadleir, Lynette; Scheffer, Ingrid E.; Shellhaas, Renée A.; Sherr, Elliott; Shih, Jerry J.; Singh, Rani; Sirven, Joseph; Smith, Michael C.; Sullivan, Joe; Thio, Liu Lin; Venkat, Anu; Vining, Eileen P.G.; Von Allmen, Gretchen K.; Weisenberg, Judith L.; Widdess-Walsh, Peter; Winawer, Melodie R.; Allen, Andrew S.; Berkovic, Samuel F.; Cossette, Patrick; Delanty, Norman; Dlugos, Dennis; Eichler, Evan E.; Epstein, Michael P.; Glauser, Tracy; Goldstein, David B.; Han, Yujun; Heinzen, Erin L.; Johnson, Michael R.; Kuzniecky, Ruben; Lowenstein, Daniel H.; Marson, Anthony G.; Mefford, Heather C.; Nieh, Sahar Esmaeeli; O’Brien, Terence J.; Ottman, Ruth; Petrou, Stephen; Petrovski, Slavé; Poduri, Annapurna; Ruzzo, Elizabeth K.; Scheffer, Ingrid E.; Sherr, Elliott

    2014-01-01

    Emerging evidence indicates that epileptic encephalopathies are genetically highly heterogeneous, underscoring the need for large cohorts of well-characterized individuals to further define the genetic landscape. Through a collaboration between two consortia (EuroEPINOMICS and Epi4K/EPGP), we analyzed exome-sequencing data of 356 trios with the “classical” epileptic encephalopathies, infantile spasms and Lennox Gastaut syndrome, including 264 trios previously analyzed by the Epi4K/EPGP consortium. In this expanded cohort, we find 429 de novo mutations, including de novo mutations in DNM1 in five individuals and de novo mutations in GABBR2, FASN, and RYR3 in two individuals each. Unlike previous studies, this cohort is sufficiently large to show a significant excess of de novo mutations in epileptic encephalopathy probands compared to the general population using a likelihood analysis (p = 8.2 × 10?4), supporting a prominent role for de novo mutations in epileptic encephalopathies. We bring statistical evidence that mutations in DNM1 cause epileptic encephalopathy, find suggestive evidence for a role of three additional genes, and show that at least 12% of analyzed individuals have an identifiable causal de novo mutation. Strikingly, 75% of mutations in these probands are predicted to disrupt a protein involved in regulating synaptic transmission, and there is a significant enrichment of de novo mutations in genes in this pathway in the entire cohort as well. These findings emphasize an important role for synaptic dysregulation in epileptic encephalopathies, above and beyond that caused by ion channel dysfunction. PMID:25262651

  15. Taste and odorant receptors of the coelacanth--a gene repertoire in transition.

    PubMed

    Picone, Barbara; Hesse, Uljana; Panji, Sumir; Van Heusden, Peter; Jonas, Mario; Christoffels, Alan

    2014-09-01

    G-protein coupled chemosensory receptors (GPCR-CRs) aid in the perception of odors and tastes in vertebrates. So far, six GPCR-CR families have been identified that are conserved in most vertebrate species. Phylogenetic analyses indicate differing evolutionary dynamics between teleost fish and tetrapods. The coelacanth Latimeria chalumnae belongs to the lobe-finned fishes, which represent a phylogenetic link between these two groups. We searched the genome of L. chalumnae for GPCR-CRs and found that coelacanth taste receptors are more similar to those in tetrapods than in teleost fish: two coelacanth T1R2s co-segregate with the tetrapod T1R2s that recognize sweet substances, and our phylogenetic analyses indicate that the teleost T1R2s are closer related to T1R1s (umami taste receptors) than to tetrapod T1R2s. Furthermore, coelacanths are the first fish with a large repertoire of bitter taste receptors (58 T2Rs). Considering current knowledge on feeding habits of coelacanths the question arises if perception of bitter taste is the only function of these receptors. Similar to teleost fish, coelacanths have a variety of olfactory receptors (ORs) necessary for perception of water-soluble substances. However, they also have seven genes in the two tetrapod OR subfamilies predicted to recognize airborne molecules. The two coelacanth vomeronasal receptor families are larger than those in teleost fish, and similar to tetrapods and form V1R and V2R monophyletic clades. This may point to an advanced development of the vomeronasal organ as reported for lungfish. Our results show that the intermediate position of Latimeria in the phylogeny is reflected in its GPCR-CR repertoire. PMID:24106203

  16. Identification of estrogen-responsive genes based on the DNA binding properties of estrogen receptors using high-throughput sequencing technology

    PubMed Central

    Ikeda, Kazuhiro; Horie-Inoue, Kuniko; Inoue, Satoshi

    2015-01-01

    Estrogens are important endocrine hormones that control physiological functions in reproductive organs, and play a pivotal role in the generation and progression of breast cancer. Therapeutic drugs including anti-estrogen and aromatase inhibitors are used to treat patients with breast cancer. The estrogen receptors, ER? and ER?, function as hormone-dependent transcription factors that directly regulate the expression of their target genes. Therefore, a better understanding of the function and regulation of estrogen-responsive genes provides insight into the gene regulation network associated with breast cancer. Recent technological developments in high-throughput sequencing have enabled the genome-wide identification of estrogen-responsive genes. Further elucidating the estrogen gene cascade is critical for advancements in the diagnosis and treatment of breast cancer. PMID:25500870

  17. Lack of Association between Oxytocin Receptor (OXTR) Gene Polymorphisms and Alexithymia: Evidence from Patients with Obsessive-Compulsive Disorder

    PubMed Central

    Koh, Min Jung; Kim, Wonji; Kang, Jee In; Namkoong, Kee; Kim, Se Joo

    2015-01-01

    Oxytocin receptor gene single nucleotide polymorphisms have been associated with structural and functional alterations in brain regions, which involve social-emotional processing. Therefore, oxytocin receptor gene polymorphisms may contribute to individual differences in alexithymia, which is considered to be a dysfunction of emotional processing. The aim of this study was to evaluate the association between oxytocin receptor gene single nucleotide polymorphisms or haplotypes and alexithymia in patients with obsessive-compulsive disorder. We recruited 355 patients with obsessive-compulsive disorder (234 men, 121 women). Alexithymia was measured by using the Toronto Alexithymia Scale. We performed single-marker and haplotype association analyses with eight single nucleotide polymorphisms (rs237885, rs237887, rs2268490, rs4686301, rs2254298, rs13316193, rs53576, and rs2268498) in the oxytocin receptor gene. There were no significant associations between any of the eight single nucleotide polymorphism of the oxytocin receptor gene and alexithymia. In addition, a six-locus haplotype block (rs237885-rs237887-rs2268490-rs4686301-rs2254298-rs13316193) was not significantly associated with alexithymia. These findings suggest that genetic variations in the oxytocin receptor gene may not explain a significant part of alexithymia in patients with obsessive-compulsive disorder. PMID:26599592

  18. Increased anxiety in mice lacking vitamin D receptor gene

    E-print Network

    Kalueff, Allan V.

    D hormone is essential for growth and differentia- tion in a variety of organs, including the brain vitamin D and VDR-related disorders may therefore be a risk factor for abnormal emotional behaviourC, humidity 50 7 5%) and exposed to a 12:12 h light:dark cycle (lights on 07.00 h) with food

  19. Avian olfactory receptor gene repertoires: evidence for a well-developed sense of smell in birds?

    PubMed

    Steiger, Silke S; Fidler, Andrew E; Valcu, Mihai; Kempenaers, Bart

    2008-10-22

    Among vertebrates, the sense of smell is mediated by olfactory receptors (ORs) expressed in sensory neurons within the olfactory epithelium. Comparative genomic studies suggest that the olfactory acuity of mammalian species correlates positively with both the total number and the proportion of functional OR genes encoded in their genomes. In contrast to mammals, avian olfaction is poorly understood, with birds widely regarded as relying primarily on visual and auditory inputs. Here, we show that in nine bird species from seven orders (blue tit, Cyanistes caeruleus; black coucal, Centropus grillii; brown kiwi, Apteryx australis; canary, Serinus canaria; galah, Eolophus roseicapillus; red jungle fowl, Gallus gallus; kakapo, Strigops habroptilus; mallard, Anas platyrhynchos; snow petrel, Pagodroma nivea), the majority of amplified OR sequences are predicted to be from potentially functional genes. This finding is somewhat surprising as one previous report suggested that the majority of OR genes in an avian (red jungle fowl) genomic sequence are non-functional pseudogenes. We also show that it is not the estimated proportion of potentially functional OR genes, but rather the estimated total number of OR genes that correlates positively with relative olfactory bulb size, an anatomical correlate of olfactory capability. We further demonstrate that all the nine bird genomes examined encode OR genes belonging to a large gene clade, termed gamma-c, the expansion of which appears to be a shared characteristic of class Aves. In summary, our findings suggest that olfaction in birds may be a more important sense than generally believed. PMID:18628122

  20. Avian olfactory receptor gene repertoires: evidence for a well-developed sense of smell in birds?

    PubMed Central

    Steiger, Silke S; Fidler, Andrew E; Valcu, Mihai; Kempenaers, Bart

    2008-01-01

    Among vertebrates, the sense of smell is mediated by olfactory receptors (ORs) expressed in sensory neurons within the olfactory epithelium. Comparative genomic studies suggest that the olfactory acuity of mammalian species correlates positively with both the total number and the proportion of functional OR genes encoded in their genomes. In contrast to mammals, avian olfaction is poorly understood, with birds widely regarded as relying primarily on visual and auditory inputs. Here, we show that in nine bird species from seven orders (blue tit, Cyanistes caeruleus; black coucal, Centropus grillii; brown kiwi, Apteryx australis; canary, Serinus canaria; galah, Eolophus roseicapillus; red jungle fowl, Gallus gallus; kakapo, Strigops habroptilus; mallard, Anas platyrhynchos; snow petrel, Pagodroma nivea), the majority of amplified OR sequences are predicted to be from potentially functional genes. This finding is somewhat surprising as one previous report suggested that the majority of OR genes in an avian (red jungle fowl) genomic sequence are non-functional pseudogenes. We also show that it is not the estimated proportion of potentially functional OR genes, but rather the estimated total number of OR genes that correlates positively with relative olfactory bulb size, an anatomical correlate of olfactory capability. We further demonstrate that all the nine bird genomes examined encode OR genes belonging to a large gene clade, termed ?-c, the expansion of which appears to be a shared characteristic of class Aves. In summary, our findings suggest that olfaction in birds may be a more important sense than generally believed. PMID:18628122

  1. Expanding Duplication of Free Fatty Acid Receptor-2 (GPR43) Genes in the Chicken Genome

    PubMed Central

    Meslin, Camille; Desert, Colette; Callebaut, Isabelle; Djari, Anis; Klopp, Christophe; Pitel, Frédérique; Leroux, Sophie; Martin, Pascal; Froment, Pascal; Guilbert, Edith; Gondret, Florence; Lagarrigue, Sandrine; Monget, Philippe

    2015-01-01

    Free fatty acid receptors (FFAR) belong to a family of five G-protein coupled receptors that are involved in the regulation of lipid metabolism, so that their loss of function increases the risk of obesity. The aim of this study was to determine the expansion of genes encoding paralogs of FFAR2 in the chicken, considered as a model organism for developmental biology and biomedical research. By estimating the gene copy number using quantitative polymerase chain reaction, genomic DNA resequencing, and RNA sequencing data, we showed the existence of 23 ± 1.5 genes encoding FFAR2 paralogs in the chicken genome. The FFAR2 paralogs shared an identity from 87.2% up to 99%. Extensive gene conversion was responsible for this high degree of sequence similarities between these genes, and this concerned especially the four amino acids known to be critical for ligand binding. Moreover, elevated nonsynonymous/synonymous substitution ratios on some amino acids within or in close-vicinity of the ligand-binding groove suggest that positive selection may have reduced the effective rate of gene conversion in this region, thus contributing to diversify the function of some FFAR2 paralogs. All the FFAR2 paralogs were located on a microchromosome in a same linkage group. FFAR2 genes were expressed in different tissues and cells such as spleen, peripheral blood mononuclear cells, abdominal adipose tissue, intestine, and lung, with the highest rate of expression in testis. Further investigations are needed to determine whether these chicken-specific events along evolution are the consequence of domestication and may play a role in regulating lipid metabolism in this species. PMID:25912043

  2. Enhanced gene expression of the murine ecotropic retroviral receptor and its human homolog in proliferating cells.

    PubMed Central

    Yoshimoto, T; Yoshimoto, E; Meruelo, D

    1992-01-01

    The receptor for gp70 envelope glycoprotein of murine ecotropic leukemia virus is essential for virus entry into the host cell and has been recently demonstrated to function as a cationic amino acid transporter. In the experiments reported herein, we compared the gene expression of the murine ecotropic retroviral receptor (ERR) and its human homolog (H13) in rapidly proliferating cells versus resting cells using four different systems. (i) The expression of ERR gene is enhanced during activation of T and B lymphocytes by concanavalin A and lipopolysaccharide, respectively. Similar enhancement is observed by adding phorbol 12-myristate 13-acetate (PMA) or calcium ionophore (A23187). These phenomena appear to involve protein kinase C; two PMA analogs, 4 alpha-phorbol and 4 alpha-PMA, lacking the ability to activate protein kinase C fail to induce elevated levels of gene expression, and the protein kinase C inhibitor, H7 [1-(5-isoquinolinylsulfonyl)-2-methylpiperazine dihydrochloride[, inhibits the enhancement induced by PMA. (ii) Friend murine leukemia virus induces rapid splenomegaly, and acute erythroleukemia in sensitive mice. Concomitantly with splenomegaly, ERR gene expression in spleen cells increases dramatically. (iii) The level of expression of the ERR or H13 gene in a variety of tumor cells is highly elevated compared with the level in noncancerous cells. (iv) H13 gene expression decreases upon terminal differentiation of the human promyelocytic leukemia cell line HL-60 into granulocytes or macrophages by dimethyl sulfoxide or PMA, respectively. These results suggest that ERR and H13 genes play an important role in cellular proliferation. Images PMID:1318407

  3. Identification of Novel Trophoblast Invasion-Related Genes: Heme Oxygenase-1 Controls Motility via Peroxisome Proliferator-Activated Receptor ?

    PubMed Central

    Bilban, Martin; Haslinger, Peter; Prast, Johanna; Klinglmüller, Florian; Woelfel, Thomas; Haider, Sandra; Sachs, Alexander; Otterbein, Leo E.; Desoye, Gernot; Hiden, Ursula; Wagner, Oswald; Knöfler, Martin

    2011-01-01

    Invasion of cytotrophoblasts (CTBs) into uterine tissues is essential for placental development. To identify molecules regulating trophoblast invasion, mRNA signatures of purified villous (CTB, poor invasiveness) and extravillous trophoblasts (EVTs) (high invasiveness) isolated from first trimester human placentae and villous explant cultures, respectively, were compared using GeneChip analyses yielding 991 invasion/migration-related transcripts. Several genes involved in physiological and pathological cell invasion, including A disintegrin and metalloprotease-12, -19, -28, as well as Spondin-2, were up-regulated in EVTs. Pathway prediction analyses identified several functional modules associated with either the invasive or noninvasive trophoblast phenotype. One of the genes that was down-regulated in the invasive mRNA pool, heme oxygenase-1 (HO-1), was selected for functional analyses. Real-time PCR analyses, Western blotting, and immunofluorescence of first trimester placentae and differentiating villous explant cultures demonstrated down-regulation of HO-1 in invasive EVTs as compared with CTBs. Modulation of HO-1 expression in loss-of as well as gain-of function cell models (BeWo and HTR8/SVneo, respectively) demonstrated an inverse relationship of HO-1 expression with trophoblast migration in transwell and wound healing assays. Importantly, HO-1 expression led to an increase in protein levels and activity of the nuclear hormone receptor peroxisome proliferator activated receptor (PPAR) ?. Pharmacological inhibition of PPAR? abrogated the inhibitory effects of HO-1 on trophoblast migration. Collectively, our results demonstrate that gene expression profiling of EVTs and CTBs can be used to unravel novel regulators of cell invasion. Accordingly, we identify HO-1 as a negative regulator of trophoblast motility acting via up-regulation of PPAR?. PMID:18845641

  4. Functional roles and gene regulation of tumor necrosis factor receptor 1 in freshwater striped murrel.

    PubMed

    Palanisamy, Rajesh; Kumaresan, Venkatesh; Harikrishnan, Ramasamy; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Arockiaraj, Jesu

    2015-08-01

    In this study, a complete molecular characterization of tumor necrosis factor receptor 1 (TNFR1) which was identified from the constructed cDNA library of striped murrel Channa striatus (Cs) is reported. The CsTNFR1 encoded a type I membrane receptor protein that contains 399 amino acids including three cysteine-rich domains (CRDs) at CRD1(41-46), CRD2(79-118) and CRD3(120-159) in the extracellular region and a putative TNF receptor-associated factor (TRAF) site at 245-253 and a death domain between 297 and 388 in the cytoplasmic region which is essential for induction of apoptosis. The predicted molecular mass of CsTNFR1 is 45kDa and its corresponding theoretical isoelectric point (pI) is 6.3. CsTNFR1 shared maximum identity with TNFR1 from olive flounder Paralichthys olivaceus (82%). Real-time PCR showed that CsTNFR1 gene was expressed most abundantly (P<0.05) in the head kidney. Further, CsTNFR1 mRNA transcription was studied after challenge with fungus Apanomyces invadans and bacteria Aeromonas hydrophila. The fungus injected murrels showed a highest expression at 48h, whereas bacteria injected murrels showed at 24h. The gene expression studies revealed that CsTNFR1 may be involved in innate immune process of murrels against pathogenic infections. The over-expressed and purified recombinant CsTNFR1 protein (rCsTNFR1) was subjected to TNF-? inhibition assay to confirm their specificity and activity against TNF-? which confirmed that the rCsTNFR1 inhibits the activity of TNF-? in a dose dependent manner where maximum inhibition (97%) was observed at 10,000 fold concentration of rCsTNFR1. In addition, the direct cytotoxic effect of rCsTNFR1 was analyzed against head kidney phagocyte. The results showed that the recombinant CsTNFR1 protein does not exhibit any significant cytotoxicity against head kidney phagocyte cells even at higher concentration (8?g/ml). Moreover, the recombinant protein was analyzed for respiratory burst activity in the presence of two different ROS inducers, opsonized zymosan (fungal cell wall component) and phorbol 12-myristate 13-acetate (PMA). The findings showed that the C. striatus head kidney phagocyte exposed to purified recombinant CsTNFR1 protein alone do not produced any ROS. However, opsonized zymosan induced recombinant CsTNFR1 protein significantly (P<0.05) enhanced the ROS production on concentration basis which is revealed that the ROS production depends on the concentration of the recombinant CsTNFR1 protein. Overall, the study showed that the CsTNFR1 plays an important role in the pathogen-induced inflammatory process of striped murrel. PMID:25841174

  5. Increased hypothalamic 5-HT2A receptor gene expression and effects of pharmacologic 5-HT2A receptor inactivation in obese A{sup y} mice

    SciTech Connect

    Nonogaki, Katsunori . E-mail: knonogaki-tky@umin.ac.jp; Nozue, Kana; Oka, Yoshitomo

    2006-12-29

    Serotonin (5-hydroxytryptamine; 5-HT) 2A receptors contribute to the effects of 5-HT on platelet aggregation and vascular smooth muscle cell proliferation, and are reportedly involved in decreases in plasma levels of adiponectin, an adipokine, in diabetic subjects. Here, we report that systemic administration of sarpogrelate, a 5-HT2A receptor antagonist, suppressed appetite and increased hypothalamic pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript, corticotropin releasing hormone, 5-HT2C, and 5-HT1B receptor gene expression. A{sup y} mice, which have ectopic expression of the agouti protein, significantly increased hypothalamic 5-HT2A receptor gene expression in association with obesity compared with wild-type mice matched for age. Systemic administration of sarpogrelate suppressed overfeeding, body weight gain, and hyperglycemia in obese A{sup y} mice, whereas it did not increase plasma adiponectin levels. These results suggest that obesity increases hypothalamic 5-HT2A receptor gene expression, and pharmacologic inactivation of 5-HT2A receptors inhibits overfeeding and obesity in A{sup y} mice, but did not increase plasma adiponectin levels.

  6. Identification of novel NRF2-regulated genes by ChIP-Seq: influence on retinoid X receptor alpha.

    PubMed

    Chorley, Brian N; Campbell, Michelle R; Wang, Xuting; Karaca, Mehmet; Sambandan, Deepa; Bangura, Fatu; Xue, Peng; Pi, Jingbo; Kleeberger, Steven R; Bell, Douglas A

    2012-08-01

    Cellular oxidative and electrophilic stress triggers a protective response in mammals regulated by NRF2 (nuclear factor (erythroid-derived) 2-like; NFE2L2) binding to deoxyribonucleic acid-regulatory sequences near stress-responsive genes. Studies using Nrf2-deficient mice suggest that hundreds of genes may be regulated by NRF2. To identify human NRF2-regulated genes, we conducted chromatin immunoprecipitation (ChIP)-sequencing experiments in lymphoid cells treated with the dietary isothiocyanate, sulforaphane (SFN) and carried out follow-up biological experiments on candidates. We found 242 high confidence, NRF2-bound genomic regions and 96% of these regions contained NRF2-regulatory sequence motifs. The majority of binding sites were near potential novel members of the NRF2 pathway. Validation of selected candidate genes using parallel ChIP techniques and in NRF2-silenced cell lines indicated that the expression of about two-thirds of the candidates are likely to be directly NRF2-dependent including retinoid X receptor alpha (RXRA). NRF2 regulation of RXRA has implications for response to retinoid treatments and adipogenesis. In mouse, 3T3-L1 cells' SFN treatment affected Rxra expression early in adipogenesis, and knockdown of Nrf2-delayed Rxra expression, both leading to impaired adipogenesis. PMID:22581777

  7. Variation at innate immunity Toll-like receptor genes in a bottlenecked population of a New Zealand robin.

    PubMed

    Grueber, Catherine E; Wallis, Graham P; King, Tania M; Jamieson, Ian G

    2012-01-01

    Toll-like receptors (TLRs) are an ancient family of genes encoding transmembrane proteins that bind pathogen-specific molecules and initiate both innate and adaptive aspects of the immune response. Our goal was to determine whether these genes show sufficient genetic diversity in a bottlenecked population to be a useful addition or alternative to the more commonly employed major histocompatibility complex (MHC) genotyping in a conservation genetics context. We amplified all known avian TLR genes in a severely bottlenecked population of New Zealand's Stewart Island robin (Petroica australis rakiura), for which reduced microsatellite diversity was previously observed. We genotyped 17-24 birds from a reintroduced island population (including the 12 founders) for nine genes, seven of which were polymorphic. We observed a total of 24 single-nucleotide polymorphisms overall, 15 of which were non-synonymous, representing up to five amino-acid variants at a locus. One locus (TLR1LB) showed evidence of past directional selection. Results also confirmed a passerine duplication of TLR7. The levels of TLR diversity that we observe are sufficient to justify their further use in addressing conservation genetic questions, even in bottlenecked populations. PMID:23024782

  8. Association between Vitamin D Receptor Gene Polymorphisms and Breast Cancer Risk: A Meta-Analysis of 39 Studies

    PubMed Central

    Zhang, Kai; Song, Lihua

    2014-01-01

    Background The associations between vitamin D receptor (VDR) gene polymorphisms and breast cancer risk were comprehensively investigated to clarify issues that remain controversial. Methodology/Principal Findings An electronic search was conducted of several databases, including PubMed, the Cochrane library, Web of Science, EMBASE, CBM and CNKI, for papers that describe the association between Fok1, poly-A repeat, Bsm1, Taq1 or Apa1 polymorphisms of the VDR gene and breast cancer risk. Summary odds ratios and 95% confidence intervals (CI) were estimated based on a fixed-effect model (FEM) or random-effect model (REM), depending on the absence or presence of significant heterogeneity. A total of 39 studies met the inclusion criteria. A meta-analysis of high-quality studies showed that the Fok1 polymorphism of the VDR gene was associated with an increased risk of breast cancer (ff vs. Ff+FF, OR: 1.09, 95%CI: 1.02 to 1.16, p?=?0.007). No significant associations were observed between the other polymorphisms and breast cancer risk. No positive results were detected by pooling the results of all relevant studies. Conclusion A meta-analysis of high-quality studies demonstrated that the Fok1 polymorphism of the VDR gene was closely associated with breast cancer risk. PMID:24769568

  9. The platelet-derived growth factor alpha-receptor is encoded by a growth-arrest-specific (gas) gene.

    PubMed Central

    Lih, C J; Cohen, S N; Wang, C; Lin-Chao, S

    1996-01-01

    Using the Escherichia coli lacZ gene to identify chromosomal loci that are transcriptionally active during growth arrest of NIH 3T3 fibroblasts, we found that an mRNA expressed preferentially in serum-deprived cells specifies the previously characterized alpha-receptor (alphaR) for platelet-derived growth factor (PDGF), which mediates mitogenic responsiveness to all PDGF isoforms. Both PDGFalphaR mRNA, which was shown to include a 111-nt segment encoded by a DNA region thought to contain only intron sequences, and PDGFalphaR protein accumulated in serum-starved cells and decreased as cells resumed cycling. Elevated PDGFalphaR gene expression during serum starvation was not observed in cells that had been transformed with oncogenes erbB2, src, or raf, which prevent starvation-induced growth arrest. Our results support the view that products of certain genes expressed during growth arrest function to promote, rather than restrict, cell cycling. We suggest that accumulation of the PDGFalphaR gene product may facilitate the exiting of cells from growth arrest upon mitogenic stimulation by PDGF, leading to the state of "competence" required for cell cycling. Images Fig. 3 Fig. 4 Fig. 5 PMID:8643452

  10. Familial hypocalciuric hypercalcemia associated with mutation in the human Ca{sup 2+}-sensing receptor gene

    SciTech Connect

    Aida, Kaoru; Koishi, Sawako; Inoue, Masaharu

    1995-09-01

    Familial hypocalciuric hypercalcemia (FHH) is generally characterized by lifelong hypercalcemia without hypercalciuria and is inherited in an autosomal dominant manner. Affected individuals show abnormal parathyroid and renal responses to changes in the extracellular calcium concentration. A Japanese FHH family was screened for mutations in the Ca{sup 2+} -sensing receptor gene by the polymerase chain reaction and single strand conformation polymorphism. The proband with hypercalcemia showed an abnormal pattern in exon 1 of the gene, whereas her two sisters with normocalcemia showed a normal pattern. The consanguineous parents with borderline serum calcium concentrations showed both patterns. Nucleotide sequence analysis identified a G{yields}C point mutation at nucleotide 118 that resulted in the conversion of the normal codon for proline into a codon for alanine at amino acid 40 (numbered according to the bovine complementary DNA). The proband was homozygous for the mutation, and the parents were heterozygous. These results imply that this mutation in the human Ca{sup 2+}-sensing receptor gene causes FHH and that the dosage of the gene defect determines disease phenotype. 33 refs., 4 figs., 1 tab.

  11. G Protein-Coupled Receptor Genes in the FANTOM2 Database

    PubMed Central

    Kawasawa, Yuka; McKenzie, Louise M.; Hill, David P.; Bono, Hidemasa; Yanagisawa, Masashi

    2003-01-01

    G protein-coupled receptors (GPCRs) comprise the largest family of receptor proteins in mammals and play important roles in many physiological and pathological processes. Gene expression of GPCRs is temporally and spatially regulated, and many splicing variants are also described. In many instances, different expression profiles of GPCR gene are accountable for the changes of its biological function. Therefore, it is intriguing to assess the complexity of the transcriptome of GPCRs in various mammalian organs. In this study, we took advantage of the FANTOM2 (Functional Annotation Meeting of Mouse cDNA 2) project, which aimed to collect full-length cDNAs inclusively from mouse tissues, and found 410 candidate GPCR cDNAs. Clustering of these clones into transcriptional units (TUs) reduced this number to 213. Out of these, 165 genes were represented within the known 308 GPCRs in the Mouse Genome Informatics (MGI) resource. The remaining 48 genes were new to mouse, and 14 of them had no clear mammalian ortholog. To dissect the detailed characteristics of each transcript, tissue distribution pattern and alternative splicing were also ascertained. We found many splicing variants of GPCRs that may have a relevance to disease occurrence. In addition, the difficulty in cloning tissue-specific and infrequently transcribed GPCRs is discussed further. PMID:12819145

  12. G protein-coupled receptor genes in the FANTOM2 database.

    PubMed

    Kawasawa, Yuka; McKenzie, Louise M; Hill, David P; Bono, Hidemasa; Yanagisawa, Masashi

    2003-06-01

    G protein-coupled receptors (GPCRs) comprise the largest family of receptor proteins in mammals and play important roles in many physiological and pathological processes. Gene expression of GPCRs is temporally and spatially regulated, and many splicing variants are also described. In many instances, different expression profiles of GPCR gene are accountable for the changes of its biological function. Therefore, it is intriguing to assess the complexity of the transcriptome of GPCRs in various mammalian organs. In this study, we took advantage of the FANTOM2 (Functional Annotation Meeting of Mouse cDNA 2) project, which aimed to collect full-length cDNAs inclusively from mouse tissues, and found 410 candidate GPCR cDNAs. Clustering of these clones into transcriptional units (TUs) reduced this number to 213. Out of these, 165 genes were represented within the known 308 GPCRs in the Mouse Genome Informatics (MGI) resource. The remaining 48 genes were new to mouse, and 14 of them had no clear mammalian ortholog. To dissect the detailed characteristics of each transcript, tissue distribution pattern and alternative splicing were also ascertained. We found many splicing variants of GPCRs that may have a relevance to disease occurrence. In addition, the difficulty in cloning tissue-specific and infrequently transcribed GPCRs is discussed further. PMID:12819145

  13. Phosphorylation of Liver X Receptor ? Selectively Regulates Target Gene Expression in Macrophages? †

    PubMed Central

    Torra, Inés Pineda; Ismaili, Naima; Feig, Jonathan E.; Xu, Chong-Feng; Cavasotto, Claudio; Pancratov, Raluca; Rogatsky, Inez; Neubert, Thomas A.; Fisher, Edward A.; Garabedian, Michael J.

    2008-01-01

    Dysregulation of liver X receptor ? (LXR?) activity has been linked to cardiovascular and metabolic diseases. Here, we show that LXR? target gene selectivity is achieved by modulation of LXR? phosphorylation. Under basal conditions, LXR? is phosphorylated at S198; phosphorylation is enhanced by LXR ligands and reduced both by casein kinase 2 (CK2) inhibitors and by activation of its heterodimeric partner RXR with 9-cis-retinoic acid (9cRA). Expression of some (AIM and LPL), but not other (ABCA1 or SREBPc1) established LXR target genes is increased in RAW 264.7 cells expressing the LXR? S198A phosphorylation-deficient mutant compared to those with WT receptors. Surprisingly, a gene normally not expressed in macrophages, the chemokine CCL24, is activated specifically in cells expressing LXR? S198A. Furthermore, inhibition of S198 phosphorylation by 9cRA or by a CK2 inhibitor similarly promotes CCL24 expression, thereby phenocopying the S198A mutation. Thus, our findings reveal a previously unrecognized role for phosphorylation in restricting the repertoire of LXR?-responsive genes. PMID:18250151

  14. Responsivity to PGE2 labor induction involves concomitant differential prostaglandin E receptor gene expression in cervix and myometrium.

    PubMed

    Konopka, C K; Glanzner, W G; Rigo, M L; Rovani, M T; Comim, F V; Gonçalves, P B D; Morais, E N; Antoniazzi, A Q; Mello, C F; Cruz, I B M

    2015-01-01

    Prostaglandin E2 (dinoprostone) is largely used for labor induction. However, one-third of patients do not respond to treatment. One cause of this poor response may be associated with changes in regulation of prostaglandin E receptors (EP1-4). In this study, we investigated EP mRNA expression in the uterine cervix and lower uterine segment myometrium for term births. Biopsies were obtained from women with successful (responders) and failed (non-responders) dinoprostone labor induction, while women that underwent spontaneous labor were included as controls. EP1 mRNA was upregulated in the cervical tissue of women who did not respond to dinoprostone induction. In addition, in the myometrium, significantly higher levels of EP3 mRNA were observed in women treated with dinoprostone, independent of their responsiveness. Dinoprostone-responders presented 3.6-fold higher levels of EP3 mRNA expression than the spontaneous labor group. Significantly higher levels of EP3 mRNA in the myometrium of the dinoprostone-treated group indicated that dinoprostone may regulate the EP3 gene on the transcriptional level. These results highlight the relationship between EP gene expression and delivery and indicate that understanding the regulation of prostaglandin E receptors may lead to improved labor induction. PMID:26400315

  15. Global Survey of Variation in a Human Olfactory Receptor Gene Reveals Signatures of Non-Neutral Evolution.

    PubMed

    Hoover, Kara C; Gokcumen, Omer; Qureshy, Zoya; Bruguera, Elise; Savangsuksa, Aulaphan; Cobb, Matthew; Matsunami, Hiroaki

    2015-09-01

    Allelic variation at 4 loci in the human olfactory receptor gene OR7D4 is associated with perceptual variation in the sex steroid-derived odorants, androstenone, and androstadienone. Androstadienone has been linked with chemosensory identification whereas androstenone makes pork from uncastrated pigs distasteful ("boar taint"). In a sample of 2224 individuals from 43 populations, we identified 45 OR7D4 single nucleotide polymorphisms. Coalescent modeling of frequency-site-spectrum-based statistics identified significant deviation from neutrality in human OR7D4; individual populations with statistically significant deviations from neutrality include Gujarati, Beijing Han, Great Britain, Iberia, and Puerto Rico. Analysis of molecular variation values indicated statistically significant population differentiation driven mainly by the 4 alleles associated with androstenone perception variation; however, fixation values were low suggesting that genetic structure may not have played a strong role in creating these group divisions. We also studied OR7D4 in the genomes of extinct members of the human lineage: Altai Neandertal and Denisovan. No variants were identified in Altai but 2 were in Denisova, one of which is shared by modern humans and one of which is novel. A functional test of modern human and a synthesized mutant Denisova OR7D4 indicated no statistically significant difference in responses to androstenone between the 2 species. Our results suggest non-neutral evolution for an olfactory receptor gene. PMID:26072518

  16. Association Study of Estrogen Receptor Alpha Gene Polymorphisms with Spontaneous Abortion: Is This a Possible Reason for Unexplained Spontaneous Abortion?

    PubMed Central

    Anousha, Negin; Hossein-Nezhad, Arash; Biramijamal, Firouzeh; Rahmani, Ali; Maghbooli, Zhila; Aghababaei, Elahe; Nemati, Shahram

    2013-01-01

    Estrogen plays a crucial role in fetal and placental development through estrogen receptors. Association of estrogen receptor alpha gene (ESR1) polymorphisms with spontaneous abortion has been shown in some studies. Our main goal was to study the potential association of spontaneous abortion with the ESR1 gene variations (PvuII and XbaI) in fetal tissue. Totally, 161 samples were recruited including 80 samples of formalin-fixed paraffin-embedded fetal tissue from spontaneous abortion and 81 samples of normal term placental tissue. The restriction fragment length polymorphism (RFLP) method was performed for genotyping the rs2234693 (A/G XbaI) and rs9340799 (T/C PvuII) single nucleotide polymorphisms located in intron 1 of ESR1. The results have been confirmed by DNA sequencing analysis. The different genotypes distribution was detected in two study groups. Haplotype analysis indicated that ppxx is protective genotype against spontaneous abortion (P = 0.01). In conclusion, the potential role of ESR1 genetic variation in spontaneous abortion might be valuable in high-risk subjects, and that needs to be confirmed with future studies. PMID:24228243

  17. Complex expression of natural killer receptor genes in single natural killer cells ZAHEED HUSAIN,*{{ CHESTER A. ALPER,{1 EDMOND J. YUNIS*{ &

    E-print Network

    Alper, Chester A.

    Complex expression of natural killer receptor genes in single natural killer cells ZAHEED HUSAIN, USA SUMMARY Human natural killer (NK) cells express several inhibitory and non-inhibitory NK receptors- inhibitory (DS) killer immunoglobulin-like receptors (KIR). The frequency of individual receptor expression

  18. Perfluorooctane sulfonate (PFOS) affects hormone receptor activity, steroidogenesis, and expression of endocrine-related genes in vitro and in vivo.

    PubMed

    Du, Guizhen; Hu, Jialei; Huang, Hongyu; Qin, Yufeng; Han, Xiumei; Wu, Di; Song, Ling; Xia, Yankai; Wang, Xinru

    2013-02-01

    Perfluorooctane sulfonate (PFOS) is a widespread and persistent chemical in the environment. We investigated the endocrine-disrupting effects of PFOS using a combination of in vitro and in vivo assays. Reporter gene assays were used to detect receptor-mediated (anti-)estrogenic, (anti-)androgenic, and (anti-)thyroid hormone activities. The effect of PFOS on steroidogenesis was assessed both at hormone levels in the supernatant and at expression levels of hormone-induced genes in the H295R cell. A zebrafish-based short-term screening method was developed to detect the effect of PFOS on endocrine function in vivo. The results indicate that PFOS can act as an estrogen receptor agonist and thyroid hormone receptor antagonist. Exposure to PFOS decreased supernatant testosterone (T), increased estradiol (E2) concentrations in H295R cell medium and altered the expression of several genes involved in steroidogenesis. In addition, PFOS increased early thyroid development gene (hhex and pax8) expression in a concentration-dependent manner, decreased steroidogenic enzyme gene (CYP17, CYP19a, CYP19b) expression, and changed the expression pattern of estrogen receptor production genes (esr1, esr2b) after 500?µg/L PFOS treatment in zebrafish embryos. These results indicate that PFOS has the ability to act as an endocrine disruptor both in vitro and in vivo by disrupting the function of nuclear hormone receptors, interfering with steroidogenesis, and altering the expression of endocrine-related genes in zebrafish embryo. PMID:23074026

  19. Impact of gene polymorphisms of gonadotropins and their receptors on human reproductive success.

    PubMed

    Casarini, Livio; Santi, Daniele; Marino, Marco

    2015-12-01

    Gonadotropins and their receptors' genes carry several single-nucleotide polymorphisms resulting in endocrine genotypes modulating reproductive parameters, diseases, and lifespan leading to important implications for reproductive success and potential relevance during human evolution. Here we illustrate common genotypes of the gonadotropins and gonadotropin receptors' genes and their clinical implications in phenotypes relevant for reproduction such as ovarian cycle length, age of menopause, testosterone levels, polycystic ovary syndrome, and cancer. We then discuss their possible role in human reproduction and adaptation to the environment. Gonadotropins and their receptors' variants are differently distributed among human populations. Some hints suggest that they may be the result of natural selection that occurred in ancient times, increasing the individual chance of successful mating, pregnancy, and effective post-natal parental cares. The gender-related differences in the regulation of the reproductive endocrine systems imply that many of these genotypes may lead to sex-dependent effects, increasing the chance of mating and reproductive success in one sex at the expenses of the other sex. Also, we suggest that sexual conflicts within the FSH and LH-choriogonadotropin receptor genes contributed to maintain genotypes linked to subfertility among humans. Because the distribution of polymorphic markers results in a defined geographical pattern due to human migrations rather than natural selection, these polymorphisms may have had only a weak impact on reproductive success. On the contrary, such genotypes could acquire relevant consequences in the modern, developed societies in which parenthood attempts often occur at a later age, during a short, suboptimal reproductive window, making clinical fertility treatments necessary. PMID:26370242

  20. Association analysis of genes of the IL19 cluster and their receptors in vitiligo patients.

    PubMed

    Kingo, Külli; Reimann, Ene; Karelson, Maire; Rätsep, Ranno; Raud, Kristi; Vasar, Eero; Silm, Helgi; Kőks, Sulev

    2010-01-01

    The aim of the present study was to explore whether the genes encoding interleukin (IL) 19, IL-20, IL-24 and 2 chains of the IL-20 receptor type I (IL-20-RI), IL-20RA and IL-20RB, located on chromosomes 1q32, 6q22–23 and 3q22, respectively, are associated with vitiligo. The study involved 76 patients with vitiligo and 236 unrelated healthy volunteers. Genomic DNA was extracted from the whole blood and the frequencies of 20 single nucleotide polymorphisms were analysed by tetraprimer amplification refractory mutation system polymerase chain reaction. The minor allele of IL19 rs2243188 was significantly increased in vitiligo patients compared to controls (53.3 vs. 28.6%, adjusted p < 0.0001). The haplotype analysis revealed associations of 2 IL19/IL20 extended haplotypes (AACGTAA and ACCGTAA) and 2 IL20RB haplotypes (AGTA and AGGA) with vitiligo, remaining significant after correction for multiple testing. The A-to-C exchange at position IL19 rs2243188 leads to the loss of a nuclear receptor subfamily 2 factor binding site that is thought to influence mouse hippocampal development and neuronal differentiation. The third position of the IL20RB haplotypes is taken by rs747842 that induces the loss of the interferon regulatory factor 4 binding site that has an important role in the regulation of innate and adaptive immunity and in the signalling of pigmentation as well. In conclusion, the present study describes first-time associations between polymorphisms of genes of the IL19 cluster and their receptors and vitiligo, indicative of the part of IL19 and its receptor gene IL20RB in disease pathogenesis. PMID:20699607

  1. Screening a mouse liver gene expression compendium identifies modulators of the aryl hydrocarbon receptor (AhR).

    PubMed

    Oshida, Keiyu; Vasani, Naresh; Thomas, Russell S; Applegate, Dawn; Gonzalez, Frank J; Aleksunes, Lauren M; Klaassen, Curtis D; Corton, J Christopher

    2015-10-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates the biological and toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), dioxin-like compounds (DLC) as well as some drugs and endogenous tryptophan metabolites. Short-term activation of AhR can lead to hepatocellular steatosis, and chronic activation can lead to liver cancer in mice and rats. Analytical approaches were developed to identify biosets in a genomic database in which AhR activity was altered. A set of 63 genes was identified (the AhR gene expression biomarker) that was dependent on AhR for regulation after exposure to TCDD or benzo[a]pyrene and includes the known AhR targets Cyp1a1 and Cyp1b1. A fold-change rank-based test (Running Fisher's test; p-value ? 10(-4)) was used to evaluate the similarity between the AhR biomarker and a test set of 37 and 41 biosets positive or negative, respectively for AhR activation. The test resulted in a balanced accuracy of 95%. The rank-based test was used to identify factors that activate or suppress AhR in an annotated mouse liver/mouse primary hepatocyte gene expression database of ? 1850 comparisons. In addition to the expected activation of AhR by TCDD and DLC, AhR was activated by AP20189 and phenformin. AhR was suppressed by phenobarbital and 1,4-Bis[2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) in a constitutive activated receptor (CAR)-dependent manner and pregnenolone-16?-carbonitrile in a pregnane X receptor (PXR)-dependent manner. Inactivation of individual genes in nullizygous models led to AhR activation (Pxr, Ghrhr, Taf10) or suppression (Ahr, Ilst6st, Hnf1a). This study describes a novel screening strategy for identifying factors in mouse liver that perturb AhR in a gene expression compendium. PMID:26215100

  2. Orthologs of human disease associated genes and RNAi analysis of silencing insulin receptor gene in Bombyx mori.

    PubMed

    Zhang, Zan; Teng, Xiaolu; Chen, Maohua; Li, Fei

    2014-01-01

    The silkworm, Bombyx mori L., is an important economic insect that has been domesticated for thousands of years to produce silk. It is our great interest to investigate the possibility of developing the B. mori as human disease model. We searched the orthologs of human disease associated genes in the B. mori by bi-directional best hits of BLAST and confirmed by searching the OrthoDB. In total, 5006 genes corresponding to 1612 kinds of human diseases had orthologs in the B. mori, among which, there are 25 genes associated with diabetes mellitus. Of these, we selected the insulin receptor gene of the B. mori (Bm-INSR) to study its expression in different tissues and at different developmental stages and tissues. Quantitative PCR showed that Bm-INSR was highly expressed in the Malpighian tubules but expressed at low levels in the testis. It was highly expressed in the 3rd and 4th instar larvae, and adult. We knocked down Bm-INSR expression using RNA interference. The abundance of Bm-INSR transcripts were dramatically reduced to ~4% of the control level at 6 days after dsRNA injection and the RNAi-treated B. mori individuals showed apparent growth inhibition and malformation such as abnormal body color in black, which is the typical symptom of diabetic patients. Our results demonstrate that B. mori has potential use as an animal model for diabetic mellitus research. PMID:25302617

  3. Haplotypes that include the integrin alpha 11 gene are associated with tick burden in cattle

    PubMed Central

    2010-01-01

    Background Infestations on cattle by the ectoparasite Boophilus (Rhipicephalus) microplus (cattle tick) impact negatively on animal production systems. Host resistance to tick infestation has a low to moderate heritability in the range 0.13 - 0.64 in Australia. Previous studies identified a QTL on bovine chromosome 10 (BTA10) linked to tick burden in cattle. Results To confirm these associations, we collected genotypes of 17 SNP from BTA10, including three obtained by sequencing part of the ITGA11 (Integrin alpha 11) gene. Initially, we genotyped 1,055 dairy cattle for the 17 SNP, and then genotyped 557 Brahman and 216 Tropical Composite beef cattle for 11 of the 17 SNP. In total, 7 of the SNP were significantly (P < 0.05) associated with tick burden tested in any of the samples. One SNP, ss161109814, was significantly (P < 0.05) associated with tick burden in both the taurine and the Brahman sample, but the favourable allele was different. Haplotypes for three and for 10 SNP were more significantly (P < 0.001) associated with tick burden than SNP analysed individually. Some of the common haplotypes with the largest sample sizes explained between 1.3% and 1.5% of the residual variance in tick burden. Conclusions These analyses confirm the location of a QTL affecting tick burden on BTA10 and position it close to the ITGA11 gene. The presence of a significant association in such widely divergent animals suggests that further SNP discovery in this region to detect causal mutations would be warranted. PMID:20565915

  4. The first invertebrate RIG-I-like receptor (RLR) homolog gene in the pacific oyster Crassostrea gigas.

    PubMed

    Zhang, Yang; Yu, Feng; Li, Jun; Tong, Ying; Zhang, Yuehuan; Yu, Ziniu

    2014-10-01

    Retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) is a pivotal receptor that detects numerous RNA and DNA viruses and mediates the innate induction of interferons and pro-inflammatory cytokines upon viral infection. In the present study, we cloned and characterized the first RIG-I gene in a marine mollusk, Crassostrea gigas, and designated it as CgRIG-I. The full-length CgRIG-I cDNA is 3436 bp, including 5'- and 3'-untranslated regions (UTRs) of 93 bp and 286 bp, respectively, and an open reading frame (ORF) of 3057 bp. The gene encodes a 1018 amino acid polypeptide with an estimated molecular mass of 116.5 kDa. SMART analysis showed that the CgRIG-I protein had the typical conserved domains, including the caspase activation and recruitment domains (CARDs), the RNA helicase domain and the C-terminal regulatory domain (RD). Phylogenetic analysis revealed that CgRIG-I was grouped into the clade of its vertebrate homologs. Moreover, CgRIG-I expression could be specifically increased after stimulation by poly(I:C) rather than by other PAMPs such as lipopolysaccharide (LPS), peptidoglycan (PGN), heat-killed Listeria monocytogenes (HKLM) and heat-killed Vibrio alginolyticus (HKVA). Meanwhile, six IRF, three STAT and one NF-?B predicted sites were identified in the CgRIG-I promoter, which was consistent with its high responsiveness to poly(I:C). In summary, this report provides the first CgRIG-I sequence of a mollusk, but its function in the antiviral immune response requires further investigation. PMID:25107697

  5. Assignment of human thyrotropin-releasing hormone (TRH) receptor gene to chromosome 8

    SciTech Connect

    Yamada, Masanobu; Monden, Tsuyoshi; Konaka, Syuntaro; Mori, Masatomo )

    1993-11-01

    The human gene encoding thyrotropin-releasing hormone receptor was assigned to chromosome 8, using human-Chinese hamster ovary somatic cell hybrids, analyzed by Southern hybridizations. Hybridization was carried out with a [sup 32]P-labeled fragment of the human TRH-R genomic DNA. Hybridization of this probe to a human specific 10.5-kb DNA fragment of EcoRI-digested WBC DNA was used to localize the human TRH-R gene. No hybridization, by contrast, was seen with this probe and hamster DNA after EcoRI treatment. Results from 18 somatic cell hybrids corroborated unequivocally that the human TRH-R gene can be assigned to human chromosome 8.

  6. Expression of PAM50 Genes in Lung Cancer: Evidence that Interactions between Hormone Receptors and HER2/HER3 Contribute to Poor Outcome.

    PubMed

    Siegfried, Jill M; Lin, Yan; Diergaarde, Brenda; Lin, Hui-Min; Dacic, Sanja; Pennathur, Arjun; Weissfeld, Joel L; Romkes, Marjorie; Nukui, Tomoko; Stabile, Laura P

    2015-11-01

    Non-small cell lung cancers (NSCLCs) frequently express estrogen receptor (ER) ?, and estrogen signaling is active in many lung tumors. We investigated the ability of genes contained in the prediction analysis of microarray 50 (PAM50) breast cancer risk predictor gene signature to provide prognostic information in NSCLC. Supervised principal component analysis of mRNA expression data was used to evaluate the ability of the PAM50 panel to provide prognostic information in a stage I NSCLC cohort, in an all-stage NSCLC cohort, and in The Cancer Genome Atlas data. Immunohistochemistry was used to determine status of ER? and other proteins in lung tumor tissue. Associations with prognosis were observed in the stage I cohort. Cross-validation identified seven genes that, when analyzed together, consistently showed survival associations. In pathway analysis, the seven-gene panel described one network containing the ER and progesterone receptor, as well as human epidermal growth factor receptor (HER)2/HER3 and neuregulin-1. NSCLC cases also showed a significant association between ER? and HER2 protein expression. Cases positive for HER2 expression were more likely to express HER3, and ER?-positive cases were less likely to be both HER2 and HER3 negative. Prognostic ability of genes in the PAM50 panel was verified in an ER?-positive cohort representing all NSCLC stages. In The Cancer Genome Atlas data sets, the PAM50 gene set was prognostic in both adenocarcinoma and squamous cell carcinoma, whereas the seven-gene panel was prognostic only in squamous cell carcinoma. Genes in the PAM50 panel, including those linking ER and HER2, identify lung cancer patients at risk for poor outcome, especially among ER?-positive cases and squamous cell carcinoma. PMID:26678909

  7. Oxytocin Receptor Gene Polymorphisms Are Associated with Human Directed Social Behavior in Dogs (Canis familiaris)

    PubMed Central

    Lakatos, Gabriella; Pergel, Enik?; Turcsán, Borbála; Pluijmakers, Jolanda; Vas, Judit; Elek, Zsuzsanna; Brúder, Ildikó; Földi, Levente; Sasvári-Székely, Mária; Miklósi, Ádám; Rónai, Zsolt; Kubinyi, Enik?

    2014-01-01

    The oxytocin system has a crucial role in human sociality; several results prove that polymorphisms of the oxytocin receptor gene are related to complex social behaviors in humans. Dogs' parallel evolution with humans and their adaptation to the human environment has made them a useful species to model human social interactions. Previous research indicates that dogs are eligible models for behavioral genetic research, as well. Based on these previous findings, our research investigated associations between human directed social behaviors and two newly described (?212AG, 19131AG) and one known (rs8679684) single nucleotide polymorphisms (SNPs) in the regulatory regions (5? and 3? UTR) of the oxytocin receptor gene in German Shepherd (N?=?104) and Border Collie (N?=?103) dogs. Dogs' behavior traits have been estimated in a newly developed test series consisting of five episodes: Greeting by a stranger, Separation from the owner, Problem solving, Threatening approach, Hiding of the owner. Buccal samples were collected and DNA was isolated using standard protocols. SNPs in the 3? and 5? UTR regions were analyzed by polymerase chain reaction based techniques followed by subsequent electrophoresis analysis. The gene–behavior association analysis suggests that oxytocin receptor gene polymorphisms have an impact in both breeds on (i) proximity seeking towards an unfamiliar person, as well as their owner, and on (ii) how friendly dogs behave towards strangers, although the mediating molecular regulatory mechanisms are yet unknown. Based on these results, we conclude that similarly to humans, the social behavior of dogs towards humans is influenced by the oxytocin system. PMID:24454713

  8. Plasticity of GABAA Receptors during Pregnancy and Postpartum Period: From Gene to Function

    PubMed Central

    Licheri, Valentina; Talani, Giuseppe; Gorule, Ashish A.; Mostallino, Maria Cristina; Biggio, Giovanni; Sanna, Enrico

    2015-01-01

    Pregnancy needs complex pathways that together play a role in proper growth and protection of the fetus preventing its premature loss. Changes during pregnancy and postpartum period include the manifold machinery of neuroactive steroids that plays a crucial role in neuronal excitability by local modulation of specific inhibitory receptors: the GABAA receptors. Marked fluctuations in both blood and brain concentration of neuroactive steroids strongly contribute to GABAA receptor function and plasticity. In this review, we listed several interesting results regarding the regulation and plasticity of GABAA receptor function during pregnancy and postpartum period in rats. The increase in brain levels of neuroactive steroids during pregnancy and their sudden decrease immediately before delivery are causally related to changes in the expression/function of specific GABAA receptor subunits in the hippocampus. These data suggest that alterations in GABAA receptor expression and function may be related to neurological and psychiatric disorders associated with crucial periods in women. These findings could help to provide potential new treatments for these women's disabling syndromes. PMID:26413323

  9. Molecular analysis of the fusion of EWS to an orphan nuclear receptor gene in extraskeletal myxoid chondrosarcoma.

    PubMed Central

    Brody, R. I.; Ueda, T.; Hamelin, A.; Jhanwar, S. C.; Bridge, J. A.; Healey, J. H.; Huvos, A. G.; Gerald, W. L.; Ladanyi, M.

    1997-01-01

    The pathogenesis of myxoid chondrosarcoma (CS) is poorly understood. A recurrent translocation, t(9;22) (q22;q12), has been recognized in CS, specifically in extraskeletal myxoid CS. Recently, this translocation has been shown to represent a rearrangement of the EWS gene at 22q12 with a novel gene at 9q22 designated CHN (or TEC). Sequence analysis suggests that CHN encodes a novel orphan nuclear receptor with a zinc finger DNA-binding domain. The structure of this gene fusion has been characterized in only a limited number of extraskeletal myxoid CSs and its presence in other types of CS has not been extensively examined. We studied 46 cases of CS (8 extraskeletal myxoid, 4 skeletal myxoid, 4 mesenchymal, and 30 other) for the EWS/CHN gene fusion by reverse transcriptase polymerase chain reaction, Southern blotting, and long-range DNA polymerase chain reaction. The EWS/CHN gene fusion was present in 6 of 8 extraskeletal myxoid CSs and was not detected in any of the remaining cases, including the 4 skeletal myxoid CSs. The negative findings in the latter cases suggest that skeletal myxoid CS is pathogenetically distinct from its extraskeletal counterpart. Notably, 2 cases of extraskeletal myxoid CS showed neither an EWS/CHN fusion transcript nor EWS/CHN genomic fusion nor EWS or CHN genomic rearrangement, suggesting genetic heterogeneity within extraskeletal myxoid CS. Finally, we also provide evidence for alternative splicing of the 3' end of the fusion transcript. Extraskeletal myxoid CS thus represents yet another sarcoma type containing a gene fusion involving EWS. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:9060841

  10. Neural correlates of inhibitory control and functional genetic variation in the dopamine D4 receptor gene

    PubMed Central

    Mulligan, Richard C.; Kristjansson, Sean D.; Reiersen, Angela M.; Parra, Andres S.; Anokhin, Andrey P.

    2014-01-01

    Background The dopamine D4 receptor gene (DRD4) has been implicated in psychiatric disorders in which deficits of self-regulation are a prominent feature (e.g., attention-deficit hyperactivity disorder and substance use disorders) and in dopamine D4 receptor insensitivity within prefrontal regions of the brain. Our hypothesis was that carriers of 7-repeats in the Variable Number of Tandem Repeats (VNTR) of DRD4 (7R+) would recruit prefrontal brain regions involved in successful inhibitory control to a lesser degree than non-carriers (7R?) and demonstrate less inhibitory control as confirmed by observation of locally reduced blood oxygenation level dependent (BOLD) % signal change and lower accuracy while performing “No-Go” trials of a Go/No-Go task. Methods Participants (age=18, n=62, 33 females) were recruited from the general population of the St. Louis, Missouri region. Participants provided a blood or saliva sample for genotyping, completed drug and alcohol-related questionnaires and IQ testing, and performed a Go/No-Go task inside of a 3T fMRI scanner. Results Go/No-Go task performance did not significantly differ between 7R+ and 7R? groups. Contrast of brain activity during correct “No-Go” trials with a non-target letter baseline revealed significant BOLD activation in a network of brain regions previously implicated in inhibitory control including bilateral dorsolateral prefrontal, inferior frontal, middle frontal, medial prefrontal, subcortical, parietal/temporal, and occipital/cerebellar brain regions. Mean BOLD % signal change during “No-Go” trials was significantly modulated by DRD4 genotype, with 7R+ showing a lower hemodynamic response than 7R? in right anterior prefrontal cortex/inferior frontal gyrus, left premotor cortex, and right occipital/cerebellar areas. Follow-up analyses suggested that 7-repeat status accounted for approximately 5–6% of the variance in the BOLD response during “No-Go” trials. Discussion The DRD4 7-repeat allele may alter dopaminergic function in brain regions involved in inhibitory control. When individuals must inhibit a prepotent motor response, presence of this allele may account for 5–6% of the variance in BOLD signal in brain regions critically associated with inhibitory control, but its influence may be associated with a greater effect on brain than on behavior in 18-year-olds from the general population. PMID:25107677

  11. Human T-cell receptor v{beta} gene polymorphism and multiple sclerosis

    SciTech Connect

    Wei, S.; Charmley, P.; Birchfield, R.I.; Concannon, P.

    1995-04-01

    Population-based genetic associations have been reported between RFLPs detected with probes corresponding to the genes encoding the {beta} chain of the T-cell receptor for antigen (RCRB) and a variety of autoimmune disorders. In the case of multiple sclerosis (MS), these studies have localized a putative disease-associated gene to a region of {approximately}110 kb in length, located within the TCRB locus. In the current study, all 14 known TCRBV (variable region) genes within the region of localization were mapped and identified. The nucleotide sequences of these genes were determined in a panel of six MS patients and six healthy controls, who were human-leukocyte antigen and TCRB-RFLP haplotype matched. Nine of the 14 TCRBV genes studied showed evidence of polymorphism. PCR-based assays for each of these polymorphic genes were developed, and allele and genotype frequencies were determined in a panel of DNA samples from 48 MS patients and 60 control individuals. No significant differences in allele, genotype, or phenotype frequencies were observed between the MS patients and controls for any of the 14 TCRBV-gene polymorphisms studied. In light of the extensive linkage disequilibrium across the region studied, the saturating numbers of polymorphisms examined, and the direct sequence analysis of all BV genes in the region, these results suggest that it is unlikely that germ-line polymorphism in the TCRBV locus makes a major contribution to MS susceptibility. The TCRBV coding region-specific markers generated in these studies, as well as the approach of testing for associations with specific functionally relevant polymorphic sites within individual BV genes, should be useful in the evaluation of the many reported disease associations involving the human TCRB region. 22 refs., 1 fig., 3 tabs.

  12. Unliganded Thyroid Hormone Receptor ? Regulates Developmental Timing via Gene Repression in Xenopus tropicalis

    PubMed Central

    Choi, Jinyoung; Suzuki, Ken-ichi T.; Sakuma, Tetsushi; Shewade, Leena; Yamamoto, Takashi

    2015-01-01

    Thyroid hormone (TH) receptor (TR) expression begins early in development in all vertebrates when circulating TH levels are absent or minimal, yet few developmental roles for unliganded TRs have been established. Unliganded TRs are expected to repress TH-response genes, increase tissue responsivity to TH, and regulate the timing of developmental events. Here we examined the role of unliganded TR? in gene repression and development in Xenopus tropicalis. We used transcription activator-like effector nuclease gene disruption technology to generate founder animals with mutations in the TR? gene and bred them to produce F1 offspring with a normal phenotype and a mutant phenotype, characterized by precocious hind limb development. Offspring with a normal phenotype had zero or one disrupted TR? alleles, and tadpoles with the mutant hind limb phenotype had two truncated TR? alleles with frame shift mutations between the two zinc fingers followed by 40–50 mutant amino acids and then an out-of-frame stop codon. We examined TH-response gene expression and early larval development with and without exogenous TH in F1 offspring. As hypothesized, mutant phenotype tadpoles had increased expression of TH-response genes in the absence of TH and impaired induction of these same genes after exogenous TH treatment, compared with normal phenotype animals. Also, mutant hind limb phenotype animals had reduced hind limb and gill responsivity to exogenous TH. Similar results in methimazole-treated tadpoles showed that increased TH-response gene expression and precocious development were not due to early production of TH. These results indicate that unliganded TR? delays developmental progression by repressing TH-response genes. PMID:25456067

  13. Gene expression induced by Toll-like receptors in macrophages requires the transcription factor NFAT5

    PubMed Central

    Buxadé, Maria; Lunazzi, Giulia; Minguillón, Jordi; Iborra, Salvador; Berga-Bolańos, Rosa; del Val, Margarita; Aramburu, José

    2012-01-01

    Toll-like receptors (TLRs) engage networks of transcriptional regulators to induce genes essential for antimicrobial immunity. We report that NFAT5, previously characterized as an osmostress responsive factor, regulates the expression of multiple TLR-induced genes in macrophages independently of osmotic stress. NFAT5 was essential for the induction of the key antimicrobial gene Nos2 (inducible nitric oxide synthase [iNOS]) in response to low and high doses of TLR agonists but is required for Tnf and Il6 mainly under mild stimulatory conditions, indicating that NFAT5 could regulate specific gene patterns depending on pathogen burden intensity. NFAT5 exhibited two modes of association with target genes, as it was constitutively bound to Tnf and other genes regardless of TLR stimulation, whereas its recruitment to Nos2 or Il6 required TLR activation. Further analysis revealed that TLR-induced recruitment of NFAT5 to Nos2 was dependent on inhibitor of ?B kinase (IKK) ? activity and de novo protein synthesis, and was sensitive to histone deacetylases. In vivo, NFAT5 was necessary for effective immunity against Leishmania major, a parasite whose clearance requires TLRs and iNOS expression in macrophages. These findings identify NFAT5 as a novel regulator of mammalian anti-pathogen responses. PMID:22312110

  14. A cluster of olfactory receptor genes linked to frugivory in bats.

    PubMed

    Hayden, Sara; Bekaert, Michaël; Goodbla, Alisha; Murphy, William J; Dávalos, Liliana M; Teeling, Emma C

    2014-04-01

    Diversity of the mammalian olfactory receptor (OR) repertoire has been globally reshaped by niche specialization. However, little is known about the variability of the OR repertoire at a shallower evolutionary timeframe. The vast bat radiation exhibits an extraordinary variety of trophic and sensory specializations. Unlike other mammals, bats possess a unique and diverse OR gene repertoire. We elucidated whether the evolution of the OR gene repertoire can be linked to ecological niche specializations, such as sensory modalities and diet. The OR gene repertoires of 27 bat species spanning the chiropteran radiation were amplified and sequenced. For each species, intact and nonfunctional genes were assessed, and the OR gene abundances in each gene family were analyzed and compared. We identified a unique OR pattern linked to the frugivorous diet of New World fruit-eating bats and a similar convergent pattern in the Old World fruit-eating bats. Our results show a strong association between niche specialization and OR repertoire diversity even at a shallow evolutionary timeframe. PMID:24441035

  15. Gene expression profiling of differentiating embryonic stem cells expressing dominant negative fibroblast growth factor receptor 2.

    PubMed

    Meszaros, Renata; Akerlund, Mikael; Hjalt, Tord; Durbeej, Madeleine; Ekblom, Peter

    2007-04-01

    Embryonic stem (ES) cells are derived from the inner cell mass of the blastocyst and can be cultured as three-dimensional embryoid bodies (EBs) in which embryonic pregastrulation stages are faithfully mimicked. Fibroblast growth factor receptors (mainly FGFR2) are involved in the first differentiation events during early mammalian embryogenesis. It has been demonstrated that the presence of FGFR2 is a prerequisite for laminin-111 and collagen type IV synthesis and subsequently basement membrane formation in EBs. To identify genes that are influenced by FGFR signalling, we performed global gene expression profiling of differentiating EBs expressing dominant negative FGFR2 (dnFGFR2), acquiring an extensive catalogue of down- and up-regulated genes. We show a strong down-regulation of endodermal and basement membrane related genes, which strengthen the view that the FGFR signalling pathway is a main stimulator of basement membrane synthesis in EBs. We further present down-regulation of genes previously not linked to FGFR signalling, and in addition an active transcription of some mesodermal related genes in differentiating dnFGFR2 EBs. PMID:17174081

  16. Expression of a Drosophila melanogaster acetylcholine receptor-related gene in the central nervous system

    SciTech Connect

    Wadsworth, S.C.; Rosenthal, L.S.; Kammermeyer, K.L.; Potter, M.B.; Nelson, D.J.

    1988-02-01

    The authors isolated Drosophila melanogaster genomic sequences with nucleotide and amino acid sequence homology to subunits of vertebrate acetylcholine receptor by hybridization with a Torpedo acetylcholine receptor subunit cDNA probe. Five introns are present in the portion of the Drosophila gene encoding the unprocessed protein and are positionally conserved relative to the human acetylcholine receptor alpha-subunit gene. The Drosophila genomic clone hybridized to salivary gland polytene chromosome 3L within region 64B and was termed AChR64B. A 3-kilobasae poly(A)-containing transcript complementary to the AChR64B clone was readily detectable by RNA blot hybridizations during midembryogenesis, during metamorphosis, and in newly enclosed adults. AChR64B transcripts were localized to the cellular regions of the central nervous system during embryonic, larval, pupal, and adult stages of development. During metamorphosis, a temporal relationship between the morphogenesis of the optic lobe and expression of AChR64B transcripts was observed.

  17. Ku proteins function as corepressors to regulate farnesoid X receptor-mediated gene expression

    SciTech Connect

    Ohno, Masae; Kunimoto, Masaaki; Nishizuka, Makoto; Osada, Shigehiro; Imagawa, Masayoshi

    2009-12-18

    The farnesoid X receptor (FXR; NR1H4) is a member of the nuclear receptor superfamily and regulates the expression of genes involved in enterohepatic circulation and the metabolism of bile acids. Based on functional analyses, nuclear receptors are divided into regions A-F. To explore the cofactors interacting with FXR, we performed a pull-down assay using GST-fused to the N-terminal A/B region and the C region, which are required for the ligand-independent transactivation and DNA-binding, respectively, of FXR, and nuclear extracts from HeLa cells. We identified DNA-dependent protein kinase catalytic subunit (DNA-PKcs), Ku80, and Ku70 as FXR associated factors. These proteins are known to have an important role in DNA repair, recombination, and transcription. DNA-PKcs mainly interacted with the A/B region of FXR, whereas the Ku proteins interacted with the C region and with the D region (hinge region). Chromatin immunoprecipitation assays revealed that the Ku proteins associated with FXR on the bile salt export pump (BSEP) promoter. Furthermore, we demonstrated that ectopic expression of the Ku proteins decreased the promoter activity and expression of BSEP gene mediated by FXR. These results suggest that the Ku proteins function as corepressors for FXR.

  18. Endocannabinoid Receptors Gene Expression in Morbidly Obese Women with Nonalcoholic Fatty Liver Disease

    PubMed Central

    Auguet, Teresa; Berlanga, Alba; Guiu-Jurado, Esther; Terra, Ximena; Martinez, Salomé; Aguilar, Carmen; Filiu, Elisa; Alibalic, Ajla; Sabench, Fŕtima; Hernández, Mercé; Del Castillo, Daniel; Richart, Cristóbal

    2014-01-01

    Background. Recent reports suggest a role for the endocannabinoid system in the pathology of nonalcoholic fatty liver disease (NAFLD). The aim of this study was to investigate the relationship between liver expression of cannabinoid (CB) receptor subtypes, CB1 and CB2, in morbidly obese (MO) women with different histological stages of NAFLD. Methods. We analysed hepatic CB1 and CB2 mRNA expression, and the expression of genes involved in lipid metabolism in 72 MO women, subclassified by liver histology into MO with normal liver (NL, n = 16), simple steatosis (SS, n = 28), and nonalcoholic steatohepatitis (NASH, n = 28) by enzyme-linked immunosorbent assay and RT-PCR. Results. We found that CB1 mRNA expression was significantly higher in NASH compared with SS and correlated negatively with PPAR?. Regarding CB2, CB2 mRNA expression correlated positively with ACC1, PPAR?, IL6, TNF?, resistin, and adiponectin. Conclusions. The increased expression of CB1 in NASH and the negative correlation with PPAR? suggest a deleterious role of CB1 in NAFLD. Regarding CB2, its positive correlation with the anti-inflammatory molecule adiponectin and, paradoxically, with inflammatory genes suggests that this receptor has a dual role. Taken together, our results suggest that endocannabinoid receptors might be involved in the pathogenesis of NAFLD, a finding which justifies further study. PMID:24864249

  19. Association between the Dopamine Receptor D5 Gene and the Liability to Substance Dependence in Males: A Replication.

    ERIC Educational Resources Information Center

    Vanyukov, Michael M.; Maher, Brion S.; Ferrell, Robert E.; Devlin, Bernard; Marazita, Mary L.; Kirillova, Galina P.

    2001-01-01

    The heritability of substance dependence (SD) liability is based on polymorphisms at the genes that are likely to be related to the function of the central nervous system. We have recently shown an association between the dopamine D5 receptor gene and SD liability. We report herein a replication of this association in an independent case-control…

  20. Mutations in the ligand-binding domain of the androgen receptor gene cluster in two regions of the gene.

    PubMed Central

    McPhaul, M J; Marcelli, M; Zoppi, S; Wilson, C M; Griffin, J E; Wilson, J D

    1992-01-01

    We have analyzed the nucleotide sequence of the androgen receptor from 22 unrelated subjects with substitution mutations of the hormone-binding domain. Eleven had the phenotype of complete testicular feminization, four had incomplete testicular feminization, and seven had Reifenstein syndrome. The underlying functional defect in cultured skin fibroblasts included individuals with absent, qualitative, or quantitative defects in ligand binding. 19 of the 21 substitution mutations (90%) cluster in two regions that account for approximately 35% of the hormone-binding domain, namely, between amino acids 726 and 772 and between amino acids 826 and 864. The fact that one of these regions is homologous to a region of the human thyroid hormone receptor (hTR-beta) which is a known cluster site for mutations that cause thyroid hormone resistance implies that this localization of mutations is not a coincidence. These regions of the androgen receptor may be of particular importance for the formation and function of the hormone-receptor complex. PMID:1430233

  1. The evolution of morbilliviruses: a comparison of nucleocapsid gene sequences including a porpoise morbillivirus.

    PubMed

    Rima, B K; Wishaupt, R G; Welsh, M J; Earle, J A

    1995-05-01

    Sequence data for the nucleocapsid protein (N) gene of the porpoise morbillivirus including the very conserved middle section of the protein and the hypervariable C terminus are reported. Analysis of dissimilarity indices based on an alignment of the N proteins of various morbilliviruses identifies a variable region of the N protein from amino acids residues 121 to 145 and a hypervariable part from amino acids 400 to 517. This type of analysis can be usefully applied when protein sequences of five or more morbillivirus species are available. Regions of variability between species identified by this index also represent regions of variation within one species e.g. measles virus (MV). Hence, comparative analysis of different morbilliviruses provides an insight into the potentially variable parts of viral proteins. From the great and unexplained nucleotide sequence conservation observed within MV, it would appear that the various morbilliviruses have diverged from each other a very long time ago. However, the data do not yet allow us to estimate the time span of these divergences. The relatedness and the number of different morbillivirus species provides a unique database for study of the evolution of RNA viruses. PMID:8588306

  2. Epigenetic Variation in the Mu-opioid Receptor Gene in Infants with Neonatal Abstinence Syndrome

    PubMed Central

    Wachman, Elisha M; Hayes, Marie J; Lester, Barry M; Terrin, Norma; Brown, Mark S; Nielsen, David A; Davis, Jonathan M

    2014-01-01

    Objective Neonatal abstinence syndrome (NAS) from in utero opioid exposure is highly variable with genetic factors appearing to play an important role. Epigenetic changes in cytosine:guanine (CpG) dinucleotide methylation can occur after drug exposure and may help to explain NAS variability. We correlated DNA methylation levels in the mu-opioid receptor (OPRM1) promoter in opioid-exposed infants and correlate them with NAS outcomes. Study design DNA samples from cord blood or saliva were analyzed for 86 infants being treated for NAS according to institutional protocol. Methylation levels at 16 OPRM1 CpG sites were determined and correlated with NAS outcome measures, including need for treatment, treatment with >2 medications, and length of hospital stay. We adjusted for co-variates and multiple genetic testing. Results Sixty-five percent of infants required treatment for NAS, and 24% required ?2 medications. Hypermethylation of the OPRM1 promoter was measured at the ?10 CpG in treated versus non-treated infants [adjusted difference ?=3.2% (95% CI 0.3–6.0%), p=0.03; NS after multiple testing correction]. There was hypermethylation at the ?14 [?=4.9% (95% CI 1.8–8.1%), p=0.003], ?10 [?=5.0% (95% CI 2.3–7.7%), p=0.0005)], and +84 [?=3.5% (95% CI 0.6 – 6.4), p=0.02] CpG sites in infants requiring ?2 medications which remained significant for ?14 and ?10 after multiple testing correction. Conclusions Increased methylation within the OPRM1 promoter is associated with worse NAS outcomes, consistent with gene silencing. PMID:24996986

  3. Association study between the dopamine D4 receptor gene and schizophrenia

    SciTech Connect

    Petronis, A.; Macciardi, F.; Athanassiades, A.; Paterson, A.D.

    1995-10-09

    The dopamine D4 receptor is of major interest in schizophrenia research due to its high affinity for the atypical neuroleptic clozapine and a high degree of variability in the receptor gene (DRD4). Although several genetic linkage analyses performed on schizophrenia multiplex families from different regions of the world have either excluded or failed to prove that DRD4 is a major genetic factor for the development of schizophrenia, analyses for moderate predisposing effects are still of significant interest. We performed a study examining differences in allele frequencies of 4 different DRD4 polymorphisms in schizophrenia patients and age, sex, and ethnic origin matched controls. None of these 4 polymorphisms showed evidence for genetic association with schizophrenia, although a trend towards excess of the allele with 7 repeats in the (48){sub n} bp exon III polymorphism was observed. Complexities in the DRD4 genetic investigation and further analytic approaches are discussed. 18 refs., 2 tabs.

  4. Lack of association between dopamine D2 receptor gene Cys311 variant and schizophrenia

    SciTech Connect

    Tanaka, Toshihisa; Fukushima, Noboru; Takahashi, Makoto; Kameda, Kensuke; Ihda, Shin

    1996-04-09

    Itokawa et al. reported identifying one missense nucleotide mutation from C to G resulting in a substitution of serine with cysteine at codon 311 in the third intracellular loop of the dopamine D2 receptor in schizophrenics. Arinami et al. reported finding a positive association between the Cys311 variant and schizophrenia. In response to the report by Arinami et al. we examined 106 unrelated Japanese schizophrenics and 106 normal controls to determine if there is any association of the Cys311 variant with schizophrenia. However, we found no statistically significant differences in allelic frequencies of Cys311 between schizophrenia and normal controls. The present results as well as those of all previous studies except for that of Arinami et al. indicated that an association between the dopamine D2 receptor gene and schizophrenia is unlikely to exist. 24 refs., 1 fig., 1 tab.

  5. Identification and functional analysis of novel calcium-sensing receptor gene mutation in familial hypocalciuric hypercalcemia.

    PubMed

    Nanjo, Kazuhiro; Nagai, So; Shimizu, Chikara; Tajima, Toshihiro; Kondo, Takuma; Miyoshi, Hideaki; Yoshioka, Narihito; Koike, Takao

    2010-01-01

    Familial hypocalciuric hypercalcemia (FHH) is a benign disorder with heterozygous inactivating mutations in the calcium-sensing receptor (CASR) gene. The present study describes the identification and functional analysis of a novel CASR gene mutation leading to FHH. The proband is a 33-yr-old woman (Ca 11.0 mg/dL, intact-PTH 68 pg/mL, FECa 0.17 %). Leukocyte DNA was isolated in four family members and a novel heterozygous mutation (D190G, GAT>GGT) in exon 4 of CASR gene was identified by direct sequence analysis. The mutant CASR expression vector was constructed by mutagenesis procedure and its response to Ca(2+) was characterized by transient transfection into human embryonic kidney (HEK) 293 cells and treatment with increasing extracellular Ca(2+) concentrations. HEK cells didn't activate intracellular signaling (MAPK activation) in response to increases of extracellular Ca(2+) concentrations when the mutant receptor was expressed normally at the cell surface. The novel heterozygous mutation (D190G) identified in the present study showed that the reduction of activity of CASR to extracellular Ca(2+) caused FHH in patients and our study demonstrated the importance of Asp-190 participated in response to Ca(2+) in CASR. PMID:20697181

  6. Vampire bats exhibit evolutionary reduction of bitter taste receptor genes common to other bats

    PubMed Central

    Hong, Wei; Zhao, Huabin

    2014-01-01

    The bitter taste serves as an important natural defence against the ingestion of poisonous foods and is thus believed to be indispensable in animals. However, vampire bats are obligate blood feeders that show a reduced behavioural response towards bitter-tasting compounds. To test whether bitter taste receptor genes (T2Rs) have been relaxed from selective constraint in vampire bats, we sampled all three vampire bat species and 11 non-vampire bats, and sequenced nine one-to-one orthologous T2Rs that are assumed to be functionally conserved in all bats. We generated 85 T2R sequences and found that vampire bats have a significantly greater percentage of pseudogenes than other bats. These results strongly suggest a relaxation of selective constraint and a reduction of bitter taste function in vampire bats. We also found that vampire bats retain many intact T2Rs, and that the taste signalling pathway gene Calhm1 remains complete and intact with strong functional constraint. These results suggest the presence of some bitter taste function in vampire bats, although it is not likely to play a major role in food selection. Together, our study suggests that the evolutionary reduction of bitter taste function in animals is more pervasive than previously believed, and highlights the importance of extra-oral functions of taste receptor genes. PMID:24966321

  7. Vampire bats exhibit evolutionary reduction of bitter taste receptor genes common to other bats.

    PubMed

    Hong, Wei; Zhao, Huabin

    2014-08-01

    The bitter taste serves as an important natural defence against the ingestion of poisonous foods and is thus believed to be indispensable in animals. However, vampire bats are obligate blood feeders that show a reduced behavioural response towards bitter-tasting compounds. To test whether bitter taste receptor genes (T2Rs) have been relaxed from selective constraint in vampire bats, we sampled all three vampire bat species and 11 non-vampire bats, and sequenced nine one-to-one orthologous T2Rs that are assumed to be functionally conserved in all bats. We generated 85 T2R sequences and found that vampire bats have a significantly greater percentage of pseudogenes than other bats. These results strongly suggest a relaxation of selective constraint and a reduction of bitter taste function in vampire bats. We also found that vampire bats retain many intact T2Rs, and that the taste signalling pathway gene Calhm1 remains complete and intact with strong functional constraint. These results suggest the presence of some bitter taste function in vampire bats, although it is not likely to play a major role in food selection. Together, our study suggests that the evolutionary reduction of bitter taste function in animals is more pervasive than previously believed, and highlights the importance of extra-oral functions of taste receptor genes. PMID:24966321

  8. Orphan nuclear receptor Nur77 participates in human apolipoprotein A5 gene expression

    SciTech Connect

    Song, Kwang-Hoon

    2010-01-29

    The orphan nuclear receptor Nur77 (NR4A1) has been reported to play a crucial role in the modulation of diverse metabolic processes in liver. Here, we reported the identification of human apolipoprotein A5 (ApoA5), which implicated in lowering plasma triglyceride levels, as a novel target gene of Nur77. Nur77 induced the human ApoA5 promoter activity. Using 5'-deletion and mutagenesis of human ApoA5 promoter analysis and chromatin immunoprecipitation assays, it was shown that Nur77 directly regulated human ApoA5 gene expression by binding to a Nur77 response element (AAAGGTCA) located in the proximal human ApoA5 promoter region. In addition, we demonstrated that blocking of Nur77 transcriptional activity via overexpression of dominant negative Nur77 suppressed human ApoA5 promoter activity and mRNA expression in human hepatoma cells, HepG2. Taken together, our results demonstrated that Nur77 is a novel regulator of human ApoA5 gene expression and provide a new insight into the role of this orphan nuclear receptor in lipoprotein metabolism and triglyceride homeostasis.

  9. Computational design of a Zn2+ receptor that controls bacterial gene expression

    NASA Astrophysics Data System (ADS)

    Dwyer, M. A.; Looger, L. L.; Hellinga, H. W.

    2003-09-01

    The control of cellular physiology and gene expression in response to extracellular signals is a basic property of living systems. We have constructed a synthetic bacterial signal transduction pathway in which gene expression is controlled by extracellular Zn2+. In this system a computationally designed Zn2+-binding periplasmic receptor senses the extracellular solute and triggers a two-component signal transduction pathway via a chimeric transmembrane protein, resulting in transcriptional up-regulation of a -galactosidase reporter gene. The Zn2+-binding site in the designed receptor is based on a four-coordinate, tetrahedral primary coordination sphere consisting of histidines and glutamates. In addition, mutations were introduced in a secondary coordination sphere to satisfy the residual hydrogen-bonding potential of the histidines coordinated to the metal. The importance of the secondary shell interactions is demonstrated by their effect on metal affinity and selectivity, as well as protein stability. Three designed protein sequences, comprising two distinct metal-binding positions, were all shown to bind Zn2+ and to function in the cell-based assay, indicating the generality of the design methodology. These experiments demonstrate that biological systems can be manipulated with computationally designed proteins that have drastically altered ligand-binding specificities, thereby extending the repertoire of genetic control by extracellular signals.

  10. Resistance Gene Analogs in Rosaceae: Family-wide Classification Including Raspberry, Cherry, and Wild Apples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic studies have shown that NBS-LRR Resistance Gene Analogs (RGAs)tend to occur in clusters and often map to major resistance genes or QTLs. The identification and use of specific RGAs as molecular markers among plant material displaying different resistance phenotypes has the potential to direc...

  11. IL-1 receptor antagonist gene as a predictive biomarker of progression of knee osteoarthritis in a population cohort

    PubMed Central

    Wu, X.; Kondragunta, V.; Kornman, K.S.; Wang, H.; Duff, G.W.; Renner, J.B.; Jordan, J.M.

    2013-01-01

    Objective Within the interleukin-1 (IL-1) cytokine family, IL-1 receptor antagonist (IL1RN) gene variants have been associated with radiological severity of knee osteoarthritis (OA) in cross-sectional studies. The present study tested the relation between IL1RN gene variants and progression of knee OA assessed radiographically by change in Kellgren-Lawrence (KL) score over time. Design 1153 Caucasian adults (age range 44-89) from the Johnson County Osteoarthritis Project were evaluated for unequivocal radiographic evidence of knee OA at baseline, defined as KL score ? 2, and were re-examined after 4-11 years for radiographic changes typical of OA progression. IL1RN gene variants were tested for association with OA progression and for potential interaction with body mass index (BMI). Other IL-1 gene variations were tested for association with OA progression as a secondary objective. Results Of 154 subjects with OA at baseline, 88 showed progression at follow-up. Seven IL1RN single nucleotide polymorphisms (SNPs) and one IL-1 receptor SNP were associated with progression. Four IL1RN haplotypes, each occurring in >5% of this population, showed different relationships with progression, including one (rs315931/rs4251961/rs2637988/rs3181052/rs1794066/rs419598/rs380092/ rs579543/rs315952/rs9005/rs315943/rs1374281; ACAGATACTGCC) associated with increased progression (OR 1.91 (95%CI 1.16-3.15), p = 0.012). Haplotypes associated with progression by KL score were also associated with categorical change in joint space narrowing. BMI was associated with OA progression in subjects carrying a specific IL1RN haplotype, but not in subjects without that haplotype. Conclusion A significantly greater likelihood of radiological progression of knee OA was associated with a commonly occurring IL1RN haplotype that could be tagged by three IL1RN SNPs (rs419598, rs9005, rs315943). Interactions were also observed between IL1RN gene variants and BMI relative to OA progression. This suggests that IL1RN gene markers may be useful in stratifying patients for medical management and drug development. PMID:23602982

  12. NK1 (TACR1) receptor gene 'knockout' mouse phenotype predicts genetic association with ADHD.

    PubMed

    Yan, T C; McQuillin, A; Thapar, A; Asherson, P; Hunt, S P; Stanford, S C; Gurling, H

    2010-01-01

    Mice with functional genetic ablation of the Tacr1 (substance P-preferring receptor) gene (NK1R-/-) are hyperactive. Here, we investigated whether this is mimicked by NK1R antagonism and whether dopaminergic transmission is disrupted in brain regions that govern motor performance. The locomotor activity of NK1R-/- and wild-type mice was compared after treatment with an NK1R antagonist and/or psychostimulant (d-amphetamine or methylphenidate). The inactivation of NK1R (by gene mutation or receptor antagonism) induced hyperactivity in mice, which was prevented by both psychostimulants. Using in vivo microdialysis, we then compared the regulation of extracellular dopamine in the prefrontal cortex (PFC) and striatum in the two genotypes. A lack of functional NK1R reduced (>50%) spontaneous dopamine efflux in the prefrontal cortex and abolished the striatal dopamine response to d-amphetamine. These behavioural and neurochemical abnormalities in NK1R-/- mice, together with their atypical response to psychostimulants, echo attention deficit hyperactivity disorder (ADHD) in humans. These findings prompted genetic studies on the TACR1 gene (the human equivalent of NK1R) in ADHD patients in a case-control study of 450 ADHD patients and 600 screened supernormal controls. Four single-nucleotide polymorphisms (rs3771829, rs3771833, rs3771856, and rs1701137) at the TACR1 gene, previously known to be associated with bipolar disorder or alcoholism, were strongly associated with ADHD. In conclusion, our proposal that NK1R-/- mice offer a mouse model of ADHD was borne out by our human studies, which suggest that DNA sequence changes in and around the TACR1 gene increase susceptibility to this disorder. PMID:19204064

  13. Gene Expression Patterns Associated with Peroxisome Proliferator-activated Receptor (PPAR) Signaling in the Longissimus dorsi of Hanwoo (Korean Cattle)

    PubMed Central

    Lim, Dajeong; Chai, Han-Ha; Lee, Seung-Hwan; Cho, Yong-Min; Choi, Jung-Woo; Kim, Nam-Kuk

    2015-01-01

    Adipose tissue deposited within muscle fibers, known as intramuscular fat (IMF or marbling), is a major determinant of meat quality and thereby affects its economic value. The biological mechanisms that determine IMF content are therefore of interest. In this study, 48 genes involved in the bovine peroxisome proliferator-activated receptor signaling pathway, which is involved in lipid metabolism, were investigated to identify candidate genes associated with IMF in the longissimus dorsi of Hanwoo (Korean cattle). Ten genes, retinoid X receptor alpha, peroxisome proliferator-activated receptor gamma (PPARG), phospholipid transfer protein, stearoyl-CoA desaturase, nuclear receptor subfamily 1 group H member 3, fatty acid binding protein 3 (FABP3), carnitine palmitoyltransferase II, acyl-Coenzyme A dehydrogenase long chain (ACADL), acyl-Coenzyme A oxidase 2 branched chain, and fatty acid binding protein 4, showed significant effects with regard to IMF and were differentially expressed between the low- and high-marbled groups (p<0.05). Analysis of the gene co-expression network based on Pearson’s correlation coefficients identified 10 up-regulated genes in the high-marbled group that formed a major cluster. Among these genes, the PPARG-FABP4 gene pair exhibited the strongest correlation in the network. Glycerol kinase was found to play a role in mediating activation of the differentially expressed genes. We categorized the 10 significantly differentially expressed genes into the corresponding downstream pathways and investigated the direct interactive relationships among these genes. We suggest that fatty acid oxidation is the major downstream pathway affecting IMF content. The PPARG/RXRA complex triggers activation of target genes involved in fatty acid oxidation resulting in increased triglyceride formation by ATP production. Our findings highlight candidate genes associated with the IMF content of the loin muscle of Korean cattle and provide insight into the biological mechanisms that determine adipose deposition within muscle. PMID:26104514

  14. Evolution of the sweet taste receptor gene Tas1r2 in bats.

    PubMed

    Zhao, Huabin; Zhou, Yingying; Pinto, C Miguel; Charles-Dominique, Pierre; Galindo-González, Jorge; Zhang, Shuyi; Zhang, Jianzhi

    2010-11-01

    Taste perception is an important component of an animal's fitness. The identification of vertebrate taste receptor genes in the last decade has enabled molecular genetic studies of the evolution of taste perception in the context of the ecology and dietary preferences of organisms. Although such analyses have been conducted in a number of species for bitter taste receptors, a similar analysis of sweet taste receptors is lacking. Here, we survey the sole sweet taste-specific receptor gene Tas1r2 in 42 bat species that represent all major lineages of the order Chiroptera, one of the most diverse groups of mammals in terms of diet. We found that Tas1r2 is under strong purifying selection in the majority of the bats studied, with no significant difference in the strength of the selection between insect eaters and fruit eaters. However, Tas1r2 is a pseudogene in all three vampire bat species and the functional relaxation likely started in their common ancestor, probably due to the exclusive feeding of vampire bats on blood and their reliance on infrared sensors rather than taste perception to locate blood sources. Our survey of available genome sequences, together with previous reports, revealed additional losses of Tas1r2 in horse, cat, chicken, zebra finch, and western clawed frog, indicating that sweet perception is not as conserved as previously thought. Nonetheless, we found no common dietary pattern among the Tas1r2-lacking vertebrates, suggesting different causes for the losses of Tas1r2 in different species. The complexity of the ecological factors that impact the evolution of Tas1r2 calls for a better understanding of the physiological roles of sweet perception in different species. PMID:20558596

  15. Extensive Gains and Losses of Olfactory Receptor Genes in Mammalian Evolution

    E-print Network

    Nei, Masatoshi

    monotremes and from marsupials and (ii) hundreds of gains and losses of OR genes have occurred in an order are available for at least six different orders of mammals including two early-diverged lineages, monotremes

  16. Non-coplanar polychlorinated biphenyls (PCBs) are direct agonists for the human pregnane-X receptor and constitutive androstane receptor, and activate target gene expression in a tissue-specific manner

    SciTech Connect

    Al-Salman, Fadheela; Plant, Nick

    2012-08-15

    The polychlorinated biphenyl group possesses high environmental persistence, leading to bioaccumulation and a number of adverse effects in mammals. Whilst coplanar PCBs elicit their toxic effects through agonism of the aryl hydrocarbon receptor; however, non-coplanar PCBs are not ligands for AhR, but may be ligands for members of the nuclear receptor family of proteins. To better understand the biological actions of non-coplanar PCBs, we have undertaken a systematic analysis of their ability to activate PXR and CAR-mediated effects. Cells were exposed to a range of non-coplanar PCBs (99, 138, 153, 180 and 194), or the coplanar PCB77: Direct activation of PXR and CAR was measured using a mammalian receptor activation assay in human liver cells, with rifampicin and CITCO used as positive controls ligands for PXR and CAR, respectively; activation of target gene expression was examined using reporter gene plasmids for CYP3A4 and MDR1 transfected into liver, intestine and lung cell lines. Several of the non-coplanar PCBs directly activated PXR and CAR, whilst the coplanar PCB77 did not. Non-coplanar PCBs were also able to activate PXR/CAR target gene expression in a substitution- and tissue-specific manner. Non-coplanar PCBs act as direct activators for the nuclear receptors PXR and CAR, and are able to elicit transcriptional activation of target genes in a substitution- and tissue-dependent manner. Chronic activation of PXR/CAR is linked to adverse effects and must be included in any risk assessment of PCBs. -- Highlights: ? Several Non-coplanar PCBs are able to directly activate both PXR and CAR in vitro. ? PCB153 is the most potent direct activator of PXR and CAR nuclear receptors. ? Non-coplanar PCB activation of CYP3A4/MDR1 reporter genes is structure-dependent. ? Non-coplanar PCB activate CYP3A4/MDR1 reporter genes in a tissue-dependent. ? PCB153 is the most potent activator of PXR/CAR target gene in all tissues.

  17. Regulation of cytochrome P450 3A4 gene expression through modulating pregnane X receptor transcriptional activity by NF-? aryl hydrocarbon receptor and xenobiotics 

    E-print Network

    Gu, Xinsheng

    2009-05-15

    Cytochrome P450 3A4 (CYP3A4) is a key enzyme responsible for the metabolism of drugs and endogenous compounds in human liver and intestine. CYP3A4 gene expression is mainly regulated by Pregnane X receptor (PXR) which is a ligand-dependent nuclear...

  18. Genes expressed in Pinus radiata male cones include homologs to anther-specific and pathogenesis response genes.

    PubMed

    Walden, A R; Walter, C; Gardner, R C

    1999-12-01

    We describe the isolation and characterization of 13 cDNA clones that are differentially expressed in male cones of Pinus radiata (D. Don). The transcripts of the 13 genes are expressed at different times between meiosis and microspore mitosis, timing that corresponds to a burst in tapetal activity in the developing anthers. In situ hybridization showed that four of the genes are expressed in the tapetum, while a fifth is expressed in tetrads during a brief developmental window. Six of the seven cDNAs identified in database searches have striking similarity to genes expressed in angiosperm anthers. Seven cDNAs are homologs of defense and pathogen response genes. The cDNAs identified are predicted to encode a chalcone-synthase-like protein, a thaumatin-like protein, a serine hydrolase thought to be a putative regulator of programmed cell death, two lipid-transfer proteins, and two homologs of the anther-specific A9 genes from Brassica napus and Arabidopsis. Overall, our results support the hypothesis that many of the reproductive processes in the angiosperms and gymnosperms were inherited from a common ancestor. PMID:10594098

  19. MET Gene Amplification and MET Receptor Activation Are Not Sufficient to Predict Efficacy of Combined MET and EGFR Inhibitors in EGFR TKI-Resistant NSCLC Cells

    PubMed Central

    Presutti, Dario; Santini, Simonetta; Cardinali, Beatrice; Papoff, Giuliana; Lalli, Cristiana; Samperna, Simone; Fustaino, Valentina; Giannini, Giuseppe; Ruberti, Giovina

    2015-01-01

    Epidermal growth factor receptor (EGFR), member of the human epidermal growth factor receptor (HER) family, plays a critical role in regulating multiple cellular processes including proliferation, differentiation, cell migration and cell survival. Deregulation of the EGFR signaling has been found to be associated with the development of a variety of human malignancies including lung, breast, and ovarian cancers, making inhibition of EGFR the most promising molecular targeted therapy developed in the past decade against cancer. Human non small cell lung cancers (NSCLC) with activating mutations in the EGFR gene frequently experience significant tumor regression when treated with EGFR tyrosine kinase inhibitors (TKIs), although acquired resistance invariably develops. Resistance to TKI treatments has been associated to secondary mutations in the EGFR gene or to activation of additional bypass signaling pathways including the ones mediated by receptor tyrosine kinases, Fas receptor and NF-kB. In more than 30–40% of cases, however, the mechanisms underpinning drug-resistance are still unknown. The establishment of cellular and mouse models can facilitate the unveiling of mechanisms leading to drug-resistance and the development or validation of novel therapeutic strategies aimed at overcoming resistance and enhancing outcomes in NSCLC patients. Here we describe the establishment and characterization of EGFR TKI-resistant NSCLC cell lines and a pilot study on the effects of a combined MET and EGFR inhibitors treatment. The characterization of the erlotinib-resistant cell lines confirmed the association of EGFR TKI resistance with loss of EGFR gene amplification and/or AXL overexpression and/or MET gene amplification and MET receptor activation. These cellular models can be instrumental to further investigate the signaling pathways associated to EGFR TKI-resistance. Finally the drugs combination pilot study shows that MET gene amplification and MET receptor activation are not sufficient to predict a positive response of NSCLC cells to a cocktail of MET and EGFR inhibitors and highlights the importance of identifying more reliable biomarkers to predict the efficacy of treatments in NSCLC patients resistant to EGFR TKI. PMID:26580964

  20. Transcriptional regulation of Niemann-Pick C1-like 1 gene by liver receptor homolog-1

    PubMed Central

    Lee, Eui Sup; Seo, Hyun Jung; BacK, Su Sun; Han, Seung Ho; Jeong, Yeon Ji; Lee, Jin Wook; Choi, Soo Young; Han, Kyuhyung

    2015-01-01

    Factors that modulate cholesterol levels have major impacts on cardiovascular disease. Niemann-Pick C1-like 1 (NPC1L1) functions as a sterol transporter mediating intestinal cholesterol absorption and counter-balancing hepatobiliary cholesterol excretion. The liver receptor homolog 1 (LRH-1) had been shown to regulate genes involved in hepatic lipid metabolism and reverse cholesterol transport. To study whether human NPC1L1 gene is regulated transcriptionally by LRH-1, we have analyzed evolutionary conserved regions (ECRs) in HepG2 cells. One ECR was found to be responsive to the LRH-1. Through deletion studies, LRH-1 response element was identified and the binding of LRH-1 was demonstrated by EMSA and ChIP assays. When SREBP2, one of several transcription factors which had been shown to regulate NPC1L1 gene, was co-expressed with LRH-1, synergistic transcriptional activation resulted. In conclusion, we have identified LRH-1 response elements in NPC1L1 gene and propose that LRH-1 and SREBP may play important roles in regulating NPC1L1 gene. [BMB Reports 2015; 48(9): 513-518] PMID:25739390

  1. Global Developmental Gene Programing Involves a Nuclear Form of Fibroblast Growth Factor Receptor-1 (FGFR1)

    PubMed Central

    Terranova, Christopher; Narla, Sridhar T.; Lee, Yu-Wei; Bard, Jonathan; Parikh, Abhirath; Stachowiak, Ewa K.; Tzanakakis, Emmanuel S.; Buck, Michael J.; Birkaya, Barbara; Stachowiak, Michal K.

    2015-01-01

    Genetic studies have placed the Fgfr1 gene at the top of major ontogenic pathways that enable gastrulation, tissue development and organogenesis. Using genome-wide sequencing and loss and gain of function experiments the present investigation reveals a mechanism that underlies global and direct gene regulation by the nuclear form of FGFR1, ensuring that pluripotent Embryonic Stem Cells differentiate into Neuronal Cells in response to Retinoic Acid. Nuclear FGFR1, both alone and with its partner nuclear receptors RXR and Nur77, targets thousands of active genes and controls the expression of pluripotency, homeobox, neuronal and mesodermal genes. Nuclear FGFR1 targets genes in developmental pathways represented by Wnt/?-catenin, CREB, BMP, the cell cycle and cancer-related TP53 pathway, neuroectodermal and mesodermal programing networks, axonal growth and synaptic plasticity pathways. Nuclear FGFR1 targets the consensus sequences of transcription factors known to engage CREB-binding protein, a common coregulator of transcription and established binding partner of nuclear FGFR1. This investigation reveals the role of nuclear FGFR1 as a global genomic programmer of cell, neural and muscle development. PMID:25923916

  2. Isolation and characterization of CXC receptor genes in a range of elasmobranchs.

    PubMed

    Goostrey, Anna; Jones, Gareth; Secombes, Christopher J

    2005-01-01

    The CXC group of chemokines exert their cellular effects via the CXCR group of G-protein coupled receptors. Six CXCR genes have been identified in humans (CXCR1-6), and homologues to some of these have been isolated from a range of vertebrate species. Here we isolate and characterize CXCR genes from a range of elasmobranch species. One CXCR1/2 gene fragment isolated from Scyliorhinus caniculus (lesser spotted catshark), and two CXCR1/2 copies from each of the elasmobranchs, Cetorhinus maximus (basking shark), Carcharodon carcharias (great white shark), and Raja naevus (cuckoo ray), exhibit high similarity to both CXCR1 and CXCR2. The two copies evident in the cuckoo ray and lamniform sharks provide strong evidence of CXCR1/2 lineage specific duplication in rays and sharks. A CXCR fragment isolated from Lamna ditropis (salmon shark) shows high similarity to a range of CXCR4 genes and strong clustering with CXCR4 gene homologues was apparent during phylogenetic reconstruction. PMID:15572071

  3. Regulation of gene transcription of angiotensin II receptor subtypes in myocardial infarction.

    PubMed Central

    Nio, Y; Matsubara, H; Murasawa, S; Kanasaki, M; Inada, M

    1995-01-01

    Increasing evidence suggests that angiotensin II (AngII) acts as a modulator for ventricular remodeling after myocardial infarction. Using competitive reverse-transcriptase polymerase chain reaction, nuclear runoff, and binding assays, we examined the regulation of AngII type 1a and 1b (AT1a-R and AT1b-R) and type 2 receptor (AT2-R) expression in the infarcted rat heart as well as the effects of AngII receptor antagonists. AT1a-R mRNA levels were increased in the infarcted (4.2-fold) and noninfarcted portions (2.2-fold) of the myocardium 7 d after myocardial infarction as compared with those in sham-operated controls, whereas AT1b-R mRNA levels were unchanged. The amount of detectable AT2-R mRNA increased in infarcted (3.1-fold) and noninfarcted (1.9-fold) portions relative to that in the control. The transcription rates for AT1a-R and AT2-R genes, determined by means of a nuclear runoff assay, were significantly increased in the infarcted heart. The AngII receptor numbers were elevated (from 12 to 35 fmol/mg protein) in the infarcted myocardium in which the increases in AT1-R and AT2-R were 3.2- and 2.3-fold, respectively, while the receptor affinity was unchanged. Therapy with AT1-R antagonist for 7 d reduced the increase in AT1-R and AT2-R expressions in the infarcted heart together with a decrease in blood pressure, whereas therapy with an AT2-R antagonist did not affect mRNA levels and blood pressure. Neither AT1-R nor AT2-R antagonists affected the infarct sizes. These results demonstrated that myocardial infarction causes an increase in the gene transcription and protein expression of cardiac AT1a-R and AT2-R, whereas the AT1b-R gene is unaffected, and that therapy with an AT1-R antagonist, but not with an AT2-R antagonist, is effective in reducing the increased expression of AngII receptor subtypes induced by myocardial infarction. Images PMID:7814645

  4. Minireview: Linking genetic variation in human Toll-like receptor 5 genes to the gut microbiome’s potential to cause inflammation

    PubMed Central

    Leifer, Cynthia A.; McConkey, Cameron; Li, Sha; Chassaing, Benoit; Gewirtz, Andrew T.; Ley, Ruth E.

    2014-01-01

    Immunodeficiencies can lead to alterations of the gut microbiome that render it pathogenic and capable of transmitting disease to naďve hosts. Here we review the role of Toll-like receptor (TLR) 5, the innate receptor for bacterial flagellin, in immune responses to the normal gut microbiota with a focus its role on adaptive immunity. Loss of TLR5 has profound effects on the microbiota that include greater temporal instability of major lineages and upregulation of flagellar motility genes that may be linked to the reduced levels of anti-flagellin antibodies in the TLR5?/? host. A variety of human TLR5 gene alleles exist that also associated with inflammatory conditions and may do so via effects on the gut microbiome and altered host-microbial crosstalk. PMID:25284610

  5. Familial isolated pituitary adenomas (FIPA) and mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene.

    PubMed

    Daly, Adrian F; Beckers, Albert

    2015-03-01

    The most frequent conditions that are associated with inherited/familial pituitary adenomas are familial isolated pituitary adenoma (FIPA) and multiple endocrine neoplasia type 1 (MEN1), which together account for up to 5% of pituitary adenomas. One important genetic cause of FIPA are inactivating mutations or deletions in the aryl hydrocarbon receptor interacting protein (AIP) gene. FIPA is the most frequent clinical presentation of AIP mutations. This article traces the current state of knowledge regarding the clinical features of FIPA and the particular genetic, pathologic, and clinical characteristics of pituitary adenomas due to AIP mutations. PMID:25732638

  6. [Association between serotonin receptor 2C gene Cys23Ser polymorphism and social behavior in schizophrenia patients and healthy individuals].

    PubMed

    Alfimova, M V; Golimbet, V E; Korovaitseva, G I; Abramova, L I; Kaleda, V G

    2015-02-01

    The purpose of this work was to search for associations between the serotonin receptor 2C gene (HTR2C) and the peculiarities of social behavior and social cognition in schizophrenia. To do this, patients with schizophrenia spectrum disorders and healthy control subjects were genotyped for the Cys23Ser HTR2C marker and underwent psychological examination, including assessment of Machiavellianism, recognition of emotions in facial expression, and theory of mind. In addition, we estimated the trait anxiety level as a potential factor affecting the relationship between the gene HTR2C and social behavior. We found a significant association between the Ser allele and a reduction of estimates on the Mach-LV Machiavellianism scale in the total sample of patients (n = 182) and control subjects (n = 189), which did not reach the confidence level in either of the groups. A tendency towards a HTR2C gene influence on the trait anxiety level was also revealed. The association between HTR2C and Machiavellianism was retained if the anxiety level was taken into account. The results suggest a pleiotropic effect of HTR2Con anxiety and Machiavellianism. PMID:25966590

  7. Ectopic Expression Screen Identifies Genes Affecting Drosophila Mesoderm Development Including the HSPG Trol

    PubMed Central

    Trisnadi, Nathanie; Stathopoulos, Angelike

    2014-01-01

    Gastrulation of the embryo involves coordinate cell movements likely supported by multiple signaling pathways, adhesion molecules, and extracellular matrix components. Fibroblast growth factors (FGFs) have a major role in Drosophila melanogaster mesoderm migration; however, few other inputs are known and the mechanism supporting cell movement is unclear. To provide insight, we performed an ectopic expression screen to identify secreted or membrane-associated molecules that act to support mesoderm migration. Twenty-four UAS insertions were identified that cause lethality when expressed in either the mesoderm (Twi-Gal4) or the ectoderm (69B-Gal4). The list was narrowed to a subset of 10 genes that were shown to exhibit loss-of-function mutant phenotypes specifically affecting mesoderm migration. These include the FGF ligand Pyramus, ?-integrins, E-cadherin, Cueball, EGFR, JAK/STAT signaling components, as well as the heparan sulfate proteoglycan (HSPG) Terribly reduced optic lobes (Trol). Trol encodes the ortholog of mammalian HSPG Perlecan, a demonstrated FGF signaling cofactor. Here, we examine the role of Trol in Drosophila mesoderm migration and compare and contrast its role with that of Syndecan (Sdc), another HSPG previously implicated in this process. Embryos mutant for Trol or Sdc were obtained and analyzed. Our data support the view that both HSPGs function to support FGF-dependent processes in the early embryo as they share phenotypes with FGF mutants: Trol in terms of effects on mesoderm migration and caudal visceral mesoderm (CVM) migration and Sdc in terms of dorsal mesoderm specification. The differential roles uncovered for these two HSPGs suggest that HSPG cofactor choice may modify FGF-signaling outputs. PMID:25538103

  8. Insertion mutagenesis of the gene encoding the ferrichrome-iron receptor of Escherichia coli K-12.

    PubMed Central

    Carmel, G; Hellstern, D; Henning, D; Coulton, J W

    1990-01-01

    The ferrichrome-iron receptor of Escherichia coli K-12 encoded by the fhuA gene is a multifunctional outer membrane receptor with an Mr of 78,000. It is required for the binding and uptake of ferrichrome and is the receptor for bacteriophages T5, T1, phi 80, and UC-1 as well as for colicin M. The fhuA gene was cloned into pBR322, and the recombinant plasmid pGC01 was mutagenized by the insertion of 6-base-pair TAB (two amino acid Barany) linkers into CfoI and HpaII restriction sites distributed throughout the coding region. A library of 18 TAB linker insertions in fhuA was generated; 8 of the mutations were at CfoI sites and 10 were at HpaII sites. All mutations inserted a hexamer that encoded a unique SacI site. A large deletion in fhuA was also isolated by TAB linker mutagenesis. Except for the deletion mutant, all of the linker insertion mutant FhuA proteins were found in the outer membrane in amounts similar to those found in the wild type. Five of the linker insertion mutants were susceptible to cleavage by endogenous proteolytic activity: a second FhuA-related band that migrated at approximately 72 kilodaltons could be detected on Coomassie blue-stained gels and on Western blots (immunoblots) by using a carboxy terminus-specific anti-peptide antibody. Receptor functions were measured with the mutated genes present in a single copy on the chromosome. Some of the receptors conferred wild-type phenotypes: they demonstrated growth promotion by ferrichrome and the same efficiency of plating as that of wild-type FhuA; killing by colicin M was also unaffected. Several mutants were altered in their sensitivities to the lethal agents. TAB linker insertions after amino acids 69 and 128 abolished all receptor functions. Phage T5 id not bind to these mutant FhuA proteins in detergent extracts. The deletion mutant was also defective in all FhuA functions. Sensitivity to the lethal agents of cellsl that expressed mutant FhuAs with insertions after amino acids 59 and 135 was reduced by several orders of magnitude. Insertion at other selected sites decreased some or all receptor functions only slightly. An insertion after amino acid 321 selectively eliminated ferrichrome growth promotion. Finally, a strain carrying a mutant fhuA gene on the chromosome in which the linker insertion occurred after amino acid 82 showed a tonB phenotype. These subtle perturbations that were introduced into the FhuA protein resulted in changes in its stability and in the binding and uptake of its cognate ligands. Images FIG. 2 FIG. 3 PMID:2156805

  9. Clinical Significance of Ryanodine Receptor 1 Gene (RYR1) Variants: Proceedings of the 2013 MHAUS Scientific Conference

    PubMed Central

    Riazi, Sheila; Kraeva, Natalia; Muldoon, Sheila M.; Dowling, James; Ho, Clara; Petre, Maria-Alexandra; Parness, Jerome; Dirksen, Robert T.; Rosenberg, Henry

    2014-01-01

    The Malignant Hyperthermia Association of the United States (MHAUS) and the Department of Anesthesia at the University of Toronto sponsored a Scientific Conference on November 1–2, 2013 in Toronto, Canada. The multidisciplinary group of experts, including clinicians, geneticists and physiologists involved in research related to malignant hyperthermia (MH), shared new insights into the pathophysiology of type-1 ryanodine receptor gene (RYR1)-linked diseases, as well as the relationship between MH and “awake MH” conditions, such as exertional rhabdomyolysis (ER) and exertional heat illness (EHI). In addition, the molecular genetics of MH, and clinical issues related to the diagnosis and management of RYR1-linked disorders, were presented. The conference also honored Dr. David H. MacLennan for his contributions to our understanding of the genetics, pathogenesis and treatment of MH and other RYR1-related myopathies. This report represents a summary of the proceedings of this conference. PMID:25189431

  10. The ?3 subunit of the nicotinic acetylcholine receptor: Modulation of gene expression and nicotine consumption.

    PubMed

    Kamens, Helen M; Miyamoto, Jill; Powers, Matthew S; Ro, Kasey; Soto, Marissa; Cox, Ryan; Stitzel, Jerry A; Ehringer, Marissa A

    2015-12-01

    Genetic factors explain approximately half of the variance in smoking behaviors, but the molecular mechanism by which genetic variation influences behavior is poorly understood. SNPs in the putative promoter region of CHRNB3, the gene that encodes the ?3 subunit of the nicotinic acetylcholine receptor (nAChR), have been repeatedly associated with nicotine behaviors. In this work we sought to identify putative function of three SNPs in the promoter region of CHRNB3 on in vitro gene expression. Additionally, we used ?3 null mutant mice as a model of reduced gene expression to assess the effects on nicotine behaviors. The effect of rs13277254, rs6474413, and rs4950 on reporter gene expression was examined using a luciferase reporter assay. A major and minor parent haplotype served as the background on which alleles at the three SNPs were flipped onto different backgrounds (e.g. minor allele on major haplotype background). Constructs were tested in three human cell lines: BE(2)-C, SH-SY5Y and HEK293T. In all cell types the major haplotype led to greater reporter gene expression compared to the minor haplotype, and results indicate that this effect is driven by rs6474413. Moreover, mice lacking the ?3 subunit showed reduced voluntary nicotine consumption compared that of wildtype animals. These data provide evidence that the protective genetic variant at rs6474413 identified in human genetic studies reduces gene expression and that decreased ?3 gene expression in mice reduces nicotine intake. This work contributes to our understanding of the molecular mechanisms that contribute to the human genetic associations of tobacco behaviors. PMID:26318101

  11. Mutation scan of the D1 dopamine receptor gene in 22 cases of bipolar I disorder

    SciTech Connect

    Shah, M.; Coon, H.; Holik, J.; Hoff, M.

    1995-04-24

    In a previous study we found suggestive evidence of linkage between manic-depressive illness (MDI) in eight multiplex pedigrees and D5S62, a DNA marker mapping to the telomeric region of 5q. As the D1 dopamine receptor gene (DRDI) maps to this region and as alterations in dopaminergic neurotransmission have been indirectly implicated in the pathogenesis of MDI, we directly searched for mutations in the coding region of the DRDI gene in 22 unrelated cases of bipolar I (BPI) disorder derived from multiplex families. Using single strand conformation polymorphism (SSCP) analysis, we did not observe any abnormal SSCP variants in the BPI cases that differed from controls. 30 refs., 1 fig.

  12. Reactivation of apolipoprotein II gene transcription by cycloheximide reveals two steps in the deactivation of estrogen receptor-mediated transcription.

    PubMed Central

    Sensel, M G; Binder, R; Lazier, C B; Williams, D L

    1994-01-01

    In this report, we describe apolipoprotein II (apoII) gene expression in cell lines derived by stable expression of the chicken estrogen receptor in LMH chicken hepatoma cells. In cell lines expressing high levels of receptor (LMH/2A), apoII gene expression is increased by estrogen 300-fold compared with levels in the receptor-deficient parent LMH line. LMH/2A cells show apoII mRNA induction and turnover kinetics similar to those in chicken liver. Inhibition of protein synthesis with cycloheximide (CHX) or puromycin following estrogen withdrawal superinduces apoII mRNA without affecting apoII mRNA stability. Superinduction is due to an estrogen-independent reactivation of apoII gene transcription. The apoII gene can be reactivated by CHX for up to 24 h following hormone withdrawal, suggesting that the gene is in a repressed yet transcriptionally competent state. These results reveal two distinct events necessary for termination of estrogen receptor-mediated transcription. The first event, removal of hormone, is sufficient to stop transcription when translation is ongoing. The second event is revealed by the CHX-induced superinduction of apoII mRNA following hormone withdrawal. This superinduction suggests that deactivation of estrogen receptor-mediated transcription requires a labile protein. Furthermore, reactivation of apoII gene expression by CHX and estrogen is additive, suggesting that estrogen is unable to overcome repression completely. Thus, a labile protein may act to repress estrogen receptor-mediated transcription of the apoII gene. Images PMID:8114707

  13. Isolation, characterization, and expression analyses of ecdysone receptor 1, ecdysone receptor 2 and ultraspiracle genes in varroa destructor mite

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The varroa mite, Varroa destructor, is a honeybee ectoparasite considered the most important pest in apiaries throughout the US. Ecdysone receptor is a hormone secreted by the prothoracic gland of insects that controls ecdysis and stimulates metamorphosis. The ecdysone receptor is a nuclear receptor...

  14. Evidence for adaptive evolution of olfactory receptor genes in 9 bird species.

    PubMed

    Steiger, Silke S; Fidler, Andrew E; Mueller, Jakob C; Kempenaers, Bart

    2010-01-01

    It has been suggested that positive selection, in particular selection favoring a change in the protein sequence, plays a role in the evolution of olfactory receptor (OR) gene repertoires in fish and mammals. ORs are 7-transmembrane domain (TM) proteins, members of the G-protein-coupled receptor superfamily in vertebrate genomes, and responsible for odorant binding and discrimination. OR gene repertoires in birds are surprisingly large and diverse, suggesting that birds have a keen olfactory sense. The aim of this study is to investigate signatures of positive selection in an expanded OR clade (group-gamma-c) that seems to be a characteristic of avian genomes. Using maximum-likelihood methods that estimate the d(N)/d(S) ratios and account for the effects of recombination, we show here that there is evidence for positive selection in group-gamma-c partial OR coding sequences of 9 bird species that are likely to have different olfactory abilities: the blue tit (Cyanistes caeruleus), the black coucal (Centropus grillii), the brown kiwi (Apteryx australis), the canary (Serinus canaria), the galah (Eolophus roseicapillus), the kakapo (Strigops habroptilus), the mallard (Anas platyrhynchos), the red jungle fowl (Gallus gallus), and the snow petrel (Pagodroma nivea). Positively selected codons were predominantly located in TMs, which in other vertebrates are involved in odorant binding. Our data suggest that 1) at least some avian OR genes have been subjected to adaptive evolution, 2) the extent of such adaptive evolution differs between bird species, and 3) positive selective pressures may have been stronger on the group-gamma-c OR genes of species that have well-developed olfactory abilities. PMID:19965911

  15. A systems-level approach to parental genomic imprinting: the imprinted gene network includes extracellular matrix genes and regulates cell cycle exit and differentiation

    PubMed Central

    Al Adhami, Hala; Evano, Brendan; Le Digarcher, Anne; Gueydan, Charlotte; Dubois, Emeric; Parrinello, Hugues; Dantec, Christelle; Bouschet, Tristan; Varrault, Annie

    2015-01-01

    Genomic imprinting is an epigenetic mechanism that restrains the expression of ?100 eutherian genes in a parent-of-origin-specific manner. The reason for this selective targeting of genes with seemingly disparate molecular functions is unclear. In the present work, we show that imprinted genes are coexpressed in a network that is regulated at the transition from proliferation to quiescence and differentiation during fibroblast cell cycle withdrawal, adipogenesis in vitro, and muscle regeneration in vivo. Imprinted gene regulation is not linked to alteration of DNA methylation or to perturbation of monoallelic, parent-of-origin-dependent expression. Overexpression and knockdown of imprinted gene expression alters the sensitivity of preadipocytes to contact inhibition and adipogenic differentiation. In silico and in cellulo experiments showed that the imprinted gene network includes biallelically expressed, nonimprinted genes. These control the extracellular matrix composition, cell adhesion, cell junction, and extracellular matrix-activated and growth factor–activated signaling. These observations show that imprinted genes share a common biological process that may account for their seemingly diverse roles in embryonic development, obesity, diabetes, muscle physiology, and neoplasm. PMID:25614607

  16. Extreme expansion of the olfactory receptor gene repertoire in African elephants and evolutionary dynamics of orthologous gene groups in 13 placental mammals.

    PubMed

    Niimura, Yoshihito; Matsui, Atsushi; Touhara, Kazushige

    2014-09-01

    Olfactory receptors (ORs) detect odors in the environment, and OR genes constitute the largest multigene family in mammals. Numbers of OR genes vary greatly among species--reflecting the respective species' lifestyles--and this variation is caused by frequent gene gains and losses during evolution. However, whether the extent of gene gains/losses varies among individual gene lineages and what might generate such variation is unknown. To answer these questions, we used a newly developed phylogeny-based method to classify >10,000 intact OR genes from 13 placental mammal species into 781 orthologous gene groups (OGGs); we then compared the OGGs. Interestingly, African elephants had a surprisingly large repertoire (? 2000) of functional OR genes encoded in enlarged gene clusters. Additionally, OR gene lineages that experienced more gene duplication had weaker purifying selection, and Class II OR genes have evolved more dynamically than those in Class I. Some OGGs were highly expanded in a lineage-specific manner, while only three OGGs showed complete one-to-one orthology among the 13 species without any gene gains/losses. These three OGGs also exhibited highly conserved amino acid sequences; therefore, ORs in these OGGs may have physiologically important functions common to every placental mammal. This study provides a basis for inferring OR functions from evolutionary trajectory. PMID:25053675

  17. Extreme expansion of the olfactory receptor gene repertoire in African elephants and evolutionary dynamics of orthologous gene groups in 13 placental mammals

    PubMed Central

    Matsui, Atsushi; Touhara, Kazushige

    2014-01-01

    Olfactory receptors (ORs) detect odors in the environment, and OR genes constitute the largest multigene family in mammals. Numbers of OR genes vary greatly among species—reflecting the respective species' lifestyles—and this variation is caused by frequent gene gains and losses during evolution. However, whether the extent of gene gains/losses varies among individual gene lineages and what might generate such variation is unknown. To answer these questions, we used a newly developed phylogeny-based method to classify >10,000 intact OR genes from 13 placental mammal species into 781 orthologous gene groups (OGGs); we then compared the OGGs. Interestingly, African elephants had a surprisingly large repertoire (?2000) of functional OR genes encoded in enlarged gene clusters. Additionally, OR gene lineages that experienced more gene duplication had weaker purifying selection, and Class II OR genes have evolved more dynamically than those in Class I. Some OGGs were highly expanded in a lineage-specific manner, while only three OGGs showed complete one-to-one orthology among the 13 species without any gene gains/losses. These three OGGs also exhibited highly conserved amino acid sequences; therefore, ORs in these OGGs may have physiologically important functions common to every placental mammal. This study provides a basis for inferring OR functions from evolutionary trajectory. PMID:25053675

  18. Macrophage mannose receptor-specific gene delivery vehicle for macrophage engineering.

    PubMed

    Ruan, Gui-Xin; Chen, Yu-Zhe; Yao, Xing-Lei; Du, Anariwa; Tang, Gu-Ping; Shen, You-Qing; Tabata, Yasuhiko; Gao, Jian-Qing

    2014-05-01

    Macrophages are the most plastic cells in the hematopoietic system and they exhibit great functional diversity. They have been extensively applied in anti-inflammatory, anti-fibrotic and anti-cancer therapies. However, the application of macrophages is limited by the efficiency of their engineering. The macrophage mannose receptor (MMR, CD206), a C-type lectin receptor, is ubiquitously expressed on macrophages and has a high affinity for mannose oligosaccharides. In the present study, we developed a novel non-viral vehicle with specific affinity for MMR. Mannan was cationized with spermine at a grafted ratio of ?12% to deliver DNA and was characterized as a stable system for delivery. This spermine-mannan (SM)-based delivery system was evaluated as a biocompatible vehicle with superior transfection efficiency on murine macrophages, up to 28.5-fold higher than spermine-pullulan, 11.5-fold higher than polyethylenimine and 3.0-fold higher than Lipofectamine™ 2000. We confirmed that the SM-based delivery system for macrophages transfection was MMR-specific and we described the intracellular transport of the delivery system. To our knowledge, this is the first study using SM to demonstrate a mannose receptor-specific gene delivery system, thereby highlighting the potential of a novel specific non-viral delivery vehicle for macrophage engineering. PMID:24440421

  19. Effects of deletion of the prolactin receptor on ovarian gene expression

    PubMed Central

    Grosdemouge, Isabelle; Bachelot, Anne; Lucas, Aurélie; Baran, Nathalie; Kelly, Paul A; Binart, Nadine

    2003-01-01

    Prolactin (PRL) exerts pleiotropic physiological effects in various cells and tissues, and is mainly considered as a regulator of reproduction and cell growth. Null mutation of the PRL receptor (R) gene leads to female sterility due to a complete failure of embryo implantation. Pre-implantatory egg development, implantation and decidualization in the mouse appear to be dependent on ovarian rather than uterine PRLR expression, since progesterone replacement permits the rescue of normal implantation and early pregnancy. To better understand PRL receptor deficiency, we analyzed in detail ovarian and corpora lutea development of PRLR-/- females. The present study demonstrates that the ovulation rate is not different between PRLR+/+ and PRLR-/- mice. The corpus luteum is formed but an elevated level of apoptosis and extensive inhibition of angiogenesis occur during the luteal transition in the absence of prolactin signaling. These modifications lead to the decrease of LH receptor expression and consequently to a loss of the enzymatic cascades necessary to produce adequate levels of progesterone which are required for the maintenance of pregnancy. PMID:12646063

  20. Genetic variants of the class A scavenger receptor gene are associated with essential hypertension in Chinese

    PubMed Central

    Zhang, Min; Han, Zhijun; Yan, Zihe; Cui, Qichen; Jiang, Yuhai; Gao, Mingzhu; Yu, Wei

    2015-01-01

    Background The class A scavenger receptor, which is encoded by the macrophage scavenger receptor 1 (MSR1) gene, is a pattern recognition receptor (PPR) primarily expressed in macrophages. It has been reported that genetic polymorphisms of MSR1 are significantly associated with many cardiovascular events. However, whether it links genetically to essential hypertension (EH) in Chinese is not defined. Methods We performed an independent case-control study in a Chinese population consisting of 617 EH cases and 620 controls by genotyping three single nucleotide polymorphisms (SNPs) of MSR1. Results We found that rs13306541 and rs3747531 were significantly associated with an increased risk of EH with per allele odds ratio (OR) of 1.63 [95% confidence interval (CI): 1.27-2.09; P<0.001] and 1.29 (95% CI: 1.09-1.52; P=0.003), respectively. Individuals with 2-4 risk alleles had a 2.03-fold (95% CI: 1.48-2.78) increased risk of EH compared with those having none of the risk alleles (P for trend <0.001). Conclusions Our results indicate that genetic variants of MSR1 may serve as predictive markers for the risk of EH in combination with traditional risk factors of EH in Chinese population. PMID:26716027

  1. An atypical case of fragile X syndrome caused by a deletion that includes the FMR-1 gene

    SciTech Connect

    Quan, F.; Johnson, D.B.; Anoe, K.S.

    1994-09-01

    Fragile X syndrome results from the transcriptional inactivation of the FMR-1 gene. This is commonly caused by the expansion of an unstable CGG trinucleotide repeat in the first exon of the FMR-1 gene. We describe here an atypical case of fragile X syndrome caused by a deletion that includes the FMR-1 gene. RK is a 6-year-old hyperactive, mentally retarded male. Southern analysis of PstI digested genomic DNA was performed using a 558 bp XhoI-PstI fragment specific for the 5`-end of the FMR-1 gene. This analysis revealed the absence of the normal 1.0 kb PstI fragment, indicating the deletion of at least a portion of the FMR-1 gene. PCR analysis using Xq27.3 microsatellite and STS markers confirmed the presence of a deletion of at least 600 kb encompassing the FMR-1 gene. Southern blot and PCR analysis demonstrated that this deletion was maternally transmitted and arose as a new mutation on the grandpaternal X-chromosome. High resolution chromosome banding revealed an extremely small deletion of a portion of band Xq27 which was confirmed by fluorescent in situ hybridrization (FISH) analysis using a 34 kb cosmid containing the FMR-1 gene. As expected, RK manifests physical features typical of fragile X syndrome, including a high arched palate, prognathism, and large ears. Interestingly, RK also presents with anal atresia, obesity and short stature, features not part of fragile X syndrome. In addition, RK has normal sized testicles and does not exhibit the characteristic gaze avoidance, hand-flapping, and crowd anxiety behaviors. These atypical features may result from the deletion of additional genes in the vicinity of the FMR-1 gene. Further work is underway to determine more precisely the extent of the deletion in RK`s DNA.

  2. The Experimental Treatment of Corneal Graft Rejection with the Interleukin-1 Receptor Antagonist (IL-1ra) Gene

    PubMed Central

    Huang, Weilan; Zhou, Shiyou; Ling, Shiqi; Chen, Jiaqi

    2013-01-01

    Purpose To investigate the protective effects of interleukin-1 receptor antagonist (IL-1ra) gene transfer in a rat model of corneal graft rejection. Methods We constructed a recombinant plasmid (pcDNA3.1-hIL-1ra) with high IL-1ra expression in eukaryotic cells. Using a Wistar-SD rat model of corneal graft rejection, we examined the effects of IL-1ra in vivo after cationic polymer jetPEI-mediated nonviral gene delivery. Four groups were included: negative controls (group I, n?=?20), pcDNA3.1-hIL-1ra corneal stromal injection (group II, n?=?34), pcDNA3.1-hIL-1ra anterior chamber injection (group III, n?=?34), and 500 µg/ml IL-1ra protein subconjunctiva injection (group IV, n?=?20). IL-1ra expression after transfection was evaluated by real-time polymerase chain reaction (RT-PCR) and western blotting. The rejection indices of corneal grafts were analysed in the different groups. The expression levels of transforming growth factor ?1 (TGF-?1), inflammatory chemokines including RANTES, interleukin-1 (IL-1) and the numbers of CD4+ and CD8+ T cells in the grafts were determined by biochemical assays at different time points after corneal transplantation. Results Various degrees of inflammatory cell infiltration and graft neovascularisation were observed by histopathology. After injecting the pcDNA3.1-hIL-1ra plasmid into the cornea, IL-1ra mRNA and protein expression was detected in the corneal stroma and reached a peak on day 3. The graft survival curves indicated that the corneal transparency rates of grafts in the IL-1ra gene-treated group and the IL-1ra protein-treated group were higher compared with the untreated group (P<0.05). During the period of acute rejection, TGF-?1, RANTES, IL-1? and IL-1? levels in the grafts in the IL-1ra treatment groups were lower than the control group (P<0.05). CD4+ and CD8+ T cell counts were reduced significantly in the corneal grafts of groups II, III and IV compared with group I (P<0.05). Conclusion Interleukin-1 receptor antagonist (IL-1ra) gene transfer treatment inhibits graft rejection after corneal transplantation through the downregulation of immune mediators. PMID:23723965

  3. The D4 receptor gene and mood disorders: An association study

    SciTech Connect

    Macciardi, F.; Cavalini, M.C.; Petronis, A.

    1994-09-01

    The problem of a gene-disease association is of major relevance in the current research of Psychiatric Disorders, mostly because of the lack of unequivocal results obtained with the linkage approach. However, some points of an association study must also be carefully considered, namely the statistical methodology and the strategy to select a gene to be tested. The gene coding for the D4 receptor (DRD4) might be theoretically relevant as a component of the genetic susceptibility for mood disorders. We now know that DRD4 has at least 2 functional polymorphisms in the coding regions of the gene, in exon 3 and exon 1, thus conferring etiologic relevance to a potentially positive association. In our work, we investigated the DRD4 genotypes of the 3rd and 1st exon for 93 patients with bipolar disorder and 57 patients with major depression, recurrent disorder. Patients have been diagnosed either by traditional DSMIII-R criteria or by clustering their lifetime psychopathological symptomatology. A random control group consisted of 151 subjects. A significant association has been found with DRD4 exon 3 genotypes, revealing an increase of genotypes 2-4 in Bipolar patients (chi-square=23.07, df=12, p=0.02). Even though a definitive confirmation of our finding requires an independent replication of the study, this result emphasizes the importance of DRD4 in mood disorders.

  4. Epigenetic regulation of the oxytocin receptor gene: implications for behavioral neuroscience.

    PubMed

    Kumsta, Robert; Hummel, Elisabeth; Chen, Frances S; Heinrichs, Markus

    2013-01-01

    Genetic approaches have improved our understanding of the neurobiological basis of social behavior and cognition. For instance, common polymorphisms of genes involved in oxytocin signaling have been associated with sociobehavioral phenotypes in healthy samples as well as in subjects with mental disorders. More recently, attention has been drawn to epigenetic mechanisms, which regulate genetic function and expression without changes to the underlying DNA sequence. We provide an overview of the functional importance of oxytocin receptor gene (OXTR) promoter methylation and summarize studies that have investigated the role of OXTR methylation in behavioral phenotypes. There is first evidence that OXTR methylation is associated with autism, high callous-unemotional traits, and differential activation of brain regions involved in social perception. Furthermore, psychosocial stress exposure might dynamically regulate OXTR. Given evidence that epigenetic states of genes can be modified by experiences, especially those occurring in sensitive periods early in development, we conclude with a discussion on the effects of traumatic experience on the developing oxytocin system. Epigenetic modification of genes involved in oxytocin signaling might be involved in the mechanisms mediating the long-term influence of early adverse experiences on socio-behavioral outcomes. PMID:23734094

  5. A Novel Nonconsensus Xenobiotic Response Element Capable of Mediating Aryl Hydrocarbon Receptor-Dependent Gene Expression

    PubMed Central

    Huang, Gengming

    2012-01-01

    The aryl hydrocarbon receptor (AhR) is a mediator of xenobiotic toxicity, best recognized for conveying the deleterious effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure. The AhR functions as a ligand-activated transcription factor that binds to a canonical xenobiotic response element (XRE) in association with the heterodimerization partner, the AhR nuclear translocator (Arnt) protein. However, within the repertoire of AhR target genes identified in recent years, many lack a clearly defined XRE highlighting the growing realization that AhR-mediated gene expression seems to involve additional mechanisms distinct from the well characterized process involving the XRE. The present study characterized a novel nonconsensus XRE (NC-XRE) in the promoter of the plasminogen activator inhibitor-1 (PAI-1) gene that recruits a novel protein-DNA complex responsible for TCDD-inducible expression. DNA binding studies and reporter assays identified key residues in the NC-XRE necessary for protein-DNA binding and function, respectively. Functional studies with AhR expression constructs confirm that TCDD-inducibility is AhR-dependent and requires direct AhR-DNA binding to the NC-XRE. Chromatin immunoprecipitation and RNA interference studies reveal that the Arnt protein is not a component of the NC-XRE-bound AhR complex, suggesting that in contrast to the XRE, AhR-dependent gene expression mediated through the NC-XRE may involve a new DNA binding partner. PMID:22113079

  6. Association between interleukin 8 receptor ? gene (CXCR1) and mastitis in dairy cattle

    PubMed Central

    Pawlik, Adrianna; Kapera, Magdalena; Korwin-Kossakowska, Agnieszka

    2015-01-01

    The innate immune response plays an important role in the course of bacterial infections. Innate immunity effectiveness relies on the expression of many genes, connected, among others, to the activity of neutrophils. Interleukin 8 (IL-8) receptor ?, coded by the CXCR1 gene, is present on the neutrophil surface and binds pro-inflammatory IL-8 with high affinity. This is why the bovine CXCR1 gene carries a potential for use as a dairy cattle mastitis marker. To date, several studies on the CXCR1 polymorphism brought out contradictory results. The aim of this study was to analyse the association between two SNPs of the CXCR1 gene, which is potentially important for the protein function and animal phenotype for mastitis susceptibility. A total of 554 Polish Holsteins were genotyped, and 140 among them were bacteriologically tested. The differences between animals carrying different genotypes and haplotypes of CXCR1 in test day somatic cell count (SCC) and Staphylococcus aureus mastitis susceptibility were estimated. We found that test day SCC was significantly related to CXCR1+472 SNP but not to CXCR1+735 SNP. No statistically significant association between CXCR1 polymorphism and susceptibility to S. aureus mastitis was found in the studied herd. PMID:26557028

  7. The retinoid-related orphan receptor alpha (RORA) gene and fear-related psychopathology

    PubMed Central

    Miller, Mark W.; Wolf, Erika J.; Logue, Mark W.; Baldwin, Clinton T.

    2013-01-01

    Background This study followed on findings from a recent genome-wide association study of PTSD that implicated the retinoid-related orphan receptor alpha (RORA) gene (Logue et al, 2012) by examining its relationship to broader array of disorders. Methods Using data from the same cohort (N = 540), we analyzed patterns of association between 606 single nucleotide polymorphisms (SNPs) spanning the RORA gene and comorbidity factors termed fear, distress (i.e., internalizing factors) and externalizing. Results Results showed that rs17303244 was associated with the fear component of internalizing (i.e., defined by symptoms of panic, agoraphobia, specific phobia, and obsessive-compulsive disorder) at a level of significance that withstood correction for gene-wide multiple testing. Limitations The primary limitations were the modest size of the cohort and the absence of a replication sample. Conclusions Results add to a growing literature implicating the RORA gene in a wide range of neuropsychiatric disorders and offer new insight into possible molecular mechanisms of the effects of traumatic stress on the brain and the role of genetic factors in those processes. PMID:24007783

  8. Eco-Geographical Diversification of Bitter Taste Receptor Genes (TAS2Rs) among Subspecies of Chimpanzees (Pan troglodytes)

    PubMed Central

    Hayakawa, Takashi; Sugawara, Tohru; Go, Yasuhiro; Udono, Toshifumi; Hirai, Hirohisa; Imai, Hiroo

    2012-01-01

    Chimpanzees (Pan troglodytes) have region-specific difference in dietary repertoires from East to West across tropical Africa. Such differences may result from different genetic backgrounds in addition to cultural variations. We analyzed the sequences of all bitter taste receptor genes (cTAS2Rs) in a total of 59 chimpanzees, including 4 putative subspecies. We identified genetic variations including single-nucleotide variations (SNVs), insertions and deletions (indels), gene-conversion variations, and copy-number variations (CNVs) in cTAS2Rs. Approximately two-thirds of all cTAS2R haplotypes in the amino acid sequence were unique to each subspecies. We analyzed the evolutionary backgrounds of natural selection behind such diversification. Our previous study concluded that diversification of cTAS2Rs in western chimpanzees (P. t. verus) may have resulted from balancing selection. In contrast, the present study found that purifying selection dominates as the evolutionary form of diversification of the so-called human cluster of cTAS2Rs in eastern chimpanzees (P. t. schweinfurthii) and that the other cTAS2Rs were under no obvious selection as a whole. Such marked diversification of cTAS2Rs with different evolutionary backgrounds among subspecies of chimpanzees probably reflects their subspecies-specific dietary repertoires. PMID:22916235

  9. Epidermal growth factor receptor protein overexpression and gene amplification are associated with aggressive biological behaviors of esophageal squamous cell carcinoma

    PubMed Central

    LIN, GANG; SUN, XIAO-JIANG; HAN, QIAN-BO; WANG, ZHUN; XU, YA-PING; GU, JIA-LEI; WU, WEI; ZHANG, GU; HU, JIN-LIN; SUN, WEN-YONG; MAO, WEI-MIN

    2015-01-01

    Alterations of the epidermal growth factor receptor (EGFR), including overexpression or gene mutations, contribute to the malignant transformation of human epithelial cells. The aim of this study was to assess EGFR overexpression or gene amplification in esophageal squamous cell carcinoma (ESCC) tissue samples and investigate their correlations with biological behaviors. Tissue specimens from 56 patients with surgically resected ESCC were obtained for immunohistochemical analysis of EGFR expression and fluorescence in situ hybridization analysis of EGFR amplification. The data were statistically analyzed to determine the associations with patient clinicopathological and survival data. EGFR was overexpressed in 30 of the 56 (53.6%) ESCC samples and was associated with poor tumor differentiation (P=0.047). EGFR amplification was detected in 13 cases (23.2%) and was associated with advanced pathological stage (P=0.042) and tumor lymph node metastasis (P=0.002). The univariate analysis identified no association between EGFR overexpression and the overall survival (OS) of the patients. By contrast, EGFR amplification predicted ESCC prognosis (P=0.031), while the multivariate analysis revealed a marginal statistical significance for the association between EGFR amplification and OS (P=0.056). EGFR overexpression and increased EGFR copy number were common events in ESCC and contributed to malignant biological behaviors, including tumor dedifferentiation and lymph node metastasis. EGFR amplification may therefore be useful in predicting OS in patients with ESCC.

  10. Curcumin induces human cathelicidin antimicrobial peptide gene expression through a vitamin D receptor-independent pathway.

    PubMed

    Guo, Chunxiao; Rosoha, Elena; Lowry, Malcolm B; Borregaard, Niels; Gombart, Adrian F

    2013-05-01

    The vitamin D receptor (VDR) mediates the pleiotropic biologic effects of 1?,25 dihydroxy-vitamin D3. Recent in vitro studies suggested that curcumin and polyunsaturated fatty acids (PUFAs) also bind to VDR with low affinity. As potential ligands for the VDR, we hypothesized that curcumin and PUFAs would induce expression of known VDR target genes in cells. In this study, we tested whether these compounds regulated two important VDR target genes - human cathelicidin antimicrobial peptide (CAMP) and 1,25-dihydroxyvitamin D3 24-hydroxylase (CYP24A1) - in human monocytic cell line U937, colon cancer cell line HT-29 and keratinocyte cell line HaCaT. We demonstrated that PUFAs failed to induce CAMP or CYP24A1 mRNA expression in all three cell lines, but curcumin up-regulated CAMP mRNA and protein levels in U937 cells. Curcumin treatment induced CAMP promoter activity from a luciferase reporter construct lacking the VDR binding site and did not increase binding of the VDR to the CAMP promoter as determined by chromatin immunoprecipitation assays. These findings indicate that induction of CAMP by curcumin occurs through a vitamin D receptor-independent manner. We conclude that PUFAs and curcumin do not function as ligands for the VDR. PMID:22841393

  11. Ethylene insensitivity conferred by a mutated Arabidopsis ethylene receptor gene alters nodulation in transgenic Lotus japonicus

    PubMed Central

    Lohar, Dasharath; Stiller, Jiri; Kam, Jason; Stacey, Gary; Gresshoff, Peter M.

    2009-01-01

    Background and Aims Transgenics are used to demonstrate a causal relationship between ethylene insensitivity of a seedling legume plant, the level of ethylene receptor gene expression, lateral root growth and Mesorhizobium loti-induced nodule initiation. Methods Lotus japonicus plants expressing the dominant etr1-1 allele of the Arabidopsis thaliana gene encoding a well-characterized mutated ethylene receptor were created by stable Agrobacterium tumefaciens transformation. Single insertion, homozygous lines were characterized for symbiotic properties. Key Results Transgenic plants were ethylene insensitive as judged by the lack of the ‘Triple Response’, and their continued ability to grow and nodulate in the presence of inhibitory concentrations of ACC (1-aminocyclopropane-1-carboxylic acid; an ethylene precursor). Transgenic plants with high insensitivity to ACC had significantly fewer lateral roots and exhibited increased nodulation while showing no altered nitrate sensitivity or lack of systemic autoregulation. Whereas ACC-insensitive shoot growth and nodulation were observed in transformants, root growth was inhibited similarly to the wild type. Increased nodulation was caused by increased infection and a seven-fold increase in nodules developing between xylem poles. Bacteroid numbers per symbiosome increased about 1·7-fold in ethylene-insensitive plants. Conclusions The study further demonstrates multiple roles for ethylene in nodule initiation by influencing root cell infections and radial positioning, independent of autoregulation and nitrate inhibition of nodulation. PMID:19505874

  12. The D4 dopamine receptor gene maps on 11p proximal to HRAS

    SciTech Connect

    Petronis, A.; Kennedy, J.L.; Van Tol, H.H.M. ); Lichter, J.B.; Livak, K.J. )

    1993-10-01

    The dopamine D4 receptor (DRD4) is of high interest in neuropsychiatric illness due to its anatomical distribution in the limbic system and its relatively high affinity for the atypical antipsychotic clozapine. Also, D4 receptors are expressed in cardiac tissue, and D4 maps in the same region as the inherited cardiac disease referred to as Long QT syndrome. DRD4 was genetically mapped near the tip of the short arm of chromosome 11, close to the oncogene Harvey-RAS (HRAS). Multipoint linkage analysis of several large families could not define the location of DRD4 proximal versus distal to HRAS, although it was evident that DRD4 was located distal to the gene for tyrosine hydroxylase (TH). A proximal localization of DRD4 relative to HRAS was thus demonstrated. The localization is inferred from a single recombination event, and additional studies on families segregating analyzed polymorphisms would be valuable. Exact order of the genes on 11p15 will greatly assist the resolving power of linkage studies in this region, as applied to neuropsychiatric diseases, as well as Long QT syndrome and Beckwith-Wiedemann syndrome.

  13. Connectivity mapping using a combined gene signature from multiple colorectal cancer datasets identified candidate drugs including existing chemotherapies

    PubMed Central

    2015-01-01

    Background While the discovery of new drugs is a complex, lengthy and costly process, identifying new uses for existing drugs is a cost-effective approach to therapeutic discovery. Connectivity mapping integrates gene expression profiling with advanced algorithms to connect genes, diseases and small molecule compounds and has been applied in a large number of studies to identify potential drugs, particularly to facilitate drug repurposing. Colorectal cancer (CRC) is a commonly diagnosed cancer with high mortality rates, presenting a worldwide health problem. With the advancement of high throughput omics technologies, a number of large scale gene expression profiling studies have been conducted on CRCs, providing multiple datasets in gene expression data repositories. In this work, we systematically apply gene expression connectivity mapping to multiple CRC datasets to identify candidate therapeutics to this disease. Results We developed a robust method to compile a combined gene signature for colorectal cancer across multiple datasets. Connectivity mapping analysis with this signature of 148 genes identified 10 candidate compounds, including irinotecan and etoposide, which are chemotherapy drugs currently used to treat CRCs. These results indicate that we have discovered high quality connections between the CRC disease state and the candidate compounds, and that the gene signature we created may be used as a potential therapeutic target in treating the disease. The method we proposed is highly effective in generating quality gene signature through multiple datasets; the publication of the combined CRC gene signature and the list of candidate compounds from this work will benefit both cancer and systems biology research communities for further development and investigations. PMID:26356760

  14. Enhanced muscarinic M1 receptor gene expression in the corpus striatum of streptozotocin-induced diabetic rats

    PubMed Central

    Gireesh, G; Kumar, T Peeyush; Mathew, Jobin; Paulose, CS

    2009-01-01

    Acetylcholine (ACh), the first neurotransmitter to be identified, regulate the activities of central and peripheral functions through interactions with muscarinic receptors. Changes in muscarinic acetylcholine receptor (mAChR) have been implicated in the pathophysiology of many major diseases of the central nervous system (CNS). Previous reports from our laboratory on streptozotocin (STZ) induced diabetic rats showed down regulation of muscarinic M1 receptors in the brainstem, hypothalamus, cerebral cortex and pancreatic islets. In this study, we have investigated the changes of acetylcholine esterase (AChE) enzyme activity, total muscarinic and muscarinic M1 receptor binding and gene expression in the corpus striatum of STZ – diabetic rats and the insulin treated diabetic rats. The striatum, a neuronal nucleus intimately involved in motor behaviour, is one of the brain regions with the highest acetylcholine content. ACh has complex and clinically important actions in the striatum that are mediated predominantly by muscarinic receptors. We observed that insulin treatment brought back the decreased maximal velocity (Vmax) of acetylcholine esterase in the corpus striatum during diabetes to near control state. In diabetic rats there was a decrease in maximal number (Bmax) and affinity (Kd) of total muscarinic receptors whereas muscarinic M1 receptors were increased with decrease in affinity in diabetic rats. We observed that, in all cases, the binding parameters were reversed to near control by the treatment of diabetic rats with insulin. Real-time PCR experiment confirmed the increase in muscarinic M1 receptor gene expression and a similar reversal with insulin treatment. These results suggest the diabetes-induced changes of the cholinergic activity in the corpus striatum and the regulatory role of insulin on binding parameters and gene expression of total and muscarinic M1 receptors. PMID:19344500

  15. Platelet transfusion reverses bleeding evoked by triple anti-platelet therapy including vorapaxar, a novel platelet thrombin receptor antagonist.

    PubMed

    Cai, Tian-Quan; Wickham, L Alexandra; Sitko, Gary; Michener, Maria Strainer; Raubertas, Richard; Handt, Larry; Chintala, Madhu; Seiffert, Dietmar; Forrest, Michael

    2015-07-01

    Vorapaxar is a novel protease-activated receptor-1 (PAR-1) antagonist recently approved for the reduction of thrombotic cardiovascular events in patients with a history of myocardial infarction or with peripheral arterial disease. Patients who received vorapaxar in addition to standard of care antiplatelet therapy had an increased incidence of major bleeding events compared with placebo. To assess whether platelet transfusion can restore hemostasis in primates on triple antiplatelet therapy, template bleeding times were assessed concurrently in the buccal mucosa, finger pad, and distolateral tail of anesthetized cynomolgus macaques to evaluate bleeding with vorapaxar as either monotherapy or in combination with aspirin or aspirin and clopidogrel. Aspirin (5mg/kg, IV) or vorapaxar (1mg/kg, PO) alone had no significant effect on bleeding times in the three vascular beds examined. A modest (<2-fold) increase in bleeding time was achieved in the three beds with the dual combination of aspirin and vorapaxar. Major increases in bleeding time were achieved in the three beds with the triple combination of aspirin (5mg/kg, IV), vorapaxar (1mg/kg, PO), and clopidogrel (1mg/kg, PO). Transfusion of fresh human platelet rich plasma, but not platelet poor plasma, reversed the increase in bleeding time in the triple therapy group. Transfusion of human platelets may be a viable approach in situations requiring a rapid reversal of platelet function in individuals treated with triple anti-platelet therapy that includes vorapaxar. PMID:25857224

  16. An altered GABA-A receptor function in spinocerebellar ataxia type 6 and familial hemiplegic migraine type 1 associated with the CACNA1A gene mutation

    PubMed Central

    Kono, Satoshi; Terada, Tatsuhiro; Ouchi, Yasuomi; Miyajima, Hiroaki

    2014-01-01

    Background Mutations in the CACNA1A gene encoding the voltage-gated calcium channel ?1A subunit have been identified in patients with autosomal dominantly inherited neurological disorders, including spinocerebellar ataxia type 6 (SCA6) and familial hemiplegic migraine type 1 (FHM1). In order to investigate the underlying pathogenesis common to these distinct phenotypic disorders, this study investigated the neuronal function of the GABAergic system and glucose metabolism in vivo using positron emission tomography (PET). Methods Combined PET studies with [11C]-flumazenil and [18F]-fluorodeoxyglucose (FDG) were performed in three FHM1 patients and two SCA6 patients. [18F]-FDG-PET using a three-dimensional stereotactic surface projection analysis was employed to measure the cerebral metabolic rate of glucose (CMRGlc). In addition, the GABA-A receptor function was investigated using flumazenil, a selective GABA-A receptor ligand. Results All patients displayed a significant decrease in CMRGlc and low flumazenil binding in the cerebellum compared with the normal controls. The flumazenil binding in the temporal cortex was also decreased in two FHM1 patients. Conclusions Cerebellar glucose hypometabolism and an altered GABA-A receptor function are characteristic of FHM1 and SCA6. General significance An altered GABA-A receptor function has previously been reported in models of inherited murine cerebellar ataxia caused by a mutation in the CACNA1A gene. This study showed novel clinical characteristics of alteration in the GABA-A receptor in vivo, which may provide clinical evidence indicating a pathological mechanism common to neurological disorders associated with CACNA1A gene mutation. PMID:26675662

  17. Gene-environment interaction between the oxytocin receptor (OXTR) gene and parenting behaviour on children's theory of mind.

    PubMed

    Wade, Mark; Hoffmann, Thomas J; Jenkins, Jennifer M

    2015-12-01

    Theory of mind (ToM) is the ability to interpret and understand human behaviour by representing the mental states of others. Like many human capacities, ToM is thought to develop through both complex biological and socialization mechanisms. However, no study has examined the joint effect of genetic and environmental influences on ToM. This study examined how variability in the oxytocin receptor gene (OXTR) and parenting behaviour-two widely studied factors in ToM development-interacted to predict ToM in pre-school-aged children. Participants were 301 children who were part of an ongoing longitudinal birth cohort study. ToM was assessed at age 4.5 using a previously validated scale. Parenting was assessed through observations of mothers' cognitively sensitive behaviours. Using a family-based association design, it was suggestive that a particular variant (rs11131149) interacted with maternal cognitive sensitivity on children's ToM (P?=?0.019). More copies of the major allele were associated with higher ToM as a function of increasing cognitive sensitivity. A sizeable 26% of the variability in ToM was accounted for by this interaction. This study provides the first empirical evidence of gene-environment interactions on ToM, supporting the notion that genetic factors may be modulated by potent environmental influences early in development. PMID:25977357

  18. Intronic deletions of tva receptor gene decrease the susceptibility to infection by avian sarcoma and leukosis virus subgroup A

    PubMed Central

    Chen, Weiguo; Liu, Yang; Li, Hongxing; Chang, Shuang; Shu, Dingming; Zhang, Huanmin; Chen, Feng; Xie, Qingmei

    2015-01-01

    The group of avian sarcoma and leukosis virus (ASLV) in chickens contains six highly related subgroups, A to E and J. Four genetic loci, tva, tvb, tvc and tvj, encode for corresponding receptors that determine the susceptibility to the ASLV subgroups. The prevalence of ASLV in hosts may have imposed strong selection pressure toward resistance to ASLV infection, and the resistant alleles in all four receptor genes have been identified. In this study, two new alleles of the tva receptor gene, tvar5 and tvar6, with similar intronic deletions were identified in Chinese commercial broilers. These natural mutations delete the deduced branch point signal within the first intron, disrupting mRNA splicing of the tva receptor gene and leading to the retention of intron 1 and introduction of premature TGA stop codons in both the longer and shorter tva isoforms. As a result, decreased susceptibility to subgroup A ASLV in vitro and in vivo was observed in the subsequent analysis. In addition, we identified two groups of heterozygous allele pairs which exhibited quantitative differences in host susceptibility to ASLV-A. This study demonstrated that defective splicing of the tva receptor gene can confer genetic resistance to ASLV subgroup A in the host. PMID:25873518

  19. Analysis of the insulin receptor gene in noninsulin-dependent diabetes mellitus by denaturing gradient gel blots: A clinical research center study

    SciTech Connect

    Magre, J.; Goldfine, A.B.; Warram, J.H.

    1995-06-01

    We have used a new technique of denaturing gradient gel blotting to determine the prevalence of alterations in the intracellular domain of the insulin receptor in normal individuals and subjects with non-insulin-dependent diabetes mellitus (NIDDM). This method detects DNA sequence differences as restriction fragment melting polymorphisms (RFMP) and is sensitive to changes in sequence at both restriction sites and within the fragments themselves. Using restriction digests with AluI, HaeIII, HinfI, RsaI, Sau3A, and Sau96, 12 RFMPs were found to localize to the region of the {beta}-subunit of the insulin receptor gene. Using exon-specific probes, these RFMPs could be localized to specific regions surrounding individual exons, including exons, 14, 15, 16, 18, 20, and 22. In general, linkage disequilibrium between polymorphisms was inversely related to their distance in the gene structure, although there was a {open_quotes}hot spot{close_quotes} for recombination between exons 19 and 20. No difference in melting temperatures or allele frequency was observed between NIDDM patients and controls. These data indicate that the region of the insulin receptor gene coding for the intracellular portion of the {beta}-subunit is highly polymorphic and that polymorphisms surrounding specific exons can be identified by denaturing gradient gel blotting, but there is no evidence that variation at this locus contributes to NIDDM susceptibility in most individuals. 36 refs., 3 figs., 3 tabs.

  20. Steroid receptor induction of gene transcription: A two-step?model

    PubMed Central

    Jenster, Guido; Spencer, Thomas E.; Burcin, Mark M.; Tsai, Sophia Y.; Tsai, Ming-Jer; O’Malley, Bert W.

    1997-01-01

    Coactivators, such as steroid receptor coactivator 1 (SRC-1A) and CREB (cAMP response element binding protein)-binding protein (CBP), are required for efficient steroid receptor transactivation. Using an in vitro transcription assay, we found that progesterone receptor (PR)-driven transcription is inhibited by a dominant negative PR ligand-binding domain-interacting region of SRC-1A, indicating that SRC-1A is required for actual transcriptional processes. In addition, these coactivators also possess intrinsic histone acetyltransferase (HAT) activity and bind to each other and another HAT, p300/CBP-associated factor. Here we show that the human PR also interacts with p300/CBP-associated factor in vitro. Recruitment of multiple HATs to target promoters suggests an important role for chromatin remodeling in transcriptional activation of genes by steroid receptors. In transient transfection assays, we found that addition of a histone deacetylase inhibitor, trichostatin A, strongly potentiated PR-driven transcription. In contrast, directing histone deacetylase-1 (HD1) to a promoter using the GAL4 DNA binding domain inhibited transcription. Furthermore, PR transactivation was repressed by recruiting HD1 into the PR-DNA complex by fusing HD1 to a PR ligand-binding domain-interacting portion of SRC-1. Collectively, these results suggest that targeted histone acetylation by recruited HAT cofactors and histone deacetylation are important factors affecting PR transactivation. Recruitment of coactivators and HATs by the liganded PR in vivo may result in (i) remodeling of transcriptionally repressed chromatin to facilitate assembly and (ii) enhanced stabilization of the preinitiation complex by the activation functions of coactivators and the liganded PR itself. PMID:9223281

  1. The anatomy and fine structure of the echidna Tachyglossus aculeatus snout with respect to its different trigeminal sensory receptors including the electroreceptors.

    PubMed

    Andres, K H; von Düring, M; Iggo, A; Proske, U

    1991-01-01

    The gross anatomy and nerve supply of the bill of echidna (Tachyglossus aculeatus) is described in relation to its function as an outstanding sensory organ. The sensory innervation of the skin of the echidna snout was investigated by means of frontal serial sections, after decalcification of the specimens. A comprehensive light and electron microscopic description of the location and fine structure of cutaneous sensory receptors of the trigeminal system was made by this means. The encapsulated and non-encapsulated Ruffini receptors, the types of other free receptors in the connective tissue and the Merkel cell receptor do not differ morphologically from those of higher mammals, whereas the pacinian-like corpuscle shows a unique organization of its outer core. This is composed of large perineural cells containing a unique reticulum of parallel-orientated endoplasmic membranes. Lamellated corpuscles, seen in isolation or in association with push rods, are numerous in the snout and in the tip of the tongue of echidna. Push rod receptor organs occur in the hairless skin of the bill with a very dense array at its rostral end and in the pseudopalatal ridges. Gland duct receptors are restricted to the skin adjacent to the nostrils and the mouth opening, including the pseudopalatal plates. Only about one quarter of the total number of 400 seromucous glands receive a sensory innervation of their intraepidermal duct segment. Within each innervated gland two types of receptor terminals are identified. The distributions of the different receptor types are mapped for different regions of the skin, the mucous membrane of the nasal and oral vestibule and the tip of the tongue. The fine structure of nerve terminals is discussed from a comparative anatomical point of view, and some speculations are made about possible transduction processes that underlie the known electrophysiological properties. The sensory organs such as the "push rod" and "gland duct receptor", and most of their sensory terminals, are less differentiated in echidna snout than in the platypus (Ornithorhynchus anatinus) bill. PMID:1952110

  2. Identification of a cys-ser substitution in the 5-HT{sub 2C} (HTR2C) receptor gene and allelic association to violent behavior and alcoholism

    SciTech Connect

    Lappalainen, J.; Ozaki, N.; Goldman, D.

    1994-09-01

    Several lines of evidence suggest that brain serotonergic functions, including behavioral and neurochemical responses to 5-HT{sub 2C} agonist, are abnormal in some individuals with alcoholism and aggressive behaviors. The aim of the present study was to identify coding sequence variants in the human 5-HT{sub 2C} receptor gene which may cause abnormal or variant function of this receptor. Using SSCP analysis, a non-conservative cys-ser substitution was found in the 5-HT{sub 2C} receptor (designated 5-HT{sub 2Ccys} and 5-HT{sub 2Cser}). The polymorphism was typed in CEPH families to genetically map the gene. To test for association of the variant to alcoholism, violent behavior and serotonin function, the 5-HT{sub 2C} genotypes of 151 non-related Finnish male alcoholic violent offenders and impulsive fire setters and 127 Finnish psychiatrically interviewed healthy male volunteers were determined. CSF 5-HIAA concentrations were available for 74 alcoholic violent offenders and 25 healthy volunteers. Linkage analysis placed the 5-HT{sub 2C} gene on Xq21, a region that has been previously shown to contain genes for several mental retardation syndromes. The 5-HT{sub 2Ccys}/5-HT{sub 2Cser} genotype frequencies in alcoholic violent offenders and controls differed significantly (0.90/0.10 and 0.82/0.18, respectively, P=0.048). The association was found to be strongest in the violent offenders who did not fulfill the criteria for antisocial personality disorder (5-HT{sub 2Ccys}/5-HT{sub 2Cser} 0.93/0.07, p=0.021). No association was found between CSF 5-HIAA concentrations and 5-HT{sub 2C} genotype. These results implicate a 5-HT{sub 2C} receptor amino acid substitution in predisposition to alcohol abuse and violent behavior in a subgroup of alcoholics.

  3. Chromosomal localization of human genes for the LDL receptor family member glycoprotein 330 (LRP2) and its associated protein RAP (LRPAP1)

    SciTech Connect

    Korenberg, J.R.; Chen, X.N.; Argraves, K.M.

    1994-07-01

    Glycoprotein 330 (gp330) is a member of a family of receptors with structural similarities to the low-density lipoprotein receptor. Gp330 is expressed by a number of specialized epithelia, including renal proximal tubules, where it can mediate endocytosis of ligands such as complexes of urokinase and the serpin, plasminogen activator inhibitor-1. Gp330 has also been shown to bind in vitro to lipoprotein lipase and apolipoprotein E-enriched {beta}VLDL, suggesting a role for this receptor in lipoprotein metabolism. The 39-kDa protein, referred to as receptor associated protein (RAP), binds to and copurifies with gp330 and antagonizes the ligand binding activity of gp330. In this paper, the authors report the use of homology-PCR cloning to isolate cDNAs encoding human gp330. Using gp330 cDNA and previously isolated human RAP cDNA probes, they performed fluorescence in situ hybridization to map the human chromosomal location of the genes for these proteins. The gene for gp330 was mapped at a single site on the long arm of human chromosome 2 on the border of bands 2q24-q31. The gene for RAP was mapped to the short arm of human chromosome 4 at position 4q16.3, which is in the region of the chromosomal deletion causing Wolf-Hirschhorn syndrome. The assignment of chromosomal map positions for gp330 and RAP genes will aid in the evaluation of their potential roles in human diseases such as Wolf-Hirschhorn syndrome and disorders of lipoprotein metabolism, such as atherosclerosis. 38 refs., 3 figs., 1 tab.

  4. Structure of the Catfish IGH Locus: Analysis of the Region Including the Single Functional IGHM Gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The catfish IGH locus is large (~1Mb) and complex, having undergone multiple internal duplications and transpositions. To define the structure of the locus that contains the single expressed IGHM gene, two overlapping bacterial-artificial-chromosome (BAC) clones spanning the most 3’ end of the chann...

  5. Failure to find linkage between a functional polymorphism in the dopamine D4 receptor gene and schizophrenia

    SciTech Connect

    Shaikh, S.; Gill, M.; Collier, D.A.

    1994-03-15

    We report the results of a linkage study in 24 families multiply affected with schizophrenia using a polymorphic DNA sequence encoding the third cytoplasmic loop of the dopamine D4 receptor. Two-point LOD score analyses with a range of single gene models ranging from near dominant to near recessive revealed no evidence for linkage. In addition, we examined the data by non-parametric sib-pair analysis and found no excess sharing of alleles between affected sib-pairs. We therefore conclude that mutations within the dopamine D4 receptor gene do not have a major aetiological role in schizophrenia in our collection of pedigrees. 20 refs., 2 tabs.

  6. Identification of an additional ferric-siderophore uptake gene clustered with receptor, biosynthesis, and fur-like regulatory genes in fluorescent Pseudomonas sp. strain M114.

    PubMed Central

    O'Sullivan, D J; Morris, J; O'Gara, F

    1990-01-01

    Five cosmid clones with insert sizes averaging 22.6 kilobases (kb) were isolated after complementation of 22 Tn5-induced Sid- mutants of Pseudomonas sp. strain M114. One of these plasmids (pMS639) was also shown to encode ferric-siderophore receptor and dissociation functions. The receptor gene was located on this plasmid since introduction of the plasmid into three wild-type fluorescent pseudomonads enabled them to utilize the ferric-siderophore from strain M114. The presence of an extra iron-regulated protein in the outer membrane profile of one of these strains was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A ferric-siderophore dissociation gene was attributed to pMS639 since it complemented the ferric-siderophore uptake mutation in strain M114FR2. This mutant was not defective in the outer membrane receptor for ferric-siderophore but apparently accumulated ferric-siderophore internally. Since ferric-citrate alleviated the iron stress of the mutant, there was no defect in iron metabolism subsequent to release of iron from the ferric-siderophore complex. Consequently, this mutant was defective in ferric-siderophore dissociation. A fur-like regulatory gene also present on pMS639 was subcloned to a 7.0-kb BglII insert of pCUP5 and was located approximately 7.3 kb from the receptor region. These results established that the 27.2-kb insert of pMS639 encoded at least two siderophore biosynthesis genes, ferric-siderophore receptor and dissociation genes, and a fur-like regulatory gene from the biocontrol fluorescent Pseudomonas sp. strain M114. Images PMID:2143887

  7. Associations of the 5-hydroxytryptamine (Serotonin) Receptor 1B Gene (HTR1B) with Alcohol, Cocaine, and Heroin Abuse

    PubMed Central

    Cao, Jian; LaRocque, Emily; Li, Dawei

    2014-01-01

    Abnormal serotonergic pathways are implicated in numerous neuropsychiatric disorders including alcohol and drug dependence (abuse). The human 5-hydroxytryptamine (serotonin) receptor 1B, encoded by the HTR1B (5-HT1B) gene, is a presynaptic serotonin autoreceptor that plays an important role in regulating serotonin synthesis and release. Although there was evidence of associations of the HTR1B gene variants in the etiologies of substance use disorders, negative findings were also reported. To clarify the roles of commonly-reported single nucleotide polymorphisms (SNPs) of the HTR1B gene underlying alcohol and drug dependence (abuse), we performed a meta-analysis based on the available genotype data from individual candidate gene-based association studies. Evidence of association was found between the functional SNP -161A>T (rs130058) and alcohol, cocaine, and heroin dependence (e.g., P = 0.03 and odds ratio = 1.2 (1.02, 1.42) in the combined European, Asian, African, and Hispanic populations). SNP -261T>G (rs11568817) also showed evidence of association but with different directions in Europeans and non-Europeans (e.g., P = 0.0018 with odds ratio = 1.42 (1.14, 1.76) and P = 0.01 with odds ratio = 0.5 (0.3, 0.85), respectively). This meta-analysis supports the associations of HTR1B -261T>G and -161A>T with alcohol and drug abuse and further investigations are warranted in larger samples. PMID:23335468

  8. Diurnal gene expression of lipolytic natriuretic peptide receptors in white adipose tissue.

    PubMed

    Smith, Julie; Fahrenkrug, Jan; Jřrgensen, Henrik L; Christoffersen, Christina; Goetze, Jens P

    2015-12-01

    Disruption of the circadian rhythm can lead to obesity and cardiovascular disease. In white adipose tissue, activation of the natriuretic peptide receptors (NPRs) stimulates lipolysis. We have previously shown that natriuretic peptides are expressed in a circadian manner in the heart, but the temporal expression profile of their cognate receptors has not been examined in white adipose tissue. We therefore collected peri-renal white adipose tissue and serum from WT mice. Tissue mRNA contents of NPRs - NPR-A and NPR-C, the clock genes Per1 and Bmal1, and transcripts involved in lipid metabolism were quantified at 4-h intervals: in the diurnal study, mice were exposed to a period of 12?h light followed by 12?h darkness (n=52). In the circadian study, mice were kept in darkness for 24?h (n=47). Concomitant serum concentrations of free fatty acids, glycerol, triglycerides (TGs), and insulin were measured. Per1 and Bmal1 mRNA contents showed reciprocal circadian profiles (P<0.0001). NPR-A mRNA contents followed a temporal pattern (P=0.01), peaking in the dark (active) period. In contrast, NPR-C mRNA was expressed in an antiphase manner with nadir in the active period (P=0.007). TG concentrations in serum peaked in the active dark period (P=0.003). In conclusion, NPR-A and NPR-C gene expression is associated with the expression of clock genes in white adipose tissue. The reciprocal expression may thus contribute to regulate lipolysis and energy homeostasis in a diurnal manner. PMID:26286623

  9. Diurnal gene expression of lipolytic natriuretic peptide receptors in white adipose tissue

    PubMed Central

    Smith, Julie; Fahrenkrug, Jan; Jřrgensen, Henrik L; Christoffersen, Christina; Goetze, Jens P

    2015-01-01

    Disruption of the circadian rhythm can lead to obesity and cardiovascular disease. In white adipose tissue, activation of the natriuretic peptide receptors (NPRs) stimulates lipolysis. We have previously shown that natriuretic peptides are expressed in a circadian manner in the heart, but the temporal expression profile of their cognate receptors has not been examined in white adipose tissue. We therefore collected peri-renal white adipose tissue and serum from WT mice. Tissue mRNA contents of NPRs – NPR-A and NPR-C, the clock genes Per1 and Bmal1, and transcripts involved in lipid metabolism were quantified at 4-h intervals: in the diurnal study, mice were exposed to a period of 12?h light followed by 12?h darkness (n=52). In the circadian study, mice were kept in darkness for 24?h (n=47). Concomitant serum concentrations of free fatty acids, glycerol, triglycerides (TGs), and insulin were measured. Per1 and Bmal1 mRNA contents showed reciprocal circadian profiles (P<0.0001). NPR-A mRNA contents followed a temporal pattern (P=0.01), peaking in the dark (active) period. In contrast, NPR-C mRNA was expressed in an antiphase manner with nadir in the active period (P=0.007). TG concentrations in serum peaked in the active dark period (P=0.003). In conclusion, NPR-A and NPR-C gene expression is associated with the expression of clock genes in white adipose tissue. The reciprocal expression may thus contribute to regulate lipolysis and energy homeostasis in a diurnal manner. PMID:26286623

  10. The frequency of follicle stimulating hormone receptor gene polymorphisms in Iranian infertile men with azoospermia

    PubMed Central

    Gharesi-Fard, Behrouz; Ghasemi, Zahra; Shakeri, Saeed; Behdin, Shabnam; Aghaei, Fatemeh; Malek-Hosseini, Zahra

    2015-01-01

    Background: Azoospermia is the medical condition of a man not having any measurable level of sperm in his semen. Follicle stimulating hormone (FSH) is a member of the glycoprotein hormone family that plays an important role in human reproduction because of its essential role in normal spermatogenesis. Various Single Nucleotide Polymorphisms (SNPs) have been reported within FSH receptor (FSHR) gene that may affect the receptor function. Objective: The present study aimed to investigate the correlation between two FSHR SNPs at positions A919G, A2039G, and susceptibility to azoospermia in a group of Iranian azoospermic men. The association between FSH levels within the sera and A919G and A2039G alleles and genotypes were also investigated. Materials and Methods: This case control study was performed on 212 men with azoospermia (126 non-obstructive and 86 obstructive) and 200 healthy Iranian men. Two FSHR gene SNPs were genotyped using PCR-RFLP method. The relationship between FSH levels within the sera and A919G and A2039G alleles and genotypes were also investigated. Results: Statistical analysis indicated that at A919G position, AA genotype and A allele were more frequent in obstructive azoospermia cases compared to non-obstructive or normal men (p=0.001). Regarding A2039G polymorphisms, no significant difference was observed between both azoospermia groups and the controls. The mean level of serum FSH was higher in the non-obstructive men compared to the obstructive patients (23.8 versus 13.8, respectively, p= 0.04). Conclusion: The results of the present study indicated that the genetic polymorphisms in the FSHR gene might increase the susceptibility to azoospermia in Iranian men.

  11. [Cloning and regulation of pig estrogen related receptor ? gene (ESRRB) promoter].

    PubMed

    Yang, Yang; Wang, Yaxian; Du, Lixia; Wang, Huayan

    2015-04-01

    The estrogen related receptor family member Esrrb (Estrogen related receptor ?) is a gene that expresses in the early stage of embryo and plays an important role in the core pluripotent network. Its function has been analyzed in human and mouse, although no report so far related to pig. Therefore, to explore its mechanism of transcriptional regulation and expression pattern, we cloned a 3.3 kb pig ESRRB promoter by PCR and constructed the green fluorescence protein (GFP) reporter vector pE3.3. We used these vectors to study the ESRRB expression pattern in 293T, Hela and C2C12. Sequence was analyzed for regulatory elements that share homology to known transcription factor binding sites by TFSEARCH and JASPER program. Some pluripotency related genes such as SMAD, STAT3, MYC, KLF4 and ESRRB have been found within the 3.3 kb sequence by co-transfected pig ESRRB promoter and these potential regulators. We found that ESRRB only expressed in 293T and SMAD could activate ESRRB expression obviously. To determine the core promoter region, a series of ESRRB promoter fragments with gradually truncated 5'-end were produced by PCR and inserted into pGL3-Basic vector. After transient transfection into 293T, dual luciferase assay was used to measure these promoter activities. The result suggested that the core promoter of pig ESRRB located within -25 bp to -269 bp region. These results suggest that these transcription factor binding sites and the core promoter region may be essential for transcriptional regulation of pig ESRRB gene. PMID:26380406

  12. Involvement of 5-HT? and 5-HT? receptors in the regulation of circadian clock gene expression in mouse small intestine.

    PubMed

    Aoki, Natsumi; Watanabe, Hiroyuki; Okada, Kazuya; Aoki, Kazuyuki; Imanishi, Takuma; Yoshida, Daisuke; Ishikawa, Ryosuke; Shibata, Shigenobu

    2014-01-01

    Several lines of evidence suggest that 5-HT receptors play a critical role in the expression of clock genes in the suprachiasmatic nucleus, the main circadian oscillator in hamsters. The contributions of 5-HT-receptor subtypes in the intestine, where they are expressed at high concentrations, are however not yet clarified. The 5-HT synthesis inhibitor, p-chlorophenylalanine, attenuated the daily rhythm of Per1 and Per2 gene expression in the intestine. Injection of 5-HT and agonists of the 5-HT3 and 5-HT4 receptors increased Per1/Per2 expression and decreased Bmal1 expression in a dose-dependent manner. Although treatment with antagonists of 5-HT3 and 5-HT4 alone did not affect clock gene expression, co-injection of these antagonists with 5-HT blocked the 5-HT-induced changes in clock gene expression. Increased tissue levels of 5-HT due to treatment with the antidepressants clomipramine and fluvoxamine did not affect clock gene expression. The present results suggest that the 5-HT system in the small intestine may play a critical role in regulating circadian rhythms through 5-HT3/5-HT4-receptor activation. PMID:24492464

  13. Isolation and chromosomal localization of GPR31, a human gene encoding a putative G protein-coupled receptor.

    PubMed

    Zingoni, A; Rocchi, M; Storlazzi, C T; Bernardini, G; Santoni, A; Napolitano, M

    1997-06-15

    The screening of a human genomic library with a chemokine receptor-like probe allowed us to obtain a putative member of the G protein-coupled receptor gene (GPCR) family, designated GPR31. Its deduced amino acid sequence encodes a polypeptide of 319 amino acids that shares 25-33% homology with members of the chemokine, purino, and somatostatin receptor gene families. Amino acid sequence comparison reveals that the best match in the protein databases is with the human orphan GPCR called HM74 (33% identity). Southern genomic analysis of the GPR31 gene shows a hybridization pattern consistent with that of a single-copy gene. Using fluorescence in situ hybridization, we have determined the chromosomal and regional localization of the GPR31 gene at 6q27. The GPR31 mRNA is expressed at low levels by several human cell lines of different cellular origins. The phylogenetic analysis suggests that the GPR31 receptor may represent a member of a new GPCR subfamily. PMID:9205127

  14. Vitamin D receptor gene polymorphisms in breast and renal cancer: Current state and future approaches

    PubMed Central

    KHAN, MOHAMMED I.; BIELECKA, ZOFIA F.; NAJM, MOHAMMAD Z.; BARTNIK, EWA; CZARNECKI, JERZY S.; CZARNECKA, ANNA M.; SZCZYLIK, CEZARY

    2014-01-01

    Cancer is a major health problem and cause of death worldwide that accounted for 7.6 million deaths in 2008, which is projected to continue rising with an estimated 13.1 million deaths in 2030 according to WHO. Breast cancer is the leading cause of cancer-based death among women around the world and its incidence is increasing annually with a similar tendency. In contrast, renal cell carcinoma accounts for only 3% of total human malignancies but it is still the most common type of urological cancer with a high prevalence in elderly men (>60 years of age). There are several factors linked with the development of renal cell cancer only, while others are connected only with breast cancer. Genetic risk factors and smoking are the factors which contribute to carcinogenesis in general. Some evidence exists indicating that vitamin D receptor (VDR) gene polymorphisms are associated with both breast and renal cancer; therefore, we put forward the hypothesis that polymorphisms in the VDR gene may influence both the occurrence risks of these cancers and their prognosis. However, the relationship between VDR polymorphisms and these two specific cancers remains a controversial hypothesis, and consequently needs further confirmation via clinical research together with genetic investigations. Here, we aimed to assess the correlation between the different alleles of VDR gene polymorphisms and renal cell cancer and breast cancer risks separately through a systematic review of the present literature. In contrast, this analysis has revealed that some VDR gene polymorphisms, such as: Bsm1, poly(A), Taq1, Apa1, are to some extent associated with breast cancer risk. Other polymorphisms were found to be significantly associated with renal cell cancer. Namely, they were Fok1, Bsm1, Taq1 and Apa1, which encode proteins participating mainly in proliferation, apoptosis and cell cycle regulation. However, data concerning renal cancer are not sufficient to firmly establish the VDR gene polymorphism association. PMID:24297042

  15. Vitamin D Receptor Gene Polymorphism and Vitamin D Plasma Concentration: Correlation with Susceptibility to Tuberculosis

    PubMed Central

    Rashedi, Jalil; Asgharzadeh, Mohammad; Moaddab, Seyyed Reza; Sahebi, Leyla; Khalili, Majid; Mazani, Mohammad; Abdolalizadeh, Jalal

    2014-01-01

    Purpose: It is estimated that one third of the world’s population were infected with M. tuberculosis, but only 10% of them have developed in to disease form. This subject refers to differences in host immune system activity against the tuberculosis. Vitamin D and its receptor (VDR) are important factors in the host innate immune system against the tuberculosis. In the present study VDR gene polymorphisms and its relationship with plasma vitamin D levels in susceptibility to tuberculosis have been investigated. Methods: The subjects were 84 patients with tuberculosis and 90 healthy controls. Vitamin D levels were measured in all study participants. DNA was isolated from the blood leukocytes of all groups and amplified by polymerase chain reaction (PCR). Then restriction fragment length polymorphism (RFLP) was performed on each PCR products to study the VDR gene polymorphisms. The statistical analyses were conducted using SPSS. Results: There was no statistically significant relationship between polymorphisms of FokI, BsmI, ApaI and TaqI in VDR gene and susceptibility to tuberculosis. Vitamin D deficiency and susceptibility to tuberculosis were closely related (95% CI -0.08 – 4.7, P = 0.059). Also the relationship between plasma vitamin D levels and frequency of FokI-ff gene polymorphism was significant in all study participants (P = 0.045). Conclusion: When the genotype frequencies of VDR gene polymorphisms were analyzed with respect to plasma vitamin D levels, a significant association was seen. As an enhancement in plasma vitamin D levels in individuals (with FokI-ff genotype and low levels of vitamin D) may protect them against active tuberculosis. PMID:25671196

  16. Association of GABAA receptor ?2 subunit gene (GABRA2) with alcohol dependence-related aggressive behavior.

    PubMed

    Strac, Dubravka Svob; Erjavec, Gordana Nedic; Perkovic, Matea Nikolac; Sviglin, Korona Nenadic; Borovecki, Fran; Pivac, Nela

    2015-12-01

    Alcohol dependence is a common chronic disorder precipitated by the complex interaction between biological, genetic and environmental risk factors. Recent studies have demonstrated that polymorphisms of the gene encoding the GABAA receptor ?2 subunit (GABRA2) are associated with alcohol dependence in different populations of European ancestry. As aggression often occurs in the context of alcohol dependence, the aim of this study was to examine the allelic and haplotypic association of GABRA2 gene with alcohol dependence and related aggressive behavior in subjects of Eastern European (Croatian) origin. Genotyping of the 3 single nucleotide polymorphisms (SNPs) across the GABRA2 gene (rs567926, rs279858 and rs9291283) was performed in patients with alcohol dependence (N=654) and healthy control subjects (N=574). Alcohol-dependent participants were additionally subdivided according to the presence/absence of aggressive behavior and type of alcohol dependence according to the Cloninger's classification. The association of rs279858 with alcohol dependence yielded nominal significance level. Haplotype analysis revealed a high degree of linkage disequilibrium (LD) for rs567926 and rs279858, but not for rs9291283 polymorphism in the GABRA2 gene. In patients with alcohol dependence, the A-C (rs567926 and rs279858) haplotype carriers were more likely to demonstrate aggressive behavior. The same haplotype (present only in 1.6% of all subjects) was significantly more often present in patients with a combination of early onset alcohol abuse and aggression, corresponding to the Cloninger's type II alcoholism subgroup. These findings support the involvement of GABRA2 gene in alcohol dependence-related aggressive behavior. PMID:26116794

  17. Glioblastoma-related gene mutations and over-expression of functional epidermal growth factor receptors in SKMG-3 glioma cells.

    PubMed

    Thomas, C; Ely, G; James, C D; Jenkins, R; Kastan, M; Jedlicka, A; Burger, P; Wharen, R

    2001-06-01

    Amplification of the epidermal growth factor receptor (EGFR) gene is found in about 40% of glioblastomas (GBMs) but is rarely detected in GBM cell lines. We confirmed that the exceptional SKMG-3 GBM cell line retained amplified EGFR genes in vitro, and found that these sequences were concentrated on extra-chromosomal DNA particles similar to double-minute chromosomes. The cells contained two other gene mutations that are associated with high-grade astrocytic tumors: extra-chromosomal amplification of the cyclin-dependent kinase-4 (CDK4) gene and a homozygous mutation within the PTEN tumor suppressor gene. Immunoblots revealed very high levels of EGFR, moderately increased expression of CDK4, and no detectable PTEN protein. The overexpressed SKMG-3 EGFRs responded to exogenous ligand and resembled normal rather than mutant receptors. A heterozygous mutation of the p53 gene (p53R282W) correlated with failure of radiation to induce the expression of cyclin-dependent kinase inhibitor p21waf1 or an early G1 cell cycle arrest. Although each of these gene mutations occurs in GBMs, SKMG-3 cells had an unusual genotype in that a p53 gene mutation co-existed with amplified EGFR genes. Nonetheless, the SKMG-3 cell line can be exploited as a model to study how oncogenic EGFR signals in GBM cells interact with over-expressed CDK4 and loss of PTEN to confer the malignant phenotype. PMID:11515790

  18. On the role of 5-HT(1A) receptor gene in behavioral effect of brain-derived neurotrophic factor.

    PubMed

    Naumenko, Vladimir S; Kondaurova, Elena M; Bazovkina, Daria V; Tsybko, Anton S; Il'chibaeva, Tatyana V; Popova, Nina K

    2014-08-01

    Experiments were made on a congenic AKR.CBA-D13Mit76C (76C) mouse strain created by transferring a chromosome 13 fragment containing the 5-HT1A receptor gene from a CBA strain to an AKR background. It was shown that 76C mice differed from AKR mice by decreased 5-HT1A receptor and tryptophan hydroxylase-2 (tph-2) genes expression in the midbrain. Functional activity of 5-HT2A receptors and 5-HT(2A) receptor mRNA levels in the midbrain and hippocampus of 76C mice were decreased compared with AKR mice. Central brain-derived neurotrophic factor (BDNF) administration (300 ng i.c.v.) reduced 5-HT1A and 5-HT(2A) receptor mRNA levels in the frontal cortex and tph-2 mRNA level in the midbrain of AKR mice. However, BDNF failed to produce any effect on the expression of 5-HT(1A) , 5-HT(2A) , and tph-2 genes in 76C mice but decreased functional activity of 5-HT(2A) receptors in 76C mice and increased it in AKR mice. BDNF restored social deficiency in 76C mice but produced asocial behavior (aggressive attacks towards young mice) in AKR mice. The data indicate that a small genetic variation altered the response to BDNF and show an important role of 5-HT(1A) receptor gene in the 5-HT system response to BDNF treatment and in behavioral effects of BDNF. PMID:24706292

  19. Pseudogenization of the Umami Taste Receptor Gene Tas1r1 in the Giant Panda Coincided with its Dietary Switch to

    E-print Network

    Zhang, Jianzhi

    Pseudogenization of the Umami Taste Receptor Gene Tas1r1 in the Giant Panda Coincided with its Abstract Although it belongs to the order Carnivora, the giant panda is a vegetarian with 99% of its diet being bamboo. The draft genome sequence of the giant panda shows that its umami taste receptor gene Tas1

  20. Aberrant Splicing of Estrogen Receptor, HER2, and CD44 Genes in Breast Cancer

    PubMed Central

    Inoue, Kazushi; Fry, Elizabeth A.

    2015-01-01

    Breast cancer (BC) is the most common cause of cancer-related death among women under the age of 50 years. Established biomarkers, such as hormone receptors (estrogen receptor [ER]/progesterone receptor) and human epidermal growth factor receptor 2 (HER2), play significant roles in the selection of patients for endocrine and trastuzumab therapies. However, the initial treatment response is often followed by tumor relapse with intrinsic resistance to the first-line therapy, so it has been expected to identify novel molecular markers to improve the survival and quality of life of patients. Alternative splicing of pre-messenger RNAs is a ubiquitous and flexible mechanism for the control of gene expression in mammalian cells. It provides cells with the opportunity to create protein isoforms with different, even opposing, functions from a single genomic locus. Aberrant alternative splicing is very common in cancer where emerging tumor cells take advantage of this flexibility to produce proteins that promote cell growth and survival. While a number of splicing alterations have been reported in human cancers, we focus on aberrant splicing of ER, HER2, and CD44 genes from the viewpoint of BC development. ER?36, a splice variant from the ER1 locus, governs nongenomic membrane signaling pathways triggered by estrogen and confers 4-hydroxytamoxifen resistance in BC therapy. The alternative spliced isoform of HER2 lacking exon 20 (?16HER2) has been reported in human BC; this isoform is associated with transforming ability than the wild-type HER2 and recapitulates the phenotypes of endocrine therapy-resistant BC. Although both CD44 splice isoforms (CD44s, CD44v) play essential roles in BC development, CD44v is more associated with those with favorable prognosis, such as luminal A subtype, while CD44s is linked to those with poor prognosis, such as HER2 or basal cell subtypes that are often metastatic. Hence, the detection of splice variants from these loci will provide keys to understand the pathogenesis, predict the prognosis, and choose specific therapies for BC. PMID:26692764

  1. Pseudohypoparathyroidism type Ib is not caused by mutations in the coding exons of the human parathyroid hormone (PTH)/PTH-related peptide receptor gene

    SciTech Connect

    Schipani, E.; Bergwitz, C.; Iida-Klein, A.

    1995-05-01

    Pseudohypoparathyroidism type Ib (PHP-Ib) is thought to be from caused by a PTH/PTH-related peptide (PTHrP) receptor defect. To search for receptor mutations in genomic DNA from 17 PHP-Ib patients, three recently isolated human genomic DNA clones were further characterized by restriction enzyme mapping and nucleotide sequencing across intron/exon borders. Regions including all 14 coding exons and their splice junctions were amplified by polymerase chain reaction, and the products were analyzed by either temperature gradient gel electrophoresis or direct nucleotide sequencing. Silent polymorphisms were identified in exons G (1 of 17), M4 (1 of 17), and M7 (15 of 17). Two base changes were found in introns, 1 at the splice-donor site of the intron between exons E2 and E3 (1 of 17) and the other between exons G and M1 (2 of 17). Total ribonucleic acid from COS-7 cells expressing minigenes with or without the base change between exons E2 and E3 showed no difference by either Northern blot analysis or reverse transcriptase-polymerase chain reaction. Radioligand binding was indistinguishable for both transiently expressed constructs. A missense mutation (E546 to K546) in the receptor`s cytoplamic tail (3 of 17) was also found in 1 of 60 healthy individuals, and PTH/PTHrP receptors with this mutation were functionally indistinguishable from wild-type receptors. PHP-Ib thus appears to be rarely, if ever, caused by mutations in the coding exons of the PTH/PTHrP receptor gene. 58 refs., 4 figs., 4 tabs.

  2. Birds Generally Carry a Small Repertoire of Bitter Taste Receptor Genes.

    PubMed

    Wang, Kai; Zhao, Huabin

    2015-09-01

    As they belong to the most species-rich class of tetrapod vertebrates, birds have long been believed to possess an inferior taste system. However, the bitter taste is fundamental in birds to recognize dietary toxins (which are typically bitter) in potential food sources. To characterize the evolution of avian bitter taste receptor genes (Tas2rs) and to test whether dietary toxins have shaped the repertoire size of avian Tas2rs, we examined 48 genomes representing all but 3 avian orders. The total number of Tas2r genes was found to range from 1 in the domestic pigeon to 12 in the bar-tailed trogon, with an average of 4, which suggested that a much smaller Tas2r gene repertoire exists in birds than in other vertebrates. Furthermore, we uncovered a positive correlation between the number of putatively functional Tas2rs and the abundance of potential toxins in avian diets. Because plant products contain more toxins than animal tissues and insects release poisonous defensive secretions, we hypothesized that herbivorous and insectivorous birds may demand more functional Tas2rs than carnivorous birds feeding on noninsect animals. Our analyses appear to support this hypothesis and highlight the critical role of taste perception in birds. PMID:26342138

  3. Sporadic Nonautoimmune Neonatal Hyperthyroidism Due to A623V Germline Mutation in the Thyrotropin Receptor Gene

    PubMed Central

    A?lad?o?lu, Sebahat Y?lmaz; Ceylaner, Serdar; Çetinkaya, Semra; Ba?, Veysel Nijat; Peltek Kendirici, Havva Nur

    2010-01-01

    Neonatal hyperthyroidism is a rare disorder and occurs in two forms. An autoimmune form is associated with maternal Graves' disease, resulting from transplacental passage of maternal thyroid?stimulating antibodies and a nonautoimmune form is caused by gain of function mutations in the thyrotropin receptor (TSHR) gene. Thyrotoxicosis caused by germline mutations in the TSHR gene may lead to a variety of clinical consequences. To date, 55 activating mutations of the TSHR gene have been documented. Fourteen cases with sporadic activating TSHR germline mutations have been described. Here we report a male infant with nonautoimmune hyperthyroidism due to an activating germline TSHR mutation (A623V), whose clinical picture started in the newborn period with severe hyperthyroidism. His parents did not have the same mutation. This mutation had been previously detected as a somatic mutation in patients with toxic adenomas. This is the first report of a sporadic case of nonautoimmune congenital hyperthyroidism associated with A623V mutation. Conflict of interest:None declared. PMID:21274318

  4. Human small cell lung cancer cell lines expressing the proopiomelanocortin gene have aberrant glucocorticoid receptor function.

    PubMed Central

    Ray, D W; Littlewood, A C; Clark, A J; Davis, J R; White, A

    1994-01-01

    Some human small cell lung carcinomas (SCLC) secrete proopiomelanocortin (POMC) derived peptides, but in contrast to the pituitary, glucocorticoids fail to inhibit this hormone production. We have previously described an in vitro model using human SCLC cell lines that express POMC and are resistant to glucocorticoids. We have now identified the glucocorticoid receptor (GR) in the SCLC cell line COR L24 using a whole cell ligand binding assay (Kd = 5.7 nM; Bmax = 11 fmol/million cells), while another cell line, DMS 79, lacked significant glucocorticoid binding. To analyze GR function both positive (GMCO) and negative (TRE)3-tkCAT), glucocorticoid-regulated reporter gene constructs were transfected into COR L24 cells. In the SCLC cell line, neither hydrocortisone nor dexamethasone (500-2,000 nM) significantly induced chloramphenicol acetyltransferase expression from GMCO; in addition, they did not suppress chloramphenicol acetyltransferase expression from (TRE)3-tkCAT. Similar results were obtained with two other POMC-expressing SCLC cell lines. Expression of wild type GR in COR L24 cells restored glucocorticoid signaling, with marked induction of GMCO reporter gene expression by dexamethasone (9,100 +/- 910%; n = 3), and an estimated EC50 of 10 nM. This failure of the GR explains the resistance of the POMC gene to glucocorticoid inhibition and may have implications for cell growth in SCLC. Images PMID:8163665

  5. ?-2 Adrenergic receptor gene polymorphism and response to propranolol in cirrhosis

    PubMed Central

    Kong, De-Run; Wang, Jin-Guang; Sun, Bin; Wang, Ming-Quan; Chen, Chen; Yu, Fang-Fang; Xu, Jian-Ming

    2015-01-01

    AIM: To evaluate the association of ?-2 adrenergic receptor (?2-AR) gene polymorphism with response of variceal pressure to propranolol in cirrhosis. METHODS: Sixty-four non-related cirrhotic patients participated in this study and accepted variceal pressure measurement before and after propranolol administration. Polymorphism of the ?2-AR gene was determined by directly sequencing of the polymerase chain reaction products from the DNA samples that were prepared from the patients. RESULTS: The prevalence of Gly16-Glu/Gln27 and Arg16-Gln27 homozygotes, and compound heterozygotes was 29.7%, 10.9%, and 59.4%, respectively. Patients with cirrhosis with Gly16-Glu/Gln27 homozygotes had a greater decrease of variceal pressure after propranolol administration than those with Arg16-Gln27 homozygotes or with compound heterozygotes (22.4% ± 2.1%, 13.1% ± 2.7% and 12.5% ± 3.1%, respectively, P < 0.01). CONCLUSION: The variceal pressure response to propranolol was associated with polymorphism of ?2-AR gene. Patients with the Gly16-Glu/Gln27 homozygotes probably benefit from propranolol therapy. PMID:26109805

  6. Birds Generally Carry a Small Repertoire of Bitter Taste Receptor Genes

    PubMed Central

    Wang, Kai; Zhao, Huabin

    2015-01-01

    As they belong to the most species-rich class of tetrapod vertebrates, birds have long been believed to possess an inferior taste system. However, the bitter taste is fundamental in birds to recognize dietary toxins (which are typically bitter) in potential food sources. To characterize the evolution of avian bitter taste receptor genes (Tas2rs) and to test whether dietary toxins have shaped the repertoire size of avian Tas2rs, we examined 48 genomes representing all but 3 avian orders. The total number of Tas2r genes was found to range from 1 in the domestic pigeon to 12 in the bar-tailed trogon, with an average of 4, which suggested that a much smaller Tas2r gene repertoire exists in birds than in other vertebrates. Furthermore, we uncovered a positive correlation between the number of putatively functional Tas2rs and the abundance of potential toxins in avian diets. Because plant products contain more toxins than animal tissues and insects release poisonous defensive secretions, we hypothesized that herbivorous and insectivorous birds may demand more functional Tas2rs than carnivorous birds feeding on noninsect animals. Our analyses appear to support this hypothesis and highlight the critical role of taste perception in birds. PMID:26342138

  7. Dopamine D3 receptor gene locus: Association with schizophrenia, as well age of onset

    SciTech Connect

    Nimgsonkar, V.L.; Zhang, X.R.; Brar, J.S.

    1994-09-01

    Genetic factors are clearly involved in the etiology of schizophrenia, but their specific nature is unknown. If the genetic etiology is multifactorial or polygenic, the role of specific genes as susceptibility factors can be directly evaluated by examining allelic variation at these loci among cases in comparison with controls. Two studies have independently demonstrated an association of schizophrenia with homozygosity at the dopamine D3 receptor gene (D3RG) locus, using a biallelic polymorphism in the first exon of D3RG. These results are important because D3RG is a favored candidate gene. Three other studies have identified associations among sub-groups of patients, but the majority were negative. The present study involved patients with schizophrenia (DSM-III-R criteria) of Caucasian or African-American ethnicity (n=130). Two groups of controls, matched for ethnicity, were used: adults screened for schizophrenia (n=128) and unselected neonates (n=160). Multivariate analysis revealed an association between allele no. 1 homozygosity and schizophrenia in comparison with adult, but not neonatal controls. The association was most marked among Caucasian patients with a family history of schizophrenia (odds ratio 13.7, C.I. 1.8, 104.3). An association of the D3RG locus with age of onset (AOO) was also noted. The discrepancies in earlier studies may due to variations in control groups, differencies in mean AOO among different cohorts, or ethnic variations in susceptibility attributable to D3RG.

  8. Mutations at the mouse ichthyosis locus are within the lamin B receptor gene: a single gene

    E-print Network

    Olins, Ada L.

    ichthyosis (ic) locus has been of great interest because mutations at this locus cause marked abnormalities other phenotypic abnormalities, including alopecia, variable expression of syndactyly and hydrocephalus. The ic locus on mouse chromosome 1 shares conserved synteny with the chromosomal location of the human

  9. Evolutionary Analysis of Burkholderia pseudomallei Identifies Putative Novel Virulence Genes, Including a Microbial Regulator of Host Cell Autophagy

    PubMed Central

    Singh, Arvind Pratap; Lai, Shu-chin; Nandi, Tannistha; Chua, Hui Hoon; Ooi, Wen Fong; Ong, Catherine; Boyce, John D.; Adler, Ben

    2013-01-01

    Burkholderia pseudomallei, the causative agent of melioidosis, contains a large pathogen genome (7.2 Mb) with ?2,000 genes of putative or unknown function. Interactions with potential hosts and environmental factors may induce rapid adaptations in these B. pseudomallei genes, which can be discerned through evolutionary analysis of multiple B. pseudomallei genomes. Here we show that several previously uncharacterized B. pseudomallei genes bearing genetic signatures of rapid adaptation (positive selection) can induce diverse cellular phenotypes when expressed in mammalian cells. Notably, several of these phenotypes are plausibly related to virulence, including multinuclear giant cell formation, apoptosis, and autophagy induction. Specifically, we show that BPSS0180, a type VI cluster-associated gene, is capable of inducing autophagy in both phagocytic and nonphagocytic mammalian cells. Following infection of macrophages, a B. pseudomallei mutant disrupted in BPSS0180 exhibited significantly decreased colocalization with LC3 and impaired intracellular survival; these phenotypes were rescued by introduction of an intact BPSS0180 gene. The results suggest that BPSS0180 may be a novel inducer of host cell autophagy that contributes to B. pseudomallei intracellular growth. More generally, our study highlights the utility of applying evolutionary principles to microbial genomes to identify novel virulence genes. PMID:24097950

  10. Localization of a gene for a glutamate binding subunit of a NMDA receptor (GRINA) to 8q24

    SciTech Connect

    Lewis, T.B.; DuPont, B.R.; Leach, R.

    1996-02-15

    This article reports on the localization of a gene for a glutamate binding subunit of an N-methyl-D-aspartate (NMDA) receptor, called GRINA, to human chromosome 8q24 using fluorescence in situ hybridization and radiation hybridization mapping. This gene mapped outside the critical region for benign familial neonatal convulsions (BFNC), a rare form of epilepsy; however, GRINA could be the causative genetic factor inducing idiopathic generalized epilepsy. Further studies need to be conducted. 15 refs., 2 figs.

  11. Association between Estrogen Receptor-? Gene XbaI and PvuII Polymorphisms and Periodontitis Susceptibility: A Meta-Analysis

    PubMed Central

    Weng, Hong; Zhang, Chao; Hu, Yuan-Yuan; Yuan, Rui-Xia; Zuo, Hong-Xia; Yan, Jin-Zhu; Niu, Yu-Ming

    2015-01-01

    Background. Certain studies have previously explored the association between the estrogen receptor-? (ER-?) gene polymorphisms and periodontitis susceptibility, although the current results are controversial. The present study, using meta-analysis, aimed to investigate the nature of the genetic susceptibility of the ER-? for developing periodontitis. Methods. A comprehensive literature search of PubMed, Embase, CNKI, and Wanfang databases was conducted up to January 8, 2015. Statistical manipulation was performed using Stata version 13.0 software. Odds ratios (ORs) and corresponding 95% confident intervals (CIs) were calculated to estimate the association in five genetic models. Results. A total of 17 eligible case-control studies from seven identified publications consisting of nine studies for the XbaI polymorphism and eight studies for the PvuII polymorphism were included in the meta-analysis. We found elevated risk of periodontitis in XbaI XX genotype carriers. Moreover, subgroup analyses demonstrated increased risk for chronic periodontitis of XbaI XX genotype carriers, specifically in the Chinese Han female population. No significant association was observed between PvuII polymorphism and periodontitis. Conclusion. Current evidence indicated that the homozygote (XX) genotype of ER-? gene XbaI polymorphism, but not PvuII mutation, may increase the risk of chronic periodontitis, specifically in the Chinese Han female population. PMID:26688601

  12. Mutation in DHP receptor alpha 1 subunit (CACLN1A3) gene in a Dutch family with hypokalaemic periodic paralysis.

    PubMed Central

    Boerman, R H; Ophoff, R A; Links, T P; van Eijk, R; Sandkuijl, L A; Elbaz, A; Vale-Santos, J E; Wintzen, A R; van Deutekom, J C; Isles, D E

    1995-01-01

    Hypokalaemic periodic paralysis (HypoPP) is characterised by transient attacks of muscle weakness of varying duration and severity accompanied by a drop in serum potassium concentration during the attacks. The largest known HypoPP family is of Dutch origin and consists of 277 members in the last five generations, 55 of whom have HypoPP inherited in an autosomal dominant pattern. Forty-eight persons including 28 patients with a proven diagnosis of HypoPP were used for linkage analysis. Microsatellite markers were used to exclude 45 to 50% of the genome and linkage to chromosome 1q31-32 was found. No recombinants were found between HypoPP and D1S412 and a microsatellite contained within the DHP receptor alpha 1 subunit (CACLN1A3) gene. A previously reported G to A mutation causing an arginine to histidine substitution at residue 528 in the transmembrane segment IIS4 of the CACLN1A3 gene was shown in patients by restriction analysis of genomic PCR products. PMID:7897626

  13. Association of Interleukin-23 receptor gene polymorphisms with susceptibility to Crohn’s disease: A meta-analysis

    PubMed Central

    Xu, Wang-Dong; Xie, Qi-Bing; Zhao, Yi; Liu, Yi

    2015-01-01

    Studies investigating the association between Interleukin-23 receptor (IL-23R) gene polymorphisms and Crohn’s disease (CD) report conflicting results. Thus, a meta-analysis was carried out to assess the association between the IL-23R polymorphisms and CD. A systematic literature search was conducted to identify all relevant studies. Pooled odds ratio (ORs) with 95% confidence interval (CIs) was used to estimate the strength of association. Finally, a total of 60 case-control studies in 56 articles, involving 22,820 CD patients and 27,401 healthy controls, were included in the meta-analysis. Overall, a significant association was found between all CD and the rs7517847 polymorphism (OR?=?0.699, 95% CI?=?0.659?~?0.741, P?gene polymorphisms were associated with CD in the Caucasian group, but not in Asians. In summary, the meta-analysis suggests a significant association between IL-23R polymorphisms and CD, especially in Caucasians. PMID:26678098

  14. Sexually Dimorphic Genome-Wide Binding of Retinoid X Receptor alpha (RXR?) Determines Male-Female Differences in the Expression of Hepatic Lipid Processing Genes in Mice

    PubMed Central

    Wu, Hao; Tian, Feng; Felix, Julio C.; Li, Wei; Karpen, Saul J.

    2013-01-01

    Many hepatic functions including lipid metabolism, drug metabolism, and inflammatory responses are regulated in a sex-specific manner due to distinct patterns of hepatic gene expression between males and females. Regulation for the majority of these genes is under control of Nuclear Receptors (NRs). Retinoid X Receptor alpha (RXR?) is an obligate partner for multiple NRs and considered a master regulator of hepatic gene expression, yet the full extent of RXR? chromatin binding in male and female livers is unclear. ChIP-Seq analysis of RXR? and RNA Polymerase2 (Pol2) binding was performed livers of both genders and combined with microarray analysis. Mice were gavage-fed with the RXR ligand LG268 for 5 days (30 mg/kg/day) and RXR?-binding and RNA levels were determined by ChIP-qPCR and qPCR, respectively. ChIP-Seq revealed 47,845 (male) and 46,877 (female) RXR? binding sites (BS), associated with ?12,700 unique genes in livers of both genders, with 91% shared between sexes. RXR?-binding showed significant enrichment for 2227 and 1498 unique genes in male and female livers, respectively. Correlating RXR? binding strength with Pol2-binding revealed 44 genes being male-dominant and 43 female-dominant, many previously unknown to be sexually-dimorphic. Surprisingly, genes fundamental to lipid metabolism, including Scd1, Fasn, Elovl6, and Pnpla3-implicated in Fatty Liver Disease pathogenesis, were predominant in females. RXR? activation using LG268 confirmed RXR?-binding was 2–3 fold increased in female livers at multiple newly identified RXR? BS including for Pnpla3 and Elovl6, with corresponding ?10-fold and ?2-fold increases in Pnpla3 and Elovl6 RNA respectively in LG268-treated female livers, supporting a role for RXR? regulation of sexually-dimorphic responses for these genes. RXR? appears to be one of the most widely distributed transcriptional regulators in mouse liver and is engaged in determining sexually-dimorphic expression of key lipid-processing genes, suggesting novel gender- and gene-specific responses to NR-based treatments for lipid-related liver diseases. PMID:23977068

  15. Estrogens and Progesterone Promote Persistent CCND1 Gene Activation during G1 by Inducing Transcriptional Derepression via c-Jun/c-Fos/Estrogen Receptor (Progesterone Receptor) Complex Assembly to a Distal Regulatory Element and Recruitment of Cyclin D1 to Its Own Gene Promoter

    PubMed Central

    Cicatiello, Luigi; Addeo, Raffaele; Sasso, Annarita; Altucci, Lucia; Petrizzi, Valeria Belsito; Borgo, Raphaelle; Cancemi, Massimo; Caporali, Simona; Caristi, Silvana; Scafoglio, Claudio; Teti, Diana; Bresciani, Francesco; Perillo, Bruno; Weisz, Alessandro

    2004-01-01

    Transcriptional activation of the cyclin D1 gene (CCND1) plays a pivotal role in G1-phase progression, which is thereby controlled by multiple regulatory factors, including nuclear receptors (NRs). Appropriate CCND1 gene activity is essential for normal development and physiology of the mammary gland, where it is regulated by ovarian steroids through a mechanism(s) that is not fully elucidated. We report here that CCND1 promoter activation by estrogens in human breast cancer cells is mediated by recruitment of a c-Jun/c-Fos/estrogen receptor ? complex to the tetradecanoyl phorbol acetate-responsive element of the gene, together with Oct-1 to a site immediately adjacent. This process coincides with the release from the same DNA region of a transcriptional repressor complex including Yin-Yang 1 (YY1) and histone deacetylase 1 and is sufficient to induce the assembly of the basal transcription machinery on the promoter and to lead to initial cyclin D1 accumulation in the cell. Later on in estrogen stimulation, the cyclin D1/Cdk4 holoenzyme associates with the CCND1 promoter, where E2F and pRb can also be found, contributing to the long-lasting gene enhancement required to drive G1-phase completion. Interestingly, progesterone triggers similar regulatory events through its own NRs, suggesting that the gene regulation cascade described here represents a crossroad for the transcriptional control of G1-phase progression by different classes of NRs. PMID:15282324

  16. Hydroxytyrosol Inhibits Cannabinoid CB1 Receptor Gene Expression in 3T3-L1 Preadipocyte Cell Line.

    PubMed

    Tutino, Valeria; Orlando, Antonella; Russo, Francesco; Notarnicola, Maria

    2016-02-01

    The 3T3-L1 preadipocyte cell line is a well characterized cell model for studying the adipocyte status and the molecular mechanisms involved in differentiation of these cells. 3T3-L1 preadipocytes have the ability to synthesize and degrade endocannabinoid anandamide (AEA) and their differentiation into adipocytes increases the expression of cannabinoid (CB1) and PPAR-? receptors. Clinically, the blocking stimulation of the endocannabinoid pathway has been one of the first approaches proposed to counteract the obesity and obesity-associated diseases (such as diabetes, metabolic syndrome and cancer). In this connection, here we studied in cultured 3T3-L1 pre-adipocytes the effects of n-3-PUFA, ?-Linolenic acid (OM-3), n-6-PUFA, Linoleic acid (OM-6), and hydroxytyrosol (HT) on the expression of CB1 receptor gene and the adipogenesis-related genes PPAR-?, Fatty Acid Synthase (FAS) and Lipoprotein Lipase (LPL). HT was able to inhibit 3T3-L1 cell differentiation by down-regulating cell proliferation and CB1 receptor gene expression. HT exhibited anti-adipogenic effects, whereas OM-3 and OM-6 exerted an inhibitory action on cell proliferation associated with an induction of the preadipocytes differentiation and CB1 receptor gene expression. Moreover, the expression of FAS and LPL genes resulted increased after treatment with both HT and OM-3 and OM-6. The present study points out that the intake of molecules such as HT, contained in extra virgin olive oil, may be considered also in view of antiobesity and antineoplastic properties by acting directly on the adipose tissue and modulating CB1 receptor gene transcription. J. Cell. Physiol. 231: 483-489, 2016. © 2015 Wiley Periodicals, Inc. PMID:26189725

  17. Polymorphisms in the Tumor Necrosis Factor Receptor Genes Affect the Expression Levels of Membrane-Bound Type I and Type II Receptors

    PubMed Central

    Sennikov, Sergey V.; Vasilyev, Filipp F.; Lopatnikova, Julia A.; Shkaruba, Nadezhda S.; Silkov, Alexander N.

    2014-01-01

    The level of TNF receptors on various cells of immune system and its association with the gene polymorphism were investigated. Determining the levels of membrane-bound TNF? receptors on peripheral blood mononuclear cells (PBMCs) was performed by flow cytometry using BD QuantiBRITE calibration particles. Soluble TNF? receptor (sTNFRs) levels were determined by ELISA and genotyping was determined by PCR-RFLP. Homozygous TT individuals at SNP ?609G/T TNFRI (rs4149570) showed lower levels of sTNFRI compared to GG genotype carriers. Homozygous carriers of CC genotype at SNP ?1207G/C TNFRI (rs4149569) had lower expression densities of membrane-bound TNFRI on intact CD14+ monocytes compared to individuals with the GC genotype. The frequency differences in the CD3+ and CD19+ cells expressing TNFRII in relation to SNP ?1709A/T TNFRII (rs652625) in healthy individuals were also determined. The genotype CC in SNP ?3609C/T TNFRII (rs590368) was associated with a lower percentage of CD14+ cells expressing TNFRII compared to individuals with the CT genotype. Patients with rheumatoid arthritis had no significant changes in the frequencies of genotypes. Reduced frequency was identified for the combination TNFRI ?609GT + TNFRII ?3609CC only. The polymorphisms in genes represent one of cell type-specific mechanisms affecting the expression levels of membrane-bound TNF? receptors and TNF?-mediated signaling. PMID:24782596

  18. The genetic effects of the dopamine D1 receptor <