Sample records for genes including receptor

  1. Taste Receptor Genes

    PubMed Central

    Bachmanov, Alexander A.; Beauchamp, Gary K.

    2009-01-01

    In the past several years, tremendous progress has been achieved with the discovery and characterization of vertebrate taste receptors from the T1R and T2R families, which are involved in recognition of bitter, sweet, and umami taste stimuli. Individual differences in taste, at least in some cases, can be attributed to allelic variants of the T1R and T2R genes. Progress with understanding how T1R and T2R receptors interact with taste stimuli and with identifying their patterns of expression in taste cells sheds light on coding of taste information by the nervous system. Candidate mechanisms for detection of salts, acids, fat, complex carbohydrates, and water have also been proposed, but further studies are needed to prove their identity. PMID:17444812

  2. Melatonin Receptor Genes in Vertebrates

    PubMed Central

    Li, Di Yan; Smith, David Glenn; Hardeland, Rüdiger; Yang, Ming Yao; Xu, Huai Liang; Zhang, Long; Yin, Hua Dong; Zhu, Qing

    2013-01-01

    Melatonin receptors are members of the G protein-coupled receptor (GPCR) family. Three genes for melatonin receptors have been cloned. The MT1 (or Mel1a or MTNR1A) and MT2 (or Mel1b or MTNR1B) receptor subtypes are present in humans and other mammals, while an additional melatonin receptor subtype, Mel1c (or MTNR1C), has been identified in fish, amphibians and birds. Another melatonin related orphan receptor, GPR50, which does not bind melatonin, is found exclusively in mammals. The hormone melatonin is secreted primarily by the pineal gland, with highest levels occurring during the dark period of a circadian cycle. This hormone acts systemically in numerous organs. In the brain, it is involved in the regulation of various neural and endocrine processes, and it readjusts the circadian pacemaker, the suprachiasmatic nucleus. This article reviews recent studies of gene organization, expression, evolution and mutations of melatonin receptor genes of vertebrates. Gene polymorphisms reveal that numerous mutations are associated with diseases and disorders. The phylogenetic analysis of receptor genes indicates that GPR50 is an outgroup to all other melatonin receptor sequences. GPR50 may have separated from a melatonin receptor ancestor before the split between MTNR1C and the MTNR1A/B ancestor. PMID:23712359

  3. Targeting gonadotropin receptor genes

    Microsoft Academic Search

    Natalia Danilovich; M. Ram Sairam

    2005-01-01

    This review highlights observations gleaned from recent reports on the deletion of FSH and LH receptors in mice. Gonadal differentiation\\u000a does not depend on the presence of gonadotropin receptors but development is affected to varying degrees in both sexes. In\\u000a both knockouts the null females are infertile with severely underdeveloped gonads and accessory structures. Sexual maturity\\u000a and\\/or pubertal delay occur

  4. Comparison of the canine and human olfactory receptor gene repertoires

    Microsoft Academic Search

    Pascale Quignon; Ewen Kirkness; Edouard Cadieu; Nizar Touleimat; Richard Guyon; Corinne Renier; Christophe Hitte; Catherine André; Claire Fraser; Francis Galibert

    2003-01-01

    BACKGROUND: Olfactory receptors (ORs), the first dedicated molecules with which odorants physically interact to arouse an olfactory sensation, constitute the largest gene family in vertebrates, including around 900 genes in human and 1,500 in the mouse. Whereas dogs, like many other mammals, have a much keener olfactory potential than humans, only 21 canine OR genes have been described to date.

  5. Promoter architecture of mouse olfactory receptor genes

    PubMed Central

    Plessy, Charles; Pascarella, Giovanni; Bertin, Nicolas; Akalin, Altuna; Carrieri, Claudia; Vassalli, Anne; Lazarevic, Dejan; Severin, Jessica; Vlachouli, Christina; Simone, Roberto; Faulkner, Geoffrey J.; Kawai, Jun; Daub, Carsten O.; Zucchelli, Silvia; Hayashizaki, Yoshihide; Mombaerts, Peter; Lenhard, Boris; Gustincich, Stefano; Carninci, Piero

    2012-01-01

    Odorous chemicals are detected by the mouse main olfactory epithelium (MOE) by about 1100 types of olfactory receptors (OR) expressed by olfactory sensory neurons (OSNs). Each mature OSN is thought to express only one allele of a single OR gene. Major impediments to understand the transcriptional control of OR gene expression are the lack of a proper characterization of OR transcription start sites (TSSs) and promoters, and of regulatory transcripts at OR loci. We have applied the nanoCAGE technology to profile the transcriptome and the active promoters in the MOE. nanoCAGE analysis revealed the map and architecture of promoters for 87.5% of the mouse OR genes, as well as the expression of many novel noncoding RNAs including antisense transcripts. We identified candidate transcription factors for OR gene expression and among them confirmed by chromatin immunoprecipitation the binding of TBP, EBF1 (OLF1), and MEF2A to OR promoters. Finally, we showed that a short genomic fragment flanking the major TSS of the OR gene Olfr160 (M72) can drive OSN-specific expression in transgenic mice. PMID:22194471

  6. Growth Hormone Receptor Gene Expression in Puberty.

    PubMed

    Pagani, S; Meazza, C; Gertosio, C; Bozzola, E; Bozzola, M

    2015-07-01

    The mechanisms regulating the synergic effect of growth hormone and other hormones during pubertal spurt are not completely clarified. We enrolled 64 females of Caucasian origin and normal height including 22 prepubertal girls, 26 pubertal girls, and 16 adults to evaluate the role of Growth Hormone/Insulin-like growth factor-I axis (GH/IGF-I) during the pubertal period. In these subjects both serum IGF-I and growth hormone binding protein levels, as well as quantitative growth hormone receptor (GHR) gene expression were evaluated in peripheral lymphocytes of all individuals by real-time PCR. Our results showed significantly lower IGF-I levels in women (148±10?ng/ml) and prepubertal girls (166.34±18.85?ng/ml) compared to pubertal girls (441.95±29.42?ng/ml; p<0.0001). Serum GHBP levels were significantly higher in prepubertal (127.02±20.76?ng/ml) compared to pubertal girls (16.63±2.97?ng/ml; p=0.0001) and adult women (19.95±6.65?ng/ml; p=0.0003). We also found higher GHR gene expression levels in pubertal girls [174.73±80.22?ag (growth hormone receptor)/5×10(5) ag (glyceraldehyde 3-phosphate dehydrogenase)] compared with other groups of subjects [women: 42.52±7.66?ag (growth hormone receptor)/5×10(5) ag (glyceraldehyde 3-phosphate dehydrogenase); prepubertal girls: 58.45±0.18.12?ag (growth hormone receptor)/5×10(5) ag (glyceraldehyde 3-phosphate dehydrogenase)], but the difference did not reach statistical significance. These results suggest that sexual hormones could positively influence GHR action, during the pubertal period, in a dual mode, that is, increasing GHR mRNA production and reducing GHR cleavage leading to GHBP variations. PMID:25602347

  7. The Ligand-Binding Domains of the Thyroid Hormone\\/Retinoid Receptor Gene Subfamily Function In Vivo To Mediate Heterodimerization, Gene Silencing, and Transactivation

    Microsoft Academic Search

    JIAN-SHEN QI; VANDANA DESAI-YAJNIK; MARIANNE E. GREENE; BRUCE M. RAAKA; ANDHERBERT H. SAMUELS

    The ligand-binding domains (LBDs) of the thyroid\\/retinoid receptor gene subfamily contain a series of heptad motifs important for dimeric interactions. This subfamily includes thyroid hormone receptors (T3Rs), all-transretinoic acid (RA) receptors (RARs), 9-cisRA receptors (RARs and retinoid X receptors (RXRs)), the 1,25-dihydroxyvitamin D3 receptor (VDR), and the receptors that modulate the peroxisomal b-oxidation pathway (PPARs). These receptors bind to their

  8. Androgen receptor gene sequence and basal cortisol concentrations predict men's

    E-print Network

    Cosmides, Leda

    Androgen receptor gene sequence and basal cortisol concentrations predict men's hormonal responses these differences. Replicating past research, the present study found that men's salivary testosterone and cortisol receptor gene, and lower baseline cortisol concentrations, each predicted larger testosterone responses

  9. Evolution of an Expanded Mannose Receptor Gene Family

    PubMed Central

    Staines, Karen; Hunt, Lawrence G.; Young, John R.; Butter, Colin

    2014-01-01

    Sequences of peptides from a protein specifically immunoprecipitated by an antibody, KUL01, that recognises chicken macrophages, identified a homologue of the mammalian mannose receptor, MRC1, which we called MRC1L-B. Inspection of the genomic environment of the chicken gene revealed an array of five paralogous genes, MRC1L-A to MRC1L-E, located between conserved flanking genes found either side of the single MRC1 gene in mammals. Transcripts of all five genes were detected in RNA from a macrophage cell line and other RNAs, whose sequences allowed the precise definition of spliced exons, confirming or correcting existing bioinformatic annotation. The confirmed gene structures were used to locate orthologues of all five genes in the genomes of two other avian species and of the painted turtle, all with intact coding sequences. The lizard genome had only three genes, one orthologue of MRC1L-A and two orthologues of the MRC1L-B antigen gene resulting from a recent duplication. The Xenopus genome, like that of most mammals, had only a single MRC1-like gene at the corresponding locus. MRC1L-A and MRC1L-B genes had similar cytoplasmic regions that may be indicative of similar subcellular migration and functions. Cytoplasmic regions of the other three genes were very divergent, possibly indicating the evolution of a new functional repertoire for this family of molecules, which might include novel interactions with pathogens. PMID:25390371

  10. Extrasynaptic NMDA Receptors Reshape Gene Ranks

    NSDL National Science Digital Library

    Igor Medina (INSERM; Mediterranean Institute of Neurobiology (INMED) REV)

    2007-05-15

    The N-methyl-D-aspartate (NMDA) subtype of glutamate receptors (NMDAR) plays a key role in the control of neuronal plasticity and cell survival by modifying the activity of different signaling pathways and numerous genes. However, it remains unclear how the activation of this one class of glutamate receptors can lead to different functional consequences, such as enhancement of neuronal survival or induction of neuronal death. Recent work further refines the hypothesis that synaptic and extrasynaptic NMDARs have distinct roles in neuronal survival and death by showing that these two subpopulations of NMDARs differentially modify whole-genome activity.

  11. Adrenergic Receptor Signaling Components in Gene Therapy

    Microsoft Academic Search

    Andrea D. Eckhart; Walter J. Koch

    Adrenergic receptor (AR) signaling is a key regulator of normal cardiopulmonary homeostasis. Under pathophysiological conditions,\\u000a such as heart failure, asthma, and hypertension, there are alterations in the signaling cascades. Advances in the ability\\u000a to manipulate the adenoviral genome have allowed the development of gene therapy in which transgenes of interest are inserted\\u000a into the adenovirus and transferred to mammals in

  12. A gene-to-gene interaction between aromatase and estrogen receptors influences bone mineral density

    Microsoft Academic Search

    JoseA Riancho; Marő ´ a; T Zarrabeitia; Carmen Valero; Carolina Sanudo; Veronica Mijares

    2006-01-01

    Objective: The aromatization of androgenic precursors is the main source of estrogens in postmenopausal women. We tested the hypothesis that allelic variants of the genes coding for aromatase and estrogen receptors (ER) could interact to determine the estrogenic signals on the bone tissue and, consequently, bone mineral density (BMD). Design: Cross-sectional study including 331 postmenopausal women. Methods: BMD was measured

  13. Copyright 2001 by the Genetics Society of America Genes Affecting the Activity of Nicotinic Receptors Involved in

    E-print Network

    Schafer, William R.

    Copyright © 2001 by the Genetics Society of America Genes Affecting the Activity of Nicotinic of nicotinic acetylcholine receptors such as nicotine and levamisole stimulate egg laying; however, the genetic of levamisole-sensitive nicotinic receptors in nematodes. Seven of these genes, including the nicotinic receptor

  14. Identification of genes expressed in C. elegans touch receptor neurons

    Microsoft Academic Search

    Yun Zhang; Charles Ma; Thomas Delohery; Brian Nasipak; Barrett C. Foat; Alexander Bounoutas; Harmen J. Bussemaker; Stuart K. Kim; Martin Chalfie

    2002-01-01

    The extent of gene regulation in cell differentiation is poorly understood. We previously used saturation mutagenesis to identify 18 genes that are needed for the development and function of a single type of sensory neuron-the touch receptor neuron for gentle touch in Caenorhabditis elegans. One of these genes, mec-3, encodes a transcription factor that controls touch receptor differentiation. By culturing

  15. Includes pre-computed gene families, multiple sequence alignments &

    E-print Network

    Gent, Universiteit

    23 plants covering 11 dicots, 5 monocots, 2 (club-)mosses and 5 algae · Advanced panel of (inter to perform analyses on their genes · Includes published genomes from flowering plants, mosses and several

  16. Includes pre-computed gene families, multiple sequence

    E-print Network

    Gent, Universiteit

    genomes from flowering plants, (club-)mosses and several green algae · All data can be downloaded PLAZA release 2.5 · Includes >900,000 genes from 25 plants covering 13 dicots, 5 monocots, 2 (club-)mosses

  17. Identification of a family of muscarinic acetylcholine receptor genes

    SciTech Connect

    Bonner, T.I.; Buckley, N.J.; Young, A.C.; Brann, M.R.

    1987-07-31

    Complementary DNAs for three different muscarinic acetylcholine receptors were isolated from a rat cerebral cortex library, and the cloned receptors were expressed in mammalian cells. Analysis of human and rat genomic clones indicates that there are at least four functional muscarinic receptor genes and that these genes lack introns in the coding sequence. This gene family provides a new basis for evaluating the diversity of muscarinic mechanisms in the nervous system.

  18. Steroid hormone receptors as transactivators of gene expression

    Microsoft Academic Search

    Bert W. O'Malley

    1991-01-01

    In the two decades since the discovery of the steroid hormone receptors, a great deal has been learned about their structure, their relationships with each other, and the target sequences (response elements) at which they regulate expression of specific genes. Analysis of receptor sequences has confirmed the existence of several domains with distinct functions in each receptor molecule, and has

  19. Carbon dioxide receptor genes in cotton bollworm Helicoverpa armigera.

    PubMed

    Xu, Wei; Anderson, Alisha

    2015-04-01

    Carbon dioxide (CO2) is important in insect ecology, eliciting a range of behaviours across different species. Interestingly, the numbers of CO2 gustatory receptors (GRs) vary among insect species. In the model organism Drosophila melanogaster, two GRs (DmelGR21a and DmelGR63a) have been shown to detect CO2. In the butterfly, moth, beetle and mosquito species studied so far, three CO2 GR genes have been identified, while in tsetse flies, four CO2 GR genes have been identified. In other species including honeybees, pea aphids, ants, locusts and wasps, no CO2 GR genes have been identified from the genome. These genomic differences may suggest different mechanisms for CO2 detection exist in different insects but, with the exception of Drosophila and mosquitoes, limited attention has been paid to the CO2 GRs in insects. Here, we cloned three putative CO2 GR genes from the cotton bollworm Helicoverpa armigera and performed phylogenetic and expression analysis. All three H. armigera CO2 GRs (HarmGR1, HarmGR2 and HarmGR3) are specifically expressed in labial palps, the CO2-sensing tissue of this moth. HarmGR3 is significantly activated by NaHCO3 when expressed in insect Sf9 cells but HarmGR1 and HarmGR2 are not. This is the first report characterizing the function of lepidopteran CO2 receptors, which contributes to our general understanding of the molecular mechanisms of insect CO2 gustatory receptors. PMID:25724420

  20. Expression of leptin receptor gene in developing and adult zebrafish

    PubMed Central

    Liu, Qin; Chen, Yun; Copeland, Donald; Ball, Hope; Duff, Robert J.; Rockich, Briana; Londraville, Richard L.

    2012-01-01

    Interactions of leptin and leptin receptors play crucial roles during animal development and regulation of appetite and energy balance. In this study we analyzed expression pattern of a zebrafish leptin receptor gene in both developing and adult zebrafish using in situ hybridization and Q-PCR methods. Zebrafish leptin receptor message (lepr) was detected in all embryonic and larval stages examined, and in adult zebrafish. In embryonic zebrafish, lepr was mainly expressed in the notochord. As development proceeded, lepr expression in the notochord decreased, while its expression in several other tissues, including the trunk muscles and gut, became evident. In both larval and adult brains, large lepr expressing cells were detected in similar regions of the hindbrain. In adult zebrafish, lepr expression was also observed in several other brain regions including the hypothalamic lateral tuberal nucleus, the fish homolog of the arcuate nucleus. Q-PCR experiments confirmed lepr expression in the adult fish brain, and also showed lepr expression in several adult tissues including liver, muscle and gonads. Our results showed that lepr expression was both spatially and temporally regulated. PMID:19941865

  1. Gene Transfer and Molecular Cloning of the Human NGF Receptor

    NASA Astrophysics Data System (ADS)

    Chao, Moses V.; Bothwell, Mark A.; Ross, Alonzo H.; Koprowski, Hilary; Lanahan, Anthony A.; Buck, C. Randall; Sehgal, Amita

    1986-04-01

    Nerve growth factor (NGF) and its receptor are important in the development of cells derived from the neural crest. Mouse L cell transformants have been generated that stably express the human NGF receptor gene transfer with total human DNA. Affinity cross-linking, metabolic labeling and immunoprecipitation, and equilibrium binding with 125I-labeled NGF revealed that this NGF receptor had the same size and binding characteristics as the receptor from human melanoma cells and rat PC12 cells. The sequences encoding the NGF receptor were molecularly cloned using the human Alu repetitive sequence as a probe. A cosmid clone that contained the human NGF receptor gene allowed efficient transfection and expression of the receptor.

  2. Transient receptor potential (TRP) gene superfamily encoding cation channels

    PubMed Central

    2011-01-01

    Transient receptor potential (TRP) non-selective cation channels constitute a superfamily, which contains 28 different genes. In mammals, this superfamily is divided into six subfamilies based on differences in amino acid sequence homology between the different gene products. Proteins within a subfamily aggregate to form heteromeric or homomeric tetrameric configurations. These different groupings have very variable permeability ratios for calcium versus sodium ions. TRP expression is widely distributed in neuronal tissues, as well as a host of other tissues, including epithelial and endothelial cells. They are activated by environmental stresses that include tissue injury, changes in temperature, pH and osmolarity, as well as volatile chemicals, cytokines and plant compounds. Their activation induces, via intracellular calcium signalling, a host of responses, including stimulation of cell proliferation, migration, regulatory volume behaviour and the release of a host of cytokines. Their activation is greatly potentiated by phospholipase C (PLC) activation mediated by coupled GTP-binding proteins and tyrosine receptors. In addition to their importance in maintaining tissue homeostasis, some of these responses may involve various underlying diseases. Given the wealth of literature describing the multiple roles of TRP in physiology in a very wide range of different mammalian tissues, this review limits itself to the literature describing the multiple roles of TRP channels in different ocular tissues. Accordingly, their importance to the corneal, trabecular meshwork, lens, ciliary muscle, retinal, microglial and retinal pigment epithelial physiology and pathology is reviewed. PMID:21296744

  3. Constraint and Adaptation in newt Toll-Like Receptor Genes

    PubMed Central

    Babik, Wies?aw; Dudek, Katarzyna; Fijarczyk, Anna; Pabijan, Maciej; Stuglik, Micha?; Szkotak, Rafa?; Zieli?ski, Piotr

    2015-01-01

    Acute die-offs of amphibian populations worldwide have been linked to the emergence of viral and fungal diseases. Inter and intraspecific immunogenetic differences may influence the outcome of infection. Toll-like receptors (TLRs) are an essential component of innate immunity and also prime acquired defenses. We report the first comprehensive assessment of TLR gene variation for urodele amphibians. The Lissotriton newt TLR repertoire includes representatives of 13 families and is compositionally most similar to that of the anuran Xenopus. Both ancient and recent gene duplications have occurred in urodeles, bringing the total number of TLR genes to at least 21. Purifying selection has predominated the evolution of newt TLRs in both long (?70 Ma) and medium (?18 Ma) timescales. However, we find evidence for both purifying and positive selection acting on TLRs in two recently diverged (2–5 Ma) allopatric evolutionary lineages (Lissotriton montandoni and L. vulgaris graecus). Overall, both forms of selection have been stronger in L. v. graecus, while constraint on most TLR genes in L. montandoni appears relaxed. The differences in selection regimes are unlikely to be biased by demographic effects because these were controlled by means of a historical demographic model derived from an independent data set of 62 loci. We infer that TLR genes undergo distinct trajectories of adaptive evolution in closely related amphibian lineages, highlight the potential of TLRs to capture the signatures of different assemblages of pathogenic microorganisms, and suggest differences between lineages in the relative roles of innate and acquired immunity. PMID:25480684

  4. Deletion of Exon 15 of the LDL Receptor Gene Is Associated With a Mild Form of Familial Hypercholesterolemia FH-Espoo

    Microsoft Academic Search

    Pekka V. I. Koivisto; Ulla-Maija Koivisto; Petri T. Kovanen; Helena Gylling; Tatu A. Miettinen; Kimmo Kontula

    We describe a mutation of the low-density lipoprotein (LDL) receptor gene, designated familial hypercholesterolemia (FH)-Espoo, which deletes exon 15 of the LDL receptor gene. The mutant receptor is predicted to lack 57 amino acids, including 18 serine and threonine residues, which are the sites of the clustered 0-linked sugars of the receptor. Studies on 10 carriers of this gene revealed

  5. Increased anxiety in mice lacking vitamin D receptor gene

    E-print Network

    Kalueff, Allan V.

    Increased anxiety in mice lacking vitamin D receptor gene Allan V. Kalueˇ,1,CA Yan-Ru Lou,1 Ilkka.0000129370.04248.92 Vitamin D is a steroid hormone with many important functions in the brain, mediated through the vitamin D nuclear receptor. Nu- merous human and animal data link vitamin D dysfunctions

  6. Rabbit calcium-sensing receptor (CASR) gene: chromosome location and evidence for related genes

    Microsoft Academic Search

    P. A. Martin-DeLeon; L. Canaff; R. Korstanje; V. Bhide; M. Selkirk; G. N. Hendy

    1999-01-01

    Diverse cellular functions are regulated by the calcium-sensing receptor, encoded by the CASR gene, which plays an important role in calcium homeostasis. Here we provide the sequence for exon VII of the rabbit CASR gene and show that it is 91% identical to the human gene at the nucleotide level, and 95% identical at the amino acid level. The gene

  7. Characteristics of the mouse genomic histamine H1 receptor gene

    SciTech Connect

    Inoue, Isao; Taniuchi, Ichiro; Kitamura, Daisuke [Kyushu Univ., Fukuoka (Japan)] [and others] [Kyushu Univ., Fukuoka (Japan); and others

    1996-08-15

    We report here the molecular cloning of a mouse histamine H1 receptor gene. The protein deduced from the nucleotide sequence is composed of 488 amino acid residues with characteristic properties of GTP binding protein-coupled receptors. Our results suggest that the mouse histamine H1 receptor gene is a single locus, and no related sequences were detected. Interspecific backcross analysis indicated that the mouse histamine H1 receptor gene (Hrh1) is located in the central region of mouse Chromosome 6 linked to microphthalmia (Mitfmi), ras-related fibrosarcoma oncogene 1 (Raf1), and ret proto-oncogene (Ret) in a region of homology with human chromosome 3p. 12 refs., 3 figs.

  8. Melanoma risk is associated with vitamin D receptor gene polymorphisms.

    PubMed

    Zeljic, Katarina; Kandolf-Sekulovic, Lidija; Supic, Gordana; Pejovic, Janko; Novakovic, Marijan; Mijuskovic, Zeljko; Magic, Zvonko

    2014-06-01

    Previous studies have reported that vitamin D receptor (VDR) gene polymorphisms are associated with the occurrence of various cancers, including melanoma. The aim of the current study was to investigate the association of VDR gene polymorphisms with melanoma risk, clinicopathological characteristics, and vitamin D levels. The study group included 117 patients (84 patients with superficial spreading melanoma and 33 patients with nodular melanoma). The control group included 122 sex-matched and age-matched healthy-blood donors of the same ethnicity. VDR gene polymorphisms FokI, EcoRV, TaqI, and ApaI were genotyped by real-time PCR. In 60 patients, the total 25-hydroxyvitamin D levels were evaluated in serum samples by direct chemiluminescence. Associations among parameters were considered to be significant if the P value was less than 0.05. Significant differences in the frequencies of VDR genotypes were observed between cases and the control group for FokI and TaqI polymorphisms (P<0.0001; P=0.005, respectively). Heterozygous Ff as well as mutant FF genotypes of the FokI polymorphism were associated with increased melanoma risk compared with the wild-type form [odds ratio (OR)=3.035, P=0.003; OR=9.276, P<0.0001, respectively]. A significantly increased melanoma risk was observed for the heterozygous Tt (OR=2.302, P=0.011) and the mutated variant tt (OR=3.697, P=0.003) of the TaqI polymorphism in comparison with the wild-type genotype. None of the polymorphisms studied was associated with clinicopathological characteristics and vitamin D serum level. Our results suggest that FokI and TaqI polymorphisms in the VDR gene may be considered as potential biomarkers for melanoma susceptibility. Low vitamin D levels in melanoma patients indicate the need for vitamin D supplementation. PMID:24638155

  9. Prolactin receptor and signal transduction to milk protein genes

    SciTech Connect

    Djiane, J.; Daniel, N.; Bignon, C. [Unite d`Endocrinologie Moleculaire, Jouy en Josas (France)] [and others

    1994-06-01

    After cloning of the mammary gland prolactin (PRL) receptor cDNA, a functional assay was established using co-transfection of PRL receptor cDNA together with a milk protein promoter/chloramphenicol acetyl transferase (CAT) construct in Chinese hamster ovary (CHO) cells. Different mutants of the PRL receptor were tested in this CAT assay to delimit the domains in the receptor necessary for signal transduction to milk protein genes. In CHO cells stably transfected with PRL receptor cDNA, high numbers of PRL receptor are expressed. By metabolic labeling and immunoprecipitation, expressed PRL receptor was identified as a single species of 100 kDa. Using these cells, we analyzed the effects of PRL on intracellular free Ca{sup ++} concentration. PRL stimulates Ca{sup ++} entry and induces secondary Ca{sup ++} mobilization. The entry of Ca{sup ++} is a result of an increase in K{sup +} conductance that hyperpolarizes the membranes. We have also analyzed tyrosine phosphorylation induced by PRL. In CHO cells stably transfected with PRL receptor cDNA, PRL induced a very rapid and transient tyrosine phosphorylation of a 100-kDa protein which is most probably the PRL receptor. The same finding was obtained in mammary membranes after PRL injection to lactating rabbits. Whereas tyrosine kinase inhibitors genistein and lavendustin were without effect, PRL stimulation of milk protein gene promoters was partially inhibited by 2 {mu}M herbimycin in CHO cells co-transfected with PRL receptor cDNA and the {Beta} lactoglobulin CAT construct. Taken together these observations indicate that the cytoplasmic domain of the PRL receptor interacts with one or several tyrosine kinases, which may represent early postreceptor events necessary for PRL signal transduction to milk protein genes. 14 refs., 4 figs.

  10. Dopamine receptor gene expression by enkephalin neurons in rat forebrain

    SciTech Connect

    Le Moine, C.; Normand, E.; Guitteny, A.F.; Fouque, B.; Teoule, R.; Bloch, B. (Universite de Bordeaux II (France))

    1990-01-01

    In situ hybridization experiments were performed with brain sections from normal, control and haloperidol-treated rats to identify and map the cells expressing the D2 dopamine receptor gene. D2 receptor mRNA was detected with radioactive or biotinylated oligonucleotide probes. D2 receptor mRNA was present in glandular cells of the pituitary intermediate lobe and in neurons of the substantia nigra, ventral tegmental area, and forebrain, especially in caudate putamen, nucleus accumbens, olfactory tubercle, and piriform cortex. Hybridization with D2 and preproenkephalin A probes in adjacent sections, as well as combined hybridization with the two probes in the same sections, demonstrated that all detectable enkephalin neurons in the striatum contained the D2 receptor mRNA. Large neurons in caudate putamen, which were unlabeled with the preproenkephalin A probe and which may have been cholinergic, also expressed the D2 receptor gene. Haloperidol treatment (14 or 21 days) provoked an increase in mRNA content for D2 receptor and preproenkephalin A in the striatum. This suggests that the increase in D2 receptor number observed after haloperidol treatment is due to increased activity of the D2 gene. These results indicate that in the striatum, the enkephalin neurons are direct targets for dopamine liberated from mesostriatal neurons.

  11. Perspectives on mechanisms of gene regulation by 1,25-dihydroxyvitamin D3 and its receptor.

    PubMed

    Pike, J Wesley; Meyer, Mark B; Watanuki, Makoto; Kim, Sungtae; Zella, Lee A; Fretz, Jackie A; Yamazaki, Miwa; Shevde, Nirupama K

    2007-03-01

    1,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) functions as a systemic signal in vertebrate organisms to control the expression of genes whose products are vital to the maintenance of calcium and phosphorus homeostasis. This regulatory capability is mediated by the vitamin D receptor (VDR) which localizes at DNA sites adjacent to the promoter regions of target genes and initiates the complex events necessary for transcriptional modulation. Recent investigations using chromatin immunoprecipitation techniques combined with various gene scanning methodologies have revealed new insights into the location, structure and function of these regulatory regions. In the studies reported here, we utilized the above techniques to identify key enhancer regions that mediate the actions of vitamin D on the calcium ion channel gene TRPV6, the catabolic bone calcium-mobilizing factor gene RankL and the bone anabolic Wnt signaling pathway co-receptor gene LRP5. We also resolve the mechanism whereby 1,25(OH)(2)D(3) autoregulates the expression of its own receptor. The results identify new features of vitamin D-regulated enhancers, including their locations at gene loci, the structure of the VDR binding sites located within, their modular nature and their functional activity. Our studies suggest that vitamin D enhancers regulate the expression of key target genes by facilitating the recruitment of both the basal transcriptional machinery as well as the protein complexes necessary for altered gene expression. PMID:17223545

  12. PERSPECTIVES ON MECHANISMS OF GENE REGULATION BY 1,25-DIHYDROXYVITAMIN D3 AND ITS RECEPTOR

    PubMed Central

    Pike, J. Wesley; Meyer, Mark B.; Watanuki, Makoto; Kim, Sungtae; Zella, Lee A.; Fretz, Jackie A.; Yamazaki, Miwa; Shevde, Nirupama K.

    2007-01-01

    1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) functions as a systemic signal in vertebrate organisms to control the expression of genes whose products are vital to the maintenance of calcium and phosphorus homeostasis. This regulatory capability is mediated by the vitamin D receptor (VDR) which localizes at DNA sites adjacent to the promoter regions of target genes and initiates the complex events necessary for transcriptional modulation. Recent investigations using chromatin immunoprecipitation techniques combined with various gene scanning methodologies have revealed new insights into the location, structure and function of these regulatory regions. In the studies reported here, we utilized the above techniques to identify key enhancer regions that mediate the actions of vitamin D on the calcium ion channel gene TRPV6, the catabolic calcium-mobilizing factor gene RankL and the anabolic Wnt signaling pathway co-receptor gene LRP5. We also resolve the mechanism whereby 1,25(OH)2D3 autoregulates the expression of its own receptor. The results identify new features of vitamin D-regulated enhancers, including their locations at gene loci, the structure of the VDR binding sites located within, their modular nature and their functional activity. Our studies suggest that vitamin D enhancers regulate the expression of key target genes by facilitating the recruitment of both the basal transcriptional machinery as well as the protein complexes necessary for altered gene expression. PMID:17223545

  13. Nuclear Aggregation of Olfactory Receptor Genes Governs Their Monogenic Expression

    PubMed Central

    Clowney, E. Josephine; LeGros, Mark A.; Mosley, Colleen P.; Clowney, Fiona G.; Markenskoff-Papadimitriou, Eirene C.; Myllys, Markko; Barnea, Gilad; Larabell, Carolyn A.; Lomvardas, Stavros

    2013-01-01

    SUMMARY Gene positioning and regulation of nuclear architecture are thought to influence gene expression. Here, we show that, in mouse olfactory neurons, silent olfactory receptor (OR) genes from different chromosomes converge in a small number of heterochromatic foci. These foci are OR exclusive and form in a cell-type-specific and differentiation-dependent manner. The aggregation of OR genes is developmentally synchronous with the downregulation of lamin b receptor (LBR) and can be reversed by ectopic expression of LBR in mature olfactory neurons. LBR-induced reorganization of nuclear architecture and disruption of OR aggregates perturbs the singularity of OR transcription and disrupts the targeting specificity of the olfactory neurons. Our observations propose spatial sequestering of heterochromatinized OR family members as a basis of monogenic and monoallelic gene expression. PMID:23141535

  14. Epidermal growth factor (EGF) receptor gene transcription

    SciTech Connect

    Kageyama, R.; Merlino, G.T.; Pastan, I.

    1988-05-05

    The authors have studied in vitro transcription of the human epidermal growth factor (EGF) receptor proto-oncogene using nuclear extracts of A431 human epidermoid carcinoma cells, which overproduce the EGF receptor. With the in vitro system we found that Sp1 and other trans-acting factors bound to the EGF receptor promoter regions and are required for maximal expression. Fractionation showed that a DEAE-Sepharose fraction (BA) contained a novel factor, which specifically stimulated EGF receptor transcription 5- to 10-fold. The molecular mass of the native form of the factor is about 270-kDa based on its migration on Sephacryl S-300. This factor may activate transcription of the proto-oncogene through a weak or indirect interaction with the DNA template.

  15. T-cell-receptor gene therapy

    Microsoft Academic Search

    Ton N. M. Schumacher

    2002-01-01

    T cells are tightly controlled cellular machines that monitor changes in epitope presentation. Although T-cell function is regulated by means of numerous interactions with other cell types and soluble factors, the T-cell receptor (TCR) is the only structure on the T-cell surface that defines its antigen-recognition potential. Consequently, the transfer of T-cell receptors into recipient cells can be used as

  16. Identification of novel androgen receptor target genes in prostate cancer

    Microsoft Academic Search

    Unnati Jariwala; Jennifer Prescott; Li Jia; Artem Barski; Steve Pregizer; Jon P Cogan; Armin Arasheben; Wayne D Tilley; Howard I Scher; William L Gerald; Grant Buchanan; Gerhard A Coetzee; Baruch Frenkel

    2007-01-01

    BACKGROUND: The androgen receptor (AR) plays critical roles in both androgen-dependent and castrate-resistant prostate cancer (PCa). However, little is known about AR target genes that mediate the receptor's roles in disease progression. RESULTS: Using Chromatin Immunoprecipitation (ChIP) Display, we discovered 19 novel loci occupied by the AR in castrate resistant C4-2B PCa cells. Only four of the 19 AR-occupied regions

  17. Natural killer cell receptor genes in the family Equidae: not only Ly49.

    PubMed

    Futas, Jan; Horin, Petr

    2013-01-01

    Natural killer (NK) cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR) and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR) represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA) and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM) domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for evolutionary biology of NKR genes. PMID:23724088

  18. Natural Killer Cell Receptor Genes in the Family Equidae: Not only Ly49

    PubMed Central

    Futas, Jan; Horin, Petr

    2013-01-01

    Natural killer (NK) cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR) and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR) represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA) and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM) domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for evolutionary biology of NKR genes. PMID:23724088

  19. Mouse T-cell receptor variable gene segment families

    SciTech Connect

    Arden, B.; Kabelitz, D. [Paul-Ehrlich-Inst., Langen (Germany); Clark, S.P. [Amgen Center, Thousand Oaks, CA (United States); Mak, T.W. [Amgen Inst., Toronto, Ontario (Canada)

    1995-10-01

    All mouse T-cell receptor {alpha}/{delta}, {beta}, and {gamma} variable (Tcra/d-, b-, and g-V) gene segments were aligned to compare the sequences with one another, to group them into subfamilies, and to derive a name which complies with the standard nomenclature. it was necessary to change the names of some V gene segments because they conflicted with those of other segments. The traditional classification into subfamilies was re-evaluated using a much larger pool of sequences. In the mouse, most V gene segments can be grouped into subfamilies of closely related genes with significantly less similarity between different subfamilies. 118 refs., 11 figs., 4 tabs.

  20. Rapid, Nonradioactive Detection of Clonal T-Cell Receptor Gene Rearrangements in Lymphoid Neoplasms

    Microsoft Academic Search

    Anne Bourguin; Rosann Tung; Naomi Galili; Jeffrey Sklar

    1990-01-01

    Southern blot hybridization analysis of clonal antigen receptor gene rearrangements has proved to be a valuable adjunct to conventional methods for diagnosing lymphoid neoplasia. However, Southern blot analysis suffers from a number of technical disadvantages, including the time necessary to obtain results, the use of radioactivity, and the susceptibility of the method to various artifacts. We have investigated an alternative

  1. derived growth factor ? -receptor gene predispose to human neural tube defects

    Microsoft Academic Search

    Paul H. L. J. Joosten; Mascha Toepoel; Edwin C. M. Mariman; J. J. Van Zoelen

    Neural tube defects (NTDs), including anencephaly and spina bifida, are multifactorial diseases that occur with an incidence of 1 in 300 births in the United Kingdom 1 . Mouse models have indicated that deregulated expression of the gene encoding the platelet-derived growth factor ? -receptor (Pdgfra) causes congenital NTDs (refs. 2-4), whereas mutant forms of Pax-1 that have been associated

  2. Organization and expression of canine olfactory receptor genes.

    PubMed Central

    Issel-Tarver, L; Rine, J

    1996-01-01

    Four members of the canine olfactory receptor gene family were characterized. The predicted proteins shared 40-64% identity with previously identified olfactory receptors. The four subfamilies identified in Southern hybridization experiments had as few as 2 and as many as 20 members. All four genes were expressed exclusively in olfactory epithelium. Expression of multiple members of the larger subfamilies was detected, suggesting that most if not all of the cross-hybridizing bands in genomic Southern blots represented actively transcribed olfactory receptor genes. Analysis of large DNA fragments using Southern blots of pulsed-field gels indicated that subfamily members were clustered together, and that two of the subfamilies were closely linked in the dog genome. Analysis of the four olfactory receptor gene subfamilies in 26 breeds of dog provided evidence that the number of genes per subfamily was stable in spite of differential selection on the basis of olfactory acuity in scent hounds, sight hounds, and toy breeds. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8855279

  3. Location of mouse and human genes corresponding to conserved canine olfactory receptor gene subfamilies

    Microsoft Academic Search

    Ethan A. Carver; Laurie Issel-Tarver; Jasper Rine; Anne S. Olsen; Lisa Stubbs

    1998-01-01

    Olfactory receptors are G protein-coupled, seven-transmembrane-domain proteins that are responsible for binding odorants in\\u000a the nasal epithelium. They are encoded by a large gene family, members of which are organized in several clusters scattered\\u000a throughout the genomes of mammalian species. Here we describe the mapping of mouse sequences corresponding to four conserved\\u000a olfactory receptor genes, each representing separate, recently identified

  4. Identification and characterization of six new alternatively spliced variants of the human ? opioid receptor gene, Oprm

    Microsoft Academic Search

    L. Pan; J. Xu; R. Yu; M.-M. Xu; Y.-X. Pan; G. W. Pasternak

    2005-01-01

    The ? opioid receptor plays an important role in mediating the actions of morphine and morphine-like drugs. Receptor binding and a wide range of pharmacological studies have proposed several ? receptor subtypes, but only one ? opioid receptor (Oprm) gene has been isolated. Like the mouse and rat, the human Oprm gene undergoes alternative splicing. In the present studies, we

  5. Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism

    SciTech Connect

    Noble, E.P.; Blum, K.; Ritchie, T.; Montgomery, A.; Sheridan, P.J. (Neuropsychiatric Institute, UCLA (USA))

    1991-07-01

    The allelic association of the human D2 dopamine receptor gene with the binding characteristics of the D2 dopamine receptor was determined in 66 brains of alcoholic and non-alcoholic subjects. In a blinded experiment, DNA from the cerebral cortex was treated with the restriction endonuclease Taql and probed with a 1.5-kilobase (kb) digest of a clone (lambda hD2G1) of the human D2 dopamine receptor gene. The binding characteristics (Kd (binding affinity) and Bmax (number of binding sites)) of the D2 dopamine receptor were determined in the caudate nuclei of these brains using tritiated spiperone as the ligand. The adjusted Kd was significantly lower in alcoholic than in nonalcoholic subjects. In subjects with the A1 allele, in whom a high association with alcoholism was found, the Bmax was significantly reduced compared with the Bmax of subjects with the A2 allele. Moreover, a progressively reduced Bmax was found in subjects with A2/A2, A1/A2, and A1/A1 alleles, with subjects with A2/A2 having the highest mean values, and subjects with A1/A1, the lowest. The polymorphic pattern of the D2 dopamine receptor gene and its differential expression of receptors suggests the involvement of the dopaminergic system in conferring susceptibility to at least one subtype of severe alcoholism.

  6. Linkage analysis of schizophrenia with five dopamine receptor genes in nine pedigrees

    SciTech Connect

    Coon, H.; Byerley, W.; Holik, J.; Hoff, M.; Myles-Worsley, M.; Plaetke, R. (Univ. of Utah, Salt Lake City (United States)); Lannfelt, L. (Karolinska Inst., Stockholm (Sweden)); Sokoloff, P.; Schwartz, J.C. (Unite de Neurobiologie et de Pharmacologie de l'INSERM, Paris (France)); Waldo, M.; Freedman, R. (Univ. of Colorado, Denver (United States))

    1993-02-01

    Alterations in dopamine neurotransmission have been strongly implicated in the pathogenesis of schizophrenia for nearly 2 decades. Recently, the genes for five dopamine receptors have been cloned and characterized, and genetic and physical map information has become available. Using these five loci as candidate genes, the authors have tested for genetic linkage to schizophrenia in nine multigenerational families which include multiple affected individuals. In addition to testing conservative disease models, the have used a neurophysiological indicator variable, the P50 auditory evoked response. Deficits in gating of the P50 response have been shown to segregate with schizophrenia in this sample and may identify carriers of gene(s) predisposing for schizophrenia. Linkage results were consistently negative, indicating that a defect at any of the actual receptor sites is unlikely to be a major contributor to schizophrenia in the nine families studied. 47 refs., 1 fig., 4 tabs.

  7. ARCHIVAL REPORT Neuropeptide Y Receptor Gene Expression in the

    E-print Network

    Wisconsin at Madison, University of

    ) of the amygdala, a critical neural substrate for extreme anxiety. Methods: In 24 young rhesus monkeys, we measuredARCHIVAL REPORT Neuropeptide Y Receptor Gene Expression in the Primate Amygdala Predicts Anxious temperament (AT) is identifiable early in life and predicts the later development of anxiety disorders

  8. Common Promoter Elements in Odorant and Vomeronasal Receptor Genes

    PubMed Central

    Michaloski, Jussara S.; Galante, Pedro A. F.; Nagai, Maíra H.; Armelin-Correa, Lucia; Chien, Ming-Shan; Matsunami, Hiroaki; Malnic, Bettina

    2011-01-01

    In mammals, odorants and pheromones are detected by hundreds of odorant receptors (ORs) and vomeronasal receptors (V1Rs and V2Rs) expressed by sensory neurons that are respectively located in the main olfactory epithelium and in the vomeronasal organ. Even though these two olfactory systems are functionally and anatomically separate, their sensory neurons show a common mechanism of receptor gene regulation: each neuron expresses a single receptor gene from a single allele. The mechanisms underlying OR and VR gene expression remain unclear. Here we investigated if OR and V1R genes share common sequences in their promoter regions. We conducted a comparative analysis of promoter regions of 39 mouse V1R genes and found motifs that are common to a large number of promoters. We then searched mouse OR promoter regions for motifs that resemble the ones found in the V1R promoters. We identified motifs that are present in both the V1R and OR promoter regions. Some of these motifs correspond to the known O/E like binding sites while others resemble binding sites for transcriptional repressors. We show that one of these motifs specifically interacts with proteins extracted from both nuclei from olfactory and vomeronasal neurons. Our study is the first to identify motifs that resemble binding sites for repressors in the promoters of OR and V1R genes. Analysis of these motifs and of the proteins that bind to these motifs should reveal important aspects of the mechanisms of OR/V1R gene regulation. PMID:22216168

  9. Androgen receptor gene mutation, rearrangement, polymorphism

    PubMed Central

    Eisermann, Kurtis; Wang, Dan; Jing, Yifeng; Pascal, Laura E.; Wang, Zhou

    2014-01-01

    Genetic aberrations of the androgen receptor (AR) caused by mutations, rearrangements, and polymorphisms result in a mutant receptor that has varied functions compared to wild type AR. To date, over 1,000 mutations have been reported in the AR with most of these being associated with androgen insensitivity syndrome (AIS). While mutations of AR associated with prostate cancer occur less often in early stage localized disease, mutations in castration-resistant prostate cancer (CRPC) patients treated with anti-androgens occur more frequently with 10–30% of these patients having some form of mutation in the AR. Resistance to anti-androgen therapy usually results from gain-of-function mutations in the LBD such as is seen with bicalutamide and more recently with enzalutamide (MDV3100). Thus, it is crucial to investigate these new AR mutations arising from drug resistance to anti-androgens and other small molecule pharmacological agents. PMID:25045626

  10. Identification of chemosensory receptor genes in Manduca sexta and knockdown by RNA interference

    PubMed Central

    2012-01-01

    Background Insects detect environmental chemicals via a large and rapidly evolving family of chemosensory receptor proteins. Although our understanding of the molecular genetic basis for Drosophila chemoreception has increased enormously in the last decade, similar understanding in other insects remains limited. The tobacco hornworm, Manduca sexta, has long been an important model for insect chemosensation, particularly from ecological, behavioral, and physiological standpoints. It is also a major agricultural pest on solanaceous crops. However, little sequence information and lack of genetic tools has prevented molecular genetic analysis in this species. The ability to connect molecular genetic mechanisms, including potential lineage-specific changes in chemosensory genes, to ecologically relevant behaviors and specializations in M. sexta would be greatly beneficial. Results Here, we sequenced transcriptomes from adult and larval chemosensory tissues and identified chemosensory genes based on sequence homology. We also used dsRNA feeding as a method to induce RNA interference in larval chemosensory tissues. Conclusions We report identification of new chemosensory receptor genes including 17 novel odorant receptors and one novel gustatory receptor. Further, we demonstrate that systemic RNA interference can be used in larval olfactory neurons to reduce expression of chemosensory receptor transcripts. Together, our results further the development of M. sexta as a model for functional analysis of insect chemosensation. PMID:22646846

  11. Molecular evolution of the odorant and gustatory receptor genes in lepidopteran insects: implications for their adaptation and speciation.

    PubMed

    Engsontia, Patamarerk; Sangket, Unitsa; Chotigeat, Wilaiwan; Satasook, Chutamas

    2014-08-01

    Lepidoptera (comprised of butterflies and moths) is one of the largest groups of insects, including more than 160,000 described species. Chemoreception plays important roles in the adaptation of these species to a wide range of niches, e.g., plant hosts, egg-laying sites, and mates. This study investigated the molecular evolution of the lepidopteran odorant (Or) and gustatory receptor (Gr) genes using recently identified genes from Bombyx mori, Danaus plexippus, Heliconius melpomene, Plutella xylostella, Heliothis virescens, Manduca sexta, Cydia pomonella, and Spodoptera littoralis. A limited number of cases of large lineage-specific gene expansion are observed (except in the P. xylostella lineage), possibly due to selection against tandem gene duplication. There has been strong purifying selection during the evolution of both lepidopteran odorant and gustatory genes, as shown by the low ? values estimated through CodeML analysis, ranging from 0.0093 to 0.3926. However, purifying selection has been relaxed on some amino acid sites in these receptors, leading to sequence divergence, which is a precursor of positive selection on these sequences. Signatures of positive selection were detected only in a few loci from the lineage-specific analysis. Estimation of gene gains and losses suggests that the common ancestor of the Lepidoptera had fewer Or genes compared to extant species and an even more reduced number of Gr genes, particularly within the bitter receptor clade. Multiple gene gains and a few gene losses occurred during the evolution of Lepidoptera. Gene family expansion may be associated with the adaptation of lepidopteran species to plant hosts, especially after angiosperm radiation. Phylogenetic analysis of the moth sex pheromone receptor genes suggested that chromosomal translocations have occurred several times. New sex pheromone receptors have arisen through tandem gene duplication. Positive selection was detected at some amino acid sites predicted to be in the extracellular and transmembrane regions of the newly duplicated genes, which might be associated with the evolution of the new pheromone receptors. PMID:25038840

  12. Human dopamine D4 receptor gene: frequent occurrence of a null allele and observation of homozygosity.

    PubMed

    Nöthen, M M; Cichon, S; Hemmer, S; Hebebrand, J; Remschmidt, H; Lehmkuhl, G; Poustka, F; Schmidt, M; Catalano, M; Fimmers, R

    1994-12-01

    We report a null mutation in the first exon of the human dopamine D4 receptor (DRD4) gene. The mutation is predicted to result in a truncated non-functional protein and is the first natural nonsense mutation found in a human dopamine receptor gene. It occurs with a frequency of about 2% in the general population. The distribution of the mutation was found to be similar in healthy controls and patients suffering from psychiatric diseases which included schizophrenia, bipolar affective disorder and Tourette's syndrome, indicating that heterozygosity for this mutation in the DRD4 gene is not causally related to major psychiatric diseases. We also identified an adult male who is homozygous for this mutation. He shows no symptoms of major psychiatric illness, but he displays somatic ailments including acousticous neurinoma, obesity and some disturbances of the autonomic nervous system. Some of these symptoms might be related to the absence of functional DRD4 protein. PMID:7881421

  13. Characterization of the human peroxisome proliferator activated receptor delta gene and its expression.

    PubMed

    Skogsberg, J; Kannisto, K; Roshani, L; Gagne, E; Hamsten, A; Larsson, C; Ehrenborg, E

    2000-07-01

    Peroxisome proliferator activated receptors (PPARs) are nuclear receptors regulating the expression of genes involved in lipid and glucose metabolism. Three different PPARs; alpha (PPARA), gamma (PPARG) and delta (PPARD) have been characterized and they are distinguished from each other by tissue distribution and cell activation. In this study, the structure and detailed chromosomal localization of the human PPARD gene was determined. Three genomic clones containing the PPARD gene was isolated from a human P1 library. The gene spans approximately 85 kb of DNA and consists of 9 exons and 8 introns with exons ranging in size from 84 bp to 2.3 kb and introns ranging from 180 bp to 50 kb. All splice acceptor and donor sites conform to the consensus sequences including the AG-GT motif. Although PPARD lacks a TATA box, the gene is transcribed from a unique start site located 380 bp upstream of the ATG initiation codon. The 5' and 3' ends were mapped by rapid amplification of cDNA ends and the mRNA size of PPARD based upon the structure of the gene is 3803 bp. In addition, the chromosomal sublocalization of PPARD was determined by radiation hybrid mapping. The PPARD gene is located at 14 cR from the colipase gene and 15 cR from the serine kinase gene at chromosomal region 6p21.2. PMID:10851270

  14. Characterisation of the legume SERK-NIK gene superfamily including splice variants: Implications for development and defence

    PubMed Central

    2011-01-01

    Background SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) genes are part of the regulation of diverse signalling events in plants. Current evidence shows SERK proteins function both in developmental and defence signalling pathways, which occur in response to both peptide and steroid ligands. SERKs are generally present as small gene families in plants, with five SERK genes in Arabidopsis. Knowledge gained primarily through work on Arabidopsis SERKs indicates that these proteins probably interact with a wide range of other receptor kinases and form a fundamental part of many essential signalling pathways. The SERK1 gene of the model legume, Medicago truncatula functions in somatic and zygotic embryogenesis, and during many phases of plant development, including nodule and lateral root formation. However, other SERK genes in M. truncatula and other legumes are largely unidentified and their functions unknown. Results To aid the understanding of signalling pathways in M. truncatula, we have identified and annotated the SERK genes in this species. Using degenerate PCR and database mining, eight more SERK-like genes have been identified and these have been shown to be expressed. The amplification and sequencing of several different PCR products from one of these genes is consistent with the presence of splice variants. Four of the eight additional genes identified are upregulated in cultured leaf tissue grown on embryogenic medium. The sequence information obtained from M. truncatula was used to identify SERK family genes in the recently sequenced soybean (Glycine max) genome. Conclusions A total of nine SERK or SERK-like genes have been identified in M. truncatula and potentially 17 in soybean. Five M. truncatula SERK genes arose from duplication events not evident in soybean and Lotus. The presence of splice variants has not been previously reported in a SERK gene. Upregulation of four newly identified SERK genes (in addition to the previously described MtSERK1) in embryogenic tissue cultures suggests these genes also play a role in the process of somatic embryogenesis. The phylogenetic relationship of members of the SERK gene family to closely related genes, and to development and defence function is discussed. PMID:21385462

  15. Oncogenic epidermal growth factor receptor mutants with tandem duplication: gene structure and effects on receptor function

    Microsoft Academic Search

    Michael J Ciesielski; Robert A Fenstermaker

    2000-01-01

    A number of epidermal growth factor receptor (EGFR) deletion mutants have been identified in gliomas, in which the EGFR gene is frequently amplified and rearranged. We have previously characterized the structure of a gene in A-172 human glioma cells that encodes a 190-kDa EGFR mutant with tandem duplication of the tyrosine kinase (TK) and calcium-mediated internalization (CAIN) domains. Here we

  16. Structure and chromosomal localization of the gene (BDKRB2) encoding human bradykinin B{sub 2} receptor

    SciTech Connect

    Jian-Xing Ma; Dan-Zhao Wang; Limei Chen [Medical Univ. of South Carolina, Charleston, SC (United States)] [and others

    1994-09-15

    The bradykinin B{sub 2} receptor (BDKRB2) has high affinity for the intact kinins, which mediate a wide spectrum of biological effects, including pain, inflammation, vasodilation, and smooth muscle contraction and relaxation. In the present study, the authors have cloned and sequenced the gene encoding human bradykinin B{sub 2} receptor from a human genomic library. The B{sub 2} receptor gene contains three exons separated by two introns. The first and second exons are noncoding, while the third exon contains the full-length coding region, which encodes a protein of 364 amino acids forming 7 transmembrane domains. The human B{sub 2} gene shares high sequence identity with rat and mouse B{sub 2} receptor genes and significant similarity with the gene encoding the angiotensin II type I receptor in the nucleotide sequence and exon-intron arrangement. In the 5` flanking region, a consensus TATA box and several putative transcription factor-binding sites have been identified. Genomic Southern blot analysis showed that the B{sub 2} receptor is encoded by a single-copy gene that was localized to chromosome 14q32 by in situ hybridization. In a Southern blot analysis following reverse transcription and polymerase chain reaction, the human B{sub 2} receptor was found to be expressed in most human tissues. 30 refs., 7 figs.

  17. Symptoms of Attention-Deficit/Hyperactivity Disorder in Down Syndrome: Effects of the Dopamine Receptor D4 Gene

    ERIC Educational Resources Information Center

    Mason, Gina Marie; Spanó, Goffredina; Edgin, Jamie

    2015-01-01

    This study examined individual differences in ADHD symptoms and executive function (EF) in children with Down syndrome (DS) in relation to the dopamine receptor D4 (DRD4) gene, a gene often linked to ADHD in people without DS. Participants included 68 individuals with DS (7-21 years), assessed through laboratory tasks, caregiver reports, and…

  18. A two-hybrid yeast assay to quantify the effects of xenobiotics on retinoid X receptor-mediated gene expression

    Microsoft Academic Search

    Jian Li; Mei Ma; Zijian Wang

    2008-01-01

    The aim of this study is to investigate the chemical retinoic acid (RA) disruption at the level of retinoid X receptor (RXR) functioning. This assay makes use of recombined human RXR gene and reporter gene yeast, which specifically expresses ?-galactosidase when incubated with exogenous 9-cis retinoic acid (9-cis RA). Agonistic and antagonistic actions of chemicals including a series of phenols,

  19. Intravenous RNA Interference Gene Therapy Targeting the Human Epidermal Growth Factor Receptor Prolongs Survival in Intracranial Brain Cancer

    Microsoft Academic Search

    Yun Zhang; Yu-feng Zhang; Joshua Bryant; Andrew Charles; Ruben J. Boado; William M. Pardridge

    2004-01-01

    Purpose: The human epidermal growth factor receptor (EGFR) plays an oncogenic role in solid cancer, including brain cancer. The present study was designed to prolong survival in mice with intracranial human brain cancer with the weekly i.v. injection of nonviral gene therapy causing RNA interference (RNAi) of EGFR gene expression. Experimental Design: Human U87 gliomas were im- planted in the

  20. Diverse range of gene activity during Arabidopsis thaliana leaf senescence includes pathogen-independent induction of defense-related genes

    Microsoft Academic Search

    Betania F. Quirino; Jennifer Normanly; Richard M. Amasino

    1999-01-01

    To determine the range of gene activities associated with leaf senescence, we have identified genes that show preferential transcript accumulation during this developmental stage. The mRNA levels of a diverse array of gene products increases during leaf senescence, including a protease, a ribosomal protein, two cinnamyl alcohol dehydrogenases, a nitrilase and glyoxalase II. Two of the genes identified are known

  1. Folate receptor gene variants and neural tube defect occurrence

    SciTech Connect

    Finnell, R.; Greer, K. [Texas A& M Univ., College Station, TX (United States); Lammer, E. [Stanford Univ., Palo Alto, CA (United States)] [and others

    1994-09-01

    Recent epidemiological evidence shows that periconceptional use of folic acid supplements may prevent 40-50% of neural tube defects (NTDs). The FDA has subsequently recommended folic acid supplementation of all women of childbearing potential, even though the mechanism by which folic acid prevents NTDs is unknown. We investigated genetic variation of a candidate gene, the 5-methyltetrahydrofolate (5-MeTHF) receptor, that may mediate this preventive effect. The receptor concentrates folate within cells and we have localized its mRNA to neuroepithelial cells during neurulation. Our hypothesis is that dysfunctional 5-MeTHF receptors inadequately concentrate folate intracellularly, predisposing infants to NTDs. We have completed SSCP analysis on 3 of the 4 coding exons of the 5-MeTHF receptor gene of 474 infants participating in a large population-based epidemiological case-control study of NTDs in California; genotyping of another 500 infants is ongoing. Genomic DNA was extracted from residual blood spots from newborn screening samples of cases and controls. Genotyping was done blinded to case status. Polymorphisms have been detected for exons 4 and 5; fourteen percent of the infants have exon 5 polymorphisms. Data will be presented on the prevalence of 5-MeTHF receptor polymorphisms among cases and controls. Relationships among the polymorphisms and NTD occurrence may shed light on how folic acid supplementation prevents NTDs.

  2. Association of estrogen receptor gene polymorphisms with endometriosis

    Microsoft Academic Search

    Ioannis Georgiou; Maria Syrrou; Ioanna Bouba; Nikolaos Dalkalitsis; Minas Paschopoulos; Iordanis Navrozoglou; Dimitrios Lolis

    1999-01-01

    Objective: To explore the association of the estrogen receptor two-allele (point) polymorphism and multiallele (microsatellite) polymorphism with endometriosis.Design: Case-control study.Setting: Genetics and Endoscopy Unit, Department of Obstetrics and Gynecology, Ioannina University Hospital, Ioannina, Greece.Patient(s): Fifty-seven women with surgically and histologically diagnosed endometriosis of stages I–IV.Intervention(s): Diagnostic laparoscopy.Main Outcome Measure(s): Frequency and distribution of the estrogen receptor gene polymorphisms.Result(s): There was

  3. Genes responsive to both oxidant stress and loss of estrogen receptor function identify a poor prognosis group of estrogen receptor positive primary breast cancers

    Microsoft Academic Search

    Christina Yau; Christopher C Benz

    2008-01-01

    INTRODUCTION: Oxidative stress can modify estrogen receptor (ER) structure and function, including induction of progesterone receptor (PR), altering the biology and clinical behavior of endocrine responsive (ER-positive) breast cancer. METHODS: To investigate the impact of oxidative stress on estrogen\\/ER-regulated gene expression, RNA was extracted from ER-positive\\/PR-positive MCF7 breast cancer cells after 72 hours of estrogen deprivation, small-interfering RNA knockdown of

  4. Genetic screening for pheochromocytoma: should SDHC gene analysis be included?

    PubMed Central

    Mannelli, M; Ercolino, T; Giachč, V; Simi, L; Cirami, C; Parenti, G

    2007-01-01

    PGL3 syndrome is caused by mutations in the SDHC gene. At present, only a few families affected by SDHC mutations have been reported in the literature and in each of them the clinical presentation was characterised by paragangliomas located only in the head and neck regions. No evidence of thoracic or abdominal catecholamine?secreting chromaffin tumours has been reported to date. We report the case of a 15?year?old girl with hypertension and a norepinephrine?secreting abdominal paraganglioma who was found to harbour a novel nonsense SDHC mutation, demonstrating that the clinical presentation of PGL3 syndrome can be more diverse than expected. PMID:17557926

  5. Functional characterization of bursicon receptor and genome-wide analysis for identification of genes affected by bursicon receptor RNAi

    Microsoft Academic Search

    Hua Bai; Subba R. Palli

    2010-01-01

    Bursicon is an insect neuropeptide hormone that is secreted from the central nervous system into the hemolymph and initiates cuticle tanning. The receptor for bursicon is encoded by the rickets (rk) gene and belongs to the G protein-coupled receptor (GPCR) superfamily. The bursicon and its receptor regulate cuticle tanning as well as wing expansion after adult eclosion. However, the molecular

  6. Effect of ecdysone receptor gene switch ligands on endogenous gene expression in 293 cells.

    PubMed

    Panguluri, Siva K; Li, Bing; Hormann, Robert E; Palli, Subba R

    2007-11-01

    Regulated gene expression may substantially enhance gene therapy. Correlated with structural differences between insect ecdysteroids and mammalian steroids, the ecdysteroids appear to have a benign pharmacology without adversely interfering with mammalian signaling systems. Consequently, the ecdysone receptor-based gene switches are attractive for application in medicine. In the present study, the effect of inducers of ecdysone receptor switches on the expression of endogenous genes in HEK 293 cells was determined. Four ligand chemotypes, represented by a tetrahydroquinoline (RG-120499), one amidoketone (RG-121150), two ecdysteroids [20-hydroxyecdysone (20E) and ponasterone A (Pon A)], and four diacylhydrazines (RG-102240, RG-102277, RG-102398 and RG-100864), were tested in HEK 293 cells. The cells were exposed to ligands at concentrations of 1 microm (RG-120499) or 10 microm (all others) for 72 h and the total RNA was isolated and analyzed using microarrays. Microarray data showed that the tetrahydroquinoline ligand, RG-120499 caused cell death at concentrations > or = 10 microm. At 1 microm, this ligand caused changes in the expression of genes such as TNF, MAF, Rab and Reprimo. At 10 microm, the amidoketone, RG-121150, induced changes in the expression of genes such as v-jun, FBJ and EGR, but was otherwise noninterfering. Of the two steroids tested, 20E did not affect gene expression, but Pon A caused some changes in the expression of endogenous genes. At lower concentrations pharmacologically relevant for gene therapy, intrinsic gene expression effects of ecdysteroids and amidoketones may actually be insignificant. A fortiori, even at 10 microm, the four diacylhydrazine ligands did not cause significant changes in expression of endogenous genes in 293 cells and therefore should have minimum pleiotropic effects when used as ligands for the ecdysone receptor gene switch. PMID:17922837

  7. Ron receptor-dependent gene regulation of Kupffer cells during endotoxemia

    PubMed Central

    Kulkarni, Rishikesh M.; Stuart, William D.; Waltz, Susan E.

    2014-01-01

    Background We have previously shown that Ron receptor tyrosine kinase signaling in macrophages, including Kupffer cells and alveolar macrophages, suppresses endotoxin-induced proinflammatory chemokine/cytokine production. Further, we have also identified genes from Ron replete and Ron deplete livers that were differentially expressed during the progression of liver inflammation associated with acute liver failure in mice by microarray analyses. While important genes and signaling pathways have been identified downstream of Ron signaling during progression of inflammation by this approach, the precise role that Ron receptor plays in regulating the transcriptional landscape in macrophages, and particular in isolated Kupffer cells, has still not been investigated. Methods Kupffer cells were isolated from wild-type (TK+/+) and Ron tyrosine kinase (TK?/?) deficient mice. Ex vivo, the cells were treated with lipopolysaccharide (LPS) in the presence or absence of the Ron ligand, Hepatocyte growth factor-like protein (HGFL). Microarray and qRT-PCR analyses were utilized to identify alterations in gene expression between genotypes. Results Microarray analyses identified genes expressed differentially in TK+/+ and TK?/? Kupffer cells basally as well as after HGFL and LPS treatment. Interestingly, our studies identified Mefv, a gene that codes for the anti-inflammatory protein pyrin, as an HGFL-stimulated Ron-dependent gene. Moreover, Lcn2 (Lipocalin 2), a proinflammatory gene, which is induced by LPS, was significantly suppressed by HGFL treatment. Microarray results were validated by qRT-PCR studies on Kupffer cells treated with LPS and HGFL. Conclusions The studies herein suggest a novel mechanism whereby HGFL-induced Ron receptor activation promotes the expression of anti-inflammatory genes while inhibiting genes involved in inflammation with a net effect of diminished inflammation in macrophages. PMID:24919612

  8. Dopamine D2 receptor gene expression in human adenohypophysial adenomas

    Microsoft Academic Search

    Lucia Stefaneanu; Kalman Kovacs; Eva Horvath; Michael Buchfelder; Rudolf Fahlbusch; Ioana Lancranjan

    2001-01-01

    The inhibitory effects of dopamine on adenohypophysial cells are mediated via dopamine subtype 2 receptor (D2R). Dopamine\\u000a agonists inhibit hormone release and induce tumor shrinkage in most prolactin-secreting adenomas, whereas in other adenoma\\u000a types such effects are sporadic. We investigated D2R gene expression by in situ hybridization (ISH) and immunocytochemistry in different types of pituitary adenomas. By ISH, a variable

  9. Folate receptor gene variants and neural tube defect occurrence

    Microsoft Academic Search

    R. Finnell; K. Greer; E. Lammer

    1994-01-01

    Recent epidemiological evidence shows that periconceptional use of folic acid supplements may prevent 40-50% of neural tube defects (NTDs). The FDA has subsequently recommended folic acid supplementation of all women of childbearing potential, even though the mechanism by which folic acid prevents NTDs is unknown. We investigated genetic variation of a candidate gene, the 5-methyltetrahydrofolate (5-MeTHF) receptor, that may mediate

  10. Nutritional regulation of growth hormone receptor gene expression

    Microsoft Academic Search

    M. J. DAUNCEY; K. A. BURTON; P. WHITE; A. P. HARRISON; R. S. GILMOUR; C. DUCHAMP

    The role of energy intake in regulating growth hormone receptor (GHR) gene expression has been assessed in young growing pigs living at thermal neutrality (26#{176}C) for a 4-wk period. To determine the im- portance of altering metabolic demand while maintain- ing food intake constant, littermates were also studied in a cold environment (10#{176}C). Results were tissue-specific: the level of GHR

  11. ?-Adrenergic Receptor Gene Polymorphisms and ?-Blocker Treatment Outcomes in Hypertension

    Microsoft Academic Search

    MA Pacanowski; Y Gong; RM Cooper-DeHoff; NJ Schork; TY Langaee; CJ Pepine; JA Johnson

    2008-01-01

    Numerous studies have demonstrated that ?1- and ?2-adrenergic receptor gene (ADRB1 and ADRB2) variants influence cardiovascular risk and ?-blocker responses in hypertension and heart failure. We evaluated the relationship between ADRB1 and ADRB2 haplotypes, cardiovascular risk (death, nonfatal myocardial infarction (MI), and nonfatal stroke), and atenolol-based vs. verapamil sustained-release (SR)-based antihypertensive therapy in 5,895 coronary artery disease (CAD) patients. After

  12. Neuropeptide S Receptor 1: an Asthma Susceptibility Gene

    Microsoft Academic Search

    Juha Kere

    The positional cloning of Neuropeptide S receptor (NPSR1) as an asthma susceptibility gene highlighted the notion that many\\u000a relevant disease pathways may have remained undiscovered until recently. Robust replications of the genetic effect of NPSR1\\u000a in asthma have paved a way for interaction studies. In a rapid pace, knowledge has been accumulated of the ligand and its\\u000a pharmacology as well

  13. Characterization of Fpr-rs8, an Atypical Member of the Mouse Formyl Peptide Receptor Gene Family

    Microsoft Academic Search

    H. Lee Tiffany; Ji-Liang Gao; Ester Roffe; Joan M. G. Sechler; Philip M. Murphy

    2011-01-01

    The formyl peptide receptor gene family encodes G protein-coupled receptors for phagocyte chemoattractants, including bacteria- and mitochondria-derived N-formylpeptides. The human family has 3 functional genes, whereas the mouse family has 7 functional genes and 2 possible pseudogenes (?Fpr-rs2 and ?Fpr-rs3). Here we characterize ?Fpr-rs2, a duplication of Fpr-rs2. Compared to Fpr-rs2, the ?Fpr-rs2 ORF is 186 nucleotides shorter but 98%

  14. BRIEF REPORT: Ghrelin receptor gene polymorphisms and body size in children and adults

    E-print Network

    Paris-Sud XI, Université de

    Page 1 BRIEF REPORT: Ghrelin receptor gene polymorphisms and body size in children and adults Medicine, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK Key Words: ghrelin, ghrelin receptor type 1a gene (GHSR) encodes the cognate receptor of ghrelin, a gut hormone that regulates food

  15. Ghrelin receptor gene polymorphisms and body size in children and adults Garcia Edwin A. 1 ,*

    E-print Network

    Paris-Sud XI, Université de

    Ghrelin receptor gene polymorphisms and body size in children and adults Garcia Edwin A. 1 the cognate receptor of ghrelin, a gut hormone that regulatesGHSR food intake and pituitary growth hormone adults or children.GHSR Author Keywords ghrelin ; ghrelin receptor ; body mass index ; gene ; growth

  16. The oxytocin receptor gene and social perception.

    PubMed

    Melchers, Martin; Montag, Christian; Felten, Andrea; Reuter, Martin

    2015-08-01

    Social perception is an important prerequisite for successful social interaction, because it helps to gain information about behaviors, thoughts, and feelings of interaction partners. Previous pharmacological studies have emphasized the relevance of the oxytocin system for social perception abilities, while knowledge on genetic contributions is still scarce. In the endeavor to fill this gap in the literature, the current study searches for associations between participants' social perception abilities as measured by the interpersonal perception task (IPT) and the rs2268498 polymorphism on the OXTR-gene, which has repeatedly been linked to processes relevant to social functioning. N = 105 healthy participants were experimentally tested with the IPT and genotyped for the rs2268498 polymorphism. T-allele carriers (TT and TC genotypes) exhibited significantly better performance in the IPT than carriers of the CC-genotype. This difference was also significant for the subscales measuring the strength of social bonding (kinship and intimacy). As in previous studies, T-allele carriers exhibited better performance in measures of social processing indicating that the rs2268498 polymorphism is an important candidate for understanding the genetic basis of social functioning. PMID:25646574

  17. Plant Receptor-Like Kinase Gene Family: Diversity, Function, and Signaling

    NSDL National Science Digital Library

    Shin-Han Shiu (University of Wisconsin-Madison; The Department of Botany REV)

    2001-12-18

    A basic feature of all biological systems is the ability to sense and process information from chemical signals via cell-surface receptors. One prevalent class of receptors in both plants and animals is the receptor protein kinases. These proteins contain a signal-binding region located outside the cell linked to a region inside the cell called the protein kinase domain. The protein kinase domain transmits information to other cellular components by catalyzing the transfer of a phosphate group from adenosine triphosphate (ATP) to an amino acid residue on the target proteins. In animals and humans, the well-studied family of receptor tyrosine kinases (RTKs) mediates a wide range of signaling events at the cell surface. The importance of receptor protein kinases in plant biology was revealed by the discovery of a family of more than 400 genes coding for receptor-like kinases (RLKs) present in the recently sequenced genome of the model plant Arabidopsis. Unlike most animal RTKs, the plant RLKs use serine and threonine residues in proteins as targets for phosphorylation. Detailed studies of a handful of plant RLK genes have implicated them in the control of plant growth and development and in responses to pathogens. Multiple signals can be sensed by different RLKs, including peptides produced by neighboring cells, steroid hormones, and pathogen cell-wall proteins and carbohydrates. Major challenges for the future will include understanding the wide range of specific signaling functions performed by this large family of receptors and discovering how the information from this multitude of signal initiation points is integrated by the plant's cells.

  18. The low-density lipoprotein receptor gene family: a cellular Swiss army knife?

    Microsoft Academic Search

    Anders Nykjaer; Thomas E. Willnow

    2002-01-01

    The low-density lipoprotein receptor gene family is an evolutionarily conserved group of cell-surface receptors produced by mammals and other organisms. Initially thought to be endocytic receptors that mediate the uptake of lipoproteins, recent findings have shown that these receptors have other roles in a range of cellular processes. Among other activities, members of this family act as signal transducers in

  19. Amplification of small molecule-inducible gene expression via tuning of intracellular receptor densities

    PubMed Central

    Wang, Baojun; Barahona, Mauricio; Buck, Martin

    2015-01-01

    Ligand-responsive transcription factors in prokaryotes found simple small molecule-inducible gene expression systems. These have been extensively used for regulated protein production and associated biosynthesis of fine chemicals. However, the promoter and protein engineering approaches traditionally used often pose significant restrictions to predictably and rapidly tune the expression profiles of inducible expression systems. Here, we present a new unified and rational tuning method to amplify the sensitivity and dynamic ranges of versatile small molecule-inducible expression systems. We employ a systematic variation of the concentration of intracellular receptors for transcriptional control. We show that a low density of the repressor receptor (e.g. TetR and ArsR) in the cell can significantly increase the sensitivity and dynamic range, whereas a high activator receptor (e.g. LuxR) density achieves the same outcome. The intracellular concentration of receptors can be tuned in both discrete and continuous modes by adjusting the strength of their cognate driving promoters. We exemplified this approach in several synthetic receptor-mediated sensing circuits, including a tunable cell-based arsenic sensor. The approach offers a new paradigm to predictably tune and amplify ligand-responsive gene expression with potential applications in synthetic biology and industrial biotechnology. PMID:25589545

  20. A polymorphism in the oestrogen receptor gene explains covariance between digit ratio and mating behaviour

    PubMed Central

    Forstmeier, Wolfgang; Mueller, Jakob C.; Kempenaers, Bart

    2010-01-01

    In vertebrates, including humans, the relative length of the second to the fourth digit correlates with sex hormone-dependent behavioural, psychological and physiological traits. However, despite a decade of research, the underlying mechanism linking digit ratio to these sex hormone-dependent traits remains unclear. Previous work suggests that during embryo development, circulating levels of plasma androgens or oestrogens may act through their receptors to affect transcription levels of posterior HOX genes in the developing digits, thereby possibly influencing their relative length. The correlation between digit ratio and sex hormone-dependent traits might thus stem from variation in expression or sensitivity of the sex hormone receptors, or from variation in sex hormone levels in the embryo. Here, we show that in a population of 1156 zebra finches Taeniopygia guttata, a polymorphism in the oestrogen receptor ? gene (ESR1) explains 11.3 per cent of the variation in digit ratio, and is also associated with male and female-mating behaviour. By contrast, we found no associations between digit ratio or mating behaviours and polymorphisms in the androgen receptor gene. Thus, our results (i) provide an explanation for the observed significant genetic covariance between digit ratio and male and female mating behaviour and (ii) strongly confirm the indicator function of digit ratio through the oestrogen pathway. Finally, we note that the commonly invoked effect of foetal testosterone on human digit ratio seems to be substantially weaker than the effect described here. PMID:20534613

  1. Ligand-based gene expression profiling reveals novel roles of glucocorticoid receptor in cardiac metabolism.

    PubMed

    Yoshikawa, Noritada; Nagasaki, Masao; Sano, Motoaki; Tokudome, Satori; Ueno, Kazuko; Shimizu, Noriaki; Imoto, Seiya; Miyano, Satoru; Suematsu, Makoto; Fukuda, Keiichi; Morimoto, Chikao; Tanaka, Hirotoshi

    2009-06-01

    Recent studies have documented various roles of adrenal corticosteroid signaling in cardiac physiology and pathophysiology. It is known that glucocorticoids and aldosterone are able to bind glucocorticoid receptor (GR) and mineralocorticoid receptor, and these ligand-receptor interactions are redundant. It, therefore, has been impossible to delineate how these nuclear receptors couple with corticosteroid ligands and differentially regulate gene expression for operation of their distinct functions in the heart. Here, to particularly define the role of GR in cardiac muscle cells, we applied a ligand-based approach involving the GR-specific agonist cortivazol (CVZ) and the GR antagonist RU-486 and performed microarray analysis using rat neonatal cardiomyocytes. We indicated that glucocorticoids appear to be a major determinant of GR-mediated gene expression when compared with aldosterone. Moreover, expression profiles of these genes highlighted numerous roles of glucocorticoids in various aspects of cardiac physiology. At first, we identified that glucocorticoids, via GR, induce mRNA and protein expression of a transcription factor Kruppel-like factor 15 and its downstream target genes, including branched-chain aminotransferase 2, a key enzyme for amino acid catabolism in the muscle. CVZ treatment or overexpression of KLF15 decreased cellular branched-chain amino acid concentrations and introduction of small-interfering RNA against KLF15 cancelled these CVZ actions in cardiomyocytes. Second, glucocorticoid-GR signaling promoted gene expression of the enzymes involved in the prostaglandin biosynthesis, including cyclooxygenase-2 and phospholipase A2 in cardiomyocytes. Together, we may conclude that GR signaling should have distinct roles for maintenance of cardiac function, for example, in amino acid catabolism and prostaglandin biosynthesis in the heart. PMID:19293335

  2. Perilipin, a critical regulator of fat storage and breakdown, is a target gene of estrogen receptor-related receptor {alpha}

    SciTech Connect

    Akter, Mst. Hasina; Yamaguchi, Tomohiro; Hirose, Fumiko [Graduate School of Life Science, Himeji Institute of Technology, University of Hyogo, 3-2-1 Koto, Kamigori, Hyogo 678-1297 (Japan); Osumi, Takashi [Graduate School of Life Science, Himeji Institute of Technology, University of Hyogo, 3-2-1 Koto, Kamigori, Hyogo 678-1297 (Japan)], E-mail: osumi@sci.u-hyogo.ac.jp

    2008-04-11

    Perilipin is a protein localized on lipid droplet surfaces in adipocytes and steroidogenic cells, playing a central role in regulated lipolysis. Expression of the perilipin gene is markedly induced during adipogenesis. We found that transcription from the perilipin gene promoter is activated by an orphan nuclear receptor, estrogen receptor-related receptor (ERR){alpha}. A response element to this receptor was identified in the promoter region by a gene reporter assay, the electrophoretic-gel mobility-shift assay and the chromatin immunoprecipitation assay. Peroxisome proliferator-activated receptor {gamma} coactivator (PGC)-1{alpha} enhanced, whereas small heterodimer partner (SHP) repressed, the transactivating function of ERR{alpha} on the promoter. Thus, the perilipin gene expression is regulated by a transcriptional network controlling energy metabolism, substantiating the functional importance of perilipin in the maintenance of body energy balance.

  3. Analysis of the murine Dtk gene identifies conservation of genomic structure within a new receptor tyrosine kinase subfamily.

    PubMed

    Lewis, P M; Crosier, K E; Wood, C R; Crosier, P S

    1996-01-01

    The receptor tyrosine kinase Dtk/Tyro 3/Sky/rse/brt/tif is a member of a new subfamily of receptors that also includes Axl/Ufo/Ark and Eyk/Mer. These receptors are characterized by the presence of two immunoglobulin-like loops and two fibronectin type III repeats in their extracellular domains. The structure of the murine Dtk gene has been determined. The gene consists of 21 exons that are distributed over 21 kb of genomic DNA. An isoform of Dtk is generated by differential splicing of exons from the 5' region of the gene. The overall genomic structure of Dtk is virtually identical to that determined for the human UFO gene. This particular genomic organization is likely to have been duplicated and closely maintained throughout evolution. PMID:8808274

  4. Binge Eating as a Major Phenotype of Melanocortin 4 Receptor Gene Mutations

    Microsoft Academic Search

    Ruth Branson; Natascha Potoczna; John G. Kral; Klaus-Ulrich Lentes; Margret R. Hoehe; Fritz F. Horber

    2010-01-01

    background Obesity, a multifactorial disease caused by the interaction of genetic factors with the environment, is largely polygenic. A few mutations in these genes, such as in the leptin receptor ( LEPR ) gene and melanocortin 4 receptor ( MC4R ) gene, have been identified as causes of monogenic obesity. methods We sequenced the complete MC4R coding region, the region

  5. Progesterone receptor A-regulated gene expression in mammary organoid cultures

    PubMed Central

    Santos, Sarah J.; Aupperlee, Mark D.; Xie, Jianwei; Durairaj, Srinivasan; Miksicek, Richard; Conrad, Susan E.; Leipprandt, Jeffrey R.; Tan, Ying S.; Schwartz, Richard C.; Haslam, Sandra Z.

    2009-01-01

    Progesterone, through the progesterone receptor (PR), promotes development of the normal mammary gland and is implicated in the etiology of breast cancer. We identified PRA-regulated genes by microarray analysis of cultured epithelial organoids derived from pubertal and adult mouse mammary glands, developmental stages with differing progesterone responsiveness. Microarray analysis showed significant progestin (R5020)-regulation of 162 genes in pubertal organoids and 104 genes in adult organoids, with 68 genes regulated at both developmental stages. Greater induction of receptor activator of NF?B ligand and calcitonin expression was observed in adult organoids, suggesting possible roles in the differential progesterone responsiveness of the adult and pubertal mammary glands. Analysis of the R5020-responsive transcriptome revealed several enriched biological processes including cell proliferation, adhesion, and survival. R5020 both induced Agtr1 and potentiated angiotensin II-stimulated proliferation, highlighting the functional significance of these processes. Striking up-regulation of genes involved in innate immunity processes included the leukocyte chemoattractants serum amyloid A1, 2 and 3 (Saa1, 2, 3). In vivo analysis revealed that progesterone treatment increased SAA1 protein expression and leukocyte density in mammary gland regions undergoing epithelial expansion. These studies reveal novel targets of PRA in mammary epithelial cells and novel linkages of progesterone action during mammary gland development. PMID:19383543

  6. IgM antigen receptor complex contains phosphoprotein products of B29 and mb-1 genes.

    PubMed Central

    Campbell, K S; Hager, E J; Friedrich, R J; Cambier, J C

    1991-01-01

    Membrane immunoglobulin M (mIgM) and mIgD are major B-lymphocyte antigen receptors, which function by internalizing antigens for processing and presentation to T cells and by transducing essential signals for proliferation and differentiation. Although ligation of mIgM or mIgD results in rapid activation of a phospholipase C and a tyrosine kinase(s), these receptors have cytoplasmic tails of only three amino acid residues (Lys-Val-Lys), which seem ill suited for direct physical coupling with cytoplasmic signal transduction structures. In this report, we identify the alpha, beta, and gamma components of the mIgM-associated phosphoprotein complex, which may play a role in signal transduction. Proteolytic peptide mapping demonstrated that the IgM-alpha chain differs from Ig-beta and Ig-gamma. The chains were purified, and amino-terminal sequencing revealed identity with two previously cloned B-cell-specific genes. One component, IgM-alpha, is a product of the mb-1 gene, and the two additional components, Ig-beta and Ig-gamma, are products of the B29 gene. Immunoblotting analysis using rabbit antibodies prepared against predicted peptide sequences of each gene product confirmed the identification of these mIgM-associated proteins. The deduced sequence indicates that these receptor subunits lack inherent protein kinase domains but include common tyrosine-containing sequence motifs, which are likely sites of induced tyrosine phosphorylation. Images PMID:2023945

  7. Polymorphism and genetic mapping of the human oxytocin receptor gene on chromosome 3

    SciTech Connect

    Michelini, S.; Urbanek, M.; Goldman, D. [National Institute of Health-National Institute of Alcohol Abuse and Alcoholism, Rockville, MD (United States)] [and others

    1995-06-19

    Centrally administered oxytocin has been reported to facilitate affiliative and social behaviors, in functional harmony with its well-known peripheral effects on uterine contraction and milk ejection. The biological effects of oxytocin could be perturbed by mutations occurring in the sequence of the oxytocin receptor gene, and it would be of interest to establish the position of this gene on the human linkage map. Therefore we identified a polymorphism at the human oxytocin receptor gene. A portion of the 3{prime} untranslated region containing a 30 bp CA repeat was amplified by polymerase chain reaction (PCR), revealing a polymorphism with two alleles occurring with frequencies of 0.77 and 0.23 in a sample of Caucasian CEPH parents (n = 70). The CA repeat polymorphism we detected was used to map the human oxytocin receptor to chromosome 3p25-3p26, in a region which contains several important genes, including loci for Von Hippel-Lindau disease (VHL) and renal cell carcinoma. 53 refs., 2 figs., 1 tab.

  8. Tazarotene-Induced Gene 1 (TIG1), a Novel Retinoic Acid Receptor-Responsive Gene in Skin

    Microsoft Academic Search

    Sunil Nagpal; Sheetal Patel; Arisa T. Asano; Alan T. Johnson; Madeleine Duvic; Roshantha A. S. Chandraratna

    1996-01-01

    Retinoids exert their effect through ligand-dependent transcription factors, retinoic acid receptors (RAR&?, ?, and ?) and retinoid X receptor (RXR?, ?, and ?), which belong to the superfamily of steroid\\/ thyroid\\/vitamin D3 nuclear receptors. Using a subtraction hybridization approach, we have identified a cDNA sequence, Tazarotene Induced Gene 1 (TIG1), which is highly upregulated in skin raft cultures by an

  9. Metformin suppresses pregnane X receptor (PXR)-regulated transactivation of CYP3A4 gene.

    PubMed

    Krausova, Lucie; Stejskalova, Lucie; Wang, Hongwei; Vrzal, Radim; Dvorak, Zdenek; Mani, Sridhar; Pavek, Petr

    2011-12-01

    Metformin is widely used in the treatment of type-2 diabetes. The pleotropic effects of metformin on glucose and lipid metabolism have been proposed to be mediated by the activation of AMP-activated protein kinase (AMPK) and the subsequent up-regulation of small heterodimer partner (SHP). SHP suppresses the functions of several nuclear receptors involved in the regulation of hepatic metabolism, including pregnane X receptor (PXR), which is referred to as a "master regulator" of drug/xenobiotic metabolism. In this study, we hypothesize that metformin suppresses the expression of CYP3A4, a main detoxification enzyme and a target gene of PXR, due to SHP up-regulation. We employed various gene reporter assays in cell lines and qRT-PCR in human hepatocytes and in Pxr(-/-) mice. We show that metformin dramatically suppresses PXR-mediated expression of CYP3A4 in hepatocytes. Consistently, metformin significantly suppressed the up-regulation of Cyp3a11 mRNA in the liver and intestine of wild-type mice, but not in Pxr(-/-) mice. A mechanistic investigation of the phenomenon showed that metformin does not significantly up-regulate SHP in human hepatocytes. We further demonstrate that AMPK activation is not involved in this process. We show that metformin disrupts PXR's interaction with steroid receptor coactivator-1 (SRC1) in a two-hybrid assay independently of the PXR ligand binding pocket. Metformin also inhibited vitamin D receptor-, glucocorticoid receptor- and constitutive androstane receptor (CAR)-mediated induction of CYP3A4 mRNA in human hepatocytes. We show, therefore, a suppressive effect of metformin on PXR and other ligand-activated nuclear receptors in transactivation of the main detoxification enzyme CYP3A4 in human hepatocytes. PMID:21920351

  10. Enhancement of gene transactivation activity of androgen receptor by hepatitis B virus X protein

    SciTech Connect

    Zheng Yanyan [Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, 2011 Zonal Avenue, HMR-401, Los Angeles, CA 90033 (United States); Chen Wenling [Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, 2011 Zonal Avenue, HMR-401, Los Angeles, CA 90033 (United States); Ma, W.-L. Maverick [George Whipple Lab for Cancer Research, Department of Pathology, Urology, Radiation Oncology and the Cancer Center, University of Rochester Medical Center, Rochester, NY (United States); Chang Chawnshang [George Whipple Lab for Cancer Research, Department of Pathology, Urology, Radiation Oncology and the Cancer Center, University of Rochester Medical Center, Rochester, NY (United States); Ou, J.-H. James [Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, 2011 Zonal Avenue, HMR-401, Los Angeles, CA 90033 (United States)]. E-mail: jamesou@hsc.usc.edu

    2007-07-05

    Hepatitis B virus (HBV) X protein (HBx) is a regulatory protein that is required for efficient replication of HBV in its natural host. In this report, we demonstrate by co-immunoprecipitation experiments that HBx can physically bind to the androgen receptor (AR), which is a nuclear hormone receptor that is expressed in many different tissues including the liver. This observation is further supported by confocal microscopy, which reveals that HBx can alter the subcellular localization of the AR both in the presence and in the absence of dihydrotestosterone (DHT). Further studies indicate that HBx can enhance the gene transactivation activity of AR by enhancing its DNA binding activity in a DHT-dependent manner. However, HBx does not remain associated with AR on the DNA. As AR can regulate the expression of a number of cellular genes, our results raise the possibility that HBV pathogenesis may be mediated in part via the interaction between HBx and AR.

  11. Identification of Modulators of the Nuclear Receptor Peroxisome Proliferator-Activated Receptor ? (PPAR?) in a Mouse Liver Gene Expression Compendium

    PubMed Central

    Oshida, Keiyu; Vasani, Naresh; Thomas, Russell S.; Applegate, Dawn; Rosen, Mitch; Abbott, Barbara; Lau, Christopher; Guo, Grace; Aleksunes, Lauren M.; Klaassen, Curtis; Corton, J. Christopher

    2015-01-01

    The nuclear receptor family member peroxisome proliferator-activated receptor ? (PPAR?) is activated by therapeutic hypolipidemic drugs and environmentally-relevant chemicals to regulate genes involved in lipid transport and catabolism. Chronic activation of PPAR? in rodents increases liver cancer incidence, whereas suppression of PPAR? activity leads to hepatocellular steatosis. Analytical approaches were developed to identify biosets (i.e., gene expression differences between two conditions) in a genomic database in which PPAR? activity was altered. A gene expression signature of 131 PPAR?-dependent genes was built using microarray profiles from the livers of wild-type and PPAR?-null mice after exposure to three structurally diverse PPAR? activators (WY-14,643, fenofibrate and perfluorohexane sulfonate). A fold-change rank-based test (Running Fisher’s test (p-value ? 10-4)) was used to evaluate the similarity between the PPAR? signature and a test set of 48 and 31 biosets positive or negative, respectively for PPAR? activation; the test resulted in a balanced accuracy of 98%. The signature was then used to identify factors that activate or suppress PPAR? in an annotated mouse liver/primary hepatocyte gene expression compendium of ~1850 biosets. In addition to the expected activation of PPAR? by fibrate drugs, di(2-ethylhexyl) phthalate, and perfluorinated compounds, PPAR? was activated by benzofuran, galactosamine, and TCDD and suppressed by hepatotoxins acetaminophen, lipopolysaccharide, silicon dioxide nanoparticles, and trovafloxacin. Additional factors that activate (fasting, caloric restriction) or suppress (infections) PPAR? were also identified. This study 1) developed methods useful for future screening of environmental chemicals, 2) identified chemicals that activate or suppress PPAR?, and 3) identified factors including diets and infections that modulate PPAR? activity and would be hypothesized to affect chemical-induced PPAR? activity. PMID:25689681

  12. Evolution and the molecular basis of somatic hypermutation of antigen receptor genes.

    PubMed Central

    Diaz, M; Flajnik, M F; Klinman, N

    2001-01-01

    Somatic hypermutation of immunoglobulin genes occurs in many vertebrates including sharks, frogs, camels, humans and mice. Similarities among species reveal a common mechanism and these include the AGC/T sequence hot spot, preponderance of base substitutions, a bias towards transitions and strand bias. There are some differences among species, however, that may unveil layers of the mechanism. These include a G:C bias in frog and shark IgM but not in nurse shark antigen receptor (NAR), a high frequency of doublets in NAR hypermutation, and the co-occurrence of somatic hypermutation with gene conversion in some species. Here we argue that some of the similarities and differences among species are best explained by error-prone DNA synthesis by the translesion synthesis DNA polymerase zeta (Pol zeta) and, as suggested by others, induction of DNA synthesis by DNA breaks in antigen receptor variable genes. Finally, targeting of the variable genes is probably obtained via transcription-related elements, and it is the targeting phase of somatic hypermutation that is the most likely to reveal molecules unique to adaptive immunity. PMID:11205333

  13. Human T-cell receptor variable gene segment families

    SciTech Connect

    Arden, B.; Kabelitz, D. [Paul-Ehrlich-Inst., Langen (Germany); Clark, S.P. [Amgen Center, Thousand Oaks, CA (United States); Mak, T.W. [Imgen Inst., Toronto, Ontario (Canada)

    1995-10-01

    Multiple DNA and protein sequence alignments have been constructed for the human T-cell receptor {alpha}/{delta}, {beta}, and {gamma} (TCRA/D, B, and G) variable (V) gene segments. The traditional classification into subfamilies was confirmed using a much larger pool of sequences. For each sequence, a name was derived which complies with the standard nomenclature. The traditional numbering of V gene segments in the order of their discovery was continued and changed when in conflict with names of other segments. By discriminating between alleles at the same locus versus genes from different loci, we were able to reduce the number of more than 150 different TCRBV sequences in the database to a repertoire of only 47 functional TCRBV gene segments. An extension of this analysis to the over 100 TCRAV sequences results in a predicted repertoire of 42 functional TCRAV gene segments. Our alignment revealed two residues that distinguish between the highly homologous V{delta} and V{alpha}, one at a site that in V{sub H} contacts the constant region, the other at the interface between immunoglobulin V{sub H} and V{sub L}. This site may be responsible for restricted pairing between certain V{delta} and V{gamma} chains. On the other hand, V{beta} and V{gamma} appear to be related by the fact that their CDR2 length is increased by four residues as compared with that of V{alpha}/{delta} peptides. 150 refs., 12 figs., 5 tabs.

  14. Bcl1 polymorphism of glucocorticoids receptor gene and bronchial asthma.

    PubMed

    Kmyta, V; Orlovskyi, V; Prystupa, L; Prystupa, E

    2015-03-01

    The aim of our study was to investigate frequencies of alleles and genotypes of Bcl1 GR gene polymorphism and their correlation with prevalence of BA. Study involved 188 patients with BA and 95 healthy individuals. Bcl1 (rs41423247) polymorphism in exon 2 was determined by means of polymerase chain reaction with subsequent RFLP analysis (restriction fragment length polymorphism) by Fleury I. et al. with modifications. Statistical analysis of the results was performed using SPSS-17 program. The results showed statistically significant differences in genotypes distribution of BclI polymorphism of GR gene in the control group and in patients with BA. The frequency of genotypes distribution of Bcl1 polymorphism of GR gene in controls: C/C, C/G, G/G - 0,421/ 0,453/0,126; in patients with bronchial asthma: 0.228/0.426/0.346, respectively (p=0.001). It was found out that G/G-homozygotes have a fivefold higher risk of BA than those homozygous for C/C regardless of gender. We demonstrated that BA risk in females, homozygous for the minor allele, is higher (p=0.016) and men with G/G genotype of Bcl1 GR gene polymorphism have the highest risk of BA. Thus, G/G genotype of Bcl1 polymorphism of the glucocorticoid receptor gene is associated with the development of asthma. PMID:25879559

  15. Hyponatremia resulting from arginine vasopressin receptor 2 gene mutation.

    PubMed

    Bes, David Francisco; Mendilaharzu, Hernán; Fenwick, Raymond G; Arrizurieta, Elvira

    2007-03-01

    Chronic hyponatremia, unless associated with extracellular fluid volume expansion, is an infrequent electrolyte imbalance in pediatrics. We report an infant with chronic hyponatremia suggestive of a syndrome of inappropriate secretion of antidiuretic hormone (SIADH), in the absence of ADH secretion. A mutation was found in the same codon of the gene that results in a loss-of- function of arginine vasopressin receptor 2 (AVPR2) observed in congenital nephrogenic diabetes insipidus. In this case, a gain-of- function of AVPR 2 was found to be responsible for a SIADH-like state. PMID:17115194

  16. Expression and retinoic acid regulation of the zebrafish nr2f orphan nuclear receptor genes

    PubMed Central

    Love, Crystal E.; Prince, Victoria E.

    2012-01-01

    Background The vertebrate nuclear receptor subfamily 2, group f (nr2f) genes encode orphan receptors that have the capacity to act as negative regulators of retinoic acid (RA) signaling. Results We describe embryonic and larval expression of four of the six zebrafish nr2f genes, nr2f1a, nr2f1b, nr2f2 and nr2f5. These genes show highly regulated patterns of expression within the CNS, including in the developing hindbrain, as well as in the mesoderm and endoderm. We also investigated the role of RA and Fgf signaling in regulating early nr2f gene expression. RA is not required for nr2f expression in the hindbrain; however, exogenous RA can repress this expression. Conversely, we find that RA positively regulates nr2f1a expression in trunk endoderm and mesoderm. Fgf signaling is not required for nr2f expression onset in the hindbrain; however, it may play a role in maintaining rhombomere-specific expression. Conclusions We report detailed expression analysis of four nr2f genes in all three germ layers. The onset of nr2f expression in the hindbrain does not require RA or Fgf signals. Our finding that RA positively regulates nr2f1a expression in the trunk supports the possibility that Nr2fs function in a negative feedback loop to modulate RA signaling in this region. PMID:22836912

  17. Novel polymorphisms in the somatostatin receptor 5 (SSTR5) gene associated with bipolar affective disorder

    Microsoft Academic Search

    M Nyegaard; A D Břrglum; T G Bruun; D A Collier; C Russ; O Mors; H Ewald; T A Kruse

    2002-01-01

    The somatostatin receptor 5 (SSTR5) gene is a candidate gene for bipolar affective disorder (BPAD) as well as for other neuropsychiatric disorders. The gene is positioned on chromosome 16p13.3, a region that has been implicated by a few linkage studies to potentially harbor a disease susceptibility gene for BPAD. Recent evidence shows that the dopamine D2 receptor (DRD2) and SSTR5

  18. A constitutive promoter directs expression of the nerve growth factor receptor gene.

    PubMed Central

    Sehgal, A; Patil, N; Chao, M

    1988-01-01

    Expression of nerve growth factor receptor is normally restricted to cells derived from the neural crest in a developmentally regulated manner. We analyzed promoter sequences for the human nerve growth factor receptor gene and found that the receptor promoter resembles others which are associated with constitutively expressed genes that have housekeeping and growth-related functions. Unlike these other genes, the initiation of transcription occurred at one major site rather than at multiple sites. The constitutive nature of the nerve growth factor receptor promoter may account for the ability of this gene to be transcribed in a diverse number of heterologous cells after gene transfer. The intron-exon structure of the receptor gene indicated that structural features are precisely divided into discrete domains. Images PMID:2850481

  19. The role of a mineralocorticoid receptor gene functional polymorphism in the symptom dimensions of persistent ADHD.

    PubMed

    Kortmann, Gustavo Lucena; Contini, Verônica; Bertuzzi, Guilherme Pinto; Mota, Nina Roth; Rovaris, Diego Luiz; Paixăo-Côrtes, Vanessa Rodrigues; de Lima, Leandro Leal; Grevet, Eugenio Horacio; Salgado, Carlos Alberto Iglesias; Vitola, Eduardo Schneider; Rohde, Luis Augusto; Belmonte-de-Abreu, Paulo; Bau, Claiton Henrique Dotto

    2013-04-01

    Attention-deficit/hyperactivity disorder (ADHD) affects approximately 5 % of school-aged children and 2.5 % of adults. Genetic studies in ADHD have pointed to genes in different neurobiological systems, with relatively small individual effects. The mineralocorticoid receptor is the main receptor involved in the initial triggering of stress response. Therefore, its encoding gene (NR3C2) is a candidate for psychiatric disorder studies, including ADHD, and behavioral phenotypes. There is evidence that the Val allele of the MRI180V polymorphism (rs5522) increases the risk of depression, attention and cognitive deficits. We investigated the possible role of the mineralocorticoid receptor gene in the symptom dimensions and susceptibility to persistent ADHD. We compared genotype and allele frequencies in 478 adult patients with ADHD and 597 controls and symptom dimensions in 449 patients and 132 controls. Diagnoses were based on the DSM-IV criteria. ADHD symptom dimensions were investigated with SNAP-IV for ADHD severity and Barkley scales for severity and impairment. Carriers of the Val allele presented higher inattention, hyperactivity/impulsivity and impairment scores, while genotype and allele frequencies did not differ between patients and controls. These results are consistent with a possible link between genetic variations in the HPA axis and inattention and hyperactivity measures. PMID:22584804

  20. Oxytocin receptor and vasopressin receptor 1a genes are respectively associated with emotional and cognitive empathy.

    PubMed

    Uzefovsky, F; Shalev, I; Israel, S; Edelman, S; Raz, Y; Mankuta, D; Knafo-Noam, A; Ebstein, R P

    2015-01-01

    Empathy is the ability to recognize and share in the emotions of others. It can be considered a multifaceted concept with cognitive and emotional aspects. Little is known regarding the underlying neurochemistry of empathy and in the current study we used a neurogenetic approach to explore possible brain neurotransmitter pathways contributing to cognitive and emotional empathy. Both the oxytocin receptor (OXTR) and the arginine vasopressin receptor 1a (AVPR1a) genes contribute to social cognition in both animals and humans and hence are prominent candidates for contributing to empathy. The following research examined the associations between polymorphisms in these two genes and individual differences in emotional and cognitive empathy in a sample of 367 young adults. Intriguingly, we found that emotional empathy was associated solely with OXTR, whereas cognitive empathy was associated solely with AVPR1a. Moreover, no interaction was observed between the two genes and measures of empathy. The current findings contribute to our understanding of the distinct neurogenetic pathways involved in cognitive and emotional empathy and underscore the pervasive role of both oxytocin and vasopressin in modulating human emotions. PMID:25476609

  1. Genomic cloning of the mouse LDL receptor related protein/{alpha}{sub 2}-macroglobulin receptor gene

    SciTech Connect

    Van Der Zee, A.; Van Dijk, K.W.; Frants, R. [Leiden Univ. (Netherlands)] [and others] [Leiden Univ. (Netherlands); and others

    1994-09-01

    The LDL receptor-related protein (LRP) or {alpha}{sub 2}-macroglobulin receptor (A2mr) is encoded by a 15-kb mRNA in mouse and human. Probes encompassing different regions of the mouse cDNA were used to isolate clones from a cosmid lirbary of mouse strain 129. Four overlapping cosmids were used for restriction mapping and Southern blot analysis. This map and hybridization data obtained with oligonucleotide probes from the 5{prime} and 3{prime} ends of the Lrp cDNA demonstrated that the mouse gene is approximately 85 kb in size. The Lrp promoter region was sequenced and reveals strong evolutionary conservation of putative regulatory elements between mouse and human. The present study will facilitate detailed elucidation of the function of LRP in vivo.

  2. Regulation of gene expression in ovarian cancer cells by luteinizing hormone receptor expression and activation

    PubMed Central

    2011-01-01

    Background Since a substantial percentage of ovarian cancers express gonadotropin receptors and are responsive to the relatively high concentrations of pituitary gonadotropins during the postmenopausal years, it has been suggested that receptor activation may contribute to the etiology and/or progression of the neoplasm. The goal of the present study was to develop a cell model to determine the impact of luteinizing hormone (LH) receptor (LHR) expression and LH-mediated LHR activation on gene expression and thus obtain insights into the mechanism of gonadotropin action on ovarian surface epithelial (OSE) carcinoma cells. Methods The human ovarian cancer cell line, SKOV-3, was stably transfected to express functional LHR and incubated with LH for various periods of time (0-20 hours). Transcriptomic profiling was performed on these cells to identify LHR expression/activation-dependent changes in gene expression levels and pathways by microarray and qRT-PCR analyses. Results Through comparative analysis on the LHR-transfected SKOV-3 cells exposed to LH, we observed the differential expression of 1,783 genes in response to LH treatment, among which five significant families were enriched, including those of growth factors, translation regulators, transporters, G-protein coupled receptors, and ligand-dependent nuclear receptors. The most highly induced early and intermediate responses were found to occupy a network impacting transcriptional regulation, cell growth, apoptosis, and multiple signaling transductions, giving indications of LH-induced apoptosis and cell growth inhibition through the significant changes in, for example, tumor necrosis factor, Jun and many others, supportive of the observed cell growth reduction in in vitro assays. However, other observations, e.g. the substantial up-regulation of the genes encoding the endothelin-1 subtype A receptor, stromal cell-derived factor 1, and insulin-like growth factor II, all of which are potential therapeutic targets, may reflect a positive mediation of ovarian cancer growth. Conclusion Overall, the present study elucidates the extensive transcriptomic changes of ovarian cancer cells in response to LH receptor activation, which provides a comprehensive and objective assessment for determining new cancer therapies and potential serum markers, of which over 100 are suggested. PMID:21711548

  3. Paternal Uniparental Isodisomy of Chromosome 6 Causing a Complex Syndrome Including Complete IFN-? Receptor 1 Deficiency

    PubMed Central

    Prando, Carolina; Boisson-Dupuis, Stéphanie; Grant, Audrey; Kong, Xiao-Fei; Bustamante, Jacinta; Feinberg, Jacqueline; Chapgier, Ariane; Rose, Yoann; Janničre, Lucile; Rizzardi, Elena; Zhang, Qiuping; Shanahan, Catherine M; Viollet, Louis; Lyonnet, Stanislas; Abel, Laurent; Ruga, Ezia Maria; Casanova, Jean-Laurent

    2010-01-01

    Mendelian susceptibility to mycobacterial disease (MSMD) is a rare primary immunodeficiency associated with clinical disease caused by weakly virulent mycobacterial species. Interferon gamma receptor 1 (IFN-?R1) deficiency is a genetic etiology of MSMD. We describe the clinical and genetic features of a seven-year-old Italian boy suffering from MSMD associated with a complex phenotype, including neonatal hyperglycemia, neuromuscular disease, and dysmorphic features. The child also developed necrotizing pneumonia caused by Rhodococcus equi. The child is homozygous for a nonsense mutation in exon 3 of IFNGR1 as a result of paternal uniparental disomy (UPD) of the entire chromosome 6. This is the first reported case of uniparental disomy resulting in a complex phenotype including MSMD. PMID:20186794

  4. Development of an interleukin 2 receptor targeted gene therapy vehicle

    E-print Network

    Wattanakaroon, Wanida

    2006-08-16

    for the malignant phenotype in human cancer. Gene alterations include serial oncogene activation and tumor suppressor gene inactivation (Tripathy, 2000). The leukemias and lymphomas are malignant tumors or cancers of hematopoietic cells of the bone marrow. T... Publishing Group). Allograft rejection Bone marrow Cardiac Liver Renal Autoimmune disease Aplastic anaemia Behcet?s syndrome Crohn?s disease Giant cell arteritis Juvenile rheumatoid arthritis Kawasaki disease Multiple sclerosis Polymalgia...

  5. Paradata for 'ALK1 signalling analysis identifies angiogenesis related genes and reveals disparity between TGF-? and constitutively active receptor induced gene expression'

    NSDL National Science Digital Library

    This record contains paradata for the resource 'ALK1 signalling analysis identifies angiogenesis related genes and reveals disparity between TGF-? and constitutively active receptor induced gene expression'

  6. Southern Blot Analysis of Clonal Rearrangements of T-cell Receptor Gene in Plaque Lesion of Mycosis Fungoides

    Microsoft Academic Search

    Naoko Dosaka; Toshihiro Tanaka; Mayumi Fujita; Yoshiki Miyachi; Takeshi Horio; Sadao Imamura

    1989-01-01

    T-cell populations of 22 plaque lesions from seven mycosis fungoides patients were studied for clonal rearrangement of the ? chain of the T-cell receptor (T? gene. All plaque lesions employed in this study showed clinically similar appearance. Histologically, all the biopsy specimens showed epidermotropism and the dermal infiltration of mononuclear cells including atypical cells. Histochemically, the majority of the infiltrated

  7. Familial hypercholesterolemia in Morocco: first report of mutations in the LDL receptor gene.

    PubMed

    El Messal, Mariame; Aďt Chihab, Karima; Chater, Rachid; Vallvé, Joan Carles; Bennis, Faďza; Hafidi, Aďcha; Ribalta, Josep; Varret, Mathilde; Loutfi, Mohammed; Rabčs, Jean Pierre; Kettani, Anass; Boileau, Catherine; Masana, Luis; Adlouni, Ahmed

    2003-01-01

    Familial hypercholesterolemia (FH) is a genetic disorder mainly caused by defects in the low-density lipoprotein receptor (LDLR) gene, although it can also be due to alterations in the gene encoding apolipoprotein B (familial defective apoB or FDB) or in other unidentified genes. In Morocco, the molecular basis of FH is unknown. To obtain information on this issue, 27 patients with FH from eight unrelated families were analyzed by screening the LDLR (PCR-SSCP and Southern blot) and apoB genes (PCR and restriction enzyme digestion analysis). None of the patients carried either the R3500Q or the R3531C mutation in the apoB gene. By contrast, seven mutations in the LDLR gene were identified, including five missense mutations on exons 4, 6, 8, and 14 (C113R, G266C, A370T, P664L, C690S) and two large deletions (FH Morocco-1 and FH Morocco-2). The two major rearrangements and the missense mutation G266C are novel mutations and could well be causative of FH in the Moroccan population. This study has yielded preliminary information on the mutation spectrum of the LDLR gene among patients with FH in Morocco. PMID:12730724

  8. The complete inventory of receptors encoded by the rat natural killer cell gene complex

    PubMed Central

    Flornes, Line M.; Nylenna, Řyvind; Saether, Per C.; Daws, Michael R.; Dissen, Erik

    2010-01-01

    The natural killer cell gene complex (NKC) encodes receptors belonging to the C-type lectin superfamily expressed primarily by NK cells and other leukocytes. In the rat, the chromosomal region that starts with the Nkrp1a locus and ends with the Ly49i8 locus is predicted to contain 67 group V C-type lectin superfamily genes, making it one of the largest congregation of paralogous genes in vertebrates. Based on physical proximity and phylogenetic relationships between these genes, the rat NKC can be divided into four major parts. We have previously reported the cDNA cloning of the majority of the genes belonging to the centromeric Nkrp1/Clr cluster and the two telomeric groups, the Klre1–Klri2 and the Ly49 clusters. Here, we close the gap between the Nkrp1/Clr and the Klre1–Klri2 clusters by presenting the cDNA cloning and transcription patterns of eight genes spanning from Cd69 to Dectin1, including the novel Clec2m gene. The definition, organization, and evolution of the rat NKC are discussed. Electronic supplementary material The online version of this article (doi:10.1007/s00251-010-0455-y) contains supplementary material, which is available to authorized users. PMID:20544345

  9. Evolutionary changes of the number of olfactory receptor genes in the human and mouse lineages

    E-print Network

    Nei, Masatoshi

    that humans lost many functional OR genes after the human­mouse divergence (HMD) or that mice gained many new OR genes after the HMD whereas ~430 OR genes in the MRCA have become pseudogenes or eliminated.V. All rights reserved. doi:10.1016/j.gene.2004.09.027 Abbreviations: OR, olfactory receptor; HMD, human

  10. Genomic Organization and Partial Duplication of the Human ?7 Neuronal Nicotinic Acetylcholine Receptor Gene (CHRNA7)

    Microsoft Academic Search

    Judith Gault; Misi Robinson; Ralph Berger; Carla Drebing; Judith Logel; Jan Hopkins; Ted Moore; Suzette Jacobs; Jennifer Meriwether; Mun Jun Choi; Eun Jung Kim; Katy Walton; Karin Buiting; Ashley Davis; Charles Breese; Robert Freedman; Sherry Leonard

    1998-01-01

    The human ?7 neuronal nicotinic acetylcholine receptor gene (HGMW-approved symbol CHRNA7) has been characterized from genomic clones. The gene is similar in structure to the chick ?7 gene with 10 exons and conserved splice junction positions. The size of the human gene is estimated to be larger than 75 kb. A putative promoter 5? of the translation start in exon

  11. Sequence variation in the androgen receptor gene is not a common determinant of male sexual orientation

    Microsoft Academic Search

    J. P. Macke; J. Nathans; V. L. King; N. Hu; S. Hu; D. Hamer; M. Bailey; T. Brown

    1993-01-01

    To test the hypothesis that DNA sequence variation in the androgen receptor gene plays a causal role in the development of male sexual orientation, the authors have (1) measured the degree of concordance of androgen receptor alleles in 36 pairs of homosexual brothers, (2) compared the lengths of polyglutamine and polyglycine tracts in the amino-terminal domain of the androgen receptor

  12. [Polymorphism of vitamin D receptor Bsm I gene and of estrogen receptor Xba I and Pvu II gene in girls and women with low bone mass].

    PubMed

    Sowi?ska-Przepiera, E; Grys, E

    2000-08-01

    We investigated the vitamin D receptor (VDR) and the estrogen receptor (ER) genes polymorphism in studied groups was similar, however the allelic combination BBPPxx was associated with low bone mineral mass. There is a need to perform genetic test in the cohort of polish women endangered by osteoporosis. PMID:11082900

  13. Beta 2 adrenergic receptor gene restriction fragment length polymorphism and bronchial asthma

    Microsoft Academic Search

    M Ohe; M Munakata; N Hizawa; A Itoh; I Doi; E Yamaguchi; Y Homma; Y Kawakami

    1995-01-01

    BACKGROUND--Beta 2 adrenergic dysfunction may be one of the underlying mechanisms responsible for atopy and bronchial asthma. The gene encoding the human beta 2 adrenergic receptor (beta 2ADR) has recently been isolated and sequenced. In addition, a two allele polymorphism of this receptor gene has been identified in white people. A study was carried out to determine whether this polymorphism

  14. Distribution of killer cell immunoglobulin-like receptors genes in the Italian Caucasian population

    Microsoft Academic Search

    A Bontadini; M Testi; MC Cuccia; M Martinetti; C Carcassi; A Chiesa; E Cosentini; E Dametto; S Frison; AM Iannone; C Lombardo; A Malagoli; M Mariani; L Mariotti; L Mascaretti; L Mele; V Miotti; S Nesci; G Ozzella; D Piancatelli; G Romeo; C Tagliaferri; S Vatta; M Andreani; R Conte

    2006-01-01

    BACKGROUND: Killer cell immunoglobulin-like receptors (KIRs) are a family of inhibitory and activatory receptors that are expressed by most natural killer (NK) cells. The KIR gene family is polymorphic: genomic diversity is achieved through differences in gene content and allelic polymorphism. The number of KIR loci has been reported to vary among individuals, resulting in different KIR haplotypes. In this

  15. Correlation between P2X7 receptor gene polymorphisms and gout.

    PubMed

    Gong, Qiong-Yao; Chen, Yong

    2015-08-01

    Not all patients with hyperuricemia will develop acute gouty arthritis, indicating that other initiating factors need to be considered. The P2X7 receptor is an adenosine triphosphate-gated nonselective cation channel that has also been suggested to be a proinflammatory receptor. In the immune system, the P2X7 receptor is involved in the processing and release of various proinflammatory cytokines, including interleukin-1? (IL-1?), IL-18 and tumor necrosis factor-? (TNF-?). IL-1? is a central cytokine in the initiation of the acute inflammatory response, which plays a key role in the pathogenesis of gout and the pathology of acute gouty arthritis. This review will explore single-nucleotide polymorphisms in the P2X7R gene [including rs1718119 (Ala348Thr), rs208294 (His155Tyr), rs3751143 (Glu496Ala), rs28360457 (Arg307Gln) and rs2230911 (Thr357Ser)] and their correlation with the incidence of gout. We conclude that P2X7R gene polymorphisms impact the secretion of IL-1? and thus play a vital role in the pathogenesis of gout. PMID:25800962

  16. Multiple Thyrotropin ?-Subunit and Thyrotropin Receptor-Related Genes Arose during Vertebrate Evolution

    PubMed Central

    Maugars, Gersende; Dufour, Sylvie; Cohen-Tannoudji, Joëlle; Quérat, Bruno

    2014-01-01

    Thyroid-stimulating hormone (TSH) is composed of a specific ? subunit and an ? subunit that is shared with the two pituitary gonadotropins. The three ? subunits derive from a common ancestral gene through two genome duplications (1R and 2R) that took place before the radiation of vertebrates. Analysis of genomic data from phylogenetically relevant species allowed us to identify an additional Tsh? subunit-related gene that was generated through 2R. This gene, named Tsh?2, present in cartilaginous fish, little skate and elephant shark, and in early lobe-finned fish, coelacanth and lungfish, was lost in ray-finned fish and tetrapods. The absence of a second type of TSH receptor (Tshr) gene in these species suggests that both TSHs act through the same receptor. A novel Tsh? sister gene, named Tsh?3, was generated through the third genomic duplication (3R) that occurred early in the teleost lineage. Tsh?3 is present in most teleost groups but was lostin tedraodontiforms. The 3R also generated a second Tshr, named Tshrb. Interestingly, the new Tshrb was translocated from its original chromosomic position after the emergence of eels and was then maintained in its new position. Tshrb was lost in tetraodontiforms and in ostariophysians including zebrafish although the latter species have two TSHs, suggesting that TSHRb may be dispensable. The tissue distribution of duplicated Tsh?s and Tshrs was studied in the European eel. The endocrine thyrotropic function in the eel would be essentially mediated by the classical Tsh? and Tshra, which are mainly expressed in the pituitary and thyroid, respectively. Tsh?3 and Tshrb showed a similar distribution pattern in the brain, pituitary, ovary and adipose tissue, suggesting a possible paracrine/autocrine mode of action in these non-thyroidal tissues. Further studies will be needed to determine the binding specificity of the two receptors and how these two TSH systems are interrelated. PMID:25386660

  17. 20(S)-protopanaxatriol inhibits liver X receptor ?-mediated expression of lipogenic genes in hepatocytes.

    PubMed

    Oh, Gyun-Sik; Yoon, Jin; Lee, Gang Gu; Oh, Won Keun; Kim, Seung-Whan

    2015-06-01

    20(S)-protopanaxatriol (PPT) is an aglycone of ginsenosides isolated from Panax ginseng and has several interesting activities, including anti-inflammatory and anti-oxidative stress effects. Herein, PPT was identified as an inhibitor against the ligand-dependent transactivation of liver X receptor ? (LXR?) using a Gal4-TK-luciferase reporter system. LXR? is a transcription factor of nuclear hormone receptor family and stimulates the transcription of many metabolic genes, such as lipogenesis- or reverse cholesterol transport (RCT)-related genes. Quantitative RT-PCR analysis showed that PPT inhibited the LXR?-dependent transcription of lipogenic genes, such as sterol regulatory element binding protein-1c (SREBP-1c), fatty acid synthase, and stearoyl CoA desaturase 1. These inhibitory effects of PPT are, at least in part, a consequence of the reduced recruitment of RNA polymerase II to the LXR response element (LXRE) of the SREBP-1c promoter. Furthermore, LXR?-dependent triglyceride accumulation in primary mouse hepatocytes was significantly reduced by PPT. Interestingly, PPT did not inhibit the LXR?-dependent transcription of ABCA1, a crucial LXR? target gene involved in RCT. Chromatin immunoprecipitation assays revealed that PPT repressed recruitment of the lipogenic coactivator TRAP80 to the SREBP-1c LXRE, but not the ABCA1 LXRE. Overall, these data suggest that PPT has selective inhibitory activity against LXR?-mediated lipogenesis, but not LXR?-stimulated RCT. PMID:26109499

  18. The dynamic nature of type 1 cannabinoid receptor (CB1) gene transcription

    PubMed Central

    Laprairie, RB; Kelly, MEM; Denovan-Wright, EM

    2012-01-01

    The type 1 cannabinoid receptor (CB1) is an integral component of the endocannabinoid system that modulates several functions in the CNS and periphery. The majority of our knowledge of the endocannabinoid system involves ligand–receptor binding, mechanisms of signal transduction, and protein–protein interactions. In contrast, comparatively little is known about regulation of CB1 gene expression. The levels and anatomical distribution of CB1 mRNA and protein are developmental stage-specific and are dysregulated in several pathological conditions. Moreover, exposure to a variety of drugs, including cannabinoids themselves, alters CB1 gene expression and mRNA levels. As such, alterations in CB1 gene expression are likely to affect the optimal response to cannabinoid-based therapies, which are being developed to treat a growing number of conditions. Here, we will examine the regulation of CB1 mRNA levels and the therapeutic potential inherent in manipulating expression of this gene. Linked Articles This article is part of a themed section on Cannabinoids. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.167.issue-8 PMID:22924606

  19. The chimpanzee and cynomolgus monkey erythrocyte immune adherence receptors are encoded by CR1- like genes

    Microsoft Academic Search

    Wei Chen; Christine M. Logar; Xiao-Ping Shen; Daniel J. Birmingham

    2000-01-01

    The human erythrocyte immune adherence (IA) receptor is the Mr 220,000 type one complement receptor, or CR1. Nonhuman primate IA receptors are comprised of a family of smaller erythrocyte complement receptors (E-CRs) of unknown origin. Recently, the Mr 65,000 baboon E-CR was identified as a glycophosphatidylinositol (GPI)-linked protein encoded by a partially duplicated CR1 gene termed CR1-like. The purpose of

  20. Immunophenotypic and antigen receptor gene rearrangement analysis in T cell neoplasia.

    PubMed Central

    Knowles, D. M.

    1989-01-01

    The author reviews the immunophenotypic profiles displayed by the major clinicopathologic categories of T cell neoplasia, the immunophenotypic criteria useful in the immunodiagnosis of T cell neoplasia, and the contributions made by antigen receptor gene rearrangement analysis to the understanding of T cell neoplasia. Neoplasms belonging to distinct clinicopathologic categories of T cell neoplasia often exhibit characteristic immunophenotypic profiles. Approximately 80% of lymphoblastic lymphomas and 20% of acute lymphoblastic leukemias express phenotypes consistent with prethymic and intrathymic stages of T cell differentiation, including intranuclear terminal deoxynucleotidyl transferase. Cutaneous T cell lymphomas of mycosis fungoides type usually express pan-T cell antigens CD2, CD5, and CD3, often lack the pan-T cell antigen CD7, and usually express the mature, peripheral helper subset phenotype, CD4+ CD8-. Cutaneous T cell lymphomas of nonmycosis fungoides type and peripheral T cell lymphomas often lack one or more pan-T cell antigens and, in addition, occasionally express the anomalous CD4+ CD8+ or CD4- CD8- phenotypes. T gamma-lymphoproliferative disease is divisable into two broad categories: those cases that are CD3 antigen positive and exhibit clonal T cell receptor beta chain (TCR-beta) gene rearrangements and those cases that are CD3 antigen negative and exhibit the TCR-beta gene germline configuration. Human T cell lymphotropic virus-I (HTLV-I) associated Japanese, Carribean, and sporadic adult T cell leukemia/lymphomas usually express pan-T cell antigens, the CD4+ CD8- phenotype, and various T cell-associated activation antigens, including the interleukin-2 receptor (CD25). Immunophenotypic criteria useful in the immunodiagnosis of T cell neoplasia include, in increasing order of utility, T cell predominance, T cell subset antigen restriction, anomalous T cell subset antigen expression, and deletion of one or more pan-T cell antigens. Only in exceptional circumstances do normal, non-neoplastic T cell populations express the CD4- CD8- or the CD4+ CD8+ phenotype and/or lack one or more pan-T cell antigens. T cell receptor beta chain gene rearrangement analysis represents an accurate, objective, and sensitive molecular genetic marker of T cell lineage and clonality that allows discrimination among non-T cell, polyclonal T cell and monoclonal T cell populations. Non-T cells exhibit the TCR-beta gene germline configuration.(ABSTRACT TRUNCATED AT 400 WORDS) Images Figure 3 Figure 6 Figure 7 PMID:2495724

  1. Gene silencing to investigate the roles of receptor-like proteins in Arabidopsis.

    PubMed

    Ellendorff, Ursula; Zhang, Zhao; Thomma, Bart Phj

    2008-10-01

    Receptor-like proteins (RLPs) are cell surface receptors that play important roles in various processes. In several plant species RLPs have been found to play a role in disease resistance, including the tomato Cf and Ve proteins and the apple HcrVf proteins that mediate resistance against the fungal pathogens Cladosporium fulvum, Verticillium spp., and Venturia inaequalis, respectively. The Arabidopsis genome contains 57 AtRLP genes. Two of these, CLV2 (AtRLP10) and TMM (AtRLP17), have well-characterized functions in meristem and stomatal development, respectively, while AtRLP52 is required for defense against powdery mildew. We recently reported the assembly of a genome-wide collection of T-DNA insertion lines for the Arabidopsis AtRLP genes. This collection was functionally analyzed with respect to plant growth, development and sensitivity to various stress responses including pathogen susceptibility. Only few new phenotypes were discovered; while AtRLP41 was found to mediate abscisic acid sensitivity, AtRLP30 (and possibly AtRLP18) was found to be required for full non-host resistance to a bacterial pathogen. Possibly, identification of novel phenotypes is obscured by functional redundancy. Therefore, RNA interference (RNAi) to target the expression of multiple AtRLP genes simultaneously was employed followed by functional analysis of the RNAi lines. PMID:19704533

  2. Control of Energy Balance by Hypothalamic Gene Circuitry Involving Two Nuclear Receptors, Neuron-Derived Orphan Receptor 1 and Glucocorticoid Receptor

    PubMed Central

    Kim, Sun-Gyun; Lee, Bora; Kim, Dae-Hwan; Kim, Juhee; Lee, Soo-Kyung

    2013-01-01

    Nuclear receptors (NRs) regulate diverse physiological processes, including the central nervous system control of energy balance. However, the molecular mechanisms for the central actions of NRs in energy balance remain relatively poorly defined. Here we report a hypothalamic gene network involving two NRs, neuron-derived orphan receptor 1 (NOR1) and glucocorticoid receptor (GR), which directs the regulated expression of orexigenic neuropeptides agouti-related peptide (AgRP) and neuropeptide Y (NPY) in response to peripheral signals. Our results suggest that the anorexigenic signal leptin induces NOR1 expression likely via the transcription factor cyclic AMP response element-binding protein (CREB), while the orexigenic signal glucocorticoid mobilizes GR to inhibit NOR1 expression by antagonizing the action of CREB. Also, NOR1 suppresses glucocorticoid-dependent expression of AgRP and NPY. Consistently, relative to wild-type mice, NOR1-null mice showed significantly higher levels of AgRP and NPY and were less responsive to leptin in decreasing the expression of AgRP and NPY. These results identify mutual antagonism between NOR1 and GR to be a key rheostat for peripheral metabolic signals to centrally control energy balance. PMID:23897430

  3. Control of energy balance by hypothalamic gene circuitry involving two nuclear receptors, neuron-derived orphan receptor 1 and glucocorticoid receptor.

    PubMed

    Kim, Sun-Gyun; Lee, Bora; Kim, Dae-Hwan; Kim, Juhee; Lee, Seunghee; Lee, Soo-Kyung; Lee, Jae W

    2013-10-01

    Nuclear receptors (NRs) regulate diverse physiological processes, including the central nervous system control of energy balance. However, the molecular mechanisms for the central actions of NRs in energy balance remain relatively poorly defined. Here we report a hypothalamic gene network involving two NRs, neuron-derived orphan receptor 1 (NOR1) and glucocorticoid receptor (GR), which directs the regulated expression of orexigenic neuropeptides agouti-related peptide (AgRP) and neuropeptide Y (NPY) in response to peripheral signals. Our results suggest that the anorexigenic signal leptin induces NOR1 expression likely via the transcription factor cyclic AMP response element-binding protein (CREB), while the orexigenic signal glucocorticoid mobilizes GR to inhibit NOR1 expression by antagonizing the action of CREB. Also, NOR1 suppresses glucocorticoid-dependent expression of AgRP and NPY. Consistently, relative to wild-type mice, NOR1-null mice showed significantly higher levels of AgRP and NPY and were less responsive to leptin in decreasing the expression of AgRP and NPY. These results identify mutual antagonism between NOR1 and GR to be a key rheostat for peripheral metabolic signals to centrally control energy balance. PMID:23897430

  4. Expression of the human ABCC6 gene is induced by retinoids through the retinoid X receptor

    SciTech Connect

    Ratajewski, Marcin [Laboratory of Transcriptional Regulation, Centre for Medical Biology PAS, Lodz (Poland); Department of Molecular Biophysics, University of Lodz, Lodz (Poland); Bartosz, Grzegorz [Department of Molecular Biophysics, University of Lodz, Lodz (Poland); Pulaski, Lukasz [Laboratory of Transcriptional Regulation, Centre for Medical Biology PAS, Lodz (Poland) and Department of Molecular Biophysics, University of Lodz, Lodz (Poland)]. E-mail: lpulaski@cbm.pan.pl

    2006-12-01

    Mutations in the human ABCC6 gene are responsible for the disease pseudoxanthoma elasticum, although Physiological function or substrate of the gene product (an ABC transporter known also as MRP6) is not known. We found that the expression of this gene in cells of hepatic origin (where this gene is predominantly expressed in the body) is significantly upregulated by retinoids, acting as agonists of the retinoid X receptor (RXR) rather than the retinoid A receptor (RAR). The direct involvement of this nuclear receptor in the transcriptional regulation of ABCC6 gene expression was confirmed by transient transfection and chromatin immunoprecipitation assays. This constitutes the first direct proof of previously suggested involvement of nuclear hormone receptors in ABCC6 gene expression and the first identification of a transcription factor which may be relevant to regulation of ABCC6 level in tissues and in some PXE patients.

  5. GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls

    NASA Technical Reports Server (NTRS)

    Akbarian, S.; Huntsman, M. M.; Kim, J. J.; Tafazzoli, A.; Potkin, S. G.; Bunney, W. E. Jr; Jones, E. G.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The prefrontal cortex of schizophrenics is hypoactive and displays changes related to inhibitory, GABAergic neurons, and GABAergic synapses. These changes include decreased levels of glutamic acid decarboxylase (GAD), the enzyme for GABA synthesis, upregulation of muscimol binding, and downregulation of benzodiazepine binding to GABAA receptors. Studies in the visual cortex of nonhuman primates have demonstrated that gene expression for GAD and for several GABAA receptor subunit polypeptides is under control of neuronal activity, raising the possibility that similar mechanisms in the hypoactive prefrontal cortex of schizophrenics may explain the abnormalities in GAD and in GABAA receptor regulation. In the present study, which is the first of its type on human cerebral cortex, levels of mRNAs for six GABAA receptor subunits (alpha 1, alpha 2, alpha 5, beta 1, beta 2, gamma 2) and their laminar expression patterns were analyzed in the prefrontal cortex of schizophrenics and matched controls, using in situ hybridization histochemistry and densitometry. Three types of laminar expression pattern were observed: mRNAs for the alpha 1, beta 2, and gamma 2 subunits, which are the predominant receptor subunits expressed in the mature cortex, were expressed at comparatively high levels by cells of all six cortical layers, but most intensely by cells in lower layer III and layer IV. mRNAs for the alpha 2, alpha 5, and beta 1 subunits were expressed at lower levels; alpha 2 and beta 1 were expressed predominantly by cells in layers II, III, and IV; alpha 5 was expressed predominantly in layers IV, V, and VI. There were no significant changes in overall mRNA levels for any of the receptor subunits in the prefrontal cortex of schizophrenics, and the laminar expression pattern of all six receptor subunit mRNAs did not differ between schizophrenics and controls. Because gene expression for GABAA receptor subunits is not consistently altered in the prefrontal cortex of schizophrenics, the previously reported upregulation of muscimol binding sites and downregulation of benzodiazepine binding sites in the prefrontal and adjacent cingulate cortex of schizophrenics are possibly due to posttranscriptional modifications of mRNAs and their translated polypeptides.

  6. Polymorphism within the bovine estrogen receptor- gene 5'-region

    Microsoft Academic Search

    Tomasz SZREDER; Lech ZWIERZCHOWSKI

    2004-01-01

    Due to the functions that estrogens play in the regulation of reproduction, de- velopment of the mammary gland, growth and differentiation of cells, estrogen recep- tors and their genes are considered candidates for the markers of production and functional traits in farm animals, including cattle. In the present study, on the basis of the sequences of the human, ovine, and

  7. Recent advances in gene manipulation and nicotinic acetylcholine receptor biology

    PubMed Central

    Tammimäki, Anne; Horton, William J.; Stitzel, Jerry A.

    2011-01-01

    Pharmacological and immunological methods have been valuable for both identifying some native nicotinic acetylcholine receptor (nAChR) subtypes that exist in vivo and determining the neurobiological and behavioral role of certain nAChR subtypes. However, these approaches suffer from shortage of subtype specific ligands and reliable immunological reagents. Consequently, genetic approaches have been developed to complement earlier approaches to identify native nAChR subtypes and to assess the contribution of nAChRs to brain function and behavior. In this review we describe how assembly partners, knock-in mice and targeted lentiviral re-expression of genes have been utilized to improve our understanding of nAChR neurobiology. In addition, we summarize emerging genetic tools in nAChR research. PMID:21704022

  8. Systematic study of association of four GABAergic genes: glutamic acid decarboxylase 1 gene, glutamic acid decarboxylase 2 gene, GABA(B) receptor 1 gene and GABA(A) receptor subunit beta2 gene, with schizophrenia using a universal DNA microarray.

    PubMed

    Zhao, Xu; Qin, Shengying; Shi, Yongyong; Zhang, Aiping; Zhang, Jing; Bian, Li; Wan, Chunling; Feng, Guoyin; Gu, Niufan; Zhang, Guangqi; He, Guang; He, Lin

    2007-07-01

    Several studies have suggested the dysfunction of the GABAergic system as a risk factor in the pathogenesis of schizophrenia. In the present study, case-control association analysis was conducted in four GABAergic genes: two glutamic acid decarboxylase genes (GAD1 and GAD2), a GABA(A) receptor subunit beta2 gene (GABRB2) and a GABA(B) receptor 1 gene (GABBR1). Using a universal DNA microarray procedure we genotyped a total of 20 SNPs on the above four genes in a study involving 292 patients and 286 controls of Chinese descent. Statistically significant differences were observed in the allelic frequencies of the rs187269C/T polymorphism in the GABRB2 gene (P=0.0450, chi(2)=12.40, OR=1.65) and the -292A/C polymorphism in the GAD1 gene (P=0.0450, chi(2)=14.64 OR=1.77). In addition, using an electrophoretic mobility shift assay (EMSA), we discovered differences in the U251 nuclear protein binding to oligonucleotides representing the -292 SNP on the GAD1 gene, which suggests that the -292C allele has reduced transcription factor binding efficiency compared with the 292A allele. Using the multifactor-dimensionality reduction method (MDR), we found that the interactions among the rs187269C/T polymorphism in the GABRB2 gene, the -243A/G polymorphism in the GAD2 gene and the 27379C/T and 661C/T polymorphisms in the GAD1 gene revealed a significant association with schizophrenia (P<0.001). These findings suggest that the GABRB2 and GAD1 genes alone and the combined effects of the polymorphisms in the four GABAergic system genes may confer susceptibility to the development of schizophrenia in the Chinese population. PMID:17412563

  9. Neurotensin Receptor 1 Gene (NTSR1) Polymorphism Is Associated with Working Memory

    PubMed Central

    Li, Jin; Chen, Chuansheng; Chen, Chunhui; He, Qinghua; Li, He; Li, Jun; Moyzis, Robert K.; Xue, Gui; Dong, Qi

    2011-01-01

    Background Recent molecular genetics studies showed significant associations between dopamine-related genes (including genes for dopamine receptors, transporters, and degradation) and working memory, but little is known about the role of genes for dopamine modulation, such as those related to neurotensin (NT), in working memory. A recent animal study has suggested that NT antagonist administration impaired working memory in a learning task. The current study examined associations between NT genes and working memory among humans. Methods Four hundred and sixty healthy undergraduate students were assessed with a 2-back working memory paradigm. 5 SNPs in the NTSR1 gene were genotyped. 5 ANOVA tests were conducted to examine whether and how working memory differed by NTSR1 genotype, with each SNP variant as the independent variable and the average accuracy on the working memory task as the dependent variable. Results ANOVA results suggested that two SNPs in the NTSR1 gene (rs4334545 and rs6090453) were significantly associated with working memory. These results survived corrections for multiple comparisons. Conclusions Our results demonstrated that NTSR1 SNP polymorphisms were significantly associated with variance in working memory performance among healthy adults. This result extended previous rodent studies showing that the NT deficiency impairs the working memory function. Future research should replicate our findings and extend to an examination of other dopamine modulators. PMID:21394204

  10. Vitamin D receptor gene polymorphisms and steroid receptor status among Saudi women with breast cancer.

    PubMed

    Nemenqani, Dalal M; Karam, Rehab A; Amer, Mona G; Abd El Rahman, Tamer M

    2015-03-10

    The vitamin D receptor (VDR) is a mediator for the cellular effects of vitamin D and interacts with other cell signaling pathways that influence cancer development. We evaluated the associations of the FOK1 and Taq1 VDR polymorphisms and breast cancer risk and possible effect modification by steroid receptor status of the tumor. This case-control study includes 95 breast cancer patients and 100 age-matched controls. Genotyping for VDR FOK1 and Taq1 polymorphisms was performed using polymerase chain reaction-based restriction fragment length polymorphism. Level of 25(OH)D in serum was determined using ELISA. Immunohistochemical studies were performed for estrogen receptors (ER) and progesterone receptors (PR). The frequencies of ff genotype were significantly increased in the breast cancer group compared to the control group. Carriers of the f allele were significantly more likely to develop BC. We observed a statistically significant interaction for the Fok1 polymorphism and ER status. Our results demonstrated that FOK1 f. genotype and f allele have an important role in breast cancer risk in Saudi patients. PMID:25560187

  11. FGF receptor genes and breast cancer susceptibility: results from the Breast Cancer Association Consortium

    PubMed Central

    Agarwal, D; Pineda, S; Michailidou, K; Herranz, J; Pita, G; Moreno, L T; Alonso, M R; Dennis, J; Wang, Q; Bolla, M K; Meyer, K B; Menéndez-Rodríguez, P; Hardisson, D; Mendiola, M; González-Neira, A; Lindblom, A; Margolin, S; Swerdlow, A; Ashworth, A; Orr, N; Jones, M; Matsuo, K; Ito, H; Iwata, H; Kondo, N; Hartman, M; Hui, M; Lim, W Y; T-C Iau, P; Sawyer, E; Tomlinson, I; Kerin, M; Miller, N; Kang, D; Choi, J-Y; Park, S K; Noh, D-Y; Hopper, J L; Schmidt, D F; Makalic, E; Southey, M C; Teo, S H; Yip, C H; Sivanandan, K; Tay, W-T; Brauch, H; Brüning, T; Hamann, U; Dunning, A M; Shah, M; Andrulis, I L; Knight, J A; Glendon, G; Tchatchou, S; Schmidt, M K; Broeks, A; Rosenberg, E H; van't Veer, L J; Fasching, P A; Renner, S P; Ekici, A B; Beckmann, M W; Shen, C-Y; Hsiung, C-N; Yu, J-C; Hou, M-F; Blot, W; Cai, Q; Wu, A H; Tseng, C-C; Van Den Berg, D; Stram, D O; Cox, A; Brock, I W; Reed, M W R; Muir, K; Lophatananon, A; Stewart-Brown, S; Siriwanarangsan, P; Zheng, W; Deming-Halverson, S; Shrubsole, M J; Long, J; Shu, X-O; Lu, W; Gao, Y-T; Zhang, B; Radice, P; Peterlongo, P; Manoukian, S; Mariette, F; Sangrajrang, S; McKay, J; Couch, F J; Toland, A E; Yannoukakos, D; Fletcher, O; Johnson, N; Silva, I dos Santos; Peto, J; Marme, F; Burwinkel, B; Guénel, P; Truong, T; Sanchez, M; Mulot, C; Bojesen, S E; Nordestgaard, B G; Flyer, H; Brenner, H; Dieffenbach, A K; Arndt, V; Stegmaier, C; Mannermaa, A; Kataja, V; Kosma, V-M; Hartikainen, J M; Lambrechts, D; Yesilyurt, B T; Floris, G; Leunen, K; Chang-Claude, J; Rudolph, A; Seibold, P; Flesch-Janys, D; Wang, X; Olson, J E; Vachon, C; Purrington, K; Giles, G G; Severi, G; Baglietto, L; Haiman, C A; Henderson, B E; Schumacher, F; Le Marchand, L; Simard, J; Dumont, M; Goldberg, M S; Labrčche, F; Winqvist, R; Pylkäs, K; Jukkola-Vuorinen, A; Grip, M; Devilee, P; Tollenaar, R A E M; Seynaeve, C; García-Closas, M; Chanock, S J; Lissowska, J; Figueroa, J D; Czene, K; Eriksson, M; Humphreys, K; Darabi, H; Hooning, M J; Kriege, M; Collée, J M; Tilanus-Linthorst, M; Li, J; Jakubowska, A; Lubinski, J; Jaworska-Bieniek, K; Durda, K; Nevanlinna, H; Muranen, T A; Aittomäki, K; Blomqvist, C; Bogdanova, N; Dörk, T; Hall, P; Chenevix-Trench, G; Easton, D F; Pharoah, P D P; Arias-Perez, J I; Zamora, P; Benítez, J; Milne, R L

    2014-01-01

    Background: Breast cancer is one of the most common malignancies in women. Genome-wide association studies have identified FGFR2 as a breast cancer susceptibility gene. Common variation in other fibroblast growth factor (FGF) receptors might also modify risk. We tested this hypothesis by studying genotyped single-nucleotide polymorphisms (SNPs) and imputed SNPs in FGFR1, FGFR3, FGFR4 and FGFRL1 in the Breast Cancer Association Consortium. Methods: Data were combined from 49 studies, including 53?835 cases and 50?156 controls, of which 89?050 (46?450 cases and 42?600 controls) were of European ancestry, 12?893 (6269 cases and 6624 controls) of Asian and 2048 (1116 cases and 932 controls) of African ancestry. Associations with risk of breast cancer, overall and by disease sub-type, were assessed using unconditional logistic regression. Results: Little evidence of association with breast cancer risk was observed for SNPs in the FGF receptor genes. The strongest evidence in European women was for rs743682 in FGFR3; the estimated per-allele odds ratio was 1.05 (95% confidence interval=1.02–1.09, P=0.0020), which is substantially lower than that observed for SNPs in FGFR2. Conclusion: Our results suggest that common variants in the other FGF receptors are not associated with risk of breast cancer to the degree observed for FGFR2. PMID:24548884

  12. Decoy receptor 3 regulates the expression of various genes in rheumatoid arthritis synovial fibroblasts.

    PubMed

    Fukuda, Koji; Miura, Yasushi; Maeda, Toshihisa; Takahashi, Masayasu; Hayashi, Shinya; Kurosaka, Masahiro

    2013-10-01

    Decoy receptor 3 (DcR3), a member of the tumor necrosis factor (TNF) receptor (TNFR) superfamily, lacks the transmembrane domain of conventional TNFRs in order to be a secreted protein. DcR3 competitively binds and inhibits members of the TNF family, including Fas ligand (FasL), LIGHT and TNF-like ligand 1A (TL1A). We previously reported that TNF?-induced DcR3 overexpression in rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) protects cells from Fas-induced apoptosis. Previous studies have suggested that DcR3 acting as a ligand directly induces the differentiation of macrophages into osteoclasts. Furthermore, we reported that DcR3 induces very late antigen-4 (VLA--4) expression in THP-1 macrophages, inhibiting cycloheximide-induced apoptosis and that DcR3 binds to membrane-bound TL1A expressed on RA-FLS, resulting in the negative regulation of cell proliferation induced by inflammatory cytokines. In the current study, we used cDNA microarray to search for genes in RA-FLS whose expression was regulated by the ligation of DcR3. The experiments revealed the expression profiles of genes in RA-FLS regulated by DcR3. The profiles showed that among the 100 genes most significantly regulated by DcR3, 45 were upregulated and 55 were downregulated. The upregulated genes were associated with protein complex assembly, cell motility, regulation of transcription, cellular protein catabolic processes, cell membrane, nucleotide binding and glycosylation. The downregulated genes were associated with transcription regulator activity, RNA biosynthetic processes, cytoskeleton, zinc finger region, protein complex assembly, phosphate metabolic processes, mitochondrion, ion transport, nucleotide binding and cell fractionation. Further study of the genes detected in the current study may provide insight into the pathogenesis and treatment of rheumatoid arthritis by DcR3-TL1A signaling. PMID:23912906

  13. Expression of five acetylcholine receptor subunit genes in Brugia malayi adult worms.

    PubMed

    Li, Ben-Wen; Rush, Amy C; Weil, Gary J

    2015-12-01

    Acetylcholine receptors (AChRs) are required for body movement in parasitic nematodes and are targets of "classical" anthelmintic drugs such as levamisole and pyrantel and of newer drugs such as tribendimidine and derquantel. While neurotransmission explains the effects of these drugs on nematode movement, their effects on parasite reproduction are unexplained. The levamisole AChR type (L-AChRs) in Caenorhabditis elegans is comprised of five subunits: Cel-UNC-29, Cel-UNC-38, Cel-UNC-63, Cel-LEV-1 and Cel-LEV-8. The genome of the filarial parasite Brugia malayi contains nine AChRs subunits including orthologues of Cel-unc-29, Cel-unc-38, and Cel-unc-63. We performed in situ hybridization with RNA probes to localize the expression of five AChR genes (Bm1_35890-Bma-unc-29, Bm1_20330-Bma-unc-38, Bm1_38195-Bma-unc-63, Bm1_48815-Bma-acr-26 and Bm1_40515-Bma-acr-12) in B. malayi adult worms. Four of these genes had similar expression patterns with signals in body muscle, developing embryos, spermatogonia, uterine wall adjacent to stretched microfilariae, wall of V as deferens, and lateral cord. Three L-AChR subunit genes (Bma-unc-29, Bma-unc-38 and Bma-unc-63) were expressed in body muscle, which is a known target of levamisole. Bma-acr-12 was co-expressed with these levamisole subunit genes in muscle, and this suggests that its protein product may form receptors with other alpha subunits. Bma-acr-26 was expressed in male muscle but not in female muscle. Strong expression signals of these genes in early embryos and gametes in uterus and testis suggest that AChRs may have a role in nervous system development of embryogenesis and spermatogenesis. This would be consistent with embryotoxic effects of drugs that target these receptors in filarial worms. Our data show that the expression of these receptor genes is tightly regulated with regard to localization in adult worms and developmental stage in embryos and gametes. These results may help to explain the broad effects of drugs that target AChRs in filarial worms. PMID:26199859

  14. Estrogen-related receptor {alpha} modulates the expression of adipogenesis-related genes during adipocyte differentiation

    SciTech Connect

    Ijichi, Nobuhiro [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama (Japan); Ikeda, Kazuhiro [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama (Japan); Horie-Inoue, Kuniko [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama (Japan); Yagi, Ken [Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Saitama (Japan); Okazaki, Yasushi [Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Saitama (Japan); Inoue, Satoshi [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama (Japan) and Department of Geriatric Medicine, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan)]. E-mail: INOUE-GER@h.u-tokyo.ac.jp

    2007-07-06

    Estrogen-related receptor {alpha} (ERR{alpha}) is an orphan nuclear receptor that regulates cellular energy metabolism by modulating gene expression involved in fatty acid oxidation and mitochondrial biogenesis in brown adipose tissue. However, the physiological role of ERR{alpha} in adipogenesis and white adipose tissue development has not been well studied. Here, we show that ERR{alpha} and ERR{alpha}-related transcriptional coactivators, peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) coactivator-1{alpha} (PGC-1{alpha}) and PGC-1{beta}, can be up-regulated in 3T3-L1 preadipocytes at mRNA levels under the adipogenic differentiation condition including the inducer of cAMP, glucocorticoid, and insulin. Gene knockdown by ERR{alpha}-specific siRNA results in mRNA down-regulation of fatty acid binding protein 4, PPAR{gamma}, and PGC-1{alpha} in 3T3-L1 cells in the adipogenesis medium. ERR{alpha} and PGC-1{beta} mRNA expression can be also up-regulated in another preadipocyte lineage DFAT-D1 cells and a pluripotent mesenchymal cell line C3H10T1/2 under the differentiation condition. Furthermore, stable expression of ERR{alpha} in 3T3-L1 cells up-regulates adipogenic marker genes and promotes triglyceride accumulation during 3T3-L1 differentiation. These results suggest that ERR{alpha} may play a critical role in adipocyte differentiation by modulating the expression of various adipogenesis-related genes.

  15. Liver X Receptor Gene Polymorphisms in Tuberculosis: Effect on Susceptibility

    PubMed Central

    Liu, Li-rong; Yue, Jun; Zhao, Yan-lin; Xiao, He-ping

    2014-01-01

    Objectives The Liver X receptors (LXRs), Liver X receptor A (LXRA) and Liver X receptor B (LXRB), regulate lipid metabolism and antimicrobial response. LXRs have a crucial role in the control of Mycobacterium tuberculosis (M.tb). Lacking LXRs mice is more susceptibility to infection M.tb, developing higher bacterial burdens and an increase in the size and number of granulomatous lesions. We aimed to assess the associations between single nucleotide polymorphisms (SNPs) in LXRs and risk of tuberculosis. Methods We sequenced the LXRs genes to detect SNPs and to examine genotypic frequencies in 600 patients and 620 healthy controls to investigate for associations with tuberculosis (TB) in the Chinese Han population. DNA re-sequencing revealed eight common variants in the LXRs genes. Results The G allele of rs1449627 and the T allele of rs1405655 demonstrated an increased risk of developing TB (p<0.001, p?=?0.002), and the T allele of rs3758673, the T allele of rs2279238, and the C allele of rs1449626 in LXRA and the C allele of rs17373080, the G allele of rs2248949, and the C allele of rs1052677 in LXRB were protective against TB patients compared to healthy controls (p?=?0.0002, p?=?0.006, p<0.001, p?=?0.004, p?=?0.008, p?=?0.003, respectively). All SNP genotypes were significantly associated with TB. An estimation of the frequencies of haplotypes revealed two potential risk haplotypes,GGCG in LXRB (p?=?0.004,) and TTCG in LXRA (p<0.001, p?=?0.004). Moreover, three protective haplotypes, TTAT and CCAT in LXRA and CATC in LXRB, were significantly “protective” (p?=?0.008, p<0.001, p?=?0.031) for TB. Furthermore, we determined that the LXRs SNPs were nominally associated with the clinical pattern of disease. Conclusions Our study data supported that LXRs play a fundamental role in the genetic susceptibility to TB and to different clinical patterns of disease. Thus, further investigation is required in larger populations and in additional areas. PMID:24788534

  16. Transient receptor potential channel A1 involved in calcitonin gene-related peptide release in neurons.

    PubMed

    Ushio, Nobumasa; Dai, Yi; Wang, Shenglan; Fukuoka, Tetsuo; Noguchi, Koichi

    2013-11-15

    Transient receptor potential channel A1 is one of the important transducers of noxious stimuli in the primary afferents, which may contribute to generation of neurogenic inflammation and hyperalgesia. The present study was designed to investigate if activation of transient receptor potential channel A1 may induce calcitonin gene-related peptide release from the primary afferent neurons. We found that application of allyl isothiocyanate, a transient receptor potential channel A1 activator, caused calcitonin gene-related peptide release from the cultured rat dorsal root ganglion neurons. Knockdown of transient receptor potential channel A1 with an antisense oligodeoxynucleotide prevented calcitonin gene-related peptide release by allyl isothiocyanate application in cultured dorsal root ganglion neurons. Thus, we concluded that transient receptor potential channel A1 activation caused calcitonin gene-related peptide release in sensory neurons. PMID:25206621

  17. Prolactin Receptor Gene Polymorphisms Are Associated with Gestational Diabetes

    PubMed Central

    Elsea, Sarah H.; Romero, Roberto; Chaiworapongsa, Tinnakorn; Francis, Gary L.

    2013-01-01

    Aims: Human placental lactogen (hPL) acts via the prolactin receptor (PRLR) on maternal ?-cells to mediate increases in ?-cell mass and function during normal pregnancy. This interaction between hPL and PRLR is essential to maintain normal glucose homeostasis and to address the increased metabolic demands of pregnancy. Given the importance of the PRLR-hPL axis in pancreatic islet cell adaptation to pregnancy, we hypothesized that genetic variation in the PRLR gene could influence risk of development of gestational diabetes mellitus (GDM). DNA samples from 96 mothers affected by GDM and 96 unaffected cases were genotyped for 8 selected single nucleotide polymorphisms (SNPs) in PRLR. Results: Significant associations were identified in two SNPs analyzed. The minor alleles of PRLR SNPs rs10068521 and rs9292578 were more frequently observed in GDM cases than controls and were associated with a 2.36-fold increased risk for GDM in those carrying the minor allele. Conclusion: SNPs of the PRLR gene 5? UTR and promoter region are associated with increased risk for GDM in a population of Chilean subjects. PMID:23651351

  18. Unusual forms of low density lipoprotein receptors in hamster cell mutants with defects in the receptor structural gene.

    PubMed

    Kozarsky, K F; Brush, H A; Krieger, M

    1986-05-01

    The structure and processing of low density lipoprotein (LDL) receptors in wild-type and LDL receptor-deficient mutant Chinese hamster ovary cells was examined using polyclonal anti-receptor antibodies. As previously reported for human LDL receptors, the LDL receptors in wild-type Chinese hamster ovary cells were synthesized as precursors which were extensively processed by glycosylation to a mature form. In the course of normal receptor turnover, an apparently unglycosylated portion of the cysteine-rich N-terminal LDL binding domain of the receptor is proteolytically removed. The LDL receptor-deficient mutants fall into four complementation groups, ldlA, ldlB, ldlC, and ldlD; results of the analysis of ldlB, ldlC, and ldlD mutants are described in the accompanying paper (Kingsley, D. M., K. F. Kozarsky, M. Segal, and M. Krieger, 1986, J. Cell. Biol, 102:1576-1585). Analysis of ldlA cells has identified three classes of mutant alleles at the ldlA locus: null alleles, alleles that code for normally processed receptors that cannot bind LDL, and alleles that code for abnormally processed receptors. The abnormally processed receptors were continually converted to novel unstable intracellular intermediates. We also identified a compound-heterozygous mutant and a heterozygous revertant which indicate that the ldlA locus is diploid. In conjunction with other genetic and biochemical data, the finding of multiple mutant forms of the LDL receptor in ldlA mutants, some of which appeared together in the same cell, confirm that the ldlA locus is the structural gene for the LDL receptor. PMID:3517003

  19. Unusual forms of low density lipoprotein receptors in hamster cell mutants with defects in the receptor structural gene

    PubMed Central

    1986-01-01

    The structure and processing of low density lipoprotein (LDL) receptors in wild-type and LDL receptor-deficient mutant Chinese hamster ovary cells was examined using polyclonal anti-receptor antibodies. As previously reported for human LDL receptors, the LDL receptors in wild- type Chinese hamster ovary cells were synthesized as precursors which were extensively processed by glycosylation to a mature form. In the course of normal receptor turnover, an apparently unglycosylated portion of the cysteine-rich N-terminal LDL binding domain of the receptor is proteolytically removed. The LDL receptor-deficient mutants fall into four complementation groups, ldlA, ldlB, ldlC, and ldlD; results of the analysis of ldlB, ldlC, and ldlD mutants are described in the accompanying paper (Kingsley, D. M., K. F. Kozarsky, M. Segal, and M. Krieger, 1986, J. Cell. Biol, 102:1576-1585). Analysis of ldlA cells has identified three classes of mutant alleles at the ldlA locus: null alleles, alleles that code for normally processed receptors that cannot bind LDL, and alleles that code for abnormally processed receptors. The abnormally processed receptors were continually converted to novel unstable intracellular intermediates. We also identified a compound-heterozygous mutant and a heterozygous revertant which indicate that the ldlA locus is diploid. In conjunction with other genetic and biochemical data, the finding of multiple mutant forms of the LDL receptor in ldlA mutants, some of which appeared together in the same cell, confirm that the ldlA locus is the structural gene for the LDL receptor. PMID:3517003

  20. Identification of Modulators of the Nuclear Receptor Peroxisome Proliferator-Activated Receptor a (PPARa) in a Mouse Liver Gene Expression Compendium

    EPA Science Inventory

    The nuclear receptor family member peroxisome proliferator-activated receptor a (PPARa) is activated by therapeutic hypolipidemic drugs and environmentally-relevant chemicals to regulate genes involved in lipid transport and catabolism. Chronic activation of PPARa in rodents inc...

  1. Allelic association of human dopamine D sub 2 receptor gene in alcoholism

    SciTech Connect

    Blum, K.; Sheridan, P.J.; Montgomery, A.; Jagadeeswaran, P.; Nogami, H.; Briggs, A.H. (Univ. of Texas Health Science Center, San Antonio (USA)); Noble, E.P.; Ritchie, T.; Cohn, J.B. (Univ. of California, Los Angeles (USA))

    1990-04-18

    In a blinded experiment, the authors report the first allelic association of the dopamine D{sub 2} receptor gene in alcoholism. From 70 brain samples of alcoholics and nonalcoholics, DNA was digested with restriction endonucleases and probed with a clone that contained the entire 3{prime} coding exon, the polyadenylation signal, and approximately 16.4 kilobases of noncoding 3{prime} sequence of the human dopamine D{sub 2} receptor gene ({lambda}hD2G1). In the present samples, the presence of A1 allele of the dopamine D{sub 2} receptor gene correctly classified 77% of alcoholics, and its absence classified 72% of nonalcoholics. The polymorphic pattern of this receptor gene suggests that a gene that confers susceptibility to at least one form of alcoholism is located on the q22-q23 region of chromosome 11.

  2. Fine Structure, Expression, and Polymorphism of the Human Growth Hormone Receptor Gene

    Microsoft Academic Search

    I. V. Orlovskii; P. S. Sverdlova; P. M. Rubtsov

    2004-01-01

    The human growth hormone receptor gene (GHR) is an example of complex transcription unit. The gene has a very long 5'-regulatory region and contains multiple alternative 5'-untranslated exons that are spliced to the protein-coding exons. Its transcription is driven by several promoters that reside far upstream of the coding region. The complete nucleotide sequence of the human GHR gene is

  3. Distinct association of gene polymorphisms of estrogen receptor and vitamin D receptor with lumbar spondylosis in post-menopausal women

    Microsoft Academic Search

    Yu Koshizuka; Naoshi Ogata; Masataka Shiraki; Takayuki Hosoi; Atsushi Seichi; Katsushi Takeshita; Kozo Nakamura; Hiroshi Kawaguchi

    2006-01-01

    Contribution of genetic backgrounds to the etiology of lumbar spondylosis has been suggested by epidemiological studies. This study was designed to determine the association of restriction fragment length polymorphisms (RFLPs) of estrogen receptor (ER), vitamin D receptor (VDR), parathyroid hormone (PTH) and interleukin-1? (IL-1?) genes with the radiological severity of lumbar spondylosis at the disk level from L1\\/2 to L5\\/S1

  4. Positive association between a DNA sequence variant in the serotonin 2A receptor gene and schizophrenia

    SciTech Connect

    Inayama, Y.; Yoneda, H.; Sakai, T. [Osaka Medical College (Japan)] [and others] [Osaka Medical College (Japan); and others

    1996-02-16

    Sixty-two patients with schizophrenia and 96 normal controls were investigated for genetic association with restriction fragment length polymorphisms (RFLPs) in the serotonin receptor genes. A positive association between the serotonin 2A receptor gene (HTR2A) and schizophrenia was found, but not between schizophrenia and the serotonin 1A receptor gene. The positive association we report here would suggest that the DNA region with susceptibility to schizophrenia lies in the HTR2A on the long arm of chromosome 13. 15 refs., 2 tabs.

  5. Differential gene expression in mouse primary hepatocytes exposed to the peroxisome proliferator-activated receptor ? agonists

    PubMed Central

    Guo, Lei; Fang, Hong; Collins, Jim; Fan, Xiao-hui; Dial, Stacey; Wong, Alex; Mehta, Kshama; Blann, Ernice; Shi, Leming; Tong, Weida; Dragan, Yvonne P

    2006-01-01

    Background Fibrates are a unique hypolipidemic drugs that lower plasma triglyceride and cholesterol levels through their action as peroxisome proliferator-activated receptor alpha (PPAR?) agonists. The activation of PPAR? leads to a cascade of events that result in the pharmacological (hypolipidemic) and adverse (carcinogenic) effects in rodent liver. Results To understand the molecular mechanisms responsible for the pleiotropic effects of PPAR? agonists, we treated mouse primary hepatocytes with three PPAR? agonists (bezafibrate, fenofibrate, and WY-14,643) at multiple concentrations (0, 10, 30, and 100 ?M) for 24 hours. When primary hepatocytes were exposed to these agents, transactivation of PPAR? was elevated as measured by luciferase assay. Global gene expression profiles in response to PPAR? agonists were obtained by microarray analysis. Among differentially expressed genes (DEGs), there were 4, 8, and 21 genes commonly regulated by bezafibrate, fenofibrate, and WY-14,643 treatments across 3 doses, respectively, in a dose-dependent manner. Treatments with 100 ?M of bezafibrate, fenofibrate, and WY-14,643 resulted in 151, 149, and 145 genes altered, respectively. Among them, 121 genes were commonly regulated by at least two drugs. Many genes are involved in fatty acid metabolism including oxidative reaction. Some of the gene changes were associated with production of reactive oxygen species, cell proliferation of peroxisomes, and hepatic disorders. In addition, 11 genes related to the development of liver cancer were observed. Conclusion Our results suggest that treatment of PPAR? agonists results in the production of oxidative stress and increased peroxisome proliferation, thus providing a better understanding of mechanisms underlying PPAR? agonist-induced hepatic disorders and hepatocarcinomas. PMID:17118139

  6. Androgen Receptor Gene Polymorphisms and Alterations in Prostate Cancer: Of Humanized Mice and Men

    PubMed Central

    Robins, Diane M.

    2011-01-01

    Germline polymorphisms and somatic mutations of the androgen receptor (AR) have been intensely investigated in prostate cancer but even with genomic approaches their impact remains controversial. To assess the functional significance of AR genetic variation, we converted the mouse gene to the human sequence by germline recombination and engineered alleles to query the role of a polymorphic glutamine (Q) tract implicated in cancer risk. In a prostate cancer model, AR Q tract length influences progression and castration response. Mutation profiling in mice provides direct evidence that somatic AR variants are selected by therapy, a finding validated in human metastases from distinct treatment groups. Mutant ARs exploit multiple mechanisms to resist hormone ablation, including alterations in ligand specificity, target gene selectivity, chaperone interaction and nuclear localization. Regardless of their frequency, these variants permute normal function to reveal novel means to target wild type AR and its key interacting partners. PMID:21689727

  7. Loss of heterozygosity in a gene coding for a thyroid hormone receptor in lung cancers

    PubMed Central

    Leduc, François; Brauch, Hiltrud; Hajj, Camile; Dobrovic, Alexander; Kaye, Frederick; Gazdar, Adi; Harbour, J. William; Pettengill, Olive S.; Sorenson, George D.; van den Berg, A.; Kok, K.; Campling, Barbara; Paquin, François; Bradley, W. E. C.; Zbar, Berton; Minna, John; Buys, Charles; Ayoub, Joseph

    1989-01-01

    The ERBA? gene codes for a DNA-binding thyroid hormone receptor (THR) and maps to chromosome 3p21-p25, overlapping a 3p deletion characterizing small-cell lung carcinoma (SCLC). A DNA clone detecting an RFLP at the ERBA? locus has been used to probe a large number of lung .tumors. Virtually all SCLC had lost heterozygosity, showing that the 3p deletion in SCLC includes this gene. A substantial but smaller proportion of non-small-cell carcinomas had lost heterozygosity at ERBA?. Among all non-small-cell tumors some had lost heterozygosity at the proximal locus DNF15S2 (band 3p21) but not at ERBA?, whereas none were found where the reverse was true. Therefore, the locus which plays a role in non-small-cell tumorigenesis probably lies closer to DNF15S2 than to ERBA? and is almost certainly not the latter. ImagesFigure 1Figure 2 PMID:2536219

  8. Molecular cloning and chromosomal localization of one of the human glutamate receptor genes

    SciTech Connect

    Puckett, C.; Gomez, C.M.; Tung, H.; Meier, T.J.; Hood, L. (California Inst. of Technology, Pasadena (United States)); Korenberg, J.R.; Xiao Ning Chen (Cedar Sinai Medical Center, Los Angeles, CA (United States))

    1991-09-01

    Glutamate receptors are the predominant excitatory neurotransmitter receptors in the mammalian brain and are classified on the basis of their activation by different agonists. The agonists kainate and {alpha}-amino-3-hydroxy-5-methyl-4-isoxasolepropionic acid define a class of glutamate receptors termed kainate receptors. The authors have isolated and sequenced a human glutamate receptor (GluHI) cDNA and determined the chromosomal localization of its gene. The DNA sequence of GluHI would encode a 907-amino acid protein that has a 97% identity to one of the rodent kainate receptor subunits. Many of the changes between the predicted amino acid sequence of GluHI and the most similar rodent kainate receptor (GluRI) occur in a region of the protein encoded in rodents by an alternatively spliced exon. The extreme conservation between the human and rat kainate receptor subunits suggests that a similar gene family will encode human kainate receptors. The GluHI mRNA is widely expressed in human brain. The human gene encoding the GluHI subunit is located at 5q33. While the GluHI gene is not located near a chromosomal region associated with any human neurogenetic disorders, the homologous region on mouse chromosome 11 contains the sites of five neurologic mutations.

  9. Identification and Expression Analysis of Putative Chemosensory Receptor Genes in Microplitis mediator by Antennal Transcriptome Screening

    PubMed Central

    Wang, Shan-Ning; Peng, Yong; Lu, Zi-Yun; Dhiloo, Khalid Hussain; Gu, Shao-Hua; Li, Rui-Jun; Zhou, Jing-Jiang; Zhang, Yong-Jun; Guo, Yu-Yuan

    2015-01-01

    Host-seeking, ovipositional behavior and mating of insects are controlled mainly by odor perception through sensory organs such as antennae. Antennal chemoreception is extremely important for insect survival. Several antennal chemosensory receptors are involved in mediating the odor detection in insects, especially the odorant receptors (ORs) and ionotropic receptors (IRs), to ensure the specificity of the olfactory sensory neuron responses. In the present study, we identified the chemosensory receptor gene repertoire of the parasitoid wasp Microplitis mediator, a generalist endoparasitoid that infests more than 40 types of Lepidopterous larvae and is widely distributed in the Palaearctic region. By transcriptome sequencing of male and female antennae we identified 60 candidate odorant receptors, six candidate ionotropic receptors and two gustatory receptors in M. mediator. The full-length sequences of these putative chemosensory receptor genes were obtained by using the rapid amplification of cDNA ends PCR (RACE-PCR) method. We also conducted reverse transcription PCR (RT-PCR) combined with real-time quantitative PCR (qPCR) for investigating the expression profiles of these chemosensory receptor genes in olfactory and non-olfactory tissues. The tissue- and sex-biased expression patterns may provide insights into the roles of the chemosensory receptor in M. mediator. Our findings support possible future study of the chemosensory behavior of M. mediator at the molecular level.

  10. [Novel therapy for malignant lymphoma: adoptive immuno-gene therapy using chimeric antigen receptor(CAR)-expressing T lymphocytes].

    PubMed

    Ozawa, Keiya

    2014-03-01

    Adoptive T-cell therapy using chimeric antigen receptor (CAR) technology is a novel approach to cancer immuno-gene therapy. CARs are hybrid proteins consisting of target-antigen-specific single-chain antibody fragment fused to intracellular T-cell activation domains (CD28 or CD137/CD3 zeta receptor). CAR-expressing engineered T lymphocytes can directly recognize and kill tumor cells in an HLA independent manner. In the United States, promising results have been obtained in the clinical trials of adoptive immuno-gene therapy using CD19-CAR-T lymphocytes for the treatment of refractory B-cell malignancies, including chronic lymphocytic leukemia (CLL) and acute lymphoblastic leukemia (ALL). In this review article, CD19-CAR-T gene therapy for refractory B-cell non-Hodgkin lymphoma is discussed. PMID:24724418

  11. Late breast metastasis from resected lung cancer diagnosed by epidermal growth factor receptor gene mutation

    Microsoft Academic Search

    Koichi Fukumoto; Noriyasu Usami; Toshiki Okasaka; Koji Kawaguchi; Takehiko Okagawa; Haruko Suzuki; Kohei Yokoi

    2011-01-01

    Primary lung cancer metastasizes to various organs, but rarely metastasizes to the breast. We report a case of breast metastasis from primary lung cancer, which was confirmed by the detection of the same epidermal growth factor receptor (EGFR) gene mutation.

  12. Differential Regulation of ?7 Nicotinic Receptor Gene (CHRNA7) Expression in Schizophrenic Smokers

    PubMed Central

    Mexal, Sharon; Berger, Ralph; Logel, Judy; Ross, Randal G.; Freedman, Robert

    2009-01-01

    The ?7 neuronal nicotinic receptor gene (CHRNA7) has been implicated in the pathophysiology of schizophrenia by genetic and pharmacological studies. Expression of the ?7* receptor, as measured by [125I]?-bungarotoxin autoradiography, is decreased in postmortem brain of schizophrenic subjects compared to non-mentally ill controls. Most schizophrenic patients are heavy smokers, with high levels of serum cotinine. Smoking changes the expression of multiple genes and differentially regulates gene expression in schizophrenic hippocampus. We examined the effects of smoking on CHRNA7 expression in the same tissue and find that smoking differentially regulates expression of both mRNA and protein for this gene. CHRNA7 mRNA and protein levels are significantly lower in schizophrenic nonsmokers compared to control nonsmokers and are brought to control levels in schizophrenic smokers. Sufficient protein but low surface expression of the ?7* receptor, seen in the autoradiographic studies, suggests aberrant assembly or trafficking of the receptor. PMID:19680823

  13. Characterisation of androgen receptor function in the male reproductive system through conditional gene targeting 

    E-print Network

    O'Hara, Laura

    2011-07-05

    Androgen receptor (AR) signalling is essential for the development and function of the male reproductive system. Conditional gene ablation using the Cre-loxP system has previously assisted in the elucidation of the role ...

  14. In Vivo Gene Modification Elucidates Subtype-Specific Functions of a2Adrenergic Receptors 1

    Microsoft Academic Search

    JOSEPH W. KABLE; L. CHARLES MURRIN; DAVID B. BYLUND

    Mice with altered a2-adrenergic receptor genes have become important tools in elucidating the subtype-specific functions of the three a2-adrenergic receptor subtypes because of the lack of sufficiently subtype-selective pharmacological agents. Mice with a deletion (knockout) of the a2A-, a2B-, or a2C-gene as well as a point mutation of the a2A-gene (a2A-D79N) and a 3-fold overexpression of the a2C-gene have been

  15. Melatonin Receptor 1A Gene Polymorphism Associated with Polycystic Ovary Syndrome

    Microsoft Academic Search

    Chao Li; Yuhua Shi; Li You; Laicheng Wang; Zi-Jiang Chen

    2011-01-01

    Background\\/Aims: Melatonin receptor 1A (MTNR1A) gene is a regulator of circadian rhythms and reproductive processes. The MTNR1A gene is also a potential candidate gene of polycystic ovary syndrome (PCOS). The aim of the present study was to determine whether or not the MTNR1A gene polymorphism is associated with a predisposition to PCOS. Methods: The single nucleotide polymorphism (SNP) rs2119882 in

  16. Detection of Clonal T-Cell Receptor ? Gene Rearrangements in Early Mycosis Fungoides\\/Sezary Syndrome by Polymerase Chain Reaction and Denaturing Gradient Gel Electrophoresis (PCR\\/DGGE)

    Microsoft Academic Search

    Gary S. Wood; Rosnn M. Tung; Andreas C. Heaffner; Carol F. Crooks; Shaoyi Liao; Rachaci Orozco; Hendrik Veelken; Marshall E. Kadin; Howard Koh; Peter Heald; Raymond L. Barnhill; Jeffrey Sklar

    1994-01-01

    We used a gene amplification strategy to analyze T-cell receptor (TCR) gene rearrangements in 185 specimens, including mycosis fungoides\\/Sezary syndrome (MF\\/SS), other cutaneous neoplasms, inflammatory dermatoses, reactive lymphoid tissues,and normal skin. Genomic DNA was extracted from lesional tissues and rearrangements of the TCR-? chain gene were amplified using the polymerase chain reaction (PCR) with primers specific for rearrangements involving V?1-8

  17. Identification and characterization of human taste receptor genes belonging to the TAS2R family

    Microsoft Academic Search

    C. Conte; M. Ebeling; A. Marcuz; P. Nef; P. J. Andres-Barquin

    2002-01-01

    The sense of taste is a chemosensory system responsible for basic food appraisal. Humans distinguish between five primary tastes: bitter, sweet, sour, salty and umami. The molecular events in the perception of bitter taste are believed to start with the binding of specific water-soluble molecules to G-protein-coupled receptors encoded by the TAS2R\\/T2R family of taste receptor genes. TAS2R receptors are

  18. Expression of members of the putative olfactory receptor gene family in mammalian germ cells

    Microsoft Academic Search

    Marc Parmentier; Frédéric Libert; Stéphane Schurmans; Serge Schiffmann; Anne Lefort; Dominique Eggerickx; Catherine Ledent; Catherine Mollereau; Catherine Gérard; Jason Perret; Anton Grootegoed; Gilbert Vassart

    1992-01-01

    A SERIES of genomic and complementary DNA clones encoding new putative members of G protein-coupled receptors were isolated using homology cloning and low-stringency polymerase chain reaction1,2. Among the unidentified receptors ('orphan receptors'), a human genomic clone (HGMP07) was characterized by the presence of its transcripts in the testis and by its belonging to a large subfamily of genes sharing extensive

  19. Rna-mediated regulation of Receptor-Ck gene in human platelets

    Microsoft Academic Search

    Jarnail Singh; D. Kaul

    1997-01-01

    The study addressed to understand the regulation of Receptor-‘Ck’ gene atthe translational level revealed that exogenous cholesterol has the inherentcapacity to regulate the endogenous synthesis of Receptor-‘Ck’ by initiatingintracellular targeting of the Receptor-‘Ck’ to the mRNP pool within humanplatelets and this effect could be reversed when the platelets wereincubated with cholesterol coupled with either dB cAMP or dB cGMP. Basedupon

  20. Localization of the A{sub 3} adenosine receptor gene (ADORA3) to human chromosome 1p

    SciTech Connect

    Monitto, C.L.; Levitt, R.C.; Holroyd, K.J. [Johns Hopkins Hospital, Baltimore, MD (United States)] [and others] [Johns Hopkins Hospital, Baltimore, MD (United States); and others

    1995-04-10

    Adenosine modulates important physiologic functions involving the cardiovascular system, brain, kidneys, lungs, GI tract, and immune system. To date four adenosine receptors have been identified: A{sub 1}, A{sub 2a}, A{sub 2b}, and A{sub 3}. Activation of these receptors results in inhibition (A{sub 1} and A{sub 3}) or stimulation (A{sub 2a} and A{sub 2b}) of intracellular adenyl cyclase activity, stimulation of K{sup +} flux, inhibition of Ca{sup 2+} flux, and modulation of inositol phospholipid turnover. A{sub 3} receptors have been identified and sequenced in the testes, brain, lung, liver, kidney, and heart of various species, including the rat, mouse, and human. A{sub 3} receptor activation is responsible for release of inflammatory mediators from mast cells, which can cause allergic bronchoconstriction. In addition, they can produce systemic vasodilation and locomotor depression via activation of A{sub 3} receptors in the brain. Given the potential importance of A{sub 3} receptor activity in the pathogenesis of pulmonary, cardiovascular, and central nervous system disease states, we set out to localize the human A{sub 3} adenosine receptor gene (ADORA3). 9 refs., 1 fig.

  1. Association study of dopamine D3 receptor gene and schizophrenia

    SciTech Connect

    Kennedy, J.L.; Billett, E.A.; Macciardi, F.M. [Univ. of Toronto, Ontario (Canada)] [and others

    1995-12-18

    Several groups have reported an association between schizophrenia and the MscI polymorphism in the first exon of the dopamine D3 receptor gene (DRD3). We studied this polymorphism using a North American sample (117 patients plus 188 controls) and an Italian sample (97 patients plus 64 controls). In the first part of the study, we compared allele frequencies of schizophrenia patients and unmatched controls and observed a significant difference in the total sample (P = 0.01). The second part of the study involved a case control approach in which each schizophrenia patient was matched to a control of the same sex, and of similar age and ethnic background. The DRD3 allele frequencies of patients and controls revealed no significant difference between the two groups in the Italian (N = 53) or the North American (N = 54) matched populations; however, when these two matched samples were combined, a significant difference was observed (P = 0.026). Our results suggest that the MscI polymorphism may be associated with schizophrenia in the populations studied. 32 refs., 2 tabs.

  2. Androgen receptor gene and gender specific Alzheimer’s disease

    PubMed Central

    Ferrari, Raffaele; Dawoodi, Saad; Raju, Merrill; Thumma, Avinash; Hynan, Linda S.; Maasumi, Shirin Hejazi; Reisch, Joan S.; O’Bryant, Sid; Jenkins, Marjorie; Barber, Robert; Momeni, Parastoo

    2013-01-01

    Women are at a twofold risk of developing late onset Alzheimer’s disease (LOAD) (onset ?65 years of age) compared to men. During perimenopausal years, women undergo hormonal changes that are accompanied by metabolic, cardiovascular and inflammatory changes. These all together have been suggested as risk factors for LOAD. However, not all perimenopausal women develop AD; we hypothesize that certain genetic factors might underlie the increased susceptibility for developing AD in postmenopausal women. We investigated the androgen receptor (AR) gene in a clinical cohort of male and female AD patients and normal controls by sequencing all coding exons and evaluating the length and distribution of the CAG repeat in exon 1. We could not establish a correlation between the repeat length, gender and the disease status, nor did we identify possible pathogenic variants. AR is located on the X chromosome; in order to assess its role in AD, X-inactivation patterns will need to be studied to directly correlate the actual expressed repeat length to a possible sex specific phenotypic effect. PMID:23545426

  3. Oestrogen receptor ? gene haplotype and postmenopausal breast cancer risk: a case control study

    Microsoft Academic Search

    Sara Wedrén; Lovisa Lovmar; Keith Humphreys; Cecilia Magnusson; Hĺkan Melhus; Ann-Christine Syvänen; Andreas Kindmark; Ulf Landegren; Maria Lagerström Fermér; Fredrik Stiger; Ingemar Persson; John Baron; Elisabete Weiderpass

    2004-01-01

    INTRODUCTION: Oestrogen receptor ?, which mediates the effect of oestrogen in target tissues, is genetically polymorphic. Because breast cancer development is dependent on oestrogenic influence, we have investigated whether polymorphisms in the oestrogen receptor ? gene (ESR1) are associated with breast cancer risk. METHODS: We genotyped breast cancer cases and age-matched population controls for one microsatellite marker and four single-nucleotide

  4. Behavioural anomalies in mice evoked by ``Tokyo'' disruption of the Vitamin D receptor gene

    E-print Network

    Kalueff, Allan V.

    Behavioural anomalies in mice evoked by ``Tokyo'' disruption of the Vitamin D receptor gene Allan V December 2005 Available online 19 January 2006 Abstract Vitamin D is a steroid hormone with many important functions in the brain, mediated through the nuclear Vitamin D receptor (VDR). Mounting clinical data link

  5. Estrogen receptor alpha gene variants and major depressive episodes Joanne Ryan a,b,c,*

    E-print Network

    Paris-Sud XI, Université de

    of the Three City Study. Current and past major depressive disorders (MDD) were diagnosed using the Mini-based treatment. Key words: estrogen receptor polymorphisms; major depressive disorder; recurrent depressive1 Estrogen receptor alpha gene variants and major depressive episodes Joanne Ryan a

  6. Duplication of the Rdl GABA receptor subunit gene in an insecticide-resistant aphid, Myzus persicae

    Microsoft Academic Search

    N. Anthony; T. Unruh; D. Ganser; R. ffrench-Constant

    1998-01-01

    Resistance to cyclodiene insecticides is associated with replacements of a single amino acid (alanine 302) in a ?-aminobutyric acid (GABA) receptor subunit encoded by the single-copy gene Resistance to dieldrin (Rdl). Alanine 302 is predicted to reside within the second membrane-spanning region of the Rdl receptor, a region that is thought to line the integral chloride ion channel pore. In

  7. Association of Killer Cell Immunoglobulin-Like Receptor Genes with Hodgkin's Lymphoma in a Familial Study

    E-print Network

    Paris-Sud XI, Université de

    Association of Killer Cell Immunoglobulin-Like Receptor Genes with Hodgkin's Lymphoma in a Familial in young adults. Natural killer (NK) cells are key actors of the innate immune response against viruses. The regulation of NK cell function involves activating and inhibitory Killer cell Immunoglobulin-like receptors

  8. Angiotensin II type 1 receptor A1166C GENE polymorphism and essential hypertension in San Luis

    Microsoft Academic Search

    ALICIA VIVIANA LAPIERRE; MARIA ELENA ARCE; JOSÉ RAUL LOPEZ

    1166 C polymorphism, risk factors, RAS system, pharmacogenetics. ABSTRACT: Essential hypertension is considered a multifactorial trait resulting from a combination of environmental and genetic factors. The angiotensin II type 1 receptor mediates the vasoconstrictor and growth- promoting effects of Ang II. The A 1166 C polymorphism of the AT1 receptor gene may be associated with cardiovascular phenotypes, such as high

  9. Arterioscler Thromb Vasc Biol . Author manuscript Peroxisome proliferator-activated receptor-alpha gene level differently

    E-print Network

    Boyer, Edmond

    ; pathology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mice, Transgenic ; PPAR alpha ; agonists ; genetics-activated receptor-alpha gene level differently affects lipid metabolism and inflammation in apolipoprotein E2 knock-Activated Receptor (PPAR ) is a ligand-activated transcription factor which controls lipid metabolism

  10. Identification of small molecule antagonists of the human mas-related gene-X1 receptor

    Microsoft Academic Search

    Priya Kunapuli; Seungtaek Lee; Wei Zheng; Melissa Alberts; Oleg Kornienko; Rebecca Mull; Anthony Kreamer; Jong-Ik Hwang; Melvin I. Simon; Berta Strulovici

    2006-01-01

    The recently identified mas-related-gene (MRG) family of receptors, located primarily in sensory neurons of the dorsal root ganglion, has been implicated in the perception of pain. Thus, antagonists of this class of receptors have been postulated to be useful analgesics. Toward this end, we developed a cell-based beta-lactamase (BLA) reporter gene assay to identify small molecule antagonists of the human

  11. The Natural History of Class I Primate Alcohol Dehydrogenases Includes Gene Duplication, Gene Loss, and Gene Conversion

    PubMed Central

    Carrigan, Matthew A.; Uryasev, Oleg; Davis, Ross P.; Zhai, LanMin; Hurley, Thomas D.; Benner, Steven A.

    2012-01-01

    Background Gene duplication is a source of molecular innovation throughout evolution. However, even with massive amounts of genome sequence data, correlating gene duplication with speciation and other events in natural history can be difficult. This is especially true in its most interesting cases, where rapid and multiple duplications are likely to reflect adaptation to rapidly changing environments and life styles. This may be so for Class I of alcohol dehydrogenases (ADH1s), where multiple duplications occurred in primate lineages in Old and New World monkeys (OWMs and NWMs) and hominoids. Methodology/Principal Findings To build a preferred model for the natural history of ADH1s, we determined the sequences of nine new ADH1 genes, finding for the first time multiple paralogs in various prosimians (lemurs, strepsirhines). Database mining then identified novel ADH1 paralogs in both macaque (an OWM) and marmoset (a NWM). These were used with the previously identified human paralogs to resolve controversies relating to dates of duplication and gene conversion in the ADH1 family. Central to these controversies are differences in the topologies of trees generated from exonic (coding) sequences and intronic sequences. Conclusions/Significance We provide evidence that gene conversions are the primary source of difference, using molecular clock dating of duplications and analyses of microinsertions and deletions (micro-indels). The tree topology inferred from intron sequences appear to more correctly represent the natural history of ADH1s, with the ADH1 paralogs in platyrrhines (NWMs) and catarrhines (OWMs and hominoids) having arisen by duplications shortly predating the divergence of OWMs and NWMs. We also conclude that paralogs in lemurs arose independently. Finally, we identify errors in database interpretation as the source of controversies concerning gene conversion. These analyses provide a model for the natural history of ADH1s that posits four ADH1 paralogs in the ancestor of Catarrhine and Platyrrhine primates, followed by the loss of an ADH1 paralog in the human lineage. PMID:22859968

  12. In silico cloning of genes encoding neuropeptides, neurohormones and their putative G-protein coupled receptors in a spider mite.

    PubMed

    Veenstra, Jan A; Rombauts, Stephane; Grbi?, Miodrag

    2012-04-01

    The genome of the spider mite was prospected for the presence of genes coding neuropeptides, neurohormones and their putative G-protein coupled receptors. Fifty one candidate genes were found to encode neuropeptides or neurohormones. These include all known insect neuropeptides and neurohormones, with the exception of sulfakinin, corazonin, neuroparsin and PTTH. True orthologs of adipokinetic hormone (AKH) were neither found, but there are three genes encoding peptides similar in structure to both AKH and the AKH-corazonin-related peptide. We were also unable to identify the precursors for pigment dispersing factor (PDF) or the recently discovered trissin. However, the spider mite probably does have such genes, as we found their putative receptors. A novel arthropod neuropeptide gene was identified that shows similarity to previously described molluscan neuropeptide genes and was called EFLamide. A total of 65 putative neuropeptide GPCR genes were also identified, of these 58 belong to the A-family and 7 to the B-family. Phylogenetic analysis showed that 50 of them are closely related to insect GPCRs, which allowed the identification of their putative ligand in 39 cases with varying degrees of certainty. Other spider mite GPCRs however have no identifiable orthologs in the genomes of the four holometabolous insect species best analyzed. Whereas some of the latter have orthologs in hemimetabolous insect species, crustaceans or ticks, for others such arthropod homologs are currently unknown. PMID:22214827

  13. Specific repertoire of olfactory receptor genes in the male germ cells of several mammalian species

    SciTech Connect

    Vanderhaeghen, P.; Schurmans, S.; Vassart, G.; Parmentier, M. [Universite Libre de Bruxelles (Belgium)] [Universite Libre de Bruxelles (Belgium)

    1997-02-01

    Olfactory receptors constitute the largest family among G protein-coupled receptors, with up to 1000 members expected. We have previously shown that genes belonging to this family were expressed in the male germ line from both dog and human. We have subsequently demonstrated the presence of one of the corresponding olfactory receptor proteins during dog spermatogenesis and in mature sperm cells. In this study, we investigated whether the unexpected pattern of expression of olfactory receptors in the male germ line was conserved in other mammalian species. Using reverse transcription-PCR with primers specific for the olfactory receptor gene family, about 20 olfactory receptor cDNA fragments were cloned from the testis of each mammalian species tested. As a whole, they displayed no sequence specificity compared to other olfactory receptors, but highly homologous, possibly orthologous, genes were amplified from different species. Finally, their pattern of expression, as determined by RNase protection assay, revealed that many but not all of these receptors were expressed predominantly in testis. The male germ line from each mammalian species tested is thus characterized by a specific repertoire of olfactory receptors, which display a pattern of expression suggestive of their potential implication in the control of sperm maturation, migration, or fertilization. 34 refs., 4 figs., 1 tab.

  14. Cocaine-Induced Intracellular Signaling and Gene Expression Are Oppositely Regulated by the Dopamine D1 and D3 Receptors

    Microsoft Academic Search

    Lu Zhang; Danwen Lou; Hongyuan Jiao; Dongsheng Zhang; Xinkang Wang; Ying Xia; Jianhua Zhang; Ming Xu

    2004-01-01

    Repeated exposure to cocaine can induce neuroadaptations in the brain. One mechanism by which persistent changes occur involves alterations in gene expression mediated by the dopamine receptors. Both the dopamine D1 and D3 receptors have been shown to mediate gene expression changes. Moreover, the D1 and D3 receptors are also coexpressed in the same neurons, particularly in the nucleus accumbens

  15. Estrogen Receptor Expression in Human Breast Cancer Associated with an Estrogen Receptor Gene Restriction Fragment Length Polymorphism1

    Microsoft Academic Search

    Steven M. Hill; Suzanne A. W. Fuqua; Gary C. Chamness; Geoffrey L. Greene; William L. McGuire

    1989-01-01

    Estrogen receptor (ER) content is a well-known predictor of clinical outcome in human breast cancer. The recent cloning of a human ER complementary DNA has made possible the characterization of the ER gene on a molecular level. We have examined in human breast cancers a single, two-allele restriction fragment length polymorphism using the restriction enzyme Pviill. Initial studies in human

  16. Association study of GABAA ?2 receptor subunit gene variants in antipsychotic-associated weight gain.

    PubMed

    Zai, Clement C H; Tiwari, Arun K; Chowdhury, Nabilah I; Brandl, Eva J; Shaikh, Sajid A; Freeman, Natalie; Lieberman, Jeffrey A; Meltzer, Herbert Y; Müller, Daniel J; Kennedy, James L

    2015-02-01

    Schizophrenia treatment has been hampered by undesirable adverse effects, including weight gain and associated complications. Recent candidate gene studies have been exploring the appetite regulation pathways in antipsychotic-associated weight gain (AAWG) with some promising leads. Genome-wide association studies of obesity have pointed to a number of potential candidate genes, such as MC4R, that were later found to be shared with AAWG. GABAA ?2 receptor subunit (GABRA2) was another potential candidate gene for obesity from genome-wide association studies; however, it has not been explored in AAWG. We examined 9 single nucleotide polymorphisms across the GABRA2 gene. Prospective weight change was assessed for a total of 160 schizophrenia patients of European ancestry. The rs279858 marker was associated with percent weight change, with the patients homozygous for the TT genotype experiencing higher percentage weight gain on average than the C allele carriers (P = 0.009). When we performed the analysis considering each clinical site using a meta-analytic method, the results remained statistically significant (P = 1.4e-4). These findings became even more significant when we considered only patients taking clozapine or olanzapine, the 2 medications with higher risk for weight gain (P < 1e-10). GABRA2 genetic variants may play a role in predicting AAWG. However, replication in larger and independent samples is required. PMID:25514066

  17. Structure and chromosomal localization of the human antidiuretic hormone receptor gene

    SciTech Connect

    Seibold, A.; Brabet, P.; Rosenthal, W.; Birnbaumer, M. (Baylor College of Medicine, Houston, TX (United States))

    1992-11-01

    Applying a genomic DNA-expression approach, the authors cloned the gene and cDNA coding for the human antidiuretic hormone receptor, also called vasopressin V2 receptor' (V2R). The nucleotide sequence of both cloned DNAs provided the information to elucidate the structure of the isolated transcriptional unit. The structure of this gene is unusual in that it is the first G protein-coupled receptor gene that contains two very small intervening sequences, the second of which separates the region encoding the seventh transmembrane region from the rest of the open reading frame. The sequence information was used to synthesize appropriate oligonucleotides to be used as primers in the PCR. The V2R gene was localized by PCR using DNA from hybrid cells as template. The gene was found to reside in the q28-qter portion of the human X chromosome, a region identified as the locus for congential nephrogenic diabetes insipidus. 27 refs., 4 figs.

  18. Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia.

    PubMed

    Vacic, Vladimir; McCarthy, Shane; Malhotra, Dheeraj; Murray, Fiona; Chou, Hsun-Hua; Peoples, Aine; Makarov, Vladimir; Yoon, Seungtai; Bhandari, Abhishek; Corominas, Roser; Iakoucheva, Lilia M; Krastoshevsky, Olga; Krause, Verena; Larach-Walters, Verónica; Welsh, David K; Craig, David; Kelsoe, John R; Gershon, Elliot S; Leal, Suzanne M; Dell Aquila, Marie; Morris, Derek W; Gill, Michael; Corvin, Aiden; Insel, Paul A; McClellan, Jon; King, Mary-Claire; Karayiorgou, Maria; Levy, Deborah L; DeLisi, Lynn E; Sebat, Jonathan

    2011-03-24

    Rare copy number variants (CNVs) have a prominent role in the aetiology of schizophrenia and other neuropsychiatric disorders. Substantial risk for schizophrenia is conferred by large (>500-kilobase) CNVs at several loci, including microdeletions at 1q21.1 (ref. 2), 3q29 (ref. 3), 15q13.3 (ref. 2) and 22q11.2 (ref. 4) and microduplication at 16p11.2 (ref. 5). However, these CNVs collectively account for a small fraction (2-4%) of cases, and the relevant genes and neurobiological mechanisms are not well understood. Here we performed a large two-stage genome-wide scan of rare CNVs and report the significant association of copy number gains at chromosome 7q36.3 with schizophrenia. Microduplications with variable breakpoints occurred within a 362-kilobase region and were detected in 29 of 8,290 (0.35%) patients versus 2 of 7,431 (0.03%) controls in the combined sample. All duplications overlapped or were located within 89 kilobases upstream of the vasoactive intestinal peptide receptor gene VIPR2. VIPR2 transcription and cyclic-AMP signalling were significantly increased in cultured lymphocytes from patients with microduplications of 7q36.3. These findings implicate altered vasoactive intestinal peptide signalling in the pathogenesis of schizophrenia and indicate the VPAC2 receptor as a potential target for the development of new antipsychotic drugs. PMID:21346763

  19. Action of NF-kappaB on the delta opioid receptor gene promoter.

    PubMed

    Chen, Yulong L; Law, Ping-Yee; Loh, Horace H

    2007-01-19

    The G protein-coupled delta opioid receptor gene (dor) is temporally and spatially expressed during development. The DOR receptor plays important roles in diverse biological processes, including pain control, immune functions, and cell survival. We previously found that PI3K/Akt/NF-kappaB signaling is important in the regulation of dor gene expression during nerve growth factor (NGF)-induced differentiation of PC12h cells, which prompted us to examine whether NF-kappaB p65 is directly or indirectly involved in the regulation of dor promoter activity. In this study, deletional and functional analysis of the dor promoter revealed a 94-bp NGF-responsive fragment upstream of the dor promoter region and involvement of NF-kappaB in regulating the promoter activity. Chromatin immunoprecipitation assays demonstrated that NF-kappaB p65 is directly bound to the dor promoter and such binding is related to NGF/PI3K signaling. Together, the results show that direct association of p65 with the promoter is important in NGF-induced dor promoter activity. PMID:17150179

  20. Characterization of epidermal growth factor receptor gene expression in malignant and normal human cell lines.

    PubMed Central

    Xu, Y H; Richert, N; Ito, S; Merlino, G T; Pastan, I

    1984-01-01

    To investigate the possibility that the epidermal growth factor (EGF) receptor functions as an oncogene product, we have determined the levels of EGF receptor protein and RNA in a variety of malignant and normal human cells, using a specific polyclonal antibody to the EGF receptor and a cDNA clone (plasmid pE7) that encodes the EGF receptor, respectively. Besides A431 epidermoid carcinoma cells, which are known to make large amounts of EGF receptor, cell lines from two ovarian cancers, two cervical cancers, and one kidney cancer were found to contain substantial amounts of receptor protein (11-22% of A431). Normal human fibroblasts (Detroit 551), a human lymphocyte line (IM-9), and a leukemic lymphocyte line (CEM) contained low or undetectable levels of EGF receptor. RNA blot analysis showed that among the human cell lines examined the levels of a 10- and a 5.6-kilobase species of pE7-specific RNA generally correlated with the amount of the EGF receptor protein. Genomic DNA blot analysis revealed that except for A431 none of these cell lines expressing high levels of EGF receptor protein possessed amplified receptor gene sequences. A431 cells are known to secrete a truncated form of the EGF receptor. An abundant 2.9-kilobase RNA is found only in A431 cells; it could encode the truncated form of the EGF receptor. Images PMID:6095284

  1. Mutations in the epidermal growth factor receptor gene and effects of EGFR-tyrosine kinase inhibitors on lung cancers

    Microsoft Academic Search

    Takayuki Fukui; Tetsuya Mitsudomi

    2008-01-01

    Epidermal growth factor receptor (EGFR) gene mutations are frequent in lung cancer arising in patients of Asian ethnicity, female sex, nonsmokers, and adenocarcinoma\\u000a histology. About 70% of the patients with EGFR mutations respond to EGFR tyrosine kinase inhibitors (TKIs) including gefitinib and erlotinib, whereas only 10% of those\\u000a without the mutations do so. Therefore, EGFR mutation is being recognized as

  2. Variants in the Dopamine-4-Receptor Gene Promoter Are Not Associated with Sensation Seeking in Skiers

    PubMed Central

    Thomson, Cynthia J.; Rajala, Amelia K.; Carlson, Scott R.; Rupert, Jim L.

    2014-01-01

    Sensation seeking is a personality trait that has been associated with disinhibited behaviours including substance use and gambling, but also with high-risk sport practices including skydiving, paragliding, and downhill skiing. Twin studies have shown that sensation seeking is moderately heritable, and candidate genes encoding components involved in dopaminergic transmission have been investigated as contributing to this type of behaviour. To determine whether variants in the regulatory regions of the dopamine-4-receptor gene (DRD4) influenced sport-specific sensation seeking, we analyzed five polymorphisms (?1106T/C, ?906T/C, ?809G/A, ?291C/T, 120-bp duplication) in the promoter region of the gene in a cohort of skiers and snowboarders (n?=?599) that represented a broad range of sensation seeking behaviours. We grouped subjects by genotype at each of the five loci and compared impulsive sensation seeking and domain-specific (skiing) sensation seeking between groups. There were no significant associations between genotype(s) and general or domain-specific sensation seeking in the skiers and snowboarders, suggesting that while DRD4 has previously been implicated in sensation seeking, the promoter variants investigated in this study do not contribute to sensation seeking in this athlete population. PMID:24691022

  3. Variants in the dopamine-4-receptor gene promoter are not associated with sensation seeking in skiers.

    PubMed

    Thomson, Cynthia J; Rajala, Amelia K; Carlson, Scott R; Rupert, Jim L

    2014-01-01

    Sensation seeking is a personality trait that has been associated with disinhibited behaviours including substance use and gambling, but also with high-risk sport practices including skydiving, paragliding, and downhill skiing. Twin studies have shown that sensation seeking is moderately heritable, and candidate genes encoding components involved in dopaminergic transmission have been investigated as contributing to this type of behaviour. To determine whether variants in the regulatory regions of the dopamine-4-receptor gene (DRD4) influenced sport-specific sensation seeking, we analyzed five polymorphisms (-1106T/C, -906T/C, -809G/A, -291C/T, 120-bp duplication) in the promoter region of the gene in a cohort of skiers and snowboarders (n = 599) that represented a broad range of sensation seeking behaviours. We grouped subjects by genotype at each of the five loci and compared impulsive sensation seeking and domain-specific (skiing) sensation seeking between groups. There were no significant associations between genotype(s) and general or domain-specific sensation seeking in the skiers and snowboarders, suggesting that while DRD4 has previously been implicated in sensation seeking, the promoter variants investigated in this study do not contribute to sensation seeking in this athlete population. PMID:24691022

  4. Molecular Identification and Expressive Characterization of an Olfactory Co-Receptor Gene in the Asian Honeybee, Apis cerana cerana

    PubMed Central

    Zhao, Huiting; Gao, Pengfei; Zhang, Chunxiang; Ma, Weihua; Jiang, Yusuo

    2013-01-01

    Olfaction recognition process is extraordinarily complex in insects, and the olfactory receptors play an important function in the process. In this paper, a highly conserved olfactory co-receptor gene, AcerOr2 (ortholog to the Drosophila melanogaster Or83b), cloned from the antennae of the Asian honeybee, Apis cerana cerana Fabricius (Hymenoptera: Apidae), using reverse transcriptase PCR and rapid amplification of cDNA ends. The full-length sequence of the gene was 1763 bp long, and the cDNA open reading frame encoded 478 amino acid residues, including 7 putative transmembrane domains. Alignment analysis revealed that AcerOr2 shares high homology (> 74%) with similar olfactory receptors found in other Hymenoptera species. The amino acid identity with the closely related species Apis mellifera reached 99.8%. The developmental expression analysis using quantitative real-time reverse transcriptase PCR suggested that the AcerOr2 transcript was expressed at a relatively low level in the larval stage, whereas it was expressed broadly in the pupal and adult stages, with a significantly high level on the days just before and after eclosion. In situ hybridization showed that AcerOr2 mRNA was expressed in sensilla placodea and on the basal region of the worker antennal cuticle, in accordance with the previous conclusions that the conserved genes are expressed in most olfactory receptor neurons. PMID:24224665

  5. Molecular identification and expressive characterization of an olfactory co-receptor gene in the Asian honeybee, Apis cerana cerana.

    PubMed

    Zhao, Huiting; Gao, Pengfei; Zhang, Chunxiang; Ma, Weihua; Jiang, Yusuo

    2013-01-01

    Olfaction recognition process is extraordinarily complex in insects, and the olfactory receptors play an important function in the process. In this paper, a highly conserved olfactory co-receptor gene, AcerOr2 (ortholog to the Drosophila melanogaster Or83b), cloned from the antennae of the Asian honeybee, Apis cerana cerana Fabricius (Hymenoptera: Apidae), using reverse transcriptase PCR and rapid amplification of cDNA ends. The full-length sequence of the gene was 1763 bp long, and the cDNA open reading frame encoded 478 amino acid residues, including 7 putative transmembrane domains. Alignment analysis revealed that AcerOr2 shares high homology (> 74%) with similar olfactory receptors found in other Hymenoptera species. The amino acid identity with the closely related species Apis mellifera reached 99.8%. The developmental expression analysis using quantitative real-time reverse transcriptase PCR suggested that the AcerOr2 transcript was expressed at a relatively low level in the larval stage, whereas it was expressed broadly in the pupal and adult stages, with a significantly high level on the days just before and after eclosion. In situ hybridization showed that AcerOr2 mRNA was expressed in sensilla placodea and on the basal region of the worker antennal cuticle, in accordance with the previous conclusions that the conserved genes are expressed in most olfactory receptor neurons. PMID:24224665

  6. CAG Repeat Number in the Androgen Receptor Gene and Prostate Cancer.

    PubMed

    Madjunkova, S; Eftimov, A; Georgiev, V; Petrovski, D; Dimovski, Aj; Plaseska-Karanfilska, D

    2012-06-01

    Prostate cancer (PC) is the second leading cause of cancer deaths in men. The effects of androgens on prostatic tissue are mediated by the androgen receptor (AR) gene. The 5' end of exon 1 of the AR gene includes a polymorphic CAG triplet repeat that numbers between 10 to 36 in the normal population. The length of the CAG repeats is inversely related to the transactivation function of the AR gene. There is controversy over association between short CAG repeat numbers in the AR gene and PC. This retrospective case-control study evaluates the possible effect of short CAG repeats on the AR gene in prostate cancer risk in Macedonian males. A total of 392 male subjects, 134 PC patients, 106 patients with benign prostatic hyperplasia (BPH) and 152 males from the general Macedonian population were enrolled in this study. The CAG repeat length was determined by fluorescent polymerase chain reaction (PCR) amplification of exon1 of the AR gene followed by capillary electrophoresis (CE) on a genetic analyzer. The mean repeat length in PC patients was 21.5 ± 2.65, in controls 22.28 ± 2.86 (p = 0.009) and in BPH patients 22.1 ± 2.52 (p = 0.038). Short CAG repeats (<19) were found in 21.64% of PC patients vs. 9.43% in BPH patients (p = 0.0154). We also found an association of low Gleason score (<7) with short CAG repeat (<19) in PC patients (p = 0.0306), and no association between the age at diagnosis of PC and BPH and CAG repeat length. These results suggest that reduced CAG repeat length may be associated with increased prostate cancer risk in Macedonian men. PMID:24052720

  7. ?-casomorphin-7 alters ?-opioid receptor and dipeptidyl peptidase IV genes expression in children with atopic dermatitis.

    PubMed

    Fiedorowicz, Ewa; Kaczmarski, Maciej; Cie?li?ska, Anna; Sienkiewicz-Sz?apka, Edyta; Jarmo?owska, Beata; Chwa?a, Barbara; Kostyra, El?bieta

    2014-12-01

    Atopic dermatitis (AD) is a chronic inflammatory skin disease with heterogeneous clinical phenotypes reflecting genetic predisposition and exposure to environmental factors. Reactions to food may play a significant role especially in young children. Milk proteins are particularly strong allergens and are additional source of bioactive peptides including ?-casomorphin-7 (BCM7, Tyr-Pro-Phe-Pro-Gly-Pro-Ile). BCM7 exerts its influence on nervous, digestive, and immune functions via the ?-opioid receptor (MOR). Proline dipeptidyl peptidase IV (DPPIV; EC 3.4.14.5) appears to be the primary degrading enzyme of BCM7. Moreover, DPPIV is known to restrict activity of proinflammatory peptides. BCM7 is considered to modulate an immune response by affecting MOR and DPPIV genes expression. In this study, we determined the MOR and DPPIV genes expression in children diagnosed with a severe form of AD. 40 healthy children and 62 children diagnosed with severe AD (AD score ?60) were included in the study. Peripheral blood mononuclear cells (PBMCs) from the studied subjects were incubated with the peptide extracts of raw and hydrolysed cow milk with defined ?-casein genotypes (A1A1, A2A2 and A1A2) and MOR and DPPIV genes expression was determined with real-time PCR. Incubation PBMCs with peptide extracts from cow milk caused an increase of the MOR gene expression (p<0.05; p<0.001) in AD children with a simultaneous decrease in the DPPIV gene expression (p<0.001). The obtained results supplement the knowledge on the BCM7 participation in AD etiology and provide an important diagnostic tool. PMID:25281794

  8. Co-regulation of a large and rapidly evolving repertoire of odorant receptor genes

    PubMed Central

    Kambere, Marijo B; Lane, Robert P

    2007-01-01

    The olfactory system meets niche- and species-specific demands by an accelerated evolution of its odorant receptor repertoires. In this review, we describe evolutionary processes that have shaped olfactory and vomeronasal receptor gene families in vertebrate genomes. We emphasize three important periods in the evolution of the olfactory system evident by comparative genomics: the adaptation to land in amphibian ancestors, the decline of olfaction in primates, and the delineation of putative pheromone receptors concurrent with rodent speciation. The rapid evolution of odorant receptor genes, the sheer size of the repertoire, as well as their wide distribution in the genome, presents a developmental challenge: how are these ever-changing odorant receptor repertoires coordinated within the olfactory system? A central organizing principle in olfaction is the specialization of sensory neurons resulting from each sensory neuron expressing only ~one odorant receptor allele. In this review, we also discuss this mutually exclusive expression of odorant receptor genes. We have considered several models to account for co-regulation of odorant receptor repertoires, as well as discussed a new hypothesis that invokes important epigenetic properties of the system. PMID:17903278

  9. An atypical case of fragile X syndrome caused by a deletion that includes FMRI gene

    SciTech Connect

    Quan, F.; Zonana, J.; Gunter, K.; Peterson, K.L.; Magenis, R.E., Popovich, B.W. [Shriners Hospital for Crippled Children, Portland, OR (United States)

    1995-05-01

    Fragile X syndrome is the most common form of inherited mental retardation and results from the transcriptional inactivation of the FMR1 gene. In the vast majority of cases, this is caused by the expansion of an unstable CGG repeat in the first exon of the FMR1 gene. We describe here a phenotypically atypical case of fragile X syndrome, caused by a deletion that includes the entire FMR1 gene and {ge}9.0 Mb of flanking DNA. The proband, RK, was a 6-year-old mentally retarded male with obesity and anal atresia. A diagnosis of fragile X syndrome was established by the failure of RK`s DNA to hybridize to a 558-bp PstI-XhoI fragment (pfxa3) specific for the 5{prime}-end of the FMR1 gene. The analysis of flanking markers in the interval from Xq26.3-q28 indicated a deletion extending from between 160-500 kb distal and 9.0 Mb proximal to the FMR1 gene. High-resolution chromosome banding confirmed a deletion with breakpoints in Xq26.3 and Xq27.3. This deletion was maternally transmitted and arose as a new mutation on the grandpaternal X chromosome. The maternal transmission of the deletion was confirmed by FISH using a 34-kb cosmid (c31.4) containing most of the FMR1 gene. These results indicated that RK carried a deletion of the FMR1 region with the most proximal breakpoint described to date. This patient`s unusual clinical presentation may indicate the presence of genes located in the deleted interval proximal to the FMR1 locus that are able to modify the fragile X syndrome phenotype. 36 refs., 7 figs.

  10. Cloning of the cDNA and gene for a human D sub 2 dopamine receptor

    SciTech Connect

    Grady, D.K.; Makam, H.; Stofko, R.E.; Bunzow, J.R.; Civelli, O. (Oregon Health Sciences Univ., Portland (USA)); Marchionni, M.A.; Alfano, M.; Frothingham, L.; Fischer, J.B.; Burke-Howie, K.J.; Server, A.C. (Cambridge NeuroScience Research, Inc., Cambridge, MA (USA))

    1989-12-01

    A clone encoding a human D{sub 2} dopamine receptor was isolated from a pituitary cDNA library and sequenced. The deduced protein sequence is 96% identical with that of the cloned rat receptor with one major difference: the human receptor contains an additional 29 amino acids in its putative third cytoplasmic loop. Southern blotting demonstrated the presence of only one human D{sub 2} receptor gene. Two overlapping phage containing the gene were isolated and characterized. DNA sequence analysis of these clones showed that the coding sequence is interrupted by six introns and that the additional amino acids present in the human pituitary receptor are encoded by a single exon of 87 base pairs. The involvement of this sequence in alternative splicing and its biological significance are discussed.

  11. Structure and linkage of the D2 dopamine receptor and neural cell adhesion molecule genes on human chromosome 11q23

    SciTech Connect

    Eubanks, J.H.; Djabali, M.; Selleri, L.; McElligott, D.L.; Evans, G.A. (Salk Institute for Biological Studies, La Jolla, CA (United States)); Grandy, D.K.; Civelli, O. (Oregon Health Sciences Univ., Portland, OR (United States))

    1992-12-01

    The gene encoding the D2 dopamine receptor (DRD2) is located on human chromosome 11q23 and has been circumstantially associated with a number of human disorders including Parkinson's disease, schizophrenia, and susceptibility to alcoholism. To determine the physical structure of the DRD2 gene, the authors utilized cosmid cloning, isolation of yeast artificial chromosomes (YACs), and pulsed-field gel electrophoresis to construct a long-range physical map of human chromosome 11q23 linking the genes for the DRD2 and neural cell adhesion molecule (NCAM). The D2 dopamine receptor gene extends over 270 kb and includes an intron of approximately 250 kb separating the putative first exon from the exons encoding the receptor protein. The resulting physical map spans more than 1.5 mb of chromosome band 11q23 and links the DRD2 gene with the gene encoding the NCAM located 150 kb 3[prime] of the DRD2 gene and transcribed from the same DNA strand. They additionally located the sites of at least four hypomethylated HTF islands within the physical map, which potentially indicate the sites of additional genes. High-resolution fluorescent in situ suppression hybridization using cosmid and YAC clones localized this gene cluster between the ApoAI and STMY loci at the interface of bands 11q22.3 and 11q23.1. 40 refs., 6 figs., 2 tabs.

  12. Evaluation of a Cys23Ser mutation within the human 5HT2C receptor gene: No evidence for an association of the mutant allele with obesity or underweight in children, adolescents and young adults

    Microsoft Academic Search

    K.-U. Lentes; A. Hinney; A. Ziegler; K. Rosenkranz; H. Wurmser; N. Barth; K. Jacob; H. Coners; H. Mayer; K.-H. Grzeschik; H. Schäfer; H. Remschmidt; K. M. Pirke; J. Hebebrand

    1997-01-01

    Serotonin is a neurotransmitter involved in a large number of psychophysiological processes including the regulation of mood, arousal, aggression, sleep, learning, nociceptions, nerve growth and importantly, appetitive functions. Alterations of 5-HT receptor activity have been shown to occur in many psychiatric diseases including depression, anxiety, eating disorders, schizophrenia etc. Hence, genetic variation in genes coding for serotonin receptor proteins might

  13. The Dopamine D2 Receptor Locus as a Modifying Gene in Neuropsychiatric Disorders

    Microsoft Academic Search

    David E. Comings; Brenda G. Comings; Donn Muhleman; George Dietz; Bejan Shahbahrami; David Tast; Ellen Knell; Pat Kocsis; Rubin Baumgarten; Bruce W. Kovacs; Deborah L. Levy; Melissa Smith; Richard L. Borison; D. Durrell Evans; Daniel N. Klein; James MacMurray; Jeffrey M. Tosk; Jeffrey Sverd; Reinhard Gysin; Steven D. Flanagan

    2010-01-01

    I polymorphism of the dopamine D2 receptor (DRD2) gene has been earlier reported to occur in 69% of alcoholics, compared with 20% of controls. Other research has reported no significant difference in the prevalence of the A1 allele in alcoholics vs controls and no evidence that the DRD2 gene was linked to alcoholism. We hypothesized that these seemingly conflicting results

  14. Gene expression profiling reveals novel regulation by bisphenol-A in estrogen receptor- ?-positive human cells

    Microsoft Academic Search

    David W. Singleton; Yuxin Feng; Jun Yang; Alvaro Puga; Adrian V. Lee; Sohaib A.. Khan

    2006-01-01

    Bisphenol-A (BPA) shows proliferative actions in uterus and mammary glands and may influence the development of male and female reproductive tracts in utero or during early postnatal life. Because of its ability to function as an estrogen receptor (ER) agonist, BPA has the potential to disrupt normal endocrine signaling through regulation of ER target genes. Some genes are regulated by

  15. Lineage-Specific Loss of Function of Bitter Taste Receptor Genes in Humans and Nonhuman Primates

    Microsoft Academic Search

    Yasuhiro Go; Yoko Satt; Osamu Takenaka; Naoyuki Takahata

    2005-01-01

    Since the process of becoming dead genes or pseudogenes (pseudogenization) is irreversible and can occur rather rapidly under certain environmental circumstances, it is one plausible determinant for characterizing species specificity. To test this evolutionary hypothesis, we analyzed the tempo and mode of duplication and pseudogenization of bitter taste receptor (T2R) genes in humans as well as in 12 nonhuman primates.

  16. The DCC gene product induces apoptosis by a mechanism requiring receptor proteolysis

    Microsoft Academic Search

    Patrick Mehlen; Shahrooz Rabizadeh; Scott J. Snipas; Nuria Assa-Munt; Guy S. Salvesen; Dale E. Bredesen

    1998-01-01

    The development of colonic carcinoma is associated with the mutation of a specific set of genes. One of these, DCC (deleted in colorectal cancer), is a candidate tumour-suppressor gene, and encodes a receptor for netrin-1, a molecule involved in axon guidance. Loss of DCC expression in tumours is not restricted to colon carcinoma, and, although there is no increase in

  17. Psychoneuroendocrinology . Author manuscript Possible association between the androgen receptor gene and autism

    E-print Network

    Paris-Sud XI, Université de

    receptor gene and autism spectrum disorder Susanne Henningsson 1 * , Lina Jonsson 1 , Elin Ljunggren 1.henningsson@pharm.gu.se > Abstract Summary Autism is a highly heritable disorder but the specific genes involved remain largely unknown. The higher prevalence of autism in men than in women, in conjunction with a number of other

  18. Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification

    SciTech Connect

    Wong, A.J.; Bigner, S.H.; Bigner, D.D.; Kinzler, K.W.; Hamilton, S.R.; Vogelstein, B.

    1987-10-01

    Primary malignant gliomas from 63 patients were analyzed to determine the relationship between amplification of the gene encoding the epidermal growth factor receptor (EGFR) and expression of the corresponding mRNA. Twenty-four tumors were found to have amplified the EGFR gene and amplification of other genes occurred in three additional tumors. Hybridization with synthetic RNA probes was used to quantitate mRNA levels in situ. All 24 tumors with amplification of the EGFR gene had high levels of expression of this gene, while none of the 39 tumors without amplification had increased levels. This shows that, in human gliomas, large increases in the expression of the EGFR gene are invariably associated with alterations in gene structure.

  19. Identification of natural killer cell receptor clusters in the platypus genome reveals an expansion of C-type lectin genes

    Microsoft Academic Search

    Emily S. W. Wong; Claire E. Sanderson; Janine E. Deakin; Camilla M. Whittington; Anthony T. Papenfuss; Katherine Belov

    2009-01-01

    Natural killer (NK) cell receptors belong to two unrelated, but functionally analogous gene families: the immunoglobulin superfamily,\\u000a situated in the leukocyte receptor complex (LRC) and the C-type lectin superfamily, located in the natural killer complex\\u000a (NKC). Here, we describe the largest NK receptor gene expansion seen to date. We identified 213 putative C-type lectin NK\\u000a receptor homologs in the genome

  20. Estrogen Receptor beta binds Sp1 and recruits a Corepressor Complex to the Estrogen Receptor alpha Gene Promoter

    PubMed Central

    Bartella, V; Rizza, P; Barone, I; Zito, D; Giordano, F; Giordano, C; Catalano, S; Mauro, L; Sisci, D; Panno, ML; Fuqua, SA; Andň, Sebastiano

    2015-01-01

    Human estrogen receptors (ERs) alpha and beta are crucially involved in the regulation of mammary growth and development. Normal breast tissues display a prevalently expression of ER beta than ER alpha, which drastically increases during breast tumorogenesis. So, it is reasonable to assume how a dysregulation of the two estrogen receptor subtypes may induce breast cancer development. However, the molecular mechanism underlying the opposite role played by the two estrogen receptors on tumor cell growth remains to be elucidated. In the present study, we have demonstrated that ER beta overexpression in breast cancer cells decreases cell proliferation and down-regulates ER alpha mRNA and protein content along with a concomitant repression of estrogen-regulated genes. Transient transfection experiments, using a vector containing the human ER alpha promoter region, showed that elevated levels of the ER beta down-regulated basal ER alpha promoter activity. Furthermore, side-directed mutagenesis and deletion analysis have revealed that the proximal GC-rich motifs at ?223 and ?214 is crucial for the ER beta-induced ER alpha down-regulation in breast cancer cells. This occurred through ER beta-Sp1 protein-protein interaction within the ER alpha promoter region and the recruitment of a corepressor complex containing NCoR/SMRT (nuclear receptor corepressor/silencing mediator of retinoic acid and thyroid hormone receptor), accompanied by hypoacetylation of histone H4 and displacement of RNA polymerase II. Silencing of NCoR gene expression by RNA interference reversed the down-regulatory effect of ER beta on ER alpha gene expression and cell proliferation. Our results provide evidence for a novel mechanism by which overexpression of ER beta through NCoR is able to down regulate ER alpha gene expression, thus inhibiting ER alpha’s driving role on breast cancer cell growth. PMID:22622808

  1. Octopamine receptor gene expression in three lepidopteran species of insect.

    PubMed

    Lam, Felix; McNeil, Jeremy N; Donly, Cam

    2013-03-01

    The invertebrate octopaminergic system affects many diverse processes and represents the counterpart to the vertebrate adrenergic/noradrenergic system with the classes of octopamine receptor (OAR) being homologous to those of vertebrate adrenergic receptors. However, there is still little information on the OARs present in different insect species, and the levels and distribution of these receptors throughout the body. cDNAs sharing high similarity with known insect OARs were cloned in three lepidopteran species: the cabbage looper, Trichoplusia ni; the true armyworm, Pseudaletia unipuncta; and the cabbage white, Pieris rapae. Seven major larval tissues and one adult tissue were examined in T. ni using quantitative real-time PCR to determine the relative expression levels of each receptor transcript across different tissues, as well as of all receptor transcripts within individual tissues. A subset of these tissues was also examined in P. unipuncta and P. rapae. All receptor transcripts were expressed in the nervous system of all three species, however, the distribution of the different receptor types varied between species. In all tissues, the OARbeta2 transcript was the most highly expressed, except in the Malpighian tubules where OARbeta1 was highest, and the midgut where there was no significant difference in receptor transcript levels. PMID:22504014

  2. Diversity and evolution of T-cell receptor variable region genes in mammals and birds

    Microsoft Academic Search

    C. Su; I. Jakobsen; X. Gu; M. Nei

    1999-01-01

    The receptor of a T lymphocyte (TCR) recognizes nonself antigens in the company of major histocompatibility complex (MHC)\\u000a molecules presented to it by the antigen-presenting cell. The variable region of TCR is encoded by either a concatenation\\u000a of variable region (TCR-V), diversity region (TCR-D), and joining region (TCR-J) genes, or a concatenation of TCR-V and TCR-J genes. The TCR-V genes

  3. Enhancers Located within Two Introns of the Vitamin D Receptor Gene Mediate Transcriptional

    E-print Network

    Pike, J. Wesley

    in 1,25-(OH)2D3- mediated gene transcription (6, 7). Interestingly, one of the genomic targets for 1 of 1,25-(OH)2D3 are medi- ated by the vitamin D receptor (VDR), a protein that binds to target genes and alters their expression. 1,25-(OH)2D3 is also capable of inducing transcrip- tion of the VDR gene itself

  4. Characterization of human cd200 glycoprotein receptor gene located on chromosome 3q12-13

    Microsoft Academic Search

    Jose Mar??a Vieites; Raul de la Torre; Mar??a Angeles Ortega; Trinidad Montero; Jose Mar??a Peco; Antonio Sánchez-Pozo; Angel Gil; Antonio Suárez

    2003-01-01

    An immunomodulatory membrane protein, CD200R displays an expression pattern restricted to myeloid cells in mice. It is the receptor for a ligand, CD200, expressed by a broad range of cell types. In this study, we describe the cloning and characterization of the human homologue of the CD200R gene. This gene maps closely to the CD200 gene on human chromosome 3q12-13.

  5. Tumour necrosis factor receptor gene expression and shedding in human whole lung tissue and pulmonary epithelium

    Microsoft Academic Search

    H. Nakamura; T. Hino; S. Kato; Y. Shibata; H. Takahashi; H. Tomoike

    1996-01-01

    This study aimed to investigate the expression of tumour necrosis fac- tor receptor (TNF-R) at the gene and surface level, and its shedding in human lung tissue and a pulmonary epithelial cell line, A549. Levels of gene expression of TNF-R were evaluated by Northern blot analysis. Human lung tissue expressed both type I and type II TNF-R gene, while A549

  6. Gene Expression of Growth Factors and Growth Factor Receptors for Potential Targeted Therapy of Canine Hepatocellular Carcinoma

    PubMed Central

    IIDA, Gentoku; ASANO, Kazushi; SEKI, Mamiko; SAKAI, Manabu; KUTARA, Kenji; ISHIGAKI, Kumiko; KAGAWA, Yumiko; YOSHIDA, Orie; TESHIMA, Kenji; EDAMURA, Kazuya; WATARI, Toshihiro

    2013-01-01

    ABSTRACT The purpose of this study was to evaluate the gene expression of growth factors and growth factor receptors of primary hepatic masses, including hepatocellular carcinoma (HCC) and nodular hyperplasia (NH), in dogs. Quantitative real-time reverse transcriptase-polymerase chain reaction was performed to measure the expression of 18 genes in 18 HCCs, 10 NHs, 11 surrounding non-cancerous liver tissues and 4 healthy control liver tissues. Platelet-derived growth factor-B (PDGF-B), transforming growth factor-?, epidermal growth factor receptor, epidermal growth factor and hepatocyte growth factor were found to be differentially expressed in HCC compared with NH and the surrounding non-cancerous and healthy control liver tissues. PDGF-B is suggested to have the potential to become a valuable ancillary target for the treatment of canine HCC. PMID:24189579

  7. Gene expression of growth factors and growth factor receptors for potential targeted therapy of canine hepatocellular carcinoma.

    PubMed

    Iida, Gentoku; Asano, Kazushi; Seki, Mamiko; Sakai, Manabu; Kutara, Kenji; Ishigaki, Kumiko; Kagawa, Yumiko; Yoshida, Orie; Teshima, Kenji; Edamura, Kazuya; Watari, Toshihiro

    2014-03-01

    The purpose of this study was to evaluate the gene expression of growth factors and growth factor receptors of primary hepatic masses, including hepatocellular carcinoma (HCC) and nodular hyperplasia (NH), in dogs. Quantitative real-time reverse transcriptase-polymerase chain reaction was performed to measure the expression of 18 genes in 18 HCCs, 10 NHs, 11 surrounding non-cancerous liver tissues and 4 healthy control liver tissues. Platelet-derived growth factor-B (PDGF-B), transforming growth factor-?, epidermal growth factor receptor, epidermal growth factor and hepatocyte growth factor were found to be differentially expressed in HCC compared with NH and the surrounding non-cancerous and healthy control liver tissues. PDGF-B is suggested to have the potential to become a valuable ancillary target for the treatment of canine HCC. PMID:24189579

  8. Mapping the human melanocortin 2 receptor (adrenocorticotropic hormone receptor; ACTHR) gene (MC2R) to the small arm of chromosome 18 (18p11. 21-pter)

    SciTech Connect

    Vamvakopoulos, N.C.; Chrousos, G.P. (National Institute of Child Health and Human Development, Bethesda, MD (United States)); Rojas, K.; Overhauser, J. (Thomas Jefferson Univ., Philadelphia, PA (United States)); Durkin, A.S.; Nierman, W.C. (American Type Collection, Rockville, MD (United States))

    1993-11-01

    The human adrenocorticotropic hormone receptor (ACTHR) was recently cloned and shown to belong to the superfamily of membrane receptors that couple to guanine nucleotide-binding proteins and adenylyl cyclase. A genetically heterogeneous (including both X-linked and autosomally recessive forms) congenital syndrome of general hereditary adrenal unresponsiveness to ACTH has been documented in several kindreds. This inherited defect affects one of the steps in the cascade of events of ACTH action on glucocorticoid biosynthesis, without altering mineralocorticoid productions. Since candidate targets for pathophysiological manifestations of deficient responsiveness to ACTH include lesions of the ACTHR gene, the authors undertook to map it to a chromosomal location. They first used polymerase chain reaction (PCR) amplification of NIGMS Panel 1 DNA template to assign a 960-bp-long fragment of the human ACTHR gene to chromosome 18. Subsequently, they determined the location of the ACTHR gene within human chromosome 18 by PCR amplification of genomic DNA template from somatic cell hybrids that contain deletions of this chromosome.

  9. NR4A nuclear receptors mediate carnitine palmitoyltransferase 1A gene expression by the rexinoid HX600

    SciTech Connect

    Ishizawa, Michiyasu [Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610 (Japan)] [Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610 (Japan); Kagechika, Hiroyuki [Graduate School of Biomedical Science, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan)] [Graduate School of Biomedical Science, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Makishima, Makoto, E-mail: makishima.makoto@nihon-u.ac.jp [Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610 (Japan)] [Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610 (Japan)

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer The function of RXR heterodimers with NR4 receptors remains unknown. Black-Right-Pointing-Pointer The RXR ligand HX600 induces expression of carnitine palmitoyltransferase 1A (CPT1A). Black-Right-Pointing-Pointer HX600-induced CPT1A expression is mediated by the NR4 receptors, Nur77 and NURR1. Black-Right-Pointing-Pointer CPT1A induction by HX600 is not mediated by de novo protein synthesis. Black-Right-Pointing-Pointer CPT1A could be a target of the Nur77-RXR and NURR1-RXR heterodimers. -- Abstract: Retinoid X receptors (RXRs) are members of the nuclear receptor superfamily and can be activated by 9-cis retinoic acid (9CRA). RXRs form homodimers and heterodimers with other nuclear receptors such as the retinoic acid receptor and NR4 subfamily nuclear receptors, Nur77 and NURR1. Potential physiological roles of the Nur77-RXR and NURR1-RXR heterodimers have not been elucidated. In this study, we identified a gene regulated by these heterodimers utilizing HX600, a selective RXR agonist for Nur77-RXR and NURR1-RXR. While 9CRA induced many genes, including RAR-target genes, HX600 effectively induced only carnitine palmitoyltransferase 1A (CPT1A) in human teratocarcinoma NT2/D1 cells, which express RXR{alpha}, Nur77 and NURR1. HX600 also increased CPT1A expression in human embryonic kidney (HEK) 293 cells and hepatocyte-derived HepG2 cells. Although HX600 induced CPT1A less effectively than 9CRA, overexpression of Nur77 or NURR1 increased the HX600 response to levels similar to 9CRA in NT2/D1 and HEK293 cells. A dominant-negative form of Nur77 or NURR1 repressed the induction of CPT1A by HX600. A protein synthesis inhibitor did not alter HX600-dependent CPT1A induction. Thus, the rexinoid HX600 directly induces expression of CPT1A through a Nur77 or NURR1-mediated mechanism. CPT1A, a gene involved in fatty acid {beta}-oxidation, could be a target of RXR-NR4 receptor heterodimers.

  10. Specific Chromosomal Aberrations and Amplification of the AIB1 Nuclear Receptor Coactivator Gene in Pancreatic Carcinomas

    PubMed Central

    Ghadimi, B. Michael; Schröck, Evelin; Walker, Robert L.; Wangsa, Danny; Jauho, Annukka; Meltzer, Paul S.; Ried, Thomas

    1999-01-01

    To screen pancreatic carcinomas for chromosomal aberrations we have applied molecular cytogenetic techniques, including fluorescent in situ hybridization, comparative genomic hybridization, and spectral karyotyping to a series of nine established cell lines. Comparative genomic hybridization revealed recurring chromosomal gains on chromosome arms 3q, 5p, 7p, 8q, 12p, and 20q. Chromosome losses were mapped to chromosome arms 8p, 9p, 17p, 18q, 19p, and chromosome 21. The comparison with comparative genomic hybridization data from primary pancreatic tumors indicates that a specific pattern of chromosomal copy number changes is maintained in cell culture. Metaphase chromosomes from six cell lines were analyzed by spectral karyotyping, a technique that allows one to visualize all chromosomes simultaneously in different colors. Spectral karyotyping identified multiple chromosomal rearrangements, the majority of which were unbalanced. No recurring reciprocal translocation was detected. Cytogenetic aberrations were confirmed using fluorescent in situ hybridization with probes for the MDR gene and the tumor suppressor genes p16 and DCC. Copy number increases on chromosome 20q were validated with a probe specific for the nuclear receptor coactivator AIB1 that maps to chromosome 20q12. Amplification of this gene was identified in six of nine pancreatic cancer cell lines and correlated with increased expression. PMID:10027410

  11. A cosmid and yeast artificial chromosome contig containing the complete ryanodine receptor (RYR1) gene

    SciTech Connect

    Rouquier, S.; Giorgi, D.; Trask, B.; Bergmann, A.; De Jong, P. (Lawrence Livermore National Lab., CA (United States)); Phillips, M.S.; MacLennan, D.H. (Univ., of Toronto, Ontario (Canada))

    1993-08-01

    The ryanodine receptor (RYR1) gene is responsible for some forms of malignant hyperthermia and has been localized to 19q13.1. Central core disease is a genetic myopathy that is genetically linked to RYR1. The authors have identified an overlapping set of cosmid and YAC clones that spans more than 800 kb and includes the RYR1 gene ([approximately]205 kb). Cosmids from this region were identified by screening three chromosome 19 cosmid libraries (11-fold coverage) with six subclones representing the entire RYR1 cDNA. Genomic sequences from positive cosmids were then used as probes to identify additional cosmids. A minimally overlapping set of 23 cosmids was assembled into two contigs on the basis of restriction fragment analysis and hybridization data. Three YAC clones were isolated by screening a human YAC library with selected cosmid inserts. Overlaps among these YACs and the cosmid contigs were determined by hybridizing YAC Alu-PCR products to cosmid DNAs. The YACs bridged the gap between the cosmid contigs and extended the contig on both sides. Fluorescence in situ hybridization experiments positioned the RYR1 contig between GPI, MAG, and D19S191 on the proximal side and D19S190, CYP2A, CYP2F, SNRPA, BCKDHA, and other markers on the distal side. The 800-kb contig of cloned reagents will facilitate the detailed characterization of the RYR1 gene and other loci that may be closely related to central core disease. 62 refs., 3 figs., 3 tabs.

  12. Dopamine D4 receptor gene associated with fairness preference in ultimatum game.

    PubMed

    Zhong, Songfa; Israel, Salomon; Shalev, Idan; Xue, Hong; Ebstein, Richard P; Chew, Soo Hong

    2010-01-01

    In experimental economics, the preference for reciprocal fairness has been observed in the controlled and incentivized laboratory setting of the ultimatum game, in which two individuals decide on how to divide a sum of money, with one proposing the share while the second deciding whether to accept. Should the proposal be accepted, the amount is divided accordingly. Otherwise, both would receive no money. A recent twin study has shown that fairness preference inferred from responder behavior is heritable, yet its neurogenetic basis remains unknown. The D4 receptor (DRD4) exon3 is a well-characterized functional polymorphism, which is known to be associated with attention deficit hyperactivity disorder and personality traits including novelty seeking and self-report altruism. Applying a neurogenetic approach, we find that DRD4 is significantly associated with fairness preference. Additionally, the interaction among this gene, season of birth, and gender is highly significant. This is the first result to link preference for reciprocal fairness to a specific gene and suggests that gene × environment interactions contribute to economic decision making. PMID:21072167

  13. Mutation analysis of androgen receptor gene: multiple uses for a single test.

    PubMed

    Shojaei, Azadeh; Behjati, Farkhondeh; Ebrahimzadeh-Vesal, Reza; Razzaghy-Azar, Maryam; Derakhshandeh-Peykar, Pupak; Izadi, Pantea; Kajbafzadeh, Abdol-Mohammad; Dowlatih, Mohammad-Ali; Karami, Fatemeh; Tavakkoly-Bazzaz, Javad

    2014-12-01

    Androgen receptor gene mutations are one of the leading causes of disorders of sex development (DSD) exhibited by sexual ambiguity or sex reversal. In this study, 2 families with patients whom diagnosed clinically as androgen insensitivity syndrome (AIS) were physically and genetically examined. This evaluation carried out by cytogenetic and molecular analysis including karyotype and sequencing of SRY and AR genes. In family 1, two brothers and their mother were hemizygous and heterozygous respectively for c.2522G>A variant, while one of their healthy brother was a completely normal hemizygote. Family 2 assessment demonstrated the c.639G>A (rs6152) mutation in two siblings who were reared as girls. The SRY gene was intact in all of the study's participants. Our findings in family 1 could be a further proof for the pathogenicity of the c.2522G>A variant. Given the importance of AR mutations in development of problems such as sex assignment in AIS patients, definitive diagnosis and phenotype-genotype correlation could be achieved by molecular genetic tests that in turn could have promising impacts in clinical management and also in prenatal diagnosis of prospect offspring. In this regard, phenotype-genotype correlation could be helpful and achieved by molecular genetic tests. This could influence the clinical management of the patients as well as prenatal diagnosis for the prospective offspring. PMID:25241384

  14. Stress-induced epigenetic regulation of ?-opioid receptor gene involves transcription factor c-Myc

    PubMed Central

    Flaisher-Grinberg, Shlomit; Persaud, Shawna D.; Loh, Horace H.; Wei, Li-Na

    2012-01-01

    Exposure to stress is associated with adverse emotional and behavioral responses. Whereas the ?-opioid receptor (KOR) system is known to mediate some of the effects, it is unclear whether and how stress affects epigenetic regulation of this gene. Because the KOR gene can use two promoters (Pr1 and Pr2) and two polyadenylation signals (PA1 and PA2), it is also interesting whether and how these distinct regulatory mechanisms are differentially modulated by stress. The current study examined the effects of stress on these different regulatory mechanisms of the KOR gene. Results showed that stress selectively increased the expression of KOR mRNA isoforms controlled by Pr1 and terminated at PA1 in specific brain areas including the medial–prefrontal cortex, hippocampus, brainstem, and sensorimotor cortex, but not in the amygdala or hypothalamus. These effects correlated with altered epigenetic state of KOR Pr1 chromatin, as well as elevation and increased recruitment of the principal transcription factor c-Myc, which could activate Pr1. Stress-induced modulation of Pr1 was further validated using glutamate-sensitive murine hippocampal cell line, HT22. The results revealed a common molecular mechanism underlying the effect of stress on selected chromatin regions of this gene at the cellular level and in the context of whole animal and identified a critical role for c-Myc in stress-triggered epigenetic regulation of the KOR gene locus. This study sheds light on the mechanisms of stress-induced epigenetic regulation that targets specific chromatin segments and suggests certain KOR transcripts and its principal transcription factor c-Myc as potential targets for brain-area–specific intervention. PMID:22615378

  15. Age- and Sex-Associated Plasma Proteomic Changes in Growth Hormone Receptor Gene–Disrupted Mice

    PubMed Central

    Ding, Juan; Berryman, Darlene E.; Jara, Adam

    2012-01-01

    Growth hormone receptor gene–disrupted (GHR?/?) mice are dwarf, insulin sensitive, and long lived despite being obese. In order to identify characteristics associated with their increased longevity, we studied age-related plasma proteomic changes in these mice. Male and female GHR?/? mice and their littermate controls were followed longitudinally at 8, 16, and 24 months of ages for plasma proteomic analysis. Relative to control littermates, GHR?/? mice had increased levels of apolipoprotein A-4 and retinol-binding protein-4 and decreased levels of apolipoprotein E, haptoglobin, and mannose-binding protein-C. Female GHR?/? mice showed decreased inflammatory cytokines including interleukin-1? and monocyte chemotactic protein-1. Additionally, sex differences were found in specific isoforms of apolipoprotein E, RBP-4, haptoglobin, albumin, and hemoglobin subunit beta. In conclusion, we find plasma proteomic changes in GHR?/? mice that favor a longer life span as well as sex differences indicative of an improved health span in female mice. PMID:22156438

  16. The cps gene cluster of Salmonella strain LT2 includes a second mannose pathway: sequence of two genes and relationship to genes in the rfb gene cluster

    Microsoft Academic Search

    Gordon Stevenson; Sang Jun Lee; Lajwant K. Romana; Peter R. Reeves

    1991-01-01

    We report the presence in Salmonella enterica strain LT2 (serovar thyphimurium) of duplicate genes for two steps in the synthesis of GDP-mannose. The previously known genes, rfbK (phosphomannomutase) and rfbM (mannose-l-phosphate guanyltransferase), are part of the gene cluster for the O antigen. The two new genes, cpsB and cpsG, respectively, are thought to be part of the gene cluster for

  17. Massive losses of taste receptor genes in toothed and baleen whales.

    PubMed

    Feng, Ping; Zheng, Jinsong; Rossiter, Stephen J; Wang, Ding; Zhao, Huabin

    2014-06-01

    Taste receptor genes are functionally important in animals, with a surprising exception in the bottlenose dolphin, which shows extensive losses of sweet, umami, and bitter taste receptor genes. To examine the generality of taste gene loss, we examined seven toothed whales and five baleen whales and sequenced the complete repertoire of three sweet/umami (T1Rs) and ten bitter (T2Rs) taste receptor genes. We found all amplified T1Rs and T2Rs to be pseudogenes in all 12 whales, with a shared premature stop codon in 10 of the 13 genes, which demonstrated massive losses of taste receptor genes in the common ancestor of whales. Furthermore, we analyzed three genome sequences from two toothed whales and one baleen whale and found that the sour taste marker gene Pkd2l1 is a pseudogene, whereas the candidate salty taste receptor genes are intact and putatively functional. Additionally, we examined three genes that are responsible for taste signal transduction and found the relaxation of functional constraints on taste signaling pathways along the ancestral branch leading to whales. Together, our results strongly suggest extensive losses of sweet, umami, bitter, and sour tastes in whales, and the relaxation of taste function most likely arose in the common ancestor of whales between 36 and 53 Ma. Therefore, whales represent the first animal group to lack four of five primary tastes, probably driven by the marine environment with high concentration of sodium, the feeding behavior of swallowing prey whole, and the dietary switch from plants to meat in the whale ancestor. PMID:24803572

  18. Genetic control of T cell receptor BJ gene expression in peripheral lymphocytes of normal and rheumatoid arthritis monozygotic twins.

    PubMed Central

    Nanki, T; Kohsaka, H; Mizushima, N; Ollier, W E; Carson, D A; Miyasaka, N

    1996-01-01

    The amino acids encoded at the junctions of T cell receptor (TCR) V and J genes directly interact with MHC bound peptides. However, the regulation of the human TCRBJ gene repertoire has been difficult to analyze, because of the potentially complex number of BJ gene rearrangements. To overcome this problem, we developed a PCR-ELISA method to study BJ gene expression, and compared peripheral T lymphocytes from 12 pairs of monozygotic twins, including 6 rheumatoid arthritis (RA) discordant pairs, and 5 normals. Analyses of the TCRBV5, 13 and 17 gene families, which have been reported to be increased in RA patients, showed: (a) the three TCRBV transcripts have common features of BJ gene usage; (b) TCR transcripts from each TCRBV family display a distinctive BJ gene profile, which is displayed better by CD4+ than CD8+ lymphocytes; (c) the BJ gene repertoires of monozygotic twins are more similar than those of unrelated individuals; and (d) the inflammation of RA does not induce specific changes in the genetically determined pattern of BJ expression. These results indicate that the frequency of expression particular TCRBV-TCRBJ recombinants in human lymphocytes is controlled genetically, and is maintained despite the presence of a chronic inflammatory disease. PMID:8833908

  19. HIV-1 Nef and Vpu Are Functionally Redundant Broad-Spectrum Modulators of Cell Surface Receptors, Including Tetraspanins

    PubMed Central

    Haller, Claudia; Müller, Birthe; Fritz, Joëlle V.; Lamas-Murua, Miguel; Stolp, Bettina; Pujol, François M.; Keppler, Oliver T.

    2014-01-01

    ABSTRACT HIV-1 Nef and Vpu are thought to optimize virus replication in the infected host, at least in part via their ability to interfere with vesicular host cell trafficking. Despite the use of distinct molecular mechanisms, Nef and Vpu share specificity for some molecules such as CD4 and major histocompatibility complex class I (MHC-I), while disruption of intracellular transport of the host cell restriction factor CD317/tetherin represents a specialized activity of Vpu not exerted by HIV-1 Nef. To establish a profile of host cell receptors whose intracellular transport is affected by Nef, Vpu, or both, we comprehensively analyzed the effect of these accessory viral proteins on cell surface receptor levels on A3.01 T lymphocytes. Thirty-six out of 105 detectable receptors were significantly downregulated by HIV-1 Nef, revealing a previously unappreciated scope with which HIV-1 Nef remodels the cell surface of infected cells. Remarkably, the effects of HIV-1 Vpu on host cell receptor exposure largely matched those of HIV-1 Nef in breadth and specificity (32 of 105, all also targeted by Nef), even though the magnitude was generally less pronounced. Of particular note, cell surface exposure of all members of the tetraspanin (TSPAN) protein family analyzed was reduced by both Nef and Vpu, and the viral proteins triggered the enrichment of TSPANs in a perinuclear area of the cell. While Vpu displayed significant colocalization and physical association with TSPANs, interactions of Nef with TSPANs were less robust. TSPANs thus emerge as a major target of deregulation in host cell vesicular transport by HIV-1 Nef and Vpu. The conservation of this activity in two independent accessory proteins suggests its importance for the spread of HIV-1 in the infected host. IMPORTANCE In this paper, we define that HIV-1 Nef and Vpu display a surprising functional overlap and affect the cell surface exposure of a previously unexpected breadth of cellular receptors. Our analyses furthermore identify the tetraspanin protein family as a previously unrecognized target of Nef and Vpu activity. These findings have implications for the interpretation of effects detected for these accessory gene products on individual host cell receptors and illustrate the coevolution of Nef and Vpu function. PMID:25275127

  20. Transcriptional regulation of the cannabinoid receptor type 1 gene in T cells by cannabinoids.

    PubMed

    Börner, Christine; Höllt, Volker; Sebald, Walter; Kraus, Jürgen

    2007-01-01

    Effects of cannabinoids (CBs) are mediated by two types of receptors, CB1 and CB2. In this report, we investigated whether CBs regulate gene expression of their cognate receptors in T cells and studied underlying mechanisms in CD4+ Jurkat T cells. Transcription of the CB1 gene was strongly induced in response to Delta9-tetrahydrocannabinol (THC), whereas the CB2 gene was not regulated. The induction of CB1 gene expression is mediated by CB2 receptors only, as demonstrated by using the CB1 and CB2 agonists R(+)-methanandamide and JWH 015, respectively, and combinations of THC plus CB1- and CB2-specific antagonists. After activation of CB2 receptors, the transcription factor STAT5 is phosphorylated. STAT5 then transactivates IL-4. Induction of IL-4 mRNA as well as IL-4 protein release from the cells are necessary for the following induction of the CB1 gene. This was demonstrated by using decoy oligonucleotides against STAT5, which blocked IL-4 and CB1 mRNA induction, and by using the IL-4 receptor antagonist IL-4 [R121D,Y124D], which blocked the up-regulation of CB1 gene transcription. Transactivation of the CB1 gene in response to IL-4 is then mediated by the transcription factor STAT6, as shown by using decoy oligonucleotides against STAT6. An increase in CB1-mediated phosphorylation of MAPK in cells prestimulated with CB2-specific agonists suggests up-regulation of functional CB1 receptor proteins. In summary, up-regulation of CB1 in T lymphocytes in response to CBs themselves may facilitate or enhance the various immunomodulatory effects related to CBs. PMID:17041005

  1. Common Worldwide Variation Discovered in Human Taste Receptor Genes

    MedlinePLUS

    ... advances in chemosensory science have led to the identification of taste receptors, located on the surface of ... of Discovery Archives Hearing Balance Smell and Taste Voice, Speech, and Language Last updated: 2010 June 07 ...

  2. The ERBB3 receptor in cancer and cancer gene therapy

    Microsoft Academic Search

    G Sithanandam; L M Anderson

    2008-01-01

    ERBB3, a member of the epidermal growth factor receptor (EGFR) family, is unique in that its tyrosine kinase domain is functionally defective. It is activated by neuregulins, by other ERBB and nonERBB receptors as well as by other kinases, and by novel mechanisms. Downstream it interacts prominently with the phosphoinositol 3-kinase\\/AKT survival\\/mitogenic pathway, but also with GRB, SHC, SRC, ABL,

  3. Cell proliferation and expression of the transferrin receptor gene: promoter sequence homologies and protein interactions

    PubMed Central

    1986-01-01

    A 365-bp fragment from the 5' region of the human transferrin receptor gene has been subcloned and sequenced. This fragment contains 115 bp of flanking sequence, the first exon, and a portion of the first intron. It contains a TATA box, several GC-rich regions, and is able to efficiently promote expression of the bacterial CAT gene in mouse 3T3 cells. Sequence comparisons demonstrate that this DNA segment has homology to the promoter regions of the human dihydrofolate reductase gene and the mouse interleukin 3 gene, as well as to a monkey DNA sequence that has homology to the SV40 origin and promotes expression of an unidentified gene product. Several high molecular mass proteins that interact with the transferrin receptor gene promoter have been identified. The activity of these proteins is transiently increased in 3T3 cells that have been stimulated by serum addition. This increase precedes a rise in transferrin receptor mRNA levels in the cytoplasm, which in turn precedes entry of the cells into S phase. DNase I footprinting of the transferrin receptor promoter reveals several protein binding sites. Two of the sites are within the conserved GC- rich region of the promoter. One of these binding sites probably interacts with Spl, while the second interacts with an uncharacterized protein. PMID:3491079

  4. ALTERED BETA2 ADRENERGIC RECEPTOR GENE EXPRESSION IN HUMAN CLINICAL HYPERTENSION

    PubMed Central

    Dungan, Jennifer R.; Conley, Yvette P.; Langaee, Taimour Y.; Johnson, Julie A.; Kneipp, Shawn M.; Hess, Philip J.; Yucha, Carolyn B.

    2009-01-01

    Objectives The beta 2-adrenergic receptor is involved in mediating vasodilatation via neurohumoral and sympathetic nervous system pathways. Alterations in beta 2-adrenergic receptor gene expression (mRNA transcription) may contribute to the hypertensive phenotype. Human gene expression in clinical phenotypes remains largely unexplored due to ethical constraints involved in obtaining human tissue. We devised a method to obtain normally discarded internal mammary artery tissue from coronary artery bypass graft patients. We then investigated differences in hypertensive and normotensive subjects’ beta 2-adrenergic receptor gene expression in this tissue. Methods We collected arterial tissue samples from 46 coronary artery bypass patients in a surgical setting. Using 41 of the samples, we performed TaqMan® RT-PCR and used the delta delta cycle threshold (??Ct) relative quantitation method for determination of fold-differences in gene expression between normotensive and hypertensive subjects. The beta 2-adrenergic receptor target was normalized to glyceraldehyde-phosphate dehydrogenase. Results Subjects with hypertension had significantly less expressed beta 2-adrenoceptor gene (2.76-fold, p < .05) compared to normotensive subjects. After Bonferroni correction, gene expression did not differ by race, gender, type/dose of beta-blocker prescribed, positive family history of hypertension, or diagnosis of diabetes mellitus type 2. Conclusions These data support the possibility of a molecular basis for impaired adrenoceptor-mediated vascular tone in hypertension. Modification and extension of this research is required. PMID:19254913

  5. A single-vector EYFP reporter gene assay for G protein-coupled receptors.

    PubMed

    Hald, Helle; Wu, Boqian; Bouakaz, Lamine; Meldal, Morten

    2015-05-01

    We here present an improved and simplified assay to study signal transduction of the Gs class of G protein-coupled receptors (GPCRs). The assay is based on a single plasmid combining the genes for any Gs protein-coupled GPCR and the cAMP response element-related expression of enhanced yellow fluorescent protein. On transfection, stable human embryonic kidney 293 (HEK293) cell lines presented high assay sensitivity and an unprecedented signal-to-noise ratio of up to 300, even in the absence of trichostatin A. The robustness of the assay was demonstrated through the cloning of reporter gene cell lines with melanocortin 4 receptor (MC4R), the human type I pituitary adenylate cyclase-activating polypeptide receptor (hPAC1), and the two vasoactive intestinal peptide receptors (VPAC1 and VPAC2). PMID:25681566

  6. Dynorphin A as a potential endogenous ligand for four members of the opioid receptor gene family.

    PubMed

    Zhang, S; Tong, Y; Tian, M; Dehaven, R N; Cortesburgos, L; Mansson, E; Simonin, F; Kieffer, B; Yu, L

    1998-07-01

    Dynorphin A is an endogenous opioid peptide that activates the kappa opioid receptor (KOR) with high potency. Some studies also showed that the distribution and functional activity of dynorphin A are not completely correlated with those of KOR, suggesting that dynorphin A may interact with other receptors. To investigate the possibility that dynorphin A may serve as an agonist for other opioid receptors, we took the advantage of the cloning of the three major types of opioid receptors, mu (MOR), delta (DOR) and KOR, and examined their affinity for and their activation by dynorphin A. We used mammalian cells transfected with each of the cDNA clones for the human receptors hMOR, hDOR, hKOR and showed that dynorphin A displaced [3H]-diprenorphine binding with Ki values in the nanomolar range at all three receptors. We also showed that, when hMOR, hDOR or hKOR was coexpressed with a G protein-activated potassium channel in Xenopus oocytes, dynorphin A induced a potassium current with EC50 values in the nanomolar range for all three receptors. Furthermore, we showed that the human hORLI, an opioid receptor-like receptor that has been identified as a novel member of the opioid receptor gene family, displayed dynorphin A binding and functional activation. These results indicate that dynorphin A is capable of binding to and functional activation of all members of the opioid receptor family, suggesting that, as a potential endogenous agonist, its activity in humans may involve interaction with other members of the opioid receptor family in addition to kappa receptors. PMID:9655852

  7. SNP variants within the vanilloid TRPV1 and TRPV3 receptor genes are associated with migraine in the Spanish population.

    PubMed

    Carreńo, Oriel; Corominas, Roser; Fernández-Morales, Jessica; Camińa, Montserrat; Sobrido, María-Jesús; Fernández-Fernández, José Manuel; Pozo-Rosich, Patricia; Cormand, Bru; Macaya, Alfons

    2012-01-01

    The transient receptor potential (TRP) superfamily of non-selective cationic channels are involved in several processes plausibly relevant to migraine pathophysiology, including multimodal sensory and pain perception, central and peripheral sensitization, and regulation of calcium homeostasis. With the aim of identifying single nucleotide polymorphisms (SNPs) in TRP genes that may confer increased genetic susceptibility to migraine, we carried out a case-control genetic association study with replication, including a total of 1,040 cases and 1,037 controls. We genotyped 149 SNPs covering 14 TRP genes with known brain expression. The two-stage study comprised samples of 555 and 485 Spanish, Caucasian patients, selected according to the ICHD-II criteria for the diagnosis of migraine without aura (MO) or migraine with aura (MA). In the discovery sample, 19 SNPs in ten TRP genes showed nominal association (P?genes showing nominal association in the discovery set, but none of them was replicated. The present findings suggest that members of the vanilloid TRPV subfamily of receptors contribute to the genetic susceptibility to migraine in the Spanish population. PMID:22162417

  8. Association of peroxisome proliferator-activated receptor-gamma gene polymorphisms with the development of asthma

    Microsoft Academic Search

    Sun-Hee Oh; Se-Min Park; Yoo Hoon Lee; Ji Yeon Cha; Ji-Yeon Lee; Eun Kyong Shin; Jong-Sook Park; Byeong-Lae Park; Hyoung Doo Shin; Choon-Sik Park

    2009-01-01

    Summary Background: The peroxisome proliferator-activated receptors (PPAR) are the nuclear hormone receptor superfamily of ligand-activated transcriptional factors. PPAR-gamma (PPARG) activation downregulates production of Th2 type cytokines and eosinophil function. Addition- ally, treatment with a synthetic PPARG ligand can reduce lung inflammation and IFN-gamma, IL-4, and IL-2 production in experimental allergic asthma. In patients with asthma, PPARG gene expression is known

  9. T Cell Receptor-Independent Basal Signaling via Erk and Abl Kinases Suppresses RAG Gene Expression

    Microsoft Academic Search

    Jeroen P. Roose; Maximilian Diehn; Michael G. Tomlinson; Joseph Lin; Ash A. Alizadeh; David Botstein; Patrick O. Brown; Arthur Weiss

    2003-01-01

    Signal transduction pathways guided by cellular receptors commonly exhibit low-level constitutive signaling in a continuous, ligand-independent manner. The dynamic equilibrium of positive and negative regulators establishes such a tonic signal. Ligand-independent signaling by the precursors of mature antigen receptors regulates development of B and T lymphocytes. Here we describe a basal signal that controls gene expression profiles in the Jurkat

  10. Nicotinic Receptor Gene Cluster on Rat Chromosome 8 In Nociceptive and Blood Pressure Hyper-responsiveness

    Microsoft Academic Search

    Imran M. Khan; Erin Singletary; Adamu Alemayehu; Shanaka Stanislaus; Morton P. Printz; Tony L. Yaksh; Palmer Taylor

    2002-01-01

    Abstract: Spontaneously hypertensive rats (SHR) exhibit enhanced pressor, heart rate and nociceptive responses to spinal nicotinic agonists. This accompanies,a paradoxical decrease in spinal nicotinic receptor number in SHR compared to normotensive rats. The congenic strain, SHR-Lx, with an introgressed chromosome,8 segment from the normotensive,Brown-Norway (BN)-Lx strain exhibits reduced blood pressure. This segment contains a gene cluster for three nicotinic receptor

  11. Structure and Transcription of the Human m3 Muscarinic Receptor Gene

    Microsoft Academic Search

    Sean M. Forsythe; Paul C. Kogut; John F. McConville; Yiping Fu; Joel A. McCauley; Andrew J. Halayko; Hong Wei Liu; Allen Kao; Darren J. Fernandes; Shashi Bellam; Elaine Fuchs; Satrajit Sinha; Graeme I. Bell; Blanca Camoretti-Mercado; Julian Solway

    2002-01-01

    We have isolated and characterized the human m3 muscarinic receptor gene and its promoter. Using 5 ? rapid amplification of cDNA ends (RACE), internal polymerase chain reaction (PCR), and homology searching to identify EST clones, we de- termined that the cDNA encoding the m3 receptor comprises 4,559 bp in 8 exons, which are alternatively spliced to exclude exons 2, 4,

  12. No evidence for oncogenic mutations in the adrenocorticotropin receptor gene in human adrenocortical neoplasms

    SciTech Connect

    Latronico, A.C.; Reincke, M.; Mendonca, B.B. [National Inst. of Child Health and Human Development, Bethesda, MD (United States)] [and others] [National Inst. of Child Health and Human Development, Bethesda, MD (United States); and others

    1995-03-01

    The mechanism(s) of tumorigenesis for the majority of adrenocortical neoplasms remain unknown. G-Protein-coupled receptors were recently proposed as candidate protooncogenes. That activating mutations of this class of receptors might be important for tumor induction or progression of endocrine neoplasms was strengthened by the recent identification of such mutations in hyperfunctioning thyroid adenomas. To examine whether the ACTH receptor (ACTH-R) gene could be an oncogene in human adrenocortical tumors, we amplified by the polymerase chain reaction and directly sequenced the entire exon of the ACTH-R gene in 25 adrenocortical tumors (17 adenomas and 8 carcinomas) and 2 adrenocortical cancer cell lines. We found no missense point mutations or even silent polymorphisms in any of the tumors and cell lines studied. We conclude that activating mutations of the ACTH-R gene do not represent a frequent mechanism of human adrenocortical tumorigenesis. 15 refs., 2 tabs.

  13. Association of Neurotensin receptor 1 gene polymorphisms with processing speed in healthy Chinese-Han subjects.

    PubMed

    Wang, Man; Ma, Hui; Huang, Ying-lin; Zhu, Gang; Zhao, Jing-ping

    2014-12-01

    Neurotensin modulates dopamine and serotonin transmission in the brain. The study investigated whether genetic polymorphisms in the Neurotensin receptor 1 gene were associated with performance on processing speed and executive function. A total of 129 healthy Chinese-Han volunteers were recruited. Genotyping for three SNPs, including rs6090453, rs6011914, and rs2427422, was analyzed by using a PCR and a restriction fragment length polymorphism analysis. Performances of processing speed and executive function were assessed by using Trail Making Test-A (TMT-A), Wisconsin Card Sorting Test, and Stroop Color-Word Test. We found significant differences in the outcomes of TMT-A score among rs6090453C/G (F(2,126)=4.405, P=0.014) and rs2427422A/G (F(2,126)=7.498, P=0.001) genotypes. Neurotensin receptor 1 SNP polymorphisms were significantly associated with the variance in processing speed performance in a sample of Chinese college students. PMID:25159184

  14. Receptor activity-modifying protein-dependent effects of mutations in the calcitonin receptor-like receptor: implications for adrenomedullin and calcitonin gene-related peptide pharmacology

    PubMed Central

    Watkins, H A; Walker, C S; Ly, K N; Bailey, R J; Barwell, J; Poyner, D R; Hay, D L

    2014-01-01

    Background and Purpose Receptor activity-modifying proteins (RAMPs) define the pharmacology of the calcitonin receptor-like receptor (CLR). The interactions of the different RAMPs with this class B GPCR yield high-affinity calcitonin gene-related peptide (CGRP) or adrenomedullin (AM) receptors. However, the mechanism for this is unclear. Experimental Approach Guided by receptor models, we mutated residues in the N-terminal helix of CLR, RAMP2 and RAMP3 hypothesized to be involved in peptide interactions. These were assayed for cAMP production with AM, AM2 and CGRP together with their cell surface expression. Binding studies were also conducted for selected mutants. Key Results An important domain for peptide interactions on CLR from I32 to I52 was defined. Although I41 was universally important for binding and receptor function, the role of other residues depended on both ligand and RAMP. Peptide binding to CLR/RAMP3 involved a more restricted range of residues than that to CLR/RAMP1 or CLR/RAMP2. E101 of RAMP2 had a major role in AM interactions, and F111/W84 of RAMP2/3 was important with each peptide. Conclusions and Implications RAMP-dependent effects of CLR mutations suggest that the different RAMPs control accessibility of peptides to binding residues situated on the CLR N-terminus. RAMP3 appears to alter the role of specific residues at the CLR-RAMP interface compared with RAMP1 and RAMP2. PMID:24199627

  15. Luciferase Reporter Gene Assay on Human 5-HT Receptor: Which Response Element Should Be Chosen?

    PubMed Central

    Chen, Yiming; Xu, Zhongyu; Wu, Dang; Li, Jian; Song, Cheng; Lu, Weiqiang; Huang, Jin

    2015-01-01

    Serotonin (5-HT) receptors are valuable molecular targets for antipsychotic drug discovery. Current reported methods for detecting 5-HT receptors, such as cAMP accumulation and calcium influx assay, are often demanding specialized instruments and inconvenient. The luciferase reporter gene assay, based on the responsible-element-regulated expression of luciferase, has been widely applied in the high-throughput functional assay for many targets because of its high sensitivity and reliability. However, 5-HT receptors couple to multiple G-proteins regulate respective downstream signalling pathways and are usually detected using different response elements. Hence, finding a suitable response element to fulfil the detection of different 5-HT receptors and make the results of luciferase reporter gene assays generalizable is very useful for active compounds screening. Here, we conducted three luciferase reporter assays using CRE, NFAT, and SRE response elements attached to 5-HT to detect the activation of different 5-HT receptors in CHO-K1 cells. The potencies and efficacies of the reported ligands (agonists and antagonists) were determined and compared. Our results indicate that CRE-luciferase reporter gene is sensitive and reliable to detect the activities of G protein-coupled 5-HT receptors. PMID:25622827

  16. Molecular cloning of a gene encoding the histamine H2 receptor

    SciTech Connect

    Gantz, I.; Schaeffer, M.; DelValle, J.; Logsdon, C.; Campbell, V.; Uhler, M.; Yamada, Tadataka (Univ. of Michigan Medical Center, Ann Arbor (United States))

    1991-01-15

    The H2 subclass of histamine receptors mediates gastric acid secretion, and antagonists for this receptor have proven to be effective therapy for acid peptic disorders of the gastrointestinal tract. The physiological action of histamine has been shown to be mediated via a guanine nucleotide-binding protein linked to adenylate cyclase activation and cellular cAMP generation. The authors capitalized on the technique of polymerase chain reaction, using degenerate oligonucleotide primers based on the known homology between cellular receptors linked to guanine nucleotide-binding proteins to obtain a partial-length clone from canine gastric parietal cell cDNA. This clone was used to obtain a full-length receptor gene from a canine genomic library. Histamine increased in a dose-dependent manner cellular cAMP content in L cells permanently transfected with this gene, and preincubation of the cells with the H2-selective antagonist cimetidine shifted the dose-response curve to the right. Cimetidine inhibited the binding of the radiolabeled H2 receptor-selective ligand (methyl-{sup 3}H)tiotidine to the transfected cells in a dose-dependent fashion, but the H1-selective antagonist diphenhydramine did not. These data indicate that they have cloned a gene that encodes the H2 subclass of histamine receptors.

  17. Molecular cloning of a gene encoding the histamine H2 receptor.

    PubMed Central

    Gantz, I; Schäffer, M; DelValle, J; Logsdon, C; Campbell, V; Uhler, M; Yamada, T

    1991-01-01

    The H2 subclass of histamine receptors mediates gastric acid secretion, and antagonists for this receptor have proven to be effective therapy for acid peptic disorders of the gastrointestinal tract. The physiological action of histamine has been shown to be mediated via a guanine nucleotide-binding protein linked to adenylate cyclase activation and cellular cAMP generation. We capitalized on the technique of polymerase chain reaction, using degenerate oligonucleotide primers based on the known homology between cellular receptors linked to guanine nucleotide-binding proteins to obtain a partial-length clone from canine gastric parietal cell cDNA. This clone was used to obtain a full-length receptor gene from a canine genomic library. Histamine increased in a dose-dependent manner cellular cAMP content in L cells permanently transfected with this gene, and preincubation of the cells with the H2-selective antagonist cimetidine shifted the dose-response curve to the right. Cimetidine inhibited the binding of the radiolabeled H2 receptor-selective ligand [methyl-3H]tiotidine to the transfected cells in a dose-dependent fashion, but the H1-selective antagonist diphenhydramine did not. These data indicate that we have cloned a gene that encodes the H2 subclass of histamine receptors. Images PMID:1703298

  18. Molecular cloning and functional analysis of Photobacterium damselae subsp. piscicida haem receptor gene.

    PubMed

    Naka, H; Hirono, I; Aoki, T

    2005-02-01

    A haem receptor gene from Photobacterium damselae subsp. piscicida (formerly known as Pasteurella piscicida) has been cloned, sequenced and analysed for its function. The gene, designated as pph, has an open reading frame consisting of 2154 bp, a predicted 718 amino acid residues and exists as a single copy. It is homologous with the haem receptors of Vibrio anguillarum hupA, V. cholerae hutA, V. mimicus mhuA and V. vulnificus hupA at 32.7, 32.7, 45.6 and 30.9%, respectively, and is highly conserved, consisting of a Phe-Arg-Ala-Pro sequence (FRAP), an iron transport related molecule (TonB) and a Asn-Pron-Asn-Leu sequence (NPNL), binding motifs associated with haem receptors. As a single gene knockout mutant P. damselae subsp. piscicida was able to bind haem in the absence of pph, suggesting that other receptors may be involved in its iron transport system. This study shows that the P. damselae subsp. piscicida pph belongs to the haem receptor family, is conserved and that its iron-binding system may involve more than one receptor. PMID:15705153

  19. The chromosomal localization of the human follicle-stimulating hormone receptor gene (FSHR) on 2p21-p16 ls similar to that of the luteinizing hormone receptor gene

    SciTech Connect

    Rousseau-Merck, M.F.; Berger, R.; Atger, M.; Loosfelt, H.; Milgrom, E. (INSERM, Paris (France))

    1993-01-01

    Two cDNA probes (5[prime]and 3[prime]region) corresponding to the human follicle-stimulating hormone receptor gene (FSHR) were used for chromosomal localization by in situ hybridization. The localization obtained on chromosome 2p21-p16 is similar to that of the luteinizing hormone/choriogonadotropin (LH/CG) receptor gene. 24 refs. 1 fig., 1 tab.

  20. Generation of systemin signaling in tobacco by transformation with the tomato systemin receptor kinase gene.

    PubMed

    Scheer, Justin M; Pearce, Gregory; Ryan, Clarence A

    2003-08-19

    The tomato systemin receptor, SR160, a plasma membrane-bound, leucine-rich repeat receptor kinase that signals systemic plant defense, and the brassinolide (BL) receptor, BRI1, that regulates developmental processes, have been shown recently to have identical amino acid sequences. We report herein that tobacco, a solanaceous species that does not express a systemin precursor gene nor responds to systemin, when transformed with the SR160 receptor gene, expresses the gene in suspension-cultured cells, evidenced by mRNA and protein analyses and photoaffinity-labeling experiments. Additionally, systemin induced an alkalinization response in the transgenic tobacco cells similar to that found in tomato cells, but not in WT cells. The gain in function in tobacco cells indicates that early steps of the systemin signaling pathway found in tomato are present in tobacco cells. A tomato line, cu-3, in which a mutation in the BRI1 gene has rendered the plant nonfunctional in BL signaling, exhibits a severely reduced response to systemin. In leaves of WT tomato plants, BL strongly and reversibly antagonized systemic signaling by systemin. The results suggest that the systemin-mediated systemic defense response may have evolved in some solanaceous species by co-opting the BRI1 receptor and associated components for defense signaling. PMID:12900501

  1. Endothelial Protein C Receptor Gene Variants Not Associated with Severe Malaria in Ghanaian Children

    PubMed Central

    Schuldt, Kathrin; Ehmen, Christa; Evans, Jennifer; May, Juergen; Ansong, Daniel; Sievertsen, Juergen; Muntau, Birgit; Ruge, Gerd; Agbenyega, Tsiri; Horstmann, Rolf D.

    2014-01-01

    Background Two recent reports have identified the Endothelial Protein C Receptor (EPCR) as a key molecule implicated in severe malaria pathology. First, it was shown that EPCR in the human microvasculature mediates sequestration of Plasmodium falciparum-infected erythrocytes. Second, microvascular thrombosis, one of the major processes causing cerebral malaria, was linked to a reduction in EPCR expression in cerebral endothelial layers. It was speculated that genetic variation affecting EPCR functionality could influence susceptibility to severe malaria phenotypes, rendering PROCR, the gene encoding EPCR, a promising candidate for an association study. Methods Here, we performed an association study including high-resolution variant discovery of rare and frequent genetic variants in the PROCR gene. The study group, which previously has proven to be a valuable tool for studying the genetics of malaria, comprised 1,905 severe malaria cases aged 1–156 months and 1,866 apparently healthy children aged 2–161 months from the Ashanti Region in Ghana, West Africa, where malaria is highly endemic. Association of genetic variation with severe malaria phenotypes was examined on the basis of single variants, reconstructed haplotypes, and rare variant analyses. Results A total of 41 genetic variants were detected in regulatory and coding regions of PROCR, 17 of which were previously unknown genetic variants. In association tests, none of the single variants, haplotypes or rare variants showed evidence for an association with severe malaria, cerebral malaria, or severe malaria anemia. Conclusion Here we present the first analysis of genetic variation in the PROCR gene in the context of severe malaria in African subjects and show that genetic variation in the PROCR gene in our study population does not influence susceptibility to major severe malaria phenotypes. PMID:25541704

  2. Molecular Characterization of RXR (Retinoid X Receptor) Gene Isoforms from the Bivalve Species Chlamys farreri

    PubMed Central

    Bao, Zhenmin; Guo, Huihui; Zhang, Yueyue; Jiao, Wenqian; Zhang, Lingling; Wang, Shi; He, Yan; Hu, Xiaoli

    2013-01-01

    Background Bivalves are among the oldest classes of invertebrates, and they exhibit diverse types of sexual patterning. However, our current understanding of the mechanisms of sex determination and differentiation in bivalves remains very limited. The retinoid X receptors (RXRs), which are members of the nuclear receptor family, are involved in sex differentiation in many organisms. Results In the present study, four full-length RXR-encoding cDNAs (CfRXRs) named CfRXRa, CfRXRb, CfRXRc and CfRXRd were retrieved from Zhikong scallop (Chlamys farreri). The four RXRs exhibited the conserved five-domain structure of nuclear receptor superfamily members and differed from each other only in the T-box of the C domain. The three variants, designated T (+4), T (+20) and T (+24), contained insertions of 4, 20 and 24 amino acids, respectively. The entire CfRXR gene is composed of eight exons and seven introns, and the four isoforms are generated via alternative mRNA splicing. Expression analysis showed that all four isoforms were expressed in both the testis and the ovary during the differentiation stage, whereas no expression was detected in the growth, mature or resting stages. This result suggests that CfRXRs are involved in germ cell differentiation in both sexes. The expression of the four isoforms was also detected in other tissues examined, including mantle, gill, digestive gland, and adductor muscle of sexually mature male and female Zhikong scallops, implying the multiple biological functions of CfRXRs. Conclusion Our study presents the first report of RXR isoforms in bivalves. Further investigation of the functional roles of different RXR isoforms may provide deep insights into the regulatory mechanism of sex differentiation in C. farreri. PMID:24066133

  3. A specific gene conversion of an Alu family member in the LDL-receptor gene

    SciTech Connect

    Deininger, P.L.; Kass, D.H.; Batzer, M.A. [Lawrence Livermore National Lab., CA (United States)

    1994-09-01

    There are about 500,000 Alu family members dispersed throughout the human genome. Each of these elements is about 300 bp long and they are spread through an RNA-mediated transposition process termed retroposition. The Alu elements are not identical in sequence, but instead seem to be randomly diverged from several subfamily consensus sequences. These subfamilies can be roughly divided, based on diagnostic nucleotide positions, into groups of Alu sequences inserted during different stages in primate evolution. A PCR-based assay in which we amplify a specific Alu-containing site in the genomes of different primates allows us to detect the time of insertion of that individual Alu element in the primate genome. In studying members of one of the youngest Alu subfamilies, Sb2, we detected one element that had apparently inserted over 25 million years ago, much earlier than any other Sb2 element tested. Upon sequencing the amplified PCR products, we found that an Alu was in that precise location for 25 million years, but only in the human genome was it an Sb2 element. Its sequence was consistent with the oldest (PS) Alu subfamily in the other primates. This element evolves as expected throughout primates with the exception of the human, where it has suddenly acquired 16 separate diagnostic subfamily mutations. Although the exact mechanism is unknown, this Alu element has been specifically gene converted by an Alu element from this newer subfamily, without affecting the flanking sequences at all. It is clear that the majority of Alu subfamily evolution is dominated by insertion processes. However, this event shows that some of the details of Alu subfamily evolution may also be affected by gene conservation. Studies on several humans also show that this locus continued to accumulate mutations at an exceptionally high level after the conversion, making it useful as a polymorphic marker for the LDL-receptor locus.

  4. White matter abnormalities in 22q11.2 deletion syndrome: Preliminary associations with the Nogo-66 receptor gene and symptoms of psychosis

    E-print Network

    receptor gene and symptoms of psychosis Matthew D. Perlstein a , Moeed R. Chohan a , Ioana L. Coman integrity of these tracts, including an association with prodromal symptoms of psychosis. We further to myelin-mediated axonal growth inhibition. Moreover, the association between psychosis symptoms and ALIC

  5. Sequence variation in the androgen receptor gene is not a common determinant of male sexual orientation

    SciTech Connect

    Macke, J.P.; Nathans, J.; King, V.L. (Johns Hopkins Univ., Baltimore, MD (United States)); Hu, N.; Hu, S.; Hamer, D.; Bailey, M. (Northwestern Univ., Evanston, IL (United States)); Brown, T. (Johns Hopkins Univ. School of Hygiene and Public Health, Baltimore, MD (United States))

    1993-10-01

    To test the hypothesis that DNA sequence variation in the androgen receptor gene plays a causal role in the development of male sexual orientation, the authors have (1) measured the degree of concordance of androgen receptor alleles in 36 pairs of homosexual brothers, (2) compared the lengths of polyglutamine and polyglycine tracts in the amino-terminal domain of the androgen receptor in a sample of 197 homosexual males and 213 unselected subjects, and (3) screened the entire androgen receptor coding region for sequence variation by PCR and denaturing gradient-gel electrophoresis (DGGE) and/or single-strand conformation polymorphism analysis in 20 homosexual males with homosexual or bisexual brothers and one homosexual male with no homosexual brothers, and screened the amino-terminal domain of the receptor for sequence variation in an additional 44 homosexual males, 37 of whom had one or more first- or second-degree male relatives who were either homosexual or bisexual. These analyses show that (1) homosexual brothers are as likely to be discordant as concordant for androgen receptor alleles; (2) there are no large-scale differences between the distributions of polyglycine or polyglutamine tract lengths in the homosexual and control groups; and (3) coding region sequence variation is not commonly found within the androgen receptor gene of homosexual men. The DGGE screen identified two rare amino acid substitutions, ser[sup 205] -to-arg and glu[sup 793]-to-asp, the biological significance of which is unknown. 32 refs., 2 figs., 2 tabs.

  6. Type I IL-4 Receptors Selectively Activate IRS-2 to Induce Target Gene Expression in Macrophages

    PubMed Central

    Heller, Nicola M.; Qi, Xiulan; Junttila, Ilkka S.; Shirey, Kari Ann; Vogel, Stefanie N.; Paul, William E.; Keegan, Achsah D.

    2009-01-01

    Although interleukin (IL)-4 and IL-13 participate in allergic inflammation and share a receptor subunit (IL-4R?), differential functions for these cytokines have been reported. Therefore, we compared cells expressing type I and II IL-4 receptors with cells expressing only type II receptors for their responsiveness to these cytokines. IL-4 induced highly efficient, ?C-dependent tyrosine phosphorylation of insulin receptor substrate 2 (IRS-2), whereas IL-13 was less effective, even when phosphorylation of signal transducer and activator of transcription 6 (STAT6) was maximal. Only type I receptor-?C+ signaling induced efficient association of IRS-2 with p85 or GRB2. IL-4 signaling through type I receptor complexes induced more robust expression of a subset of genes associated with alternatively activated macrophages than did IL-13, despite equivalent activation of STAT6. Thus, IL-4 activates signaling pathways through the type I receptor complex, qualitatively differently from IL-13, which cooperate to induce optimal gene expression. PMID:19109239

  7. [Polymorphism of the dopamine D2 receptor gene in populations from the Volga-Ural region].

    PubMed

    Galeeva, A R; Iur'ev, E B; Khusnutdinova, E K

    2000-10-01

    The PCR technique was used to analyze the TaqIA- and NcoI-polymorphisms at the dopamine D2 receptor gene (DRD2) in eight populations of the Volga-Ural region belonging to Turkic (Bashkirs, Tatars, and Chuvashes), Finno-Ugric (Maris, Komis, Mordovians, and Udmurts), and Eastern-Slavic (Russians) ethnic groups. Population-specific patterns of the main TaqIA- and NcoI-polymorphisms distribution were established. Specific trends in changes of genotype and allele frequency of the dopamine D2 receptor gene depending on the ethnicity of the population were revealed. PMID:11094753

  8. Fracture, bone mineral density, and the effects of calcitonin receptor gene in postmenopausal Koreans

    Microsoft Academic Search

    H.-J. Lee; S.-Y. Kim; G. S. Kim; J.-Y. Hwang; Y.-J. Kim; B. Jeong; T.-H. Kim; E. K. Park; S. H. Lee; H.-L. Kim; J.-M. Koh; J.-Y. Lee

    2010-01-01

    Summary  In a candidate gene association study, we found that the variations of calcitonin receptor (CALCR) gene were related to the risk of vertebral fracture and increased bone mineral density (BMD).\\u000a \\u000a \\u000a \\u000a \\u000a Introduction  Calcitonins through calcitonin receptors inhibit osteoclast-mediated bone resorption and modulate calcium ion excretion by\\u000a the kidney and also prevent vertebral bone loss in early menopause.\\u000a \\u000a \\u000a \\u000a \\u000a Methods  To identify genetically susceptible factors

  9. Molecular diagnostics for congenital hearing loss including 15 deafness genes using a next generation sequencing platform

    PubMed Central

    2012-01-01

    Background Hereditary hearing loss (HL) can originate from mutations in one of many genes involved in the complex process of hearing. Identification of the genetic defects in patients is currently labor intensive and expensive. While screening with Sanger sequencing for GJB2 mutations is common, this is not the case for the other known deafness genes (> 60). Next generation sequencing technology (NGS) has the potential to be much more cost efficient. Published methods mainly use hybridization based target enrichment procedures that are time saving and efficient, but lead to loss in sensitivity. In this study we used a semi-automated PCR amplification and NGS in order to combine high sensitivity, speed and cost efficiency. Results In this proof of concept study, we screened 15 autosomal recessive deafness genes in 5 patients with congenital genetic deafness. 646 specific primer pairs for all exons and most of the UTR of the 15 selected genes were designed using primerXL. Using patient specific identifiers, all amplicons were pooled and analyzed using the Roche 454 NGS technology. Three of these patients are members of families in which a region of interest has previously been characterized by linkage studies. In these, we were able to identify two new mutations in CDH23 and OTOF. For another patient, the etiology of deafness was unclear, and no causal mutation was found. In a fifth patient, included as a positive control, we could confirm a known mutation in TMC1. Conclusions We have developed an assay that holds great promise as a tool for screening patients with familial autosomal recessive nonsyndromal hearing loss (ARNSHL). For the first time, an efficient, reliable and cost effective genetic test, based on PCR enrichment, for newborns with undiagnosed deafness is available. PMID:22607986

  10. Growth hormone receptor gene expression on human lymphocytic and monocytic cell lines.

    PubMed

    Derfalvi, B; Szalai, C; Mandi, Y; Kiraly, A; Falus, A

    1998-11-01

    The potential effect of growth hormone (GH) in tumorigenesis, particularly in acute leukemia is controversial. Human growth hormone has the ability to influence certain immune functions; the majority of immune cells express growth hormone receptor (GHR) on plasma membranes. We determined GHR gene expression on different human lymphocyte (JURKAT, CESS) and monocyte (U937, THP1) cell lines by reverse transcriptase polymerase chain reaction analysis of GHR mRNA after stimulating the cells with phytohaemagglutinin or phorbolester, human growth hormone and with a combination of these. The receptor gene expression showed differences; in the U937 and CESS cell lines only the stimulants were able to induce GHR mRNA expression; in the case of JURKAT cells even the hormone alone had the ability to express its own receptor gene. Both the increased TNF-alpha production of U937 (but not that of THP1 cells), and the decreased proliferation of JURKAT cells in response to GH stimuli also prove the presence of biologically active GHR on the cell surface. Our data suggest asymmetric interaction between GH or phorbolester-induced signal pathways in U937 cells sharply depending on the temporal sequence of treatments. THP1 monocytes showed no gene expression in response to any of the stimulants. The phenomenon that certain human lymphoid and monocytoid cell lines at different levels of cell differentiation are able to express the GH receptor gene could have importance in the rhGH therapy. PMID:10873296

  11. Effect of transient receptor potential vanilloid 6 gene silencing on the expression of calcium transport genes in chicken osteoblasts.

    PubMed

    Zhang, Jie; Deng, Yifeng; Ma, Huijie; Hou, Jiafa; Zhou, ZhenLei

    2015-03-01

    Ca(2+) plays a major role in the regulation of signal transduction. Transient receptor potential vanilloid 6 is a Ca(2+)-selective channel that serves as an important rate-limiting step in the facilitation of Ca(2+) entry into cells, but little is known about the regulation of transient receptor potential vanilloid 6 in chickens. In this study, we evaluated the effects of transient receptor potential vanilloid 6 gene interference on the expression of calbindin-D28K, Na(+)/Ca(2+) exchangers, and plasma membrane Ca(2+) ATPase 1b to investigate the mechanism underlying the regulation of transient receptor potential vanilloid 6. Three hairpin siRNA expression vectors targeting transient receptor potential vanilloid 6 (pSIREN- transient receptor potential vanilloid 6) and a negative control (pSIREN-control) were constructed and transfected into chicken osteoblasts. The mRNA and protein expression levels were evaluated by quantitative reverse transcription polymerase chain reaction and Western blot, respectively. The mRNA expression levels of transient receptor potential vanilloid 6 and calbindin-D28K were reduced by 45.7% (P < 0.01) and 27.9% (P < 0.01), respectively, 48 h after transfection with one of the three constructs (pSIREN- transient receptor potential vanilloid 6-3) compared with the level obtained in the untreated group. There was no significant difference in the mRNA expression levels of Na(+)/Ca(2+) exchangers and plasma membrane Ca(2+) ATPase 1b. The protein expression levels of transient receptor potential vanilloid 6 and calbindin-D28K were reduced by 40.2% (P < 0.01) and 29.8% (P < 0.01), respectively, 48 h after transfection with pSIREN-transient receptor potential vanilloid 6-3 compared with the level obtained in the untreated group. In conclusion, the vector-based transient receptor potential vanilloid 6-shRNA can efficiently suppress the mRNA and protein expression of transient receptor potential vanilloid 6 in chicken osteoblasts, and transient receptor potential vanilloid 6 regulates the expression of calbindin-D28K during Ca(2+) transport. PMID:25681476

  12. A Modelling Framework for Gene Regulatory Networks Including Transcription and Translation.

    PubMed

    Edwards, R; Machina, A; McGregor, G; van den Driessche, P

    2015-06-01

    Qualitative models of gene regulatory networks have generally considered transcription factors to regulate directly the expression of other transcription factors, without any intermediate variables. In fact, gene expression always involves transcription, which produces mRNA molecules, followed by translation, which produces protein molecules, which can then act as transcription factors for other genes (in some cases after post-transcriptional modifications). Suppressing these multiple steps implicitly assumes that the qualitative behaviour does not depend on them. Here we explore a class of expanded models that explicitly includes both transcription and translation, keeping track of both mRNA and protein concentrations. We mainly deal with regulation functions that are steep sigmoids or step functions, as is often done in protein-only models. We find that flow cannot be constrained to switching domains, though there can still be asymptotic approach to singular stationary points (fixed points in the vicinity of switching thresholds). This avoids the thorny issue of singular flow, but leads to somewhat more complicated possibilities for flow between threshold crossings. In the infinitely fast limit of either mRNA or protein rates, we find that solutions converge uniformly to solutions of the corresponding protein-only model on arbitrary finite time intervals. This leaves open the possibility that the limit system (with one type of variable infinitely fast) may have different asymptotic behaviour, and indeed, we find an example in which stability of a fixed point in the protein-only model is lost in the expanded model. Our results thus show that including mRNA as a variable may change the behaviour of solutions. PMID:25758753

  13. Olfaction in birds: differential embryonic expression of nine putative odorant receptor genes in the avian olfactory system

    Microsoft Academic Search

    Serge Nef; Igor Allaman; Hubert Fiumelli; Edouard De Castro; Patrick Nef

    1996-01-01

    We have isolated nine putative odorant receptor genes from the chick, named COR1 to COR9, that belong to the large multigene family of olfactory G protein-coupled receptors found in the fish, rat, mouse, dog, and human. By combining genomic DNA blot analysis, low stringency library screenings, and several PCR analyses, we were able to detect ?20 COR genes in the

  14. Genetic basis of endocrine disease 4: The spectrum of mutations in the androgen receptor gene that causes androgen resistance

    SciTech Connect

    McPhaul, M.J.; Marcelli, M.; Zoppi, S.; Griffin, J.E.; Wilson, J.D. (Univ. of Texas Southwestern Medical Center, Dallas (United States))

    1993-01-01

    Mutations in the androgen receptor gene cause phenotypic abnormalities of male sexual development that range from a female phenotype (complete testicular feminization) to that of undervirilized or infertile men. Using the tools of molecular biology, the authors have analyzed androgen receptor gene mutations in 31 unrelated subjects with androgen resistance syndromes. Most of the defects are due to nucleotide changes that cause premature termination codons or single amino acid substitutions within the open reading frame encoding the androgen receptor, and the majority of these substitutions are localized in three regions of the androgen receptor: the DNA-binding domain and two segments of the androgen-binding domain. Less frequently, partial or complete gene deletions have been identified. Functional studies and immunoblot assays of the androgen receptors in patients with androgen resistance indicate that in most cases the phenotypic abnormalities are the result of impairment of receptor function or decreases in receptor abundance or both. 34 refs., 2 figs.

  15. Ecdysone Receptor-Based Gene Switches for Applications in Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are a number of circumstances in which it is advantageous to use an inducible gene regulation system, the most obvious being when introducing transgenes whose constitutive expression is detrimental or even lethal to the host plants. The selective induction of gene expression is typically accom...

  16. Polymorphisms in the Estrogen Receptor 1 and Vitamin C and Matrix Metalloproteinase Gene Families Are Associated with Susceptibility to Lymphoma

    PubMed Central

    Skibola, Christine F.; Bracci, Paige M.; Halperin, Eran; Nieters, Alexandra; Hubbard, Alan; Paynter, Randi A.; Skibola, Danica R.; Agana, Luz; Becker, Nikolaus; Tressler, Patrick; Forrest, Matthew S.; Sankararaman, Sriram; Conde, Lucia; Holly, Elizabeth A.; Smith, Martyn T.

    2008-01-01

    Background Non-Hodgkin lymphoma (NHL) is the fifth most common cancer in the U.S. and few causes have been identified. Genetic association studies may help identify environmental risk factors and enhance our understanding of disease mechanisms. Methodology/Principal Findings 768 coding and haplotype tagging SNPs in 146 genes were examined using Illumina GoldenGate technology in a large population-based case-control study of NHL in the San Francisco Bay Area (1,292 cases 1,375 controls are included here). Statistical analyses were restricted to HIV- participants of white non-Hispanic origin. Genes involved in steroidogenesis, immune function, cell signaling, sunlight exposure, xenobiotic metabolism/oxidative stress, energy balance, and uptake and metabolism of cholesterol, folate and vitamin C were investigated. Sixteen SNPs in eight pathways and nine haplotypes were associated with NHL after correction for multiple testing at the adjusted q<0.10 level. Eight SNPs were tested in an independent case-control study of lymphoma in Germany (494 NHL cases and 494 matched controls). Novel associations with common variants in estrogen receptor 1 (ESR1) and in the vitamin C receptor and matrix metalloproteinase gene families were observed. Four ESR1 SNPs were associated with follicular lymphoma (FL) in the U.S. study, with rs3020314 remaining associated with reduced risk of FL after multiple testing adjustments [odds ratio (OR)?=?0.42, 95% confidence interval (CI)?=?0.23–0.77) and replication in the German study (OR?=?0.24, 95% CI?=?0.06–0.94). Several SNPs and haplotypes in the matrix metalloproteinase-3 (MMP3) and MMP9 genes and in the vitamin C receptor genes, solute carrier family 23 member 1 (SLC23A1) and SLC23A2, showed associations with NHL risk. Conclusions/Significance Our findings suggest a role for estrogen, vitamin C and matrix metalloproteinases in the pathogenesis of NHL that will require further validation. PMID:18636124

  17. Implications of mutations in hematopoietic growth factor receptor genes in congenital cytopenias.

    PubMed

    Germeshausen, M; Ballmaier, M; Welte, K

    2001-06-01

    Mutations in the genes of hematopoietic growth factor receptors as a cause of congenital cytopenia, such as congenital amegakaryocytic thrombocytopenia (CAMT) or severe congenital neutropenia (CN), are discussed. There are striking differences in the relevance of receptor mutations in these diseases. CAMT is a rare disease characterized by severe hypomegakaryocytic thrombocytopenia during the first years of life that develops into pancytopenia in later childhood. In patients with CAMT, we found inherited mutations in c-mpl, the gene coding for the thrombopoietin receptor, in 8 out of 8 cases. The type of mutation seems to correlate with the clinical course seen in the patients. Functional studies demonstrated defective thrombopoietin (TPO) reactivity in hematopoietic progenitor cells and platelets in CAMT patients. CN is a group of hematopoietic disorders characterized by profound, absolute neutropenia due to a maturation arrest of myeloid progenitor cells. About 10% of all patients develop secondary MDS/leukemia. The malignant progression is associated with acquired nonsense mutations within the G-CSF receptor gene that lead to the truncation of the carboxy-terminal cytoplasmic domain of the receptor protein involved in maturation of myeloid progenitor cells. This seems to be one important step in leukemogenesis in CN patients. CAMT is caused by inherited mutations in c-mpl, the gene for the thrombopoietin receptor, which lead to reduced or absent reactivity to TPO. In contrast, mutations in the G-CSF receptor in CN are acquired and are most probably connected with progression of the neutropenia into MDS/leukemia as a result of a loss of differentiation signaling. PMID:11458519

  18. Identification of small molecule antagonists of the human mas-related gene-X1 receptor.

    PubMed

    Kunapuli, Priya; Lee, Seungtaek; Zheng, Wei; Alberts, Melissa; Kornienko, Oleg; Mull, Rebecca; Kreamer, Anthony; Hwang, Jong-Ik; Simon, Melvin I; Strulovici, Berta

    2006-04-01

    The recently identified mas-related-gene (MRG) family of receptors, located primarily in sensory neurons of the dorsal root ganglion, has been implicated in the perception of pain. Thus, antagonists of this class of receptors have been postulated to be useful analgesics. Toward this end, we developed a cell-based beta-lactamase (BLA) reporter gene assay to identify small molecule antagonists of the human MRG-X1 receptor from a library of compounds. Single-cell clones expressing functional receptors were selected using the BLA reporter gene technology. The EC50 for the MRG agonist peptide, BAM15, appeared to be comparable between the BLA assay and the intracellular Ca2+ transient assays in these cells. Ultra high-throughput screening of approximately 1 million compounds in a 1.8-microl cell-based BLA reporter gene assay was conducted in a 3456-well plate format. Compounds exhibiting potential antagonist profile in the BLA assay were confirmed in the second messenger Ca2+ transient assay. A cell-based receptor trafficking assay was used to further validate the mechanism of action of these compounds. Several classes of compounds, particularly the 2,3-disubstituted azabicyclo-octanes, appear to be relatively potent antagonists at the human MRG-X1 receptors, as confirmed by the receptor trafficking assay and radioligand binding studies. Furthermore, the structure-activity relationship reveals that within this class of compounds, the diphenylmethyl moiety is constant at the 2-substituent, whereas the 3-substituent is directly correlated with the antagonist activity of the compound. PMID:16510108

  19. Antimetastatic gene expression profiles mediated by retinoic acid receptor beta 2 in MDA-MB-435 breast cancer cells

    PubMed Central

    Wallden, Brett; Emond, Mary; Swift, Mari E; Disis, Mary L; Swisshelm, Karen

    2005-01-01

    Background The retinoic acid receptor beta 2 (RAR?2) gene modulates proliferation and survival of cultured human breast cancer cells. Previously we showed that ectopic expression of RAR?2 in a mouse xenograft model prevented metastasis, even in the absence of the ligand, all-trans retinoic acid. We investigated both cultured cells and xenograft tumors in order to delineate the gene expression profiles responsible for an antimetastatic phenotype. Methods RNA from MDA-MB-435 human breast cancer cells transduced with RAR?2 or empty retroviral vector (LXSN) was analyzed using Agilent Human 1A Oligo microarrays. The one hundred probes with the greatest differential intensity (p < 0.004, jointly) were determined by selecting the top median log ratios from eight-paired microarrays. Validation of differences in expression was done using Northern blot analysis and quantitative RT-PCR (qRT-PCR). We determined expression of selected genes in xenograft tumors. Results RAR?2 cells exhibit gene profiles with overrepresentation of genes from Xq28 (p = 2 × 10-8), a cytogenetic region that contains a large portion of the cancer/testis antigen gene family. Other functions or factors impacted by the presence of exogenous RAR?2 include mediators of the immune response and transcriptional regulatory mechanisms. Thirteen of fifteen (87%) of the genes evaluated in xenograft tumors were consistent with differences we found in the cell cultures (p = 0.007). Conclusion Antimetastatic RAR?2 signalling, direct or indirect, results in an elevation of expression for genes such as tumor-cell antigens (CTAG1 and CTAG2), those involved in innate immune response (e.g., RIG-I/DDX58), and tumor suppressor functions (e.g., TYRP1). Genes whose expression is diminished by RAR?2 signalling include cell adhesion functions (e.g, CD164) nutritional or metabolic processes (e.g., FABP6), and the transcription factor, JUN. PMID:16255778

  20. Bromocriptine and clozapine regulate dopamine 2 receptor gene expression in the mouse striatum

    Microsoft Academic Search

    Anthony H. Stonehouse; Frederick S. Jones

    2005-01-01

    In a previous study, we showed that the psychoactive drug caffeine alters the expression of the dopamine 2 receptor (D2R)\\u000a gene in vitro and in vivo. Here, we report that acute administration of antipsychotic and antiparkinsonian drugs also regulate\\u000a D2R gene expression in PC12 cells and in the mouse striatum. Treatment of PC12 cells with the atypical antipsychotic and specific

  1. Association between colony-stimulating factor 1 receptor gene polymorphisms and asthma risk

    Microsoft Academic Search

    Eun Kyong Shin; Shin-Hwa Lee; Sung-Hwan Cho; Seok Jung; Sang Hyuk Yoon; Sung Woo Park; Jong Sook Park; Soo Taek Uh; Yang Ki Kim; Yong Hoon Kim; Jae-Sung Choi; Byung-Lae Park; Hyoung Doo Shin; Choon-Sik Park

    2010-01-01

    Colony-stimulating factor 1 receptor (CSF1R) is expressed in monocytes\\/macrophages and dendritic cells. These cells play important roles in the innate immune response,\\u000a which is regarded as an important aspect of asthma development. Genetic alterations in the CSF1R gene may contribute to the development of asthma. We investigated whether CSF1R gene polymorphisms were associated with the risk of asthma. Through direct

  2. Localization of the glucagon receptor gene to human chromosome band 17q25

    SciTech Connect

    Menzel, S.; Bell, G.I.; Stoffel, M.; Espinosa, R. III; Fernald, A.A.; Le Beau, M.M. (Univ. of Chicago, IL (United States))

    1994-03-15

    The gene encoding the human glucagon receptor (GCGR) was mapped to chromosome band 17q25 by fluorescence in situ hybridization to metaphase chromosomes. An Alu variable poly(A) DNA polymorphism was identified in this gene. Studies of the CEPH families showed significant evidence of linkage between this DNA polymorphism and markers localized to the distal long arm of chromosome 17. 7 refs., 1 fig., 1 tab.

  3. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors

    Microsoft Academic Search

    Akinori Takaoka; Hideyuki Yanai; Seiji Kondo; Gordon Duncan; Hideo Negishi; Tatsuaki Mizutani; Shin-ichi Kano; Yusuke Ohba; Tak W. Mak; Tadatsugu Taniguchi

    2005-01-01

    The activation of Toll-like receptors (TLRs) is central to innate and adaptive immunity. All TLRs use the adaptor MyD88 for signalling, but the mechanisms underlying the MyD88-mediated gene induction programme are as yet not fully understood. Here, we demonstrate that the transcription factor IRF-5 is generally involved downstream of the TLR-MyD88 signalling pathway for gene induction of proinflammatory cytokines, such

  4. Effect of exercise on gene expression of atrial natriuretic peptide receptor of kidney

    Microsoft Academic Search

    Pan Shanshan; Zhang Yan; Lu Aiyun; Peijie Chen

    2005-01-01

    To study the effect of exercise on gene expression of natriuretic peptide receptors (NPRs) in the kidney, with in situ hybridization and the computerized image analysis, we investigated the alterations of gene expression of NPRs on the animal model of exercise training of different intensity. We found that after exercise training of different intensity, renal NPR-A mRNA and NPR-C mRNA

  5. Perspectives on mechanisms of gene regulation by 1,25-dihydroxyvitamin D 3 and its receptor

    Microsoft Academic Search

    J. Wesley Pike; Mark B. Meyer; Makoto Watanuki; Sungtae Kim; Lee A. Zella; Jackie A. Fretz; Miwa Yamazaki; Nirupama K. Shevde

    2007-01-01

    1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) functions as a systemic signal in vertebrate organisms to control the expression of genes whose products are vital to the maintenance of calcium and phosphorus homeostasis. This regulatory capability is mediated by the vitamin D receptor (VDR) which localizes at DNA sites adjacent to the promoter regions of target genes and initiates the complex events necessary for

  6. Subcutaneous Fat Shows Higher Thyroid Hormone Receptor-?1 Gene Expression Than Omental Fat

    Microsoft Academic Search

    Francisco J. Ortega; José M. Moreno-Navarrete; Vicent Ribas; Eduardo Esteve; Jose I. Rodriguez-Hermosa; Bartomeu Ruiz; Belén Peral; Wifredo Ricart; Antonio Zorzano; José M. Fernández-Real

    2009-01-01

    The aims of this work were to evaluate thyroid hormone receptor-? (TR?), TR?1, and TR?2 mRNA gene expression and TR?1:TR?2 ratio, identified as candidate factors for explaining regional differences between human adipose tissue depots. TR?, TR?1, and TR?2 mRNA levels, and the gene expressions of arginine–serine-rich, splicing factor 2 (SF2), heterogeneous nuclear ribonucleoprotein H1 (hnRNP H1), heterogeneous nuclear ribonucleoprotein A1

  7. Adenovirus-mediated gene transfer of the ?2-adrenergic receptor to donor hearts enhances cardiac function

    Microsoft Academic Search

    A P Kypson; S C Hendrickson; S A Akhter; K Wilson; P H McDonald; R E Lilly; P C Dolber; D D Glower; R J Lefkowitz; W J Koch

    1999-01-01

    Gene transfer to modify donor heart function during transplantation has significant therapeutic implications. Recent studies by our laboratory in transgenic mice have shown that overexpression of ?2-adrenergic receptors (?2-ARs) leads to significantly enhanced cardiac function. Thus, we investigated the functional consequences of adenovirus-mediated gene transfer of the human ?2-AR in a rat heterotopic heart transplant model. Donor hearts received 1

  8. Mosaicism of a Thyroid Hormone Receptor Gene Mutation in Resistance to Thyroid Hormone

    Microsoft Academic Search

    Sunee Mamanasiri; Sena Yesil; Alexandra M. Dumitrescu; Xiao-Hui Liao; Tevfik Demir; Roy E. Weiss; Samuel Refetoff

    Context: Heterozygous mutations in thyroid hormone receptor- (TR) gene are the cause of resistance to thyroid hormone (RTH) in more than 85% of families having the syndrome. In 23% of the fam- ilies,TRgenemutationsoccurdenovo.Ofthe141familieswithRTH investigated by us, 21 (15%) had no TR gene mutations detectable by sequencing from genomic DNA (gDNA) or cDNA (non-TR RTH). Objective: The objective of the study

  9. Possible Association of Prokineticin 2 Receptor Gene ( PROKR2 ) with Mood Disorders in the Japanese Population

    Microsoft Academic Search

    Taro Kishi; Tsuyoshi Kitajima; Tomoko Tsunoka; Takenori Okumura; Masashi Ikeda; Tomo Okochi; Yoko Kinoshita; Kunihiro Kawashima; Yoshio Yamanouchi; Norio Ozaki; Nakao Iwata

    2009-01-01

    Several investigations have suggested that disruption of circadian rhythms may provide the foundation for the development\\u000a of mood disorders such as bipolar disorder (BP) and major depressive disorder (MDD). Recent animal studies reported that prokineticin\\u000a 2 or prokineticin 2 receptor gene deficient mice showed disruptions in circadian and homeostatic regulation of sleep. This\\u000a evidence indicates that prokineticin 2 gene (PROK2)

  10. Epigenetic changes in the estrogen receptor ? gene promoter: implications in sociosexual behaviors

    PubMed Central

    Matsuda, Ken Ichi

    2014-01-01

    Estrogen action through estrogen receptor ? (ER?) is involved in the control of sexual and social behaviors in adult mammals. Alteration of ER? gene activity mediated by epigenetic mechanisms, such as histone modifications and DNA methylation, in particular brain areas appears to be crucial for determining the extents of these behaviors between the sexes and among individuals within the same sex. This review provides a summary of the epigenetic changes in the ER? gene promoter that correlate with sociosexual behaviors. PMID:25389384

  11. Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression

    Microsoft Academic Search

    Zena Werb; Patrice M. Tremble; Ole Behrendtsen; Eileen Crowley; Caroline H. Damskytll

    1989-01-01

    We have investigated the effects of ligation of the fibronectin receptor (FnR) on gene expression in rabbit synovial fibroblasts. Monoclonal antibodies to the FnR that block initial adhesion of fibroblasts to fibronectin induced the expression of genes encoding the secreted extracellular matrix-degrading metallo- proteinases collagenase and stromelysin. That induc- tion was a direct consequence of interaction with the FnR was

  12. Epigenetic Control of Estrogen Receptor Expression and Tumor Suppressor Genes Is Modulated by Bioactive Food Compounds

    Microsoft Academic Search

    Carolin Berner; Eva Aumüller; Anne Gnauck; Manuela Nestelberger; A. Just; Alexander G. Haslberger

    2010-01-01

    Background: The tumor suppressor genes p15INK4b and p16INK4a as well as the estrogen receptor-? (ESR1) gene are abnormally methylated and expressed in colon cancer. The cancer-preventative abilities of several bioactive food components have been linked to their estrogenic and epigenetic activities. Methods: The effect of folic acid, zebularine, resveratrol, genistein and epigallocatechin-3-gallate (EGCG) on tumor cell growth, promoter methylation of

  13. Scavenger Chemokine (CXC Motif) Receptor 7 (CXCR7) Is a Direct Target Gene of HIC1 (Hypermethylated in Cancer 1)*

    PubMed Central

    Van Rechem, Capucine; Rood, Brian R.; Touka, Majid; Pinte, Sébastien; Jenal, Mathias; Guérardel, Cateline; Ramsey, Keri; Monté, Didier; Bégue, Agnčs; Tschan, Mario P.; Stephan, Dietrich A.; Leprince, Dominique

    2009-01-01

    The tumor suppressor gene HIC1 (Hypermethylated in Cancer 1) that is epigenetically silenced in many human tumors and is essential for mammalian development encodes a sequence-specific transcriptional repressor. The few genes that have been reported to be directly regulated by HIC1 include ATOH1, FGFBP1, SIRT1, and E2F1. HIC1 is thus involved in the complex regulatory loops modulating p53-dependent and E2F1-dependent cell survival and stress responses. We performed genome-wide expression profiling analyses to identify new HIC1 target genes, using HIC1-deficient U2OS human osteosarcoma cells infected with adenoviruses expressing either HIC1 or GFP as a negative control. These studies identified several putative direct target genes, including CXCR7, a G-protein-coupled receptor recently identified as a scavenger receptor for the chemokine SDF-1/CXCL12. CXCR7 is highly expressed in human breast, lung, and prostate cancers. Using quantitative reverse transcription-PCR analyses, we demonstrated that CXCR7 was repressed in U2OS cells overexpressing HIC1. Inversely, inactivation of endogenous HIC1 by RNA interference in normal human WI38 fibroblasts results in up-regulation of CXCR7 and SIRT1. In silico analyses followed by deletion studies and luciferase reporter assays identified a functional and phylogenetically conserved HIC1-responsive element in the human CXCR7 promoter. Moreover, chromatin immunoprecipitation (ChIP) and ChIP upon ChIP experiments demonstrated that endogenous HIC1 proteins are bound together with the C-terminal binding protein corepressor to the CXCR7 and SIRT1 promoters in WI38 cells. Taken together, our results implicate the tumor suppressor HIC1 in the transcriptional regulation of the chemokine receptor CXCR7, a key player in the promotion of tumorigenesis in a wide variety of cell types. PMID:19525223

  14. MAPPING OF TOLL LIKE RECEPTOR (TLR) GENES IN RAINBOW TROUT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Toll-like receptors (TLRs) are a family of transmembrane proteins that recognize conserved pathogen structures to induce innate immune effector molecules. In vertebrates, TLRs can distinguish among classes of pathogens and serve an important role in orchestrating the appropriate adaptive immune resp...

  15. Cancer Cell AndrogenReceptorGeneExpressioninProstateCancer

    E-print Network

    Liu, Xiaole Shirley

    .09.001 SUMMARY Androgen receptor (AR) is reactivated in castration-resistant prostate cancer (CRPC) through) is surgical or medical castration to reduce circulating androgens (androgen deprivation therapy [ADT castration-resistant prostate cancer (CRPC). Significantly, early studies showed that AR was highly expressed

  16. Toll-Like Receptor 2Independent and MyD88Dependent Gene Expression in the Mouse Brain

    Microsoft Academic Search

    Gaëlle Naert; Nathalie Laflamme; Serge Rivest

    2009-01-01

    Toll-like receptors (TLRs) are essential to mount a rapid innate immune reaction to pathogens. Although TLR2 is the key receptor for pathogen-associated molecular patterns from Gram-positive bacteria, a robust transcriptional activation of the gene encoding this receptor takes place in the brain of mice exposed to the TLR4 ligand lipopolysaccharide (LPS). TLR2 gene expression is actually used as a reliable

  17. Cholecystokinin receptors in Atlantic salmon: molecular cloning, gene expression, and structural basis

    PubMed Central

    Rathore, Raja M; Angotzi, Anna R; Jordal, Ann-Elise O; Rřnnestad, Ivar

    2013-01-01

    The peptide hormone cholecystokinin (CCK) exerts a wide range of digestive and CNS-related physiological signaling via CCK receptors in brain and gut. There is very limited information available on these receptors in Atlantic salmon. The aim of this study was to characterize CCK receptors in gut and brain of salmon. We have identified and cloned one CCK-1 receptor and duplicates of CCK-2 receptor in salmon. The phylogenetic analysis indicates the existence of one common ancestor gene for all CCK receptors. CCK-1R mRNA is highly expressed in pancreas followed by midgut, hindgut, gallbladder, and stomach indicating an involvement in pancreatic regulation and gallbladder contractions. CCK-2R1/gastrin mRNA is expressed at high levels in midgut and at relatively low levels in stomach, gallbladder, and pancreas. We postulate CCK-2R1/gastrin receptor to have gastrin-related functions because of its distribution and abundance in gastro-intestinal (GI) tissues. CCK-2R2 is relatively abundant in brain but has low expression levels in gut tissues supporting the hypothesis for involvement in the gut-brain signaling. Major functional motifs and ligand interaction sites in salmon are conserved with that of mammals. This information will be instrumental for comparative studies and further targeting receptor activation and selectivity of biological responses of CCK in salmon. PMID:24303160

  18. Cell-surface receptors for retroviruses and implications for gene transfer.

    PubMed Central

    Miller, A D

    1996-01-01

    Retroviruses can utilize a variety of cell-surface proteins for binding and entry into cells, and the cloning of several of these viral receptors has allowed refinement of models to explain retrovirus tropism. A single receptor appears to be necessary and sufficient for entry of many retroviruses, but exceptions to this simple model are accumulating. For example, HIV requires two proteins for cell entry, neither of which alone is sufficient; 10A1 murine leukemia virus can enter cells by using either of two distinct receptors; two retroviruses can use different receptors in some cells but use the same receptor for entry into other cells; and posttranslational protein modifications and secreted factors can dramatically influence virus entry. These findings greatly complicate the rules governing retrovirus tropism. The mechanism underlying retrovirus evolution to use many receptors for cell entry is not clear, although some evidence supports a mutational model for the evolution of new receptor specificities. Further study of factors that govern retrovirus entry into cells are important for achieving high-efficiency gene transduction to specific cells and for the design of retroviral vectors to target additional receptors for cell entry. PMID:8876148

  19. Polymorphisms of genes coding for ghrelin and its receptor in relation to colorectal cancer risk: a two-step gene-wide case-control study

    PubMed Central

    2010-01-01

    Background Ghrelin, an endogenous ligand for the growth hormone secretagogue receptor (GHSR), has two major functions: the stimulation of the growth hormone production and the stimulation of food intake. Accumulating evidence also indicates a role of ghrelin in cancer development. Methods We conducted a case-control study to examine the association of common genetic variants in the genes coding for ghrelin (GHRL) and its receptor (GHSR) with colorectal cancer risk. Pairwise tagging was used to select the 11 polymorphisms included in the study. The selected polymorphisms were genotyped in 680 cases and 593 controls from the Czech Republic. Results We found two SNPs associated with lower risk of colorectal cancer, namely SNPs rs27647 and rs35683. We replicated the two hits, in additional 569 cases and 726 controls from Germany. Conclusion A joint analysis of the two populations indicated that the T allele of rs27647 SNP exerted a protective borderline effect (Ptrend = 0.004). PMID:20920174

  20. Epidermal Growth Factor Receptor Tyrosine Kinase Defines Critical Prognostic Genes of Stage I Lung Adenocarcinoma

    PubMed Central

    Nagasaki, Masao; Shimamura, Teppei; Imoto, Seiya; Saito, Ayumu; Ueno, Kazuko; Hatanaka, Yousuke; Yoshida, Ryo; Higuchi, Tomoyuki; Nomura, Masaharu; Beer, David G.; Yokota, Jun; Miyano, Satoru; Gotoh, Noriko

    2012-01-01

    Purpose To identify stage I lung adenocarcinoma patients with a poor prognosis who will benefit from adjuvant therapy. Patients and Methods Whole gene expression profiles were obtained at 19 time points over a 48-hour time course from human primary lung epithelial cells that were stimulated with epidermal growth factor (EGF) in the presence or absence of a clinically used EGF receptor tyrosine kinase (RTK)-specific inhibitor, gefitinib. The data were subjected to a mathematical simulation using the State Space Model (SSM). “Gefitinib-sensitive” genes, the expressional dynamics of which were altered by addition of gefitinib, were identified. A risk scoring model was constructed to classify high- or low-risk patients based on expression signatures of 139 gefitinib-sensitive genes in lung cancer using a training data set of 253 lung adenocarcinomas of North American cohort. The predictive ability of the risk scoring model was examined in independent cohorts of surgical specimens of lung cancer. Results The risk scoring model enabled the identification of high-risk stage IA and IB cases in another North American cohort for overall survival (OS) with a hazard ratio (HR) of 7.16 (P?=?0.029) and 3.26 (P?=?0.0072), respectively. It also enabled the identification of high-risk stage I cases without bronchioalveolar carcinoma (BAC) histology in a Japanese cohort for OS and recurrence-free survival (RFS) with HRs of 8.79 (P?=?0.001) and 3.72 (P?=?0.0049), respectively. Conclusion The set of 139 gefitinib-sensitive genes includes many genes known to be involved in biological aspects of cancer phenotypes, but not known to be involved in EGF signaling. The present result strongly re-emphasizes that EGF signaling status in cancer cells underlies an aggressive phenotype of cancer cells, which is useful for the selection of early-stage lung adenocarcinoma patients with a poor prognosis. Trial Registration The Gene Expression Omnibus (GEO) GSE31210 PMID:23028479

  1. Overexpression of the IGF-II/M6P receptor in mouse fibroblast cell lines differentially alters expression profiles of genes involved in Alzheimer's disease-related pathology.

    PubMed

    Wang, Yanlin; Thinakaran, Gopal; Kar, Satyabrata

    2014-01-01

    Alzheimer's disease (AD) is the most common type of senile dementia affecting elderly people. The processing of amyloid precursor protein (APP) leading to the generation of ?-amyloid (A?) peptide contributes to neurodegeneration and development of AD pathology. The endocytic trafficking pathway, which comprises of the endosomes and lysosomes, acts as an important site for A? generation, and endocytic dysfunction has been linked to increased A? production and loss of neurons in AD brains. Since insulin-like growth factor-II (IGF-II) receptor plays a critical role in the transport of lysosomal enzymes from the trans-Golgi network to endosomes, it is likely that the receptor may have a role in regulating A? metabolism in AD pathology. However, very little is known on how altered levels of the IGF-II receptor can influence the expression/function of various molecules involved in AD pathology. To address this issue, we evaluated the expression profiles of 87 selected genes related to AD pathology in mouse fibroblast MS cells that are deficient in murine IGF-II receptor and corresponding MS9II cells overexpressing ? 500 times the human IGF-II receptors. Our results reveal that an elevation in IGF-II receptor levels alters the expression profiles of a number of genes including APP as well as enzymes regulating A? production, degradation and clearance mechanisms. Additionally, it influences the expression of various lysosomal enzymes and protein kinases that are involved in A? toxicity. IGF-II receptor overexpression also alters expression of several genes involved in intracellular signalling as well as cholesterol metabolism, which play a critical role in AD pathology. The altered gene profiles observed in this study closely match with the corresponding protein levels, with a few exceptions. These results, taken together, suggest that an elevation in IGF-II receptor levels can influence the expression profiles of transcripts as well as proteins that are involved in AD pathogenesis. PMID:24846272

  2. Aryl hydrocarbon receptor SNP -130 C/T associates with dioxins susceptibility through regulating its receptor activity and downstream effectors including interleukin 24.

    PubMed

    Liu, Ge; Asanoma, Kazuo; Takao, Tomoka; Tsukimori, Kiyomi; Uchi, Hiroshi; Furue, Masutaka; Kato, Kiyoko; Wake, Norio

    2015-01-22

    Dioxins are persistent environmental pollutants that cause multiple adverse health effects in humans, mainly through binding to the ligand-activated transcription factor, aryl hydrocarbon receptor (AhR). Genetic variation in AhR may modulate the susceptibility to dioxins. In this study, we aimed to evaluate the effects of the single nucleotide polymorphism (SNP) -130 C/T in the AhR promoter on dioxin-inducible gene transcription, and to investigate interleukin-24 (IL-24) and interleukin-1? (IL-1?) as proxies for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure. Using primary human chorionic stromal cells, we found that cells with the TT genotype showed higher AhR mRNA and protein levels than did those of the CC genotype. Microarray was carried out to analyze the gene expression profiles of cells (CC and TT genotype) after exposing the cells to TCDD. Several genes associated with human disorders were more highly up-regulated in cells of the TT genotype. Higher up-regulation of IL-24 and IL-1? mRNA in cells with the TT genotype was observed. Furthermore, blood samples from 64 Yusho patients who were accidentally exposed to high concentrations of dioxins were analyzed for the genotype, dioxins concentrations and serum levels of IL-24 and IL-1?. We observed higher serum IL-24 levels and lower serum IL-1? levels in Yusho patients with the TT genotype than in those with the CC genotype. AhR SNP -130 C/T affects serum IL-24 and IL-1? levels, independently of serum dioxins concentrations in Yusho patients. Our observations demonstrate that SNP -130 C/T modulates AhR expression and expression levels of IL-24 and IL-1?, and suggest an association of AhR SNP -130 C/T with the susceptibility to dioxins. PMID:25445724

  3. Comparative genomics reveals tissue-specific regulation of prolactin receptor gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prolactin (PRL), acting via the prolactin receptor, fulfills a diversity of biological functions including the maintenance of solute balance and mineral homeostasis via tissues such as the heart, kidneys and intestine. Expression and activity of the prolactin receptor (PRLR) is regulated by various ...

  4. Estrogen receptor gene variants are associated with anxiety disorders in older women Joanne Ryan, PhD.1,2,3,*

    E-print Network

    Paris-Sud XI, Université de

    ). Estrogen upregulates GABA receptor expression and ligand binding and regulates 5-HT1A receptor numberEstrogen receptor gene variants are associated with anxiety disorders in older women Joanne Ryan receptors (ERs) can influence the risk of anxiety. This study investigated whether ESR1 and ESR2 gene

  5. Integrative genomics of gene and metabolic regulation by estrogen receptors ? and ?, and their coregulators

    PubMed Central

    Madak-Erdogan, Zeynep; Charn, Tze-Howe; Jiang, Yan; Liu, Edison T; Katzenellenbogen, John A; Katzenellenbogen, Benita S

    2013-01-01

    The closely related transcription factors (TFs), estrogen receptors ER? and ER?, regulate divergent gene expression programs and proliferative outcomes in breast cancer. Utilizing breast cancer cells with ER?, ER?, or both receptors as a model system to define the basis for differing response specification by related TFs, we show that these TFs and their key coregulators, SRC3 and RIP140, generate overlapping as well as unique chromatin-binding and transcription-regulating modules. Cistrome and transcriptome analyses and the use of clustering algorithms delineated 11 clusters representing different chromatin-bound receptor and coregulator assemblies that could be functionally associated through enrichment analysis with distinct patterns of gene regulation and preferential coregulator usage, RIP140 with ER? and SRC3 with ER?. The receptors modified each other's transcriptional effect, and ER? countered the proliferative drive of ER? through several novel mechanisms associated with specific binding-site clusters. Our findings delineate distinct TF-coregulator assemblies that function as control nodes, specifying precise patterns of gene regulation, proliferation, and metabolism, as exemplified by two of the most important nuclear hormone receptors in human breast cancer. PMID:23774759

  6. The Nuclear Orphan Receptor CAR-Retinoid X Receptor Heterodimer Activates the Phenobarbital-Responsive Enhancer Module of the CYP2B Gene

    Microsoft Academic Search

    PAAVO HONKAKOSKI; IGOR ZELKO; TATSUYA SUEYOSHI; MASAHIKO NEGISHI

    1998-01-01

    PBREM, the phenobarbital-responsive enhancer module of the cytochrome P-450 Cyp2b10 gene, contains two potential nuclear receptor binding sites, NR1 and NR2. Consistent with the finding that anti-retinoid X receptor (RXR) could supershift the NR1-nuclear protein complex, DNA affinity chromatography with NR1 oligonucleotides enriched the nuclear orphan receptor RXR from the hepatic nuclear extracts of phenobar- bital-treated mice. In addition to

  7. Effects of adrenalectomy and glucocorticoid receptor antagonist, RU38486, on pituitary growth hormone-releasing hormone receptor gene expression in rats

    Microsoft Academic Search

    Tomoyo Ohyama; Makoto Sato; Hidemi Ohye; Koji Murao; Michio Niimi; Jiro Takahara

    1998-01-01

    We examined the effects of adrenalectomy and a glucocorticoid receptor antagonist, RU38486, on pituitary GH-releasing hormone (GRH) receptor gene expression in rats. GRH receptor mRNA levels were significantly decreased in adrenalectomized rats and replacement of dexamethasone reversed the decrease to normal. GH secretion was inhibited by adrenalectomy, whereas dexamethasone replacement failed to restore the impaired GH secretion. A high dose

  8. An extended gene protein/products boolean network model including post-transcriptional regulation

    PubMed Central

    2014-01-01

    Background Networks Biology allows the study of complex interactions between biological systems using formal, well structured, and computationally friendly models. Several different network models can be created, depending on the type of interactions that need to be investigated. Gene Regulatory Networks (GRN) are an effective model commonly used to study the complex regulatory mechanisms of a cell. Unfortunately, given their intrinsic complexity and non discrete nature, the computational study of realistic-sized complex GRNs requires some abstractions. Boolean Networks (BNs), for example, are a reliable model that can be used to represent networks where the possible state of a node is a boolean value (0 or 1). Despite this strong simplification, BNs have been used to study both structural and dynamic properties of real as well as randomly generated GRNs. Results In this paper we show how it is possible to include the post-transcriptional regulation mechanism (a key process mediated by small non-coding RNA molecules like the miRNAs) into the BN model of a GRN. The enhanced BN model is implemented in a software toolkit (EBNT) that allows to analyze boolean GRNs from both a structural and a dynamic point of view. The open-source toolkit is compatible with available visualization tools like Cytoscape and allows to run detailed analysis of the network topology as well as of its attractors, trajectories, and state-space. In the paper, a small GRN built around the mTOR gene is used to demonstrate the main capabilities of the toolkit. Conclusions The extended model proposed in this paper opens new opportunities in the study of gene regulation. Several of the successful researches done with the support of BN to understand high-level characteristics of regulatory networks, can now be improved to better understand the role of post-transcriptional regulation for example as a network-wide noise-reduction or stabilization mechanisms. PMID:25080304

  9. Adenovirus-Mediated Transfer of Low Density Lipoprotein Receptor Gene Acutely Accelerates Cholesterol Clearance in Normal Mice

    Microsoft Academic Search

    Joachim Herz; Robert D. Gerard

    1993-01-01

    We have explored the use of adenovirus-mediated gene transfer to transiently elicit production of low density lipoprotein (LDL) receptors in mice. A recombinant adenovirus carrying the human LDL receptor cDNA restored LDL receptor function in receptor-deficient cultured cells. Intravenous injection of recombinant virus acutely lowered plasma cholesterol levels and increased the rate of 125I-labeled LDL clearance from the circulation in

  10. Estrogen receptor status prediction by gene component regression: a comparative study.

    PubMed

    Huang, Chi-Cheng; Tu, Shih-Hsin; Lien, Heng-Hui; Jeng, Jaan-Yeh; Liu, Jung-Sen; Huang, Ching-Shui; Lai, Liang-Chuan; Chuang, Eric Y

    2014-01-01

    The aim of the study is to evaluate gene component analysis for microarray studies. Three dimensional reduction strategies, Principle Component Regression (PCR), Partial Least Square (PLS) and Reduced Rank Regression (RRR) were applied to publicly available breast cancer microarray dataset and the derived gene components were used for tumor classification by Logistic Regression (LR) and Linear Discriminative Analysis (LDA). The impact of gene selection/filtration was evaluated as well. We demonstrated that gene component classifiers could reduce the high-dimensionality of gene expression data and the collinearity problem inherited in most modern microarray experiments. In our study gene component analysis could discriminate Estrogen Receptor (ER) positive breast cancers from negative cancers and the proposed classifiers were successfully reproduced and projected into independent microarray dataset with high predictive accuracy. PMID:24864376

  11. The human insulin receptor substrate-1 gene (IRS1) is localized on 2q36

    SciTech Connect

    Nishiyama, Masaki; Matsufuji, Senya; Hayashi, Shin-ichi; Furusaka, Akihiro; Tanaka, Teruji (Jikei Univ. School of Medicine, Tokyo (Japan)); Inazawa, J.; Nakamura, Yusuke (Cancer Institute, Tokyo (Japan)); Ariyama, Takeshi (Kyoto Prefactural Univ. of Medicine (Japan)); Wands, J.R. (Harvard Medical School, Boston, MA (United States))

    1994-03-01

    The chromosomal localization of some of the genes participating in the insulin signaling pathway is known. The insulin and insulin receptor genes have been mapped to chromosomes 11 and 19, respectively. To identify the chromosomal localization of the human IRS1 gene, the fluorescence in situ hybridization technique was employed with Genomic Clone B-10. A total of 50 metaphase cells exhibiting either single or double spots of hybridization signals were examined. Among them, 32 showed the specific signals on 2q36. Therefore, the authors assigned the human IRS1 gene to 2q36. The genes for homeobox sequence (HOX4), fibronectin 1, alkaline phosphatase (intestinal), transition protein 1, villin 1, collagen (type IV), Waardenburg syndrome (type 1), alanine-glyoxylate aminotransferase, and glucagon have been localized in the vicinity of the IRS1 gene.

  12. Estrogen receptor 1 gene as a tumor suppressor gene in hepatocellular carcinoma detected by triple-combination array analysis.

    PubMed

    Hishida, Mitsuhiro; Nomoto, Shuji; Inokawa, Yoshikuni; Hayashi, Masamichi; Kanda, Mitsuro; Okamura, Yukiyasu; Nishikawa, Yoko; Tanaka, Chie; Kobayashi, Daisuke; Yamada, Suguru; Nakayama, Goro; Fujii, Tsutomu; Sugimoto, Hiroyuki; Koike, Masahiko; Fujiwara, Michitaka; Takeda, Shin; Kodera, Yasuhiro

    2013-07-01

    Hepatocellular carcinoma (HCC) is one of the top five causes of cancer-related deaths worldwide. Recent developments in the treatment of HCC remain insufficient to cure unresectable disease or to prevent HCC. Consistent efforts are, therefore, needed to deepen understanding of pathogenesis of the disease. Genome-wide gene expression profile analyses can now detect various candidate genes that are modified by HCC. We have developed a new technique to identify tumor suppressor genes, triple-combination array analysis, which combines gene expression profiles, single nucleotide polymorphism and methylation arrays to identify genes with altered expression. Using HCC tissue samples, triple-combination array analysis was performed to identify a candidate tumor suppressor gene. Subsequently, samples from 48 HCC patients were subjected to quantitative polymerase chain reaction (qPCR) and methylation-specific PCR to further elucidate clinical relevance of the gene. Estrogen receptor 1 (ESR1) was detected as a candidate tumor suppressor gene. Of the 48 clinical samples, 40 (83.3%) showed ESR1 promoter hypermethylation. In 24 (50%) HCC samples, the expression levels of the ESR1 gene was decreased by >90%. The decreased expression was significantly related to high liver damage score, pathological invasion of the intrahepatic portal vein, the size of tumor (>3 cm in diameter) and hepatitis B virus infection. The present study represents another example that triple-combination array is a convenient technique for detecting genes with altered expression in disease. The ESR1 gene was identified as a candidate tumor suppressor gene in HCC and further validation is warranted. PMID:23695389

  13. The Role of the Bovine Growth Hormone Receptor and Prolactin Receptor Genes in Milk, Fat and Protein Production in Finnish Ayrshire Dairy Cattle

    Microsoft Academic Search

    Sirja Viitala; Joanna Szyda; Sarah Blott; Nina Schulman; Martin Lidauer; Michel Georges; Johanna Vilkki

    2006-01-01

    We herein report new evidence that the QTL effect on chromosome 20 in Finnish Ayrshire can be explained by variation in two distinct genes, growth hormone receptor (GHR) and prolactin receptor (PRLR). In a previous study in Holstein-Friesian dairy cattle an F279Y polymorphism in the transmembrane domain of GHR was found to be associated with an effect on milk yield

  14. Comparison of lentiviral and sleeping beauty mediated ?? T cell receptor gene transfer.

    PubMed

    Field, Anne-Christine; Vink, Conrad; Gabriel, Richard; Al-Subki, Roua; Schmidt, Manfred; Goulden, Nicholas; Stauss, Hans; Thrasher, Adrian; Morris, Emma; Qasim, Waseem

    2013-01-01

    Transfer of tumour antigen-specific receptors to T cells requires efficient delivery and integration of transgenes, and currently most clinical studies are using gamma retroviral or lentiviral systems. Whilst important proof-of-principle data has been generated for both chimeric antigen receptors and ?? T cell receptors, the current platforms are costly, time-consuming and relatively inflexible. Alternative, more cost-effective, Sleeping Beauty transposon-based plasmid systems could offer a pathway to accelerated clinical testing of a more diverse repertoire of recombinant high affinity T cell receptors. Nucleofection of hyperactive SB100X transposase-mediated stable transposition of an optimised murine-human chimeric T cell receptor specific for Wilm's tumour antigen from a Sleeping Beauty transposon plasmid. Whilst transfer efficiency was lower than that mediated by lentiviral transduction, cells could be readily enriched and expanded, and mediated effective target cells lysis in vitro and in vivo. Integration sites of transposed TCR genes in primary T cells were almost randomly distributed, contrasting the predilection of lentiviral vectors for transcriptionally active sites. The results support exploitation of the Sleeping Beauty plasmid based system as a flexible and adaptable platform for accelerated, early-phase assessment of T cell receptor gene therapies. PMID:23840834

  15. The leukemia inhibitory factor receptor (LIFR) gene is located within a cluster of cytokine receptor loci on mouse chromosome 15 and human chromosome 5p12-p13.

    PubMed

    Gearing, D P; Druck, T; Huebner, K; Overhauser, J; Gilbert, D J; Copeland, N G; Jenkins, N A

    1993-10-01

    The leukemia inhibitory factor receptor (LIFR) gene was localized to human chromosome 5p12-p13 by somatic cell hybrid analysis. Interspecific backcross analysis revealed that the murine locus was on chromosome 15 in a region of homology with human chromosome 5p. In both human and mouse genomes, the LIFR locus was linked to the genes encoding the receptors for interleukin-7, prolactin, and growth hormone. PMID:8276403

  16. Androgen Receptor Gene Mutations are Rarely Associated with Isolated Penile Hypospadias

    Microsoft Academic Search

    Richard W. Sutherland; John S. Wiener; Joseph P. Hicks; Marco Marcelli; Edmond T. Gonzales; David R. Roth; Dolores J. Lamb

    1996-01-01

    PurposeHypospadias has no known single etiology but it has been linked to androgen insensitivity caused by mutations of the androgen receptor gene. The purpose of this study was to search for such mutations in cases of various degrees of isolated hypospadias to determine whether such an association exists and, if so, with any particular anatomical subgroup.

  17. Roles for Receptors, Pheromones, G Proteins, and Mating Type Genes During Sexual Reproduction in Neurospora crassa

    PubMed Central

    Kim, Hyojeong; Wright, Sara J.; Park, Gyungsoon; Ouyang, Shouqiang; Krystofova, Svetlana; Borkovich, Katherine A.

    2012-01-01

    Here we characterize the relationship between the PRE-2 pheromone receptor and its ligand, CCG-4, and the general requirements for receptors, pheromones, G proteins, and mating type genes during fusion of opposite mating-type cells and sexual sporulation in the multicellular fungus Neurospora crassa. PRE-2 is highly expressed in mat a cells and is localized in male and female reproductive structures. ?pre-2 mat a females do not respond chemotropically to mat A males (conidia) or form mature fruiting bodies (perithecia) or meiotic progeny (ascospores). Strains with swapped identity due to heterologous expression of pre-2 or ccg-4 behave normally in crosses with opposite mating-type strains. Coexpression of pre-2 and ccg-4 in the mat A background leads to self-attraction and development of barren perithecia without ascospores. Further perithecial development is achieved by inactivation of Sad-1, a gene required for meiotic gene silencing. Findings from studies involving forced heterokaryons of opposite mating-type strains show that presence of one receptor and its compatible pheromone is necessary and sufficient for perithecial development and ascospore production. Taken together, the results demonstrate that although receptors and pheromones control sexual identity, the mating-type genes (mat A and mat a) must be in two different nuclei to allow meiosis and sexual sporulation to occur. PMID:22298702

  18. Genomic organization and promoter characterization of the murine dopamine receptor regulating factor (DRRF) gene

    Microsoft Academic Search

    Sang-Hyeon Lee; Yong-Man Kim; Shunsuke Yajima; Jong-Myung Ha; Bae Jin Ha; Ok Soo Kim; Kanju Ohsawa; M. Maral Mouradian

    2003-01-01

    To study the transcriptional mechanisms by which expression of the dopamine receptor regulating factor (DRRF) gene is regulated, a murine genomic clone was isolated using a DRRF cDNA as probe. A 24 kb genomic fragment which comprises 13 kb upstream of the transcription initiation site was sequenced. The promoter region lacks a TATA box and CAAT box, is rich in

  19. ?, ?, ?, and ? T Cell Antigen Receptor Genes Arose Early in Vertebrate Phylogeny

    Microsoft Academic Search

    Jonathan P. Rast; Michele K. Anderson; Scott J. Strong; Carl Luer; Ronda T. Litman; Gary W. Litman

    1997-01-01

    A series of products were amplified using a PCR strategy based on short minimally degenerate primers and R. eglanteria (clearnose skate) spleen cDNA as template. These products were used as probes to select corresponding cDNAs from a spleen cDNA library. The cDNA sequences exhibit significant identity with prototypic ?, ?, ?, and ? T cell antigen receptor (TCR) genes. Characterization

  20. Comparative study of leptin and leptin receptor gene expression in different swine breeds.

    PubMed

    Georgescu, S E; Manea, M A; Dinescu, S; Costache, M

    2014-01-01

    Leptin is an important regulator of appetite, energy metabolism, and reproduction and is mainly synthesized in the adipocytes and then secreted into the bloodstream. The leptin receptor was classified as type I cytokine receptor due to its structural homology with IL-6 receptors and the signaling pathways in which they are both involved. The aim of our study is to comparatively assess the gene expression levels of leptin (lep) and leptin receptor (lepr) in different swine breeds specialized either in meat production (Duroc, Belgian Landrace, Large White, Synthetic Lines LS-345, and LSP-2000) or fat production (Mangalitsa) in order to correlate them with morphological and productivity characteristics. Additionally, lepr pattern of expression was evaluated comparatively between different tissue types in the Mangalitsa breed. Our results revealed high expression of the lep gene in Mangalitsa compared to those of all the other breeds, while for the lepr gene, average/medium levels were registered in Mangalitsa and increased pattern of expression was found in the synthetic lines LS-345 and LSP-2000. Regarding the comparative analysis of lepr gene expression in various tissues in the Mangalitsa breed, elevated levels were found in the liver and kidney, while the lowest expression was identified in the brain and muscles. Our results suggest that the Mangalitsa population exhibits leptin resistance, which might be correlated with atypical morpho-productive characteristics for this breed, such as below-average prolificacy and a strong tendency to accumulate fat. PMID:24615118

  1. Tobacco smoking, estrogen receptor   gene variation and small low density lipoprotein level

    Microsoft Academic Search

    Amanda M. Shearman; Serkalem Demissie; L. Adrienne Cupples; Inga Peter; Christopher H. Schmid; Jose M. Ordovas; Michael E. Mendelsohn; David E. Housman

    2005-01-01

    High levels of small low density lipoprotein (LDL) particles are a major risk factor for cardiovascular morbidity and mortality. Both estrogens and smoking, with known anti-estrogenic effects, alter the atherogenic lipid pro- file. We tested for a role of interaction between smoking and estrogen receptor a gene (ESR1) variation in association with plasma concentration of atherogenic small LDL particles and

  2. Estrogen receptor ? gene relationship with peak bone mass and body mass index in Chinese nuclear families

    Microsoft Academic Search

    Wei-Xia Jian; Yan-Jun Yang; Ji-Rong Long; Yuan-Neng Li; Fei-Yan Deng; De-Ke Jiang; Hong-Wen Deng

    2005-01-01

    Estrogen receptor alpha (ER-?) plays an important role in mediating estrogen signaling. Studies in Caucasian populations have shown that it is involved in endocrine-related diseases such as osteoporosis and obesity. In the present study, we first used a quantitative transmission disequilibrium test (QTDT) to examine the relationship between this gene and both the osteoporosis-related phenotype bone mineral density (BMD), and

  3. The arthritis severity locus Cia5a regulates the expression of inflammatory mediators including Syk pathway genes and proteases in pristane-induced arthritis

    PubMed Central

    2012-01-01

    Background Cia5a is a locus on rat chromosome 10 that regulates disease severity and joint damage in two models of rheumatoid arthritis, collagen- and pristane-induced arthritis (PIA). In this study, we aimed to identify cellular and molecular processes regulated by Cia5a using microarray-based gene expression analysis of synovial tissues from MHC identical DA (severe erosive disease) and DA.F344(Cia5a) congenics (mild non-erosive disease) rats. Results Synovial tissues from six DA and eight DA.F344(Cia5a) rats were analyzed 21 days after the induction of PIA using the Illumina RatRef-12 BeadChip (21,922 genes) and selected data confirmed with qPCR. There was a significantly increased expression of pro-inflammatory mediators such as Il1b (5-fold), Il18 (3.9-fold), Cxcl1 (10-fold), Cxcl13 (7.5-fold) and Ccl7 (7.9-fold), and proteases like Mmp3 (23-fold), Mmp9 (32-fold), Mmp14 (4.4-fold) and cathepsins in synovial tissues from DA, with reciprocally reduced levels in congenics. mRNA levels of 47 members of the Spleen Tyrosine Kinase (Syk) pathway were significantly increased in DA synovial tissues compared with DA.F344(Cia5a), and included Syk (5.4-fold), Syk-activating receptors and interacting proteins, and genes regulated by Syk such as NFkB, and NAPDH oxidase complex genes. Nuclear receptors (NR) such as Rxrg, Pparg and Rev-erba were increased in the protected congenics, and so was the anti-inflammatory NR-target gene Scd1 (54-fold increase). Tnn (72-fold decrease) was the gene most significantly increased in DA. Conclusions Analyses of gene expression in synovial tissues revealed that the arthritis severity locus Cia5a regulates the expression of key mediators of inflammation and joint damage, as well as the expression of members of the Syk pathway. This expression pattern correlates with disease severity and joint damage and along with the gene accounting for Cia5a could become a useful biomarker to identify patients at increased risk for severe and erosive disease. The identification of the gene accounting for Cia5a has the potential to generate a new and important target for therapy and prognosis. PMID:23249408

  4. An evolutionarily mobile antigen receptor variable region gene: Doubly rearranging NAR-TcR genes in sharks

    PubMed Central

    Criscitiello, Michael F.; Saltis, Mark; Flajnik, Martin F.

    2006-01-01

    Distinctive Ig and T cell receptor (TcR) chains define the two major lineages of vertebrate lymphocyte yet similarly recognize antigen with a single, membrane-distal variable (V) domain. Here we describe the first antigen receptor chain that employs two V domains, which are generated by separate VDJ gene rearrangement events. These molecules have specialized “supportive” TcR?V domains membrane-proximal to domains with most similarity to IgNAR V. The ancestral NAR V gene encoding this domain is hypothesized to have recombined with the TRD locus in a cartilaginous fish ancestor >200 million years ago and encodes the first V domain shown to be used in both Igs and TcRs. Furthermore, these data support the view that ?/? TcRs have for long used structural conformations recognizing free antigen. PMID:16549799

  5. De Novo Mutations in Synaptic Transmission Genes Including DNM1 Cause Epileptic Encephalopathies

    PubMed Central

    Appenzeller, Silke; Balling, Rudi; Barisic, Nina; Baulac, Stéphanie; Caglayan, Hande; Craiu, Dana; De Jonghe, Peter; Depienne, Christel; Dimova, Petia; Djémié, Tania; Gormley, Padhraig; Guerrini, Renzo; Helbig, Ingo; Hjalgrim, Helle; Hoffman-Zacharska, Dorota; Jähn, Johanna; Klein, Karl Martin; Koeleman, Bobby; Komarek, Vladimir; Krause, Roland; Kuhlenbäumer, Gregor; Leguern, Eric; Lehesjoki, Anna-Elina; Lemke, Johannes R.; Lerche, Holger; Linnankivi, Tarja; Marini, Carla; May, Patrick; Mřller, Rikke S.; Muhle, Hiltrud; Pal, Deb; Palotie, Aarno; Pendziwiat, Manuela; Robbiano, Angela; Roelens, Filip; Rosenow, Felix; Selmer, Kaja; Serratosa, Jose M.; Sisodiya, Sanjay; Stephani, Ulrich; Sterbova, Katalin; Striano, Pasquale; Suls, Arvid; Talvik, Tiina; von Spiczak, Sarah; Weber, Yvonne; Weckhuysen, Sarah; Zara, Federico; Abou-Khalil, Bassel; Alldredge, Brian K.; Andermann, Eva; Andermann, Frederick; Amron, Dina; Bautista, Jocelyn F.; Berkovic, Samuel F.; Bluvstein, Judith; Boro, Alex; Cascino, Gregory; Consalvo, Damian; Crumrine, Patricia; Devinsky, Orrin; Dlugos, Dennis; Epstein, Michael P.; Fiol, Miguel; Fountain, Nathan B.; French, Jacqueline; Friedman, Daniel; Geller, Eric B.; Glauser, Tracy; Glynn, Simon; Haas, Kevin; Haut, Sheryl R.; Hayward, Jean; Helmers, Sandra L.; Joshi, Sucheta; Kanner, Andres; Kirsch, Heidi E.; Knowlton, Robert C.; Kossoff, Eric H.; Kuperman, Rachel; Kuzniecky, Ruben; Lowenstein, Daniel H.; McGuire, Shannon M.; Motika, Paul V.; Novotny, Edward J.; Ottman, Ruth; Paolicchi, Juliann M.; Parent, Jack; Park, Kristen; Poduri, Annapurna; Sadleir, Lynette; Scheffer, Ingrid E.; Shellhaas, Renée A.; Sherr, Elliott; Shih, Jerry J.; Singh, Rani; Sirven, Joseph; Smith, Michael C.; Sullivan, Joe; Thio, Liu Lin; Venkat, Anu; Vining, Eileen P.G.; Von Allmen, Gretchen K.; Weisenberg, Judith L.; Widdess-Walsh, Peter; Winawer, Melodie R.; Allen, Andrew S.; Berkovic, Samuel F.; Cossette, Patrick; Delanty, Norman; Dlugos, Dennis; Eichler, Evan E.; Epstein, Michael P.; Glauser, Tracy; Goldstein, David B.; Han, Yujun; Heinzen, Erin L.; Johnson, Michael R.; Kuzniecky, Ruben; Lowenstein, Daniel H.; Marson, Anthony G.; Mefford, Heather C.; Nieh, Sahar Esmaeeli; O’Brien, Terence J.; Ottman, Ruth; Petrou, Stephen; Petrovski, Slavé; Poduri, Annapurna; Ruzzo, Elizabeth K.; Scheffer, Ingrid E.; Sherr, Elliott

    2014-01-01

    Emerging evidence indicates that epileptic encephalopathies are genetically highly heterogeneous, underscoring the need for large cohorts of well-characterized individuals to further define the genetic landscape. Through a collaboration between two consortia (EuroEPINOMICS and Epi4K/EPGP), we analyzed exome-sequencing data of 356 trios with the “classical” epileptic encephalopathies, infantile spasms and Lennox Gastaut syndrome, including 264 trios previously analyzed by the Epi4K/EPGP consortium. In this expanded cohort, we find 429 de novo mutations, including de novo mutations in DNM1 in five individuals and de novo mutations in GABBR2, FASN, and RYR3 in two individuals each. Unlike previous studies, this cohort is sufficiently large to show a significant excess of de novo mutations in epileptic encephalopathy probands compared to the general population using a likelihood analysis (p = 8.2 × 10?4), supporting a prominent role for de novo mutations in epileptic encephalopathies. We bring statistical evidence that mutations in DNM1 cause epileptic encephalopathy, find suggestive evidence for a role of three additional genes, and show that at least 12% of analyzed individuals have an identifiable causal de novo mutation. Strikingly, 75% of mutations in these probands are predicted to disrupt a protein involved in regulating synaptic transmission, and there is a significant enrichment of de novo mutations in genes in this pathway in the entire cohort as well. These findings emphasize an important role for synaptic dysregulation in epileptic encephalopathies, above and beyond that caused by ion channel dysfunction. PMID:25262651

  6. Identification and Functional Analysis of Pheromone and Receptor Genes in the B3 Mating Locus of Pleurotus eryngii

    PubMed Central

    Kim, Kyung-Hee; Kang, Young Min; Im, Chak Han; Ali, Asjad; Kim, Sun Young; Je, Hee-Jeong; Kim, Min-Keun; Rho, Hyun Su; Lee, Hyun Sook; Kong, Won-Sik; Ryu, Jae-San

    2014-01-01

    Pleurotus eryngii has recently become a major cultivated mushroom; it uses tetrapolar heterothallism as a part of its reproductive process. Sexual development progresses only when the A and B mating types are compatible. Such mating incompatibility occasionally limits the efficiency of breeding programs in which crossing within loci-shared strains or backcrossing strategies are employed. Therefore, understanding the mating system in edible mushroom fungi will help provide a short cut in the development of new strains. We isolated and identified pheromone and receptor genes in the B3 locus of P. eryngii and performed a functional analysis of the genes in the mating process by transformation. A genomic DNA library was constructed to map the entire mating-type locus. The B3 locus was found to contain four pheromone precursor genes and four receptor genes. Remarkably, receptor PESTE3.3.1 has just 34 amino acid residues in its C-terminal cytoplasmic region; therefore, it seems likely to be a receptor-like gene. Real-time quantitative RT-PCR (real-time qRT-PCR) revealed that most pheromone and receptor genes showed significantly higher expression in monokaryotic cells than dikaryotic cells. The pheromone genes PEphb3.1 and PEphb3.3 and the receptor gene PESTE3.3.1 were transformed into P5 (A3B4). The transformants were mated with a tester strain (A4B4), and the progeny showed clamp connections and a normal fruiting body, which indicates the proposed role of these genes in mating and fruiting processes. This result also confirms that PESTE3.3.1 is a receptor gene. In this study, we identified pheromone and receptor genes in the B3 locus of P. eryngii and found that some of those genes appear to play a role in the mating and fruiting processes. These results might help elucidate the mechanism of fruiting differentiation and improve breeding efficiency. PMID:25133513

  7. Identification and functional analysis of pheromone and receptor genes in the B3 mating locus of Pleurotus eryngii.

    PubMed

    Kim, Kyung-Hee; Kang, Young Min; Im, Chak Han; Ali, Asjad; Kim, Sun Young; Je, Hee-Jeong; Kim, Min-Keun; Rho, Hyun Su; Lee, Hyun Sook; Kong, Won-Sik; Ryu, Jae-San

    2014-01-01

    Pleurotus eryngii has recently become a major cultivated mushroom; it uses tetrapolar heterothallism as a part of its reproductive process. Sexual development progresses only when the A and B mating types are compatible. Such mating incompatibility occasionally limits the efficiency of breeding programs in which crossing within loci-shared strains or backcrossing strategies are employed. Therefore, understanding the mating system in edible mushroom fungi will help provide a short cut in the development of new strains. We isolated and identified pheromone and receptor genes in the B3 locus of P. eryngii and performed a functional analysis of the genes in the mating process by transformation. A genomic DNA library was constructed to map the entire mating-type locus. The B3 locus was found to contain four pheromone precursor genes and four receptor genes. Remarkably, receptor PESTE3.3.1 has just 34 amino acid residues in its C-terminal cytoplasmic region; therefore, it seems likely to be a receptor-like gene. Real-time quantitative RT-PCR (real-time qRT-PCR) revealed that most pheromone and receptor genes showed significantly higher expression in monokaryotic cells than dikaryotic cells. The pheromone genes PEphb3.1 and PEphb3.3 and the receptor gene PESTE3.3.1 were transformed into P5 (A3B4). The transformants were mated with a tester strain (A4B4), and the progeny showed clamp connections and a normal fruiting body, which indicates the proposed role of these genes in mating and fruiting processes. This result also confirms that PESTE3.3.1 is a receptor gene. In this study, we identified pheromone and receptor genes in the B3 locus of P. eryngii and found that some of those genes appear to play a role in the mating and fruiting processes. These results might help elucidate the mechanism of fruiting differentiation and improve breeding efficiency. PMID:25133513

  8. A single phosphotyrosine residue of the prolactin receptor is responsible for activation of gene transcription.

    PubMed Central

    Lebrun, J J; Ali, S; Goffin, V; Ullrich, A; Kelly, P A

    1995-01-01

    Members of the cytokine/growth hormone/prolactin (PRL) receptor superfamily are associated with cytoplasmic tyrosine kinases of the Jak family. For the PRL receptor (PRLR), after PRL stimulation, both the kinase Jak2 and the receptor undergo tyrosine phosphorylation. To assess the role of tyrosine phosphorylation of the PRLR in signal transduction, several mutant forms of the PRLR in which various tyrosine residues were changed to phenylalanine were constructed and their functional properties were investigated. We identified a single tyrosine residue located at the C terminus of the PRLR to be necessary for in vivo activation of PRL-responsive gene transcription. This clearly indicates that a phosphotyrosine residue in the cytoplasmic domain of a member of the cytokine/growth hormone/PRL receptor superfamily is directly involved in signal transduction. Images Fig. 3 Fig. 4 PMID:7537382

  9. Genetic disruption of the autism spectrum disorder risk gene PLAUR induces GABAA receptor subunit changes

    PubMed Central

    Eagleson, Kathie L.; Gravielle, Maria C.; SchlueterMcFadyen-Ketchum, Lisa J.; Russek, Shelley J.; Farb, David H.; Levitt, Pat

    2010-01-01

    Disruption of the GABAergic system has been implicated in multiple developmental disorders, including epilepsy, autism spectrum disorder and schizophrenia. The human gene encoding uPAR (PLAUR) has been shown recently to be associated with the risk of autism. The uPAR-/- mouse exhibits a regionally selective reduction in GABAergic interneurons in frontal and parietal regions of the cerebral cortex as well as in the CA1 and dentate gyrus subfields of the hippocampus. Behaviorally, these mice exhibit increased sensitivity to pharmacologically-induced seizures, heightened anxiety, and atypical social behavior. Here, we explore potential alterations in GABAergic circuitry that may occur in the context of altered interneuron development. Analysis of gene expression for 13 GABAA receptor subunits using quantitative real-time PCR indicates seven subunit mRNAs (?1, ?2, ?3, ?2, ?3, ?2S and ?2L) of interest. Semi-quantitative in situ hybridization analysis focusing on these subunit mRNAs reveals a complex pattern of potential gene regulatory adaptations. The levels of ?2 subunit mRNAs increase in frontal cortex, CA1 and CA3, while those of ?3 decrease in frontal cortex and CA1. In contrast, ?1 subunit mRNAs are unaltered in any region examined. ?2 subunit mRNAs are increased in frontal cortex whereas ?3 subunit mRNAs are decreased in parietal cortex. Finally, ?2S subunit mRNAs are increased in parietal cortex while ?2L subunit mRNAs are increased in the dentate gyrus, potentially altering the ?2S:?2L ratio in these two regions. For all subunits, no changes were observed in forebrain regions where GABAergic interneuron numbers are normal. We propose that disrupted differentiation of GABAergic neurons specifically in frontal and parietal cortices leads to regionally-selective alterations in local circuitry and subsequent adaptive changes in receptor subunit composition. Future electrophysiological studies will be useful in determining how alterations in network activity in the cortex and hippocampus relate to the observed behavioral phenotype. PMID:20381588

  10. Genetic disruption of the autism spectrum disorder risk gene PLAUR induces GABAA receptor subunit changes.

    PubMed

    Eagleson, K L; Gravielle, M C; Schlueter McFadyen-Ketchum, L J; Russek, S J; Farb, D H; Levitt, P

    2010-07-14

    Disruption of the GABAergic system has been implicated in multiple developmental disorders, including epilepsy, autism spectrum disorder and schizophrenia. The human gene encoding uPAR (PLAUR) has been shown recently to be associated with the risk of autism. The uPAR(-/-) mouse exhibits a regionally-selective reduction in GABAergic interneurons in frontal and parietal regions of the cerebral cortex as well as in the CA1 and dentate gyrus subfields of the hippocampus. Behaviorally, these mice exhibit increased sensitivity to pharmacologically-induced seizures, heightened anxiety, and atypical social behavior. Here, we explore potential alterations in GABAergic circuitry that may occur in the context of altered interneuron development. Analysis of gene expression for 13 GABA(A) receptor subunits using quantitative real-time polymerase chain reaction (PCR) indicates seven subunit mRNAs (alpha(1), alpha(2), alpha(3), beta(2), beta(3), gamma(2S) and gamma(2L)) of interest. Semi-quantitative in situ hybridization analysis focusing on these subunit mRNAs reveals a complex pattern of potential gene regulatory adaptations. The levels of alpha(2) subunit mRNAs increase in frontal cortex, CA1 and CA3, while those of alpha3 decrease in frontal cortex and CA1. In contrast, alpha(1) subunit mRNAs are unaltered in any region examined. beta(2) subunit mRNAs are increased in frontal cortex whereas beta(3) subunit mRNAs are decreased in parietal cortex. Finally, gamma(2S) subunit mRNAs are increased in parietal cortex while gamma(2L) subunit mRNAs are increased in the dentate gyrus, potentially altering the gamma(2S):gamma(2L) ratio in these two regions. For all subunits, no changes were observed in forebrain regions where GABAergic interneuron numbers are normal. We propose that disrupted differentiation of GABAergic neurons specifically in frontal and parietal cortices leads to regionally-selective alterations in local circuitry and subsequent adaptive changes in receptor subunit composition. Future electrophysiological studies will be useful in determining how alterations in network activity in the cortex and hippocampus relate to the observed behavioral phenotype. PMID:20381588

  11. Identification of Homeotic Target Genes in Drosophila Melanogaster Including Nervy, a Proto-Oncogene Homologue

    PubMed Central

    Feinstein, P. G.; Kornfeld, K.; Hogness, D. S.; Mann, R. S.

    1995-01-01

    In Drosophila, the specific morphological characteristics of each segment are determined by the homeotic genes that regulate the expression of downstream target genes. We used a subtractive hybridization procedure to isolate activated target genes of the homeotic gene Ultrabithorax (Ubx). In addition, we constructed a set of mutant genotypes that measures the regulatory contribution of individual homeotic genes to a complex target gene expression pattern. Using these mutants, we demonstrate that homeotic genes can regulate target gene expression at the start of gastrulation, suggesting a previously unknown role for the homeotic genes at this early stage. We also show that, in abdominal segments, the levels of expression for two target genes increase in response to high levels of Ubx, demonstrating that the normal down-regulation of Ubx in these segments is functional. Finally, the DNA sequence of cDNAs for one of these genes predicts a protein that is similar to a human proto-oncogene involved in acute myeloid leukemias. These results illustrate potentially general rules about the homeotic control of target gene expression and suggest that subtractive hybridization can be used to isolate interesting homeotic target genes. PMID:7498738

  12. CHROMOSOMAL LOCATION, STRUCTURE, AND TEMPORAL EXPRESSION OF THE PLATELET-ACTIVATING FACTOR (PAFR) GENE IN PORCINE ENDOMETRIUM AND EMBRYOS RELATIVE TO ESTROGEN RECEPTOR ALPHA GENE EXPRESSION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although platelet-activating factor receptor (PAFr) gene was characterized in the human, little was known about it in domestic animals. Porcine PAFr gene was mapped using fluorescence in situ hybridization (FISH). The structure of this gene was investigated using a 5' rapid amplification of cDNA e...

  13. Effects of prenatal and postnatal depression, and maternal stroking, at the glucocorticoid receptor gene

    PubMed Central

    Murgatroyd, C; Quinn, J P; Sharp, H M; Pickles, A; Hill, J

    2015-01-01

    In animal models, prenatal and postnatal stress is associated with elevated hypothalamic–pituitary axis (HPA) reactivity mediated via altered glucocorticoid receptor (GR) gene expression. Postnatal tactile stimulation is associated with reduced HPA reactivity mediated via increased GR gene expression. In this first study in humans to examine the joint effects of prenatal and postnatal environmental exposures, we report that GR gene (NR3C1) 1-F promoter methylation in infants is elevated in the presence of increased maternal postnatal depression following low prenatal depression, and that this effect is reversed by self-reported stroking of the infants by their mothers over the first weeks of life. PMID:25942041

  14. Superfamily of genes encoding G protein-coupled receptors in the diamondback moth Plutella xylostella (Lepidoptera: Plutellidae).

    PubMed

    Wu, S-F; Yu, H-Y; Jiang, T-T; Gao, C-F; Shen, J-L

    2015-08-01

    G protein-coupled receptors (GPCRs) are the largest and most versatile superfamily of cell membrane proteins, which mediate various physiological processes including reproduction, development and behaviour. The diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), is one of the most notorious insect pests, preferentially feeding on cruciferous plants. P. xylostella is not only one of the world's most widespread lepidopteran insects, but has also developed resistance to nearly all classes of insecticides. Although the mechanisms of insecticide resistance have been studied extensively in many insect species, few investigations have been carried out on GPCRs in P. xylostella. In the present study, we identified 95 putative GPCRs in the P. xylostella genome. The identified GPCRs were compared with their homologues in Bombyx mori and Drosophila melanogaster. Our results suggest that GPCRs in different insect species may have evolved by a birth-and-death process. One of the differences among compared insects is the duplication of short neuropeptide F receptor and adipokinetic hormone receptors in P. xylostella and B. mori. Another divergence is the decrease in quantity and diversity of the stress-tolerance gene, Mth, in P. xylostella. The evolution by the birth-and-death process is probably involved in adaptation to the feeding behaviour, reproduction and stress responses of P. xylostella. Some of the genes identified in the present study could be potential targets for the development of novel pesticides. PMID:25824261

  15. The Drosophila insulin receptor homolog: a gene essential for embryonic development encodes two receptor isoforms with different signaling potential.

    PubMed Central

    Fernandez, R; Tabarini, D; Azpiazu, N; Frasch, M; Schlessinger, J

    1995-01-01

    We report the cloning and primary structure of the Drosophila insulin receptor gene (inr), functional expression of the predicted polypeptide, and the isolation of mutations in the inr locus. Our data indicate that the structure and processing of the Drosophila insulin proreceptor are somewhat different from those of the mammalian insulin and IGF 1 receptor precursors. The INR proreceptor (M(r) 280 kDa) is processed proteolytically to generate an insulin-binding alpha subunit (M(r) 120 kDa) and a beta subunit (M(r) 170 kDa) with protein tyrosine kinase domain. The INR beta 170 subunit contains a novel domain at the carboxyterminal side of the tyrosine kinase, in the form of a 60 kDa extension which contains multiple potential tyrosine autophosphorylation sites. This 60 kDa C-terminal domain undergoes cell-specific proteolytic cleavage which leads to the generation of a total of four polypeptides (alpha 120, beta 170, beta 90 and a free 60 kDa C-terminus) from the inr gene. These subunits assemble into mature INR receptors with the structures alpha 2(beta 170)2 or alpha 2(beta 90)2. Mammalian insulin stimulates tyrosine phosphorylation of both types of beta subunits, which in turn allows the beta 170, but not the beta 90 subunit, to bind directly to p85 SH2 domains of PI-3 kinase. It is likely that the two different isoforms of INR have different signaling potentials. Finally, we show that loss of function mutations in the inr gene, induced by either a P-element insertion occurring within the predicted ORF, or by ethylmethane sulfonate treatment, render pleiotropic recessive phenotypes that lead to embryonic lethality. The activity of inr appears to be required in the embryonic epidermis and nervous system among others, since development of the cuticle, as well as the peripheral and central nervous systems are affected by inr mutations. Images PMID:7628438

  16. Vitamin D Receptor Gene Ablation in the Conceptus Has Limited Effects on Placental Morphology, Function and Pregnancy Outcome

    PubMed Central

    Laurence, Jessica A.; Leemaqz, Shalem; O’Leary, Sean; Bianco-Miotto, Tina; Du, Jing; Anderson, Paul H.; Roberts, Claire T.

    2015-01-01

    Vitamin D deficiency has been implicated in the pathogenesis of several pregnancy complications attributed to impaired or abnormal placental function, but there are few clues indicating the mechanistic role of vitamin D in their pathogenesis. To further understand the role of vitamin D receptor (VDR)-mediated activity in placental function, we used heterozygous Vdr ablated C57Bl6 mice to assess fetal growth, morphological parameters and global gene expression in Vdr null placentae. Twelve Vdr+/- dams were mated at 10–12 weeks of age with Vdr+/- males. At day 18.5 of the 19.5 day gestation in our colony, females were euthanised and placental and fetal samples were collected, weighed and subsequently genotyped as either Vdr+/+, Vdr+/- or Vdr-/-. Morphological assessment of placentae using immunohistochemistry was performed and RNA was extracted and subject to microarray analysis. This revealed 25 genes that were significantly differentially expressed between Vdr+/+ and Vdr-/- placentae. The greatest difference was a 6.47-fold change in expression of Cyp24a1 which was significantly lower in the Vdr-/- placentae (P<0.01). Other differentially expressed genes in Vdr-/- placentae included those involved in RNA modification (Snord123), autophagy (Atg4b), cytoskeletal modification (Shroom4), cell signalling (Plscr1, Pex5) and mammalian target of rapamycin (mTOR) signalling (Deptor and Prr5). Interrogation of the upstream sequence of differentially expressed genes identified that many contain putative vitamin D receptor elements (VDREs). Despite the gene expression differences, this did not contribute to any differences in overall placental morphology, nor was function affected as there was no difference in fetal growth as determined by fetal weight near term. Given our dams still expressed a functional VDR gene, our results suggest that cross-talk between the maternal decidua and the placenta, as well as maternal vitamin D status, may be more important in determining pregnancy outcome than conceptus expression of VDR. PMID:26121239

  17. Characterization of Fpr-rs8, an Atypical Member of the Mouse Formyl Peptide Receptor Gene Family

    PubMed Central

    Tiffany, H. Lee; Gao, Ji-Liang; Roffe, Ester; Sechler, Joan M.G.; Murphy, Philip M.

    2011-01-01

    The formyl peptide receptor gene family encodes G protein-coupled receptors for phagocyte chemoattractants, including bacteria- and mitochondria-derived N-formylpeptides. The human family has 3 functional genes, whereas the mouse family has 7 functional genes and 2 possible pseudogenes (?Fpr-rs2 and ?Fpr-rs3). Here we characterize ?Fpr-rs2, a duplication of Fpr-rs2. Compared to Fpr-rs2, the ?Fpr-rs2 ORF is 186 nucleotides shorter but 98% identical. Due to a deletion and frame shift, the sequences lack homology from amino acid 219–289. Both transcripts were detected constitutively in multiple immune organs; however, ?Fpr-rs2 was consistently less abundant than Fpr-rs2. LPS induced expression of ?Fpr-rs2, but not Fpr-rs2, in spleen and bone marrow. Both transcripts were detected constitutively in thioglycollate-elicited peritoneal neutrophils, whereas only Fpr-rs2 was detected in thioglycollate-elicited peritoneal macrophages. Both transcripts were induced in LPS-stimulated macrophages. ?Fpr-rs2-GFP fusion protein appeared in cytoplasm but not plasma membrane of transfected HEK 293 cells, whereas Fpr-rs2-GFP labeled only plasma membrane. Survival of ?Fpr-rs2–/– mice was 33% shorter than that of wild-type and heterozygous littermates (p < 0.05), but no signature pathology was identified. Since ?Fpr-rs2 is expressed in phagocytes and regulated by bacterial products, and may affect longevity, we propose renaming it Fpr-rs8, an atypical member of the formyl peptide receptor gene family. Copyright © 2011 S. Karger AG, Basel PMID:21691049

  18. Characterization of Fpr-rs8, an atypical member of the mouse formyl peptide receptor gene family.

    PubMed

    Tiffany, H Lee; Gao, Ji-Liang; Roffe, Ester; Sechler, Joan M G; Murphy, Philip M

    2011-01-01

    The formyl peptide receptor gene family encodes G protein-coupled receptors for phagocyte chemoattractants, including bacteria- and mitochondria-derived N-formylpeptides. The human family has 3 functional genes, whereas the mouse family has 7 functional genes and 2 possible pseudogenes (?Fpr-rs2 and ?Fpr-rs3). Here we characterize ?Fpr-rs2, a duplication of Fpr-rs2. Compared to Fpr-rs2, the ?Fpr-rs2 ORF is 186 nucleotides shorter but 98% identical. Due to a deletion and frame shift, the sequences lack homology from amino acid 219-289. Both transcripts were detected constitutively in multiple immune organs; however, ?Fpr-rs2 was consistently less abundant than Fpr-rs2. LPS induced expression of ?Fpr-rs2, but not Fpr-rs2, in spleen and bone marrow. Both transcripts were detected constitutively in thioglycollate-elicited peritoneal neutrophils, whereas only Fpr-rs2 was detected in thioglycollate-elicited peritoneal macrophages. Both transcripts were induced in LPS-stimulated macrophages. ?Fpr-rs2-GFP fusion protein appeared in cytoplasm but not plasma membrane of transfected HEK 293 cells, whereas Fpr-rs2-GFP labeled only plasma membrane. Survival of ?Fpr-rs2(-/-) mice was 33% shorter than that of wild-type and heterozygous littermates (p < 0.05), but no signature pathology was identified. Since ?Fpr-rs2 is expressed in phagocytes and regulated by bacterial products, and may affect longevity, we propose renaming it Fpr-rs8, an atypical member of the formyl peptide receptor gene family. PMID:21691049

  19. Identification of an estrogen receptor gene in the natural freshwater snail Bithynia tentaculata.

    PubMed

    Hultin, Cecilia L; Hallgren, Per; Persson, Anders; Hansson, Maria C

    2014-04-25

    Mollusks have received increasing interest in ecotoxicological studies but so far the available scientific analyses of how their genes are affected by anthropogenic pollutants are scarce. The focus of this study is to identify an estrogen receptor (er) gene in the common prosobranch snail Bithynia tentaculata and to test a hypothesis that 17?-Ethinylestradiol (EE2) will modulate er gene expression after short-term exposure. We set up exposure experiments with a total of 144 snails, which were collected from a natural population in southern Sweden. Snails were exposed to either 10ng/L or 100ng/L EE2 during 24h and/or 72h. From the isolated B. tentaculata RNA we successfully identified and characterized a novel er gene and phylogenetic analyses strongly indicate that the Bithynia er gene is an ortholog to the human ER? (ESR1, NR3A1). We found a significant interaction between EE2-dose and exposure duration on the er's gene expression (Two-way ANOVA; p=0.04). We also found a significant difference in the gene expression of the er when comparing the control and 100ng/L treatment groups after 72h in female snails (One-way ANOVA; p=0.047). The results from this study should be useful for future field-related studies of estrogen receptors in natural populations of mollusks. PMID:24583164

  20. Stepwise loss of motilin and its specific receptor genes in rodents.

    PubMed

    He, Jing; Irwin, David M; Chen, Rui; Zhang, Ya-Ping

    2010-01-01

    Specific interactions among biomolecules drive virtually all cellular functions and underlie phenotypic complexity and diversity. Biomolecules are not isolated particles, but are elements of integrated interaction networks, and play their roles through specific interactions. Simultaneous emergence or loss of multiple interacting partners is unlikely. If one of the interacting partners is lost, then what are the evolutionary consequences for the retained partner? Taking advantages of the availability of the large number of mammalian genome sequences and knowledge of phylogenetic relationships of the species, we examined the evolutionary fate of the motilin (MLN) hormone gene, after the pseudogenization of its specific receptor, MLN receptor (MLNR), on the rodent lineage. We speculate that the MLNR gene became a pseudogene before the divergence of the squirrel and other rodents about 75 mya. The evolutionary consequences for the MLN gene were diverse. While an intact open reading frame for the MLN gene, which appears functional, was preserved in the kangaroo rat, the MLN gene became inactivated independently on the lineages leading to the guinea pig and the common ancestor of the mouse and rat. Gain and loss of specific interactions among biomolecules through the birth and death of genes for biomolecules point to a general evolutionary dynamic: gene birth and death are widespread phenomena in genome evolution, at the genetic level; thus, once mutations arise, a stepwise process of elaboration and optimization ensues, which gradually integrates and orders mutations into a coherent pattern. PMID:19696113

  1. Glucocorticoid receptor represses proinflammatory genes at distinct steps of the transcription cycle

    PubMed Central

    Gupte, Rebecca; Muse, Ginger W.; Chinenov, Yurii; Adelman, Karen; Rogatsky, Inez

    2013-01-01

    Widespread anti-inflammatory actions of glucocorticoid hormones are mediated by the glucocorticoid receptor (GR), a ligand-dependent transcription factor of the nuclear receptor superfamily. In conjunction with its corepressor GR-interacting protein-1 (GRIP1), GR tethers to the DNA-bound activator protein-1 and NF-?B and represses transcription of their target proinflammatory cytokine genes. However, these target genes fall into distinct classes depending on the step of the transcription cycle that is rate-limiting for their activation: Some are controlled through RNA polymerase II (PolII) recruitment and initiation, whereas others undergo signal-induced release of paused elongation complexes into productive RNA synthesis. Whether these genes are differentially regulated by GR is unknown. Here we report that, at the initiation-controlled inflammatory genes in primary macrophages, GR inhibited LPS-induced PolII occupancy. In contrast, at the elongation-controlled genes, GR did not affect PolII recruitment or transcription initiation but promoted, in a GRIP1-dependent manner, the accumulation of the pause-inducing negative elongation factor. Consistently, GR-dependent repression of elongation-controlled genes was abolished specifically in negative elongation factor-deficient macrophages. Thus, GR:GRIP1 use distinct mechanisms to repress inflammatory genes at different stages of the transcription cycle. PMID:23950223

  2. Research Resource: Global Identification of Estrogen Receptor ? Target Genes in Triple Negative Breast Cancer Cells

    PubMed Central

    Shanle, Erin K.; Zhao, Zibo; Hawse, John; Wisinski, Kari; Keles, Sunduz; Yuan, Ming

    2013-01-01

    Breast cancers that are negative for estrogen receptor ? (ER?), progesterone receptor, and human epidermal growth factor receptor 2 are known as triple-negative breast cancers (TNBC). TNBCs are associated with an overall poor prognosis because they lack expression of therapeutic targets like ER? and are biologically more aggressive. A second estrogen receptor, ER?, has been found to be expressed in 50% to 90% of ER?-negative breast cancers, and ER? expression in TNBCs has been shown to correlate with improved disease-free survival and good prognosis. To elucidate the role of ER? in regulating gene expression and cell proliferation in TNBC cells, the TNBC cell line MDA-MB-468 was engineered with inducible expression of full-length ER?. In culture, ER? expression inhibited cell growth by inducing a G1 cell cycle arrest, which was further enhanced by 17?-estradiol treatment. In xenografts, ER? expression also inhibited tumor formation and growth, and 17?-estradiol treatment resulted in rapid tumor regression. Furthermore, genomic RNA sequencing identified both ligand-dependent and -independent ER? target genes, some of which were also regulated by ER? in other TNBC cell lines and correlated with ER? expression in a cohort of TNBCs from the Cancer Genome Atlas Network. ER? target genes were enriched in genes that regulate cell death and survival, cell movement, cell development, and growth and proliferation, as well as genes involved in the Wnt/?-catenin and the G1/S cell cycle phase checkpoint pathways. In addition to confirming the anti-proliferative effects of ER? in TNBC cells, these data provide a comprehensive resource of ER? target genes and suggest that ER? may be targeted with ligands that can stimulate its growth inhibitory effects. PMID:23979844

  3. Polo-like kinase 2 gene expression is regulated by the orphan nuclear receptor estrogen receptor-related receptor gamma (ERR{gamma})

    SciTech Connect

    Park, Yun-Yong [Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Kim, Seok-Ho [Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Kim, Yong Joo [Department of Chemistry, Seoul National University, Seoul 151-747 (Korea, Republic of); Kim, Sun Yee [Section of Endocrinology, Department of Internal Medicine, Kyungpook National University, Taegu 700-721 (Korea, Republic of); Lee, Tae-Hoon [Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Lee, In-Kyu [Section of Endocrinology, Department of Internal Medicine, Kyungpook National University, Taegu 700-721 (Korea, Republic of); Park, Seung Bum [Department of Chemistry, Seoul National University, Seoul 151-747 (Korea, Republic of); Choi, Hueng-Sik [Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757 (Korea, Republic of)], E-mail: hsc@chonnam.ac.kr

    2007-10-12

    Estrogen receptor-related receptor gamma (ERR{gamma}) is a member of the nuclear receptor family of transcriptional activators. To date, the target genes and physiological functions of ERR{gamma} are not well understood. In the current study, we identify that Plk2 is a novel target of ERR{gamma}. Northern blot analysis showed that overexpression of ERR{gamma} induced Plk2 expression in cancer cell lines. ERR{gamma} activated the Plk2 gene promoter, and deletion and mutational analysis of the Plk2 promoter revealed that the ERR{gamma}-response region is located between nucleotides (nt) -2327 and -2229 and -441 and -432 (relative to the transcriptional start site at +1). Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) analysis demonstrated that ERR{gamma} binds directly to the Plk2 promoter. Overexpression of ERR{gamma} in the presence of the mitotic inhibitor nocodazole significantly decreased apoptosis, and induced S-phase cell cycle progression through the induction of Plk2 expression. Taken together, these results demonstrated that Plk2 is a novel target of ERR{gamma}, and suggest that this interaction is crucial for cancer cell proliferation.

  4. Epigenetic modification of the oxytocin receptor gene influences the perception of anger and fear in the human brain.

    PubMed

    Puglia, Meghan H; Lillard, Travis S; Morris, James P; Connelly, Jessica J

    2015-03-17

    In humans, the neuropeptide oxytocin plays a critical role in social and emotional behavior. The actions of this molecule are dependent on a protein that acts as its receptor, which is encoded by the oxytocin receptor gene (OXTR). DNA methylation of OXTR, an epigenetic modification, directly influences gene transcription and is variable in humans. However, the impact of this variability on specific social behaviors is unknown. We hypothesized that variability in OXTR methylation impacts social perceptual processes often linked with oxytocin, such as perception of facial emotions. Using an imaging epigenetic approach, we established a relationship between OXTR methylation and neural activity in response to emotional face processing. Specifically, high levels of OXTR methylation were associated with greater amounts of activity in regions associated with face and emotion processing including amygdala, fusiform, and insula. Importantly, we found that these higher levels of OXTR methylation were also associated with decreased functional coupling of amygdala with regions involved in affect appraisal and emotion regulation. These data indicate that the human endogenous oxytocin system is involved in attenuation of the fear response, corroborating research implicating intranasal oxytocin in the same processes. Our findings highlight the importance of including epigenetic mechanisms in the description of the endogenous oxytocin system and further support a central role for oxytocin in social cognition. This approach linking epigenetic variability with neural endophenotypes may broadly explain individual differences in phenotype including susceptibility or resilience to disease. PMID:25675509

  5. Inhibitory effects of azole-type fungicides on interleukin-17 gene expression via retinoic acid receptor-related orphan receptors ? and ?

    PubMed Central

    Kojima, Hiroyuki; Muromoto, Ryuta; Takahashi, Miki; Takeuchi, Shinji; Takeda, Yukimasa; Jetten, Anton M.; Matsuda, Tadashi

    2013-01-01

    The retinoic acid receptor-related orphan receptors ? and ? (ROR? and ROR?), are key regulators of helper T (Th)17 cell differentiation, which is involved in the innate immune system and autoimmune disorders. However, it remains unclear whether environmental chemicals, including pesticides, have agonistic and/or antagonistic activity against ROR?/?. In this study, we investigated the ROR?/? activity of several azole-type fungicides, and the effects of these fungicides on the gene expression of interleukin (IL)-17, which mediates the function of Th17 cells. In the ROR-reporter gene assays, five azole-type fungicides (imibenconazole, triflumizole, hexaconazole, tetraconazole and imazalil) suppressed ROR?- and/or ROR?-mediated transcriptional activity as did benzenesulphonamide T0901317, a ROR inverse agonist and a liver X receptor (LXR) agonist. In particular, imibenconazole, triflumizole and hexaconazole showed ROR? inverse agonistic activity at concentrations of 10?6 M. However, unlike T0901317, these fungicides failed to show any LXR?/? agonistic activity. Next, five azole-type fungicides, showing ROR inverse agonist activity, were tested on IL-17 mRNA expression in mouse T lymphoma EL4 cells treated with phorbol myristate acetate and ionomycin. The quantitative RT-PCR analysis revealed that these fungicides suppressed the expression of IL-17 mRNA without effecting ROR? and ROR? mRNA levels. In addition, the inhibitory effect of imibenconazole as well as that of T0901317 was absorbed in ROR?/?-knocked down EL4 cells. Taken together, these results suggest that some azole-type fungicides inhibit IL-17 production via ROR?/?. This also provides the first evidence that environmental chemicals can act as modulators of IL-17 expression in immune cells. PMID:22289359

  6. Inhibitory effects of azole-type fungicides on interleukin-17 gene expression via retinoic acid receptor-related orphan receptors ? and ?.

    PubMed

    Kojima, Hiroyuki; Muromoto, Ryuta; Takahashi, Miki; Takeuchi, Shinji; Takeda, Yukimasa; Jetten, Anton M; Matsuda, Tadashi

    2012-03-15

    The retinoic acid receptor-related orphan receptors ? and ? (ROR? and ROR?), are key regulators of helper T (Th)17 cell differentiation, which is involved in the innate immune system and autoimmune disorders. However, it remains unclear whether environmental chemicals, including pesticides, have agonistic and/or antagonistic activity against ROR?/?. In this study, we investigated the ROR?/? activity of several azole-type fungicides, and the effects of these fungicides on the gene expression of interleukin (IL)-17, which mediates the function of Th17 cells. In the ROR-reporter gene assays, five azole-type fungicides (imibenconazole, triflumizole, hexaconazole, tetraconazole and imazalil) suppressed ROR?- and/or ROR?-mediated transcriptional activity as did benzenesulphonamide T0901317, a ROR inverse agonist and a liver X receptor (LXR) agonist. In particular, imibenconazole, triflumizole and hexaconazole showed ROR? inverse agonistic activity at concentrations of 10(-6)M. However, unlike T0901317, these fungicides failed to show any LXR?/? agonistic activity. Next, five azole-type fungicides, showing ROR inverse agonist activity, were tested on IL-17 mRNA expression in mouse T lymphoma EL4 cells treated with phorbol myristate acetate and ionomycin. The quantitative RT-PCR analysis revealed that these fungicides suppressed the expression of IL-17 mRNA without effecting ROR? and ROR? mRNA levels. In addition, the inhibitory effect of imibenconazole as well as that of T0901317 was absorbed in ROR?/?-knocked down EL4 cells. Taken together, these results suggest that some azole-type fungicides inhibit IL-17 production via ROR?/?. This also provides the first evidence that environmental chemicals can act as modulators of IL-17 expression in immune cells. PMID:22289359

  7. Modulation of pro-inflammatory gene expression by nuclear lysophosphatidic acid receptor type-1.

    PubMed

    Gobeil, Fernand; Bernier, Sylvie G; Vazquez-Tello, Alejandro; Brault, Sonia; Beauchamp, Martin H; Quiniou, Christiane; Marrache, Anne Marilise; Checchin, Daniella; Sennlaub, Florian; Hou, Xin; Nader, Mony; Bkaily, Ghassan; Ribeiro-da-Silva, Alfredo; Goetzl, Edward J; Chemtob, Sylvain

    2003-10-01

    Lysophosphatidic acid (LPA) is a bioactive molecule involved in inflammation, immunity, wound healing, and neoplasia. Its pleiotropic actions arise presumably by interaction with their cell surface G protein-coupled receptors. Herein, the presence of the specific nuclear lysophosphatidic acid receptor-1 (LPA1R) was revealed in unstimulated porcine cerebral microvascular endothelial cells (pCMVECs), LPA1R stably transfected HTC4 rat hepatoma cells, and rat liver tissue using complementary approaches, including radioligand binding experiments, electron- and cryomicroscopy, cell fractionation, and immunoblotting with three distinct antibodies. Coimmunoprecipitation studies in enriched plasmalemmal fractions of unstimulated pCMVEC showed that LPA1Rs are dually sequestrated in caveolin-1 and clathrin subcompartments, whereas in nuclear fractions LPA1R appeared primarily in caveolae. Immunofluorescent assays using a cell-free isolated nuclear system confirmed LPA1R and caveolin-1 co-localization. In pCMVEC, LPA-stimulated increases in cyclooxygenase-2 and inducible nitric-oxide synthase RNA and protein expression were insensitive to caveolea-disrupting agents but sensitive to LPA-generating phospholipase A2 enzyme and tyrosine kinase inhibitors. Moreover, LPA-induced increases in Ca2+ transients and/or iNOS expression in highly purified rat liver nuclei were prevented by pertussis toxin, phosphoinositide 3-kinase/Akt inhibitor wortmannin and Ca2+ chelator and channel blockers EGTA and SK&F96365, respectively. This study describes for the first time the nucleus as a potential organelle for LPA intracrine signaling in the regulation of pro-inflammatory gene expression. PMID:12847111

  8. [Severe type A insulin resistance syndrome due to a mutation in the insulin receptor gene].

    PubMed

    Ros, P; Colino-Alcol, E; Grasso, V; Barbetti, F; Argente, J

    2015-01-01

    Insulin resistance syndromes without lipodystrophy are an infrequent and heterogeneous group of disorders with variable clinical phenotypes, associated with hyperglycemia and hyperinsulinemia. The three conditions related to mutations in the insulin receptor gene are leprechaunism or Donohue syndrome, Rabson-Mendenhall syndrome, and Type A syndrome. A case is presented on a patient diagnosed with type A insulin resistance, defined by the triad of extreme insulin resistance, acanthosis nigricans, and hyperandrogenism, carrying a heterozygous mutation in exon 19 of the insulin receptor gene coding for its tyrosine kinase domain that is crucial for the catalytic activity of the receptor. The molecular basis of the syndrome is reviewed, focusing on the structure-function relationships of the insulin receptor, knowing that the criteria for survival are linked to residual insulin receptor function. It is also pointed out that, although type A insulin resistance appears to represent a somewhat less severe condition, these patients have a high morbidity and their treatment is still unsatisfactory. PMID:25027621

  9. The ERBB3 receptor in cancer and cancer gene therapy

    PubMed Central

    Sithanandam, G; Anderson, LM

    2009-01-01

    ERBB3, a member of the epidermal growth factor receptor (EGFR) family, is unique in that its tyrosine kinase domain is functionally defective. It is activated by neuregulins, by other ERBB and nonERBB receptors as well as by other kinases, and by novel mechanisms. Downstream it interacts prominently with the phosphoinositol 3-kinase/AKT survival/mitogenic pathway, but also with GRB, SHC, SRC, ABL, rasGAP, SYK and the transcription regulator EBP1. There are likely important but poorly understood roles for nuclear localization and for secreted isoforms. Studies of ERBB3 expression in primary cancers and of its mechanistic contributions in cultured cells have implicated it, with varying degrees of certainty, with causation or sustenance of cancers of the breast, ovary, prostate, certain brain cells, retina, melanocytes, colon, pancreas, stomach, oral cavity and lung. Recent results link high ERBB3 activity with escape from therapy targeting other ERBBs in lung and breast cancers. Thus a wide and centrally important role for ERBB3 in cancer is becoming increasingly apparent. Several approaches for targeting ERBB3 in cancers have been tested or proposed. Small inhibitory RNA (siRNA) to ERBB3 or AKT is showing promise as a therapeutic approach to treatment of lung adenocarcinoma. PMID:18404164

  10. Brain glucose utilization in mice with a targeted mutation in the thyroid hormone ? or ? receptor gene

    PubMed Central

    Itoh, Yoshiaki; Esaki, Takanori; Kaneshige, Masahiro; Suzuki, Hideyo; Cook, Michelle; Sokoloff, Louis; Cheng, Sheue-Yann; Nunez, Jacques

    2001-01-01

    Brain glucose utilization is markedly depressed in adult rats made cretinous after birth. To ascertain which subtype of thyroid hormone (TH) receptors, TR?1 or TR?, is involved in the regulation of glucose utilization during brain development, we used the 2-[14C]deoxyglucose method in mice with a mutation in either their TR? or TR? gene. A C insertion produced a frameshift mutation in their carboxyl terminus. These mutants lacked TH binding and transactivation activities and exhibited potent dominant negative activity. Glucose utilization in the homozygous TR?PV mutant mice and their wild-type siblings was almost identical in 19 brain regions, whereas it was markedly reduced in all brain regions of the heterozygous TR?1PV mice. These suggest that the ?1 receptor mediates the TH effects in brain. Inasmuch as local cerebral glucose utilization is closely related to local synaptic activity, we also examined which thyroid hormone receptor is involved in the expression of synaptotagmin-related gene 1 (Srg1), a TH-positively regulated gene involved in the formation and function of synapses [Thompson, C. C. (1996) J. Neurosci. 16, 7832–7840]. Northern analysis showed that Srg1 expression was markedly reduced in the cerebellum of TR?PV/+ mice but not TR?PV/PV mice. These results show that the same receptor, TR?1, is involved in the regulation by TH of both glucose utilization and Srg1 expression. PMID:11481455

  11. Identification of miR-26a as a Target Gene of Bile Acid Receptor GPBAR-1/TGR5

    PubMed Central

    Chen, Xiaosong; Xu, Haixia; Ding, Lili; Lou, Guiyu; Liu, Yan; Yao, Yalan; Chen, Liangwan; Huang, Wendong; Fu, Xianghui

    2015-01-01

    GPBAR1/TGR5 is a G protein–coupled receptor of bile acids. TGR5 is known to regulate the BA homeostasis and energy metabolism. Recent studies highlight an important role of TGR5 in alleviating obesity and improving glucose regulation, however, the mechanism of which is still unclear. Here we report that TGR5 is involved in mediating the anti-obesity and anti-hyperglycemia effect of a natural compound, oleanolic acid. By comparing the miRNA profiles between wild type and TGR5-/- livers after OA treatment, we identified miR-26a as a novel downstream target gene of TGR5 activation. The expression of miR-26a in the liver was induced in a TGR5-dependent manner after feeding the mice with a bile acid diet. TGR5 activation strongly increased the expression of miR-26a in macrophages, including the Kupffer cells in the liver. We further demonstrated that JNK pathway was required for miR-26a induction by TGR5 activation. Interestingly, we located the TGR5-responsive DNA element to a proximal region of miR-26’s promoter, which was independent of the transcription of its host genes. These results unravel a new mechanism by which bile acid receptor TGR5 activates a miRNA gene expression. PMID:26107166

  12. DEVELOPMENT OF A TIGHTLY REGULATED AND HIGHLY INDUCIBLE ECDYSONE RECEPTOR GENE SWITCH FOR PLANTS THROUGH THE USE OF RETINOID X RECEPTOR CHIMERAS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chemical inducible gene regulation systems provide essential tools for the precise regulation of transgene expression in plants and animals. Recent development of a two-hybrid ecdysone receptor (EcR) gene regulation system has solved some of the drawbacks that were associated with the monopartate ge...

  13. Genes Expressed in Pinus radiata Male Cones Include Homologs to Anther-Specific and Pathogenesis Response Genes

    Microsoft Academic Search

    Adrian R. Walden; Christian Walter; Richard C. Gardner

    1999-01-01

    We describe the isolation and characterization of 13 cDNA clones that are differentially expressed in male cones of Pinus radiata (D. Don). The transcripts of the 13 genes are expressed at different times between meiosis and microspore mitosis, timing that corresponds to a burst in tapetal activity in the developing anthers. In situ hybridization showed that four of the genes

  14. The structure of the prostaglandin EP4 receptor gene and related pseudogenes

    SciTech Connect

    Foord, S.M.; Marks, B.; Stolz, M. [Glaxo Wellcome Medicines Research Centre, Hertfordshire (United Kingdom)] [and others] [Glaxo Wellcome Medicines Research Centre, Hertfordshire (United Kingdom); and others

    1996-07-01

    The EP4 prostaglandin receptor (EP4R) is a member of the seven transmembrane receptor superfamily. We have obtained the human EP4 receptor gene sequence and determined its structure relative to EP4R cDNA synthesized from peripheral blood lymphocytes. The EP4R gene spans approximately 22 kb and consists of three exons separated by two introns. The first exon (530 bp) is noncoding. After an intron of 472 bp, the second exon contains a short (43 bp) 5{prime} sequence before a 289-amino-acid open reading frame (ORF). An 11.5-kb intron is found at the end of transmembrane 6, and the rest of the ORF is in exon 3. The gene structure is analogous to those of the thromboxane, PGI, and PGD receptors. The deduced initiation site does not contain a conventional TATA box but is 70% GC-rich and contains CCAAT boxes, SP1 and AP2 motifs, and motifs consistent with activation by proinflammatory cytokines. Southern blot analysis of human genomic DNA Both appear to be pseudogenes with 70% amino acid identity to the EP4R up to the {open_quotes}ERY{close_quotes} sequence at the end of transmembrane 3, where an Alu-like repetitive sequence element was found. The ORF sequence is also interrupted by a stop codon. The pseudogenes differ in that one contains a second {open_quotes}repetitive element{close_quotes} (a line 1 repeat) in the 5{prime} end of the ORF. Northern blot analysis of human mRNA using a pseudogene probe showed hybridization only to the EP4 receptor transcript. PCR also failed to detect expression of either pseudogene. This study defines the gene structure of EP4R and suggests the existence of two related pseudogenes. 26 refs., 7 figs.

  15. Identification of Coding Single-Nucleotide Polymorphisms in Human Taste Receptor Genes Involving Bitter Tasting

    Microsoft Academic Search

    Takashi Ueda; Shinya Ugawa; Yusuke Ishida; Yasuhiro Shibata; Shingo Murakami; Shoichi Shimada

    2001-01-01

    T2Rs comprise a G-protein-coupled receptor superfamily that contains functionally defined bitter taste receptors. Here we report the tissue expressions and coding single-nucleotide polymorphisms (cSNPs) in human T2R genes (hT2R3, hT2R4, and hT2R5) on chromosome 7q31. We first demonstrated that hT2R3, hT2R4, and hT2R5 are actually expressed in the circumvallate papillae of the human tongue by reverse transcription–polymerase chain reaction (RT-PCR).

  16. Polymorphisms of the angiotensin II type 1 receptor gene affect antihypertensive response to angiotensin receptor blockers in hypertensive Chinese.

    PubMed

    Gong, H T; Ma, X L; Chen, B X; Xu, X Y; Li, Q; Guo, C X; Du, F H

    2013-01-01

    The renin-angiotensin-aldosterone system plays a key role in regulating blood pressure by maintaining vascular tone and the water/sodium balance. Many antihypertensive drugs target the renin-angiotensin-aldosterone system, but the effect differs considerably among hypertensive patients. We investigated whether genetic variants of the angiotensin II type 1 receptor are associated with blood pressure response to angiotensin II receptor blockers in hypertensive Chinese patients. After a 2-week single-blind placebo run-in period, 148 patients with mild-to-moderate primary hypertension received monotherapy with 80 mg/day telmisartan and then were followed up for 8 weeks. The 1166A/C, 573T/C, -810A/T, and -521C/T polymorphisms of the AT1R gene were determined through PCR and RFLP analysis. The relationship between these polymorphisms and changes in blood pressure was observed and evaluated after 8 weeks of treatment. Patients with the AT1R -521CC genotype had a significant reduction in diastolic blood pressure compared to those carrying the T allele. No significant reduction in blood pressure was found in individuals with the 1166A/C, 573T/C, or -810A/T polymorphisms of the AT1R gene. We conclude that only the AT1R -521CC genotype is associated with a significant decrease in blood pressure in response to telmisartan treatment in Chinese hypertensive patients. PMID:23913386

  17. An altered repertoire of T cell receptor V gene expression by rheumatoid synovial fluid T lymphocytes.

    PubMed Central

    Lunardi, C; Marguerie, C; So, A K

    1992-01-01

    The pattern of T cell receptor V gene expression by lymphocytes from rheumatoid synovial fluid and paired peripheral blood samples was compared using a polymerase chain reaction (PCR)-based assay. Eight rheumatoid arthritis (RA) patients who had varying durations of disease (from 2 to 20 years) were studied. In all patients there was evidence of a different pattern of V gene expression between the two compartments. Significantly increased expression of at least one V alpha or V beta gene family by synovial fluid T cells was observed in all the patients studied. Three different V alpha (V alpha 10, 15 and 18) and three V beta (V beta 4, 5 and 13) families were commonly elevated. Sequencing of synovial V beta transcripts demonstrated that the basis of increased expression of selected V gene families in the synovial fluid was due to the presence of dominant clonotypes within those families, which constituted up to 53% of the sequences isolated from one particular synovial V gene family. There were considerable differences in the NDJ sequences found in synovial and peripheral blood T cell receptor (TCR) transcripts of the same V beta gene family. These data suggest that the TCR repertoire in the two compartments differs, and that antigen-driven expansion of particular synovial T cell populations is a component of rheumatoid synovitis, and is present in all stages of the disease. PMID:1458680

  18. Polymorphisms at the ligand binding site of the vitamin D receptor gene and osteomalacia.

    PubMed

    Ak, Duygu Gezen; Kahraman, Hakkí; Dursun, Erdinç; Duman, Belgin Süsleyici; Erensoy, Nevin; Alagöl, Faruk; Tanakol, Refik; Yilmazer, Selma

    2005-01-01

    Vitamin D receptor (VDR) gene polymorphisms have been suggested as possible determinants of bone mineral density (BMD) and calcium metabolism. In this study, our aim was to determine whether there is an association between VDR gene polymorphism and osteomalacia or not. We determined ApaI and TaqI polymorphisms in the vitamin D receptor gene in 24 patients with osteomalacia and 25 age-matched healthy controls. Serum calcium, phosphorus, ALP, PTH, 25OHD levels were also examined. We used PCR and RFLP methods to test for an association between osteomalacia and polymorphisms within, intron 8 and exon 9 of the VDR gene. When the control and patients were compared for their ApaI and TaqI genotypes there was no relationship between VDR gene allelic polymorphisms and osteomalacia. Whereas a nearly significant difference for A allele was found in the allellic distribution of the patients (p=0.08). Also no association between biochemical data and VDR gene polymorphisms was observed. PMID:16403954

  19. Polymorphisms at the Ligand Binding Site of the Vitamin D Receptor Gene and Osteomalacia

    PubMed Central

    Ak, Duygu Gezen; Kahraman, Hakkí; Dursun, Erdinç; Duman, Belgin Süsleyici; Erensoy, Nevin; Alagöl, Faruk; Tanakol, Refik; Y?lmazer, Selma

    2005-01-01

    Vitamin D receptor (VDR) gene polymorphisms have been suggested as possible determinants of bone mineral density (BMD) and calcium metabolism. In this study, our aim was to determine whether there is an association between VDR gene polymorphism and osteomalacia or not. We determined ApaI and TaqI polymorphisms in the vitamin D receptor gene in 24 patients with osteomalacia and 25 age-matched healthy controls. Serum calcium, phosphorus, ALP, PTH, 25OHD levels were also examined. We used PCR and RFLP methods to test for an association between osteomalacia and polymorphisms within, intron 8 and exon 9 of the VDR gene. When the control and patients were compared for their ApaI and TaqI genotypes there was no relationship between VDR gene allelic polymorphisms and osteomalacia. Whereas a nearly significant difference for A allele was found in the allellic distribution of the patients (p = 0.08). Also no association between biochemical data and VDR gene polymorphisms was observed. PMID:16403954

  20. Involvement of Cyclic AMP Receptor Protein in Regulation of the rmf Gene Encoding the Ribosome Modulation Factor in Escherichia coli

    PubMed Central

    Shimada, Tomohiro; Yoshida, Hideji

    2013-01-01

    The decrease in overall translation in stationary-phase Escherichia coli is accompanied with the formation of functionally inactive 100S ribosomes mediated by the ribosome modulation factor (RMF). At present, however, little is known regarding the regulation of stationary-phase-coupled RMF expression. In the course of a systematic screening of regulation targets of DNA-binding transcription factors from E. coli, we realized that CRP (cyclic AMP [cAMP] receptor protein), the global regulator for carbon source utilization, participates in regulation of some ribosomal protein genes, including the rmf gene. In this study, we carried out detailed analysis of the regulation of the RMF gene by cAMP-CRP. The cAMP-dependent binding of CRP to the rmf gene promoter was confirmed by gel shift and DNase I footprinting assays. By using a reporter assay system, the expression level of RMF was found to decrease in the crp knockout mutant, indicating the involvement of CRP as an activator of the rmf promoter. In good agreement with the reduction of rmf promoter activity, we observed decreases in RMF production and 100S ribosome dimerization in the absence of CRP. Taken together, we propose that CRP regulates transcription activation of the rmf gene for formation of 100S ribosome dimers. Physiological roles of CRP involvement in RMF production are discussed. PMID:23475967

  1. Frequent expansions of the bitter taste receptor gene repertoire during evolution of mammals in the Euarchontoglires clade.

    PubMed

    Hayakawa, Takashi; Suzuki-Hashido, Nami; Matsui, Atsushi; Go, Yasuhiro

    2014-08-01

    Genome studies of mammals in the superorder Euarchontoglires (a clade that comprises the orders Primates, Dermoptera, Scandentia, Rodentia, and Lagomorpha) are important for understanding the biological features of humans, particularly studies of medical model animals such as macaques and mice. Furthermore, the dynamic ecoevolutionary signatures of Euarchontoglires genomes may be discovered because many species in this clade are characterized by their successful adaptive radiation to various ecological niches. In this study, we investigated the evolutionary trajectory of bitter taste receptor genes (TAS2Rs) in 28 Euarchontoglires species based on homology searches of 39 whole-genome assemblies. The Euarchontoglires species possessed variable numbers of intact TAS2Rs, which ranged from 16 to 40, and their last common ancestor had at least 26 intact TAS2Rs. The gene tree showed that there have been at least seven lineage-specific events involving massive gene duplications. Gene duplications were particularly evident in the ancestral branches of anthropoids (the anthropoid cluster), which may have promoted the adaptive evolution of anthropoid characteristics, such as a trade-off between olfaction and other senses and the development of herbivorous characteristics. Subsequent whole-gene deletions of anthropoid cluster TAS2Rs in hominoid species suggest ongoing ectopic homologous recombination in the anthropoid cluster. These findings provide insights into the roles of adaptive sensory evolution in various ecological niches and important clues related to the molecular mechanisms that underlie taste diversity in Euarchontoglires mammalian species, including humans. PMID:24758778

  2. Molecular characterization of the PEX5 gene encoding peroxisomal targeting signal 1 receptor from the methylotrophic yeast Pichia methanolica.

    PubMed

    Ito, Takashi; Fujimura, Shuki; Matsufuji, Yoshimi; Miyaji, Tatsuro; Nakagawa, Tomoyuki; Tomizuka, Noboru

    2007-07-01

    In this study, we describe the molecular characterization of the PEX5 gene encoding the peroxisomal targeting signal 1 (PTS1) receptor from the methylotrophic yeast Pichia methanolica. The P. methanolica PEX5 (PmPEX5) gene contains a open reading frame corresponding to a gene product of 646 amino acid residues, and its deduced amino acid sequence shows a high similarity to those of Pex5ps from other methylotrophic yeasts. Like other Pex5ps, the PmPex5p possesses seven repeats of the TPR motif in the C-terminal region and three WXXXF/Y motifs. A strain with the disrupted PEX5 gene (pex5Delta) lost its ability to grow on peroxisome-inducible carbon sources, methanol and oleate, but grew normally on glucose and glycerol. Disruption of PmPEX5 caused a drastic decrease in peroxisomal enzyme activities and mislocalization of GFP-PTS1 and some peroxisomal methanol-metabolizing enzymes in the cytosol. Expression of the PmPEX5 gene was regulated by carbon sources, and it was strongly expressed by peroxisome-inducible carbon sources, especially methanol. Taken together, these findings show that PmPex5p has an essential physiological role in peroxisomal metabolism of P. methanolica, including methanol metabolism, and in peroxisomal localization and activation of methanol-metabolizing enzymes, e.g. AOD isozymes, DHAS and CTA. PMID:17506110

  3. Lack of association between dopamine D4 receptor gene and schizophrenia

    SciTech Connect

    Tanaka, Toshihisa; Kameda, K.; Ihda, S. [Niigata Univ. (Japan)] [and others

    1995-12-18

    An intriguing property of the dopamine D4 receptor gene is a hypervariable segment in the coding region characterized by a varying number of direct imperfect 48 bp repeats (2-8 or 10 repeats) in the third exon of the gene. The authors analyzed 70 unrelated schizophrenics and 70 normal controls to determine the allele and genotype frequencies created by length polymorphism of dopamine D4 receptor gene. All patients and controls were unrelated and from the Japanese population. Patients were divided into three groups with regard to age at onset, familial loading, and severity of symptoms assessed strictly with Manchester scale. There were no statistically significant differences if the distributions of alleles and genotypes were analyzed in consideration of those clinical subtypes. Lichter and colleagues [1993] have reported that at least 25 haplotypes exist for this polymorphic region of the dopamine receptor D4 gene. In this study only the alleles created by length polymorphism were analyzed, and further investigation to determine the haplotypes of patients and controls on using a much larger sample size will be required. 11 refs., 1 fig., 1 tab.

  4. Association study between schizophrenia and dopamine D3 receptor gene polymorphism

    SciTech Connect

    Tanaka, Toshihisa; Takahashi, Makoto; Maeda, Masaya [Niigata Univ. (Japan)] [and others] [Niigata Univ. (Japan); and others

    1996-07-26

    Crocq et al. reported the existence of an association between schizophrenia and homozygosity of a BalI polymorphism in the first exon of the dopamine D3 receptor (DRD3) gene. In response to this report, further studies were conducted; however, these studies yielded conflicting results. In the present study, we examined 100 unrelated Japanese schizophrenics and 100 normal controls to determine any association between this polymorphism and schizophrenia. Results suggest that neither allele nor genotype frequencies of the DRD3 gene in the schizophrenics as a whole are significantly different from those of the controls. Further, we found no association between any allele or genotype and any clinical subtype based on family history of schizophrenia and age-at-onset. A significantly high frequency of homozygosity of a dopamine D3 receptor gene allele was not observed in the schizophrenics as a whole, or in clinical subtypes. Our results suggest that an association between the dopamine D3 receptor gene and schizophrenia is unlikely to exist. 26 refs., 1 tab.

  5. Sweet Taste Receptor Gene Variation and Aspartame Taste in Primates and Other Species

    PubMed Central

    Li, Xia; Bachmanov, Alexander A.; Maehashi, Kenji; Li, Weihua; Lim, Raymond; Brand, Joseph G.; Beauchamp, Gary K.; Reed, Danielle R.; Thai, Chloe

    2011-01-01

    Aspartame is a sweetener added to foods and beverages as a low-calorie sugar replacement. Unlike sugars, which are apparently perceived as sweet and desirable by a range of mammals, the ability to taste aspartame varies, with humans, apes, and Old World monkeys perceiving aspartame as sweet but not other primate species. To investigate whether the ability to perceive the sweetness of aspartame correlates with variations in the DNA sequence of the genes encoding sweet taste receptor proteins, T1R2 and T1R3, we sequenced these genes in 9 aspartame taster and nontaster primate species. We then compared these sequences with sequences of their orthologs in 4 other nontasters species. We identified 9 variant sites in the gene encoding T1R2 and 32 variant sites in the gene encoding T1R3 that distinguish aspartame tasters and nontasters. Molecular docking of aspartame to computer-generated models of the T1R2 + T1R3 receptor dimer suggests that species variation at a secondary, allosteric binding site in the T1R2 protein is the most likely origin of differences in perception of the sweetness of aspartame. These results identified a previously unknown site of aspartame interaction with the sweet receptor and suggest that the ability to taste aspartame might have developed during evolution to exploit a specialized food niche. PMID:21414996

  6. Structure of the human receptor tyrosine phosphatase gamma gene (PTPRG) and relation to the familial RCC t(3;8) chromosome translocation.

    PubMed

    Kastury, K; Ohta, M; Lasota, J; Moir, D; Dorman, T; LaForgia, S; Druck, T; Huebner, K

    1996-03-01

    The receptor protein tyrosine phosphatase gamma gene, PTP gamma (locus name PTPRG), was previously mapped to chromosome region 3p14.2, within a 2- to 4-Mb region centromeric to the 3p14.2 breakpoint of the t(3;8) familial renal cell carcinoma (RCC)-associated constitutional chromosome translocation. Because of its chromosomal position, its enzymatic properties as a receptor phosphatase, which might oppose a growth activating kinase activity, its homozygous deletion in murine L cells, and its transcriptional activity in numerous normal tissues, including kidney, the PTP gamma gene was an attractive tumor suppressor gene candidate for renal cell carcinoma. To determine whether the PTP gamma gene was a target of loss of heterozygosity or mutation in RCCs and to determine its map position relative to the t(3;8) break at 3p14.2, we have isolated YAC and lambda genomic clones for the PTP gamma gene and other 3p14.2 markers and determined the relative positions of the t(3;8) break, a 3p14.2 de novo break possibly in a fragile site, and the 5' end of the PTP gamma gene. Additionally, the genomic structure, position of the proximal promotor, and intron-exon border sequences of the 30-exon 780-kb PTP gamma gene have been determined, which will facilitate analysis of the PTP gamma gene in tumors. PMID:8833149

  7. Pituitary and brain dopamine D2 receptors regulate liver gene sexual dimorphism.

    PubMed

    Ramirez, Maria Cecilia; Ornstein, Ana Maria; Luque, Guillermina Maria; Perez Millan, Maria Ines; Garcia-Tornadu, Isabel; Rubinstein, Marcelo; Becu-Villalobos, Damasia

    2015-03-01

    Liver sexual gene dimorphism, which depends mainly on specific patterns of GH secretion, may underlie differential susceptibility to some liver diseases. Because GH and prolactin secretion are regulated by dopaminergic pathways, we studied the participation of brain and lactotrope dopamine 2 receptors (D2Rs) on liver gene sexual dimorphism, to explore a link between the brain and liver gene expression. We used global D2R knockout mice (Drd2(-/-)) and conducted a functional dissection strategy based on cell-specific Drd2 inactivation in neurons (neuroDrd2KO) or pituitary lactotropes. Disruption of neuronal D2Rs (which impaired the GH axis) decreased most of male or female-predominant class I liver genes and increased female-predominant class II genes in males, consistent with the positive (class I) or negative (class II) regulation of these genes by GH. Notably, sexual dimorphism was lost for class I and II genes in neuroDrd2KO mice. Disruption of lactotrope D2Rs did not modify class I or II genes in either sex, because GH axis was preserved. But surprisingly, 1 class II gene (Prlr) and female-predominant class I genes were markedly up-regulated in lacDrd2KO females, pointing to direct or indirect effects of prolactin in the regulation of selected female-predominant liver genes. This suggestion was strengthened in the hyperprolactinemic Drd2(-/-) female mouse, in which increased expression of the same 4 liver genes was observed, despite a decreased GH axis. We hereby demonstrate endocrine-mediated D2R actions on sexual dimorphic liver gene expression, which may be relevant during chronic dopaminergic medications in psychiatric disease. PMID:25545383

  8. p75 Neurotrophin Receptor Is a Clock Gene That Regulates Oscillatory Components of Circadian and Metabolic Networks

    PubMed Central

    Baeza-Raja, Bernat; Eckel-Mahan, Kristin; Zhang, Luoying; Vagena, Eirini; Tsigelny, Igor F.; Sassone-Corsi, Paolo; Ptá?ek, Louis J.

    2013-01-01

    The p75 neurotrophin receptor (p75NTR) is a member of the tumor necrosis factor receptor superfamily with a widespread pattern of expression in tissues such as the brain, liver, lung, and muscle. The mechanisms that regulate p75NTR transcription in the nervous system and its expression in other tissues remain largely unknown. Here we show that p75NTR is an oscillating gene regulated by the helix-loop-helix transcription factors CLOCK and BMAL1. The p75NTR promoter contains evolutionarily conserved noncanonical E-box enhancers. Deletion mutagenesis of the p75NTR-luciferase reporter identified the ?1039 conserved E-box necessary for the regulation of p75NTR by CLOCK and BMAL1. Accordingly, gel-shift assays confirmed the binding of CLOCK and BMAL1 to the p75NTR?1039 E-box. Studies in mice revealed that p75NTR transcription oscillates during dark and light cycles not only in the suprachiasmatic nucleus (SCN), but also in peripheral tissues including the liver. Oscillation of p75NTR is disrupted in Clock-deficient and mutant mice, is E-box dependent, and is in phase with clock genes, such as Per1 and Per2. Intriguingly, p75NTR is required for circadian clock oscillation, since loss of p75NTR alters the circadian oscillation of clock genes in the SCN, liver, and fibroblasts. Consistent with this, Per2::Luc/p75NTR?/? liver explants showed reduced circadian oscillation amplitude compared with those of Per2::Luc/p75NTR+/+. Moreover, deletion of p75NTR also alters the circadian oscillation of glucose and lipid homeostasis genes. Overall, our findings reveal that the transcriptional activation of p75NTR is under circadian regulation in the nervous system and peripheral tissues, and plays an important role in the maintenance of clock and metabolic gene oscillation. PMID:23785138

  9. DIFFERENTIAL GENE EXPRESSION ACTIVITY AMONG SPECIES-SPECIFIC POLYPYRIMIDINE/POLYPURINE MOTIFS IN MU OPIOID RECEPTOR GENE PROMOTERS

    PubMed Central

    Choe, Chung-youl; Dong, Jinping; Law, Ping-Yee; Loh, Horace H.

    2010-01-01

    The mu opioid receptor (MOR) is the principle molecular target of opioid analgesics. An appropriate understanding of MOR gene expression across species is critical for understanding its analgesic functions in humans. Here, we undertake a cross-species analysis of the polymorphic polypyrimidine/polypurine (PPy/u) motif, a key enhancer of MOR gene expression. The mouse PPy/u motif is highly homologous to those of rat (67%) and human (83%), but drives reporter gene expression tenfold and fivefold more effectively than those of rat and human, respectively. Circular dichroism profiles of PPy/u oligonucleotides from different species showed that they are primarily different in structure. Conformational studies of reporter plasmids using confocal Raman spectra, S1 nuclease and restriction enzymes demonstrated that the structural difference is the result of changes in the phosphodiester backbone. Furthermore, these conformational disparities produce differences in torsional stress, as shown by topoisomerase II relaxation and activation of different levels of gene expression under hypertonic conditions. This study demonstrates that homologous PPy/u motifs adopt unique species-specific conformations with different mechanisms and activities for gene expression. We further discuss how structural aspects of transcription regulatory elements, rather than the sequence itself, are significant when studying functional gene expression regulatory elements. PMID:20946943

  10. Neuropeptide Y Receptor Genes Are Associated with Alcohol Dependence, Alcohol Withdrawal Phenotypes and Cocaine Dependence

    PubMed Central

    Wetherill, Leah; Schuckit, Marc A.; Hesselbrock, Victor; Xuei, Xiaoling; Liang, Tiebing; Dick, Danielle M.; Kramer, John; Nurnberger, John I.; Tischfield, Jay A.; Porjesz, Bernice; Edenberg, Howard J.; Foroud, Tatiana

    2008-01-01

    Background Several lines of evidence in both human and animal studies suggest that variation in neuropeptide Y (NPY) or its receptor genes (NPY1R, NPY2R and NPY5R) is associated with alcohol dependence as well as alcohol withdrawal symptoms. Additional studies suggest cocaine may affect NPY expression. Methods A total of 39 SNPs were genotyped across NPY and its 3 receptor genes in a sample of 1,923 subjects from 219 multiplex alcoholic families of European American descent recruited as part of the Collaborative Studies on the Genetics of Alcoholism (COGA) study. Family-based association analysis was performed to test the primary hypothesis that variation in these genes is associated with alcohol dependence. Secondary analyses evaluated whether there was an association of these SNPs with symptoms of alcohol withdrawal, cocaine dependence, or comorbid alcohol and cocaine dependence. Results Although variations in NPY itself were not associated with these phenotypes, variations in two NPY-receptor genes were. SNPs in NPY2R provided significant evidence of association with alcohol dependence, alcohol withdrawal symptoms, comorbid alcohol and cocaine dependence, and cocaine dependence (all p<0.03). Haplotype analyses strengthened the evidence for these phenotypes (global 0.005receptor genes are associated with alcohol dependence, particularly a severe subtype of alcohol dependence characterized by withdrawal symptoms, comorbid alcohol and cocaine dependence or cocaine dependence. PMID:18828811

  11. Estrogen Receptor Mutations and Changes in Downstream Gene Expression and Signaling

    PubMed Central

    Barone, Ines; Brusco, Lauren; Fuqua, Suzanne A.W.

    2015-01-01

    Estrogens play a crucial role in regulating the growth and differentiation of breast cancers, with approximately two-thirds of all breast tumours expressing the estrogen receptor alpha (ER?). Therefore, therapeutic strategies directed at inhibiting the action of ER? by using antiestrogens such as tamoxifen, or reducing estrogens levels by using aromatase inhibitors (AIs), such as letrozole, anastrozole, or exemestane, are the standard treatments offered to women with ER?-positive cancer. However, not all patients respond to endocrine therapies (termed de novo resistance), and a large number of patients who do respond will eventually develop disease progression or recurrence while on therapy (acquired resistance). Recently variant forms of the receptor due to alternative splicing or gene mutation have been identified. This article reviews these variant receptors and their clinical relevance in resistance to endocrine therapy, by addressing their molecular cross-talk with growth factor receptors and signaling components. Understanding the complexity of receptor-mediated signaling has promise for new combined therapeutic options which focus on more efficient blockade of receptor cross-talk. PMID:20427689

  12. Molecular characterisation of the STRUBBELIG-RECEPTOR FAMILY of genes encoding putative leucine-rich repeat receptor-like kinases in Arabidopsis thaliana

    PubMed Central

    Eyüboglu, Banu; Pfister, Karen; Haberer, Georg; Chevalier, David; Fuchs, Angelika; Mayer, Klaus FX; Schneitz, Kay

    2007-01-01

    Background Receptor-like kinases are a prominent class of surface receptors that regulate many aspects of the plant life cycle. Despite recent advances the function of most receptor-like kinases remains elusive. Therefore, it is paramount to investigate these receptors. The task is complicated by the fact that receptor-like kinases belong to a large monophyletic family with many sub-clades. In general, functional analysis of gene family members by reverse genetics is often obscured by several issues, such as redundancy, subtle or difficult to detect phenotypes in mutants, or by decision problems regarding suitable biological and biochemical assays. Therefore, in many cases additional strategies have to be employed to allow inference of hypotheses regarding gene function. Results We approached the function of genes encoding the nine-member STRUBBELIG-RECEPTOR FAMILY (SRF) class of putative leucine-rich repeat receptor-like kinases. Sequence comparisons show overall conservation but also divergence in predicted functional domains among SRF proteins. Interestingly, SRF1 undergoes differential splicing. As a result, SRF1 is predicted to exist in a standard receptor configuration and in a membrane-anchored receptor-like version that lacks most of the intracellular domain. Furthermore, SRF1 is characterised by a high degree of polymorphism between the Ler and Col accessions. Two independent T-DNA-based srf4 mutants showed smaller leaves while 35S::SRF4 plants displayed enlarged leaves. This is in addition to the strubbelig phenotype which has been described before. Additional single and several key double mutant combinations did not reveal obvious mutant phenotypes. Ectopic expression of several SRF genes, using the 35S promoter, resulted in male sterility. To gain possible insights into SRF gene function we employed a computational analysis of publicly available microarray data. We performed global expression profiling, coexpression analysis, and an analysis of the enrichment of gene ontology terms among coexpressed genes. The bioinformatic analyses raise the possibility that some SRF genes affect different aspects of cell wall biology. The results also indicate that redundancy is a minor aspect of the SRF family. Conclusion The results provide evidence that SRF4 is a positive regulator of leaf size. In addition, they suggest that the SRF family is characterised by functional diversity and that some SRF genes may function in cell wall biology. They also indicate that complementing reverse genetics with bioinformatical data mining of genome-wide expression data aids in inferring hypotheses on possible functions for members of a gene family. PMID:17397538

  13. Ecdysone Receptor Gene Switch Technology for Inducible Gene Expression in Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inducible gene regulation systems based on specific chemicals have many potential applications in agriculture and in the basic understanding of gene function. As a result several gene switches have been developed. However, the properties of the chemicals used in most of these switches make their use...

  14. A Review of Estrogen Receptor ? Gene (ESR1) Polymorphisms, Mood, and Cognition

    PubMed Central

    Sundermann, Erin E.; Maki, Pauline M.; Bishop, Jeffrey R.

    2010-01-01

    OBJECTIVE There are significant individual differences in the extent to which mood and cognition change as a function of reproductive stage, menstrual phase, postpartum, and hormone therapy. This review explores the extent to which variations or polymorphisms in the estrogen receptor ? gene (ESR1) predict cognitive and mood outcomes. METHODS A literature search was conducted from 1995 to November 2009 through PubMed, EMBASE, and PsychINFO. Twenty-five manuscripts were reviewed that summarize investigations of ESR1 in mental health. RESULTS Among studies investigating ESR1 in relation to cognition, 11 of 14 case-control studies reported an association between ESR1 polymorphisms and risk for developing dementia. Three of four prospective cohort studies reported an association between ESR1 polymorphisms and significant cognitive decline. There are inconsistencies between case-control and cohort studies regarding whether specific ESR1 alleles increase or decrease the risk for cognitive dysfunction. The relationships between ESR1 and cognitive impairment tend to be specific to or driven by women and restricted to risk for Alzheimer’s disease rather than other dementia causes. Three of five studies examining ESR1 polymorphisms in relation to anxiety or depressive symptoms found significant associations. Significant associations have also been reported between ESR1 polymorphisms and childhood-onset mood disorder and premenstrual dysphoric disorder. CONCLUSIONS A strong relationship between ESR1 variants and cognitive outcomes is evident and preliminary evidence suggests a role of the ESR1 gene in certain mood outcomes. Insights into the discordant results will come from future studies that include haplotype analyses, analyses within specific ethnic/racial populations, and gender-stratified analyses. PMID:20616674

  15. Intrauterine growth retardation affects expression and epigenetic characteristics of the rat hippocampal glucocorticoid receptor gene.

    PubMed

    Ke, Xingrao; Schober, Michelle E; McKnight, Robert A; O'Grady, Shannon; Caprau, Diana; Yu, Xing; Callaway, Christopher W; Lane, Robert H

    2010-07-01

    Studies in humans and rats suggest that intrauterine growth retardation (IUGR) permanently resets the hypothalamic-pituitary-adrenal (HPA) axis. HPA axis reprogramming may involve persistently altered expression of the hippocampal glucocorticoid receptor (hpGR), an important regulator of HPA axis reactivity. Persistent alteration of gene expression, long after the inciting event, is thought to be mediated by epigenetic mechanisms that affect mRNA and mRNA variant expression. GR mRNA variants in both humans and rats include eleven 5'-end variants and GRalpha, the predominant 3'-end variant. The 3'-end variants associated with glucocorticoid resistance in humans (GRbeta, GRgamma, GRA, and GRP) have not been reported in rats. We hypothesized that in the rat hippocampus IUGR would decrease total GR mRNA, increase GRbeta, GRgamma, GRA, and GRP, and affect epigenetics of the GR gene at birth (D0) and at 21 days of life (D21). IUGR increased hpGR and exon 1.7 hpGR mRNA in males at D0 and D21, associated with increased trimethyl H3/K4 at exon 1.7 at both time points. IUGR also increased hpGRgamma in males at D0 and D21, associated with increased acetyl H3/K9 at exon 3 at both time points. hpGRA increased in female IUGR rats at D0 and D21. In addition, our data support the existence of hpGRbeta and hpGRP in the rat. IUGR has sex-specific, persistent effects on GR expression and its histone code. We speculate that postnatal changes in hippocampal GR variant and total mRNA expression may underlie IUGR-associated HPA axis reprogramming. PMID:20388836

  16. No association between interferon-? receptor-1 gene polymorphism and pulmonary tuberculosis in a Gambian population sample

    PubMed Central

    Awomoyi, A; Nejentsev, S; Richardson, A; Hull, J; Koch, O; Podinovskaia, M; Todd, J; McAdam, K; Blackwell, J; Kwiatkowski, D; Newport, M

    2004-01-01

    Background: Tuberculosis (TB) is a major global cause of mortality and morbidity, and host genetic factors influence disease susceptibility. Interferon-? mediates immunity to mycobacteria and rare mutations in the interferon-? receptor-1 gene (IFNGR1) result in increased susceptibility to mycobacterial infection, including TB, in affected families. The role of genetic variation in IFNGR1 in susceptibility to common mycobacterial diseases such as pulmonary TB in outbred populations has not previously been investigated. Methods: The association between IFNGR1 and susceptibility to pulmonary TB was investigated in a Gambian adult population sample using a case-control study design. The coding and promoter regions of IFNGR1 were sequenced in 32 patients with pulmonary TB, and the frequencies of six common IFNGR1 polymorphisms were determined using PCR based methods in 320 smear positive TB cases and 320 matched controls. Haplotypes were estimated from the genotype data using the expectation-maximisation algorithm. Results: There was no association between the IFNGR1 variants studied and TB in this Gambian population sample. Three common haplotypes were identified within the study population, none of which was associated with TB. Conclusions: These data represent an important negative finding and suggest that, while IFNGR1 is implicated in rare Mendelian susceptibility to mycobacterial disease, the common variants studied here do not have a major influence on susceptibility to pulmonary TB in The Gambian population. PMID:15047947

  17. Oxytocin receptor gene polymorphism, perceived social support, and psychological symptoms in maltreated adolescents.

    PubMed

    Hostinar, Camelia E; Cicchetti, Dante; Rogosch, Fred A

    2014-05-01

    Despite the detrimental consequences of child maltreatment on developmental processes, some individuals show remarkable resilience, with few signs of psychopathology, while others succumb to dysfunction. Given that oxytocin has been shown to be involved in social affiliation, attachment, social support, trust, empathy, and other social or reproductive behaviors, we chose to examine the possible moderation of maltreatment effects on perceived social support and on psychological symptoms by a common single nucleotide polymorphism (rs53576) in the oxytocin receptor gene. We studied adolescents (N = 425) aged approximately 13-15, including participants with objectively documented maltreatment histories (N = 263) and a nonmaltreated comparison group from a comparable low socioeconomic status background (N = 162). There was a significant genotype by maltreatment interaction, such that maltreated adolescents with the G/G genotype perceived significantly lower social support compared to maltreated A-carriers, with no effect of genotype in the comparison group. Maltreated G/Gs also reported higher levels of internalizing symptoms than did A-carriers, even though they did not differ from them on objective measures of maltreatment (type, duration, or severity). G/G homozygotes may be more attuned to negative social experiences, such as family maltreatment, while maltreated A-carriers were indistinguishable from nonmaltreated adolescents in levels of mental health symptoms. PMID:24621832

  18. Oxytocin Receptor Gene (OXTR) Polymorphism, Perceived Social Support, and Psychological Symptoms in Maltreated Adolescents

    PubMed Central

    Hostinar, Camelia E.; Cicchetti, Dante; Rogosch, Fred A.

    2014-01-01

    Despite the detrimental consequences of child maltreatment on developmental processes, some individuals show remarkable resilience, with few signs of psychopathology, while others succumb to dysfunction. Given that oxytocin has been shown to be involved in social affiliation, attachment, social support, trust, empathy, and other social or reproductive behaviors, we chose to examine the possible moderation of maltreatment effects on perceived social support and on psychological symptoms by a common SNP (rs53576) in the oxytocin receptor gene (OXTR). We studied adolescents (N = 425) aged approximately 13-15, including participants with objectively documented maltreatment histories (N = 263) and a non-maltreated comparison group from a comparable low-socioeconomic status background (N = 162). There was a significant genotype by maltreatment interaction such that maltreated adolescents with the G/G genotype perceived significantly lower social support compared to maltreated A-carriers, with no effect of genotype in the comparison group. Maltreated G/Gs also reported higher levels of Internalizing symptoms than A-carriers, even though they did not differ from them on objective measures of maltreatment (type, duration, or severity). G/G homozygotes may be more attuned to negative social experiences such as family maltreatment, while maltreated A-carriers were indistinguishable from non-maltreated adolescents in levels of mental health symptoms. PMID:24621832

  19. Neural correlate of autistic-like traits and a common allele in the oxytocin receptor gene.

    PubMed

    Saito, Yuki; Suga, Motomu; Tochigi, Mamoru; Abe, Osamu; Yahata, Noriaki; Kawakubo, Yuki; Liu, Xiaoxi; Kawamura, Yoshiya; Sasaki, Tsukasa; Kasai, Kiyoto; Yamasue, Hidenori

    2014-10-01

    Sub-clinical autistic-like traits (ALTs) are continuously distributed in the general population and genetically linked to autism. Although identifying the neurogenetic backgrounds of ALTs might enhance our ability to identify those of autism, they are largely unstudied. Here, we have examined the neuroanatomical basis of ALTs and their association with the oxytocin receptor gene (OXTR) rs2254298A, a known risk allele for autism in Asian populations which has also been implicated in limbic-paralimbic brain structures. First, we extracted a four-factor structure of ALTs, as measured using the Autism-Spectrum Quotient, including 'prosociality', 'communication', 'details/patterns' and 'imagination' in 135 neurotypical adults (79 men, 56 women) to reduce the genetic heterogeneity of ALTs. Then, in the same population, voxel-based morphometry revealed that lower 'prosociality', which indicates strong ALTs, was significantly correlated to smaller regional grey matter volume in the right insula in males. Males with lower 'prosociality' also had less interregional structural coupling between the right insula and the ventral anterior cingulate cortex. Furthermore, males with OXTR rs2254298A had significantly smaller grey matter volume in the right insula. These results show that decreased volume of the insula is a neuroanatomical correlate of ALTs and a potential intermediate phenotype linking ALTs with OXTR in male subjects. PMID:23946005

  20. Resistance Gene Analogs in Rosaceae: Family-wide Classification Including Raspberry, Cherry, and Wild Apples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic studies have shown that NBS-LRR Resistance Gene Analogs (RGAs)tend to occur in clusters and often map to major resistance genes or QTLs. The identification and use of specific RGAs as molecular markers among plant material displaying different resistance phenotypes has the potential to direc...

  1. Dynamic and combinatorial control of gene expression by nuclear retinoic acid receptors (RARs)

    PubMed Central

    Rochette-Egly, Cécile; Germain, Pierre

    2009-01-01

    Nuclear retinoic acid receptors (RARs) are transcriptional regulators controlling the expression of specific subsets of genes in a ligand-dependent manner. The basic mechanism for switching on transcription of cognate target genes involves RAR binding at specific response elements and a network of interactions with coregulatory protein complexes, the assembly of which is directed by the C-terminal ligand-binding domain of RARs. In addition to this scenario, new roles for the N-terminal domain and the ubiquitin-proteasome system recently emerged. Moreover, the functions of RARs are not limited to the regulation of cognate target genes, as they can transrepress other gene pathways. Finally, RARs are also involved in nongenomic biological activities such as the activation of translation and of kinase cascades. Here we will review these mechanisms, focusing on how kinase signaling and the proteasome pathway cooperate to influence the dynamics of RAR transcriptional activity. PMID:19471584

  2. Sequence analysis of the Toll-like receptor 2 gene of old world camels.

    PubMed

    Dahiya, Shyam S; Nagarajan, Govindasamy; Bharti, Vijay K; Swami, Shelesh K; Mehta, Sharat C; Tuteja, Fateh C; Narnaware, Shirish D; Patil, NitinV

    2014-11-01

    The Toll-like receptor 2 (TLR2) gene of old world camels (Camelus dromedarius and Camelus bactrianus) was cloned and sequenced. The TLR2 gene of the dromedary camel had the highest nucleotide and amino acid identity with pig, i.e., 66.8% and 59.6%, respectively. Similarly, the TLR2 gene of the Bactrian camel also had the highest nucleotide and amino acid identity with pig, i.e., 85.7% and 81.4%, respectively. Dromedary and Bactrian camels shared 77.9% nucleotide and 73.6% amino acid identity with each other. Interestingly, the amidation motif is present in camel (Dromedary and Bactrian) TLR2 only, and the TIR domain is absent in Dromedary camel TLR2. This is the first report of the TLR2 gene sequence of Dromedary and Bactrian camels. PMID:25685538

  3. The nicotinic acetylcholine receptor gene family of the nematode Caenorhabditis elegans: an update on nomenclature

    PubMed Central

    Jones, Andrew K.; Davis, Paul; Hodgkin, Jonathan; Sattelle, David B.

    2010-01-01

    The simple nematode, Caenorhabditis elegans, possesses the most extensive known gene family of nicotinic acetylcholine receptor (nAChR)-like subunits. Whilst all show greatest similarity with nAChR subunits of both invertebrates and vertebrates, phylogenetic analysis suggests that just over half of these (32) may represent other members of the cys-loop ligand-gated ion channel superfamily. We have introduced a novel nomenclature system for these ‘Orphan’ subunits, designating them as lgc genes (ligand-gated ion channels of the cys-loop superfamily), which can also be applied in future to unnamed and uncharacterised members of the cys-loop ligand-gated ion channel superfamily. We present here the resulting updated version of the C. elegans nAChR gene family and related ligand-gated ion channel (lgc) genes. PMID:17503100

  4. Identification and Characterization of a Novel Nuclear Protein Complex Involved in Nuclear Hormone Receptor-mediated Gene Regulation*

    PubMed Central

    Garapaty, Shivani; Xu, Chong-Feng; Trojer, Patrick; Mahajan, Muktar A.; Neubert, Thomas A.; Samuels, Herbert H.

    2009-01-01

    NRC/NCoA6 plays an important role in mediating the effects of ligand-bound nuclear hormone receptors as well as other transcription factors. NRC interacting factor 1 (NIF-1) was cloned as a novel factor that interacts in vivo with NRC. Although NIF-1 does not directly interact with nuclear hormone receptors, it enhances activation by nuclear hormone receptors presumably through its interaction with NRC. To further understand the cellular and biological function of NIF-1, we identified NIF-1-associated proteins by in-solution proteolysis followed by mass spectrometry. The identified components revealed factors involved in histone methylation and cell cycle control and include Ash2L, RbBP5, WDR5, HCF-1, DBC-1, and EMSY. Although the NIF-1 complex contains Ash2L, RbBP5, and WDR5, suggesting that the complex might methylate histone H3-Lys-4, we found that the complex contains a H3 methyltransferase activity that modifies a residue other than H3-Lys-4. The identified components form at least two distinctly sized NIF-1 complexes. DBC-1 and EMSY were identified as integral components of an NIF-1 complex of ?1.5 MDa and were found to play an important role in the regulation of nuclear receptor-mediated transcription. Stimulation of the Sox9 and HoxA1 genes by retinoic acid receptor-? was found to require both DBC-1 and EMSY in addition to NIF-1 for maximal transcriptional activation. Interestingly, NRC was not identified as a component of the NIF-1 complex, suggesting that NIF-1 and NRC do not exist as stable in vitro purified complexes, although the separate NIF-1 and NRC complexes appear to functionally interact in the cell. PMID:19131338

  5. The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats.

    PubMed Central

    Torii, K U; Mitsukawa, N; Oosumi, T; Matsuura, Y; Yokoyama, R; Whittier, R F; Komeda, Y

    1996-01-01

    Arabidopsis Landsberg erecta is one of the most popular ecotypes and is used widely for both molecular and genetic studies. It harbors the erecta (er) mutation, which confers a compact inflorescence, blunt fruits, and short petioles. We have identified five er mutant alleles from ecotypes Columbia and Wassilewskija. Phenotypic characterization of the mutant alleles suggests a role for the ER gene in regulating the shape of organs originating from the shoot apical meristem. We cloned the ER gene, and here, we report that it encodes a putative receptor protein kinases. The deduced ER protein contains a cytoplasmic protein kinase catalytic domain, a transmembrane region, and an extracellular domain consisting of leucine-rich repeats, which are thought to interact with other macromolecules. Our results suggest that cell-cell communication mediated by a receptor kinase has an important role in plant morphogenesis. PMID:8624444

  6. Association study of schizophrenia and IL-2 receptor {beta} chain gene

    SciTech Connect

    Nimgaonkar, V.L.; Yang, Z.W.; Zhang, X.R.; Brar, J.S. [Univ. of Pittsburgh School of Medicine, PA (United States)] [and others

    1995-10-09

    A case-control association study was conducted in Caucasian patients with schizophrenia (DSM-III-R, n = 42) and unaffected controls (n = 47) matched for ethnicity and area of residence. Serum interleukin-2 receptor (IL-2R) concentrations, as well as a dinucleotide repeat polymorphism in the IL-2RP chain gene, were examined in both groups. No significant differences in IL-2R concentrations or in the distribution of the polymorphism were noted. This study does not support an association between schizophrenia and the IL-2RP gene locus, contrary to the suggestive evidence from linkage analysis in multicase families. 17 refs., 2 tabs.

  7. Transforming growth factor receptor gene TGFBR2 maps to human chromosome band 3p22

    SciTech Connect

    Mathew, S.; Murty, V.V.V.S.; Cheifetz, S.; George, D.; Massague, J.; Chaganti, R.S.K. (Memorial Sloan-Kettering Cancer Center, New York, NY (United States))

    1994-03-01

    In this study, the authors map the chromosomal position of the gene that encodes the type II receptor of TGF-[beta] (HGM symbol TGFBR2), a multifunctional regulator of cell proliferation and differentiation. Using a full-length cDNA and a genomic probe in Southern blot analysis of a human [times] rodent somatic cell hybrid panel and by direct fluorescence in situ hybridization to normal metaphase chromosomes, they show that the TGFBR2 gene maps to 3p22. 16 refs., 2 figs.

  8. The dopamine D sub 2 receptor locus as a modifying gene in neuropsychiatric disorders

    SciTech Connect

    Comings, D.E.; Comings, B.G.; Muhleman, D.; Dietz, G.; Shahbahrami, B.; Tast, D.; Knell, E.; Kocsis, P.; Baumgarten, R.; Kovacs, B.W.; Gysin, R.; Flanagan, S.D. (City of Hope National Medical Center, Duarte, CA (United States)); Levy, D.L. (McLean Hospital, Belmont, MA (United States)); Smith, M. (Hillside Hospital, Glen Oaks, NY (United States)); Klein, D.N. (State Univ. of New York, Stony Brook (United States)); MacMurray, J.; Tosk, J.M. (Jerry L. Pettis Veterans Administration Hospital, Loma Linda, CA (United States)); Sverd, J. (North Shore Univ. Hospital, Manhasset, NY (United States) Cornell Univ. Medical College, Manhasset, NY (United States)); Borison, R.L.; Evans, D.D. (Veterans Administration Medical Center, Augusta, GA (United States))

    1991-10-02

    The A1 allele of the Taq I polymorphism of the dopamine D{sub 2} receptor (DRD2) gene has been earlier reported to occur in 69% of alcoholics, compared with 20% of controls. Other research has reported no significant difference in the prevalence of the A1 allele in alcoholics vs controls and no evidence that the DRD2 gene was linked to alcoholism. The authors hypothesized that these seemingly conflicting results might be because increases in the prevalence of the A1 allele may not be specific to alcoholism. Thus, they examined other disorders frequently associated with alcoholism or those believed to involve defects in dopaminergic neurotransmission.

  9. Engineering validamycin production by tandem deletion of ?-butyrolactone receptor genes in Streptomyces hygroscopicus 5008.

    PubMed

    Tan, Gao-Yi; Peng, Yao; Lu, Chenyang; Bai, Linquan; Zhong, Jian-Jiang

    2015-03-01

    Paired homologs of ?-butyrolactone (GBL) biosynthesis gene afsA and GBL receptor gene arpA are located at different positions in genome of Streptomyces hygroscopicus 5008. Inactivation of afsA homologs dramatically decreased biosynthesis of validamycin, an important anti-fungal antibiotic and a critical substrate for antidiabetic drug synthesis, and the deletion of arpA homologs increased validamycin production by 26% (?shbR1) and 20% (?shbR3). By double deletion, the ?shbR1/R3 mutant showed higher transcriptional levels of adpA-H (the S. hygroscopicus ortholog of the global regulatory gene adpA) and validamycin biosynthetic genes, and validamycin production increased by 55%. Furthermore, by engineering a high-producing industrial strain via tandem deletion of GBL receptor genes, validamycin production and productivity were enhanced from 19 to 24 g/L (by 26%) and from 6.7 to 9.7 g/L(-1) d(-1) (by 45%), respectively, which was the highest ever reported. The strategy demonstrated here may be useful to engineering other Streptomyces spp. with multiple pairs of afsA-arpA homologs. PMID:25527439

  10. Farnesoid X receptor directly regulates xenobiotic detoxification genes in the long-lived Little mice

    PubMed Central

    Jiang, Yanjun; Jin, Jingling; Iakova, Polina; Hernandez, Julio Cesar; Jawanmardi, Nicole; Sullivan, Emily; Guo, Grace L.; Timchenko, Nikolai A.; Darlington, Gretchen J.

    2013-01-01

    Activation of xenobiotic metabolism pathways has been linked to lifespan extension in different models of aging. However, the mechanisms underlying activation of xenobiotic genes remain largely unknown. Here we showed that although FXR mRNA levels do not change significantly, FXR (farnesoid X receptor, Nr1h4) protein levels are elevated in the livers of the long-lived Little mice, leading to increased DNA binding activity of FXR. Hepatic FXR expression is sex-dependent in wild-type mice but not in Little mice, implying that up-regulation of FXR might be dependent on the reduction of growth hormone in Little mice. Growth hormone treatment decreased hepatic expression of FXR and xenobiotic genes Abcb1a, Fmo3 and Gsta2 in both wild-type and Little mice, suggesting an association between FXR and xenobiotic gene expression. We found that Abcb1a is transactivated by FXR via direct binding of FXR/retinoid X receptor ? (RXR?) heterodimer to a response element at the proximal promoter. FXR also positively controls Fmo3 and Gsta2 expression through direct interaction with the response elements in these genes. Our study demonstrates that xenobiotic genes are direct transcriptional targets of FXR and suggests that FXR signaling may play a critical role in the lifespan extension observed in Little mice. PMID:24007921

  11. The neuronal nicotinic acetylcholine receptor {alpha}7 subunit gene: Cloning, mapping, structure, and targeting in mouse

    SciTech Connect

    Orr-Urtreger, A.; Baldini, A.; Beaudet, A.L. [Howard Hughes Medical Institute, Houston, TX (United States)] [and others

    1994-09-01

    The neuronal nicotinic acetylcholine receptor {alpha}7 subunit is a member of a family of ligand-gated ion channels, and is the only subunit know to bind {alpha}-bungarotoxin in mammalian brain. {alpha}-Bungarotoxin binding sites are known to be more abundant in the hippocampus of mouse strains that are particularly sensitive to nicotine-induced seizures. The {alpha}7 receptor is highly permeable to calcium, which could suggest a role in synaptic plasticity in the nervous system. Auditory gating deficiency, an abnormal response to a second auditory stimulus, is characteristic of schizophrenia. Mouse strains that exhibit a similar gating deficit have reduced hippocampal expression of the {alpha}7 subunit. We have cloned and sequenced the full length cDNA for the mouse {alpha}7 gene (Acra-7) and characterized its gene structure. The murine {alpha}7 shares amino acid identity of 99% and 93% with the rat and human {alpha}7 subunits, respectively. Using an interspecies backcross panel, the murine gene was mapped to chromosome 7 near the p locus, a region syntenic with human chromosome 15; the human gene (CHRNA7) was confirmed to map to 15q13-q14 by FISH. To generate a mouse {alpha}7 mutant by homologous recombination, we have constructed a replacement vector which will delete transmembrane domains II-IV and the cytoplasmic domain from the gene product. Recombinant embryonic stem (ES) cell clones were selected and used to develop mouse chimeras that are currently being bred to obtain germline transmission.

  12. Bone marrow mesenchymal stem cells with Nogo-66 receptor gene silencing for repair of spinal cord injury

    PubMed Central

    Li, Zhiyuan; Zhang, Zhanxiu; Zhao, Lili; Li, Hui; Wang, Suxia; Shen, Yong

    2014-01-01

    We hypothesized that RNA interference to silence Nogo-66 receptor gene expression in bone marrow mesenchymal stem cells before transplantation might further improve neurological function in rats with spinal cord transection injury. After 2 weeks, the number of neurons and BrdU-positive cells in the Nogo-66 receptor gene silencing group was higher than in the bone marrow mesenchymal stem cell group, and significantly greater compared with the model group. After 4 weeks, behavioral performance was significantly enhanced in the model group. After 8 weeks, the number of horseradish peroxidase-labeled nerve fibers was higher in the Nogo-66 receptor gene silencing group than in the bone marrow mesenchymal stem cell group, and significantly higher than in the model group. The newly formed nerve fibers and myelinated nerve fibers were detectable in the central transverse plane section in the bone marrow mesenchymal stem cell group and in the Nogo-66 receptor gene silencing group. PMID:25206893

  13. Endogenous mammalian RF-amide peptides, including PrRP, kisspeptin and 26RFa, modulate nociception and morphine analgesia via NPFF receptors.

    PubMed

    Elhabazi, Khadija; Humbert, Jean-Paul; Bertin, Isabelle; Schmitt, Martine; Bihel, Frédéric; Bourguignon, Jean-Jacques; Bucher, Bernard; Becker, Jérôme A J; Sorg, Tania; Meziane, Hamid; Petit-Demouličre, Benoit; Ilien, Brigitte; Simonin, Frédéric

    2013-12-01

    Mammalian RF-amide peptides are encoded by five different genes and act through five different G protein-coupled receptors. RF-amide-related peptides-1 and -3, neuropeptides AF and FF, Prolactin releasing peptides, Kisspeptins and RFa peptides are currently considered endogenous peptides for NPFF1, NPFF2, GPR10, GPR54 and GPR103 receptors, respectively. However, several studies suggest that the selectivity of these peptides for their receptors is low and indicate that expression patterns for receptors and their corresponding ligands only partially overlap. In this study, we took advantage of the cloning of the five human RF-amide receptors to systematically examine their affinity for and their activation by all human RF-amide peptides. Binding experiments, performed on membranes from CHO cells expressing GPR10, GPR54 and GPR103 receptors, confirmed their high affinity and remarkable selectivity for their cognate ligands. Conversely, NPFF1 and NPFF2 receptors displayed high affinity for all RF-amide peptides. Moreover, GTP?S and cAMP experiments showed that almost all RF-amide peptides efficiently activate NPFF1 and NPFF2 receptors. As NPFF is known to modulate morphine analgesia, we undertook a systematic analysis in mice of the hyperalgesic and anti morphine-induced analgesic effects of a representative set of endogenous RF-amide peptides. All of them induced hyperalgesia and/or prevented morphine analgesia following intracerebroventricular administration. Importantly, these effects were prevented by administration of RF9, a highly selective NPFF1/NPFF2 antagonist. Altogether, our results show that all endogenous RF-amide peptides display pain-modulating properties and point to NPFF receptors as essential players for these effects. PMID:23911743

  14. Deletion of the steroid-binding domain of the human androgen receptor gene in one family with complete androgen insensitivity syndrome: Evidence for further genetic heterogeneity in this syndrome

    SciTech Connect

    Brown, T.R.; Lubahn, D.B.; Wilson, E.M.; Joseph, D.R.; French, F.S.; Migeon, C.J. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (USA))

    1988-11-01

    The cloning of a cDNA for the human androgen receptor gene has resulted in the availability for cDNA probes that span various parts of the gene, including the entire steroid-binding domain and part of the DNA-binding domain, as well as part of the 5' region of the gene. The radiolabeled probes were used to screen for androgen receptor mutations on Southern blots prepared by restriction endonuclease digestion of genomic DNA from human subjects with complete androgen insensitivity syndrome (AIS). In this investigation, the authors considered only patients presenting complete AIS and with the androgen receptor (-) form as the most probably subjects to show a gene deletion. One subject from each of six unrelated families with the receptor (-) form of complete AIS and 10 normal subjects were studied. In the 10 normal subjects and in 5 of the 6 patients, identical DNA restriction fragment patterns were observed with EcoRI and BamHI. Analysis of other members of this family confirmed the apparent gene deletion. The data provide direct proof that complete AIS in some families can result from a deletion of the androgen receptor structural gene. However, other families do not demonstrate such a deletion, suggesting that point mutations may also result in the receptor (-) form of complete AIS, adding further to the genetic heterogeneity of this syndrome.

  15. Apple contains receptor-like genes homologous to the Cladosporium fulvum resistance gene family of tomato with a cluster of genes cosegregating with Vf apple scab resistance.

    PubMed

    Vinatzer, B A; Patocchi, A; Gianfranceschi, L; Tartarini, S; Zhang, H B; Gessler, C; Sansavini, S

    2001-04-01

    Scab caused by the fungal pathogen Venturia inaequalis is the most common disease of cultivated apple (Malus x domestica Borkh.). Monogenic resistance against scab is found in some small-fruited wild Malus species and has been used in apple breeding for scab resistance. Vf resistance of Malus floribunda 821 is the most widely used scab resistance source. Because breeding a high-quality cultivar in perennial fruit trees takes dozens of years, cloning disease resistance genes and using them in the transformation of high-quality apple varieties would be advantageous. We report the identification of a cluster of receptor-like genes with homology to the Cladosporium fulvum (Cf) resistance gene family of tomato on bacterial artificial chromosome clones derived from the Vf scab resistance locus. Three members of the cluster were sequenced completely. Similar to the Cf gene family of tomato, the deduced amino acid sequences coded by these genes contain an extracellular leucine-rich repeat domain and a transmembrane domain. The transcription of three members of the cluster was determined by reverse transcriptionpolymerase chain reaction to be constitutive, and the transcription and translation start of one member was verified by 5' rapid amplification of cDNA ends. We discuss the parallels between Cf resistance of tomato and Vf resistance of apple and the possibility that one of the members of the gene cluster is the Vf gene. Cf homologs from other regions of the apple genome also were identified and are likely to present other scab resistance genes. PMID:11310738

  16. The human interleukin-1 receptor antagonist (IL1RN) gene is located in the chromosome 2q14 region

    SciTech Connect

    Patterson, D.; Jones, C.; Hart, I.; Bleskan, J.; Berger, R.; Geyer, D. (Eleanor Roosevelt Institute for Cancer Research, Denver, CO (United States)); Eisenberg, S.P. (Synergen Inc., Boulder, CO (United States)); Smith, M.F. Jr.; Arend, W.P. (Univ. of Colorado Health Sciences Center, Denver (United States))

    1993-01-01

    The gene for human interleukin-1 receptor antagonist (IL1RN) has been assigned to chromosome 2 on the basis of Southern blot analysis of a series of human-Chinese hamster cell hybrids. Using a yeast artificial chromosome containing the IL1RN gene as a probe, the human IL1RN gene was localized to the long arm of chromosome 2 at band 2q14.2 by fluorescence in situ hybridization. This site is near the positions of genes for human IL-l[alpha], IL-1[beta], and types I and II IL-1 receptors, as reported by other laboratories. 23 refs., 1 fig., 1 tab.

  17. Microarray analysis of spaceflown murine thymus tissue reveals changes in gene expression regulating stress and glucocorticoid receptors.

    PubMed

    Lebsack, Ty W; Fa, Vuna; Woods, Chris C; Gruener, Raphael; Manziello, Ann M; Pecaut, Michael J; Gridley, Daila S; Stodieck, Louis S; Ferguson, Virginia L; Deluca, Dominick

    2010-05-15

    The detrimental effects of spaceflight and simulated microgravity on the immune system have been extensively documented. We report here microarray gene expression analysis, in concert with quantitative RT-PCR, in young adult C57BL/6NTac mice at 8 weeks of age after exposure to spaceflight aboard the space shuttle (STS-118) for a period of 13 days. Upon conclusion of the mission, thymus lobes were extracted from space flown mice (FLT) as well as age- and sex-matched ground control mice similarly housed in animal enclosure modules (AEM). mRNA was extracted and an automated array analysis for gene expression was performed. Examination of the microarray data revealed 970 individual probes that had a 1.5-fold or greater change. When these data were averaged (n = 4), we identified 12 genes that were significantly up- or down-regulated by at least 1.5-fold after spaceflight (P < or = 0.05). The genes that significantly differed from the AEM controls and that were also confirmed via QRT-PCR were as follows: Rbm3 (up-regulated) and Hsph110, Hsp90aa1, Cxcl10, Stip1, Fkbp4 (down-regulated). QRT-PCR confirmed the microarray results and demonstrated additional gene expression alteration in other T cell related genes, including: Ctla-4, IFN-alpha2a (up-regulated) and CD44 (down-regulated). Together, these data demonstrate that spaceflight induces significant changes in the thymic mRNA expression of genes that regulate stress, glucocorticoid receptor metabolism, and T cell signaling activity. These data explain, in part, the reported systemic compromise of the immune system after exposure to the microgravity of space. PMID:20213684

  18. The structures of the human neuronal nicotinic acetylcholine receptor ?2- and ?3-subunit genes ( CHRNB2 and CHRNA3 )

    Microsoft Academic Search

    Nicole Rempel; Sibilla Heyers; Hartmut Engels; Eva Sleegers; Ortrud K. Steinlein

    1998-01-01

    The ?4-subunit gene (CHRNA4) of the neuronal nicotinic acetylcholine receptor (nAChR) subunit family has recently been identified in two families as\\u000a the gene responsible for autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE), a rare monogenic idiopathic epilepsy.\\u000a As a result of this finding, other subunits of the neuronal nAChR gene family are being considered as candidate genes for\\u000a ADNFLE in

  19. In vivo hepatic adenoviral gene delivery occurs independently of the coxsackievirus-adenovirus receptor.

    PubMed

    Smith, Theodore; Idamakanti, Neeraja; Kylefjord, Helen; Rollence, Michele; King, Laura; Kaloss, Michele; Kaleko, Michael; Stevenson, Susan C

    2002-06-01

    Systemic administration of adenoviral vectors leads to a widespread distribution of vector. Therefore, targeting of adenoviral vectors to specific tissues or cell types will require methods to ablate the normal tropism of the vector simultaneously with the introduction of new receptor specificities. To inhibit native receptor binding, we mutated residues in the AB loop of the adenovirus type 5 (Ad5) fiber. We genetically incorporated the S408E-P409A mutation, referred to as KO1, into the adenoviral genome alone or in combination with an RGD-targeting ligand in the HI loop of fiber. Transduction experiments confirmed that the KO1 mutation results in a significant reduction in fiber-dependent gene transfer on A549 and primary fibroblast cells that could be restored via the RGD-targeting ligand. Competition transduction experiments verified the receptor-binding properties of each vector on A549 and hepatocytes in vitro. Unexpectedly, in mice systemic delivery of the vector containing the KO1 mutation resulted in efficient liver transduction that was localized specifically to hepatocytes. We confirmed these results in three different mouse strains, indicating that hepatic adenoviral gene transfer may be independent of the coxsackievirus-adenovirus receptor and that in vivo retargeting will require further viral capsid modifications to generate a fully detargeted adenoviral vector upon which to introduce new tropisms. PMID:12027562

  20. Ectopic Expression Screen Identifies Genes Affecting Drosophila Mesoderm Development Including the HSPG Trol

    PubMed Central

    Trisnadi, Nathanie; Stathopoulos, Angelike

    2014-01-01

    Gastrulation of the embryo involves coordinate cell movements likely supported by multiple signaling pathways, adhesion molecules, and extracellular matrix components. Fibroblast growth factors (FGFs) have a major role in Drosophila melanogaster mesoderm migration; however, few other inputs are known and the mechanism supporting cell movement is unclear. To provide insight, we performed an ectopic expression screen to identify secreted or membrane-associated molecules that act to support mesoderm migration. Twenty-four UAS insertions were identified that cause lethality when expressed in either the mesoderm (Twi-Gal4) or the ectoderm (69B-Gal4). The list was narrowed to a subset of 10 genes that were shown to exhibit loss-of-function mutant phenotypes specifically affecting mesoderm migration. These include the FGF ligand Pyramus, ?-integrins, E-cadherin, Cueball, EGFR, JAK/STAT signaling components, as well as the heparan sulfate proteoglycan (HSPG) Terribly reduced optic lobes (Trol). Trol encodes the ortholog of mammalian HSPG Perlecan, a demonstrated FGF signaling cofactor. Here, we examine the role of Trol in Drosophila mesoderm migration and compare and contrast its role with that of Syndecan (Sdc), another HSPG previously implicated in this process. Embryos mutant for Trol or Sdc were obtained and analyzed. Our data support the view that both HSPGs function to support FGF-dependent processes in the early embryo as they share phenotypes with FGF mutants: Trol in terms of effects on mesoderm migration and caudal visceral mesoderm (CVM) migration and Sdc in terms of dorsal mesoderm specification. The differential roles uncovered for these two HSPGs suggest that HSPG cofactor choice may modify FGF-signaling outputs. PMID:25538103

  1. CHROMOSOMAL LOCATION OF THE GENES ENCODING THE LEUKOCYTE ADHESION RECEPTORS LFA-1, Mac-1

    E-print Network

    Springer, Timothy A.

    CHROMOSOMAL LOCATION OF THE GENES ENCODING THE LEUKOCYTE ADHESION RECEPTORS LFA-1, Mac-1 AND p150 of Genetics, Harvard Medical School, Boston, Massachusetts 02115 LFA-1, Mac-1 (CR3), and p150,95 are cell a subunits of M, 180,000 (LFA-la; CDlla), 170,000 (Mac-la; CDllb), or 150,000 (p150,95a; CDllc). LFA-1

  2. Tandem duplications of the FLT3 receptor gene are associated with leukemic transformation of myelodysplasia

    Microsoft Academic Search

    S Horiike; S Yokota; M Nakao; T Iwai; Y Sasai; H Kaneko; M Taniwaki; K Kashima; H Fujii; T Abe; S Misawa

    1997-01-01

    We recently reported an internal tandem duplication of the human flt3 receptor gene (FLT3) as a somatic mutation in 17% of acute myelogenous leukemia (AML). The present study revealed the duplication at the juxtamembrane and the first tyrosine kinase domains of FLT3 in seven of 92 (8%) patients with myelodysplastic syndrome (MDS) and AML with trilineage myelodysplasia (AML\\/TMDS), the diseases

  3. Human somatostatin receptor genes: Localization of SSTR5 to human chromosome 20p11. 2

    SciTech Connect

    Yasuda, K.; Espinosa, R. III; Davis, E.M.; Le Beau, M.M.; Bell, G.I. (Univ. of Chicago, IL (United States))

    1993-09-01

    The gene encoding the somatostatin receptor subtype designated as SSTR5 was mapped to human chromosome 20p11.2 by using fluorescence in situ hybridization to metaphase chromosomes. Fluorescence in situ hybridization using a probe for SSTR5 in combination with probes for neuroendocrine convertase-2 (NEC2), thrombomodulin (THBD), and brain glycogen phosphorylase (PYGB) established a physical order for these loci of 20pter-NEC2-SSTR5-THBD-PYGBcen. 8 refs., 1 fig., 1 tab.

  4. Single-Nucleotide Polymorphism Alleles in the Insulin Receptor Gene Are Associated with Typical Migraine

    Microsoft Academic Search

    Linda C. McCarthy; David A. Hosford; John H. Riley; Michael I. Bird; Nicola J. White; Duncan R. Hewett; Stephen J. Peroutka; Lyn R. Griffiths; Pete R. Boyd; Rod A. Lea; Shahid M. Bhatti; Louise K. Hosking; Chris M. Hood; Keith W. Jones; Abigail R. Handley; Raj Rallan; Karen F. Lewis; Astrid J. M. Yeo; Pauline M. Williams; Richard C. Priest; Parveen Khan; Christine Donnelly; Sheena M. Lumsden; Jennifer O'Sullivan; Chee Gee See; Devi H. Smart; Sue Shaw-Hawkins; Jaymini Patel; Tony C. Langrish; Wasyl Feniuk; Richard G. Knowles; Malcolm Thomas; Vincenzo Libri; Doug S. Montgomery; Penny K. Manasco; Chun-Fang Xu; Colin Dykes; Patrick P. A. Humphrey; Allen D. Roses; Ian J. Purvis

    2001-01-01

    We have identified a migraine locus on chromosome 19p13.3\\/2 using linkage and association analysis. We isolated 48 single-nucleotide polymorphisms within the locus, of which we genotyped 24 in a Caucasian population comprising 827 unrelated cases and 765 controls. Five single-nucleotide polymorphisms within the insulin receptor gene showed significant association with migraine. This association was independently replicated in a case–control population

  5. Evolution of exon 1 of the dopamine D4 receptor (DRD4) gene in primates

    Microsoft Academic Search

    Michael I. Seaman; Fong-Ming Chang; Amos S. Deinard; Kenneth K. Kidd

    2000-01-01

    The dopamine D4 receptor (DRD4) gene exhibits a large amount of expressed polymorphism in humans. To understand the evolutionary history of the first exon of DRD4— which in humans contains a polymorphic 12bp tandem duplication, a polymorphic 13bp deletion, and other rare variants—we examined the homologous exon in thirteen other primate species. The great apes possess a variable number of

  6. Long-Lasting Effects of Stress on Glucocorticoid Receptor Gene Expression in the Rat Brain

    Microsoft Academic Search

    Efthimia Kitraki; Despoina Karandrea; Christos Kittas

    1999-01-01

    Stressful stimuli are known to affect glucocorticoid receptor (GR) mRNA levels in the rat brain. The aim of this study was to examine the duration of chronic stress-induced changes in GR gene expression in the male rat hippocampus and cerebellum. By using in situ hybridization histochemistry, we detected a statistically significant down-regulation of GR mRNA both in the hippocampus and

  7. Relative transcript abundance of oxytocin receptor gene in porcine uterus during luteolysis and early pregnancy

    Microsoft Academic Search

    Agnieszka Oponowicz; Anita Franczak; Beata Kurowicka; Genowefa Kotwica

    2006-01-01

    The aim of the present study was to investigate transcript localization of the oxytocin receptor (OTR) gene in different cells\\u000a of the porcine uterus during luteolysis and early pregnancy (days 14–16) usingin situ hybridization (ISH). OTR mRNA was localized in the uterine luminal epithelium (LEC), glandular epithelium (GEC), stromal\\u000a cells (SC) of the endometrium, in the longitudinal muscle layer (LM)

  8. Nuclear retinoid receptors and the transcription of retinoid-target genes

    Microsoft Academic Search

    Julie Bastien; Cécile Rochette-Egly

    2004-01-01

    The pleiotropic effects of retinoids are mediated by nuclear retinoid receptors (RARs and RXRs) which are ligand-activated transcription factors. In response to retinoid binding, RAR\\/RXR heterodimers undergo major conformational changes and orchestrate the transcription of specific gene networks, through binding to specific DNA response elements and recruiting cofactor complexes that act to modify local chromatin structure and\\/or engage the basal

  9. Mutation in the follicle-stimulating hormone receptor gene causes hereditary hypergonadotropic ovarian failure

    Microsoft Academic Search

    Kristiina Aittomäki; JoséLuis Dieguez Lucena; Pirjo Pakarinen; Pertti Sistonen; Juha Tapanainen; Jörg Gromoll; Riitta Kaskikari; Eeva-Marja Sankila; Heikki Lehväslaiho; Armando Reyes Engel; Eberhard Nieschlag; Ilpo Huhtaniemi; Albert de la Chapelle

    1995-01-01

    Hypergonadotropic ovarian dysgenesis (ODG) with normal karyotype is a heterogeneous condition that in some cases displays Mendelian recessive inheritance. By systematically searching for linkage in multiplex affected families, we mapped a locus for ODG to chromosome 2p. As the previously cloned follicle-stimulating hormone receptor (FSHR) gene had been assigned to 2p, we searched it for mutations. A C566T transition in

  10. DRD4 receptor gene exon III polymorphism in inpatient suicidal adolescents

    Microsoft Academic Search

    G. Zalsman; A. Frisch; R. Lewis; E. Michaelovsky; H. Hermesh; L. Sher; E. Nahshoni; L. Wolovik; S. Tyano; A. Apter; R. Weizman; A. Weizman

    2004-01-01

    Summary. Some studies have suggested possible association of the dopamine receptor subtype 4 (DRD4) gene exon III 48?bp repeat polymorphism with novelty seeking behavior. As suicidal behavior in adolescents is linked to risk taking behavior, we evaluated the association of suicidality with DRD4 polymorphism in Israeli inpatient suicidal adolescents. Sixty-nine inpatient adolescents who recently attempted suicide were assessed by structured

  11. Developmental expression of neurotrophin receptor genes in rat geniculate ganglion neurons

    Microsoft Academic Search

    Albert I. Farbman; Jessica H. Brann; Alexander Rozenblat; M. William Rochlin; Elke Weiler; Mitra Bhattacharyya

    2004-01-01

    Individual neurons dissected from immunohistochemically stained paraffin sections of the developing rat geniculate (VIIth cranial) ganglion were assayed for their content of mRNA of the neurotrophin receptor genes, p75, trkA, trkB and trkC. Fetal and postnatal rats, from the 13th embryonic day (E13) until the 20th postnatal day (P20), were used. Single cells were subjected to RNA amplification, followed by

  12. Dopamine D3 receptor gene and tardive dyskinesia in Chinese schizophrenic patients

    Microsoft Academic Search

    M. M. Garcia-Barceló; L. C. W. Lam; G. S. Ungvari; V. K. L. Lam; W. K. Tang

    2001-01-01

    Summary.   Epidemiological studies have shown a lower prevalence of tardive dyskinesia (TD) among Chinese psychiatric patients compared\\u000a to Caucasian and Black patient populations. It has been hypothesized that pharmacogenetic factors may underlie this cross-cultural\\u000a difference. Due to the important implications of the dopamine D3 receptor gene (DRD3) in motor control, we investigated the\\u000a frequency of polymorphic serine (ser) to glycine

  13. Human Glucocorticoid Receptor Gene Deletion following Exposure to Cancer Chemotherapeutic Drugs and Chemical Mutagens 1

    Microsoft Academic Search

    Lisa A. Palmer; Bharati Hukku; Jeffrey M. Harmon

    1992-01-01

    The sensitivity of the human glucocorticoid receptor (hGR) gene to mutagenesis by the cancer chemotherapeutic drugs adriamycin, bleomy- cin, and chlorambucil was evaluated using glucocorticoid-sensitive (dex s) subciones of the human leukemic cell line CEM-C7. Treatment of cells with either bleomycin or chlorambucil increased the frequency of glucocorticoid-resistant (dex r) clones 3.3- and 10-fold, respectively. Measurement of steroid-binding activity in

  14. The T102C Polymorphism of the 5HT2A-Receptor Gene in Fibromyalgia

    Microsoft Academic Search

    Brigitta Bondy; Michael Spaeth; Martin Offenbaecher; Karin Glatzeder; Thomas Stratz; Markus Schwarz; Sylvia de Jonge; Marc Krüger; Rolf R. Engel; Lothar Färber; Dieter E. Pongratz; Manfred Ackenheil

    1999-01-01

    Based on a possible involvement of serotonergic dysfunction in the pathophysiology of fibromyalgia (FM) and on preliminary reports of a possible genetically driven vulnerability for this disorder we investigated the silent T102C polymorphism of the 5-HT2A-receptor gene in 168 FM patients and 115 healthy controls. Our results showed a significantly different genotype distribution in FM patients with a decrease in

  15. Stage and Tissue-Specific Expression of Ethylene Receptor Homolog Genes during Fruit Development in Muskmelon

    Microsoft Academic Search

    Kumi Sato-Nara; Ken-Ichi Yuhashi; Katsumi Higashi; Kazushige Hosoya; Mitsuru Kubota; Hiroshi Ezura

    1999-01-01

    We isolated two muskmelon (Cucumis melo) cDNA homologs of the Arabidopsis ethylene receptor genes ETR1 and ERS1 and desig- nated them Cm-ETR1 (C. melo ETR1; accession no. AF054806) and Cm-ERS1 (C. melo ERS1; accession no. AF037368), respectively. Northern analysis revealed that the level of Cm-ERS1 mRNA in the pericarp increased in parallel with the increase in fruit size and then

  16. Evidence for androgen receptor gene expression and growth inhibitory effect of dihydrotestosterone on human adrenocortical cells

    Microsoft Academic Search

    R Rossi; M C Zatelli; A Valentini; P Cavazzini; F Fallo

    1998-01-01

    Evidence for the expression of the canonic androgen receptor (AR) in human adrenal cortex has not been provided so far. The aim of the present study was to demonstrate the expression of the AR gene in normal and neoplastic adrenocortical human tissues and in the human adrenocortical cancer cell line, NCI-H295, and then to evaluate the eVect of dihydrotestosterone (DHT)

  17. Repeated Cocaine Administration Induces Gene Expression Changes through the Dopamine D1 Receptors

    Microsoft Academic Search

    Dongsheng Zhang; Lu Zhang; Yang Tang; Qi Zhang; Danwen Lou; Frank R Sharp; Jianhua Zhang; Ming Xu; M Xu

    2005-01-01

    Drug addiction involves compulsive drug-seeking and drug-taking despite known adverse consequences. The enduring nature of drug addiction suggests that repeated exposure to abused drugs leads to stable alterations that likely involve changes in gene expression in the brain. The dopamine D1 receptor has been shown to mediate the long-term behavioral effects of cocaine. To examine how the persistent behavioral effects

  18. Association of GABABR1 Receptor Gene Polymorphism with Obstructive Sleep Apnea Syndrome

    Microsoft Academic Search

    Yildirim A. Bayazit; Oguz Kokturk; M. Emin Erdal; Tansu Ciftci; Tuba Gokdogan; Yusuf Kemaloglu

    2007-01-01

    Objective: GABABR (gamma-amino butyric acid B receptor)-mediated neurotransmission has been implicated in the pathophysiology of a variety of neuropsychiatric disorders. GABABR1 gene variants were identified by single-strand conformation analysis. The nucleotide exchanges cause a substitution of alanine to valine in exon 1a1 (Ala20Val), a substitution of glycine to serine in exon 7 (Gly489Ser) and a silent C to G nucleotide

  19. Susceptibility to Melanoma: Influence of Skin Type and Polymorphism in the Melanocyte Stimulating Hormone Receptor Gene

    Microsoft Academic Search

    Fumiyo Ichii-Jones; John T. Lear; Adrian H. M. Heagerty; Andrew G. Smith; Peter E. Hutchinson; Joy Osborne; Bill Bowers; Peter W. Jones; Eric Davies; William E. R. Ollier; Wendy Thomson; Lillian Yengi; Joanna Bath; Anthony A. Fryer; Richard C. Strange

    1998-01-01

    Allelic variation at the melanocyte stimulating hormone receptor (MC1R) gene has been linked with sun-sensitive skin types, suggesting it is a susceptibility candidate for melanoma. We determined the frequency of the val92met, asp294his, and asp84glu MC1R alleles in 190 Caucasian controls and 306 melanoma cases and studied their association with skin type and hair color. The percentage of controls with

  20. Controlling the chromatin organization of vitamin D target genes by multiple vitamin D receptor binding sites

    Microsoft Academic Search

    Carsten Carlberg; Thomas W. Dunlop; Anna Saramäki; Lasse Sinkkonen; Merja Matilainen; Sami Väisänen

    2007-01-01

    An essential prerequisite for the direct modulation of transcription by 1?,25-dihydroxy vitamin D3 (1?,25(OH)2D3) is the location of at least one activated vitamin D receptor (VDR) protein close to the transcription start site of the respective primary 1?,25(OH)2D3 target gene. This is achieved through the specific binding of VDR to a 1?,25(OH)2D3 response element (VDRE). Although these elements are well

  1. IL1 Receptor Antagonist (IL1RA) Gene Polymorphism in Sjogren's Syndrome and Rheumatoid Arthritis

    Microsoft Academic Search

    S. Perrier; C. Coussediere; J. J. Dubost; E. Albuisson; B. Sauvezie

    1998-01-01

    The gene encoding interleukin-1 receptor antagonist (IL-1ra) has a variable allelic polymorphism. The IL1RN*2 allele was recently described as a factor of severity in several autoimmune diseases and was paradoxically associated with increased production of IL-1ra by monocytesin vitro.We studied this polymorphism in 36 patients with possible or definite primary Sjogren's syndrome and found that IL1RN*2 was significantly more frequent

  2. Endocrine Disrupter Bisphenol A Induces Orphan Nuclear Receptor Nur77 Gene Expression and Steroidogenesis in Mouse Testicular Leydig Cells

    Microsoft Academic Search

    KWANG-HOON SONG; KEESOOK LEE; HUENG-SIK CHOI

    2002-01-01

    The orphan nuclear receptor Nur77 (NR4A1) is a member of the nuclear receptor superfamily, which plays an important role in the regulation of LH-mediated steroidogenesis in tes- ticular Leydig cells. The aim of the current study was to in- vestigate the potential role of bisphenol A (BPA) on orphan nuclear receptor Nur77 gene expression and steroidogenesis. Northern blot analysis demonstrated

  3. Characterization of a honey bee Toll related receptor gene Am18w and its potential involvement in antimicrobial immune defense

    Microsoft Academic Search

    Katherine Aronstein; Eduardo Saldivar

    2005-01-01

    Toll receptors are involved in intracellular signal transduction and initiation of insect antimicrobial immune responses. Here we report the isolation and characterization of a novel gene (Am18w) from honey bee Apis mellifera, which encodes for the Toll-like receptor and shares a striking 51.4% similarity with Bombyx mori 18-wheeler, 46.6% with Drosophila Toll-7 receptor and 42.5% with Drosophila 18-wheeler. The sequence

  4. Determination of transcription initiation sites and promoter activity of the human 5HT 2 A receptor gene

    Microsoft Academic Search

    Jean Chen Shih; Qin-shi Zhu; Kevin Chen

    1995-01-01

    The regulation of 5-HT2A receptor (5-HT2AR) expression has been implicated in a variety of pathological processes. Previous data addressing the regulation of this receptor are extremely complicated and controversial. In order to understand the mechanisms of regulation of this receptor, we have identified the promoter region of the human 5-HT2AR gene. Anchored PCR has mapped a cluster of transcription initiation

  5. Peroxisome Proliferator-Activated Receptor Gamma Activators Inhibit Gene Expression and Migration in Human Vascular Smooth Muscle Cells

    Microsoft Academic Search

    Nikolaus Marx; Uwe Schonbeck; Mitchell A. Lazar; Peter Libby; Jorge Plutzky

    Migration of vascular smooth muscle cells (VSMCs) plays an important role in atherogenesis and restenosis after arterial interventions. The expression of matrix metalloproteinases (MMPs), particularly MMP-9, contributes to VSMC migration. This process requires degradation of basal laminae and other components of the arterial extracellular matrix. Peroxisome proliferator-activated receptors (PPARs), members of the nuclear receptor family, regulate gene expression after activation

  6. Evolutionary Analysis for Functional Divergence of the Toll-Like Receptor Gene Family and Altered Functional Constraints

    Microsoft Academic Search

    Huaijun Zhou; Jianying Gu; Susan J. Lamont; Xun Gu

    2007-01-01

    The Toll-like receptor (TLR) gene family consists of type 1 transmembrane receptors, which play essential roles in both innate\\u000a immunity and adaptive immune response by ligand recognition and signal transduction. Using all available vertebrate TLR protein\\u000a sequences, we inferred the phylogenetic tree and then characterized critical amino acid residues for functional divergence\\u000a by detecting altered functional constraints after gene duplications.

  7. Involvement of preprotachykinin A gene-encoded peptides and the neurokinin 1 receptor in endotoxin-induced murine airway inflammation

    Microsoft Academic Search

    Zsuzsanna Helyes; Krisztián Elekes; Katalin Sándor; István Szitter; László Kereskai; Erika Pintér; Ágnes Kemény; János Szolcsányi; Lynn McLaughlin; Sylvia Vasiliou; Anja Kipar; Andreas Zimmer; Stephen P. Hunt; James P. Stewart; John P. Quinn

    2010-01-01

    Tachykinins encoded by the preprotachykinin A (TAC1) gene such as substance P (SP) and neurokinin A (NKA) are involved in neurogenic inflammatory processes via predominantly neurokinins 1 and 2 (NK1 and NK2) receptor activation, respectively. Endokinins and hemokinins encoded by the TAC4 gene also have remarkable selectivity and potency for the NK1 receptors and might participate in inflammatory cell functions.

  8. Human substance P receptor (NK-1): Organization of the gene, chromosome localization, and functional expression of cDNA clones

    SciTech Connect

    Gerard, N.P.; Paquet, J.L. (Beth Israel Hospital, Boston, MA (United States) Children's Hospital, Boston, MA (United States) Harvard Medical School, Boston, MA (United States)); Garraway, L.A. (Children's Hospital, Boston, MA (United States) Harvard Medical School, Boston, MA (United States)); Eddy, R.L. Jr.; Shows, T.B. (Roswell Park Memorial Inst., Buffalo, NY (United States)); Iijima, Hideya (Children's Hospital, Boston, MA (United States) Harvard School of Public Health, Boston, MA (United States)); Gerard, C. (Children's Hospital, Boston, MA (United States))

    1991-11-05

    The gene for the human substance P receptor (NK-1) was cloned using cDNA probes made by the polymerase chain reaction from primers based on the rat sequence. The gene spans 45-60 kb and is contained in five exons, with introns interrupting at sites homologous to those in the NK-2 receptor gene. Analysis of restriction digests of genomic DNA from mouse/human cell hybrids indicates the NK-1 receptor is a single-copy gene located on human chromosome 2. Polymerase chain reaction using primers based on the 5{prime} and 3{prime} ends of the coding sequence was used to generate full-length cDNAs from human lung and from IM9 lymphoblast cells. When transfected into COS-7 cells, the NK-1 receptor binds {sup 125}I-BHSP with a K{sub d} of 0.35 {plus minus} 0.07 nM and mediates substance P induced phosphatidylinositol metabolism. The receptor is selective for substance P; the relative affinity for neurokinin A and neurokinin B is 100- and 500-fold lower, respectively. Human IM9 lymphoblast cells express relatively high levels of the NK-1 receptor, and Northern blot analysis indicates modulation of mRNA levels by glucocorticoids and growth factors, suggesting that this cell line may be useful as a model for studying the control of NK-1 receptor gene expression.

  9. Isolation and characterization of the brassinosteroid receptor gene (GmBRI1) from Glycine max.

    PubMed

    Wang, Miao; Sun, Shi; Wu, Cunxiang; Han, Tianfu; Wang, Qingyu

    2014-01-01

    Brassinosteroids (BRs) constitute a group of steroidal phytohormones that contribute to a wide range of plant growth and development functions. The genetic modulation of BR receptor genes, which play major roles in the BR signaling pathway, can create semi-dwarf plants that have great advantages in crop production. In this study, a brassinosteroid insensitive gene homologous with AtBRI1 and other BRIs was isolated from Glycine max and designated as GmBRI1. A bioinformatic analysis revealed that GmBRI1 shares a conserved kinase domain and 25 tandem leucine-rich repeats (LRRs) that are characteristic of a BR receptor for BR reception and reaction and bear a striking similarity in protein tertiary structure to AtBRI1. GmBRI1 transcripts were more abundant in soybean hypocotyls and could be upregulated in response to exogenous BR treatment. The transformation of GmBRI1 into the Arabidopsis dwarf mutant bri1-5 restored the phenotype, especially regarding pod size and plant height. Additionally, this complementation is a consequence of a restored BR signaling pathway demonstrated in the light/dark analysis, root inhibition assay and BR-response gene expression. Therefore, GmBRI1 functions as a BR receptor to alter BR-mediated signaling and is valuable for improving plant architecture and enhancing the yield of soybean. PMID:24599079

  10. Sequence Analysis of Bitter Taste Receptor Gene Repertoires in Different Ruminant Species.

    PubMed

    Monteiro Ferreira, Ana; Tomás Marques, Andreia; Bhide, Mangesh; Cubric-Curik, Vlatka; Hollung, Kristin; Knight, Christopher Harold; Raundrup, Katrine; Lippolis, John; Palmer, Mitchell; Sales-Baptista, Elvira; Araújo, Susana Sousa; de Almeida, André Martinho

    2015-01-01

    Bitter taste has been extensively studied in mammalian species and is associated with sensitivity to toxins and with food choices that avoid dangerous substances in the diet. At the molecular level, bitter compounds are sensed by bitter taste receptor proteins (T2R) present at the surface of taste receptor cells in the gustatory papillae. Our work aims at exploring the phylogenetic relationships of T2R gene sequences within different ruminant species. To accomplish this goal, we gathered a collection of ruminant species with different feeding behaviors and for which no genome data is available: American bison, chamois, elk, European bison, fallow deer, goat, moose, mouflon, muskox, red deer, reindeer and white tailed deer. The herbivores chosen for this study belong to different taxonomic families and habitats, and hence, exhibit distinct foraging behaviors and diet preferences. We describe the first partial repertoires of T2R gene sequences for these species obtained by direct sequencing. We then consider the homology and evolutionary history of these receptors within this ruminant group, and whether it relates to feeding type classification, using MEGA software. Our results suggest that phylogenetic proximity of T2R genes corresponds more to the traditional taxonomic groups of the species rather than reflecting a categorization by feeding strategy. PMID:26061084

  11. Mutated human androgen receptor gene detected in a prostatic cancer patient is also activated by estradiol

    SciTech Connect

    Elo, J.P.; Kvist, L.; Leinonen, K.; Isomaa, V. [Univ. of Oulu (Finland)] [and others] [Univ. of Oulu (Finland); and others

    1995-12-01

    Androgens are necessary for the development of prostatic cancer. The mechanisms by which the originally androgen-dependent prostatic cancer cells are relieved of the requirement to use androgen for their growth are largely unknown. The human prostatic cancer cell line LNCaP has been shown to contain a point mutation in the human androgen receptor gene (hAR), suggesting that changes in the hAR may contribute to the abnormal hormone response of prostatic cells. To search for point mutations in the hAR, we used single strand conformation polymorphism analysis and a polymerase chain reaction direct sequencing method to screen 23 prostatic cancer specimens from untreated patients, 6 prostatic cancer specimens from treated patients, and 11 benign prostatic hyperplasia specimens. One mutation was identified in DNA isolated from prostatic cancer tissue, and the mutation was also detected in the leukocyte DNA of the patient and his offspring. The mutation changed codon 726 in exon E from arginine to leucine and was a germ line mutation. The mutation we found in exon E of the hAR gene does not alter the ligand binding specificity of the AR, but the mutated receptor was activated by estradiol to a significantly greater extent than the wild-type receptor. The AR gene mutation described in this study might be one explanation for the altered biological activity of prostatic cancer. 36 refs., 4 figs.

  12. Sequence Analysis of Bitter Taste Receptor Gene Repertoires in Different Ruminant Species

    PubMed Central

    Monteiro Ferreira, Ana; Tomás Marques, Andreia; Bhide, Mangesh; Cubric-Curik, Vlatka; Hollung, Kristin; Knight, Christopher Harold; Raundrup, Katrine; Lippolis, John; Palmer, Mitchell; Sales-Baptista, Elvira; Araújo, Susana Sousa; de Almeida, André Martinho

    2015-01-01

    Bitter taste has been extensively studied in mammalian species and is associated with sensitivity to toxins and with food choices that avoid dangerous substances in the diet. At the molecular level, bitter compounds are sensed by bitter taste receptor proteins (T2R) present at the surface of taste receptor cells in the gustatory papillae. Our work aims at exploring the phylogenetic relationships of T2R gene sequences within different ruminant species. To accomplish this goal, we gathered a collection of ruminant species with different feeding behaviors and for which no genome data is available: American bison, chamois, elk, European bison, fallow deer, goat, moose, mouflon, muskox, red deer, reindeer and white tailed deer. The herbivores chosen for this study belong to different taxonomic families and habitats, and hence, exhibit distinct foraging behaviors and diet preferences. We describe the first partial repertoires of T2R gene sequences for these species obtained by direct sequencing. We then consider the homology and evolutionary history of these receptors within this ruminant group, and whether it relates to feeding type classification, using MEGA software. Our results suggest that phylogenetic proximity of T2R genes corresponds more to the traditional taxonomic groups of the species rather than reflecting a categorization by feeding strategy. PMID:26061084

  13. Evidence for an indirect transcriptional regulation of glucose-6-phosphatase gene expression by liver X receptors

    SciTech Connect

    Grempler, Rolf [Department of Medical Biochemistry and Molecular Biology, University of Greifswald, D-17487 Greifswald (Germany)]. E-mail: rolfgrempler@yahoo.de; Guenther, Susanne [Department of Medical Biochemistry and Molecular Biology, University of Greifswald, D-17487 Greifswald (Germany); Steffensen, Knut R. [Department of Biosciences at NOVUM, Karolinska Institute (Sweden); Nilsson, Maria [Department of Biosciences at NOVUM, Karolinska Institute (Sweden); Barthel, Andreas [Department of Endocrinology, Diabetes and Rheumatology, University of Duesseldorf, D-40225 Duesseldorf (Germany); Schmoll, Dieter [Aventis Pharma, TD Metabolism, Bldg. H825, D-65926 Frankfurt/Main (Germany); Walther, Reinhard [Department of Medical Biochemistry and Molecular Biology, University of Greifswald, D-17487 Greifswald (Germany)

    2005-12-16

    Liver X receptor (LXR) paralogues {alpha} and {beta} (LXR{alpha} and LXR{beta}) are members of the nuclear hormone receptor family and have oxysterols as endogenous ligands. LXR activation reduces hepatic glucose production in vivo through the inhibition of transcription of the key gluconeogenic enzymes phosphoenolpyruvate carboxykinase and glucose-6-phosphatase (G6Pase). In the present study, we investigated the molecular mechanisms involved in the regulation of G6Pase gene expression by LXR. Both T0901317, a synthetic LXR agonist, and the adenoviral overexpression of either LXR{alpha} or LXR{beta} suppressed G6Pase gene expression in H4IIE hepatoma cells. However, compared to the suppression of G6Pase expression seen by insulin, the decrease of G6Pase mRNA by LXR activation was delayed and was blocked by cycloheximide, an inhibitor of protein synthesis. These observations, together with the absence of a conserved LXR-binding element within the G6Pase promoter, suggest an indirect inhibition of G6Pase gene expression by liver X receptors.

  14. Inhibitory effects of azole-type fungicides on interleukin-17 gene expression via retinoic acid receptor-related orphan receptors ? and ?

    SciTech Connect

    Kojima, Hiroyuki, E-mail: kojima@iph.pref.hokkaido.jp [Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo 060-0819 (Japan)] [Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo 060-0819 (Japan); Muromoto, Ryuta; Takahashi, Miki [Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812 (Japan)] [Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812 (Japan); Takeuchi, Shinji [Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo 060-0819 (Japan)] [Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo 060-0819 (Japan); Takeda, Yukimasa; Jetten, Anton M. [National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709 (United States)] [National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709 (United States); Matsuda, Tadashi [Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812 (Japan)] [Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812 (Japan)

    2012-03-15

    The retinoic acid receptor-related orphan receptors ? and ? (ROR? and ROR?), are key regulators of helper T (Th)17 cell differentiation, which is involved in the innate immune system and autoimmune disorders. However, it remains unclear whether environmental chemicals, including pesticides, have agonistic and/or antagonistic activity against ROR?/?. In this study, we investigated the ROR?/? activity of several azole-type fungicides, and the effects of these fungicides on the gene expression of interleukin (IL)-17, which mediates the function of Th17 cells. In the ROR-reporter gene assays, five azole-type fungicides (imibenconazole, triflumizole, hexaconazole, tetraconazole and imazalil) suppressed ROR?- and/or ROR?-mediated transcriptional activity as did benzenesulphonamide T0901317, a ROR inverse agonist and a liver X receptor (LXR) agonist. In particular, imibenconazole, triflumizole and hexaconazole showed ROR? inverse agonistic activity at concentrations of 10{sup ?6} M. However, unlike T0901317, these fungicides failed to show any LXR?/? agonistic activity. Next, five azole-type fungicides, showing ROR inverse agonist activity, were tested on IL-17 mRNA expression in mouse T lymphoma EL4 cells treated with phorbol myristate acetate and ionomycin. The quantitative RT-PCR analysis revealed that these fungicides suppressed the expression of IL-17 mRNA without effecting ROR? and ROR? mRNA levels. In addition, the inhibitory effect of imibenconazole as well as that of T0901317 was absorbed in ROR?/?-knocked down EL4 cells. Taken together, these results suggest that some azole-type fungicides inhibit IL-17 production via ROR?/?. This also provides the first evidence that environmental chemicals can act as modulators of IL-17 expression in immune cells. -- Highlights: ? Nuclear receptors, ROR? and ROR?, are key regulators of Th17 cell differentiation. ? Five azole-type fungicides act as ROR?/? inverse agonists. ? These fungicides suppress the expression of IL-17 mRNA in mouse EL4 cells. ? Environmental chemicals can act as modulators of IL-17 expression via ROR?/?.

  15. Diverse chemicals including aryl hydrocarbon receptor ligands modulate transcriptional activity of the 3'immunoglobulin heavy chain regulatory region.

    PubMed

    Henseler, Rebecca A; Romer, Eric J; Sulentic, Courtney E W

    2009-06-30

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a known disruptor of B-cell differentiation and a ligand for the aryl hydrocarbon receptor (AhR), induces binding of the AhR to dioxin responsive elements (DRE) in sensitive genes. The Ig heavy chain (IgH) gene is a sensitive target of TCDD and may be transcriptionally inhibited by TCDD through inhibition of the 3'IgH transcriptional regulatory region (3'IgHRR). While the 3'IgHRR contains binding sites for several transcription factors, two DRE motifs were also identified which may be responsible for TCDD-induced inhibition of 3'IgHRR activation and may implicate the AhR as an important regulator of IgH expression. The objectives of the present study were to determine if 3'IgHRR modulation is limited to TCDD or if structurally diverse chemicals (AhR ligands and non-AhR ligands) from environmental, industrial, dietary or pharmaceutical origin are also capable of modulating the 3'IgHRR and to verify a correlation between effects on a stable 3'IgHRR reporter and the endogenous IgH protein. Utilizing a CH12.LX mouse B-cell line that stably expresses a 3'IgHRR-regulated transgene, we identified an inhibition of both 3'IgHRR activation and IgH protein expression by the non-dioxin AhR activators indolo(3,2-b)carbazole, primaquine, carbaryl, and omeprazole which followed a rank order potency for AhR activation supporting a role of the AhR in the transcriptional regulation of the 3'IgHRR and IgH expression. However, modulation of the 3'IgHRR and IgH expression was not limited to AhR activators or to suppressive effects. Hydrogen peroxide and terbutaline had an activating effect and benzyl isothiocyanate was inhibitory. These chemicals are not known to influence the AhR signaling pathway but have been previously shown to modulate humoral immunity and/or transcription factors that regulate the 3'IgHRR. Taken together these results implicate the 3'IgHRR as a sensitive immunological target and are the first to identify altered 3'IgHRR activation by a diverse range of chemicals. PMID:19447539

  16. Peroxisome proliferator-activated receptor subtype-specific regulation of hepatic and peripheral gene expression in the zucker diabetic fatty rat

    Microsoft Academic Search

    Sharon L. Dana; Patricia A. Hoener; James M. Bilakovics; Diane L. Crombie; Kathleen M. Ogilvie; Raymond F. Kauffman; Ranjan Mukherjee; James R. Paterniti

    2001-01-01

    Fibrates and thiazolidinediones are used clinically to treat hypertriglyceridemia and hyperglycemia, respectively. Fibrates bind to the peroxisome proliferator-activated receptor (PPAR)-[alpha ], and thiazolidinediones are ligands of PPAR-[gamma ]. These intracellular receptors form heterodimers with retinoid X receptor to modulate gene transcription. To elucidate the target genes regulated by these compounds, we treated Zucker diabetic fatty rats (ZDF) for 15 days

  17. Molecular cloning, expression profile, polymorphism and the genetic effects of the dopamine D1 receptor gene on duck reproductive traits.

    PubMed

    Wang, Cui; Li, Shijun; Li, Chuang; Feng, Yanping; Peng, Xiuli; Gong, Yanzhang

    2012-09-01

    The dopamine D1 receptor (DRD1), a member of the dopamine receptor (DR) gene family, participates in the regulation of reproductive behaviors in birds. In this study, a 1,390 bp fragment covering the complete coding region (CDS) of duck DRD1 gene was obtained. The cDNA (GenBank: JQ346726) contains a 1,353 bp CDS and a 37 bp 3'- UTR including a TGA termination codon (nucleotides 1,354-1,356 bp). The duck DRD1 shares about 76-96 % nucleic acid identity and 82-98 % amino acid identity with their counterparts in other species. A phylogenetic tree based on amino acid sequences displays that duck DRD1 protein is closely related with those of chicken and zebra finch. The quantitative real-time PCR analysis indicates that the DRD1 mRNA is widely expressed in all examined tissues. Five single nucleotide polymorphisms (SNPs) (c.189A > T, c.507C > T, c.681C > T, c.765A > T, c.1044A > G) in the CDS of duck DRD1 gene were indentified, c.681C > T and c.765A > T were genotyped and analyzed in a two generations duck population by using of PCR-RFLP. Association analysis demonstrated that the c.681C > T genotypes were significantly associated with body weight at sexual maturity (when laying their first egg) (P < 0.01), egg production within 360 days (P < 0.05) and 420 days (P < 0.01); the c.765A > T genotypes were significantly associated with egg shape index and egg shell strength (P < 0.05). Those results suggest that the DRD1 gene may be a potential genetic marker to improve some reproductive traits in ducks. PMID:22740132

  18. Multifunctional enhancers regulate mouse and human vitamin D receptor gene transcription.

    PubMed

    Zella, Lee A; Meyer, Mark B; Nerenz, Robert D; Lee, Seong Min; Martowicz, Melissa L; Pike, J Wesley

    2010-01-01

    The vitamin D receptor (VDR) mediates the endocrine actions of 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] and autoregulates the expression of its own gene in target cells. In studies herein, we used chromatin immunoprecipitation-chip analyses to examine further the activities of 1,25(OH)(2)D(3) and to assess the consequences of VDR/retinoid X receptor heterodimer binding at the VDR gene locus. We also explored mechanisms underlying the ability of retinoic acid, dexamethasone, and the protein kinase A activator forskolin to induce VDR up-regulation as well. We confirmed two previously identified intronic 1,25(OH)(2)D(3)-inducible enhancers and discovered two additional regions, one located 6 kb upstream of the VDR transcription start site. Although RNA polymerase II was present at the transcription start site in the absence of 1,25(OH)(2)D(3), it was strikingly up-regulated at both this site and at individual enhancers in its presence. 1,25(OH)(2)D(3) also increased basal levels of H4 acetylation at these enhancers as well. Surprisingly, many of these enhancers were targets for CCAAT enhancer-binding protein-beta and runt-related transcription factor 2; a subset also bound cAMP response element binding protein, retinoic acid receptor, and glucocorticoid receptor. Unexpectedly, many of these factors were resident at the Vdr gene locus in the absence of inducer, suggesting that they might contribute to basal Vdr gene expression. Indeed, small interfering RNA down-regulation of CCAAT enhancer-binding protein-beta suppressed basal VDR expression. These regulatory activities of 1,25(OH)(2)D(3), forskolin, and dexamethasone were recapitulated in MC3T3-E1 cells stably transfected with a full-length VDR bacterial artificial chromosome (BAC) clone-luciferase reporter gene. Finally, 1,25(OH)(2)D(3) also induced accumulation of VDR and up-regulated H4 acetylation at conserved regions in the human VDR gene. These data provide important new insights into VDR gene regulation in bone cells. PMID:19897601

  19. Multifunctional Enhancers Regulate Mouse and Human Vitamin D Receptor Gene Transcription

    PubMed Central

    Zella, Lee A.; Meyer, Mark B.; Nerenz, Robert D.; Lee, Seong Min; Martowicz, Melissa L.; Pike, J. Wesley

    2010-01-01

    The vitamin D receptor (VDR) mediates the endocrine actions of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] and autoregulates the expression of its own gene in target cells. In studies herein, we used chromatin immunoprecipitation-chip analyses to examine further the activities of 1,25(OH)2D3 and to assess the consequences of VDR/retinoid X receptor heterodimer binding at the VDR gene locus. We also explored mechanisms underlying the ability of retinoic acid, dexamethasone, and the protein kinase A activator forskolin to induce VDR up-regulation as well. We confirmed two previously identified intronic 1,25(OH)2D3-inducible enhancers and discovered two additional regions, one located 6 kb upstream of the VDR transcription start site. Although RNA polymerase II was present at the transcription start site in the absence of 1,25(OH)2D3, it was strikingly up-regulated at both this site and at individual enhancers in its presence. 1,25(OH)2D3 also increased basal levels of H4 acetylation at these enhancers as well. Surprisingly, many of these enhancers were targets for CCAAT enhancer-binding protein-? and runt-related transcription factor 2; a subset also bound cAMP response element binding protein, retinoic acid receptor, and glucocorticoid receptor. Unexpectedly, many of these factors were resident at the Vdr gene locus in the absence of inducer, suggesting that they might contribute to basal Vdr gene expression. Indeed, small interfering RNA down-regulation of CCAAT enhancer-binding protein-? suppressed basal VDR expression. These regulatory activities of 1,25(OH)2D3, forskolin, and dexamethasone were recapitulated in MC3T3-E1 cells stably transfected with a full-length VDR bacterial artificial chromosome (BAC) clone-luciferase reporter gene. Finally, 1,25(OH)2D3 also induced accumulation of VDR and up-regulated H4 acetylation at conserved regions in the human VDR gene. These data provide important new insights into VDR gene regulation in bone cells. PMID:19897601

  20. WT1-p53 interactions in insulin-like growth factor-I receptor gene regulation.

    PubMed

    Idelman, Gila; Glaser, Tova; Roberts, Charles T; Werner, Haim

    2003-01-31

    The insulin-like growth factor-I receptor (IGF-IR) plays a critical role in transformation. The expression of the IGF-IR gene is negatively regulated by a number of transcription factors, including the WT1 and p53 tumor suppressors. Previous studies have suggested both physical and functional interactions between the WT1 and p53 proteins. The potential functional interactions between WT1 and p53 in control of IGF-IR promoter activity were addressed by transient coexpression of vectors encoding different isoforms of WT1, together with IGF-IR promoter-luciferase reporter constructs, in p53-null osteosarcoma-derived Saos-2 cells, wild-type p53-expressing kidney tumor-derived G401 cells, and mutant p53-expressing, rhabdomyosarcoma-derived RD cells. Similar studies were also performed to compare p53-expressing Balb/c-3T3 and clonally derived p53-null, (10)1 fibroblasts and the colorectal cancer cell line HCT116 +/+, which expresses a wild-type p53 gene, and its HCT116 -/- derivative, in which the p53 gene has been disrupted by homologous recombination. WT1 splice variants lacking a KTS insert between zinc fingers 3 and 4 suppressed IGF-IR promoter activity in the absence of p53 or in the presence of wild-type p53. WT1 variants that contain the KTS insert are impaired in their ability to bind to the IGF-IR promoter and are unable to suppress IGF-IR promoter. In the presence of mutant p53, WT1 cannot repress the IGF-IR promoter. Coimmunoprecipitation experiments showed that p53 and WT1 physically interact, whereas electrophoretic mobility shift assay studies revealed that p53 modulates the ability of WT1 to bind to the IGF-IR promoter. In summary, the transcriptional activity of WT1 proteins and their ability to function as tumor suppressors or oncogenes depends on the cellular status of p53. PMID:12444079

  1. Variation at Innate Immunity Toll-Like Receptor Genes in a Bottlenecked Population of a New Zealand Robin

    PubMed Central

    Grueber, Catherine E.; Wallis, Graham P.; King, Tania M.; Jamieson, Ian G.

    2012-01-01

    Toll-like receptors (TLRs) are an ancient family of genes encoding transmembrane proteins that bind pathogen-specific molecules and initiate both innate and adaptive aspects of the immune response. Our goal was to determine whether these genes show sufficient genetic diversity in a bottlenecked population to be a useful addition or alternative to the more commonly employed major histocompatibility complex (MHC) genotyping in a conservation genetics context. We amplified all known avian TLR genes in a severely bottlenecked population of New Zealand's Stewart Island robin (Petroica australis rakiura), for which reduced microsatellite diversity was previously observed. We genotyped 17–24 birds from a reintroduced island population (including the 12 founders) for nine genes, seven of which were polymorphic. We observed a total of 24 single-nucleotide polymorphisms overall, 15 of which were non-synonymous, representing up to five amino-acid variants at a locus. One locus (TLR1LB) showed evidence of past directional selection. Results also confirmed a passerine duplication of TLR7. The levels of TLR diversity that we observe are sufficient to justify their further use in addressing conservation genetic questions, even in bottlenecked populations. PMID:23024782

  2. Association between Vitamin D Receptor Gene Polymorphisms and Breast Cancer Risk: A Meta-Analysis of 39 Studies

    PubMed Central

    Zhang, Kai; Song, Lihua

    2014-01-01

    Background The associations between vitamin D receptor (VDR) gene polymorphisms and breast cancer risk were comprehensively investigated to clarify issues that remain controversial. Methodology/Principal Findings An electronic search was conducted of several databases, including PubMed, the Cochrane library, Web of Science, EMBASE, CBM and CNKI, for papers that describe the association between Fok1, poly-A repeat, Bsm1, Taq1 or Apa1 polymorphisms of the VDR gene and breast cancer risk. Summary odds ratios and 95% confidence intervals (CI) were estimated based on a fixed-effect model (FEM) or random-effect model (REM), depending on the absence or presence of significant heterogeneity. A total of 39 studies met the inclusion criteria. A meta-analysis of high-quality studies showed that the Fok1 polymorphism of the VDR gene was associated with an increased risk of breast cancer (ff vs. Ff+FF, OR: 1.09, 95%CI: 1.02 to 1.16, p?=?0.007). No significant associations were observed between the other polymorphisms and breast cancer risk. No positive results were detected by pooling the results of all relevant studies. Conclusion A meta-analysis of high-quality studies demonstrated that the Fok1 polymorphism of the VDR gene was closely associated with breast cancer risk. PMID:24769568

  3. Polymorphisms of the IL1-receptor antagonist gene (IL1RN) are associated with multiple markers of systemic inflammation

    PubMed Central

    Reiner, Alexander P.; Wurfel, Mark M.; Lange, Leslie A.; Carlson, Christopher S.; Nord, Alex S.; Carty, Cara L.; Rieder, Mark J.; Desmarais, Cindy; Jenny, Nancy S.; Iribarren, Carlos; Walston, Jeremy D.; Williams, O. Dale; Nickerson, Deborah A.; Jarvik, Gail P.

    2009-01-01

    Background Circulating levels of acute phase reactant proteins such as plasma C-reactive protein (CRP) are likely influenced by multiple genes regulating the innate immune response. Methods We screened a set of 16 inflammation-related genes for association with CRP in a large, population-based study of healthy young adults (n=1,627). Results were validated in two independent studies (n=1,208 and n=4,310), including a pooled analysis of all 3 studies. Results In the pooled analysis, the minor allele of IL1RN 1018 (rs4251961) within the gene encoding interleukin-1 receptor antagonist (IL-1RA) was significantly associated with higher mean plasma log(CRP) level (p < 1 × 10?4). The same IL1RN 1018 allele was associated with higher mean plasma log(IL-6) levels (p=0.004). In the pooled analysis, the minor allele of IL1RN 13888 (rs2232354) was associated with higher fibrinogen, (p = 0.001). The IL1RN 1018 and 13888 variant alleles tag a clade of IL1RN haplotypes linked to allele 1 of a 86 bp VNTR polymorphism. We confirmed that the IL1RN 1018 variant (rs4251961) was associated with decreased cellular IL-1RA production ex vivo. Conclusions Common functional polymorphisms of the IL1RN gene are associated with several markers of systemic inflammation. PMID:18451331

  4. Thymocyte circular DNA excised from T cell receptor alpha-delta gene complex.

    PubMed Central

    Okazaki, K; Sakano, H

    1988-01-01

    We have characterized thymocyte circular DNA excised from the T cell receptor alpha-delta gene complex. Some delta gene clones contained unusual recombinant structures derived from V-(D)-J joining: (i) a reciprocal joint of direct V to J delta joining, skipping the D delta segment; (ii) a V-D delta coding joint lacking an adjacent D delta-J delta coding joint; (iii) a V- D structure containing two D delta segments. Many of the alpha gen clones contained both coding and reciprocal joints of V alpha-to-J alpha joining on the same structure. Most of these coding joints were out of phase; however, in one clone there was an in-phase V-J alpha structure. Interestingly, some alpha gene clones contained the same V gene sequence as rearranged in the delta gene clone, indicating that the same V gene family, at least in part, could be utilized for both the alpha and delta gene systems. PMID:2971535

  5. Complex Evolution of 7E Olfactory Receptor Genes in Segmental Duplications

    PubMed Central

    Newman, Tera; Trask, Barbara J.

    2003-01-01

    Large segmental duplications (SDs) constitute at least 3.6% of the human genome and have increased its size, complexity, and diversity. SDs can mediate ectopic sequence exchange resulting in gross chromosomal rearrangements that could contribute to speciation and disease. We have identified and evaluated a subset of human SDs that harbor an 88-member subfamily of olfactory receptor (OR)-like genes called the 7Es. At least 92% of these genes appear to be pseudogenes when compared to other OR genes. The 7E-containing SDs (7E SDs) have duplicated to at least 35 regions of the genome via intra- and interchromosomal duplication events. In contrast to many human SDs, the 7E SDs are not biased towards pericentromeric or subtelomeric regions. We find evidence for gene conversion among 7E genes and larger sequence exchange between 7E SDs, supporting the hypothesis that long, highly similar stretches of DNA facilitate ectopic interactions. The complex structure and history of the 7E SDs necessitates extension of the current model of large-scale DNA duplication. Despite their appearance as pseudogenes, some 7E genes exhibit a signature of purifying selection, and at least one 7E gene is expressed. [Supplemental material is available online at www.genome.org.] PMID:12727898

  6. Estrogen receptor-a gene transfer into bovine aortic endothelial cells induces eNOS gene expression and inhibits cell migration

    Microsoft Academic Search

    Enqing Tan; Milind V. Gurjar; Ram V. Sharma; Ramesh C. Bhalla

    Objectives: It has been suggested that estrogen may improve endothelial cell function to delay the onset of atherosclerosis in pre-menopausal females, though its mechanism of action is not fully understood. We examined the hypothesis that human estrogen receptor-a (ERa) gene transfection improves the endothelial cell function. Methods: A replication deficient adenoviral vector was used to transfect the ERa gene into

  7. CHRFAM7A: a human-specific ?7-nicotinic acetylcholine receptor gene shows differential responsiveness of human intestinal epithelial cells to LPS.

    PubMed

    Dang, Xitong; Eliceiri, Brian P; Baird, Andrew; Costantini, Todd W

    2015-06-01

    The human genome contains a unique, distinct, and human-specific ?7-nicotinic acetylcholine receptor (?7nAChR) gene [CHRNA7 (gene-encoding ?7-nicotinic acetylcholine receptor)] called CHRFAM7A (gene-encoding dup-?7-nicotinic acetylcholine receptor) on a locus of chromosome 15 associated with mental illness, including schizophrenia. Located 5' upstream from the "wild-type" CHRNA7 gene that is found in other vertebrates, we demonstrate CHRFAM7A expression in a broad range of epithelial cells and sequenced the CHRFAM7A transcript found in normal human fetal small intestine epithelial (FHs) cells to prove its identity. We then compared its expression to CHRNA7 in 11 gut epithelial cell lines, showed that there is a differential response to LPS when compared to CHRNA7, and characterized the CHRFAM7A promoter. We report that both CHRFAM7A and CHRNA7 gene expression are widely distributed in human epithelial cell lines but that the levels of CHRFAM7A gene expression vary up to 5000-fold between different gut epithelial cells. A 3-hour treatment of epithelial cells with 100 ng/ml LPS increased CHRFAM7A gene expression by almost 1000-fold but had little effect on CHRNA7 gene expression. Mapping the regulatory elements responsible for CHRFAM7A gene expression identifies a 1 kb sequence in the UTR of the CHRFAM7A gene that is modulated by LPS. Taken together, these data establish the presence, identity, and differential regulation of the human-specific CHRFAM7A gene in human gut epithelial cells. In light of the fact that CHRFAM7A expression is reported to modulate ligand binding to, and alter the activity of, the wild-type ?7nAChR ligand-gated pentameric ion channel, the findings point to the existence of a species-specific ?7nAChR response that might regulate gut epithelial function in a human-specific fashion.-Dang, X., Eliceiri, B. P., Baird, A., Costantini, T. W. CHRFAM7A: a human-specific ?7-nicotinic acetylcholine receptor gene shows differential responsiveness of human intestinal epithelial cells to LPS. PMID:25681457

  8. Expanding Duplication of Free Fatty Acid Receptor-2 (GPR43) Genes in the Chicken Genome

    PubMed Central

    Meslin, Camille; Desert, Colette; Callebaut, Isabelle; Djari, Anis; Klopp, Christophe; Pitel, Frédérique; Leroux, Sophie; Martin, Pascal; Froment, Pascal; Guilbert, Edith; Gondret, Florence; Lagarrigue, Sandrine; Monget, Philippe

    2015-01-01

    Free fatty acid receptors (FFAR) belong to a family of five G-protein coupled receptors that are involved in the regulation of lipid metabolism, so that their loss of function increases the risk of obesity. The aim of this study was to determine the expansion of genes encoding paralogs of FFAR2 in the chicken, considered as a model organism for developmental biology and biomedical research. By estimating the gene copy number using quantitative polymerase chain reaction, genomic DNA resequencing, and RNA sequencing data, we showed the existence of 23 ± 1.5 genes encoding FFAR2 paralogs in the chicken genome. The FFAR2 paralogs shared an identity from 87.2% up to 99%. Extensive gene conversion was responsible for this high degree of sequence similarities between these genes, and this concerned especially the four amino acids known to be critical for ligand binding. Moreover, elevated nonsynonymous/synonymous substitution ratios on some amino acids within or in close-vicinity of the ligand-binding groove suggest that positive selection may have reduced the effective rate of gene conversion in this region, thus contributing to diversify the function of some FFAR2 paralogs. All the FFAR2 paralogs were located on a microchromosome in a same linkage group. FFAR2 genes were expressed in different tissues and cells such as spleen, peripheral blood mononuclear cells, abdominal adipose tissue, intestine, and lung, with the highest rate of expression in testis. Further investigations are needed to determine whether these chicken-specific events along evolution are the consequence of domestication and may play a role in regulating lipid metabolism in this species. PMID:25912043

  9. Association of oestrogen receptor gene polymorphism with the long-term results of rotational acetabular osteotomy.

    PubMed

    Yamanaka, Makoto; Ishijima, Muneaki; Tokita, Akifumi; Sakamoto, Yuko; Kaneko, Haruka; Maezawa, Katsuhiko; Nozawa, Masahiko; Kurosawa, Hisashi

    2009-08-01

    Acetabular dysplasia (AD) contributes to the development of osteoarthritis of the hip. A rotational acetabular osteotomy (RAO) is one of the methods of pelvic osteotomy to prevent or treat secondary osteoarthritis of the hip. Although most of the patients that undergo RAO show satisfactory results, some have poor results. This study investigated whether gene polymorphisms of both the vitamin D receptor (VDR) and oestrogen receptor (ER) are involved in both AD and the postoperative results following RAOs. Sixty-four Japanese patients with AD who were treated by an RAO were enrolled in this study (59 women and 5 men, aged 13-59, with an average age of 40.3). Gene polymorphisms of the VDR [ApaI and TaqI restriction fragment length polymorphisms (RFLPs)] and ER (PvuII and XbaI RFLPs) were determined in these patients. The relationship between both the AD and radiographic postoperative changes of the hip joint after an RAO with these gene polymorphisms were examined. The frequencies of ER gene polymorphism coded as pp (RFLP/PvuII) in patients with AD were statistically significantly different (p = .011) from those coded as both PP and Pp. The joint space width narrowed even after RAO in 90% of the patients with the pp gene polymorphism, while it narrowed in only 35% of the patients with either PP or Pp seven years or longer after an RAO. The PvuII polymorphism in the ER gene was associated with the postoperative result of an RAO, while no association was observed between the AD with VDR and ER gene polymorphisms. PMID:19219433

  10. Natural genetic variability of the neuronal nicotinic acetylcholine receptor subunit genes in mice: Consequences and confounds.

    PubMed

    Wilking, Jennifer A; Stitzel, Jerry A

    2015-09-01

    Recent human genetic studies have identified genetic variants in multiple nicotinic acetylcholine receptor (nAChR) subunit genes that are associated with risk for nicotine dependence and other smoking-related measures. Genetic variability also exists in the nAChR subunit genes in mice. Most studies on mouse nAChR subunit gene variability to date have focused on Chrna4, the gene that encodes the ?4 nAChR subunit and Chrna7, the gene that encodes the ?7 nAChR subunit. However, genetic variability exists for all nAChR genes in mice. In this review, we will describe what is known about nAChR subunit gene polymorphisms in mice and how it relates to variability in nAChR expression and function in brain. The relationship between nAChR genetic variability in mice and the effects of nicotine on several behavioral and physiological measures also will be discussed. In addition, an overview of the contribution of other genetic variation to nicotine sensitivity in mice will be provided. Finally, the potential for natural genetic variability to confound and/or modify the results of studies that utilize genetically engineered mice will be considered. As an example of the ability of a natural genetic variant to modify the effect of an engineered mutation, data will be presented that demonstrate that the effect of Chrna5 deletion on oral nicotine intake is dependent upon naturally occurring variant alleles of Chrna4. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'. PMID:25498233

  11. Expanding Duplication of Free Fatty Acid Receptor-2 (GPR43) Genes in the Chicken Genome.

    PubMed

    Meslin, Camille; Desert, Colette; Callebaut, Isabelle; Djari, Anis; Klopp, Christophe; Pitel, Frédérique; Leroux, Sophie; Martin, Pascal; Froment, Pascal; Guilbert, Edith; Gondret, Florence; Lagarrigue, Sandrine; Monget, Philippe

    2015-01-01

    Free fatty acid receptors (FFAR) belong to a family of five G-protein coupled receptors that are involved in the regulation of lipid metabolism, so that their loss of function increases the risk of obesity. The aim of this study was to determine the expansion of genes encoding paralogs of FFAR2 in the chicken, considered as a model organism for developmental biology and biomedical research. By estimating the gene copy number using quantitative polymerase chain reaction, genomic DNA resequencing, and RNA sequencing data, we showed the existence of 23 ± 1.5 genes encoding FFAR2 paralogs in the chicken genome. The FFAR2 paralogs shared an identity from 87.2% up to 99%. Extensive gene conversion was responsible for this high degree of sequence similarities between these genes, and this concerned especially the four amino acids known to be critical for ligand binding. Moreover, elevated nonsynonymous/synonymous substitution ratios on some amino acids within or in close-vicinity of the ligand-binding groove suggest that positive selection may have reduced the effective rate of gene conversion in this region, thus contributing to diversify the function of some FFAR2 paralogs. All the FFAR2 paralogs were located on a microchromosome in a same linkage group. FFAR2 genes were expressed in different tissues and cells such as spleen, peripheral blood mononuclear cells, abdominal adipose tissue, intestine, and lung, with the highest rate of expression in testis. Further investigations are needed to determine whether these chicken-specific events along evolution are the consequence of domestication and may play a role in regulating lipid metabolism in this species. PMID:25912043

  12. Functional roles and gene regulation of tumor necrosis factor receptor 1 in freshwater striped murrel.

    PubMed

    Palanisamy, Rajesh; Kumaresan, Venkatesh; Harikrishnan, Ramasamy; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Arockiaraj, Jesu

    2015-08-01

    In this study, a complete molecular characterization of tumor necrosis factor receptor 1 (TNFR1) which was identified from the constructed cDNA library of striped murrel Channa striatus (Cs) is reported. The CsTNFR1 encoded a type I membrane receptor protein that contains 399 amino acids including three cysteine-rich domains (CRDs) at CRD1(41-46), CRD2(79-118) and CRD3(120-159) in the extracellular region and a putative TNF receptor-associated factor (TRAF) site at 245-253 and a death domain between 297 and 388 in the cytoplasmic region which is essential for induction of apoptosis. The predicted molecular mass of CsTNFR1 is 45kDa and its corresponding theoretical isoelectric point (pI) is 6.3. CsTNFR1 shared maximum identity with TNFR1 from olive flounder Paralichthys olivaceus (82%). Real-time PCR showed that CsTNFR1 gene was expressed most abundantly (P<0.05) in the head kidney. Further, CsTNFR1 mRNA transcription was studied after challenge with fungus Apanomyces invadans and bacteria Aeromonas hydrophila. The fungus injected murrels showed a highest expression at 48h, whereas bacteria injected murrels showed at 24h. The gene expression studies revealed that CsTNFR1 may be involved in innate immune process of murrels against pathogenic infections. The over-expressed and purified recombinant CsTNFR1 protein (rCsTNFR1) was subjected to TNF-? inhibition assay to confirm their specificity and activity against TNF-? which confirmed that the rCsTNFR1 inhibits the activity of TNF-? in a dose dependent manner where maximum inhibition (97%) was observed at 10,000 fold concentration of rCsTNFR1. In addition, the direct cytotoxic effect of rCsTNFR1 was analyzed against head kidney phagocyte. The results showed that the recombinant CsTNFR1 protein does not exhibit any significant cytotoxicity against head kidney phagocyte cells even at higher concentration (8?g/ml). Moreover, the recombinant protein was analyzed for respiratory burst activity in the presence of two different ROS inducers, opsonized zymosan (fungal cell wall component) and phorbol 12-myristate 13-acetate (PMA). The findings showed that the C. striatus head kidney phagocyte exposed to purified recombinant CsTNFR1 protein alone do not produced any ROS. However, opsonized zymosan induced recombinant CsTNFR1 protein significantly (P<0.05) enhanced the ROS production on concentration basis which is revealed that the ROS production depends on the concentration of the recombinant CsTNFR1 protein. Overall, the study showed that the CsTNFR1 plays an important role in the pathogen-induced inflammatory process of striped murrel. PMID:25841174

  13. Lack of Association between rs2067474 Polymorphism in Histamine Receptor H2 Gene and Breast Cancer in Chinese Han Population

    PubMed Central

    Cai, Wen-Ke; Zhang, Jia-Bin; Wang, Niu-Min; Wang, Ying-Lin; Zhao, Can-Hu; He, Gong-Hao

    2015-01-01

    Histamine H2 receptor (HRH2) was previously suggested to affect the proliferation of breast cancer cells and disease-free survival of breast cancer patients. Furthermore, a common polymorphism, rs2067474, was identified in an enhancer element of the HRH2 gene promoter and was reported to be associated with various diseases including cancer. However, the relationship between this polymorphism and breast cancer risk and malignant degree remains unclear. The aim of this study was to clarify the clinical association of rs2067474 polymorphism with breast cancer. A total of 201 unrelated Chinese Han breast cancer patients and 238 ethnicity-matched health controls were recruited and rs2067474 polymorphism was genotyped. Logistic regression analyses were performed to calculate the odds ratios (ORs) as a measure of association of genotype with breast cancer according to 3 genetic models (dominant, recessive, and additive). Although the percentage of hormone receptor negative cases tended to be higher in AA genotypes, we did not find any significant associations of rs2067474 polymorphism with breast cancer risk or with related clinicopathological parameters in the present study, which indicates that rs2067474 polymorphism of HRH2 gene might not be a risk factor in the development of breast cancer in Chinese Han population. PMID:25922853

  14. In vivo analysis of the model tyrosine aminotransferase gene reveals multiple sequential steps in glucocorticoid receptor action.

    PubMed

    Grange, T; Cappabianca, L; Flavin, M; Sassi, H; Thomassin, H

    2001-05-28

    We are studying the mechanisms of transcriptional activation by nuclear receptors and we focus our studies on the glucocorticoid regulation of the model tyrosine aminotransferase gene. Rather than using in vitro biochemical approaches, we determine the actual events occurring in the cells. Our experimental approaches include genomic footprinting, chromatin immunoprecipitation, in situ hybridization and transgenic mice. Our results show that the glucocorticoid receptor uses a dynamic multistep mechanism to recruit successively accessory DNA binding proteins that assist in the activation process. Chromatin is first remodelled, DNA is then demethylated, and the synthesis of an accessory factor is induced. Efficient transcription induction is finally achieved upon the formation of a 'stable' multiprotein complex interacting with the regulatory element. We discuss: the relative contribution of histone acetyltransferases and ATP-dependent remodelling machines to the chromatin remodelling event; the nature of the remodelled state; the contribution of regulated DNA demethylation to gene memory during development; the mechanisms of regulated DNA demethylation; the dynamics of protein recruitment at regulatory elements; the control of the frequency of transcription pulses and the control levels of the cell-type specificity of the glucocorticoid response. PMID:11420718

  15. Regulation of nonclassical renin-angiotensin system receptor gene expression in the adrenal medulla by acute and repeated immobilization stress.

    PubMed

    Nostramo, Regina; Serova, Lidia; Laukova, Marcela; Tillinger, Andrej; Peddu, Chandana; Sabban, Esther L

    2015-03-15

    The involvement of the nonclassical renin-angiotensin system (RAS) in the adrenomedullary response to stress is unclear. Therefore, we examined basal and immobilization stress (IMO)-triggered changes in gene expression of the classical and nonclassical RAS receptors in the rat adrenal medulla, specifically the angiotensin II type 2 (AT2) and type 4 (AT4) receptors, (pro)renin receptor [(P)RR], and Mas receptor (MasR). All RAS receptors were identified, with AT2 receptor mRNA levels being the most abundant, followed by the (P)RR, AT1A receptor, AT4 receptor, and MasR. Following a single IMO, AT2 and AT4 receptor mRNA levels decreased by 90 and 50%, respectively. Their mRNA levels were also transiently decreased by repeated IMO. MasR mRNA levels displayed a 75% transient decrease as well. Conversely, (P)RR mRNA levels were increased by 50% following single or repeated IMO. Because of its abundance, the function of the (P)RR was explored in PC-12 cells. Prorenin activation of the (P)RR increased phosphorylation of extracellular signal-regulated kinase 1/2 and tyrosine hydroxylase at Ser(31), likely increasing its enzymatic activity and catecholamine biosynthesis. Together, the broad and dynamic changes in gene expression of the nonclassical RAS receptors implicate their role in the intricate response of the adrenomedullary catecholaminergic system to stress. PMID:25589013

  16. Association of estrogen receptor ? and estrogen-related receptor ? gene polymorphisms with bone mineral density in postmenopausal women.

    PubMed

    Shoukry, Amira; Shalaby, Sally M; Etewa, Rasha L; Ahmed, Hanan S; Abdelrahman, Hossam M

    2015-07-01

    The aim of the study was to investigate the possible association of AluI and RsaI polymorphisms of estrogen receptor ? (ER-?) gene and 23-bp nucleotide repeat polymorphism of estrogen-related receptor ? (ERR?) gene with bone mineral density (BMD) in postmenopausal Egyptian women. Two-hundred postmenopausal osteoporotic women as cases and 180 healthy age-matched postmenopausal women as controls were genotyped by PCR fragment length polymorphism for AluI, allele-specific PCR for RsaI, and by sizing of PCR products on agarose gels for ERR? repeats. sRANKL levels were estimated by ELISA. BMD measurements for spine and femoral neck were performed by dual energy X-ray absorptiometry. A significant difference between women with osteoporosis and controls regarding allele and genotype distributions of AluI G/A (OR 2.37, 95 % CI 1.77-3.18 and p < 0.001 for A allele) and ERR? polymorphisms (for the two repeats allele OR 2.08, 95 % CI 1.09-4.00, and p = 0.02). Osteoporotic women with the AluI AA + GA genotype or with the EER? 2,2 genotype had significantly lower BMD than did women with the other genotypes. Moreover, there was a significant increase of the mean values of sRANKL in carriers of AluI A, RsaI A alleles and in patients having 2,2 genotypes of ERR? (p < 0.001, p < 0.001, p = 0.02, respectively). We demonstrated an association of ER-? AluI G/A and ERR? 23-repeats polymorphisms with BMD in postmenopausal Egyptian women. A possible effect of ER-? and ERR? polymorphisms on the levels of sRANKL was estimated. PMID:25903400

  17. An atypical case of fragile X syndrome caused by a deletion that includes the FMR-1 gene

    SciTech Connect

    Quan, F.; Johnson, D.B.; Anoe, K.S. [Oregon Health Sciences Univ., Portland OR (United States)] [and others

    1994-09-01

    Fragile X syndrome results from the transcriptional inactivation of the FMR-1 gene. This is commonly caused by the expansion of an unstable CGG trinucleotide repeat in the first exon of the FMR-1 gene. We describe here an atypical case of fragile X syndrome caused by a deletion that includes the FMR-1 gene. RK is a 6-year-old hyperactive, mentally retarded male. Southern analysis of PstI digested genomic DNA was performed using a 558 bp XhoI-PstI fragment specific for the 5`-end of the FMR-1 gene. This analysis revealed the absence of the normal 1.0 kb PstI fragment, indicating the deletion of at least a portion of the FMR-1 gene. PCR analysis using Xq27.3 microsatellite and STS markers confirmed the presence of a deletion of at least 600 kb encompassing the FMR-1 gene. Southern blot and PCR analysis demonstrated that this deletion was maternally transmitted and arose as a new mutation on the grandpaternal X-chromosome. High resolution chromosome banding revealed an extremely small deletion of a portion of band Xq27 which was confirmed by fluorescent in situ hybridrization (FISH) analysis using a 34 kb cosmid containing the FMR-1 gene. As expected, RK manifests physical features typical of fragile X syndrome, including a high arched palate, prognathism, and large ears. Interestingly, RK also presents with anal atresia, obesity and short stature, features not part of fragile X syndrome. In addition, RK has normal sized testicles and does not exhibit the characteristic gaze avoidance, hand-flapping, and crowd anxiety behaviors. These atypical features may result from the deletion of additional genes in the vicinity of the FMR-1 gene. Further work is underway to determine more precisely the extent of the deletion in RK`s DNA.

  18. A novel human lysyl oxidase-like gene (LOXL4) on chromosome 10q24 has an altered scavenger receptor cysteine rich domain

    Microsoft Academic Search

    L. Asuncion; B. Fogelgren; K. S. K. Fong; S. F. T. Fong; Y. Kim; K. Csiszar

    2001-01-01

    We have identified a novel 14-exon human lysyl oxidase-like gene, LOXL4, on chromosome 10q24. The cDNA and derived amino acid sequence of LOXL4 demonstrates a conserved C-terminal region including the characteristic copper-binding site, lysyl and tyrosyl residues and a cytokine receptor-like domain. One of the four N-terminal SRCR domains contains a 13 amino acid insertion encoded by a short exon

  19. Genomic DNA sequence, expression, and chromosomal localization of the human B1 bradykinin receptor gene BDKRB1

    SciTech Connect

    Chai, K.X.; Chao, J.; Chao, L. [Medical Univ. of South Carolina, Charleston, SC (United States)] [and others] [Medical Univ. of South Carolina, Charleston, SC (United States); and others

    1996-01-01

    We have cloned and sequenced the human B1 bradykinin receptor gene (BDKRB1), which contains as uninterrupted coding exon. A putative promoter was identified by linking various lengths of the 5{prime}-flanking region of the B1 receptor gene coding sequence to a CAT reporter and assaying for CAT activity. Deletion analysis showed that a 300-bp fragment in the promoter region is sufficient to direct the synthesis of the reporter and that an enhancer-like element is present between -1842 and -812. A genomic Southern blot using the B1 cDNA revealed that the receptor is encoded by a single-copy gene. The gene is located on chromosome 14q32.1-32.2, in close proximity to the B2 receptor gene. Northern blot analysis identified a 1.7- to 1.8-kb mature mRNA transcript of the B1 receptor gene in the kidney and pancreas. A widespread tissue distribution of the B1 gene expression was identified by RT-PCR-Southern blot analysis using specific oligonucleotide probes. 25 refs., 6 figs.

  20. Targeted mutagenesis of aryl hydrocarbon receptor 2a and 2b genes in Atlantic killifish (Fundulus heteroclitus).

    PubMed

    Aluru, Neelakanteswar; Karchner, Sibel I; Franks, Diana G; Nacci, Diane; Champlin, Denise; Hahn, Mark E

    2015-01-01

    Understanding molecular mechanisms of toxicity is facilitated by experimental manipulations, such as disruption of function by gene targeting, that are especially challenging in non-standard model species with limited genomic resources. While loss-of-function approaches have included gene knock-down using morpholino-modified oligonucleotides and random mutagenesis using mutagens or retroviruses, more recent approaches include targeted mutagenesis using zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology. These latter methods provide more accessible opportunities to explore gene function in non-traditional model species. To facilitate evaluation of toxic mechanisms for important categories of aryl hydrocarbon pollutants, whose actions are known to be receptor mediated, we used ZFN and CRISPR-Cas9 approaches to generate aryl hydrocarbon receptor 2a (AHR2a) and AHR2b gene mutations in Atlantic killifish (Fundulus heteroclitus) embryos. This killifish is a particularly valuable non-traditional model, with multiple paralogs of AHR whose functions are not well characterized. In addition, some populations of this species have evolved resistance to toxicants such as halogenated aromatic hydrocarbons. AHR-null killifish will be valuable for characterizing the role of the individual AHR paralogs in evolved resistance, as well as in normal development. We first used five-finger ZFNs targeting exons 1 and 3 of AHR2a. Subsequently, CRISPR-Cas9 guide RNAs were designed to target regions in exon 2 and 3 of AHR2a and AHR2b. We successfully induced frameshift mutations in AHR2a exon 3 with ZFN and CRISPR-Cas9 guide RNAs, with mutation frequencies of 10% and 16%, respectively. In AHR2b, mutations were induced using CRISPR-Cas9 guide RNAs targeting sites in both exon 2 (17%) and exon 3 (63%). We screened AHR2b exon 2 CRISPR-Cas9-injected embryos for off-target effects in AHR paralogs. No mutations were observed in closely related AHR genes (AHR1a, AHR1b, AHR2a, AHRR) in the CRISPR-Cas9-injected embryos. Overall, our results demonstrate that targeted genome-editing methods are efficient in inducing mutations at specific loci in embryos of a non-traditional model species, without detectable off-target effects in paralogous genes. PMID:25481785

  1. Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis.

    PubMed

    Howe, J R; Bair, J L; Sayed, M G; Anderson, M E; Mitros, F A; Petersen, G M; Velculescu, V E; Traverso, G; Vogelstein, B

    2001-06-01

    Juvenile polyposis (JP; OMIM 174900) is an autosomal dominant gastrointestinal hamartomatous polyposis syndrome in which patients are at risk for developing gastrointestinal cancers. Previous studies have demonstrated a locus for JP mapping to 18q21.1 (ref. 3) and germline mutations in the homolog of the gene for mothers against decapentaplegic, Drosophila, (MADH4, also known as SMAD4) in several JP families. However, mutations in MADH4 are only present in a subset of JP cases, and although mutations in the gene for phosphatase and tensin homolog (PTEN) have been described in a few families, undefined genetic heterogeneity remains. Using a genome-wide screen in four JP kindreds without germline mutations in MADH4 or PTEN, we identified linkage with markers from chromosome 10q22-23 (maximum lod score of 4.74, straight theta=0.00). We found no recombinants using markers developed from the vicinity of the gene for bone morphogenetic protein receptor 1A (BMPR1A), a serine-threonine kinase type I receptor involved in bone morphogenetic protein (BMP) signaling. Genomic sequencing of BMPR1A in each of these JP kindreds disclosed germline nonsense mutations in all affected kindred members but not in normal control individuals. These findings indicate involvement of an additional gene in the transforming growth factor-beta (TGF-beta) superfamily in the genesis of JP, and document an unanticipated function for BMP in colonic epithelial growth control. PMID:11381269

  2. Novel progesterone receptor modulators with gene selective and context-dependent partial agonism.

    PubMed

    Berrodin, Thomas J; Jelinsky, Scott A; Graciani, Nilsa; Butera, John A; Zhang, Zhiming; Nagpal, Sunil; Winneker, Richard C; Yudt, Matthew R

    2009-01-15

    Progesterone receptor (PR) modulators are used in contraception and post-menopausal hormone therapy, and are under clinical development for reproductive disorders such as uterine fibroids and endometriosis. Development of tissue selective PR modulators (SPRMs) with reduced side effects and improved pharmacology represents a large unmet medical need in the area of women's health. One approach to addressing this need is to focus on the two PR isoforms PR-A and PR-B. In vitro and in vivo studies have revealed both distinct as well as overlapping gene regulation and functional responses of the two PR isoforms that suggests that PR-A selective modulators may retain a desired biological profile. We have identified a chemical series of 4-(4-chlorophenyl)-substituted piperazine carbimidothioic acid esters (PCEs) that have partial PR agonist activity and selectively activate some PR-A isoform regulated genes in T47D cells. However, full microarray analysis in these cells does not predict a global isoform selective profile for these compounds, but rather a unique gene-selective profile is observed relative to steroidal progestins. Using multiplexed peptide interaction profiling and co-activator recruitment assays we find that the mechanism of partial agonism is only partly defined by the ability to recruit known co-activators or peptides but also depends on the cell and promoter context of the gene under investigation. The data demonstrate global consequences of mechanistic and functional differences that can lead to selective biological responses of novel steroid receptor modulators. PMID:19013437

  3. Variation within the human killer cell immunoglobulin-like receptor (KIR) gene family.

    PubMed

    Yawata, Makoto; Yawata, Nobuyo; Abi-Rached, Laurent; Parham, Peter

    2002-01-01

    The killer cell immunoglobulin-like receptors (KIR) form a family of highly homologous immune receptors that regulate the response of natural killer (NK) cells and some T cells. The genetics of the human KIR family is reviewed in this article. In human populations, diversity in KIR genotype arises from variations in gene content and allelic polymorphism. Comparisons of 81 human KIR sequences reveal past events ofgene duplication and recombination, and indicate that individual KIR genes have diversified from the influence of natural selection. Comparison and compilation of population studies reveal extensive KIR genotype variability within human populations and among them. Genomic analysis shows the KIR genes to be close to each other and separated by homologous sequences that promote haplotype diversification through assymetric recombination. In contrast, homologous recombination appears favored at a unique sequence in the center of the KIR locus, and much haplotypic diversity can be explained by recombination between a limited number of gene-content motifs in the centromeric and telomeric halves of the locus. The importance of NK cells for early defenses against infection suggests that human KIR genotype diversity is the accumulated consequence of a history of numerous and successive selective episodes by different pathogens on human NK-cell responses. PMID:12803322

  4. Polymorphisms in the Receptor Tyrosine Kinase MERTK Gene Are Associated with Multiple Sclerosis Susceptibility

    PubMed Central

    Ma, Gerry Z. M.; Stankovich, Jim; Kilpatrick, Trevor J.

    2011-01-01

    Multiple sclerosis (MS) is a debilitating, chronic demyelinating disease of the central nervous system affecting over 2 million people worldwide. The TAM family of receptor tyrosine kinases (TYRO3, AXL and MERTK) have been implicated as important players during demyelination in both animal models of MS and in the human disease. We therefore conducted an association study to identify single nucleotide polymorphisms (SNPs) within genes encoding the TAM receptors and their ligands associated with MS. Analysis of genotype data from a genome-wide association study which consisted of 1618 MS cases and 3413 healthy controls conducted by the Australia and New Zealand Multiple Sclerosis Genetics Consortium (ANZgene) revealed several SNPs within the MERTK gene (Chromosome 2q14.1, Accession Number NG_011607.1) that showed suggestive association with MS. We therefore interrogated 28 SNPs in MERTK in an independent replication cohort of 1140 MS cases and 1140 healthy controls. We found 12 SNPs that replicated, with 7 SNPs showing p-values of less than 10?5 when the discovery and replication cohorts were combined. All 12 replicated SNPs were in strong linkage disequilibrium with each other. In combination, these data suggest the MERTK gene is a novel risk gene for MS susceptibility. PMID:21347448

  5. Regional expression and chromosomal localization of the delta opiate receptor gene.

    PubMed Central

    Bzdega, T; Chin, H; Kim, H; Jung, H H; Kozak, C A; Klee, W A

    1993-01-01

    The delta opiate receptor gene has been cloned from the mouse neuroblastoma-rat glioma hybrid cell NG108-15. The clone that we isolated is apparently identical to that reported by Evans et al. [Evans, C. J., Keith, D. E., Jr., Morrison, H., Magendzo, K. & Edwards, R. H. (1992) Science 258, 1952-1955] and essentially identical with that of Kieffer et al. [Kieffer, B. L., Befort, K., Gaveriaux-Ruff, C. & Hirth, C. G. (1992) Proc. Natl. Acad. Sci. USA 89, 12048-12052]. We have found full-length transcripts of the gene in mouse brain but in no other tissues examined. Within the brain the gene is expressed at low levels in many regions but transcripts are found in particularly large amounts in the anterior pituitary and pineal glands. Since these tissues are located outside the blood-brain barrier, opioid peptides easily can reach receptors in these areas from the blood. The gene, which is present as a single copy, has been mapped to the distal region of mouse Chromosome 4. Images Fig. 2 Fig. 3 PMID:8415697

  6. Broad-spectrum analgesic efficacy of IBNtxA is mediated by exon 11-associated splice variants of the mu-opioid receptor gene.

    PubMed

    Wieskopf, Jeffrey S; Pan, Ying-Xian; Marcovitz, Jaclyn; Tuttle, Alexander H; Majumdar, Susruta; Pidakala, John; Pasternak, Gavril W; Mogil, Jeffrey S

    2014-10-01

    ?-Opioids remain vastly important for the treatment of pain, and would represent ideal analgesics if their analgesic effects could be separated from their many side effects. A recently synthesized compound, iodobenzoylnaltrexamide (IBNtxA), acting at 6-transmembrane (6-TM) splice variants of the ?-opioid receptor gene, was shown to have potent analgesic actions against acute, thermal pain accompanied by a vastly improved side-effect profile compared to 7-TM-acting drugs such as morphine. Whether such analgesia can be seen in longer-lasting and nonthermal algesiometric assays is not known. The current study demonstrates potent and efficacious IBNtxA inhibition of a wide variety of assays, including inflammatory and neuropathic hypersensitivity and spontaneous pain. We further demonstrate the dependence of such analgesia on 6-TM ?-opioid receptor variants using isobolographic analysis and the testing of Oprm1 (the ?-opioid receptor gene) exon 11 null mutant mice. Finally, the effect of nerve damage (spared nerve injury) and inflammatory injury (complete Freund's adjuvant) on expression of ?-opioid receptor variant genes in pain-relevant central nervous system loci was examined, revealing a downregulation of the mMOR-1D splice variant in the dorsal root ganglion after spared nerve injury. These findings are supportive of the potential value of 6-TM-acting drugs as novel analgesics. PMID:25093831

  7. Decreased amphetamine-induced locomotion and improved latent inhibition in mice mutant for the M5 muscarinic receptor gene found in the human 15q schizophrenia region.

    PubMed

    Wang, Haoran; Ng, Karen; Hayes, David; Gao, Xiangrong; Forster, Gina; Blaha, Charles; Yeomans, John

    2004-12-01

    M5 muscarinic receptors are coexpressed with D2 dopamine receptors in the ventral tegmentum and striatum, and are important for reward in rodents. Previously, we reported that disruption of the M5 receptor gene in mice reduced dopamine release in the nucleus accumbens. In this study, we established a polymerase chain reaction (PCR) genotyping method for M5 mutant mice, and, using RT-PCR, found that M5 mRNA expression was highest in the ventral tegmentum, striatum, and thalamus in wild-type mice. In the M5 mutant mice, D2 mRNA expression was increased in several brain structures, including the striatum. Genome mapping studies showed the M5 gene is localized to chromosome 2E4 in mice, and to 15q13 in humans in the region that has been linked to schizophrenia. Amphetamine-induced locomotion, but not baseline locomotion or motor functions, decreased in M5 mutant mice, consistent with lower accumbal dopamine release. Previous reports found latent inhibition improvement in rats following nucleus accumbens lesions, or blockade of dopamine D2 receptors with neuroleptic drugs. Here, latent inhibition was significantly increased in M5 mutant mice as compared with controls, consistent with reduced dopamine function in the nucleus accumbens. In summary, our results showed that M5 gene disruption in mice decreased amphetamine-induced locomotion and increased latent inhibition, suggesting that increased M5 mesolimbic function may be relevant to schizophrenia. PMID:15213703

  8. Cell surface modulation of gene expression in brain cells by down regulation of glucocorticoid receptors

    SciTech Connect

    McGinnis, J.F.; de Vellis, J.

    1981-02-01

    The concentration of glycerol-3-phosphate dehydrogenase (GPDH; sn-glycerol-3-phosphate:NAD/sup +/ 2-oxidoreductase, EC 1.1.1.8) had previously been determined to be regulated by glucocorticoids in rat brain cells in vivo and in cell culture. We now demonstrate that concanavalin A (Con A) can inhibit the induction of GPDH in a dose-dependent manner in C6 rat glioma cells and in primary cultures of rat brain oligodendrocytes. The inhibition specifically prevents the appearance of new molecules of GPDH, although Con A does not significantly inhibit protein synthesis in these cells, nor does it affect the activity of another solube enzyme, lactate dehydrogenase. The ability to block enzyme induction is not limited to Con A, because other lectins also inhibit induction. The molecular mechanism by which Con A inhibits GPDH induction appears to be by the down regulation of the cytoplasmic glucocorticoid receptors, because exposure to Con A results in the loss of more than 90% of the receptor activity. Con A does not inhibit the receptor assay and no direct interaction between the receptor and Con A could be demonstrated. This down regulation is not tumor cell specific and appears to be a general phenomenon, because it occurs in normal oligodendrocytes and even in normal astrocytes (a cell type in which the gene for GPDH is not expressed). The down regulation of glucocorticoid receptors in normal brain cells suggests two important corollaries. First, it demonstrates the existence of a rate-limiting step controlling the glucocorticoid-dependent gene expression in brain cells and possibly represents a regulatory site common to all glucocorticoid target cells. Second, it suggests that the response to glucocorticoids of oligodendrocytes and astrocytes can be regulated in vivo by cell surface contact with endogenous lectins, neighboring cells, or both.

  9. Orthologs of human disease associated genes and RNAi analysis of silencing insulin receptor gene in Bombyx mori.

    PubMed

    Zhang, Zan; Teng, Xiaolu; Chen, Maohua; Li, Fei

    2014-01-01

    The silkworm, Bombyx mori L., is an important economic insect that has been domesticated for thousands of years to produce silk. It is our great interest to investigate the possibility of developing the B. mori as human disease model. We searched the orthologs of human disease associated genes in the B. mori by bi-directional best hits of BLAST and confirmed by searching the OrthoDB. In total, 5006 genes corresponding to 1612 kinds of human diseases had orthologs in the B. mori, among which, there are 25 genes associated with diabetes mellitus. Of these, we selected the insulin receptor gene of the B. mori (Bm-INSR) to study its expression in different tissues and at different developmental stages and tissues. Quantitative PCR showed that Bm-INSR was highly expressed in the Malpighian tubules but expressed at low levels in the testis. It was highly expressed in the 3rd and 4th instar larvae, and adult. We knocked down Bm-INSR expression using RNA interference. The abundance of Bm-INSR transcripts were dramatically reduced to ~4% of the control level at 6 days after dsRNA injection and the RNAi-treated B. mori individuals showed apparent growth inhibition and malformation such as abnormal body color in black, which is the typical symptom of diabetic patients. Our results demonstrate that B. mori has potential use as an animal model for diabetic mellitus research. PMID:25302617

  10. Organization of an Arabidopsis thaliana gene cluster on chromosome 4 including the RPS2 gene, in the Brassica nigra genome

    Microsoft Academic Search

    J. Sadowski; C. F. Quiros

    1998-01-01

    Genetic and physical maps, consisting of a large number of DNA markers for Arabidopsis thaliana chromosomes, represent excellent tools to determine the organization of related genomes such as those of Brassica. In this paper we report the chromosomal localization and physical analysis by pulsed-field gel electrophoresis (PFGE) of\\u000a a well-defined gene complex of A. thaliana in the Brassica nigra genome

  11. Association of interleukin-1 receptor antagonist gene polymorphism and susceptibility to human brucellosis.

    PubMed

    Hajilooi, M; Rafiei, A; Reza Zadeh, M; Tajik, N

    2006-10-01

    The aim of this study was to determine the influence of the polymorphism within the intron 2 of the interleukin-1 receptor antagonist gene (IL-1Ra) on the susceptibility to or development of brucellosis. A total of 255 patients with brucellosis and 162 healthy volunteers were genotyped for polymorphisms in intron 2 of the IL-1Ra gene. The frequency of allele 2 of the IL-1Ra gene was significantly higher in patients with brucellosis compared with the controls (24.5% vs 18.5%, P = 0.03). Although the heterozygosity was more prevalent in patients than in control individuals, it did not have any statistical significance (P = 0.1). Alleles 3, 4, and 5 were absent in our study population. This work is the first that verifies a significant association between genetic polymorphism of IL-1Ra and susceptibility to brucellosis. PMID:17026469

  12. Assignment of human thyrotropin-releasing hormone (TRH) receptor gene to chromosome 8

    SciTech Connect

    Yamada, Masanobu; Monden, Tsuyoshi; Konaka, Syuntaro; Mori, Masatomo (Gunma Univ. School of Medicine (Japan))

    1993-11-01

    The human gene encoding thyrotropin-releasing hormone receptor was assigned to chromosome 8, using human-Chinese hamster ovary somatic cell hybrids, analyzed by Southern hybridizations. Hybridization was carried out with a [sup 32]P-labeled fragment of the human TRH-R genomic DNA. Hybridization of this probe to a human specific 10.5-kb DNA fragment of EcoRI-digested WBC DNA was used to localize the human TRH-R gene. No hybridization, by contrast, was seen with this probe and hamster DNA after EcoRI treatment. Results from 18 somatic cell hybrids corroborated unequivocally that the human TRH-R gene can be assigned to human chromosome 8.

  13. Full-Length Sequence of Mouse Acupuncture-Induced 1-L (Aig1l) Gene Including Its Transcriptional Start Site

    PubMed Central

    Ohta, Mika; Sugano, Aki; Goto, Shuji; Yusoff, Surini; Hirota, Yushi; Funakoshi, Kotaro; Miura, Kenji; Maeda, Eiichi; Takaoka, Nobuo; Sato, Nobuko; Ishizuka, Hiroshi; Arizono, Naoki; Nishio, Hisahide; Takaoka, Yutaka

    2011-01-01

    We have been investigating the molecular efficacy of electroacupuncture (EA), which is one type of acupuncture therapy. In our previous molecular biological study of acupuncture, we found an EA-induced gene, named acupuncture-induced 1-L (Aig1l), in mouse skeletal muscle. The aims of this study consisted of identification of the full-length cDNA sequence of Aig1l including the transcriptional start site, determination of the tissue distribution of Aig1l and analysis of the effect of EA on Aig1l gene expression. We determined the complete cDNA sequence including the transcriptional start site via cDNA cloning with the cap site hunting method. We then analyzed the tissue distribution of Aig1l by means of northern blot analysis and real-time quantitative polymerase chain reaction. We used the semiquantitative reverse transcriptase-polymerase chain reaction to examine the effect of EA on Aig1l gene expression. Our results showed that the complete cDNA sequence of Aig1l was 6073?bp long, and the putative protein consisted of 962 amino acids. All seven tissues that we analyzed expressed the Aig1l gene. In skeletal muscle, EA induced expression of the Aig1l gene, with high expression observed after 3 hours of EA. Our findings thus suggest that the Aig1l gene may play a key role in the molecular mechanisms of EA efficacy. PMID:19696195

  14. LIM homeobox gene-dependent expression of biogenic amine receptors in restricted regions of the C. elegans nervous system

    Microsoft Academic Search

    Ephraim L Tsalik; Timothy Niacaris; Adam S Wenick; Kelvin Pau; Leon Avery; Oliver Hobert

    2003-01-01

    Biogenic amines regulate a variety of behaviors. Their functions are predominantly mediated through G-protein-coupled 7-transmembrane domain receptors (GPCR), 16 of which are predicted to exist in the genome sequence of the nematode Caenorhabditis elegans. We describe here the expression pattern of several of these aminergic receptors, including two serotonin receptors (ser-1 and ser-4), one tyramine receptor (ser-2), and two dopamine

  15. p53 gene mutations in human astrocytic brain tumors including pilocytic astrocytomas

    Microsoft Academic Search

    S Patt; H Gries; M Giraldo; J Cervos-Navarro; H Martin; W Jänisch; J Brockmoller

    1996-01-01

    Recent molecular biological studies have shown evidence for a distinct pathogenesis of pilocytic astrocytomas based on alterations other than mutations of the tumor suppressor gene p53. To prove these data, the authors screened a series of 42 astrocytic human brain tumors with a relatively high proportion (16.6%) of the pilocytic variant for the presence of p53 mutations, using the polymerase

  16. T cell receptor V beta gene usage in Guillain-Barré syndrome.

    PubMed

    Khalili-Shirazi, A; Gregson, N A; Hall, M A; Hughes, R A; Lanchbury, J S

    1997-02-12

    We set out to determine whether the T cell receptor (TCR) V beta gene usage in acute inflammatory demyelinating polyradiculoneuropathy (AIDP) is restricted. We separated activated from non-activated peripheral blood T cells with anti-IL2 receptor (anti-CD25) antibody-labelled magnetic beads from four AIDP patients and four normal control (NC) subjects. The TCR V beta gene usage of circulating activated and non-activated T cells was heterogeneous in all the patients and controls, but the activated T cells of all four of the AIDP patients showed a more limited usage of V beta genes and enhanced V beta 15 usage, as compared to the non-activated T cells. This was not seen in the healthy controls. The activated and non-activated T cells from a patient with acute motor and sensory axonal neuropathy (AMSAN) showed a similar V beta gene usage to that of the controls. From a further patient with AIDP, we studied the V beta gene usage of short-term T cell lines reactive to the peripheral nerve myelin proteins P2, P0 and the P0 peptide amino acid sequence 194-208. The V beta gene usage of the lines was heterogeneous, with enhanced usage of V beta 15 in the cell line responsive to the Pzero peptide. We conclude that T cells activated during the immune response associated with AIDP preferentially used V beta 15, which may indicate a restricted response to a common antigen, or a role for an as yet undefined superantigen in the pathogenesis of AIDP. PMID:9094045

  17. Olfactory receptor genes expressed in distinct lineages are sequestered in different nuclear compartments

    PubMed Central

    Yoon, Kyoung-hye; Ragoczy, Tobias; Lu, Zhonghua; Kondoh, Kunio; Kuang, Donghui; Groudine, Mark; Buck, Linda B.

    2015-01-01

    The olfactory system translates a vast array of volatile chemicals into diverse odor perceptions and innate behaviors. Odor detection in the mouse nose is mediated by 1,000 different odorant receptors (ORs) and 14 trace amine-associated receptors (TAARs). ORs are used in a combinatorial manner to encode the unique identities of myriad odorants. However, some TAARs appear to be linked to innate responses, raising questions about regulatory mechanisms that might segregate OR and TAAR expression in appropriate subsets of olfactory sensory neurons (OSNs). Here, we report that OSNs that express TAARs comprise at least two subsets that are biased to express TAARs rather than ORs. The two subsets are further biased in Taar gene choice and their distribution within the sensory epithelium, with each subset preferentially expressing a subgroup of Taar genes within a particular spatial domain in the epithelium. Our studies reveal one mechanism that may regulate the segregation of Olfr (OR) and Taar expression in different OSNs: the sequestration of Olfr and Taar genes in different nuclear compartments. Although most Olfr genes colocalize near large central heterochromatin aggregates in the OSN nucleus, Taar genes are located primarily at the nuclear periphery, coincident with a thin rim of heterochromatin. Taar-expressing OSNs show a shift of one Taar allele away from the nuclear periphery. Furthermore, examination of hemizygous mice with a single Taar allele suggests that the activation of a Taar gene is accompanied by an escape from the peripheral repressive heterochromatin environment to a more permissive interior chromatin environment. PMID:25897022

  18. Amplification of the structurally and functionally altered epidermal growth factor receptor gene (c-erbB) in human brain tumors

    SciTech Connect

    Yamazaki, H.; Fukui, Y.; Ueyama, Y.; Tamaoki, N.; Kawamoto, T.; Taniguchi, S.; Shibuya, M.

    1988-04-01

    By using Southern blot analysis, the authors found that in two cases of human glioblastoma multiforme, cells carried amplified c-erbB genes which bore short deletion mutations within the ligand-binding domain of the epidermal growth factor (EGF) receptor. The products of these mutated c-erB genes were about 30 kilodalton (kDa) smaller than the normal 170-kDa EGF receptor, and the tumor cell membrane fractions containing the 140-kDa abnormal EGF receptor showed a significant elevation of tyrosine kinase activity without its ligand. In view of the similarity to the activated viral and cellular erbB genes in the avian system, these mutated and overexpressed EGF receptors might play a role in the onset or development of human glioblastoma cells.

  19. Androgen receptor (AR) differential roles in hormone-related tumors including prostate, bladder, kidney, lung, breast and liver.

    PubMed

    Chang, C; Lee, S O; Yeh, S; Chang, T M

    2014-06-19

    The androgen receptor (AR) is expressed in many cell types and the androgen/AR signaling has been found to have important roles in modulating tumorigenesis and metastasis in several cancers including prostate, bladder, kidney, lung, breast and liver. However, whether AR has differential roles in the individual cells within these tumors that contain a variety of cell types remains unclear. Generation of AR knockout (ARKO) mouse models with deletion of AR in selective cells within tumors indeed have uncovered many unique AR roles in the individual cell types during cancer development and progression. This review will discuss the results obtained from various ARKO mice and different human cell lines with special attention to the cell type- and tissue-specific ARKO models. The understanding of various results showing the AR indeed has distinct and contrasting roles in each cell type within many hormone-related tumors (as stimulator in bladder, kidney and lung metastases vs as suppressor in prostate and liver metastases) may eventually help us to develop better therapeutic approaches by targeting the AR or its downstream signaling in individual cell types to better battle these hormone-related tumors in different stages. PMID:23873027

  20. Human T-cell receptor v{beta} gene polymorphism and multiple sclerosis

    SciTech Connect

    Wei, S.; Charmley, P.; Birchfield, R.I.; Concannon, P. [Univ. of Washington School of Medicine, Seattle, WA (United States)

    1995-04-01

    Population-based genetic associations have been reported between RFLPs detected with probes corresponding to the genes encoding the {beta} chain of the T-cell receptor for antigen (RCRB) and a variety of autoimmune disorders. In the case of multiple sclerosis (MS), these studies have localized a putative disease-associated gene to a region of {approximately}110 kb in length, located within the TCRB locus. In the current study, all 14 known TCRBV (variable region) genes within the region of localization were mapped and identified. The nucleotide sequences of these genes were determined in a panel of six MS patients and six healthy controls, who were human-leukocyte antigen and TCRB-RFLP haplotype matched. Nine of the 14 TCRBV genes studied showed evidence of polymorphism. PCR-based assays for each of these polymorphic genes were developed, and allele and genotype frequencies were determined in a panel of DNA samples from 48 MS patients and 60 control individuals. No significant differences in allele, genotype, or phenotype frequencies were observed between the MS patients and controls for any of the 14 TCRBV-gene polymorphisms studied. In light of the extensive linkage disequilibrium across the region studied, the saturating numbers of polymorphisms examined, and the direct sequence analysis of all BV genes in the region, these results suggest that it is unlikely that germ-line polymorphism in the TCRBV locus makes a major contribution to MS susceptibility. The TCRBV coding region-specific markers generated in these studies, as well as the approach of testing for associations with specific functionally relevant polymorphic sites within individual BV genes, should be useful in the evaluation of the many reported disease associations involving the human TCRB region. 22 refs., 1 fig., 3 tabs.

  1. Genomic variation in the vomeronasal receptor gene repertoires of inbred mice

    PubMed Central

    2012-01-01

    Background Vomeronasal receptors (VRs), expressed in sensory neurons of the vomeronasal organ, are thought to bind pheromones and mediate innate behaviours. The mouse reference genome has over 360 functional VRs arranged in highly homologous clusters, but the vast majority are of unknown function. Differences in these receptors within and between closely related species of mice are likely to underpin a range of behavioural responses. To investigate these differences, we interrogated the VR gene repertoire from 17 inbred strains of mice using massively parallel sequencing. Results Approximately half of the 6222 VR genes that we investigated could be successfully resolved, and those that were unambiguously mapped resulted in an extremely accurate dataset. Collectively VRs have over twice the coding sequence variation of the genome average; but we identify striking non-random distribution of these variants within and between genes, clusters, clades and functional classes of VRs. We show that functional VR gene repertoires differ considerably between different Mus subspecies and species, suggesting these receptors may play a role in mediating behavioural adaptations. Finally, we provide evidence that widely-used, highly inbred laboratory-derived strains have a greatly reduced, but not entirely redundant capacity for differential pheromone-mediated behaviours. Conclusions Together our results suggest that the unusually variable VR repertoires of mice have a significant role in encoding differences in olfactory-mediated responses and behaviours. Our dataset has expanded over nine fold the known number of mouse VR alleles, and will enable mechanistic analyses into the genetics of innate behavioural differences in mice. PMID:22908939

  2. Interleukin-1 receptor antagonist gene polymorphism and susceptibility to ischemic stroke.

    PubMed

    Rezaii, Ali Akbar; Hoseinipanah, Seyed Mohamad; Hajilooi, Mehrdad; Rafiei, Ali Reza; Shikh, Nasrin; Haidari, Mehran

    2009-01-01

    Cytokines gene polymorphisms have been implicated in susceptibility to ischemic stroke. This study aims to determine the influence of the polymorphism within the intron 2 of the interleukin- 1 receptor antagonist (IL-1Ra) gene on the susceptibility to stroke. A variable number of tandem repeats (VNTR) in intron 2 of the IL-1Ra gene was analyzed in 148 patients with stroke and 161 healthy volunteers from the same area. The carriage rate of allele 2 of IL-1Ra gene, low producer, was significantly higher in patients with stroke compared to the controls (29% vs 21% p = 0.02). Frequency of IL1RN1/IL1RN1 genotype in the patients was significantly lower than the controls (49% vs 66% p = 0.003). The distribution of homozygous genotypes of IL1RN2 was not different between the controls and stroke patients while the heterozygous genotype was more frequent among the patients. (39% vs 25%, respectively). Multiple logistic regression analysis demonstrated that individuals who carry allele 2 for IL-1Ra gene had a significantly higher risk for ischemic stroke with an odds ratio of 2.48 (95% CI, 1.67, 3.51, p = 0.006). These data suggest that allele 2 of the IL-1Ra intron 2 gene represents a susceptibility factor in the development of ischemic stroke. PMID:19811433

  3. Down-regulation of thyroid hormone receptor ?1 gene expression in gastric cancer involves promoter methylation.

    PubMed

    Ling, Yaqin; Shi, Xiangqun; Wang, Yong; Ling, Xiaoling; Li, Qing

    2014-02-01

    Hypermethylation has been shown in the promoter region of the thyroid hormone receptor ?1 (TR?1) gene in several human tumors. However, its role in gastric cancer formation is still unclear. In the study, we analyzed mRNA expression of TR?1 gene using real-time quantitative PCR (qPCR). A quantitative methylation-specific PCR (Q-MSP) assay was used to determine the methylation status of the TR?1 gene promoter region in 46 pair-matched gastric neoplastic and adjacent non-neoplastic tissues. The results showed that TR?1 mRNA expression was significantly reduced in gastric cancer specimens. The methylation of promoter of TR?1 gene in gastric cancer tissues was significantly higher than in adjacent normal tissues. Promoter hypermethylation of the TR?1 gene correlated with tumor infiltration, lymph node metastasis, and distant metastasis, but it was not associated with other clinicopathological characteristics. We treated gastric cancer cell lines MKN-45, MKN-28, SGC-7901, NCI-N87, and SNU-1 with 5-Aza-2-deoxycytidine (5-Aza-dC). The results showed the expression of TR?1 mRNA was increased in MKN-45, MKN-28, SGC-7901, but not increased in NCI-N87 and SNU-1. These results suggest that the TR?1 gene plays important roles in the development of gastric cancer partially through epigenetic mechanisms. PMID:24434154

  4. Hyperinsulinemic hypoglycemia syndrome associated with mutations in the human insulin receptor gene: Report of two cases.

    PubMed

    Kuroda, Yohei; Iwahashi, Hiromi; Mineo, Ikuo; Fukui, Kenji; Fukuhara, Atsunori; Iwamoto, Ryuya; Imagawa, Akihisa; Shimomura, Iichiro

    2015-04-30

    Insulinoma and insulin or insulin receptor (IR) autoantibodies are the main causes of hyperinsulinemic hypoglycemia in adults, but the exact cause in other cases remains obscure. This study is to determine the genetic basis of hyperinsulinemic hypoglycemia in two cases without the above abnormalities. Sequence analysis of IR gene in two patients with adult-onset hyperinsulinemic hypoglycemia and their relatives were performed, and the mutant gene observed in one case was analyzed. Both cases had normal levels of fasting plasma glucose (FPG), fasting hyperinsulinemia, low insulin sensitivity, and hypoglycemia with excessive insulin secretion during oral glucose tolerance test (OGTT). Both reported adult-onset postprandial hypoglycemic symptoms. In one patient, a missense mutation (Arg256Cys) was detected in both alleles of the IR gene, and his parents had the same mutation in only one allele but no hypoglycemia. The other had a novel nonsense mutation (Trp1273X) followed by a mutation (Gln1274Lys) in one allele, and his 9-year old son had the same mutation in one allele, together with hyperinsulinemic hypoglycemia during OGTT. Overexpression experiments of the mutant gene found in Case 1 in mammalian cells showed abnormal processing of the IR protein and demonstrated reduced function of Akt/Erk phosphorylation by insulin in the cells. In two cases of hyperinsulinemic hypoglycemia in adults, we found novel mutations in IR gene considered to be linked to hypoglycemia. We propose a disease entity of adult-onset hyperinsulinemic hypoglycemia syndrome associated with mutations in IR gene. PMID:25753915

  5. Unliganded progesterone receptor-mediated targeting of an RNA-containing repressive complex silences a subset of hormone-inducible genes.

    PubMed

    Vicent, Guillermo Pablo; Nacht, A Silvina; Zaurin, Roser; Font-Mateu, Jofre; Soronellas, Daniel; Le Dily, Francois; Reyes, Diana; Beato, Miguel

    2013-05-15

    A close chromatin conformation precludes gene expression in eukaryotic cells. Genes activated by external cues have to overcome this repressive state by locally changing chromatin structure to a more open state. Although much is known about hormonal gene activation, how basal repression of regulated genes is targeted to the correct sites throughout the genome is not well understood. Here we report that in breast cancer cells, the unliganded progesterone receptor (PR) binds genomic sites and targets a repressive complex containing HP1? (heterochromatin protein 1?), LSD1 (lysine-specific demethylase 1), HDAC1/2, CoREST (corepressor for REST [RE1 {neuronal repressor element 1} silencing transcription factor]), KDM5B, and the RNA SRA (steroid receptor RNA activator) to 20% of hormone-inducible genes, keeping these genes silenced prior to hormone treatment. The complex is anchored via binding of HP1? to H3K9me3 (histone H3 tails trimethylated on Lys 9). SRA interacts with PR, HP1?, and LSD1, and its depletion compromises the loading of the repressive complex to target chromatin-promoting aberrant gene derepression. Upon hormonal treatment, the HP1?-LSD1 complex is displaced from these constitutively poorly expressed genes as a result of rapid phosphorylation of histone H3 at Ser 10 mediated by MSK1, which is recruited to the target sites by the activated PR. Displacement of the repressive complex enables the loading of coactivators needed for chromatin remodeling and activation of this set of genes, including genes involved in apoptosis and cell proliferation. These results highlight the importance of the unliganded PR in hormonal regulation of breast cancer cells. PMID:23699411

  6. Relationship between the CAG Repeat Polymorphism in the Androgen Receptor Gene and Acne in the Han Ethnic Group

    Microsoft Academic Search

    Zhi Yang; Haijing Yu; Baowen Cheng; Wenru Tang; Yongli Dong; Chunjie Xiao; Li He

    2009-01-01

    Background: The modulatory domain of the human androgen receptor (AR) gene contains a polymorphic CAG repeat coding for a polyglutamine tract which is inversely correlated with transcriptional activity of the AR. Androgens acting through the AR play a crucial role in the pathogenesis of acne vulgaris. We therefore investigated the relationship between CAG repeat polymorphism in the AR gene and

  7. Nucleotide sequence variation within the human tyrosine kinase B neurotrophin receptor gene: association with antisocial alcohol dependence

    Microsoft Academic Search

    K Xu; T R Anderson; K M Neyer; N Lamparella; G Jenkins; Z Zhou; Q Yuan; M Virkkunen; R H Lipsky

    2007-01-01

    To identify sequence variants in genes that may have roles in neuronal responses to alcohol, we resequenced the 5? region of tyrosine kinase B neurotrophin receptor gene (NTRK2) and determined linkage disequilibrium (LD) values, haplotype structure, and performed association analyses using 43 single nucleotide polymorphisms (SNPs) covering the entire NTRK2 region in a Finnish Caucasian sample of 229 alcohol-dependent subjects

  8. Androgen receptor gene (CAG)n repeat analysis in the differential diagnosis between Kennedy disease and other motoneuron disorders

    Microsoft Academic Search

    A. Ferlini; M. C. Patrosso; M. Repetto; L. Merlini; A. Uncini; M. Ragno; R. Plasmati; S. Fini; P. Vezzoni; A. Forabosco

    1995-01-01

    An increase in the number of (CAG)n repeats in the first coding exon of the androgen receptor (AR) gene has been strongly associated with Kennedy disease (KD) (spinal and bulbar muscular atrophy). This is an X-linked hereditary disorder characterized by motoneuron degeneration occurring in adults together with gnecomastia and hyperestrogenemia. We have performed AR gene molecular analysis in several members

  9. Multiplex PCR for simultaneous detection of the most frequent T cell receptor-? gene rearrangements in childhood ALL

    Microsoft Academic Search

    T Taube; K Seeger; B Beyermann; C Hanel; S Duda; C Linderkamp; G Henze

    1997-01-01

    A rapid and simple multiplex polymerase chain reaction (PCR) is described that is capable of identifying the six most frequent rearrangements of the T cell receptor (TCR)-? gene segments in childhood acute lymphoblastic leukemia (ALL). The PCR products amplified in a single reaction are of different size for each TCR-? gene rearrangement. Therefore, they are readily and unambiguously distinguished after

  10. Molecular and Cellular Endocrinology 283 (2008) 3848 Auto-regulation of estrogen receptor subtypes and gene expression profiling

    E-print Network

    Xia, Xuhua

    2008-01-01

    induction of liver VTG was observed. In the testes (7 d) and telencephalon (7 d), E2 induced ER conditions. Although aromatase B levels increased in the brain, the majority of candidate genes identified. © 2007 Elsevier Ireland Ltd. All rights reserved. Keywords: Estrogen receptors; Fish; Aromatase; Gene

  11. Identification of a novel mutation in the ryanodine receptor gene (RYR1) in a malignant hyperthermia Italian family

    Microsoft Academic Search

    Giuliana Fortunato; Renata Berruti; Virginia Brancadoro; Morena Fattore; Francesco Salvatore; Antonella Carsana

    2000-01-01

    Malignant hyperthermia (MH) is an inherited autosomal dominant pharmacogenetic disorder and is one of the main causes of death subsequent to anaesthesia. Around 50% of affected families are linked to the ryanodine receptor (RYR1) gene. To date, 19 mutations have been identified in the coding region of this gene and appear to be associated with the MH-susceptible phenotype. Here we

  12. Prednisolone-induced differential gene expression in mouse liver carrying wild type or a dimerization-defective glucocorticoid receptor

    Microsoft Academic Search

    Raoul Frijters; Wilco Fleuren; Erik JM Toonen; Jan P Tuckermann; Holger M Reichardt; Hans van der Maaden; Andrea van Elsas; Marie-Jose van Lierop; Wim Dokter; Jacob de Vlieg; Wynand Alkema

    2010-01-01

    BACKGROUND: Glucocorticoids (GCs) control expression of a large number of genes via binding to the GC receptor (GR). Transcription may be regulated either by binding of the GR dimer to DNA regulatory elements or by protein-protein interactions of GR monomers with other transcription factors. Although the type of regulation for a number of individual target genes is known, the relative

  13. Dopamine D4 receptor signaling in the rat paraventricular hypothalamic nucleus: Evidence of natural coupling involving immediate early gene induction and mitogen activated protein kinase phosphorylation.

    PubMed

    Bitner, Robert S; Nikkel, Arthur L; Otte, Stephani; Martino, Brenda; Barlow, Eve H; Bhatia, Pramila; Stewart, Andrew O; Brioni, Jorge D; Decker, Michael W; Moreland, Robert B

    2006-04-01

    The dopamine D4 receptor has been investigated for its potential role in several CNS disorders, notably schizophrenia and more recently, erectile dysfunction. Whereas studies have investigated dopamine D4 receptor-mediated signaling in vitro, there have been few, if any, attempts to identify dopamine D4 receptor signal transduction pathways in vivo. In the present studies, the selective dopamine D4 agonist PD168077 induces c-Fos expression and extracellular signal regulated kinase (ERK) phosphorylation in the hypothalamic paraventricular nucleus (PVN), a site known to regulate proerectile activity. The selective dopamine D4 receptor antagonist A-381393 blocked both c-Fos expression and ERK1/2 phosphorylation produced by PD168077. In addition, PD168077-induced ERK1/2 phosphorylation was prevented by SL327, an inhibitor of ERK1/2 phosphorylation. Interestingly, treatment with A-381393 alone significantly reduced the amount of Fos immunoreactivity as compared to basal expression observed in vehicle-treated controls. Dopamine D4 receptor and c-Fos coexpression in the PVN was observed using double immunohistochemical labeling, suggesting that PD168077-induced signaling may result from direct dopamine D4 receptor activation. Our results demonstrate functional dopamine D4 receptor expression and natural coupling in the PVN linked to signal transduction pathways that include immediate early gene and MAP kinase activation. Further, the ability of the selective dopamine D4 antagonist A-381393 alone to reduce c-Fos expression below control levels may imply the presence of a tonic dopamine D4 receptor activation under basal conditions in vivo. These findings provide additional evidence that the PVN may be a site of dopamine D4 receptor-mediated proerectile activity. PMID:16324724

  14. Hypermethylation of glucocorticoid receptor gene promoter results in glucocorticoid receptor gene low expression in peripheral blood mononuclear cells of patients with systemic lupus erythematosus.

    PubMed

    Chen, Hongbo; Fan, Junfen; Shou, Qiyang; Zhang, Lizong; Ma, Hongzhen; Fan, Yongsheng

    2015-08-01

    Our aim was to investigate the relationship between the DNA methylation status of glucocorticoid receptor (GR) gene promoter and mRNA expression level of GR? gene of peripheral blood mononuclear cells (PBMCs) in patients with systemic lupus erythematosus (SLE). Fifteen newly emerging SLE patients and fifteen healthy controls were enrolled in this study. DNA and total RNA were extracted from the PBMCs of the SLE patients and healthy controls. The DNA methylation status of GR gene promoter 1 of PBMCs was detected through bisulfite-sequencing PCR. The mRNA expression of GR?, DNA methyltransferases (DNMT1, DNMT3a, DNMT3b) and growth arrest, and DNA damage-induced 45? (GADD45?) of PBMCs was detected using the quantitative real-time polymerase chain reaction method. The mRNA expression of GR? was significantly declined in SLE patients, and the mRNA expression of DNMT1 and GADD45? was significantly elevated in SLE patients. The global methylation status of PBMCs in SLE patients was obviously lower than healthy controls. There were 38, 25, 30, and 49 CpG islands in amplified fragment of GR promoter 1D, 1E, 1F, and 1H, respectively. The overall mean methylation status of the 152 CpG islands of the four promoters was significantly elevated in SLE patients. There was a negative correlation between hypermethylation of GR promoter and GR? mRNA expression in SLE patients. This study demonstrated that hypermethylation of GR? promoter may result in GR? gene low expression in PBMCs of patients with SLE. This study also found that the global methylation status of PBMCs in SLE patients was obviously lower than healthy controls, and it was related to the elevated GADD45? mRNA expression in SLE patients. These conclusions have to be certified by larger-scale clinical studies. PMID:25899090

  15. The expansion of GPCR transactivation-dependent signalling to include serine/threonine kinase receptors represents a new cell signalling frontier.

    PubMed

    Kamato, Danielle; Rostam, Muhamad Ashraf; Bernard, Rebekah; Piva, Terrence J; Mantri, Nitin; Guidone, Daniel; Zheng, Wenhua; Osman, Narin; Little, Peter J

    2015-02-01

    G protein-coupled receptor (GPCR) signalling is mediated through transactivation-independent signalling pathways or the transactivation of protein tyrosine kinase receptors and the recently reported activation of the serine/threonine kinase receptors, most notably the transforming growth factor-? receptor family. Since the original observation of GPCR transactivation of protein tyrosine kinase receptors, there has been considerable work on the mechanism of transactivation and several pathways are prominent. These pathways include the "triple membrane bypass" pathway and the generation of reactive oxygen species. The recent recognition of GPCR transactivation of serine/threonine kinase receptors enormously broadens the GPCR signalling paradigm. It may be predicted that the transactivation of serine/threonine kinase receptors would have mechanistic similarities with transactivation of tyrosine kinase pathways; however, initial studies suggest that these two transactivation pathways are mechanistically distinct. Important questions are the relative importance of tyrosine and serine/threonine transactivation pathways, the contribution of transactivation to overall GPCR signalling, mechanisms of transactivation and the range of cell types in which this phenomenon occurs. The ultimate significance of transactivation-dependent signalling remains to be defined but it appears to be prominent and if so will represent a new cell signalling frontier. PMID:25384733

  16. Change in subcutaneous adipose tissue metabolism and gene network expression during the transition period in dairy cows, including differences due to sire genetic merit.

    PubMed

    Khan, M J; Hosseini, A; Burrell, S; Rocco, S M; McNamara, J P; Loor, J J

    2013-04-01

    Adipose metabolism is an essential contributor to the efficiency of milk production, and metabolism is controlled by several mechanisms, including gene expression of critical proteins; therefore, the objective of this study was to determine how lactational state and the genetic merit of dairy cattle affects adipose tissue (AT) metabolism and mRNA expression of genes known to control metabolism. Animals of high (HGM) and low genetic merit (LGM) were fed to requirements, and weekly dry matter intake, milk production, blood glucose, and nonesterified fatty acids were measured. Subcutaneous AT biopsies were collected at -21, 7, 28 and 56 d in milk (DIM). The mRNA expression of genes coding for lipogenic enzymes [phosphoenolpyruvate carboxykinase 1 (soluble) (PCK1), fatty acid synthase (FASN), diacylglycerol O-acyltransferase 2 (DGAT2), and stearoyl-coenzyme A desaturase (SCD)], transcription regulators [peroxisome proliferator-activated receptor ? (PPARG), thyroid hormone responsive (THRSP), wingless-type MMTV integration site family, member 10B (WNT10B), sterol regulatory element binding transcription factor 1 (SREBF1), and adiponectin (ADIPOQ)], lipolytic enzymes [hormone-sensitive lipase (LIPE), patatin-like phospholipase domain containing 2 (PNPLA2), monoglyceride lipase (MGLL), adrenoceptor ?-2 (ADRB2), adipose differentiation-related protein (ADFP), and ?-?-hydrolase domain containing 5 (ABHD5)], and genes controlling the sensing of intracellular energy [phosphodiesterase 3A (PDE3A); PDE3B; protein kinase, AMP-activated, ?-1 catalytic subunit (PRKAA1); PRKAA2; and growth hormone receptor (GHR)] was measured. Dry matter intake, blood glucose, and nonesterified fatty acid concentrations did not differ between genetic merit groups. Milk production was greater for HGM cows from 6 to 8 wk postpartum. As expected, the rates of lipogenesis decreased in early lactation, whereas stimulated lipolysis increased. At 7 DIM, lipogenesis in HGM cows increased as a function of substrate availability (0.5, 1, 2, 3, 4, or 8mM acetic acid), whereas the response in LGM cows was much less pronounced. However, the lipogenic response at 28 DIM reversed and rates were greater in tissue from LGM than HGM cows. Peak lipolytic response, regardless of DIM, was observed at the lowest dose of isoproterenol (10(-8)M), and -21 d tissue had a greater lipolysis rate than tissue at 7, 28, and 56 d. In HGM compared with LGM cows, stimulated lipolysis at 7 and 28 DIM was greater but peaked at 10(-7)M isoproterenol, suggesting differences in tissue responsiveness due to genetic merit. Regardless of genetic merit, the expression of lipogenic genes decreased markedly in early lactation, whereas those controlling lipolysis stayed similar or decreased slightly. Cows of HGM had lower expression of lipogenic genes after parturition and through 56 DIM. In contrast, the expression of most of the lipolytic enzymes, receptors and proteins was similar in all cows pre- and postpartum. These results confirm that gene transcription is a major control mechanism for AT lipogenesis during early lactation, but that control of lipolysis is likely primarily by posttranslational mechanisms. PMID:23415532

  17. Endocannabinoid Receptors Gene Expression in Morbidly Obese Women with Nonalcoholic Fatty Liver Disease

    PubMed Central

    Auguet, Teresa; Berlanga, Alba; Guiu-Jurado, Esther; Terra, Ximena; Martinez, Salomé; Aguilar, Carmen; Filiu, Elisa; Alibalic, Ajla; Sabench, Fŕtima; Hernández, Mercé; Del Castillo, Daniel; Richart, Cristóbal

    2014-01-01

    Background. Recent reports suggest a role for the endocannabinoid system in the pathology of nonalcoholic fatty liver disease (NAFLD). The aim of this study was to investigate the relationship between liver expression of cannabinoid (CB) receptor subtypes, CB1 and CB2, in morbidly obese (MO) women with different histological stages of NAFLD. Methods. We analysed hepatic CB1 and CB2 mRNA expression, and the expression of genes involved in lipid metabolism in 72 MO women, subclassified by liver histology into MO with normal liver (NL, n = 16), simple steatosis (SS, n = 28), and nonalcoholic steatohepatitis (NASH, n = 28) by enzyme-linked immunosorbent assay and RT-PCR. Results. We found that CB1 mRNA expression was significantly higher in NASH compared with SS and correlated negatively with PPAR?. Regarding CB2, CB2 mRNA expression correlated positively with ACC1, PPAR?, IL6, TNF?, resistin, and adiponectin. Conclusions. The increased expression of CB1 in NASH and the negative correlation with PPAR? suggest a deleterious role of CB1 in NAFLD. Regarding CB2, its positive correlation with the anti-inflammatory molecule adiponectin and, paradoxically, with inflammatory genes suggests that this receptor has a dual role. Taken together, our results suggest that endocannabinoid receptors might be involved in the pathogenesis of NAFLD, a finding which justifies further study. PMID:24864249

  18. The LDL Receptor Gene: A Mosaic of Exons Shared with Different Proteins

    PubMed Central

    Südhof, Thomas C.; Goldstein, Joseph L.; Brown, Michael S.; Russell, David W.

    2015-01-01

    The multifunctional nature of coated pit receptors predicts that these proteins will contain multiple domains. To establish the genetic basis for these domains, we have determined the exon organization of the gene for the low-density lipoprotein (LDL) receptor. This gene is more than 45 kilobases in length and contains 18 exons, most of which correlate with functional domains previously defined at the protein level. Thirteen of the 18 exons encode protein sequences that are homologous to sequences in other proteins: five of these exons encode a sequence similar to one in the C9 component of complement; three exons encode a sequence similar to a repeat sequence in the precursor for epidermal growth factor (EGF) and in three proteins of the blood clotting system (factor IX, factor X, and protein C); and five other exons encode nonrepeated sequences that are shared only with the EGF precursor. The LDL receptor appears to be a mosaic protein built up of exons shared with different proteins, and it therefore belongs to several supergene families. PMID:2988123

  19. Expression of a Drosophila melanogaster acetylcholine receptor-related gene in the central nervous system

    SciTech Connect

    Wadsworth, S.C.; Rosenthal, L.S.; Kammermeyer, K.L.; Potter, M.B.; Nelson, D.J.

    1988-02-01

    The authors isolated Drosophila melanogaster genomic sequences with nucleotide and amino acid sequence homology to subunits of vertebrate acetylcholine receptor by hybridization with a Torpedo acetylcholine receptor subunit cDNA probe. Five introns are present in the portion of the Drosophila gene encoding the unprocessed protein and are positionally conserved relative to the human acetylcholine receptor alpha-subunit gene. The Drosophila genomic clone hybridized to salivary gland polytene chromosome 3L within region 64B and was termed AChR64B. A 3-kilobasae poly(A)-containing transcript complementary to the AChR64B clone was readily detectable by RNA blot hybridizations during midembryogenesis, during metamorphosis, and in newly enclosed adults. AChR64B transcripts were localized to the cellular regions of the central nervous system during embryonic, larval, pupal, and adult stages of development. During metamorphosis, a temporal relationship between the morphogenesis of the optic lobe and expression of AChR64B transcripts was observed.

  20. RNAi mediated knockdown of the ryanodine receptor gene decreases chlorantraniliprole susceptibility in Sogatella furcifera.

    PubMed

    Yang, Yao; Wan, Pin-Jun; Hu, Xing-Xing; Li, Guo-Qing

    2014-01-01

    The diamide insecticides activate ryanodine receptors (RyRs) to release and deplete intracellular calcium stores from the sarcoplasmic reticulum of muscles and the endoplasmic reticulum of many types of cells. They rapidly interrupt feeding of the target pest and eventually kill the pest due to starvation. However, information about the structure and function of insect RyRs is still limited. In this study, we isolated a 15,985bp full-length cDNA (named SfRyR) from Sogatella furcifera, a serious rice planthopper pest throughout Asia. SfRyR encodes a 5140-amino acid protein, which shares 78-97% sequence identities with other insect homologues, and less than 50% identities with Homo sapiens RyR1-3. All hallmarks of the RyR proteins are conserved in SfRyR. In the N-terminus, SfRyR has a MIR domain, two RIH domains, three SPRY domains, four copies of RyR repeated domain and a RIH-associated domain. In the C-terminus, SfRyR possesses two consensus calcium ion-binding EF-hand motifs, and six transmembrane helices. Temporal and spatial expression analysis showed that SfRyR was widely found in all development stages including egg, first through fifth instar nymphs, macropterous adult females and males. On day 2 fifth-instar nymphs, SfRyR was ubiquitously expressed in the head, thorax and abdomen. Dietary ingestion of dsSfRyR1 and dsSfRyR2 significantly reduced the mRNA level of SfRyR in the treated nymphs by 77.9% and 81.8% respectively, and greatly decreased chlorantraniliprole-induced mortality. Thus, our results suggested that SfRyR gene encoded a functional RyR that mediates chlorantraniliprole toxicity to S. furcifera. PMID:24485316

  1. Current evidence on the relationship between rs1256049 polymorphism in estrogen receptor-? gene and cancer risk

    PubMed Central

    Dai, Zhi-Jun; Wang, Bao-Feng; Ma, Yun-Feng; Kang, Hua-Feng; Diao, Yan; Zhao, Yang; Lin, Shuai; Lv, Ye; Wang, Meng; Wang, Xi-Jing

    2014-01-01

    Previous studies have suggested that estrogen receptor-? (ESR2) rs1256049 polymorphism is associated with the susceptibility of cancer. However, the results are inconsistent. We performed a meta-analysis to evaluate the association between the rs1256049 polymorphism and cancer risk. PubMed, ISI Web of Knowledge, and Chinese National Knowledge Infrastructure (CNKI), were searched for eligible studies. The odds ratios (ORs) with 95% confidence interval (CI) were used to assess the strength of association. 22 studies including 22,994 cases and 30,514 controls were identified. There was no significant association between rs1256049 and cancer risk in the overall population. Stratified analysis by ethnicity revealed that the rs1256049 polymorphism was associated with cancer risk in Caucasians (A vs. G: OR = 1.09, 95% CI = 1.01-1.16; GA vs. GG: OR = 1.10, 95% CI = 1.02-1.18; AA+GA vs. GG: OR = 1.09, 95% CI = 1.02-1.17), but not in Asians. Further subgroup analysis by cancer type indicated that the rs1256049 polymorphism may contribute to prostate cancer risk (AA vs. GG: OR = 1.41, 95% CI = 1.02-1.96; AA vs. GG+GA: OR = 1.52, 95% CI = 1.10-2.10), whereas negative results were obtained for breast cancer in any genetic model. This meta-analysis suggested that the ESR2 rs1256049 polymorphism is a candidate gene polymorphism for cancer susceptibility in Caucasians, especially in prostate cancer. PMID:25664002

  2. Parathyroid hormone ablation alters erythrocyte parameters that are rescued by calcium-sensing receptor gene deletion

    PubMed Central

    Romero, Jose R.; Youte, Rodeler; Brown, Edward M.; Pollak, Martin R.; Goltzman, David; Karaplis, Andrew; Pong, Lie-Chin; Chien, Lawrence; Chattopadhyay, Naibedya; Rivera, Alicia

    2013-01-01

    The mechanisms by which parathyroid hormone (PTH) produces anemia, are unclear. Parathyroid hormone secretion is regulated by the extracellular Ca2+-sensing receptor. We investigated the effects of ablating PTH on hematological indices and erythrocytes volume regulation in wild-type, PTH-null and Ca2+-sensing receptor-null/PTH-null mice. The erythrocyte parameters were measured in whole mouse blood and volume regulatory systems were determined by plasma membrane K+ fluxes and osmotic fragility was measured by hemoglobin determination at varying osmolarities. We observed that the absence of PTH significantly increases mean erythrocyte volume and reticulocyte counts, while decreasing erythrocyte counts, hemoglobin, hematocrit, and mean corpuscular hemoglobin concentration. These changes were accompanied by increases in erythrocyte cation content, a denser cell population and increased K+ permeability, which were in part mediated by activation of the K+/Cl? cotransporter and Gardos channel. In addition we observed that erythrocyte osmotic fragility in PTH-null compared with wild-type mice was enhanced. When Ca2+-sensing receptor gene was deleted on the background of PTH-null mice, we observed that several of the alterations in erythrocyte parameters of PTH-null mice were largely rescued, particularly those related to erythrocyte volume, K+ fluxes and osmotic fragility, and became similar to those observed in wild-type mice. Our results demonstrate that Ca2+-sensing receptor and parathyroid hormone are functionally coupled to maintain erythrocyte homeostasis. PMID:23528155

  3. Involvement of calcitonin gene-related peptide and receptor component protein in experimental autoimmune encephalomyelitis

    PubMed Central

    Sardi, Claudia; Zambusi, Laura; Finardi, Annamaria; Ruffini, Francesca; Tolun, Adviye A.; Dickerson, Ian M.; Righi, Marco; Zacchetti, Daniele; Grohovaz, Fabio; Provini, Luciano; Furlan, Roberto; Morara, Stefano

    2015-01-01

    Calcitonin Gene-Related Peptide (CGRP) inhibits microglia inflammatory activation in vitro. We here analyzed the involvement of CGRP and Receptor Component Protein (RCP) in experimental autoimmune encephalomyelitis (EAE). Alpha-CGRP deficiency increased EAE scores which followed the scale alpha-CGRP null > heterozygote > wild type. In wild type mice, CGRP delivery into the cerebrospinal fluid (CSF) 1) reduced chronic EAE (C-EAE) signs, 2) inhibited microglia activation (revealed by quantitative shape analysis), and 3) did not alter GFAP expression, cell density, lymphocyte infiltration, and peripheral lymphocyte production of IFN-gamma, TNF-alpha, IL-17, IL-2, and IL-4. RCP (probe for receptor involvement) was expressed in white matter microglia, astrocytes, oligodendrocytes, and vascular-endothelial cells: in EAE, also in infiltrating lymphocytes. In relapsing–remitting EAE (R-EAE) RCP increased during relapse, without correlation with lymphocyte density. RCP nuclear localization (stimulated by CGRP in vitro) was I) increased in microglia and decreased in astrocytes (R-EAE), and II) increased in microglia by CGRP CSF delivery (C-EAE). Calcitonin like receptor was rarely localized in nuclei of control and relapse mice. CGRP increased in motoneurons. In conclusion, CGRP can inhibit microglia activation in vivo in EAE. CGRP and its receptor may represent novel protective factors in EAE, apparently acting through the differential cell-specific intracellular translocationof RCP. PMID:24746422

  4. An optimized five-gene multi-platform predictor of hormone receptor negative and triple negative breast cancer metastatic risk

    PubMed Central

    2013-01-01

    Introduction Outcome predictors in use today are prognostic only for hormone receptor-positive (HRpos) breast cancer. Although microarray-derived multigene predictors of hormone receptor-negative (HRneg) and/or triple negative (Tneg) breast cancer recurrence risk are emerging, to date none have been transferred to clinically suitable assay platforms (for example, RT-PCR) or validated against formalin-fixed paraffin-embedded (FFPE) HRneg/Tneg samples. Methods Multiplexed RT-PCR was used to assay two microarray-derived HRneg/Tneg prognostic signatures IR-7 and Buck-4) in a pooled FFPE collection of 139 chemotherapy-naďve HRneg breast cancers. The prognostic value of the RT-PCR measured gene signatures were evaluated as continuous and dichotomous variables, and in conditional risk models incorporating clinical parameters. An optimized five-gene index was derived by evaluating gene combinations from both signatures. Results RT-PCR measured IR-7 and Buck-4 signatures proved prognostic as continuous variables; and conditional risk modeling chose nodal status, the IR-7 signature, and tumor grade as significant predictors of distant recurrence (DR). From the Buck-4 and IR-7 signatures, an optimized five-gene (TNFRSF17, CLIC5, HLA-F, CXCL13, XCL2) predictor was generated, referred to as the Integrated Cytokine Score (ICS) based on its functional pathway linkage through interferon-? and IL-10. Across all FFPE cases, the ICS was prognostic as either a continuous or dichotomous variable, and conditional risk modeling selected nodal status and ICS as DR predictors. Further dichotomization of node-negative/ICS-low FFPE cases identified a subset of low-grade HRneg tumors with <10% 5-year DR risk. The prognostic value of ICS was reaffirmed in two previously studied microarray assayed cohorts containing 274 node-negative and chemotherapy naive HRneg breast cancers, including 95 Tneg cases where it proved prognostically independent of Tneg molecular subtyping. In additional HRneg/Tneg microarray assayed cohorts, the five-gene ICS also proved prognostic irrespective of primary tumor nodal status and adjuvant chemotherapy intervention. Conclusion We advanced the measurement of two previously reported microarray-derived HRneg/Tneg breast cancer prognostic signatures for use in FFPE samples, and derived an optimized five-gene Integrated Cytokine Score (ICS) with multi-platform capability of predicting metastatic outcome from primary HRneg/Tneg tumors independent of nodal status, adjuvant chemotherapy use, and Tneg molecular subtype. PMID:24172169

  5. A gene signature identified using a mouse model of androgen receptor-dependent prostate cancer predicts biochemical relapse in human disease.

    PubMed

    Thompson, Vanessa C; Day, Tanya K; Bianco-Miotto, Tina; Selth, Luke A; Han, Guangzhou; Thomas, Mervyn; Buchanan, Grant; Scher, Howard I; Nelson, Colleen C; Greenberg, Norman M; Butler, Lisa M; Tilley, Wayne D

    2012-08-01

    Mutations in the androgen receptor (AR) have been detected in experimental and clinical prostate tumors. Mice with enforced prostate-specific expression of one such receptor variant, AR-E231G, invariably develop prostatic intraepithelial neoplasia by 12 weeks and metastatic prostate cancer by 52 weeks. The aim of this study was to identify genes with altered expression in the prostates of AR-E231G mice at an early stage of disease that may act as drivers of AR-mediated tumorigenesis. The gene expression profile of AR-E231G prostate tissue from 12-week-old mice was compared to an equivalent profile from mice expressing the AR-T857A receptor variant (analogous to the AR-T877A variant in LNCaP cells), which do not develop prostate tumors. One hundred and thirty-two genes were differentially expressed in AR-E231G prostates. Classification of these genes revealed enrichment for cellular pathways known to be involved in prostate cancer, including cell cycle and lipid metabolism. Suppression of two genes upregulated in the AR-E231G model, ADM and CITED1, increased cell death and reduced proliferation of human prostate cancer cells. Many genes differentially expressed in AR-E231G prostates are also deregulated in human tumors. Three of these genes, ID4, NR2F1 and PTGDS, which were expressed at consistently lower levels in clinical prostate cancer compared to nonmalignant tissues, formed a signature that predicted biochemical relapse (hazard ratio 2.2, p = 0.038). We believe that our findings support the value of this novel mouse model of prostate cancer to identify candidate therapeutic targets and/or biomarkers of human disease. PMID:22275114

  6. Southern Blot Patterns, Frequencies, and Junctional Diversity of T-cell Receptor4 Gene Rearrangements in Acute Lymphoblastic Leukemia

    Microsoft Academic Search

    Timo M. Breit; Ingrid L. M. Wolvers-Tettero; Auke Beishuizen; Marie-Anne J. Verhoeven; Elisabeth R. van Wering; Jacques J. M. van Dongen

    1993-01-01

    Southern blot analysis of T-cell receptor (TCR)-6 gene rear- rangements is useful for diagnostic studies on the clonality of lymphoproliferative diseases. We have developed 18 new TCR-8 gene probes by use of the polymerase chain reaction (PCR) techniques. Application of these probes for detailed analysis of the TCR-6 genes in normal control sam- ples, 138 T-cell acute lymphoblastic leukemias (T-ALL),

  7. Gene Expression Patterns Associated with Peroxisome Proliferator-activated Receptor (PPAR) Signaling in the Longissimus dorsi of Hanwoo (Korean Cattle).

    PubMed

    Lim, Dajeong; Chai, Han-Ha; Lee, Seung-Hwan; Cho, Yong-Min; Choi, Jung-Woo; Kim, Nam-Kuk

    2015-08-01

    Adipose tissue deposited within muscle fibers, known as intramuscular fat (IMF or marbling), is a major determinant of meat quality and thereby affects its economic value. The biological mechanisms that determine IMF content are therefore of interest. In this study, 48 genes involved in the bovine peroxisome proliferator-activated receptor signaling pathway, which is involved in lipid metabolism, were investigated to identify candidate genes associated with IMF in the longissimus dorsi of Hanwoo (Korean cattle). Ten genes, retinoid X receptor alpha, peroxisome proliferator-activated receptor gamma (PPARG), phospholipid transfer protein, stearoyl-CoA desaturase, nuclear receptor subfamily 1 group H member 3, fatty acid binding protein 3 (FABP3), carnitine palmitoyltransferase II, acyl-Coenzyme A dehydrogenase long chain (ACADL), acyl-Coenzyme A oxidase 2 branched chain, and fatty acid binding protein 4, showed significant effects with regard to IMF and were differentially expressed between the low- and high-marbled groups (p<0.05). Analysis of the gene co-expression network based on Pearson's correlation coefficients identified 10 up-regulated genes in the high-marbled group that formed a major cluster. Among these genes, the PPARG-FABP4 gene pair exhibited the strongest correlation in the network. Glycerol kinase was found to play a role in mediating activation of the differentially expressed genes. We categorized the 10 significantly differentially expressed genes into the corresponding downstream pathways and investigated the direct interactive relationships among these genes. We suggest that fatty acid oxidation is the major downstream pathway affecting IMF content. The PPARG/RXRA complex triggers activation of target genes involved in fatty acid oxidation resulting in increased triglyceride formation by ATP production. Our findings highlight candidate genes associated with the IMF content of the loin muscle of Korean cattle and provide insight into the biological mechanisms that determine adipose deposition within muscle. PMID:26104514

  8. Association of variation in Fc? receptor 3B gene copy number with rheumatoid arthritis in Caucasian samples

    Microsoft Academic Search

    Cushla McKinney; Manuela Fanciulli; Marilyn E Merriman; Amanda Phipps-Green; Behrooz Z Alizadeh; Bobby P C Koeleman; Nicola Dalbeth; Peter J Gow; Andrew A Harrison; John Highton; Peter B Jones; Lisa K Stamp; Sophia Steer; Pilar Barrera; Marieke J H Coenen; Barbara Franke; Piet L C M van Riel; Tim J Vyse; Tim J Aitman; Timothy R D J Radstake; Tony R Merriman

    2010-01-01

    ObjectiveThere is increasing evidence that variation in gene copy number (CN) influences clinical phenotype. The low-affinity Fc? receptor 3B (FCGR3B) located in the FCGR gene cluster is a CN polymorphic gene involved in the recruitment to sites of inflammation and activation of polymorphonuclear neutrophils (PMNs). Given recent evidence that low FCGR3B CN is a risk factor for systemic but not

  9. Role of the aromatic hydrocarbon receptor and [ Ah] gene battery in the oxidative stress response, cell cycle control, and apoptosis

    Microsoft Academic Search

    Daniel W Nebert; Amy L Roe; Matthew Z Dieter; Willy A Solis; Yi Yang; Timothy P Dalton

    2000-01-01

    The chronology and history of characterizing the aromatic hydrocarbon [Ah] battery is reviewed. This battery represents the Ah receptor (AHR)-mediated control of at least six, and probably many more, dioxin-inducible genes; two cytochrome P450 genes—P450 1A1 and 1A2 (Cyp1a1, Cyp1a2)—and four non-P450 genes, have experimentally been documented to be members of this battery. Metabolism of endogenous and exogenous substrates by

  10. Molecular signatures of estrogen receptor-associated genes in breast cancer predict clinical outcome.

    PubMed

    Wittliff, James L; Kruer, Traci L; Andres, Sarah A; Smolenkova, Irina

    2008-01-01

    Our goal is to identify new molecular targets for drug design and improve understanding of the molecular basis of clinical behavior and therapeutic response of breast cancer (BC). Pure populations of BC cells were procured by laser capture microdissection (LCM) from deidentified tissue specimens. RNA from either LCM-procured cells or whole tissue sections was extracted, purified, and quantified by RT-qPCR using beta-actin for relative quantification. RNA was amplified, Cy5-labeled, and hybridized for microarray. Spectrophotometric and BioAnalyzer analyses evaluated aRNA yield, purity, and transcript length for gene microarray. Unsupervised and supervised methods selected 7,000 genes with significant variation. Expression profiles of BC cells were dominated by genes associated with estrogen receptor-alpha (ERalpha) status; over 3,000 genes were identified as differentially expressed between ERalpha+ and ERalpha(-) BC cells. Other prominent gene expression patterns divided ERalpha+ BCs into subgroups, which were associated with significantly different clinical outcomes (p < 0.01). While exploiting larger gene sets derived from LCM-cells and reports using whole tissues, a preliminary 14 gene subset was selected by UniGene Cluster analysis. Additionally, ERE-binding proteins (ERE-BP) were detected by EMSA, which were not recognized by ERa antibodies. Kaplan-Meier analysis indicated that patients with ERE-BP positive BCs had lower over-all survival than those with ERE-BP negative cancers. Collectively, these results will establish molecular signatures for assessing clinical features of BC and aid in the selection of molecular targets for drug development. PMID:18497058

  11. Vampire bats exhibit evolutionary reduction of bitter taste receptor genes common to other bats.

    PubMed

    Hong, Wei; Zhao, Huabin

    2014-08-01

    The bitter taste serves as an important natural defence against the ingestion of poisonous foods and is thus believed to be indispensable in animals. However, vampire bats are obligate blood feeders that show a reduced behavioural response towards bitter-tasting compounds. To test whether bitter taste receptor genes (T2Rs) have been relaxed from selective constraint in vampire bats, we sampled all three vampire bat species and 11 non-vampire bats, and sequenced nine one-to-one orthologous T2Rs that are assumed to be functionally conserved in all bats. We generated 85 T2R sequences and found that vampire bats have a significantly greater percentage of pseudogenes than other bats. These results strongly suggest a relaxation of selective constraint and a reduction of bitter taste function in vampire bats. We also found that vampire bats retain many intact T2Rs, and that the taste signalling pathway gene Calhm1 remains complete and intact with strong functional constraint. These results suggest the presence of some bitter taste function in vampire bats, although it is not likely to play a major role in food selection. Together, our study suggests that the evolutionary reduction of bitter taste function in animals is more pervasive than previously believed, and highlights the importance of extra-oral functions of taste receptor genes. PMID:24966321

  12. Molecular Characterization and Tissue Distribution of Estrogen Receptor Genes in Domestic Yak

    PubMed Central

    Fu, Mei; Xiong, Xian-Rong; Lan, Dao-liang; Li, Jian

    2014-01-01

    Estrogen and its receptors are essential hormones for normal reproductive function in males and females during developmental stage. To better understand the effect of estrogen receptor (ER) gene in yak (Bos grunniens), reverse transcription-polymerase chain reaction (PCR) was carried out to clone ER? and ER? genes. Bioinformatics methods were used to analyze the evolutionary relationship between yaks and other species, and real-time PCR was performed to identify the mRNA expression of ER? and ER?. Sequence analysis showed that the ER open reading frames (ORFs) encoded 596 and 527 amino acid proteins. The yak ER? and ER? shared 45.3% to 99.5% and 53.9% to 99.1% protein sequence identities with other species homologs, respectively. Real-time PCR analysis revealed that ER? and ER? were expressed in a variety of tissues, but the expression level of ER? was higher than that of ER? in all tissues, except testis. The mRNA expression of ER? was highest in the mammary gland, followed by uterus, oviduct, and ovary, and lowest in the liver, kidney, lung, testis, spleen, and heart. The ER? mRNA level was highest in the ovary; intermediary in the uterus and oviduct; and lowest in the heart, liver, spleen, lung, kidney, mammary gland, and testis. The identification and tissue distribution of ER genes in yaks provides a foundation for the further study on their biological functions. PMID:25358360

  13. Orphan nuclear receptor Nur77 participates in human apolipoprotein A5 gene expression

    SciTech Connect

    Song, Kwang-Hoon, E-mail: ksong@kiom.re.kr [Korea Institute of Oriental Medicine, Daejeon 305-811 (Korea, Republic of)] [Korea Institute of Oriental Medicine, Daejeon 305-811 (Korea, Republic of)

    2010-01-29

    The orphan nuclear receptor Nur77 (NR4A1) has been reported to play a crucial role in the modulation of diverse metabolic processes in liver. Here, we reported the identification of human apolipoprotein A5 (ApoA5), which implicated in lowering plasma triglyceride levels, as a novel target gene of Nur77. Nur77 induced the human ApoA5 promoter activity. Using 5'-deletion and mutagenesis of human ApoA5 promoter analysis and chromatin immunoprecipitation assays, it was shown that Nur77 directly regulated human ApoA5 gene expression by binding to a Nur77 response element (AAAGGTCA) located in the proximal human ApoA5 promoter region. In addition, we demonstrated that blocking of Nur77 transcriptional activity via overexpression of dominant negative Nur77 suppressed human ApoA5 promoter activity and mRNA expression in human hepatoma cells, HepG2. Taken together, our results demonstrated that Nur77 is a novel regulator of human ApoA5 gene expression and provide a new insight into the role of this orphan nuclear receptor in lipoprotein metabolism and triglyceride homeostasis.

  14. Genetic imaging of the association of oxytocin receptor gene (OXTR) polymorphisms with positive maternal parenting

    PubMed Central

    Michalska, Kalina J.; Decety, Jean; Liu, Chunyu; Chen, Qi; Martz, Meghan E.; Jacob, Suma; Hipwell, Alison E.; Lee, Steve S.; Chronis-Tuscano, Andrea; Waldman, Irwin D.; Lahey, Benjamin B.

    2013-01-01

    Background: Well-validated models of maternal behavior in small-brain mammals posit a central role of oxytocin in parenting, by reducing stress and enhancing the reward value of social interactions with offspring. In contrast, human studies are only beginning to gain insights into how oxytocin modulates maternal behavior and affiliation. Methods: To explore associations between oxytocin receptor genes and maternal parenting behavior in humans, we conducted a genetic imaging study of women selected to exhibit a wide range of observed parenting when their children were 4–6 years old. Results: In response to child stimuli during functional magnetic resonance imaging (fMRI), hemodynamic responses in brain regions that mediate affect, reward, and social behavior were significantly correlated with observed positive parenting. Furthermore, single nucleotide polymorphisms (SNPs) (rs53576 and rs1042778) in the gene encoding the oxytocin receptor were significantly associated with both positive parenting and hemodynamic responses to child stimuli in orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), and hippocampus. Conclusions: These findings contribute to the emerging literature on the role of oxytocin in human social behavior and support the feasibility of tracing biological pathways from genes to neural regions to positive maternal parenting behaviors in humans using genetic imaging methods. PMID:24550797

  15. Transcriptional regulation of the human TR2 orphan receptor gene by nuclear factor 1-A

    SciTech Connect

    Lin, Y.-L. [Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan (China); Wang, Y.-H. [Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan (China); Lee, H.-J. [Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan (China)]. E-mail: hjlee@mail.ndhu.edu.tw

    2006-11-17

    The human testicular receptor 2 (TR2), a member of the nuclear hormone receptor superfamily, has no identified ligand yet. Previous evidence demonstrated that a 63 bp DNA fragment, named the promoter activating cis-element (PACE), has been identified as a positive regulatory region in the 5' promoter region of the human TR2 gene. In the present report, the human nuclear factor 1-A (NF1-A) was identified as a transcriptional activator to recognize the center of the PACE, called the PACE-C. NF1-A could bind to the 18 bp PACE-C region, and enhance about 13- to 17-fold of the luciferase reporter gene activity via the PACE-C in dose-dependent and orientation-independent manners. This transcriptional activation was further confirmed by real-time RT-PCR assay. In conclusion, our results indicated that NF1-A transcription factor plays an important role in the transcriptional activation of the TR2 gene expression via the PACE-C in the minimal promoter region.

  16. Divergent functions of fibroblast growth factor receptor-like 1 genes in grass carp (Ctenopharyngodon idella).

    PubMed

    Lin, Si-Tong; Zheng, Guo-Dong; Sun, Yi-Wen; Chen, Jie; Jiang, Xia-Yun; Zou, Shu-Ming

    2015-09-01

    Fibroblast growth factor receptor-like 1 (FGFRL1) is a novel FGF receptor (FGFR) lacking an intracellular tyrosine kinase domain. FGFRs control the proliferation, differentiation and migration of cells in various tissues. However the functions of FGFRL1 in teleost fish are currently unknown. In this study, we report the identification of two fgfrl1 genes in grass carp (Ctenopharyngodon idella) that share 56% amino acid sequence identity. Both fgfrl1a and 1b were transcribed throughout embryogenesis, and mRNA levels were particularly high during somitogenesis. Using in situ hybridization, fgfrl1a transcripts were detected in notochord, somites, brain and eye at 14, 24 and 36h post fertilization (hpf). In contrast, fgfrl1b was transcribed mainly in the endoderm at 14hpf, in the gut and proctodeum at 24hpf, and in the lens, pharyngeal arch and proctodeum at 36hpf. In adult fish, fgfrl1a was abundantly expressed in heart, brain and muscle, while fgfrl1b was expressed strongly in eye, muscle and gill. Furthermore, both genes were significantly (p<0.05) up-regulated in muscle and brain during starvation and returned to normal levels rapidly after re-feeding. Exogenous treatment with different doses of human growth hormone down-regulated the expression of both genes in brain and muscle (p<0.05). These results suggest that Fgfrl1a and 1b play divergent roles in regulating growth and development in grass carp. PMID:25981703

  17. Lack of association between dopamine D2 receptor gene Cys311 variant and schizophrenia

    SciTech Connect

    Tanaka, Toshihisa; Fukushima, Noboru; Takahashi, Makoto; Kameda, Kensuke; Ihda, Shin [Niigata Univ. (Japan)] [and others] [Niigata Univ. (Japan); and others

    1996-04-09

    Itokawa et al. reported identifying one missense nucleotide mutation from C to G resulting in a substitution of serine with cysteine at codon 311 in the third intracellular loop of the dopamine D2 receptor in schizophrenics. Arinami et al. reported finding a positive association between the Cys311 variant and schizophrenia. In response to the report by Arinami et al. we examined 106 unrelated Japanese schizophrenics and 106 normal controls to determine if there is any association of the Cys311 variant with schizophrenia. However, we found no statistically significant differences in allelic frequencies of Cys311 between schizophrenia and normal controls. The present results as well as those of all previous studies except for that of Arinami et al. indicated that an association between the dopamine D2 receptor gene and schizophrenia is unlikely to exist. 24 refs., 1 fig., 1 tab.

  18. Association study between the dopamine D4 receptor gene and schizophrenia

    SciTech Connect

    Petronis, A.; Macciardi, F.; Athanassiades, A.; Paterson, A.D. [Clarke Institute of Psychiatry, Toronto (Canada)] [and others

    1995-10-09

    The dopamine D4 receptor is of major interest in schizophrenia research due to its high affinity for the atypical neuroleptic clozapine and a high degree of variability in the receptor gene (DRD4). Although several genetic linkage analyses performed on schizophrenia multiplex families from different regions of the world have either excluded or failed to prove that DRD4 is a major genetic factor for the development of schizophrenia, analyses for moderate predisposing effects are still of significant interest. We performed a study examining differences in allele frequencies of 4 different DRD4 polymorphisms in schizophrenia patients and age, sex, and ethnic origin matched controls. None of these 4 polymorphisms showed evidence for genetic association with schizophrenia, although a trend towards excess of the allele with 7 repeats in the (48){sub n} bp exon III polymorphism was observed. Complexities in the DRD4 genetic investigation and further analytic approaches are discussed. 18 refs., 2 tabs.

  19. Promoter haplotype combinations of the platelet-derived growth factor alpha-receptor gene predispose to human neural tube defects.

    PubMed

    Joosten, P H; Toepoel, M; Mariman, E C; Van Zoelen, E J

    2001-02-01

    Neural tube defects (NTDs), including anencephaly and spina bifida, are multifactorial diseases that occur with an incidence of 1 in 300 births in the United Kingdom. Mouse models have indicated that deregulated expression of the gene encoding the platelet-derived growth factor alpha-receptor (Pdgfra) causes congenital NTDs (refs. 2-4), whereas mutant forms of Pax-1 that have been associated with NTDs cause deregulated activation of the human PDGFRA promoter. There is an increasing awareness that genetic polymorphisms may have an important role in the susceptibility for NTDs (ref. 6). Here we identify five different haplotypes in the human PDGFRA promoter, of which the two most abundant ones, designated H1 and H2 alpha, differ in at least six polymorphic sites. In a transient transfection assay in human bone cells, the five haplotypes differ strongly in their ability to enhance reporter gene activity. In a group of patients with sporadic spina bifida, haplotypes with low transcriptional activity, including H1, were under-represented, whereas those with high transcriptional activity, including H2 alpha, were over-represented. When testing for haplotype combinations, H1 homozygotes were fully absent from the group of sporadic patients, whereas H1/H2 alpha heterozygotes were over-represented in the groups of both sporadic and familial spina bifida patients, but strongly under-represented in unrelated controls. Our data indicate that specific combinations of naturally occurring PDGFRA promoter haplotypes strongly affect NTD genesis. PMID:11175793

  20. Insulin receptors

    SciTech Connect

    Kahn, C.R. (Joslin Diabetes Center, Boston, MA (US)); Harrison, L.C. (Dept. of Diabetes and Endocrinology, Royal Melbourne Hospital, Victoria (AU))

    1988-01-01

    This book contains the procedure in insulin receptors. Part B: Clinical assessment, biological responses, and comparison to the IGF-1 receptor. Topics covered include: Insulin and IGF-1 receptors, Clinical assessment of receptor functions, and Biological responses.