Science.gov

Sample records for genesis solar wind

  1. Genesis Capsule Yields Solar Wind Samples

    NASA Astrophysics Data System (ADS)

    Wiens, Roger C.; Burnett, Donald S.; Stansbery, Eileen K.; McNamara, Karen M.

    2004-11-01

    NASA's Genesis capsule, carrying the first samples ever returned from beyond the Moon, took a hard landing in the western Utah desert on 8 September after its parachutes failed to deploy. Despite the impact, estimated at 310 km per hour, some valuable solar wind collector materials have been recovered. With these samples, the Genesis team members are hopeful that nearly all of the primary science goals may be met. The Genesis spacecraft was launched in August 2001 to collect and return samples of solar wind for precise isotopic and elemental analysis. The spacecraft orbited the Earth-Sun Lagrangian point (L1), ~1.5 million km sunward of the Earth, for 2.3 years. It exposed ultrapure materials-including wafers of silicon, silicon carbide, germanium, chemically deposited diamond, gold, aluminum, and metallic glass-to solar wind ions, which become embedded within the substrates' top 100 nm of these materials.

  2. The Genesis Solar Wind Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Wiens, Roger C.; Burnett, Donald S.; Neugebauer, Marcia; Sasaki, Chester; Sevilla, Donald; Stansbery, Eileen; Clark, Ben; Smith, Nick; Oldham, Lloyd

    1990-01-01

    The Genesis spacecraft was launched on August 8 from Cape Canaveral on a journey to become the first spacecraft to return from interplanetary space. The fifth in NASA's line of low-cost Discovery-class missions, its goal is to collect samples of solar wind and return them to Earth for detailed isotopic and elemental analysis. The spacecraft is to collect solar wind for over two years, while circling the L1 point 1.5 million km sunward of the earth, before heading back for a capsule-style re-entry in September, 2004. After parachute deployment, a mid-air helicopter recovery will be used to avoid a hard landing. The mission has been in the planning stages for over ten years. Its cost, including development, mission operations, and sample analysis, is approximately $209M. The Genesis science team, headed by principal investigator Donald Burnett of Caltech, consists of approximately 20 co-investigators from universities and science centers around the country and internationally. The spacecraft consists of a relatively flat spacecraft bus containing most of the subsystem components, situated below a sample return capsule (SRC) which holds the solar-wind collection substrates and an electrostatic solar wind concentrator. Some of the collectors are exposed throughout the collection period, for a sample of bulk solar wind, while others are exposed only to certain solar wind regimes, or types of flow. Ion and electron spectrometers feed raw data to the spacecraft control and data-handling (C&DH) unit, which determines ion moments and electron flux geometries in real time. An algorithm is used to robotically decide between interstream (IS), coronal hole (CH), and coronal mass ejection (CME) regimes, and to control deployment of the proper arrays to sample these wind regimes independently. This is the first time such a solar-wind decision algorithm has been used on board a spacecraft.

  3. Genesis Solar Wind Samples: Update of Availability

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. P.; Allums, K. K.; Allton, J. H.

    2015-01-01

    The Genesis mission collected solar wind atoms for 28 months with a variety of collectors. The array wafer collector availability is displayed in the online catalog. The purpose of this report is to update the community on availability of array wafer samples and to preview other collectors which are in the process of being added to the online catalog. A total of fifteen pure materials were selected based on engineering and science requirements. Most of the materials were semiconductor wafers which were mounted on the arrays.

  4. Genesis Solar Wind Array Collector Cataloging Status

    NASA Technical Reports Server (NTRS)

    Burkett, P.J.; Rodriguez, M.C.; Calaway, M.C.; Allton, J.H.

    2009-01-01

    Genesis solar wind array collectors were fractured upon landing hard in Utah in 2004. The fragments were retrieved from the damaged canister, imaged, repackaged and shipped to the Johnson Space Center curatorial facility [1]. As of January 2009, the collection consists of 3460 samples. Of these, 442 are comprised into "multiple" sample groupings, either affixed to adhesive paper (177) or collected in jars (17), culture trays (87), or sets of polystyrene vials (161). A focused characterization task was initiated in May 2008 to document the largest samples in the collection. The task consisted of two goals: to document sapphire based fragments greater than 2 cm in one dimension, and to document silicon based fragments greater than 1 cm in one direction.

  5. Genesis Solar-Wind Sample Return Mission: The Materials

    NASA Technical Reports Server (NTRS)

    Jurewicz, A. J. G.; Burnett, D. S.; Wiens, R. C.; Woolum, D.

    2000-01-01

    This abstract is a brief overview of the Genesis mission. Included is an instrument description, what materials were chosen for capturing solar wind and why, and information as to what will be available for analysis when the samples return to Earth in 2003.

  6. Genesis Solar-Wind Sample Return Mission: The Materials

    NASA Technical Reports Server (NTRS)

    Jurewicz, A. J. G.; Burnett, D. S.; Wiens, R. C.; Woolum, D.

    2003-01-01

    The Genesis spacecraft has two primary instruments which passively collect solar wind. The first is the collector arrays , a set of panels, each of which can deploy separately to sample the different kinds of solar wind (regimes). The second is the concentrator, an electrostatic mirror which will concentrate ions of mass 4 through mass 25 by about a factor of 20 by focusing them onto a 6 cm diameter target. When not deployed, these instruments fit into a compact canister. After a two year exposure time, the deployed instruments can be folded up, sealed into the canister, and returned to earth for laboratory analysis. Both the collector arrays and the concentrator will contain suites of ultra-high purity target materials, each of which is tailored to enable the analysis of a different family of elements. This abstract is meant to give a brief overview of the Genesis mission, insight into what materials were chosen for flight and why, as well as head s up information as to what will be available to planetary scientist for analysis when the solar-wind samples return to Earth in 2003. Earth. The elemental and isotopic abundances of the solar wind will be analyzed in state-of-the-art laboratories, and a portion of the sample will be archived for the use of future generations of planetary scientists. Technical information about the mission can be found at www.gps.caltech.edu/genesis.

  7. Genesis Solar Wind Sample Curation: A Progress Report

    NASA Technical Reports Server (NTRS)

    Allton, Judith H.; Calaway, M. J.; Rodriquez, M. C.; Hittle, J. D.; Wentworth, S. J.; Stansbery, E. K.; McNamara, K. M.

    2006-01-01

    In the year since the Genesis solar wind collector fragments were returned, early science samples, specimens for cleaning experiments, and science allocations have been distributed. Solar wind samples are stored under nitrogen and handled in an ISO Class 4 (Class 10) laboratory. For array collector fragments, a basic characterization process has been established. This characterization consists of identification of solar wind regime, whole fragment image for identification and surface quality, higher magnification images for contaminant particle density, and assessment of molecular film contaminant thickness via ellipsometry modeling. Compilations of this characterization data for AuOS (gold film on sapphire), and sapphire from the bulk solar wind for fragments greater than 2 cm are available. Removal of contaminant particles using flowing ultrapure water (UPW) energized megasonically is provided as requested.

  8. The Genesis Mission Solar Wind Collection: Solar-Wind Statistics over the Period of Collection

    NASA Technical Reports Server (NTRS)

    Barraclough, B. L.; Wiens, R. C.; Steinberg, J. E.; Reisenfeld, D. B.; Neugebauer, M.; Burnett, D. S.; Gosling, J.; Bremmer, R. R.

    2004-01-01

    The NASA Genesis spacecraft was launched August 8, 2001 on a mission to collect samples of solar wind for 2 years and return them to earth September 8, 2004. Detailed analyses of the solar wind ions implanted into high-purity collection substrates will be carried out using various mass spectrometry techniques. These analyses are expected to determine key isotopic ratios and elemental abundances in the solar wind, and by extension, in the solar photosphere. Further, the photospheric composition is thought to be representative of the solar nebula with a few exceptions, so that the Genesis mission will provide a baseline for the average solar nebula composition with which to compare present-day compositions of planets, meteorites, and asteroids. The collection of solar wind samples is almost complete. Collection began for most substrates in early December, 2001, and is scheduled to be complete on April 2 of this year. It is critical to understand the solar-wind conditions during the collection phase of the mission. For this reason, plasma ion and electron spectrometers are continuously monitoring the solar wind proton density, velocity, temperature, the alpha/proton ratio, and angular distribution of suprathermal electrons. Here we report on the solar-wind conditions as observed by these in-situ instruments during the first half of the collection phase of the mission, from December, 2001 to present.

  9. Investigation of Backside Textures for Genesis Solar Wind Silicon Collectors

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. P.; Burkett, P. J.; Rodriguez, M. C.; Allton, J. H.

    2014-01-01

    Genesis solar wind collectors were comprised of a suite of 15 types of ultrapure materials. The single crystal, pure silicon collectors were fabricated by two methods: float zone (FZ) and Czochralski (CZ). Because of slight differences in bulk purity and surface cleanliness among the fabrication processes and the specific vendor, it is desirable to know which variety of silicon and identity of vendor, so that appropriate reference materials can be used. The Czochralski method results in a bulk composition with slightly higher oxygen, for example. The CZ silicon array wafers that were Genesis-flown were purchased from MEMC Electronics. Most of the Genesis-flown FZ silicon was purchased from Unisil and cleaned by MEMC, although a few FZ wafers were acquired from International Wafer Service (IWS).

  10. The Genesis Mission: Solar Wind Conditions, and Implications for the FIP Fractionation of the Solar Wind.

    SciTech Connect

    Reisenfeld, D. B.; Wiens, R. C.; Barraclough, B. L.; Steinberg, J. T; Dekoning, C. A.; Zurbuchen, T. H.; Burnett, D. S.

    2005-01-01

    The NASA Genesis mission collected solar wind on ultrapure materials between November 30, 2001 and April 1, 2004. The samples were returned to Earth September 8, 2004. Despite the hard landing that resulted from a failure of the avionics to deploy the parachute, many samples were returned in a condition that will permit analyses. Sample analyses of these samples should give a far better understanding of the solar elemental and isotopic composition (Burnett et al. 2003). Further, the photospheric composition is thought to be representative of the solar nebula, so that the Genesis mission will provide a new baseline for the average solar nebula composition with which to compare present-day compositions of planets, meteorites, and asteroids. Sample analysis is currently underway. The Genesis samples must be placed in the context of the solar and solar wind conditions under which they were collected. Solar wind is fractionated from the photosphere by the forces that accelerate the ions off of the Sun. This fractionation appears to be ordered by the first ionization potential (FIP) of the elements, with the tendency for low-FIP elements to be over-abundant in the solar wind relative to the photosphere, and high-FIP elements to be under-abundant (e.g. Geiss, 1982; von Steiger et al., 2000). In addition, the extent of elemental fractionation differs across different solarwind regimes. Therefore, Genesis collected solar wind samples sorted into three regimes: 'fast wind' or 'coronal hole' (CH), 'slow wind' or 'interstream' (IS), and 'coronal mass ejection' (CME). To carry this out, plasma ion and electron spectrometers (Barraclough et al., 2003) continuously monitored the solar wind proton density, velocity, temperature, the alpha/proton ratio, and angular distribution of suprathermal electrons, and those parameters were in turn used in a rule-based algorithm that assigned the most probable solar wind regime (Neugebauer et al., 2003). At any given time, only one of three

  11. The genesis solar-wind sample return mission

    SciTech Connect

    Wiens, Roger C

    2009-01-01

    , each theory predicting a different solar isotopic composition and each invoking a different early solar-system process to produce the heterogeneity. Other volatiles such as C, N, and H may also have experienced similar effects, but with only two isotopes it is often impossible to distinguish with these elements between mass-dependent fractionation and other effects such as mixing or mass-independent fractionation. Table 1 provides a summary of the major measurement objectives of the Genesis mission. Determining the solar oxygen isotopic composition is at the top of the list. Volatile element and isotope ratios constitute six of the top seven priorities. A number of disciplines stand to gain from information from the Genesis mission, as will be discussed later. Based on the Apollo solar-wind foil experiment, the Genesis mission was designed to capture solar wind over orders of magnitude longer duration and in a potentially much cleaner environment than the lunar surface.

  12. 78 FR 76609 - Genesis Solar, LLC; NRG Delta LLC; Mountain View Solar, LLC; Pheasant Run Wind, LLC; Pheasant Run...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-18

    ...-000; EG13-63-000; EG13-64-000; FC13-13-000] Genesis Solar, LLC; NRG Delta LLC; Mountain View Solar, LLC; Pheasant Run Wind, LLC; Pheasant Run Wind II, LLC; Tuscola Wind II, LLC; Mountain Wind Power, LLC; Mountain Wind Power II, LLC; Summerhaven Wind, LP; Notice of Effectiveness of Exempt Wholesale Generator...

  13. Genesis Solar Wind Science Canister Components Curated as Potential Solar Wind Collectors and Reference Contamination Sources

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Gonzalez, C. P.; Allums, K. K.

    2016-01-01

    The Genesis mission collected solar wind for 27 months at Earth-Sun L1 on both passive and active collectors carried inside of a Science Canister, which was cleaned and assembled in an ISO Class 4 cleanroom prior to launch. The primary passive collectors, 271 individual hexagons and 30 half-hexagons of semiconductor materials, are described in. Since the hard landing reduced the 301 passive collectors to many thousand smaller fragments, characterization and posting in the online catalog remains a work in progress, with about 19% of the total area characterized to date. Other passive collectors, surfaces of opportunity, have been added to the online catalog. For species needing to be concentrated for precise measurement (e.g. oxygen and nitrogen isotopes) an energy-independent parabolic ion mirror focused ions onto a 6.2 cm diameter target. The target materials, as recovered after landing, are described in. The online catalog of these solar wind collectors, a work in progress, can be found at: http://curator.jsc.nasa.gov/gencatalog/index.cfm This paper describes the next step, the cataloging of pieces of the Science Canister, which were surfaces exposed to the solar wind or component materials adjacent to solar wind collectors which may have contributed contamination.

  14. Decontaminating Solar Wind Samples with the Genesis Ultra-Pure Water Megasonic Wafer Spin Cleaner

    NASA Technical Reports Server (NTRS)

    Calaway, Michael J.; Rodriquez, M. C.; Allton, J. H.; Stansbery, E. K.

    2009-01-01

    The Genesis sample return capsule, though broken during the landing impact, contained most of the shattered ultra-pure solar wind collectors comprised of silicon and other semiconductor wafers materials. Post-flight analysis revealed that all wafer fragments were littered with surface particle contamination from spacecraft debris as well as soil from the impact site. This particulate contamination interferes with some analyses of solar wind. In early 2005, the Genesis science team decided to investigate methods for removing the surface particle contamination prior to solar wind analysis.

  15. Depth profiling analysis of solar wind helium collected in diamond-like carbon film from Genesis

    DOE PAGESBeta

    Bajo, Ken-ichi; Olinger, Chad T.; Jurewicz, Amy J.G.; Burnett, Donald S.; Sakaguchi, Isao; Suzuki, Taku; Itose, Satoru; Ishihara, Morio; Uchino, Kiichiro; Wieler, Rainer; et al

    2015-10-01

    The distribution of solar-wind ions in Genesis mission collectors, as determined by depth profiling analysis, constrains the physics of ion solid interactions involving the solar wind. Thus, they provide an experimental basis for revealing ancient solar activities represented by solar-wind implants in natural samples. We measured the first depth profile of ⁴He in a collector; the shallow implantation (peaking at <20 nm) required us to use sputtered neutral mass spectrometry with post-photoionization by a strong field. The solar wind He fluence calculated using depth profiling is ~8.5 x 10¹⁴ cm⁻². The shape of the solar wind ⁴He depth profile ismore » consistent with TRIM simulations using the observed ⁴He velocity distribution during the Genesis mission. It is therefore likely that all solar-wind elements heavier than H are completely intact in this Genesis collector and, consequently, the solar particle energy distributions for each element can be calculated from their depth profiles. Ancient solar activities and space weathering of solar system objects could be quantitatively reproduced by solar particle implantation profiles.« less

  16. Molecular Substrate Alteration by Solar Wind Radiation Documented on Flown Genesis Mission Array Materials

    NASA Technical Reports Server (NTRS)

    Calaway, Michael J.; Stansbery, Eileen K.

    2006-01-01

    The Genesis spacecraft sampling arrays were exposed to various regimes of solar wind during flight that included: 313.01 days of high-speed wind from coronal holes, 335.19 days of low-speed inter-stream wind, 191.79 days of coronal mass ejections, and 852.83 days of bulk solar wind at Lagrange 1 orbit. Ellipsometry measurements taken at NASA s Johnson Space Center show that all nine flown array materials from the four Genesis regimes have been altered by solar wind exposure during flight. These measurements show significant changes in the optical constant for all nine ultra-pure materials that flew on Genesis when compared with their non-flight material standard. This change in the optical constant (n and k) of the material suggests that the molecular structure of the all nine ultra-pure materials have been altered by solar radiation. In addition, 50 samples of float-zone and czochralski silicon bulk array ellipsometry results were modeled with an effective medium approximation layer (EMA substrate layer) revealing a solar radiation molecular damage zone depth below the SiO2 native oxide layer ranging from 392 to 613 . This bulk solar wind radiation penetration depth is comparable to the depth of solar wind implantation depth of Mg measured by SIMS and SARISA.

  17. RIMS analysis of Ca and Cr in genesis solar wind collectors.

    SciTech Connect

    Veryovkin, I. V.; Tripa, C. E.; Zinovev, A. V.; King, B. V.; Pellin, M. J.; Burnett, D. S.; Materials Science Division; Univ. of Newcastle; California Inst. of Tech.

    2011-01-01

    RIMS depth profiles have been measured for Cr and Ca in Genesis solar wind collector made from Si and compared to such measurements for ion-implanted Si reference material. The presence of surface contamination has been shown to be a significant factor influencing the total Ca and Cr fluence measured in the Genesis collectors. A procedure to remove the contaminant signal from these depth profiles using the reference material implanted with a minor isotope demonstrated that 36% of the measured Ca fluence in our Genesis sample comes from terrestrial contamination.

  18. Solar and solar-wind composition results from the genesis mission

    SciTech Connect

    Wiens, Roger C.; Burnett, D. S.; Hohenberg, C. M.; Meshik, A.; Heber, V.; Grimberg, A.; Wieler, R.; Reisenfeld, D. B.

    2007-02-20

    The Genesis mission returned samples of solar wind to Earth in September, 2004 for ground-based analyses of solar-wind composition, particularly for isotope ratios. Substrates, consisting mostly of high-purity semiconductor materials, were exposed to the solar wind at L1 from December 2001 to April 2004. In addition to a bulk sample of the solar wind, separate samples of coronal hole, interstream, and coronal mass ejection material were obtained. While many of the substrates were broken upon landing due to the failure to deploy the parachute, a number of results have been obtained, and most of the primary science objectives will likely be met. These include noble gas (He, Ne, Ar, Kr, and Xe) isotope ratios in the bulk solar wind and in different solarwind regimes, and the nitrogen and oxygen isotope ( 18O/17O/16O) ratios to high precision. The greatest successes to date have been with the noble gases. Light noble gases from bulk solar wind and separate solar-wind regime samples have been analyzed to date. The regime compositions are so far ambiguous on the occurrence of the type of isotopic fractionation expected from Coulomb drag acceleration. Neon results from closed system stepped etching of bulk metallic glass have revealed the nature of isotopic fractionation as a function of depth, which in lunar samples have for years deceptively suggested the presence of a separate solar component. Isotope ratios of the heavy noble gases, nitrogen, and oxygen are still in the process of being measured.

  19. A 15N-poor isotopic composition for the solar system as shown by Genesis solar wind samples.

    PubMed

    Marty, B; Chaussidon, M; Wiens, R C; Jurewicz, A J G; Burnett, D S

    2011-06-24

    The Genesis mission sampled solar wind ions to document the elemental and isotopic compositions of the Sun and, by inference, of the protosolar nebula. Nitrogen was a key target element because the extent and origin of its isotopic variations in solar system materials remain unknown. Isotopic analysis of a Genesis Solar Wind Concentrator target material shows that implanted solar wind nitrogen has a (15)N/(14)N ratio of 2.18 ± 0.02 × 10(-3) (that is, ≈40% poorer in (15)N relative to terrestrial atmosphere). The (15)N/(14)N ratio of the protosolar nebula was 2.27 ± 0.03 × 10(-3), which is the lowest (15)N/(14)N ratio known for solar system objects. This result demonstrates the extreme nitrogen isotopic heterogeneity of the nascent solar system and accounts for the (15)N-depleted components observed in solar system reservoirs. PMID:21700869

  20. Recent Optical and SEM Characterization of Genesis Solar Wind Concentrator Diamond on Silicon Collector

    NASA Technical Reports Server (NTRS)

    Allton, Judith H.; Rodriquez, M. C.; Burkett, P. J.; Ross, D. K.; Gonzalez, C. P.; McNamara, K. M.

    2013-01-01

    One of the 4 Genesis solar wind concentrator collectors was a silicon substrate coated with diamond-like carbon (DLC) in which to capture solar wind. This material was designed for analysis of solar nitrogen and noble gases [1, 2]. This particular collector fractured during landing, but about 80% of the surface was recovered, including a large piece which was subdivided in 2012 [3, 4, 5]. The optical and SEM imaging and analysis described below supports the subdivision and allocation of the diamond-on-silicon (DOS) concentrator collector.

  1. Genesis Solar Wind Collector Cleaning Assessment: 60366 Sample Case Study

    NASA Technical Reports Server (NTRS)

    Goreva, Y. S.; Gonzalez, C. P.; Kuhlman, K. R.; Burnett, D. S.; Woolum, D.; Jurewicz, A. J.; Allton, J. H.; Rodriguez, M. C.; Burkett, P. J.

    2014-01-01

    In order to recognize, localize, characterize and remove particle and thin film surface contamination, a small subset of Genesis mission collector fragments are being subjected to extensive study via various techniques [1-5]. Here we present preliminary results for sample 60336, a Czochralski silicon (Si-CZ) based wafer from the bulk array (B/C).

  2. Using Image Pro Plus Software to Develop Particle Mapping on Genesis Solar Wind Collector Surfaces

    NASA Technical Reports Server (NTRS)

    Rodriquez, Melissa C.; Allton, J. H.; Burkett, P. J.

    2012-01-01

    The continued success of the Genesis mission science team in analyzing solar wind collector array samples is partially based on close collaboration of the JSC curation team with science team members who develop cleaning techniques and those who assess elemental cleanliness at the levels of detection. The goal of this collaboration is to develop a reservoir of solar wind collectors of known cleanliness to be available to investigators. The heart and driving force behind this effort is Genesis mission PI Don Burnett. While JSC contributes characterization, safe clean storage, and benign collector cleaning with ultrapure water (UPW) and UV ozone, Burnett has coordinated more exotic and rigorous cleaning which is contributed by science team members. He also coordinates cleanliness assessment requiring expertise and instruments not available in curation, such as XPS, TRXRF [1,2] and synchrotron TRXRF. JSC participates by optically documenting the particle distributions as cleaning steps progress. Thus, optical document supplements SEM imaging and analysis, and elemental assessment by TRXRF.

  3. Size Distribution of Genesis Solar Wind Array Collector Fragments Recovered

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Stansbery, E. K.; McNamara, K. M.

    2005-01-01

    Genesis launched in 2001 with 271 whole and 30 half hexagonally-shaped collectors mounted on 5 arrays, comprised of 9 materials described in [1]. The array collectors were damaged during re-entry impact in Utah in 2004 [2], breaking into many smaller pieces and dust. A compilation of the number and approximate size of the fragments recovered was compiled from notes made during the field packaging performed in the Class 10,000 cleanroom at Utah Test and Training Range [3].

  4. Depth profiling analysis of solar wind helium collected in diamond-like carbon film from Genesis

    SciTech Connect

    Bajo, Ken-ichi; Olinger, Chad T.; Jurewicz, Amy J.G.; Burnett, Donald S.; Sakaguchi, Isao; Suzuki, Taku; Itose, Satoru; Ishihara, Morio; Uchino, Kiichiro; Wieler, Rainer; Yurimoto, Hisayoshi

    2015-10-01

    The distribution of solar-wind ions in Genesis mission collectors, as determined by depth profiling analysis, constrains the physics of ion solid interactions involving the solar wind. Thus, they provide an experimental basis for revealing ancient solar activities represented by solar-wind implants in natural samples. We measured the first depth profile of ⁴He in a <Genesis collector; the shallow implantation (peaking at <20 nm) required us to use sputtered neutral mass spectrometry with post-photoionization by a strong field. The solar wind He fluence calculated using depth profiling is ~8.5 x 10¹⁴ cm⁻². The shape of the solar wind ⁴He depth profile is consistent with TRIM simulations using the observed ⁴He velocity distribution during the Genesis mission. It is therefore likely that all solar-wind elements heavier than H are completely intact in this Genesis collector and, consequently, the solar particle energy distributions for each element can be calculated from their depth profiles. Ancient solar activities and space weathering of solar system objects could be quantitatively reproduced by solar particle implantation profiles.

  5. THE GENESIS SOLAR WIND CONCENTRATOR TARGET: MASS FRACTIONATION CHARACTERISED BY NE ISOTOPES

    SciTech Connect

    WIENS, ROGER C.; OLINGER, C.; HEBER, V.S.; REISENFELD, D.B.; BURNETT, D.S.; ALLTON, J.H.; BAUR, H.; WIECHERT, U.; WIELER, R.

    2007-01-02

    The concentrator on Genesis provides samples of increased fluences of solar wind ions for precise determination of the oxygen isotopic composition of the solar wind. The concentration process caused mass fractionation as function of the radial target position. They measured the fractionation using Ne released by UV laser ablation along two arms of the gold cross from the concentrator target to compare measured Ne with modeled Ne. The latter is based on simulations using actual conditions of the solar wind during Genesis operation. Measured Ne abundances and isotopic composition of both arms agree within uncertainties indicating a radial symmetric concentration process. Ne data reveal a maximum concentration factor of {approx} 30% at the target center and a target-wide fractionation of Ne isotopes of 3.8%/amu with monotonously decreasing {sup 20}Ne/{sup 22}Ne ratios towards the center. The experimentally determined data, in particular the isotopic fractionation, differ from the modeled data. They discuss potential reasons and propose future attempts to overcome these disagreements.

  6. Status of Reconstruction of Fragmented Diamond-on-Silicon Collector From Genesis Spacecraft Solar Wind Concentrator

    NASA Technical Reports Server (NTRS)

    Rodriquez, Melissa C.; Calaway, M. C.; McNamara, K. M.; Hittle, J. D.

    2009-01-01

    In addition to passive solar wind collector surfaces, the Genesis Discovery Mission science canister had on board an electrostatic concave mirror for concentrating the solar wind ions, known as the concentrator . The 30-mm-radius collector focal point (the target) was comprised of 4 quadrants: two of single crystal SiC, one of polycrystalline 13C diamond and one of diamond-like-carbon (DLC) on a silicon substrate. [DLC-on-silicon is also sometimes referenced as Diamond-on-silicon, DOS.] Three of target quadrants survived the hard landing intact, but the DLC-on-silicon quadrant fractured into numerous pieces (Fig. 1). This abstract reports the status of identifying the DLC target fragments and reconstructing their original orientation.

  7. Plan for Subdividing Genesis Mission Diamond-on-Silicon 60000 Solar Wind Collector

    NASA Technical Reports Server (NTRS)

    Burkett, Patti J.; Allton, J. A.; Clemett, S. J.; Gonzales, C. P.; Lauer, H. V., Jr.; Nakamura-Messenger, K.; Rodriquez, M. C.; See, T. H.; Sutter, B.

    2013-01-01

    NASA's Genesis solar wind sample return mission experienced an off nominal landing resulting in broken, albeit useful collectors. Sample 60000 from the collector is comprised of diamond-like-carbon film on a float zone (FZ) silicon wafer substrate Diamond-on-Silicon (DOS), and is highly prized for its higher concentration of solar wind (SW) atoms. A team of scientist at the Johnson Space Center was charged with determining the best, nondestructive and noncontaminating method to subdivide the specimen that would result in a 1 sq. cm subsample for allocation and analysis. Previous work included imaging of the SW side of 60000, identifying the crystallographic orientation of adjacent fragments, and devising an initial cutting plan.

  8. Impurity characterization of solar wind collectors for the genesis discovery mission by resonance ionization mass spectrometry.

    SciTech Connect

    Calaway, W. F.

    1999-02-01

    NASA's Genesis Discovery Mission is designed to collect solar matter and return it to earth for analysis. The mission consists of launching a spacecraft that carries high purity collector materials, inserting the spacecraft into a halo orbit about the L1 sun-earth libration point, exposing the collectors to the solar wind for two years, and then returning the collectors to earth. The collectors will then be made available for analysis by various methods to determine the elemental and isotopic abundance of the solar wind. In preparation for this mission, potential collector materials are being characterized to determine baseline impurity levels and to assess detection limits for various analysis techniques. As part of the effort, potential solar wind collector materials have been analyzed using resonance ionization mass spectrometry (RIMS). RIMS is a particularly sensitivity variation of secondary neutral mass spectrometry that employs resonantly enhanced multiphoton ionization (REMPI) to selectively postionize an element of interest, and thus discriminates between low levels of that element and the bulk material. The high sensitivity and selectivity of RIMS allow detection of very low concentrations while consuming only small amounts of sample. Thus, RIMS is well suited for detection of many heavy elements in the solar wind, since metals heavier than Fe are expected to range in concentrations from 1 ppm to 0.2 ppt. In addition, RIMS will be able to determine concentration profiles as a function of depth for these implanted solar wind elements effectively separating them from terrestrial contaminants. RIMS analyses to determine Ti concentrations in Si and Ge samples have been measured. Results indicate that the detection limit for RIMS analysis of Ti is below 100 ppt for 10{sup 6} averages. Background analyses of the mass spectra indicate that detection limits for heavier elements will be similar. Furthermore, detection limits near 1 ppt are possible with higher

  9. Analysis of Solar Wind Samples Returned by Genesis Using Laser Post Ionization Secondary Neutral Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Veryovkin, I. V.; Calaway, W. F.; Tripa, C. E.; Pellin, M. J.; Burnett, D. S.

    2005-12-01

    A new secondary neutral mass spectrometry (SNMS) instrument implementing laser post ionization (LPI) of ion sputtered and laser desorbed neutral species has been developed and constructed for the specific purpose of quantitative analysis of metallic elements at ultra trace levels in solar wind collector samples returned to Earth by the Genesis Discovery mission. The first LPI SNMS measurements are focusing on determining Al, Ca, Cr, and Mg in these samples. These measurements provide the first concentration and isotopic abundances determinations for several key metallic elements and also elucidate possible fractionation effects between the photosphere and the solar wind compositions. It is now documented that Genesis samples suffered surface contamination both during flight and during the breach of the Sample Return Capsule when it crashed. Since accurate quantitative analysis is compromised by sample contamination, several features have been built into the new LPI SNMS instrument to mitigate this difficulty. A normally-incident, low-energy (<500 eV) ion beam combined with a keV energy ion beam and a desorbing laser beam (both microfocused) enables dual beam analyses. The low-energy ion beam can be used to remove surface contaminant by sputtering with minimum ion beam mixing. This low-energy beam also will be used to perform ion beam milling, while either the microfocused ion or laser beam probes the solar wind elemental compositions as a function of sample depth. Because of the high depth resolution of dual beam analyses, such depth profiles clearly distinguish between surface contaminants and solar wind implanted atoms. In addition, in-situ optical and electron beam imaging for observing and avoiding particulates and scratches on solar wind sample surfaces is incorporated in the new LPI SNMS instrument to further reduce quantification problems. The current status of instrument tests and analyses will be presented. This work is supported by the U. S. Department of

  10. Laser Post-Ionization Mass Spectrometry Analysis of Genesis Solar Wind Collectors

    NASA Astrophysics Data System (ADS)

    Veryovkin, I. V.; Tripa, C. E.; Zinovev, A. V.; Hiller, J. M.; Pellin, M. J.; Burnett, D. S.

    2008-12-01

    The samples returned to Earth by the NASA's Genesis Mission contain a record of the elemental and isotopic abundances of the Solar Wind (SW). This record is formed by the SW ions implanted in the near-surface regions of the Genesis sample collectors, so that the SW material can be distinguished from a terrestrial contamination, which occurred due to the crash landing of the spacecraft Sample Return Capsule. At Argonne National Laboratory, we are conducting analyzes of the Genesis SW collectors using a specially developed Laser Post-Ionization Secondary Neutral Mass Spectrometer (LPI SNMS), SARISA. This approach, based on ion sputtering of a SW collector surface and laser post-ionization of the neutral atoms sputtered from it, has proved to be sensitive, accurate and well suited for the quantitative analysis of the Genesis samples. We will report in this work the abundances of SW Mg and Ca measured with SARISA in two types of SW collector materials, silicon and diamond-like carbon (DLC). These LPI SNMS measurements were conducted in Resonance-Enhanced Multi-Photon Ionization (REMPI) regime using a sputter depth profiling method. In order to make our analyzes quantitative, we used specially prepared standards, made from exactly the same materials as the flown Genesis SW collectors and implanted with known fluencies of Mg and Ca ions. The REMPI analyzes of these standards allowed us to characterize the actual efficiency and detection limits of the SARISA instrument: for Mg, its useful yield peaked at about 20% and detection limits corresponded to < 50 part-per-trillion. We measured concentration vs depth profiles for Mg and Ca in SW collectors (Si and DLC, respectively) and compared them to the corresponding implant standards. One striking feature of the SW implants (compared to the standards) was that maxima of the SW element concentration vs depth profiles were broad, with apparent diffusion of the implanted atoms towards the surface and into the bulk. Since these

  11. Cleaning Genesis Solar Wind Collectors with Ultrapure Water: Residual Contaminant Particle Analysis

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Wentworth, S. J.; Rodriquez, M. C.; Calaway, M. J.

    2008-01-01

    Additional experience has been gained in removing contaminant particles from the surface of Genesis solar wind collectors fragments by using megasonically activated ultrapure water (UPW)[1]. The curatorial facility has cleaned six of the eight array collector material types to date: silicon (Si), sapphire (SAP), silicon-on-sapphire (SOS), diamond-like carbon-on-silicon (DOS), gold-on-sapphire (AuOS), and germanium (Ge). Here we make estimates of cleaning effectiveness using image analysis of particle size distributions and an SEM/EDS reconnaissance of particle chemistry on the surface of UPW-cleaned silicon fragments (Fig. 1). Other particle removal techniques are reported by [2] and initial assessment of molecular film removal is reported by [3].

  12. Genesis Solar Wind Collector Cleaning Assessment: Update on 60336 Sample Case Study

    NASA Technical Reports Server (NTRS)

    Goreva, Y. S.; Allums, K. K.; Gonzalez, C. P.; Jurewicz, A. J.; Burnett, D. S.; Allton, J. H.; Kuhlman, K. R.; Woolum, D.

    2015-01-01

    To maximize the scientific return of Genesis Solar Wind return mission it is necessary to characterize and remove a crash-derived particle and thin film surface contamination. A small subset of Genesis mission collector fragments are being subjected to extensive study via various techniques. Here we present an update on the sample 60336, a Czochralski silicon (Si-CZ) based wafer from the bulk array (B/C). This sample has undergone multiple cleaning steps (see the table below): UPW spin wash, aggressive chemical cleanings (including aqua regia, hot xylene and RCA1), as well as optical and chemical (EDS, ToF-SIMS) imaging. Contamination appeared on the surface of 60336 after the initial 2007 UPW cleaning. Aqua regia and hot xylene treatment (8/13/2013) did little to remove contaminants. The sample was UPW cleaned for the third time and imaged (9/16/13). The UPW removed the dark stains that were visible on the sample. However, some features, like "the Flounder" (a large, 100 micron feature in Fig. 1b) appeared largely intact, resisting all previous cleaning efforts. These features were likely from mobilized adhesive, derived from the Post-It notes used to stabilize samples for transport from Utah after the hard landing. To remove this contamination, an RCA step 1 organic cleaning (RCA1) was employed. Although we are still uncertain on the nature of the Flounder and why it is resistant to UPW and aqua regia/hot xylene treatment, we have found RCA1 to be suitable for its removal. It is likely that the glue from sticky pads used during collector recovery may have been a source for resistant organic contamination [9]; however [8] shows that UPW reaction with crash-derived organic contamination does not make particle removal more difficult.

  13. Variations in Solar Wind Fractionation as Seen by ACE/SWICS and the Implications for Genesis Mission Results

    NASA Astrophysics Data System (ADS)

    Pilleri, P.; Reisenfeld, D. B.; Zurbuchen, T. H.; Lepri, S. T.; Shearer, P.; Gilbert, J. A.; von Steiger, R.; Wiens, R. C.

    2015-10-01

    We use Advanced Composition Explorer (ACE)/Solar Wind Ion Composition Spectrometer (SWICS) elemental composition data to compare the variations in solar wind (SW) fractionation as measured by SWICS during the last solar maximum (1999-2001), the solar minimum (2006-2009), and the period in which the Genesis spacecraft was collecting SW (late 2001—early 2004). We differentiate our analysis in terms of SW regimes (i.e., originating from interstream or coronal hole flows, or coronal mass ejecta). Abundances are normalized to the low-first ionization potential (low-FIP) ion magnesium to uncover correlations that are not apparent when normalizing to high-FIP ions. We find that relative to magnesium, the other low-FIP elements are measurably fractionated, but the degree of fractionation does not vary significantly over the solar cycle. For the high-FIP ions, variation in fractionation over the solar cycle is significant: greatest for Ne/Mg and C/Mg, less so for O/Mg, and the least for He/Mg. When abundance ratios are examined as a function of SW speed, we find a strong correlation, with the remarkable observation that the degree of fractionation follows a mass-dependent trend. We discuss the implications for correcting the Genesis sample return results to photospheric abundances.

  14. Solar composition from the Genesis Discovery Mission.

    PubMed

    Burnett, D S; Team, Genesis Science

    2011-11-29

    Science results from the Genesis Mission illustrate the major advantages of sample return missions. (i) Important results not otherwise obtainable except by analysis in terrestrial laboratories: the isotopic compositions of O, N, and noble gases differ in the Sun from other inner solar system objects. The N isotopic composition is the same as that of Jupiter. Genesis has resolved discrepancies in the noble gas data from solar wind implanted in lunar soils. (ii) The most advanced analytical instruments have been applied to Genesis samples, including some developed specifically for the mission. (iii) The N isotope result has been replicated with four different instruments. PMID:21555545

  15. Solar composition from the Genesis Discovery Mission

    PubMed Central

    Burnett, D. S.; Team, Genesis Science

    2011-01-01

    Science results from the Genesis Mission illustrate the major advantages of sample return missions. (i) Important results not otherwise obtainable except by analysis in terrestrial laboratories: the isotopic compositions of O, N, and noble gases differ in the Sun from other inner solar system objects. The N isotopic composition is the same as that of Jupiter. Genesis has resolved discrepancies in the noble gas data from solar wind implanted in lunar soils. (ii) The most advanced analytical instruments have been applied to Genesis samples, including some developed specifically for the mission. (iii) The N isotope result has been replicated with four different instruments. PMID:21555545

  16. Nitrogen isotopes in the recent solar wind from the analysis of genesis targets: evidence for large scale isotope heterogeneity in the nascent solar system

    SciTech Connect

    Wiens, Roger C; Marty, Bernard; Zimmermann, Laurent; Burnard, Peter G; Burnett, Donald L; Heber, Veronika S; Wieler, Rainer; Bochsler, Peter

    2009-01-01

    Nitrogen, the fifth most abundant element in the universe, displays the largest stable isotope variations in the solar system reservoirs after hydrogen. Yet the value of isotopic composition of solar nitrogen, presumably the best proxy of the protosolar nebula composition, is not known. Nitrogen isotopes trapped in Genesis spacecraft target material indicate a 40 % depletion of {sup 15}N in solar wind N relative to inner planets and meteorites, and define a composition for the present-day Sun undistinguishable from that of Jupiter's atmosphere. These results indicate that the isotopic composition of of nitrogen in the outer convective zone of the Sun (OCZ) has not changed through time, and is representative of the protosolar nebula. Large {sup 15}N enrichments during e.g., irradiation, or contributions from {sup 15}N-rich presolar components, are required to account for planetary values.

  17. Enhanced Cleaning of Genesis Solar Wind Sample 61348 for Film Residue Removal

    NASA Technical Reports Server (NTRS)

    Allums, K. K.; Gonzalez, C. P.; Kuhlman, K. R.; Allton, J. H.

    2015-01-01

    The Genesis mission returned to Earth on September 8, 2004, experiencing a nonnominal reentry. During the recovery of the collector materials from the capsule, many of the collector fragments were placed on the adhesive protion of post-it notes to prevent the fragments from moving during transport back to Johnson Space Center. This unknowingly provided an additional contaminate that would prove difficult to remove with the limited chemistries allowed in the Genesis Curation Laboratory. Generally when collector material samples are prepared for allocation to PIs, the samples are cleaned front side only with Ultra-Pure Water (UPW) via megasonic dispersion to the collector surface to remove crash debris and contamination. While this cleaning method works well on samples that were not placed on post-its during recovery, it has caused movement of the residue on the back of the sample to be deposited on the front in at least two examples. Therefore, samples placed on the adhesive portion on post-it note, require enhanced cleaning methods since post-it residue has proved resistant to UPW cleaning.

  18. Similarities and differences between the solar wind light noble gas compositions determined on Apollo 15 SWC foils and on NASA Genesis targets

    NASA Astrophysics Data System (ADS)

    Vogel, N.; Bochsler, P.; Bühler, F.; Heber, V. S.; Grimberg, A.; Baur, H.; Horstmann, M.; Bischoff, A.; Wieler, R.

    2015-10-01

    We compare the solar wind (SW) He, Ne, and Ar compositions collected during the Apollo Solar Wind Composition (SWC) experiments (1969-1972; Al- & Pt-foils) and the Genesis mission (2002-2004; so-called DOS targets considered here). While published SW 20Ne/22Ne and 36Ar/38Ar ratios of both data sets agree, differences exist in the 4He/3He, 4He/20Ne, and 20Ne/36Ar ratios. However, 20Ne/36Ar ratios from Apollo-16 Pt-foils, exclusively adopted as SW values by the SWC team, are consistent with the Genesis results. We investigate if the differences indicate a variability of the SW over the course of about 30 yr, or systematic biases of the two data sets, which were collected in different environments and measured several decades apart in different laboratories (University of Bern; ETH Zurich). New measurements of Apollo-15 SWC aluminum foils in Zurich generally agree with the original measurements performed in Bern. Zurich samples show slightly lower 4He concentrations suggesting a few percent of diffusive loss of 4He during storage of the foils. A 3% difference between the He isotopic ratios measured in Bern and in Zurich possibly represents an analytical bias between the laboratories. The low SW 4He/20Ne and 20Ne/36Ar ratios in Apollo-15 Al-foils compared to Genesis data are consistent with a mixture of Genesis-like SW and noble gases from small amounts of lunar dust. Our data suggest that the mean SW He, Ne, and Ar isotopic and elemental compositions have not significantly changed between the overall Apollo and Genesis mission collection periods.

  19. Solar Wind He and Ne - Implications of Surface Studies and Preliminary Data from Bulk Metallic Glass Flown on GENESIS

    NASA Astrophysics Data System (ADS)

    Grimberg, A.; Heber, V. S.; Homan, O. J.; Hays, C. C.; Jurewicz, A. J.; Burnett, D. S.; Baur, H.; Wieler, R.

    2005-12-01

    The Bulk Metallic Glass (BMG) flown on GENESIS is one of only a few target materials that survived the impact landing without major damage. Some scratches have led to localized noble gas loss but most particles do not harm He and Ne analyses due to their low gas content. To date, He and Ne isotopes from bulk solar wind in the BMG have been measured but precision will be improved. Preliminary data from pyrolysis extraction confirm previous values measured in SWC foils exposed on the lunar surface. However, the 4He/3He ratio of 2430 ±120 and the 20Ne/22Ne of 13.75 ±0.1 are slightly heavier than the SWC average. First measurements done with UV-laser ablation show higher 3He contents and an even heavier 20Ne/22Ne ratio of 14.04 ±0.1. Ne ratios are corrected for backscatter losses with a factor of 1.015 as calculated by TRIM whereas He correction factors are still not verified yet. The search for the He and Ne composition of Solar Energetic Particles (SEP) with stepwise etching has not been yet successful due to a molecular contamination (brown stain). This film was deposited on the BMG surface in space and is resistant to HNO3, the most suitable acid for homogeneous BMG etching. Extensive X-ray photoelectron spectroscopy (XPS) analyses have been carried out on 90 spots covering the entire surface to determine composition and distribution of this brown stain. These data show that the brown stain is an ubiquitous organic layer mainly consisting of Si, C, O and minor F. Since the BMG element Zr is always visible in the XPS spectra, contamination at the measured spots is very unlikely to be thicker than 10 nm. Ultrasonic cleaning of the surface with common solvents removed about 50 % of the particles but did not affect the brown stain. Moreover it led to an apparent gas loss of ~30 % for He. Cleaning with oxygen plasma lowered the carbon-signal in the XPS spectra, however it did not remove the brown stain either. A combination of oxygen plasma ashing followed by plasma

  20. Development of Genesis Solar Wind Sample Cleanliness Assessment: Initial Report on Sample 60341 Optical Imagery and Elemental Mapping

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. P.; Goreva, Y. S.; Burnett, D. S.; Woolum, D.; Jurewicz, A. J.; Allton, J. H.; Rodriguez, P. J.; Burkett, P. J.

    2014-01-01

    Since 2005 the Genesis science team has experimented with techniques for removing the contaminant particles and films from the collection surface of the Genesis fragments. A subset of 40 samples have been designated as "cleaning matrix" samples. These are small samples to which various cleaning approaches are applied and then cleanliness is assessed optically, by TRXRF, SEM, ToF-SIMS, XPS, ellipsometry or other means [1-9]. Most of these sam-ples remain available for allocation, with cleanliness assessment data. This assessment allows evaluation of various cleaning techniques and handling or analytical effects. Cleaning techniques investigated by the Genesis community include acid/base etching, acetate replica peels, ion beam, and CO2 snow jet cleaning [10-16]. JSC provides surface cleaning using UV ozone exposure and ultra-pure water (UPW) [17-20]. The UPW rinse is commonly used to clean samples for handling debris between processing by different researchers. Optical microscopic images of the sample taken before and after UPW cleaning show what has been added or removed during the cleaning process.

  1. ToF-SIMS Investigation of the Effectiveness of Acid-Cleaning procedures for Genesis Solar Wind Collectors

    NASA Technical Reports Server (NTRS)

    Goreva, Y. S.; Humanyun, M.; Burnett, D. S.; Jurewicz, A. J.; Gonzalez, C. P.

    2014-01-01

    ToF-SIMS images of Genesis sample surfaces contain an incredible amount of important information, but they also show that the crash-derived surface contamination has many components, presenting a challenge to cleaning. Within the variability, we have shown that there are some samples which appear to be clean to begin with, e.g. 60471, and some are more contaminated. Samples 60493 and 60500 are a part of a focused study of the effectiveness of aqua regia and/or sulfuric acid cleaning of small flight Si implanted with Li-6 using ToF-SIMS.

  2. Genesis Solar Wind Sample 61422: Experiment in Variation of Sequence of Cleaning Solvent for Removing Carbon-Bearing Contamination

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Kuhlman, K. R.; Allums, K. K.; Gonzalez, C. P.; Jurewicz, A. J. G.; Burnett, D. S.; Woolum, D. S.

    2015-01-01

    The recovered Genesis collector fragments are heavily contaminated with crash-derived particulate debris. However, megasonic treatment with ultra-pure-water (UPW; resistivity (is) greater than18 meg-ohm-cm) removes essentially all particulate contamination greater than 5 microns in size [e.g.1] and is thus of considerable importance. Optical imaging of Si sample 60336 revealed the presence of a large C-rich particle after UPW treatment that was not present prior to UPW. Such handling contamination is occasionally observed, but such contaminants are normally easily removed by UPW cleaning. The 60336 particle was exceptional in that, surprisingly, it was not removed by additional UPW or by hot xylene or by aqua regia treatment. It was eventually removed by treatment with NH3-H2O2. Our best interpretation of the origin of the 60336 particle was that it was adhesive from the Post-It notes used to stabilize samples for transport from Utah after the hard landing. It is possible that the insoluble nature of the 60336 particle comes from interaction of the Post-It adhesive with UPW. An occasional bit of Post-It adhesive is not a major concern, but C particulate contamination also occurs from the heat shield of the Sample Return Capsule (SRC) and this is mixed with inorganic contamination from the SRC and the Utah landing site. If UPW exposure also produced an insoluble residue from SRC C, this would be a major problem in chemical treatments to produce clean surfaces for analysis. This paper reports experiments to test whether particulate contamination was removed more easily if UPW treatment was not used.

  3. Solar Wind Five

    NASA Technical Reports Server (NTRS)

    Neugebauer, M. (Editor)

    1983-01-01

    Topics of discussion were: solar corona, MHD waves and turbulence, acceleration of the solar wind, stellar coronae and winds, long term variations, energetic particles, plasma distribution functions and waves, spatial dependences, and minor ions.

  4. Genesis - the middle years

    NASA Technical Reports Server (NTRS)

    Williams, K. E.; Smith, N. G.; Wiens, R. C.; Rasbach, C. E.

    2003-01-01

    Genesis is the fifth mission of the Discovery program sponsored by NASA. The objective of Genesis is the return of pristine solar wind samples to Earth to expand the understanding of how planets, asteroids, and comets were formed from our original solar nebula.

  5. Solar Wind Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Smith, E. J.

    1995-01-01

    The magnetic fields originate as coronal fields that are converted into space by the supersonic, infinitely conducting, solar wind. On average, the sun's rotation causes the field to wind up and form an Archimedes Spiral. However, the field direction changes almost continuously on a variety of scales and the irregular nature of these changes is often interpreted as evidence that the solar wind flow is turbulent.

  6. Solar wind composition

    NASA Technical Reports Server (NTRS)

    Ogilvie, K. W.; Coplan, M. A.

    1995-01-01

    Advances in instrumentation have resulted in the determination of the average abundances of He, C, N, O, Ne, Mg, Si, S, and Fe in the solar wind to approximately 10%. Comparisons with solar energetic particle (SEP) abundances and galactic cosmic ray abundances have revealed many similarities, especially when compared with solar photospheric abundances. It is now well established that fractionation in the corona results in an overabundance (with respect to the photosphere) of elements with first ionization potentials less than 10 eV. These observations have in turn led to the development of fractionation models that are reasonably successful in reproducing the first ionization (FIP) effect. Under some circumstances it has been possible to relate solar wind observations to particular source regions in the corona. The magnetic topologies of the source regions appear to have a strong influence on the fractionation of elements. Comparisons with spectroscopic data are particularly useful in classifying the different topologies. Ions produced from interstellar neutral atoms are also found in the solar wind. These ions are picked up by the solar wind after ionization by solar radiation or charge exchange and can be identified by their velocity in the solar wind. The pick-up ions provide most of the pressure in the interplanetary medium at large distances. Interstellar abundances can be derived from the observed fluxes of solar wind pick-up ions.

  7. Solar wind travel time

    NASA Astrophysics Data System (ADS)

    Russell, C. T.

    A useful rule of thumb in solar terrestrial studies is that the solar wind travels 4 Earth radii (RE) per minute. Long-term studies of solar wind velocity [e.g., Luhmann et al., 1993; 1994] show that the median velocity is about 420 km/s, corresponding to 3.96 RE min-1. The quartiles are about 370 km/s and 495 km/s, corresponding to 3.48 Re min-1 and 4.66 Re min-1 respectively. This number helps estimate the delays expected when observing a discontinuity at a solar wind monitor; one example is ISEE-3 when it was at the forward libration point (about 60 min). It is also helpful for estimating how much time passes before the dayside magnetosphere is compressed as denser solar wind flows by (about 2.5 min).

  8. Genesis Radiation Environment

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Altstatt, Richard L.; Skipworth, William C.

    2007-01-01

    The Genesis spacecraft launched on 8 August 2001 sampled solar wind environments at L1 from 2001 to 2004. After the Science Capsule door was opened, numerous foils and samples were exposed to the various solar wind environments during periods including slow solar wind from the streamer belts, fast solar wind flows from coronal holes, and coronal mass ejections. The Survey and Examination of Eroded Returned Surfaces (SEERS) program led by NASA's Space Environments and Effects program had initiated access for the space materials community to the remaining Science Capsule hardware after the science samples had been removed for evaluation of materials exposure to the space environment. This presentation will describe the process used to generate a reference radiation Genesis Radiation Environment developed for the SEERS program for use by the materials science community in their analyses of the Genesis hardware.

  9. Flank solar wind interaction

    NASA Technical Reports Server (NTRS)

    Moses, Stewart L.; Greenstadt, Eugene W.; Coroniti, Ferdinand V.

    1994-01-01

    In this report we will summarize the results of the work performed under the 'Flank Solar Wind Interaction' investigation in support of NASA's Space Physics Guest Investigator Program. While this investigation was focused on the interaction of the Earth's magnetosphere with the solar wind as observed by instruments on the International Sun-Earth Explorer (ISEE) 3 spacecraft, it also represents the culmination of decades of research performed by scientists at TRW on the rich phenomenology of collisionless shocks in space.

  10. Elemental composition variations in the solar wind: Comparisons between Ulysses and ACE within different solar wind regimes

    NASA Astrophysics Data System (ADS)

    Pilleri, P.; Reisenfeld, D. B.; Wiens, R. C.

    2013-12-01

    The elemental composition of the solar wind is likely established at the base of the corona, a conclusion based on the observed dependence of solar wind abundances on the first ionization potential (FIP) of the elements. Although the plasma conditions within the ecliptic solar wind are highly variable, the elemental composition is less so, and is an indicator of the nature of the solar source. In particular, coronal hole (CH, fast) solar wind tends to have less of a FIP enhancement of the low -FIP elements (e.g., Fe, Mg, Si) than interstream (IS, slow) solar wind. The elemental composition of coronal mass ejections (CMEs) is more variable, but tends to be similar to IS composition. The question we address here is how much does the average composition of the different solar wind regimes vary over the course of the solar cycle and between solar cycles. For the most recent solar cycle, which included the unusually deep and prolonged solar minimum (2006 - 2010) Lepri et al. (2013) have shown measurable drifts in the elemental composition within solar wind regimes using data from the Advanced Composition Explorer (ACE) Solar Wind Ion Composition Spectrometer (SWICS). In contrast, von Steiger and Zurbuchen (2011) have shown using Ulysses SWIC data that the composition of the very fast polar coronal hole flow has remained constant. Here, we extend the Lepri et al. ecliptic analysis to include data from Ulysses, which allows us to expand the analysis to the previous solar cycle (1990 - 2001), as well as check consistency with their recent solar cycle results. (Note that although Ulysses was nominally a polar mission, it spent considerable time at low latitudes as well.) A major driver for this investigation is the Genesis Mission solar wind sample analysis. Namely, was the solar wind sampled by Genesis between late 2001 and early 2004 typical of the solar wind over longer time scales, and hence a representative sample of the long-term solar wind, or was it somehow unique

  11. Genesis Failure Investigation Report

    NASA Technical Reports Server (NTRS)

    Klein, John

    2004-01-01

    The-Genesis mission to collect solar-wind samples and return them to Earth for detailed analysis proceeded successfully for 3.5 years. During reentry on September 8, 2004, a failure in the entry, descent and landing sequence resulted in a crash landing of the Genesis sample return capsule. This document describes the findings of the avionics sub-team that supported the accident investigation of the JPL Failure Review Board.

  12. Solar Wind: Radio Techniques for Probing

    NASA Astrophysics Data System (ADS)

    Bastian, T.; Murdin, P.

    2000-11-01

    The solar wind is a complex magnetized plasma containing large-scale magnetohydrodynamic (MHD) structures, waves and turbulence (see SOLAR WIND PLASMA WAVES and SOLAR WIND TURBULENCE). The structure of the solar wind is modulated in both time and space by solar variability. The solar activity cycle modulates the structure of the solar wind over a time scale of years while transient energetic phen...

  13. Genesis Halo Orbit Station Keeping Design

    NASA Technical Reports Server (NTRS)

    Lo, M.; Williams, K.; Wilson, R.; Howell, K.; Barden, B.

    2000-01-01

    As the fifth mission of NASA's Directory Program, Genesis is designed to collect solar wind samples for approximately two years in a halo orbit near the Sun-Earth L(sub 1) Lagrange point for return to the Earth.

  14. 75 FR 69458 - Notice of Availability of the Record of Decision for the Genesis Solar Energy Project and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-12

    ... Bureau of Land Management Notice of Availability of the Record of Decision for the Genesis Solar Energy... Genesis Solar Energy Project (GSEP). The GSEP is a concentrated solar electrical generating facility using... in the Federal Register on August 27, 2010 (75 FR 52736). Publication of the Notice of...

  15. Solar wind photoplate study

    NASA Technical Reports Server (NTRS)

    Scott, B. W.; Voorhies, H. G.

    1972-01-01

    An ion sensitive emulsion detection system has been considered for use in a cycloidal focusing mass spectrometer to measure the various atomic species which comprise the solar plasma. The responses of Ilford Q2 and Kodak SC7 emulsions were measured with N(+) ions at 6 keV to 10 keV, He(++) ions at 750 eV to 2500 eV, and H(+) ions at 550 eV to 1400 eV. These ions have the approximate range of velocities (about 300-500 km/sec) encountered in the solar wind. The work was carried out on a specially prepared magnetic sector mass analyzer. Characteristic response curves were generated, each one utilizing approximately 50 data points at three or more current densities. In addition to the ion response, measurements of the response of these emulsions to a photon flux simulating the visible portion of the solar spectrum were made. The results obtained will be presented in detail and interpreted in relation to other data available for these emulsions.

  16. Solar wind composition. Progress report

    SciTech Connect

    Ogilvie, K.W.; Coplan, M.A.

    1995-01-01

    Advances in instrumentation have resulted in the determination of the average abundances of He, C, N, O, Ne, Mg, Si, S, and Fe in the solar wind to approximately 10%. Comparisons with solar energetic particle (SEP) abundances and galactic cosmic ray abundances have revealed many similarities, especially when compared with solar photospheric abundances. It is now well established that fractionation in the corona results in an overabundance (with respect to the photosphere) of elements with first ionization potentials less than 10 eV. These observations have in turn led to the development of fractionation models that are reasonably successful in reproducing the first ionization (FIP) effect. Under some circumstances it has been possible to relate solar wind observations to particular source regions in the corona. The magnetic topologies of the source regions appear to have a strong influence on the fractionation of elements. Comparisons with spectroscopic data are particularly useful in classifying the different topologies. Ions produced from interstellar neutral atoms are also found in the solar wind. These ions are picked up by the solar wind after ionization by solar radiation or charge exchange and can be identified by their velocity in the solar wind. The pick-up ions provide most of the pressure in the interplanetary medium at large distances. Interstellar abundances can be derived from the observed fluxes of solar wind pick-up ions.

  17. Wind and solar powered turbine

    NASA Technical Reports Server (NTRS)

    Wells, I. D.; Koh, J. L.; Holmes, M. (Inventor)

    1984-01-01

    A power generating station having a generator driven by solar heat assisted ambient wind is described. A first plurality of radially extendng air passages direct ambient wind to a radial flow wind turbine disposed in a centrally located opening in a substantially disc-shaped structure. A solar radiation collecting surface having black bodies is disposed above the fist plurality of air passages and in communication with a second plurality of radial air passages. A cover plate enclosing the second plurality of radial air passages is transparent so as to permit solar radiation to effectively reach the black bodies. The second plurality of air passages direct ambient wind and thermal updrafts generated by the black bodies to an axial flow turbine. The rotating shaft of the turbines drive the generator. The solar and wind drien power generating system operates in electrical cogeneration mode with a fuel powered prime mover.

  18. Measurement of Damage Profiles from Solar Wind Implantation

    NASA Technical Reports Server (NTRS)

    McNamara, K. M.; Synowicki, R. A.; Tiwald, T. E.

    2007-01-01

    NASA's Genesis Mission launched from Cape Canaveral in August of 2001 with the goal of collecting solar wind in ultra-pure materials. The samples were returned to Earth more than three years later for subsequent analysis. Although the solar wind is comprised primarily of protons, it also contains ionized species representing the entire periodic table. The Genesis mission took advantage of the natural momentum of these ionized species to implant themselves in specialized collectors including single crystal Si and SiC. The collectors trapped the solar wind species of interest and sustained significant damage to the surface crystal structure as a result of the ion bombardment. In this work, spectroscopic ellipsometry has been used to evaluate the extent of this damage in Si and SiC samples. These results and models are compared for artificially implanted samples and pristine non-flight material. In addition, the flown samples had accumulated a thin film of molecular contamination as a result of outgassing in flight, and we demonstrate that this layer can be differentiated from the material damage. In addition to collecting bulk solar wind samples (continuous exposure), the Genesis mission actually returned silicon exposed to four different solar wind regimes: bulk, high speed, low speed, and coronal mass ejections. Each of these solar wind regimes varies in energy, but may vary in composition as well. While determining the composition is a primary goal of the mission, we are also interested in the variation in depth and extent of the damage layer as a function of solar wind regime. Here, we examine flight Si from the bulk solar wind regime and compare the results to both pristine and artificially implanted Si. Finally, there were four samples which were mounted in an electrostatic "concentrator" designed to reject a large fraction (>85%) of incoming protons while enhancing the concentration of ions mass 4-28 amu by a factor of at least 20. Two of these samples were

  19. 78 FR 49507 - Genesis Solar, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Genesis Solar, LLC; Supplemental Notice That Initial Market- Based Rate...-referenced proceeding of Genesis Solar, LLC's application for market-based rate authority, with...

  20. Highly Alfvenic Slow Solar Wind

    NASA Technical Reports Server (NTRS)

    Roberts, D. Aaron

    2010-01-01

    It is commonly thought that fast solar wind tends to be highly Alfvenic, with strong correlations between velocity and magnetic fluctuations, but examples have been known for over 20 years in which slow wind is both Alfvenic and has many other properties more typically expected of fast solar wind. This paper will present a search for examples of such flows from more recent data, and will begin to characterize the general characteristics of them. A very preliminary search suggests that such intervals are more common in the rising phase of the solar cycle. These intervals are important for providing constraints on models of solar wind acceleration, and in particular the role waves might or might not play in that process.

  1. Constraints on neon and argon isotopic fractionation in solar wind.

    PubMed

    Meshik, Alex; Mabry, Jennifer; Hohenberg, Charles; Marrocchi, Yves; Pravdivtseva, Olga; Burnett, Donald; Olinger, Chad; Wiens, Roger; Reisenfeld, Dan; Allton, Judith; McNamara, Karen; Stansbery, Eileen; Jurewicz, Amy J G

    2007-10-19

    To evaluate the isotopic composition of the solar nebula from which the planets formed, the relation between isotopes measured in the solar wind and on the Sun's surface needs to be known. The Genesis Discovery mission returned independent samples of three types of solar wind produced by different solar processes that provide a check on possible isotopic variations, or fractionation, between the solar-wind and solar-surface material. At a high level of precision, we observed no significant inter-regime differences in 20Ne/22Ne or 36Ar/38Ar values. For 20Ne/22Ne, the difference between low- and high-speed wind components is 0.24 +/- 0.37%; for 36Ar/38Ar, it is 0.11 +/- 0.26%. Our measured 36Ar/38Ar ratio in the solar wind of 5.501 +/- 0.005 is 3.42 +/- 0.09% higher than that of the terrestrial atmosphere, which may reflect atmospheric losses early in Earth's history. PMID:17947578

  2. STATIONARITY IN SOLAR WIND FLOWS

    SciTech Connect

    Perri, S.; Balogh, A. E-mail: a.balogh@imperial.ac.u

    2010-05-01

    By using single-point measurements in space physics it is possible to study a phenomenon only as a function of time. This means that we cannot have direct access to information about spatial variations of a measured quantity. However, the investigation of the properties of turbulence and of related phenomena in the solar wind widely makes use of an approximation frequently adopted in hydrodynamics under certain conditions, the so-called Taylor hypothesis; indeed, the solar wind flow has a bulk velocity along the radial direction which is much higher than the velocity of a single turbulent eddy embedded in the main flow. This implies that the time of evolution of the turbulent features is longer than the transit time of the flow through the spacecraft position, so that the turbulent field can be considered frozen into the solar wind flow. This assumption allows one to easily associate time variations with spatial variations and stationarity to homogeneity. We have investigated, applying criteria for weak stationarity to Ulysses magnetic field data in different solar wind regimes, at which timescale and under which conditions the hypothesis of stationarity, and then of homogeneity, of turbulence in the solar wind is well justified. We extend the conclusions of previous studies by Matthaeus and Goldstein to different parameter ranges in the solar wind. We conclude that the stationarity assumption in the inertial range of turbulence on timescales of 10 minutes to 1 day is reasonably satisfied in fast and uniform solar wind flows, but that in mixed, interacting fast, and slow solar wind streams the assumption is frequently only marginally valid.

  3. Solar cycle variations in the solar wind

    NASA Technical Reports Server (NTRS)

    Freeman, John W.; Lopez, Ramon E.

    1986-01-01

    The solar cycle variations of various solar wind parameters are reviewed. It is shown that there is a gradual decrease in the duration of high-speed streams from the declining phase of solar cycle 20 through the ascending phase of cycle 21 and a corresponding decrease in the annual average of the proton speed toward solar maximum. Beta, the ratio of the proton thermal pressure to magnetic pressure, undergoes a significant solar cycle variation, as expected from the variation in the IMF. Individual hourly averages of beta often exceed unity with 20 cases exceeding 10 and one case as high as 25. The Alfven Mach number shows a solar cycle variation similar to beta, lower aboard solar maximum. High-speed streams can be seen clearly in epsilon and the y component of the interplanetary magnetic field.

  4. Wind in the Solar System

    ERIC Educational Resources Information Center

    McIntosh, Gordon

    2010-01-01

    As an astronomy instructor I am always looking for commonly experienced Earthly phenomena to help my students and me understand and appreciate similar occurrences elsewhere in the solar system. Recently I wrote short "TPT" articles on frost and precipitation. The present article is on winds in the solar system. A windy day or storm might motivate…

  5. Photoionization in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Landi, E.; Lepri, S. T.

    2015-10-01

    In this work we investigate the effects of photoionization on the charge state composition of the solar wind. Using measured solar EUV and X-ray irradiance, the Michigan Ionization Code and a model for the fast and slow solar wind, we calculate the evolution of the charge state distribution of He, C, N, O, Ne, Mg, Si, S, and Fe with and without including photoionization for both types of wind. We find that the solar radiation has significant effects on the charge state distribution of C, N, and O, causing the ionization levels of these elements to be higher than without photoionization; differences are largest for oxygen. The ions commonly observed for elements heavier than O are much less affected, except in ICMEs where Fe ions more ionized than 16+ can also be affected by the solar radiation. We also show that the commonly used O7+/O6+ density ratio is the most sensitive to photoionization; this sensitivity also causes the value of this ratio to depend on the phase of the solar cycle. We show that the O7+/O6+ ratio needs to be used with caution for solar wind classification and coronal temperature estimates, and recommend the C6+/C4+ ratio for these purposes.

  6. Solar wind absorption by Venus

    NASA Technical Reports Server (NTRS)

    Gombosi, T. I.; Cravens, T. E.; Nagy, A. F.; Elphic, R. C.; Russell, C. T.

    1980-01-01

    The portion of solar wind interacting with the dayside ionosphere and atmosphere of Venus was determined based on magnetic field fluctuations in the ionosheath and the interaction with the upper neutral atmosphere above the ionopause. Fluctuations with the ratio of the number of particles intersecting the daytide ionopause to the total number of particles of 0.3 suggest that about 0.3% of solar wind may be absorbed. Most of fast H atoms resulting from the charge exchange interactions with the atmosphere escape; some of the energy deposition processes produce observable signatures (such as a narrow Lyman alpha emission region), but penetrating solar wind particles do not control the physical and/or chemical structure of the daytime Venus ionosphere.

  7. Solar wind interaction with Mars.

    NASA Astrophysics Data System (ADS)

    Mohan, M.

    1997-08-01

    The existence of an intrinsic magnetic field at Mars is still a subject of debate. The ionospheric thermal pressure above 300 km is insufficient by itself to withstand the solar wind dynamic pressure, suggesting the presence of a magnetic field in the ionosphere of Mars which can either be a weak intrinsic magnetic field or an induced magnetic field driven by the solar wind interaction with Mars. The photodynamical model of Mahajan and Mayr (1990) for the case of a magnetic field induced by the solar wind plus ion loss via horizontal convection has been studied. It has been found that the induced magnetic field does not affect or alter the photodynamical nature of the ionosphere of Mars.

  8. Neutral solar wind evolution during solar cycle

    NASA Technical Reports Server (NTRS)

    Bzowski, M.; Rucinski, D.

    1995-01-01

    The time dependent model of the expected fluxes of the neutral H and He components of the solar wind in the inner heliosphere is discussed. The model takes into account typical temporal evolution of the distribution of neutral interstellar gases (hydrogen and helium) in the interplanetary space due to solar cycle effects and the long term variability of the solar wind. The contribution of different charge exchange processes to the production of particular NSW element is presented. The distribution of the NSW flux is analysed with respect to the heliocentric distance and azimuthal angle from the Interstellar Wind apex. It demonstrates significant, time-dependent upwind/downwind H and He flux asymmentries. It is shown that the most pronounced modulation of the NSW flux is expected around the solar maximum epoch, when a strong decrease of the energetic H flux by two three orders of magnitude at 1 AU is predicted. The computations show that in the inner solar system (approx. 1 AU) energetic helium atoms production in the downwind region usually dominates the production of the hydrogen component This leads to the conclusion that the NSW composition at the Earth orbit strongly depends on time and the position of the observation point in reference to the apex direction.

  9. Solar Wind Trends in the Current Solar Cycle (STEREO Observations)

    NASA Astrophysics Data System (ADS)

    Galvin, Antoinette; Simunac, Kristin; Farrugia, Charles

    2016-04-01

    We examine solar wind ion characteristics for the current solar cycle, utilizing near-Earth (OMNI) and STEREO data. Sources of the solar wind are known to be linked to the phase of the solar cycle and include coronal holes, coronal mass ejections, and multiple cycle-dependent sources for the so-called "slow" solar wind. This past solar minimum was characterized by weak transients and sustained periods of slow solar wind, and included cases of "slow" and "slower" solar wind stream interactions. In contrast, intervals around solar maximum have included extremely fast interplanetary coronal mass ejections, with one such ICME observed in situ by STEREO A exceeding 2000 km/s at 1 AU. We will look at specific case studies of solar wind observed in situ by STEREO, particularly for solar wind proton and iron ions.

  10. Solar wind and coronal structure

    NASA Technical Reports Server (NTRS)

    Withbroe, G. L.

    1983-01-01

    Spectroscopic diagnostic techniques used to determine the coronal source region of the solar wind, and results of preliminary applications are examined. The topics reviewed are magnetic fields, coronal mass ejections, coronal holes, flow velocities, coronal temperatures, fine spatial structure, and future observational programs. The physical mechanisms responsible for plasma heating, solar-wind acceleration, the transport of mass momentum and energy, and the spatial differentiation of chemical abundances are also discussed. Among the data presented are Skylab's white-light coronagraph photograph of a coronal transient, X-ray photographs of the corona, and spectroheliograms showing bright points overlying polar plumes, and macrospicules.

  11. Solar wind in the outer Heliosphere by IPS observations

    NASA Astrophysics Data System (ADS)

    Kalinichenko, N.; Konovalenko, A.; Falkovich, I.; Olyak, M.

    2007-08-01

    solar flare 17.03.2003 and the filament outburst 18.03.2003 reached Earth's orbit on March, 20 and was registered by Genesis Discovery Mission as a jump of the solar wind density and speed. We carried out IPS observations during March 21-24 when the shock went by the Earth and was moving in the outer Heliosphere. To probe the solar wind we used two radio sources 3C380 and 3C254 with the strongly different elongations and ecliptic latitudes. The agreement between the solar wind velocity obtained by IPS and that measured directly by Genesis Discovery Mission renders support to our method of analysis. Our investigations have shown the high efficiency of IPS method at decameter wavelengths for studies of the solar wind in the outer Heliosphere. The obtained results and methods are very helpful for investigations of the solar wind effect on planets. Future investigations will require significant improvements in spatial resolution which can be reached by using the larger number of scintillating radio sources.

  12. Solar cycle variations of the solar wind

    NASA Technical Reports Server (NTRS)

    Crooker, N. U.

    1983-01-01

    Throughout the course of the past one and a half solar cycles, solar wind parameters measured near the ecliptic plane at 1 AU varied in the following way: speed and proton temperature have maxima during the declining phase and minima at solar minimum and are approximately anti-correlated with number density and electron temperature, while magnetic field magnitude and relative abundance of helium roughly follow the sunspot cycle. These variations are described in terms of the solar cycle variations of coronal holes, streamers, and transients. The solar wind signatures of the three features are discussed in turn, with special emphasis on the signature of transients, which is still in the process of being defined. It is proposed that magnetic clouds be identified with helium abundance enhancements and that they form the head of a transient surrounded by streamer like plasma, with an optional shock front. It is stressed that relative values of a parameter through a solar cycle should be compared beginning with the declining phase, especially in the case of magnetic field magnitude.

  13. 76 FR 54454 - Issuance of Loan Guarantee to Genesis Solar, LLC, for the Genesis Solar Energy Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ...-megawatt (MW) nominal capacity solar power generating facility on approximately 1,950 acres, all of which... satisfied and adopted the Final EIS. (75 FR 78993; December 17, 2010) ADDRESSES: Copies of this Record of... decommission a project identified as the NextEra Ford Dry Lake Solar Power Plant on BLM-administered...

  14. Genesis Recovery Processing

    NASA Technical Reports Server (NTRS)

    Stansbery, E. K.

    2005-01-01

    The Genesis spacecraft, launched in August 2001 to collect samples of the solar wind, returned to Earth on 8 September 2004. The Sample Return Capsule (SRC) failed to deploy its drogue parachute and parafoil and subsequently impacted the Utah Test and Training Range (UTTR) at an estimated 310 kph (193 mph). The goal of the Genesis mission to collect and return samples of the solar wind for precise elemental and isotopic analysis provides the scientific community with a unique set of materials to aid in understanding the origin of our solar system. The spacecraft orbited the Earth-Sun L1 point for 29 months exposing a suite of fifteen types of ultrapure, ultraclean materials in several different locations. Most of the materials were mounted on fixed or deployable wafer panels called collector arrays . A few materials were mounted as targets in the focal spot of an electrostatic mirror (the concentrator ). Other materials were strategically placed to maximize the area for solar-wind collection.

  15. 77 FR 61597 - Avalon Wind, LLC; Avalon Wind 2, LLC; Catalina Solar, LLC; Catalina Solar 2, LLC; Pacific Wind...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-10

    ... Energy Regulatory Commission Avalon Wind, LLC; Avalon Wind 2, LLC; Catalina Solar, LLC; Catalina Solar 2, LLC; Pacific Wind Lessee, LLC; Pacific Wind 2, LLC; Valentine Solar, LLC; EDF Renewable Development, Inc.; Notice of Petition for Declaratory Order Take notice that on September 27, 2012, Avalon...

  16. Evolution of Solar Wind Heavy Ions over the Solar Cycle

    NASA Astrophysics Data System (ADS)

    Lepri, S. T.; Landi, E.; Zurbuchen, T. H.

    2014-05-01

    Solar wind composition has been shown to effectively discriminate between different types of solar wind, including slow, fast and ICME related wind. The composition reflects the properties of the source regions of the wind in the corona and their evolution. We present the systematic and comprehensive analysis of the ionic and elemental composition observed on ACE over solar cycle 23 from 2000 until 2010. During this period, the Sun evolved through solar maximum to solar minimum. We find significantly lower C, O, and Fe charge states as well as a 50% decrease in heavy ion abundances (He, C, O, Si, Fe) relative to H during this transition towards solar minimum. We also examined the FIP bias. We consider the implications of these findings for solar wind models and for identification of the fast and slow wind.

  17. Improvement of background solar wind predictions

    NASA Astrophysics Data System (ADS)

    Dálya, Zsuzsanna; Opitz, Andrea

    2016-04-01

    In order to estimate the solar wind properties at any heliospheric positions propagation tools use solar measurements as input data. The ballistic method extrapolates in-situ solar wind observations to the target position. This works well for undisturbed solar wind, while solar wind disturbances such as Corotating Interaction Regions (CIRs) and Coronal Mass Ejections (CMEs) need more consideration. We are working on dedicated ICME lists to clean these signatures from the input data in order to improve our prediction accuracy. These ICME lists are created from several heliospheric spacecraft measurements: ACE, WIND, STEREO, SOHO, MEX and VEX. As a result, we are able to filter out these events from the time series. Our corrected predictions contribute to the investigation of the quiet solar wind and space weather studies.

  18. Comet Borrelly Slows Solar Wind

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Over 1300 energy spectra taken on September 22, 2001 from the ion and electron instruments on NASA's Deep Space 1 span a region of 1,400,000 kilometers (870,000 miles) centered on the closest approach to the nucleus of comet Borrelly. A very strong interaction occurs between the solar wind (horizontal red bands to left and right in figure) and the comet's surrounding cloud of dust and gas, the coma. Near Deep Space 1's closest approach to the nucleus, the solar wind picked up charged water molecules from the coma (upper green band near the center), slowing the wind sharply and creating the V-shaped energy structure at the center.

    Deep Space 1 completed its primary mission testing ion propulsion and 11 other advanced, high-risk technologies in September 1999. NASA extended the mission, taking advantage of the ion propulsion and other systems to undertake this chancy but exciting, and ultimately successful, encounter with the comet. More information can be found on the Deep Space 1 home page at http://nmp.jpl.nasa.gov/ds1/ .

    Deep Space 1 was launched in October 1998 as part of NASA's New Millennium Program, which is managed by JPL for NASA's Office of Space Science, Washington, D.C. The California Institute of Technology manages JPL for NASA.

  19. Source regions of the solar wind

    NASA Technical Reports Server (NTRS)

    Wang, Y.-M.; Sheeley, N. R., Jr.

    1995-01-01

    Using Skylab XUV data, we examine some properties of the source regions of the solar wind. In particular, we discuss the physical nature of polar plumes and their relationship to the polar wind, the nature of the source regions of the slow solar wind, and the relationship between abundance anomalies (the FIP effect) determined from the Skylab data and the sources of fast and slow wind.

  20. The influence of absorbed solar radiation by Saharan dust on hurricane genesis

    NASA Astrophysics Data System (ADS)

    Bretl, Sebastian; Reutter, Philipp; Raible, Christoph C.; Ferrachat, Sylvaine; Poberaj, Christina Schnadt; Revell, Laura E.; Lohmann, Ulrike

    2015-03-01

    To date, the radiative impact of dust and the Saharan air layer (SAL) on North Atlantic hurricane activity is not yet known. According to previous studies, dust stabilizes the atmosphere due to absorption of solar radiation but thus shifts convection to regions more conducive for hurricane genesis. Here we analyze differences in hurricane genesis and frequency from ensemble sensitivity simulations with radiatively active and inactive dust in the aerosol-climate model ECHAM6-HAM. We investigate dust burden and other hurricane-related variables and determine their influence on disturbances which develop into hurricanes (developing disturbances, DDs) and those which do not (nondeveloping disturbances, NDDs). Dust and the SAL are found to potentially have both inhibiting and supporting influences on background conditions for hurricane genesis. A slight southward shift of DDs is determined when dust is active as well as a significant warming of the SAL, which leads to a strengthening of the vertical circulation associated with the SAL. The dust burden of DDs is smaller in active dust simulations compared to DDs in simulations with inactive dust, while NDDs contain more dust in active dust simulations. However, no significant influence of radiatively active dust on other variables in DDs and NDDs is found. Furthermore, no substantial change in the DD and NDD frequency due to the radiative effects of dust can be detected.

  1. Wind loading on solar collectors

    SciTech Connect

    Bhaduri, S.; Murphy, L.M.

    1985-06-01

    The present design methodology for the determination of wind loading on the various solar collectors has been reviewed and assessed. The total force coefficients of flat plates of aspect ratios 1.0 and 3.0, respectively, at various angles of attack obtained by using the guidelines of the ANSI A58.1-1982, have been compared with those obtained by using the methodology of the ASCE Task Committee, 1961, and the experimental results of the full-scale test of heliostats by Peglow. The turbulent energy spectra, currently employed in the building code, are compared with those of Kaimal et al., Lumley, and Ponofsky for wind velocities of 20.0 m/s and 40.24 m/s at an elevation of 9.15 m. The longitudinal spectra of the building code overestimates the Kaimal spectra in the frequency range of 0.007 Hz to 0.08 Hz and underestimates beyond the frequency of 0.08 Hz. The peak angles of attack, on the heliostat, stowed in horizontal position, due to turbulent vertical and lateral components of wind velocity, have been estimated by using Daniel's methodology for three wind velocities and compared with the value suggested by the code. The experimental results of a simple test in the laboratory indicate the feasibility of decreasing the drag forces of the flat plate by reducing the solidity ratio.

  2. MHD Waves in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Ofman, L.

    2016-02-01

    This chapter focuses on reviewing several observational aspects of magnetohydrodynamic (MHD) waves in the solar wind, in particular on Alfvén waves, Alfvénic turbulent spectrum, and their role in heating and accelerating the solar wind. It also reviews computational models that incorporate Alfvén waves as the driving source of the wind in the lower corona (coronal holes) and in the inner heliosphere, with emphasis on multi-dimensional models. Evidence for MHD waves in the solar wind is obtained from interplanetary scintillation (IPS) observations using Earth-based radio telescope observations of distant (galactic) radio sources. The solar wind electron density variability in the line of sight affects the received radio signal. The propagating fluctuations and their correlations are used to estimate the solar wind velocity and the wave amplitude in the parallel and the perpendicular directions in line of sight.

  3. Genesis Field Recovery

    NASA Technical Reports Server (NTRS)

    McNamara, K. M.

    2005-01-01

    The Genesis mission returned to Earth on September 8, 2004 after a nearly flawless three-year mission to collect solar matter. The intent was to deploy a drogue chute and parafoil high over the Utah desert and to catch the fragile payload capsule in mid-air by helicopter. The capsule would then be opened in a clean-room constructed for that purpose at UTTR, and a nitrogen purge was to be installed before transporting the science canister to JSC. Unfortunately, both chutes failed to deploy, causing the capsule to fall to the desert floor at a speed of nearly 200 MPH. Still, Genesis represents a milestone in the US space program, comprising the first sample return since the Apollo Missions as well as the first return of materials exposed to the space environment outside of low Earth orbit and beyond the Earth s magnetosphere for an extended period. We have no other comparable materials in all of our collections on Earth. The goal of the Genesis Mission was to collect a representative sample of the composition of the solar wind and thus, the solar nebula from which our solar system originated. This was done by allowing the naturally accelerated species to implant shallowly in the surfaces of ultra-pure, ultra-clean collector materials. These collectors included single crystal silicon (FZ and CZ), sapphire, silicon carbide; those materials coated with aluminum, silicon, diamond like carbon, and gold; and isotopically enriched polycrystalline diamond and amorphous carbon. The majority of these materials were distributed on five collector arrays. Three of the materials were housed in an electrostatic concentrator designed to increase the flux of low-mass ions. There was also a two-inch diameter bulk metallic glass collector and a gold foil, polished aluminum, and molybdenum coated platinum foil collector. An excellent review of the Genesis collector materials is offered in reference [1].

  4. Simulations of Solar Wind Turbulence

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn L.; Usmanov, A. V.; Roberts, D. A.

    2008-01-01

    Recently we have restructured our approach to simulating magnetohydrodynamic (MHD) turbulence in the solar wind. Previously, we had defined a 'virtual' heliosphere that contained, for example, a tilted rotating current sheet, microstreams, quasi-two-dimensional fluctuations as well as Alfven waves. In this new version of the code, we use the global, time-stationary, WKB Alfven wave-driven solar wind model developed by Usmanov and described in Usmanov and Goldstein [2003] to define the initial state of the system. Consequently, current sheets, and fast and slow streams are computed self-consistently from an inner, photospheric, boundary. To this steady-state configuration, we add fluctuations close to, but above, the surface where the flow become super-Alfvenic. The time-dependent MHD equations are then solved using a semi-discrete third-order Central Weighted Essentially Non-Oscillatory (CWENO) numerical scheme. The computational domain now includes the entire sphere; the geometrical singularity at the poles is removed using the multiple grid approach described in Usmanov [1996]. Wave packets are introduced at the inner boundary such as to satisfy Faraday's Law [Yeh and Dryer, 1985] and their nonlinear evolution are followed in time.

  5. Sources of solar wind over the solar activity cycle.

    PubMed

    Poletto, Giannina

    2013-05-01

    Fast solar wind has been recognized, about 40 years ago, to originate in polar coronal holes (CHs), that, since then, have been identified with sources of recurrent high speed wind streams. As of today, however, there is no general consensus about whether there are, within CHs, preferential locations where the solar wind is accelerated. Knowledge of slow wind sources is far from complete as well. Slow wind observed in situ can be traced back to its solar source by backward extrapolation of magnetic fields whose field lines are streamlines of the outflowing plasma. However, this technique often has not the necessary precision for an indisputable identification of the region where wind originates. As the Sun progresses through its activity cycle, different wind sources prevail and contribute to filling the heliosphere. Our present knowledge of different wind sources is here summarized. Also, a Section addresses the problem of wind acceleration in the low corona, as inferred from an analysis of UV data, and illustrates changes between fast and slow wind profiles and possible signatures of changes along the solar cycle. A brief reference to recent work about the deep roots of solar wind and their changes over different solar cycles concludes the review. PMID:25685421

  6. Expansion effects on solar wind hybrid simulations

    SciTech Connect

    Parashar, Tulasi N.; Velli, Marco; Goldstein, Bruce E.

    2013-06-13

    Ion kinetic simulations of the solar wind using hybrid codes can model local wave input, heating and instabilities, but generally do not include long term evolution effects in the expanding solar wind. We further develop the expanding box model used in earlier studies to include the mirror force effects and study their role in the evolution of the proton distribution functions in the outer corona and inner heliosphere. The mirror force, significant in the acceleration region of the solar wind, is required for consistency with the conservation of magnetic moment of particles in the expanding wind. We present preliminary results from the modified 1D expanding box hybrid (EBHM) simulations.

  7. Solar energy system with wind vane

    DOEpatents

    Grip, Robert E

    2015-11-03

    A solar energy system including a pedestal defining a longitudinal axis, a frame that is supported by the pedestal and that is rotateable relative to the pedestal about the longitudinal axis, the frame including at least one solar device, and a wind vane operatively connected to the frame to urge the frame relative to the pedestal about the longitudinal axis in response to wind acting on the wind vane.

  8. Solar- and wind-powered irrigation systems

    NASA Astrophysics Data System (ADS)

    Enochian, R. V.

    1982-02-01

    Five different direct solar and wind energy systems are technically feasible for powering irrigation pumps. However, with projected rates of fossil fuel costs, only two may produce significant unsubsidied energy for irrigation pumping before the turn of the century. These are photovoltaic systems with nonconcentrating collectors (providing that projected costs of manufacturing solar cells prove correct); and wind systems, especially in remote areas where adequate wind is available.

  9. Global network of slow solar wind

    NASA Astrophysics Data System (ADS)

    Crooker, N. U.; Antiochos, S. K.; Zhao, X.; Neugebauer, M.

    2012-04-01

    The streamer belt region surrounding the heliospheric current sheet (HCS) is generally treated as the primary or sole source of the slow solar wind. Synoptic maps of solar wind speed predicted by the Wang-Sheeley-Arge model during selected periods of solar cycle 23, however, show many areas of slow wind displaced from the streamer belt. These areas commonly have the form of an arc that is connected to the streamer belt at both ends. The arcs mark the boundaries between fields emanating from different coronal holes of the same polarity and thus trace the paths of belts of pseudostreamers, i.e., unipolar streamers that form over double arcades and lack current sheets. The arc pattern is consistent with the predicted topological mapping of the narrow open corridor or singular separator line that must connect the holes and, thus, consistent with the separatrix-web model of the slow solar wind. Near solar maximum, pseudostreamer belts stray far from the HCS-associated streamer belt and, together with it, form a global-wide web of slow wind. Recognition of pseudostreamer belts as prominent sources of slow wind provides a new template for understanding solar wind stream structure, especially near solar maximum.

  10. Global Network of Slow Solar Wind

    NASA Technical Reports Server (NTRS)

    Crooker, N. U.; Antiochos, S. K.; Zhao, X.; Neugebauer, M.

    2012-01-01

    The streamer belt region surrounding the heliospheric current sheet (HCS) is generally treated as the primary or sole source of the slow solar wind. Synoptic maps of solar wind speed predicted by the Wang-Sheeley-Arge model during selected periods of solar cycle 23, however, show many areas of slow wind displaced from the streamer belt. These areas commonly have the form of an arc that is connected to the streamer belt at both ends. The arcs mark the boundaries between fields emanating from different coronal holes of the same polarity and thus trace the paths of belts of pseudostreamers, i.e., unipolar streamers that form over double arcades and lack current sheets. The arc pattern is consistent with the predicted topological mapping of the narrow open corridor or singular separator line that must connect the holes and, thus, consistent with the separatrix-web model of the slow solar wind. Near solar maximum, pseudostreamer belts stray far from the HCS-associated streamer belt and, together with it, form a global-wide web of slow wind. Recognition of pseudostreamer belts as prominent sources of slow wind provides a new template for understanding solar wind stream structure, especially near solar maximum.

  11. Solar wind interaction with planets --Abstract only

    NASA Astrophysics Data System (ADS)

    Michel, F. C.

    1994-06-01

    The solar system displays a wide variety of solar wind interactions with the planets and satellites. The 'classic' interaction with the Earth's magnetoscope is just one special case which even now leaves important questions unanswered. We will touch on (1) the Earth's magnetospheric interaction and then go on to what are probably representative limiting cases. (2) the interaction with an unmagnetized object having no atmosphere (the Moon), (3) the interaction with unmagnetized objects having atmospheres (Mars and Venus), and (4) the interaction with bodies having so much plasma in their magnetospheres that they would probably generate winds of their own if not confined by the solar wind (Jupiter).

  12. Anisotropic turbulence in the solar wind

    NASA Technical Reports Server (NTRS)

    Matthaeus, W. H.; Bieber, J. W.; Zank, G. P.

    1995-01-01

    Solar wind turbulence has been viewed traditionally as composed of parallel propagating ('slab' fluctuations) or otherwise as isotropic turbulence. A variety of recent investigations, reviewed here, indicate that the spectrum may contain a significant admixture of two dimensional fluctuations, having variations mainly perpendicular to the local magnetic field. These indications come from simulations, from the theory of nearly incompressible MHD, from cosmic ray transport studies and from transport theory for solar wind turbulence, as well as from interpretations of direct observations. Thus, solar wind turbulence may be more like bundles of spaghetti than like parallel phase fronts.

  13. DSCOVR High Time Resolution Solar Wind Measurements

    NASA Technical Reports Server (NTRS)

    Szabo, Adam

    2012-01-01

    The Deep Space Climate Observatory (DSCOVR), previously known as Triana, spacecraft is expected to be launched in late 2014. It will carry a fluxgate magnetometer, Faraday Cup solar wind detector and a top-hat electron electrostatic analyzer. The Faraday Cup will provide an unprecedented 10 vectors/sec time resolution measurement of the solar wind proton and alpha reduced distribution functions. Coupled with the 40 vector/sec vector magnetometer measurements, the identification of specific wave modes in the solar wind will be possible for the first time. The science objectives and data products of the mission will be discussed.

  14. On periodicity of solar wind phenomena

    NASA Technical Reports Server (NTRS)

    Verma, V. K.; Joshi, G. C.

    1995-01-01

    We have investigated the rate of occurrence of solar wind phenomena observed between 1972-1984 using power spectrum analysis. The data have been taken from the high speed solar wind (HSSW) streams catalogue published by Mavromichalaki et al. (1988). The power spectrum analysis of HSSW events indicate that HSSW stream events have a periodicity of 9 days. This periodicity of HSSW events is 1/3 of the 27 days period of coronal holes which are the major source of solar wind events. In our opinion the 9 days period may be the energy build up time to produce the HSSW stream events.

  15. Solar wind tans young asteroids

    NASA Astrophysics Data System (ADS)

    2009-04-01

    A new study published in Nature this week reveals that asteroid surfaces age and redden much faster than previously thought -- in less than a million years, the blink of an eye for an asteroid. This study has finally confirmed that the solar wind is the most likely cause of very rapid space weathering in asteroids. This fundamental result will help astronomers relate the appearance of an asteroid to its actual history and identify any after effects of a catastrophic impact with another asteroid. ESO PR Photo 16a/09 Young Asteroids Look Old "Asteroids seem to get a ‘sun tan' very quickly," says lead author Pierre Vernazza. "But not, as for people, from an overdose of the Sun's ultraviolet radiation, but from the effects of its powerful wind." It has long been known that asteroid surfaces alter in appearance with time -- the observed asteroids are much redder than the interior of meteorites found on Earth [1] -- but the actual processes of this "space weathering" and the timescales involved were controversial. Thanks to observations of different families of asteroids [2] using ESO's New Technology Telescope at La Silla and the Very Large Telescope at Paranal, as well as telescopes in Spain and Hawaii, Vernazza's team have now solved the puzzle. When two asteroids collide, they create a family of fragments with "fresh" surfaces. The astronomers found that these newly exposed surfaces are quickly altered and change colour in less than a million years -- a very short time compared to the age of the Solar System. "The charged, fast moving particles in the solar wind damage the asteroid's surface at an amazing rate [3]", says Vernazza. Unlike human skin, which is damaged and aged by repeated overexposure to sunlight, it is, perhaps rather surprisingly, the first moments of exposure (on the timescale considered) -- the first million years -- that causes most of the aging in asteroids. By studying different families of asteroids, the team has also shown that an asteroid

  16. Solar wind drivers of energetic electron precipitation

    NASA Astrophysics Data System (ADS)

    Asikainen, T.; Ruopsa, M.

    2016-03-01

    Disturbances of near-Earth space are predominantly driven by coronal mass ejections (CMEs) mostly originating from sunspots and high-speed solar wind streams (HSSs) emanating from coronal holes. Here we study the relative importance of CMEs and HSSs as well as slow solar wind in producing energetic electron precipitation. We use the recently corrected energetic electron measurements from the Medium Energy Proton Electron Detector instrument on board low-altitude NOAA/Polar Orbiting Environmental Satellites from 1979 to 2013. Using solar wind observations categorized into three different flow types, we study the contributions of these flows to annual electron precipitation and their efficiencies in producing precipitation. We find that HSS contribution nearly always dominates over the other flows and peaks strongly in the declining solar cycle phase. CME contribution mostly follows the sunspot cycle but is enhanced also in the declining phase. The efficiency of both HSS and CME peaks in the declining phase. We also study the dependence of electron precipitation on solar wind southward magnetic field component, speed, and density and find that the solar wind speed is the dominant factor affecting the precipitation. Since HSSs enhance the average solar wind speed in the declining phase, they also enhance the efficiency of CMEs during these times and thus have a double effect in enhancing energetic electron precipitation.

  17. Solar wind observations by Lyman alpha

    NASA Technical Reports Server (NTRS)

    Kyroelae, E.; Summanen, T.

    1995-01-01

    The interaction between the solar wind and the local interstellar matter takes place at two distinct regions. The plasma component of the interstellar matter meets the solar wind at the heliospheric interface region and it is excluded from entering into the heliosphere. The neutral component consisting mainly of the hydrogen atoms flows through the whole heliosphere. It gets, however, partly ionized by charge exchange collisions with solar wind protons and energetic photons from the Sun. The neutral atom trajectories are also affected by the radiation pressure from the Sun. While the properties of the interface region are still too sparsely known to be useful for solar wind studies the neutral H distribution near the Sun has been used successfully for this purpose. Measuring Lyman alpha light scattered by neutral hydrogen atoms can serve as a remote sensing measurement of the solar wind's three-dimensional and temporal distribution. In this work we will particularly focus on the solar cycle effects on the neutral hydrogen distribution and how it affects the solar wind monitoring.

  18. Turbulence in solar wind and laboratory plasmas

    SciTech Connect

    Carbone, V.

    2010-06-16

    Recent studies of plasma turbulence based on measurements within solar wind and laboratory plasmas has been discussed. Evidences for the presence of a turbulent energy cascade, using the Yaglom's law for MHD turbulence, has been provided through data from the Ulysses spacecraft. This allows, for the first time, a direct estimate of the turbulent energy transfer rate, which can contribute to the in situ heating of the solar wind. The energy cascade has been evidenced also for ExB electrostatic turbulence in laboratory magnetized plasmas using measurements of intermittent transport (bursty turbulence) at the edge of the RFX-mod reversed field pinch plasma device. Finally the problem of the dispersive region of turbulence in solar wind above the ion-cyclotron frequency, where a spectral break is usually observed, and the problem of dissipation in a collisionless fluid as the solar wind, are briefly discussed.

  19. Electrostatic Solitary Waves in the Solar Wind: Evidence for Instability at Solar Wind Current Sheets

    NASA Technical Reports Server (NTRS)

    Malaspina, David M.; Newman, David L.; Wilson, Lynn Bruce; Goetz, Keith; Kellogg, Paul J.; Kerstin, Kris

    2013-01-01

    A strong spatial association between bipolar electrostatic solitary waves (ESWs) and magnetic current sheets (CSs) in the solar wind is reported here for the first time. This association requires that the plasma instabilities (e.g., Buneman, electron two stream) which generate ESWs are preferentially localized to solar wind CSs. Distributions of CS properties (including shear angle, thickness, solar wind speed, and vector magnetic field change) are examined for differences between CSs associated with ESWs and randomly chosen CSs. Possible mechanisms for producing ESW-generating instabilities at solar wind CSs are considered, including magnetic reconnection.

  20. Solar Corona/Wind Composition and Origins of the Solar Wind

    NASA Astrophysics Data System (ADS)

    Lepri, S. T.; Gilbert, J. A.; Landi, E.; Shearer, P.; von Steiger, R.; Zurbuchen, T.

    2014-12-01

    Measurements from ACE and Ulysses have revealed a multifaceted solar wind, with distinctly different kinetic and compositional properties dependent on the source region of the wind. One of the major outstanding issues in heliophysics concerns the origin and also predictability of quasi-stationary slow solar wind. While the fast solar wind is now proven to originate within large polar coronal holes, the source of the slow solar wind remains particularly elusive and has been the subject of long debate, leading to models that are stationary and also reconnection based - such as interchange or so-called S-web based models. Our talk will focus on observational constraints of solar wind sources and their evolution during the solar cycle. In particular, we will point out long-term variations of wind composition and dynamic properties, particularly focused on the abundance of elements with low First Ionization Potential (FIP), which have been routinely measured on both ACE and Ulysses spacecraft. We will use these in situ observations, and remote sensing data where available, to provide constraints for solar wind origin during the solar cycle, and on their correspondence to predictions for models of the solar wind.

  1. Magnetic energy flow in the solar wind.

    NASA Technical Reports Server (NTRS)

    Modisette, J. L.

    1972-01-01

    Discussion of the effect of rotation (tangential flow) of the solar wind on the conclusions of Whang (1971) suggesting an increase in the solar wind velocity due to the conversion of magnetic energy to kinetic energy. It is shown that the effect of the rotation of the sun on the magnetic energy flow results in most of the magnetic energy being transported by magnetic shear stress near the sun.

  2. Sources of the solar wind at solar activity maximum

    NASA Astrophysics Data System (ADS)

    Neugebauer, M.; Liewer, P. C.; Smith, E. J.; Skoug, R. M.; Zurbuchen, T. H.

    2002-12-01

    The photospheric sources of solar wind observed by the Ulysses and ACE spacecraft from 1998 to early 2001 are determined through a two-step mapping process. Solar wind speed measured at the spacecraft is used in a ballistic model to determine a foot point on a source surface at a solar distance of 2.5 solar radii. A potential-field source-surface model is then used to trace the field and flow from the source surface to the photosphere. Comparison of the polarity of the measured interplanetary field with the polarity of the photospheric source region shows good agreement for spacecraft latitudes equatorward of 60°. At higher southern latitudes, the mapping predicts that Ulysses should have observed only outward directed magnetic fields, whereas both polarities were observed. A detailed analysis is performed on four of the solar rotations for which the mapped and observed polarities were in generally good agreement. For those rotations, the solar wind mapped to both coronal holes and active regions. These findings for a period of high solar activity differ from the findings of a similar study of the solar wind in 1994-1995 when solar activity was very low. At solar minimum the fastest wind mapped to the interior of large polar coronal holes while slower wind mapped to the boundaries of those holes or to smaller low-latitude coronal holes. For the data examined in the present study, neither spacecraft detected wind from the small polar coronal holes when they existed and the speed was never as high as that observed by Ulysses at solar minimum. The principal difference between the solar wind from coronal holes and from active regions is that the O7+/O6+ ion ratio is lower for the coronal hole flow, but not as low as in the polar coronal hole flow at solar minimum. Furthermore, the active-region flows appear to be organized into several substreams unlike the more monolithic structure of flows from coronal holes. The boundaries between plasma flows from neighboring

  3. The interaction of the solar wind with the interstellar medium

    NASA Technical Reports Server (NTRS)

    Axford, W. I.

    1972-01-01

    The expected characteristics of the solar wind, extrapolated from the vicinity of the earth are described. Several models are examined for the interaction of the solar wind with the interstellar plasma and magnetic field. Various aspects of the penetration of neutral interstellar gas into the solar wind are considered. The dynamic effects of the neutral gas on the solar wind are described. Problems associated with the interaction of cosmic rays with the solar wind are discussed.

  4. Cleaning Study of Genesis Sample 60487

    NASA Technical Reports Server (NTRS)

    Kuhlman, Kim R.; Rodriquez, M. C.; Gonzalez, C. P.; Allton, J. H.; Burnett, D. S.

    2013-01-01

    The Genesis mission collected solar wind and brought it back to Earth in order to provide precise knowledge of solar isotopic and elemental compositions. The ions in the solar wind were stopped in the collectors at depths on the order of 10 to a few hundred nanometers. This shallow implantation layer is critical for scientific analysis of the composition of the solar wind and must be preserved throughout sample handling, cleaning, processing, distribution, preparation and analysis. Particles of Genesis wafers, brine from the Utah Testing Range and an organic film have deleterious effects on many of the high-resolution instruments that have been developed to analyze the implanted solar wind. We have conducted a correlative microscopic study of the efficacy of cleaning Genesis samples with megasonically activated ultrapure water and UV/ozone cleaning. Sample 60487, the study sample, is a piece of float-zone silicon from the B/C array approximately 4.995mm x 4.145 mm in size

  5. Origin of the Ubiquitous Fast Solar Wind

    NASA Technical Reports Server (NTRS)

    Habbal, S. R.; Woo, R.; Fineschi, S.; O'Neal, R.; Kohl, J.; Noci, G.

    1997-01-01

    The solar wind is a direct manifestation of the coronal heating processes which continue to elude us. For over three decades, observations in interplanetary space have identified two types of wind: a slow component with highly variable physical properties also characterized by speeds typically beow 500 kn/s, and a much less variable fast wind flowing on average at 750 km/s1.

  6. Western Wind and Solar Integration Study

    SciTech Connect

    Lew, D.; Piwko, R.; Jordan, G.; Miller, N.; Clark, K.; Freeman, L.; Milligan, M.

    2011-01-01

    The Western Wind and Solar Integration Study (WWSIS) is one of the largest regional wind and solar integration studies to date. It was initiated in 2007 to examine the operational impact of up to 35% energy penetration of wind, photovoltaics (PV), and concentrating solar power (CSP) on the power system operated by the WestConnect group of utilities in Arizona, Colorado, Nevada, New Mexico, and Wyoming (see study area map). WestConnect also includes utilities in California, but these were not included because California had already completed a renewable energy integration study for the state. This study was set up to answer questions that utilities, public utilities commissions, developers, and regional planning organizations had about renewable energy use in the west: (1) Does geographic diversity of renewable energy resource help mitigate variability; (2) How do local resources compare to out-of-state resources; (3) Can balancing area cooperation help mitigate variability; (4) What is the role and value of energy storage; (5) Should reserve requirements be modified; (6) What is the benefit of forecasting; and (7) How can hydropower help with integration of renewables? The Western Wind and Solar Integration Study is sponsored by the U.S. Department of Energy (DOE) and run by NREL with WestConnect as a partner organization. The study follows DOE's 20% Wind Energy by 2030 report, which did not find any technical barriers to reaching 20% wind energy in the continental United States by 2030. This study and its partner study, the Eastern Wind Integration and Transmission Study, performed a more in-depth operating impact analysis to see if 20% wind energy was feasible from an operational level. In DOE/NREL's analysis, the 20% wind energy target required 25% wind energy in the western interconnection; therefore, this study considered 20% and 30% wind energy to bracket the DOE analysis. Additionally, since solar is rapidly growing in the west, 5% solar was also considered

  7. Sulfur abundances in the solar wind measured by SWICS on Ulysses. [Solar Wind Ion Composition Spectrometer

    NASA Technical Reports Server (NTRS)

    Shafer, C. M.; Gloeckler, G.; Galvin, A. B.; Ipavich, F. M.; Geiss, J.; Von Steiger, R.; Ogilvie, K.

    1993-01-01

    One of the nine experiments on Ulysses (launched October, 1990), the Solar Wind Ion Composition Spectrometer, utilizes an energy per charge deflection system along with time of flight technology to uniquely determine the mass and mass per charge of solar wind particles. Thus the composition of various solar wind types can be analyzed. Using the SWICS data accumulated during the in-ecliptic phase of the mission, we have determined the sulfur abundance, relative to silicon, in two different types of solar wind: transient and coronal hole associated flows. Sulfur is of extreme interest because it is one of the few elements that lies in the transitional region of the FIP-dependent relative abundance enrichment function, observed for solar energetic particles and some types of solar wind flows.

  8. Are There Natural Categories of Solar Wind?

    NASA Astrophysics Data System (ADS)

    Roberts, D. A.; Sipes, T.; Karimabadi, H.

    2014-12-01

    What seem to be the most obvious categories of solar wind, such as fast and slow, often turn out to be difficult to pin down on closer examination. For example, while slow winds tend to be dense and nonAlfvenic, there are significant exceptions, with some slow winds being not only very Alfvenic but also exhibiting many fast wind traits. Here we use "unsupervised" data mining to look for "natural" solar wind types. We use a set of variables to represent the state of the system and apply what are now standard algorithms to look for natural clustering of these variables. We have done this process for the solar wind density, speed, a carbon charge state ratio (6+ to 5+), the cross-helicity, and the "residual energy." When using the first three of these, we find two groups that tend to be slow and fast, but with the boundary between the groups that is a combination of speed and density. When all five variables are used, the best characterization of the states is as three basic groups in the cross-helicity vs residual energy space, i.e., in terms of "turbulence" measures rather than simple parameters. The three-variable case is largely but not completely reproduced in its subspace. We will suggest what the results could mean for the understanding of issues such as solar wind acceleration.

  9. New Horizons Solar Wind Around Pluto Solar Wind (SWAP) Measurements from 5 to 23 AU

    NASA Astrophysics Data System (ADS)

    Elliott, H. A.; McComas, D. J.; Delamere, P. A.

    2012-12-01

    This year the Solar Wind Around Pluto (SWAP) instrument on the New Horizons (NH) spacecraft collected 79 days of solar wind measurements during hibernation, about 30 days of data during annual checkout operations, and has begun recording another 168 days of data in hibernation which will be played back next year. The currently available NH-SWAP solar wind observations now span from about 5.1 to 23.4 AU. We examine how the peak solar wind speed in the New Horizons measurements vary with distance, report on progress toward automating the fitting of the SWAP solar wind count rate distributions, and take an initial look at the solar wind temperature-speed relationship beyond 11 AU. Since most of the SWAP solar wind observations were collected while spinning, and ions from the entire field-of-view (10 by 276 degrees) are focused onto one pair of coincidence Channel Electron Multiplier, we need to evaluate the effect of spinning on the measured rates. By comparing the 3-axis stabilized, to the rolling and spinning measurements, we strive to assess spin variations in the observed SWAP count rates and develop techniques to account for them. To test our analysis, we fit simulated count rate distributions to quantify how well our technique recovers the input solar wind conditions.

  10. Discrete events and solar wind energization

    NASA Technical Reports Server (NTRS)

    Yang, W.-H.; Schunk, R. W.

    1989-01-01

    Based on a multiple-magnetic-reconnection picture, an estimation of the energy flux suggests that small-scale EUV exploding events may contribute a significant amount of energy (of order of 100,000 erg/sq cm sec) to solar atmospheric heating and solar-wind acceleration. Most of the dissipated magnetic energy is converted into thermal energy and plasma turbulence. On a related aspect, a numerical study based on the nonlinear one-fluid hydrodynamic equations shows a self-smoothing effect, whereby a multistream structure of the solar wind formed near the sun can be gradually smoothed during its propagation through interplanetary space. This calculation gives support for the possible contribution of discrete energetic events to high-speed solar wind streams.

  11. Solar wind origin in coronal funnels.

    PubMed

    Tu, Chuan-Yi; Zhou, Cheng; Marsch, Eckart; Xia, Li-Dong; Zhao, Liang; Wang, Jing-Xiu; Wilhelm, Klaus

    2005-04-22

    The origin of the solar wind in solar coronal holes has long been unclear. We establish that the solar wind starts flowing out of the corona at heights above the photosphere between 5 megameters and 20 megameters in magnetic funnels. This result is obtained by a correlation of the Doppler-velocity and radiance maps of spectral lines emitted by various ions with the force-free magnetic field as extrapolated from photospheric magnetograms to different altitudes. Specifically, we find that Ne7+ ions mostly radiate around 20 megameters, where they have outflow speeds of about 10 kilometers per second, whereas C3+ ions with no average flow speed mainly radiate around 5 megameters. Based on these results, a model for understanding the solar wind origin is suggested. PMID:15845846

  12. PULSED ALFVEN WAVES IN THE SOLAR WIND

    SciTech Connect

    Gosling, J. T.; Tian, H.; Phan, T. D.

    2011-08-20

    Using 3 s plasma and magnetic field data from the Wind spacecraft located in the solar wind well upstream from Earth, we report observations of isolated, pulse-like Alfvenic disturbances in the solar wind. These isolated events are characterized by roughly plane-polarized rotations in the solar wind magnetic field and velocity vectors away from the directions of the underlying field and velocity and then back again. They pass over Wind on timescales ranging from seconds to several minutes. These isolated, pulsed Alfven waves are pervasive; we have identified 175 such events over the full range of solar wind speeds (320-550 km s{sup -1}) observed in a randomly chosen 10 day interval. The large majority of these events are propagating away from the Sun in the solar wind rest frame. Maximum field rotations in the interval studied ranged from 6 Degree-Sign to 109 Degree-Sign . Similar to most Alfvenic fluctuations in the solar wind at 1 AU, the observed changes in velocity are typically less than that predicted for pure Alfven waves (Alfvenicity ranged from 0.28 to 0.93). Most of the events are associated with small enhancements or depressions in magnetic field strength and small changes in proton number density and/or temperature. The pulse-like and roughly symmetric nature of the magnetic field and velocity rotations in these events suggests that these Alfvenic disturbances are not evolving when observed. They thus appear to be, and probably are, solitary waves. It is presently uncertain how these waves originate, although they may evolve out of Alfvenic turbulence.

  13. The solar cycle variation of the solar wind helium abundance

    NASA Technical Reports Server (NTRS)

    Ogilvie, K. W.; Hirshberg, J.

    1974-01-01

    A critical survey was made of the experimental evidence for a variation of the relative abundance by number h, (n alpha/np), of helium in the solar wind. The abundance is found to vary by delta h = 0.01 + or - 0.01 from 0.035 to 0.045 over solar cycle 20. Changes in the average bulk speed during the solar activity cycle was insufficient to account for this increase in h with the solar cycle. The slope of the linear relation between h and the plasma bulk speed is also found to vary, being greatest around solar maximum. An attempt is made to explain the 30% variation in h as the result of the variation in the number of major solar flares over a solar cycle. These obvious transients are apparently not numerous enough to explain the observed variation, but the reasonable expectation remains that the transients observed recently by Skylab which may occur more frequently than major flares could augment those associated with major flares. Since the solar wind flux is not observed to increase at solar maximum, the abundance of Helium cannot be proportional to the proton flux leaving the sun unless the solar wind comes from a smaller area of the sun at maximum than at minimum.

  14. The oxygen isotopic composition of the Sun inferred from captured solar wind.

    PubMed

    McKeegan, K D; Kallio, A P A; Heber, V S; Jarzebinski, G; Mao, P H; Coath, C D; Kunihiro, T; Wiens, R C; Nordholt, J E; Moses, R W; Reisenfeld, D B; Jurewicz, A J G; Burnett, D S

    2011-06-24

    All planetary materials sampled thus far vary in their relative abundance of the major isotope of oxygen, (16)O, such that it has not been possible to define a primordial solar system composition. We measured the oxygen isotopic composition of solar wind captured and returned to Earth by NASA's Genesis mission. Our results demonstrate that the Sun is highly enriched in (16)O relative to the Earth, Moon, Mars, and bulk meteorites. Because the solar photosphere preserves the average isotopic composition of the solar system for elements heavier than lithium, we conclude that essentially all rocky materials in the inner solar system were enriched in (17)O and (18)O, relative to (16)O, by ~7%, probably via non-mass-dependent chemistry before accretion of the first planetesimals. PMID:21700868

  15. Observed Properties of the Solar Wind

    NASA Astrophysics Data System (ADS)

    Neugebauer, Marcia

    2008-11-01

    The earliest measurements of the solar wind fully supported Gene Parker's theory. The wind was persistent and nearly radial, its speed was hundreds of km/s, the density was as predicted, and, on average, the interplanetary magnetic field was consistent with an Archimedian spiral. The fastest wind, with speed >700 km/s, traced back to Bartel's unipolar M regions rather than to the hotter active regions, and the highest densities could be explained by compression where the fast wind plowed into the slower wind in its path. But, even in the early data, there were mysteries, some of which are not yet completely resolved. Understanding the alpha particles has been a challenge. Their abundance is highly variable, in the fast wind their temperature is generally > 4 times the proton temperature, and, despite their greater mass, they flow away from the Sun faster than the protons. To complicate the picture further, the protons, alphas, and electrons all have complex, anisotropic distribution functions, often with double peaks. The expanding wind cools more slowly than adiabatically, suggesting a zoo of wave-particle interactions probably responsible for marginal stabilities of the particle distributions. The study of interplanetary waves and turbulence is an active field of research. Recent decades have also seen the study of ions heavier than alphas, including particles in the wind that did not originate at the Sun. Fifty years after Parker's landmark paper, solar-wind physics is still an active area of research.

  16. The Three-Dimenstional Solar Wind at Solar Activity Minimum

    NASA Technical Reports Server (NTRS)

    Neugebauer, M.

    1998-01-01

    In late 1997, the Ulysses spacecraft completed its first orbit around the Sun, observing the properties of the heliosphere at all latitudes between 80 degrees South and 80 degrees North. Because the mission occurred during a period of near-minimum solar activity, the configuration of the solar wind and interplanetary magnetic field were particularly simple, thus allowing confident comparisons between the properties of the polar corona observed by instruments of the Spartan and SOHO spacecraft and the resulting properties of the solar wind.

  17. Clouds blown by the solar wind

    NASA Astrophysics Data System (ADS)

    Voiculescu, M.; Usoskin, I.; Condurache-Bota, S.

    2013-12-01

    In this letter we investigate possible relationships between the cloud cover (CC) and the interplanetary electric field (IEF), which is modulated by the solar wind speed and the interplanetary magnetic field. We show that CC at mid-high latitudes systematically correlates with positive IEF, which has a clear energetic input into the atmosphere, but not with negative IEF, in general agreement with predictions of the global electric circuit (GEC)-related mechanism. Thus, our results suggest that mid-high latitude clouds might be affected by the solar wind via the GEC. Since IEF responds differently to solar activity than, for instance, cosmic ray flux or solar irradiance, we also show that such a study allows distinguishing one solar-driven mechanism of cloud evolution, via the GEC, from others.

  18. The Solar Wind Ion Analyzer for MAVEN

    NASA Astrophysics Data System (ADS)

    Halekas, J. S.; Taylor, E. R.; Dalton, G.; Johnson, G.; Curtis, D. W.; McFadden, J. P.; Mitchell, D. L.; Lin, R. P.; Jakosky, B. M.

    2015-12-01

    The Solar Wind Ion Analyzer (SWIA) on the MAVEN mission will measure the solar wind ion flows around Mars, both in the upstream solar wind and in the magneto-sheath and tail regions inside the bow shock. The solar wind flux provides one of the key energy inputs that can drive atmospheric escape from the Martian system, as well as in part controlling the structure of the magnetosphere through which non-thermal ion escape must take place. SWIA measurements contribute to the top level MAVEN goals of characterizing the upper atmosphere and the processes that operate there, and parameterizing the escape of atmospheric gases to extrapolate the total loss to space throughout Mars' history. To accomplish these goals, SWIA utilizes a toroidal energy analyzer with electrostatic deflectors to provide a broad 360∘×90∘ field of view on a 3-axis spacecraft, with a mechanical attenuator to enable a very high dynamic range. SWIA provides high cadence measurements of ion velocity distributions with high energy resolution (14.5 %) and angular resolution (3.75∘×4.5∘ in the sunward direction, 22.5∘×22.5∘ elsewhere), and a broad energy range of 5 eV to 25 keV. Onboard computation of bulk moments and energy spectra enable measurements of the basic properties of the solar wind at 0.25 Hz.

  19. Laboratory Facility for Simulating Solar Wind Sails

    NASA Astrophysics Data System (ADS)

    Funaki, Ikkoh; Ueno, Kazuma; Oshio, Yuya; Ayabe, Tomohiro; Horisawa, Hideyuki; Yamakawa, Hiroshi

    2008-12-01

    Magnetic sail (MagSail) is a deep space propulsion system, in which an artificial magnetic cavity captures the energy of the solar wind to propel a spacecraft in the direction leaving the sun. For a scale-model experiment of the plasma flow of MagSail, we employed a magnetoplasmadynamic arcjet as a solar wind simulator. It is observed that a plasma flow from the solar wind simulator reaches a quasi-steady state of about 0.8 ms duration after a transient phase when initiating the discharge. During this initial phase of the discharge, a blast-wave was observed to develop radially in a vacuum chamber. When a solenoidal coil (MagSail scale model) is immersed into the quasi-steady flow where the velocity is 45 km/s, and the number density is 1019 m-3, a bow shock as well as a magnetic cavity were formed in front of the coil. As a result of the interaction between the plasma flow and the magnetic cavity, the momentum of the simulated solar wind is decreased, and it is found from the thrust measurement that the solar wind momentum is transferred to the coil simulating MagSail.

  20. Laboratory Facility for Simulating Solar Wind Sails

    SciTech Connect

    Funaki, Ikkoh; Ayabe, Tomohiro; Horisawa, Hideyuki; Yamakawa, Hiroshi

    2008-12-31

    Magnetic sail (MagSail) is a deep space propulsion system, in which an artificial magnetic cavity captures the energy of the solar wind to propel a spacecraft in the direction leaving the sun. For a scale-model experiment of the plasma flow of MagSail, we employed a magnetoplasmadynamic arcjet as a solar wind simulator. It is observed that a plasma flow from the solar wind simulator reaches a quasi-steady state of about 0.8 ms duration after a transient phase when initiating the discharge. During this initial phase of the discharge, a blast-wave was observed to develop radially in a vacuum chamber. When a solenoidal coil (MagSail scale model) is immersed into the quasi-steady flow where the velocity is 45 km/s, and the number density is 10{sup 19} m-3, a bow shock as well as a magnetic cavity were formed in front of the coil. As a result of the interaction between the plasma flow and the magnetic cavity, the momentum of the simulated solar wind is decreased, and it is found from the thrust measurement that the solar wind momentum is transferred to the coil simulating MagSail.

  1. Evidence for solar wind modulation of lightning

    NASA Astrophysics Data System (ADS)

    Scott, C. J.; Harrison, R. G.; Owens, M. J.; Lockwood, M.; Barnard, L.

    2014-05-01

    The response of lightning rates over Europe to arrival of high speed solar wind streams at Earth is investigated using a superposed epoch analysis. Fast solar wind stream arrival is determined from modulation of the solar wind V y component, measured by the Advanced Composition Explorer spacecraft. Lightning rate changes around these event times are determined from the very low frequency arrival time difference (ATD) system of the UK Met Office. Arrival of high speed streams at Earth is found to be preceded by a decrease in total solar irradiance and an increase in sunspot number and Mg II emissions. These are consistent with the high speed stream’s source being co-located with an active region appearing on the Eastern solar limb and rotating at the 27 d period of the Sun. Arrival of the high speed stream at Earth also coincides with a small (˜1%) but rapid decrease in galactic cosmic ray flux, a moderate (˜6%) increase in lower energy solar energetic protons (SEPs), and a substantial, statistically significant increase in lightning rates. These changes persist for around 40 d in all three quantities. The lightning rate increase is corroborated by an increase in the total number of thunder days observed by UK Met stations, again persisting for around 40 d after the arrival of a high speed solar wind stream. This result appears to contradict earlier studies that found an anti-correlation between sunspot number and thunder days over solar cycle timescales. The increase in lightning rates and thunder days that we observe coincides with an increased flux of SEPs which, while not being detected at ground level, nevertheless penetrate the atmosphere to tropospheric altitudes. This effect could be further amplified by an increase in mean lightning stroke intensity that brings more strokes above the detection threshold of the ATD system. In order to remove any potential seasonal bias the analysis was repeated for daily solar wind triggers occurring during the summer

  2. Solar wind ion composition and charge states

    SciTech Connect

    Vonsteiger, R.

    1995-06-01

    The solar wind, a highly tenuous plasma streaming from the Sun into interplanetary space at supersonic speed, is roughly composed of 95% hydrogen and 5% helium by number. All other, heavy elements contribute less than 0.1% by number and thus are truly test particles Nevertheless, these particles provide valuable information not present in the main components. The authors first discuss the importance of the heavy ions as tracers for processes in the solar atmosphere. Specifically, their relative abundances are found to be different in the solar wind as compared to the photosphere. This fractionation, which is best organized as a function of the first ionization time (FIT) of the elements under solar surface conditions, provides information on the structure of the chromosphere, where it is imparted on the partially ionized material by an atom-ion separation mechanism. Moreover, the charge states of the heavy ions can be used to infer the coronal temperature, since they are frozen-in near the altitude where the expansion time scale overcomes the ionization/recombination time scales. Next, the authors review the published values of ion abundances in the solar wind, concentrating on the recent results of the SWICS instrument on Ulysses. About 8 elements and more than 20 charge states can be routinely analyzed by this sensor. There is clear evidence that both the composition and the charge state distribution is significantly different in the fast solar wind from the south polar coronal hole, traversed by Ulysses in 1993/94, as compared to the solar wind normally encountered near the ecliptic plane. The fractionation between low- and high-FIT elements is reduced, and the charge states indicate a lower, more uniform coronal temperature in the hole. Finally, the authors discuss these results in the framework of existing theoretical models of the chromosphere and corona, attempting to identify differences between the low- and high-latitude regions of the solar atmosphere.

  3. Energy Dissipation Processes in Solar Wind Turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Wei, F. S.; Feng, X. S.; Xu, X. J.; Zhang, J.; Sun, T. R.; Zuo, P. B.

    2015-12-01

    Turbulence is a chaotic flow regime filled by irregular flows. The dissipation of turbulence is a fundamental problem in the realm of physics. Theoretically, dissipation ultimately cannot be achieved without collisions, and so how turbulent kinetic energy is dissipated in the nearly collisionless solar wind is a challenging problem. Wave particle interactions and magnetic reconnection (MR) are two possible dissipation mechanisms, but which mechanism dominates is still a controversial topic. Here we analyze the dissipation region scaling around a solar wind MR region. We find that the MR region shows unique multifractal scaling in the dissipation range, while the ambient solar wind turbulence reveals a monofractal dissipation process for most of the time. These results provide the first observational evidences for intermittent multifractal dissipation region scaling around a MR site, and they also have significant implications for the fundamental energy dissipation process.

  4. Magnetofluid Turbulence in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn L.

    2008-01-01

    The solar wind shows striking characteristics that suggest that it is a turbulent magnetofluid, but the picture is not altogether simple. From the earliest observations, a strong correlation between magnetic fluctuations and plasma velocity fluctuations was noted. The high corrections suggest that the fluctuations are Alfven waves. In addition, the power spectrum of the magnetic fluctuation showed evidence of an inertial range that resembled that seen in fully-developed fluid turbulence. Alfven waves, however, are exact solutions of the equations of incompressible magnetohydrodynamics. Thus, there was a puzzle: how can a magnetofluid consisting of Alfven waves be turbulent? The answer lay in the role of velocity shears in the solar wind that could drive turbulent evolution. Puzzles remain: for example, the power spectrum of the velocity fluctuations is less steep than the slope of the magnetic fluctuations, nor do we understand even now why the solar wind appears to be nearly incompressible with a -5/3 power-spectral index.

  5. Status of Genesis Mo-Pt Foils

    NASA Technical Reports Server (NTRS)

    Nishiizumi, K.; Allton, J. H.; Burnett, D. S.; Butterworth, A. L.; Caffee, M. W.; Clark, B.; Jurewicz, A. J. G.; Komura, K.; Westphal, A. J.; Welten, K. C.

    2005-01-01

    A total of 8,000 sq cm of Mo-coated Pt foils were exposed to solar wind for 884 days by the Genesis mission. Solar wind ions were captured in the surface of the Mo. Our objective is the measurement of long-lived radionuclides, such as Be-10, Al-26, Cl-36, and Mn-53, and short-lived radionuclides, such as Na-22 and Mn-54, in the captured sample of solar wind. The expected flux of these nuclides in the solar wind is 100 atom/sq cm yr or less. The hard landing of the SRC (Sample Return Capsule) at UTTR (Utah Test and Training Range) has resulted in contaminated and crumpled foils. Here we present a status report and revised plan for processing the foils.

  6. Solar wind-magnetosphere energy input functions

    SciTech Connect

    Bargatze, L.F.; McPherron, R.L.; Baker, D.N.

    1985-01-01

    A new formula for the solar wind-magnetosphere energy input parameter, P/sub i/, is sought by applying the constraints imposed by dimensional analysis. Applying these constraints yields a general equation for P/sub i/ which is equal to rho V/sup 3/l/sub CF//sup 2/F(M/sub A/,theta) where, rho V/sup 3/ is the solar wind kinetic energy density and l/sub CF//sup 2/ is the scale size of the magnetosphere's effective energy ''collection'' region. The function F which depends on M/sub A/, the Alfven Mach number, and on theta, the interplanetary magnetic field clock angle is included in the general equation for P/sub i/ in order to model the magnetohydrodynamic processes which are responsible for solar wind-magnetosphere energy transfer. By assuming the form of the function F, it is possible to further constrain the formula for P/sub i/. This is accomplished by using solar wind data, geomagnetic activity indices, and simple statistical methods. It is found that P/sub i/ is proportional to (rho V/sup 2/)/sup 1/6/VBG(theta) where, rho V/sup 2/ is the solar wind dynamic pressure and VBG(theta) is a rectified version of the solar wind motional electric field. Furthermore, it is found that G(theta), the gating function which modulates the energy input to the magnetosphere, is well represented by a ''leaky'' rectifier function such as sin/sup 4/(theta/2). This function allows for enhanced energy input when the interplanetary magnetic field is oriented southward. This function also allows for some energy input when the interplanetary magnetic field is oriented northward. 9 refs., 4 figs.

  7. Magnetohydrodynamic turbulence in the solar wind

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn L.

    1995-01-01

    The fluctuations in magnetic field and plasma velocity in solar wind, which possess many features of fully developed magnetohydrodynamic (MHD) turbulence, are discussed. Direct spacecraft observations from 0.3 to over 20 AU, remote sensing radio scintillation observations, numerical simulations, and various models provide complementary methods that show that the fluctuations in the wind parameters undergo significant dynamical evolution independent of whatever turbulence might exist in the solar photosphere and corona. The Cluster mission, with high time resolution particle and field measurements and its variable separation strategies, should be able to provide data for answering many questions on MHD turbulence.

  8. Solar Wind Change Exchange from the Magnetosheath

    NASA Technical Reports Server (NTRS)

    Snowden, Steve

    2008-01-01

    We report the results of a long (approximately 100 ks) XMM-Newton observation designed to observe solar wind charge exchange emission (SWCX) from Earth's magnetosheath. By luck, the observation took place during a period of minimal solar wind flux so the SWCX emission was also minimal. Never-the-less, there is a significant if not stunning correlation between the observed O VIII count rate and our model for magnetosheath emission. We also report on the observed O VII and O VII emission.

  9. Solar cycle evolution of the solar wind in three dimensions

    NASA Technical Reports Server (NTRS)

    Rickett, B. J.; Coles, W. A.

    1983-01-01

    Measurements of the solar wind speed both in and out of the ecliptic are presented for 1971-82. The speed estimates, which were made with the interplanetary scintillation system at UC San Diego, have been compared to in situ for large, slowly evolving structures, and thus such structures can be studied up to 60 degrees north and south heliographic latitude. Annual average wind speeds are presented versus latitude for an entire solar cycle. Fast wind streams from the poles persisted through declining and low solar activity, but were closed off during four years of high activity. This evolution follows that of the polar coronal holes, as displayed by comparing averaged speed and coronal density over latitude and longitude. The most recent data (1982) show the reestablishment of large tilted polar holes and associated fast streams. Coronal magnetic field data show that the neutral sheet is confined to low latitudes at solar minimum and extends to high latitudes at solar maximum; thus the slow solar wind comes from the same latitude range as that of the neutral sheet.

  10. Solar wind observations at STEREO: 2007 - 2011

    NASA Astrophysics Data System (ADS)

    Jian, L. K.; Russell, C. T.; Luhmann, J. G.; Galvin, A. B.; Simunac, K. D. C.

    2013-06-01

    We have observed the solar wind extensively using the twin STEREO spacecraft in 2007 - 2011, covering the deep solar minimum 23/24 and the rising phase of solar cycle 24. Hundreds of large-scale solar wind structures have been surveyed, including stream interaction regions (SIRs), interplanetary CMEs (ICMEs), and interplanetary shocks. The difference in location can cause one STEREO spacecraft to encounter 1/3 more of the above structures than the other spacecraft in a single year, even of the quasi-steady SIRs. In contrast with the rising phase of cycle 23, SIRs and ICMEs have weaker field and pressure compression in this rising phase, and ICMEs drive fewer shocks. Although the majority of shocks are driven by SIRs and ICMEs, we find ~13% of shocks without clear drivers observed in situ.

  11. Adiabatic cooling of solar wind electrons

    NASA Technical Reports Server (NTRS)

    Sandbaek, Ornulf; Leer, Egil

    1992-01-01

    In thermally driven winds emanating from regions in the solar corona with base electron densities of n0 not less than 10 exp 8/cu cm, a substantial fraction of the heat conductive flux from the base is transfered into flow energy by the pressure gradient force. The adiabatic cooling of the electrons causes the electron temperature profile to fall off more rapidly than in heat conduction dominated flows. Alfven waves of solar origin, accelerating the basically thermally driven solar wind, lead to an increased mass flux and enhanced adiabatic cooling. The reduction in electron temperature may be significant also in the subsonic region of the flow and lead to a moderate increase of solar wind mass flux with increasing Alfven wave amplitude. In the solar wind model presented here the Alfven wave energy flux per unit mass is larger than that in models where the temperature in the subsonic flow is not reduced by the wave, and consequently the asymptotic flow speed is higher.

  12. Solar wind composition from the Moon;

    NASA Astrophysics Data System (ADS)

    Bochsler, P.

    1994-06-01

    The lunar regolith contains the best accessible record of the solar wind composition of the past few billion years. Interpreting this record crucially depends on our understanding of the implantation mechanisms, potential alternative sources other than the solar wind, storage and degradation processes, and transport- and loss-mechanisms of trapped particles in the regolith. We therefore suggest that a future mission to the Moon should contain the following objectives: (1) A thorough in-situ investigation of the contemporary solar wind composition by means of long-duration exposure experiments with various techniques as baseline for investigation of the historic and ancient solar wind. (2) A multidisciplinary program, involving an experimental investigation of implantation-, storage- and loss-processes of solar particles at the conditions of the lunar environment. This program is complementary to an elaborated systematic sampling of all layers of the lunar regolith, based on the experience from the Apollo- and the Luna-missions. Difficulties with the interpretation of the lunar record are illuminated in the case of surface correlated nitrogen. (3) A complementary goal for the extensive sampling of the lunar surface is the documentation of the lunar regolith for future generations, prior to extended human activites which could have detrimental effects to the lunar environment.

  13. Workshop on Solar Activity, Solar Wind, Terrestrial Effects, and Solar Acceleration

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A summary of the proceedings from the workshop are presented. The areas covered were solar activity, solar wind, terrestrial effects, and solar acceleration. Specific topics addressed include: (1) solar cycle manifestations, both large and small scale, as well as long-term and short-term changes, including transients such as flares; (2) sources of solar wind, as identified by interplanetary observations including coronal mass ejections (CME's) or x-ray bright points, and the theory for and evolution of large-scale and small-scale structures; (3) magnetosphere responses, as observed by spacecraft, to variable solar wind and transient energetic particle emissions; and (4) origin and propagation of solar cosmic rays as related to solar activity and terrestrial effects, and solar wind coronal-hole relationships and dynamics.

  14. Small Particulate Contamination Survey Of Genesis Flight Sample 61423

    NASA Technical Reports Server (NTRS)

    Kuhlman, K. R.; Schmeling, M.; Gonzalez, C. P.; Allums, K. K.; Allton, J. H.; Burnett, D. S.

    2016-01-01

    The Genesis mission collected solar wind and brought it back to Earth in order to provide precise knowledge of solar isotopic and elemental compositions. The ions in the solar wind stop in the collectors at depths on the order of 10 to a few hundred nanometers. This shallow implantation layer is critical for scientific analysis of the composition of the solar wind and must be preserved throughout sample handling, cleaning, processing, distribution, preparation and analysis. We continue to work with the community of scientists analyzing Genesis samples using our unique laboratory facilities -- and, where needed, our unique cleaning techniques -- to significantly enhance the science return from the Genesis mission. This work is motivated by the need to understand the submicron contamination on the collectors in the Genesis payload as recovered from the crash site in the Utah desert, and -- perhaps more importantly -- how to remove it. We continue to evaluate the effectiveness of the wet-chemical "cleaning" steps used by various investigators, to enable them to design improved methods of stripping spacecraft and terrestrial contamination from surfaces while still leaving the solar-wind signal intact.

  15. Wind/solar resource in Texas

    SciTech Connect

    Nelson, V.; Starcher, K.; Gaines, H.

    1997-12-31

    Data are being collected at 17 sites to delineate a baseline for the wind and solar resource across Texas. Wind data are being collected at 10, 25, and 40 m (in some cases at 50 m) to determine wind shear and power at hub heights of large turbines. Many of the sites are located in areas of predicted terrain enhancement. The typical day in a month for power and wind turbine output was calculated for selected sites and combination of sites; distributed systems. Major result to date is that there is the possibility of load matching in South Texas during the summer months, even though the average values by month indicate a low wind potential.

  16. Implications of solar wind measurements for solar models and composition

    NASA Astrophysics Data System (ADS)

    Serenelli, Aldo; Scott, Pat; Villante, Francesco L.; Vincent, Aaron C.; Asplund, Martin; Basu, Sarbani; Grevesse, Nicolas; Peña-Garay, Carlos

    2016-08-01

    We critically examine recent claims of a high solar metallicity by von Steiger & Zurbuchen (2016, vSZ16) based on in situ measurements of the solar wind, rather than the standard spectroscopically-inferred abundances (Asplund et al. 2009, AGSS09). We test the claim by Vagnozzi et al. (2016) that a composition based on the solar wind enables one to construct a standard solar model in agreement with helioseismological observations and thus solve the decades-old solar modelling problem. We show that, although some helioseismological observables are improved compared to models computed with spectroscopic abundances, most are in fact worse. The high abundance of refractory elements leads to an overproduction of neutrinos, with a predicted 8B flux that is nearly twice its observed value, and 7Be and CNO fluxes that are experimentally ruled out at high confidence. A combined likelihood analysis shows that models using the vSZ16 abundances fare worse than AGSS09 despite a higher metallicity. We also present astrophysical and spectroscopic arguments showing the vSZ16 composition to be an implausible representation of the solar interior, identifying the first ionisation potential effect in the outer solar atmosphere and wind as the likely culprit.

  17. Slow Solar Wind: Observations and Modeling

    NASA Astrophysics Data System (ADS)

    Abbo, L.; Ofman, L.; Antiochos, S. K.; Hansteen, V. H.; Harra, L.; Ko, Y.-K.; Lapenta, G.; Li, B.; Riley, P.; Strachan, L.; von Steiger, R.; Wang, Y.-M.

    2016-06-01

    While it is certain that the fast solar wind originates from coronal holes, where and how the slow solar wind (SSW) is formed remains an outstanding question in solar physics even in the post-SOHO era. The quest for the SSW origin forms a major objective for the planned future missions such as the Solar Orbiter and Solar Probe Plus. Nonetheless, results from spacecraft data, combined with theoretical modeling, have helped to investigate many aspects of the SSW. Fundamental physical properties of the coronal plasma have been derived from spectroscopic and imaging remote-sensing data and in situ data, and these results have provided crucial insights for a deeper understanding of the origin and acceleration of the SSW. Advanced models of the SSW in coronal streamers and other structures have been developed using 3D MHD and multi-fluid equations. However, the following questions remain open: What are the source regions and their contributions to the SSW? What is the role of the magnetic topology in the corona for the origin, acceleration and energy deposition of the SSW? What are the possible acceleration and heating mechanisms for the SSW? The aim of this review is to present insights on the SSW origin and formation gathered from the discussions at the International Space Science Institute (ISSI) by the Team entitled "Slow solar wind sources and acceleration mechanisms in the corona" held in Bern (Switzerland) in March 2014 and 2015.

  18. Magnetic Influences on the Solar Wind

    NASA Astrophysics Data System (ADS)

    Woolsey, Lauren

    2016-05-01

    The steady, supersonic outflow from the Sun we call the solar wind was first posited in the 1950s and initial theories rightly linked the acceleration of the wind to the existence of the million-degree solar corona. Still today, the wind acceleration mechanisms and the coronal heating processes remain unsolved challenges in solar physics. In this work, I seek to answer a portion of the mystery by focusing on a particular acceleration process: Alfven waves launched by the motion of magnetic field footpoints in the photosphere. The entire corona is threaded with magnetic loops and flux tubes that open up into the heliosphere. I have sought a better understanding of the role these magnetic fields play in determining solar wind properties in open flux tubes. After an introduction of relevant material, I discuss my parameter study of magnetic field profiles and the statistical understanding we can draw from the resulting steady-state wind. In the chapter following, I describe how I extended this work to consider time dependence in the turbulent heating by Alfven waves in three dimensional simulations. The bursty nature of this heating led to a natural next step that expands my work to include not only the theoretical, but also a project to analyze observations of small network jets in the chromosphere and transition region, and the underlying photospheric magnetic field that forms thresholds in jet production. In summary, this work takes a broad look at the extent to which Alfven-wave-driven turbulent heating can explain measured solar wind properties and other observed phenomena.

  19. Coronal Plumes in the Fast Solar Wind

    NASA Technical Reports Server (NTRS)

    Velli, Marco; Lionello, Roberto; Linker, Jon A.; Mikic, Zoran

    2011-01-01

    The expansion of a coronal hole filled with a discrete number of higher density coronal plumes is simulated using a time-dependent two-dimensional code. A solar wind model including an exponential coronal heating function and a flux of Alfven waves propagating both inside and outside the structures is taken as a basic state. Different plasma plume profiles are obtained by using different scale heights for the heating rates. Remote sensing and solar wind in situ observations are used to constrain the parameter range of the study. Time dependence due to plume ignition and disappearance is also discussed. Velocity differences of the order of approximately 50 km/s, such as those found in microstreams in the high-speed solar wind, may be easily explained by slightly different heat deposition profiles in different plumes. Statistical pressure balance in the fast wind data may be masked by the large variety of body and surface waves which the higher density filaments may carry, so the absence of pressure balance in the microstreams should not rule out their interpretation as the extension of coronal plumes into interplanetary space. Mixing of plume-interplume material via the Kelvin-Helmholtz instability seems to be possible within the parameter ranges of the models defined here, only at large di stances from the Sun, beyond 0.2-0.3 AU. Plasma and composition measurements in the inner heliosphere, such as those which will become available with Solar Orbiter and Solar Probe Plus, should therefore definitely be able to identify plume remnants in the solar wind.

  20. CORONAL PLUMES IN THE FAST SOLAR WIND

    SciTech Connect

    Velli, Marco; Lionello, Roberto; Linker, Jon A.; Mikic, Zoran E-mail: lionel@predsci.com E-mail: mikicz@predsci.com

    2011-07-20

    The expansion of a coronal hole filled with a discrete number of higher density coronal plumes is simulated using a time-dependent two-dimensional code. A solar wind model including an exponential coronal heating function and a flux of Alfven waves propagating both inside and outside the structures is taken as a basic state. Different plasma plume profiles are obtained by using different scale heights for the heating rates. Remote sensing and solar wind in situ observations are used to constrain the parameter range of the study. Time dependence due to plume ignition and disappearance is also discussed. Velocity differences of the order of {approx}50 km s{sup -1}, such as those found in microstreams in the high-speed solar wind, may be easily explained by slightly different heat deposition profiles in different plumes. Statistical pressure balance in the fast wind data may be masked by the large variety of body and surface waves which the higher density filaments may carry, so the absence of pressure balance in the microstreams should not rule out their interpretation as the extension of coronal plumes into interplanetary space. Mixing of plume-interplume material via the Kelvin-Helmholtz instability seems to be possible within the parameter ranges of the models defined here, only at large distances from the Sun, beyond 0.2-0.3 AU. Plasma and composition measurements in the inner heliosphere, such as those which will become available with Solar Orbiter and Solar Probe Plus, should therefore definitely be able to identify plume remnants in the solar wind.

  1. Particle propagation channels in the solar wind

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.; Dougherty, W. M.

    1987-01-01

    The intensities of low energy solar-interplanetary electrons and ions at 1 AU occasionally change in a square wave manner. The changes may be increases or decreases and they typically have durations of from one hour to a few hours. In some cases these channels are bounded by discontinuities in the interplanetary field and the plasma properties differ from the surrounding solar wind. In one case solar flare particles were confined to a channel of width 3 x 10 to the 6th km at Earth. At the Sun this dimension extrapolates to about 12,000 km, a size comparable to small flares.

  2. Energy Primer: Solar, Water, Wind, and Biofuels.

    ERIC Educational Resources Information Center

    Portola Inst., Inc., Menlo Park, CA.

    This is a comprehensive, fairly technical book about renewable forms of energy--solar, water, wind, and biofuels. The biofuels section covers biomass energy, agriculture, aquaculture, alcohol, methane, and wood. The focus is on small-scale systems which can be applied to the needs of the individual, small group, or community. More than one-fourth…

  3. THOR Cold Solar Wind (CSW) instrument

    NASA Astrophysics Data System (ADS)

    Lavraud, Benoit; De Keyser, Johan; Amoros, Carine; Neef, Eddy; Anciaux, Michel; Andre, Nicolas; Baruah, Rituparna; Berkenbosch, Sophie; Bonnewijn, Sabrina; Cara, Antoine; Echim, Marius; Fedorov, Andrei; Genot, Vincent; Licciardi, Lucas; Louarn, Philippe; Maes, Jeroen; Maggiolo, Romain; Mathon, Romain; Ranvier, Sylvain; Wong, King-Wah

    2016-04-01

    Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to the study of plasma turbulence. We present the Cold Solar Wind (CSW) instrument that is being designed for THOR. CSW will measure the full three dimensional distribution functions of solar wind protons and alphas with unprecedented accuracies. It will measure solar wind proton distributions in 150 ms with energy resolution of 5-7% and angular resolution of 3°. CSW is based on a top-hat electrostatic analyzer (with very large geometric factor) design with deflectors at the entrance. The particle detection system uses Channel Electron Multipliers (CEM) and an Application-Specific Integrated Circuit (ASIC) for charge amplification. CSW electronics comprises a fast sweeping high voltage board, as well as an FPGA and low voltage power supply boards to perform its operations. CSW is designed to address many of the key science objectives of THOR, in particular regarding ion-scale kinetic aspects of solar wind turbulence.

  4. Whistler Wave Turbulence in Solar Wind Plasma

    NASA Astrophysics Data System (ADS)

    Shaikh, Dastgeer; Zank, G. P.

    2010-03-01

    Whistler waves are present in solar wind plasma. These waves possess characteristic turbulent fluctuations that are characterized typically by the frequency and length scales that are respectively bigger than ion gyro frequency and smaller than ion gyro radius. The electron inertial length is an intrinsic length scale in whistler wave turbulence that distinguishably divides the high frequency solar wind turbulent spectra into scales smaller and bigger than the electron inertial length. We present nonlinear three dimensional, time dependent, fluid simulations of whistler wave turbulence to investigate their role in solar wind plasma. Our simulations find that the dispersive whistler modes evolve entirely differently in the two regimes. While the dispersive whistler wave effects are stronger in the large scale regime, they do not influence the spectral cascades which are describable by a Kolmogorov-like k-7/3 spectrum. By contrast, the small scale turbulent fluctuations exhibit a Navier-Stokes like evolution where characteristic turbulent eddies exhibit a typical k-5/3 hydrodynamic turbulent spectrum. By virtue of equipartition between the wave velocity and magnetic fields, we quantify the role of whistler waves in the solar wind plasma fluctuations.

  5. Solar Wind Drivers for Steady Magnetospheric Convection

    NASA Technical Reports Server (NTRS)

    McPherron, Robert L.; O'Brien, T. Paul; Thompson, Scott; Lui, A. T. Y. (Editor)

    2005-01-01

    Steady magnetospheric convection (SMC) also known as convection bays, is a particular mode of response of the magnetosphere to solar wind coupling. It is characterized by convection lasting for times longer than a typical substorm recovery during which no substorms expansions can be identified. It is generally believed that the solar wind must be unusually steady for the magnetosphere to enter this state. However, most previous studies have assumed this is true and have used such conditions to identify events. In a preliminary investigation using only the AE and AL indices to select events we have shown that these expectations are generally correct. SMC events seem to be associated with slow speed solar wind and moderate, stable IMF Bz. In this report we extend our previous study including additional parameters and the time variations in various statistical quantities. For the intervals identified as SMCs we perform a detailed statistical analysis of the properties of different solar wind variables. We compare these statistics to those determined from all data, and from intervals in which substorms but not SMCs are present. We also consider the question of whether substorms are required to initiate and terminate an SMC. We conclude that the intervals we have identified as SMC are likely to be examples of the original Dungey concept of balanced reconnection at a pair of x-lines on the day and night side of the Earth.

  6. The energy balance of the solar wind

    NASA Technical Reports Server (NTRS)

    Hollweg, J. V.

    1981-01-01

    The effects of modifying some of the 'classical' assumptions underlying many of the solar wind models constructed over the past 20 years are examined in an effort to obtain both a better fit with the observations and a deeper understanding of the relevant physical processes.

  7. Recent insights in solar wind MHD turbulence

    SciTech Connect

    Bruno, R.; D'Amicis, R.; Bavassano, B.; Carbone, V.; Marino, R.; Sorriso-Valvo, L.; Noullez, A.; Pietropaolo, E.

    2008-08-25

    In this short review we report about recent findings related to two fundamental points in the study of solar wind turbulence: a) the verification of the equivalent of the -4/5 law in the solar wind and b) the estimate of the energy cascade along the spectrum and its comparison with the heating rate necessary to heat the solar wind during its expansion as deduced from in-situ measurements. As a matter of fact, a Yaglom-like scaling relation has recently been found in both high-latitude and in-ecliptic data samples. However, analogous scaling law, suitably modified to take into account compressible fluctuations, has been observed in a much more extended fraction of the same data set recorded at high latitude. Thus, it seems that large scale density fluctuations, despite their low amplitude, play a major role in the basic scaling properties of turbulence. The compressive turbulent cascade, moreover, seems to be able to supply the energy needed to account for the local heating of the non-adiabatic solar wind.

  8. Electrodynamic sailing - Beating into the solar wind.

    NASA Technical Reports Server (NTRS)

    Sonett, C. P.; Fahleson, U.; Alfven, H.

    1972-01-01

    The recent suggestion by Alfven (1972) of a novel means of spacecraft propulsion based upon energy extraction from the electromagnetic field of the solar wind is critically reviewed. In response to this review, the original suggestion is somewhat amplified and clarified by its author.

  9. Identifying Wind and Solar Ramping Events: Preprint

    SciTech Connect

    Florita, A.; Hodge, B. M.; Orwig, K.

    2013-01-01

    Wind and solar power are playing an increasing role in the electrical grid, but their inherent power variability can augment uncertainties in power system operations. One solution to help mitigate the impacts and provide more flexibility is enhanced wind and solar power forecasting; however, its relative utility is also uncertain. Within the variability of solar and wind power, repercussions from large ramping events are of primary concern. At the same time, there is no clear definition of what constitutes a ramping event, with various criteria used in different operational areas. Here the Swinging Door Algorithm, originally used for data compression in trend logging, is applied to identify variable generation ramping events from historic operational data. The identification of ramps in a simple and automated fashion is a critical task that feeds into a larger work of 1) defining novel metrics for wind and solar power forecasting that attempt to capture the true impact of forecast errors on system operations and economics, and 2) informing various power system models in a data-driven manner for superior exploratory simulation research. Both allow inference on sensitivities and meaningful correlations, as well as the ability to quantify the value of probabilistic approaches for future use in practice.

  10. Combined Solar and Wind Energy Systems

    NASA Astrophysics Data System (ADS)

    Tripanagnostopoulos, Y.; Souliotis, M.; Makris, Th.

    2010-01-01

    In this paper we present the new concept of combined solar and wind energy systems for buildings applications. Photovoltaics (PV) and small wind turbines (WTs) can be install on buildings, in case of sufficient wind potential, providing the building with electricity. PVs can be combined with thermal collectors to form the hybrid photovoltaic/thermal (PV/T) systems. The PVs (or the PV/Ts) and WT subsystems can supplement each other to cover building electrical load. In case of using PV/T collectors, the surplus of electricity, if not used or stored in batteries, can increase the temperature of the thermal storage tank of the solar thermal unit. The description of the experimental set-up of the suggested PV/T/WT system and experimental results are presented. In PV/T/WT systems the output from the solar part depends on the sunshine time and the output of the wind turbine part depends on the wind speed and is obtained any time of day or night. The use of the three subsystems can cover a great part of building energy load, contributing to conventional energy saving and environment protection. The PV/T/WT systems are considered suitable in rural and remote areas with electricity supply from stand-alone units or mini-grid connection. PV/T/WT systems can also be used in typical grid connected applications.

  11. Material Interactions with Solar Wind Ion Environments

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; McWilliams, Brett

    2006-01-01

    Solar wind composition is dominated by hydrogen (approx.96%) and helium (approx.3 to 4%) with a minor fraction (less than or equal to 1%) of heavy ions. Hydrogen (helium) ions impact spacecraft surfaces with energies from 0.5 to 5 keV (1.8 to 21 keV) due to variations in solar wind velocity from 300 km/s to 1000 km/sec with extremes of a few 10 s keV during periods of extremely high solar wind velocity exceeding 1000 km/sec. Mean impact energies are typically on the order of approximately 1 keV and 4 keV for hydrogen ions and helium ions, respectively. These energies are typically of the peak of the energy dependent light ion sputter yields for hydrogen and helium on many metals. In addition, light ions with kilovolt energies have been shown to produce blister (or exfoliation) damage to metal surfaces due to formation of high pressure gas bubbles within the materials when exposed to ion fluences on the order of 10(exp 16 to (10(exp 17 ions/sq cm. A number of spacecraft designs for current and future missions include gossamer polymer structures with thin metallic reflection coatings to shield instruments from the Sun or solar sail propulsion systems for use in a variety of locations in the inner solar system from 0.5 to 1 AU. In addition, there is interest in designing spacecraft for solar physics missions requiring operations as close to the Sun as 0.16 to 0.2 AU. Integrity of the metallic coatings is critical in many of these applications since degradation will result in modification of material thermal properties or exposure of polymers to solar UV photons which can compromise mission requirements. This paper will evaluate the relative contributions of sputtering and blister formation to material degradation in solar wind environments over a range of radial distances from the Sun to demonstrate where solar wind environments become important for materials selection. We will first review the physics and results from laboratory measurements of light ion sputtering

  12. The origin of the solar wind

    NASA Technical Reports Server (NTRS)

    Axford, W. I.; McKenzie, J. F.

    1995-01-01

    The high speed solar wind, which is associated with coronal holes and unipolar interplanetary magnetic field, has now been observed in situ beyond 0.3 a.u. and at latitudes up to 80 degrees. Its important characteristics are that it is remarkably steady in terms of flow properties and composition and that the ions, especially minor species, are favored in terms of heating and acceleration. We have proposed that the high speed wind, with its associated coronal holes, forms the basic mode of solar wind flow. In contrast, the low speed wind is inherently non-stationary, filamentary and not in equilibrium with conditions at the coronal base. It is presumably the result of continual reconfigurations of the force-free magnetic field in the low-latitude closed corona which allow trapped plasma to drain away along transiently open flux tubes. Observations of high speed solar wind close to its source are hampered by the essential heterogeneity of the corona, even at sunspot minimum. In particular it is difficult to determine more than limits to the density, temperature and wave amplitude near the coronal base as a result of contamination from fore- and back-ground plasma. We interpret the observations as indicating that the high speed solar wind originates in the chromospheric network, covering only about 1% of the surface of the sun, where the magnetic field is complex and not unipolar. As a result of small-scale reconnection events in this 'furnace', Alfven waves are generated with a flat spectrum covering the approximate range 10 kHz to 10 Hz. The plasma is likely to be produced as a result of downwards thermal conduction and possibly photoionization at the top of the low density chromospheric interface to the furnace, thus controlling the mass flux in the wind. The immediate source of free (magnetic) energy is in the form of granule-sized loops which are continually carried into the network from the sides. The resulting wave spectrum is such that energy can be

  13. Electric solar wind sail mass budget model

    NASA Astrophysics Data System (ADS)

    Janhunen, P.; Quarta, A. A.; Mengali, G.

    2013-02-01

    The electric solar wind sail (E-sail) is a new type of propellantless propulsion system for Solar System transportation, which uses the natural solar wind to produce spacecraft propulsion. The E-sail consists of thin centrifugally stretched tethers that are kept charged by an onboard electron gun and, as such, experience Coulomb drag through the high-speed solar wind plasma stream. This paper discusses a mass breakdown and a performance model for an E-sail spacecraft that hosts a mission-specific payload of prescribed mass. In particular, the model is able to estimate the total spacecraft mass and its propulsive acceleration as a function of various design parameters such as the number of tethers and their length. A number of subsystem masses are calculated assuming existing or near-term E-sail technology. In light of the obtained performance estimates, an E-sail represents a promising propulsion system for a variety of transportation needs in the Solar System.

  14. Solar wind modification upstream of the bow shock

    NASA Astrophysics Data System (ADS)

    Urbář, J.; Němeček, Z.; Přech, L.; Šafránková, J.; Jelínek, K.

    2013-06-01

    A spacecraft configuration with two monitors near L1 and a fleet of the spacecraft orbiting in front of the bow shock brings a great opportunity to test the propagation techniques for the solar wind and the assumption on a negligible solar wind parameter evolution. We use multi-point observations of the THEMIS-ARTEMIS mission and compare them with data from the Wind solar wind monitor in order to estimate different factors influencing solar wind speed evolution. We have found a significant deceleration (up to 6%) of the solar wind close to the bow shock and the effect extends up to 30 RE from the Earth. It is controlled by the level of magnetic field fluctuations and by the flux of reflected and accelerated particles. We can conclude that the reflected particles not only excite waves of large amplitudes but also modify mean values of the solar wind speed measured in an unperturbed solar wind.

  15. Ion Cyclotron Waves in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Wei, H. Y.; Jian, L. K.; Russell, C. T.; Omidi, N.

    2016-02-01

    The ion cyclotron waves (ICWs) refer to electromagnetic transverse waves with nearly field-aligned propagation, circular polarization, and frequencies near the proton gyro-frequency. This chapter presents the ICW studies observed in the solar wind over a wide range of heliocentric distances, at all solar longitudes, and at locations far from planets or comets. To better understand the wave source region, case studies have been performed on a special group of ICW storm events, in which the left-handed (LH) and right-handed (RH) waves were observed simultaneously in the spacecraft frame. The study in the chapter assumes the waves are generated through one possible mechanism (i.e., the temperature anisotropy instability). The variations of the wave properties with heliocentric distances may also provide information on the possible wave generation sources and the effects of the wave to the solar wind plasma.

  16. Coronal magnetic fields and the solar wind

    NASA Technical Reports Server (NTRS)

    Newkirk, G., Jr.

    1972-01-01

    Current information is presented on coronal magnetic fields as they bear on problems of the solar wind. Both steady state fields and coronal transient events are considered. A brief critique is given of the methods of calculating coronal magnetic fields including the potential (current free) models, exact solutions for the solar wind and field interaction, and source surface models. These solutions are compared with the meager quantitative observations which are available at this time. Qualitative comparisons between the shapes of calculated magnetic field lines and the forms visible in the solar corona at several recent eclipses are displayed. These suggest that: (1) coronal streamers develop above extended magnetic arcades which connect unipolar regions of opposite polarity; and (2) loops, arches, and rays in the corona correspond to preferentially filled magnetic tubes in the approximately potential field.

  17. Genesis Trajectory Design

    NASA Technical Reports Server (NTRS)

    Bell, Julia L.; Lo, Martin W.; Wilson, Roby S.

    2000-01-01

    The Genesis mission will launch in 2001, sending the spacecraft into a halo orbit about the Sun-Earth L1 point to collect and return solar wind samples to the Earth for analysis in 2003. One of the most constraining aspects of the mission design is the requirement to return to the designated landing site (the Utah Test and Training Range, UTTR) during daylight hours. The ongoing mission design has led the development of a family of solutions that characterize a broad range of conditions at Earth entry. Characterizing this family provides insight into the possible existence of additional trajectories while also helping to narrow the search space by indicating where additional solutions are unlikely to exist; this contributes to a more efficient utilization of mission design resources.

  18. Martian ionosphere response to solar wind variability during solar minimum

    NASA Astrophysics Data System (ADS)

    Sanchez-Cano, Beatriz; Lester, Mark; Witasse, Olivier; Mays, M. Leila; Hall, Benjamin E. S.; Milan, Stephen E.; Cartacci, Marco; Blelly, Pierre-Louis; Andrews, David; Opgenoorth, Hermann; Odstrcil, Dusan

    2016-04-01

    Solar cycle variations in solar radiation create notable density changes in the Martian ionosphere. In addition to this long-term variability, there are numerous short-term and non-recurrent solar events that hit Mars which need to be considered, such as Interplanetary Coronal Mass Ejections (ICMEs), Co-Rotation Interaction Regions (CIRs), solar flares, or solar wind high speed streams. The response of the Martian plasma system to each of these events is often unusual, especially during the long period of extreme low solar activity in 2008 and 2009. This work shows the long-term solar cycle impact on the ionosphere of Mars using data from The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS), and The Analyzer of Space Plasma and Energetic Atoms (ASPERA-3), and with empirical and numerical models on Mars Express. Particular attention is given to the different ionospheric responses observed during the last, extended solar minimum. Mars' ionospheric response followed a similar pattern to the response observed in the Earth's ionosphere, despite the large differences related to the inner-origin of the magnetic field of both planets. The ionospheric temperature was cooler, the topside scale height was smaller and almost constant with altitude, the secondary ionospheric layer practically disappeared and the whole atmospheric total electron content (TEC) suffered an extreme reduction of about 30-40%, not predicted before by models. Moreover, there is a larger probability for the induced magnetic field to be present in the ionosphere, than in other phases of the solar cycle. The short-term variability is also addressed with the study of an ICME followed by a fast stream that hit Mars in March 2008, where solar wind data are provided by ACE and STEREO-B and supported by simulations using the WSA-ENLIL Model. The solar wind conditions lead to the formation of a CIR centred on the interface of the fast and the slow solar wind streams. Mars' system reacted to

  19. Wind and IMP 8 Solar Wind, Magnetosheath and Shock Data

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The purpose of this project was to provide the community access to magnetosheath data near Earth. We provided 27 years of IMP 8 magnetosheath proton velocities, densities, and temperatures with our best (usually 1-min.) time resolution. IMP 8 crosses the magnetosheath twice each 125 day orbit, and we provided magnetosheath data for the roughly 27 years of data for which magnetometer data are also available (which are needed to reliably pick boundaries). We provided this 27 years of IMP 8 magnetosheath data to the NSSDC; this data is now integrated with the IMP 8 solar wind data with flags indicating whether each data point is in the solar wind, magnetosheath, or at the boundary between the two regions. The plasma speed, density, and temperature are provided for each magnetosheath point. These data are also available on the MIT web site ftp://space .mit.edu/pub/plasma/imp/www/imp.html. We provide ASCII time-ordered rows of data giving the observation time, the spacecraft position in GSE, the velocity is GSE, the density and temperature for protons. We also have analyzed and archived on our web site the Wind magnetosheath plasma parameters. These consist of ascii files of the proton and alpha densities, speeds, and thermal speeds. These data are available at ftp://space.mit.edu/pub/plasma/wind/sheath These are the two products promised in the work statement and they have been completed in full.

  20. Solar Wind Ablation of Terrestrial Planet Atmospheres

    NASA Technical Reports Server (NTRS)

    Moore, Thomas Earle; Fok, Mei-Ching H.; Delcourt, Dominique C.

    2009-01-01

    Internal plasma sources usually arise in planetary magnetospheres as a product of stellar ablation processes. With the ignition of a new star and the onset of its ultraviolet and stellar wind emissions, much of the volatiles in the stellar system undergo a phase transition from gas to plasma. Condensation and accretion into a disk is replaced by radiation and stellar wind ablation of volatile materials from the system- Planets or smaller bodies that harbor intrinsic magnetic fields develop an apparent shield against direct stellar wind impact, but UV radiation still ionizes their gas phases, and the resulting internal plasmas serve to conduct currents to and from the central body along reconnected magnetic field linkages. Photoionization and thermalization of electrons warms the ionospheric topside, enhancing Jeans' escape of super-thermal particles, with ambipolar diffusion and acceleration. Moreover, observations and simulations of auroral processes at Earth indicate that solar wind energy dissipation is concentrated by the geomagnetic field by a factor of 10-100, enhancing heavy species plasma and gas escape from gravity, and providing more current carrying capacity. Thus internal plasmas enable coupling with the plasma, neutral gas and by extension, the entire body. The stellar wind is locally loaded and slowed to develop the required power. The internal source plasma is accelerated and heated, inflating the magnetosphere as it seeks escape, and is ultimately blown away in the stellar wind. Bodies with little sensible atmosphere may still produce an exosphere of sputtered matter when exposed to direct solar wind impact. Bodies with a magnetosphere and internal sources of plasma interact more strongly with the stellar wind owing to the magnetic linkage between the two created by reconnection.

  1. On Solar-Wind Electron Heating at Large Solar Distances

    NASA Astrophysics Data System (ADS)

    Chashei, Igor V.; Fahr, Hans J.

    2014-04-01

    We study the temperature of electrons advected with the solar wind to large solar distances far beyond 1 AU. Almost nothing is known about the thermodynamics of these electrons from in-situ plasma observations at these distances, and usually it is tacitly assumed that electrons, due to adiabatic behaviour and vanishing heat conduction, rapidly cool off to very low temperatures at larger distances. In this article we show, however, that electrons on their way to large distances undergo non-adiabatic interactions with travelling shocks and solar-wind bulk-velocity jumps and thereby are appreciably heated. Examining this heating process on an average statistical basis, we find that solar-wind electrons first cool down to a temperature minimum, which depending on the occurrence frequency of bulk velocity jumps is located between 3 and 6 AU, but beyond this the lowest electron temperature again starts to increase with increasing solar distance, finally achieving temperatures of about 7×104 K to 7×105 K at the location of the termination shock. Hence these electrons are unexpectedly shown to play an important dynamical role in structuring this shock and in determining the downstream plasma properties.

  2. Elemental building blocks of the slow solar wind

    NASA Astrophysics Data System (ADS)

    Kepko, L.; Viall, N. M.; Lepri, S. T.

    2014-12-01

    While the source of the fast solar wind is well understood to be linked to coronal holes, the source of the slow solar wind has remained elusive. A distinguishing characteristic of the slow solar wind is the high variability of the plasma parameters, such as magnetic field, velocity, density, composition, and charge state. Many previous studies of the slow solar wind have examined trends in the composition and charge states over long time scales and using data with comparatively low temporal resolution. In this study, we take advantage of high time resolution (12 min) measurements of the charge-state abundances recently reprocessed by the ACE SWICS science team to probe the timescales of solar wind variability of coherent structures at relatively small scales (<2000 Mm, or ~ 90 minutes at slow wind speeds). We use an interval of slow solar wind containing quasi pressure-balanced, periodic number density structures previously studied by Kepko et al and shown to be important in solar wind-magnetospheric coupling. The combination of high temporal resolution composition measurements and the clearly identified boundaries of the periodic structures allows us to probe the elemental slow solar wind flux tubes/structures. We use this train of 2000Mm periodic density structures as tracers of solar wind origin and/or acceleration. We find that each 2000 Mm parcel of slow solar wind, though its speed is steady, exhibits the complete range of charge state and composition variations expected for the entire range of slow solar wind, in a repeated sequence. Each parcel cycles through three states: 1) 'normal' slow wind, 2) compositionally slow wind with very high density, and 3) compositionally fast but typical slow solar wind density. We conclude by suggesting these structures form elemental building blocks of the slow solar wind, and discuss whether it is necessary to decouple separately the process(es) responsible for the release and acceleration.

  3. Solar sources of the interplanetary magnetic field and solar wind

    NASA Technical Reports Server (NTRS)

    Levine, R. H.; Altschuler, M. D.; Harvey, J. W.

    1977-01-01

    Open magnetic field lines, those which extend from the solar photosphere to interplanetary space, are traced in the current-free (potential field) approximation using measured photospheric fields as a boundary condition. It is found that (1) only a relatively small fraction of the photospheric area connects via open field lines to the interplanetary magnetic field; (2) those photospheric areas which do contribute open field lines lie beneath coronal holes and within the boundaries of the holes as projected onto the photosphere or else between loop systems of an active region; (3) the interplanetary magnetic field in the plane of the sun's equator, essentially the field in the ecliptic plane, may connect to photospheric regions of high latitude; and (4) the fastest solar wind streams are correlated with those magnetic flux tubes which expand least in cross-sectional area over the distance between the photosphere and the coronal height where the solar wind begins.

  4. Corotation of an intermittent solar wind source

    NASA Technical Reports Server (NTRS)

    Croft, T. A.

    1972-01-01

    The measured electron content of the solar wind in mid-1970 exhibited a region of relatively high electron density that reappeared at intervals of about 27.8 days. It is shown that the repeating event cannot be reconciled with the concept of a long-enduring steady flow, even though the recurrence period is close to the rotation period of the sun. This evidence of transients is inferred from the short duration of each appearance of the interval of higher density; each should last for roughly one corotation interval if it is caused by a steady stream. The radio path was approximately 0.8 AU long, and the corotation interval exceeded 3 days. Other aspects of the content data patterns support the view that such transient events are common in the solar wind. The mid-1970 repeating event is an unusually good example of the intermittent character of flow regions in the solar wind that fluctuate on a time scale of days but endure as identifiable regions for many months. A sputtering corotating source of thin solar plasma streams could explain this series of events; it could also be explained in terms of a stream that is steady in density and speed but undulating north-south so that it passes into and out of the 0.8 AU radio path in a matter of a day or less.

  5. Properties of Minor Ions in the Solar Wind and Implications for the Background Solar Wind Plasma

    NASA Technical Reports Server (NTRS)

    Wagner, William (Technical Monitor); Esser, Ruth

    2004-01-01

    The scope of the investigation is to extract information on the properties of the bulk solar wind from the minor ion observations that are provided by instruments on board NASA space craft and theoretical model studies. Ion charge states measured in situ in interplanetary space are formed in the inner coronal regions below 5 solar radii, hence they carry information on the properties of the solar wind plasma in that region. The plasma parameters that are important in the ion forming processes are the electron density, the electron temperature and the flow speeds of the individual ion species. In addition, if the electron distribution function deviates from a Maxwellian already in the inner corona, then the enhanced tail of that distribution function, also called halo, greatly effects the ion composition. This study is carried out using solar wind models, coronal observations, and ion calculations in conjunction with the in situ observations.

  6. Properties of Minor Ions in the Solar Wind and Implications for the Background Solar Wind Plasma

    NASA Technical Reports Server (NTRS)

    Esser, Ruth; Wagner, William (Technical Monitor)

    2003-01-01

    Ion charge states measured in situ in interplanetary space are formed in the inner coronal regions below 5 solar radii, hence they carry information on the properties of the solar wind plasma in that region. The plasma parameters that are important in the ion forming processes are the electron density, the electron temperature and the flow speeds of the individual ion species. In addition, if the electron distribution function deviates from a Maxwellian already in the inner corona, then the enhanced tail of that distribution function, also called halo, greatly effects the ion composition. The goal of the proposal is to make use of ion fractions observed in situ in the solar wind to learn about both, the plasma conditions in the inner corona and the expansion and ion formation itself. This study is carried out using solar wind models, coronal observations, and ion fraction calculations in conjunction with the in situ observations.

  7. Fast solar wind measurements from the Bright Monitor of the Solar Wind instrument on Spektr-R

    NASA Astrophysics Data System (ADS)

    Zerbo, J. L.; Safrankova, J.; Nemecek, Z.; Zastenker, G. N.; Kasper, J. C.; Stevens, M. L.; Richardson, J. D.

    2014-12-01

    Fast solar wind measurements from the Bright Monitor of the Solar Wind instrumentonboard the Spektr-R spacecraft are presented. This instrument measures plasmaparameters with time resolution as high as 30 ms. These measurements provide a preview of what the fast Faraday cup detectors on Triana and Solar Probe Plus will observe. We will compare solar wind structures observed at Spektr-R at high time-resolution with lower cadence observations from Wind. We will describe the small-scale plasma parameters in these solar wind structures.

  8. The Genesis Mission: Contamination Control and Curation

    NASA Technical Reports Server (NTRS)

    Stansbery, E. K.

    2002-01-01

    The Genesis mission, launched in August 2001, is collecting samples of the solar wind and will return to Earth in 2004. Genesis can be viewed as the most fundamental of NASA's sample return missions because it is expected to provide insight into the initial elemental and isotopic composition of the solar nebula from which all other planetary objects formed. The data from this mission will have a large impact on understanding the origins and diversity of planetary materials. The collectors consist of clean, pure materials into which the solar wind will imbed. Science and engineering issues such as bulk purity, cleanliness, retention of solar wind, and ability to withstand launch and entry drove material choices. Most of the collector materials are installed on array frames that are deployed from a clean science canister. Two of the arrays are continuously exposed for collecting the bulk solar wind; the other three are only exposed during specific solar wind regimes as measured by ion and electron monitors. Other materials are housed as targets at the focal point of an electrostatic mirror, or "concentrator", designed to enhance the flux of specific solar wind species. Johnson Space Center (JSC) has two principal responsibilities for the Genesis mission: contamination control and curation. Precise and accurate measurements of the composition of the solar atoms require that the collector materials be extremely clean and well characterized before launch and during the mission. Early involvement of JSC curation personnel in concept development resulted in a mission designed to minimize contaminants from the spacecraft and operations. A major goal of the Genesis mission is to provide a reservoir of materials for the 21 51 century. When the collector materials are returned to Earth, they must be handled in a clean manner and their condition well documented. Information gained in preliminary examination of the arrays and detailed surveys of each collector will be used to

  9. Magnetic latitude effects in the solar wind

    NASA Technical Reports Server (NTRS)

    Winge, C. R., Jr.; Coleman, P. J., Jr.

    1972-01-01

    The Weber-Davis model of the solar wind is generalized to include the effects of latitude. The principal assumptions of high electrical conductivity, rotational symmetry, the polytropic relation between pressure and density, and a flow-alined field in a system rotating with the sun, are retained. An approximate solution to the resulting equations for spherical boundary conditions at the base of the corona indicates a small component of latitudinal flow toward the solar poles at large distances from the sun as result of latitudinal magnetic forces.

  10. Driving mechanisms for the solar wind

    NASA Astrophysics Data System (ADS)

    Pneuman, G. W.

    1986-02-01

    In this review, the author considers the central physical aspects pertinent to the acceleration of the solar wind. Special importance is placed on the high-speed streams since the properties of these structures seem to strain the various theoretical explanations the most. Heavy emphasis is also given to the observations - particularly as to what constraints they place on the theories. The author also discusses certain sporadic events such as spicules, macrospicules, X-ray bright points, and outflows seen in the EUV associated with the explosive events, jets, and coronal bullets which could be of relevance to this problem. Three theoretical concepts pertaining to the solar wind acceleration process are examined - purely thermal acceleration with and without extended heating, acceleration due to Alfvén wave pressure, and diamagnetic acceleration. Emphasis is given to how well these theories meet the contraints imposed by the observations.

  11. Latitudinal Variation of Solar Wind Velocity

    NASA Astrophysics Data System (ADS)

    Ananthakrishnan, S.; Balasubramanian, V.; Janardhan, P.

    1995-04-01

    Single station solar wind velocity measurements using the Ooty Radio Telescope (ORT) in India (operating at 327 MHz) are reported for the period August 1992 to August 1993. Interplanetary scintillation (IPS) observations on a large number of compact radio sources covering a latitudinal range of ±80° were used to derive solar wind velocities using the method of fitting a power law model to the observed IPS spectra. The data shows a velocity versus heliographic latitude pattern which is similar to that reported by Rickett and Coles (1991) for the 1981 1982 period. However, the average of the measured equatorial velocities are higher, being about 470 km s-1 compared to their value of 400 km s-1. The distribution of electron density variations (ΔN e ) between 50R⊙ and 90R⊙ was also determined and it was found that ΔN e was about 30% less at the poles as compared to the equator.

  12. The solar wind and magnetospheric dynamics

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1974-01-01

    The dynamic processes involved in the interaction between the solar wind and the earth's magnetosphere are reviewed. The evolution of models of the magnetosphere is first surveyed. The existence of the auroral substorm and the cyclical polar magnetic substorm is evidence that the magnetosphere is a dynamic system. The dynamic changes occurring in the magnetosphere, including erosion of the magnetopause, changes in the size of the polar cap, variations in the flaring angle of the tail, neutral point formation, plasma sheet motions, and the inward collapse of the midnight magnetosphere, are discussed. The cyclical variations of geomagnetic activity are explained in terms of the control of the solar wind-magnetosphere interaction by the north-south component of the interplanetary magnetic field. Present phenomenological models allow prediction of geomagnetic activity from interplanetary measurements, but modeling of detailed magnetospheric processes is still in its infancy.

  13. Suprathermal Solar Wind Electrons and Langmuir Turbulence

    NASA Astrophysics Data System (ADS)

    Kim, Sunjung; Yoon, Peter H.; Choe, G. S.; moon, Y.-J.

    2016-09-01

    The steady-state model recently put forth for the solar wind electron velocity distribution function during quiet time conditions, was originally composed of three population electrons (core, halo, and superhalo) with the core remaining nonresonant with any plasma waves while the halo and superhalo separately maintained steady-state resonance with whistler- and Langmuir-frequency range fluctuations, respectively. However, a recent paper demonstrates that whistler-range fluctuations in fact have no significant contribution. The present paper represents a consummation of the model in that a self-consistent model of the suprathermal electron population, which encompasses both the halo and the superhalo, is constructed solely on the basis of the Langmuir fluctuation spectrum. Numerical solutions to steady-state particle and wave kinetic equations are obtained on the basis of an initial trial electron distribution and Langmuir wave spectrum. Such a finding offers a self-consistent explanation for the observed steady-state electron distribution in the solar wind.

  14. Turbulence and waves in the solar wind

    SciTech Connect

    Roberts, D.A.; Goldstein, M.L. )

    1991-01-01

    Studies of turbulence and waves in the solar wind is discussed. Consideration is given to the observations and theory concerning the origin and evolution of interplanetary MHD fluctuations and to the observations, theory, and simulations of compressive fluctuations. Particular attention is given to extrapolations to near-sun and polar fields regions. Results obtained on turbulence at comets and magnetic turbulence of low-frequency waves excited by unstable distributions of ions are discussed. 230 refs.

  15. Solar Wind Electron Energization by Plasma Turbulence

    NASA Astrophysics Data System (ADS)

    Yoon, P. H.

    2015-09-01

    The solar wind electrons are made of the low-energy Maxwellian core, intermediate-energy halo, field-aligned strahl, and the highly-energetic super-halo electrons. The present paper discusses a model in which the halo electrons interact with the whistler fluctuation via cyclotron wave-particle resonance, and the super-halo electrons interact through Landau resonance with the Langmuir fluctuation, thus maintaining a local steady state.

  16. Cometary ion instabilities in the solar wind

    NASA Astrophysics Data System (ADS)

    Matteini, L.; Schwartz, S. J.; Hellinger, P.

    2015-12-01

    We review some of the processes that characterize the interaction of the solar wind with newborn cometary ions. Instabilities generated by the typical ring-beam velocity-space configuration of the pick-up ions in the solar wind frame are studied by means of one- and two-dimensional hybrid numerical simulations. In agreement with previous studies, we find that instabilities generated by the cometary ions play an important role in shaping the properties of the plasma. The resulting ion distributions are in good agreement with observations, showing the presence of energy shells in velocity space. Bi-spherical shells for the heavy oxygen ions are also observed in the late phase of the simulations. Moreover, we also investigate some new aspects of the dynamics, such as the generation of turbulent cascade from the initial spectra of unstable waves, and the related heating and back reaction of the solar wind plasma. We also consider the case of initial non-gyrotropic pick-up ion distributions, and we focus on the polarization of the associated waves, suggesting that linear polarization can be a signature of this configuration, possibly observed by the Rosetta spacecraft in orbit around comet 67P/CG.

  17. Automated classification of solar wind disturbances

    NASA Astrophysics Data System (ADS)

    Vennerstrom, Susanne; Leer, Kristoffer

    2015-04-01

    Geomagnetic storms are known to be caused by solar wind disturbances associated with the passage of either interplanetary coronal mass ejections (ICMEs) or stream interaction regions (SIRs) associated with high-speed streams from coronal holes. We present and assess a new method for automated detection and subsequent classification of solar wind disturbances arriving at L1. The method requires solar wind in situ plasma and magnetic field observations, currently provided in near real-time by NOAA/NASA from the ACE SWEPAM and MAG instruments. Periods of significantly enhanced magnetic field are identified and classified according to their most likely cause, being either ICMEs or high speed streams creating stream interaction regions SIRs. In the output the disturbed intervals are thus classified either as "ICME"-related, "SIR"-related or "NO ID". We compare the results statistically with existing lists of ICMEs and SIRs derived manually, and assess the usefulness of the service for providing early warnings of upcoming geomagnetic storms.

  18. Magnetic pumping of the solar wind

    NASA Astrophysics Data System (ADS)

    Egedal, Jan; Lichko, Emily; Daughton, William

    2015-11-01

    The transport of matter and radiation in the solar wind and terrestrial magnetosphere is a complicated problem involving competing processes of charged particles interacting with electric and magnetic fields. Given the rapid expansion of the solar wind, it would be expected that superthermal electrons originating in the corona would cool rapidly as a function of distance to the Sun. However, this is not observed, and various models have been proposed as candidates for heating the solar wind. In the compressional pumping mechanism explored by Fisk and Gloeckler particles are accelerated by random compressions by the interplanetary wave turbulence. This theory explores diffusion due to spatial non-uniformities and provides a mechanism for redistributing particle. For investigation of a related but different heating mechanism, magnetic pumping, in our work we include diffusion of anisotropic features that develops in velocity space. The mechanism allows energy to be transferred to the particles directly from the turbulence. Guided by kinetic simulations a theory is derived for magnetic pumping. At the heart of this work is a generalization of the Parker Equation to capture the role of the pressure anisotropy during the pumping process. Supported by NASA grant NNX15AJ73G.

  19. Solar Wind Charge Exchange During Geomagnetic Storms

    NASA Technical Reports Server (NTRS)

    Robertson, Ina P.; Cravens, Thomas E.; Sibeck, David G.; Collier, Michael R.; Kuntz, K. D.

    2012-01-01

    On March 31st. 2001, a coronal mass ejection pushed the subsolar magnetopause to the vicinity of geosynchronous orbit at 6.6 RE. The NASA/GSFC Community Coordinated Modeling Center (CCMe) employed a global magnetohydrodynamic (MHD) model to simulate the solar wind-magnetosphere interaction during the peak of this geomagnetic storm. Robertson et aL then modeled the expected 50ft X-ray emission due to solar wind charge exchange with geocoronal neutrals in the dayside cusp and magnetosheath. The locations of the bow shock, magnetopause and cusps were clearly evident in their simulations. Another geomagnetic storm took place on July 14, 2000 (Bastille Day). We again modeled X-ray emission due to solar wind charge exchange, but this time as observed from a moving spacecraft. This paper discusses the impact of spacecraft location on observed X-ray emission and the degree to which the locations of the bow shock and magnetopause can be detected in images.

  20. The MAVEN Solar Wind Electron Analyzer

    NASA Astrophysics Data System (ADS)

    Mitchell, D. L.; Mazelle, C.; Sauvaud, J.-A.; Thocaven, J.-J.; Rouzaud, J.; Fedorov, A.; Rouger, P.; Toublanc, D.; Taylor, E.; Gordon, D.; Robinson, M.; Heavner, S.; Turin, P.; Diaz-Aguado, M.; Curtis, D. W.; Lin, R. P.; Jakosky, B. M.

    2016-04-01

    The MAVEN Solar Wind Electron Analyzer (SWEA) is a symmetric hemispheric electrostatic analyzer with deflectors that is designed to measure the energy and angular distributions of 3-4600-eV electrons in the Mars environment. This energy range is important for impact ionization of planetary atmospheric species, and encompasses the solar wind core and halo populations, shock-energized electrons, auroral electrons, and ionospheric primary photoelectrons. The instrument is mounted at the end of a 1.5-meter boom to provide a clear field of view that spans nearly 80 % of the sky with ˜20° resolution. With an energy resolution of 17 % (Δ E/E), SWEA readily distinguishes electrons of solar wind and ionospheric origin. Combined with a 2-second measurement cadence and on-board real-time pitch angle mapping, SWEA determines magnetic topology with high (˜8-km) spatial resolution, so that local measurements of the plasma and magnetic field can be placed into global context.

  1. Quasi-steady solar wind dynamics

    NASA Technical Reports Server (NTRS)

    Pizzo, V. J.

    1983-01-01

    Progress in understanding the large scale dynamics of quasisteady, corotating solar wind structure was reviewed. The nature of the solar wind at large heliocentric distances preliminary calculations from a 2-D MHD model are used to demonstrate theoretical expectations of corotating structure out to 30 AU. It is found that the forward and reverse shocks from adjacent CIR's begin to interact at about 10 AU, producing new shock pairs flanking secondary CIR's. These sawtooth secondary CIR's interact again at about 20 AU and survive as visible entities to 30 AU. The model predicts the velocity jumps at the leading edge of the secondary CIR's at 30 AU should be very small but there should still be sizable variations in the thermodynamic and magnetic parameters. The driving dynamic mechanism in the distant solar wind is the relaxation of pressure gradients. The second topic is the influence of weak, nonimpulsive time dependence in quasisteady dynamics. It is suggested that modest large scale variations in the coronal flow speed on periods of several hours to a day may be responsible for many of the remaining discrepancies between theory and observation. Effects offer a ready explanation for the apparent rounding of stream fronts between 0.3 and 1.0 AU discovered by Helios.

  2. The Solar Wind and the Sun in the Past

    NASA Astrophysics Data System (ADS)

    Wood, Brian E.

    2006-10-01

    Exposure to the solar wind can have significant long term consequences for planetary atmospheres, especially for planets such as Mars that are not protected by global magnetospheres. Estimating the effects of solar wind exposure requires knowledge of the history of the solar wind. Much of what we know about the Sun’s past behavior is based on inferences from observations of young solar-like stars. Stellar analogs of the weak solar wind cannot be detected directly, but the interaction regions between these winds and the interstellar medium have been detected and used to estimate wind properties. I here review these observations, with emphasis on what they suggest about the history of the solar wind.

  3. The Solar Wind and The Sun in the Past

    NASA Astrophysics Data System (ADS)

    Wood, Brian E.

    Exposure to the solar wind can have significant long term consequences for planetary atmospheres, especially for planets such as Mars that are not protected by global magnetospheres. Estimating the effects of solar wind exposure requires knowledge of the history of the solar wind. Much of what we know about the Sun's past behavior is based on inferences from observations of young solar-like stars. Stellar analogs of the weak solar wind cannot be detected directly, but the interaction regions between these winds and the interstellar medium have been detected and used to estimate wind properties. I here review these observations, with emphasis on what they suggest about the history of the solar wind.

  4. Solar Wind Associated with Near Equatorial Coronal Hole

    NASA Astrophysics Data System (ADS)

    Hegde, M.; Hiremath, K. M.; Doddamani, Vijayakumar H.; Gurumath, Shashanka R.

    2015-09-01

    Present study probes temporal changes in the area and radiative flux of near equatorial coronal hole associated with solar wind parameters such as wind speed, density, magnetic field and temperature. Using high temporal resolution data from SDO/AIA for the two wavelengths 193 Å and 211 Å, area and radiative flux of coronal holes are extracted and are examined for the association with high speed solar wind parameters. We find a strong association between different parameters of coronal hole and solar wind. For both the wavelength bands, we also compute coronal hole radiative energy near the earth and it is found to be of similar order as that of solar wind energy. However, for the wavelength 193 Å, owing to almost similar magnitudes of energy emitted by coronal hole and energy due to solar wind, it is conjectured that solar wind might have originated around the same height where 193 Å line is formed in the corona.

  5. CHARGE STATE EVOLUTION IN THE SOLAR WIND. RADIATIVE LOSSES IN FAST SOLAR WIND PLASMAS

    SciTech Connect

    Landi, E.; Gruesbeck, J. R.; Lepri, S. T.; Zurbuchen, T. H.; Fisk, L. A.

    2012-10-10

    We study the effects of departures from equilibrium on the radiative losses of the accelerating fast, coronal hole-associated solar wind plasma. We calculate the evolution of the ionic charge states in the solar wind with the Michigan Ionization Code and use them to determine the radiative losses along the wind trajectory. We use the velocity, electron temperature, and electron density predicted by Cranmer et al. as a benchmark case even though our approach and conclusions are more broadly valid. We compare non-equilibrium radiative losses to values calculated assuming ionization equilibrium at the local temperature, and we find that differences are smaller than 20% in the corona but reach a factor of three in the upper chromosphere and transition region. Non-equilibrium radiative losses are systematically larger than the equilibrium values, so that non-equilibrium wind plasma radiates more efficiently in the transition region. Comparing the magnitude of the dominant energy terms in the Cranmer et al. model, we find that wind-induced departures from equilibrium are of the same magnitude as the differences between radiative losses and conduction in the energy equation. We investigate which ions are most responsible for such effects, finding that carbon and oxygen are the main source of departures from equilibrium. We conclude that non-equilibrium effects on the wind energy equation are significant and recommend that they are included in theoretical models of the solar wind, at least for carbon and oxygen.

  6. Western Wind and Solar Integration Study (Fact Sheet)

    SciTech Connect

    Not Available

    2012-09-01

    Initiated in 2007 to examine the operational impact of up to 35% penetration of wind, photovoltaic (PV), and concentrating solar power (CSP) energy on the electric power system, the Western Wind and Solar Integration Study (WWSIS) is one of the largest regional wind and solar integration studies to date. The goal is to understand the effects of variability and uncertainty of wind, PV, and CSP on the grid. In the Western Wind and Solar Integration Study Phase 1, solar penetration was limited to 5%. Utility-scale PV was not included because of limited capability to model sub-hourly, utility-scale PV output . New techniques allow the Western Wind and Solar Integration Study Phase 2 to include high penetrations of solar - not only CSP and rooftop PV but also utility-scale PV plants.

  7. Genesis of Dune Fields Under Unidirectional Wind with Sand Input Flux Control: An Experimental Approach

    NASA Astrophysics Data System (ADS)

    Garcia, A.; Courrech du Pont, S.; Rodriguez, S.; Valance, A.; Narteau, C.; Gao, X.; Lucas, A.

    2015-05-01

    Our experimental studies with control of wind and sediment source will characterize more precisely the different modes of dune formation and long-term evolution, and constrain the physics behind the morphogenesis and dynamics of dunes fields.

  8. Solar wind effects on atmosphere evolution at Venus and Mars

    NASA Technical Reports Server (NTRS)

    Luhmann, Janet G.; Bauer, S. J.

    1992-01-01

    The weak intrinsic magnetism of Venus and Mars leaves these planets subject to some unique atmospheric loss processes. This paper reviews the ways in which material seems to be removed by the solar wind interaction, including atmospheric ion pickup by the solar wind, bulk removal and outflow of ionospheric plasma, and atmospheric sputtering by pickup ions. The factors in the planets' and sun's histories, such as planetary magnetism, solar luminosity, and past solar wind properties, that must ultimately be folded into considerations of the effects of the solar wind interaction on atmosphere evolution are discussed.

  9. Electron energy flux in the solar wind.

    NASA Technical Reports Server (NTRS)

    Ogilvie, K. W.; Scudder, J. D.; Sugiura, M.

    1971-01-01

    Description of studies of electrons between 10 eV and 9.9 keV in the solar wind. The transport of energy in the rest frame of the plasma is evaluated and shown to be parallel to the interplanetary magnetic field. The presence of electrons from solar events causes this energy-flux density to exceed the heat flow due to thermal electrons. In one such event, the observations are shown to be consistent with the solar-electron observations made at higher energies. When observations are made at a point connected to the earth's bow shock by an interplanetary-field line, a comparatively large energy flux along the field toward the sun is observed, but the heat flow remains outwardly directed during this time interval. In either situation the heat flow is found to be consistent with measurements made on Vela satellites by a different method. These values, less than .01 ergs/sq cm/sec, are sufficiently low to require modifications to the Spitzer-Harm conductivity formula for use in solar-wind theories.

  10. Solar wind and its interaction with the magnetosphere - Measured parameters

    NASA Astrophysics Data System (ADS)

    Schwenn, R.

    The sun and the solar wind are considered in terms of the 'ballerina' model first proposed by Alfven (1977), taking into account high speed streams, the slow solar wind, stream-stream interactions, the relation of streams and magnetic structure, and transients caused by solar activity. The main features of the solar wind behavior are illustrated with the aid of data, covering one complete solar rotation in 1974/1975, which were obtained with instruments aboard the Helios-1 solar probe. It is pointed out that the solar wind acts like a huge buffer pushing onto the earth's magnetosphere with a highly variable pressure. Of the energy in the highly variable solar wind reservoir only a tiny fraction is absorbed by the magnetosphere in an obviously very nonstationary way.

  11. Solar wind interaction with the terrestrial planets

    NASA Astrophysics Data System (ADS)

    Garnier, Philippe; Milillo, Anna; Radioti, Aikaterini

    2015-09-01

    This issue entitled "Solar wind interaction with the terrestrial planets" follows the recurrent session PS5.1 (Planetary Plasma Physics and Interactions in the Solar System) held at the European Geophysical Union conference. The EGU session hosts original studies on all aspects of planetary plasma physics and interactions in the Solar System. This issue more specifically includes studies presented at several international meetings during the recent years on the physics of magnetospheres, ionospheres, auroras, and also the surface-plasma or atmosphere-plasma interactions, at inner planets such as Mercury, Earth (and Moon), Mars and Venus. The following papers, in fact, cover all of these aspects, and are based on a variety of techniques: space and ground-based observations, numerical modeling and even laboratory measurements.

  12. Cosmic ray modulation by solar wind disturbances

    NASA Astrophysics Data System (ADS)

    Dumbović, M.; Vršnak, B.; Čalogović, J.; Karlica, M.

    2011-07-01

    Aims: We perform a systematic statistical study of the relationship between characteristics of solar wind disturbances, caused by interplanetary coronal mass ejections and corotating interaction regions, and properties of Forbush decreases (FDs). Since the mechanism of FDs is still being researched, this analysis should provide a firm empirical basis for physical interpretations of the FD phenomenon. Methods: The analysis is based on the ground-based neutron monitor data and the solar wind data recorded by the Advanced Composition Explorer, where the disturbances were identified as increases in proton speed, magnetic field, and magnetic field fluctuations. We focus on the relative timing of FDs, as well as on the correlations between various FD and solar wind parameters, paying special attention to the statistical significance of the results. Results: It was found that the onset, the minimum, and the end of FDs are delayed after the onset, the maximum, and the end of the magnetic field enhancement. The t-test shows that at the 95% significance level the average lags have to be longer than 3, 7, and 26 h, respectively. FD magnitude (| FD|) is correlated with the magnetic field strength (B), magnetic field fluctuations (δB), and speed (v), as well as with combined parameters, BtB, Bv, vtB, and BvtB, where tB is the duration of the magnetic field disturbance. In the |FD|(B) dependence, a "branching" effect was observed, i.e., two different trends exist. The analysis of the FD duration and recovery period reveals a correlation with the duration of the magnetic field enhancement. The strongest correlations are obtained for the dependence on combined solar wind parameters of the product of the FD duration and magnitude, implying that combined parameters are in fact true variables themselves, rather than just a product of variables. Conclusions: From the time lags we estimate that "the penetration depth" in the disturbance, at which FD onset becomes recognizable, is on

  13. Topological Origins of the Slow Solar Wind

    NASA Technical Reports Server (NTRS)

    Antiochos, Spiro

    2008-01-01

    Although the slow solar wind has been studied for decades with both in situ and remote sensing observations, its origin is still a matter of intense debate. In the standard quasi-steady model, the slow wind is postulated to originate near coronal hole boundaries that define topologically well-behaved separatrices between open and closed field regions. In the interchange model, on the other hand, the slow wind is postulated to originate on open flux that is dynamically diffusing throughout the seemingly closed-field corona. We argue in favor of the quasi-steady scenario and propose that the slow wind is due to two effects: First, the open-closed boundary is highly complex due to the complexity of the photospheric flux distribution. Second, this boundary is continuously driven by the transport of magnetic helicity from the closed field region into the open. The implications of this model for the structure and dynamics of the corona and slow wind are discussed, and observational tests of the mode

  14. Coronal Holes and Solar Wind High-Speed Streams: I. Forecasting the Solar Wind Parameters

    NASA Astrophysics Data System (ADS)

    Vršnak, Bojan; Temmer, Manuela; Veronig, Astrid M.

    2007-02-01

    We analyze the relationship between the coronal hole (CH) area/position and physical characteristics of the associated corotating high-speed stream (HSS) in the solar wind at 1 AU. For the analysis we utilize the data in the period DOY 25 125 of 2005, characterized by a very low coronal mass ejection (CME) activity. Distinct correlations between the daily averaged CH parameters and the solar wind characteristics are found, which allows us to forecast the solar wind velocity v, proton temperature T, proton density n, and magnetic field strength B, several days in advance in periods of low CME activity. The forecast is based on monitoring fractional areas A, covered by CHs in the meridional slices embracing the central meridian distance ranges [-40°,-20°], [-10°,10°], and [20°,40°]. On average, the peaks in the daily values of n, B, T, and v appear delayed by 1, 2, 3, and 4 days, respectively, after the area A attains its maximum in the central-meridian slice. The peak values of the solar wind parameters are correlated to the peak values of A, which provides also forecasting of the peak values of n, B, T, and v. The most accurate prediction can be obtained for the solar wind velocity, for which the average relative difference between the calculated and the observed peak values amounts to overline{\\vertδ\\vert}≈10 %. The forecast reliability is somewhat lower in the case of T, B, and n ( overline{\\vertδ\\vert}≈20 , 30, and 40%, respectively). The space weather implications are discussed, including the perspectives for advancing the real-time calculation of the Sun Earth transit times of coronal mass ejections and interplanetary shocks, by including more realistic real-time estimates of the solar wind characteristics.

  15. Variations of the solar wind and solar cycle in the last 300 years

    NASA Technical Reports Server (NTRS)

    Feynman, J.; Silverman, S.

    1980-01-01

    The past history of the solar wind and solar cycle, inferred from records of geomagnetics and aurora, is examined. Records show that the solar wind apparently varied in a systematic manner throughout the period from 1770 to 1857 and that the period around 1810 resembled the 1901 minimum geomagnetic disturbance. Results show that the solar wind and hence the Sun changes on a time scale long compared to a solar cycle and short compared to the Maunder minimum. The inclusion of a study on the solar wind and solar cycle variations for the SCADM mission is discussed.

  16. Steady state asymmetric planetary electrical induction. [by solar wind

    NASA Technical Reports Server (NTRS)

    Horning, B. L.; Schubert, G.

    1974-01-01

    An analytic solution is presented for the steady state electric and magnetic fields induced by the motional electric field of the solar wind in the atmosphere or interior of a planet that is asymmetrically surrounded by solar wind plasma. The electrically conducting ionosphere or interior must be in direct electrical contact with the solar wind over the day side of the planet. The conducting region of the planet is modeled by a sphere or a spherical shell of arbitrarily stratified electrical conductivity. A monoconducting cylindrical cavity is assumed to extend downstream on the night side of the planet. The solar wind is assumed to be highly conducting so that the induced fields are confined to the planet and cavity. Induced currents close as sheet currents at the solar wind-cavity and solar wind-planet interfaces. Numerical evaluations of the analytic formulas are carried out for a uniformly conducting spherical model.

  17. Interpretation of Solar Wind Ion Composition Measurements from Ulysses

    NASA Technical Reports Server (NTRS)

    Esser, Ruth

    1998-01-01

    The ion compositions measured in situ in the solar wind are important since the ion fractions carry information on the plasma conditions in the inner corona. The conditions in the inner corona define the properties of the solar wind plasma flow. Thus, if the ion fraction measurements can be used to unravel some of the plasma parameters in the inner corona, they will provide a valuable contribution to solving the heating and acceleration problem of the solar wind. The ion charge states in the solar wind carry information on electron temperature, electron density and ion flow speed. They are also sensitive to the shape of the electron distribution function. Through carefully modeling the solar wind and calculating the ion fractions predicted for different solar wind conditions, constraints on the electron temperature and ion flow speeds can be placed if the electron density is measured using polarization brightness measurements.

  18. Variations of Strahl Properties with Fast and Slow Solar Wind

    NASA Technical Reports Server (NTRS)

    Figueroa-Vinas, Adolfo; Goldstein, Melvyn L.; Gurgiolo, Chris

    2008-01-01

    The interplanetary solar wind electron velocity distribution function generally shows three different populations. Two of the components, the core and halo, have been the most intensively analyzed and modeled populations using different theoretical models. The third component, the strahl, is usually seen at higher energies, is confined in pitch-angle, is highly field-aligned and skew. This population has been more difficult to identify and to model in the solar wind. In this work we make use of the high angular, energy and time resolution and three-dimensional data of the Cluster/PEACE electron spectrometer to identify and analyze this component in the ambient solar wind during high and slow speed solar wind. The moment density and fluid velocity have been computed by a semi-numerical integration method. The variations of solar wind density and drift velocity with the general build solar wind speed could provide some insight into the source, origin, and evolution of the strahl.

  19. Morphology of Pseudostreamers and Solar Wind Properties

    NASA Astrophysics Data System (ADS)

    Panasenco, Olga; Velli, Marco

    2016-05-01

    The solar dynamo and photospheric convection lead to three main types of structures extending from the solar surface into the corona – active regions, solar filaments (prominences when observed at the limb) and coronal holes. These structures exist over a wide range of scales, and are interlinked with each other in evolution and dynamics. Active regions can form clusters of magnetic activity and the strongest overlie sunspots. In the decay of active regions, the boundaries separating opposite magnetic polarities (neutral lines) develop the specific structures called filament channels above which filaments form. In the presence of flux imbalance decaying active regions can also give birth to lower latitude coronal holes. The accumulation of magnetic flux at coronal hole boundaries also creates the conditions for filament formation: polar crown filaments are permanently present at the boundaries of the polar coronal holes. Middle-latitude and equatorial coronal holes - the result of active region evolution - can create pseudostreamers (PSs) if other coronal holes of the same polarity are present. While helmet streamers form between open fields of opposite polarities, the pseudostreamer, characterized by a smaller coronal imprint, typically shows a more prominent straight ray or stalk extending from the corona. The pseudostreamer base at photospheric heights is multipolar; often one observes tripolar magnetic configurations with two neutral lines - where filaments can form - separating the coronal holes. Here we discuss the specific role of filament channels on pseudostreamer topology and on solar wind properties. 1D numerical analysis of PSs shows that the properties of the solar wind from around PSs depend on the presence/absence of filament channels, number of channels and chirality at the PS base low in the corona.

  20. Solar wind interaction with comets - Lessons from Venus

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Luhmann, J. G.; Elphic, R. C.; Neugebauer, M.

    1982-01-01

    Data on the solar wind interaction with Venus are examined for the purpose of comparison with similar processes that may occur in comets. Attention is given to bow shock, magnetosheath, ionopause, ionosphere, and magnetotail of Venus. These features are compared with, respectively, the bow shock, magnetosheath, contact surface, coma, and plasma tail of a comet. It is concluded that observations of the solar wind interaction with Venus should provide new insight into the solar wind interaction with comets.

  1. Radial evolution of the energy density of solar wind fluctuations

    NASA Technical Reports Server (NTRS)

    Zank, G. P.; Matthaeus, W. H.; Smith, C. W.

    1995-01-01

    On the basis of transport theories appropriate to a radially expanding solar wind, we describe new results for the radial evolution of the energy density in solar wind fluctuations at MHD scales. These models include the effects of 'mixing' and driving as well as the possibility of non-isotropic MHD turbulence. Implications of these results for solar wind heating, cosmic ray diffusion and interstellar pick-up ions will also be addressed.

  2. What Determines the Solar Wind Speed ?

    NASA Astrophysics Data System (ADS)

    Suzuki, T. K.; Fujiki, K.; Kojima, M.; Tokumaru, M.; Hirano, M.; Baba, D.; Yamasita, M.; Hakamada, K.

    2005-05-01

    Recent observations by Interplanetary Scintillation measurements by Nagoya-STEL group (Hirano et al.2003; Kojima et al.2004) show that solar wind speed is well-correlated with B/f, where B is radial magnetic field strength at the solar surface and f is a super-radial expansion factor of open flux tubes. We show that this correlation is nicely explained by dissipation of Alfven waves no matter what types of the wave dissipation processes operate. B determines the input energy flux of Alfven waves and f controls adiabatic loss of the wave energy, so that B/f is an important control parameter which determines the solar wind speed. (reference ) [1] Hirano, M., Kojima, M., Tokumaru, M., Fujiki, K., Ohmi, T., Yamashita, M, Hakamada, K., and Hayashi, K. 2003,, Eos Trans. AGU, 84(46), Fall Meet. Suppl., Abstract SH21B-0164 [2] Kojima, M., K. Fujiki, M. Hirano, M. Tokumaru, T. Ohmi, and K. Hakamada, 2004, "The Sun and the heliosphere as an Integrated System", Giannina Poletto and Steven T. Suess, Eds. Kluwer Academic Publishers, in press

  3. Supersonic Solutions of the Solar Wind Equations

    NASA Astrophysics Data System (ADS)

    Chamberlain, J. W.

    1994-12-01

    We re-examine the inviscid solar-wind equations with heat conduction from below, and establish a fundamentally new approach for finding solar and plane- tary solutions. Although the problem is fourth order, only two independent integration constants can be assigned, since two boundary conditions that are required to specify well-behaved supersonic solutions determine the values of the other two constants. The solar-wind models of Noble and Scarf (Ap. J., 1963-65), are essentially accurate for practical purposes, but in a fundamental sense they are not self-consistent. At the supersonic point, the ratio of thermal energy to gravitational potential, (kTr/GMm), must lie in a narrow range, between 0.4375 and about 0.40, to permit well-behaved supersonic solutions for ionized hydrogen. For a super- sonic solution, this ratio uniquely determines the escape flux, the energy flux per particle, and the temperature gradient at infinity. For blowoff of the atmospheres of planets with diatomic molecular atmo- spheres, this range is lower but still quite narrow. These limits seriously constrain the physical conditions wherein hydrodynamic "blowoff" of planetary atmospheres can develop. In addition, an atmosphere having blowoff conditions is adiabatically unstable just above the sonic level.

  4. Elemental and charge state composition of the fast solar wind observed with SMS instruments on WIND

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.; Galvin, A. B.; Ipavich, F. M.; Hamilton, D. C.; Bochsler, P.; Geiss, J.; Fisk, L. A.; Wilken, B.

    1995-01-01

    The elemental composition and charge state distributions of heavy ions of the solar wind provide essential information about: (1) atom-ion separation processes in the solar atmosphere leading to the 'FIP effect' (the overabundance of low First Ionization potential (FIP) elements in the solar wind compared to the photosphere); and (2) coronal temperature profiles, as well as mechanisms which heat the corona and accelerate the solar wind. This information is required for solar wind acceleration models. The SWICS instrument on Ulysses measures for all solar wind flow conditions the relative abundance of about 8 elements and 20 charge states of the solar wind. Furthermore, the Ulysses high-latitude orbit provides an unprecedented look at the solar wind from the polar coronal holes near solar minimum conditions. The MASS instrument on the WIND spacecraft is a high-mass resolution solar wind ion mass spectrometer that will provide routinely not only the abundances and charge state of all elements easily measured with SWICS, but also of N, Mg, S. The MASS sensor was fully operational at the end of 1994 and has sampled the in-ecliptic solar wind composition in both the slow and the corotating fast streams. This unique combination of SWICS on Ulysses and MASS on WIND allows us to view for the first time the solar wind from two regions of the large coronal hole. Observations with SWICS in the coronal hole wind: (1) indicate that the FIP effect is small; and (2) allow us determine the altitude of the maximum in the electron temperature profile, and indicate a maximum temperature of approximately 1.5 MK. New results from the SMS instruments on Wind will be compared with results from SWICS on Ulysses.

  5. Solar wind influence on Jupiter's magnetosphere and aurora

    NASA Astrophysics Data System (ADS)

    Vogt, Marissa; Gyalay, Szilard; Withers, Paul

    2016-04-01

    Jupiter's magnetosphere is often said to be rotationally driven, with strong centrifugal stresses due to large spatial scales and a rapid planetary rotation period. For example, the main auroral emission at Jupiter is not due to the magnetosphere-solar wind interaction but is driven by a system of corotation enforcement currents that arises to speed up outflowing Iogenic plasma. Additionally, processes like tail reconnection are also thought to be driven, at least in part, by processes internal to the magnetosphere. While the solar wind is generally expected to have only a small influence on Jupiter's magnetosphere and aurora, there is considerable observational evidence that the solar wind does affect the magnetopause standoff distance, auroral radio emissions, and the position and brightness of the UV auroral emissions. We will report on the results of a comprehensive, quantitative study of the influence of the solar wind on various magnetospheric data sets measured by the Galileo mission from 1996 to 2003. Using the Michigan Solar Wind Model (mSWiM) to predict the solar wind conditions upstream of Jupiter, we have identified intervals of high and low solar wind dynamic pressure. We can use this information to quantify how a magnetospheric compression affects the magnetospheric field configuration, which in turn will affect the ionospheric mapping of the main auroral emission. We also consider whether there is evidence that reconnection events occur preferentially during certain solar wind conditions or that the solar wind modulates the quasi-periodicity seen in the magnetic field dipolarizations and flow bursts.

  6. The solar wind during current and past solar minima and maxima

    NASA Astrophysics Data System (ADS)

    Zerbo, J.-L.; Richardson, J. D.

    2015-12-01

    This paper presents solar wind data from the last five solar cycles. We review solar wind parameters over the four solar minima and five maxima for which spacecraft data are available and show the recovery from the last very weak minimum to the current solar maximum. The solar wind magnetic field, speed, and density have remained anomalously low in this time period. However, the distributions of these parameters about the (lower than normal) average are similar to those from previous solar minima and maxima. This result suggests that the acceleration mechanism for the recent weak solar wind is probably not significantly different from earlier solar cycles. The He++/H+ ratio variation with solar cycle continues to be a function of speed, but the most recent solar minimum has significantly lower ratios than in the previous solar cycle.

  7. The very slow solar wind: Properties, origin and variability

    NASA Astrophysics Data System (ADS)

    Sanchez-Diaz, Eduardo; Rouillard, Alexis P.; Lavraud, Benoit; Segura, Kevin; Tao, Chihiro; Pinto, Rui; Sheeley, N. R.; Plotnikov, Illya

    2016-04-01

    Solar wind slower than 300 km/s, hereafter termed very slow solar wind (VSSW), is seldom observed at 1 AU. It was, however, commonly measured inside 0.7 AU by the two Helios spacecraft, particularly during solar maximum. Magnetohydrodynamic (MHD) modeling reveals that the disappearance of VSSW at 1 AU is the result of its interaction with faster solar wind. The acceleration and compression of the VSSW contributes to the observed highly variable structure of the slow solar wind at 1 AU. The VSSW usually contains the heliospheric plasma sheet and current sheet. It has higher density and lower temperature than the regular slow solar wind, extending the known scaling laws below 300 km/s. Its helium abundance increases with solar activity even more significantly than the slow solar wind. Contrary to faster solar winds, the helium ions in the VSSW are slower than the dominant protons. Combining a Potential Field Source Surface (PFSS) model with ballistic back tracing, we study the source region of the VSSW. We show that the proton density flux for the VSSW is much higher than for the faster winds, particularly at solar maximum.

  8. Pluto's interaction with the solar wind

    NASA Astrophysics Data System (ADS)

    McComas, D. J.; Elliott, H. A.; Weidner, S.; Valek, P.; Zirnstein, E. J.; Bagenal, F.; Delamere, P. A.; Ebert, R. W.; Funsten, H. O.; Horanyi, M.; McNutt, R. L.; Moser, C.; Schwadron, N. A.; Strobel, D. F.; Young, L. A.; Ennico, K.; Olkin, C. B.; Stern, S. A.; Weaver, H. A.

    2016-05-01

    This study provides the first observations of Plutogenic ions and their unique interaction with the solar wind. We find ~20% solar wind slowing that maps to a point only ~4.5 RP upstream of Pluto and a bow shock most likely produced by comet-like mass loading. The Pluto obstacle is a region of dense heavy ions bounded by a "Plutopause" where the solar wind is largely excluded and which extends back >100 RP into a heavy ion tail. The upstream standoff distance is at only ~2.5 RP. The heavy ion tail contains considerable structure, may still be partially threaded by the interplanetary magnetic field (IMF), and is surrounded by a light ion sheath. The heavy ions (presumably CH4+) have average speed, density, and temperature of ~90 km s-1, ~0.009 cm-3, and ~7 × 105 K, with significant variability, slightly increasing speed/temperature with distance, and are N-S asymmetric. Density and temperature are roughly anticorrelated yielding a pressure ~2 × 10-2 pPa, roughly in balance with the interstellar pickup ions at ~33 AU. We set an upper bound of <30 nT surface field at Pluto and argue that the obstacle is largely produced by atmospheric thermal pressure like Venus and Mars; we also show that the loss rate down the tail (~5 × 1023 s-1) is only ~1% of the expected total CH4 loss rate from Pluto. Finally, we observe a burst of heavy ions upstream from the bow shock as they are becoming picked up and tentatively identify an IMF outward sector at the time of the NH flyby.

  9. On rotational forces in the solar wind

    NASA Technical Reports Server (NTRS)

    Hollweg, J. V.; Isenberg, P. A.

    1981-01-01

    Solar rotational forces affecting the flow of minor ions in the solar wind are considered as corotating with the sun. Cold, noninteracting charged particles in the magnetic and gravitational fields of the sun rotate with the angular velocity of the sun, and calculations of lowest bulk order velocities show that differences in particle velocities decrease with increasing distance from the sun. A centrifugal potential in the corotating frame implies that ion motion is independent of protons, with velocities determined by the potential, which monotonically decreases without limit. The potential dominates the initial kinetic energy of the particles, and the equality of velocities within the potential is not due to interactions between particles as claimed by Mackenzie et al. (1979).

  10. Solar wind turbulence as a driver of geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Ikechukwu Ugwu, Ernest Benjamin; Nneka Okeke, Francisca; Ugonabo, Obiageli Josephine

    2016-07-01

    We carried out simultaneous analyses of interplanetary and geomagnetic datasets for the period of (solar Maunder) least (2009) and maximum (2002) solar activity to determine the nature of solar wind turbulence on geomagnetic activity using AE, ASY-D, and ASY-H indices. We determined the role played by Alfvénic fluctuations in the solar wind so as to find out the nature of the turbulence. Our analyses showed that solar wind turbulence play a role in geomagnetic processes at high latitudes during periods of low and high solaractivity but does not have any effect at mid-low latitudes.

  11. Magnetic Influences on the Solar Wind

    NASA Astrophysics Data System (ADS)

    Woolsey, Lauren N.

    2016-01-01

    The Sun is our closest star, and even with the ability to resolve fine structure, there are several large mysteries that remain unsolved. One of these unanswered questions is how the supersonic outflow from the Sun, the solar wind, is generated and accelerated. In this dissertation, I have investigated the role of Alfvén waves in heating the corona and accelerating the wind. I focus on modeling of flux tubes that are open to the heliosphere, i.e. bundles of magnetic field that stretch beyond a few solar radii into the heliosphere. In these flux tubes, Alfvén waves are launched by the shaking of the footpoints from the convective motions of granulation on the solar photosphere. I present results of modeling efforts in one dimension that investigate how this process changes for a variety of different magnetic field structures over a solar cycle and three-dimensional modeling of time-dependent processes that unlock a connection between pico- and nanoflare-scale events and the turbulent heating generated by counter-propagating Alfvén waves. In addition to computational modeling, I also present efforts to find magnetic thresholds in observations of small-scale network jets seen with the Interface Region Imaging Spectrograph (IRIS). These jets were first discovered by IRIS due to their short lifetimes (10s of seconds) and small size (widths of 100s of kilometers). The findings for this project suggest that the modeled Alfvén-wave-driven turbulence is consistent with these network jets.

  12. Suprathermal Tails in Solar Wind Oxygen and Iron

    NASA Astrophysics Data System (ADS)

    Popecki, M. A.; Galvin, A.; Klecker, B.; Kucharek, H.; Kistler, L.; Bochsler, P.; Blush, L.; Möbius, E.

    2008-12-01

    High speed suprathermal tails with a fixed energy spectrum have been observed in solar wind H and He2+, as well as in He+ pickup ions (e.g. Gloeckler et al., 2007). These tails appear to have a persistent and constant power law energy spectrum, unchanged in a variety of solar conditions. The presence of the tails have implications for particle injection into the interplanetary shock acceleration process. The suprathermal tails of solar wind Fe and O have been investigated with the STEREO/PLASTIC mass spectrometer. The energy spectra of solar wind O and Fe will be presented for periods of slow and fast solar wind. Variations in energy spectra are observed in both species at speeds up to 1.8 times the solar wind speed.

  13. QBO in solar wind speed and its relation to ENSO

    NASA Astrophysics Data System (ADS)

    Hocke, Klemens

    2009-02-01

    Corotating coronal holes of the Sun induce fluctuations of the solar wind speed in the vicinity of the Earth. The fluctuations of solar wind speed are closely correlated with geomagnetic activity. Solar wind speed has been monitored by satellites since the mid 1960s. The long-term series of solar wind speed show enhanced amplitudes at the solar rotation period 27.3 days and at its harmonics 13.6 and 9.1 days. The amplitude series are modulated by a quasi-biennial oscillation (QBO) with a period of 1.75a (21 months) as bispectral analysis reveals. A 1.75a QBO component is also present in the equatorial, zonal wind of the stratosphere at 30 hPa, in addition to the well-known QBO component at the period 2.4a (29 months). The solar wind QBO may influence the stratospheric QBO, the global electric circuit, and cloud cover by modulation of ionospheric electric fields, cosmic ray flux, and particle precipitation. For a further analysis, the series of solar wind speed fluctuations are bandpass-filtered at the period 1.75a. The filtered series provide the amplitude of the solar wind QBO as function of time. The maxima of the solar wind QBO series are correlated with those of the ENSO index. The analysis indicate that the solar wind QBO may trigger the ENSO activity. This result is speculative at the moment. However, the focus of the study is on the investigation of the long-term modulations of the short-term (4-45 days) oscillations of the solar wind speed which are quite unexplored yet.

  14. Latitudinal Dependence of Coronal Hole-Associated Fast Solar Wind

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Landi, E.

    2014-05-01

    The fast solar wind can have at least two different coronal sources: high-latitude, polar coronal holes (PCH) and low-latitude, equatorial coronal holes (ECH). The in-situ differences in the PCH and ECH winds have not been well studied, nor have the differences in their evolution over the solar cycles. Ulysses' 19 years of observations from 1990 to 2009, combined with ACE observations from 1998 to the present, provide us with measurements of solar wind properties that span two entire solar cycles, which allow us to study the in-situ properties and evolution of the coronal hole-associated solar wind at different latitudes. In this work, we focus on the PCH and ECH solar winds during the minima between solar cycles 22-23 and 23-24. We use data from SWICS, SWOOPS, and VHM/FGM on board Ulysses, and SWICS, SWEPAM, and MAG on board ACE to analyze the proton dynamics, heavy ion composition, elemental abundance, and magnetic field properties of the PCH wind and ECH wind, with a special focus on their differences during the recent two solar minima. We also include the slow and hot, streamer-associated (ST) wind as a reference in the comparison. The comparison of PCH and ECH wind shows that: 1) the in-situ properties of ECH and PCH winds are significantly different during the two solar minima, and 2) the two types of coronal hole-associated solar wind respond differently to changes in solar activity strength from cycle 23 to cycle 24.

  15. The floor in the solar wind: status report

    NASA Astrophysics Data System (ADS)

    Cliver, E. W.

    2012-07-01

    Cliver & Ling (2010) recently suggested that the solar wind had a floor or ground-state magnetic field strength at Earth of ~2.8 nT and that the source of the field was the slow solar wind. This picture has recently been given impetus by the evidence presented by Schrijver et al. (2011) that the Sun has a minimal magnetic state that was approached globally in 2009, a year in which Earth was imbedded in slow solar wind ~70% of the time. A precursor relation between the solar dipole field strength at solar minimum and the peak sunspot number (SSN MAX ) of the subsequent 11-yr cycle suggests that during Maunder-type minima (when SSN MAX was ~0), the solar polar field strength approaches zero - indicating weak or absent polar coronal holes and an increase to nearly ~100% in the time that Earth spends in slow solar wind.

  16. Are Solar Wind Reconnection Events Fossil Sites?

    NASA Astrophysics Data System (ADS)

    Vu, H. X.; Karimabadi, H.; Scudder, J. D.; Roytershteyn, V.; Daughton, W. S.; Gosling, J. T.; Egedal, J.

    2010-12-01

    Studies of reconnection in the solar wind led by Gosling and collaborators have revealed surprising results that are posing serious challenges to current theoretical understanding of the reconnection process. This include observations of prolonged quasi-steady reconnection, low magnetic shear angles, and no real bulk heating (i.e., full thermalization rather than appearance of heating due to two beams) or substantial particle acceleration. In contrast, the theoretical expectations have been that reconnection leads to significant bulk heating and particle acceleration. Similarly, recent full particle simulations indicate that reconnection is generally time dependent. We have recently re-examined this apparent discrepancy between observations and theory and propose a resolution to these puzzling observations based on the concept of fossil reconnection site. We have performed large scale 2D fully kinetic simulations of reconnection to very long times to gain an understanding of reconnection structure as they would be seen in the observations. We find that reconnection weakens in time and approaches an asymptotic state which we refer to as fossil state. The properties of the fossil reconnection state explain several of the puzzling aspects of the observations. The implications of these findings for studies of solar wind reconnection are discussed.

  17. An asymmetric solar wind termination shock.

    PubMed

    Stone, Edward C; Cummings, Alan C; McDonald, Frank B; Heikkila, Bryant C; Lal, Nand; Webber, William R

    2008-07-01

    Voyager 2 crossed the solar wind termination shock at 83.7 au in the southern hemisphere, approximately 10 au closer to the Sun than found by Voyager 1 in the north. This asymmetry could indicate an asymmetric pressure from an interstellar magnetic field, from transient-induced shock motion, or from the solar wind dynamic pressure. Here we report that the intensity of 4-5 MeV protons accelerated by the shock near Voyager 2 was three times that observed concurrently by Voyager 1, indicating differences in the shock at the two locations. (Companion papers report on the plasma, magnetic field, plasma-wave and lower energy particle observations at the shock.) Voyager 2 did not find the source of anomalous cosmic rays at the shock, suggesting that the source is elsewhere on the shock or in the heliosheath. The small intensity gradient of Galactic cosmic ray helium indicates that either the gradient is further out in the heliosheath or the local interstellar Galactic cosmic ray intensity is lower than expected. PMID:18596802

  18. Anisotropy in solar wind plasma turbulence

    PubMed Central

    Oughton, S.; Matthaeus, W. H.; Wan, M.; Osman, K. T.

    2015-01-01

    A review of spectral anisotropy and variance anisotropy for solar wind fluctuations is given, with the discussion covering inertial range and dissipation range scales. For the inertial range, theory, simulations and observations are more or less in accord, in that fluctuation energy is found to be primarily in modes with quasi-perpendicular wavevectors (relative to a suitably defined mean magnetic field), and also that most of the fluctuation energy is in the vector components transverse to the mean field. Energy transfer in the parallel direction and the energy levels in the parallel components are both relatively weak. In the dissipation range, observations indicate that variance anisotropy tends to decrease towards isotropic levels as the electron gyroradius is approached; spectral anisotropy results are mixed. Evidence for and against wave interpretations and turbulence interpretations of these features will be discussed. We also present new simulation results concerning evolution of variance anisotropy for different classes of initial conditions, each with typical background solar wind parameters. PMID:25848082

  19. Electric conductivity of plasma in solar wind

    NASA Technical Reports Server (NTRS)

    Chertkov, A. D.

    1995-01-01

    One of the most important parameters in MHD description of the solar wind is the electric conductivity of plasma. There exist now two quite different approaches to the evaluation of this parameter. In the first one a value of conductivity taken from the most elaborated current theory of plasma should be used in calculations. The second one deals with the empirical, phenomenological value of conductivity. E.g.: configuration of interplanetary magnetic field, stretched by the expanding corona, depends on the magnitude of electrical conductivity of plasma in the solar wind. Knowing the main empirical features of the field configuration, one may estimate the apparent phenomenological value of resistance. The estimations show that the electrical conductivity should be approximately 10(exp 13) times smaller than that calculated by Spitzer. It must be noted that the empirical value should be treated with caution. Due to the method of its obtaining it may be used only for 'large-scale' description of slow processes like coronal expansion. It cannot be valid for 'quick' processes, changing the state of plasma, like collisions with obstacles, e.g., planets and vehicles. The second approach is well known in large-scale planetary hydrodynamics, stemming from the ideas of phenomenological thermodynamics. It could formulate real problems which should be solved by modern plasma physics, oriented to be adequate for complicated processes in space.

  20. Variance Anisotropy of Solar Wind fluctuations

    NASA Astrophysics Data System (ADS)

    Oughton, S.; Matthaeus, W. H.; Wan, M.; Osman, K.

    2013-12-01

    Solar wind observations at MHD scales indicate that the energy associated with velocity and magnetic field fluctuations transverse to the mean magnetic field is typically much larger than that associated with parallel fluctuations [eg, 1]. This is often referred to as variance anisotropy. Various explanations for it have been suggested, including that the fluctuations are predominantly shear Alfven waves [1] and that turbulent dynamics leads to such states [eg, 2]. Here we investigate the origin and strength of such variance anisotropies, using spectral method simulations of the compressible (polytropic) 3D MHD equations. We report on results from runs with initial conditions that are either (i) broadband turbulence or (ii) fluctuations polarized in the same sense as shear Alfven waves. The dependence of the variance anisotropy on the plasma beta and Mach number is examined [3], along with the timescale for any variance anisotropy to develop. Implications for solar wind fluctuations will be discussed. References: [1] Belcher, J. W. and Davis Jr., L. (1971), J. Geophys. Res., 76, 3534. [2] Matthaeus, W. H., Ghosh, S., Oughton, S. and Roberts, D. A. (1996), J. Geophys. Res., 101, 7619. [3] Smith, C. W., B. J. Vasquez and K. Hamilton (2006), J. Geophys. Res., 111, A09111.

  1. Anisotropy in solar wind plasma turbulence.

    PubMed

    Oughton, S; Matthaeus, W H; Wan, M; Osman, K T

    2015-05-13

    A review of spectral anisotropy and variance anisotropy for solar wind fluctuations is given, with the discussion covering inertial range and dissipation range scales. For the inertial range, theory, simulations and observations are more or less in accord, in that fluctuation energy is found to be primarily in modes with quasi-perpendicular wavevectors (relative to a suitably defined mean magnetic field), and also that most of the fluctuation energy is in the vector components transverse to the mean field. Energy transfer in the parallel direction and the energy levels in the parallel components are both relatively weak. In the dissipation range, observations indicate that variance anisotropy tends to decrease towards isotropic levels as the electron gyroradius is approached; spectral anisotropy results are mixed. Evidence for and against wave interpretations and turbulence interpretations of these features will be discussed. We also present new simulation results concerning evolution of variance anisotropy for different classes of initial conditions, each with typical background solar wind parameters. PMID:25848082

  2. Solar wind minor ions: Recent observations

    NASA Technical Reports Server (NTRS)

    Bame, S. J.

    1983-01-01

    Systematic studies show that the minor ions generally travel with a common bulk speed and have temperatures roughly proportional to their masses. It was determined that (3)He(++) content varies greatly; (3)He(++)/(4)He(++) ranges from as high as 10(-12) values to below 2 x 10(-4). In some solar wind flows which can be related to energetic coronal events, the minor ions are found in unusual ionization states containing Fe(16+) as a prominent ion, showing that the states were formed at unusually high temperatures. Unexpectedly, in a few flows substantial quantities of (4)He(+) were detected, sometimes with ions identifiable as O(2+) and O(3+). Surprisingly, in some of these examples the ionization state is mixed showing that part of the plasma escaped the corona without attaining the usual million-degree temperatures while other parts were heated more nearly in the normal manner. Additionally, detailed studies of the minor ions increased our understanding of the coronal expansion. For example, such studies contributed to identifying near equatorial coronal streamers as the source of solar wind flows between high speed streams.

  3. Ulysses Composition, Plasma and Magnetic Field Observations of High Speed Solar wind Streams

    NASA Technical Reports Server (NTRS)

    Smith, E. J.

    1997-01-01

    During 1992-3 as the Ulysses spacecraft passed in and out of the southern high speed solar wind stream, the Solar Wind Ion Spectrometer, SWICS made continuous composition and temperature measurements of all major solar wind ions.

  4. Solar wind velocity and temperature in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Gazis, P. R.; Barnes, A.; Mihalov, J. D.; Lazarus, A. J.

    1994-01-01

    At the end of 1992, the Pioneer 10, Pioneer 11, and Voyager 2 spacecraft were at heliocentric distances of 56.0, 37.3, and 39.0 AU and heliographic latitudes of 3.3 deg N, 17.4 deg N, and 8.6 deg S, respectively. Pioneer 11 and Voyager 2 are at similar celestial longitudes, while Pioneer 10 is on the opposite side of the Sun. All three spacecraft have working plasma analyzers, so intercomparison of data from these spacecraft provides important information about the global character of the solar wind in the outer heliosphere. The averaged solar wind speed continued to exhibit its well-known variation with solar cycle: Even at heliocentric distances greater than 50 AU, the average speed is highest during the declining phase of the solar cycle and lowest near solar minimum. There was a strong latitudinal gradient in solar wind speed between 3 deg and 17 deg N during the last solar minimum, but this gradient has since disappeared. The solar wind temperature declined with increasing heliocentric distance out to a heliocentric distance of at least 20 AU; this decline appeared to continue at larger heliocentric distances, but temperatures in the outer heliosphere were suprisingly high. While Pioneer 10 and Voyager 2 observed comparable solar wind temperatures, the temperature at Pioneer 11 was significantly higher, which suggests the existence of a large-scale variation of temperature with heliographic longitude. There was also some suggestion that solar wind temperatures were higher near solar minimum.

  5. The solar wind in the third dimension

    SciTech Connect

    Neugebauer, M.

    1996-07-20

    For many years, solar-wind physicists have been using plasma and field data acquired near the ecliptic plane together with data on the scintillation of radio sources and remote sensing of structures in the solar corona to estimate the properties of the high-latitude solar wind. Because of the highly successful Ulysses mission, the moment of truth is now here. This paper summarizes the principal agreements and differences between the Ulysses observations and expectations. The speed of the high-latitude solar wind was even greater than anticipated. The strength of the radial component of the interplanetary magnetic field was found to be independent of latitude. The tilt of the heliospheric current sheet caused reverse corotating shocks to be observed to higher latitudes than forward corotating shocks. The energetic particles accelerated in these shocks were detected well poleward of the latitudes at which Ulysses observed the interaction regions themselves. As anticipated, there was a strong flux of outward propagating Alfven waves throughout the polar flow. Those waves were probably largely responsible for the smaller-than-anticipated increase of galactic cosmic rays with increasing latitude. As expected, the charge state or ionization temperature of heavy ions was lower in the polar flow than in low-latitude interstream flows. What was not anticipated was the correlation of elemental abundances with ionization temperatures; the Ulysses data revealed a connection between the first ionization time in the upper chromosphere and the final ionization state in the corona. As expected, transient events were detected to {approx}60 deg. latitude, but the properties of those high latitude transient flows held some surprises. At high latitudes, the speeds of the transient interplanetary plasma clouds were approximately the same as the speed of the ambient plasma and the expansion of the clouds drove forward and reverse shock pairs that had never been seen at low latitudes. At

  6. The structure of the solar wind in the inner heliosphere

    NASA Astrophysics Data System (ADS)

    Lee, Christina On-Yee

    2010-12-01

    This dissertation is devoted to expanding our understanding of the solar wind structure in the inner heliosphere and variations therein with solar activity. Using spacecraft observations and numerical models, the origins of the large-scale structures and long-term trends of the solar wind are explored in order to gain insights on how our Sun determines the space environments of the terrestrial planets. I use long term measurements of the solar wind density, velocity, interplanetary magnetic field, and particles, together with models based on solar magnetic field data, to generate time series of these properties that span one solar rotation (˜27 days). From these time series, I assemble and obtain the synoptic overviews of the solar wind properties. The resulting synoptic overviews show that the solar wind around Mercury, Venus, Earth, and Mars is a complex co-rotating structure with recurring features and occasional transients. During quiet solar conditions, the heliospheric current sheet, which separates the positive interplanetary magnetic field from the negative, usually has a remarkably steady two- or four-sector structure that persists for many solar rotations. Within the sector boundaries are the slow and fast speed solar wind streams that originate from the open coronal magnetic field sources that map to the ecliptic. At the sector boundaries, compressed high-density and the related high-dynamic pressure ridges form where streams from different coronal source regions interact. High fluxes of energetic particles also occur at the boundaries, and are seen most prominently during the quiet solar period. The existence of these recurring features depends on how long-lived are their source regions. In the last decade, 3D numerical solar wind models have become more widely available. They provide important scientific tools for obtaining a more global view of the inner heliosphere and of the relationships between conditions at Mercury, Venus, Earth, and Mars. When

  7. Turbulence in the solar wind: Kinetic effects

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.

    1995-01-01

    Although a casual look at the fluctuating magnetic and velocity fields in the solar wind may be reminiscent of a chaotic and disordered flow, there is, nonetheless. considerable organization and structure in the temporal and spatial evolution of those fluctuations. Much of that evolution is controlled by processes operating on rather large scales for example, in the inner heliosphere, the fluctuations in magnetic and velocity are highly correlated in the sense of outward propagating Alfven waves. This correlation can be destroyed both in time and distance by the velocity gradients present between fast and slow streams and by other nonlinear processes which stir the medium, producing a turbulent cascade of energy from large to small scales. Many aspects of this turbulent evolution can be described using fluid models; however, at some scale the fluid approximation breaks down and a more detailed paradigm is necessary. The breakdown is evident in the power spectrum of magnetic fluctuations at scales approaching the wavelength of ion cyclotron waves. At those scales, as evident in Mariner 10 and other magnetometer data, the spectrum bends over and the fluctuations damp, possibly heating the ambient plasma. Some evidence for heating of the solar wind is present in the Voyager data. Fluid models can be modified to some extent to incorporate aspects of a kinetic treatment. This is done by modifying the dissipation terms in the fluid equations and by including extra terms, such as the Hall term. As the scale lengths of phenomena shrink further and approach the spatial and temporal scales characteristic of electron phenomena, the fluid description must be abandoned altogether and a fully kinetic treatment is required. One example is the generation of Langmuir solitons produced by the electron beams that generate type 3 solar radio bursts.

  8. Solar and Wind Technologies for Hydrogen Production Report to Congress

    SciTech Connect

    None, None

    2005-12-01

    DOE's Solar and Wind Technologies for Hydrogen Production Report to Congress summarizes the technology roadmaps for solar- and wind-based hydrogen production. Published in December 2005, it fulfills the requirement under section 812 of the Energy Policy Act of 2005.

  9. Western Wind and Solar Integration Study Phase 3: Technical Overview

    SciTech Connect

    2015-11-01

    Technical fact sheet outlining the key findings of Phase 3 of the Western Wind and Solar Integration Study (WWSIS-3). NREL and GE find that with good system planning, sound engineering practices, and commercially available technologies, the Western grid can maintain reliability and stability during the crucial first minute after grid disturbances with high penetrations of wind and solar power.

  10. Solar and wind energy utilization in broiler production

    SciTech Connect

    Brinsfield, R.B.; Yaramanoglu, M.; Wheaton, F.

    1984-01-01

    Available solar and wind energy and both the electrical and thermal energy demand of a typical broiler facility were mathematically modeled based on 10 years of weather data for Salisbury, Maryland. The available energy was then compared with the broiler facility demands as a means of sizing solar and wind energy collection equipment to meet the demands.

  11. Correlations between solar wind parameters and auroral kilometric radiation intensity

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Dangelo, N.

    1981-01-01

    The relationship between solar wind properties and the influx of energy into the nightside auroral region as indicated by the intensity of auroral kilometric radiation is investigated. Smoothed Hawkeye satellite observations of auroral radiation at 178, 100 and 56.2 kHz for days 160 through 365 of 1974 are compared with solar wind data from the composite Solar Wind Plasma Data Set, most of which was supplied by the IMP-8 spacecraft. Correlations are made between smoothed daily averages of solar wind ion density, bulk flow speed, total IMF strength, electric field, solar wind speed in the southward direction, solar wind speed multiplied by total IMF strength, the substorm parameter epsilon and the Kp index. The greatest correlation is found between solar wind bulk flow speed and auroral radiation intensity, with a linear correlation coefficient of 0.78 for the 203 daily averages examined. A possible mechanism for the relationship may be related to the propagation into the nightside magnetosphere of low-frequency long-wavelength electrostatic waves produced in the magnetosheath by the solar wind.

  12. The Western Wind and Solar Integration Study Phase 2

    SciTech Connect

    Lew, D.; Brinkman, G.; Ibanez, E.; Hodge, B. M.; Hummon, M.; Florita, A.; Heaney, M.

    2013-09-01

    The electric grid is a highly complex, interconnected machine, and changing one part of the grid can have consequences elsewhere. Adding wind and solar affects the operation of the other power plants and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) evaluated these costs and emissions and simulated grid operations for a year to investigate the detailed impact of wind and solar on the fossil-fueled fleet. This built on Phase 1, one of the largest wind and solar integration studies ever conducted, which examined operational impacts of high wind and solar penetrations in the West.

  13. The Western Wind and Solar Integration Study Phase 2

    SciTech Connect

    Lew, Debra; Brinkman, Greg; Ibanez, E.; Florita, A.; Heaney, M.; Hodge, B. -M.; Hummon, M.; Stark, G.; King, J.; Lefton, S. A.; Kumar, N.; Agan, D.; Jordan, G.; Venkataraman, S.

    2013-09-01

    The electric grid is a highly complex, interconnected machine, and changing one part of the grid can have consequences elsewhere. Adding wind and solar affects the operation of the other power plants and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) evaluated these costs and emissions and simulated grid operations for a year to investigate the detailed impact of wind and solar on the fossil-fueled fleet. This built on Phase 1, one of the largest wind and solar integration studies ever conducted, which examined operational impacts of high wind and solar penetrations in the West(GE Energy 2010).

  14. Magnetohydrodynamic modeling of the solar wind in the outer heliosphere

    NASA Astrophysics Data System (ADS)

    Usmanov, A. V.; Goldstein, M. L.; Matthaeus, W. H.

    2012-05-01

    We present initial results from a solar wind model that accounts for transport of turbulence and treats pickup protons as a separate fluid. The model is based on a numerical solution of the coupled set of mean-field Reynolds-averaged solar wind equations and small-scale turbulence transport equations in the region from 0.3-100 AU. The pickup protons are assumed to be comoving with the solar wind flow and described by separate mass and energy equations. The equations include the terms for energy transfer from pickup protons to solar wind protons and for the plasma heating by turbulent dissipation. The momentum equation contains a term that describes the loss of momentumby the solar wind flow due to the charge exchangewith the interstellar neutral hydrogen.

  15. Geomagnetic responses to the solar wind and the solar activity

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.

    1975-01-01

    Following some historical notes, the formation of the magnetosphere and the magnetospheric tail is discussed. The importance of electric fields is stressed and the magnetospheric convection of plasma and magnetic field lines under the influence of large-scale magnetospheric electric fields is outlined. Ionospheric electric fields and currents are intimately related to electric fields and currents in the magnetosphere and the strong coupling between the two regions is discussed. The energy input of the solar wind to the magnetosphere and upper atmosphere is discussed in terms of the reconnection model where interplanetary magnetic field lines merge or connect with the terrestrial field on the sunward side of the magnetosphere. The merged field lines are then stretched behind earth to form the magnetotail so that kinetic energy from the solar wind is converted into magnetic energy in the field lines in the tail. Localized collapses of the crosstail current, which is driven by the large-scale dawn/dusk electric field in the magnetosphere, divert part of this current along geomagnetic field lines to the ionosphere, causing substorms with auroral activity and magnetic disturbances. The collapses also inject plasma into the radiation belts and build up a ring current. Frequent collapses in rapid succession constitute the geomagnetic storm.

  16. Cleaning Genesis Mission Payload for Flight with Ultra-Pure Water and Assembly in ISO Class 4 Environment

    NASA Technical Reports Server (NTRS)

    Allton, Judith H.

    2012-01-01

    Genesis mission to capture and return to Earth solar wind samples had very stringent contamination control requirements in order to distinguish the solar atoms from terrestrial ones. Genesis mission goals were to measure solar composition for most of the periodic table, so great care was taken to avoid particulate contamination. Since the number 1 and 2 science goals were to determine the oxygen and nitrogen isotopic composition, organic contamination was minimized by tightly controlling offgassing. The total amount of solar material captured in two years is about 400 micrograms spread across one sq m. The contamination limit requirement for each of C, N, and O was <1015 atoms/sq cm. For carbon, this is equivalent to 10 ng/cm2. Extreme vigilance was used in pre-paring Genesis collectors and cleaning hardware for flight. Surface contamination on polished silicon wafers, measured in Genesis laboratory is approximately 10 ng/sq cm.

  17. Solar-wind tritium limit and nuclear processes in the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Fireman, E. L.; Damico, J.; Defelice, J.

    1975-01-01

    Tritium in Surveyor 3 material is measured, and the resulting H-3/H-1 ratio for the solar wind is applied in a solar flare-solar wind relation to investigate the mixing requirements for the solar atmosphere. The flare-wind relation is derived. None of the tritium can be attributed to solar-wind implantation. The upper limit for the H-3/He ratio in the solar wind is 4 times 10 to the minus tenth power and corresponds to a H-3/H-1 limit of 2 times 10 to the minus eleventh power. This limit imposes a requirement on the mixing rate in the solar atmosphere if the H-3 production rate in solar-surface nuclear reactions is greater than 160/sq cm per sec.

  18. SOLAR X-RAY JETS, TYPE-II SPICULES, GRANULE-SIZE EMERGING BIPOLES, AND THE GENESIS OF THE HELIOSPHERE

    SciTech Connect

    Moore, Ronald L.; Sterling, Alphonse C.; Cirtain, Jonathan W.; Falconer, David A.

    2011-04-10

    From Hinode observations of solar X-ray jets, Type-II spicules, and granule-size emerging bipolar magnetic fields in quiet regions and coronal holes, we advocate a scenario for powering coronal heating and the solar wind. In this scenario, Type-II spicules and Alfven waves are generated by the granule-size emerging bipoles (EBs) in the manner of the generation of X-ray jets by larger magnetic bipoles. From observations and this scenario, we estimate that Type-II spicules and their co-generated Alfven waves carry into the corona an area-average flux of mechanical energy of {approx}7 x 10{sup 5} erg cm{sup -2} s{sup -1}. This is enough to power the corona and solar wind in quiet regions and coronal holes, and therefore indicates that the granule-size EBs are the main engines that generate and sustain the entire heliosphere.

  19. Polar solar wind and interstellar wind properties from interplanetary Lyman-alpha radiation measurements

    NASA Technical Reports Server (NTRS)

    Witt, N.; Blum, P. W.; Ajello, J. M.

    1981-01-01

    The analysis of Mariner 10 observations of Lyman-alpha resonance radiation shows an increase of interplanetary neutral hydrogen densities above the solar poles. This increase is caused by a latitudinal variation of the solar wind velocity and/or flux. Using both the Mariner 10 results and other solar wind observations, the values of the solar wind flux and velocity with latitude are determined for several cases of interest. The latitudinal variation of interplanetary hydrogen gas, arising from the solar wind latitudinal variation, is shown to be most pronounced in the inner solar system. From this result it is shown that spacecraft Lyman-alpha observations are more sensitive to the latitudinal anisotropy for a spacecraft location in the inner solar system near the downwind axis.

  20. Decontamination of Genesis Array Materials by UV Ozone Cleaning

    NASA Technical Reports Server (NTRS)

    Calaway, Michael J.; Burnett, D. S.; Rodriquez, M. C.; Sestak, S.; Allton, J. H.; Stansbery, E. K.

    2007-01-01

    Shortly after the NASA Genesis Mission sample return capsule returned to earth on September 8, 2004, the science team discovered that all nine ultra-pure semiconductor materials were contaminated with a thin molecular organic film approximately 0 to 100 angstroms thick. The organic contaminate layer, possibly a silicone, situated on the surface of the materials is speculated to have formed by condensation of organic matter from spacecraft off-gassing at the Lagrange 1 halo orbit during times of solar exposure. While the valuable solar wind atoms are safely secured directly below this organic contamination and/or native oxide layer in approximately the first 1000 angstroms of the ultra-pure material substrate, some analytical techniques that precisely measure solar wind elemental abundances require the removal of this organic contaminate. In 2005, Genesis science team laboratories began to develop various methods for removing the organic thin film without removing the precious material substrate that contained the solar wind atoms. Stephen Sestak and colleagues at Open University first experimented with ultraviolet radiation ozone (UV/O3) cleaning of several non-flight and flown Genesis silicon wafer fragments under a pure flowing oxygen environment. The UV/O3 technique was able to successfully remove organic contamination without etching into the bulk material substrate. At NASA Johnson Space Center Genesis Curation Laboratory, we have installed an UV/O3 cleaning devise in an ambient air environment to further experimentally test the removal of the organic contamination on Genesis wafer materials. Preliminary results from XPS analysis show that the UV/O3 cleaning instrument is a good non-destructive method for removing carbon contamination from flown Genesis array samples. However, spectroscopic ellipsometry results show little change in the thickness of the surface film. All experiments to date have shown UV/O3 cleaning method to be the best non-destructive method

  1. Implications of L1 observations for slow solar wind formation by solar reconnection

    NASA Astrophysics Data System (ADS)

    Kepko, L.; Viall, N. M.; Antiochos, S. K.; Lepri, S. T.; Kasper, J. C.; Weberg, M.

    2016-05-01

    While the source of the fast solar wind is known to be coronal holes, the source of the slow solar wind has remained a mystery. Long time scale trends in the composition and charge states show strong correlations between solar wind velocity and plasma parameters, yet these correlations have proved ineffective in determining the slow wind source. We take advantage of new high time resolution (12 min) measurements of solar wind composition and charge state abundances at L1 and previously identified 90 min quasiperiodic structures to probe the fundamental timescales of slow wind variability. The combination of new high temporal resolution composition measurements and the clearly identified boundaries of the periodic structures allows us to utilize these distinct solar wind parcels as tracers of slow wind origin and acceleration. We find that each 90 min (2000 Mm) parcel of slow wind has near-constant speed yet exhibits repeatable, systematic charge state and composition variations that span the entire range of statistically determined slow solar wind values. The classic composition-velocity correlations do not hold on short, approximately hourlong, time scales. Furthermore, the data demonstrate that these structures were created by magnetic reconnection. Our results impose severe new constraints on slow solar wind origin and provide new, compelling evidence that the slow wind results from the sporadic release of closed field plasma via magnetic reconnection at the boundary between open and closed flux in the Sun's atmosphere.

  2. Cellulose Acetate Replica Cleaning Study of Genesis Non-Flight Sample 3CZ00327

    NASA Technical Reports Server (NTRS)

    Kuhlman, K. R.; Schmeling, M.; Gonzalez, C. P.; Allton, J. H.; Burnett, D. S.

    2014-01-01

    The Genesis mission collected solar wind and brought it back to Earth in order to provide precise knowledge of solar isotopic and elemental compositions. The ions in the solar wind were stopped in the collectors at depths on the order of 10 to a few hundred nanometers. This shallow implantation layer is critical for scientific analysis of the composition of the solar wind and must be preserved throughout sample handling, cleaning, processing, distribution, preparation and analysis. We are working interactively with the community of scientists analyzing Genesis samples, using our unique laboratory facilities -- and, where needed, our unique cleaning techniques -- to significantly enhance the science return from the Genesis mission. This work is motivated by the need to understand the submicron contamination on the collectors in the Genesis payload as recovered from the crash site in the Utah desert, and -- perhaps more importantly -- how to remove it. That is, we are evaluating the effectiveness of the wet-chemical "cleaning" steps used by various investigators, to enable them to design improved methods of stripping terrestrial contamination from surfaces while still leaving the solar-wind signal intact.

  3. Solar Energetic Particle Events in Different Types of Solar Wind

    NASA Astrophysics Data System (ADS)

    Kahler, S. W.; Vourlidas, A.

    2014-08-01

    We examine statistically some properties of 96 20 MeV gradual solar energetic proton (SEP) events as a function of three different types of solar wind (SW) as classified by Richardson and Cane. Gradual SEP (E > 10 MeV) events are produced in shocks driven by fast (V >~ 900 km s-1) and wide (W > 60°) coronal mass ejections (CMEs). We find no differences among the transient, fast, and slow SW streams for SEP 20 MeV proton event timescales. It has recently been found that the peak intensities Ip of these SEP events scale with the ~2 MeV proton background intensities, which may be a proxy for the near-Sun shock seed particles. Both the intensities Ip and their 2 MeV backgrounds are significantly enhanced in transient SW compared to those of fast and slow SW streams, and the values of Ip normalized to the 2 MeV backgrounds only weakly correlate with CME V for all SW types. This result implies that forecasts of SEP events could be improved by monitoring both the Sun and the local SW stream properties and that the well known power-law size distributions of Ip may differ between transient and long-lived SW streams. We interpret an observed correlation between CME V and the 2 MeV background for SEP events in transient SW as a manifestation of enhanced solar activity.

  4. Solar Energetic Particle Events in Different Types of Solar Wind

    NASA Astrophysics Data System (ADS)

    Kahler, Stephen W.; Vourlidas, Angelos

    2014-06-01

    We examine statistically some properties of 96 20 MeV gradual solar energetic proton (SEP) events as a function of three different types of solar winds (SWs) as classified by Richardson and Cane (2012). Gradual SEP (E > 10 MeV) events are produced in shocks driven by fast (V > 900 km/s) and wide (W > 60 deg) coronal mass ejections (CMEs). We find no differences between transient and fast or slow SW streams for SEP 20-MeV event timescales. It has recently been found that the peak intensities Ip of these SEP events scale with the ~ 2 MeV proton background intensities, which may be a proxy for the near-Sun shock seed particles. Both the intensities Ip and their 2 MeV backgrounds are significantly enhanced in transient SW compared to those of fast and slow SW streams, and the values of Ip normalized to the 2 MeV backgrounds only weakly correlate with CME V for all SW types. This result implies that forecasts of SEP events could be improved by monitoring both the Sun and the local SW stream properties and that the well known power-law size distributions of Ip may differ between transient and long-lived SW streams. We interpret an observed correlation between CME V and the 2 MeV background for SEP events in transient SW as a manifestation of enhanced solar activity.

  5. Solar energetic particle events in different types of solar wind

    SciTech Connect

    Kahler, S. W.; Vourlidas, A.

    2014-08-10

    We examine statistically some properties of 96 20 MeV gradual solar energetic proton (SEP) events as a function of three different types of solar wind (SW) as classified by Richardson and Cane. Gradual SEP (E > 10 MeV) events are produced in shocks driven by fast (V ≳ 900 km s{sup –1}) and wide (W > 60°) coronal mass ejections (CMEs). We find no differences among the transient, fast, and slow SW streams for SEP 20 MeV proton event timescales. It has recently been found that the peak intensities Ip of these SEP events scale with the ∼2 MeV proton background intensities, which may be a proxy for the near-Sun shock seed particles. Both the intensities Ip and their 2 MeV backgrounds are significantly enhanced in transient SW compared to those of fast and slow SW streams, and the values of Ip normalized to the 2 MeV backgrounds only weakly correlate with CME V for all SW types. This result implies that forecasts of SEP events could be improved by monitoring both the Sun and the local SW stream properties and that the well known power-law size distributions of Ip may differ between transient and long-lived SW streams. We interpret an observed correlation between CME V and the 2 MeV background for SEP events in transient SW as a manifestation of enhanced solar activity.

  6. Solar Coronal Plumes and the Fast Solar Wind

    NASA Astrophysics Data System (ADS)

    Dwivedi, Bhola N.; Wilhelm, Klaus

    2015-03-01

    The spectral profiles of the coronal Ne viii line at 77 nm have different shapes in quiet-Sun regions and Coronal Holes (CHs). A single Gaussian fit of the line profile provides an adequate approximation in quiet-Sun areas, whereas, a strong shoulder on the long-wavelength side is a systematic feature in CHs. Although this has been noticed since 1999, no physical reason for the peculiar shape could be given. In an attempt to identify the cause of this peculiarity, we address three problems that could not be conclusively resolved, in a review article by a study team of the International Space Science Institute (ISSI) (Wilhelm et al. 2011): (1) The physical processes operating at the base and inside of plumes, as well as their interaction with the Solar Wind (SW). (2) The possible contribution of plume plasma to the fast SW streams. (3) The signature of the First-Ionization Potential (FIP) effect between plumes and inter-plume regions (IPRs). Before the spectroscopic peculiarities in IPRs and plumes in Polar Coronal Holes (PCHs) can be further investigated with the instrument Solar Ultraviolet Measurements of Emitted Radiation (SUMER) aboard the Solar and Heliospheric Observatory (SOHO), it is mandatory to summarize the results of the review to place the spectroscopic observations into context. Finally, a plume model is proposed that satisfactorily explains the plasma flows up and down the plume field lines and leads to the shape of the neon line in PCHs.

  7. KOLMOGOROV VECTORIAL LAW FOR SOLAR WIND TURBULENCE

    SciTech Connect

    Galtier, Sebastien

    2012-02-20

    We investigate a class of axisymmetric magnetohydrodynamic turbulence which satisfies the exact relation for third-order Elsaesser structure functions. Following the critical balance conjecture, we assume the existence of a power-law relation between correlation length scales along and transverse to the local mean magnetic field direction. The flow direction of the vector third-order moments F{sup {+-}} is then along axisymmetric concave/convex surfaces, the axis of symmetry being given by the mean magnetic field. Under this consideration, the vector F{sup {+-}} satisfies a simple Kolmogorov law which depends on the anisotropic parameter a{sup {+-}}, which measures the concavity of the surfaces. A comparison with recent in situ multispacecraft solar wind observations is made; it is concluded that the underlying turbulence is very likely convex. A discussion is given about the physical meaning of such an anisotropy.

  8. Innovations in Wind and Solar PV Financing

    SciTech Connect

    Cory, K.; Coughlin, J.; Jenkin, T.; Pater, J.; Swezey, B.

    2008-02-01

    There is growing national interest in renewable energy development based on the economic, environmental, and security benefits that these resources provide. Historically, greater development of our domestic renewable energy resources has faced a number of hurdles, primarily related to cost, regulation, and financing. With the recent sustained increase in the costs and associated volatility of fossil fuels, the economics of renewable energy technologies have become increasingly attractive to investors, both large and small. As a result, new entrants are investing in renewable energy and new business models are emerging. This study surveys some of the current issues related to wind and solar photovoltaic (PV) energy project financing in the electric power industry, and identifies both barriers to and opportunities for increased investment.

  9. Bidirectional solar wind electron heat flux events

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.; Baker, D. N.; Bame, S. J.; Feldman, W. C.; Zwickl, R. D.; Smith, E. J.

    1987-01-01

    ISEE 3 plasma and magnetic field data are used here to document the general characteristics of bidirectional electron heat flux events (BEHFEs). Significant field rotations often occur at the beginning and/or end of such events and, at times, the large-field rotations characteristic of 'magnetic clouds' are present. Approximately half of all BEHFEs are associated with and follow interplanetary shocks, while the other events have no obvious shock associations. When shock-associated, the delay from shock passage typically is about 13 hours, corresponding to a radial separation of about 0.16 AU. When independent of any shock association, BEHFEs typically are about 0.13 AU thick in the radial direction. It is suggested that BEHFEs are one of the more prominent signatures of coronal mass ejection events in the solar wind at 1 AU.

  10. RELAXATION PROCESSES IN SOLAR WIND TURBULENCE

    SciTech Connect

    Servidio, S.; Carbone, V.; Gurgiolo, C.; Goldstein, M. L.

    2014-07-10

    Based on global conservation principles, magnetohydrodynamic (MHD) relaxation theory predicts the existence of several equilibria, such as the Taylor state or global dynamic alignment. These states are generally viewed as very long-time and large-scale equilibria, which emerge only after the termination of the turbulent cascade. As suggested by hydrodynamics and by recent MHD numerical simulations, relaxation processes can occur during the turbulent cascade that will manifest themselves as local patches of equilibrium-like configurations. Using multi-spacecraft analysis techniques in conjunction with Cluster data, we compute the current density and flow vorticity and for the first time demonstrate that these localized relaxation events are observed in the solar wind. Such events have important consequences for the statistics of plasma turbulence.

  11. Magnetic clouds in the solar wind

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Klein, L.

    1980-01-01

    Two interplanetary magnetic clouds, characterized by anomalous magnetic field directions and unusually high magnetic field strengths with a scale of the order of 0.25 AU, are identified and described. As the clouds moved past a spacecraft located in the solar wind near Earth, the magnetic field direction changed by rotating approximately 180 deg nearly parallel to a plane which was essentially perpendicular to the ecliptic. The configuration of the magnetic field in the clouds might be that of a tightly wound cylindrical helix or a series of closed circular loops. One of the magnetic clouds was in a cold stream preceded by a shock, and it caused both a geomagnetic storm and a depression in the galactic cosmic ray intensity. No stream, geomagnetic storm, or large cosmic ray decrease was associated with the other magnetic cloud.

  12. Nonaxisymmetric anisotropy of solar wind turbulence.

    PubMed

    Turner, A J; Gogoberidze, G; Chapman, S C; Hnat, B; Müller, W-C

    2011-08-26

    A key prediction of turbulence theories is frame-invariance, and in magnetohydrodynamic (MHD) turbulence, axisymmetry of fluctuations with respect to the background magnetic field. Paradoxically the power in fluctuations in the turbulent solar wind are observed to be ordered with respect to the bulk macroscopic flow as well as the background magnetic field. Here, nonaxisymmetry across the inertial and dissipation ranges is quantified using in situ observations from Cluster. The observed inertial range nonaxisymmetry is reproduced by a "fly through" sampling of a direct numerical simulation of MHD turbulence. Furthermore, fly through sampling of a linear superposition of transverse waves with axisymmetric fluctuations generates the trend in nonaxisymmetry with power spectral exponent. The observed nonaxisymmetric anisotropy may thus simply arise as a sampling effect related to Taylor's hypothesis and is not related to the plasma dynamics itself. PMID:21929247

  13. Microstructures in the Polar Solar Wind: Ulysses

    NASA Technical Reports Server (NTRS)

    Tsuruyani, Bruce T.; Arballo, J. K.; Galvan, C.; Goldstein, B. E.; Lakhina, G. S.; Sakurai, R.; Smith, E. J.; Neugebauer, M.

    1999-01-01

    We find that small (10-200 rP) magnetic decreases comprise a dominant part of the polar solar wind microstructure at Ulysses distances (2.2 AU). These magnetic field dips are almost always bounded by tangential discontinuities, a feature which is not well understood at this time. Hundreds of these events have been examined in detail and a variety of types have been found. These will be described. It is speculated that these structures have been generated by perpendicular heating of ions closer to the Sun and have then been convected to distances of Ulysses. Such structures may be very important for the rapid cross- field diffusion of ions in the polar regions of the heliosphere.

  14. Stationarity of extreme bursts in the solar wind.

    PubMed

    Moloney, N R; Davidsen, J

    2014-05-01

    Recent results have suggested that the statistics of bursts in the solar wind vary with solar cycle. Here, we show that this variation is basically absent if one considers extreme bursts. These are defined as threshold-exceeding events over the range of high thresholds for which their number decays as a power law. In particular, we find that the distribution of duration times and energies of extreme bursts in the solar wind ε parameter and similar observables are independent of the solar cycle and in this sense stationary, and show robust asymptotic power laws with exponents that are independent of the specific threshold. This is consistent with what has been observed for solar flares and, thus, provides evidence in favor of a link between solar flares and extreme bursts in the solar wind. PMID:25353849

  15. Evolution of solar wind turbulence and intermittency over the solar cycle

    NASA Astrophysics Data System (ADS)

    Väisänen, Pauli; Virtanen, Ilpo; Echim, Marius; Munteanu, Costel; Mursula, Kalevi

    2016-04-01

    Solar wind is a natural, near-by plasma physics laboratory, which offers possibilities to study plasma physical phenomena over a wide range of parameter values that are difficult to reach in ground-based laboratories. Accordingly, the solar wind is subject of many studies of, e.g., intermittency, turbulence and other nonlinear space plasma phenomena. Turbulence is an important feature of the solar wind dynamics, e.g., for the energy transfer mechanisms and their scale invariance, the solar wind evolution, the structure of the heliospheric magnetic field (HMF), the particle energization and heating, and for phenomena related to solar wind interaction with the planetary plasma systems. Here we analyse high resolution measurements of the solar wind and the heliospheric magnetic field provided by several ESA and NASA satellites, including ACE, STEREO, Ulysses and Cluster. This collection of satellites allows us to compile and study nearly 20 years of high-resolution solar wind and HMF measurements from the start of solar cycle 23 to the current declining phase of solar cycle 24. Long-term studies require homogeneity and, therefore, we pay great attention to the reliability and consistency of the data, in particular to instrumental defects like spin harmonics, the purity of the solar wind and its possible contamination in the foreshock by magnetospheric ions. We study how the different key-descriptors of turbulence like the slope of the power law of power spectral density and the kurtosis of the fluctuations of the heliospheric magnetic field vary over the solar cycle.

  16. The abundances of elements and isotopes in the solar wind

    SciTech Connect

    Gloeckler, G. ); Geiss, J. )

    1989-03-01

    Solar wind abundances have now been measured for eleven elements and the isotopes of the noble gases. The composition of all elements up to and including Ni, as well as most of their isotopes, should become known when new high-mass-resolution solar wind spectrometers are launched in the next decade. Aside from solar wind protons and alpha particles, which have been studied extensively since the 1960's, our information for heavier elements is limited. Nevertheless, two effects stand out. First is the enrichment of abundances of elements with low first ionizaiton potential (FIP), most likely the combined result of (a) an atom-ion separation process in the upper chromosphere, and (b) a marginal coupling of low-charge-state heavy ions to protons and alphas during the acceleration of the solar wind. Second, there is variability in the solar wind composition over a whole range of time scales. Recent measurements carried out in the Earth's magnetosheath during times that included high-speed coronal-hole-associated flows indicate a significantly lower overabundance of low FIP elements. Given the fact that the He/H ratio is remarkably constant in the coronal hole solar wind, this result suggests that both enrichment and variability are reduced in such flows. Studies by the ULYSSES spacecraft of the characteristics and composition of the least complicated solar wind, i.e., the flow emanating from the polar coronal holes, should significantly increase our understanding of coronal processes and solar wind acceleration. By combining these studies with measurements of the complete elemental and isotopic composition of the solar wind, we will be able to derive solar abundances for elements and isotopes that otherwise are poorly known.

  17. COMPOSITION OF THE SOLAR CORONA, SOLAR WIND, AND SOLAR ENERGETIC PARTICLES

    SciTech Connect

    Schmelz, J. T.; Reames, D. V.; Von Steiger, R.; Basu, S.

    2012-08-10

    Along with temperature and density, the elemental abundance is a basic parameter required by astronomers to understand and model any physical system. The abundances of the solar corona are known to differ from those of the solar photosphere via a mechanism related to the first ionization potential of the element, but the normalization of these values with respect to hydrogen is challenging. Here, we show that the values used by solar physicists for over a decade and currently referred to as the 'coronal abundances' do not agree with the data themselves. As a result, recent analysis and interpretation of solar data involving coronal abundances may need to be revised. We use observations from coronal spectroscopy, the solar wind, and solar energetic particles as well as the latest abundances of the solar photosphere to establish a new set of abundances that reflect our current understanding of the coronal plasma.

  18. RESIDUAL ENERGY SPECTRUM OF SOLAR WIND TURBULENCE

    SciTech Connect

    Chen, C. H. K.; Bale, S. D.; Salem, C. S.; Maruca, B. A.

    2013-06-20

    It has long been known that the energy in velocity and magnetic field fluctuations in the solar wind is not in equipartition. In this paper, we present an analysis of 5 yr of Wind data at 1 AU to investigate the reason for this. The residual energy (difference between energy in velocity and magnetic field fluctuations) was calculated using both the standard magnetohydrodynamic (MHD) normalization for the magnetic field and a kinetic version, which includes temperature anisotropies and drifts between particle species. It was found that with the kinetic normalization, the fluctuations are closer to equipartition, with a mean normalized residual energy of {sigma}{sub r} = -0.19 and mean Alfven ratio of r{sub A} = 0.71. The spectrum of residual energy, in the kinetic normalization, was found to be steeper than both the velocity and magnetic field spectra, consistent with some recent MHD turbulence predictions and numerical simulations, having a spectral index close to -1.9. The local properties of residual energy and cross helicity were also investigated, showing that globally balanced intervals with small residual energy contain local patches of larger imbalance and larger residual energy at all scales, as expected for nonlinear turbulent interactions.

  19. CONDITIONED ANALYSIS OF HIGH-LATITUDE SOLAR WIND INTERMITTENCY

    SciTech Connect

    D'Amicis, R.; Consolini, G.; Bavassano, B.; Bruno, R.

    2012-08-10

    The solar wind is a turbulent medium displaying intermittency. Its intermittent features have been widely documented and studied, showing how the intermittent character is different in fast and slow wind. In this paper, a statistical conditioned analysis of the solar wind intermittency for a period of high-latitude fast solar wind is presented. In particular, the intermittent features are investigated as a function of the Alfvenic degree of fluctuations at a given scale. The results show that the main contribution to solar wind intermittency is due to non-Alfvenic structures, while Alfvenic increments are found to be characterized by a smaller level of intermittency than the previous ones. Furthermore, the lifetime statistics of Alfvenic periods are discussed in terms of a multiscale texture of randomly oriented flux tubes.

  20. Solar wind ion distribution broadening by waves and transients

    NASA Astrophysics Data System (ADS)

    Stevens, M. L.; Kasper, J. C.; Case, A. W.; Szabo, A.; Koval, A.; Biesecker, D. A.

    2015-12-01

    Thermal plasma spectra in the solar wind are subject to peak-broadening by plasma waves and small-scale structures at effective frequencies faster than the measurement rate. Under strong turbulence conditions, the non-thermal contribution to proton peak broadening in many commonly-used solar wind measurements becomes comparable to that of the kinetic temperature. The DSCOVR spacecraft, which arrived at the first Earth-Sun Lagrange point in June 2015, bears the PLASMAG Faraday Cup Experiment. That instrument is identical in most respects to the Wind SWE Faraday Cup instrument that has been measuring 92-second proton spectra in the solar wind for the last twenty years. In this paper, the effective proton VDF peak width is compared at 92-second and 1-second resolution as a function of the ambient magnetic fluctuation amplitude on relevant timescales. This work will enable a more accurate understanding of the energy partition in the solar wind plasma.

  1. Analysis of Wind Forces on Roof-Top Solar Panel

    NASA Astrophysics Data System (ADS)

    Panta, Yogendra; Kudav, Ganesh

    2011-03-01

    Structural loads on solar panels include forces due to high wind, gravity, thermal expansion, and earthquakes. International Building Code (IBC) and the American Society of Civil Engineers are two commonly used approaches in solar industries to address wind loads. Minimum Design Loads for Buildings and Other Structures (ASCE 7-02) can be used to calculate wind uplift loads on roof-mounted solar panels. The present study is primarily focused on 2D and 3D modeling with steady, and turbulent flow over an inclined solar panel on the flat based roof to predict the wind forces for designing wind management system. For the numerical simulation, 3-D incompressible flow with the standard k- ɛ was adopted and commercial CFD software ANSYS FLUENT was used. Results were then validated with wind tunnel experiments with a good agreement. Solar panels with various aspect ratios for various high wind speeds and angle of attacks were modeled and simulated in order to predict the wind loads in various scenarios. The present study concluded to reduce the strong wind uplift by designing a guide plate or a deflector before the panel. Acknowledgments to Northern States Metal Inc., OH (GK & YP) and School of Graduate Studies of YSU for RP & URC 2009-2010 (YP).

  2. Wind and radiant solar energy for drying fruits and vegetables

    SciTech Connect

    Wagner, C.J. Jr.; Coleman, R.L.; Berry, R.E.

    1981-01-01

    The combination of wind with radiant solar energy for drying fruits and vegetables can help promote conservation of food and nonrenewable energy resources. Low-cost, small-scale solar dryers have been developed with the potential for developing larger dryers. These dryers depend on natural air convection to remove moisture. Designing the dryers to incorporate natural wind currents, providing forced air circulation, could increase drying rates. Preliminary studies to provide information for such designs included: (1) comparing drying tests with and without forced air circulation, (2) monitoring wind speeds on-site, and (3) testing wind collecting devices. Average wind speeds during solar periods were higher than air velocities from unassisted air convection in these small food dryers. Drying rates were increased by 6 to 11% when the natural convection dryer was provided with a small electric fan. Either of two wind collecting devices also could increase drying rates.

  3. Simulation of period doubling of recurrent solar wind structures

    NASA Technical Reports Server (NTRS)

    Whang, Y. C.; Burlaga, L. F.

    1990-01-01

    Based on satellite observations of a recurrent solar wind structure conducted in 1974, an MHD simulation model, and input functions generated from plasma and magnetic field data, the continuing evolution of the solar wind structure outside 5 AU is studied. The model uses the Rankine-Hugoniot relations to describe the jumps in flow properties across the shocks, and it treats shocks as surfaces of discontinuity with zero thickness. Two interaction processes (the collision and the merging of shocks) play important roles in restructuring the solar wind in the outer heliosphere. The simulation result shows that period doubling occurs between 5 and 10 AU. The recurrent solar wind appears to be a persistent new structure between 10 and 20 AU, and it consists of one merged interaction region per solar rotation.

  4. Evidence for solar wind control of Saturn radio emission

    NASA Technical Reports Server (NTRS)

    Desch, M. D.

    1982-01-01

    Using data collected by the Voyager 1 and 2 spacecraft in 1980 and 1981, strong evidence is presented for a direct correlation between variations in the solar wind at Saturn and the level of activity of Saturn's nonthermal radio emission. Correlation coefficients of 57 to 58% are reached at lag times of 0 to 1 days between the arrival at Saturn of high pressure solar wind streams and the onset of increased radio emission. The radio emission exhibits a long-term periodicity of 25 days, identical to the periodicity seen in the solar wind at this time and consistent with the solar rotation period. The energy coupling efficiency between the solar wind with the Saturn radio emission is estimated and compared with that for Earth.

  5. Validation of solar wind high-speed stream predictions

    NASA Astrophysics Data System (ADS)

    Reiss, Martin; Temmer, Manuela; Veronig, Astrid; Nikolic, Ljubomir; Schöngassner, Florian; Vennerstrøm, Susanne

    2016-04-01

    Solar wind high-speed streams emanating from coronal holes are frequently impinging on the Earth's magnetosphere causing recurrent, medium-level geomagnetic storm activity. As major contributors to space weather disturbances at times of low solar activity, prediction models of solar wind high-speed streams are becoming highly desirable. We present a verification analysis of two operational solar wind prediction models (empirical model, Wang-Sheeley-Arge like model) by comparing the model runs for the period 2011 to 2014 with in-situ plasma measurements from the ACE spacecraft located at 1 AU. We find that both prediction models achieve a similar accuracy but demonstrate the tendency to under-predict and over-predict events of solar wind high-speed streams, respectively. General advantages and disadvantages of both models are diagnosed and outlined.

  6. Suprathermal Tails in Solar Wind Oxygen and Iron

    NASA Astrophysics Data System (ADS)

    Popecki, M.; Galvin, A. B.; Kistler, L. M.; Klecker, B.; Bochsler, P.; Kucharek, H.; Blush, L.; Wimmer-Schweingruber, R. F.; Moebius, E.

    2008-05-01

    High speed suprathermal tails with a fixed energy spectrum have been observed in solar wind H and He2+, as well as in He+ pickup ions (e.g. Gloeckler et al., 2007). These tails appear to have a persistent and constant power law energy spectrum, unchanged in a variety of solar conditions. The presence of the tails have implications for particle injection into the interplanetary shock acceleration process. The suprathermal tails of ions heavier than H and He may be investigated with the STEREO/PLASTIC mass spectrometer, for speeds up to several times the solar wind speed. The energy spectra of solar wind O and Fe are presented for periods of slow and fast solar wind. Variations in energy spectra will be discussed.

  7. Comparison of Coronal Streamer Properties to Solar Wind Models For The Last Two Solar Cycle Minima

    NASA Astrophysics Data System (ADS)

    Miralles, Mari Paz; Landi, E.; Cranmer, S. R.; Raymond, J. C.; Cohen, O.; Oran, R.

    2013-07-01

    We characterize the physical properties of two coronal streamers during Earth/Ulysses quadrature configurations for the previous two solar minimum periods. Comparisons between coronal remote-sensing observations and in situ measurements of solar wind plasma properties are being used to characterize the origin of slow wind streams. In order to investigate slow solar wind heating and acceleration, we compare the measurements with predictions from MHD models. We aim to use the empirical measurements to distinguish between different proposed physical processes for the slow solar wind. This work is supported by NASA grant NNX10AQ58G to the Smithsonian Astrophysical Observatory.

  8. Little or no solar wind enters Venus' atmosphere at solar minimum.

    PubMed

    Zhang, T L; Delva, M; Baumjohann, W; Auster, H-U; Carr, C; Russell, C T; Barabash, S; Balikhin, M; Kudela, K; Berghofer, G; Biernat, H K; Lammer, H; Lichtenegger, H; Magnes, W; Nakamura, R; Schwingenschuh, K; Volwerk, M; Vörös, Z; Zambelli, W; Fornacon, K-H; Glassmeier, K-H; Richter, I; Balogh, A; Schwarzl, H; Pope, S A; Shi, J K; Wang, C; Motschmann, U; Lebreton, J-P

    2007-11-29

    Venus has no significant internal magnetic field, which allows the solar wind to interact directly with its atmosphere. A field is induced in this interaction, which partially shields the atmosphere, but we have no knowledge of how effective that shield is at solar minimum. (Our current knowledge of the solar wind interaction with Venus is derived from measurements at solar maximum.) The bow shock is close to the planet, meaning that it is possible that some solar wind could be absorbed by the atmosphere and contribute to the evolution of the atmosphere. Here we report magnetic field measurements from the Venus Express spacecraft in the plasma environment surrounding Venus. The bow shock under low solar activity conditions seems to be in the position that would be expected from a complete deflection by a magnetized ionosphere. Therefore little solar wind enters the Venus ionosphere even at solar minimum. PMID:18046399

  9. Effects of Solar Magnetic Activity on the Charge States of Minor Ions of Solar Wind

    NASA Astrophysics Data System (ADS)

    Wang, Xuyu

    We present an investigation of the effects of solar magnetic activity on the charge states of minor ions (Fe, Si, Mg, Ne, O, C) in the solar wind using ACE solar wind data, the Current Sheet Source Surface (CSSS) model of the corona and SoHO/MDI data during the 23rd solar cycle. We found that the mean charge states indicate a clear trend to increase with the solar activity when the solar wind speed is above 550 km/s. Below this speed, no significant solar activity dependence is found. When displayed as a function of solar wind speed, iron is different from other elements in that it displays lower charge states in slow wind than in fast wind. The percentages of the high charge states for species with higher m/q (Fe) increase with the solar wind speed, while for the species with lower m/q (Si,Mg, O, C), the percentages of the high charge states decrease with the solar wind speed.

  10. Iron charge states in the solar wind as measured by SMS on Wind

    NASA Technical Reports Server (NTRS)

    Galvin, A. B.; Cohen, C. M. S.; Ipavich, F. M.; Gloeckler, G.; Hamilton, D. C.; Chotoo, K.; Balsiger, H.; Sheldon, R.

    1995-01-01

    The Wind spacecraft was launched in November 1994. In the first half of 1995 it was in the interplanetary medium upstream of the Earth. The Solar Wind and Suprathermal Ion Composition Experiment (SMS) on Wind consists of three sensors, the Solar Wind Ion Composition Spectrometer (SWICS), the Suprathermal Ion Composition Spectrometer (STICS), and the high mass resolution spectrometer (MASS). All three instruments utilize electrostatic deflection combined with time-of-flight measurement. The data from these three sensors allows the determination of the ionic composition of the solar wind in a variety of solar wind conditions over a large energy/charge range (0.5 to 230 keV/e). We have examined the Wind database for time periods conducive to observing solar wind iron. With the high mass resolution of the MASS spectrometer (M/Delta-M greater than 100) iron is easily identified while the electrostatic deflection provides information concerning the mass/charge distribution. We present here the relative abundance of iron charge states in the solar wind near 1 AU.

  11. Solar wind control of Jupiter's hectometric radio emission

    NASA Technical Reports Server (NTRS)

    Barrow, C. H.; Desch, M. D.

    1989-01-01

    Radio, plasma, and magnetic field data obtained by Voyager 1 and Voyager 2 were used to examine the manner in which the Jovian hectometric radio emission (HOM) is controlled by the solar wind. Using the method of superposed epochs, it was found that the higher energy HOM is correlated with the IMF as well as with the solar wind density and pressure. However, unlike the Io-independent decametric radio emission (Non-Io DAM), the HOM displayed no correlation with the solar wind velocity, although this radio component appear to be also influenced by the IMF. The results suggest separate HOM amd Non-Io DAM sources.

  12. MEASUREMENTS OF RAPID DENSITY FLUCTUATIONS IN THE SOLAR WIND

    SciTech Connect

    Malaspina, D. M.; Ergun, R. E.; Kellogg, P. J.; Bale, S. D.

    2010-03-01

    The power spectrum of density fluctuations in the solar wind is inferred by tracking small timescale changes in the electron plasma frequency during periods of strong Langmuir wave activity. STEREO electric field waveform data are used to produce time profiles of plasma density from which the density power spectrum is derived. The power spectra obtained by this method extend the observed frequency range by an order of magnitude while remaining consistent with previous results near a few Hertz. Density power spectral indices are found to be organized by the angle between the local magnetic field and the solar wind direction, indicating significant anisotropy in solar wind high-frequency density turbulence.

  13. Measurements of lunar magnetic field interaction with the solar wind.

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Snyder, C. W.; Clay, D. R.

    1972-01-01

    Study of the compression of the remanent lunar magnetic field by the solar wind, based on measurements of remanent magnetic fields at four Apollo landing sites and of the solar wind at two of these sites. Available data show that the remanent magnetic field at the lunar surface is compressed as much as 40% above its initial value by the solar wind, but the total remanent magnetic pressure is less than the stagnation pressure by a factor of six, implying that a local shock is not formed.

  14. Coupling of the solar wind to measures of magnetic activity

    NASA Technical Reports Server (NTRS)

    Mcpherron, R. L.; Fay, R. A.; Garrity, C. R.; Bargatze, L. F.; Clauer, C. R.; Searls, C.; Baker, D. N.

    1984-01-01

    Linear prediction filtering was used to generate empirical response functions relating the solar wind electric field to the magnetic indices, AL, AU, Dst and ASYM. The empirical response functions were convolved with solar wind observations obtained during the International Magnetospheric Study to predict the indices. The predictions are compared with the observed indices during two, 3-day intervals. Differences between the observed and predicted indices are discussed in terms of the linear assumption and in terms of physical processes other than direct solar wind-magnetosphere interaction.

  15. The solar wind interaction with unmagnetized planets - A tutorial

    NASA Technical Reports Server (NTRS)

    Luhmann, J. G.

    1990-01-01

    The interaction of the solar wind with the Venus ionosphere induces currents which can substantially exclude the solar wind and IMF from the dayside ionosphere beneath the 'ionopause', where ionosphere thermal pressure equals incident solar wind dynamic pressure. The field then diffuses through the ionopause with increasing speed at decreasing altitudes, and is weakest in the subpolar region. Once within the ionopause, the magnetic field is redistributed by ionospheric convection, and then decays at low altitudes via collisional dissipation of the associated currents. The maximum ionospheric field magnitudes observed, of about 150 nT, furnish magnetic pressures exceeding the ionospheric thermal pressure by a factor of about 3.

  16. The Energy Spectra of Suprathermal Tails in Solar Wind Iron

    NASA Astrophysics Data System (ADS)

    Popecki, M. A.; Galvin, A.; Bochsler, P.; Klecker, B.; Kucharek, H.; Kistler, L.; Blush, L.; Moebius, E.

    2009-05-01

    High speed suprathermal tails with a fixed energy spectrum have been observed in solar wind H+ and He2+, as well as in He+ pickup ions (e.g. Gloeckler et al., 2007). The presence of the tails have implications for particle injection into the interplanetary shock acceleration process. The suprathermal tails of solar wind Fe have been investigated with the STEREO/PLASTIC mass spectrometer. The energy spectra will be presented for periods of slow and fast solar wind, and for the entire STEREO mission.

  17. Wind loading on solar concentrators: some general considerations

    SciTech Connect

    Roschke, E. J.

    1984-05-01

    A survey has been completed to examine the problems and complications arising from wind loading on solar concentrators. Wind loading is site specific and has an important bearing on the design, cost, performance, operation and maintenance, safety, survival, and replacement of solar collecting systems. Emphasis herein is on paraboloidal, two-axis tracking systems. Thermal receiver problems also are discussed. Wind characteristics are discussed from a general point of view; current methods for determining design wind speed are reviewed. Aerodynamic coefficients are defined and illustrative examples are presented. Wind tunnel testing is discussed, and environmental wind tunnels are reviewed; recent results on heliostat arrays are reviewed as well. Aeroelasticity in relation to structural design is discussed briefly. Wind loads, i.e., forces and moments, are proportional to the square of the mean wind velocity. Forces are proportional to the square of concentrator diameter, and moments are proportional to the cube of diameter. Thus, wind loads have an important bearing on size selection from both cost and performance standpoints. It is concluded that sufficient information exists so that reasonably accurate predictions of wind loading are possible for a given paraboloidal concentrator configuration, provided that reliable and relevant wind conditions are specified. Such predictions will be useful to the design engineer and to the systems engineer as well. Information is lacking, however, on wind effects in field arrays of paraboloidal concentrators. Wind tunnel tests have been performed on model heliostat arrays, but there are important aerodynamic differences between heliostats and paraboloidal dishes.

  18. Genesis: Sorting Out the Pieces

    NASA Technical Reports Server (NTRS)

    McNamara, K. M.; Westphal, Andrew; Butterworth, A. L.; Burnett, D. S.

    2005-01-01

    The Genesis mission returned to Earth on September 8, 2004, experiencing a non-nominal reentry. The parachutes which were supposed to slow and stabilize the capsule throughout the return failed to deploy, causing the capsule to impact the desert floor at a speed of nearly 200 MPH. The result is that instead of receiving 301 intact solar wind collectors, mission personnel recovered and documented more than 10,000 collector fragments. Most of the fragments were pieces of the collector arrays but were not recovered on their original array locations. These were classified by size (longest dimension), identity (sometimes a guess) and found location (when known). The work took more than one month in Utah, and details are discussed elsewhere[1] The samples were transferred to their permanent home at the Johnson Space Center on October 4, 2004.

  19. Chandrayaan-1 observations of backscattered solar wind protons from the lunar regolith: Dependence on the solar wind speed

    NASA Astrophysics Data System (ADS)

    Lue, Charles; Futaana, Yoshifumi; Barabash, Stas; Wieser, Martin; Bhardwaj, Anil; Wurz, Peter

    2014-05-01

    We study the backscattering of solar wind protons from the lunar regolith using the Solar Wind Monitor of the Sub-keV Atom Reflecting Analyzer on Chandrayaan-1. Our study focuses on the component of the backscattered particles that leaves the regolith with a positive charge. We find that the fraction of the incident solar wind protons that backscatter as protons, i.e., the proton-backscattering efficiency, has an exponential dependence on the solar wind speed that varies from ~0.01% to ~1% for solar wind speeds of 250 km/s to 550 km/s. We also study the speed distribution of the backscattered protons in the fast (~550 km/s) solar wind case and find both a peak speed at ~80% of the solar wind speed and a spread of ~85 km/s. The observed flux variations and speed distribution of the backscattered protons can be explained by a speed-dependent charge state of the backscattered particles.

  20. Initial Subdivision of Genesis Early Science Polished Aluminum Collector

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Stansbery, E. K.; McNamara, K. M.; Meshik, A.; See, T. H.; Bastien, R.

    2005-01-01

    A large surface, about 245 square centimeters, of highly polished aluminum 6061 T6 alloy was attached to the science canister thermal panel for the purpose of collecting solar wind noble gases. The analysis of this collector will be part of the Genesis Early Science results. The pre-launch configuration of the collector is shown. The collector sustained some damage during the recovery impact in Utah, September 8, 2004.

  1. Sources of the solar wind - the heliospheric point of view

    NASA Astrophysics Data System (ADS)

    Von Steiger, Rudolf; Shearer, Paul; Zurbuchen, Thomas

    The solar wind as observed in the heliosphere has several properties that can be interpreted as signatures of conditions and processes at its source in the solar atmosphere. Traditionally it has been customary to distinguish between solar wind types solely based on its speed, "fast" and "slow" wind. Over the last couple of decades new instruments resolving not only the main constituents (protons and alpha particles) but also heavy ions from C to Fe have added new observables, in particular the charge state and elemental composition of these ions. The charge states are indicators of the coronal temperature at the source region; they have confirmed that the "fast" wind emanates from the relatively cool coronal hole regions, while the "slow" wind originates from hotter sources such as the streamer belt and active regions. Thus they are more reliable indicators of solar wind source than the speed alone could be because they readily discriminate between "fast" wind from coronal holes and fast coronal mass ejections (CMEs). The elemental composition in the solar wind compared to the abundances in the photosphere shows a typical fractionation that depends on the first ionization potential (FIP) of the elements. Since that fractionation occurs beneath the corona, in the chromosphere, its strength is indicative of the conditions in that layer. While the "fast" wind is very similar to photospheric composition, the fractionation of the "slow" wind and of CMEs is higher and strongly variable. We will review the observations of the SWICS composition instruments on both the ACE and the Ulysses missions, which have made composition observations between 1 and 5 AU and at all latitudes in the heliosphere over the last two decades. Specifically, analysis of the "slow" wind observations at all time scales, from hours to complete solar cycles, will be used to better characterize its source regions.

  2. Stationarity of magnetohydrodynamic fluctuations in the solar wind

    NASA Technical Reports Server (NTRS)

    Matthaeus, W. H.; Goldstein, M. L.

    1982-01-01

    Solar wind research and studies of charged particle propagation often assume that the interplanetary magnetic field represents a stationary random process. The extent to which ensemble averages of the solar wind magnetic fields follow the asymptotic behavior predicted by the ergodic theorem was investigated. Several time periods, including a span of nearly two years, are analyzed. Data intervals which span many solar rotations satisfy the conditions of weak stationarity if the effects of solar rotation are included in the asymptotic analysis. Shorter intervals which include a small integral number of interplanetary sectors also satisfy weak stationarity. The results are illustrated using magnetometer data from the ISEE-3, Voyager and IMP spacecraft.

  3. Erosion of carbon/carbon by solar wind charged particle radiation during a solar probe mission

    NASA Technical Reports Server (NTRS)

    Sokolowski, Witold; O'Donnell, Tim; Millard, Jerry

    1991-01-01

    The possible erosion of a carbon/carbon thermal shield by solar wind-charged particle radiation is reviewed. The present knowledge of erosion data for carbon and/or graphite is surveyed, and an explanation of erosion mechanisms under different charged particle environments is discussed. The highest erosion is expected at four solar radii. Erosion rates are analytically estimated under several conservative assumptions for a normal quiet and worst case solar wind storm conditions. Mass loss analyses and comparison studies surprisingly indicate that the predicted erosion rate by solar wind could be greater than by nominal free sublimation during solar wind storm conditions at four solar radii. The predicted overall mass loss of a carbon/carbon shield material during the critical four solar radii flyby can still meet the mass loss mission requirement of less than 0.0025 g/sec.

  4. Using Solar Wind Composition As A Tracer For Solar Processes: Applications For Plastic On Stereo

    NASA Astrophysics Data System (ADS)

    Wimmer-Schweingruber, Robert F.; Allegrini, Frédéric; Blush, Lisa; Bochsler, Peter; Fischer, Josef; Wurz, Peter; Galvin, A. B.; Moebius, E.; Klecker, B.; Thompson, B.; Plastic Team

    Solar wind composition is increasingly being used as a tracer for various processes in the solar atmosphere and in interplanetary space. We will discuss applications of solar wind composition measurements that are relevant for the STEREO mission and that will be supplied by the PLASTIC sensor. Solar wind elemental abundances are affected by processes acting in the solar interior, chromosphere, and in the corona, while charge-state composition is largely determined in the corona. Farther out in the inner heliosphere, composition measurements can give information about interplanetary processes and serves as an excellent tracer for the coronal and chromospheric origin of the measured solar wind. Coronal mass ejections often exhibit unusual charge-state and elemental composition that is indicative of unusual conditions in the solar atmosphere prior and during the launch of the ejection. We will discuss observational opportunities unique to collaborative studies with vari- ous instruments on STEREO.

  5. He abundance variations in the solar wind: Observations from Ulysses

    SciTech Connect

    Barraclough, B.L.; Gosling, J.T.; Phillips, J.L.; McComas, D.J.; Feldman, W.C.; Goldstein, B.E.

    1995-09-01

    The Ulysses mission is providing the first opportunity to observe variations in solar wind plasma parameters at heliographic latitudes far removed from the ecliptic plane. We present an overview of the solar wind speed and the variability in helium abundance, [He] data on [He] in six high latitude coronal mass ejections (CMEs), and a superposed epoch analysis of [He] variations at the seven heliospheric current sheet (HCS) crossings made during the rapid-latitude-scan portion of the mission. The differences in the variability of the solar wind speed and [He] in high latitude and equatorial regions are quite striking. Solar wind speed is generally low but highly variable near the solar equator, while at higher latitudes the average speed is quite high with little variability. [He] can vary over nearly two decades at low solar latitudes, while at high latitudes it varies only slightly. In contrast to the high [He] that is commonly associated with CMEs observed in the ecliptic, none of the six high-speed CMEs encountered at high southern heliographic latitudes showed any significant variation in helium content. A superposed epoch analysis of the [He] during all seven HCS crossings made as Ulysses passed from the southern to northern solar hemisphere shows the expected [He] minimum near the crossing and a broad region of low [He] around the crossing time. We discuss how our solar wind [He] observations may provide an accurate measure of the helium composition for the entire convective zone of the Sun.

  6. Transient flows of the solar wind associated with small-scale solar activity in solar minimum

    NASA Astrophysics Data System (ADS)

    Slemzin, Vladimir; Veselovsky, Igor; Kuzin, Sergey; Gburek, Szymon; Ulyanov, Artyom; Kirichenko, Alexey; Shugay, Yulia; Goryaev, Farid

    The data obtained by the modern high sensitive EUV-XUV telescopes and photometers such as CORONAS-Photon/TESIS and SPHINX, STEREO/EUVI, PROBA2/SWAP, SDO/AIA provide good possibilities for studying small-scale solar activity (SSA), which is supposed to play an important role in heating of the corona and producing transient flows of the solar wind. During the recent unusually weak solar minimum, a large number of SSA events, such as week solar flares, small CMEs and CME-like flows were observed and recorded in the databases of flares (STEREO, SWAP, SPHINX) and CMEs (LASCO, CACTUS). On the other hand, the solar wind data obtained in this period by ACE, Wind, STEREO contain signatures of transient ICME-like structures which have shorter duration (<10h), weaker magnetic field strength (<10 nT) and lower proton temperature than usual ICMEs. To verify the assumption that ICME-like transients may be associated with the SSA events we investigated the number of weak flares of C-class and lower detected by SPHINX in 2009 and STEREO/EUVI in 2010. The flares were classified on temperature and emission measure using the diagnostic means of SPHINX and Hinode/EIS and were confronted with the parameters of the solar wind (velocity, density, ion composition and temperature, magnetic field, pitch angle distribution of the suprathermal electrons). The outflows of plasma associated with the flares were identified by their coronal signatures - CMEs (only in few cases) and dimmings. It was found that the mean parameters of the solar wind projected to the source surface for the times of the studied flares were typical for the ICME-like transients. The results support the suggestion that weak flares can be indicators of sources of transient plasma flows contributing to the slow solar wind at solar minimum, although these flows may be too weak to be considered as separate CMEs and ICMEs. The research leading to these results has received funding from the European Union’s Seventh Programme

  7. Solar wind flow upstream of the coronal slow shock

    NASA Technical Reports Server (NTRS)

    Whang, Y. C.

    1986-01-01

    Slow shocks have been predicted to exist embedded in large coronal holes at low altitude. Two or more curved slow shocks may link together to form a composite discontinuity surface around the sun which may be called the coronal slow shock (CSS). Here a solar-wind model is studied under the assumption that a standing CSS exists and cororates with the sun at a constant angular velocity. A steady, axisymmetrical one-fluid model is introduced to study the expansion of solar wind in the open-field region upstream of the CSS. The model requires that the conditions downstream of the CSS near the equatorial plane can produce a solar wind agreeable with the observations made near the earth's orbit. The paper presents an illustrative calculation in which the polar caps within 60 deg of the polar angle are assumed to be the source region of the solar wind.

  8. Saturn radio emission and the solar wind - Voyager-2 studies

    SciTech Connect

    Desch, M.D.; Rucker, H.O.

    1985-01-01

    Voyager 2 data from the Plasma Science experiment, the Magnetometer experiment and the Planetary Radio Astronomy experiment were used to analyze the relationship between parameters of the solar wind/interplanetary medium and the nonthermal Saturn radiation. Solar wind and interplanetary magnetic field properties were combined to form quantities known to be important in controlling terrestrial magnetospheric processes. The Voyager 2 data set used in this investigation consists of 237 days of Saturn preencounter measurements. However, due to the immersion of Saturn and the Voyager 2 spacecraft into the extended Jupiter magnetic tail, substantial periods of the time series were lacking solar wind data. To cope with this problem a superposed epoch method (CHREE analysis) was used. The results indicate the superiority of the quantities containing the solar wind density in stimulating the radio emission of Saturn - a result found earlier using Voyager 1 data - and the minor importance of quantities incorporating the interplanetary magnetic field. 10 references.

  9. Solar wind alpha particle capture at Mars and Venus

    NASA Astrophysics Data System (ADS)

    Stenberg, Gabriella; Barabash, Stas; Nilsson, Hans; Fedorov, Andrei; Brain, Dave

    2010-05-01

    Helium is detected in the atmospheres of both Mars and Venus. It is believed that radioactive decay of uranium and thorium in the interior of the planets' is not sufficient to account for the abundance of helium observed. Alpha particles in the solar wind are suggested to be an additional source of helium, especially at Mars. Recent hybrid simulations show that as much as 30% of the alpha particles can be lost from the solar wind due to charge-exchange processes associated with the Mars/solar wind interaction. We use ion data from the ASPERA-3 and ASPERA-4 instruments on Mars and Venus Express to estimate how efficient solar wind alpha particles are captured in the atmospheres of the two planets.

  10. Magnetic fields of Mars and Venus - Solar wind interactions

    NASA Technical Reports Server (NTRS)

    Ness, N. F.

    1974-01-01

    Recent USSR studies of the magnetic field and solar wind flow in the vicinity of Mars and Venus confirm earlier U.S. reports of a bow shock wave developed as the solar wind interacts with these planets. Mars 2 and 3 magnetometer experiments report the existence of an intrinsic planetary magnetic field, sufficiently strong to form a magnetopause, deflecting the solar wind around the planet and its ionosphere. This is in contrast to the case for Venus, where it is assumed to be the ionosphere and processes therein which are responsible for the solar wind deflection. An empirical relationship appears to exist between planetary dipole magnetic moments and their angular momentum for the Moon, Mars, Venus, Earth, and Jupiter. Implications for the magnetic fields of Mercury and Saturn are discussed.

  11. Formation of a steady supersonic solar wind flow.

    NASA Astrophysics Data System (ADS)

    Lotova, N. A.; Subaev, I. A.; Korelov, O. A.

    2014-10-01

    A consistent study of the solar wind has been extended to a wide region of interplanetary space, up to distances from the Sun R ≥ 90 R s. Experiments are carried out with the radio telescopes of the Pushchino Radio Astronomy Observatory (Astrospace Center, Lebedev physical Institute, Russian Academy of Sciences): DKR-1000 (λ ≃ 2.7-2.9 m) and RT-22 (λ ≃ 1.35 cm), respectively. The radio-wave scattering characteristics, the scattering angle θ(R) and the scintillation index m(R), are studied. The formation of a steady supersonic solar wind is associated with a sequence of four stages whose scale in different solar wind streams changes within the range 10-23 R s , depending on the initial stream speed. These circumstances should be taken into account when predicting the state of the near space using data on the solar wind in regions of the interplanetary medium close to the Sun.

  12. Electrodynamics of solar wind-magnetosphere-ionosphere interactions

    NASA Technical Reports Server (NTRS)

    Kan, Joseph R.; Akasofu, Syun-Ichi

    1989-01-01

    The paper presents a coherent picture of fundamental physical processes in three basic elements of the solar-wind/magnetosphere/ionosphere coupling system: (1) the field-aligned potential structure which leads to the formation of auroral arcs, (2) the magnetosphere-ionosphere coupling which leads to the onset of magnetospheric substorms, and (3) the solar-wind/magnetosphere dynamo which supplies the power driving various magnetospheric processes. Process (1) is forced into existence by the loss-cone constriction effect when the upward field-aligned current density exceeds the loss-cone thermal flux limit. Substorm onset occurs when the ionosphere responds fully to the enhanced magnetospheric convection driven by the solar wind. Energy is transferred from the solar wind to the magnetosphere by a dynamo process, primarily on open field lines.

  13. Solar wind stream structure at large heliocentric distances Pioneer observations

    NASA Technical Reports Server (NTRS)

    Gazis, P. R.

    1987-01-01

    Time profiles and histograms of plasma data from Pioneers 10 and 11 are examined for the period between 1975 and 1983. During this time, Pioneer 10 traveled between a heliocentric distance of 8.7 and 30.4 AU. The velocity structure of the solar wind at these heliocentric distances is found to have one of two distinct forms: approximately 70 percent of the time the solar wind has a nearly flat velocity profile. Occasionally, this flat velocity profile is accompanied by quasi-periodic variations in density and in thermal speed consistent with the concept that the 'corotating interaction regions' which are produced by the interaction of high- and low-speed streams at intermediate heliocentric distances are replaced by 'pressure regions' in the outer heliosphere. The remaining 30 percent of the time the solar wind is marked by large (50-200 km/s) long-term (30-120 days) shifts in the average solar wind velocity.

  14. Charge exchange in solar wind-cometary interactions

    NASA Technical Reports Server (NTRS)

    Gombosi, T. I.; Horanyi, M.; Kecskemety, K.; Cravens, T. E.; Nagy, A. F.

    1983-01-01

    A simple model of a cometary spherically symmetrical atmosphere and ionosphere is considered. An analytic solution of the governing equations describing the radial distribution of the neutral and ion densities is found. The new solution is compared to the well-known solution of the equations containing only ionization terms. Neglecting recombination causes a significant overestimate of the ion density in the vicinity of the comet. An axisymmetric model of the solar wind-cometary interaction is considered, taking into account the loss of solar wind ions due to charge exchange. The calculations predict that for active comets, solar wind absorption due to charge exchange becomes important at a few thousand kilometers from the nucleus, and a surface separating the shocked solar wind from the cometary ionosphere develops in this region. These calculations are in reasonable agreement with the few observations available for the ionopause location at comets.

  15. Western Wind and Solar Integration Study: Phase 2 (Presentation)

    SciTech Connect

    Lew, D.; Brinkman, G.; Ibanez, E.; Lefton, S.; Kumar, N.; Venkataraman, S.; Jordan, G.

    2013-09-01

    This presentation summarizes the scope and results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

  16. Saturn radio emission and the solar wind - Voyager-2 studies

    NASA Technical Reports Server (NTRS)

    Desch, M. D.; Rucker, H. O.

    1985-01-01

    Voyager 2 data from the Plasma Science experiment, the Magnetometer experiment and the Planetary Radio Astronomy experiment were used to analyze the relationship between parameters of the solar wind/interplanetary medium and the nonthermal Saturn radiation. Solar wind and interplanetary magnetic field properties were combined to form quantities known to be important in controlling terrestrial magnetospheric processes. The Voyager 2 data set used in this investigation consists of 237 days of Saturn preencounter measurements. However, due to the immersion of Saturn and the Voyager 2 spacecraft into the extended Jupiter magnetic tail, substantial periods of the time series were lacking solar wind data. To cope with this problem a superposed epoch method (CHREE analysis) was used. The results indicate the superiority of the quantities containing the solar wind density in stimulating the radio emission of Saturn - a result found earlier using Voyager 1 data - and the minor importance of quantities incorporating the interplanetary magnetic field.

  17. Western Wind and Solar Integration Study Phase 2 (Fact Sheet)

    SciTech Connect

    Not Available

    2013-09-01

    This is one-page, two-sided fact sheet presents high-level summary results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

  18. A parametric study of the solar wind interaction with comets

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Le, G.; Luhmann, J. G.; Fedder, J. A.

    1991-01-01

    The Naval Research Laboratory's magnetohydrodynamic simulation code is used to simulate the solar wind interction with comet Halley for two different outgassing rates and several different solar wind states. The magnetic field is more strongly draped for fast solar wind conditions than slow. For higher mass loading rates, the tail becomes wider and contains more magnetic flux. The visual appearance of the comet differs for the case in which the interplanetary magnetic field lies in the plane of the sky from the case when it lies along the line of sight. The ion tail appears shorter in the latter case. Thus variation in the IMF direction can cause significant changes in the appearance of comets. The comet also creates a large momentum flux deficit in the solar wind with a narrow enhanced region within it corresponding to the ion tail.

  19. The visual appearance of comets under varying solar wind conditions

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Guan, L.; Luhmann, J. G.; Fedder, J. A.

    1989-01-01

    Three-dimensional MHD simulations have been performed for four different sets of solar wind conditions and cometary outgassing rates appropriate to the Halley encounters. Even though the simulations are single fluid calculations, it is possible to separate the solar wind and cometary ions using the divergenceless nature of the solar wind ions. The cometary ion density is then integrated along the line-of-sight from the observer through the comet to determine how the comet would look to a distant observer under these different conditions. In general, comet tails appear longer when the interplanetary magnetic field lies in the plane of the sky rather than along the line-of-sight. Also, the tail shrinks as the speed of the solar wind increases and/or the mass loading rate decreases.

  20. Electron energetics in the expanding solar wind via Helios observations

    NASA Astrophysics Data System (ADS)

    Å tverák, Å. těpán.; Trávníček, Pavel M.; Hellinger, Petr

    2015-10-01

    We present an observational analysis of electron cooling/heating rates in the fast and slow solar wind between 0.3 and 1 AU. We fit electron velocity distribution functions acquired in situ by Helios 1 and 2 spacecraft by a three-component (core-halo-strahl) analytical model. The resulting radial profiles of macroscopic characteristics (density, temperatures, and heat fluxes) are employed to examine properties of theoretical energy balance equations and to estimate external cooling/heating terms. Our analysis indicates that in contrast to solar wind protons the electrons do not require important heating mechanisms to explain the observed temperature gradients. The electron heating rates are actually found to be negative for both the slow and fast solar wind, namely, due to the significant degradation of the electron heat flux with increasing radial distance from the Sun. Cooling mechanisms acting on electrons are found to be significantly stronger in the slow wind than in the fast wind streams.

  1. A view of solar magnetic fields, the solar corona, and the solar wind in three dimensions

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.; Wilcox, J. M.

    1978-01-01

    In the last few years it has been recognized that the solar corona and the solar wind are three-dimensional. The deviations from spherical or even cylindrical symmetry are first-order effects, which are important for a basic description and physical understanding of the coronal expansion. Models of coronal magnetic fields are considered along with the characteristics of large-scale solar structure, the interplanetary magnetic field, coronal holes, geomagnetic activity, cosmic rays, and polar fields of the sun. It is pointed out that the present understanding of coronal and interplanetary morphology is based on data acquired during the descending part and the minimum of the considered sunspot cycle.

  2. Interplanetary stream magnetism: Kinematic effects. [solar magnetic fields and wind

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Barouch, E.

    1974-01-01

    The particle density, and the magnetic field intensity and direction are calculated in corotating streams of the solar wind, assuming that the solar wind velocity is constant and radial and that its azimuthal variations are not two rapid. The effects of the radial velocity profile in corotating streams on the magnetic fields were examined using kinematic approximation and a variety of field configurations on the inner boundary. Kinematic and dynamic effects are discussed.

  3. Calculation of solar wind flows about terrestrial planets

    NASA Technical Reports Server (NTRS)

    Stahara, S. S.; Spreiter, J. R.

    1982-01-01

    A computational model was developed for the determination of the plasma and magnetic field properties of the global interaction of the solar wind with terrestrial planetary magneto/ionospheres. The theoretical method is based on an established single fluid, steady, dissipationless, magnetohydrodynamic continuum model, and is appropriate for the calculation of supersonic, super Alfvenic solar wind flow past terrestrial planets. A summary is provided of the important research results.

  4. On Electron-scale Whistler Turbulence in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Narita, Y.; Nakamura, R.; Baumjohann, W.; Glassmeier, K.-H.; Motschmann, U.; Giles, B.; Magnes, W.; Fischer, D.; Torbert, R. B.; Russell, C. T.; Strangeway, R. J.; Burch, J. L.; Nariyuki, Y.; Saito, S.; Gary, S. P.

    2016-08-01

    For the first time, the dispersion relation for turbulence magnetic field fluctuations in the solar wind is determined directly on small scales of the order of the electron inertial length, using four-point magnetometer observations from the Magnetospheric Multiscale mission. The data are analyzed using the high-resolution adaptive wave telescope technique. Small-scale solar wind turbulence is primarily composed of highly obliquely propagating waves, with dispersion consistent with that of the whistler mode.

  5. Solar Wind Charge State Composition Results from PLASTIC

    NASA Astrophysics Data System (ADS)

    Popecki, M.; Galvin, A. B.; Kistler, L. M.; Moebius, E.; Klecker, B.; Kucharek, H.; Simunac, K.; Bochsler, P.; Blush, L.; Karrer, R.; Daoudi, H.; Opitz, A.; Giammanco, C.; Wimmer-Schweingruber, R.

    2007-12-01

    The PLASTIC instrument on the STEREO spacecraft provides solar wind proton moments and heavy ion composition. Using an electrostatic analyzer with a time of flight and residual energy measurement, it can supply mass and ionic charge state for solar wind heavy ions. Preliminary results for iron will be shown for selected events, including the possible flux rope passage on May 21-22, 2007, and a near-magnetotail passage in February, 2007.

  6. STEREO Observations of Solar Wind in 2007-2014

    NASA Astrophysics Data System (ADS)

    Jian, Lan; Luhmann, Janet; Russell, Christopher; Blanco-Cano, Xochitl; Kilpua, Emilia; Li, Yan

    2016-04-01

    Since the launch of twin STEREO spacecraft, we have been monitoring the solar wind and providing the Level 3 event lists of large-scale solar wind and particle events to public (http://www-ssc.igpp.ucla.edu/forms/stereo/stereo_level_3.html). The interplanetary coronal mass ejections (ICMEs), stream interaction regions (SIRs), interplanetary shocks, and solar energetic particles (based on high energy telescope data) have been surveyed for 2007-2014 before STEREO A went to the superior solar conjunction and STEREO B was lost in contact. In conjunction with our previous observations of same solar wind structures in 1995-2009 using Wind/ACE data and the same identification criteria, we study the solar cycle variations of these structures, especially compare the same phase of solar cycles 23 and 24. Although the sunspot number at solar maximum 24 is only 60% of the level at last solar maximum, Gopalswamy et al. (2015a, b) found there were more halo CMEs in cycle 24 and the number of magnetic clouds did not decline either. We examine if the two vantage points of STEREO provide a consistent view with the above finding. In addition, because the twin STEREO spacecraft have experienced the full-range longitudinal separation of 0-360 degree, they have provided us numerous opportunities for multipoint observations. We will report the findings on the spatial scope of ICMEs including their driven shocks, and the stability of SIRs from the large event base.

  7. Dissipation of Turbulence in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn L.

    2010-01-01

    I will describe the first three-dimensional (3-D) dispersion relations and wavenumber spectra of magnetic turbulence in the solar wind at sub-proton scales. The analysis takes advantage of the short separations of the Cluster spacecraft (d/sim approx.200 km) to apply the {it k}-filtering technique to the frequency range where the transition to sub-proton scales occurs. The dispersion diagrams show unambiguously that the cascade is carried by highly oblique Kinetic Alfven Wave with \\omega\\leq 0.1\\omega_{ci} in the plasma rest frame down to k_\\perp\\rho_i \\sim 2. The wavenumber spectra in the direction perpendicular to the mean magnetic field consists of two ranges of scales separated by a breakpoint in the interval [0.4,1] k_\\perp \\rho_i. Above the breakpoint, the spectra follow the Kolmogorov scaling k_\\perp^{-1.7}, consistent with existing theoretical predictions. Below the breakpoint, the spectra steepen to \\sim k_\\perp^{-4.5}. We conjecture that the turbulence undergoes a {\\it transition-range}, where part of energy is dissipated into proton heating via Landau damping, and the remaining energy cascades down to electron scales where electron Landau damping may predominate.

  8. Interaction of Comets and the Solar Wind

    NASA Technical Reports Server (NTRS)

    Wagner, William (Technical Monitor); Raymond, John C.

    2003-01-01

    We had originally planned to analyze UVCS observations of Comet Machholz, but we obtained higher quality observations of Comet Kudo-Fujikawa in January 2003 at its 0.19 AU perihelion. Besides a large and rapidly increasing water outgassing rate, we detected a bright tail in doubly ionized carbon. The amount of carbon was greater than could be accounted for by GO photodissociation, and we attribute the carbon to evaporation of organics from dust. A spectacular disconnection event was apparent in the C III tail, and it coincides within the uncertainties with the position of the heliospheric current sheet. A paper is in press in Science, and it will be the subject of a press release. We are also analyzing two sungrazing comets. Comet C/2001 C2 shows evidence for sub-fragments and for a very long lasting source of neutrals, which we tentatively identify as evaporation of pyroxene dust grains. Comet C/2002 S2 shows a sudden 2 magnitude drop in optical brightness and an equally sudden recovery. UVCS observations during that time show a steadily increasing outgassing rate. We have derived solar wind densities for both comets, but we are still sorting out the ambiguities involving the fragmentation and optical behavior. We are collaborating with Philippe Lamy on the LASCO measurements.

  9. Interaction of Comets and the Solar Wind

    NASA Technical Reports Server (NTRS)

    Wagner, William (Technical Monitor); Raymond, John C.

    2004-01-01

    The analysis of Comet Kudo-Fujikawa at perihelion was published and picked up by Der Spiegel. Besides a large and rapidly increasing water outgassing rate, we detected a bright tail in doubly ionized carbon. The amount of carbon was greater than could be accounted for by CO photodissociation, and we attribute it to evaporation of organics from dust. A spectacular disconnection event was apparent in the C III tail, and it coincides within the uncertainties to the position of the heliospheric current sheet. The analysis of the sungrazing comet C2001 C2 is in press. It showed evidence for subfragments and for a very long lasting source of neutrals, which we identify as evaporation of pyroxene dust grains. Results were also presented at COSPAR. We are working on observations of another sungrazer, comet C2002 S2, which shows a sudden 2 magnitude drop in optical brightness and an equally sudden recovery. UVCS observations during that time show a steadily increasing outgassing rate. We have derived solar wind densities for both comets, but we are still sorting out the ambiguities involving the fragmentation and optical behavior.

  10. The Character of the Solar Wind, Surface Interactions, and Water

    NASA Technical Reports Server (NTRS)

    Farrell, William M.

    2011-01-01

    We discuss the key characteristics of the proton-rich solar wind and describe how it may interact with the lunar surface. We suggest that solar wind can be both a source and loss of water/OH related volatiles, and review models showing both possibilities. Energy from the Sun in the form of radiation and solar wind plasma are in constant interaction with the lunar surface. As such, there is a solar-lunar energy connection, where solar energy and matter are continually bombarding the lunar surface, acting at the largest scale to erode the surface at 0.2 Angstroms per year via ion sputtering [1]. Figure 1 illustrates this dynamically Sun-Moon system.

  11. The dynamic character of the polar solar wind

    SciTech Connect

    Jackson, B. V.; Yu, H.-S.; Buffington, A.; Hick, P. P. E-mail: hsyu@ucsd.edu E-mail: pphick@ucsd.edu

    2014-09-20

    The Solar and Heliospheric Observatory (SOHO) Large Angle and Spectrometric Coronagraph C2 and Solar Terrestrial Relations Observatory (STEREO) COR2A coronagraph images, when analyzed using correlation tracking techniques, show a surprising result in places ordinarily thought of as 'quiet' solar wind above the poles in coronal hole regions. Instead of the static well-ordered flow and gradual acceleration normally expected, coronagraph images show outflow in polar coronal holes consisting of a mixture of intermittent slow and fast patches of material. We compare measurements of this highly variable solar wind from C2 and COR2A images and show that both coronagraphs measure essentially the same structures. Measurements of the mean velocity as a function of height of these structures are compared with mass flux determinations of the solar wind outflow in the large polar coronal hole regions and give similar results.

  12. Interplanetary shock waves and the structure of solar wind disturbances

    NASA Technical Reports Server (NTRS)

    Hundhausen, A. J.

    1972-01-01

    Observations and theoretical models of interplanetary shock waves are reviewed, with emphasis on the large-scale characteristics of the associated solar wind disturbances and on the relationship of these disturbances to solar activity. The sum of observational knowledge indicates that shock waves propagate through the solar wind along a broad, roughly spherical front, ahead of plasma and magnetic field ejected from solar flares. Typically, the shock front reaches 1 AU about two days after its flare origin, and is of intermediate strength. Not all large flares produce observable interplanetary shock waves; the best indicator of shock production appears to be the generation of both type 2 and type 4 radio bursts by a flare. Theoretical models of shock propagation in the solar wind can account for the typically observed shock strength, transit time, and shape.

  13. Potential for Development of Solar and Wind Resource in Bhutan

    SciTech Connect

    Gilman, P.; Cowlin, S.; Heimiller, D.

    2009-09-01

    With support from the U.S. Agency for International Development (USAID), the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) produced maps and data of the wind and solar resources in Bhutan. The solar resource data show that Bhutan has an adequate resource for flat-plate collectors, with annual average values of global horizontal solar radiation ranging from 4.0 to 5.5 kWh/m2-day (4.0 to 5.5 peak sun hours per day). The information provided in this report may be of use to energy planners in Bhutan involved in developing energy policy or planning wind and solar projects, and to energy analysts around the world interested in gaining an understanding of Bhutan's wind and solar energy potential.

  14. Solar wind: The solar wind and the Sun-Earth link

    NASA Astrophysics Data System (ADS)

    Habbal, Shadia Rifia; Woo, Richard

    2004-08-01

    The solar wind fills the space between the Sun and its planets, shapes the planetary environments and the heliosphere, and comes to a screeching halt at the heliopause, the boundary with the interstellar medium. This tenuous medium is a fertile environment for exotic plasma processes, most of which are not fully understood. It also holds the intimate secrets of the mechanisms heating the corona that continue to elude us. As the only accessible space plasma laboratory, we must continue its exploration in search of the processes that impact the Earth's environment and govern the evolution of stars and their planetary systems.

  15. Wind loading on solar concentrators: Some general considerations

    NASA Technical Reports Server (NTRS)

    Roschke, E. J.

    1984-01-01

    A survey was completed to examine the problems and complications arising from wind loading on solar concentrators. Wind loading is site specific and has an important bearing on the design, cost, performance, operation and maintenance, safety, survival, and replacement of solar collecting systems. Emphasis herein is on paraboloidal, two-axis tracking systems. Thermal receiver problems also are discussed. Wind characteristics are discussed from a general point of view. Current methods for determining design wind speed are reviewed. Aerodynamic coefficients are defined and illustrative examples are presented. Wind tunnel testing is discussed, and environmental wind tunnels are reviewed. Recent results on heliostat arrays are reviewed as well. Aeroelasticity in relation to structural design is discussed briefly.

  16. Investigation of Solar Wind Correlations and Solar Wind Modifications Near Earth by Multi-Spacecraft Observations: IMP 8, WIND and INTERBALL-1

    NASA Technical Reports Server (NTRS)

    Paularena, Karolen I.; Richardson, John D.; Zastenker, Georgy N.

    2002-01-01

    The foundation of this Project is use of the opportunity available during the ISTP (International Solar-Terrestrial Physics) era to compare solar wind measurements obtained simultaneously by three spacecraft - IMP 8, WIND and INTERBALL-1 at wide-separated points. Using these data allows us to study three important topics: (1) the size and dynamics of near-Earth mid-scale (with dimension about 1-10 million km) and small-scale (with dimension about 10-100 thousand km) solar wind structures; (2) the reliability of the common assumption that solar wind conditions at the upstream Lagrangian (L1) point accurately predict the conditions affecting Earth's magnetosphere; (3) modification of the solar wind plasma and magnetic field in the regions near the Earth magnetosphere, the foreshock and the magnetosheath. Our Project was dedicated to these problems. Our research has made substantial contributions to the field and has lead others to undertake similar work.

  17. Modeling the Acceleration Process of Dust in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Jia, Y. D.; Lai, H.; Russell, C. T.; Wei, H.

    2015-12-01

    In previous studies we have identified structures created by nano-dust in the solar wind, and we have observed the expected draping and diverting signatures of such structures using well-spaced multi-spacecraft observations. In this study, we reproduce such an interaction event with our multi-fluid MHD model, modeling the dust particles as a fluid. When the number density of dust particles is comparable to the solar wind ions, a significant draping in the IMF is created, with amplitude larger than the ambient fluctuations. We note that such a density is well above several nano dust particles per Debye sphere and a dusty fluid is appropriate for modeling the dust-solar wind interaction. We assume a spherical cloud of dust travelling with 90% solar wind speed. In addition to reproducing the IMF response to the nano-dust at the end-stage of dust acceleration, we model the entire process of such acceleration in the gravity field of the inner heliosphere. It takes hours for the smallest dust with 3000 amu per proton charge to reach the solar wind speed. We find the dust cloud stretched along the solar wind flow. Such stretching enhances the draping of IMF, compared to the spherical cloud we used in an earlier stage of this study. This model will be further used to examine magnetic perturbations at an earlier stage of dust cloud acceleration, and then determine the size, density, and total mass of dust cloud, as well as its creation and acceleration.

  18. Solar wind precipitation - a comparison between Mars and Venus

    NASA Astrophysics Data System (ADS)

    Stenberg Wieser, Gabriella; Nilsson, Hans; Futaana, Yoshifumi; Holmström, Mats; Barabash, Stas

    2015-04-01

    Mars and Venus both have atmospheres but both lack a substantial intrinsic magnetic field. Hence, their interaction with the solar wind is similar. Due to currents set up in the ionospheres the interplanetary magnetic field embedded in the solar wind drapes around the planets forming induced magnetospheres. The plasma instrument packages ASPERA-3 and ASPERA-4 on the two spacecraft Mars Express and Venus Express are very similar and invite to a comparison between the two plasma environments. In this study we used the Ion Mass Analyser (IMA) on both spacecraft to investigate the solar wind precipitation onto the upper atmospheres. We focus on the differences between the two planets. We conclude that on Mars we regularly observe precipitating solar wind ions (H+ and He2+) inside the induced magnetosphere boundary (IMB). The precipitation is clearly guided by the solar wind convection electric field and He2+ and H+ are seen independently of each other. On Venus precipitation of He2+ is only observed close to the IMB and always together with H+. The precipitation events on Venus have no clear correlation with the solar wind electric field.

  19. Sputtering by the Solar Wind: Effects of Variable Composition

    NASA Technical Reports Server (NTRS)

    Killen, R. M.; Arrell, W. M.; Sarantos, M.; Delory, G. T.

    2011-01-01

    It has long been recognized that solar wind bombardment onto exposed surfaces in the solar system will produce an energetic component to the exospheres about those bodies. Laboratory experiments have shown that there is no increase in the sputtering yield caused by highly charged heavy ions for metallic and for semiconducting surfaces, but the sputter yield can be noticeably increased in the case of a good insulating surface. Recently measurements of the solar wind composition have become available. It is now known that the solar wind composition is highly dependent on the origin of the particular plasma. Using the measured composition of the slow wind, fast wind, solar energetic particle (SEP) population, and coronal mass ejection (CME), broken down into its various components, we have estimated the total sputter yield for each type of solar wind. Whereas many previous calculations of sputtering were limited to the effects of proton bombardment. we show that the heavy ion component. especially the He++ component. can greatly enhance the total sputter yield during times when the heavy ion population is enhanced. We will discuss sputtering of both neutrals and ions.

  20. Western Wind and Solar Integration Study Phase 2: Preprint

    SciTech Connect

    Lew, D.; Brinkman, G.; Ibanez, E.; Hodge, B.-M.; King, J.

    2012-09-01

    The Western Wind and Solar Integration Study (WWSIS) investigates the impacts of high penetrations of wind and solar power into the Western Interconnection of the United States. WWSIS2 builds on the Phase 1 study but with far greater refinement in the level of data inputs and production simulation. It considers the differences between wind and solar power on systems operations. It considers mitigation options to accommodate wind and solar when full costs of wear-and-tear and full impacts of emissions rates are taken into account. It determines wear-and-tear costs and emissions impacts. New data sets were created for WWSIS2, and WWSIS1 data sets were refined to improve realism of plant output and forecasts. Four scenarios were defined for WWSIS2 that examine the differences between wind and solar and penetration level. Transmission was built out to bring resources to load. Statistical analysis was conducted to investigate wind and solar impacts at timescales ranging from seasonal down to 5 minutes.

  1. Structure of magnetic field in the solar wind

    NASA Technical Reports Server (NTRS)

    Chertkov, A. D.

    1995-01-01

    This work is concerned with empirical data on magnetic field in the solar wind in frame of a concept of dissipative solar wind, developed in papers (Solar Wind 7 Conf., Pergamon Press, 1992, 165 and 1992 STEP/5th COSPAR Coll. Pergamon Press, 1994, 117; 235; 803). Interplanetary magnetic fields should be classified with respect to their origin. It is very important for all the theoretical problems from the necessity to specify correctly boundary and initial conditions: the magnetic field must be sewed with its source. One should select the field, connected directly with the Sun (stretched out from it), and the field of moving electric currents. It occured central in discussion about the velocity of Alfven waves, probably warming up the solar wind, relative to the Sun, the magnetic field and solar wind plasma. The selection problem corresponds to an inverse problem and obviously has no single solution. The dissipative model of the solar wind introduce the slipping and leakage of plasma relative to magnetic field. There are no 'interplanetary current sheets' in it. But temporal fluctuations from the filamentation of electric currents play the key role. As a whole, the new concept requires the re-interpretation of main objects in the interplanetary magnetic field.

  2. Prediction of solar energetic particle event histories using real-time particle and solar wind measurements

    NASA Technical Reports Server (NTRS)

    Roelof, E. C.; Gold, R. E.

    1978-01-01

    The comparatively well-ordered magnetic structure in the solar corona during the decline of Solar Cycle 20 revealed a characteristic dependence of solar energetic particle injection upon heliographic longitude. When analyzed using solar wind mapping of the large scale interplanetary magnetic field line connection from the corona to the Earth, particle fluxes display an approximately exponential dependence on heliographic longitude. Since variations in the solar wind velocity (and hence the coronal connection longitude) can severely distort the simple coronal injection profile, the use of real-time solar wind velocity measurements can be of great aid in predicting the decay of solar particle events. Although such exponential injection profiles are commonplace during 1973-1975, they have also been identified earlier in Solar Cycle 20, and hence this structure may be present during the rise and maximum of the cycle, but somewhat obscured by greater temporal variations in particle injection.

  3. Impacts of wind stilling on solar radiation variability in China.

    PubMed

    Lin, Changgui; Yang, Kun; Huang, Jianping; Tang, Wenjun; Qin, Jun; Niu, Xiaolei; Chen, Yingying; Chen, Deliang; Lu, Ning; Fu, Rong

    2015-01-01

    Solar dimming and wind stilling (slowdown) are two outstanding climate changes occurred in China over the last four decades. The wind stilling may have suppressed the dispersion of aerosols and amplified the impact of aerosol emission on solar dimming. However, there is a lack of long-term aerosol monitoring and associated study in China to confirm this hypothesis. Here, long-term meteorological data at weather stations combined with short-term aerosol data were used to assess this hypothesis. It was found that surface solar radiation (SSR) decreased considerably with wind stilling in heavily polluted regions at a daily scale, indicating that wind stilling can considerably amplify the aerosol extinction effect on SSR. A threshold value of 3.5 m/s for wind speed is required to effectively reduce aerosols concentration. From this SSR dependence on wind speed, we further derived proxies to quantify aerosol emission and wind stilling amplification effects on SSR variations at a decadal scale. The results show that aerosol emission accounted for approximately 20% of the typical solar dimming in China, which was amplified by approximately 20% by wind stilling. PMID:26463748

  4. Impacts of wind stilling on solar radiation variability in China

    NASA Astrophysics Data System (ADS)

    Lin, Changgui; Yang, Kun; Huang, Jianping; Tang, Wenjun; Qin, Jun; Niu, Xiaolei; Chen, Yingying; Chen, Deliang; Lu, Ning; Fu, Rong

    2015-10-01

    Solar dimming and wind stilling (slowdown) are two outstanding climate changes occurred in China over the last four decades. The wind stilling may have suppressed the dispersion of aerosols and amplified the impact of aerosol emission on solar dimming. However, there is a lack of long-term aerosol monitoring and associated study in China to confirm this hypothesis. Here, long-term meteorological data at weather stations combined with short-term aerosol data were used to assess this hypothesis. It was found that surface solar radiation (SSR) decreased considerably with wind stilling in heavily polluted regions at a daily scale, indicating that wind stilling can considerably amplify the aerosol extinction effect on SSR. A threshold value of 3.5 m/s for wind speed is required to effectively reduce aerosols concentration. From this SSR dependence on wind speed, we further derived proxies to quantify aerosol emission and wind stilling amplification effects on SSR variations at a decadal scale. The results show that aerosol emission accounted for approximately 20% of the typical solar dimming in China, which was amplified by approximately 20% by wind stilling.

  5. Impacts of wind stilling on solar radiation variability in China

    PubMed Central

    Lin, Changgui; Yang, Kun; Huang, Jianping; Tang, Wenjun; Qin, Jun; Niu, Xiaolei; Chen, Yingying; Chen, Deliang; Lu, Ning; Fu, Rong

    2015-01-01

    Solar dimming and wind stilling (slowdown) are two outstanding climate changes occurred in China over the last four decades. The wind stilling may have suppressed the dispersion of aerosols and amplified the impact of aerosol emission on solar dimming. However, there is a lack of long-term aerosol monitoring and associated study in China to confirm this hypothesis. Here, long-term meteorological data at weather stations combined with short-term aerosol data were used to assess this hypothesis. It was found that surface solar radiation (SSR) decreased considerably with wind stilling in heavily polluted regions at a daily scale, indicating that wind stilling can considerably amplify the aerosol extinction effect on SSR. A threshold value of 3.5 m/s for wind speed is required to effectively reduce aerosols concentration. From this SSR dependence on wind speed, we further derived proxies to quantify aerosol emission and wind stilling amplification effects on SSR variations at a decadal scale. The results show that aerosol emission accounted for approximately 20% of the typical solar dimming in China, which was amplified by approximately 20% by wind stilling. PMID:26463748

  6. Using the fingerprints of solar magnetic reconnection to identify the elemental building blocks of the slow solar wind

    NASA Astrophysics Data System (ADS)

    Kepko, Larry; Viall, Nicholeen M.; Kasper, Justin; Lepri, Sue

    2015-04-01

    While the source of the fast solar wind is well understood to be linked to coronal holes, the source of the slow solar wind has remained elusive. Many previous studies of the slow solar wind have examined trends in the composition and charge states over long time scales and found strong relationships between the solar wind velocity and these plasma parameters. These relationships have been used to constrain models of solar wind source and acceleration. In this study, we take advantage of high time resolution (12 min) measurements of solar wind composition and charge-state abundances recently reprocessed by the ACE Solar Wind Ion Composition Spectrometer (SWICS) science team to probe the timescales of solar wind variability at relatively small scales. We study an interval of slow solar wind containing quasi-periodic 90 minute structures and show that they are remnants of solar magnetic reconnection. Each 90-minute parcel of slow solar wind, though the speed remains steady, exhibits the complete range of charge state and composition variations expected for the entire range of slow solar wind, which is repeated again in the next 90-minute interval. These observations show that previous statistical results break down on these shorter timescales, and impose new and important constraints on models of slow solar wind creation. We conclude by suggesting these structures were created through interchange magnetic reconnection and form elemental building blocks of the slow solar wind. We also discuss the necessity of decoupling separately the process(es) responsible for the release and acceleration.

  7. Electron energy transport in the solar wind: Ulysses observations

    NASA Technical Reports Server (NTRS)

    Scime, Earl; Gary, S. Peter; Phillips, J. L.; Corniileau-Wehrlin, N.; Solomon, J.

    1995-01-01

    The electron heat flux in the solar wind has been measured by the Ulysses solar wind plasma experiment in the ecliptic from 1 to 5 AU and out of the ecliptic during the recently completed pass over the solar south pole and the ongoing pass over the solar north pole. Although the electron heat flux contains only a fraction of the kinetic energy of the solar wind. the available energy is sufficient to account for the non-adiabatic expansion of the solar wind electrons. The Ulysses measurements indicate that the electron heat flux is actively dissipated in the solar wind. The exact mechanism or mechanisms is unknown. but a model based on the whistler heat flux instability predicts radial gradients for the electron heat flux in good agreement with the data. We will present measurements of the correlation between wave activity measured by the unified radio and plasma experiment (URAP) and the electron heat flux throughout the Ulysses mission. The goal is to determine if whistler waves are a good candidate for the observed electron heat flux dissipation. The latitudinal gradients of the electron heat flux. wave activity. and electron pressure will be discussed in light of the changes in the magnetic field geometry from equator to poles.

  8. Solar flare acceleration of solar wind - Influence of active region magnetic field

    NASA Technical Reports Server (NTRS)

    Lundstedt, H.; Wilcox, J. M.; Scherrer, P. H.

    1981-01-01

    The direction of the photospheric magnetic field at the site of a solar flare is a good predictor of whether the flare will accelerate solar wind plasma. If the field has a southward component, high-speed solar wind plasma is usually observed near the earth about 4 days later. If the field has a northward component, such high-speed solar wind is almost never observed. Southward-field flares may then be expected to have much larger terrestrial effects than northward flares.

  9. On the Relationship Between Solar Wind Speed, Geomagnetic Activity, and the Solar Cycle Using Annual Values

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2008-01-01

    The aa index can be decomposed into two separate components: the leading sporadic component due to solar activity as measured by sunspot number and the residual or recurrent component due to interplanetary disturbances, such as coronal holes. For the interval 1964-2006, a highly statistically important correlation (r = 0.749) is found between annual averages of the aa index and the solar wind speed (especially between the residual component of aa and the solar wind speed, r = 0.865). Because cyclic averages of aa (and the residual component) have trended upward during cycles 11-23, cyclic averages of solar wind speed are inferred to have also trended upward.

  10. Solar wind ion trends and signatures: STEREO PLASTIC observations approaching solar minimum

    NASA Astrophysics Data System (ADS)

    Galvin, A. B.; Popecki, M. A.; Simunac, K. D. C.; Kistler, L. M.; Ellis, L.; Barry, J.; Berger, L.; Blush, L. M.; Bochsler, P.; Farrugia, C. J.; Jian, L. K.; Kilpua, E. K. J.; Klecker, B.; Lee, M.; Liu, Y. C.-M.; Luhmann, J. L.; Moebius, E.; Opitz, A.; Russell, C. T.; Thompson, B.; Wimmer-Schweingruber, R. F.; Wurz, P.

    2009-10-01

    STEREO has now completed the first two years of its mission, moving from close proximity to Earth in 2006/2007 to more than 50 degrees longitudinal separation from Earth in 2009. During this time, several large-scale structures have been observed in situ. Given the prevailing solar minimum conditions, these structures have been predominantly coronal hole-associated solar wind, slow solar wind, their interfaces, and the occasional transient event. In this paper, we extend earlier solar wind composition studies into the current solar minimum using high-resolution (1-h) sampling times for the charge state analysis. We examine 2-year trends for iron charge states and solar wind proton speeds, and present a case study of Carrington Rotation 2064 (December 2007) which includes minor ion (He, Fe, O) kinetic and Fe composition parameters in comparison with proton and magnetic field signatures at large-scale structures observed during this interval.

  11. STEREO's in-situ perspective on the solar minimum solar wind structure

    NASA Astrophysics Data System (ADS)

    Luhmann, J. G.; Larson, D.; Schroeder, P.; Lee, C. O.; Sauvaud, J.; Acuna, M. H.; Galvin, A. B.; Russell, C. T.; Jian, L.; Arge, C. N.; Odstrcil, D.; Riley, P.; Howard, R. A.; Aschwanden, M.; MacNeice, P.; Chulaki, A.

    2007-05-01

    STEREO multipoint measurements of the solar wind structure with the IMPACT and PLASTIC investigations, near Earth but off the Sun-Earth line, allow its sources and structure to be examined at solar minimum when such studies are particularly straightforward. With the aid of 3D models of the heliosphere available at the CCMC, we map the in-situ observations to their solar sources using a combination of the open field regions inferred from the SECCHI EUVI imagers and SOHO EIT, and the magnetogram-based models of the corona and solar wind. Our ultimate goal is the continuous tracking of solar wind source regions as the STEREO mission progresses, as well as the use of the mappings to deduce the distinctive properties of solar wind from different types of sources

  12. Element Abundances in the Sun and Solar Wind Along the Solar Cycle

    NASA Astrophysics Data System (ADS)

    Landi, Enrico

    2015-04-01

    Element abundances are a critical parameter in almost every aspect of solar physics, from regulating the energy flow and the structure of the solar interior, to shaping the energy losses of the solar atmosphere, ruling the radiative output of the UV, EUV and X-rays solar radiation which impacts the Earth's upper atmosphere, and determining the composition of the solar wind.In this work we study the evolution of the element abundances in the solar corona and in the solar wind from 1996 to date using data from SoHO, Hinode, Ulysses and ACE satellites, in order to determine their variability along the solar cycle, and the relationship between solar abundance variations in the solar wind and in its source regions in the solar atmosphere. We study all the most abundant elements, with a special emphasis on Ne and O. We discuss our results in light of the source region of the solar wind, and of the radiative output of the solar corona.

  13. Velocity shear layers in solar winds affect Earth's magnetosphere

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Atreyee

    2012-09-01

    Human society is increasingly reliant on technology that can be disrupted by space weather. For instance, geomagnetic storms can cause high-latitude air fights to be rerouted, costing as much as $100,000 per fight; induce errors of up to 46 meters in GPS systems; and affect satellites and the International Space Station. Space weather is determined by how the solar wind, a stream of hot plasma from the Sun, interacts with Earth's magnetic field. In studying space weather, scientists have largely neglected the fact that the solar wind contains layers of very strong velocity shear. Scientists understand very little about how these wind shears affect space weather.

  14. Velocity Distributions and Proton Beam Production in the Solar Wind

    SciTech Connect

    Pierrard, Viviane; Voitenko, Yuriy

    2010-03-25

    Helios, Ulysses, and Wind spacecraft have observed the velocity distribution functions (VDFs) of solar wind particles deviating significantly from Maxwellians. We review recent models using different approximations and mechanisms that determine various observed characteristics of the VDFs for the electrons, protons and minor ions. A new generation mechanism is proposed for super-Alfvenic proton beams and tails that are often observed in the fast solar wind. The mechanism is based on the proton trapping and acceleration by kinetic Alfven waves (KAWs), which carry a field-aligned potential well propagating with super-Alfven velocities.

  15. Scale-free texture of the fast solar wind.

    PubMed

    Hnat, B; Chapman, S C; Gogoberidze, G; Wicks, R T

    2011-12-01

    The higher-order statistics of magnetic field magnitude fluctuations in the fast quiet solar wind are quantified systematically, scale by scale. We find a single global non-Gaussian scale-free behavior from minutes to over 5 h. This spans the signature of an inertial range of magnetohydrodynamic turbulence and a ~1/f range in magnetic field components. This global scaling in field magnitude fluctuations is an intrinsic component of the underlying texture of the solar wind and puts a strong constraint on any theory of solar corona and the heliosphere. Intriguingly, the magnetic field and velocity components show scale-dependent dynamic alignment outside of the inertial range. PMID:22304144

  16. Preferred solar wind emitting longitudes on the sun

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.; Asbridge, J. R.; Bame, S. J.; Feldman, W. C.

    1977-01-01

    During the 11 1/2-year period from July 1964 through December 1975, high- and low-speed solar wind flows originated from preferred solar longitudes. The preferred longitude effect was most pronounced from 1970 onward but was also evident in the years preceding 1970. The most pronounced modulation in average solar wind speed with longitude (approximately 20%) was obtained when it was assumed that the synodic rotation period of the sun is 27.025 days. Some deep internal structure in the sun must ultimately be responsible for these long-lived longitudinal effects, which appear to rotate rigidly with the sun.

  17. Solar Wind Stream Interaction Regions without Sector Boundaries

    NASA Technical Reports Server (NTRS)

    Neugebauer, M.; Liewer, P. C.; Goldstein, B. E.; Zhou., X.; Steinberg, J. T.

    2004-01-01

    During periods of high solar activity when there are many sources of solar wind on the solar disk, a spacecraft occasionally encounters consecutive solar wind streams with the same magnetic polarity. The low-speed wind in the region of interaction between the two streams exhibits many of the same features as, but has some differences from, the low-speed wind that includes crossings of the heliospheric current sheet (HCS) where the direction of the heliospheric magnetic field reverses. The non-HCS slow wind exhibits many of the same small-scale structures usually associated with the slow wind around the HCS; these include discontinuous stream interfaces and other discontinuities, magnetic holes, and low-entropy structures. These entropy holes do not appear to have the same origin as the plasma sheets observed near the HCS, however. The helium abundances and heavy ion charge states in the non-HCS regions are not significantly different from those in HCS-associated regions. Some of the dynamical properties of the non-HCS regions differ from those found near the HCS; the regions between leading and trailing stream interfaces have a shorter duration or scale size, greater minimum speed, and lower peak and average densities. No correlation could be found between the non-HCS slow wind and visible coronal streamers.

  18. Coronal Streamers and Their Associated Solar Wind Streams

    NASA Astrophysics Data System (ADS)

    Miralles, M. P.; Landi, E.; Cranmer, S. R.; Cohen, O.; Raymond, J. C.

    2012-12-01

    We use the EUV spectrometers aboard SOHO and Hinode and white-light coronagraphs to characterize the physical properties of coronal streamers during Earth/Ulysses quadrature configurations for the previous two solar minimum periods. In addition, comparisons between coronal observations and in situ measurements of solar wind plasma properties are being used to further characterize the origins of slow wind streams. In order to investigate slow solar wind heating and acceleration, we also compare with predictions from three-dimensional MHD models. We aim to use the empirical measurements to distinguish between different proposed physical processes for slow wind acceleration (e.g., waves/turbulence versus reconnection). This work is supported by NASA grant NNX10AQ58G to the Smithsonian Astrophysical Observatory.

  19. The Yaglom law in the expanding solar wind

    SciTech Connect

    Gogoberidze, G.; Perri, S.; Carbone, V.

    2013-06-01

    We study the Yaglom law, which relates the mixed third-order structure function to the average dissipation rate of turbulence, in a uniformly expanding solar wind by using the two-scale expansion model of magnetohydrodynamic (MHD) turbulence. We show that due to the expansion of the solar wind, two new terms appear in the Yaglom law. The first term is related to the decay of the turbulent energy by nonlinear interactions, whereas the second term is related to the non-zero cross-correlation of the Elsässer fields. Using magnetic field and plasma data from WIND and Helios 2 spacecrafts, we show that at lower frequencies in the inertial range of MHD turbulence the new terms become comparable to Yaglom's third-order mixed moment, and therefore they cannot be neglected in the evaluation of the energy cascade rate in the solar wind.

  20. Self-consistent Castaing Distribution of Solar Wind Turbulent Fluctuations

    NASA Astrophysics Data System (ADS)

    Sorriso-Valvo, L.; Marino, R.; Lijoi, L.; Perri, S.; Carbone, V.

    2015-07-01

    The intermittent behavior of solar wind turbulent fluctuations has often been investigated through the modeling of their probability distribution functions (PDFs). Among others, the Castaing model has successfully been used in the past. In this paper, the energy dissipation field of solar wind turbulence has been studied for fast, slow, and polar wind samples recorded by Helios 2 and Ulysses spacecraft. The statistical description of the dissipation rate has then been used to remove intermittency through conditioning of the PDFs. Based on such observation, a self-consistent, parameter-free Castaing model is presented. The self-consistent model is tested against experimental PDFs, showing good agreement and supporting the picture of a multifractal energy cascade at the origin of solar wind intermittency.

  1. CARBON IONIZATION STAGES AS A DIAGNOSTIC OF THE SOLAR WIND

    SciTech Connect

    Landi, E.; Alexander, R. L.; Gruesbeck, J. R.; Gilbert, J. A.; Lepri, S. T.; Manchester, W. B.; Zurbuchen, T. H.

    2012-01-10

    Oxygen charge states measured by in situ instrumentation have long been used as a powerful diagnostic of the solar corona and to discriminate between different solar wind regimes, both because they freeze in very close to the Sun, and because the oxygen element abundance is comparatively high, allowing for statistically relevant measures. Like oxygen, carbon is also rather abundant and freezes in very close to the Sun. Here, we show an analysis of carbon and oxygen ionic charge states. First, through auditory and Fourier analysis of in situ measurements of solar wind ion composition by ACE/SWICS we show that some carbon ion ratios are very sensitive to solar wind type, even more sensitive than the commonly used oxygen ion ratios. Then we study the evolution of the ionization states of carbon and oxygen by means of a freeze-in code, and find that carbon ions, commonly found in the solar wind, freeze in at comparable coronal distances, while oxygen ions evolve over a much larger range of coronal distances. Finally, we show that carbon and oxygen ion abundance ratios have similar sensitivity to the electron plasma temperature, but the carbon ratios are more robust against atomic physics uncertainties and a better indicator of the temperature of the solar wind source regions.

  2. Carbon Ionization Stages as a Diagnostic of the Solar Wind

    NASA Astrophysics Data System (ADS)

    Landi, E.; Alexander, R. L.; Gruesbeck, J. R.; Gilbert, J. A.; Lepri, S. T.; Manchester, W. B.; Zurbuchen, T. H.

    2012-01-01

    Oxygen charge states measured by in situ instrumentation have long been used as a powerful diagnostic of the solar corona and to discriminate between different solar wind regimes, both because they freeze in very close to the Sun, and because the oxygen element abundance is comparatively high, allowing for statistically relevant measures. Like oxygen, carbon is also rather abundant and freezes in very close to the Sun. Here, we show an analysis of carbon and oxygen ionic charge states. First, through auditory and Fourier analysis of in situ measurements of solar wind ion composition by ACE/SWICS we show that some carbon ion ratios are very sensitive to solar wind type, even more sensitive than the commonly used oxygen ion ratios. Then we study the evolution of the ionization states of carbon and oxygen by means of a freeze-in code, and find that carbon ions, commonly found in the solar wind, freeze in at comparable coronal distances, while oxygen ions evolve over a much larger range of coronal distances. Finally, we show that carbon and oxygen ion abundance ratios have similar sensitivity to the electron plasma temperature, but the carbon ratios are more robust against atomic physics uncertainties and a better indicator of the temperature of the solar wind source regions.

  3. Ulysses solar wind plasma observations at high latitudes

    SciTech Connect

    Riley, P.; Bame, S.J.; Barraclough, B.L.

    1996-10-01

    Ulysses reached its peak northerly heliolatitude of 80.2{degrees}N on July 31, 1995, and now is moving towards aphelion at 5.41 AU which it will reach in May, 1998. We summarize measurements from the solar wind plasma experiment, SWOOPS, emphasizing northern hemispheric observations but also providing southern and equatorial results for comparison. The solar wind momentum flux during Ulysses` fast pole-to- pole transit at solar minimum was significantly higher over the poles than at near-equatorial latitudes, suggesting a non-circular cross section for the heliosphere. Furthermore, modest asymmetries in the wind speed, density, and mass flux were observed between the two hemispheres during the fast latitude scan. The solar wind was faster and less dense in the north than in the south. These asymmetries persist in the most recent high- and mid-latitude data but are less pronounced. As of July 1, 1996 the northern fast solar wind has lacked any strong stream interactions or shocks and, although a comprehensive search has not yet been made, no CMEs have yet been identified during this interval. On the other hand, Alfv{acute e}nic, compressional, and pressure balanced features are abundant at high latitudes. The most recent data, at 4 AU and 32{degrees}N, has begun to show the effects of solar rotation modulated features in the form of recurrent compressed regions.

  4. Wind heat transfer coefficient in solar collectors in outdoor conditions

    SciTech Connect

    Kumar, Suresh; Mullick, S.C.

    2010-06-15

    Knowledge of wind heat transfer coefficient, h{sub w}, is required for estimation of upward losses from the outer surface of flat plate solar collectors/solar cookers. In present study, an attempt has been made to estimate the wind induced convective heat transfer coefficient by employing unglazed test plate (of size about 0.9 m square) in outdoor conditions. Experiments, for measurement of h{sub w}, have been conducted on rooftop of a building in the Institute campus in summer season for 2 years. The estimated wind heat transfer coefficient has been correlated against wind speed by linear regression and power regression. Experimental values of wind heat transfer coefficient estimated in present work have been compared with studies of other researchers after normalizing for plate length. (author)

  5. Elemental composition in the slow solar wind measured with the MASS instrument on WIND

    NASA Technical Reports Server (NTRS)

    Bochsler, P.; Gonin, M.; Sheldon, R. B.; Zurbuchen, Th.; Gloeckler, G.; Galvin, A. B.; Hovestadt, D.

    1995-01-01

    The MASS instrument on WIND contains the first isochronous time-offlight spectrometer to be flown in the solar wind. The first spectra obtained with this instrument has demonstrated its capability to measure the abundances of several high-and low-FIP elements in the solar wind. The derivation of these abundances requires a careful calibration of the charge exchange efficiencies of the relevant ions in carbon foils. These efficiencies and the corresponding instrument functions have been determined in extensive calibration campaigns at different institutions. We present first and preliminary results obtained in slow solar wind streams and we compare these results with those obtained from previous investigations of solar wind abundances and of coronal abundances as derived from Solar Energetic Particles. Recent models of the FIP related fractionation effect predict a depletion of a factor of typically 4 to 5 for high-FIP elements (He, N, O, Ne, Ar, etc.) relative to low-FIP elements (Mg, Fe, Si, etc.). We also compare our results with the detailed predictions of the different models and we discuss the resulting evidence to validate or to invalidate different physical scenarios explaining the feeding and the acceleration of slow stream solar wind.

  6. SOLAR WIND HEAVY IONS OVER SOLAR CYCLE 23: ACE/SWICS MEASUREMENTS

    SciTech Connect

    Lepri, S. T.; Landi, E.; Zurbuchen, T. H.

    2013-05-01

    Solar wind plasma and compositional properties reflect the physical properties of the corona and its evolution over time. Studies comparing the previous solar minimum with the most recent, unusual solar minimum indicate that significant environmental changes are occurring globally on the Sun. For example, the magnetic field decreased 30% between the last two solar minima, and the ionic charge states of O have been reported to change toward lower values in the fast wind. In this work, we systematically and comprehensively analyze the compositional changes of the solar wind during cycle 23 from 2000 to 2010 while the Sun moved from solar maximum to solar minimum. We find a systematic change of C, O, Si, and Fe ionic charge states toward lower ionization distributions. We also discuss long-term changes in elemental abundances and show that there is a {approx}50% decrease of heavy ion abundances (He, C, O, Si, and Fe) relative to H as the Sun went from solar maximum to solar minimum. During this time, the relative abundances in the slow wind remain organized by their first ionization potential. We discuss these results and their implications for models of the evolution of the solar atmosphere, and for the identification of the fast and slow wind themselves.

  7. Passive solar energy: the genesis for architectural innovations in commercial buildings

    SciTech Connect

    Kroner, W.M.; Smith, P.N.

    1981-01-01

    The Campus Information Center (CIC) at Rensselaer Polytechnic Institute, Troy, New York, integrates environmental controls, energy conservation measures, and passive solar design. It demonstrates what can be done when the client, architect, and engineer work together to create a building that synthesizes energy-related technologies with architectural excellence in a cost effective manner. This paper discusses the unique process that led to the timely design of the CIC. It also provides specific information about three of the CIC's innovative systems: the multipath energy flow system, the individualized comfort system, and the building instrumentation system.

  8. Fluid/Kinetic: Investigations of the Dynamic Solar Wind

    NASA Astrophysics Data System (ADS)

    Kasper, Justin C.

    2010-05-01

    The supersonic solar wind originates in the hot solar corona and expands through interplanetary space, interacting with planets and carving the heliospheric bubble out of the interstellar medium. We can use direct exploration of the solar wind with instrumented spacecraft to understand the solar wind and as a laboratory for investigating the physics of magnetized astrophysical plasmas. Many of our open questions about fundamental physical processes such as heating, particle acceleration, angular momentum transport, and the production of magnetic fields require an understanding of the kinetic physics of non-Maxwellian plasmas in regimes where fluid physics breaks down. This talk will review current research at this fluid/kinetic interface, including joint measurements of particles and electromagnetic waves in the solar wind and what we have learned about heating, instabilities, and energy flow. Examples of the application of these results to more distant objects such as jets, accretion disks, and galactic dynamos will be presented. Some potential future work will be discussed, including understanding energy flow between ions and electrons and the exciting potential for direct measurements of the solar corona with the proposed NASA Solar Probe Plus mission.

  9. Solar wind interaction with Venus and impact on its atmosphere

    NASA Astrophysics Data System (ADS)

    Barabash, S.; Futaana, Y.; Wieser, G. S.; Luhmann, J.

    2014-04-01

    We present a review of the solar wind interaction with Venus and how the interaction affects the Venusian atmosphere. The Venus Express observations for more than 8 years (2005-present) and quantitatively new simulation codes substantially advanced physical understanding of the plasma processes in the near-Venus space since the Pioneer Venus Orbiter (PVO) mission (1978-1992). The near-Venus space can be divided into several plasma domains: the magnetotail with the plasmasheet, induced magnetosphere, and magnetosheath. The bow shock separates the undisturbed solar wind from the Venus-affected environment. We review the shapes and positions of the boundaries enveloping the main domains and discuss how they are formed by the current systems and pressure balance. In particular, we discuss the morphology and dynamics of the near-Venus magnetotail that was not accessible by PVO. Using the unique Venus Express measurements we discuss the ion acceleration processes and their links to the ionosphere. The focus is given to the Venus' atmosphere erosion associated with the solar wind interaction, both through the energy (ion acceleration) and momentum (atmospheric sputtering) transfer. We review the measurements of the escape rates, their variability with the upstream solar wind conditions and the solar cycle. We emphasize the measurements duirng extreme solar wind conditions as an analogue with nominal conditions for the young Sun. The modeling efforts in this area are also reviewed as they provide a quantitatively approach to understand the impact of the solar wind interaction on the atmospheric evolution. Finally, we compare Venus with other planets of the terrestrial planet group, the Earth and Mars. The Earth, a twin planet of the similar size, is magnetized. Mars, an unmagnetized planet like Venus, possesses by far weaker gravitation to hold its atmospheric gasses. This comparative magnetosphere approach based on the natural solar system laboratory of experiments gives

  10. Solar wind H-3 and C-14 abundances and solar surface processes. [in lunar soil

    NASA Technical Reports Server (NTRS)

    Fireman, E. L.; Defelice, J.; Damico, J.

    1976-01-01

    Tritium is measured as a function of depth in a Surveyor 3 sample. The upper limit for solar-wind-implanted tritium gives an H-3/H-1 limit for the solar wind of 10 to the -11th power. The temperature-release patterns of C-14 from lunar soils are measured. The C-14 release pattern from surface soils differs from a trench-bottom soil and gives positive evidence for the presence of C-14 in the solar wind with a C-14/H-1 ratio of approximately 6 by 10 to the -11th power. This C-14 content fixes a minimal magnitude for nuclear processes on the solar surface averaged over the past 10,000 yr. The H-3 and C-14 contents combine to require that either the mixing rate above the photosphere be rapid or that the H-3 produced by nuclear reactions be destroyed by secondary nuclear reactions before escaping in the solar wind.

  11. Latitudinal Variation of Solar Wind Speed and Mass Flux in the Acceleration Region of the Solar Wind during Solar Minimum Inferred from Spectral Broadening measurements

    NASA Technical Reports Server (NTRS)

    Woo, R.; Goldstein, R.

    1993-01-01

    In this paper, we use an aggregate of S-band 2.3 GHz (13 cm) spectral broadening observations conducted during solar minimum conditions by the Mariner 4, Pioneer 10, Mariner 10, Helios 1 & 2 and Viking spacecraft to infer the first measurements of the latitudinal variation of solar wind speed and mass flux in the acceleration region of the solar wind at 3-8 R(sub o).

  12. Advances in understanding the genesis and evolution solar energetic particle events over the last two solar cycles

    NASA Astrophysics Data System (ADS)

    Vainio, Rami

    2016-04-01

    I will review the observational and modeling efforts related to solar energetic particle (SEP) events over the 23rd and 24th solar cycles. I will concentrate on large SEP events related to coronal mass ejections (CMEs), but discuss observations related to the possible role of flares in the acceleration of particles in those events, as well. The possible roles of various acceleration and transport processes in understanding the characteristics of the events will be discussed. This work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324 (HESPERIA).

  13. Rosetta observations of solar wind deflection in the coma

    NASA Astrophysics Data System (ADS)

    Broiles, Thomas; Burch, James; Clark, George; Goldstein, Raymond; Koenders, Christoph; Mandt, Kathleen; Mokashi, Prachet; Samara, Marilia

    2015-04-01

    Until recently, study of the solar wind around comets was limited to remote observations and brief in-situ encounters. With the arrival of Rosetta at the comet Churyumov-Gerasimenko (CG), we have had near constant solar wind observations at the comet for over 6 months. This is an unprecedented opportunity to study this dynamic interaction over time. Neutral atoms produced by the comet become ionized through photoionization or charge-exchange with the solar wind. The freshly ionized particles experience v x B electric field and begin to gyrate around the interplanetary magnetic field. Currently, CG is ~2.6 AU from the Sun, and as of this writing, neutral production is still relatively low. Consequently, most pickup ions are produced locally (< few hundred kilometers), and a diamagnetic cavity may not exist. Moreover, neutral production is variable and changes over the comet's rotational period. We find the following: 1) The solar wind is heavily deflected near the comet (in some cases >45° away from the anti-sunward direction). 2) The solar wind helium experiences less deflection than the protons. 3) The periodicity of the deflection is highly variable, and can vary over minutes or hours. From these results, we conclude that the solar wind is deflected by a mechanism very close to the comet. We suggest the following possibilities: 1) The solar wind could be deflected by a Lorenz force in the opposite direction to that experienced by the pickup ions, which would also conserve the momentum of the two fluid system. This would explain why solar wind protons are more strongly deflected than the heavier alpha particles. Additionally, this would explain the periodicity of the deflections, which would react to changes in the interplanetary magnetic field. 2) The solar wind deflection might occur from strong charging of comet's nucleus. In which case, the nucleus may charge both positively or negatively. The nucleus could charge positively due photoionization of the surface

  14. Chromospheric alfvenic waves strong enough to power the solar wind.

    PubMed

    De Pontieu, B; McIntosh, S W; Carlsson, M; Hansteen, V H; Tarbell, T D; Schrijver, C J; Title, A M; Shine, R A; Tsuneta, S; Katsukawa, Y; Ichimoto, K; Suematsu, Y; Shimizu, T; Nagata, S

    2007-12-01

    Alfvén waves have been invoked as a possible mechanism for the heating of the Sun's outer atmosphere, or corona, to millions of degrees and for the acceleration of the solar wind to hundreds of kilometers per second. However, Alfvén waves of sufficient strength have not been unambiguously observed in the solar atmosphere. We used images of high temporal and spatial resolution obtained with the Solar Optical Telescope onboard the Japanese Hinode satellite to reveal that the chromosphere, the region sandwiched between the solar surface and the corona, is permeated by Alfvén waves with strong amplitudes on the order of 10 to 25 kilometers per second and periods of 100 to 500 seconds. Estimates of the energy flux carried by these waves and comparisons with advanced radiative magnetohydrodynamic simulations indicate that such Alfvén waves are energetic enough to accelerate the solar wind and possibly to heat the quiet corona. PMID:18063784

  15. Charge state composition in coronal hole and CME related solar wind: Latitudinal variations observed by Ulysses and WIND

    NASA Technical Reports Server (NTRS)

    Galvin, A. B.; Gloeckler, G.

    1997-01-01

    Iron charge states in recurrent coronal hole-associated solar wind flows are obtained in the ecliptic by WIND/SMS, while measurements of iron and silicon from the polar coronal holes are available from Ulysses/SWICS. Ulysses/SWICS also provides ion composition of coronal mass ejection (CME)-related solar wind. Both coronal hole-associated and CME-related solar wind charge charges show heliographic latitudinal variations.

  16. Slow solar wind boundaries and implication for its formation

    NASA Astrophysics Data System (ADS)

    Ko, Yuan-Kuen; Roberts, Aaron; Lepri, Susan; Kocher, Manan

    2015-04-01

    Solar wind and the associated magnetic field permeate the heliosphere. Their temporal and spatial variations contribute significantly in the large range of variations in related geomagnetic effects as well as in the properties of solar energetic particles. Among the least understood is the slow solar wind for how it is formed at the Sun and what causes the large variations in its physical properties. This work investigates the variations in the slow solar wind streams measured in-situ at 1 AU and the correlations among the protons, heavy ions, suprathermal electrons, and magnetic field properties. Besides well-established correlations among the proton speed, proton temperature and ion charge states, we also found certain distinct characteristics in the correlation and temporal relationship between the ion charge states, proton velocity fluctuations and, in many cases, suprathermal electron halos. The implications from our findings in the slow wind formation and whether the slow wind has a distinct boundary with the fast wind will be discussed.

  17. On the correlation of spatial wind speed and solar irradiance variability above the North Sea

    NASA Astrophysics Data System (ADS)

    Rieke Mehrens, Anna; von Bremen, Lueder

    2016-04-01

    Mesoscale wind fluctuations on a time scale of tens of minutes to several hours lead to high wind power fluctuations. Enhanced mesoscale wind variability emerges during cold air outbreaks and resulting cellular convection. The study investigates spatial wind and solar variability and their correlation during cellular convection. Cellular convection leads to simultaneous high solar and wind variability, but the highest solar or wind variability occurs due to other meteorological phenomena.

  18. Thermalization of Heavy Ions in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Tracy, Patrick J.; Kasper, Justin C.; Zurbuchen, Thomas H.; Raines, Jim M.; Shearer, Paul; Gilbert, Jason

    2015-10-01

    Observations of velocity distribution functions from the Advanced Composition Explorer/Solar Wind Ion Composition Spectrometer heavy ion composition instrument are used to calculate ratios of kinetic temperature and Coulomb collisional interactions of an unprecedented 50 ion species in the solar wind. These ions cover a mass per charge range of 1-5.5 amu/e and were collected in the time range of 1998-2011. We report the first calculation of the Coulomb thermalization rate between each of the heavy ion (A > 4 amu) species present in the solar wind along with protons (H+) and alpha particles (He2+). From these rates, we find that protons are the dominant source of Coulomb collisional thermalization for heavy ions in the solar wind and use this fact to calculate a collisional age for those heavy ion populations. The heavy ion thermal properties are well organized by this collisional age, but we find that the temperature of all heavy ions does not simply approach that of protons as Coulomb collisions become more important. We show that He2+ and C6+ follow a monotonic decay toward equal temperatures with protons with increasing collisional age, but O6+ shows a noted deviation from this monotonic decay. Furthermore, we show that the deviation from monotonic decay for O6+ occurs in solar wind of all origins, as determined by its Fe/O ratio. The observed differences in heavy ion temperature behavior point toward a local heating mechanism that favors ions depending on their charge and mass.

  19. The abundances of elements and isotopes in the solar wind

    NASA Technical Reports Server (NTRS)

    Gloeckler, George; Geiss, Johannes

    1989-01-01

    Solar wind abundances have now been measured for eleven elements and the isotopes of the noble gases. Aside from solar wind protons and alpha particles, which have been studied extensively since the 1960's, information for heavier elements is limited. Nevertheless, two effects stand out. First is the enrichment of abundances of elements with low first ionization potential (FIP), most likely the combined result of an atom-ion separation process in the upper chromosphere, and a marginal coupling of low-charge-state heavy ions to protons and alphas during the acceleration of the solar wind. Second, there is variability in the solar wind composition over a whole range of time scales. Recent measurements carried out in the earth's magnetosheath during times that included high-speed coronal-hole-associated flows indicate a significantly lower overabundance of low FIP elements. Given the fact that the He/H ratio is remarkably constant in the coronal hole solar wind, this result suggests that both enrichment and variability are reduced in such flows.

  20. Direct evidence for kinetic effects associated with solar wind reconnection.

    PubMed

    Xu, Xiaojun; Wang, Yi; Wei, Fengsi; Feng, Xueshang; Deng, Xiaohua; Ma, Yonghui; Zhou, Meng; Pang, Ye; Wong, Hon-Cheng

    2015-01-01

    Kinetic effects resulting from the two-fluid physics play a crucial role in the fast collisionless reconnection, which is a process to explosively release massive energy stored in magnetic fields in space and astrophysical plasmas. In-situ observations in the Earth's magnetosphere provide solid consistence with theoretical models on the point that kinetic effects are required in the collisionless reconnection. However, all the observations associated with solar wind reconnection have been analyzed in the context of magnetohydrodynamics (MHD) although a lot of solar wind reconnection exhausts have been reported. Because of the absence of kinetic effects and substantial heating, whether the reconnections are still ongoing when they are detected in the solar wind remains unknown. Here, by dual-spacecraft observations, we report a solar wind reconnection with clear Hall magnetic fields. Its corresponding Alfvenic electron outflow jet, derived from the decouple between ions and electrons, is identified, showing direct evidence for kinetic effects that dominate the collisionless reconnection. The turbulence associated with the exhaust is a kind of background solar wind turbulence, implying that the reconnection generated turbulence has not much developed. PMID:25628139

  1. Direct evidence for kinetic effects associated with solar wind reconnection

    PubMed Central

    Xu, Xiaojun; Wang, Yi; Wei, Fengsi; Feng, Xueshang; Deng, Xiaohua; Ma, Yonghui; Zhou, Meng; Pang, Ye; Wong, Hon-Cheng

    2015-01-01

    Kinetic effects resulting from the two-fluid physics play a crucial role in the fast collisionless reconnection, which is a process to explosively release massive energy stored in magnetic fields in space and astrophysical plasmas. In-situ observations in the Earth's magnetosphere provide solid consistence with theoretical models on the point that kinetic effects are required in the collisionless reconnection. However, all the observations associated with solar wind reconnection have been analyzed in the context of magnetohydrodynamics (MHD) although a lot of solar wind reconnection exhausts have been reported. Because of the absence of kinetic effects and substantial heating, whether the reconnections are still ongoing when they are detected in the solar wind remains unknown. Here, by dual-spacecraft observations, we report a solar wind reconnection with clear Hall magnetic fields. Its corresponding Alfvenic electron outflow jet, derived from the decouple between ions and electrons, is identified, showing direct evidence for kinetic effects that dominate the collisionless reconnection. The turbulence associated with the exhaust is a kind of background solar wind turbulence, implying that the reconnection generated turbulence has not much developed. PMID:25628139

  2. COLLISIONLESS DAMPING AT ELECTRON SCALES IN SOLAR WIND TURBULENCE

    SciTech Connect

    TenBarge, J. M.; Howes, G. G.; Dorland, W.

    2013-09-10

    The dissipation of turbulence in the weakly collisional solar wind plasma is governed by unknown kinetic mechanisms. Two candidates have been suggested to play an important role in the dissipation, collisionless damping via wave-particle interactions and dissipation in small-scale current sheets. High resolution spacecraft measurements of the turbulent magnetic energy spectrum provide important constraints on the dissipation mechanism. The limitations of popular fluid and hybrid numerical schemes for simulation of the dissipation of solar wind turbulence are discussed, and instead a three-dimensional kinetic approach is recommended. We present a three-dimensional nonlinear gyrokinetic simulation of solar wind turbulence at electron scales that quantitatively reproduces the exponential form of the turbulent magnetic energy spectrum measured in the solar wind. A weakened cascade model that accounts for nonlocal interactions and collisionless Landau damping also quantitatively agrees with the observed exponential form. These results establish that a turbulent cascade of kinetic Alfven waves that is terminated by collisionless Landau damping is sufficient to explain the observed magnetic energy spectrum in the dissipation range of solar wind turbulence.

  3. SOLAR WIND MODELING WITH TURBULENCE TRANSPORT AND HEATING

    SciTech Connect

    Usmanov, Arcadi V.; Goldstein, Melvyn L.; Matthaeus, William H.; Breech, Benjamin A.

    2011-02-01

    We have developed an axisymmetric steady-state solar wind model that describes properties of the large-scale solar wind, interplanetary magnetic field, and turbulence throughout the heliosphere from 0.3 AU to 100 AU. The model is based on numerical solutions of large-scale Reynolds-averaged magnetohydrodynamic equations coupled with a set of small-scale transport equations for the turbulence energy, normalized cross helicity, and correlation scale. The combined set of time-dependent equations is solved in the frame of reference corotating with the Sun using a time-relaxation method. We use the model to study the self-consistent interaction between the large-scale solar wind and smaller-scale turbulence and the role of the turbulence in the large-scale structure and temperature distribution in the solar wind. To illuminate the roles of the turbulent cascade and the pickup protons in heating the solar wind depending on the heliocentric distance, we compare the model results with and without turbulence/pickup protons. The variations of plasma temperature in the outer heliosphere are compared with Ulysses and Voyager 2 observations.

  4. Role of Concentrating Solar Power in Integrating Solar and Wind Energy: Preprint

    SciTech Connect

    Denholm, P.; Mehos, M.

    2015-06-03

    As wind and solar photovoltaics (PV) increase in penetration it is increasingly important to examine enabling technologies that can help integrate these resources at large scale. Concentrating solar power (CSP) when deployed with thermal energy storage (TES) can provide multiple services that can help integrate variable generation (VG) resources such as wind and PV. CSP with TES can provide firm, highly flexible capacity, reducing minimum generation constraints which limit penetration and results in curtailment. By acting as an enabling technology, CSP can complement PV and wind, substantially increasing their penetration in locations with adequate solar resource.

  5. Influence of interplanetary solar wind sector polarity on the ionosphere

    NASA Astrophysics Data System (ADS)

    liu, jing

    2014-05-01

    Knowledge of solar sector polarity effects on the ionosphere may provide some clues in understanding of the ionospheric day-to-day variability. A solar-terrestrial connection ranging from solar sector boundary (SB) crossings, geomagnetic disturbance and ionospheric perturbations has been demonstrated. The increases in interplanetary solar wind speed within three days are seen after SB crossings, while the decreases in solar wind dynamic pressure and magnetic field intensity immediately after SB crossings are confirmed by the superposed epoch analysis results. Furthermore, the interplanetary magnetic field (IMF) Bz component turns from northward to southward in March equinox and June solstice as the Earth passes from a solar sector of outward to inward directed magnetic fields, whereas the reverse situation occurs for the transition from toward to away sectors. The F2 region critical frequency (foF2) covering about four solar cycles and total electron content (TEC) during 1998-2011 are utilized to extract the related information, revealing that they are not modified significantly and vary within the range of 15% on average. The responses of the ionospheric TEC to SB crossings exhibit complex temporal and spatial variations and have strong dependencies on season, latitude, and solar cycle. This effect is more appreciable in equinoctial months than in solstitial months, which is mainly caused by larger southward Bz components in equinox. In September equinox, latitudinal profile of relative variations of foF2 at noon is featured by depressions at high latitudes and enhancements in low-equatorial latitudes during IMF away sectors. The negative phase of foF2 is delayed at solar minimum relative to it during other parts of solar cycle, which might be associated with the difference in longevity of major interplanetary solar wind drivers perturbing the Earth's environment in different phases of solar cycle.

  6. Solar Wind Drivers of Storm-Time Radiation Belt Variations

    NASA Astrophysics Data System (ADS)

    Kilpua, Emilia; Hietala, Heli; Turner, Drew; Koskinen, Hannu; Pulkkinen, Tuija; Rodriguez, Juan; Reeves, Geoffrey; Claudepierre, Seth; Spence, Harlan

    2015-04-01

    It is an outstanding question why some storms result in an increase of the outer radiation belt electron fluxes, while others deplete them or produce no change. One approach to this problem is to look at differences in the large-scale solar wind storm drivers. The drivers have traditionally been classified to Stream Interaction Regions (SIRs) and Interplanetary Coronal Mass Ejections (ICMEs). However, ICMEs and SIRs are complex structures: SIRs consist of a slow stream followed by a turbulent, higher pressure interface region and then a faster stream. The core of the ICME is an ejecta. If the mass ejection is fast enough, it can drive a shock in front of it. This leads to the formation of a sheath region between the interplanetary shock and the leading edge of the ejecta. Fast streams that are integral part of SIR may or may not follow the ICME. The solar wind properties, and hence, the magnetospheric driving of different substructures in SIRs and ICMEs are very distinct. In this work we will investigate the radiation belt response to different storm drivers by combining near-Earth solar wind observations, long-term geosynchronous observations from GOES spanning over 1.5 solar cycles (1995-2013) and the state-of-the art Van Allen Probe data. Our study uses superposed epoch analysis with multiple reference times and we expand/contract each solar wind substructure to the population mean. This novel approach allows us to determine the typical evolution of the electron fluxes during each solar wind structure. Our results show that the separation of the effects from different parts of the ICME and SIRs will be crucial for understanding how radiation belt electrons react to different solar wind driving conditions.

  7. Self-similar signature of the active solar corona within the inertial range of solar-wind turbulence.

    PubMed

    Kiyani, K; Chapman, S C; Hnat, B; Nicol, R M

    2007-05-25

    We quantify the scaling of magnetic energy density in the inertial range of solar-wind turbulence seen in situ at 1 AU with respect to solar activity. At solar maximum, when the coronal magnetic field is dynamic and topologically complex, we find self-similar scaling in the solar wind, whereas at solar minimum, when the coronal fields are more ordered, we find multifractality. This quantifies the solar-wind signature that is of direct coronal origin and distinguishes it from that of local MHD turbulence, with quantitative implications for coronal heating of the solar wind. PMID:17677760

  8. Change of solar wind quasi-invariant in solar cycle 23—Analysis of PDFs

    NASA Astrophysics Data System (ADS)

    Leitner, M.; Farrugia, C. J.; Vörös, Z.

    2011-02-01

    An in situ solar wind measurement which is a very good proxy for solar activity, correlating well with the sunspot number, is the solar wind “quasi-invariant” (QI), which is defined as the ratio between magnetic and kinetic energy densities. Here we use 1-min OMNI data to determine yearly probability density functions (PDFs) for QI. We distinguish between fast and slow solar winds, and exclude interplanetary coronal mass ejections (ICMEs) from the data, since the latter have a different distribution. Fitting the PDFs by a log-kappa distribution, we discuss the variation of QI in the period 1995-2009, encompassing solar cycle 23 and the long, very quiet minimum in 2007-2009. The additional value of kappa allows us to obtain a better description for the tails of the distribution than the log-normal approach. Here we describe for the first time how parameter kappa changes over one solar cycle.

  9. Simulation of solar wind space weathering in orthopyroxene

    NASA Astrophysics Data System (ADS)

    Kuhlman, Kimberly R.; Sridharan, Kumar; Kvit, Alexander

    2015-09-01

    We have simulated solar wind-based space weathering on airless bodies in our Solar System by implanting hydrogen and helium into orthopyroxene at solar wind energies (~1 keV/amu). Here we present the results of the first scanning transmission electron microscope (STEM) study of one of these simulants. It has been demonstrated that the visible/near infrared (VNIR) reflectance spectra of airless bodies are dependent on the size and abundance of nanophase iron (npFe0) particles in the outer rims of regolith grains. However, the mechanism of formation of npFe0 in the patina on lunar regolith grains and in lunar agglutinates remains debated. As the lattice is disrupted by hydrogen and helium implantation, broken bonds are created. These dangling bonds are free to react with hydrogen, creating OH and/or H2O molecules within the grain. These molecules may diffuse out through the damaged lattice and migrate toward the cold traps identified at the lunar poles. This mechanism would leave the iron in a reduced state and able to form npFe0. This work illustrates that npFe0 can be nucleated in orthopyroxene under implantation of solar wind hydrogen and helium. Our data suggest that the solar wind provides a mechanism by which iron is reduced in the grain and npFe0 is nucleated in the outer surfaces of regolith grains. This formation mechanism should also operate on other airless bodies in the Solar System.

  10. The Solar Wind at 20-30 AU

    NASA Technical Reports Server (NTRS)

    Barnes, A.; Gazis, P. R.

    1984-01-01

    Pioneer 10 sampled the interplanetary plasma over the range 20 to 30 astronomical units, during the period 1979-1983. The median flow speed is about 400 km/s, and at 20 AU the median density, proton temperature and dynamic pressure are, respectively, 0.025 cm-3, 10(4) K, and 6x10-11 dyne cm-2. It is shown that the average solar wind flow speed does not vary significantly with increasing heliocentric distance, and the density falls off as R-2, as predicted by simple solar wind models. The day-to-day variations in solar wind parameters are smaller at larger distance. Very large shocks however, were detected beyond 25 AU. Comparison of Pioneer 10 and 11 observations at similar distances but different phases of the solar activity cycle shows that solar wind dynamic pressure varies over a wider range during epochs of high solar activity. The variation near 20 AU is likely to be smaller at Voyager 2 Uranus encounter than observed by Pioneer 10 in the 1979-80 period.

  11. Visibility-Graph Analysis of the Solar Wind Velocity

    NASA Astrophysics Data System (ADS)

    Suyal, Vinita; Prasad, Awadhesh; Singh, Harinder P.

    2014-01-01

    We analyze in situ measurements of the solar wind velocity obtained by the Advanced Composition Explorer (ACE) and the Helios spacecraft during the years 1998 - 2012 and 1975 - 1983, respectively. The data mainly belong to solar cycles 23 (1996 - 2008) and 21 (1976 - 1986). We used the directed horizontal-visibility-graph (DHVg) algorithm and estimated a graph functional, namely, the degree distance ( D), which is defined using the Kullback-Leibler divergence (KLD) to understand the time irreversibility of solar wind time-series. We estimated this degree-distance irreversibility parameter for these time-series at different phases of the solar activity cycle. The irreversibility parameter was first established for known dynamical data and was then applied to solar wind velocity time-series. It is observed that irreversibility in solar wind velocity fluctuations show a similar behavior at 0.3 AU ( Helios data) and 1 AU (ACE data). Moreover, the fluctuations change over the phases of the activity cycle.

  12. Generalized Similarity in Finite Range Solar Wind Magnetohydrodynamic Turbulence

    SciTech Connect

    Chapman, S. C.; Nicol, R. M.

    2009-12-11

    Extended or generalized similarity is a ubiquitous but not well understood feature of turbulence that is realized over a finite range of scales. The ULYSSES spacecraft solar polar passes at solar minimum provide in situ observations of evolving anisotropic magnetohydrodynamic turbulence in the solar wind under ideal conditions of fast quiet flow. We find a single generalized scaling function characterizes this finite range turbulence and is insensitive to plasma conditions. The recent unusually inactive solar minimum - with turbulent fluctuations down by a factor of approx2 in power - provides a test of this invariance.

  13. Generalized similarity in finite range solar wind magnetohydrodynamic turbulence.

    PubMed

    Chapman, S C; Nicol, R M

    2009-12-11

    Extended or generalized similarity is a ubiquitous but not well understood feature of turbulence that is realized over a finite range of scales. The ULYSSES spacecraft solar polar passes at solar minimum provide in situ observations of evolving anisotropic magnetohydrodynamic turbulence in the solar wind under ideal conditions of fast quiet flow. We find a single generalized scaling function characterizes this finite range turbulence and is insensitive to plasma conditions. The recent unusually inactive solar minimum--with turbulent fluctuations down by a factor of approximately 2 in power--provides a test of this invariance. PMID:20366193

  14. Determining the Coronal Origins of the Solar Wind Using Remote Sensing and In Situ Observations

    NASA Astrophysics Data System (ADS)

    Miralles, Mari Paz

    2013-05-01

    We study the origin and evolution of the solar wind by characterizing the physical properties of the solar wind plasma with multi-spacecraft (Hinode, SDO, SOHO, STEREO, ACE, Ulysses, WIND) and ground-based (MLSO, MWO, NSO, WSO) observations. We discuss the results for the fast solar wind from polar and low-latitude coronal-hole wind streams and for the slow wind from coronal-streamer wind streams. We also compare the characteristics of these wind streams with results from the previous solar cycle. This work is supported by NASA grant NNX10AQ58G to the Smithsonian Astrophysical Observatory.

  15. He abundance variations in the solar wind: Observations from Ulysses

    SciTech Connect

    Barraclough, B.L.; Feldman, W.C.; Gosling, J.T.; McComas, D.J.; Phillips, J.L.; Goldstein, B.E.

    1996-07-01

    The Ulysses mission is providing the first opportunity to observe variations in solar wind plasma parameters at heliographic latitudes far removed from the ecliptic plane. We present here an overview of the solar wind speed and the variability in helium abundance, [He], for the entire mission to date, data on [He] in six high-latitude coronal mass ejections (CMEs), and a superposed epoch analysis of [He] variations at the seven heliospheric current sheet (HCS) crossings made during the rapid-latitude-scan portion of the mission. The differences in the variability of the solar wind speed and [He] in high-latitude and equatorial regions are quite striking. Solar wind speed is generally low but highly variable near the solar equator, while at higher latitudes the average speed is quite high (average speed around 760 km/s) with little variability. [He] can vary over nearly two decades at low solar latitudes, while at high latitudes it varies only slightly around an average value of {approximately}4.3{percent}. In contrast to the high [He] that is often associated with CMEs observed near the ecliptic, none of the six high-speed CMEs encountered at high southern heliographic latitudes showed any significant variation in helium content from average values. Reasons for this difference between high and low latitude CME observations are not yet understood. A superposed epoch analysis of the [He] during all seven HCS crossings made as Ulysses passed from the southern to northern solar hemisphere shows the expected [He] minimum near the crossing and a broad ({plus_minus}3day) period of low [He] around the crossing time. We briefly discuss how our solar wind [He] observations may provide an accurate measure of the helium composition for all regions of the sun lying above the helium ionization zone. {copyright} {ital 1996 American Institute of Physics.}

  16. Tracking Back the Solar Wind to Its Photospheric Footpoints from Wind Observations - A Statistical Study

    NASA Astrophysics Data System (ADS)

    Huang, Chong; Yan, Yihua; Li, Gang; Deng, Yuanyong; Tan, Baolin

    2014-08-01

    It is of great importance to track the solar wind back to its photospheric source region and identify the related current sheets; this will provide key information for investigating the origin and predictions of the solar wind. We report a statistical study relating the photospheric footpoint motion and in-situ observation of current sheets in the solar wind. We used the potential force-free source-surface (PFSS) model and the daily synoptic charts to trace the solar wind back from 1 AU, as observed by the Wind spacecraft, to the solar surface. As the footpoints move along the solar surface we obtain a time series of the jump times between different points. These jumps can be within a cell and between adjacent cells. We obtained the distribution of the jump times and the distribution for a subset of the jump times in which only jumps between adjacent cells were counted. For both cases, the distributions clearly show two populations. These distributions are compared with the distribution of in-situ current sheets reported in an earlier work of Miao, Peng, and Li ( Ann. Geophys. 29, 237, 2011). Its implications on the origin of the current sheets are discussed.

  17. The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation for Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Kasper, J. C.; SWEAP Investigation Team

    2010-12-01

    The NASA Solar Probe Plus mission will be humanity’s first direct visit to the atmosphere of our Sun. The spacecraft will close to within nine solar radii (about four million miles) of the solar surface in order to observe the heating of the corona and the acceleration of the solar wind first hand. A key requirement for Solar Probe Plus is the ability to make continuous, accurate, and fast measurements of the electrons and ionized helium (alpha-particles) and hydrogen (protons) that constitute the bulk of the solar wind. The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation is a two-instrument suite that provides these observations. The purpose of this talk is to describe the science motivation for SWEAP, the instrument designs, and the expected data products. SWEAP consists of the Solar Probe Cup (SPC) and the Solar Probe Analyzers (SPAN). SWEAP measurements enable discovery and understanding of solar wind acceleration and formation, coronal and solar wind heating, high-energy particle acceleration, and the interaction between solar wind and the dust environment of the inner heliosphere. SPC is a Faraday Cup (FC) that looks at the Sun and measures ion and electron fluxes and flow angles as a function of energy. SPAN consists of an ion and electron electrostatic analyzer (ESA) on the ram side of SPP (SPAN-A) and an electron ESA on the anti-ram side (SPAN-B). SPAN-A and -B are rotated 90 degrees relative to one another so their broad FOV combine like the seams on a baseball to view the entire sky except for the region obscured by the heat shield. SWEAP data products include ion and electron velocity distribution functions with high energy and angular resolution at 0.5-16 Hz and flow angles and fluxes at 128 Hz. Continuous buffering provides triggered burst observations during shocks, reconnection events, and other transient structures with no changes to the instrument operating mode.

  18. Weakest solar wind of the space age and the current 'MINI' solar maximum

    SciTech Connect

    McComas, D. J.; Angold, N.; Elliott, H. A.; Livadiotis, G.; Schwadron, N. A.; Smith, C. W.; Skoug, R. M.

    2013-12-10

    The last solar minimum, which extended into 2009, was especially deep and prolonged. Since then, sunspot activity has gone through a very small peak while the heliospheric current sheet achieved large tilt angles similar to prior solar maxima. The solar wind fluid properties and interplanetary magnetic field (IMF) have declined through the prolonged solar minimum and continued to be low through the current mini solar maximum. Compared to values typically observed from the mid-1970s through the mid-1990s, the following proton parameters are lower on average from 2009 through day 79 of 2013: solar wind speed and beta (∼11%), temperature (∼40%), thermal pressure (∼55%), mass flux (∼34%), momentum flux or dynamic pressure (∼41%), energy flux (∼48%), IMF magnitude (∼31%), and radial component of the IMF (∼38%). These results have important implications for the solar wind's interaction with planetary magnetospheres and the heliosphere's interaction with the local interstellar medium, with the proton dynamic pressure remaining near the lowest values observed in the space age: ∼1.4 nPa, compared to ∼2.4 nPa typically observed from the mid-1970s through the mid-1990s. The combination of lower magnetic flux emergence from the Sun (carried out in the solar wind as the IMF) and associated low power in the solar wind points to the causal relationship between them. Our results indicate that the low solar wind output is driven by an internal trend in the Sun that is longer than the ∼11 yr solar cycle, and they suggest that this current weak solar maximum is driven by the same trend.

  19. XMM-Newton Observations of Solar Wind Charge Exchange Emission

    NASA Technical Reports Server (NTRS)

    Snowden, S. L.; Collier, M. R.; Kuntz, K. D.

    2004-01-01

    We present an XMM-Newton spectrum of diffuse X-ray emission from within the solar system. The spectrum is dominated by O VII and O VIII lines at 0.57 keV and 0.65 keV, O VIII (and possibly Fe XVII) lines at approximately 0.8 keV, Ne IX lines at approximately 0.92 keV, and Mg XI lines at approximately 1.35 keV. This spectrum is consistent with what is expected from charge exchange emission between the highly ionized solar wind and either interstellar neutrals in the heliosphere or material from Earth's exosphere. The emission is clearly seen as a low-energy ( E less than 1.5 keV) spectral enhancement in one of a series of observations of the Hubble Deep Field North. The X-ray enhancement is concurrent with an enhancement in the solar wind measured by the ACE satellite. The solar wind enhancement reaches a flux level an order of magnitude more intense than typical fluxes at 1 AU, and has ion ratios with significantly enhanced higher ionization states. Whereas observations of the solar wind plasma made at a single point reflect only local conditions which may only be representative of solar wind properties with spatial scales ranging from less than half of an Earth radii (approximately 10 s) to 100 Earth radii, X-ray observations of solar wind charge exchange are remote sensing measurements which may provide observations which are significantly more global in character. Besides being of interest in its own right for studies of the solar system, this emission can have significant consequences for observations of more cosmological objects. It can provide emission lines at zero redshift which are of particular interest (e.g., O VII and O VIII) in studies of diffuse thermal emission, and which can therefore act as contamination in objects which cover the entire detector field of view. We propose the use of solar wind monitoring data, such as from the ACE and Wind spacecraft, as a diagnostic to screen for such possibilities.

  20. CME propagation: where does solar wind drag 'take over'?

    NASA Astrophysics Data System (ADS)

    Subramanian, P.

    2013-12-01

    Coronal mass ejections (CMEs) from the Sun are known to be acted upon by driving as well as drag forces. They are generally thought to be driven by Lorentz self-forces, while the drag is due to viscous interaction with the ambient solar wind. However, the typical heliocentric distances at which driving forces cease to be dominant (and solar wind drag becomes important) is not obvious for most CMEs. We use a recently developed microphysical model for solar wind viscous drag (Subramanian, Lara and Borgazzi 2012) together with data for driving forces from a well observed set of flux rope CMEs to answer this question. These results are important for building quantitative models for CME propagation, especially for those CMEs which are not fast enough for one to assume that they are acted upon primarily by drag forces.

  1. Lunar fossil magnetism and perturbations of the solar wind.

    NASA Technical Reports Server (NTRS)

    Sonett, C. P.; Mihalov, J. D.

    1972-01-01

    Perturbations of the solar wind downstream of the moon and lying outside of the rarefaction wave that defines the diamagnetic cavity are used to define possible source regions comprised of intrinsically magnetized areas of the moon. A map of the moon is constructed showing that a model in which the sources are exposed to the grazing solar wind during the lunation yields a selenographically invariant set of regions strongly favoring the lunar highlands over the maria. An alternative model with the source due to electromagnetic induction is explored. The ages of the field sources should be consistent with those based on the basalt ages and possibly far older if the sources are connected with the formation of the highland rocks themselves. The perturbations are tentatively identified as weak shock waves, and a Mach angle in accord with nominal values for the solar wind is found.

  2. Dominant 2D magnetic turbulence in the solar wind

    NASA Technical Reports Server (NTRS)

    Bieber, John W.; Wanner, Wolfgang; Matthaeus, William H.

    1995-01-01

    There have been recent suggestions that solar wind magnetic turbulence may be a composite of slab geometry (wavevector aligned with the mean magnetic field) and 2D geometry (wavevectors perpendicular to the mean field). We report results of two new tests of this hypothesis using Helios measurements of inertial ranged magnetic spectra in the solar wind. The first test is based upon a characteristic difference between perpendicular and parallel reduced power spectra which is expected for the 2D component but not for the slab component. The second test examines the dependence of power spectrum density upon the magnetic field angle (i.e., the angle between the mean magnetic field and the radial direction), a relationship which is expected to be in opposite directions for the slab and 2D components. Both tests support the presence of a dominant (approximately 85 percent by energy) 2D component in solar wind magnetic turbulence.

  3. Dominant 2D magnetic turbulence in the solar wind

    SciTech Connect

    Bieber, John W.; Wanner, Wolfgang; Matthaeus, William H.

    1996-07-20

    There have been recent suggestions that solar wind magnetic turbulence may be a composite of slab geometry (wavevectors aligned with the mean magnetic field) and 2D geometry (wavevectors perpendicular to the mean field). We report results of two new tests of this hypothesis using Helios measurements of mid-inertial range magnetic spectra in the solar wind. The first test is based upon a characteristic difference between reduced magnetic power spectra in the two different directions perpendicular to the mean field. Such a difference is expected for 2D geometry but not for slab geometry. The second test examines the dependence of power spectrum density upon the magnetic field angle (i.e., the angle between the mean magnetic field and the radial direction), a relationship which is expected to be in opposite directions for the slab and 2D components. Both tests support the presence of a dominant ({approx}85% by energy) 2D component in solar wind magnetic turbulence.

  4. Solar-wind interactions - Nature and composition of lunar atmosphere

    NASA Technical Reports Server (NTRS)

    Mukherjee, N. R.

    1975-01-01

    The nature and composition of the lunar atmosphere are examined on the basis of solar-wind interactions, and the nature of the species in the trapped-gas layer is discussed using results of theoretical and experimental investigations. It is shown that the moon has a highly tenuous atmosphere consisting of various species derived from five sources: solar-wind interaction products, cosmic-ray interaction products, effects of meteoritic impacts, planetary degassing, and radioactive-decay products. Atmospheric concentrations are determined for those species derived from solar-wind protons, alpha particles, and oxygen ions. Carbon chemistry is briefly discussed, and difficulties encountered in attempts to determine quantitatively the concentrations of molecular oxygen, atomic oxygen, carbon monoxide, carbon dioxide, and methane are noted. The calculated concentrations are shown to be in good agreement with observations by the Apollo 17 lunar-surface mass spectrometer and orbital UV spectrometer.

  5. Effects of electrons on the solar wind proton temperature anisotropy

    SciTech Connect

    Michno, M. J.; Lazar, M.; Schlickeiser, R.; Yoon, P. H. E-mail: mlazar@tp4.rub.de E-mail: yoonp@umd.edu

    2014-01-20

    Among the kinetic microinstabilities, the firehose instability is one of the most efficient mechanisms to restrict the unlimited increase of temperature anisotropy in the direction of an ambient magnetic field as predicted by adiabatic expansion of collision-poor solar wind. Indeed, the solar wind proton temperature anisotropy detected near 1 AU shows that it is constrained by the marginal firehose condition. Of the two types of firehose instabilities, namely, parallel and oblique, the literature suggests that the solar wind data conform more closely to the marginal oblique firehose condition. In the present work, however, it is shown that the parallel firehose instability threshold is markedly influenced by the presence of anisotropic electrons, such that under some circumstances, the cumulative effects of both electron and proton anisotropies could describe the observation without considering the oblique firehose mode.

  6. PROTON KINETIC EFFECTS IN VLASOV AND SOLAR WIND TURBULENCE

    SciTech Connect

    Servidio, S.; Valentini, F.; Perrone, D.; Veltri, P.; Osman, K. T.; Chapman, S.; Califano, F.; Matthaeus, W. H.

    2014-02-01

    Kinetic plasma processes are investigated in the framework of solar wind turbulence, employing hybrid Vlasov-Maxwell (HVM) simulations. Statistical analysis of spacecraft observation data relates proton temperature anisotropy T /T {sub ∥} and parallel plasma beta β{sub ∥}, where subscripts refer to the ambient magnetic field direction. Here, this relationship is recovered using an ensemble of HVM simulations. By varying plasma parameters, such as plasma beta and fluctuation level, the simulations explore distinct regions of the parameter space given by T /T {sub ∥} and β{sub ∥}, similar to solar wind sub-datasets. Moreover, both simulation and solar wind data suggest that temperature anisotropy is not only associated with magnetic intermittent events, but also with gradient-type structures in the flow and in the density. This connection between non-Maxwellian kinetic effects and various types of intermittency may be a key point for understanding the complex nature of plasma turbulence.

  7. Observations of the solar wind with high temporal resolution

    NASA Astrophysics Data System (ADS)

    Zastenker, G. N.; Yermolaev, Yu. I.; Pinter, S.; Nemechek, Z.; Shafrankova, Ia.; Belikova, A. B.; Leibov, A. V.; Prokhorenko, V. I.; Stefanovich, A. E.; Bedrikov, A. G.

    1982-11-01

    During 1980-1981, the joint Soviet-Czechoslovakian plasma spectrometer ('Monitor') aboard the Prognoz-8 satellite was used to carry out high-temporal-resolution observations of processes in the solar wind and earth's magnetosphere. The objective of the experiment was to obtain continuous data on basic parameters of the solar wind, i.e., velocity, ion temperature and density, and arrival angles of the flow; as well as to investigate fast variations of the energy spectrum of the ion component of the solar wind in the interplanetary medium and at characteristic boundaries of the earth's magnetosphere. This paper describes the method of the experiment, and discusses first results relating to ion spectra and magnetospheric boundaries.

  8. Energy coupling between the solar wind and the magnetosphere

    NASA Technical Reports Server (NTRS)

    Akasofu, S.-I.

    1981-01-01

    A description is given of the path leading to the first approximation expression for the solar wind-magnetosphere energy coupling function (epsilon), which correlates well with the total energy consumption rate (U sub T) of the magnetosphere. It is shown that epsilon is the primary factor controlling the time development of magnetospheric substorms and storms. The finding of this particular expression epsilon indicates how the solar wind couples its energy to the magnetosphere; the solar wind and the magnetosphere make up a dynamo. In fact, the power generated by the dynamo can be identified as epsilon through the use of a dimensional analysis. In addition, the finding of epsilon suggests that the magnetosphere is closer to a directly driven system than to an unloading system which stores the generated energy before converting it to substorm and storm energies. The finding of epsilon and its implications is considered to have significantly advanced and improved the understanding of magnetospheric processes.

  9. Mirror Mode Structures in the Solar Wind: STEREO Observations

    NASA Astrophysics Data System (ADS)

    Enríquez-Rivera, O.; Blanco-Cano, X.; Russell, C. T.; Jian, L. K.; Luhmann, J. G.

    2010-03-01

    Mirror mode structures occur in the solar wind either as an isolated magnetic field depression or as trains of magnetic holes (or peaks). Some trains have long durations and have been named mirror mode storms [1]. In this work we investigate mirror mode structures at 1 AU using STEREO A and B high resolution data. Magnetic field data were scanned to search for magnetic holes and peaks in a relatively steady ambient solar wind. We found several examples of mirror mode structures present in the ambient solar wind and also associated with SIRs. In order to study mirror mode origin, we present a case study with mirror mode structures present in the leading edge of a SIR during almost 8 hours corresponding to mirror mode storms. We analyze mirror mode shape and duration as well as plasma and magnetic field conditions that occur in the region surrounding mirror mode storms.

  10. Features of solar wind acceleration according to radio occultation data

    NASA Technical Reports Server (NTRS)

    Efimov, A. I.

    1995-01-01

    In addressing one of the fundamental problems in solar physics establishing the mechanism(s) responsible for the solar wind acceleration and the corona heating - it is essential to have a reliable knowledge of the heliocentric radial dependence of the solar wind properties. Adequate data are available for small solar distances R less than 4 R(solar mass) from coronal white light and EUV observations and at distances R greater than 60 R(solar mass) from in situ measurements. One of the few methods available to fill in the gap between these boundaries is the radio scintillation technique. Taking the example of the solar wind velocity, the most reliable such measurements are obtained when phase fluctuation observations of scattered radio waves, which are not susceptible to saturation effects, are recorded at two or more widely-spaced ground stations. Two extensive observation campaigns of this type were carried out with the Venus-orbiting satellites Venera 10 in 1976 and Venera 15/16 in 1984. The observations were performed over the course of three months near superior conjunction at solar offset distances R approximately 6-80 R(solar mass). The main results from the subsequent analysis of these data are: (1) velocities vary between 250 and 380 km s(exp -1) for R greater than 20 R(solar mass), agreeing with similar measurements using natural sources (IPS); (2) velocities derived from two-station phase fluctuation observations varv between 70 and 120 km s(exp -1) for R less than 12 R(solar mass), i.e. values substantially lower than those derived from conventional IPS data; and (3) it is suggested that the different velocity profiles derived from the two data sets at small R may be due to the effects of magnetosonic and Alfvenic waves on radio wave scattering. Further analysis of additional radio sounding data should help resolve the apparent discrepancy.

  11. Solar Wind Observations from 10 to 30 AU Measured With The New Horizons Solar Wind Around Pluto (SWAP) Instrument

    NASA Astrophysics Data System (ADS)

    Elliott, H. A.; McComas, D. J.; Valek, P. W.; Nicolaou, G.; Bagenal, F.; Delamere, P. A.; Livadiotis, G.

    2014-12-01

    Beginning in 2012 the New Horizons mission to Pluto began collecting solar wind observations during the spacecraft hibernation greatly increasing the solar wind coverage. We have extensively analyzed both the laboratory and flight calibration measurements for the Solar Wind Around Pluto (SWAP) instrument to produce a data set of solar wind observations at times when the New Horizons spacecraft is spinning. This full data set spans from 10 to 30 AU, and the improved coverage portion spans from 20- 30 AU. Coincidently, in 2012 and 2013 the ACE, STEREO A, and STEREO B were well separated in longitude. We compare the New Horizons speeds with propagated 1 AU speed measurements, and find many of the largest scale structures persist beyond 20 AU. The New Horizons solar wind coverage between 20 and 30 AU is now extensive enough to examine the temperature-speed relationship and compare that to the relationship found in the inner heliosphere and to that in the Voyager 2 observations. Upon initial examination we also find a temperature-speed relationship that persists in the 20-30 AU distance range.

  12. The New Horizons Solar Wind Around Pluto (SWAP) Observations of the Solar Wind from 11–33 au

    NASA Astrophysics Data System (ADS)

    Elliott, H. A.; McComas, D. J.; Valek, P.; Nicolaou, G.; Weidner, S.; Livadiotis, G.

    2016-04-01

    The Solar Wind Around Pluto (SWAP) instrument on National Aeronautics and Space Administration's New Horizons Pluto mission has collected solar wind observations en route from Earth to Pluto, and these observations continue beyond Pluto. Few missions have explored the solar wind in the outer heliosphere making this dataset a critical addition to the field. We created a forward model of SWAP count rates, which includes a comprehensive instrument response function based on laboratory and flight calibrations. By fitting the count rates with this model, the proton density (n), speed (V), and temperature (T) parameters are determined. Comparisons between SWAP parameters and both propagated 1 au observations and prior Voyager 2 observations indicate consistency in both the range and mean wind values. These comparisons as well as our additional findings confirm that small and midsized solar wind structures are worn down with increasing distance due to dynamic interaction of parcels of wind with different speed. For instance, the T–V relationship steepens, as the range in V is limited more than the range in T with distance. At times the T–V correlation clearly breaks down beyond 20 au, which may indicate wind currently expanding and cooling may have an elevated T reflecting prior heating and compression in the inner heliosphere. The power of wind parameters at shorter periodicities decreases with distance as the longer periodicities strengthen. The solar rotation periodicity is present in temperature beyond 20 au indicating the observed parcel temperature may reflect not only current heating or cooling, but also heating occurring closer to the Sun.

  13. Influence of interplanetary solar wind sector polarity on the ionosphere

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Liu, Libo; Zhao, Biqiang; Wan, Weixing

    2012-08-01

    Knowledge of solar sector polarity effects on the ionosphere may provide some clues in understanding of the ionospheric day-to-day variability and "hysteresis" effect on foF2. Ionospheric response to changes in solar sector polarity has not been fully documented previously, partly due to the limitation of observations. In this study, a solar-terrestrial connection ranging from solar sector boundary (SB) crossings, geomagnetic disturbances and ionospheric perturbations has been demonstrated. The increases in interplanetary solar wind speed within three days are seen after SB crossings, while the decreases in solar wind dynamic pressure and magnetic field intensity immediately after SB crossings are confirmed by the superposed epoch analysis results. Furthermore, the interplanetary magnetic field (IMF) Bz component turns from northward to southward in March equinox and June solstice as the Earth passes from a solar sector of outward to inward directed magnetic fields, whereas the reverse situation occurs for the transition from toward to away sectors. The IMF Bz component for the same solar sector polarity has opposite signs between March equinox and September equinox, and also between June solstice and December solstice. In order to know how the ionosphere reacts to the interplanetary solar wind variations linkage of SB crossings, the F2 region critical frequency (foF2) covering about four solar cycles and total electron content (TEC) during 1998-2011 are utilized to extract the related information, revealing that they are not modified significantly and vary within the range of ±15% on average. The responses of the ionospheric TEC to SB crossings exhibit complex temporal and spatial variations and have strong dependencies on season, latitude, and solar cycle. This effect is more appreciable in equinoctial months than in solstitial months, which is mainly caused by larger southwardBzcomponents in equinox. In September equinox, latitudinal profile of relative

  14. Strong interaction between Phobos and the solar wind

    NASA Astrophysics Data System (ADS)

    Futaana, Y.; Barabash, S.; Holmstrom, M.; Nilsson, H.; Lundin, R.

    2009-12-01

    During the Mars Express (MEX) closest approach to Phobos on July 23, 2008, the ASPERA-3/IMA (Ion Mass Analyser) sensor on board MEX carried out ion observations. The approach was in the upstream solar wind, and IMA detected unusual signatures of the proton fluxes close to Phobos apart from the commonly seen bow shock signatures. Because MEX has no magnetometer on board it is not possible to directly back trace the trajectories of the observed protons. Thus, it was not easy to confirm if those protons came from Phobos. However, after a careful analysis, we conclude that the origin of these protons is indeed Phobos. The reasons are: 1. The energy of the observed protons is slightly less than the solar wind proton energy, and the energy spectrum have a low-energy tail. The protons behave as backscattered solar wind protons which was reported by the Japanese Kaguya mission at the Moon. 2. We conducted test particle backtracing assuming that the protons originate from Phobos under various magnetic field conditions. A consistent solution for all independent observations was found. 3. We looked through all the IMA data observed in the undisturbed solar wind, and found that the strong signals were only observed during the Phobos flyby. These analyses indicate that Phobos is the most probable source of the observed protons during the flyby. Even though the generation mechanism is not fully understood, by taking Kaguya observation close to Moon as an analogy, the observed protons close to Phobos are most probably solar wind protons backscattered from Phobos. The process of backscattering of impinging keV particles has never been considered because most of the particles have been assumed to be absorbed at the very rough surface of the regolith. However, these investigations suggest that the backscattering of the solar wind protons are a general feature of the atmosphereless body covered by regolith, which would be applicable to Mercury, meteorite, and moons of giant planets.

  15. Agua Caliente Wind/Solar Project at Whitewater Ranch

    SciTech Connect

    Hooks, Todd; Stewart, Royce

    2014-12-16

    Agua Caliente Band of Cahuilla Indians (ACBCI) was awarded a grant by the Department of Energy (DOE) to study the feasibility of a wind and/or solar renewable energy project at the Whitewater Ranch (WWR) property of ACBCI. Red Mountain Energy Partners (RMEP) was engaged to conduct the study. The ACBCI tribal lands in the Coachella Valley have very rich renewable energy resources. The tribe has undertaken several studies to more fully understand the options available to them if they were to move forward with one or more renewable energy projects. With respect to the resources, the WWR property clearly has excellent wind and solar resources. The DOE National Renewable Energy Laboratory (NREL) has continued to upgrade and refine their library of resource maps. The newer, more precise maps quantify the resources as among the best in the world. The wind and solar technology available for deployment is also being improved. Both are reducing their costs to the point of being at or below the costs of fossil fuels. Technologies for energy storage and microgrids are also improving quickly and present additional ways to increase the wind and/or solar energy retained for later use with the network management flexibility to provide power to the appropriate locations when needed. As a result, renewable resources continue to gain more market share. The transitioning to renewables as the major resources for power will take some time as the conversion is complex and can have negative impacts if not managed well. While the economics for wind and solar systems continue to improve, the robustness of the WWR site was validated by the repeated queries of developers to place wind and/or solar there. The robust resources and improving technologies portends toward WWR land as a renewable energy site. The business case, however, is not so clear, especially when the potential investment portfolio for ACBCI has several very beneficial and profitable alternatives.

  16. Generation of a Solar Wind Ensemble for Space Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Hassan, E.; Morley, S.; Steinberg, J. T.

    2015-12-01

    Knowing the upstream solar wind conditions is essential in forecasting the variations in the geomangetic field and the status of the Earth's ionosphere. Most data-driven simulations or data-assimilation codes, used for space weather forecasting, are based on the solar wind measurements at 1 AU, or more specifically at the first Lagrangian orbit (L1), such as observations from the Advanced Composition Explorer (ACE). However, L1 measurements may not represent the solar wind conditions just outside the magnetosphere. As a result, time-series measurements from L1 by themselves are not adequate to run simulations to derive probabilistic forecasts of the magnetosphere and ionosphere. To obtain confidence levels and uncertainty estimates, a solar wind ensemble data set is desirable. Therefore we used three years of measurements atACE advected using the flat delay method to the Interplanetary Monitoring Platform (IMP8) spacecraft location. Then, we compared both measurements to establish Kernel Density Estimation (KDE) functions for IMP8 measurements based on ACE measurements. In addition, we used a 4-categorization scheme to sort the incoming solar wind into ejecta, coronal-hole-origin, sector-reversal-regions, and streamer-belt-origin categories at both ACE and IMP8. We established the KDE functions for each category and compared with the uncategorized KDE functions. The location of the IMP8 spacecraft allows us to use these KDE functions to generate ensemble of solar wind data close to Earth's magnetopause. The ensemble can then be used to forecast the state of the geomagnetic field and the ionosphere.

  17. Turbulent Heating and Wave Pressure in Solar Wind Acceleration Modeling: New Insights to Empirical Forecasting of the Solar Wind

    NASA Astrophysics Data System (ADS)

    Woolsey, L. N.; Cranmer, S. R.

    2013-12-01

    The study of solar wind acceleration has made several important advances recently due to improvements in modeling techniques. Existing code and simulations test the competing theories for coronal heating, which include reconnection/loop-opening (RLO) models and wave/turbulence-driven (WTD) models. In order to compare and contrast the validity of these theories, we need flexible tools that predict the emergent solar wind properties from a wide range of coronal magnetic field structures such as coronal holes, pseudostreamers, and helmet streamers. ZEPHYR (Cranmer et al. 2007) is a one-dimensional magnetohydrodynamics code that includes Alfven wave generation and reflection and the resulting turbulent heating to accelerate solar wind in open flux tubes. We present the ZEPHYR output for a wide range of magnetic field geometries to show the effect of the magnetic field profiles on wind properties. We also investigate the competing acceleration mechanisms found in ZEPHYR to determine the relative importance of increased gas pressure from turbulent heating and the separate pressure source from the Alfven waves. To do so, we developed a code that will become publicly available for solar wind prediction. This code, TEMPEST, provides an outflow solution based on only one input: the magnetic field strength as a function of height above the photosphere. It uses correlations found in ZEPHYR between the magnetic field strength at the source surface and the temperature profile of the outflow solution to compute the wind speed profile based on the increased gas pressure from turbulent heating. With this initial solution, TEMPEST then adds in the Alfven wave pressure term to the modified Parker equation and iterates to find a stable solution for the wind speed. This code, therefore, can make predictions of the wind speeds that will be observed at 1 AU based on extrapolations from magnetogram data, providing a useful tool for empirical forecasting of the sol! ar wind.

  18. Modulation of Saturn's radio clock by solar wind speed.

    PubMed

    Zarka, Philippe; Lamy, Laurent; Cecconi, Baptiste; Prangé, Renée; Rucker, Helmut O

    2007-11-01

    The internal rotation rates of the giant planets can be estimated by cloud motions, but such an approach is not very precise because absolute wind speeds are not known a priori and depend on latitude: periodicities in the radio emissions, thought to be tied to the internal planetary magnetic field, are used instead. Saturn, despite an apparently axisymmetric magnetic field, emits kilometre-wavelength (radio) photons from auroral sources. This emission is modulated at a period initially identified as 10 h 39 min 24 +/- 7 s, and this has been adopted as Saturn's rotation period. Subsequent observations, however, revealed that this period varies by +/-6 min on a timescale of several months to years. Here we report that the kilometric radiation period varies systematically by +/-1% with a characteristic timescale of 20-30 days. Here we show that these fluctuations are correlated with solar wind speed at Saturn, meaning that Saturn's radio clock is controlled, at least in part, by conditions external to the planet's magnetosphere. No correlation is found with the solar wind density, dynamic pressure or magnetic field; the solar wind speed therefore has a special function. We also show that the long-term fluctuations are simply an average of the short-term ones, and therefore the long-term variations are probably also driven by changes in the solar wind. PMID:17994092

  19. Coherent structure and Intermittent Turbulence in the Solar Wind Plasma

    NASA Astrophysics Data System (ADS)

    Sondhiya, Deepak Kumar; Gwal, Ashok Kumar; Kasde, Satish Kumar

    2016-07-01

    We analyze the coherent structures and intermittent turbulence in the solar wind plasma using measurements from the Wind spacecraft. Previously established novel wavelet and higher order statistics are used in this work. We analyze the wavelet power spectrum of various solar wind plasma parameters. We construct a statistical significance level in the wavelet power spectrum to quantify the interference effects arising from filling missing data in the time series, allowing extraction of significant power from the measured data. We analyze each wavelet power spectra for transient coherency, and global periodicities resulting from the superposition of repeating coherent structures. Furthermore, these coherent structures are preferentially found in plasma unstable to the mirror and firehose instabilities. These results offer a new understanding of various processes in a turbulent regime. Finally, we discuss the implications of our results for current theories of solar wind generation and describe future work for determining the relationship between the coherent structures in our ionic composition data and the structure of the coronal magnetic field. Keywords: Wavelet Power Spectrum, Coherent structure and Solar wind plasma

  20. SOLAR WIND MAGNETOHYDRODYNAMICS TURBULENCE: ANOMALOUS SCALING AND ROLE OF INTERMITTENCY

    SciTech Connect

    Salem, C.; Bale, S. D.; Mangeney, A.; Veltri, P.

    2009-09-01

    In this paper, we present a study of the scaling properties and intermittency of solar wind MHD turbulence based on the use of wavelet transforms. More specifically, we use the Haar Wavelet transform on simultaneous 3 s resolution particle and magnetic field data from the Wind spacecraft, to investigate anomalous scaling and intermittency effects of both magnetic field and solar wind velocity fluctuations in the inertial range. For this purpose, we calculated spectra, structure functions, and probability distribution functions. We show that this powerful wavelet technique allows for a systematic elimination of intermittency effects on spectra and structure functions and thus for a clear determination of the actual scaling properties in the inertial range. The scaling of the magnetic field and the velocity fluctuations are found to be fundamentally different. Moreover, when the most intermittent structures superposed to the standard fluctuations are removed, simple statistics are recovered. The magnetic field and the velocity fluctuations exhibit a well-defined, although different, monofractal behavior, following a Kolmogorov -5/3 scaling and a Iroshnikov-Kraichnan -3/2 scaling, respectively. The multifractal properties of solar wind turbulence appear to be determined by the presence of those most intermittent structures. Finally, our wavelet technique also allows for a direct and systematic identification of the most active, singular structures responsible for the intermittency in the solar wind.

  1. Solar wind mass-loading due to dust

    NASA Astrophysics Data System (ADS)

    Rasca, A. P.; Horányi, M.

    2013-06-01

    Collisionless mass-loading by interplanetary dust particles is expected to cause a significant disruption in the flow of the solar wind. Dust particles near the Sun can become a source of ions and neutrals due to evaporation and sputtering. This mass-loading effect can lead to the formation of collisionless shocks, as it was first discussed in the case of solar wind interaction with comets. This effect can also be compared with a de Laval nozzle, which behaves differently between subsonic and supersonic flows. We investigate the effects of mass-loading resulting from sun-grazing comets or collisions by larger bodies in the vicinity of the Sun, where the solar wind transitions from subsonic to supersonic speeds. We look at results obtained using a simple 1D hydrodynamic model to mass-load ionized dust into the the wind near the sonic point, which are relevant for understanding the acceleration of the solar wind and possible changes in its composition due to dust.

  2. Solar Wind Mass-Loading Due to Dust

    NASA Astrophysics Data System (ADS)

    Rasca, A.; Horanyi, M.

    2011-12-01

    Collisionless mass-loading by interplanetary dust particles is expected to cause a significant disruption in the flow of the solar wind. Dust particles near the Sun can become a source of ions and neutrals due to evaporation and sputtering. This mass-loading effect can lead to the formation of collisionless shocks, as it was first discussed in the case of solar wind interaction with comets. This effect can also be compared with a de Laval nozzle, which behaves differently between subsonic and supersonic flows. We investigate the effects of mass-loading resulting from sun-grazing comets or collisions in the vicinity of the Sun, where the solar wind transitions from subsonic to supersonic speeds. We implement a hydrodynamic numerical model to generate a steady wind extending out to the inner heliosphere. Dust is introduced through a set of mass-loading source terms, and the model is evolved using a shock-capturing scheme. These results are relevant for understanding the acceleration of the solar wind and possible changes in its composition due to dust.

  3. The turbulent cascade and proton heating in the solar wind during solar minimum

    SciTech Connect

    Coburn, Jesse T.; Smith, Charles W.; Vasquez, Bernard J.; Stawarz, Joshua E.; Forman, Miriam A.

    2013-06-13

    Solar wind measurements at 1 AU during the recent solar minimum and previous studies of solar maximum provide an opportunity to study the effects of the changing solar cycle on in situ heating. Our interest is to compare the levels of activity associated with turbulence and proton heating. Large-scale shears in the flow caused by transient activity are a source that drives turbulence that heats the solar wind, but as the solar cycle progresses the dynamics that drive the turbulence and heat the medium are likely to change. The application of third-moment theory to Advanced Composition Explorer (ACE) data gives the turbulent energy cascade rate which is not seen to vary with the solar cycle. Likewise, an empirical heating rate shows no significan changes in proton heating over the cycle.

  4. Multi-parametric classification of the solar wind origins

    NASA Astrophysics Data System (ADS)

    Igor, Veselovskiy

    There are many types of the solar wind sources. They differ in physics and geometry. Our classification is based on dimensionless scaling parameters. Plasma kinetic and MHD regimes define microscopic and macroscopic sources with large and small Knudsen numbers correspondingly. We consider here only macroscopic sources. One-connected solar wind source surfaces represent the most known type in coronal holes. Their geometry and topology is poorly investigated. There are steady state and transient types of the solar wind and corresponding sources with a finite life time according to the Strouhal parameter. The material and energy reservoirs needed for the plasma outflow from the Sun can be stored at different altitudes and in different places in the atmosphere from the photosphere up to the outer corona not higher than several solar radii according to observations. The role of gravity forces diminishes with altitude and regulated by the Froude numbers in streamers and pseudo-streamers. Plasma down-flows were never observed at distances larger than about 6 solar radii. Plasma density, velocity, temperature, ion composition, magnetic and electric fields are combined in many tens of physically different and similar types of origins, which are partially known and to be discovered in future. Thermally driven or magnetically driven winds are well known and delimited by the plasma parameter beta, but we do not know as yet what type is dominating on the Sun as a star globally. This parameter generally around ~ 1, typically being <1 in coronal holes and >1 in active regions from case to case. Laminar and turbulent sources are characterized by corresponding Reynolds numbers. We point out the necessity of the electric field measurements in the corona for better understanding of the solar wind origins of inductive and potential types according to dimensionless Faraday number. Trieste numbers are needed to characterize mostly open, closed or intermittent situations in the sources

  5. Solar wind alpha particle capture at Mars and Venus

    NASA Astrophysics Data System (ADS)

    Stenberg, Gabriella; Barabash, Stas; Nilsson, Hans; Fedorov, A.; Brain, David; André, Mats

    Helium is detected in the atmospheres of both Mars and Venus. It is believed that radioactive decay of uranium and thorium in the interior of the planets' is not sufficient to account for the abundance of helium observed. Alpha particles in the solar wind are suggested to be an additional source of helium, especially at Mars. Recent hybrid simulations show that as much as 30We use ion data from the ASPERA-3 and ASPERA-4 instruments on Mars and Venus Express to estimate how efficient solar wind alpha particles are captured in the atmospheres of the two planets.

  6. On the long-tail solar wind electron velocity distribution

    NASA Technical Reports Server (NTRS)

    Shlesinger, Michael F.; Coplan, Michael A.

    1988-01-01

    The role of the log-normal distribution in the description of the high-energy tail of the electron velocity distribution in the solar wind plasma is examined. Specifically, it is shown that the core-halo solar wind distribution function can be understood in terms of a simple phenomenological model of general applicability in which the core has a Maxwellian or normal distribution and the halo a log-normal distribution. In the presence of structures in the interplanetary medium capable of interacting with the electrons, the model predicts a transition at the highest velocities to a secondary halo distribution.

  7. A sub-Alfvenic solar wind - Interplanetary and magnetosheath observations

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.; Asbridge, J. R.; Bame, S. J.; Feldman, W. C.; Zwickl, R. D.; Paschmann, G.; Sckopke, N.; Russell, C. T.

    1982-01-01

    During much of an approximately 5-hour period on November 22, 1979, plasma and field instruments on ISEE 3 measured a solar wind flow that was simultaneously supersonic and sub-Alfvenic (about 320 km/s) due to an abnormally low ion density (about 0.07 per cu cm). The nature of the disturbed flow adjacent to the magnetosphere is examined. This examination suggests that the earth's bow wave retained its shock-like character when the solar wind flow was sub-Alfvenic.

  8. Interaction effects between solar wind and comet Bennett

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Donn, B. D.; Rahe, J.; Neugebauer, M.

    1973-01-01

    Observations of the solar wind and the comet Bennett made during the period from Mar. 23 to Apr. 5, 1970 are considered. During this period the position of the comet had been comparatively close to earth at a distance of about 0.7 AU. Plasma data from four space probes and photographs of a number of observatories are taken into account. The relation between a sudden change in the velocity of the solar wind and the occurrence of a pronounced disturbance in the cometary tail is investigated.

  9. Solar wind control of magnetospheric pressure (CDAW 6)

    NASA Technical Reports Server (NTRS)

    Fairfield, D. H.

    1985-01-01

    The CDAW 6 data base is used to compare solar wind and magnetospheric pressures. The flaring angle of the tail magnetopause is determined by assuming that the component of solar wind pressure normal to the tail boundary is equal to the total pressure within the tail. Results indicate an increase in the tail flaring angle from 18 deg to 32 deg prior to the 1055 substorm onset and a decrease to 25 deg after the onset. This behavior supports the concept of tail energy storage before the substorm and subsequent release after the onset.

  10. Transport and Modulation of Cosmic Rays in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Bieber, John

    2004-11-01

    Understanding the mechanism by which energetic charged particles scatter and diffuse in collisionless plasma is an enduring fundamental problem of astrophysics. The study of this process in the solar wind provides vital opportunities for confronting theoretical models with direct observation. This talk will review recent advances in this field resulting from (1) an improved understanding of magnetic turbulence in the solar wind (especially relating to turbulence geometry), (2) the use of nonlinear methods in particle scattering theory, (3) increasingly realistic models of turbulence evolution and transport, and (4) detailed observations at far flung locations through the heliosphere (especially from Pioneer, Voyager, and Ulysses). Supported by NSF grant ATM-0000315.

  11. Interpretation of Solar Wind Composition Measurements from Ulysses

    NASA Technical Reports Server (NTRS)

    Esser, Ruth

    1999-01-01

    Ion charge states measured in situ in interplanetary space carry information on the properties of the solar wind plasma in the inner corona. This information is, however, not easy to extract from the in situ observations. The goal of the proposal was to determine solar wind models and coronal observations that are necessary tools for the interpretation of charge state observations. It has been shown that the interpretation of the in situ ion fractions are heavily dependent on the assumptions about conditions in the inner corona.

  12. Electron energy transport in the solar wind: Ulysses observations

    SciTech Connect

    Scime, E.E.; Gary, S.P.; Phillips, J.L.; Balogh, A.; Lengyel-Frey, D.

    1996-07-01

    Previous analysis suggests that the whistler heat flux instability is responsible for the regulation of the electron heat flux of the solar wind. For an interval of quiescent solar wind during the in-ecliptic phase of the Ulysses mission, the plasma wave data in the whistler frequency regime are compared to the predictions of the whistler heat flux instability model. The data is well constrained by the predicted upper bound on the electron heat flux and a clear correlation between wave activity and electron heat flux dissipation is observed. {copyright} {ital 1996 American Institute of Physics.}

  13. Compressive turbulent cascade and heating in the solar wind

    SciTech Connect

    Marino, R.; Sorriso-Valvo, L.; Noullez, A.; Bruno, R.

    2010-03-25

    A turbulent energy cascade has been recently identified in high-latitude solar wind data samples by using a Yaglom-like relation. However, analogous scaling law, suitably modified to take into account compressible fluctuations, has been observed in a much more extended fraction of the same data set recorded by the Ulysses spacecraft. Thus, it seems that large scale density fluctuations, despite their low amplitude, play a major role in the basic scaling properties of turbulence. The compressive turbulent cascade, moreover, seems to be able to supply the energy needed to account for the local heating of the non-adiabatic solar wind.

  14. Electron energy transport in the solar wind: Ulysses observations

    SciTech Connect

    Scime, Earl E.; Gary, S. Peter; Phillips, John L.; Balogh, Andre; Lengyel-Frey, Denise

    1996-07-20

    Previous analysis suggests that the whistler heat flux instability is responsible for the regulation of the electron heat flux of the solar wind. For an interval of quiescent solar wind during the in-ecliptic phase of the Ulysses mission, the plasma wave data in the whistler frequency regime are compared to the predictions of the whistler heat flux instability model. The data is well constrained by the predicted upper bound on the electron heat flux and a clear correlation between wave activity and electron heat flux dissipation is observed.

  15. CORE ELECTRON HEATING IN SOLAR WIND RECONNECTION EXHAUSTS

    SciTech Connect

    Pulupa, M. P.; Salem, C.; Phan, T. D.; Bale, S. D.; Gosling, J. T.

    2014-08-10

    We present observational evidence of core electron heating in solar wind reconnection exhausts. We show two example events, one which shows clear heating of the core electrons within the exhaust, and one which demonstrates no heating. The event with heating occurred during a period of high inflow Alfvén speed (V {sub AL}), while the event with no heating had a low V {sub AL}. This agrees with the results of a recent study of magnetopause exhausts, and suggests that similar core electron heating can occur in both symmetric (solar wind) and asymmetric (magnetopause) exhausts.

  16. Mass fractionation of the lunar surface by solar wind sputtering

    NASA Technical Reports Server (NTRS)

    Switkowski, Z. E.; Haff, P. K.; Tombrello, T. A.; Burnett, D. S.

    1977-01-01

    An investigation is conducted concerning the mass-fractionation effects produced in connection with the bombardment of the moon by the solar wind. Most of the material ejected by sputtering escapes the moon's gravity, but some returning matter settles back onto the lunar surface. This material, which is somewhat richer in heavier atoms than the starting surface, is incorporated into the heavily radiation-damaged outer surfaces of grains. The investigation indicates that sputtering of the lunar surface by the solar wind will give rise to significant surface heavy atom enrichments if the grain surfaces are allowed to come into sputtering equilibrium.

  17. Coronal Magnetic Field Topology and Source of Fast Solar Wind

    NASA Technical Reports Server (NTRS)

    Guhathakurta, M.; Sittler, E.; Fisher, R.; McComas, D.; Thompson, B.

    1999-01-01

    We have developed a steady state, 2D semi-empirical MHD model of the solar corona and the solar wind with many surprising results. This model for the first time shows, that the boundary between the fast and the slow solar wind as observed by Ulysses beyond 1 AU, is established in the low corona. The fastest wind observed by Ulysses (680-780 km/s) originates from the polar coronal holes at 70 -90 deg. latitude at the Sun. Rapidly diverging magnetic field geometry accounts for the fast wind reaching down to a latitude of +/- 30 deg. at the orbit of Earth. The gradual increase in the fast wind observed by Ulysses, with latitude, can be explained by an increasing field strength towards the poles, which causes Alfven wave energy flux to increase towards the poles. Empirically, there is a direct relationship between this gradual increase in wind speed and the expansion factor, f, computed at r greater than 20%. This relationship is inverse if f is computed very close to the Sun.

  18. Magnetic Fields generated in the Solar Wind Interaction with Mars

    NASA Astrophysics Data System (ADS)

    Vennerstrom, S.; Primdahl, F.

    The solar wind interaction with Mars has revealed a complexity that provide a major challenge for planetary exploration, and which places it as a central issue of current research in space physics. The combined effect of direct interaction between the solar wind and the atmosphere and the formation of mini-magnetospheres around the strong crustal anomalies is unique in the solar system and so far largely unexplored. The most extensive set of magnetic field observations near Mars comes from more than six years of operation of the Mars Global Surveyor MAG/ER measurements. These reveal both piled-up magnetic disturbances generated in the interaction with the atmosphere as well as significant perturbations associated with a direct interaction between the solar wind and the crustal fields. While the magnetic field in the pile-up region are generally closely associated with the upstream solar wind parameters, the perturbations close to the magnetic anomalies and in the ionosphere are much more complex. Combined magnetic field and plasma observations in the martian ionosphere as proposed in the Mars Escape and Magnetic Orbiter (MEMO) are clearly needed. In addition surface magnetic observations characterizing magnetic activity at Mars are highly called for.

  19. ACCELERATION OF THE SOLAR WIND BY ALFVEN WAVE PACKETS

    SciTech Connect

    Galinsky, V. L.; Shevchenko, V. I.

    2013-01-20

    A scale separation kinetic model of the solar wind acceleration is presented. The model assumes an isotropic Maxwellian distribution of protons and a constant influx of outward propagating Alfven waves with a single exponent Kolmogorov-type spectrum at the base of a coronal acceleration region ({approx}2 R {sub Sun }). Our results indicate that nonlinear cyclotron resonant interaction taking energy from Alfven waves and depositing it into mostly perpendicular heating of protons in initially weakly expanding plasma in a spherically non-uniform magnetic field is able to produce the typical fast solar wind velocities for the typical plasma and wave conditions after expansion to about 5-10 solar radii R {sub Sun }. The acceleration model takes into account the gravity force and the ambipolar electric field, as well as the mirror force, which plays the most important role in driving the solar wind acceleration. Contrary to the recent claims of Isenberg, the cold plasma dispersion only slightly slows down the acceleration and actually helps in obtaining the more realistic fast solar wind speeds.

  20. A reexamination of two-fluid solar wind models

    NASA Technical Reports Server (NTRS)

    Nerney, S.; Barnes, A.

    1977-01-01

    The two-fluid solar-wind equations have been solved by a method which is approximately 50 times faster than any previously developed, through the use of asymptotic expansions which are self-consistently iterated upon to find a solution that passes through the critical point. The energy assumptions in two-fluid solar-wind models are reexamined, and the conclusions are as follows: (1) proton thermal conduction may not be neglected, (2) the Coulomb logarithm must be calculated as a function of radius, and (3) the electron and proton temperatures at the base need not be equal, even when the time scale for energy exchange between the species is an order of magnitude smaller than the expansion time at the base. It is possible to reproduce reasonable quiet-time solar-wind parameters at 1 AU, but only if the proton temperature is approximately twice the electron temperature at 1 solar radius. This may indicate that extended proton heating is important in the outer solar corona. Winds with velocities at 1 AU of 450 km/s are generated without nonthermal energy deposition but require high proton temperatures as well as very low densities at the base. Higher-velocity solutions are not possible in a spherically symmetric geometry for reasonable particle fluxes at 1 AU, and it is suggested that these higher-velocity states probably require additional heating, acceleration mechanisms, or nonradial flow.

  1. THE SPECTROSCOPIC FOOTPRINT OF THE FAST SOLAR WIND

    SciTech Connect

    McIntosh, Scott W.; Leamon, Robert J.; De Pontieu, Bart E-mail: robert.j.leamon@nasa.gov

    2011-01-20

    We analyze a large, complex equatorial coronal hole (ECH) and its immediate surroundings with a focus on the roots of the fast solar wind. We start by demonstrating that our ECH is indeed a source of the fast solar wind at 1 AU by examining in situ plasma measurements in conjunction with recently developed measures of magnetic conditions of the photosphere, inner heliosphere, and the mapping of the solar wind source region. We focus the bulk of our analysis on interpreting the thermal and spatial dependence of the non-thermal line widths in the ECH as measured by SOHO/SUMER by placing the measurements in context with recent studies of ubiquitous Alfven waves in the solar atmosphere and line profile asymmetries (indicative of episodic heating and mass loading of the coronal plasma) that originate in the strong, unipolar magnetic flux concentrations that comprise the supergranular network. The results presented in this paper are consistent with a picture where a significant portion of the energy responsible for the transport of heated mass into the fast solar wind is provided by episodically occurring small-scale events (likely driven by magnetic reconnection) in the upper chromosphere and transition region of the strong magnetic flux regions that comprise the supergranular network.

  2. The Spectroscopic Footprint of the Fast Solar Wind

    NASA Astrophysics Data System (ADS)

    McIntosh, Scott W.; Leamon, Robert J.; De Pontieu, Bart

    2011-01-01

    We analyze a large, complex equatorial coronal hole (ECH) and its immediate surroundings with a focus on the roots of the fast solar wind. We start by demonstrating that our ECH is indeed a source of the fast solar wind at 1 AU by examining in situ plasma measurements in conjunction with recently developed measures of magnetic conditions of the photosphere, inner heliosphere, and the mapping of the solar wind source region. We focus the bulk of our analysis on interpreting the thermal and spatial dependence of the non-thermal line widths in the ECH as measured by SOHO/SUMER by placing the measurements in context with recent studies of ubiquitous Alfvén waves in the solar atmosphere and line profile asymmetries (indicative of episodic heating and mass loading of the coronal plasma) that originate in the strong, unipolar magnetic flux concentrations that comprise the supergranular network. The results presented in this paper are consistent with a picture where a significant portion of the energy responsible for the transport of heated mass into the fast solar wind is provided by episodically occurring small-scale events (likely driven by magnetic reconnection) in the upper chromosphere and transition region of the strong magnetic flux regions that comprise the supergranular network.

  3. CHARACTERIZATION OF TRANSITIONS IN THE SOLAR WIND PARAMETERS

    SciTech Connect

    Perri, S.; Balogh, A. E-mail: a.balogh@imperial.ac.u

    2010-02-20

    The distinction between fast and slow solar wind streams and the dynamically evolved interaction regions is reflected in the characteristic fluctuations of both the solar wind and the embedded magnetic field. High-resolution magnetic field data from the Ulysses spacecraft have been analyzed. The observations show rapid variations in the magnetic field components and in the magnetic field strength, suggesting a structured nature of the solar wind at small scales. The typical sizes of fluctuations cover a broad range. If translated to the solar surface, the scales span from the size of granules ({approx}10{sup 3} km) and supergranules ({approx}10{sup 4} km) on the Sun down to {approx}10{sup 2} km and less. The properties of the short time structures change in the different types of solar wind. While fluctuations in fast streams are more homogeneous, slow streams present a bursty behavior in the magnetic field variances, and the regions of transition are characterized by high levels of power in narrow structures around the transitions. The probability density functions of the magnetic field increments at several scales reveal a higher level of intermittency in the mixed streams, which is related to the presence of well localized features. It is concluded that, apart from the differences in the nature of fluctuations in flows of different coronal origin, there is a small-scale structuring that depends on the origin of streams themselves but it is also related to a bursty generation of the fluctuations.

  4. Study of the mechanism for solar wind formation

    NASA Technical Reports Server (NTRS)

    Eselevich, V. G.; Filippov, M. A.

    1987-01-01

    Observations of the corona and solar wind are analyzed and compared with generalized results derived from laboratory-scale experiments. It was shown that a thermal pressure gradient can make a major contribution to a precipitating plasma of the solar wind emanating from coronal holes. It is found that the divergence Phi = (R/R sub solar radius)f of the magnetic field lines, originating from coronal holes, is one of the factors governing solar wind velocity at Earth orbit (R= 1 AU). A decrease in the velocity V sub R = 1 AU from approx = 750 mk/sec down to approx = 450 km/sec may be attributable to an increase in superradial divergence f from approx = 7-9 to 20. The plasma energy flux density F at the base of the coronal holes representing the sources of the solar wind with V sub R=1AE = (450 to 750) km/sec, remains nearly constant, being F approx = (1.4 +/- 0.3) x 10 to the 6th power x ergs/sq cm/sec for the period 1973-1975.

  5. Zero-beta MHD simulations of a solar eruption driven by a solar wind in the corona

    NASA Astrophysics Data System (ADS)

    Lee, Hwanhee; Magara, Tetsuya; Kang, Jihye

    2016-05-01

    Solar winds always exist in the corona, continuously carrying out magnetized plasmas from the solar surface toward the interplanetary space. We assume that a solar wind also plays an important role in producing a solar eruption. To confirm this hypothesis, we construct a solar eruption model in which a solar wind upflow is imposed at the top boundary of three-dimensional zero-beta magnetogydrodynamic (MHD) simulations. The initial magnetic field is given by nonlinear force-free field (NLFFF) reconstruction that is applied to the surface field provided by a flux emergence simulation. The simulation demonstrates that a solar eruption occurs due to the imbalance between magnetic pressure gradient force and magnetic tension force caused by a solar wind that gradually transports the envelope flux outward. This result provides important insights into the role of solar winds in producing solar eruptions.

  6. Space Weathering Dominated by Solar Wind at Earth-Moon Distance

    NASA Astrophysics Data System (ADS)

    Kramer, G. Y.

    2016-05-01

    Micrometeorites and solar wind ions are largely responsible for weathering the surfaces of airless bodies. But which dominates? The lunar swirls demonstrate the dominance of the solar wind on space weathering, at least at the Earth-Moon distance.

  7. On the Origin of Mid-latitude Fast Wind: Challenging the Two-state Solar Wind Paradigm

    NASA Astrophysics Data System (ADS)

    Stakhiv, Mark; Landi, Enrico; Lepri, Susan T.; Oran, Rona; Zurbuchen, Thomas H.

    2015-03-01

    The bimodal paradigm of solar wind describes a slow solar wind situated near the heliospheric current sheet while a fast wind overexpands from the poles to fill in the remainder of the heliosphere. In this paper, we challenge this paradigm and focus here on mid-latitude wind using three fast-latitude passes completed by the Ulysses spacecraft. Based on its composition and dynamic properties, we discuss how this wind differs from both the fast, polar coronal hole wind and the low latitude, streamer-associated slow solar wind. Using a detailed analysis of ionic and elemental abundances, as well as solar wind dynamic properties, we conclude that there is a third quasi-stationary solar wind state, called the boundary wind. This boundary wind is characterized by a charge-state distribution that is similar to slow wind, but with an elemental composition that is coronal hole like. Based on these data, we present arguments for the location of the origin of this wind. We conclude that the boundary wind is a subset of the fast wind emanating from regions close to the boundaries of coronal holes and is accelerated by a similar process.

  8. Elemental and isotopic abundances in the solar wind

    NASA Technical Reports Server (NTRS)

    Geiss, J.

    1972-01-01

    The use of collecting foils and lunar material to assay the isotopic composition of the solar wind is reviewed. Arguments are given to show that lunar surface correlated gases are likely to be most useful in studying the history of the solar wind, though the isotopic abundances are thought to give a good approximation to the solar wind composition. The results of the analysis of Surveyor material are also given. The conditions leading to a significant component of the interstellar gas entering the inner solar system are reviewed and suggestions made for experimental searches for this fraction. A critical discussion is given of the different ways in which the basic solar composition could be modified by fractionation taking place between the sun's surface and points of observation such as on the Moon or in interplanetary space. An extended review is made of the relation of isotopic and elemental composition of the interplanetary gas to the dynamic behavior of the solar corona, especially processes leading to fractionation. Lastly, connection is made between the subject of composition, nucleosynthesis and the convective zone of the sun, and processes leading to modification of initial accretion of certain gases on the Earth and Moon.

  9. Slow and fast solar wind - data selection and statistical analysis

    NASA Astrophysics Data System (ADS)

    Wawrzaszek, Anna; Macek, Wiesław M.; Bruno, Roberto; Echim, Marius

    2014-05-01

    In this work we consider the important problem of selection of slow and fast solar wind data measured in-situ by the Ulysses spacecraft during two solar minima (1995-1997, 2007-2008) and solar maximum (1999-2001). To recognise different types of solar wind we use a set of following parameters: radial velocity, proton density, proton temperature, the distribution of charge states of oxygen ions, and compressibility of magnetic field. We present how this idea of the data selection works on Ulysses data. In the next step we consider the chosen intervals for fast and slow solar wind and perform statistical analysis of the fluctuating magnetic field components. In particular, we check the possibility of identification of inertial range by considering the scale dependence of the third and fourth orders scaling exponents of structure function. We try to verify the size of inertial range depending on the heliographic latitudes, heliocentric distance and phase of the solar cycle. Research supported by the European Community's Seventh Framework Programme (FP7/2007 - 2013) under grant agreement no 313038/STORM.

  10. Wind effects in solar fields with various collector designs

    NASA Astrophysics Data System (ADS)

    Paetzold, Joachim; Cochard, Steve; Fletcher, David F.; Vassallo, Anthony

    2016-05-01

    Parabolic trough power plants are often located in areas that are subjected to high wind speeds, as an open terrain without any obstructions is beneficial for the plant performance. The wind impacts both the structural requirements and the performance of the plant. The aerodynamic loads from the wind impose strong requirements on the support structure of the reflectors, and they also impact the tracking accuracy. On a thermal level the airflow around the glass envelope of the receiver tube cools its outer surface through forced convection, thereby contributing to the heat loss. Based on previous studies at the level of an individual row of collectors, this study analyses the wind effects in a full-scale solar field of different continuous and staggered trough designs. The airflow around several rows of parabolic trough collectors (PTC) is simulated at full scale in steady state simulations in an atmospheric boundary layer flow using the commercial computational fluid dynamics software ANSYSO® CFX 15.0. The effect of the wake of a collector row on the following collectors is analysed, and the aerodynamic loads are compared between the different geometries. The outermost collectors of a solar field experience the highest wind forces, as the rows in the interior of the solar field are protected from high wind speeds. While the aerodynamic forces in the interior of the solar field are almost independent of the collector shape, the deeper troughs (with large rim angles) tested in this study show a lower heat loss due to forced convection on the outer surface of the receiver tube than the shallower ones (with small rim angles) in most of the solar field.

  11. A Model fot the Sources of the Slow Solar Wind

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.; Mikic, Z.; Titov, V. S.; Lionello, R.; Linker, J. A.

    2011-01-01

    Models for the origin of the slow solar wind must account for two seemingly contradictory observations: the slow wind has the composition of the closed-field corona, implying that it originates from the continuous opening and closing of flux at the boundary between open and closed field. On the other hand, the slow wind also has large angular width, up to approx.60deg, suggesting that its source extends far from the open-closed boundary. We propose a model that can explain both observations. The key idea is that the source of the slow wind at the Sun is a network of narrow (possibly singular) open-field corridors that map to a web of separatrices and quasi-separatrix layers in the heliosphere. We compute analytically the topology of an open-field corridor and show that it produces a quasi-separatrix layer in the heliosphere that extends to angles far from the heliospheric current sheet. We then use an MHD code and MDI/SOHO observations of the photospheric magnetic field to calculate numerically, with high spatial resolution, the quasi-steady solar wind, and magnetic field for a time period preceding the 2008 August 1 total solar eclipse. Our numerical results imply that, at least for this time period, a web of separatrices (which we term an S-web) forms with sufficient density and extent in the heliosphere to account for the observed properties of the slow wind. We discuss the implications of our S-web model for the structure and dynamics of the corona and heliosphere and propose further tests of the model. Key words: solar wind - Sun: corona - Sun: magnetic topology

  12. Electric Solar Wind Sail (E-sail) mission to asteroids

    NASA Astrophysics Data System (ADS)

    Merikallio, Sini; Janhunen, Pekka; Toivanen, Petri; Jouni Envall, M.(Tech.).

    2012-07-01

    There are an estimated one to two million asteroids of diameter over 1 km in-between the orbits of Mars and Jupiter. Impact threat, mining prospects and the understanding of solar system history make asteroids interesting objects for further in-situ studies. Electric Solar Wind Sail (E-sail) [1] technology enables touring several different asteroids with the same spacecraft. It is a propulsion technology first proposed in 2006 and currently developed with the EUs FP7 funding (http://www.electric-sailing.fi/fp7). The E-sail utilizes long, conducting, highly charged tethers to gather momentum from the solar wind ions. It does not consume any propellant and is well maneuverable. The Electric Solar Wind Sail producing 1 N of thrust at 1 AU distance from the Sun could be manufactured to weigh 100-150 kg in total. The constant acceleration gives a large advantage over traditional methods when calculated over the mission lifetime. In a ten year mission a baseline 1 N E-sail could produce 300 MNs of total impulse, Itot. As an example, such a total impulse would be able to move a 3 million ton Earth-threatening asteroid to a safer track [2]. With chemical propellant it would take 100 000 tons of fuel to achieve the same feat. Scientists and miners could have a closer look at several targets and they could decide the next target and the duration of investigations once at the vicinity of the asteroid, so the operations would be very flexible. Such a mission could characterize and map several asteroids, some with rapid fly-bys and a few chosen ones during lengthier rendezvous. [1] Janhunen, P., et. al, Electric solar wind sail: Towards test missions (Invited article), Rev. Sci. Instrum., 81, 111301, 2010. [2] Merikallio, S. and P. Janhunen, Moving an asteroid with electric solar wind sail, Astrophys. Space Sci. Trans., 6, 41-48, 2010

  13. Solar Wind Characteristics from SOHO-Sun-Ulysses Quadrature Observations

    NASA Technical Reports Server (NTRS)

    Poletto, Giannina; Suess, Steve T.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Over the past few years, we have been running SOHO (Solar and Heliospheric Observatory)-Sun-Ulysses quadrature campaigns, aimed at comparing the plasma properties at coronal altitudes with plasma properties at interplanetary distances. Coronal plasma has been observed by SOHO experiments: mainly, we used LASCO (Large Angle and Spectrometric Coronagraph Experiment) data to understand the overall coronal configuration at the time of quadratures and analyzed SUMER (Solar Ultraviolet Measurements of Emitted Radiation), CDS (Coronal Diagnostic Spectrometer) and UVCS (Ultraviolet Coronagraph Spectrometer) data to derive its physical characteristics. At interplanetary distances, SWICS (Solar Wind Ion Composition Spectrometer) and SWOOPS (Solar Wind Observation over the Poles of the Sun) aboard Ulysses provided us with interplanetary plasma data. Here we report on results from some of the campaigns. We notice that, depending on the geometry of the quadrature, i.e. on whether the radial to Ulysses traverses the corona at high or low latitudes, we are able to study different kinds of solar wind. In particular, a comparison between low-latitude and high-latitude wind, allowed us to provide evidence for differences in the acceleration of polar, fast plasma and equatorial, slow plasma: the latter occurring at higher levels and through a more extended region than fast wind. These properties are shared by both the proton and heavy ions outflows. Quadrature observations may provide useful information also on coronal vs. in situ elemental composition. To this end, we analyzed spectra taken in the corona, at altitudes ranging between approx. 1.02 and 2.2 solar radii, and derived the abundances of a number of ions, including oxygen and iron. Values of the O/Fe ratio, at coronal levels, have been compared with measurements of this ratio made by SWICS at interplanetary distances. Our results are compared with previous findings and predictions from modeling efforts.

  14. Investigations to Determine the Origin of the Solar Wind with SPICE and SolarOrbiter

    NASA Astrophysics Data System (ADS)

    Hassler, Donald M.; DeForest, C.; Wilkinson, E.; Davila, J.; SPICE Team

    2011-05-01

    At large spatial scales, the structure of the solar wind and it's mapping back to the solar corona, is thought to be reasonably well understood. However, the detailed structure of the various source regions at chromospheric and transition region heights is extremely complex, and less well understood. Determining this connection between heliospheric structures and their source regions at the Sun is one of the overarching objective of the Solar Orbiter mission. During perihelion segments of its orbit, when the spacecraft is in quasi-corotation with the Sun, Solar Orbiter will determine the plasma parameters and compositional signatures of the solar wind, which can be compared directly with the spectroscopic signatures of coronal ions with differing charge-to-mass ratios and FIP. One of the key instruments on the Solar Orbiter mission to make these remote sensing measurements is the SPICE (Spectral Imaging of the Coronal Environment) imaging spectrograph. SPICE will provide the images and plasma diagnostics needed to characterize the plasma state in different source regions, from active regions to quiet Sun to coronal holes. By comparing composition, plasma parameters, and low/high FIP ratios of structures remotely, with those measured directly at the Solar Orbiter spacecraft, Solar Orbiter will provide the first direct link between solar wind structures and their source regions at the Sun. This talk will provide a background of previous compositional correlation measurements and an outline of the method to be used for comparing the spectroscopic and in-situ plasma parameters to be measured with Solar Orbiter.

  15. Solar wind interaction with lunar magnetic fields.

    NASA Technical Reports Server (NTRS)

    Siscoe, G. L.; Goldstein, B.

    1973-01-01

    Two basic interaction modes have been identified: (1) deflection currents that close above the surface, typified by a subsurface dipole with its axis perpendicular to the surface, and (2) deflection currents that intersect the lunar surface, typified by a subsurface dipole with its axis parallel to the surface. The first results in a compression of the lunar field and, if it is strong enough, can stop the wind above the surface. The extent of compression depends on how much the wind is slowed before striking the surface. The second mode results in a small deflection of the wind. In both modes, charging up of the surface is important. The effects of discharging the surface charge through the photolayer and the lunar crust are found to be unimportant for typical lunar parameters.

  16. IMPLICATIONS OF THE RECENT LOW SOLAR MINIMUM FOR THE SOLAR WIND DURING THE MAUNDER MINIMUM

    SciTech Connect

    Lockwood, M.; Owens, M. J.

    2014-01-20

    The behavior of the Sun and near-Earth space during grand solar minima is not understood; however, the recent long and low minimum of the decadal-scale solar cycle gives some important clues, with implications for understanding the solar dynamo and predicting space weather conditions. The speed of the near-Earth solar wind and the strength of the interplanetary magnetic field (IMF) embedded within it can be reliably reconstructed for before the advent of spacecraft monitoring using observations of geomagnetic activity that extend back to the mid-19th century. We show that during the solar cycle minima around 1879 and 1901 the average solar wind speed was exceptionally low, implying the Earth remained within the streamer belt of slow solar wind flow for extended periods. This is consistent with a broader streamer belt, which was also a feature of the recent low minimum (2009), and yields a prediction that the low near-Earth IMF during the Maunder minimum (1640-1700), as derived from models and deduced from cosmogenic isotopes, was accompanied by a persistent and relatively constant solar wind of speed roughly half the average for the modern era.

  17. Genesis Silicon Carbide Concentrator Target 60003 Preliminary Ellipsometry Mapping Results

    NASA Technical Reports Server (NTRS)

    Calaway, M. J.; Rodriquez, M. C.; Stansbery, E. K.

    2007-01-01

    The Genesis concentrator was custom designed to focus solar wind ions primarily for terrestrial isotopic analysis of O-17/O-16 and O-18/O-16 to +/-1%, N-15/N-14 to +/-1%, and secondarily to conduct elemental and isotopic analysis of Li, Be, and B. The circular 6.2 cm diameter concentrator target holder was comprised of four quadrants of highly pure semiconductor materials that included one amorphous diamond-like carbon, one C-13 diamond, and two silicon carbide (SiC). The amorphous diamond-like carbon quadrant was fractured upon impact at Utah Test and Training Range (UTTR), but the remaining three quadrants survived fully intact and all four quadrants hold an important collection of solar wind. The quadrants were removed from the target holder at NASA Johnso n Space Center Genesis Curation Laboratory in April 2005, and have been housed in stainless steel containers under continual nitrogen purge since time of disintegration. In preparation for allocation of a silicon carbide target for oxygen isotope analyses at UCLA, the two SiC targets were photographed for preliminary inspection of macro particle contamination from the hard non-nominal landing as well as characterized by spectroscopic ellipsometry to evaluate thin film contamination. This report is focused on Genesis SiC target sample number 60003.

  18. A comparison of solar wind streams and coronal structure near solar minimum

    NASA Technical Reports Server (NTRS)

    Nolte, J. T.; Davis, J. M.; Gerassimenko, M.; Lazarus, A. J.; Sullivan, J. D.

    1977-01-01

    Solar wind data from the MIT detectors on the IMP 7 and 8 satellites and the SOLRAD 11B satellite for the solar-minimum period September-December, 1976, were compared with X-ray images of the solar corona taken by rocket-borne telescopes on September 16 and November 17, 1976. There was no compelling evidence that a coronal hole was the source of any high speed stream. Thus it is possible that either coronal holes were not the sources of all recurrent high-speed solar wind streams during the declining phase of the solar cycle, as might be inferred from the Skylab period, or there was a change in the appearance of some magnetic field regions near the time of solar minimum.

  19. A review of solar wind ion and electron plasma distributions: Present understanding and Ulysses results

    SciTech Connect

    Goldstein, B. E.

    1996-07-20

    Unlike the oral version of this paper at Solar Wind 8, this written version is not intended as an overview of the observational aspects of solar wind ion and electron distributions, but discusses only recent results in this area with emphasis on Ulysses measurements. Although primarily a review, some new results on solar wind proton temperatures at high latitudes are presented.

  20. Asteroid surface processes: Experimental studies of the solar wind on reflectance and optical properties of asteroids

    NASA Technical Reports Server (NTRS)

    Mcfadden, Lucy-Ann

    1991-01-01

    The effect of the solar wind on the optical properties of meteorites was studied to determine whether the solar wind can alter the properties of ordinary chondrite parent bodies resulting in the spectral properties of S-type asteroids. The existing database of optical properties of asteroids was analyzed to determine the effect of solar wind in altering asteroid surface properties.

  1. Tsallis non-extensive statistics and solar wind plasma complexity

    NASA Astrophysics Data System (ADS)

    Pavlos, G. P.; Iliopoulos, A. C.; Zastenker, G. N.; Zelenyi, L. M.; Karakatsanis, L. P.; Riazantseva, M. O.; Xenakis, M. N.; Pavlos, E. G.

    2015-03-01

    This article presents novel results revealing non-equilibrium phase transition processes in the solar wind plasma during a strong shock event, which took place on 26th September 2011. Solar wind plasma is a typical case of stochastic spatiotemporal distribution of physical state variables such as force fields (B → , E →) and matter fields (particle and current densities or bulk plasma distributions). This study shows clearly the non-extensive and non-Gaussian character of the solar wind plasma and the existence of multi-scale strong correlations from the microscopic to the macroscopic level. It also underlines the inefficiency of classical magneto-hydro-dynamic (MHD) or plasma statistical theories, based on the classical central limit theorem (CLT), to explain the complexity of the solar wind dynamics, since these theories include smooth and differentiable spatial-temporal functions (MHD theory) or Gaussian statistics (Boltzmann-Maxwell statistical mechanics). On the contrary, the results of this study indicate the presence of non-Gaussian non-extensive statistics with heavy tails probability distribution functions, which are related to the q-extension of CLT. Finally, the results of this study can be understood in the framework of modern theoretical concepts such as non-extensive statistical mechanics (Tsallis, 2009), fractal topology (Zelenyi and Milovanov, 2004), turbulence theory (Frisch, 1996), strange dynamics (Zaslavsky, 2002), percolation theory (Milovanov, 1997), anomalous diffusion theory and anomalous transport theory (Milovanov, 2001), fractional dynamics (Tarasov, 2013) and non-equilibrium phase transition theory (Chang, 1992).

  2. Air emissions due to wind and solar power.

    PubMed

    Katzenstein, Warren; Apt, Jay

    2009-01-15

    Renewables portfolio standards (RPS) encourage large-scale deployment of wind and solar electric power. Their power output varies rapidly, even when several sites are added together. In many locations, natural gas generators are the lowest cost resource available to compensate for this variability, and must ramp up and down quickly to keep the grid stable, affecting their emissions of NOx and CO2. We model a wind or solar photovoltaic plus gas system using measured 1-min time-resolved emissions and heat rate data from two types of natural gas generators, and power data from four wind plants and one solar plant. Over a wide range of renewable penetration, we find CO2 emissions achieve approximately 80% of the emissions reductions expected if the power fluctuations caused no additional emissions. Using steam injection, gas generators achieve only 30-50% of expected NOx emissions reductions, and with dry control NOx emissions increase substantially. We quantify the interaction between state RPSs and NOx constraints, finding that states with substantial RPSs could see significant upward pressure on NOx permit prices, if the gas turbines we modeled are representative of the plants used to mitigate wind and solar power variability. PMID:19238948

  3. The Solar-Wind Interaction with Comet Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Burch, James

    2015-04-01

    The instruments of the Rosetta Plasma Consortium are providing close-up views of the solar-wind interaction with a comet from its dormancy into a period of significant coma development. Although a bow shock has not yet developed, the interactions so far involve significant deflection of the solar wind; pickup of cometary ions, charge exchange of solar-wind ions by the coma resulting in He+ and H- ions being entrained in the solar wind; the generation of low-frequency 10 - 100 mHz magnetic waves near the comet; electric-fields and waves in the range from DC up to 3.5 MHz, and significant plasma density enhancements, particularly over the neck of the comet. Also observed are negatively-charged nanograins with energies exceeding 20 keV and monoenergetic electron beams (up to 400 eV) indicative of negative charging of shaded regions of the nucleus. As the comet moves closer to the Sun these effects should increase along with the appearance of other expected effects such as a diamagnetic cavity, ionopause, and bow shock along with possibly other new and unexpected plasma and field phenomena.

  4. Prediction of Ground Magnetic Field Fluctuations from Upstream Solar Wind

    NASA Astrophysics Data System (ADS)

    Weigel, R. S.; Vassiliadis, D.; Horton, W.; Klimas, A. J.

    2001-12-01

    A study of the predictability of temporal fluctuations in auroral--zone ground magnetic fields is presented. The fluctuation measure considered is the absolute value of the horizontal field time derivative (dH/dt) averaged over a 15--30~minute interval. This averaging time allows for a prediction lead time of approximately 30--45~minutes, depending on the solar wind speed. The fluctuation level is predicted using a neural network mapping of solar wind plasma and field data from the ACE satellite. Various solar wind inputs to the network are considered to determine which variables contain the most information, or drives, ground magnetic field fluctuations. The predictability of ground magnetic field fluctuations, which are responsible for ground induction currents (GICs), is shown to depend strongly on both local time and latitude. For some magnetometers, the predictability is found to be highest at local times that have the highest average fluctuation level and lowest at local times that have the lowest average fluctuation level. A maximum of 50% of the variability in a time series composed of 30~minute averages of |dH/dt| can be explained by the solar wind. When time delayed values of the fluctuation level at nearby magnetometer stations are included, up to 70% of of the variance in the |dH/dt| time series can be predicted.

  5. The solar wind-magnetosphere energy coupling and magnetospheric disturbances

    NASA Technical Reports Server (NTRS)

    Akasofu, S.-I.

    1980-01-01

    Energy coupling between the solar wind and the magnetosphere is examined and the influence of this coupling on magnetospheric disturbances is discussed. Following a review of the components of the total energy production rate of the magnetosphere and progress in the study of solar wind-magnetosphere correlations, the derivation of the solar wind-magnetosphere energy coupling function, which has been found to correlate well with the total magnetospheric energy production rate, is presented. Examination of the relations between the energy coupling function and the type of magnetic disturbance with which it is associated indicates that magnetic storms with a large sudden storm commencement and a weak main phase are associated with small energy coupling, while values of the coupling function greater than 5 x 10 to the 18th to 10 to the 19th erg/sec are required for the development of a major geomagnetic storm. The magnetospheric substorm is shown to be a direct result of increased solar wind-magnetosphere energy coupling rather than the sudden conversion of stored magnetic energy. Finally, it is indicated that at energy couplings greater than 10 to the 19th erg/sec, the positive feedback process responsible for substorms breaks down, resulting in the abnormal growth of the ring current.

  6. Solar wind interaction with Comet Bennett (1969i

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Rahe, J.; Donn, B. D.; Neugebauer, M.

    1972-01-01

    The relations are examined between the solar-wind and Comet Bennett during the period 23 March to 5 April 1970. A large kink was observed in the ion tail of the comet on April 4, but no solar wind stream was observed in the ecliptic plane which could have caused the kink. Thus, either there was no correlation between the solar wind at the earth and that at Comet Bennett (which was 40 deg above the ecliptic) or the kink was caused by something other than a high-speed stream. The fine structure visible in photographs of the kink favors the second of these alternatives. It is shown that a shock probably passed through Comet Bennett on March 31, but no effect was seen in photographs of the comet. A stream preceded by another shock and a large abrupt change in momentum flux might have intercepted the comet between 24 March and 28 March, but again no effect was seen in photographs of the Comet. In view of these results, the possibility must be considered that a large, abrupt change in momentum flux of the solar-wind is neither necessary nor sufficient to cause a large kink in a comet tail.

  7. Western Wind and Solar Integration Study: Executive Summary

    SciTech Connect

    none,

    2010-05-01

    This Study investigates the operational impact of up to 35% energy penetration of wind, photovoltaics (PVs), and concentrating solar power (CSP) on the power system operated by the WestConnect group of utilities in Arizona, Colorado, Nevada, New Mexico, and Wyoming.

  8. Livestock water pumping with wind and solar power

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent developments in pumping technologies have allowed for efficient use of renewable energies like wind and solar to power new pumps for remote water pumping. A helical type, positive displacement pump was developed a few years ago and recently modified to accept input from a variable power sourc...

  9. Kinetic Modeling of the Moon-Solar Wind Plasma Interaction

    NASA Astrophysics Data System (ADS)

    Fatemi, S.; Poppe, A. R.; Halekas, J. S.; Delory, G. T.; Holmstrom, M.; Farrell, W. M.

    2016-05-01

    We use a three-dimensional self-consistent hybrid model of plasma (kinetic ions, fluid electrons) to study solar wind plasma interaction with the Moon. We have studied lunar wake, interaction with crustal fields, and lunar interior with our model.

  10. The Solar Wind in the Outer Heliosphere and Heliosheath

    NASA Technical Reports Server (NTRS)

    Richardson, J. D.; Burlaga, L. F.

    2011-01-01

    The solar wind environment has a large influence on the transport of cosmic rays. This chapter discusses the observations of the solar wind plasma and magnetic field in the outer heliosphere and the heliosheath. In the supersonic solar wind, interaction regions with large magnetic fields form barriers to cosmic ray transport. This effect, the "CR-B" relationship, has been quantified and is shown to be valid everywhere inside the termination shock (TS). In the heliosheath, this relationship breaks down, perhaps because of a change in the nature of the turbulence. Turbulence is compressive in the heliosheath, whereas it was non-compressive in the solar wind. The plasma pressure in the outer heliosphere is dominated by the pickup ions which gain most of the flow energy at the TS. The heliosheath plasma and magnetic field are highly variable on scales as small as ten minutes. The plasma flow turns away from the nose roughly as predicted, but the radial speeds at Voyager 1 are much less than those at Voyager 2, which is not understood. Despite predictions to the contrary, magnetic reconnection is not an important process in the inner heliosheath with only one observed occurrence to date.

  11. An overview of SMILE (Solar wind Magnetosphere Ionosphere Link Explorer)

    NASA Astrophysics Data System (ADS)

    Branduardi-Raymont, Graziella; Wang, Chi

    2016-07-01

    SMILE is a novel space mission, currently under development, dedicated to study the dynamic coupling of the solar wind with the Earth's magnetosphere in a global way never attempted so far. From a highly elliptical Earth orbit, SMILE will obtain X-ray images of the magnetosheath and polar cusps simultaneously with UV images of the Northern aurora, while also carrying out in situ solar wind/magnetosheath plasma and magnetic field measurements. For the first time we will be able to trace and link the processes of solar wind injection in the magnetosphere with those acting on the charged particles precipitating into the cusps and eventually the aurora. X-ray imaging of the dayside magnetosheath and cusps has been made possible thanks to the relatively recent discovery of solar wind charge exchange (SWCX) X-ray emission, first observed at comets, and subsequently found to occur in the vicinity of the Earth's magnetosphere. SMILE is the first fully collaborative space mission from inception to implementation and operations between ESA and the Chinese Academy of Sciences (CAS). This talk will present the science that SMILE will deliver and its impact, and will provide an overview of its payload and of the mission's development.

  12. Alpha particle heating at comet-solar wind interaction regions

    NASA Technical Reports Server (NTRS)

    Sharma, A. S.; Papadopoulos, K.

    1995-01-01

    The satellite observations at comet Halley have shown strong heating of solar wind alpha particles over an extended region dominated by high-intensity, low-frequency turbulence. These waves are excited by the water group pickup ions and can energize the solar wind plasma by different heating processes. The alpha particle heating by the Landau damping of kinetic Alfven waves and the transit time damping of low-frequency hydromagnetic waves in this region of high plasma beta are studied in this paper. The Alfven wave heating was shown to be the dominant mechanism for the observed proton heating, but it is found to be insufficient to account for the observed alpha particle heating. The transit time damping due to the interaction of the ions with the electric fields associated with the magnetic field compressions of magnetohydrodynamic waves is found to heat the alpha particles preferentially over the protons. Comparison of the calculated heating times for the transit time damping with the observations from comet Halley shows good agreement. These processes contribute to the thermalization of the solar wind by the conversion of its directed energy into the thermal energy in the transition region at comet-solar wind interaction.

  13. Iron charge states observed in the solar wind

    NASA Technical Reports Server (NTRS)

    Ipavich, F. M.; Galvin, A. B.; Gloeckler, G.; Hovestadt, D.; Klecker, B.; Scholer, M.

    1983-01-01

    Solar wind measurements from the ULECA sensor of the Max-Planck-Institut/University of Maryland experiment on ISEE-3 are reported. The low energy section of approx the ULECA sensor selects particles by their energy per charge (over the range 3.6 keV/Q to 30 keV/Q) and simultaneously measures their total energy with two low-noise solid state detectors. Solar wind Fe charge state measurements from three time periods of high speed solar wind occurring during a post-shock flow and a coronal hole-associated high speed stream are presented. Analysis of the post-shock flow solar wind indicates the charge state distributions for Fe were peaked at approx +16, indicative of an unusually high coronal temperature (3,000,000 K). In contrast, the Fe charge state distribution observed in a coronal hole-associated high speed stream peaks at approx -9, indicating a much lower coronal temperature (1,400,000 K). This constitutes the first reported measurements of iron charge states in a coronal hole-associated high speed stream.

  14. The source of electrostatic fluctuations in the solar-wind

    NASA Technical Reports Server (NTRS)

    Lemons, D. S.; Asbridge, J. R.; Bame, S. J.; Feldman, W. C.; Gary, S. P.; Gosling, J. T.

    1979-01-01

    Solar wind electron and ion distribution functions measured simultaneously with or close to times of intense electrostatic fluctuations are subjected to a linear Vlasov stability analysis. Although all distributions tested were found to be stable, the analysis suggests that the ion beam instability is the most likely source of the fluctuations.

  15. Solar Wind Monitoring with SWIM-SARA Onboard Chandrayaan-1

    NASA Astrophysics Data System (ADS)

    Bhardwaj, A.; Barabash, S.; Sridharan, R.; Wieser, M.; Dhanya, M. B.; Futaana, Y.; Asamura, K.; Kazama, Y.; McCann, D.; Varier, S.; Vijayakumar, E.; Mohankumar, S. V.; Raghavendra, K. V.; Kurian, T.; Thampi, R. S.; Andersson, H.; Svensson, J.; Karlsson, S.; Fischer, J.; Holmstrom, M.; Wurz, P.; Lundin, R.

    The SARA experiment aboard the Indian lunar mission Chandrayaan-1 consists of two instruments: Chandrayaan-1 Energetic Neutral Analyzer (CENA) and the SolarWind Monitor (SWIM). CENA will provide measurements of low energy neutral atoms sputtered from lunar surface in the 0.01-3.3 keV energy range by the impact of solar wind ions. SWIM will monitor the solar wind flux precipitating onto the lunar surface and in the vicinity of moon. SWIM is basically an ion-mass analyzer providing energy-per-charge and number density of solar wind ions in the energy range 0.01-15 keV. It has sufficient mass resolution to resolve H+ , He++, He+, O++, O+, and >20 amu, with energy resolution 7% and angular resolution 4:5° × 22:5. The viewing angle of the instrument is 9° × 180°.Mechanically, SWIM consists of a sensor and an electronic board that includes high voltage supply and sensor electronics. The sensor part consists of an electrostatic deflector to analyze the arrival angle of the ions, cylindrical electrostatic analyzer for energy analysis, and the time-of-flight system for particle velocity determination. The total size of SWIM is slightly larger than a credit card and has a mass of 500 g.

  16. How Reliable Is the Prediction of Solar Wind Background?

    NASA Astrophysics Data System (ADS)

    Jian, Lan K.; MacNeice, Peter; Taktakishvili, Aleksandre; Odstrcil, Dusan; Jackson, Bernard; Yu, Hsiu-Shan; Riley, Pete; Sokolov, Igor

    2015-04-01

    The prediction of solar wind background is a necessary part of space weather forecasting. Multiple coronal and heliospheric models have been installed at the Community Coordinated Modeling Center (CCMC) to produce the solar wind, including the Wang-Sheely-Arge (WSA)-Enlil model, MHD-Around-a-Sphere (MAS)-Enlil model, Space Weather Modeling Framework (SWMF), and heliospheric tomography using interplanetary scintillation (IPS) data. By comparing the modeling results with the OMNI data over 7 Carrington rotations in 2007, we have conducted a third-party validation of these models for the near-Earth solar wind. This work will help the models get ready for the transition from research to operation. Besides visual comparison, we have quantitatively assessed the models’ capabilities in reproducing the time series and statistics of solar wind parameters. Using improved algorithms, we have identified magnetic field sector boundaries (SBs) and slow-to-fast stream interaction regions (SIRs) as focused structures. The success rate of capturing them and the time offset vary largely with models. For this period, the 2014 version of MAS-Enlil model works best for SBs, and the heliospheric tomography works best for SIRs. General strengths and weaknesses for each model are identified to provide an unbiased reference to model developers and users.

  17. The Solar Wind in the Outer Heliosphere and Heliosheath

    NASA Astrophysics Data System (ADS)

    Richardson, J. D.; Burlaga, L. F.

    2013-06-01

    The solar wind environment has a large influence on the transport of cosmic rays. This chapter discusses the observations of the solar wind plasma and magnetic field in the outer heliosphere and the heliosheath. In the supersonic solar wind, interaction regions with large magnetic fields form barriers to cosmic ray transport. This effect, the "CR-B" relationship, has been quantified and is shown to be valid everywhere inside the termination shock (TS). In the heliosheath, this relationship breaks down, perhaps because of a change in the nature of the turbulence. Turbulence is compressive in the heliosheath, whereas it was non-compressive in the solar wind. The plasma pressure in the outer heliosphere is dominated by the pickup ions which gain most of the flow energy at the TS. The heliosheath plasma and magnetic field are highly variable on scales as small as ten minutes. The plasma flow turns away from the nose roughly as predicted, but the radial speeds at Voyager 1 are much less than those at Voyager 2, which is not understood. Despite predictions to the contrary, magnetic reconnection is not an important process in the inner heliosheath with only one observed occurrence to date.

  18. Assessment of existing studies of wind loading on solar collectors

    SciTech Connect

    Murphy, L. M.

    1981-02-01

    In developing solar collectors, wind loading is the major structural design consideration. Wind loading investigations have focused on establishing safe bounds for steady state loading and verifying rational but initial and conservative design approaches for the various solar collector concepts. As such, the effort has been very successful, and has contributed greatly to both the recognition and qualitative understanding of many of the physical phenomena involved. Loading coefficients corresponding to mean wind velocities have been derived in these prior studies to measure the expected structural loading on the various solar collectors. Current design and testing procedures for wind loading are discussed. The test results corresponding to numerous wind tests on heliostats, parabolic troughs, parabolic dishes, and field mounted photovoltaic arrays are discussed and the applicability of the findings across the various technologies is assessed. One of the most significant consistencies in the data from all the technologies is the apparent benefit provided by fences and field shielding. Taken in toto, these data show that load reductions of three or possibly more seem feasible, though a more thorough understanding of the phenomena involved must be attained before this benefit can be realized. It is recommended that the required understanding be developed to take advantage of this benefit and that field tests be conducted to correlate with both analyses and tests.

  19. Self-Consistent and Time-Dependent Solar Wind Models

    NASA Technical Reports Server (NTRS)

    Ong, K. K.; Musielak, Z. E.; Rosner, R.; Suess, S. T.; Sulkanen, M. E.

    1997-01-01

    We describe the first results from a self-consistent study of Alfven waves for the time-dependent, single-fluid magnetohydrodynamic (MHD) solar wind equations, using a modified version of the ZEUS MHD code. The wind models we examine are radially symmetrical and magnetized; the initial outflow is described by the standard Parker wind solution. Our study focuses on the effects of Alfven waves on the outflow and is based on solving the full set of the ideal nonlinear MHD equations. In contrast to previous studies, no assumptions regarding wave linearity, wave damping, and wave-flow interaction are made; thus, the models naturally account for the back-reaction of the wind on the waves, as well as for the nonlinear interaction between different types of MHD waves. Our results clearly demonstrate when momentum deposition by Alfven waves in the solar wind can be sufficient to explain the origin of fast streams in solar coronal holes; we discuss the range of wave amplitudes required to obtained such fast stream solutions.

  20. Ion-driven instabilities in the solar wind: Wind observations of 19 March 2005

    DOE PAGESBeta

    Gary, S. Peter; Jian, Lan K.; Broiles, Thomas W.; Stevens, Michael L.; Podesta, John J.; Kasper, Justin C.

    2016-01-16

    Intervals of enhanced magnetic fluctuations have been frequently observed in the solar wind. However, it remains an open question as to whether these waves are generated at the Sun and then transported outward by the solar wind or generated locally in the interplanetary medium. Magnetic field and plasma measurements from the Wind spacecraft under slow solar wind conditions on 19 March 2005 demonstrate seven events of enhanced magnetic fluctuations at spacecraft-frame frequencies somewhat above the proton cyclotron frequency and propagation approximately parallel or antiparallel to the background magnetic field Bo. The proton velocity distributions during these events are characterized bymore » two components: a more dense, slower core and a less dense, faster beam. In conclusion, observed plasma parameters are used in a kinetic linear dispersion equation analysis for electromagnetic fluctuations at k x Bo = 0; for two events the most unstable mode is the Alfvén-cyclotron instability driven by a proton component temperature anisotropy T⊥/T|| > 1 (where the subscripts denote directions relative to Bo), and for three events the most unstable mode is the right-hand polarized magnetosonic instability driven primarily by ion component relative flows. Thus, both types of ion anisotropies and both types of instabilities are likely to be local sources of these enhanced fluctuation events in the solar wind.« less

  1. Evolution of the Relationships between Helium Abundance, Minor Ion Charge State, and Solar Wind Speed over the Solar Cycle

    NASA Astrophysics Data System (ADS)

    Kasper, J. C.; Stevens, M. L.; Korreck, K. E.; Maruca, B. A.; Kiefer, K. K.; Schwadron, N. A.; Lepri, S. T.

    2012-02-01

    The changing relationships between solar wind speed, helium abundance, and minor ion charge state are examined over solar cycle 23. Observations of the abundance of helium relative to hydrogen (A He ≡ 100 × n He/n H) by the Wind spacecraft are used to examine the dependence of A He on solar wind speed and solar activity between 1994 and 2010. This work updates an earlier study of A He from 1994 to 2004 to include the recent extreme solar minimum and broadly confirms our previous result that A He in slow wind is strongly correlated with sunspot number, reaching its lowest values in each solar minima. During the last minimum, as sunspot numbers reached their lowest levels in recent history, A He continued to decrease, falling to half the levels observed in slow wind during the previous minimum and, for the first time observed, decreasing even in the fastest solar wind. We have also extended our previous analysis by adding measurements of the mean carbon and oxygen charge states observed with the Advanced Composition Explorer spacecraft since 1998. We find that as solar activity decreased, the mean charge states of oxygen and carbon for solar wind of a given speed also fell, implying that the wind was formed in cooler regions in the corona during the recent solar minimum. The physical processes in the coronal responsible for establishing the mean charge state and speed of the solar wind have evolved with solar activity and time.

  2. Solar-wind krypton and solid/gas fractionation in the early solar nebula

    NASA Technical Reports Server (NTRS)

    Wiens, Roger C.; Burnett, D. S.; Neugebauer, M.; Pepin, R. O.

    1991-01-01

    The solar-system Kr abundance is calculated from solar-wind noble-gas ratios, determined previously by low-temperature oxidations of lunar ilmenite grains, normalized to Si by spacecraft solar-wind measurements. The estimated Kr-83 abundance of 4.1 + or - 1.5 per million Si atoms is within uncertainty of estimates assuming no fractionation, determined from CI-chondrite abundances of surrounding elements. This is significant because it is the first such constraint on solid/gas fractionation, though the large uncertainty only confines it to somewhat less than a factor of two.

  3. Signature of open magnetic field lines in the extended solar corona and of solar wind acceleration

    NASA Technical Reports Server (NTRS)

    Antonucci, E.; Giordano, S.; Benna, C.; Kohl, J. L.; Noci, G.; Michels, J.; Fineschi, S.

    1997-01-01

    The observations carried out with the ultraviolet coronagraph spectrometer onboard the Solar and Heliospheric Observatory (SOHO) are discussed. The purpose of the observations was to determine the line of sight and radial velocity fields in coronal regions with different magnetic topology. The results showed that the regions where the high speed solar wind flows along open field lines are characterized by O VI 1032 and HI Lyman alpha 1216 lines. The global coronal maps of the line of sight velocity were reconstructed. The corona height, where the solar wind reaches 100 km/s, was determined.

  4. THREE-DIMENSIONAL EVOLUTION OF SOLAR WIND DURING SOLAR CYCLES 22-24

    SciTech Connect

    Manoharan, P. K.

    2012-06-01

    This paper presents an analysis of three-dimensional evolution of solar wind density turbulence and speed at various levels of solar activity between solar cycles 22 and 24. The solar wind data used in this study have been obtained from the interplanetary scintillation (IPS) measurements made at the Ooty Radio Telescope, operating at 327 MHz. Results show that (1) on average, there was a downward trend in density turbulence from the maximum of cycle 22 to the deep minimum phase of cycle 23; (2) the scattering diameter of the corona around the Sun shrunk steadily toward the Sun, starting from 2003 to the smallest size at the deepest minimum, and it corresponded to a reduction of {approx}50% in the density turbulence between the maximum and minimum phases of cycle 23; (3) the latitudinal distribution of the solar wind speed was significantly different between the minima of cycles 22 and 23. At the minimum phase of solar cycle 22, when the underlying solar magnetic field was simple and nearly dipole in nature, the high-speed streams were observed from the poles to {approx}30 Degree-Sign latitudes in both hemispheres. In contrast, in the long-decay phase of cycle 23, the sources of the high-speed wind at both poles, in accordance with the weak polar fields, occupied narrow latitude belts from poles to {approx}60 Degree-Sign latitudes. Moreover, in agreement with the large amplitude of the heliospheric current sheet, the low-speed wind prevailed in the low- and mid-latitude regions of the heliosphere. (4) At the transition phase between cycles 23 and 24, the high levels of density and density turbulence were observed close to the heliospheric equator and the low-speed solar wind extended from the equatorial-to-mid-latitude regions. The above results in comparison with Ulysses and other in situ measurements suggest that the source of the solar wind has changed globally, with the important implication that the supply of mass and energy from the Sun to the interplanetary

  5. Large Scale Wind and Solar Integration in Germany

    SciTech Connect

    Ernst, Bernhard; Schreirer, Uwe; Berster, Frank; Pease, John; Scholz, Cristian; Erbring, Hans-Peter; Schlunke, Stephan; Makarov, Yuri V.

    2010-02-28

    This report provides key information concerning the German experience with integrating of 25 gigawatts of wind and 7 gigawatts of solar power capacity and mitigating its impacts on the electric power system. The report has been prepared based on information provided by the Amprion GmbH and 50Hertz Transmission GmbH managers and engineers to the Bonneville Power Administration (BPA) and Pacific Northwest National Laboratory representatives during their visit to Germany in October 2009. The trip and this report have been sponsored by the BPA Technology Innovation office. Learning from the German experience could help the Bonneville Power Administration engineers to compare and evaluate potential new solutions for managing higher penetrations of wind energy resources in their control area. A broader dissemination of this experience will benefit wind and solar resource integration efforts in the United States.

  6. Model for energy transfer in the solar wind: Model results

    NASA Technical Reports Server (NTRS)

    Barnes, A. A., Jr.; Hartle, R. E.

    1972-01-01

    A description is given of the results of solar wind flow in which the heating is due to (1) propagation and dissipation of hydromagnetic waves generated near the base of the wind, and (2) thermal conduction. A series of models is generated for fixed values of density, electron and proton temperature, and magnetic field at the base by varying the wave intensity at the base of the model. This series of models predicts the observed correlation between flow speed and proton temperature for a large range of velocities. The wave heating takes place in a shell about the sun greater than or approximately equal to 10 R thick. We conclude that large-scale variations observed in the solar wind are probably due mainly to variation in the hydromagnetic wave flux near the sun.

  7. Solar Wind Variability: from Macro to Micro Scales

    NASA Astrophysics Data System (ADS)

    Bruno, R.

    2015-12-01

    Several decades of in-situ observations by spacecraft unraveled the complex nature of the variability of solar wind magnetic field and plasma parameters. These fluctuations range from scales of the order of the solar rotation period to the smallest scales of the order of the ion and electron characteristic scale lengths. Some of these fluctuations belong to coronal transients, others to propagating modes and others are simply due to inhomogeneities and structures advected by the wind across the observer. In this talk I'll provide a short overview of the state of art of our current interpretation of the complex phenomenology observed so far, also in view of the next solar missions Solar Orbiter and SPP. I will start describing the solar wind large scale structure and its connection to the low corona. I will continue through the MHD regime, where turbulence energy is nonlinearly transferred to smaller and smaller scales, to end up at kinetic scales where this energy eventually is dissipated.

  8. Geomagnetic response to IMF and solar wind over different latitudes

    NASA Astrophysics Data System (ADS)

    Aslam, A. M.; Tripathi, Sharad Chandra; Mansoori, Azad Ahmad; Waheed, Malik Abdul

    2016-07-01

    In this paper a study on the response of geomagnetic field characteristics to the solar wind variation during three solar cycles (SC 21, SC 22, SC 23) have been conducted in a long term scale. The difference in the response of two different latitudinal characteristic indices has been investigated. For the purpose we have considered the high latitude index AE and the mid-latitude aa index and both gives the knowledge about the perturbations in the geomagnetic field conditions. Eventually we can infer the idea about the ionospheric current system changes in response to the solar wind conditions. The variation found in the AE and aa indices have been found to follow a 11 year cycle as similar to the sunspot variation. Also the correlation between the annual means of the solar wind parameters velocity V, magnetic filed B and the composite parameters BV and BV ^{2 } have been calculated . A difference was found between the correlations obtained for the AE and aa indices. We could also see that the difference in correlation follows a cyclic pattern i.e. the large difference is found during the solar maxima while a small difference is observed during the minima.

  9. Global distribution of the solar wind and its evolution during cycles 22-24

    NASA Astrophysics Data System (ADS)

    Tokumaru, M.; Fujiki, K.; Kojima, M.; Iju, T.; Nakano, H.; Satonaka, D.; Shimoyama, T.; Hakamada, K.

    2016-03-01

    Ground-based observations of the solar wind using interplanetary scintillation (IPS) have been regularly performed since 1980s at the Solar-Terrestrial Environment Laboratory of Nagoya University using the 327-MHz multi-station system. It has been revealed from the IPS observations that the global distribution of the solar wind is well ordered by the Sun's magnetic field. This fact suggests that the magnetic field plays an important role in the formation of the solar wind. The IPS observations evidently demonstrate that global distribution of the solar wind systematically changes with the solar activity. Recently, some peculiar aspects of the solar wind have been found from the IPS observations; e.g. increase of low-latitude fast winds, global reduction of the fast wind area and the density fluctuation level, North-South asymmetry of polar fast winds. These are considered as a manifestation of weaker dynamo activity in this cycle.

  10. Solar origins of solar wind properties during the cycle 23 solar minimum and rising phase of cycle 24

    PubMed Central

    Luhmann, Janet G.; Petrie, Gordon; Riley, Pete

    2012-01-01

    The solar wind was originally envisioned using a simple dipolar corona/polar coronal hole sources picture, but modern observations and models, together with the recent unusual solar cycle minimum, have demonstrated the limitations of this picture. The solar surface fields in both polar and low-to-mid-latitude active region zones routinely produce coronal magnetic fields and related solar wind sources much more complex than a dipole. This makes low-to-mid latitude coronal holes and their associated streamer boundaries major contributors to what is observed in the ecliptic and affects the Earth. In this paper we use magnetogram-based coronal field models to describe the conditions that prevailed in the corona from the decline of cycle 23 into the rising phase of cycle 24. The results emphasize the need for adopting new views of what is ‘typical’ solar wind, even when the Sun is relatively inactive. PMID:25685422

  11. Solar origins of solar wind properties during the cycle 23 solar minimum and rising phase of cycle 24.

    PubMed

    Luhmann, Janet G; Petrie, Gordon; Riley, Pete

    2013-05-01

    The solar wind was originally envisioned using a simple dipolar corona/polar coronal hole sources picture, but modern observations and models, together with the recent unusual solar cycle minimum, have demonstrated the limitations of this picture. The solar surface fields in both polar and low-to-mid-latitude active region zones routinely produce coronal magnetic fields and related solar wind sources much more complex than a dipole. This makes low-to-mid latitude coronal holes and their associated streamer boundaries major contributors to what is observed in the ecliptic and affects the Earth. In this paper we use magnetogram-based coronal field models to describe the conditions that prevailed in the corona from the decline of cycle 23 into the rising phase of cycle 24. The results emphasize the need for adopting new views of what is 'typical' solar wind, even when the Sun is relatively inactive. PMID:25685422

  12. Semiempirical Models of the Slow and Fast Solar Wind

    NASA Astrophysics Data System (ADS)

    Wang, Y.-M.

    2012-11-01

    Coronal holes can produce several types of solar wind with a variety of compositional properties, depending on the location and strength of the heating along their open magnetic field lines. High-speed wind is associated with (relatively) slowly diverging flux tubes rooted in the interiors of large holes with weak, uniform footpoint fields; heating is spread over a large radial distance, so that most of the energy is conducted outward and goes into accelerating the wind rather than increasing the mass flux. In the rapidly diverging open fields present at coronal hole boundaries and around active regions, the heating is concentrated at low heights and the temperature maximum is located near the coronal base, resulting in high oxygen freezing-in temperatures and low asymptotic wind speeds. Polar plumes have a strong additional source of heating at their bases, which generates a large downward conductive flux, raising the densities and enhancing the radiative losses. The relative constancy of the solar wind mass flux at Earth reflects the tendency for the heating rate in coronal holes to increase monotonically with the footpoint field strength, with very high mass fluxes at the Sun offsetting the enormous flux-tube expansion in active region holes. Although coronal holes are its main source, slow wind is also released continually from helmet streamer loops by reconnection processes, giving rise to plasma blobs (small flux ropes) and the heliospheric plasma sheet.

  13. HEMISPHERIC ASYMMETRIES IN THE POLAR SOLAR WIND OBSERVED BY ULYSSES NEAR THE MINIMA OF SOLAR CYCLES 22 AND 23

    SciTech Connect

    Ebert, R. W.; Dayeh, M. A.; Desai, M. I.; McComas, D. J.; Pogorelov, N. V.

    2013-05-10

    We examined solar wind plasma and interplanetary magnetic field (IMF) observations from Ulysses' first and third orbits to study hemispheric differences in the properties of the solar wind and IMF originating from the Sun's large polar coronal holes (PCHs) during the declining and minimum phase of solar cycles 22 and 23. We identified hemispheric asymmetries in several parameters, most notably {approx}15%-30% south-to-north differences in averages for the solar wind density, mass flux, dynamic pressure, and energy flux and the radial and total IMF magnitudes. These differences were driven by relatively larger, more variable solar wind density and radial IMF between {approx}36 Degree-Sign S-60 Degree-Sign S during the declining phase of solar cycles 22 and 23. These observations indicate either a hemispheric asymmetry in the PCH output during the declining and minimum phase of solar cycles 22 and 23 with the southern hemisphere being more active than its northern counterpart, or a solar cycle effect where the PCH output in both hemispheres is enhanced during periods of higher solar activity. We also report a strong linear correlation between these solar wind and IMF parameters, including the periods of enhanced PCH output, that highlight the connection between the solar wind mass and energy output and the Sun's magnetic field. That these enhancements were not matched by similar sized variations in solar wind speed points to the mass and energy responsible for these increases being added to the solar wind while its flow was subsonic.

  14. Characterization of Solar Wind Interaction With Magnetized Bodies

    NASA Astrophysics Data System (ADS)

    Omidi, N.; Blanco-Cano, X.; Russell, C.; Karimabadi, H.

    2002-12-01

    Since the dawn of the space age, the magnetosphere has been studied extensively not only to understand the geospace environment but also how solar wind, or stellar winds in general, interact with magnetized bodies. Early theoretical investigations of solar wind interaction with magnetized asteroids suggested that in addition to a magnetospheric type interaction it was possible that, instead, only a whistler wing would be generated. Recently, through 2-D global hybrid (fluid electrons, kinetic ions) simulations, we have demonstrated that depending on the magnetic dipole strength of a body its interaction with the solar wind can be even more diverse and that a variety of solutions exist. For example, in addition to a whistler wing it is possible for a magnetized asteroid to have a set of fast and slow magnetosonic wakes. In another type of solution, a fast magnetosonic wake is the dominant feature of the interaction region. Our studies have also demonstrated that depending on the magnetic field strength of a body, the size of the interaction region may be comparable or smaller than ion gyroradius and, as a result, kinetic motion of the ions has a profound influence on the global structure of the interaction region. We have found that a useful parameter in characterization of the interaction region is Dp, the distance from the body at which solar wind ram pressure is balanced by its magnetic pressure. In this presentation, we illustrate the transition of the interaction region from a single whistler wing to a full magnetospheric type interaction as Dp, normalized to ion inertial length, is increased from values less than 1 to over 100. Implication of these results for various bodies in the solar system is also discussed.

  15. The Unusual Behavior of Solar Wind 3He++

    NASA Astrophysics Data System (ADS)

    Gloeckler, George; Fisk, L. A.; Geiss, J.

    2016-07-01

    The first measurements of the isotopic ratio of solar wind He by the Apollo SWC experiment revealed that 3He/4He is not constant, but varies from ˜~4•10-4 to ˜~5.5•10-4. Such variations are modest compared with the 3He/4He variations often seen in Helium-3 rich SEP events. Here we report and compare detailed measurements with ACE/SWICS of the densities, bulk speeds and thermal speeds of solar wind 1H+, 4He++ and 3He++ during one Carrington rotation (in January 2005). The most remarkable finding is the factor of ˜~100 variation in the solar wind 3He++/4He++ number density ratio from a low value of ˜~5•10-5 to a high value of ˜~6•10-3. The highest ratios occurred during four time intervals of one to two days each. Large ratios are observed during periods of low (< ˜~20 km/s) 3He++ thermal speeds and when the bulk speeds as well as the thermal speeds of 1H+, 4He++ and 3He++ are almost the same. Small ratios, on the other hand, were found when the spread between the thermal speeds as well as between the bulk speeds of 1H+, 4He++ and 3He++ was large. During times of small 3He++/4He++ ratios the thermal speed of 3He++ was above 20 km/s, and the proton and 4He++ thermal speeds exceeded ˜~50 km/s and ˜~35 km/s, respectively. We will examine additional time periods to determine whether the compositional variations of solar wind helium during this particular Carrington rotation are unusual or common, and will speculate on possible mechanisms that could produce the factor of 100 variations in the isotopic solar wind He ratio.

  16. Solar Energetic Particle Production by Shocks in Fast and Slow Solar Wind Structures

    NASA Astrophysics Data System (ADS)

    Kahler, S. W.; Reames, D. V.; Sheeley, N. R., Jr.

    2002-05-01

    Gradual solar energetic particle (SEP) events at 1 AU are produced by coronal and interplanetary shocks driven by coronal mass ejections (CMEs). Shocks from fast (V > 900 km/s) CMEs should be produced more easily in slow solar wind regions where the flow and fast-mode MHD wave speeds are low and less easily in fast solar wind regions where those speeds are high. We might therefore expect to observe more intense SEP events at 1 AU when the Earth lies in a slow wind region than when it lies in a fast wind region. While stream-stream interactions wash out the slow-fast stream boundaries in the solar wind speed profiles at 1 AU, the O+7/O+6 signatures of the streams are unchanged at 1 AU. We use the 20 MeV proton intensities from the EPACT instrument on Wind, the associated CMEs observed with the Lasco coronagraph on SOHO, and the ACE SWICS/SWIMS solar wind values of O+7/O+6 to look for variations of peak SEP intensities as a function of O+7/O+6. We find no significant dependence of the SEP intensities on O+7/O+6 for either poorly connected or well connected CME source regions or for different CME speed ranges. While a broad range of angular widths are associated with fast (V > 900 km/s) CMEs, we find that no fast CMEs with widths < 60 degrees are associated with SEP events. On the other hand, nearly all fast halo CMEs are associated with SEP events. Thus the CME widths are more important in SEP production than previously thought, but the solar wind source regions in which SEPs are produced are not a significant factor.

  17. Semiannual variation of the geomagnetic activity and solar wind parameters

    NASA Astrophysics Data System (ADS)

    Orlando, M.; Moreno, G.; Parisi, M.; Storini, M.

    1993-10-01

    The semiannual variation of the geomagnetic activity is investigated in connection with a large set of solar wind and interplanetary magnetic field data (4494 daily averages from 1965 to 1987). Our analysis confirms that the geomagnetic activity (described by the aa index), is mainly modulated by the southward component of the magnetic field (BS), as suggested by Russell and McPherron. On the other hand, it is also found that the solar wind velocity (V) has a relevant role in this phenomenon. In fact, the amplitude of the aa modulation is best correlated with the function BSV2. We also explore the linkage between the annual trend of aa and the sunspot activity (1868-1989), showing that the modulation of the geomagnetic activity follows a more regular pattern during the descending phase of the solar cycle than during the rising and maximum parts.

  18. Transport of transient solar wind particles in Earth's cusps

    SciTech Connect

    Parks, G. K.; Lee, E.; Teste, A.; Wilber, M.; Lin, N.; Canu, P.; Dandouras, I.; Reme, H.; Fu, S. Y.; Goldstein, M. L.

    2008-08-15

    An important problem in space physics still not understood well is how the solar wind enters the Earth's magnetosphere. Evidence is presented that transient solar wind particles produced by solar disturbances can appear in the Earth's mid-altitude ({approx}5 R{sub E} geocentric) cusps with densities nearly equal to those in the magnetosheath. That these are magnetosheath particles is established by showing they have the same ''flattop'' electron distributions as magnetosheath electrons behind the bow shock. The transient ions are moving parallel to the magnetic field (B) toward Earth and often coexist with ionospheric particles that are flowing out. The accompanying waves include electromagnetic and broadband electrostatic noise emissions and Bernstein mode waves. Phase-space distributions show a mixture of hot and cold electrons and multiple ion species including field-aligned ionospheric O{sup +} beams.

  19. Plasma observations of the solar wind interaction with Mars

    NASA Technical Reports Server (NTRS)

    Vaisberg, O. L.; Luhmann, J. G.; Russell, C. T.

    1990-01-01

    Measurements with the plasma analyzers on the Mars-2, 3 and 5 spacecraft show that Mars deflects a large fraction of the incoming solar wind flow to form a strong bow shock. The bow shock is about 1.41 Rm from the center of the planet at the subsolar point and about 2.40 Rm at the terminator. These distances are similar to those for Venus at times of moderate solar activity. The inferred effective obstacle altitude is about 400-700 km. An ion cushion has been found which is similar in its properties to the Venus magnetic barrier. The formation of this cushion appears to cause the deflection of the solar wind. Inside the cushion but well above the ionosphere is found a region where the ions are at the background, the electrons are cool and the magnetic pressure dominates. This region may resemble a planetary magnetosphere.

  20. Global aspects of stream evolution in the solar wind

    SciTech Connect

    Gosling, J.T.

    1984-01-01

    A spatially variable coronal expansion, when coupled with solar rotation, leads to the formation of high speed solar wind streams which evolve considerably with increasing heliocentric distance. Initially the streams steepen for simple kinematic reasons, but this steepening is resisted by pressure forces, leading eventually to the formation of forward-reverse shock pairs in the distant heliosphere. The basic physical processes responsible for stream steepening an evolution are explored and model calculations are compared with actual spacecraft observations of the process. The solar wind stream evolution problem is relatively well understood both observationally and theoretically. Tools developed in achieving this understanding should be applicable to other astrophysical systems where a spatially or temporally variable outflow is associated with a rotating object. 27 references, 13 figures.

  1. Laser Subdivision of the Genesis Concentrator Target Sample 60000

    NASA Technical Reports Server (NTRS)

    Lauer, Howard V., Jr.; Burkett, P. J.; Rodriquez, M. C.; Nakamura-Messenger, K.; Clemett, S. J.; Gonzales, C. P.; Allton, J. H.; McNamara, K. M.; See, T. H.

    2013-01-01

    The Genesis Allocation Committee received a request for 1 square centimeter of the diamond-like-carbon (DLC) concentrator target for the analysis of solar wind nitrogen isotopes. The target consists of a single crystal float zone (FZ) silicon substrate having a thickness on the order of 550 micrometers with a 1.5-3.0 micrometer-thick coating of DLC on the exposed surface. The solar wind is implanted shallowly in the front side DLC. The original target was a circular quadrant with a radius of 3.1 cm; however, the piece did not survive intact when the spacecraft suffered an anomalous landing upon returning to Earth on September 8, 2004. An estimated 75% of the DLC target was recovered in at least 18 fragments. The largest fragment, Genesis sample 60000, has been designated for this allocation and is the first sample to be subdivided using our laser scribing system Laser subdivision has associated risks including thermal diffusion of the implant if heating occurs and unintended breakage during cleavage. A careful detailed study and considerable subdividing practice using non-flight FZ diamond on silicon, DOS, wafers has considerably reduced the risk of unplanned breakage during the cleaving process. In addition, backside scribing reduces the risk of possible thermal excursions affecting the implanted solar wind, implanted shallowly in the front side DLC.

  2. Compositional Variability of the Solar Wind: The Need for an Ultra-High Temporal Resolution Mass Spectrometer for Studies of Solar Wind and Coronal Mass Ejection Boundaries

    NASA Astrophysics Data System (ADS)

    Adrian, M. L.; Sheldon, R. B.; Vaisberg, O.; Suess, S. T.; Gallagher, D. L.; Craven, P. D.; Hamilton, D. C.

    2004-05-01

    Current state-of-the-art solar wind mass spectroscopy has clearly demonstrated the compositional uniqueness between slow/fast solar wind streams and slow/fast coronal mass ejections (CMEs). As such, solar wind composition measurements serve as an indicator of the sub-coronal and coronal processes responsible for the formation of these heliospheric features. While current instrumentation have identified temporal variations in solar wind/CME composition on the order of 10's of minutes, these detections have occurred during relatively quiescent periods, such as within the magnetic cloud portion of a CME, when temporal variations of the collective solar wind (including magnetic field variations) occur over periods in excess of the current minimum instrumental duty cycle of 5-minutes. Consequently, the compositional markers of the microphysics responsible for the formation of highly variable solar wind flows and for CME/prominence formation remain overlooked. To address the need for greater temporal resolution in solar wind compositional measurements, we have undertaken the development of a novel ultra-high temporal resolution ion mass spectrometer utilizing a helical ion path time-of-flight (TOF) system within a compact, low-mass, low-power instrument. The instrument is designed specifically to measure solar wind 3He+2 < M/q < 56Fe+6 ion plasmas from 0.3-20.0 keV/q with an order of magnitude greater geometric factor than current solar wind ion mass spectrometers, and produce 1-10 ms mass spectra with a mass resolution of M/Δ M ~ 200 or greater, all within a duty cycle of < 90-s. These characteristics achieve a resolution sufficient to probe spatial/temporal dimensions down to an ion gyroradius in solar wind flow boundaries at 1 AU. This paper presents an overview of solar wind mass spectroscopy results to date, justification for solar wind composition measurements of greater temporal resolution, and an introduction to the helical ion path mass spectrometer (HIPS

  3. Parallel and Perpendicular Heating of Solar Wind Protons by Kinetic Waves as Inferred from WIND Observations

    NASA Astrophysics Data System (ADS)

    He, J.; Wang, L.; Tu, C. Y.; Marsch, E.

    2014-12-01

    The solar wind may be heated non-adiabatically by Joule dissipation of coherent current structures or by wave-particle interaction with kinetic waves. In high-speed solar wind, where current structures of tangential-discontinuity type are rare and Alfven-like waves are abundant, wave-particle interaction may be a promising candidate for the heating mechanism. Here we address how the solar wind protons are heated parallel and perpendicularly based on the observations of proton velocity distributions and kinetic wave fluctuations from the WIND spacecraft. It is shown that solar wind protons consist of anisotropic core and beam populations with a relative field-aligned drift speed of ~VA between them. Both quasi-parallel left-handed Alfven-cyclotron waves (LH-ACWs) and quasi-perpendicular right-handed Alfven-cyclotron waves / kinetic Alfven waves (RH-ACWs/KAWs) are also identified. It seems that the proton velocity distribution contours may be shaped by left-cyclotron resonance with quasi-parallel LH-ACWs for its anisotropic core components, Landau resonance with quasi-perpendicular KAWs for its beam drift, and right-cyclotron resonance with quasi-perpendicular RH-ACWs for its anisotropic beam component. Plasma instability is also investigated from the data, which shows that the core component anisotropy is usually unstable and may be responsible for the observed LH-ACWs with enhanced fluctuations; whereas the beam drift is stable and no RH-fast/whistler waves are observed. Moreover, the solar wind protons are observed, with the unprecedented cadence of 3s, to be highly dynamic in their velocity distributions with an apparent alternation between the stretching and contracting of the drifted beam, which may be connected with amplitude intermittency of associated waves.

  4. Solar Panel Buffeted by Wind at Phoenix Site

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Winds were strong enough to cause about a half a centimeter (.19 inch) of motion of a solar panel on NASA's Phoenix Mars lander when the lander's Surface Stereo Imager took this picture on Aug. 31, 2008, during the 96th Martian day since landing.

    The lander's telltale wind gauge has been indicating wind speeds of about 4 meters per second (9 miles per hour) during late mornings at the site.

    These conditions were anticipated and the wind is not expected to do any harm to the lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  5. An optimum solar wind coupling function for the AL index

    NASA Astrophysics Data System (ADS)

    McPherron, Robert L.; Hsu, Tung-Shin; Chu, Xiangning

    2015-04-01

    We define a coupling function as a product of solar wind factors that partially linearizes the relation between it and a magnetic index. We consider functions that are a product of factors of solar wind speed V, density N, transverse magnetic field B⊥, and interplanetary magnetic field (IMF) clock angle θc each raised to a different power. The index is the auroral lower (AL index) which monitors the strength of the westward electrojet. Solar wind data 1995-2014 provide hour averages of the factors needed to calculate optimum exponents. Nonlinear inversion determines both the exponents and linear prediction filters of short data segments. The averages of all exponents are taken as optimum exponents and for V, N, B⊥, and sin(θc/2) are [1.92, 0.10, 0.79, 3.67] with errors in the second decimal. Hourly values from 1966 to 2014 are used next to calculate the optimum function (opn) and the functions VBs (eys), epsilon (eps), and universal coupling function (ucf). A yearlong window is advanced by 27 days calculating linear prediction filters for the four functions. The functions eps, eys, ucf, and opn, respectively, predict 43.7, 61.2, 65.6, and 68.3% of AL variance. The opn function is 2.74% better than ucf with a confidence interval 2.60-2.86%. Coupling strength defined as the sum of filter weights (nT/mV/m) is virtually identical for all functions and varies systematically with the solar cycle being strongest (188 nT/mV/m) at solar minimum and weakest (104) at solar maximum. Saturation of the polar cap potential approaching solar maximum may explain the variation.

  6. Coronal holes and solar wind streams during the sunspot cycle

    NASA Technical Reports Server (NTRS)

    Sheeley, N. R., Jr.

    1992-01-01

    Complementary synoptic observations of the Sun and interplanetary space have been obtained nearly continuously for more than two sunspot cycles and have led to new ideas about the origin of the solar wind. These observations show an inverse correlation between wind speed at Earth and magnetic flux tube expansion in the corona, with fast wind originating from slowly diverging tubes and vice versa. Although this result is consistent with the Skylab-era concept that fast wind originates from the center of a large isolated coronal hole, it implies that the wind may be even faster at the facing edges of like-polarity holes where the flux-tubes converge as they begin their outward extension. Thus, very fast wind ought to originate from the high-latitude edges of the circumpolar holes soon after sunspot maximum and from the mid-latitude necks of the polar-hole lobes during the declining phase of the cycle. The observed inverse correlation may be understood physically in terms of a model in which Alfven waves boost the wind to high speed provided that the wave energy flux is distributed approximately uniformly at the coronal base.

  7. A porcupine Sun? Implications for the solar wind and Earth

    NASA Astrophysics Data System (ADS)

    Gibson, Sarah E.; Zhao, Liang

    2012-07-01

    The recent minimum was unusually long, and it was not just the case of the ``usual story'' slowed down. The coronal magnetic field never became completely dipolar as in recent Space Age minima, but rather gradually evolved into an (essentially axisymmetric) global configuration possessing mixed open and closed magnetic structures at many latitudes. In the process, the impact of the solar wind at the Earth went from resembling that from a sequence of rotating ``fire-hoses'' to what might be expected from a weak, omnidirectional ``lawn-sprinkler''. The previous (1996) solar minimum was a more classic dipolar configuration, and was characterized by slow wind of hot origin localized to the heliospheric current sheet, and fast wind of cold origin emitted from polar holes, but filling most of the heliosphere. In contrast, the more recent minimum solar wind possessed a broad range of speeds and source temperatures (although cooler overall than the prior minimum). We discuss possible connections between these observations and the near-radial expansion and small spatial scales characteristic of the recent minimum's porcupine-like magnetic field.

  8. Simulation and optimum design of hybrid solar-wind and solar-wind-diesel power generation systems

    NASA Astrophysics Data System (ADS)

    Zhou, Wei

    Solar and wind energy systems are considered as promising power generating sources due to its availability and topological advantages in local power generations. However, a drawback, common to solar and wind options, is their unpredictable nature and dependence on weather changes, both of these energy systems would have to be oversized to make them completely reliable. Fortunately, the problems caused by variable nature of these resources can be partially overcome by integrating these two resources in a proper combination to form a hybrid system. However, with the increased complexity in comparison with single energy systems, optimum design of hybrid system becomes more complicated. In order to efficiently and economically utilize the renewable energy resources, one optimal sizing method is necessary. This thesis developed an optimal sizing method to find the global optimum configuration of stand-alone hybrid (both solar-wind and solar-wind-diesel) power generation systems. By using Genetic Algorithm (GA), the optimal sizing method was developed to calculate the system optimum configuration which offers to guarantee the lowest investment with full use of the PV array, wind turbine and battery bank. For the hybrid solar-wind system, the optimal sizing method is developed based on the Loss of Power Supply Probability (LPSP) and the Annualized Cost of System (ACS) concepts. The optimization procedure aims to find the configuration that yields the best compromise between the two considered objectives: LPSP and ACS. The decision variables, which need to be optimized in the optimization process, are the PV module capacity, wind turbine capacity, battery capacity, PV module slope angle and wind turbine installation height. For the hybrid solar-wind-diesel system, minimization of the system cost is achieved not only by selecting an appropriate system configuration, but also by finding a suitable control strategy (starting and stopping point) of the diesel generator. The

  9. Dayside Erosion During Intervals of Tenuous Solar Wind

    NASA Astrophysics Data System (ADS)

    Farrugia, C. J.; Muehlbachler, S.; Torbert, R. B.; Biernat, H. K.

    2001-12-01

    We present six data examples where we infer erosion of the dayside magnetosphere during intervals of very tenuous solar wind (density < 1 cm-3). The interplanetary observations were made by the Wind spacecraft when the average solar wind dynamic pressure P dyn and the interplanetary magnetic field (IMF) Bz were in the ranges (0.07, 0.62) nPa and (-7.6, -0.9) nT, respectively. The inner magnetospheric signature of erosion we focus on is a decrease in the strength of the geostationary magnetic field, as monitored by NOAA's GOES spacecraft. We obtain this decrease as a function of IMF Bz by comparing each event with a reference day, May 11, 1999. During the reference day the lowest P dyn of the set was attained (0.07 nPa), IMF Bz > 0, and the geomagnetic field at geostationary orbit was dipolar. The central point we make is that although compared to the reference day the P dyn in each event is higher, the strength of the geostationary field is weaker. We interpret this as evidence that the field compression due to P dyn has been overcome by the field depression due to erosion. Correcting empirically for the compression of the geostationary field due to solar wind dynamic pressure, we find that for the tenuous solar winds we consider the decrease of the geostationary field, Δ BGS, is related to IMF Bz as Δ BGS (nT)= -2.8 + 2.3 Bz (nT). This work is supported by NASA Living with a Star Grant NAG5-10883 and DARA grant 50 OC 8911 0.

  10. Capture of Solar Wind He++ by the Martian Exosphere

    NASA Astrophysics Data System (ADS)

    Chanteur, G. M.; Modolo, R.; Dubinin, E.

    The quantity of helium in the Martian atmosphere can be estimated from its emission line at 58 4nm Krasnopolsky and Gladstone Icarus vol 176 395-407 2005 and references therein Considering the necessary balance between losses through escape to the interplanetary medium and sources Krasnopolsky and coworkers have established that radioactive decay of uranium and thorium provides only one third of the lost helium They argue that the remaining two thirds should be captured from the solar wind This external source of Martian helium was also suggested by Barabash et al JGR 100 A11 21307 1995 Brecht JGR 102 A6 11287 1997 has estimated the deposition of protons into the Martian atmosphere from 3d hybrid simulation of the interaction of Mars with a solar wind made of protons and electrons only From these results Brecht gave an estimate of the deposition of solar helium ions into the Martian atmosphere based on scaling arguments In the recent past we have developed a consistent multi-species 3d hybrid model of the interaction of solar wind protons and alpha particles with the Martian plasma environment taking into account the ionisation of the oxygen and hydrogen neutral coronas of Mars Modolo et al Ann Geophys 23 433 2005 Neutral species are ionised by photons and by electron impacts the two processes are simulated consistently and independently through the specification of ionisation frequencies and cross sections Charge exchange reactions of protons and oxygen ions with hydrogen and oxygen atoms are taken into account

  11. Measurements of electric fields in the solar wind: Interpretation difficulties

    NASA Technical Reports Server (NTRS)

    Chertkov, A. D.

    1995-01-01

    The traditionally measured electric fields in the solar wind plasma (about 1-10 mV/m) are not the natural, primordial ones but are the result of plasma-vehicle interaction. The theory of this interaction is not complete now and current interpretation of the measurements can fail. The state of fully ionized plasma depends on the entropy of the creating source and on the process in which plasma is involved. The increasing twofold of a moving volume in the solar wind (with energy transfer across its surface which is comparable with its whole internal energy) is a more rapid process than the relaxation for the pressure. The presumptive source of the solar wind creation - the induction electric field of the solar origin - has very low entropy. The state of plasma must be very far from the state of thermodynamic equilibrium. The internal energy of plasma can be contained mainly in plasma waves, resonant plasma oscillations, and electric currents. The primordial microscopic oscillating electric fields could be about 1 V/m. It can be checked by special measurements, not ruining the natural plasma state. The tool should be a dielectrical microelectroscope outside the distortion zone of the spacecraft, having been observed from the latter.

  12. Small solar wind transients: Stereo-A observations in 2009

    SciTech Connect

    Yu, W.; Farrugia, C. J.; Galvin, A. B.; Simunac, K. D. C.; Popecki, M. A.; Lugaz, N.; Kilpua, E. K. J.; Moestl, C.; Luhmann, J. G.; Opitz, A.; Sauvaud, J.-A.

    2013-06-13

    Year 2009 was the last year of a long and pronounced solar activity minimum. In this year the solar wind in the inner heliosphere was for 90% of the time slow (< 450 km s{sup -1}) and with a weaker magnetic field strength compared to the previous solar minimum 1995-1996. We choose this year to present the results of a systematic search for small solar wind transients (STs) observed by the STEREO-Ahead (ST-A) probe. The data are from the PLASTIC and IMPACT instrument suites. By 'small' we mean a duration from {approx}1 to 12 hours. The parameters we search for to identify STs are (i) the total field strength, (ii) the rotation of the magnetic field vector, (iii) its smoothness, (iv) proton temperature, (v) proton beta, and (vi) Alfven Mach number. We find 45 examples. The STs have an average duration of {approx}4 hours. Ensemble averages of key quantities are: (i) maximum B = 7.01 nT; (ii) proton {beta}= 0.18; (iii) proton thermal speed = 20.8 km s{sup -1}; and (iv) Alfven Mach number = 6.13. No distinctive feature is found in the pitch angle distributions of suprathermal electrons. Our statistical results are compared with those of STs observed near Earth by Wind during 2009.

  13. Invited Article: Electric solar wind sail: Toward test missions

    NASA Astrophysics Data System (ADS)

    Janhunen, P.; Toivanen, P. K.; Polkko, J.; Merikallio, S.; Salminen, P.; Haeggström, E.; Seppänen, H.; Kurppa, R.; Ukkonen, J.; Kiprich, S.; Thornell, G.; Kratz, H.; Richter, L.; Krömer, O.; Rosta, R.; Noorma, M.; Envall, J.; Lätt, S.; Mengali, G.; Quarta, A. A.; Koivisto, H.; Tarvainen, O.; Kalvas, T.; Kauppinen, J.; Nuottajärvi, A.; Obraztsov, A.

    2010-11-01

    The electric solar wind sail (E-sail) is a space propulsion concept that uses the natural solar wind dynamic pressure for producing spacecraft thrust. In its baseline form, the E-sail consists of a number of long, thin, conducting, and centrifugally stretched tethers, which are kept in a high positive potential by an onboard electron gun. The concept gains its efficiency from the fact that the effective sail area, i.e., the potential structure of the tethers, can be millions of times larger than the physical area of the thin tethers wires, which offsets the fact that the dynamic pressure of the solar wind is very weak. Indeed, according to the most recent published estimates, an E-sail of 1 N thrust and 100 kg mass could be built in the rather near future, providing a revolutionary level of propulsive performance (specific acceleration) for travel in the solar system. Here we give a review of the ongoing technical development work of the E-sail, covering tether construction, overall mechanical design alternatives, guidance and navigation strategies, and dynamical and orbital simulations.

  14. Solar wind heavy ions from flare-heated coronal plasma

    NASA Technical Reports Server (NTRS)

    Bame, S. J.; Asbridge, J. R.; Feldman, W. C.; Fenimore, E. E.; Gosling, J. T.

    1979-01-01

    Information concerning the coronal expansion is carried by solar-wind heavy ions. Distinctly different energy-per-charge ion spectra are found in two classes of solar wind having the low kinetic temperatures necessary for E/q resolution of the ion species. Heavy-ion spectra which can be resolved are most frequently observed in the low-speed interstream (IS) plasma found between high speed streams; the streams are thought to originate from coronal holes. Although the sources of the IS plasma are uncertain, the heavy-ion spectra found there contain identifiable peaks of O, Si, and Fe ions. Such spectra indicate that the IS ionization state of O is established in coronal gas at a temperature of approximately 1.6 million K, while that of Fe is frozen in farther out at about 1.5 million K. On occasion anomalous spectra are found outside IS flows in solar wind with abnormally depressed local kinetic temperatures. The anomalous spectra contain Fe(16+) ions, not usually found in IS flows, and the derived coronal freezing-in temperatures are significantly higher. The coronal sources of some of these ionizationally hot flows are identified as solar flares.

  15. Some remarks on waves in the solar wind

    SciTech Connect

    Kellogg, P. J.; Goetz, K.; Monson, S. J.; Balogh, A.; Forsyth, R. J.

    1996-07-20

    Waves are significant to the solar wind in two ways--as modifiers of the particle distribution functions, and as diagnostics. In addition, the solar wind serves as an important laboratory for the study of plasma wave processes, as it is possible to make detailed measurements of phenomena which are too small to be easily measured by laboratory sized sensors. The waves, both electromagnetic and electrostatic, which are part of the solar type III burst phenomenon, have been extensively studied as examples of nonlinear plasma phenomena, and also used as remote sensors to trace the solar magnetic field. The observations made by Ulysses show that the field can be traced in this way out to perhaps a little more than an A.U., but then the electromagnetic part of the type III burst fades out. Nevertheless, sometimes Langmuir waves appear at Ulysses at an appropriate extrapolated time. This seems to support the picture in which the electromagnetic waves at the fundamental plasma frequency are trapped in density fluctuations. Recently it has been found that Langmuir waves are associated with magnetic holes. This may help to elucidate the nature of magnetic holes. Nonlinear processes are important in the transformation of wave energy to particle energy. Some recent examples from Wind data are shown.

  16. Invited article: Electric solar wind sail: toward test missions.

    PubMed

    Janhunen, P; Toivanen, P K; Polkko, J; Merikallio, S; Salminen, P; Haeggström, E; Seppänen, H; Kurppa, R; Ukkonen, J; Kiprich, S; Thornell, G; Kratz, H; Richter, L; Krömer, O; Rosta, R; Noorma, M; Envall, J; Lätt, S; Mengali, G; Quarta, A A; Koivisto, H; Tarvainen, O; Kalvas, T; Kauppinen, J; Nuottajärvi, A; Obraztsov, A

    2010-11-01

    The electric solar wind sail (E-sail) is a space propulsion concept that uses the natural solar wind dynamic pressure for producing spacecraft thrust. In its baseline form, the E-sail consists of a number of long, thin, conducting, and centrifugally stretched tethers, which are kept in a high positive potential by an onboard electron gun. The concept gains its efficiency from the fact that the effective sail area, i.e., the potential structure of the tethers, can be millions of times larger than the physical area of the thin tethers wires, which offsets the fact that the dynamic pressure of the solar wind is very weak. Indeed, according to the most recent published estimates, an E-sail of 1 N thrust and 100 kg mass could be built in the rather near future, providing a revolutionary level of propulsive performance (specific acceleration) for travel in the solar system. Here we give a review of the ongoing technical development work of the E-sail, covering tether construction, overall mechanical design alternatives, guidance and navigation strategies, and dynamical and orbital simulations. PMID:21133454

  17. Detection of fast nanoparticles in the solar wind

    SciTech Connect

    Meyer-Vernet, N.; Maksimovic, M.; Lecacheux, A.; Le Chat, G.; Czechowski, A.; Mann, I.; Goetz, K.; Kaiser, M. L.; Cyr, O. C. St.; Bale, S. D.

    2010-03-25

    Dust grains in the nanometer range bridge the gap between atoms and larger grains made of bulk material. Their small size embodies them with special properties. Due to their high relative surface area, they have a high charge-to-mass ratio, so that the Lorentz force in the solar wind magnetic field exceeds the gravitational force and other forces by a large amount, and they are accelerated to a speed of the order of magnitude of the solar wind speed. When such fast nanoparticles impact a spacecraft, they produce craters whose matter vaporises and ionises, yielding transient voltages as high as do much larger grains of smaller speed. These properties are at the origin of their recent detection at 1 AU in the solar wind. We discuss the detection of fast nanoparticles by wave instruments of different configurations, with applications to the recent detections on STEREO/WAVES and CASSINI/RPWS. Finally we discuss the opportunities for nanoparticle detection by wave instruments on future missions and/or projects in the inner heliosphere such as Bepi-Colombo and Solar Orbiter.

  18. Modeling Jets in the Corona and Solar Wind

    NASA Astrophysics Data System (ADS)

    Torok, Tibor; Lionello, Roberto; Titov, Viacheslav S.; Leake, James E.; Mikic, Zoran; Linker, Jon A.; Linton, Mark G.

    2016-04-01

    Coronal jets are transient, collimated eruptions that occur in regions of open or semi-open magnetic fields in the solar corona. Our understanding of these events has significantly improved in recent years, owing to improved observational capabilities and numerical simulations. Yet, several important questions concerning coronal jets remain largely unanswered. For example: What exactly are the physical mechanisms that heat and accelerate the plasma? And to what extent do jets contribute to the heating of the corona and in providing mass and energy to the fast solar wind? Here we present a "new generation" of coronal-jet simulations that will allow us to address such questions in more detail than before. In contrast to previous simulations, our code models the large-scale corona in a spherical domain, uses an advanced description of the energy transfer in the corona ("thermodynamic MHD"), and includes the solar wind. As a first application, we consider a purely radial coronal magnetic field and a simple coronal heating function that decreases exponentially with height above the surface. We produce so-called standard and blowout jets by continuously driving the system at the lower boundary with data extracted from flux-emergence simulations. We discuss the formation, dynamics, and evolution of the jets, as well as their contribution to coronal heating and the solar wind.

  19. Small solar wind transients: Stereo-A observations in 2009

    NASA Astrophysics Data System (ADS)

    Yu, W.; Farrugia, C. J.; Galvin, A. B.; Simunac, K. D. C.; Kilpua, E. K. J.; Popecki, M. A.; Moestl, C.; Lugaz, N.; Luhmann, J. G.; Opitz, A.; Sauvaud, J.-A.

    2013-06-01

    Year 2009 was the last year of a long and pronounced solar activity minimum. In this year the solar wind in the inner heliosphere was for 90% of the time slow (< 450 km s-1) and with a weaker magnetic field strength compared to the previous solar minimum 1995-1996. We choose this year to present the results of a systematic search for small solar wind transients (STs) observed by the STEREO-Ahead (ST-A) probe. The data are from the PLASTIC and IMPACT instrument suites. By "small" we mean a duration from ~1 to 12 hours. The parameters we search for to identify STs are (i) the total field strength, (ii) the rotation of the magnetic field vector, (iii) its smoothness, (iv) proton temperature, (v) proton beta, and (vi) Alfvén Mach number. We find 45 examples. The STs have an average duration of ~4 hours. Ensemble averages of key quantities are: (i) maximum B = 7.01 nT; (ii) proton β = 0.18; (iii) proton thermal speed = 20.8 km s-1 and (iv) Alfvén Mach number = 6.13. No distinctive feature is found in the pitch angle distributions of suprathermal electrons. Our statistical results are compared with those of STs observed near Earth by Wind during 2009.

  20. Neutral Solar Wind Generated by Lunar Exospheric Dust at the Terminator

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Stubbs, Timothy J.

    2007-01-01

    We calculate the flux of neutral solar wind observed on the lunar surface at the terminator due to solar wind protons penetrating exospheric dust with: (1) grains larger that 0.1 microns and (2) grains larger than 0.01 microns. For grains larger than 0.1 microns, the ratio of the neutral solar wind to solar wind flux is estimated to be approx.10(exp -4)-10(exp -3) at solar wind speeds in excess of 800 km/s, but much lower (less than 10(exp -5) at average to low solar wind speeds. However, when the smaller grain sizes are considered, the ratio of the neutral solar wind flux to solar wind flux is estimated to be greater than or equal to 10(exp -5) at all speeds and at speeds in excess of 700 km/s reaches 10(exp -3)-10(exp -2). These neutral solar wind fluxes are easily measurable with current low energy neutral atom instrumentation. Observations of neutral solar wind from the surface of the Moon could provide a very sensitive determination of the distribution of very small dust grains in the lunar exosphere and would provide data complementary to optical measurements at ultraviolet and visible wavelengths. Furthermore, neutral solar wind, unlike its ionized counterpart, is .not held-off by magnetic anomalies, and may contribute to greater space weathering than expected in certain lunar locations.