These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Genetically Altered Plant Species  

NASA Technical Reports Server (NTRS)

Researchers in Robert Ferl's lab at the University of Florida in Gainesville, genetically altered this Arabdopsis Thaliana (a brassica species) plant to learn how extreme environments, such as the low atmospheric pressure on Mars, affect plant genes. They inserted green fluorescent protein (GFP) near the on/off switches for anoxia and drought genes. When those genes were turned on after exposure to reduced atmospheric pressure, GFP was turned on as well, causing cells expressing those genes to glow green under a blue light. The natural fluorescence of chlorophyll accounts for the red glow.

2003-01-01

2

Genetically altering the expression of neutral trehalase gene affects conidiospore thermotolerance of the entomopathogenic fungus Metarhizium acridum  

PubMed Central

Background The entomopathogenic fungus Metarhizium acridum has been used as an important biocontrol agent instead of insecticides for controlling crop pests throughout the world. However, its virulence varies with environmental factors, especially temperature. Neutral trehalase (Ntl) hydrolyzes trehalose, which plays a role in environmental stress response in many organisms, including M. acridum. Demonstration of a relationship between Ntl and thermotolerance or virulence may offer a new strategy for enhancing conidiospore thermotolerance of entomopathogenic fungi through genetic engineering. Results We selected four Ntl over-expression and four Ntl RNA interference (RNAi) transformations in which Ntl expression is different. Compared to the wild-type, Ntl mRNA expression was reduced to 35-66% in the RNAi mutants and increased by 2.5-3.5-fold in the over-expression mutants. The RNAi conidiospores exhibited less trehalase activity, accumulated more trehalose, and were much more tolerant of heat stress than the wild-type. The opposite effects were found in conidiospores of over-expression mutants compared to RNAi mutants. Furthermore, virulence was not altered in the two types of mutants compared to the wild type. Conclusions Ntl controlled trehalose accumulation in M. acridum by degrading trehalose, and thus affected conidiospore thermotolerance. These results offer a new strategy for enhancing conidiospore thermotolerance of entomopathogenic fungi without affecting virulence. PMID:21310069

2011-01-01

3

Molecular genetic analysis of MSUD from India reveals mutations causing altered protein truncation affecting the C-termini of E1? and E1?.  

PubMed

Maple Syrup Urine Disease is a rare metabolic disorder caused by reduced/absent activity of the branched chain ?-Ketoacid dehydrogenase enzyme complex. Mutations in BCKDHA, BCKDHB, and DBT, that encode important subunits of the enzyme complex namely E1?, E1?, and E2, are the primary cause for the disease. We have performed the first molecular genetic analysis of MSUD from India on nine patients exhibiting classical MSUD symptoms. BCKDHA and BCKDHB mutations were identified in four and five patients, respectively including seven novel mutations namely the BCKDHA c.1249delC, c.1312T>C, and c.1561T>A and the BCKDHB c.401T>A, c.548G>A, c.964A>G, and c.1065delT. The BCKDHB c.970C>T (p.R324X) mutation was shown to trigger nonsense mediated decay-based degradation of the transcript. Seven of the total 11 mutations resulted in perturbations in the E1? or E1? C-termini either through altered termination or through an amino acid change; these are expected to result in disruption of E1 enzyme complex assembly. Our study has therefore revealed that BCKDHA and BCKDHB mutations might be primarily responsible for MSUD in the Indian population. PMID:22593002

Bashyam, Murali D; Chaudhary, Ajay K; Sinha, Manjari; Nagarajaram, H A; Devi, A Radha Rama; Bashyam, Leena; Reddy, E Chandrakanth; Dalal, Ashwin

2012-10-01

4

[Colorectal cancer (CCR): genetic and molecular alterations].  

PubMed

The aim of this review is to present a genetic and molecular overview of colorectal carcinogenesis (sporadic and hereditary origin) as a multistage process, where there are a number of molecular mechanisms associated with the development of colorectal cancer and genomic instability that allows the accumulation of mutations in proto-oncogenes and tumor suppressor genes, chromosomal instability, and methylation and microsatellite instability, and the involvement of altered expression of microRNAs' prognosis factors. PMID:24603996

Juárez-Vázquez, Clara Ibet; Rosales-Reynoso, Mónica Alejandra

2014-01-01

5

Behavioral genetics of affective and anxiety disorders.  

PubMed

As shown by clinical genetic studies, affective and anxiety disorders are complex genetic disorders with genetic and environmental factors interactively determining their respective pathomechanism. Advances in molecular genetic techniques including linkage studies, association studies, and genome-wide association studies allow for the detailed dissection of the genetic influence on the development of these disorders. Besides the molecular genetic investigation of categorical entities according to standardized diagnostic criteria, intermediate phenotypes comprising neurobiological or neuropsychological traits (e.g., neuronal correlates of emotional processing) that are linked to the disease of interest and that are heritable, have been proposed to be closer to the underlying genotype than the overall disease phenotype. These intermediate phenotypes are dimensional and more precisely defined than the categorical disease phenotype, and therefore have attracted much interest in the genetic investigation of affective and anxiety disorders. Given the complex genetic nature of affective and anxiety disorders with an interaction of multiple risk genes and environmental influences, the interplay of genetic factors with environmental factors is investigated by means of gene-environment interaction (GxE) studies. Pharmacogenetic studies aid in the dissection of the genetically influenced heterogeneity of psychotropic drug response and may contribute to the development of a more individualized treatment of affective and anxiety disorders. Finally, there is some evidence for genetic factors potentially shared between affective and anxiety disorders pointing to a possible overlapping phenotype between anxiety disorders and depression. PMID:22307738

Domschke, Katharina; Reif, Andreas

2012-01-01

6

Low temperature alteration processes affecting ultramafic bodies  

USGS Publications Warehouse

At low temperatures, in the presence of an aqueous solution, olivine and orthopyroxene are not stable relative to the hydrous phases brucite, serpentine and talc. Alteration of dunite and peridotite to serpentine or steatite bodies must therefore proceed via non-equilibrium processes. The compositions of natural solutions emanating from dunites and peridotites demonstrate that the dissolution of forsterite and/or enstatite is rapid compared with the precipitation of the hydrous phases; consequently, dissolution of anhydrous minerals controls the chemistry of such solutions. In the presence of an aqueous phase, precipitation of hydrous minerals is the rate-controlling step. Brucite-bearing and -deficient serpentinites alter at low temperature by non-equilibrium processes, as evidenced by the composition of natural solutions from these bodies. The solutions approach equilibrium with the least stable hydrous phase and, as a consequence, are supersaturated with other hydrous phases. Dissolution of the least stable phase is rapid compared to precipitation of other phases, so that the dissolving mineral controls the solution chemistry. Non-equilibrium alteration of anhydrous ultramafic bodies continues until at least one anhydrous phase equilibrates with brucite, chrysotile or talc. The lowest temperature (at a given pressure) at which this happens is defined by the reaction: 3H2O + 2Mg2SiO4 ??? Mg3Si2O5(OH)4 + Mg(OH)2 (Johannes, 1968, Contrib. Mineral. Petrol. 19, 309-315) so that non-equilibrium alteration may occur well into greenschist facies metamorphic conditions. ?? 1978.

Nesbitt, H.W.; Bricker, O.P.

1978-01-01

7

Assessing the welfare of genetically altered mice.  

PubMed

In 2003, under the auspices of the main UK funders of biological and biomedical research, a working group was established with a remit to review potential welfare issues for genetically altered (GA) mice, to summarize current practice, and to recommend contemporary best practice for welfare assessments. The working group has produced a report which makes practical recommendations for GA mouse welfare assessment and dissemination of welfare information between establishments using a 'mouse passport'. The report can be found at www.nc3rs.org.uk/GAmice and www.lal.org.uk/gaa and includes templates for the recommended welfare assessment scheme and the mouse passport. An overview is provided below. PMID:16600070

Wells, D J; Playle, L C; Enser, W E J; Flecknell, P A; Gardiner, M A; Holland, J; Howard, B R; Hubrecht, R; Humphreys, K R; Jackson, I J; Lane, N; Maconochie, M; Mason, G; Morton, D B; Raymond, R; Robinson, V; Smith, J A; Watt, N

2006-04-01

8

The genetics of affective disorder and suicide  

Microsoft Academic Search

Suicidal behaviour shows evidence of familial clustering and the twin data on completed suicide suggest moderate heritability. The extent to which the genetics of suicidal behaviour overlaps with the genetics of affective disorders is unclear but there is overwhelming evidence that both bipolar and unipolar disorder are substantially influenced by genes. So far, candidate gene studies of suicidality have provoked

P. McGuffin; N. Perroud; R. Uher; A. Butler; K. J. Aitchison; I. Craig; C. Lewis; A. Farmer

2010-01-01

9

Alterations in Pulse Pressure Affect Artery Function  

PubMed Central

Pulse pressure changes in response to cardiovascular diseases and interventions, but its effect on vascular wall structure and function is poorly understood. We examined the effect of increased or decreased pulse pressure on artery function, cellular function, and extracellular matrix remodeling. Porcine carotid arteries were cultured under non-pulsatile (100 mmHg), pulsatile (70-130 mmHg), or hyper-pulsatile pressure (50-150 mmHg) for 1 to 3 days. Vasomotor response, wall permeability, cell proliferation, apoptosis, extracellular matrix remodeling, and proteins involved in atherogenesis were examined. Our results showed that hyper-pulsatile pressure decreased the artery response to sodium nitroprusside, basal tone, and wall permeability after three days. Non-pulsatile pressure increased cell proliferation. Neither hyper-pulsatile nor non-pulsatile pressure caused a change in the extracellular matrix or in the expression of matrix metalloproteinase-2 (MMP-2), MMP-9, caveolin-1, or ?-actin. Hyper-pulsatile pressure increased monocyte chemotactic protein-1 gene expression. Taken together, these changes indicate that pulse pressure has a limited effect on the artery immediately after its application. Specifically an increase in pulse pressure alters the artery tone and wall permeability while a decrease in pulse pressure alters cell proliferation. Overall these results provide insight into how the artery initially responds to changes in pulse pressure. PMID:23243477

Hayman, Danika M.; Xiao, Yangming; Yao, Qingping; Jiang, Zonglai; Lindsey, Merry L.; Han, Hai-Chao

2012-01-01

10

Molecular genetics in affective illness  

SciTech Connect

Genetic transmission in manic depressive illness (MDI) has been explored in twins, adoption, association, and linkage studies. The X-linked transmission hypothesis has been tested by using several markers on chromosome X: Xg blood group, color blindness, glucose-6-phosphate dehydrogenase (G6PD), factor IX (hemophilia B), and DNA probes such as DXS15, DXS52, F8C, ST14. The hypothesis of autosomal transmission has been tested by association studies with the O blood group located on chromosome 9, as well as linkage studies on chromosome 6 with the Human Leucocyte Antigens (HLA) haplotypes and on Chromosome 11 with DNA markers for the following genes: D2 dopamine receptor, tyrosinase, C-Harvey-Ras-A (HRAS) oncogene, insuline (ins), and tyrosine hydroxylase (TH). Although linkage studies support the hypothesis of a major locus for the transmission of MDI in the Xq27-28 region, several factors are limiting the results, and are discussed in the present review. 105 refs., 1 fig., 2 tabs.

Mendlewicz, J.; Sevy, S.; Mendelbaum, K. (Erasme Univ. Hospital, Brussels (Belgium))

1993-01-01

11

Molecular genetic alterations in glioblastomas with oligodendroglial component  

Microsoft Academic Search

Glioblastoma multiforme is the most malignant astrocytic glioma and usually resistant to chemotherapy. A small fraction of glioblastomas may contain areas with histological features of oligodendroglial differentiation. To determine the molecular genetic alterations in such \\

Jürgen A. Kraus; Katrin Lamszus; Nicole Glesmann; Martina Beck; Marietta Wolter; Michael Sabel; Dietmar Krex; Thomas Klockgether; Guido Reifenberger; Uwe Schlegel

2001-01-01

12

Raman spectroscopic study of a genetically altered kidney cell  

NASA Astrophysics Data System (ADS)

A Raman spectroscopic investigation of a genetically altered Human Embryonic Kidney Cell (HEK293) along with a pathologically normal cell has been carried out by a conventional method. The genetic alteration was carried out with a standard protocol by using a Green Fluorescence Protein (GFP). Raman spectra show that there are dramatic differences between the spectrum obtained from a genetically altered cell and that obtained from a pathologically normal cell. The former shows three broad bands; meanwhile the latter shows several sharp peaks corresponding to the ring vibrational modes of Phen, GFP and DNA. The present analysis provides an indication that the force field near Phen located at 64, 65 and 66 was altered during the genetic transformation. The Raman spectrum could be a direct experimental evidence for substantial modifications triggered due to the expression of specific genes.

Joshi, Joel; Garcia, Francisco; Centeno, Silvia P.; Joshi, N. V.

2008-02-01

13

Genetic alterations in syndromes with oral manifestations  

PubMed Central

Ever since Gregor Johan Mendel proposed the law of inheritance, genetics has transcended the field of health and has entered all walks of life in its application. Thus, the gene is the pivoting factor for all happenings revolving around it. Knowledge of gene mapping in various diseases would be a valuable tool in prenatally diagnosing the condition and averting the future disability and stigma for the posterity. This article includes an array of genetically determined conditions in patients seen at our college out-patient department with complete manifestation, partial manifestation and array of manifestations not fitting into a particular syndrome. PMID:24379857

Anuthama, Krishnamurthy; Prasad, Harikrishnan; Ramani, Pratibha; Premkumar, Priya; Natesan, Anuja; Sherlin, Herald J.

2013-01-01

14

Genetic alterations in syndromes with oral manifestations.  

PubMed

Ever since Gregor Johan Mendel proposed the law of inheritance, genetics has transcended the field of health and has entered all walks of life in its application. Thus, the gene is the pivoting factor for all happenings revolving around it. Knowledge of gene mapping in various diseases would be a valuable tool in prenatally diagnosing the condition and averting the future disability and stigma for the posterity. This article includes an array of genetically determined conditions in patients seen at our college out-patient department with complete manifestation, partial manifestation and array of manifestations not fitting into a particular syndrome. PMID:24379857

Anuthama, Krishnamurthy; Prasad, Harikrishnan; Ramani, Pratibha; Premkumar, Priya; Natesan, Anuja; Sherlin, Herald J

2013-11-01

15

Genetic Alterations in Pesticide Exposed Bolivian Farmers  

PubMed Central

Background Pesticides are of concern in Bolivia because of increasing use. Frequent intoxications have been demonstrated due to use of very toxic pesticides, insufficient control of distribution and sale and little knowledge among farmers of protective measures and hygienic procedures. Method Questionnaires were applied and blood tests taken from 81 volunteers from La Paz County, of whom 48 were pesticide exposed farmers and 33 non-exposed controls. Sixty males and 21 females participated with a mean age of 37.3 years (range 17–76). Data of exposure and possible genetic damage were collected and evaluated by well known statistical methods, controlling for relevant confounders. To measure genetic damage chromosomal aberrations and the comet assay analysis were performed. Results Pesticide exposed farmers had a higher degree of genetic damage compared to the control group. The number of chromosomal aberrations increased with the intensity of pesticide exposure. Females had a lower number of chromosomal aberrations than males, and people living at altitudes above 2500 metres seemed to exhibit more DNA damage measured by the comet assay. Conclusions Bolivian farmers showed signs of genotoxic damage, probably related to exposure to pesticides. Due to the potentially negative long term health effects of genetic damage on reproduction and the development of cancer, preventive measures are recommended. Effective control with imports and sales, banning of the most toxic pesticides, education and information are possible measures, which could help preventing the negative effects of pesticides on human health and the environment. PMID:19662224

J?rs, Erik; Gonzales, Ana Rosa; Ascarrunz, Maria Eugenia; Tirado, Noemi; Takahashi, Catharina; Lafuente, Erika; Dos Santos, Raquel A; Bailon, Natalia; Cervantes, Rafael; O, Huici; Baelum, Jesper; Lander., Flemming

2007-01-01

16

Targeting genetic alterations in protein methyltransferases for personalized cancer therapeutics  

PubMed Central

The human protein methyltransferases (PMTs) constitute a large enzyme class composed of two families, the protein lysine methyltransferases (PKMTs) and the protein arginine methyltransferases (PRMTs). Examples have been reported of both PKMTs and PRMTs that are genetically altered in specific human cancers, and in several cases these alterations have been demonstrated to confer a unique dependence of the cancer cells on PMT enzymatic activity for the tumorigenic phenotype. Examples of such driver alterations in PMTs will be presented together with a review of current efforts towards the discovery and development of small-molecule inhibitors of these enzymes as personalized cancer therapeutics. PMID:23160372

Copeland, R A; Moyer, M P; Richon, V M

2013-01-01

17

In vivo growth of transplanted genetically altered intestinal stem cells  

Microsoft Academic Search

Purpose: Intestinal stem cell transplantation is a potential method of delivering genes to the small intestine. The authors have previously demonstrated the survival of transfected intestinal stem cells implanted into the rat small intestine. This study examines the growth of genetically altered intestinal stem cells that were grown on a polycarbonate membrane and implanted into the rat small intestine.Methods: The

Akemi L Kawaguchi; James C. Y Dunn; Eric W Fonkalsrud

1998-01-01

18

Tumor Hypoxia and Genetic Alterations in Sporadic Cancers  

PubMed Central

The cancer genome contains many gene alterations. How cancer cells acquire these alterations is a matter for discussion. One hypothesis is that cancer cells obtain mutations in genome stability genes at an early stage of tumor development, which results in genetic instability and generates a gene pool that enhances cellular proliferation and survival. Another hypothesis puts its emphasis on the natural selection of gene mutations for fitness. Recent data for systematic cancer genome sequencing shows that mutations in stability genes are rare in human sporadic cancers. Instead, many “passenger” mutations that do not drive the carcinogenesis process have been found in the cancer genome. Both the hypotheses mentioned above fall short in explaining recent data. Recently, many studies demonstrate the role of the tumor microenvironment, especially hypoxia and reoxygenation, in genetic instability. In this review, literature will be presented which supports a third hypothesis, i.e. that hypoxia/re-oxygenation induces genetic instability. PMID:21272156

Koi, Minoru; Boland, C.R.

2011-01-01

19

Phenotypic and Evolutionary Consequences of Social Behaviours: Interactions among Individuals Affect Direct Genetic Effects  

PubMed Central

Traditional quantitative genetics assumes that an individual's phenotype is determined by both genetic and environmental factors. For many animals, part of the environment is social and provided by parents and other interacting partners. When expression of genes in social partners affects trait expression in a focal individual, indirect genetic effects occur. In this study, we explore the effects of indirect genetic effects on the magnitude and range of phenotypic values in a focal individual in a multi-member model analyzing three possible classes of interactions between individuals. We show that social interactions may not only cause indirect genetic effects but can also modify direct genetic effects. Furthermore, we demonstrate that both direct and indirect genetic effects substantially alter the range of phenotypic values, particularly when a focal trait can influence its own expression via interactions with traits in other individuals. We derive a function predicting the relative importance of direct versus indirect genetic effects. Our model reveals that both direct and indirect genetic effects can depend to a large extent on both group size and interaction strength, altering group mean phenotype and variance. This may lead to scenarios where between group variation is much higher than within group variation despite similar underlying genetic properties, potentially affecting the level of selection. Our analysis highlights key properties of indirect genetic effects with important consequences for trait evolution, the level of selection and potentially speciation. PMID:23226195

Trubenova, Barbora; Hager, Reinmar

2012-01-01

20

Molecular techniques and genetic alterations in head and neck cancer  

PubMed Central

It is well known that cellular DNA alterations can lead to the formation of cancer, and there has been much discovery in the pathways involved in the development of head and neck squamous cell carcinoma (HNSCC). With novel genome-wide molecular assays, our ability to detect these abnormalities has increased. We now have a better understanding of the molecular complexity of HNSCC, but there is still much research to be done. In this review, we discuss the well described genetic alterations and touch on the newer findings, as well as some of the future directions of head and neck cancer research. PMID:18674960

Ha, Patrick K; Chang, Steven S; Glazer, Chad A; Califano, Joseph A; Sidransky, David

2009-01-01

21

Genetic alterations of the KLF6 gene in gastric cancer  

Microsoft Academic Search

The KLF6 is a zinc-finger tumor suppressor that is frequently mutated in several human cancers and broadly involved in differentiation and development, growth-related signal transduction, cell proliferation, apoptosis, and angiogenesis. To determine whether genetic alterations of KLF6 gene are involved in the development and\\/or progression of gastric cancer, we have screened a set of 80 sporadic gastric cancers for mutations

Yong Gu Cho; Chang Jae Kim; Cho Hyun Park; Young Mok Yang; Su Young Kim; Suk Woo Nam; Sug Hyung Lee; Nam Jin Yoo; Jung Young Lee; Won Sang Park

2005-01-01

22

Water stress alters the genetic architecture of functional traits associated with drought adaptation in Avena barbata.  

PubMed

Environmental stress can alter genetic variation and covariation underlying functional traits, and thus affect adaptive evolution in response to natural selection. However, the genetic basis of functional traits is rarely examined in contrasting resource environments, and consequently, there is no consensus regarding whether environmental stress constrains or facilitates adaptive evolution. We tested whether resource availability affects genetic variation for and covariation among seven physiological traits and seven morphological/performance traits by growing the annual grass Avena barbata in dry and well-watered treatments. We found that differences in the overall genetic variance-covariance (G) matrix between environments were driven by physiological traits rather than morphology and performance traits. More physiological traits were heritable in the dry treatment than the well-watered treatment and many of the genetic correlations among physiological traits were environment dependent. In contrast, genetic variation and covariation among the morphological and performance traits did not differ across treatments. Furthermore, genetic correlations between physiology and performance were stronger in the dry treatment, which contributed to differences in the overall G-matrix. Our results therefore suggest that physiological adaptation would be constrained by low heritable variation in resource-rich environments, but facilitated by higher heritable variation and stronger genetic correlations with performance traits in resource-poor environments. PMID:19054049

Sherrard, Mark E; Maherali, Hafiz; Latta, Robert G

2009-03-01

23

Stage structure alters how complexity affects stability of ecological networks  

USGS Publications Warehouse

Resolving how complexity affects stability of natural communities is of key importance for predicting the consequences of biodiversity loss. Central to previous stability analysis has been the assumption that the resources of a consumer are substitutable. However, during their development, most species change diets; for instance, adults often use different resources than larvae or juveniles. Here, we show that such ontogenetic niche shifts are common in real ecological networks and that consideration of these shifts can alter which species are predicted to be at risk of extinction. Furthermore, niche shifts reduce and can even reverse the otherwise stabilizing effect of complexity. This pattern arises because species with several specialized life stages appear to be generalists at the species level but act as sequential specialists that are hypersensitive to resource loss. These results suggest that natural communities are more vulnerable to biodiversity loss than indicated by previous analyses.

Rudolf, V. H. W.; Lafferty, Kevin D.

2011-01-01

24

Safety assessment of genetically modified plants with deliberately altered composition.  

PubMed

The development and marketing of 'novel' genetically modified (GM) crops in which composition has been deliberately altered poses a challenge to the European Union (EU)'s risk assessment processes, which are based on the concept of substantial equivalence with a non-GM comparator. This article gives some examples of these novel GM crops and summarizes the conclusions of a report that was commissioned by the European Food Safety Authority on how the EU's risk assessment processes could be adapted to enable their safety to be assessed. PMID:24735114

Halford, Nigel G; Hudson, Elizabeth; Gimson, Amy; Weightman, Richard; Shewry, Peter R; Tompkins, Steven

2014-08-01

25

How much do genetic covariances alter the rate of adaptation?  

E-print Network

.1) can be written as Dz1 Z G11b1 CG12b2; ð1:2a� Dz2 Z G22b2 CG12b1: ð1:2b� If z1 and z2 are under equallyHow much do genetic covariances alter the rate of adaptation? Aneil F. Agrawal1,* and John R on the rate of adaptation, we compare the rate fitness increases given the observed G matrix to the expected

Stinchcombe, John

26

How epigenetic mutations can affect genetic evolution: model and mechanism.  

PubMed

We hypothesize that heritable epigenetic changes can affect rates of fitness increase as well as patterns of genotypic and phenotypic change during adaptation. In particular, we suggest that when natural selection acts on pure epigenetic variation in addition to genetic variation, populations adapt faster, and adaptive phenotypes can arise before any genetic changes. This may make it difficult to reconcile the timing of adaptive events detected using conventional population genetics tools based on DNA sequence data with environmental drivers of adaptation, such as changes in climate. Epigenetic modifications are frequently associated with somatic cell differentiation, but recently epigenetic changes have been found that can be transmitted over many generations. Here, we show how the interplay of these heritable epigenetic changes with genetic changes can affect adaptive evolution, and how epigenetic changes affect the signature of selection in the genetic record. PMID:23580343

Klironomos, Filippos D; Berg, Johannes; Collins, Sinéad

2013-06-01

27

Molecular Genetic Alterations in Radiation-Induced Astrocytomas  

PubMed Central

Astrocytic tumors occasionally arise in the central nervous system following radiotherapy. It is not clear if these gliomas represent a unique molecular genetic subset. We identified nine cases in which an astrocytoma arose within ports of previous radiation therapy, with total doses ranging from 2400 to 5500 cGy. Irradiated primary lesions included craniopharyngioma, pituitary adenoma, Hodgkin’s lymphoma, ependymoma, pineal neoplasm, rhabdomyosarcoma, and three cases of lymphoblastic malignancies. Patients ranged from 9 to 60 years of age and developed secondary tumors 5 to 23 years after radiotherapy. The 9 postradiation neoplasms presented as either anaplastic astrocytoma (3 cases) or glioblastoma multiforme (6 cases). Two of the latter contained malignant mesenchymal components. We performed DNA sequence analysis, differential polymerase chain reaction (PCR), and quantitative PCR on DNA from formalin-fixed, paraffin-embedded tumors to evaluate possible alterations of p53, PTEN, K-ras, EGFR, MTAP, and p16 (MTS1/CDKN2) genes. By quantitative PCR, we found EGFR gene amplification in 2 of 8 tumors. One of these demonstrated strong immunoreactivity for EGFR. Quantitative PCR showed chromosome 9p deletions including p16 tumor suppressor gene (2 of 7 tumors) and MTAP gene (3 of 7). Five of 9 tumors demonstrated diffuse nuclear immunoreactivity for p53 protein. Sequencing of the p53 gene in these 9 cases revealed a mutation in only one of these cases, a G-to-A substitution in codon 285 (exon 8). Somewhat unexpectedly, no mutations were identified in PTEN, a commonly altered tumor suppressor gene in de novo glioblastoma multiformes. Unlike some radiation-induced tumors, no activating point mutations of the K-ras proto-oncogene or base pair deletions of tumor suppressor genes were noted. These radiation-induced tumors are distinctive in their high histological grade at clinical presentation. The spectrum of molecular genetic alterations appears to be similar to that described in spontaneous high grade astrocytomas, especially those of the de novo type. PMID:10329596

Brat, Daniel J.; James, C. David; Jedlicka, Anne E.; Connolly, Denise C.; Chang, Ed; Castellani, Rudy J.; Schmid, Mathias; Schiller, Martin; Carson, Dennis A.; Burger, Peter C.

1999-01-01

28

Human genetic variation influences vitamin C homeostasis by altering vitamin C transport and antioxidant enzyme function.  

PubMed

New evidence for the regulation of vitamin C homeostasis has emerged from several studies of human genetic variation. Polymorphisms in the genes encoding sodium-dependent vitamin C transport proteins are strongly associated with plasma ascorbate levels and likely impact tissue cellular vitamin C status. Furthermore, genetic variants of proteins that suppress oxidative stress or detoxify oxidatively damaged biomolecules, i.e., haptoglobin, glutathione-S-transferases, and possibly manganese superoxide dismutase, affect ascorbate levels in the human body. There also is limited evidence for a role of glucose transport proteins. In this review, we examine the extent of the variation in these genes, their impact on vitamin C status, and their potential role in altering chronic disease risk. We conclude that future epidemiological studies should take into account genetic variation in order to successfully determine the role of vitamin C nutriture or supplementation in human vitamin C status and chronic disease risk. PMID:23642198

Michels, Alexander J; Hagen, Tory M; Frei, Balz

2013-01-01

29

Molecular reconstruction of a fungal genetic code alteration  

PubMed Central

Fungi of the CTG clade translate the Leu CUG codon as Ser. This genetic code alteration is the only eukaryotic sense-to-sense codon reassignment known to date, is mediated by an ambiguous serine tRNA (tRNACAGSer), exposes unanticipated flexibility of the genetic code and raises major questions about its selection and fixation in this fungal lineage. In particular, the origin of the tRNACAGSer and the evolutionary mechanism of CUG reassignment from Leu to Ser remain poorly understood. In this study, we have traced the origin of the tDNACAGSer gene and studied critical mutations in the tRNACAGSer anticodon-loop that modulated CUG reassignment. Our data show that the tRNACAGSer emerged from insertion of an adenosine in the middle position of the 5?-CGA-3?anticodon of a tRNACGASer ancestor, producing the 5?-CAG-3? anticodon of the tRNACAGSer, without altering its aminoacylation properties. This mutation initiated CUG reassignment while two additional mutations in the anticodon-loop resolved a structural conflict produced by incorporation of the Leu 5?-CAG-3?anticodon in the anticodon-arm of a tRNASer. Expression of the mutant tRNACAGSer in yeast showed that it cannot be expressed at physiological levels and we postulate that such downregulation was essential to maintain Ser misincorporation at sub-lethal levels during the initial stages of CUG reassignment. We demonstrate here that such low level CUG ambiguity is advantageous in specific ecological niches and we propose that misreading tRNAs are targeted for degradation by an unidentified tRNA quality control pathway. PMID:23619021

Mateus, Denisa D.; Paredes, Joao A.; Espanol, Yaiza; Ribas de Pouplana, Lluis; Moura, Gabriela R.; Santos, Manuel A.S.

2013-01-01

30

Altered affective response in marijuana smokers: An FMRI study  

Microsoft Academic Search

More than 94 million Americans have tried marijuana, and it remains the most widely used illicit drug in the nation. Investigations of the cognitive effects of marijuana report alterations in brain function during tasks requiring executive control, including inhibition and decision-making. Endogenous cannabinoids regulate a variety of emotional responses, including anxiety, mood control, and aggression; nevertheless, little is known about

Staci A. Gruber; Jadwiga Rogowska; Deborah A. Yurgelun-Todd

2009-01-01

31

Landscape location affects genetic variation of Canada lynx (Lynx canadensis).  

PubMed

The effect of a population's location on the landscape on genetic variation has been of interest to population genetics for more than half a century. However, most studies do not consider broadscale biogeography when interpreting genetic data. In this study, we propose an operational definition of a peripheral population, and then explore whether peripheral populations of Canada lynx (Lynx canadensis) have less genetic variation than core populations at nine microsatellite loci. We show that peripheral populations of lynx have fewer mean numbers of alleles per population and lower expected heterozygosity. This is surprising, given the lynx's capacity to move long distances, but can be explained by the fact that peripheral populations often have smaller population sizes, limited opportunities for genetic exchange and may be disproportionately affected by ebbs and flows of species' geographical range. PMID:12803633

Schwartz, M K; Mills, L S; Ortega, Y; Ruggiero, L F; Allendorf, F W

2003-07-01

32

Curious cases: Altered dose-response relationships in addiction genetics.  

PubMed

Dose-response relationships for most addictive substances are "inverted U"-shaped. Addictive substances produce both positive features that include reward, euphoria, anxiolysis, withdrawal-relief, and negative features that include aversion, dysphoria, anxiety and withdrawal symptoms. A simple model differentially associates ascending and descending limbs of dose-response curves with rewarding and aversive influences, respectively. However, Diagnostic and Statistical Manual (DSM) diagnoses of substance dependence fail to incorporate dose-response criteria and don't directly consider balances between euphoric and dysphoric drug effects. Classical genetic studies document substantial heritable influences on DSM substance dependence. Linkage and genome-wide association studies identify modest-sized effects at any locus. Nevertheless, clusters of SNPs within selected genes display 10(-2)>p>10(-8) associations with dependence in many independent samples. For several of these genes, evidence for cis-regulatory, level-of-expression differences supports the validity of mouse models in which levels of expression are also altered. This review documents surprising, recently defined cases in which convergent evidence from humans and mouse models supports central influences of altered dose-response relationships in mediating the impact of relevant genomic variation on addiction phenotypes. For variation at loci for the ?5 nicotinic acetylcholine receptor, cadherin 13, receptor type protein tyrosine phosphatase ? and neuronal cell adhesion molecule genes, changed dose-response relationships conferred by gene knockouts in mice are accompanied by supporting human data. These observations emphasize desirability of carefully elucidating dose-response relationships for both rewarding and aversive features of abused substances wherever possible. They motivate consideration of individual differences in dose-response relationships in addiction nosology and therapeutics. PMID:24189489

Uhl, George R; Drgonova, Jana; Hall, F Scott

2014-03-01

33

Global Asymptotic Stability in the Jia Li Model for Genetically Altered mosquitoes  

E-print Network

Global Asymptotic Stability in the Jia Li Model for Genetically Altered mosquitoes Robert J. Sacker@csupomona.edu Keywords: Difference equation, global stability, genetically altered mosquitoes AMS 2000 Subject and filariasis continue to have an impact on populations worldwide. The Anopheles strains of mosquitoes

Sacker, Robert J.

34

Hypothalamic Alterations in Huntington's Disease Patients: Comparison with Genetic Rodent Models.  

PubMed

Unintended weight loss, sleep and circadian disturbances and autonomic dysfunction are prevalent features of Huntington's disease (HD), an autosomal dominantly inherited neurodegenerative disorder caused by an expanded CAG repeat sequence in the HTT gene. These features form a substantial contribution to disease burden in HD patients and appear to be accompanied by a number of neuroendocrine and metabolic changes, pointing towards hypothalamic pathology as a likely underlying mechanism. Neuronal inclusion bodies of mutant huntingtin, which are hallmarks of the disease, occur throughout the hypothalamus, and indicate local mutant huntingtin expression that could interfere with hypothalamic neuropeptide production. Also, several genetic rodent models of HD show features that could be related to hypothalamic pathology, such as weight loss and circadian rhythm disturbances. In these rodents, several hypothalamic neuropeptide populations are affected. In the present review, we summarise the changes in genetic rodent models of HD for individual hypothalamic nuclei, compare these observations to the hypothalamic changes that occur in HD patients, and make an inventory of the work that still needs to be done. Surprisingly, there is only limited overlap in the hypothalamic changes reported in HD patients and genetic rodent models. At present, the only similarity between the hypothalamic alterations in HD patients and genetic rodent models is a decrease in the number of orexin-expressing neurones in the lateral hypothalamus. Possible reasons for these discrepancies, as well as potential consequences for the development of novel therapeutic strategies, are discussed. PMID:25074766

van Wamelen, D J; Aziz, N A; Roos, R A C; Swaab, D F

2014-11-01

35

The Afterlife of Interspecific Indirect Genetic Effects: Genotype Interactions Alter Litter Quality with Consequences for Decomposition and Nutrient Dynamics  

PubMed Central

Aboveground-belowground linkages are recognized as divers of community dynamics and ecosystem processes, but the impacts of plant-neighbor interactions on these linkages are virtually unknown. Plant-neighbor interactions are a type of interspecific indirect genetic effect (IIGE) if the focal plant’s phenotype is altered by the expression of genes in a neighboring heterospecific plant, and IIGEs could persist after plant senescence to affect ecosystem processes. This perspective can provide insight into how plant-neighbor interactions affect evolution, as IIGEs are capable of altering species interactions and community composition over time. Utilizing genotypes of Solidago altissima and Solidago gigantea, we experimentally tested whether IIGEs that had affected living focal plants would affect litter decomposition rate, as well as nitrogen (N) and phosphorous (P) dynamics after the focal plant senesced. We found that species interactions affected N release and genotype interactions affected P immobilization. From a previous study we knew that neighbor genotype influenced patterns of biomass allocation for focal plants. Here we extend those previous results to show that these changes in biomass allocation altered litter quality, that then altered rates of decomposition and nutrient cycling. Our results provide insights into above- and belowground linkages by showing that, through their effects on plant litter quality (e.g., litter lignin:N), IIGEs can have afterlife effects, tying plant-neighbor interactions to ecosystem processes. This holistic approach advances our understanding of decomposition and nutrient cycling by showing that evolutionary processes (i.e., IIGEs) can influence ecosystem functioning after plant senescence. Because plant traits are determined by the combined effects of genetic and environmental influences, and because these traits are known to affect decomposition and nutrient cycling, we suggest that ecosystem processes can be described as gene-less products of genetic interactions among the species comprising ecological communities. PMID:23349735

Genung, Mark A.; Bailey, Joseph K.; Schweitzer, Jennifer A.

2013-01-01

36

The afterlife of interspecific indirect genetic effects: genotype interactions alter litter quality with consequences for decomposition and nutrient dynamics.  

PubMed

Aboveground-belowground linkages are recognized as divers of community dynamics and ecosystem processes, but the impacts of plant-neighbor interactions on these linkages are virtually unknown. Plant-neighbor interactions are a type of interspecific indirect genetic effect (IIGE) if the focal plant's phenotype is altered by the expression of genes in a neighboring heterospecific plant, and IIGEs could persist after plant senescence to affect ecosystem processes. This perspective can provide insight into how plant-neighbor interactions affect evolution, as IIGEs are capable of altering species interactions and community composition over time. Utilizing genotypes of Solidago altissima and Solidago gigantea, we experimentally tested whether IIGEs that had affected living focal plants would affect litter decomposition rate, as well as nitrogen (N) and phosphorous (P) dynamics after the focal plant senesced. We found that species interactions affected N release and genotype interactions affected P immobilization. From a previous study we knew that neighbor genotype influenced patterns of biomass allocation for focal plants. Here we extend those previous results to show that these changes in biomass allocation altered litter quality, that then altered rates of decomposition and nutrient cycling. Our results provide insights into above- and belowground linkages by showing that, through their effects on plant litter quality (e.g., litter lignin:N), IIGEs can have afterlife effects, tying plant-neighbor interactions to ecosystem processes. This holistic approach advances our understanding of decomposition and nutrient cycling by showing that evolutionary processes (i.e., IIGEs) can influence ecosystem functioning after plant senescence. Because plant traits are determined by the combined effects of genetic and environmental influences, and because these traits are known to affect decomposition and nutrient cycling, we suggest that ecosystem processes can be described as gene-less products of genetic interactions among the species comprising ecological communities. PMID:23349735

Genung, Mark A; Bailey, Joseph K; Schweitzer, Jennifer A

2013-01-01

37

Comparison of Genetic Profiles Between Primary Melanomas and their Metastases Reveals Genetic Alterations and Clonal Evolution During Progression  

Microsoft Academic Search

To examine for the genetic basis of metastatic progression in cutaneous melanoma, we have compared loss of heterozygosity (LOH) of several selected chromosome regions that are implicated in the initiation and progression of melanoma, and alterations of the p16INK4a gene in 14 pairs of primary tumor and synchronous or asynchronous metastasis excised from the same patients. The most frequent genetic

Reiji Morita; Akihide Fujimoto; Naohito Hatta; Kazuhiko Takehara; Minoru Takata

1998-01-01

38

Can Leaf Litter from Genetically Modified Trees Affect Aquatic Ecosystems?  

Microsoft Academic Search

In addition to potential benefits, biotechnology in silviculture may also be associated with environmental considerations,\\u000a including effects on organisms associated with the living tree and on ecosystems and processes dependent on tree residue.\\u000a We examined whether genetic modification of lignin characteristics (CAD and COMT) in Populus sp. affected leaf litter quality, the decomposition of leaf litter, and the assemblages of

E. Petter Axelsson; Joakim Hjältén; Carri J. LeRoy; Riitta Julkunen-Tiitto; Anders Wennström; Gilles Pilate

2010-01-01

39

Altered hypothalamic-pituitary-adrenocortical regulation in healthy subjects at high familial risk for affective disorders.  

PubMed

Altered negative feedback control of the hypothalamic-pituitary-adrenocortical (HPA) system is a frequent laboratory sign of major depression. It coincides with depressive episodes and partially reverses after recovery from psychopathology. Such an HPA disturbance in feedback control can be acquired as a result of stressful life experiences and be compounded by age or it can be genetically predetermined at all levels involved in fine-tuned neuroendocrine regulation. Major psychiatric disorders run in families and a high familial load for an affective illness therefore increases an individual's risk of becoming affected. We investigated whether the HPA feedback disturbance observed among patients with depression is present in otherwise healthy individuals who are at high risk for psychiatric disorders because they have a first-degree relative with an affective illness. Using rigid psychodiagnostic techniques, we screened 431 consecutively admitted patients with depression and identified 35 families with one or more high-risk probands (HRPs). The results of a combined dexamethasone/human corticotropin-releasing hormone (DEX-CRH) test showed that the group of dexamethasone-pretreated (1.5 mg; 23.00 h) HRPs released more cortisol after stimulation with human CRH (100 micrograms; 15.00 h the next day) than a control group (CPs), but less than a group of patients with an acute major depressive episode (DPs). The peak cortisol values were 146.1 +/- 147.7 nmol/l (mean +/- SD) (HRPs), 75.3 +/- 47.9 nmol/l (CPs) and 278.2 +/- 199.2 nmol/l (DPs), yielding significant (F = 9.66, p < 0.001) group differences, with values for HRPs vs. CPs and HRPs vs. DPs being significant at the 1% level (t test).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8544947

Holsboer, F; Lauer, C J; Schreiber, W; Krieg, J C

1995-10-01

40

Distinct Effects of Alcohol Consumption and Smoking on Genetic Alterations in Head and Neck Carcinoma  

PubMed Central

Background Tobacco and alcohol consumption are risk factors for head and neck squamous cell carcinoma (HNSCC). Recently, whole-exome sequencing clarified that smoking increased TP53 and other mutations in HNSCC; however, the effects of alcohol consumption on these genetic alterations remain unknown. We explored the association between alcohol consumption and somatic copy-number alterations (SCNAs) across the whole genome in human papillomavirus (HPV)-negative HNSCCs, and compared with the effects of smoking on genetic alterations. Methods SCNA and TP53 mutations in tumor samples were examined by high-resolution comparative genomic hybridization microarray 180K and by direct sequencing, respectively, and statistically analyzed for associations with alcohol consumption and smoking during the 20 years preceding diagnosis of HNSCC. Probes with a corrected p-value (=q-value) less than 0.05 and fold change greater than 1.2 or less than -1.2 were considered statistically significant. Results A total of 248 patients with HNSCC were enrolled. In the HPV-negative patients (n=221), heavy alcohol consumption was significantly associated with SCNAs of oncogenes/oncosuppressors that were previously reported to occur frequently in HNSCCs: CDKN2A (q=0.005), FHIT (q=0.005), 11q13 region including CCND1, FADD and CTTN (q=0.005), ERBB2 (HER2) (q=0.009), 3q25-qter including CCNL1, TP63, DCUN1D1 and PIK3CA (q=0.014), and CSMD1 (q=0.019). But, TP53 mutations were not affected. In contrast, smoking was associated with increased risk of TP53 mutations, but did not induce any significant SCNAs of oncogenes/oncosuppressors. Conclusion These results suggest that both alcohol consumption and smoking had distinct effects on genetic alterations in HNSCCs. Heavy alcohol consumption may trigger previously known and unknown SCNAs, but may not induce TP53 mutation. In contrast, smoking may induce TP53 mutation, but may not trigger any SCNAs. PMID:24278325

Urashima, Mitsuyoshi; Hama, Takanori; Suda, Toshihito; Suzuki, Yutaka; Ikegami, Masahiro; Sakanashi, Chikako; Akutsu, Taisuke; Amagaya, Suguru; Horiuchi, Kazuhumi; Imai, Yu; Mezawa, Hidetoshi; Noya, Miki; Nakashima, Akio; Mafune, Aki; Kato, Takakuni; Kojima, Hiromi

2013-01-01

41

Tooth dentin defects reflect genetic disorders affecting bone mineralization  

PubMed Central

Several genetic disorders affecting bone mineralization may manifest during dentin mineralization. Dentin and bone are similar in several aspects, especially pertaining to the composition of the extracellular matrix (ECM) which is secreted by well-differentiated odontoblasts and osteoblasts, respectively. However, unlike bone, dentin is not remodelled and is not involved in the regulation of calcium and phosphate metabolism. In contrast to bone, teeth are accessible tissues with the shedding of deciduous teeth and the extractions of premolars and third molars for orthodontic treatment. The feasibility of obtaining dentin makes this a good model to study biomineralization in physiological and pathological conditions. In this review, we focus on two genetic diseases that disrupt both bone and dentin mineralization. Hypophosphatemic rickets is related to abnormal secretory proteins involved in the ECM organization of both bone and dentin, as well as in the calcium and phosphate metabolism. Osteogenesis imperfecta affects proteins involved in the local organization of the ECM. In addition, dentin examination permits evaluation of the effects of the systemic treatment prescribed to hypophosphatemic patients during growth. In conclusion, dentin constitutes a valuable tool for better understanding of the pathological processes affecting biomineralization. PMID:22296718

Vital, S. Opsahl; Gaucher, C.; Bardet, C.; Rowe, P.S.; George, A.; Linglart, A.; Chaussain, C.

2012-01-01

42

Evidence that disease-induced population decline changes genetic structure and alters dispersal patterns in the Tasmanian devil  

PubMed Central

Infectious disease has been shown to be a major cause of population declines in wild animals. However, there remains little empirical evidence on the genetic consequences of disease-mediated population declines, or how such perturbations might affect demographic processes such as dispersal. Devil facial tumour disease (DFTD) has resulted in the rapid decline of the Tasmanian devil, Sarcophilus harrisii, and threatens to cause extinction. Using 10 microsatellite DNA markers, we compared genetic diversity and structure before and after DFTD outbreaks in three Tasmanian devil populations to assess the genetic consequences of disease-induced population decline. We also used both genetic and demographic data to investigate dispersal patterns in Tasmanian devils along the east coast of Tasmania. We observed a significant increase in inbreeding (FIS pre/post-disease ?0.030/0.012, P<0.05; relatedness pre/post-disease 0.011/0.038, P=0.06) in devil populations after just 2–3 generations of disease arrival, but no detectable change in genetic diversity. Furthermore, although there was no subdivision apparent among pre-disease populations (?=0.005, 95% confidence interval (CI) ?0.003 to 0.017), we found significant genetic differentiation among populations post-disease (?=0.020, 0.010–0.027), apparently driven by a combination of selection and altered dispersal patterns of females in disease-affected populations. We also show that dispersal is male-biased in devils and that dispersal distances follow a typical leptokurtic distribution. Our results show that disease can result in genetic and demographic changes in host populations over few generations and short time scales. Ongoing management of Tasmanian devils must now attempt to maintain genetic variability in this species through actions designed to reverse the detrimental effects of inbreeding and subdivision in disease-affected populations. PMID:20216571

Lachish, S; Miller, K J; Storfer, A; Goldizen, A W; Jones, M E

2011-01-01

43

Genetic by environment interactions affect plant–soil linkages  

PubMed Central

The role of plant intraspecific variation in plant–soil linkages is poorly understood, especially in the context of natural environmental variation, but has important implications in evolutionary ecology. We utilized three 18- to 21-year-old common gardens across an elevational gradient, planted with replicates of five Populus angustifolia genotypes each, to address the hypothesis that tree genotype (G), environment (E), and G × E interactions would affect soil carbon and nitrogen dynamics beneath individual trees. We found that soil nitrogen and carbon varied by over 50% and 62%, respectively, across all common garden environments. We found that plant leaf litter (but not root) traits vary by genotype and environment while soil nutrient pools demonstrated genotype, environment, and sometimes G × E interactions, while process rates (net N mineralization and net nitrification) demonstrated G × E interactions. Plasticity in tree growth and litter chemistry was significantly related to the variation in soil nutrient pools and processes across environments, reflecting tight plant–soil linkages. These data overall suggest that plant genetic variation can have differential affects on carbon storage and nitrogen cycling, with implications for understanding the role of genetic variation in plant–soil feedback as well as management plans for conservation and restoration of forest habitats with a changing climate. PMID:23919173

Pregitzer, Clara C; Bailey, Joseph K; Schweitzer, Jennifer A

2013-01-01

44

Altered vegetable intake affects pivotal carcinogenesis pathways in colon mucosa from adenoma patients and controls.  

PubMed

The evidence from epidemiological and experimental studies that vegetables reduce the risk of colorectal cancer is convincing. However, the involved genes and genetic pathways are not clear. The aim of this study was to identify genes that are modulated in vivo in colorectal mucosa by vegetables, and to investigate whether colon adenoma patients respond differently compared with healthy controls. Twenty female adenoma patients and eight healthy controls were randomly split into two groups of ten and four persons, respectively, receiving either a 50% decreased (=75 g/day) or doubled (=300 g/day) intake of vegetables for 2 weeks. In order to assess the effects on gene expression at the target level, colorectal biopsies were collected before and after the intervention. Total RNA was isolated from the biopsies to measure gene expression of 597 genes relevant for responses to xenobiotics by microarray technology, followed by confidence analyses to identify differentially expressed genes. Mainly genes related to cell cycle control and genes for oxidoreductase activities were over-represented in the list of modulated genes. Twenty genes were modulated, which are known to be related to (colon)carcinogenesis. Seven genes were similarly modulated in patients and controls, for example fos proto-oncogene and ornithine decarboxylase. Thirteen genes were modulated differently in patients compared with controls, including cyclooxygenase-2 and human mdm2-A in patients and cytochrome P45027B1, -2C19, -2D6, -2C9 and -3A4 in controls. Almost all the effects on modulating the expression of genes by altering vegetable intake can be mechanistically linked to cellular processes that explain either prevention of colorectal cancer risk by high vegetable intake or increased colorectal cancer risk by low vegetable intake. Furthermore, it seems that vegetables in patients affect genes involved in the late stage of colorectal cancer, whereas in controls genes involved in the initiation phase are modulated. PMID:15271855

van Breda, Simone G J; van Agen, Ebienus; Engels, Leopold G J B; Moonen, Edwin J C; Kleinjans, Jos C S; van Delft, Joost H M

2004-11-01

45

Transcriptional Programs following Genetic Alterations in p53, INK4A, and H-Ras Genes along Defined Stages  

E-print Network

of the transformation network. We sought to identify the genetic signatures and key target genes, which underlie to the genetic alterations listed above. Most importantly, unique transformation hallmarksTranscriptional Programs following Genetic Alterations in p53, INK4A, and H-Ras Genes along Defined

Domany, Eytan

46

GM1 gangliosidosis and Morquio B disease: an update on genetic alterations and clinical findings  

PubMed Central

GM1 gangliosidosis and Morquio B syndrome, both arising from beta-galactosidase (GLB1) deficiency, are very rare lysosomal storage diseases with an incidence of about 1:100,000– 1:200,000 live births worldwide. Here we report the beta-galactosidase gene (GLB1) mutation analysis of 21 unrelated GM1 gangliosidosis patients, and of 4 Morquio B patients, of whom two are brothers. Clinical features of the patients were collected and compared with those in literature. In silico analyses were performed by standard alignments tools and by an improved version of GLB1 three-dimensional models. The analysed cohort includes remarkable cases. One patient with GM1 gangliosidosis had a triple X syndrome. One patient with juvenile GM1 gangliosidosis was homozygous for a mutation previously identified in Morquio type B. A patient with infantile GM1 gangliosidosis carried a complex GLB1 allele harbouring two genetic variants leading to p.R68W and p.R109W amino acid changes, in trans with the known p.R148C mutation. Molecular analysis showed 27 mutations, 9 of which are new: 5 missense, 3 microdeletions and a nonsense mutation. We also identified four new genetic variants with a predicted polymorphic nature that was further investigated by in silico analyses. Three-dimensional structural analysis of GLB1 homology models including the new missense mutations and the p.R68W and p.R109W amino acid changes, showed that all the amino acids replacements affected the resulting protein structures in different ways, from changes in polarity to folding alterations. Genetic and clinical associations led us to undertake a critical review of the classifications of late-onset GM1 gangliosidosis and Morquio B disease. PMID:21497194

Caciotti, Anna; Garman, Scott C; Rivera-Colon, Yadilette; Procopio, Elena; Catarzi, Serena; Ferri, Lorenzo; Guido, Carmen; Martelli, Paola; Parini, Rossella; Antuzzi, Daniela; Battini, Roberta; Sibilio, Michela; Simonati, Alessandro; Fontana, Elena; Salviati, Alessandro; Akinci, Gulcin; Cereda, Cristina; Dionisi-Vici, Carlo; Deodato, Francesca; d'Amico, Adele; d'Azzo, Alessandra; Bertini, Enrico; Filocamo, Mirella; Scarpa, Maurizio; di Rocco, Maja; Tifft, Cynthia J; Ciani, Federica; Gasperini, Serena; Pasquini, Elisabetta; Guerrini, Renzo; Donati, Maria Alice; Morrone, Amelia

2011-01-01

47

Single-cell genetic expression of mutant GABAA receptors causing Human genetic epilepsy alters dendritic spine and GABAergic bouton formation in a mutation-specific manner  

PubMed Central

Mutations in genes encoding for GABAA receptor subunits is a well-established cause of genetic generalized epilepsy. GABA neurotransmission is implicated in several developmental processes including neurite outgrowth and synapse formation. Alteration in excitatory/inhibitory synaptic activities plays a critical role in epilepsy, thus here we investigated whether mutations in ?1 subunit of GABAA receptor may affect dendritic spine and GABAergic bouton formation. In particular, we examined the effects of three mutations of the GABRA1 gene (D219N, A322D and K353delins18X) that were found in a cohort of French Canadian families with genetic generalized epilepsy. We used a novel single-cell genetic approach, by preparing cortical organotypic cultures from GABRA1flox/flox mice and simultaneously inactivating endogenous GABRA1 and transfecting mutant ?1 subunits in single glutamatergic pyramidal cells and basket GABAergic interneurons by biolistic transfection. We found that GABRA1?/? GABAergic cells showed reduced innervation field, which was rescued by co-expressing ?1-A322D and ?1-WT but not ?1-D219N. We further found that the expression of the most severe GABRA1 missense mutation (?1-A322D) induced a striking increase of spine density in pyramidal cells along with an increase in the number of mushroom-like spines. In addition, ?1-A322D expression in GABAergic cells slightly increased perisomatic bouton density, whereas other mutations did not alter bouton formation. All together, these results suggest that the effects of different GABAAR mutations on GABAergic bouton and dendritic spine formation are specific to the mutation and cannot be always explained by a simple loss-of-function gene model. The use of single cell genetic manipulation in organotypic cultures may provide a better understanding of the specific and distinct neural circuit alterations caused by different GABAA receptor subunit mutations and will help define the pathophysiology of genetic generalized epilepsy syndromes.

Lachance-Touchette, Pamela; Choudhury, Mayukh; Stoica, Ana; Di Cristo, Graziella; Cossette, Patrick

2014-01-01

48

Stomach - Genetic and epigenetic alterations of preneoplastic and neoplastic lesions.  

PubMed

Gastric cancer is one of the most common neoplasias in the world and remains an important cause of cancer-related mortality. Vast resources have been invested in the study of the molecular events driving the development and progression of gastric tumors. Gastric cancer is known to result from an interaction between host and environmental factors. The present review will discuss the most how genetic and epigenetic changes contribute to gastric carcinogenesis and their potential for developing novel diagnostic and therapeutic tools. PMID:22112492

David, Stefan; Meltzer, Stephen J

2010-01-01

49

A genetic code alteration generates a proteome of high diversity in the human pathogen Candida albicans  

PubMed Central

Background Genetic code alterations have been reported in mitochondrial, prokaryotic, and eukaryotic cytoplasmic translation systems, but their evolution and how organisms cope and survive such dramatic genetic events are not understood. Results Here we used an unusual decoding of leucine CUG codons as serine in the main human fungal pathogen Candida albicans to elucidate the global impact of genetic code alterations on the proteome. We show that C. albicans decodes CUG codons ambiguously and tolerates partial reversion of their identity from serine back to leucine on a genome-wide scale. Conclusion Such codon ambiguity expands the proteome of this human pathogen exponentially and is used to generate important phenotypic diversity. This study highlights novel features of C. albicans biology and unanticipated roles for codon ambiguity in the evolution of the genetic code. PMID:17916231

Gomes, Ana C; Miranda, Isabel; Silva, Raquel M; Moura, Gabriela R; Thomas, Benjamin; Akoulitchev, Alexandre; Santos, Manuel AS

2007-01-01

50

Genetics  

NSDL National Science Digital Library

What affects how physical characteristics are transmitted from parent to offspring? This is a question that can be answered at many levels. Molecular biologists examine the pattern of nucleotides in deoxyribonucleic acid (DNA) and the effect of mutations on the proteins produced. Classical geneticists explore the patterns by which traits are transmitted through families. Medical geneticists attempt to describe and develop treatments for diseases that have a genetic component. Genetic engineers analyze how traits can be altered in organisms through modern technology. These are only a few of the strategies that scientists employ to explain the nature of heredity. Explore historical perspectives on the study of genetics and investigate how cutting-edge technology is being used to expand our understanding of heredity.

National Science Teachers Association (NSTA)

2005-04-01

51

Geographical mapping of a multifocal thyroid tumour using genetic alteration analysis & miRNA profiling  

Microsoft Academic Search

BACKGROUND: Papillary thyroid carcinoma (PTC) frequently presents as multiple tumour-foci within a single thyroid gland or pluriform, with synchronous tumours comprising different histological variants, raising questions regarding its clonality. Among the genetic aberrations described in PTC, the BRAF V600E mutation and ret\\/PTC activation occur most commonly. Several studies have investigated the genetic alteration status of multifocal thyroid tumours, with discordant

Sinéad T Aherne; Paul C Smyth; Richard J Flavin; Susan M Russell; Karen M Denning; Jing Huan Li; Simone M Guenther; John J O'Leary; Orla M Sheils

2008-01-01

52

Genetic alterations in ovarian carcinoma: with specific reference to histological subtypes  

Microsoft Academic Search

Multiple genetic changes including activation of proto-oncogenes and inactivation of tumor suppressor gene are involved in the development of human ovarian cancer. We describe such genetic alterations with specific reference to histological subtypes. K-ras activation is specific for mucinous tumors including adenomas. Borderline tumors and carcinomas, suggesting that K-ras activation may be associated with the mucinous differentiation rather than malignant

Masami Fujita; Takayuki Enomoto; Yuji Murata

2003-01-01

53

Alterations in the processing of non-drug-related affective stimuli in abstinent heroin addicts.  

PubMed

Long-term exposure to drug may alter the neural system associated with affective processing, as evidenced by both clinical observations and behavioral data documenting dysfunctions in emotional experiences and processing in drug addicts. Although many imaging studies examined neural responses to drug or drug-related cues in addicts, there have been few studies explicitly designed to reveal their neural abnormalities in processing non-drug-related natural affective materials. The present study asked abstinent heroin addicts and normal controls to passively view standardized affective pictures of positive, negative, or neutral valence and compared their brain activities with functional MRI. Compared to normal controls, addicts showed reduced activation in right amygdala in response to the affective pictures, consistent with previous reports of blunted subjective experience for affective stimuli in addicts. Furthermore, in two visual cortical areas BA 19 and 37, while the controls showed greater responses to positive pictures than to negative ones replicating literature findings, the addicts showed the opposite pattern. The results reveal a complex pattern of altered processing of non-drug-related affective materials in addicts showing both heightened and blunted neural responses in different brain regions and for different stimulus valence. The present study highlights the importance of brain imaging research on drug addicts' processing of affective stimuli in understanding disruptions in their emotion circuitry. PMID:19683582

Wang, Zhao-Xin; Zhang, John X; Wu, Qiu-Lin; Liu, Ning; Hu, Xiao-Ping; Chan, Raymond C K; Xiao, Zhuang-Wei

2010-01-01

54

Neonatal handling alters the structure of maternal behavior and affects mother-pup bonding.  

PubMed

During early life, a mother and her pups establish a very close relationship, and the olfactory learning of the nest odor is very important for the bond formation. The olfactory bulb (OB) is a structure that plays a fundamental role in the olfactory learning (OL) mechanism that also involves maternal behavior (licking and contact). We hypothesized that handling the pups would alter the structure of the maternal behavior, affect OL, and alter mother-pup relationships. Moreover, changes in the cyclic AMP-response element binding protein phosphorylation (CREB) and neurotrophic factors could be a part of the mechanism of these changes. This study aimed to analyze the effects of neonatal handling, 1 min per day from postpartum day 1 to 10 (PPD 1 to PPD 10), on the maternal behavior and pups' preference for the nest odor in a Y maze (PPD 11). We also tested CREB's phosphorylation and BDNF signaling in the OB of the pups (PPD 7) by Western blot analysis. The results showed that handling alters mother-pups interaction by decreasing mother-pups contact and changing the temporal pattern of all components of the maternal behavior especially the daily licking and nest-building. We found sex-dependent changes in the nest odor preference, CREB and BDNF levels in pups OB. Male pups were more affected by alterations in the licking pattern, and female pups were more affected by changes in the mother-pup contact (the time spent outside the nest and nursing). PMID:24598277

Reis, A R; de Azevedo, M S; de Souza, M A; Lutz, M L; Alves, M B; Izquierdo, I; Cammarota, M; Silveira, P P; Lucion, A B

2014-05-15

55

Genetic alterations of chromosome 8 genes in oral cancer.  

PubMed

The clinical relevance of DNA copy number alterations in chromosome 8 were investigated in oral cancers. The copy numbers of 30 selected genes in 33 OSCC patients were detected using the multiplex ligation-dependent probe amplification (MLPA) technique. Amplifications of the EIF3E gene were found in 27.3% of the patients, MYC in 18.2%, RECQL4 in 15.2% and MYBL1 in 12.1% of patients. The most frequent gene losses found were the GATA4 gene (24.2%), FGFR1 gene (24.2%), MSRA (21.2) and CSGALNACT1 (12.1%). The co-amplification of EIF3E and RECQL4 was found in 9% of patients and showed significant association with alcohol drinkers. There was a significant association between the amplification of EIF3E gene with non-betel quid chewers and the negative lymph node status. EIF3E amplifications did not show prognostic significance on survival. Our results suggest that EIF3E may have a role in the carcinogenesis of OSCC in non-betel quid chewers. PMID:25123227

Yong, Zachary Wei Ern; Zaini, Zuraiza Mohamad; Kallarakkal, Thomas George; Karen-Ng, Lee Peng; Rahman, Zainal Ariff Abdul; Ismail, Siti Mazlipah; Sharifah, Noor Akmal; Mustafa, Wan Mahadzir Wan; Abraham, Mannil Thomas; Tay, Keng Kiong; Zain, Rosnah Binti

2014-01-01

56

Genetic Alterations of Chromosome 8 Genes in Oral Cancer  

PubMed Central

The clinical relevance of DNA copy number alterations in chromosome 8 were investigated in oral cancers. The copy numbers of 30 selected genes in 33 OSCC patients were detected using the multiplex ligation-dependent probe amplification (MLPA) technique. Amplifications of the EIF3E gene were found in 27.3% of the patients, MYC in 18.2%, RECQL4 in 15.2% and MYBL1 in 12.1% of patients. The most frequent gene losses found were the GATA4 gene (24.2%), FGFR1 gene (24.2%), MSRA (21.2) and CSGALNACT1 (12.1%). The co-amplification of EIF3E and RECQL4 was found in 9% of patients and showed significant association with alcohol drinkers. There was a significant association between the amplification of EIF3E gene with non-betel quid chewers and the negative lymph node status. EIF3E amplifications did not show prognostic significance on survival. Our results suggest that EIF3E may have a role in the carcinogenesis of OSCC in non-betel quid chewers. PMID:25123227

Yong, Zachary Wei Ern; Zaini, Zuraiza Mohamad; Kallarakkal, Thomas George; Karen-Ng, Lee Peng; Rahman, Zainal Ariff Abdul; Ismail, Siti Mazlipah; Sharifah, Noor Akmal; Mustafa, Wan Mahadzir Wan; Abraham, Mannil Thomas; Tay, Keng Kiong; Zain, Rosnah Binti

2014-01-01

57

The Potential for Genetically Altered Microglia to Influence Glioma Treatment  

PubMed Central

Diffuse and unstoppable infiltration of brain and spinal cord tissue by neoplastic glial cells is the single most important therapeutic problem posed by the common glioma group of tumors: astrocytoma, oligoastrocytoma, oligodendroglioma, their malignant variants and glioblastoma. These neoplasms account for more than two thirds of all malignant central nervous system tumors. However, most glioma research focuses on an examination of the tumor cells rather than on host-specific, tumor micro-environmental cells and factors. This can explain why existing diffuse glioma therapies fail and why these tumors have remained incurable. Thus, there is a great need for innovation. We describe a novel strategy for the development of a more effective treatment of diffuse glioma. Our approach centers on gaining control over the behavior of the microglia, the defense cells of the CNS, which are manipulated by malignant glioma and support its growth. Armoring microglia against the influences from glioma is one of our research goals. We further discuss how microglia precursors may be genetically enhanced to track down infiltrating glioma cells. PMID:24047526

Li, W.; Holsinger, R.M.D.; Kruse, C.A.; Flugel, A.; Graeber, M.B.

2014-01-01

58

Genetic factors affecting statin concentrations and subsequent myopathy: a HuGENet systematic review.  

PubMed

Statins, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitors, have proven efficacy in both lowering low-density-lipoprotein levels and preventing major coronary events, making them one of the most commonly prescribed drugs in the United States. Statins exhibit a class-wide side effect of muscle toxicity and weakness, which has led regulators to impose both dosage limitations and a recall. This review focuses on the best-characterized genetic factors associated with increased statin muscle concentrations, including the genes encoding cytochrome P450 enzymes (CYP2D6, CYP3A4, and CYP3A5), a mitochondrial enzyme (GATM), an influx transporter (SLCO1B1), and efflux transporters (ABCB1 and ABCG2). A systematic literature review was conducted to identify relevant research evaluating the significance of genetic variants predictive of altered statin concentrations and subsequent statin-related myopathy. Studies eligible for inclusion must have incorporated genotype information and must have associated it with some measure of myopathy, either creatine kinase levels or self-reported muscle aches and pains. After an initial review, focus was placed on seven genes that were adequately characterized to provide a substantive review: CYP2D6, CYP3A4, CYP3A5, GATM, SLCO1B1, ABCB1, and ABCG2. All statins were included in this review. Among the genetic factors evaluated, statin-related myopathy appears to be most strongly associated with variants in SLCO1B1.Genet Med 16 11, 810-819. PMID:24810685

Canestaro, William J; Austin, Melissa A; Thummel, Kenneth E

2014-11-01

59

Molecular Markers Show How Pollen and Seed Dispersal Affect Population Genetic  

E-print Network

485 Molecular Markers Show How Pollen and Seed Dispersal Affect Population Genetic Structure of fragmentation and decreased population sizes is reduced genetic diversity as populations become increasingly. Earlier studies indicated biochemical differentiation of central coast populations from those of Northern

Standiford, Richard B.

60

Screening for GNAS genetic and epigenetic alterations in progressive osseous heteroplasia: first Italian series.  

PubMed

Progressive osseous heteroplasia (POH) is a rare autosomal dominant disorder of mesenchymal differentiation characterized by progressive heterotopic ossification (HO) of dermis, deep connective tissues and skeletal muscle. Usually, initial bone formation occurs during infancy as primary osteoma cutis (OC) then progressively extending into deep connective tissues and skeletal muscle over childhood. Most cases of POH are caused by paternally inherited inactivating mutations of GNAS gene. Maternally inherited mutations as well as epigenetic defects of the same gene lead to pseudohypoparathyroidism (PHP) and Albright's hereditary osteodystrophy (AHO). During the last decade, some reports documented the existence of patients with POH showing additional features characteristic of AHO such as short stature and brachydactyly, previously thought to occur only in other GNAS-associated disorders. Thus, POH can now be considered as part of a wide spectrum of ectopic bone formation disorders caused by inactivating GNAS mutations. Here, we report genetic and epigenetic analyses of GNAS locus in 10 patients affected with POH or primary OC, further expanding the spectrum of mutations associated with this rare disease and indicating that, unlike PHP, methylation alterations at the same locus are absent or uncommon in this disorder. PMID:23796510

Elli, F M; Barbieri, A M; Bordogna, P; Ferrari, P; Bufo, R; Ferrante, E; Giardino, E; Beck-Peccoz, P; Spada, A; Mantovani, G

2013-10-01

61

Genetic and epigenetic alterations in breast cancer: what are the perspectives for clinical practice?  

PubMed Central

The worldwide incidence of breast cancer affects 1.2 million women each year. In contrast to the high occurrence of this malady, a decline in mortality is reported among industrialized countries. In this respect, both awareness campaigns and substantial progress achieved in therapy and diagnosis allowed for the enhancement of the survival rate in patients with breast cancer. Undoubtedly, oncology research programs played a relevant role in the improvement of therapeutics and diagnostics for breast cancer. Major strides were reported, especially over the last decade and a half, in better understanding molecular and cellular biology events involved in breast cancer pathogenesis and progression of the disease. However, therapeutic approaches for the treatment of patients with breast cancer need further improvement. Therapeutic interventions can chronically compromise both the state of health and quality of life of breast cancer survivors. In addition, current therapeutic approaches have not significantly improved the survival rate in patients with metastatic disease. On these grounds, it is necessary to develop more efficient therapeutics and diagnostic tools, which can improve the health and quality of life of breast cancer survivors and increase the survival rate in patients with metastatic disease. In this respect, the field of cancer research has placed a particular emphasis on the elucidation of genetic and epigenetic alterations that may lead to the pathogenesis of breast cancer and contribute to its progression. PMID:18061512

Fucito, Alfredo; Lucchetti, Chiara; Giordano, Antonio; Romano, Gaetano

2009-01-01

62

DNA Fingerprinting Techniques for the Analysis of Genetic and Epigenetic Alterations in Colorectal Cancer  

PubMed Central

Genetic somatic alterations are fundamental hallmarks of cancer. In addition to point and other small mutations targeting cancer genes, solid tumors often exhibit aneuploidy as well as multiple chromosomal rearrangements of large fragments of the genome. Whether somatic chromosomal alterations and aneuploidy are a driving force or a mere consequence of tumorigenesis remains controversial. Recently it became apparent that not only genetic but also epigenetic alterations play a major role in carcinogenesis. Epigenetic regulation mechanisms underlie the maintenance of cell identity crucial for development and differentiation. These epigenetic regulatory mechanisms have been found substantially altered during cancer development and progression. In this review, we discuss approaches designed to analyze genetic and epigenetic alterations in colorectal cancer, especially DNA fingerprinting approaches to detect changes in DNA copy number and methylation. DNA fingerprinting techniques, despite their modest throughput, played a pivotal role in significant discoveries in the molecular basis of colorectal cancer. The aim of this review is to revisit the fingerprinting technologies employed and the oncogenic processes that they unveiled. PMID:20851135

Samuelsson, Johanna K.; Alonso, Sergio; Yamamoto, Fumiichiro; Perucho, Manuel

2010-01-01

63

Landscape location affects genetic variation of Canada lynx (Lynx canadensis)  

Microsoft Academic Search

The effect of a population's location on the landscape on genetic variation has been of interest to population genetics for more than half a century. However, most studies do not consider broadscale biogeography when interpreting genetic data. In this study, we propose an operational definition of a peripheral population, and then explore whether peripheral populations of Canada lynx (Lynx canadensis)

M. K. S CHWARTZ; L. S. M ILLS; Y. O RTEGA; L. F. R UGGIERO; F. W. A LLENDORF

2003-01-01

64

Genetics and pathophysiology of affective disorders: relationship to fibromyalgia  

Microsoft Academic Search

Summary Depression and fibromyalgia (FM) share common symptoms, indicating a close relationship between both disorders. FM patients frequently present symptoms of major depression. Genetic epidemiological studies show that genetic transmission is one important component. Molecular genetic studies are on the way; the serotonin transporter promoter gene seems to be associated with neurotic anxiety and FM. Biochemical studies related to the

M. Ackenheil

1998-01-01

65

Elevated carbon dioxide concentrations indirectly affect plant fitness by altering plant tolerance to herbivory  

Microsoft Academic Search

Global environmental changes, such as rising atmospheric CO2 concentrations, have a wide range of direct effects on plant physiology, growth, and fecundity. These environmental changes\\u000a also can affect plants indirectly by altering interactions with other species. Therefore, the effects of global changes on\\u000a a particular species may depend on the presence and abundance of other community members. We experimentally manipulated

Jennifer A. Lau; Peter Tiffin

2009-01-01

66

Subchronic arsenic exposure through drinking water alters vascular redox homeostasis and affects physical health in rats.  

PubMed

We evaluated whether arsenic can alter vascular redox homeostasis and modulate antioxidant status, taking rat thoracic aorta as a model vascular tissue. In addition, we evaluated whether the altered vascular biochemical homeostasis could be associated with alterations in the physical indicators of toxicity development. Rats were exposed to arsenic as 25, 50, and 100 ppm of sodium arsenite through drinking water for 90 consecutive days. Body weight, food intake, and water consumption were recorded weekly. On the 91st day, rats were sacrificed; vital organs and thoracic aorta were collected. Lipid peroxidation, reactive oxygen species generation, and antioxidants were assessed in the thoracic aorta. Arsenic increased aortic lipid peroxidation and hydrogen peroxide generation while decreased reduced glutathione content in a dose-dependent manner. The activities of the enzymatic antioxidants superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase were decreased. Further, arsenic at 100 ppm decreased feed intake, water consumption, and body weight from the 11th week onward. At this concentration, arsenic increased the relative weights of the liver and kidney. The results suggest that arsenic causes dose-dependent oxidative stress, reduction in antioxidative defense systems, and body weight loss with alteration in hepato-renal organosomatic indices. Overall, subchronic arsenic exposure through drinking water causes alteration in vascular redox homeostasis and at high concentration affects physical health. PMID:25209654

Waghe, Prashantkumar; Sarath, Thengumpallil Sasindran; Gupta, Priyanka; Kutty, Harikumar Sankaran; Kandasamy, Kannan; Mishra, Santosh Kumar; Sarkar, Souvendra Nath

2014-12-01

67

Torn at the Genes One Family's Debate Over Genetically Altered Plants  

NSDL National Science Digital Library

The setting for this case is the family dinner table, where a heated discussion about genetically altered foods is taking place. Marsha Cumberland’s brother-in-law has joined the family for dinner. Ed is an industry official whose job it is to decide whether or not new products need pre-market approval by the FDA. He has just returned from a conference on transgenic foods.  When it turns out that some of the food on the dinner table is genetically modified, a debate ensues with different members of the family at different ends of the spectrum. Written for an introductory biology course, the case considers the scientific and ethical issues of genetically altered plants.

Nelson, Jennifer; Herreid, Clyde F.

2000-01-01

68

ORIGINAL PAPER Biotic and abiotic factors affecting the genetic structure  

E-print Network

of butternut's range using 12 microsatellite markers. We assessed the genetic diversity and genetic hybridization with Japanese walnut, promotion of regeneration, and persistence of all remaining butternut trees, Hardwood Tree Improvement & Regeneration Center, Purdue University, 715 W. State St., West Lafayette

69

Genetic factors affect the tendency to develop cancer. Predisposing mutations often influence DNA repair,cell-  

E-print Network

Genetic factors affect the tendency to develop cancer. Predisposing mutations often influence DNA is known about genetic predisposition to cancer.The key facts fall into four cat- egories.First,major (that of the genetic tendency to develop cancer, at least in the late-onset epithelial cancers such as breast and colon

Frank, Steven A.

70

Tissue culture-induced genetic and epigenetic alterations in rice pure-lines, F1 hybrids and polyploids  

PubMed Central

Background Genetic and epigenetic alterations can be invoked by plant tissue culture, which may result in heritable changes in phenotypes, a phenomenon collectively termed somaclonal variation. Although extensive studies have been conducted on the molecular nature and spectrum of tissue culture-induced genomic alterations, the issue of whether and to what extent distinct plant genotypes, e.g., pure-lines, hybrids and polyploids, may respond differentially to the tissue culture condition remains poorly understood. Results We investigated tissue culture-induced genetic and epigenetic alterations in a set of rice genotypes including two pure-lines (different subspecies), a pair of reciprocal F1 hybrids parented by the two pure-lines, and a pair of reciprocal tetraploids resulted from the hybrids. Using two molecular markers, amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP), both genetic and DNA methylation alterations were detected in calli and regenerants from all six genotypes, but genetic alteration is more prominent than epigenetic alteration. While significant genotypic difference was observed in frequencies of both types of alterations, only genetic alteration showed distinctive features among the three types of genomes, with one hybrid (N/9) being exceptionally labile. Surprisingly, difference in genetic alteration frequencies between the pair of reciprocal F1 hybrids is much greater than that between the two pure-line subspecies. Difference also exists in the pair of reciprocal tetraploids, but is to a less extent than that between the hybrids. The steady-state transcript abundance of genes involved in DNA repair and DNA methylation was significantly altered in both calli and regenerants, and some of which were correlated with the genetic and/or epigenetic alterations. Conclusions Our results, based on molecular marker analysis of ca. 1,000 genomic loci, document that genetic alteration is the major cause of somaclonal variation in rice, which is concomitant with epigenetic alterations. Perturbed expression by tissue culture of a set of 41 genes encoding for enzymes involved in DNA repair and DNA methylation is associated with both genetic and epigenetic alterations. There exist fundamental differences among distinct genotypes, pure-lines, hybrids and tetraploids, in propensities of generating both genetic and epigenetic alterations under the tissue culture condition. Parent-of-origin has a conspicuous effect on the alteration frequencies. PMID:23642214

2013-01-01

71

Dim light at night interacts with intermittent hypoxia to alter cognitive and affective responses.  

PubMed

Obstructive sleep apnea (OSA) and dim light at night (dLAN) have both been independently associated with alterations in mood and cognition. We aimed to determine whether dLAN would interact with intermittent hypoxia (IH), a condition characteristic of OSA, to alter the behavioral, cognitive, and affective responses. Adult male mice were housed in either standard lighting conditions (14:10-h light-dark cycle; 150 lux:0 lux) or dLAN (150 lux:5 lux). Mice were then exposed to IH (15 cycles/h, 8 h/day, FiO2 nadir of 5%) for 3 wk, then tested in assays of affective and cognitive responses; brains were collected for dendritic morphology and PCR analysis. Exposure to dLAN and IH increased anxiety-like behaviors, as assessed in the open field, elevated plus maze, and the light/dark box. dLAN and IH increased depressive-like behaviors in the forced swim test. IH impaired learning and memory performance in the passive avoidance task; however, no differences were observed in spatial working memory, as assessed by y-maze or object recognition. IH combined with dLAN decreased cell body area in the CA1 and CA3 regions of the hippocampus. Overall, IH decreased apical spine density in the CA3, whereas dLAN decreased spine density in the CA1 of the hippocampus. TNF-? gene expression was not altered by IH or lighting condition, whereas VEGF expression was increased by dLAN. The combination of IH and dLAN provokes negative effects on hippocampal dendritic morphology, affect, and cognition, suggesting that limiting nighttime exposure to light in combination with other established treatments may be of benefit to patients with OSA. PMID:23657638

Aubrecht, Taryn G; Weil, Zachary M; Magalang, Ulysses J; Nelson, Randy J

2013-07-01

72

Dim light at night interacts with intermittent hypoxia to alter cognitive and affective responses  

PubMed Central

Obstructive sleep apnea (OSA) and dim light at night (dLAN) have both been independently associated with alterations in mood and cognition. We aimed to determine whether dLAN would interact with intermittent hypoxia (IH), a condition characteristic of OSA, to alter the behavioral, cognitive, and affective responses. Adult male mice were housed in either standard lighting conditions (14:10-h light-dark cycle; 150 lux:0 lux) or dLAN (150 lux:5 lux). Mice were then exposed to IH (15 cycles/h, 8 h/day, FiO2 nadir of 5%) for 3 wk, then tested in assays of affective and cognitive responses; brains were collected for dendritic morphology and PCR analysis. Exposure to dLAN and IH increased anxiety-like behaviors, as assessed in the open field, elevated plus maze, and the light/dark box. dLAN and IH increased depressive-like behaviors in the forced swim test. IH impaired learning and memory performance in the passive avoidance task; however, no differences were observed in spatial working memory, as assessed by y-maze or object recognition. IH combined with dLAN decreased cell body area in the CA1 and CA3 regions of the hippocampus. Overall, IH decreased apical spine density in the CA3, whereas dLAN decreased spine density in the CA1 of the hippocampus. TNF-? gene expression was not altered by IH or lighting condition, whereas VEGF expression was increased by dLAN. The combination of IH and dLAN provokes negative effects on hippocampal dendritic morphology, affect, and cognition, suggesting that limiting nighttime exposure to light in combination with other established treatments may be of benefit to patients with OSA. PMID:23657638

Weil, Zachary M.; Magalang, Ulysses J.; Nelson, Randy J.

2013-01-01

73

Genetic alterations associated with the evolution and progression of astrocytic brain tumours  

Microsoft Academic Search

Diffusely infiltrating low-grade astrocytomas (WHO grade II) have an intrinsic tendency for progression to anaplastic astrocytoma (WHO grade III) and glioblastoma (WHO grade IV). This change is due to the sequential acquisition of genetic alterations, several of which have recently been identified. In low-grade astrocytomas, p53 mutations with or without loss of heterozygosity on chromosome 17p are the principal detectable

H. Ohgaki; P. Kleihues; B. Schäuble; A. Hausen; K. Ammon

1995-01-01

74

Use of Genetically Altered Stem Cells for the Treatment of Huntington's Disease  

PubMed Central

Transplantation of stem cells for the treatment of Huntington’s disease (HD) garnered much attention prior to the turn of the century. Several studies using mesenchymal stem cells (MSCs) have indicated that these cells have enormous therapeutic potential in HD and other disorders. Advantages of using MSCs for cell therapies include their ease of isolation, rapid propagation in culture, and favorable immunomodulatory profiles. However, the lack of consistent neuronal differentiation of transplanted MSCs has limited their therapeutic efficacy to slowing the progression of HD-like symptoms in animal models of HD. The use of MSCs which have been genetically altered to overexpress brain derived neurotrophic factor to enhance support of surviving cells in a rodent model of HD provides proof-of-principle that these cells may provide such prophylactic benefits. New techniques that may prove useful for cell replacement therapies in HD include the use of genetically altering fate-restricted cells to produce induced pluripotent stem cells (iPSCs). These iPSCs appear to have certain advantages over the use of embryonic stem cells, including being readily available, easy to obtain, less evidence of tumor formation, and a reduced immune response following their transplantation. Recently, transplants of iPSCs have shown to differentiate into region-specific neurons in an animal model of HD. The overall successes of using genetically altered stem cells for reducing neuropathological and behavioral deficits in rodent models of HD suggest that these approaches have considerable potential for clinical use. However, the choice of what type of genetically altered stem cell to use for transplantation is dependent on the stage of HD and whether the end-goal is preserving endogenous neurons in early-stage HD, or replacing the lost neurons in late-stage HD. This review will discuss the current state of stem cell technology for treating the different stages of HD and possible future directions for stem-cell therapy in HD. PMID:24961705

Crane, Andrew T.; Rossignol, Julien; Dunbar, Gary L.

2014-01-01

75

Epstein–Barr virus—associated gastric carcinomas: Relation to H. pylori infection and genetic alterations  

Microsoft Academic Search

Background & Aims: The association of Epstein–Barr virus (EBV) and gastric carcinomas (GCs) has been shown to vary among different populations and certain histological subtypes. Few studies have addressed the status of Helicobacter pylori infection and genetic alterations in these EBV-positive or -negative GCs. Methods: Eleven gastric lymphoepithelioma-like carcinomas (LELCs) and 139 cases of common non-LELCs were evaluated for the

2000-01-01

76

Genetic variation in CACNA1C affects neural processing in major depression.  

PubMed

Genetic studies found the A allele of the single nucleotide polymorphism rs1006737 in the CACNA1C gene, which encodes for the alpha 1C subunit of the voltage-dependent, L-type calcium ion channel Cav1.2, to be overrepresented in patients with major depressive disorder (MDD). Altered prefrontal brain functioning and impaired semantic verbal fluency (SVF) are robust findings in these patients. A recent functional magnetic resonance imaging (fMRI) study found the A allele to be associated with poorer performance and increased left inferior frontal gyrus (IFG) activation during SVF tasks in healthy subjects. In the present study, we investigated the effects of rs1006737 on neural processing during SVF in MDD. In response to semantic category cues, 40 patients with MDD and 40 matched controls overtly generated words while brain activity was measured with fMRI. As revealed by whole brain analyses, genotype significantly affected brain activity in patients. Compared to patients with GG genotype, patients with A allele demonstrated increased task-related activation in the left middle/inferior frontal gyrus and the bilateral cerebellum. Patients with A allele also showed enhanced functional coupling between left middle/inferior and right superior/middle frontal gyri. No differential effects of genotype on SVF performance or brain activation were found between diagnostic groups. The current data provide further evidence for an impact of rs1006737 on the left IFG and demonstrate that genetic variation in CACNA1C modulates neural responses in patients with MDD. The observed functional alterations in prefrontal and cerebellar areas might represent a mechanism by which rs1006737 influences susceptibility to MDD. PMID:24612926

Backes, Heidelore; Dietsche, Bruno; Nagels, Arne; Konrad, Carsten; Witt, Stephanie H; Rietschel, Marcella; Kircher, Tilo; Krug, Axel

2014-06-01

77

Genetic variations alter production and behavioral responses following heat stress in 2 strains of laying hens.  

PubMed

Genetic differences alter the type and degree of hens' responses and their ability to adapt to a stressor. This study examined the effects of genotypic variations on the productivity and behavior of laying hens following heat stress (HS). Two strains of White Leghorn hens were used: DXL (Dekalb XL), a commercial strain individually selected for egg production and KGB (kind, gentle bird), a strain selected for high group productivity and survivability. Ninety hens (48 DXL and 42 KGB) at 28 wk of age were randomly assigned to either a hot (H: mean = 32.6°C) or control (C: mean = 24.3°C) treatment and housed in pairs by strain for 9 d. Egg production and quality, behavior, body and organ weights, and circulating hormone concentrations were measured. Heat-stressed hens had lower egg production [adjusted (adj) P < 0.001] than their respective controls. Among H-DXL hens, egg weight tended to be reduced at d 1 and was reduced at d 9 (adj P = 0.007), but was reduced only at d 9 among H-KGB hens (adj P = 0.007). Eggshell thickness was also reduced among H hens at d 9 (adj P = 0.007), especially among H-KGB hens (adj P = 0.01). Plasma triiodothyronine concentration was reduced among H-hens (adj P = 0.01), especially among H-DXL hens (adj P = 0.01). Neither temperature nor strain affected the plasma thyroxine and plasma and yolk corticosterone concentrations. Heat-stressed hens spent less time walking (adj P = 0.001) and more time drinking (adj P = 0.007) and resting (adj P = 0.001) than C-hens. The results indicate that although HS reduced production and caused behavioral changes among hens from both strains, the responses differed by genotype. The data provide evidence that genetic selection is a useful strategy for reducing HS response in laying hens. The results provide insights for conducting future studies to develop heat-resistant strains to improve hen well-being, especially under the current commercial conditions. PMID:23300291

Mack, L A; Felver-Gant, J N; Dennis, R L; Cheng, H W

2013-02-01

78

Altered nutritional requirements associated with mutations affecting the structures of ribonucleic acid polymerase in Lactobacillus casei.  

PubMed

Rifampin-resistant mutants were isolated from Lactobacillus casei S1 and examined for possible simultaneous alteration in nutritional properties. Among the 36 mutants obtained either spontaneously or after mutagenesis with 2-aminopurine, 22 were found to be altered with respect to the specific growth requirements. The majority (20 of 22) of the latter mutants were shown to require L-glutamine in addition to the nutrients required by the parental strain for maximal growth, whereas the remaining mutants had apparently lost the requirement for L-aspartate. Further studies with one of the glutamine-requiring mutants revealed that the rifampin resistance of this strain is due to the resistance of ribonucleic acid polymerase itself and that a single mutation is responsible for both rifampin resistance and the glutamine requirement. These results strongly indicate that a structural alteration of the ribonucleic acid polymerase caused by the rifampin resistance mutation somehow affected glutamine metabolism, possibly through change in selective transcription of the genes involved. PMID:1379

Morishita, T; Yura, T

1976-02-01

79

Identification of novel genetic alterations in samples of malignant glioma patients.  

PubMed

Glioblastoma is the most frequent and malignant human brain tumor. High level of genomic instability detected in glioma cells implies that numerous genetic alterations accumulate during glioma pathogenesis. We investigated alterations in AP-PCR DNA profiles of 30 glioma patients, and detected specific changes in 11 genes not previously associated with this disease: LHFPL3, SGCG, HTR4, ITGB1, CPS1, PROS1, GP2, KCNG2, PDE4D, KIR3DL3, and INPP5A. Further correlations revealed that 8 genes might play important role in pathogenesis of glial tumors, while changes in GP2, KCNG2 and KIR3DL3 should be considered as passenger mutations, consequence of high level of genomic instability. Identified genes have a significant role in signal transduction or cell adhesion, which are important processes for cancer development and progression. According to our results, LHFPL3 might be characteristic of primary glioblastoma, SGCG, HTR4, ITGB1, CPS1, PROS1 and INPP5A were detected predominantly in anaplastic astrocytoma, suggesting their role in progression of secondary glioblastoma, while alterations of PDE4D seem to have important role in development of both glioblastoma subtypes. Some of the identified genes showed significant association with p53, p16, and EGFR, but there was no significant correlation between loss of PTEN and any of identified genes. In conclusion our study revealed genetic alterations that were not previously associated with glioma pathogenesis and could be potentially used as molecular markers of different glioblastoma subtypes. PMID:24358143

Milinkovic, Vedrana; Bankovic, Jasna; Rakic, Miodrag; Stankovic, Tijana; Skender-Gazibara, Milica; Ruzdijic, Sabera; Tanic, Nikola

2013-01-01

80

Genetic effects in Drosophila on the potency of diverse general anesthetics: a distinctive pattern of altered sensitivity.  

PubMed

Mutations that influence the sensitivity of an organism to a volatile general anesthetic can be divided into two classes. In one, sensitivity to all other volatile agents is affected to a similar degree. Although this class may contain mutations of interest for understanding anesthesia, it is also likely to contain mutations that merely alter general health. In the second class, mutations confer non-uniform effects on potency (NEP), i.e., larger effects for some volatile anesthetics than for others. Members of this class are of special interest for studies of arousal and its pharmacological suppression because they not only avoid the pitfall of effects on global health, but also imply the existence of drug targets that are preferentially affected by particular agents. In this work, we provide the first systematic investigation of the relative frequency and diversity of NEP mutations in Drosophila. As a first step, we isolated and characterized a set of P element insertion mutations that confer altered sensitivity of the fruit fly to the clinical anesthetic halothane. Then we tested the members of this collection for their effect on the sensitivity of flies to five other volatile agents. Not only do we find that most of the mutations show non-uniform effects, they also share a characteristic arrangement of altered potencies (halothane > >desflurane >or= enflurane approximately isoflurane approximately methoxyflurane > sevoflurane). From this result, although we do not know how direct or indirect are the effects of the mutations, we infer the existence of a biologically relevant target for anesthetic action that has a distinct preference for halothane over other agents. Intriguingly, P element insertions that co-map with several NEP loci have been shown to alter the fly's response to cocaine and ethanol, suggesting that common genetic elements are involved in the response to all three drugs. PMID:19863272

Campbell, Joseph L; Gu, Qun; Guo, Dongyu; Nash, Howard A

2009-01-01

81

Campylobacter jejuni pdxA Affects Flagellum-Mediated Motility to Alter Host Colonization  

PubMed Central

Vitamin B6 (pyridoxal-5'-phosphate, PLP) is linked to a variety of biological functions in prokaryotes. Here, we report that the pdxA (putative 4-hydroxy-L-threonine phosphate dehydrogenase) gene plays a pivotal role in the PLP-dependent regulation of flagellar motility, thereby altering host colonization in a leading foodborne pathogen, Campylobacter jejuni. A C. jejuni pdxA mutant failed to produce PLP and exhibited a coincident loss of flagellar motility. Mass spectrometric analyses showed a 3-fold reduction in the main flagellar glycan pseudaminic acid (Pse) associated with the disruption of pdxA. The pdxA mutant also exhibited reduced growth rates compared with the WT strain. Comparative metabolomic analyses revealed differences in respiratory/energy metabolism between WT C. jejuni and the pdxA mutant, providing a possible explanation for the differential growth fitness between the two strains. Consistent with the lack of flagellar motility, the pdxA mutant showed impaired motility-mediated responses (bacterial adhesion, ERK1/2 activation, and IL-8 production) in INT407 cells and reduced colonization of chickens compared with the WT strain. Overall, this study demonstrated that the pdxA gene affects the PLP-mediated flagellar motility function, mainly through alteration of Pse modification, and the disruption of this gene also alters the respiratory/energy metabolisms to potentially affect host colonization. Our data therefore present novel implications regarding the utility of PLP and its dependent enzymes as potent target(s) for the control of this pathogen in the poultry host. PMID:23936426

Asakura, Hiroshi; Hashii, Noritaka; Uema, Masashi; Kawasaki, Nana; Sugita-Konishi, Yoshiko; Igimi, Shizunobu; Yamamoto, Shigeki

2013-01-01

82

Genetic background affects susceptibility to tumoral stem cell reprogramming  

PubMed Central

The latest studies of the interactions between oncogenes and its target cell have shown that certain oncogenes may act as passengers to reprogram tissue-specific stem/progenitor cell into a malignant cancer stem cell state. In this study, we show that the genetic background influences this tumoral stem cell reprogramming capacity of the oncogenes using as a model the Sca1-BCRABLp210 mice, where the type of tumor they develop, chronic myeloid leukemia (CML), is a function of tumoral stem cell reprogramming. Sca1-BCRABLp210 mice containing FVB genetic components were significantly more resistant to CML. However, pure Sca1-BCRABLp210 FVB mice developed thymomas that were not seen in the Sca1-BCRABLp210 mice into the B6 background. Collectively, our results demonstrate for the first time that tumoral stem cell reprogramming fate is subject to polymorphic genetic control. PMID:23839033

Garcia-Ramirez, Idoia; Ruiz-Roca, Lucia; Martin-Lorenzo, Alberto; Blanco, Oscar; Garcia-Cenador, Maria Begona; Garcia-Criado, Francisco Javier; Vicente-Duenas, Carolina; Sanchez-Garcia, Isidro

2013-01-01

83

Genetic Polymorphisms in Organic Cation Transporter 1 (OCT1) in Chinese and Japanese Populations Exhibit Altered  

E-print Network

- betic drug metformin. Genetic variants in OCT1 have been identified largely in European populations. Metformin is in- creasingly being used in Asian populations where the incidence of type 2 diabetes (T2D in Chinese and Japanese pop- ulations may affect the differential response to metformin. Introduction

Sali, Andrej

84

Community Involvement in Developing Policies for Genetic Testing: Assessing the Interests and Experiences of Individuals Affected by Genetic Conditions  

PubMed Central

Because the introduction of genetic testing into clinical medicine and public health creates concerns for the welfare of individuals affected with genetic conditions, those individuals should have a role in policy decisions about testing. Mechanisms for promoting participation range from membership on advisory committees to community dialogues to surveys that provide evidence for supporting practice guidelines. Surveys can assess the attitudes and the experiences of members of an affected group and thus inform discussions about that community’s concerns regarding the appropriate use of a genetic test. Results of a survey of individuals affected with inherited dwarfism show how data can be used in policy and clinical-practice contexts. Future research of affected communities’ interests should be pursued so that underrepresented voices can be heard. PMID:15623855

Gollust, Sarah E.; Apse, Kira; Fuller, Barbara P.; Miller, Paul Steven; Biesecker, Barbara B.

2005-01-01

85

Newly Identified Genetic Variations May Affect Breast Cancer Risk  

Cancer.gov

Researchers have identified genetic variations in a region of DNA that may be associated with risk for breast cancer. Women with the variation have a 1.4 times greater risk of developing breast cancer compared to those without this variation.

86

ORIGINAL PAPER Genetic diversity affects colony survivorship in commercial  

E-print Network

drones), although there is much variation among queens. One main consequence of such extreme polyandry, intracolony genetic diversity, in three commercial beekeeping operations to determine how they correlate is the single queen of a Communicated by: Sven Thatje D. R. Tarpy (*) Department of Entomology, North Carolina

Tarpy, David R.

87

Alteration of soil rhizosphere communities following genetic transformation of white spruce.  

PubMed

The application of plant genetic manipulations to agriculture and forestry with the aim of alleviating insect damage through Bacillus thuringiensis transformation could lead to a significant reduction in the release of pesticides into the environment. However, many groups have come forward with very valid and important questions related to potentially adverse effects, and it is crucial to assess and better understand the impact that this technology might have on ecosystems. In this study, we analyzed rhizosphere soil samples collected from the first B. thuringiensis-transformed trees [with insertion of the CryIA(b) toxin-encoding gene] grown in Canada (Val-Cartier, QC, Canada) as part of an ecological impact assessment project. Using a robust amplified rRNA gene restriction analysis approach coupled with 16S rRNA gene sequencing, the rhizosphere-inhabiting microbial communities of white spruce (Picea glauca) genetically modified by biolistic insertion of the cryIA(b), uidA (beta-glucuronidase), and nptII genes were compared with the microbial communities associated with non-genetically modified counterparts and with trees in which only the genetic marker genes uidA and nptII have been inserted. Analysis of 1,728 rhizosphere bacterial clones (576 clones per treatment) using a Cramér-von Mises statistic analysis combined with a Monte Carlo comparison clearly indicated that there was a statistically significant difference (P < 0.05) between the microbial communities inhabiting the rhizospheres of trees carrying the cryIA(b), uidA, and nptII transgenes, trees carrying only the uidA and nptII transgenes, and control trees. Clear rhizosphere microbial community alterations due to B. thuringiensis tree genetic modification have to our knowledge never been described previously and open the door to interesting questions related to B. thuringiensis genetic transformation and also to the impact of commonly used uidA and nptII genetic marker genes. PMID:17468272

LeBlanc, Philippe M; Hamelin, Richard C; Filion, Martin

2007-07-01

88

Alteration of Soil Rhizosphere Communities following Genetic Transformation of White Spruce?  

PubMed Central

The application of plant genetic manipulations to agriculture and forestry with the aim of alleviating insect damage through Bacillus thuringiensis transformation could lead to a significant reduction in the release of pesticides into the environment. However, many groups have come forward with very valid and important questions related to potentially adverse effects, and it is crucial to assess and better understand the impact that this technology might have on ecosystems. In this study, we analyzed rhizosphere soil samples collected from the first B. thuringiensis-transformed trees [with insertion of the CryIA(b) toxin-encoding gene] grown in Canada (Val-Cartier, QC, Canada) as part of an ecological impact assessment project. Using a robust amplified rRNA gene restriction analysis approach coupled with 16S rRNA gene sequencing, the rhizosphere-inhabiting microbial communities of white spruce (Picea glauca) genetically modified by biolistic insertion of the cryIA(b), uidA (beta-glucuronidase), and nptII genes were compared with the microbial communities associated with non-genetically modified counterparts and with trees in which only the genetic marker genes uidA and nptII have been inserted. Analysis of 1,728 rhizosphere bacterial clones (576 clones per treatment) using a Cramér-von Mises statistic analysis combined with a Monte Carlo comparison clearly indicated that there was a statistically significant difference (P < 0.05) between the microbial communities inhabiting the rhizospheres of trees carrying the cryIA(b), uidA, and nptII transgenes, trees carrying only the uidA and nptII transgenes, and control trees. Clear rhizosphere microbial community alterations due to B. thuringiensis tree genetic modification have to our knowledge never been described previously and open the door to interesting questions related to B. thuringiensis genetic transformation and also to the impact of commonly used uidA and nptII genetic marker genes. PMID:17468272

LeBlanc, Philippe M.; Hamelin, Richard C.; Filion, Martin

2007-01-01

89

Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas.  

PubMed

The most common pediatric brain tumors are low-grade gliomas (LGGs). We used whole-genome sequencing to identify multiple new genetic alterations involving BRAF, RAF1, FGFR1, MYB, MYBL1 and genes with histone-related functions, including H3F3A and ATRX, in 39 LGGs and low-grade glioneuronal tumors (LGGNTs). Only a single non-silent somatic alteration was detected in 24 of 39 (62%) tumors. Intragenic duplications of the portion of FGFR1 encoding the tyrosine kinase domain (TKD) and rearrangements of MYB were recurrent and mutually exclusive in 53% of grade II diffuse LGGs. Transplantation of Trp53-null neonatal astrocytes expressing FGFR1 with the duplication involving the TKD into the brains of nude mice generated high-grade astrocytomas with short latency and 100% penetrance. FGFR1 with the duplication induced FGFR1 autophosphorylation and upregulation of the MAPK/ERK and PI3K pathways, which could be blocked by specific inhibitors. Focusing on the therapeutically challenging diffuse LGGs, our study of 151 tumors has discovered genetic alterations and potential therapeutic targets across the entire range of pediatric LGGs and LGGNTs. PMID:23583981

Zhang, Jinghui; Wu, Gang; Miller, Claudia P; Tatevossian, Ruth G; Dalton, James D; Tang, Bo; Orisme, Wilda; Punchihewa, Chandanamali; Parker, Matthew; Qaddoumi, Ibrahim; Boop, Fredrick A; Lu, Charles; Kandoth, Cyriac; Ding, Li; Lee, Ryan; Huether, Robert; Chen, Xiang; Hedlund, Erin; Nagahawatte, Panduka; Rusch, Michael; Boggs, Kristy; Cheng, Jinjun; Becksfort, Jared; Ma, Jing; Song, Guangchun; Li, Yongjin; Wei, Lei; Wang, Jianmin; Shurtleff, Sheila; Easton, John; Zhao, David; Fulton, Robert S; Fulton, Lucinda L; Dooling, David J; Vadodaria, Bhavin; Mulder, Heather L; Tang, Chunlao; Ochoa, Kerri; Mullighan, Charles G; Gajjar, Amar; Kriwacki, Richard; Sheer, Denise; Gilbertson, Richard J; Mardis, Elaine R; Wilson, Richard K; Downing, James R; Baker, Suzanne J; Ellison, David W

2013-06-01

90

Genetic Modifiers That Affect Phenotypic Expression of Retinal Diseases  

Microsoft Academic Search

Variability in onset, progression, severity, and phenotypic expression is commonly observed in many retinal diseases (Tables\\u000a 1 and 2). Although interfamily variability may be caused by environmental or allelic differences, intrafamily variability,\\u000a when a common mutation is segregating, may also be due to genetic modifiers (1–3). In contrast to independently acting alleles that may lead to an additive effect on

Malia M. Edwards; Dennis M. Maddox; Jungyeon Won; Jürgen K. Naggert; Patsy M. Nishina

2007-01-01

91

Genetic diversity affects colony survivorship in commercial honey bee colonies  

NASA Astrophysics Data System (ADS)

Honey bee ( Apis mellifera) queens mate with unusually high numbers of males (average of approximately 12 drones), although there is much variation among queens. One main consequence of such extreme polyandry is an increased diversity of worker genotypes within a colony, which has been shown empirically to confer significant adaptive advantages that result in higher colony productivity and survival. Moreover, honey bees are the primary insect pollinators used in modern commercial production agriculture, and their populations have been in decline worldwide. Here, we compare the mating frequencies of queens, and therefore, intracolony genetic diversity, in three commercial beekeeping operations to determine how they correlate with various measures of colony health and productivity, particularly the likelihood of queen supersedure and colony survival in functional, intensively managed beehives. We found the average effective paternity frequency ( m e ) of this population of honey bee queens to be 13.6 ± 6.76, which was not significantly different between colonies that superseded their queen and those that did not. However, colonies that were less genetically diverse (headed by queens with m e ? 7.0) were 2.86 times more likely to die by the end of the study when compared to colonies that were more genetically diverse (headed by queens with m e > 7.0). The stark contrast in colony survival based on increased genetic diversity suggests that there are important tangible benefits of increased queen mating number in managed honey bees, although the exact mechanism(s) that govern these benefits have not been fully elucidated.

Tarpy, David R.; vanEngelsdorp, Dennis; Pettis, Jeffrey S.

2013-08-01

92

Alterations in Ribosomal Protein Rps28 Can Diversely Affect Translational Accuracy in Saccharomyces Cerevisiae  

PubMed Central

Three small-subunit ribosomal proteins shown to influence translational accuracy in Saccharomyces cerevisiae are conserved in structure and function with their procaryotic counterparts. One of these, encoded by RPS28A and RPS28B (RPS28), is comparable to bacterial S12. The others, encoded by sup44 (RPS4) or, sup46 and YS11A (RPS13), are homologues of procaryotic S5 and S4, respectively. In Escherichia coli, certain alterations in S12 cause hyperaccurate translation or antibiotic resistance that can be counteracted by other changes in S5 or S4 that reduce translational accuracy. Using site-directed and random mutagenesis, we show that different changes in RPS28 can have diametrical influences on translational accuracy or antibiotic sensitivity in yeast. Certain substitutions in the amino-terminal portion of the protein, which is diverged from the procaryotic homologues, cause varying levels of nonsense suppression or antibiotic sensitivity. Other alterations, found in the more conserved carboxyl-terminal portion, counteract SUP44- or SUP46-associated antibiotic sensitivity, mimicking E. coli results. Although mutations in these different parts of RPS28 have opposite affects on translational accuracy or antibiotic sensitivity, additive phenotypes can be observed when opposing mutations are combined in the same protein. PMID:7498767

Anthony, R. A.; Liebman, S. W.

1995-01-01

93

Molecular genetic alterations in gliomatosis cerebri: What can we learn about the origin and course of the disease?  

Microsoft Academic Search

Gliomatosis cerebri (GC) is a neuroepithelial neoplasm with extensive infiltration of large parts of the brain. Recent data showing the involvement of TP53 mutation or nuclear protein accumulation in some cases have linked the astrocytic phenotype of the tumor cells to TP53 alterations frequently found in common astrocytomas. However, the frequency of these alterations is low, and other molecular genetic

Christian Mawrin

2005-01-01

94

Aeromonas proteolyrica bacteria in aerospace environments. [possible genetic alterations and effects on man  

NASA Technical Reports Server (NTRS)

Preflight studies on Aeromonas proteolytica are reported to investigate the possibility of genetic alterations resulting in increased proteolysis in spacecraft environments. This organism may be present on human tissue and could pose medical problems if its endopeptidase and a hemolysin were to be produced in ususually high quantities or altered in such a way as to be more effective in their activities. Considered are: (1) Development of a nutrative holding medium for suspension of organisms; (2) the establishment of baseline information for the standardization of the assay for endopeptidase levels and hemolytic titers; (3) formulation of a method by which intracutaneous hemorrhage could be quantitated in guinea pig tissue; and (4) the responses of these organisms to parameters of spaceflight and experimentation.

Foster, B. G.

1974-01-01

95

Environmental and genetic factors affecting udder characters and milk production in Chios sheep  

E-print Network

Environmental and genetic factors affecting udder characters and milk production in Chios sheep A environmental and genetic factors influencing udder characteristics and milk production in Chios sheep. All. Seasonal effects were significant for udder circumference, test-day milk and total milk production

Paris-Sud XI, Université de

96

Altered insulin and glucagon secretion in treated genetic hyperlipemia: a mechanism of theraphy?  

PubMed

The influence of Halofenate therapy on insulin and glucagon secretion was examined in the Zucker rat with genetic endogenous hyperlipemia. Coincident with the lipid lowering effects of Halofenate, the net change in the basal bihormonal axis favored glucagon, with the I/G molar ratio (Insulin/Glucagon) decreasing from 2.72 +/- 0.53 to 0.96 +/- 0.20 during treatment with this drug. Following arginine stimulation the I/G ratio remained reduced at 0.87 +/- 0.13 in Halofenate treated animals, contrasting with the statistically greater ratio of 2.5 +/- 0.55 in control animals. The Halofenate induced state of reduced insulin:glucagon was associated with hypolipemia, postarginine hyperglycemia, and hyperketonemia,-three metabolic parameters characteristic of glucagon excess relative to insulin. It is suggested that the lipid-lowering action of Halofenate in genetic hyperlipemia may reflect the altered bihormonal axis induced by the drug. PMID:1250161

Eaton, R P; Oase, R; Schade, D S

1976-03-01

97

Alterations in seed development gene expression affect size and oil content of Arabidopsis seeds.  

PubMed

Seed endosperm development in Arabidopsis (Arabidopsis thaliana) is under control of the polycomb group complex, which includes Fertilization Independent Endosperm (FIE). The polycomb group complex regulates downstream factors, e.g. Pheres1 (PHE1), by genomic imprinting. In heterozygous fie mutants, an endosperm develops in ovules carrying a maternal fie allele without fertilization, finally leading to abortion. Another endosperm development pathway depends on MINISEED3 (a WRKY10 transcription factor) and HAIKU2 (a leucine-rich repeat kinase). While the role of seed development genes in the embryo and endosperm establishment has been studied in detail, their impact on metabolism and oil accumulation remained unclear. Analysis of oil, protein, and sucrose accumulation in mutants and overexpression plants of the four seed development genes revealed that (1) seeds carrying a maternal fie allele accumulate low oil with an altered composition of triacylglycerol molecular species; (2) homozygous mutant seeds of phe1, mini3, and iku2, which are smaller, accumulate less oil and slightly less protein, and starch, which accumulates early during seed development, remains elevated in mutant seeds; (3) embryo-specific overexpression of FIE, PHE1, and MINI3 has no influence on seed size and weight, nor on oil, protein, or sucrose content; and (4) overexpression of IKU2 results in seeds with increased size and weight, and oil content of overexpressed IKU2 seeds is increased by 35%. Thus, IKU2 overexpression represents a novel strategy for the genetic manipulation of the oil content in seeds. PMID:24014578

Fatihi, Abdelhak; Zbierzak, Anna Maria; Dörmann, Peter

2013-10-01

98

Alteration of Fatty-Acid-Metabolizing Enzymes Affects Mitochondrial Form and Function in Hereditary Spastic Paraplegia  

PubMed Central

Hereditary spastic paraplegia (HSP) is considered one of the most heterogeneous groups of neurological disorders, both clinically and genetically. The disease comprises pure and complex forms that clinically include slowly progressive lower-limb spasticity resulting from degeneration of the corticospinal tract. At least 48 loci accounting for these diseases have been mapped to date, and mutations have been identified in 22 genes, most of which play a role in intracellular trafficking. Here, we identified mutations in two functionally related genes (DDHD1 and CYP2U1) in individuals with autosomal-recessive forms of HSP by using either the classical positional cloning or a combination of whole-genome linkage mapping and next-generation sequencing. Interestingly, three subjects with CYP2U1 mutations presented with a thin corpus callosum, white-matter abnormalities, and/or calcification of the basal ganglia. These genes code for two enzymes involved in fatty-acid metabolism, and we have demonstrated in human cells that the HSP pathophysiology includes alteration of mitochondrial architecture and bioenergetics with increased oxidative stress. Our combined results focus attention on lipid metabolism as a critical HSP pathway with a deleterious impact on mitochondrial bioenergetic function. PMID:23176821

Tesson, Christelle; Nawara, Magdalena; Salih, Mustafa A.M.; Rossignol, Rodrigue; Zaki, Maha S.; Al Balwi, Mohammed; Schule, Rebecca; Mignot, Cyril; Obre, Emilie; Bouhouche, Ahmed; Santorelli, Filippo M.; Durand, Christelle M.; Oteyza, Andres Caballero; El-Hachimi, Khalid H.; Al Drees, Abdulmajeed; Bouslam, Naima; Lamari, Foudil; Elmalik, Salah A.; Kabiraj, Mohammad M.; Seidahmed, Mohammed Z.; Esteves, Typhaine; Gaussen, Marion; Monin, Marie-Lorraine; Gyapay, Gabor; Lechner, Doris; Gonzalez, Michael; Depienne, Christel; Mochel, Fanny; Lavie, Julie; Schols, Ludger; Lacombe, Didier; Yahyaoui, Mohamed; Al Abdulkareem, Ibrahim; Zuchner, Stephan; Yamashita, Atsushi; Benomar, Ali; Goizet, Cyril; Durr, Alexandra; Gleeson, Joseph G.; Darios, Frederic; Brice, Alexis; Stevanin, Giovanni

2012-01-01

99

Alteration of fatty-acid-metabolizing enzymes affects mitochondrial form and function in hereditary spastic paraplegia.  

PubMed

Hereditary spastic paraplegia (HSP) is considered one of the most heterogeneous groups of neurological disorders, both clinically and genetically. The disease comprises pure and complex forms that clinically include slowly progressive lower-limb spasticity resulting from degeneration of the corticospinal tract. At least 48 loci accounting for these diseases have been mapped to date, and mutations have been identified in 22 genes, most of which play a role in intracellular trafficking. Here, we identified mutations in two functionally related genes (DDHD1 and CYP2U1) in individuals with autosomal-recessive forms of HSP by using either the classical positional cloning or a combination of whole-genome linkage mapping and next-generation sequencing. Interestingly, three subjects with CYP2U1 mutations presented with a thin corpus callosum, white-matter abnormalities, and/or calcification of the basal ganglia. These genes code for two enzymes involved in fatty-acid metabolism, and we have demonstrated in human cells that the HSP pathophysiology includes alteration of mitochondrial architecture and bioenergetics with increased oxidative stress. Our combined results focus attention on lipid metabolism as a critical HSP pathway with a deleterious impact on mitochondrial bioenergetic function. PMID:23176821

Tesson, Christelle; Nawara, Magdalena; Salih, Mustafa A M; Rossignol, Rodrigue; Zaki, Maha S; Al Balwi, Mohammed; Schule, Rebecca; Mignot, Cyril; Obre, Emilie; Bouhouche, Ahmed; Santorelli, Filippo M; Durand, Christelle M; Oteyza, Andrés Caballero; El-Hachimi, Khalid H; Al Drees, Abdulmajeed; Bouslam, Naima; Lamari, Foudil; Elmalik, Salah A; Kabiraj, Mohammad M; Seidahmed, Mohammed Z; Esteves, Typhaine; Gaussen, Marion; Monin, Marie-Lorraine; Gyapay, Gabor; Lechner, Doris; Gonzalez, Michael; Depienne, Christel; Mochel, Fanny; Lavie, Julie; Schols, Ludger; Lacombe, Didier; Yahyaoui, Mohamed; Al Abdulkareem, Ibrahim; Zuchner, Stephan; Yamashita, Atsushi; Benomar, Ali; Goizet, Cyril; Durr, Alexandra; Gleeson, Joseph G; Darios, Frederic; Brice, Alexis; Stevanin, Giovanni

2012-12-01

100

Phytoplasmal infection derails genetically preprogrammed meristem fate and alters plant architecture.  

PubMed

In the life cycle of higher plants, it is the fate of meristem cells that determines the pattern of growth and development, and therefore plant morphotype and fertility. Floral transition, the turning point from vegetative growth to reproductive development, is achieved via genetically programmed sequential changes in meristem fate from vegetative to inflorescence, and to floral, leading to flower formation and eventual seed production. The transition is rarely reversible once initiated. In this communication, we report that a bacterial infection can derail the genetically programmed fate of meristem cells, thereby drastically altering the growth pattern of the host plant. We identified four characteristic symptoms in tomato plants infected with a cell wall-less bacterium, phytoplasma. The symptoms are a manifestation of the pathogen-induced alterations of growth pattern, whereas each symptom corresponds to a distinct phase in the derailment of shoot apical meristem fate. The phases include premature floral meristem termination, suppressed floral meristem initiation, delayed conversion of vegetative meristem to inflorescence meristem, and repetitive initiation and outgrowth of lateral vegetative meristems. We further found that the pathogen-induced alterations of growth pattern were correlated with transcriptional reprogramming of key meristem switching genes. Our findings open an avenue toward understanding pathological alterations in patterns of plant growth and development, thus aiding identification of molecular targets for disease control and symptom alleviation. The findings also provide insights for understanding stem cell pluripotency and raise a tantalizing possibility for using phytoplasma as a tool to dissect the course of normal plant development and to modify plant morphogenesis by manipulating meristem fate. PMID:24191032

Wei, Wei; Davis, Robert Edward; Nuss, Donald L; Zhao, Yan

2013-11-19

101

Genetic and environmental factors affecting growth and reproduction characters of Morada Nova sheep in Northeastern Brazil  

E-print Network

GENETIC AND ENVIRONMENTAL FACTORS AFFECTING GROWTH AND REPRODUCTION CHARACTERS OF MORADA NOVA SHEEP IN NORTHEASTERN BRAZIL A Thesis by ANTONIO AMAURV ORIA FERNANDES Submitted to the Graduate College of Texas A&M University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1985 Major Subject: Animal Breeding GENETIC AND ENVIRONMENTAL FACTORS AFFECTING GROWTH AND REPRODUCTION CHARACTERS OF MORADA NOVA SHEEP IN NORTHEASTERN BRAZIL A Thesis by ANTONIO...

Fernandes, Antonio Amaury Oria

2012-06-07

102

Review of genetic aspects of radiological alterations in the navicular bone of the horse.  

PubMed

Navicular disease or podotrochlosis has long been known to cause forelimb lameness in horses. It had been proposed that the development of podotrochlosis has similarities to the human osteoarthritis (OA) complex. Alterations of the navicular bone can be made visible early in life only on the basis of radiographs. Reports on the prevalences of navicular disease indicate that radiological alterations in the navicular bone are present in different warmblood populations at frequencies of between 14.9% and 87.6%. Genetic factors play an important role in the development of the radiological signs. Estimates of heritability using animal threshold models range from h2 = 0.09 to h2 = 0.40. Estimated additive genetic correlations between radiological changes in the navicular bone and other orthopaedic health traits indicated that they mostly develop genetically independently of each other. There was a negative genetic correlation between radiological changes in the navicular bone and the number of tournament entries and placings. It has also been shown that reduction of radiological changes of navicular bones and improvement of breeding values for performance of riding horses can be achieved if selection is based on breeding values for these traits simultaneously. An optimised markerset was developed to detect quantitative trait loci (QTL) for pathologic changes in the navicular bone of Hanoverian warmblood horses. The horse genome was scanned using 214 highly polymorphic microsatellites chromosome-wide significant QTL were located on equine chromosomes (ECA) 2, 3, 4, 10, and 26. Genome-wide significant QTL were on ECA2 and on ECA10. Unravelling QTL associated with navicular disease will enhance selection progress for a healthy limb constitution in horses. PMID:18077930

Diesterbeck, U; Distl, O

2007-11-01

103

Altered Seasonality and Magnitude of Rainfall Affects Soil Respiration and Nitrous Oxide Fluxes in California Annual Grassland  

Microsoft Academic Search

Currently, climate models do not agree on how rising concentrations of CO2 and other greenhouse gases will affect rainfall in California. Changes in moisture regime will likely alter rates of carbon (C) loss via soil respiration, as well as fluxes of N2O. Moisture availability can also affect plant productivity in highly seasonal environments. We examined the consequences of wetter conditions

W. W. Chou; W. L. Silver; R. D. Jackson; B. Allen-Diaz

2004-01-01

104

Functional TLR5 genetic variants affect human colorectal cancer survival.  

PubMed

Toll-like receptors (TLR) are overexpressed on many types of cancer cells, including colorectal cancer cells, but little is known about the functional relevance of these immune regulatory molecules in malignant settings. Here, we report frequent single-nucleotide polymorphisms (SNP) in the flagellin receptor TLR5 and the TLR downstream effector molecules MyD88 and TIRAP that are associated with altered survival in a large cohort of Caucasian patients with colorectal cancer (n = 613). MYD88 rs4988453, a SNP that maps to a promoter region shared with the acetyl coenzyme-A acyl-transferase-1 (ACAA1), was associated with decreased survival of patients with colorectal cancer and altered transcriptional activity of the proximal genes. In the TLR5 gene, rs5744174/F616L was associated with increased survival, whereas rs2072493/N592S was associated with decreased survival. Both rs2072493/N592S and rs5744174/F616L modulated TLR5 signaling in response to flagellin or to different commensal and pathogenic intestinal bacteria. Notably, we observed a reduction in flagellin-induced p38 phosphorylation, CD62L shedding, and elevated expression of interleukin (IL)-6 and IL-1? mRNA in human primary immune cells from TLR5 616LL homozygote carriers, as compared with 616FF carriers. This finding suggested that the well-documented effect of cytokines like IL-6 on colorectal cancer progression might be mediated by TLR5 genotype-dependent flagellin sensing. Our results establish an important link between TLR signaling and human colorectal cancer with relevance for biomarker and therapy development. PMID:24154872

Klimosch, Sascha N; Försti, Asta; Eckert, Jana; Knezevic, Jelena; Bevier, Melanie; von Schönfels, Witigo; Heits, Nils; Walter, Jessica; Hinz, Sebastian; Lascorz, Jesus; Hampe, Jochen; Hartl, Dominik; Frick, Julia-Stefanie; Hemminki, Kari; Schafmayer, Clemens; Weber, Alexander N R

2013-12-15

105

Altered visual experience and acute visual deprivation affect predatory targeting by infrared-imaging Boid snakes.  

PubMed

Boid and Crotaline snakes use both their eyes and infrared-imaging facial pit organs to target homeothermic prey. These snakes can target in complete darkness, but the eyes can also effectively direct predatory strikes. We investigated the behavioral correlates of boid snakes' simultaneous use of two imaging systems by testing whether congenital unilateral visual deprivation affects targeting performance. Normally sighted Burmese pythons exhibited average targeting angle of zero (on the midline axis of the head), but three unilaterally anophthalmic Burmese pythons targeted preferentially on the sighted side. A unilaterally anophthalmic amethystine python also targeted on the sighted side, and a unilaterally anophthalmic Brazilian rainbow boa tended to target on the sighted side, though its mean targeting angle was not significantly different from zero. When unilaterally anophthalmic Burmese pythons were temporarily blinded, mean strike angle changed to that of normally sighted snakes. These results show that while infrared-imaging snakes can shift between visual and infrared information under acute experimental conditions, loss of part of the visual field during development results in abnormal predatory targeting behavior. In contrast, normally sighted snakes subjected to temporary unilateral blinding do not target preferentially on the sighted side. Therefore, while loss of part of the visual field may be compensated for by infrared input in normal snakes, partial absence of visual input during development may alter central organization of visual information. Conversely, absence of half the visual field during development does not alter targeting performance based upon infrared input alone, suggesting that organization of the central infrared map does not depend upon normal organization of visual input. PMID:11701137

Grace, M S; Woodward, O M

2001-11-23

106

Process-induced extracellular matrix alterations affect the mechanisms of soft tissue repair and regeneration  

PubMed Central

Extracellular matrices derived from animal tissues for human tissue repairs are processed by various methods of physical, chemical, or enzymatic decellularization, viral inactivation, and terminal sterilization. The mechanisms of action in tissue repair vary among bioscaffolds and are suggested to be associated with process-induced extracellular matrix modifications. We compared three non-cross-linked, commercially available extracellular matrix scaffolds (Strattice, Veritas, and XenMatrix), and correlated extracellular matrix alterations to in vivo biological responses upon implantation in non-human primates. Structural evaluation showed significant differences in retaining native tissue extracellular matrix histology and ultrastructural features among bioscaffolds. Tissue processing may cause both the condensation of collagen fibers and fragmentation or separation of collagen bundles. Calorimetric analysis showed significant differences in the stability of bioscaffolds. The intrinsic denaturation temperature was measured to be 51°C, 38°C, and 44°C for Strattice, Veritas, and XenMatrix, respectively, demonstrating more extracellular matrix modifications in the Veritas and XenMatrix scaffolds. Consequently, the susceptibility to collagenase degradation was increased in Veritas and XenMatrix when compared to their respective source tissues. Using a non-human primate model, three bioscaffolds were found to elicit different biological responses, have distinct mechanisms of action, and yield various outcomes of tissue repair. Strattice permitted cell repopulation and was remodeled over 6 months. Veritas was unstable at body temperature, resulting in rapid absorption with moderate inflammation. XenMatrix caused severe inflammation and sustained immune reactions. This study demonstrates that extracellular matrix alterations significantly affect biological responses in soft tissue repair and regeneration. The data offer useful insights into the rational design of extracellular matrix products and bioscaffolds of tissue engineering. PMID:24555005

Xu, Hui; Sandor, Maryellen; Lombardi, Jared

2013-01-01

107

Restriction and Sequence Alterations Affect DNA Uptake Sequence-Dependent Transformation in Neisseria meningitidis  

PubMed Central

Transformation is a complex process that involves several interactions from the binding and uptake of naked DNA to homologous recombination. Some actions affect transformation favourably whereas others act to limit it. Here, meticulous manipulation of a single type of transforming DNA allowed for quantifying the impact of three different mediators of meningococcal transformation: NlaIV restriction, homologous recombination and the DNA Uptake Sequence (DUS). In the wildtype, an inverse relationship between the transformation frequency and the number of NlaIV restriction sites in DNA was observed when the transforming DNA harboured a heterologous region for selection (ermC) but not when the transforming DNA was homologous with only a single nucleotide heterology. The influence of homologous sequence in transforming DNA was further studied using plasmids with a small interruption or larger deletions in the recombinogenic region and these alterations were found to impair transformation frequency. In contrast, a particularly potent positive driver of DNA uptake in Neisseria sp. are short DUS in the transforming DNA. However, the molecular mechanism(s) responsible for DUS specificity remains unknown. Increasing the number of DUS in the transforming DNA was here shown to exert a positive effect on transformation. Furthermore, an influence of variable placement of DUS relative to the homologous region in the donor DNA was documented for the first time. No effect of altering the orientation of DUS was observed. These observations suggest that DUS is important at an early stage in the recognition of DNA, but does not exclude the existence of more than one level of DUS specificity in the sequence of events that constitute transformation. New knowledge on the positive and negative drivers of transformation may in a larger perspective illuminate both the mechanisms and the evolutionary role(s) of one of the most conserved mechanisms in nature: homologous recombination. PMID:22768309

Ambur, Ole Herman; Frye, Stephan A.; Nilsen, Mariann; Hovland, Eirik; Tønjum, Tone

2012-01-01

108

Attitudes toward prenatal genetic testing for Treacher Collins syndrome among affected individuals and families.  

PubMed

Treacher Collins syndrome (TCS) is a craniofacial syndrome that is both phenotypically variable and heterogeneous, caused by mutations in the TCOF1, POLR1C, and POLR1D genes. We examined attitudes towards TCS prenatal genetic testing among affected families using a telephone questionnaire. Participants were 31 affected adults and relatives recruited primarily through families cared for in the mid-Atlantic region. Nineteen participants (65%) reported that they would take a TCS prenatal genetic test which could not predict degree of disease severity. Interest in TCS genetic testing was associated with higher income, higher concern about having a child with TCS, lower religiosity, lower concern about genetic testing procedures, and having a sporadic rather than familial mutation. Over half reported that their decision to have TCS genetic testing would be influenced a great deal by their desire to relieve anxiety and attitudes toward abortion. Ten participants (32%) reported that they would be likely to end the pregnancy upon receiving a positive test result; this was lower amongst TCS affected individuals and higher amongst participants with children with TCS. Genetics healthcare providers need to be aware of affected individuals' and families' attitudes and interest in prenatal genetic testing for TCS, and the possible implications for other craniofacial disorders, so that patients' information needs can be met. PMID:22628272

Wu, Rebecca L; Lawson, Cathleen S; Jabs, Ethylin Wang; Sanderson, Saskia C

2012-07-01

109

Altered structural connectivity in neonates at genetic risk for schizophrenia: a combined study using morphological and white matter networks.  

PubMed

Recently, an increasing body of evidence suggests that developmental abnormalities related to schizophrenia may occur as early as the neonatal stage. Impairments of brain gray matter and wiring problems of axonal fibers are commonly suspected to be responsible for the disconnection hypothesis in schizophrenia adults, but significantly less is known in neonates. In this study, we investigated 26 neonates who were at genetic risk for schizophrenia and 26 demographically matched healthy neonates using both morphological and white matter networks to examine possible brain connectivity abnormalities. The results showed that both populations exhibited small-world network topology. Morphological network analysis indicated that the brain structural associations of the high-risk neonates tended to have globally lower efficiency, longer connection distance, and less number of hub nodes and edges with relatively higher betweenness. Subgroup analysis showed that male neonates were significantly disease-affected, while the female neonates were not. White matter network analysis, however, showed that the fiber networks were globally unaffected, although several subcortical-cortical connections had significantly less number of fibers in high-risk neonates. This study provides new lines of evidence in support of the disconnection hypothesis, reinforcing the notion that the genetic risk of schizophrenia induces alterations in both gray matter structural associations and white matter connectivity. PMID:22613620

Shi, Feng; Yap, Pew-Thian; Gao, Wei; Lin, Weili; Gilmore, John H; Shen, Dinggang

2012-09-01

110

Altering the Axial Light Gradient Affects Photomorphogenesis in Emerging Seedlings of Zea mays L. 1  

PubMed Central

The axial (longitudinal) red-light gradient (632 nanometers) of 4 day old dark-grown maize seedlings is increased by staining the peripheral cells of the coleoptile. The magnitude of increase in the light gradient is dependent solely on the light-absorbing qualities of the stain used. Metanil yellow has no effect on the axial red-light gradient, while methylene blue causes a large increase in this light gradient. These stains did not affect growth in darkness or the sensitivity of mesocotyl elongation to red light. However, mesocotyl elongation was altered for the dark-grown seedlings stained with methylene blue when these seedlings were transplanted, covered with soil, and permitted to emerge under natural lighting conditions. These observations are consistent with the idea that there is a single perceptive site below the coleoptilar node, and suggest that this perceptive site receives the actinic light which has traveled downward through the length of the shoot from an entry point in the plant tip region. PMID:11538661

Parks, Brian M.; Poff, Kenneth L.

1986-01-01

111

Altering the axial light gradient affects photomorphogenesis in emerging seedlings of Zea mays L.  

PubMed

The axial (longitudinal) red light gradient (632 nanometers) of 4 day old dark-grown maize seedlings is increased by staining the peripheral cells of the coleoptile. The magnitude of increase in the light gradient is dependent solely on the light-absorbing qualities of the stain used. Metanil yellow has no effect on the axial red-light gradient, while methylene blue causes a large increase in this light gradient. These stains did not affect growth in darkness or the sensitivity of mesocotyl elongation to red light. However, mesocotyl elongation was altered for the dark-grown seedlings stained with methylene blue when these seedlings were transplanted, covered with soil, and permitted to emerge under natural lighting conditions. These observations are consistent with the idea that there is a single perceptive site below the coleoptilar node, and suggest that this perceptive site gives the actinic light which has traveled downward through the length of the shoot from an entry point in the plant tip region. PMID:11538661

Parks, B M; Poff, K L

1986-01-01

112

Alterations in welding process voltage affect the generation of ultrafine particles, fume composition, and pulmonary toxicity.  

PubMed

The goal was to determine if increasing welding voltage changes the physico-chemical properties of the fume and influences lung responses. Rats inhaled 40 mg/m³ (3 h/day × 3 days) of stainless steel (SS) welding fume generated at a standard voltage setting of 25 V (regular SS) or at a higher voltage (high voltage SS) of 30 V. Particle morphology, size and composition were characterized. Bronchoalveolar lavage was performed at different times after exposures to assess lung injury. Fumes collected from either of the welding conditions appeared as chain-like agglomerates of nanometer-sized primary particles. High voltage SS welding produced a greater number of ultrafine-sized particles. Fume generated by high voltage SS welding was higher in manganese. Pulmonary toxicity was more substantial and persisted longer after exposure to the regular SS fume. In summary, a modest raise in welding voltage affected fume size and elemental composition and altered the temporal lung toxicity profile. PMID:21281223

Antonini, James M; Keane, Michael; Chen, Bean T; Stone, Samuel; Roberts, Jenny R; Schwegler-Berry, Diane; Andrews, Ronnee N; Frazer, David G; Sriram, Krishnan

2011-12-01

113

The constant region affects antigen binding of antibodies to DNA by altering secondary structure  

PubMed Central

We previously demonstrated an important role of the constant region in the pathogenicity of anti-DNA antibodies. To determine the mechanisms by which the constant region affects autoantibody binding, a panel of isotype–switch variants (IgG1, IgG2a, IgG2b) was generated from the murine PL9-11 IgG3 autoantibody. The affinity of the PL9-11 antibody panel for histone was measured by surface plasmon resonance (SPR). Tryptophan fluorescence was used to determine wavelength shifts of the antibody panel upon binding to DNA and histone. Finally, circular dichroism spectroscopy was used to measure changes in secondary structure. SPR analysis revealed significant differences in histone binding affinity between members of the PL9-11 panel. The wavelength shifts of tryptophan fluorescence emission were found to be dependent on the antibody isotype, while circular dichroism analysis determined that changes in antibody secondary structure content differed between isotypes upon antigen binding. Thus, the antigen binding affinity is dependent on the particular constant region expressed. Moreover, the effects of antibody binding to antigen were also constant region dependent. Alteration of secondary structures influenced by constant regions may explain differences in fine specificity of anti-DNA antibodies between antibodies with similar variable regions, as well as cross-reactivity of anti-DNA antibodies with non-DNA antigens. PMID:23665381

Xia, Yumin; Janda, Alena; Eryilmaz, Ertan; Casadevall, Arturo; Putterman, Chaim

2013-01-01

114

Altering the axial light gradient affects photomorphogenesis in emerging seedlings of Zea mays L  

NASA Technical Reports Server (NTRS)

The axial (longitudinal) red light gradient (632 nanometers) of 4 day old dark-grown maize seedlings is increased by staining the peripheral cells of the coleoptile. The magnitude of increase in the light gradient is dependent solely on the light-absorbing qualities of the stain used. Metanil yellow has no effect on the axial red-light gradient, while methylene blue causes a large increase in this light gradient. These stains did not affect growth in darkness or the sensitivity of mesocotyl elongation to red light. However, mesocotyl elongation was altered for the dark-grown seedlings stained with methylene blue when these seedlings were transplanted, covered with soil, and permitted to emerge under natural lighting conditions. These observations are consistent with the idea that there is a single perceptive site below the coleoptilar node, and suggest that this perceptive site gives the actinic light which has traveled downward through the length of the shoot from an entry point in the plant tip region.

Parks, B. M.; Poff, K. L.

1986-01-01

115

Chemosensory cues affect amygdaloid neurogenesis and alter behaviors in the socially monogamous prairie vole.  

PubMed

The current study examined the effects of pheromonal exposure on adult neurogenesis and revealed the role of the olfactory pathways on adult neurogenesis and behavior in the socially monogamous prairie vole (Microtus ochrogaster). Subjects were injected with a cell proliferation marker [5-bromo-2'-deoxyuridine (BrdU)] and then exposed to their own soiled bedding or bedding soiled by a same- or opposite-sex conspecific. Exposure to opposite-sex bedding increased BrdU labeling in the amygdala (AMY), but not the dentate gyrus (DG), of female, but not male, voles, indicating a sex-, stimulus-, and brain region-specific effect. The removal of the main olfactory bulbs or lesioning of the vomeronasal organ (VNOX) in females reduced BrdU labeling in the AMY and DG, and inhibited the male bedding-induced BrdU labeling in the AMY, revealing the importance of an intact olfactory pathway for amygdaloid neurogenesis. VNOX increased anxiety-like behavior and altered social preference, but it did not affect social recognition memory in female voles. VNOX also reduced the percentage of BrdU-labeled cells that co-expressed the neuronal marker TuJ1 in the AMY, but not the DG. Together, our data indicate the importance of the olfactory pathway in mediating brain plasticity in the limbic system as well as its role in behavior. PMID:24641515

Liu, Y; Lieberwirth, C; Jia, X; Curtis, J T; Meredith, M; Wang, Z X

2014-05-01

116

Collecting Duct Carcinomas Represent a Unique Tumor Entity Based on Genetic Alterations  

PubMed Central

Collecting duct carcinoma (CDC) is a rare renal neoplasm that is associated with poor prognosis due to its highly aggressive course and limited response to immuno- or chemotherapy. Histologically, CDC is defined as a subtype of renal cell carcinomas, but in some cases, it is difficult to differentiate from urothelial carcinomas (UC). Therefore the aim of this study was to determine genetic alterations of CDC in comparison to that of urothelial carcinomas of the upper urinary tract (UUT-UC) to clarify the histological origin of this rare tumor entity. Twenty-nine CDC samples were obtained from seven different German centers and compared with twenty-six urothelial carcinomas of the upper urinary tract. Comparative genomic hybridization (CGH) was used to investigate the genetic composition of patients’ tumors and allowed the detection of losses and gains of DNA copy numbers throughout the entire genome. The clinical data were correlated with CGH results. CGH analysis of CDC revealed DNA aberrations in many chromosomes. DNA losses were more frequently observed than gains, while high-level amplifications were not detected. The mean frequency of CDC chromosomal aberrations (4.9/case) was slightly lower than that in UUT-UC (5.4/case). Recurrent CDC DNA losses occurred at 8p (n=9/29), 16p (9/29), 1p (n=7/29) and 9p (n=7/29), and gains occurred in 13q (n=9/29). In contrast to CDC, the most frequently detected UUT-UC DNA aberration was a loss at 9q (n=13/26). DNA losses at 9q, 13q and 8q as well as gains at 8p showed significant variations in UUT-UC compared to CDC. There was no correlation between the patients’ clinical course and the presence or absence of these recurrent genetic alterations. CDCs are characterized by a different genetic pattern compared to UUT-UC. Regarding the published data on renal cell carcinoma, we conclude that CDC appears to be a unique entity among kidney carcinomas. PMID:24167600

Parr, Martin; Hartmann, Arndt; Fussel, Susanne; Toma, Marieta; Grobholz, Rainer; Pflugmann, Thomas; Wullich, Bernd; Strauss, Arne; Behnes, Carl Ludwig; Otto, Wolfgang; Stockle, Michael; Jung, Volker

2013-01-01

117

Human genetics. The genetics of Mexico recapitulates Native American substructure and affects biomedical traits.  

PubMed

Mexico harbors great cultural and ethnic diversity, yet fine-scale patterns of human genome-wide variation from this region remain largely uncharacterized. We studied genomic variation within Mexico from over 1000 individuals representing 20 indigenous and 11 mestizo populations. We found striking genetic stratification among indigenous populations within Mexico at varying degrees of geographic isolation. Some groups were as differentiated as Europeans are from East Asians. Pre-Columbian genetic substructure is recapitulated in the indigenous ancestry of admixed mestizo individuals across the country. Furthermore, two independently phenotyped cohorts of Mexicans and Mexican Americans showed a significant association between subcontinental ancestry and lung function. Thus, accounting for fine-scale ancestry patterns is critical for medical and population genetic studies within Mexico, in Mexican-descent populations, and likely in many other populations worldwide. PMID:24926019

Moreno-Estrada, Andrés; Gignoux, Christopher R; Fernández-López, Juan Carlos; Zakharia, Fouad; Sikora, Martin; Contreras, Alejandra V; Acuña-Alonzo, Victor; Sandoval, Karla; Eng, Celeste; Romero-Hidalgo, Sandra; Ortiz-Tello, Patricia; Robles, Victoria; Kenny, Eimear E; Nuño-Arana, Ismael; Barquera-Lozano, Rodrigo; Macín-Pérez, Gastón; Granados-Arriola, Julio; Huntsman, Scott; Galanter, Joshua M; Via, Marc; Ford, Jean G; Chapela, Rocío; Rodriguez-Cintron, William; Rodríguez-Santana, Jose R; Romieu, Isabelle; Sienra-Monge, Juan José; del Rio Navarro, Blanca; London, Stephanie J; Ruiz-Linares, Andrés; Garcia-Herrera, Rodrigo; Estrada, Karol; Hidalgo-Miranda, Alfredo; Jimenez-Sanchez, Gerardo; Carnevale, Alessandra; Soberón, Xavier; Canizales-Quinteros, Samuel; Rangel-Villalobos, Héctor; Silva-Zolezzi, Irma; Burchard, Esteban Gonzalez; Bustamante, Carlos D

2014-06-13

118

Genetic compatibility affects division of labor in the Argentine ant Linepithema humile.  

PubMed

Division of labor is central to the organization of insect societies. Within-colony comparisons between subfamilies of workers (patrilines or matrilines) revealed genetic effects on division of labor in many social insect species. Although this has been taken as evidence for additive genetic effects on division of labor, it has never been experimentally tested. To determine the relative roles of additive and nonadditive genetic effects (e.g., genetic compatibility, epistasis, and parent-of-origin imprinting effects) on worker behavior, we performed controlled crosses using the Argentine ant Linepithema humile. Three of the measured behaviors (the efficiency to collect pupae, the foraging propensity, and the distance between non-brood-tenders and brood) were affected by the maternal genetic background and the two others (the efficiency to feed larvae and the distance between brood-tenders and brood) by the paternal genetic background. Moreover, there were significant interactions between the maternal and paternal genetic backgrounds for three of the five behaviors. These results are most consistent with parent-of-origin and genetic compatibility effects on division of labor. The finding of nonadditive genetic effects is in strong contrast with the current view and has important consequences for our understanding of division of labor in insect societies. PMID:23356622

Libbrecht, Romain; Keller, Laurent

2013-02-01

119

Genetics of early onset bipolar affective disorder: Are we making progress?  

Microsoft Academic Search

Though considerable progress has been made in understanding the molecular genetics of bipolar affective dis order, few studies\\u000a are currently focusing on the genetics of prepubertal or early adolescent onset illness. A variety of studies of the phenomenology,\\u000a imaging and comorbidity of early onset bipolarity find significant differences from late onset illness. These studies raise\\u000a the notion that early onset

Richard D. Todd

2002-01-01

120

Comparative genomic hybridization reveals population-based genetic alterations in hepatoblastomas  

PubMed Central

Hepatoblastoma is a malignant paediatric liver tumour. In order to approach the genetic background of this malignancy we have screened a panel of eighteen cases from Europe and Japan for chromosomal imbalances using comparative genomic hybridization (CGH). The most frequent losses included chromosomal regions 13q21–q22 (28%) and 9p22-pter (22%), while the most frequent gains occurred on 2q23–q24 (33%), 20q (28%) and 1q24–q25 (28%). A significant difference in CGH alterations between the tumours from patients of Caucasian and Japanese was revealed where loss of 13q was found only in the Japanese samples. In conclusion, the findings indicate several candidate regions for suppressor genes and oncogenes potentially involved in the hepatoblastomas of different ethnic origin. © 2000 Cancer Research Campaign PMID:10993649

Gray, S G; Kytola, S; Matsunaga, T; Larsson, C; Ekstrom, T J

2000-01-01

121

Systemic mast cell activation disease: the role of molecular genetic alterations in pathogenesis, heritability and diagnostics  

PubMed Central

Despite increasing understanding of its pathophysiology, the aetiology of systemic mast cell activation disease (MCAD) remains largely unknown. Research has shown that somatic mutations in kinases are necessary for the establishment of a clonal mast cell population, in particular mutations in the tyrosine kinase Kit and in enzymes and receptors with crucial involvement in the regulation of mast cell activity. However, other, as yet undetermined, abnormalities are necessary for the manifestation of clinical disease. The present article reviews molecular genetic research into the identification of disease-associated genes and their mutational alterations. The authors also present novel data on familial systemic MCAD and review the associated literature. Finally, the importance of understanding the molecular basis of inherited mutations in terms of diagnostics and therapy is emphasized. PMID:22957768

Haenisch, Britta; Nothen, Markus M; Molderings, Gerhard J

2012-01-01

122

Forest Stand Characteristics Altered by Restoration Affect Western Bluebird Habitat Quality  

Microsoft Academic Search

Forest managers are setting Ponderosa pine (Pinus pon- derosa) forests in the southwestern United States on a tra- jectory toward a restored ecosystem by reducing tree densities and managing with prescribed fire. The process of restoration dramatically alters forest stands, and the ef- fects of these changes on wildlife remain unclear. Our research evaluated which aspects of habitat alteration from

Catherine S. Wightman; Stephen S. Germaine

2006-01-01

123

Micronucleus test and observation of nuclear alterations in erythrocytes of Nile tilapia exposed to waters affected by refinery effluent  

Microsoft Academic Search

Micronuclei and nuclear alterations tests were performed on erythrocytes of Oreochromis niloticus (Perciformes, Cichlidae) in order to evaluate the water quality from Paraíba do Sul river, in an area affected by effluents from an oil shale processing plant, located in the city of São José dos Campos, Brazil-SP. Water samples were collected on 2004 May and August (dry season) and

Tatiana da Silva Souza; Carmem S. Fontanetti

2006-01-01

124

Genetic alterations in quadruple malignancies of a patient with multiple sclerosis: their role in malignancy development and response to therapy  

PubMed Central

Multiple cancers represent 2.42% of all human cancers and are mainly double or triple cancers. Many possible causes of multiple malignancies have been reported such as genetic alterations, exposure to anti-cancer chemotherapy, radiotherapy, immunosuppressive therapy and reduced immunologic response. We report a female patient with multiple sclerosis and quadruple cancers of different embryological origin. Patient was diagnosed with stage III (T3, N1a, MO) medullary thyroid carcinoma (MTC), multicentric micropapillary thyroid carcinoma, scapular and lumbar melanomas (Clark II, Breslow II), and lobular invasive breast carcinoma (T1a, NO, MO). All tumors present in our patient except micropapillary thyroid carcinomas were investigated for gene alterations known to have a key role in cancer promotion and progression. Tumor samples were screened for the p16 alterations (loss of heterozygosity and homozygous deletions), loss of heterozygosity of PTEN, p53 alterations (mutational status and loss of heterozygosity) and mutational status of RET, HRAS and KRAS. Each type of tumor investigated had specific pattern of analyzed genetic alterations. The most prominent genetic changes were mutual alterations in PTEN and p53 tumor suppressors present in breast cancer and two melanomas. These co-alterations could be crucial for promoting development of multiple malignancies. Moreover the insertion in 4th codon of HRAS gene was common for all tumor types investigated. It represents frameshift mutation introducing stop codon at position 5 which prevents synthesis of a full-length protein. Since the inactivated RAS enhances sensitivity to tamoxifen and radiotherapy this genetic alteration could be considered as a good prognostic factor for this patient. PMID:24817989

Milosevic, Zorica; Tanic, Nikola; Bankovic, Jasna; Stankovic, Tijana; Buta, Marko; Lavrnic, Dragana; Milovanovic, Zorka; Pupic, Gordana; Stojkovic, Sonja; Milinkovic, Vedrana; Ito, Yasuhiro; Dzodic, Radan

2014-01-01

125

Genetical and comparative genomics of Brassica under altered Ca supply identifies Arabidopsis Ca-transporter orthologs.  

PubMed

Although Ca transport in plants is highly complex, the overexpression of vacuolar Ca(2+) transporters in crops is a promising new technology to improve dietary Ca supplies through biofortification. Here, we sought to identify novel targets for increasing plant Ca accumulation using genetical and comparative genomics. Expression quantitative trait locus (eQTL) mapping to 1895 cis- and 8015 trans-loci were identified in shoots of an inbred mapping population of Brassica rapa (IMB211 × R500); 23 cis- and 948 trans-eQTLs responded specifically to altered Ca supply. eQTLs were screened for functional significance using a large database of shoot Ca concentration phenotypes of Arabidopsis thaliana. From 31 Arabidopsis gene identifiers tagged to robust shoot Ca concentration phenotypes, 21 mapped to 27 B. rapa eQTLs, including orthologs of the Ca(2+) transporters At-CAX1 and At-ACA8. Two of three independent missense mutants of BraA.cax1a, isolated previously by targeting induced local lesions in genomes, have allele-specific shoot Ca concentration phenotypes compared with their segregating wild types. BraA.CAX1a is a promising target for altering the Ca composition of Brassica, consistent with prior knowledge from Arabidopsis. We conclude that multiple-environment eQTL analysis of complex crop genomes combined with comparative genomics is a powerful technique for novel gene identification/prioritization. PMID:25082855

Graham, Neil S; Hammond, John P; Lysenko, Artem; Mayes, Sean; O Lochlainn, Seosamh; Blasco, Bego; Bowen, Helen C; Rawlings, Chris J; Rios, Juan J; Welham, Susan; Carion, Pierre W C; Dupuy, Lionel X; King, Graham J; White, Philip J; Broadley, Martin R

2014-07-01

126

May genetic factors in fibromyalgia help to identify patients with differentially altered frequencies of immune cells?  

PubMed Central

There is common agreement that fibromyalgia (FM) is an extremely heterogeneous entity. Patients differ in their clinical symptoms, endocrine and immune parameters. In this study we evaluated endocrine and immunological features of distinct subsets of FM patients. In contrast to previous attempts to identify subsets of FM patients, based solely on their psychological and cognitive features, herein we propose to separate FM patients by genetic features. Allelic expression of the polymorphic promoter region of the serotonin transporter (5-HTTLPR) was analysed as a relevant genetic factor for FM. Seventy-five patients meeting the American College of Rheumatology criteria and 27 healthy age-matched controls participated in this study. All controls and FM patients were submitted to genotyping of 5-HTTLPR. Twenty-seven FM patients, who were able to discontinue hypnotic, sedative or psychotropic prescription medications for at least 2 weeks, were then subdivided into L (homozygote LL) or S groups (genotypes LS and SS). They were evaluated for salivary cortisol levels, absolute number of leucocyte subpopulations, including natural killer (NK) cells and activated T and B lymphocytes. Both groups presented decreased cortisol levels, more intense in the L group, increased all B lymphocytes subsets and reduced CD4+CD25high T lymphocytes. The L group had increased CD4+CD25low activated T lymphocytes, while the S group displayed elevated CD4+human leucocyte antigen D-related (HLA-DR)+ activated T lymphocytes and decreased NK cells. We demonstrate that genetic factors may help to identify FM individuals with differentially altered frequencies of immune cells. PMID:19037919

Carvalho, L S C; Correa, H; Silva, G C; Campos, F S; Baiao, F R; Ribeiro, L S; Faria, A M; d'Avila Reis, D

2008-01-01

127

Geographical mapping of a multifocal thyroid tumour using genetic alteration analysis & miRNA profiling  

PubMed Central

Background Papillary thyroid carcinoma (PTC) frequently presents as multiple tumour-foci within a single thyroid gland or pluriform, with synchronous tumours comprising different histological variants, raising questions regarding its clonality. Among the genetic aberrations described in PTC, the BRAF V600E mutation and ret/PTC activation occur most commonly. Several studies have investigated the genetic alteration status of multifocal thyroid tumours, with discordant results. To address the question of clonality this study examined disparate geographical and morphological areas from a single PTC (classic PTC, insular and anaplastic foci, and tumour cells adjacent to vascular invasion and lymphocytic infiltrate) for the presence of ret/PTC 1 or BRAF mutations. Moreover, we wanted to investigate the consistency of miRNA signatures within disparate areas of a tumour, and geographical data was further correlated with expression profiles of 330 different miRNAs. Putative miRNA gene targets were predicted for differentially regulated miRNAs and immunohistochemistry was performed on tissue sections in an effort to investigate phenotypic variations in microvascular density (MVD), and cytokeratin and p53 protein expression levels. Results All of the morphological areas proved negative for ret/PTC 1 rearrangement. Two distinct foci with classic morphology harboured the BRAF mutation. All other regions, including the insular and anaplastic areas were negative for the mutation. MiRNA profiles were found to distinguish tumours containing the BRAF mutation from the other tumour types, and to differentiate between the more aggressive insular & anaplastic tumours, and the classic variant. Our data corroborated miRNAs previously discovered in this carcinoma, and additional miRNAs linked to various processes involved in tumour growth and proliferation. Conclusion The initial genetic alteration analysis indicated that pluriform PTC did not necessarily evolve from classic PTC progenitor foci. Analysis of miRNA profiles however provided an interesting variation on the clonality question. While hierarchical clustering analysis of miRNA expression supported the hypothesis that discrete areas did not evolve from clonal expansion of tumour cells, it did not exclude the possibility of independent mutational events suggesting both phenomena might occur simultaneously within a tumour to enhance cancer progression in geographical micro-environments within a tumour. PMID:19055826

Aherne, Sinead T; Smyth, Paul C; Flavin, Richard J; Russell, Susan M; Denning, Karen M; Li, Jing Huan; Guenther, Simone M; O'Leary, John J; Sheils, Orla M

2008-01-01

128

Genetic and environmental factors affecting growth characters of Charolais cattle in Southeastern Brazil  

E-print Network

G=NETIC AND ENVIRONMENTAL FACTORS AFFECTING GROWTH CHARACTERS OF CHAROLAIS CATTLE IN SOUTHEASTERN BRAZIL A Thesis by PEDRO FRANKLIN BARBOSA Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE December 1982 Major Subject: Animal Breeding GENETIC AND ENVIRONMENTAL FACTORS AFFECTING GROWTH CHARACTERS OF CHAROLAIS CATTLE IN SOUTHEASTERN BRAZIL A Thesis by PEDRO FRANKLIN BARBOSA Approved as to style and content...

Barbosa, Pedro Franklin

2012-06-07

129

Copyright 2001 by the Genetics Society of America The Gypsy Insulator of Drosophila Affects Chromatin  

E-print Network

for this effect. The presence of Modifier of mdg4 [Mod(mdg4)] protein, a second component of the gypsy insulatorCopyright 2001 by the Genetics Society of America The Gypsy Insulator of Drosophila Affects by establishing higher-order domains of chromatin organization, although the specific mechanisms by which

Corces, Victor G.

130

Copyright 1999 by the Genetics Society of America An Analysis of Polygenes Affecting Wing Shape on  

E-print Network

Copyright © 1999 by the Genetics Society of America An Analysis of Polygenes Affecting Wing Shape phenotypes among recom-melanogaster have indicated a highly polygenic basis when shape is defined by metrics; Nuzhdin et al. 1997).metric effect of body size (Weber 1990, 1992). In the first study, wing-shape traits

Zeng, Zhao-Bang

131

Brief Genetics Report Variation in the Calpain-10 Gene Affects Blood Glucose  

E-print Network

insulin concentrations after a 75-g oral glucose tolerance test (OGTT). We have ex- amined the effect glucose tolerance test (OGTT), they had higher mean fasting plasma glucose (P 0.01, adjusted for age, sexBrief Genetics Report Variation in the Calpain-10 Gene Affects Blood Glucose Levels in the British

Cox, Nancy J.

132

Affective Influences on Risk Perceptions of, and Attitudes Toward, Genetically Modified Food  

Microsoft Academic Search

Much has been written about risk perceptions and public understanding of genetically modified (GM) food, yet little if any of the academic writings on this topic take into account the role of feelings or affect in these processes. Here, the available literature on the topic of GM food is explored in order to highlight findings consistent with the notion that

Ellen Townsend

2006-01-01

133

Genetic interactions between [PSI ] and nonstop mRNA decay affect phenotypic variation  

E-print Network

Genetic interactions between [PSI ] and nonstop mRNA decay affect phenotypic variation Marenda A October 12, 2004) Yeast strains can reversibly interconvert between [PSI ] and [psi ] states. The [PSI ] state is caused by a prion form of the translation termination factor eRF3. The [PSI ] state causes read

van Hoof, Ambro

134

Psychosocial and cultural factors affecting the perceived riskof genetically modified food: an overview of the literature  

Microsoft Academic Search

The rapid globalization of the world economy has increased the need for an astute understanding of cultural differences in perceptions, values, and ways of thinking about new food technologies. In this paper, we describe how socio-psychological and cultural factors may affect public perceptions of the riskof genetically modified (GM) food. We present psychological, sociological, and anthropological research on riskperception as

Melissa L. Finucane; Joan L. Holup

135

Intracolonial genetic variation affects reproductive skew and colony productivity during colony foundation in a parthenogenetic termite  

PubMed Central

Background In insect societies, intracolonial genetic variation is predicted to affect both colony efficiency and reproductive skew. However, because the effects of genetic variation on these two colony characteristics have been tested independently, it remains unclear whether they are affected by genetic variation independently or in a related manner. Here we test the effect of genetic variation on colony efficiency and reproductive skew in a rhinotermitid termite, Reticulitermes speratus, a species in which female-female pairs can facultatively found colonies. We established colonies using two types of female-female pairs: colonies founded by sisters (i.e., sister-pair colonies) and those founded by females from different colonies (i.e., unrelated-pair colonies). Colony growth and reproductive skew were then compared between the two types of incipient colonies. Results At 15 months after colony foundation, unrelated-pair colonies were larger than sister-pair colonies, although the caste ratio between workers and nymphs, which were alternatively differentiated from young larvae, did not differ significantly. Microsatellite DNA analyses of both founders and their parthenogenetically produced offspring indicated that, in both sister-pair and unrelated-pair colonies, there was no significant skew in the production of eggs, larvae, workers and soldiers. Nymph production, however, was significantly more skewed in the sister-pair colonies than in unrelated-pair colonies. Because nymphs can develop into winged adults (alates) or nymphoid reproductives, they have a higher chance of direct reproduction than workers in this species. Conclusions Our results support the idea that higher genetic variation among colony members could provide an increase in colony productivity, as shown in hymenopteran social insects. Moreover, this study suggests that low genetic variation (high relatedness) between founding females increases reproductive skew via one female preferentially channeling her relatives along the reproductive track. This study thus demonstrated that, in social insects, intracolonial genetic variation can simultaneously affect both colony efficiency and reproductive skew. PMID:25123355

2014-01-01

136

Abstract--Oral cancer is characterized by multiple genetic events such as alterations of a number of oncogenes and  

E-print Network

Abstract--Oral cancer is characterized by multiple genetic events such as alterations of a number interactions that may play a crucial role on a specific disease-state, especially during oral cancer) network during oral cancer progression, which is further analyzed in relation to other studies. I

Garofalakis, Minos

137

Analyses of Genetic Variation in Populations of Oregon Chub, a Threatened Floodplain Minnow in a Highly Altered Environment  

Microsoft Academic Search

The Oregon chub Oregonichthys crameri is a small floodplain minnow endemic to the Willamette River basin of western Oregon. Historically the species was widely abundant and probably relied on periodic floods for dispersal and genetic exchange among populations. The species has declined substantially in the past 100 years due to habitat alterations and the introduction of nonnative species and is

Patrick W. DeHaan; Paul D. Scheerer; Ron Rhew; William R. Ardren

2012-01-01

138

Recognition memory is associated with altered resting-state functional connectivity in people at genetic risk for Alzheimer's disease.  

PubMed

The apolipoprotein E ?4 (ApoE ?4) allele not only represents the strongest single genetic risk factor for sporadic Alzheimer's disease, but also imposes independent effects on brain function in healthy individuals where it has been shown to promote subtle memory deficits and altered intrinsic functional brain network connectivity. Based on previous work showing a potential relevance of the default mode network (DMN) functional connectivity for episodic memory function, we hypothesized that the ApoE ?4 genotype would affect memory performance via modulation of the DMN. We assessed 63 healthy individuals (50-80 years old), of which 20 carried the ?4 allele. All participants underwent resting-state functional magnetic resonance imaging (fMRI), high-resolution 3D anatomical MRI imaging and neuropsychological assessment. Functional connectivity analysis of resting-state activity was performed with a predefined seed region located in the left posterior cingulate cortex (PCC), a core region of the DMN. ApoE ?4 carriers performed significantly poorer than non-carriers in wordlist recognition and cued recall. Furthermore, ?4 carriers showed increased connectivity relative to ?4 non-carriers between the PCC seed region and left-hemispheric middle temporal gyrus (MTG). There was a positive correlation between recognition memory scores and resting-state connectivity in the left MTG in ?4 carriers. These results can be interpreted as compensatory mechanisms strengthening the cross-links between DMN core areas and cortical areas involved in memory processing. PMID:24989884

Matura, Silke; Prvulovic, David; Butz, Marius; Hartmann, Daniel; Sepanski, Beate; Linnemann, Katja; Oertel-Knöchel, Viola; Karakaya, Tarik; Fußer, Fabian; Pantel, Johannes; van de Ven, Vincent

2014-10-01

139

Factors affecting the exchange of genetic material between Nordic and US Holstein populations.  

PubMed

The possibility of profitable cooperation between dairy cattle populations depends on several factors. Among these factors is the similarity of breeding goals, for example, as measured by the correlations between selection indices. Correlations between selection indices less than unity can usually be explained by differences in economic values, trait definitions, national genetic evaluation procedures, and genotype x environment interactions. The objective of this study was to test whether uniform definitions of the female fertility traits would increase the exchange of genes across populations, and to quantify the effect on genetic gain. A second objective was to test whether a more similar relative weighting of the index traits across populations would increase the exchange of genes across populations, and to quantify the effect on genetic gain. This was done in a stochastic simulation study of the Nordic and US Holstein populations. Uniform definitions of the female fertility traits did not increase total genetic gain in the Nordic Holstein population. The standardization did not seem to affect selection across populations either. However, the results were sensitive to the assumptions made in the simulation study, especially the genetic correlations between traits. A more similar relative weighting of the index traits across populations did not change total genetic gain in the Nordic Holstein population. The possibility of exchanging genetic material with the US Holstein population led to significantly higher progress in the aggregate genotype in the Nordic Holstein population compared with a situation in which exchange was not possible. Hence, importation of US Holstein genetics for use in the Nordic Holstein population is recommended. In addition, results indicated that population size is of greater importance than differences in trait definitions and relative weighting of the index traits for the advantage of exchanging genetic material between the Nordic and the US Holstein populations. The possibility of exchanging genetic material with the Nordic Holstein population did not change progress in the aggregate genotype in the US Holstein population compared with a situation in which exchange was not possible, but it tended to result in lower genetic progress in protein yield and greater genetic progress or smaller genetic declines in the functional traits. Thus, importation of genetic material from Nordic Holsteins may slow down the deterioration of animal health and reproduction in US Holsteins. PMID:19620686

Buch, L H; Sørensen, A C; Lassen, J; Berg, P; Christensen, L G; Sørensen, M K

2009-08-01

140

Vitamin D Related Host Genetic Variants Alter HIV Disease Progression in Children  

PubMed Central

Background Vitamin D deficiency is common in HIV infection and has been associated with advanced disease. This study investigated whether vitamin D related genetic variants were associated with disease progression in HIV-infected children. Methods The Fok-I (C/T), Bsm-I (G/A), GC (A/C), DHCR7 (G/T) and CYP2R1 (G/A) genetic variants were detected by RT-PCR in HIV-infected children who participated in the PACTG P152 and P300 protocols which pre-dated the availability of effective combination antiretroviral therapy. The primary endpoints included time to progression to the first HIV-related disease end-point (?2 OI's, weight-growth failure) or death, which constituted the progression-free-survival. Analyses were performed for age >2 years and ?2 years separately adjusting for race and treatment effect. Results Of the 998 children evaluated, 139 experienced HIV disease progression. For children >2 years, rapid disease progression was associated with the DHCR7 G allele compared to the T allele (G/G vs. T/T: HR=5.0, p=0.035, G/T vs. T/T: HR=4.5, p=0.042, G/G+G/T vs. T/T: HR=4.8, p=0.036), and the Bsm-I A allele compared to the G allele (A/G vs. G/G: HR=2.2, p=0.014 and A/G+A/A vs. G/G: HR=2.0, p=0.026). In children ?2 years, the Bsm-I A allele increased the risk of disease progression in Hispanics (A/A vs. G/A+G/G: HR=2.8, p=0.03; A/A vs. G/G: HR=2.8, p=0.046) and whites (A/A vs. G/G: HR=6.6, p=0.025; A/A vs. G/A+G/G: HR=3.6, p=0.038). Conclusions Vitamin D related host genetic variants that alter the availability and activity of vitamin D are associated with risk of HIV disease progression in children, and may vary by age and race. PMID:23736144

Moodley, Amaran; Qin, Min; Singh, Kumud K.; Spector, Stephen A.

2013-01-01

141

The experience of altered states of consciousness in shamanic ritual: the role of pre-existing beliefs and affective factors.  

PubMed

Much attention has been paid recently to the role of anomalous experiences in the aetiology of certain types of psychopathology, e.g. in the formation of delusions. We examine, instead, the top-down influence of pre-existing beliefs and affective factors in shaping an individual's characterisation of anomalous sensory experiences. Specifically we investigated the effects of paranormal beliefs and alexithymia in determining the intensity and quality of an altered state of consciousness (ASC). Fifty five participants took part in a sweat lodge ceremony, a traditional shamanic ritual which was unfamiliar to them. Participants reported significant alterations in their state of consciousness, quantified using the 'APZ' questionnaire, a standardized measure of ASC experience. Participants endorsing paranormal beliefs compatible with shamanic mythology, and those showing difficulty identifying feelings scored higher on positive dimensions of ASC experience. Our findings demonstrate that variation in an individual's characterisation of anomalous experiences is nuanced by pre-existing beliefs and affective factors. PMID:20558090

Polito, Vince; Langdon, Robyn; Brown, Jac

2010-12-01

142

Ramaswamy Govindan, M.D., Talks About Novel Genetic Alterations Found in the TCGA Analysis of Lung Cancer at AACR 2014  

Cancer.gov

Home News and Events Multimedia Library Videos Novel Genetic Alterations Found in the TCGA Analysis of Lung Cancer Ramaswamy Govindan, M.D., Talks About Novel Genetic Alterations Found in the TCGA Analysis of Lung Cancer at AACR 2014 You will need

143

Test-and behavior-specific genetic factors affect WKY hypoactivity in tests of emotionality  

PubMed Central

Inbred Wistar–Kyoto rats consistently display hypoactivity in tests of emotional behavior. We used them to test the hypothesis that the genetic factors underlying the behavioral decision-making process will vary in different environmental contexts. The contexts used were the open-field test (OFT), a novel environment with no explicit threats present, and the defensive-burying test (DB), a habituated environment into which a threat has been introduced. Rearing, a voluntary behavior was measured in both tests, and our study was the first to look for genetic loci affecting grooming, a relatively automatic, stress-responsive stereotyped behavior. Quantitative trait locus analysis was performed on a population of 486 F2 animals bred from reciprocal intercrosses. The genetic architectures of DB and OFT rearing, and of DB and OFT grooming, were compared. There were no common loci affecting grooming behavior in both tests. These different contexts produced the stereotyped behavior via different pathways, and genetic factors seem to influence the decision-making pathways and not the expression of the behavior. Three loci were found that affected rearing behavior in both tests. However, in both contexts, other loci had greater effects on the behavior. Our results imply that environmental context’s effects on decision-making vary depending on the category of behavior. PMID:16490266

Baum, Amber E.; Solberg, Leah C.; Churchill, Gary A.; Ahmadiyeh, Nasim; Takahashi, Joseph S.; Redei, Eva E.

2013-01-01

144

Altered dopamine homeostasis differentially affects mitochondrial voltage-dependent anion channels turnover.  

PubMed

Altered dopamine homeostasis plays a key role in the pathogenesis of Parkinson's disease. The generation of reactive oxygen species by spontaneous dopamine oxidation impairs mitochondrial function, causing in turn an enhancement of oxidative stress. Recent findings have highlighted the role of mitochondrial outer membrane proteins in the regulation of the correct disposal of damaged mitochondria. Here, we report the effect of altered dopamine homeostasis on the mitochondrial functionality in human neuroblastoma SH-SY5Y cells, a cellular model widely used to reproduce impaired dopamine homeostasis. We observed that dopamine significantly and relevantly reduces VDAC1 and VDAC2 levels without any change in the mRNA levels. Although mitochondria are depolarized by dopamine and mitochondrial calcium influx is reduced, dysfunctional mitochondria are not removed by mitophagy as it would be expected. Thus, alteration of dopamine homeostasis induces a mitochondrial depolarization not counteracted by the mitophagy quality control. As a consequence, the elimination of VDACs may contribute to the altered mitochondrial disposal in PD pathogenesis, thus enhancing the role of oxidative stress. PMID:24998333

Alberio, Tiziana; Mammucari, Cristina; D'Agostino, Gianluca; Rizzuto, Rosario; Fasano, Mauro

2014-09-01

145

Altered emotional interference processing in affective and cognitive-control brain circuitry in major depression  

Microsoft Academic Search

Background—Major depression is characterized by a negativity bias: an enhanced responsiveness to, and memory for, affectively negative stimuli. However it is not yet clear whether this bias represents (1) impaired top-down cognitive control over affective responses, potentially linked to deficits in dorsolateral prefrontal cortex function; or (2) enhanced bottom-up responses to affectively- laden stimuli that dysregulate cognitive control mechanisms, potentially

Christina L. Fales; Deanna M. Barch; Melissa M. Rundle; Mark A. Mintun; Abraham Z. Snyder; Jose Mathews; Yvette I. Sheline

2008-01-01

146

Neonatal Phytoestrogen Exposure Alters Oviduct Mucosal Immune Response to Pregnancy and Affects Preimplantation Embryo Development in the Mouse1  

PubMed Central

ABSTRACT Treatment of neonatal mice with the phytoestrogen genistein (50 mg/kg/day) results in complete female infertility caused in part by preimplantation embryo loss in the oviduct between Days 2 and 3 of pregnancy. We previously demonstrated that oviducts of genistein-treated mice are “posteriorized” as compared to control mouse oviducts because they express numerous genes normally restricted to posterior regions of the female reproductive tract (FRT), the cervix and vagina. We report here that neonatal genistein treatment resulted in substantial changes in oviduct expression of genes important for the FRT mucosal immune response, including immunoglobulins, antimicrobials, and chemokines. Some of the altered immune response genes were chronically altered beginning at the time of neonatal genistein treatment, indicating that these alterations were a result of the posteriorization phenotype. Other alterations in oviduct gene expression were observed only in early pregnancy, immediately after the FRT was exposed to inflammatory or antigenic stimuli from ovulation and mating. The oviduct changes affected development of the surviving embryos by increasing the rate of cleavage and decreasing the trophectoderm-to-inner cell mass cell ratio at the blastocyst stage. We conclude that both altered immune responses to pregnancy and deficits in oviduct support for preimplantation embryo development in the neonatal genistein model are likely to contribute to infertility phenotype. PMID:22553218

Jefferson, Wendy N.; Padilla-Banks, Elizabeth; Phelps, Jazma Y.; Cantor, Amy M.; Williams, Carmen J.

2012-01-01

147

Detection of complex genetic alterations in human glioblastoma multiforme using comparative genomic hybridization  

SciTech Connect

The aim of the present study was to detect complex genetic alterations in human glioblastoma multiforme (GBM) by comparative genomic in situ hybridization (CGH). Of the 24 GBM that were examined, increased fluorescence intensities indicating chromosomal polysomy of chromosome 7 and gene amplification at chromosome 7p were found in 42% of the tumors. In addition, signal enhancement of chromosome 19 was present in 29% and at 12q13-15 in 21% of the tumors. We also detected reduction of fluorescence intensities indicating gross deletions on chromosomes 10 (58%), 9p (46%), and 13 (29%). There was a close correlation of CGH results when compared with Southern analysis of the EGFR gene localized on chromosome 7 and loss of heterozygosity detection of chromosome 9 and 10 by microsatellite PCR. A close correlation was also observed between copy number changes of chromosome 7 and deletions of chromosome 10. Amplification of chromosome 12q and deletions of chromosomes 9p and 13 seemed to be complementary in the tumors investigated in the present study. 44 refs., 3 figs., 1 tab.

Schlegel, J.; Stumm, G. [Universitaet Marburg (Germany); Scherthan, H.; Arens, N. [Universitaet Kaiderlautern (Germany)] [and others

1996-01-01

148

Supertasting, earaches and head injury: genetics and pathology alter our taste worlds.  

PubMed

Family studies using thresholds showed that PROP (6-n-propylthiouracil) tasting is produced by a dominant allele, T. Nontasters have two recessive alleles and tasters have one or two dominant alleles. The bitterness of suprathreshold PROP and anatomical criteria subdivide tasters into medium and supertasters. Supertasters may be TT tasters, but this has yet to be demonstrated. Supertasters preceive the greatest bitterness and sweetness from many stimuli as well as the greatest oral burn from alcohol and capsaicin. Women are more likely than men to be supertasters. Otitis media and head trauma can alter taste and thus PROP classifications, complicating studies on PROP genetics. Some subjects with a history of otitis media show taste reductions, but others show enhanced tastes and appear to have more taste buds per fungiform papilla. Subjects with head trauma show reduced tastes on some oral loci, but there is evidence that severe reductions on the front of the tongue ameliorate reductions at the circumvallate papillae on the back of the tongue by a release of inhibition mechanism. PMID:8622833

Bartoshuk, L M; Duffy, V B; Reed, D; Williams, A

1996-01-01

149

11q21 rearrangement is a frequent and highly specific genetic alteration in mucoepidermoid carcinoma.  

PubMed

Mucoepidermoid carcinoma (MEC) is the most common malignant salivary gland tumor. Translocation t(11;19)(q21;p13) involving the MECT1 and MAML2 genes has been suggested as a diagnostic marker in these tumors. To determine the specificity of 11q21 locus rearrangements for MEC, fluorescence in situ hybridization analysis with specific MEC-I Dual Color Break Apart Probe was performed on a tissue microarray containing samples from almost 1200 salivary gland adenomas and carcinomas. Rearrangements of 11q21 were observed in 40% of 217 MECs. The frequency of rearrangements decreased with tumor grade and was found in 53% of G1, 43% of G2, and 31% of G3 tumors (P=0.015). There were no 11q21 rearrangements found in other salivary gland carcinomas including 142 adenoid cystic carcinomas, 104 acinic cell adenocarcinomas, 76 adenocarcinoma not otherwise specified, 38 epithelial-myoepithelial carcinomas, 15 polymorphous low-grade adenocarcinomas, 18 basal cell adenocarcinomas, 19 myoepithelial carcinomas, 12 papillary cystadenocarcinomas, 6 salivary duct carcinomas, and 10 oncocytic carcinomas. Furthermore, all analyzed salivary gland adenomas, including 39 cases of Warthin tumor and control samples, either from the salivary gland or from other organs were negative for 11q21 rearrangements. It is concluded that MECT1-MAML2 gene fusion is a highly specific genetic alteration in MEC with predominance in low-grade and intermediate-grade tumors. PMID:22847156

Clauditz, Till Sebastian; Gontarewicz, Artur; Wang, Chia-Jung; Münscher, Adrian; Laban, Simon; Tsourlakis, Maria Christina; Knecht, Rainald; Sauter, Guido; Wilczak, Waldemar

2012-09-01

150

Neutral genetic drift can alter promiscuous protein functions, potentially aiding functional evolution  

PubMed Central

Background Many of the mutations accumulated by naturally evolving proteins are neutral in the sense that they do not significantly alter a protein's ability to perform its primary biological function. However, new protein functions evolve when selection begins to favor other, "promiscuous" functions that are incidental to a protein's original biological role. If mutations that are neutral with respect to a protein's primary biological function cause substantial changes in promiscuous functions, these mutations could enable future functional evolution. Results Here we investigate this possibility experimentally by examining how cytochrome P450 enzymes that have evolved neutrally with respect to activity on a single substrate have changed in their abilities to catalyze reactions on five other substrates. We find that the enzymes have sometimes changed as much as four-fold in the promiscuous activities. The changes in promiscuous activities tend to increase with the number of mutations, and can be largely rationalized in terms of the chemical structures of the substrates. The activities on chemically similar substrates tend to change in a coordinated fashion, potentially providing a route for systematically predicting the change in one activity based on the measurement of several others. Conclusion Our work suggests that initially neutral genetic drift can lead to substantial changes in protein functions that are not currently under selection, in effect poising the proteins to more readily undergo functional evolution should selection favor new functions in the future. Reviewers This article was reviewed by Martijn Huynen, Fyodor Kondrashov, and Dan Tawfik (nominated by Christoph Adami). PMID:17598905

Bloom, Jesse D; Romero, Philip A; Lu, Zhongyi; Arnold, Frances H

2007-01-01

151

Altered Expression of SPINDLY Affects Gibberellin Response and Plant Development1  

Microsoft Academic Search

Gibberellins (GAs) are plant hormones with diverse roles in plant growth and development. SPINDLY (SPY) is one of several genes identified in Arabidopsis that are involved in GA response and it is thought to encode an O-GlcNAc transferase. Genetic analysis suggests that SPY negatively regulates GA response. To test the hypothesis that SPY acts specifically as a negatively acting component

Stephen M. Swain; Tong-seung Tseng; Neil E. Olszewski

2001-01-01

152

Dioecy, more than monoecy, affects plant spatial genetic structure: the case study of Ficus  

PubMed Central

In this analysis, we attempt to understand how monoecy and dioecy drive spatial genetic structure (SGS) in plant populations. For this purpose, plants of the genus Ficus were used as a comparative model due to their particular characteristics, including high species diversity, variation in life histories, and sexual systems. One of the main issues we assessed is whether dioecious fig tree populations are more spatially genetically structured than monoecious populations. Using the Sp statistic, which allows for quantitative comparisons among different studies, we compared the extent of SGS between monoecious and dioecious Ficus species. To broaden our conclusions we used published data on an additional 27 monoecious and dioecious plant species. Furthermore, genetic diversity analyses were performed for two monoecious Ficus species using 12 microsatellite markers in order to strengthen our conclusions about SGS. Our results show that dioecy, more than monoecy, significantly contributes to SGS in plant populations. On average, the estimate of Sp was six times higher for dioecious Ficus species than monoecious Ficus species and it was two times higher in dioecious than monoecious plant species. Considering these results, we emphasize that the long-distance pollen dispersal mechanism in monoecious Ficus species seems to be the dominant factor in determining weak spatial genetic structure, high levels of genetic diversity, and lack of inbreeding. Although Ficus constitute a model species to study SGS, a more general comparison encompassing a wider range of plants is required in order to better understand how sexual systems affect genetic structure. PMID:24223285

Nazareno, Alison G; Alzate-Marin, Ana L; Pereira, Rodrigo Augusto S

2013-01-01

153

Ex situ cultivation affects genetic structure and diversity in arable plants.  

PubMed

Worldwide, botanical gardens cultivate around 80,000 taxa, corresponding to approximately one-quarter of all vascular plants. Most cultivated taxa are, however, held in a small number of collections, and mostly only in small populations. Lack of genetic exchange and stochastic processes in small populations make them susceptible to detrimental genetic effects, which should be most severe in annual species, as sowing cycles are often short. In order to assess whether ex situ cultivation affects genetic diversity of annuals, five annual arable species with similar breeding systems were assessed with 42 in situ populations being compared to 20 ex situ populations using a random amplified polymorphic DNA (RAPD) analysis approach. Population sizes tended to be lower under ex situ cultivation and levels of genetic diversity also tended to be lower in four of the five species, with differences being significant in only two. Ex situ populations showed incomplete representation of alleles found in the wild. The duration of cultivation did not indicate any effect on genetic diversity. This implies that cultivation strategies resulted in different genetic structures in the garden populations. Although not unequivocally pronounced, differences nonetheless imply that conservation strategies in the involved gardens may need improvement. One option is cold storage of seeds, a practice that is not currently followed in the studied ex situ collections. This may reflect that the respective gardens focus on displaying living plant populations. PMID:22882447

Brütting, C; Hensen, I; Wesche, K

2013-05-01

154

Defects in Tendon, Ligament, and Enthesis in Response to Genetic Alterations in Key Proteoglycans and Glycoproteins: A Review  

PubMed Central

This review summarizes the genetic alterations and knockdown approaches published in the literature to assess the role of key proteoglycans and glycoproteins in the structural development, function, and repair of tendon, ligament, and enthesis. The information was collected from (i) genetically altered mice, (ii) in vitro knockdown studies, (iii) genetic variants predisposition to injury, and (iv) human genetic diseases. The genes reviewed are for small leucine-rich proteoglycans (lumican, fibromodulin, biglycan, decorin, and asporin); dermatan sulfate epimerase (Dse) that alters structure of glycosaminoglycan and hence the function of small leucine-rich proteoglycans by converting glucuronic to iduronic acid; matricellular proteins (thrombospondin 2, secreted phosphoprotein 1 (Spp1), secreted protein acidic and rich in cysteine (Sparc), periostin, and tenascin X) including human tenascin C variants; and others, such as tenomodulin, leukocyte cell derived chemotaxin 1 (chondromodulin-I, ChM-I), CD44 antigen (Cd44), lubricin (Prg4), and aggrecan degrading gene, a disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin type 1 motif, 5 (Adamts5). Understanding these genes represents drug targets for disrupting pathological mechanisms that lead to tendinopathy, ligamentopathy, enthesopathy, enthesitis and tendon/ligament injury, that is, osteoarthritis and ankylosing spondylitis. PMID:24324885

Juneja, Subhash C.

2013-01-01

155

Human Cytomegalovirus Infection Alters the Expression of Cellular MicroRNA Species That Affect Its Replication  

Microsoft Academic Search

The human genome encodes over 500 microRNAs (miRNAs), small RNAs (19 to 26 nucleotides (nt)) that regulate the expressions of diverse cellular genes. Many cellular processes are altered through a variety of mechanisms by human cytomegalovirus (HCMV) infection. We asked whether HCMV infection leads to changes in the expression of cellular miRNAs and whether HCMV-regulated miRNAs are important for HCMV

Fu-Zhang Wang; Frank Weber; Carlo Croce; Chang-Gong Liu; Xudong Liao; Philip E. Pellett

2008-01-01

156

Alteration of a p53 Gene Status Affects Outcome of Patients with Recurrent Ovarian Cancer  

Microsoft Academic Search

The aim of this longitudinal study was to examine whether and how the p53 gene is altered in patients with recurrent ovarian cancer and to determine the significance of p53 mutation in recurrent tumors. The primary and recurrent tumors were examined in 15 patients who had recurrent epithelial ovarian cancer, and whose primary tumor contained a wild-type p53 gene. The

Takashi Irie; Junzo Kigawa; Yukihisa Minagawa; Tetsuro Oishi; Masakuni Takahashi; Muneaki Shimada; Shunji Kamazawa; Shinya Sato; Naoki Terakawa

2000-01-01

157

Experimental alteration of DNA methylation affects the phenotypic plasticity of ecologically relevant traits in Arabidopsis thaliana  

Microsoft Academic Search

Heritable phenotypic variation in plants can be caused not only by underlying genetic differences, but also by variation in\\u000a epigenetic modifications such as DNA methylation. However, we still know very little about how relevant such epigenetic variation\\u000a is to the ecology and evolution of natural populations. We conducted a greenhouse experiment in which we treated a set of\\u000a natural genotypes

Oliver Bossdorf; Davide Arcuri; Christina L. Richards; Massimo Pigliucci

2010-01-01

158

Genetic polymorphisms affect efficacy and adverse drug reactions of DMARDs in rheumatoid arthritis.  

PubMed

Disease-modifying antirheumatic drugs (DMARDs) and biological agents are critical in preventing the severe complications of rheumatoid arthritis (RA). However, the outcome of treatment with these drugs in RA patients is quite variable and unpredictable. Drug-metabolizing enzymes (dihydrofolate reductase, cytochrome P450enzymes, N-acetyltransferases, etc.), drug transporters (ATP-binding cassette transporters), and drug targets (tumor necrosis factor-? receptors) are coded for by variant alleles. These gene polymorphisms may influence the pharmacokinetics, pharmacodynamics, and side effects of medicines. The cause for differences in efficacy and adverse drug reactions may be genetic variation in drug metabolism among individuals. Polymorphisms in drug transporter genes may change the distribution and excretion of medicines, and the sensitivity of the targets to drugs is strongly influenced by genetic variations. In this article, we review the genetic polymorphisms that affect the efficacy of DMARDs or the occurrence of adverse drug reactions associated with DMARDs in RA. PMID:25144752

Zhang, Ling Ling; Yang, Sen; Wei, Wei; Zhang, Xue Jun

2014-11-01

159

Genetic and pharmacological manipulations that alter metabolism suppress seizure-like activity in Drosophila.  

PubMed

There is increasing evidence that alterations in metabolism can affect seizure susceptibility in a wide range of organisms. In order to investigate the link between metabolism and seizures, we took advantage of a group of Drosophila mutants, the Bang-sensitive (BS) paralytics, which are 3-10 times more susceptible to seizure-like activity (SLA) than wild type flies following a variety of stimuli including mechanical shock. To alter metabolism, we introduced the atsugari (atu) mutation into three of the BS mutants, easily shocked (eas), bang senseless (bss), and technical knockout (tko). The atu mutants, which exhibit reduced expression of the Drosophila ortholog of dystroglycan gene, have previously been shown to have a higher metabolic rate than wild type flies. Following mechanical shock, all three BS;atu double mutants displayed a reduction in SLA and the eas;atu and tko;atu double mutants recovered from the shock quicker than the respective single mutant BS flies. In addition, the eas;atu and tko;atu flies displayed higher levels of metabolism as compared to the single mutant BS flies. To further study the correlation between metabolism and seizure susceptibility, the three BS strains were fed a sulfonylurea drug (tolbutamide) known to both increase heamolymph glucose concentrations and stimulate lipid metabolism in flies. Following mechanical shock, the eas and tko mutants fed tolbutamide displayed less SLA and recovered quicker than unfed flies. While the bss mutants fed tolbutamide did not display a reduction in SLA, they did recover quicker than unfed controls. These data indicate that the upregulation of metabolism can have a protective effect against seizure susceptibility, a result that suggests new avenues for possible drug development. PMID:23247062

Stone, Bryan; Evans, Leah; Coleman, John; Kuebler, Daniel

2013-02-16

160

Factors affecting Agrobacterium tumefaciens -mediated genetic transformation of Lycium barbarum L  

Microsoft Academic Search

Summary  Using the system for genetic transformation and transgenic plant regeneration via somatic embryogenesis (SE) of Lycium barbarum established in this laboratory, this study reports the optimization of the factors affecting the efficiency of transformation,\\u000a including pre-culture period, leaf explant source, use of acetosyringone, strains and density of Agrobacterium, and temperature of co-cultivation. The optimized transformation protocol for L. barbarum included

Zhong Hu; Yi-Rui Wu; Wei Li; Huan-Huan Gao

2006-01-01

161

Alterations in affective processing of attack images following September 11, 2001.  

PubMed

The events of September 11, 2001 created unprecedented uncertainty about safety in the United States and created an aftermath with significant psychological impact across the world. This study examined emotional information encoding in 31 healthy individuals whose stress response symptoms ranged from none to a moderate level shortly after the attacks as assessed by the Impact of Event Scale-Revised. Participants viewed attack-related, negative (but attack-irrelevant), and neutral images while their event-related brain potentials (ERPs) were recorded. Attack images elicited enhanced P300 relative to negative and neutral images, and emotional images prompted larger slow waves than neutral images did. Total symptoms were correlated with altered N2, P300, and slow wave responses during valence processing. Specifically, hyperarousal and intrusion symptoms were associated with diminished stimulus discrimination between neutral and unpleasant images; avoidance symptoms were associated with hypervigilance, as suggested by reduced P300 difference between attack and other images and reduced appraisal of attack images as indicated by attenuated slow wave. The findings in this minimally symptomatic sample are compatible with the alterations in cognition in the posttraumatic stress disorder (PTSD) literature and are consistent with a dimensional model of PTSD. PMID:21882249

Tso, Ivy F; Chiu, Pearl H; King-Casas, Brooks R; Deldin, Patricia J

2011-10-01

162

Examination of Genetic Alterations in Preneoplastic and Neoplastic Lesions of the Lung From Uranium Miners. Final Technical Report  

SciTech Connect

Lung cancer is one of the leading causes of death in the United States and in Western Europe. The incidence of lung cancer in developing countries is rising as their cigarette smoking habits increase. The objectives of this proposed research are to analyze genetic alterations associated with the development and progression on non-small cell lung carcinoma (MSCLC). Endpoints that may be realized from this proposed research are: (1) detection of early genetic and/or cellular alterations which ultimately could lead to diagnostic modalities for the early detection of lung cancer; and (2) detection of novel tumor suppressor genes on chromosome 9p. This proposal will analyze both tumor specimens and sputum samples.

Anderson, Marshall

2000-07-12

163

Early Experiences Can Alter Gene Expression and Affect Long-Term Development. Working Paper #10  

ERIC Educational Resources Information Center

New scientific research shows that environmental influences can actually affect whether and how genes are expressed. Thus, the old ideas that genes are "set in stone" or that they alone determine development have been disproven. In fact, scientists have discovered that early experiences can determine how genes are turned on and off and even…

National Scientific Council on the Developing Child, 2010

2010-01-01

164

Handing the pen to the patient: Reflective writing for children and families affected by genetic conditions.  

PubMed

Genetic diagnoses impact the Quality of Life (QoL) of patients and their families. While some patients and families report a positive impact on QoL, others are affected negatively by a genetic diagnosis. No matter the impact, it is clear that social support is needed for this population. Genetic healthcare providers should be aware of the need for psychosocial support and be equipped to provide or direct patients and families to the appropriate resources. Reflective writing offers a unique opportunity for families and health care providers to engage in self-reflection and expression, activities which have the potential to enhance QoL in a positive manner. The therapeutic potential of writing has been studied in many populations, from caregivers of elderly individuals with dementia, to cancer survivors, to survivors of traumatic experiences. Some of these interventions have shown promise for improving participants' QoL. However, reflective writing has never been studied in patients and families affected by genetic conditions. We propose that reflective writing therapy is a feasible, reproducible, and enjoyable approach to providing psychosocial support for our patients. Get it Write is a reflective writing workshop pilot project for those who have a personal or family history of a genetic diagnosis. Our hypothesis is that reflective writing will help engender acceptance and alleviate feelings of isolation. Get it Write does not focus on the stressful factors in the participants' lives, rather it serves to facilitate interactions with peers facing the same struggles, and with medical students in a non-medical context. © 2014 Wiley Periodicals, Inc. PMID:25256956

Murali, Chaya; Fernbach, Susan D; Potocki, Lorraine

2014-12-01

165

Relationships between protein and mineral during enamel development in normal and genetically altered mice  

PubMed Central

The purpose of this study was to quantify and compare the amounts of volatiles (mostly protein) and mineral present in developing incisor enamel in normal mice and in those genetically engineered for absence of intact enamelin, ameloblastin, matrix metalloproteinase 20 (MMP20) or kallikrein-related peptidase 4 (KLK4). Data indicated that all mice showed peaks in the gross weight of volatiles and a similar weight of mineral at locations on incisors normally associated with early maturation. Thereafter, the content of volatiles on normal incisors declined rapidly by as much as 62%, but not by 100%, over 2 mm, accompanied by increases of ~threefold in mineral weights. Enamelin heterozygous mice (lower incisors) showed a decrease in volatile content across the maturation stage, yet mineral failed to increase significantly. Mmp20 null mice showed no significant loss of volatiles from maturing enamel, yet the amount of mineral increased. Klk4 null mice showed normal mineral acquisition up to early maturation, but the input of new volatiles in mid to late maturation caused the final mineralization to slow below normal levels. These results suggest that it is not only the amount of protein but also the nature or type of protein or fragments present in the local crystallite environment that affects their volumetric expansion as they mature. PMID:22243238

Smith, Charles E.; Hu, Yuanyuan; Richardson, Amelia S.; Bartlett, John D.; Hu, Jan C-C.; Simmer, James P.

2012-01-01

166

Genetic modification of iron metabolism in mice affects the gut microbiota.  

PubMed

The composition of the gut microbiota is affected by environmental factors as well as host genetics. Iron is one of the important elements essential for bacterial growth, thus we hypothesized that changes in host iron homeostasis, may affect the luminal iron content of the gut and thereby the composition of intestinal bacteria. The iron regulatory protein 2 (Irp2) and one of the genes mutated in hereditary hemochromatosis Hfe , are both proteins involved in the regulation of systemic iron homeostasis. To test our hypothesis, fecal metal content and a selected spectrum of the fecal microbiota were analyzed from Hfe-/-, Irp2-/- and their wild type control mice. Elevated levels of iron as well as other minerals in feces of Irp2-/- mice compared to wild type and Hfe-/- mice were observed. Interestingly significant variation in the general fecal-bacterial population-patterns was observed between Irp2-/- and Hfe-/- mice. Furthermore the relative abundance of five species, mainly lactic acid bacteria, was significantly different among the mouse lines. Lactobacillus (L.) murinus and L. intestinalis were highly abundant in Irp2-/- mice, Enterococcus faecium species cluster and a species most similar to Olsenella were highly abundant in Hfe-/- mice and L. johnsonii was highly abundant in the wild type mice. These results suggest that deletion of iron metabolism genes in the mouse host affects the composition of its intestinal bacteria. Further studying the relationship between gut microbiota and genetic mutations affecting systemic iron metabolism in human should lead to clinical implications. PMID:22580926

Buhnik-Rosenblau, Keren; Moshe-Belizowski, Shirly; Danin-Poleg, Yael; Meyron-Holtz, Esther G

2012-10-01

167

Hypothyroidism affects D2 receptor-mediated breathing without altering D2 receptor expression.  

PubMed

Bromocriptine depressed ventilation in air and D2 receptor expression in the nucleus tractus solitaries (NTS) in male hypothyroid hamsters. Here we postulated that in age-matched hypothyroid female hamsters, the pattern of D2 receptor modulation of breathing and D2 receptor expression would differ from those reported in hypothyroid males. In females hypothyroidism did not affect D2 receptor protein levels in the NTS, carotid bodies or striatum. Bromocriptine, but not carmoxirole (a peripheral D2 receptor agonist), increased oxygen consumption and body temperature in awake air-exposed hypothyroid female hamsters and stimulated their ventilation before and following exposure to hypoxia. Carmoxirole depressed frequency of breathing in euthyroid hamsters prior to, during and following hypoxia exposures and stimulated it in the hypothyroid hamsters following hypoxia. Although hypothyroidism did not affect expression of D2 receptors, it influenced central D2 modulation of breathing in a disparate manner relative to euthyroid hamsters. PMID:24434437

Schlenker, Evelyn H; Del Rio, Rodrigo; Schultz, Harold D

2014-03-01

168

Elevated CO2 Affects Predator-Prey Interactions through Altered Performance  

PubMed Central

Recent research has shown that exposure to elevated carbon dioxide (CO2) affects how fishes perceive their environment, affecting behavioral and cognitive processes leading to increased prey mortality. However, it is unclear if increased mortality results from changes in the dynamics of predator-prey interactions or due to prey increasing activity levels. Here we demonstrate that ocean pCO2 projected to occur by 2100 significantly effects the interactions of a predator-prey pair of common reef fish: the planktivorous damselfish Pomacentrus amboinensis and the piscivorous dottyback Pseudochromis fuscus. Prey exposed to elevated CO2 (880 µatm) or a present-day control (440 µatm) interacted with similarly exposed predators in a cross-factored design. Predators had the lowest capture success when exposed to elevated CO2 and interacting with prey exposed to present-day CO2. Prey exposed to elevated CO2 had reduced escape distances and longer reaction distances compared to prey exposed to present-day CO2 conditions, but this was dependent on whether the prey was paired with a CO2 exposed predator or not. This suggests that the dynamics of predator-prey interactions under future CO2 environments will depend on the extent to which the interacting species are affected and can adapt to the adverse effects of elevated CO2. PMID:23484032

Allan, Bridie J. M.; Domenici, Paolo; McCormick, Mark I.; Watson, Sue-Ann; Munday, Philip L.

2013-01-01

169

Elevated CO2 affects predator-prey interactions through altered performance.  

PubMed

Recent research has shown that exposure to elevated carbon dioxide (CO2) affects how fishes perceive their environment, affecting behavioral and cognitive processes leading to increased prey mortality. However, it is unclear if increased mortality results from changes in the dynamics of predator-prey interactions or due to prey increasing activity levels. Here we demonstrate that ocean pCO2 projected to occur by 2100 significantly effects the interactions of a predator-prey pair of common reef fish: the planktivorous damselfish Pomacentrus amboinensis and the piscivorous dottyback Pseudochromis fuscus. Prey exposed to elevated CO2 (880 µatm) or a present-day control (440 µatm) interacted with similarly exposed predators in a cross-factored design. Predators had the lowest capture success when exposed to elevated CO2 and interacting with prey exposed to present-day CO2. Prey exposed to elevated CO2 had reduced escape distances and longer reaction distances compared to prey exposed to present-day CO2 conditions, but this was dependent on whether the prey was paired with a CO2 exposed predator or not. This suggests that the dynamics of predator-prey interactions under future CO2 environments will depend on the extent to which the interacting species are affected and can adapt to the adverse effects of elevated CO2. PMID:23484032

Allan, Bridie J M; Domenici, Paolo; McCormick, Mark I; Watson, Sue-Ann; Munday, Philip L

2013-01-01

170

Delineation of behavioral phenotypes in genetic syndromes: characteristics of autism spectrum disorder, affect and hyperactivity.  

PubMed

We investigated autism spectrum disorder (ASD) symptomatology, hyperactivity and affect in seven genetic syndromes; Angelman (AS; n = 104), Cri du Chat (CdCS; 58), Cornelia de Lange (CdLS; 101), Fragile X (FXS; 191), Prader-Willi (PWS; 189), Smith-Magenis (SMS; 42) and Lowe (LS; 56) syndromes (age range 4-51). ASD symptomatology was heightened in CdLS and FXS. High levels of impulsivity were seen in SMS, AS, CdCS, FXS and adults with CdLS. Negative affect was prominent in adults with CdLS, while positive affect was prominent in adults with AS and FXS. Heightened levels of overactivity and impulsivity were identified in FXS, AS and SMS while low levels were identified in PWS. These findings confirm and extend previously reported behavioral phenotypes. PMID:21080217

Oliver, Chris; Berg, Katy; Moss, Jo; Arron, Kate; Burbidge, Cheryl

2011-08-01

171

Recent developments in statistical methods for detecting genetic loci affecting phenotypic variability  

PubMed Central

A number of recent works have introduced statistical methods for detecting genetic loci that affect phenotypic variability, which we refer to as variability-controlling quantitative trait loci (vQTL). These are genetic variants whose allelic state predicts how much phenotype values will vary about their expected means. Such loci are of great potential interest in both human and non-human genetic studies, one reason being that a detected vQTL could represent a previously undetected interaction with other genes or environmental factors. The simultaneous publication of these new methods in different journals has in many cases precluded opportunity for comparison. We survey some of these methods, the respective trade-offs they imply, and the connections between them. The methods fall into three main groups: classical non-parametric, fully parametric, and semi-parametric two-stage approximations. Choosing between alternatives involves balancing the need for robustness, flexibility, and speed. For each method, we identify important assumptions and limitations, including those of practical importance, such as their scope for including covariates and random effects. We show in simulations that both parametric methods and their semi-parametric approximations can give elevated false positive rates when they ignore mean-variance relationships intrinsic to the data generation process. We conclude that choice of method depends on the trait distribution, the need to include non-genetic covariates, and the population size and structure, coupled with a critical evaluation of how these fit with the assumptions of the statistical model. PMID:22827487

2012-01-01

172

Alterations in cardiac adrenergic signaling and calcium cycling differentially affect the progression of cardiomyopathy  

PubMed Central

The medical treatment of chronic heart failure has undergone a dramatic transition in the past decade. Short-term approaches for altering hemodynamics have given way to long-term, reparative strategies, including ?-adrenergic receptor (?AR) blockade. This was once viewed as counterintuitive, because acute administration causes myocardial depression. Cardiac myocytes from failing hearts show changes in ?AR signaling and excitation-contraction coupling that can impair cardiac contractility, but the role of these abnormalities in the progression of heart failure is controversial. We therefore tested the impact of different manipulations that increase contractility on the progression of cardiac dysfunction in a mouse model of hypertrophic cardiomyopathy. High-level overexpression of the ?2AR caused rapidly progressive cardiac failure in this model. In contrast, phospholamban ablation prevented systolic dysfunction and exercise intolerance, but not hypertrophy, in hypertrophic cardiomyopathy mice. Cardiac expression of a peptide inhibitor of the ?AR kinase 1 not only prevented systolic dysfunction and exercise intolerance but also decreased cardiac remodeling and hypertrophic gene expression. These three manipulations of cardiac contractility had distinct effects on disease progression, suggesting that selective modulation of particular aspects of ?AR signaling or excitation-contraction coupling can provide therapeutic benefit. PMID:11306600

Freeman, Kalev; Lerman, Imanuel; Kranias, Evangelia G.; Bohlmeyer, Teresa; Bristow, Michael R.; Lefkowitz, Robert J.; Iaccarino, Guido; Koch, Walter J.; Leinwand, Leslie A.

2001-01-01

173

Targeted next-generation sequencing of head and neck squamous cell carcinoma identifies novel genetic alterations in HPV+ and HPV- tumors  

PubMed Central

Background Human papillomavirus positive (HPV+) head and neck squamous cell carcinoma (HNSCC) is an emerging disease, representing a distinct clinical and epidemiological entity. Understanding the genetic basis of this specific subtype of cancer could allow therapeutic targeting of affected pathways for a stratified medicine approach. Methods Twenty HPV+ and 20 HPV- laser-capture microdissected oropharyngeal carcinomas were used for paired-end sequencing of hybrid-captured DNA, targeting 3,230 exons in 182 genes often mutated in cancer. Copy number alteration (CNA) profiling, Sequenom MassArray sequencing and immunohistochemistry were used to further validate findings. Results HPV+ and HPV- oropharyngeal carcinomas cluster into two distinct subgroups. TP53 mutations are detected in 100% of HPV negative cases and abrogation of the G1/S checkpoint by CDKN2A/B deletion and/or CCND1 amplification occurs in the majority of HPV- tumors. Conclusion These findings strongly support a causal role for HPV, acting via p53 and RB pathway inhibition, in the pathogenesis of a subset of oropharyngeal cancers and suggest that studies of CDK inhibitors in HPV- disease may be warranted. Mutation and copy number alteration of PI3 kinase (PI3K) pathway components appears particularly prevalent in HPV+ tumors and assessment of these alterations may aid in the interpretation of current clinical trials of PI3K, AKT, and mTOR inhibitors in HNSCC. PMID:23718828

2013-01-01

174

Plant hybrid zones affect biodiversity: Tools for a genetic-based understanding of community structure  

SciTech Connect

Plant hybrid zones are dynamic centers of ecological and evolutionary processes for plants and their associated communities. Studies in the wild and in gardens with synthetic crosses showed that hybrid eucalypts supports the greatest species richness and abundances of insect and fungal taxa. In an updated review of 152 case studies of taxa associated with diverse hybridizing systems, there were 43 (28%) cases of hybrids being more susceptible than their parent species, 7 (5%) resistant, 35 (23%) additive, 35 (23%) dominant, and 32 (21%) showed no response to hybridization. Thus, most taxa respond to hybrids in ways that result in equal or greater abundance, and hybrids tend to accumulate the taxa of their parent species. These studies suggest that genetic-based plant traits affect the distribution of many species and that the variation in hybrids can be used as tools to examine the genetic components of community structure and biodiversity.

Whitham, T.G.; Martinsen, G.D.; Keim, P. [Northern Arizona Univ., Flagstaff, AZ (United States); Floate, K.D. [Agriculture and Agri-Food Canada, Lethbridge, Alberta (Canada); Dungey, H.S. [Univ. of Tasmania, Hobart, Tasmania (Australia)]|[Queensland Forest Research Inst., Gympie, Queensland (Australia); Potts, B.M. [Univ. of Tasmania, Hobart, Tasmania (Australia)

1999-03-01

175

Proteinuria, not altered albumin metabolism, affects hyperlipidemia in the nephrotic rat.  

PubMed Central

It has been established previously that nephrotic hyperlipidemia is characterized by both an increase in lipid synthesis and a defect in removal of lipoproteins. The relationship between these defects and altered albumin metabolism is uncertain. One hypothesis is that hepatic lipogenesis increases in parallel with albumin synthesis. To test this hypothesis, albumin synthesis was increased in nephrotic rats fed an 8.5% protein diet (LPN) by increasing dietary protein to 40% (HPN). Proteinuria was modulated in half of the rats fed 40% protein by enalapril (HPE). Albumin synthesis was the same in both HPN and HPE, but proteinuria was reduced in HPE compared to HPN, and so were serum cholesterol and triglycerides (TG). To examine the effect of serum albumin on lipid clearance in the absence of proteinuria, plasma clearance of chylomicrons (CM) and VLDL was measured in Nagase analbuminemic rats (NAR) and found to be no different than in normal SD rats. When proteinuria was induced in NAR and in SD rats, a severe and identical defect in both CM and VLDL clearance was acquired in both groups and blood lipid levels were increased to a similar degree in both groups. Neither hyperlipidemia nor defective removal of lipoproteins from the circulation are linked to albumin synthesis or serum albumin concentration but result, at least in part, from proteinuria. Postheparin lipoprotein lipase (LPL) activity was reduced slightly in nephrotic animals compared to nonnephrotic controls, but the most striking finding was a highly significant decrease in postheraprin LPL activity in normal NAR compared to SD rats (P less than 0.001), suggesting that reduced LPL activity is not responsible for reduced clearance of CM and VLDL in nephrotic rats. PMID:2384606

Davies, R W; Staprans, I; Hutchison, F N; Kaysen, G A

1990-01-01

176

Nuclear DNA content affects the productivity of conifer forests by altering hydraulic architecture  

NASA Astrophysics Data System (ADS)

Predictions of future global climate rely on feedbacks between terrestrial vegetation and the global carbon cycle, but the exact mechanisms underlying this relationship are still being discussed. One of the key knowledge gaps lies on the scaling of cellular processes to the ecosystem level. Here we examine whether an under-explored plant trait, inter-specific variation in the bulk amount of DNA in unreplicated somatic cells (2C DNA content), can explain inter-specific variation in the maximum productivity of conifer forests. We expected 2C DNA content to be negatively related to conifer productivity because: 1) it is positively correlated with cell volume (which, in turn, potentially affects structural features such as leaf mass area, a strong predictor of photosynthetic capacity); 2) it is positively correlated with stomatal size (with larger stomata leading to lower overall stomatal conductance and, by extension, lower CO2 uptake); and 3) larger genome sizes may reduce P availability in RNA (which has been hypothesized to slow growth). We present the results of regression and independent contrasts in different monospecific forests encompassing a 52º latitudinal gradient, each being dominated by 1 of 35 different conifer species. Contrary to expectations, we observed a positive correlation between genome size and maximum Gross Primary Productivity (R2 = 0.47) and also between genome size maximum tree height (R2 = 0.27). This correlation was apparently driven by the effects of genome size on stem hydraulics, since 2C DNA was positively correlated with wood density (R2 = 0.40) and also with resistance to cavitation (P50, R2 = 0.28). That is, increased genome sizes have a positive effect on the productivity of conifer forests by affecting the vascular tissues to increase their capacity for water transport. Our results shed a new light on the evolution of the vascular system of conifer forests and how they affect ecosystem productivity, and indicate the potential to further explore the trait of genome size for understanding global patterns of forest productivity.

Alday, Josu; Resco de Dios, Víctor

2014-05-01

177

Delineation of Behavioral Phenotypes in Genetic Syndromes: Characteristics of Autism Spectrum Disorder, Affect and Hyperactivity  

Microsoft Academic Search

We investigated autism spectrum disorder (ASD) symptomatology, hyperactivity and affect in seven genetic syndromes; Angelman\\u000a (AS; n = 104), Cri du Chat (CdCS; 58), Cornelia de Lange (CdLS; 101), Fragile X (FXS; 191), Prader-Willi (PWS; 189), Smith-Magenis\\u000a (SMS; 42) and Lowe (LS; 56) syndromes (age range 4–51). ASD symptomatology was heightened in CdLS and FXS. High levels of\\u000a impulsivity were seen in

Chris Oliver; Katy Berg; Jo Moss; Kate Arron; Cheryl Burbidge

178

Historical and anthropogenic factors affecting the population genetic structure of Ontario's inland lake populations of Walleye (Sander vitreus).  

PubMed

Populations existing in formerly glaciated areas often display composite historical and contemporary patterns of genetic structure. For Canadian freshwater fishes, population genetic structure is largely reflective of dispersal from glacial refugia and isolation within drainage basins across a range of scales. Enhancement of sport fisheries via hatchery stocking programs and other means has the potential to alter signatures of natural evolutionary processes. Using 11 microsatellite loci genotyped from 2182 individuals, we analyzed the genetic structure of 46 inland lake walleye (Sander vitreus) populations spanning five major drainage basins within the province of Ontario, Canada. Population genetic analyses coupled with genotype assignment allowed us to: 1) characterize broad- and fine-scale genetic structure among Ontario walleye populations; and 2) determine if the observed population divergence is primarily due to natural or historical processes, or recent anthropogenic events. The partitioning of genetic variation revealed higher genetic divergence among lakes than among drainage basins or proposed ancestries-indicative of relatively high isolation among lakes, study-wide. Walleye genotypes were clustered into three major groups, likely reflective of Missourian, Mississippian, and Atlantic glacial refugial ancestry. Despite detectable genetic signatures indicative of anthropogenic influences, province-wide spatial genetic structure remains consistent with the hypothesis of dispersal from distinct glacial refugia and subsequent isolation of lakes within primary drainage basins. Our results provide a novel example of minimal impacts from fishery enhancement to the broad-scale genetic structure of inland fish populations. PMID:23125407

Walter, Ryan P; Cena, Christopher J; Morgan, George E; Heath, Daniel D

2012-01-01

179

Intentional social distance regulation alters affective responses towards victims of violence: an FMRI study.  

PubMed

We used functional magnetic resonance imaging (fMRI) to investigate brain processes underlying control of emotional responses towards a person in distress by cognitive social distance modulation. fMRI and peripheral physiological responses (startle response and electrodermal activity) were recorded from 24 women while they watched victim-offender scenes and modulated their social distance to the victim by cognitive reappraisal. We found that emotional responses, including startle eyeblink and amygdala responses, can effectively be modulated by social distance modulation. Furthermore, our data provide evidence that activity in the dorsomedial prefrontal cortex (dmPFC) and the anterior paracingulate cortex (aPCC), two brain regions that have previously been associated with brain processes related to distant and close others, is differentially modulated by intentional social distance modulation: activity in the dmPFC increased with increasing disengagement from the victim and activity in the aPCC increased with increasing engagement with the victim. We suggest that these two regions play opposing roles in cognitive modulation of social distance and affective responses towards persons in distress that enable the adaptive and flexible social behavior observed in humans. PMID:21998031

Leiberg, Susanne; Eippert, Falk; Veit, Ralf; Anders, Silke

2012-10-01

180

THE ESTROGENIC AND ANTIANDROGENIC PESTICIDE METHOXYCHLOR ALTERS THE REPRODUCTIVE TRACT AND BEHAVIOR WITHOUT AFFECTING PITUITARY SIZE OR LH AND PROLACTIN SECRETION IN MALE RATS  

EPA Science Inventory

The estrogenic and antiandrogenic pesticide methoxychlor alters the reproductive tract and behavior without affecting pituitary size or LH and prolactin secretion in male rats. Gray LE Jr, Ostby J, Cooper RL, Kelce WR. Endocrinology Branch, United States Environment...

181

Altered Cerebral Perfusion in Executive, Affective, and Motor Networks During Adolescent Depression  

PubMed Central

Objective While substantial literature has reported regional cerebral blood flow (rCBF) abnormalities in adults with depression, these studies commonly necessitated the injection of radioisotopes into subjects. The recent development of arterial spin labeling (ASL), however, allows for noninvasive measurements of rCBF. Currently, no published ASL studies have examined cerebral perfusion in adolescents with depression. Thus, the aim of the present study was to examine baseline cerebral perfusion in adolescent depression using a newly developed ASL technique: pseudocontinuous arterial spin labeling (PCASL). Method 25 medication-naive adolescents (ages 13–17 years) diagnosed with major depressive disorder (MDD) and 26 well-matched controls underwent functional magnetic resonance imaging. Baseline rCBF was measured via a novel PCASL method that optimizes tagging efficiency. Results Voxel-based whole brain analyses revealed significant frontal, limbic, paralimbic, and cingulate hypoperfusion in the group with depression (p<0.05, corrected). Hyperperfusion was also observed within the subcallosal cingulate, putamen, and fusiform gyrus (p<0.05, corrected). Similarly, region-of-interest analyses revealed amygdalar and insular hypoperfusion in the group with depression, as well as hyperperfusion in the putamen and superior insula (p<0.05, corrected). Conclusions Adolescents with depression and healthy adolescents appear to differ on rCBF in executive, affective, and motor networks. Dysfunction in these regions may contribute to the cognitive, emotional, and psychomotor symptoms commonly present in adolescent depression. These findings point to possible biomarkers for adolescent depression that could inform early interventions and treatments and establishes a methodology for using PCASL to noninvasively measure rCBF in clinical and healthy adolescent populations. PMID:24074474

Ho, Tiffany C.; Wu, Jing; Shin, David D.; Liu, Thomas T.; Tapert, Susan F.; Yang, Guang; Connolly, Colm G.; Frank, Guido K.W.; Max, Jeffrey E.; Wolkowitz, Owen; Eisendrath, Stuart; Hoeft, Fumiko; Banerjee, Dipavo; Hood, Korey; Hendren, Robert L.; Paulus, Martin P.; Simmons, Alan N.; Yang, Tony T.

2013-01-01

182

Cytoplasmic genome substitution in wheat affects the nuclear-cytoplasmic cross-talk leading to transcript and metabolite alterations  

PubMed Central

Background Alloplasmic lines provide a unique tool to study nuclear-cytoplasmic interactions. Three alloplasmic lines, with nuclear genomes from Triticum aestivum and harboring cytoplasm from Aegilops uniaristata, Aegilops tauschii and Hordeum chilense, were investigated by transcript and metabolite profiling to identify the effects of cytoplasmic substitution on nuclear-cytoplasmic signaling mechanisms. Results In combining the wheat nuclear genome with a cytoplasm of H. chilense, 540 genes were significantly altered, whereas 11 and 28 genes were significantly changed in the alloplasmic lines carrying the cytoplasm of Ae. uniaristata or Ae. tauschii, respectively. We identified the RNA maturation-related process as one of the most sensitive to a perturbation of the nuclear-cytoplasmic interaction. Several key components of the ROS chloroplast retrograde signaling, together with the up-regulation of the ROS scavenging system, showed that changes in the chloroplast genome have a direct impact on nuclear-cytoplasmic cross-talk. Remarkably, the H. chilense alloplasmic line down-regulated some genes involved in the determination of cytoplasmic male sterility without expressing the male sterility phenotype. Metabolic profiling showed a comparable response of the central metabolism of the alloplasmic and euplasmic lines to light, while exposing larger metabolite alterations in the H. chilense alloplasmic line as compared with the Aegilops lines, in agreement with the transcriptomic data. Several stress-related metabolites, remarkably raffinose, were altered in content in the H. chilense alloplasmic line when exposed to high light, while amino acids, as well as organic acids were significantly decreased. Alterations in the levels of transcript, related to raffinose, and the photorespiration-related metabolisms were associated with changes in the level of related metabolites. Conclusion The replacement of a wheat cytoplasm with the cytoplasm of a related species affects the nuclear-cytoplasmic cross-talk leading to transcript and metabolite alterations. The extent of these modifications was limited in the alloplasmic lines with Aegilops cytoplasm, and more evident in the alloplasmic line with H. chilense cytoplasm. We consider that, this finding might be linked to the phylogenetic distance of the genomes. PMID:24320731

2013-01-01

183

Baseline determination in social, health, and genetic areas in communities affected by glyphosate aerial spraying on the northeastern Ecuadorian border.  

PubMed

The northeastern Ecuadorian border has undergone aerial spraying with an herbicide mix that contains surfactants and adjuvants, executed by the Colombian Government. The purpose of this study was to diagnose social, health, and genetic aspects of the people affected by glyphosate. For this objective to be achieved, 144 people were interviewed, and 521 medical diagnoses and 182 peripheral blood samples were obtained. Genotyping of GSTP1 Ile105Val, GPX-1 Pro198Leu, and XRCC1 Arg399Gln polymorphisms were analyzed, using PCR-RFLP technique. The assessment of chromosomal aberrations was performed, obtaining 182 karyotypes. Malnutrition in children was 3%. Of the total population, 7.7% had children with malformations, and the percentage of abortions was 12.7%. Concerning genotyping, individuals with GSTP1 Val/Val obtained an odds ratio of 4.88 (p < 0.001), and Ile/Val individuals, together with Val/Val individuals, had an odds ratio of 2.6 (p < 0.05). In addition, GPX-1 Leu/Leu individuals presented an odds ratio (OR) of 8.5 (p < 0.05). Regarding karyotyping, the 182 individuals had normal karyotypes. In conclusion, the study population did not present significant chromosomal and DNA alterations. The most important social impact was fear. We recommend future prospective studies to assess the communities. PMID:21714381

Paz-y-Miño, César; Muñoz, María José; Maldonado, Adolfo; Valladares, Carolina; Cumbal, Nadia; Herrera, Catalina; Robles, Paulo; Sánchez, María Eugenia; López-Cortés, Andrés

2011-01-01

184

Intermediate-Type Vancomycin Resistance (VISA) in Genetically-Distinct Staphylococcus aureus Isolates Is Linked to Specific, Reversible Metabolic Alterations  

PubMed Central

Intermediate (VISA-type) vancomycin resistance in Staphylococcus aureus has been associated with a range of physiologic and genetic alterations. Previous work described the emergence of VISA-type resistance in two clonally-distinct series of isolates. In both series (the first belonging to MRSA clone ST8-USA300, and the second to ST5-USA100), resistance was conferred by a single mutation in yvqF (a negative regulator of the vraSR two-component system associated with vancomycin resistance). In the USA300 series, resistance was reversed by a secondary mutation in vraSR. In this study, we combined systems-level metabolomic profiling with statistical modeling techniques to discover specific, reversible metabolic alterations associated with the VISA phenotype. PMID:24817125

Alexander, Elizabeth L.; Gardete, Susana; Bar, Haim Y.; Wells, Martin T.; Tomasz, Alexander; Rhee, Kyu Y.

2014-01-01

185

Micronucleus test and observation of nuclear alterations in erythrocytes of Nile tilapia exposed to waters affected by refinery effluent.  

PubMed

Micronuclei and nuclear alterations tests were performed on erythrocytes of Oreochromis niloticus (Perciformes, Cichlidae) in order to evaluate the water quality from Paraíba do Sul river, in an area affected by effluents from an oil shale processing plant, located in the city of São José dos Campos, Brazil-SP. Water samples were collected on 2004 May and August (dry season) and on 2004 November and 2005 January (rain season), in three distinct sites, comprising 12 samples. It was possible to detect substances of clastogenic and/or aneugenic potential, as well as cytotoxic substances, chiefly at the point corresponding to the drainage of oil shale plant wastes along the river. The highest incidence of micronuclei and nuclear alterations was detected during May and August, whereas the results obtained in November and January were insignificant. This work shows that the effluent treatment provided by the oil shale plant was not fully efficient to minimize the effect of cytotoxic and mutagenic substances in the test organism surveyed. PMID:16678473

da Silva Souza, Tatiana; Fontanetti, Carmem S

2006-06-16

186

Genetic risk for Parkinson's disease correlates with alterations in neuronal manganese sensitivity between two human subjects  

PubMed Central

Manganese (Mn) is an environmental risk factor for Parkinson’s disease (PD). Recessive inheritance of PARK2 mutations is strongly associated with early onset PD (EOPD). It is widely assumed that the influence of PD environmental risk factors may be enhanced by the presence of PD genetic risk factors in the genetic background of individuals. However, such interactions may be difficult to predict owing to the complexities of genetic and environmental interactions. Here we examine the potential of human induced pluripotent stem cell (iPS)-derived early neural progenitor cells (NPCs) to model differences in Mn neurotoxicity between a control subject (CA) with no known PD genetic risk factors and a subject (SM) with biallelic loss-of-function mutations in PARK2 and family history of PD but no evidence of PD by neurological exam. Human iPS cells were generated from primary dermal fibroblasts of both subjects. We assessed several outcome measures associated with Mn toxicity and PD. No difference in sensitivity to Mn cytotoxicity or mitochondrial fragmentation was observed between SM and CA NPCs. However, we found that Mn exposure was associated with significantly higher reactive oxygen species (ROS) generation in SM compared to CA NPCs despite significantly less intracellular Mn accumulation. Thus, this report offers the first example of human subject-specific differences in PD-relevant environmental health related phenotypes that are consistent with pathogenic interactions between known genetic and environmental risk factors for PD. PMID:23099318

Aboud, Asad A.; Tidball, Andrew M.; Kumar, Kevin K.; Neely, M. Diana; Ess, Kevin C.; Erikson, Keith M.; Bowman, Aaron B.

2012-01-01

187

Potential Vulnerability Markers within the Affective Domain in Subjects at Genetic and Clinical High Risk for Schizophrenia  

Microsoft Academic Search

Background: Relative to ample high-risk studies on neurocognitive function, only a few high-risk studies have examined affective functioning components as possible vulnerability markers. In this study, we comprehensively assessed baseline affective functioning in subjects at clinical high risk (CHR) and genetic high risk (GHR) for schizophrenia, and healthy controls (HC), and compared the results to elucidate possible vulnerability markers in

Seung Jae Lee; So Young Yoo; Do-Hyung Kang; Kyung Jin Lee; Tae Hyun Ha; Whee Wee; Ae-Ra Lee; Nam Sick Kim; Jun Soo Kwon

2008-01-01

188

Spatial memory alterations in children with epilepsy of genetic origin or unknown cause.  

PubMed

Genetic generalised epilepsy or epilepsy of unknown cause can remit before adolescence. In many children, the disease does not interfere with their academic achievement. Although there are neuropsychological studies characterising the cognitive profile, there are no studies in this population focused on spatial orientation abilities. In this study, we compared children with genetic generalised epilepsy or epilepsy of unknown cause with a control group using a virtual spatial learning task. Children with epilepsy showed worse performance on the spatial orientation task, although their visuo-spatial memory, attention, and working memory were normal. These results confirm that genetic generalised epilepsy or epilepsy of unknown cause is associated with more cognitive deficits. Virtual reality technologies can complement clinical assessment. PMID:24913814

Cimadevilla, José Manuel; Lizana, Julio Ramos; Roldán, Maria Dolores; Cánovas, Rosa; Rodríguez, Eva

2014-06-01

189

Specific Serotonergic Denervation Affects tau Pathology and Cognition without Altering Senile Plaques Deposition in APP/PS1 Mice  

PubMed Central

Senile plaques and neurofibrillary tangles are major neuropathological features of Alzheimer's Disease (AD), however neuronal loss is the alteration that best correlates with cognitive impairment in AD patients. Underlying neurotoxic mechanisms are not completely understood although specific neurotransmission deficiencies have been observed in AD patients and, in animal models, cholinergic and noradrenergic denervation may increase amyloid-beta deposition and tau phosphorylation in denervated areas. On the other hand brainstem neurodegeneration has been suggested as an initial event in AD, and serotonergic dysfunction, as well as reductions in raphe neurones density, have been reported in AD patients. In this study we addressed whether specific serotonergic denervation, by administering 5,7-dihydroxitriptamine (5,7-DHT) in the raphe nuclei, could also worsen central pathology in APPswe/PS1dE9 mice or interfere with learning and memory activities. In our hands specific serotonergic denervation increased tau phosphorylation in denervated cortex, without affecting amyloid-beta (A?) pathology. We also observed that APPswe/PS1dE9 mice lesioned with 5,7-DHT were impaired in the Morris water maze test, supporting a synergistic effect of the serotonergic denervation and the presence of APP/PS1 transgenes on learning and memory impairment. Altogether our data suggest that serotonergic denervation may interfere with some pathological aspects observed in AD, including tau phosphorylation or cognitive impairment, without affecting A? pathology, supporting a differential role of specific neurotransmitter systems in AD. PMID:24278223

Ramos-Rodriguez, Juan Jose; Molina-Gil, Sara; Rey-Brea, Raquel; Berrocoso, Esther; Garcia-Alloza, Monica

2013-01-01

190

Alteration of POLDIP3 Splicing Associated with Loss of Function of TDP-43 in Tissues Affected with ALS  

PubMed Central

Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease caused by selective loss of motor neurons. In the ALS motor neurons, TAR DNA-binding protein of 43 kDa (TDP-43) is dislocated from the nucleus to cytoplasm and forms inclusions, suggesting that loss of a nuclear function of TDP-43 may underlie the pathogenesis of ALS. TDP-43 functions in RNA metabolism include regulation of transcription, mRNA stability, and alternative splicing of pre-mRNA. However, a function of TDP-43 in tissue affected with ALS has not been elucidated. We sought to identify the molecular indicators reflecting on a TDP-43 function. Using exon array analysis, we observed a remarkable alteration of splicing in the polymerase delta interacting protein 3 (POLDIP3) as a result of the depletion of TDP-43 expression in two types of cultured cells. In the cells treated with TDP-43 siRNA, wild-type POLDIP3 (variant-1) decreased and POLDIP3 lacking exon 3 (variant-2) increased. The RNA binding ability of TDP-43 was necessary for inclusion of POLDIP3 exon 3. Moreover, we found an increment of POLDIP3 variant-2 mRNA in motor cortex, spinal cord and spinal motor neurons collected by laser capture microdissection with ALS. Our results suggest a loss of TDP-43 function in tissues affected with ALS, supporting the hypothesis that a loss of function of TDP-43 underlies the pathogenesis of ALS. PMID:22900096

Shiga, Atsushi; Ishihara, Tomohiko; Miyashita, Akinori; Kuwabara, Misaki; Kato, Taisuke; Watanabe, Norihiro; Yamahira, Akie; Kondo, Chigusa; Yokoseki, Akio; Takahashi, Masuhiro; Kuwano, Ryozo; Kakita, Akiyoshi; Nishizawa, Masatoyo; Takahashi, Hitoshi; Onodera, Osamu

2012-01-01

191

Sense from nonsense: How the genetic information of chloroplastsis altered by RNA editing  

Microsoft Academic Search

Plastid transcripts can be subject to an RNA processing mechanism changing the identity of individual nucleotides and thus altering the information content of the mRNA. This processing step was termed RNA editing and adds a novel mechanism to the multitude of RNA maturation events required before mRNAs can serve as faithful templates in plastid protein biosynthesis. RNA editing in chloroplasts

Ralph Bock

2000-01-01

192

Genetic Ablation of Sfrp4 in Mice Does Not Affect Serum Phosphate Homeostasis  

PubMed Central

Serum phosphate levels are regulated by PTH and the fibroblast growth factor 23 (Fgf23)/Klotho endocrine system, which both affect expression of Npt2a and thus the apical reabsorption of phosphate in the proximal renal tubules. In addition to Fgf23, secreted frizzled-related protein 4 (Sfrp4) has recently been implicated as an additional phosphate regulator in vivo and in vitro. Here we demonstrate that ablation of the Sfrp4 gene in mice does not lead to altered serum or urine phosphate levels. Furthermore, Sfrp4 is unable to compensate for the absence of Fgf23 or Klotho because double knockouts have a similar biochemical profile and phenotype as animals with ablation of Fgf23 or Klotho alone. Taken together, our data suggest that Sfrp4 does not contribute to the long-term regulation of serum phosphate levels in mice. PMID:21427221

Koren, Shany; Yuan, Quan; Baron, Roland

2011-01-01

193

Alterations of uromodulin biology: A common denominator of the genetically heterogeneous  

E-print Network

and medullary cystic kidney diseases type 1 and type 2. In some families the disease is associated in kidney tissues. We proved genetic heterogeneity of the disease. Uromodulin mutations were identified with the observations in the patient's kidney tissue. We found a reduction in urinary uromodulin excretion as a common

Majewski, Jacek

194

Altered fMRI activation during mental rotation in those at genetic risk for Alzheimer disease  

Microsoft Academic Search

Objective: This study was undertaken to examine differential functional MRI patterns in those at genetic risk for Alzheimer disease (AD), specifically investigating parietal lobe activation, a brain region with changes noted in the early stages of AD. Methods: This study uses functional MRI to investigate blood oxygenation level dependent changes in the parietal lobe in a high-risk sample of 18

Michael A. Yassa; G. Verduzco; Catherine Cristinzio; Susan Spear Bassett

2008-01-01

195

Alterations in Plasmodium falciparum genetic structure two years after increased malaria control efforts in western Kenya.  

PubMed

The impact of malaria intervention measures (insecticide-treated net use and artemisinin combination therapy) on malaria genetics was investigated at two sites in western Kenya: an endemic lowland and an epidemic highland. The genetic structure of the parasite population was assessed by using microsatellites, and the prevalence of drug-resistant mutations was examined by using the polymerase chain reaction-restriction fragment length polymorphism method. Two years after intervention, genetic diversity remained high in both populations. A significant decrease in the prevalence of quintuple mutations conferring resistance to sulfadoxine-pyrimethamine was detected in both populations, but the mutation prevalence at codon 1246 of the Plasmodium falciparum multidrug resistance 1 gene had increased in the highland population. The decrease in sulfadoxine-pyrimethamine-resistant mutants is encouraging, but the increase in P. falciparum multidrug resistance 1 gene mutations is worrisome because these mutations are linked to resistance to other antimalarial drugs. In addition, the high level of genetic diversity observed after intervention suggests transmission is still high in each population. PMID:23166196

Vardo-Zalik, Anne M; Zhou, Guofa; Zhong, Daibin; Afrane, Yaw A; Githeko, Andrew K; Yan, Guiyun

2013-01-01

196

Alteration of Soil Rhizosphere Communities following Genetic Transformation of White Spruce  

Microsoft Academic Search

The application of plant genetic manipulations to agriculture and forestry with the aim of alleviating insect damage through Bacillus thuringiensis transformation could lead to a significant reduction in the release of pesticides into the environment. However, many groups have come forward with very valid and important questions related to potentially adverse effects, and it is crucial to assess and better

Philippe M. LeBlanc; Richard C. Hamelin; Martin Filion

2007-01-01

197

Genetic variations alter physiological responses following heat stress in 2 strains of laying hens.  

PubMed

Heat stress (HS) is a major problem experienced by the poultry industry during high-temperature conditions. The ability to manage the detrimental effects of HS can be attributed to multiple factors, including genetic background of flocks. The objective of the present study was to determine the genetic variation in HS effects on laying hens' physiological homeostasis. Ninety 28-wk-old White Leghorn hens of 2 strains were used: a commercial line of individually selected hens for high egg production, DeKalb XL (DXL), and a line of group-selected hens for high productivity and survivability, named kind gentle bird (KGB). Hens were randomly paired by strain and assigned to hot or control treatment for 14 d. Physical and physiological parameters were analyzed at d 8 and 14 posttreatment. Compared with controls, HS increased hen's core body temperature (P < 0.05) and decreased BW (P < 0.05) at d 8 and 14. Heat shock protein 70 concentrations in the liver were greater in hens exposed to HS (P < 0.05). Compared with DXL hens, KGB hens had higher heat shock protein 70 concentrations (P < 0.05). The hens' liver weight decreased following HS, with less of a response in the KGB line (P < 0.05). The data indicate HS has detrimental effects on the physiology of laying hens due to genetic variations. These data provide evidence that is valuable for determining genetic interventions for laying hens under HS. PMID:22700497

Felver-Gant, J N; Mack, L A; Dennis, R L; Eicher, S D; Cheng, H W

2012-07-01

198

Embryonic PCB Exposure Alters Phenotypic, Genetic, and Epigenetic Profiles in Turtle Sex Determination, a Biomarker of Environmental Contamination.  

PubMed

In species with temperature-dependent sex determination, embryonic gonadal differentiation can be modified by exposure to exogenous chemicals such as environmental contaminants. Although phenotypic outcomes of such events are well documented, the underlying molecular mechanisms are rarely described. Here we examine the genetic and epigenetic effect of the embryonic exposure to polychlorinated biphenyls (PCBs) on gonad differentiation in red-eared slider turtles (Trachemys scripta). Some PCB congeners are without effect whereas others synergize to alter sex determination in this species. Application of two potent PCB congeners alter the physiological processes of gonad development normally dictated by the male-producing temperature (MPT), resulting sex ratios significantly biased toward female hatchlings. Of these PCB-induced females, oviduct formation is prominently distorted regardless of ovary development. Further, gonadal expression of ovarian markers, aromatase, FoxL2, and Rspo1, is activated whereas testicular markers, Dmrt1 and Sox9, are suppressed compared with typical expression patterns observed at MPT. DNA methylation profiles of the aromatase promoter in PCB-treated gonads do not follow the typical methylation pattern observed in embryos incubating at female-producing temperature. Rather, the MPT-typical methylation profiles is retained despite the induced ovarian formation. Overall, our studies demonstrate that PCB exposure alters the transcriptional profiles of genes responsible for gonadal differentiation but does not re-establish the epigenetic marks of the aromatase promoter normally set by incubation temperatures in embryonic gonads. PMID:25105783

Matsumoto, Yuiko; Hannigan, Brette; Crews, David

2014-11-01

199

Partial genetic deletion of neuregulin 1 and adolescent stress interact to alter NMDA receptor binding in the medial prefrontal cortex  

PubMed Central

Schizophrenia is thought to arise due to a complex interaction between genetic and environmental factors during early neurodevelopment. We have recently shown that partial genetic deletion of the schizophrenia susceptibility gene neuregulin 1 (Nrg1) and adolescent stress interact to disturb sensorimotor gating, neuroendocrine activity and dendritic morphology in mice. Both stress and Nrg1 may have converging effects upon N-methyl-D-aspartate receptors (NMDARs) which are implicated in the pathogenesis of schizophrenia, sensorimotor gating and dendritic spine plasticity. Using an identical repeated restraint stress paradigm to our previous study, here we determined NMDAR binding across various brain regions in adolescent Nrg1 heterozygous (HET) and wild-type (WT) mice using [3H] MK-801 autoradiography. Repeated restraint stress increased NMDAR binding in the ventral part of the lateral septum (LSV) and the dentate gyrus (DG) of the hippocampus irrespective of genotype. Partial genetic deletion of Nrg1 interacted with adolescent stress to promote an altered pattern of NMDAR binding in the infralimbic (IL) subregion of the medial prefrontal cortex. In the IL, whilst stress tended to increase NMDAR binding in WT mice, it decreased binding in Nrg1 HET mice. However, in the DG, stress selectively increased the expression of NMDAR binding in Nrg1 HET mice but not WT mice. These results demonstrate a Nrg1-stress interaction during adolescence on NMDAR binding in the medial prefrontal cortex. PMID:25324742

Chohan, Tariq W.; Nguyen, An; Todd, Stephanie M.; Bennett, Maxwell R.; Callaghan, Paul; Arnold, Jonathon C.

2014-01-01

200

Is the Genetic Landscape of the Deep Subsurface Biosphere Affected by Viruses?  

PubMed Central

Viruses are powerful manipulators of microbial diversity, biogeochemistry, and evolution in the marine environment. Viruses can directly influence the genetic capabilities and the fitness of their hosts through the use of fitness factors and through horizontal gene transfer. However, the impact of viruses on microbial ecology and evolution is often overlooked in studies of the deep subsurface biosphere. Subsurface habitats connected to hydrothermal vent systems are characterized by constant fluid flux, dynamic environmental variability, and high microbial diversity. In such conditions, high adaptability would be an evolutionary asset, and the potential for frequent host–virus interactions would be high, increasing the likelihood that cellular hosts could acquire novel functions. Here, we review evidence supporting this hypothesis, including data indicating that microbial communities in subsurface hydrothermal fluids are exposed to a high rate of viral infection, as well as viral metagenomic data suggesting that the vent viral assemblage is particularly enriched in genes that facilitate horizontal gene transfer and host adaptability. Therefore, viruses are likely to play a crucial role in facilitating adaptability to the extreme conditions of these regions of the deep subsurface biosphere. We also discuss how these results might apply to other regions of the deep subsurface, where the nature of virus–host interactions would be altered, but possibly no less important, compared to more energetic hydrothermal systems. PMID:22084639

Anderson, Rika E.; Brazelton, William J.; Baross, John A.

2011-01-01

201

Chemical-genetic profile analysis in yeast suggests that a previously uncharacterized open reading frame, YBR261C, affects protein synthesis  

PubMed Central

Background Functional genomics has received considerable attention in the post-genomic era, as it aims to identify function(s) for different genes. One way to study gene function is to investigate the alterations in the responses of deletion mutants to different stimuli. Here we investigate the genetic profile of yeast non-essential gene deletion array (yGDA, ~4700 strains) for increased sensitivity to paromomycin, which targets the process of protein synthesis. Results As expected, our analysis indicated that the majority of deletion strains (134) with increased sensitivity to paromomycin, are involved in protein biosynthesis. The remaining strains can be divided into smaller functional categories: metabolism (45), cellular component biogenesis and organization (28), DNA maintenance (21), transport (20), others (38) and unknown (39). These may represent minor cellular target sites (side-effects) for paromomycin. They may also represent novel links to protein synthesis. One of these strains carries a deletion for a previously uncharacterized ORF, YBR261C, that we term TAE1 for Translation Associated Element 1. Our focused follow-up experiments indicated that deletion of TAE1 alters the ribosomal profile of the mutant cells. Also, gene deletion strain for TAE1 has defects in both translation efficiency and fidelity. Miniaturized synthetic genetic array analysis further indicates that TAE1 genetically interacts with 16 ribosomal protein genes. Phenotypic suppression analysis using TAE1 overexpression also links TAE1 to protein synthesis. Conclusion We show that a previously uncharacterized ORF, YBR261C, affects the process of protein synthesis and reaffirm that large-scale genetic profile analysis can be a useful tool to study novel gene function(s). PMID:19055778

Alamgir, Md; Eroukova, Veronika; Jessulat, Matthew; Xu, Jianhua; Golshani, Ashkan

2008-01-01

202

Research to Support Sterile-male-release and Genetic Alteration Techniques for Sea Lamprey Control  

Microsoft Academic Search

Integrated pest management of sea lampreys in the Laurentian Great Lakes has recently been enhanced by addition of a sterile-male-release program, and future developments in genetic approaches may lead to additional methods for reducing sea lamprey reproduction. We review the development, implementation, and evaluation of the sterile-male-release technique (SMRT) as it is being applied against sea lampreys in the Great

Roger A. Bergstedt; Michael B. Twohey

2007-01-01

203

Genetic alterations of lung adenocarcinoma in relation to smoking and ethnicity  

Microsoft Academic Search

Adenocarcinoma of the lung is now the most common histologic subtype of non-small-cell lung cancer (NSCLC) worldwide. In Chinese populations, the incidence of lung adenocarcinoma is amongst the highest worldwide and its development in non-smoking females is particularly striking. Information on the associated underlying genetic changes has been, however, minimal to date. The present study represents the first systematic analysis

Shirley M. H. Sy; Nathalie Wong; Tony S. K. Mok; Ming-Sound Tsao; Tak-Wai Lee; Gary Tse; Fiona H. Blackhall; Philip J. Johnson; Anthony P. Yim

2003-01-01

204

Evaluation of molecular genetic alterations associated with tumor progression in a case of gliomatosis cerebri  

Microsoft Academic Search

Gliomatosis cerebri (GC) is a rare tumor characterized by widespread infiltration of the brain and spinal cord. Although GC\\u000a usually demonstrates histomorphological features of a low-grade tumor, the formation of secondary highly malignant tumor regions\\u000a may occur. In order to reveal molecular genetic changes associated with tumor progression in GC, we analyzed factors known\\u000a to be associated with malignant progression

Stefan Braeuninger; Regine Schneider-Stock; Elmar Kirches; James M. Powers; David N. Korones; Christian Mawrin

2007-01-01

205

Tuning to the significant: neural and genetic processes underlying affective enhancement of visual perception and memory.  

PubMed

Emotionally arousing events reach awareness more easily and evoke greater visual cortex activation than more mundane events. Recent studies have shown that they are also perceived more vividly and that emotionally enhanced perceptual vividness predicts memory vividness. We propose that affect-biased attention (ABA) - selective attention to emotionally salient events - is an endogenous attentional system tuned by an individual's history of reward and punishment. We present the Biased Attention via Norepinephrine (BANE) model, which unifies genetic, neuromodulatory, neural and behavioural evidence to account for ABA. We review evidence supporting BANE's proposal that a key mechanism of ABA is locus coeruleus-norepinephrine (LC-NE) activity, which interacts with activity in hubs of affective salience networks to modulate visual cortex activation and heighten the subjective vividness of emotionally salient stimuli. We further review literature on biased competition and look at initial evidence for its potential as a neural mechanism behind ABA. We also review evidence supporting the role of the LC-NE system as a driving force of ABA. Finally, we review individual differences in ABA and memory including differences in sensitivity to stimulus category and valence. We focus on differences arising from a variant of the ADRA2b gene, which codes for the alpha2b adrenoreceptor as a way of investigating influences of NE availability on ABA in humans. PMID:24269973

Markovic, Jelena; Anderson, Adam K; Todd, Rebecca M

2014-02-01

206

Solar ultraviolet radiation alters alder and birch litter chemistry that in turn affects decomposers and soil respiration.  

PubMed

Solar ultraviolet (UV)-A and UV-B radiation were excluded from branches of grey alder (Alnus incana) and white birch (Betula pubescens) trees in a field experiment. Leaf litter collected from these trees was used in microcosm experiments under laboratory conditions. The aim was to evaluate the effects of the different UV treatments on litter chemical quality (phenolic compounds, C, N and lignin) and the subsequent effects of these changes on soil fauna and decomposition processes. We measured the decomposition rate of litter, growth of woodlice (Porcellio scaber), soil microbial respiration and abundance of nematodes and enchytraeid worms. In addition, the chemical quality of woodlice feces was analyzed. The exclusion of both UV-A and UV-B had several effects on litter chemistry. Exclusion of UV-B radiation decreased the C content in litter in both tree species. In alder litter, UV exclusion affected concentration of phenolic groups variably, whereas in birch litter there were no significant differences in phenolic compounds. Moreover, further effects on microbial respiration and chemical quality of woodlice feces were apparent. In both tree species, microbial CO(2) evolution was lower in soil with litter produced under exclusion of both UV-A and UV-B radiation when compared to soil with control litter. The N content was higher in the feces of woodlice eating alder litter produced under exclusion of both UV-A and UV-B compared to the control. In addition, there were small changes in the concentration of individual phenolic compounds analyzed from woodlice feces. Our results demonstrate that both UV-A and UV-B alter litter chemistry which in turn affects decomposition processes. PMID:19597848

Kotilainen, Titta; Haimi, Jari; Tegelberg, Riitta; Julkunen-Tiitto, Riitta; Vapaavuori, Elina; Aphalo, Pedro Jose

2009-10-01

207

Next-generation sequencing analysis of lung and colon carcinomas reveals a variety of genetic alterations.  

PubMed

The development of targeted therapies in cancer has accelerated the development of molecular diagnosis. This new cancer discipline is booming, with an increasing number of gene alterations to analyze in a growing number of patients. To deal with this fast-developing activity, current analysis techniques (Sanger sequencing, allelic discrimination and high resolution melting) take more and more time. In recent years, next generation sequencing (NGS) technologies have appeared and given new perspectives in oncology. In this study, we analyzed FFPE lung and colon carcinomas using the Truseq Cancer Panel, which analyzes the mutation hotspots of 48 genes. We also tested the use of whole-genome amplification before NGS analysis. NGS results were compared with the data obtained from routine diagnosis. All of the alterations routinely observed were identified by NGS. Moreover, NGS revealed mutations in the KRAS and EGFR genes in patients diagnosed as wild-type by routine techniques. NGS also identified concomitant mutations in EGFR and KRAS or BRAF mutations, and a 15-nt deletion in exon 19 of EGFR in colon carcinomas. The study of the other genes sequenced in the Panel revealed 14 genes altered by 27 different mutations and three SNP with a possible role in cancer susceptibility or in the response to treatment. In conclusion, this study showed that NGS analysis could be used for the analysis of gDNA extracted from FFPE tissues. However, given the high sensitivity of this technology, high-throughput clinical trials are needed to confirm its reliability for the molecular diagnosis of cancer. PMID:24990411

Chevrier, Sandy; Arnould, Laurent; Ghiringhelli, François; Coudert, Bruno; Fumoleau, Pierre; Boidot, Romain

2014-09-01

208

Genetic alterations of chromosomes, p53 and p16 genes in low- and high-grade bladder cancer  

PubMed Central

A majority of patients with bladder cancer present with superficial disease and subsequently, some patients show progression to muscle invasive or metastatic disease. Bladder cancer has a complex genetic process and identification of the genetic alterations which occur during progression may lead to the understanding of the nature of the disease and provide the possibility of early treatment. The aim of the present study was to compare the structural and numerical chromosomal differences and changes in the p16 and p53 genes between low-grade (LG) and high-grade (HG) bladder cancer (BC) using cytogenetic and molecular cytogenetic methods. Between March 2009 and March 2010, cytogenetic analyses were carried out on tumor and blood samples in 34 patients with transitional cell type BC, and on blood samples of 34 healthy patients as a control group. Fluorescence in situ hybridization probes for the p16 and p53 genes were also used to screen the alterations in these genes in 32 patients with BC. The patients were divided into two groups (LG and HG) and the findings were compared. A total of 11 (32.3%) patients exhibited LGBC, 22 (64.7%) exhibited HGBC and one (3%) patient exhibited carcinoma in situ. There were no differences between the LGBC and HGBC groups according to the number of chromosomal aberrations (P=0.714); however, differences between alterations of the p16 and p53 genes were significant (P=0.002 and P=0.039). Almost all structural abnormalities were found to be located to the 1q21, 1q32, 3p21 and 5q31 regions in patients with HG tumors. In conclusion, the p16 and p53 genes were altered more prominently in patients with HG tumors compared with LG tumors. The structural abnormalities in the 1q21, 1q32, 3p21 and 5q31 regions were observed more frequently in patients with HG tumors. These regions may play significant roles in the progression of BC, but further studies are required to find candidate genes for a panel of BC. PMID:24959214

ABAT, DENIZ; DEMIRHAN, OSMAN; INANDIKLIOGLU, NIHAL; TUNC, ERDAL; ERDOGAN, SEYDA; TASTEMIR, DENIZ; USLU, INAYET NUR; TANSUG, ZUHTU

2014-01-01

209

Altered sucrose synthase and invertase expression affects the local and systemic sugar metabolism of nematode-infected Arabidopsis thaliana plants  

PubMed Central

Sedentary endoparasitic nematodes of plants induce highly specific feeding cells in the root central cylinder. From these, the obligate parasites withdraw all required nutrients. The feeding cells were described as sink tissues in the plant’s circulation system that are supplied with phloem-derived solutes such as sugars. Currently, there are several publications describing mechanisms of sugar import into the feeding cells. However, sugar processing has not been studied so far. Thus, in the present work, the roles of the sucrose-cleaving enzymes sucrose synthases (SUS) and invertases (INV) in the development of Heterodera schachtii were studied. Gene expression analyses indicate that both enzymes are regulated transcriptionally. Nematode development was enhanced on multiple INV and SUS mutants. Syncytia of these mutants were characterized by altered enzyme activity and changing sugar pool sizes. Further, the analyses revealed systemically affected sugar levels and enzyme activities in the shoots of the tested mutants, suggesting changes in the source–sink relationship. Finally, the development of the root-knot nematode Meloidogyne javanica was studied in different INV and SUS mutants and wild-type Arabidopsis plants. Similar effects on the development of both sedentary endoparasitic nematode species (root-knot and cyst nematode) were observed, suggesting a more general role of sucrose-degrading enzymes during plant–nematode interactions. PMID:24187419

Hofmann, Julia

2014-01-01

210

Altered sucrose synthase and invertase expression affects the local and systemic sugar metabolism of nematode-infected Arabidopsis thaliana plants.  

PubMed

Sedentary endoparasitic nematodes of plants induce highly specific feeding cells in the root central cylinder. From these, the obligate parasites withdraw all required nutrients. The feeding cells were described as sink tissues in the plant's circulation system that are supplied with phloem-derived solutes such as sugars. Currently, there are several publications describing mechanisms of sugar import into the feeding cells. However, sugar processing has not been studied so far. Thus, in the present work, the roles of the sucrose-cleaving enzymes sucrose synthases (SUS) and invertases (INV) in the development of Heterodera schachtii were studied. Gene expression analyses indicate that both enzymes are regulated transcriptionally. Nematode development was enhanced on multiple INV and SUS mutants. Syncytia of these mutants were characterized by altered enzyme activity and changing sugar pool sizes. Further, the analyses revealed systemically affected sugar levels and enzyme activities in the shoots of the tested mutants, suggesting changes in the source-sink relationship. Finally, the development of the root-knot nematode Meloidogyne javanica was studied in different INV and SUS mutants and wild-type Arabidopsis plants. Similar effects on the development of both sedentary endoparasitic nematode species (root-knot and cyst nematode) were observed, suggesting a more general role of sucrose-degrading enzymes during plant-nematode interactions. PMID:24187419

Cabello, Susana; Lorenz, Cindy; Crespo, Sara; Cabrera, Javier; Ludwig, Roland; Escobar, Carolina; Hofmann, Julia

2014-01-01

211

Genetically altered fields in head and neck cancer and second field tumor  

PubMed Central

The concept of field cancerization has been ever changing since its first description by Slaughter et al in 1953. Field cancerization explains the mechanisms by which second primary tumors (SPTs) develop. SPTs are the tumors, which develop in the oral cavity in succession to the primary malignant tumors, which might vary in duration ranging from few months to years. Conceivably, a population of daughter cells with early genetic changes (without histopathology) remains in the organ, demonstrating the concept of field cancerization. This review explains the concept of field cancerization and various field theories along with molecular basis of field formation. PMID:25136520

Sabharwal, Robin; Mahendra, Ashish; Moon, Ninad J; Gupta, Parul; Jain, Ashish; Gupta, Shivangi

2014-01-01

212

Genetic activation of pyruvate dehydrogenase alters oxidative substrate selection to induce skeletal muscle insulin resistance.  

PubMed

The pyruvate dehydrogenase complex (PDH) has been hypothesized to link lipid exposure to skeletal muscle insulin resistance through a glucose-fatty acid cycle in which increased fatty acid oxidation increases acetyl-CoA concentrations, thereby inactivating PDH and decreasing glucose oxidation. However, whether fatty acids induce insulin resistance by decreasing PDH flux remains unknown. To genetically examine this hypothesis we assessed relative rates of pyruvate dehydrogenase flux/mitochondrial oxidative flux and insulin-stimulated rates of muscle glucose metabolism in awake mice lacking pyruvate dehydrogenase kinase 2 and 4 [double knockout (DKO)], which results in constitutively activated PDH. Surprisingly, increased glucose oxidation in DKO muscle was accompanied by reduced insulin-stimulated muscle glucose uptake. Preferential myocellular glucose utilization in DKO mice decreased fatty acid oxidation, resulting in increased reesterification of acyl-CoAs into diacylglycerol and triacylglycerol, with subsequent activation of PKC-? and inhibition of insulin signaling in muscle. In contrast, other putative mediators of muscle insulin resistance, including muscle acylcarnitines, ceramides, reactive oxygen species production, and oxidative stress markers, were not increased. These findings demonstrate that modulation of oxidative substrate selection to increase muscle glucose utilization surprisingly results in muscle insulin resistance, offering genetic evidence against the glucose-fatty acid cycle hypothesis of muscle insulin resistance. PMID:25368185

Rahimi, Yasmeen; Camporez, João-Paulo G; Petersen, Max C; Pesta, Dominik; Perry, Rachel J; Jurczak, Michael J; Cline, Gary W; Shulman, Gerald I

2014-11-18

213

DNA ALTERATIONS  

EPA Science Inventory

The exposure of an organism to genotoxic chemicals may induce a cascade of genetic events. nitially, structural alterations to DNA are formed. ext, the DNA damage is processed and subsequently expressed in mutant gene products. inally, diseases result from the genetic damage. he ...

214

Does Wheat Genetically Modified for Disease Resistance Affect Root-Colonizing Pseudomonads and Arbuscular Mycorrhizal Fungi?  

PubMed Central

This study aimed to evaluate the impact of genetically modified (GM) wheat with introduced pm3b mildew resistance transgene, on two types of root-colonizing microorganisms, namely pseudomonads and arbuscular mycorrhizal fungi (AMF). Our investigations were carried out in field trials over three field seasons and at two locations. Serial dilution in selective King's B medium and microscopy were used to assess the abundance of cultivable pseudomonads and AMF, respectively. We developed a denaturing gradient gel electrophoresis (DGGE) method to characterize the diversity of the pqqC gene, which is involved in Pseudomonas phosphate solubilization. A major result was that in the first field season Pseudomonas abundances and diversity on roots of GM pm3b lines, but also on non-GM sister lines were different from those of the parental lines and conventional wheat cultivars. This indicates a strong effect of the procedures by which these plants were created, as GM and sister lines were generated via tissue cultures and propagated in the greenhouse. Moreover, Pseudomonas population sizes and DGGE profiles varied considerably between individual GM lines with different genomic locations of the pm3b transgene. At individual time points, differences in Pseudomonas and AMF accumulation between GM and control lines were detected, but they were not consistent and much less pronounced than differences detected between young and old plants, different conventional wheat cultivars or at different locations and field seasons. Thus, we conclude that impacts of GM wheat on plant-beneficial root-colonizing microorganisms are minor and not of ecological importance. The cultivation-independent pqqC-DGGE approach proved to be a useful tool for monitoring the dynamics of Pseudomonas populations in a wheat field and even sensitive enough for detecting population responses to altered plant physiology. PMID:23372672

Foetzki, Andrea; Luginbuhl, Carolin; Winzeler, Michael; Kneubuhler, Yvan; Matasci, Caterina; Mascher-Frutschi, Fabio; Kalinina, Olena; Boller, Thomas; Keel, Christoph; Maurhofer, Monika

2013-01-01

215

Genetic and molecular alterations in pancreatic cancer: Implications for personalized medicine  

PubMed Central

Recent advances in human genomics and biotechnologies have profound impacts on medical research and clinical practice. Individual genomic information, including DNA sequences and gene expression profiles, can be used for prediction, prevention, diagnosis, and treatment for many complex diseases. Personalized medicine attempts to tailor medical care to individual patients by incorporating their genomic information. In a case of pancreatic cancer, the fourth leading cause of cancer death in the United States, alteration in many genes as well as molecular profiles in blood, pancreas tissue, and pancreas juice has recently been discovered to be closely associated with tumorigenesis or prognosis of the cancer. This review aims to summarize recent advances of important genes, proteins, and microRNAs that play a critical role in the pathogenesis of pancreatic cancer, and to provide implications for personalized medicine in pancreatic cancer. PMID:24172537

Fang, Yantian; Yao, Qizhi; Chen, Zongyou; Xiang, Jianbin; William, Fisher E.; Gibbs, Richard A.; Chen, Changyi

2013-01-01

216

Tumour-stromal interactions: Phenotypic and genetic alterations in mammary stroma - implications for tumour progression  

PubMed Central

In addition to the well documented role of cytokines in mediating tissue-level interactions, it is now clear that matrix macromolecules fulfil a complementary regulatory function. Data highlighted in the present review extend the repertoire of matrix signalling mechanisms, (1) introducing the concept of 'matrikines', these defined as proteinase-generated fragments of matrix macromolecules that display cryptic bioactivities not manifested by the native, full-length form of the molecule, and (2) indicating that a previously identified motogenic factor (migration stimulating factor [MSF]) produced by foetal and cancer patient fibroblasts is a genetically generated truncated isoform of fibronectin, which displays bioactivities cryptic in all previously identified fibronectin isoforms. These observations are discussed in the context of the contribution of a 'foetal-like' stroma to the progression of breast cancer. PMID:11737888

Schor, Seth L; Schor, Ana M

2001-01-01

217

Transcriptome Profiling of Human Ulcerative Colitis Mucosa Reveals Altered Expression of Pathways Enriched in Genetic Susceptibility Loci  

PubMed Central

Human colonic mucosa altered by inflammation due to ulcerative colitis (UC) displays a drastically altered pattern of gene expression compared with healthy tissue. We aimed to understand the underlying molecular pathways influencing these differences by analyzing three publically-available, independently-generated microarray datasets of gene expression from endoscopic biopsies of the colon. Gene set enrichment analysis (GSEA) revealed that all three datasets share 87 gene sets upregulated in UC lesions and 8 gene sets downregulated (false discovery rate <0.05). The upregulated pathways were dominated by gene sets involved in immune function and signaling, as well as the control of mitosis. We applied pathway analysis to genotype data derived from genome-wide association studies (GWAS) of UC, consisting of 5,584 cases and 11,587 controls assembled from eight European-ancestry cohorts. The upregulated pathways derived from the gene expression data showed a highly significant overlap with pathways derived from the genotype data (33 of 56 gene sets, hypergeometric P?=?1.49×10–19). This study supports the hypothesis that heritable variation in gene expression as measured by GWAS signals can influence key pathways in the development of disease, and that comparison of genetic susceptibility loci with gene expression signatures can differentiate key drivers of inflammation from secondary effects on gene expression of the inflammatory process. PMID:24788701

Li, Jin; Zhu, Junfei; Gu, Mengnan; Baldassano, Robert N.; Grant, Struan F. A.; Hakonarson, Hakon

2014-01-01

218

Citrus Leaf Volatiles as Affected by Developmental Stage and Genetic Type  

PubMed Central

Major volatiles from young and mature leaves of different citrus types were analyzed by headspace-solid phase microextraction (HS-SPME)-GC-MS. A total of 123 components were identified form nine citrus cultivars, including nine aldehydes, 19 monoterpene hydrocarbons, 27 oxygenated monoterpenes, 43 sesquiterpene hydrocarbons, eight oxygenated sesquiterpenes, two ketones, six esters and nine miscellaneous. Young leaves produced higher amounts of volatiles than mature leaves in most cultivars. The percentage of aldehyde and monoterpene hydrocarbons increased, whilst oxygenated monoterpenes and sesquiterpenes compounds decreased during leaf development. Linalool was the most abundant compound in young leaves, whereas limonene was the chief component in mature ones. Notably, linalool content decreased, while limonene increased, during leaf development in most cultivars. Leaf volatiles were also affected by genetic types. A most abundant volatile in one or several genotypes can be absent in another one(s), such as limonene in young leaves of lemon vs. Satsuma mandarin and ?-terpinene in mature leaves of three genotypes vs. the other four. Compositional data was subjected to multivariate statistical analysis, and variations in leaf volatiles were identified and clustered into six groups. This research determining the relationship between production of major volatiles from different citrus varieties and leaf stages could be of use for industrial and culinary purposes. PMID:23994837

Azam, Muhammad; Jiang, Qian; Zhang, Bo; Xu, Changjie; Chen, Kunsong

2013-01-01

219

Altered Seasonality and Magnitude of Rainfall Affects Soil Respiration and Nitrous Oxide Fluxes in California Annual Grassland  

NASA Astrophysics Data System (ADS)

Currently, climate models do not agree on how rising concentrations of CO2 and other greenhouse gases will affect rainfall in California. Changes in moisture regime will likely alter rates of carbon (C) loss via soil respiration, as well as fluxes of N2O. Moisture availability can also affect plant productivity in highly seasonal environments. We examined the consequences of wetter conditions in an annual grassland in the Sierra foothills of northern California by extending the duration of the wet season by about 5 weeks and augmenting total annual rainfall by approximately 50 %. Discrete wet-up events took place prior to the onset of natural rains (early October 2003) and early in the drought period (May 2004). Soil respiration, N2O and CH4 effluxes, N mineralization, and above- and belowground plant production were measured in treatment and control plots over a one-year period. Soil CO2 fluxes for the first treatment year, though large, were not statistically different between wet and control plots (1078 \\pm148 g C m-2 and 1006 \\pm138 g C m-2, respectively). The combined wet-up events comprised 17 % of the soil respiration over the 12-month period in treated plots, about twice as much C released by control plots during the same time interval. Aboveground biomass was similar between wetted and control plots (415 \\pm45 g m-2 y-1 and 374 \\pm36 g m-2 y-1, respectively), while root biomass increased significantly with wetting during the first year of treatment (179 \\pm23 g m-2 y-1 and 111 \\pm13 g m-2 y-1 for treatment and control plots, respectively). The additional biomass C gained in treatment plots (53 g C m-2) partly offset the greater losses from respired C observed in treatment plots (72 g C m-2). Nitrous oxide emissions were low to negligible during the year with the exception of the time directly following wet-up, when N2O emissions averaged over 78\\pm13 ng N cm-2 h-1. Our first year of water manipulation in annual grasslands suggests that increased water availability via early and late rainfall events releases large pulses of CO2, increases belowground C inputs, and increases N2O emissions.

Chou, W. W.; Silver, W. L.; Jackson, R. D.; Allen-Diaz, B.

2004-12-01

220

Copyright 0 1991 by the GeneticsSocietyof America New SNF Genes, GAL11 and GRRl Affect SUC2 Expressionin  

E-print Network

Copyright 0 1991 by the GeneticsSocietyof America New SNF Genes, GAL11 and GRRl Affect SUC2 in raffinose utilization.In addition to mutations in SUCP and previously identified SNF genes, we recovered in previous mutant searches (CARLSON,OSMONDand BOTSTEIN1981;NEIGEBORNand CARLSON1984).The SNF (sucrose

Vallier, Laura

221

Determining the factors affecting the consumers' willingness to pay higher prices for genetically unmodified products : Tomato case study in Turkey  

Microsoft Academic Search

Purpose – The purpose of this paper is to determine the factors affecting the consumers' willingness to pay higher prices for genetically unmodified products. Design\\/methodology\\/approach – Tomato was selected as a model crop. Data used in this study were gathered from questionnaires conducted in Tokat province of Turkey in April 2006. Questionnaires were accomplished via face-to-face interviews over 262 households.

Z. Gokalp Goktolga; Kemal Esengun

2009-01-01

222

Psychosocial and cultural factors affecting the perceived risk of genetically modified food: an overview of the literature  

Microsoft Academic Search

The rapid globalization of the world economy has increased the need for an astute understanding of cultural differences in perceptions, values, and ways of thinking about new food technologies. In this paper, we describe how socio-psychological and cultural factors may affect public perceptions of the risk of genetically modified (GM) food. We present psychological, sociological, and anthropological research on risk

Melissa L. Finucane; Joan L. Holup

2005-01-01

223

Altered brain gene expression but not steroid biochemistry in a genetic mouse model of neurodevelopmental disorder  

PubMed Central

Background The 39,XY*O mouse, which lacks the orthologues of the ADHD and autism candidate genes STS (steroid sulphatase) and ASMT (acetylserotonin O-methyltransferase), exhibits behavioural phenotypes relevant to developmental disorders. The neurobiology underlying these phenotypes is unclear, although there is evidence for serotonergic abnormalities in the striatum and hippocampus. Methods Using microarray and quantitative gene expression analyses, and gas chromatography–mass spectrometry, we compared brain gene expression and steroid biochemistry in wildtype (40,XY) and 39,XY*O adult mice to identify non-obvious genetic and endocrine candidates for between-group differences in behaviour and neurochemistry. We also tested whether acute STS inhibition by COUMATE in wildtype (40,XY) adult male mice recapitulated any significant gene expression or biochemical findings from the genetic comparison. Data were analysed by unpaired t-test or Mann Whitney U-test depending on normality, with a single factor of KARYOTYPE. Results Microarray analysis indicated seven robust gene expression differences between the two groups (Vmn2r86, Sfi1, Pisd-ps1, Tagap1, C1qc, Metap1d, Erdr1); Erdr1 and C1qc expression was significantly reduced in the 39,XY*O striatum and hippocampus, whilst the expression of Dhcr7 (encoding 7-dehydrocholesterol reductase, a modulator of serotonin system development), was only reduced in the 39,XY*O hippocampus. None of the confirmed gene expression changes could be recapitulated by COUMATE administration. We detected ten free, and two sulphated steroids in 40,XY and 39,XY*O brain; surprisingly, the concentrations of all of these were equivalent between groups. Conclusions Our data demonstrate that the mutation in 39,XY*O mice: i) directly disrupts expression of the adjacent Erdr1 gene, ii) induces a remarkably limited suite of downstream gene expression changes developmentally, with several of relevance to associated neurobehavioural phenotypes and iii) does not elicit large changes in brain steroid biochemistry. It is possible that individuals with STS/ASMT deficiency exhibit a similarly specific pattern of gene expression changes to the 39,XY*O mouse, and that these contribute towards their abnormal neurobiology. Future work may focus on whether complement pathway function, mitochondrial metabolism and cholesterol biosynthesis pathways are perturbed in such subjects. PMID:24602487

2014-01-01

224

A mosaic genetic screen for novel mutations affecting Drosophila neuroblast divisions  

PubMed Central

Background The asymmetric segregation of determinants during cell division is a fundamental mechanism for generating cell fate diversity during development. In Drosophila, neural precursors (neuroblasts) divide in a stem cell-like manner generating a larger apical neuroblast and a smaller basal ganglion mother cell. The cell fate determinant Prospero and its adapter protein Miranda are asymmetrically localized to the basal cortex of the dividing neuroblast and segregated into the GMC upon cytokinesis. Previous screens to identify components of the asymmetric division machinery have concentrated on embryonic phenotypes. However, such screens are reaching saturation and are limited in that the maternal contribution of many genes can mask the effects of zygotic loss of function, and other approaches will be necessary to identify further genes involved in neuroblast asymmetric division. Results We have performed a genetic screen in the third instar larval brain using the basal localization of Miranda as a marker for neuroblast asymmetry. In addition to the examination of pupal lethal mutations, we have employed the MARCM (Mosaic Analysis with a Repressible Cell Marker) system to generate postembryonic clones of mutations with an early lethal phase. We have screened a total of 2,300 mutagenized chromosomes and isolated alleles affecting cell fate, the localization of basal determinants or the orientation of the mitotic spindle. We have also identified a number of complementation groups exhibiting defects in cell cycle progression and cytokinesis, including both novel genes and new alleles of known components of these processes. Conclusion We have identified four mutations which affect the process of neuroblast asymmetric division. One of these, mapping to the imaginal discs arrested locus, suggests a novel role for the anaphase promoting complex/cyclosome (APC/C) in the targeting of determinants to the basal cortex. The identification and analysis of the remaining mutations will further advance our understanding of the process of asymmetric cell division. We have also isolated a number of mutations affecting cell division which will complement the functional genomics approaches to this process being employed by other laboratories. Taken together, these results demonstrate the value of mosaic screens in the identification of genes involved in neuroblast division. PMID:16749923

Slack, Cathy; Somers, W Gregory; Sousa-Nunes, Rita; Chia, William; Overton, Paul M

2006-01-01

225

Search and insights into novel genetic alterations leading to classical and atypical Werner syndrome.  

PubMed

Segmental progeroid syndromes are a group of disorders with multiple features resembling accelerated aging. Adult-onset Werner syndrome (WS) and childhood-onset Hutchinson-Gilford progeria syndrome are the best known examples. The discovery of genes responsible for such syndromes has facilitated our understanding of the basic mechanisms of aging as well as the pathogenesis of other common, age-related diseases. Our International Registry of Werner Syndrome accesses progeroid pedigrees from all over the world, including those for whom we have ruled out a mutation at the WRN locus. Cases without WRN mutations are operationally categorized as 'atypical WS' (AWS). In 2003, we identified LMNA mutations among a subset of AWS cases using a candidate gene approach. As of 2013, the Registry has 142 WS patients with WRN mutations, 11 AWS patients with LMNA mutations, and 49 AWS patients that have neither WRN nor LMNA mutations. Efforts are underway to identify the responsible genes for AWS with unknown genetic causes. While WS and AWS are rare disorders, the causative genes have been shown to have much wider implications for cancer, cardiovascular disease and the biology of aging. Remarkably, centenarian studies revealed WRN and LMNA polymorphic variants among those who have escaped various geriatric disorders. PMID:24401204

Oshima, Junko; Hisama, Fuki M

2014-01-01

226

Heteroplasmy of Mouse mtDNA Is Genetically Unstable and Results in Altered Behavior and Cognition  

PubMed Central

SUMMARY Maternal inheritance of mtDNA is the rule in most animals, but the reasons for this pattern remain unclear. To investigate the consequence of overriding uniparental inheritance, we generated mice containing an admixture (heteroplasmy) of NZB and 129S6 mtDNAs in the presence of a congenic C57BL/6J nuclear background. Analysis of the segregation of the two mtDNAs across subsequent maternal generations revealed that proportion of NZB mtDNA was preferentially reduced. Ultimately, this segregation process produced NZB-129 heteroplasmic mice and their NZB or 129 mtDNA homo-plasmic counterparts. Phenotypic comparison of these three mtDNA lines demonstrated that the NZB-129 heteroplasmic mice, but neither homoplasmic counterpart, had reduced activity, food intake, respiratory exchange ratio; accentuated stress response; and cognitive impairment. Therefore, admixture of two normal but different mouse mtDNAs can be genetically unstable and can produce adverse physiological effects, factors that may explain the advantage of uniparental inheritance of mtDNA. PMID:23063123

Eckel-Mahan, Kristin; McManus, Meagan; Crimi, Marco; Waymire, Katrina; Lin, Chun Shi; Masubuchi, Satoru; Friend, Nicole; Koike, Maya; Chalkia, Dimitra; MacGregor, Grant; Sassone-Corsi, Paolo; Wallace, Douglas C.

2014-01-01

227

Deregulation of Wnt/?-catenin signaling through genetic or epigenetic alterations in human neuroendocrine tumors.  

PubMed

Carcinoid tumors are rare neuroendocrine tumors (NETs) that are increasing in incidence. Mutation and altered expression of Wnt/?-catenin signaling components have been described in many tumors but have not been well-studied in NETs. Here, we observed accumulation of ?-catenin in the cytoplasm and/or nucleus in 25% of clinical NET tissues. By mutational analysis, the mutations of ?-catenin (I35S) and APC (E1317Q, T1493T) were identified in NET cells and the tissues. Expression of representative Wnt inhibitors was absent or markedly decreased in BON, a human pancreatic carcinoid cell line; treatment with 5-aza-2'-deoxycytidine (5-aza-CdR) increased expression levels of the Wnt inhibitors. Methylation analyses demonstrated that CpG islands of SFRP-1 and Axin-2 were methylated, whereas the promoters of DKK-1, DKK-3 and WIF-1 were unmethylated in four NET cells. Aberrant methylation of SFRP-1 was particularly observed in most of clinical NET tissues. In addition, the repression of these unmethylated genes was associated with histone H3 lysine 9 dimethylation (H3K9me2) in BON cells. Together, 5-aza-CdR treatment inhibited cell proliferation and decreased the protein levels of H3K9me2 and G9a. Moreover, a novel G9a inhibitor, UNC0638, suppressed BON cell proliferation through inhibition of Wnt/?-catenin pathway. Overexpression of the inhibitory genes, particularly SFRP-1 and WIF-1 in BON cells, resulted in suppression of anchorage-independent growth and inhibition of tumor growth in mice. Our findings suggest that aberrant Wnt/?-catenin signaling, through either mutations or epigenetic silencing of Wnt antagonists, contributes to the pathogenesis and growth of NETs and have important clinical implications for the prognosis and treatment of NETs. PMID:23354304

Kim, Ji Tae; Li, Jing; Jang, Eun Ryoung; Gulhati, Pat; Rychahou, Piotr G; Napier, Dana L; Wang, Chi; Weiss, Heidi L; Lee, Eun Y; Anthony, Lowell; Townsend, Courtney M; Liu, Chunming; Evers, B Mark

2013-05-01

228

Exploring the link between germline and somatic genetic alterations in breast carcinogenesis.  

PubMed

Recent genome-wide association studies (GWASs) have identified candidate genes contributing to cancer risk through low-penetrance mutations. Many of these genes were unexpected and, intriguingly, included well-known players in carcinogenesis at the somatic level. To assess the hypothesis of a germline-somatic link in carcinogenesis, we evaluated the distribution of somatic gene labels within the ordered results of a breast cancer risk GWAS. This analysis suggested frequent influence on risk of genetic variation in loci encoding for "driver kinases" (i.e., kinases encoded by genes that showed higher somatic mutation rates than expected by chance and, therefore, whose deregulation may contribute to cancer development and/or progression). Assessment of these predictions using a population-based case-control study in Poland replicated the association for rs3732568 in EPHB1 (odds ratio (OR)?=?0.79; 95% confidence interval (CI): 0.63-0.98; P(trend)?=?0.031). Analyses by early age at diagnosis and by estrogen receptor ? (ER?) tumor status indicated potential associations for rs6852678 in CDKL2 (OR?=?0.32, 95% CI: 0.10-1.00; P(recessive)?=?0.044) and rs10878640 in DYRK2 (OR?=?2.39, 95% CI: 1.32-4.30; P(dominant)?=?0.003), and for rs12765929, rs9836340, rs4707795 in BMPR1A, EPHA3 and EPHA7, respectively (ER? tumor status P(interaction)<0.05). The identification of three novel candidates as EPH receptor genes might indicate a link between perturbed compartmentalization of early neoplastic lesions and breast cancer risk and progression. Together, these data may lay the foundations for replication in additional populations and could potentially increase our knowledge of the underlying molecular mechanisms of breast carcinogenesis. PMID:21124932

Bonifaci, Núria; Górski, Bohdan; Masoj?, Bartlomiej; Woko?orczyk, Dominika; Jakubowska, Anna; D?bniak, Tadeusz; Berenguer, Antoni; Serra Musach, Jordi; Brunet, Joan; Dopazo, Joaquín; Narod, Steven A; Lubi?ski, Jan; Lázaro, Conxi; Cybulski, Cezary; Pujana, Miguel Angel

2010-01-01

229

Genetic variants of FOXP2 and KIAA0319/TTRAP/THEM2 locus are associated with altered brain activation in distinct language-related regions.  

PubMed

Recent advances have been made in the genetics of two human communication skills: speaking and reading. Mutations of the FOXP2 gene cause a severe form of language impairment and orofacial dyspraxia, while single-nucleotide polymorphisms (SNPs) located within a KIAA0319/TTRAP/THEM2 gene cluster and affecting the KIAA0319 gene expression are associated with reading disability. Neuroimaging studies of clinical populations point to partially distinct cerebral bases for language and reading impairments. However, alteration of FOXP2 and KIAA0319/TTRAP/THEM2 polymorphisms on typically developed language networks has never been explored. Here, we genotyped and scanned 94 healthy subjects using fMRI during a reading task. We studied the correlation of genetic polymorphisms with interindividual variability in brain activation and functional asymmetry in frontal and temporal cortices. In FOXP2, SNPs rs6980093 and rs7799109 were associated with variations of activation in the left frontal cortex. In the KIAA0319/TTRAP/THEM2 locus, rs17243157 was associated with asymmetry in functional activation of the superior temporal sulcus (STS). Interestingly, healthy subjects bearing the KIAA0319/TTRAP/THEM2 variants previously identified as enhancing the risk of dyslexia showed a reduced left-hemispheric asymmetry of the STS. Our results confirm that both FOXP2 and KIAA0319/TTRAP/THEM2 genes play an important role in human language development, but probably through different cerebral pathways. The observed cortical effects mirror previous fMRI results in developmental language and reading disorders, and suggest that a continuum may exist between these pathologies and normal interindividual variability. PMID:22262880

Pinel, Philippe; Fauchereau, Fabien; Moreno, Antonio; Barbot, Alexis; Lathrop, Mark; Zelenika, Diana; Le Bihan, Denis; Poline, Jean-Baptiste; Bourgeron, Thomas; Dehaene, Stanislas

2012-01-18

230

ALTERED SENSITIVITY OF THE MOUSE FETUS TO IMPAIRED PROSTATIC BUD FORMATION BY DIOXIN: INFLUENCE OF GENETIC BACKGROUND AND NULL EXPRESSION OF TGF-ALFA AND EGF  

EPA Science Inventory

Altered sensitivity of the mouse fetus to impaired prostatic bud formation by dioxin: Influence of genetic background and null expression of TGF and EGF. Rasmussen, N.T., Lin T-M., Fenton, S.E., Abbott, B.D. and R.E. Peterson. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)...

231

Genetic Background Alters the Severity and Onset of Neuromuscular Disease Caused by the Loss of Ubiquitin-Specific Protease 14 (Usp14)  

PubMed Central

In this study, we identified and characterized an N-ethyl-N-nitrosourea (ENU) induced mutation in Usp14 (nmf375) that leads to adult-onset neurological disease. The nmf375 mutation causes aberrant splicing of Usp14 mRNA, resulting in a 95% reduction in USP14. We previously showed that loss of USP14 in ataxia (axJ) mice results in reduced ubiquitin levels, motor endplate disease, Purkinje cell axonal dystrophy and decreased hippocampal paired pulse facilitation (PPF) during the first 4-6 weeks of life, and early postnatal lethality by two months of age. Although the loss of USP14 is comparable between the nmf375 and axJ mice, the nmf375 mice did not exhibit these axJ developmental abnormalities. However, by 12 weeks of age the nmf375 mutants present with ubiquitin depletion and motor endplate disease, indicating a continual role for USP14-mediated regulation of ubiquitin pools and neuromuscular junction (NMJ) structure in adult mice. The observation that motor endplate disease was only seen after ubiquitin depletion suggests that the preservation of NMJ structure requires the stable maintenance of synaptic ubiquitin pools. Differences in genetic background were shown to affect ubiquitin expression and dramatically alter the phenotypes caused by USP14 deficiency. PMID:24358326

Hallengren, Jada J.; Walters, Brandon J.; Dobrunz, Lynn E.; Francillon, Ludwig; Wilson, Julie A.; Phillips, Scott E.; Wilson, Scott M.

2013-01-01

232

Common genetic variants in the CLDN2 and PRSS1-PRSS2 loci alter risk for alcohol-related and sporadic pancreatitis  

PubMed Central

Pancreatitis is a complex, progressively destructive inflammatory disorder. Alcohol was long thought to be the primary causative agent, but genetic contributions have been of interest since the discovery that rare PRSS1, CFTR, and SPINK1 variants were associated with pancreatitis risk. We now report two significant genome-wide associations identified and replicated at PRSS1-PRSS2 (1×10-12) and x-linked CLDN2 (p < 1×10-21) through a two-stage genome-wide study (Stage 1, 676 cases and 4507 controls; Stage 2, 910 cases and 4170 controls). The PRSS1 variant affects susceptibility by altering expression of the primary trypsinogen gene. The CLDN2 risk allele is associated with atypical localization of claudin-2 in pancreatic acinar cells. The homozygous (or hemizygous male) CLDN2 genotype confers the greatest risk, and its alleles interact with alcohol consumption to amplify risk. These results could partially explain the high frequency of alcohol-related pancreatitis in men – male hemizygous frequency is 0.26, female homozygote is 0.07. PMID:23143602

Whitcomb, David C.; LaRusch, Jessica; Krasinskas, Alyssa M.; Klei, Lambertus; Smith, Jill P.; Brand, Randall E.; Neoptolemos, John P.; Lerch, Markus M.; Tector, Matt; Sandhu, Bimaljit S.; Guda, Nalini M.; Orlichenko, Lidiya; Alkaade, Samer; Amann, Stephen T.; Anderson, Michelle A.; Baillie, John; Banks, Peter A.; Conwell, Darwin; Cote, Gregory A.; Cotton, Peter B.; DiSario, James; Farrer, Lindsay A.; Forsmark, Chris E.; Johnstone, Marianne; Gardner, Timothy B.; Gelrud, Andres; Greenhalf, William; Haines, Jonathan L.; Hartman, Douglas J.; Hawes, Robert A.; Lawrence, Christopher; Lewis, Michele; Mayerle, Julia; Mayeux, Richard; Melhem, Nadine M.; Money, Mary E.; Muniraj, Thiruvengadam; Papachristou, Georgios I.; Pericak-Vance, Margaret A.; Romagnuolo, Joseph; Schellenberg, Gerard D.; Sherman, Stuart; Simon, Peter; Singh, Vijay K.; Slivka, Adam; Stolz, Donna; Sutton, Robert; Weiss, Frank Ulrich; Wilcox, C. Mel; Zarnescu, Narcis Octavian; Wisniewski, Stephen R.; O'Connell, Michael R.; Kienholz, Michelle L.; Roeder, Kathryn; Barmada, M. Michael; Yadav, Dhiraj; Devlin, Bernie; Albert, Marilyn S.; Albin, Roger L.; Apostolova, Liana G.; Arnold, Steven E.; Baldwin, Clinton T.; Barber, Robert; Barnes, Lisa L.; Beach, Thomas G.; Beecham, Gary W.; Beekly, Duane; Bennett, David A.; Bigio, Eileen H.; Bird, Thomas D.; Blacker, Deborah; Boxer, Adam; Burke, James R.; Buxbaum, Joseph D.; Cairns, Nigel J.; Cantwell, Laura B.; Cao, Chuanhai; Carney, Regina M.; Carroll, Steven L.; Chui, Helena C.; Clark, David G.; Cribbs, David H.; Crocco, Elizabeth A.; Cruchaga, Carlos; DeCarli, Charles; Demirci, F. Yesim; Dick, Malcolm; Dickson, Dennis W.; Duara, Ranjan; Ertekin-Taner, Nilufer; Faber, Kelley M.; Fallon, Kenneth B.; Farlow, Martin R.; Ferris, Steven; Foroud, Tatiana M.; Frosch, Matthew P.; Galasko, Douglas R.; Ganguli, Mary; Gearing, Marla; Geschwind, Daniel H.; Ghetti, Bernardino; Gilbert, John R.; Gilman, Sid; Glass, Jonathan D.; Goate, Alison M.; Graff-Radford, Neill R.; Green, Robert C.; Growdon, John H.; Hakonarson, Hakon; Hamilton-Nelson, Kara L.; Hamilton, Ronald L.; Harrell, Lindy E.; Head, Elizabeth; Honig, Lawrence S.; Hulette, Christine M.; Hyman, Bradley T.; Jicha, Gregory A.; Jin, Lee-Way; Jun, Gyungah; Kamboh, M. Ilyas; Karydas, Anna; Kaye, Jeffrey A.; Kim, Ronald; Koo, Edward H.; Kowall, Neil W.; Kramer, Joel H.; Kramer, Patricia; Kukull, Walter A.; LaFerla, Frank M.; Lah, James J.; Leverenz, James B.; Levey, Allan I.; Li, Ge; Lin, Chiao-Feng; Lieberman, Andrew P.; Lopez, Oscar L.; Lunetta, Kathryn L.; Lyketsos, Constantine G.; Mack, Wendy J.; Marson, Daniel C.; Martin, Eden R.; Martiniuk, Frank; Mash, Deborah C.; Masliah, Eliezer; McKee, Ann C.; Mesulam, Marsel; Miller, Bruce L.; Miller, Carol A.; Miller, Joshua W.; Montine, Thomas J.; Morris, John C.; Murrell, Jill R.; Naj, Adam C.; Olichney, John M.; Parisi, Joseph E.; Peskind, Elaine; Petersen, Ronald C.; Pierce, Aimee; Poon, Wayne W.; Potter, Huntington; Quinn, Joseph F.; Raj, Ashok; Raskind, Murray; Reiman, Eric M.; Reisberg, Barry; Reitz, Christiane; Ringman, John M.; Roberson, Erik D.; Rosen, Howard J.; Rosenberg, Roger N.; Sano, Mary; Saykin, Andrew J.; Schneider, Julie A.; Schneider, Lon S.; Seeley, William W.; Smith, Amanda G.; Sonnen, Joshua A.; Spina, Salvatore; Stern, Robert A.; Tanzi, Rudolph E.; Trojanowski, John Q.; Troncoso, Juan C.; Tsuang, Debby W.; Valladares, Otto; Van Deerlin, Vivianna M.; Van Eldik, Linda J.; Vardarajan, Badri N.; Vinters, Harry V.; Vonsattel, Jean Paul; Wang, Li-San; Weintraub, Sandra; Welsh-Bohmer, Kathleen A.; Williamson, Jennifer; Woltjer, Randall L.; Wright, Clinton B.; Younkin, Steven G.; Yu, Chang-En; Yu, Lei

2012-01-01

233

Altering Trehalose-6-Phosphate Content in Transgenic Potato Tubers Affects Tuber Growth and Alters Responsiveness to Hormones during Sprouting1[C][W  

PubMed Central

Trehalose-6-phosphate (T6P) is a signaling metabolite that regulates carbon metabolism, developmental processes, and growth in plants. In Arabidopsis (Arabidopsis thaliana), T6P signaling is, at least in part, mediated through inhibition of the SNF1-related protein kinase SnRK1. To investigate the role of T6P signaling in a heterotrophic, starch-accumulating storage organ, transgenic potato (Solanum tuberosum) plants with altered T6P levels specifically in their tubers were generated. Transgenic lines with elevated T6P levels (B33-TPS, expressing Escherichia coli osmoregulatory trehalose synthesis A [OtsA], which encodes a T6P synthase) displayed reduced starch content, decreased ATP contents, and increased respiration rate diagnostic for high metabolic activity. On the other hand, lines with significantly reduced T6P (B33-TPP, expressing E. coli OtsB, which encodes a T6P phosphatase) showed accumulation of soluble carbohydrates, hexose phosphates, and ATP, no change in starch when calculated on a fresh weight basis, and a strongly reduced tuber yield. [14C]Glucose feeding to transgenic tubers indicated that carbon partitioning between starch and soluble carbohydrates was not altered. Transcriptional profiling of B33-TPP tubers revealed that target genes of SnRK1 were strongly up-regulated and that T6P inhibited potato tuber SnRK1 activity in vitro. Among the SnRK1 target genes in B33-TPP tubers, those involved in the promotion of cell proliferation and growth were down-regulated, while an inhibitor of cell cycle progression was up-regulated. T6P-accumulating tubers were strongly delayed in sprouting, while those with reduced T6P sprouted earlier than the wild type. Early sprouting of B33-TPP tubers correlated with a reduced abscisic acid content. Collectively, our data indicate that T6P plays an important role for potato tuber growth. PMID:21670224

Debast, Stefan; Nunes-Nesi, Adriano; Hajirezaei, Mohammad R.; Hofmann, Jörg; Sonnewald, Uwe; Fernie, Alisdair R.; Börnke, Frederik

2011-01-01

234

Individual differences in cognition, affect, and performance: Behavioral, neuroimaging, and molecular genetic approaches  

E-print Network

), and molecular genetic studies show that analyses at the group level often mask important findings associated brain function (using both neuroimaging and molecular genetics) can be usefully applied to understanding. The attending surgeon must make a quick decision as to the appropriate course of action to take. Several

Parasuraman, Raja

235

Individual differences in cognition, affect, and performance: Behavioral, neuroimaging, and molecular genetic approaches  

E-print Network

-related potential (ERP), and molecular genetic studies show that analyses at the group level often mask important-modal neuroergonomic approach to examining brain function (using both neuroimaging and molecular genetics) can-threatening condition. The attending surgeon must make a quick decision as to the appropriate course of action to take

Parasuraman, Raja

236

A pilot study evaluating genetic alterations that drive tobacco- and betel quid-associated oral cancer in Northeast India.  

PubMed

The susceptibility of an individual to oral cancer is mediated by genetic factors and carcinogen-exposure behaviors such as betel quid chewing, tobacco use, and alcohol consumption. This pilot study was aimed to identify the genetic alteration in 100 bp upstream and downstream flanking regions in addition to the exonic regions of 169 cancer-associated genes by using Next Generation sequencing with aim to elucidate the molecular pathogenesis of tobacco- and betel quid-associated oral cancer of Northeast India. To understand the role of chemical compounds present in tobacco and betel quid associated with the progression of oral cancer, single nucleotide polymorphisms (SNPs) and insertion and deletion (Indels) found in this study were analyzed for their association with chemical compounds found in tobacco and betel quid using Comparative Toxogenomic Database. Genes (AR, BRCA1, IL8, and TP53) with novel SNP were found to be associated with arecoline which is the major component of areca nut. Genes (BARD1, BRCA2, CCND2, IGF1R, MSH6, and RASSF1) with novel deletion and genes (APC, BRMS1, CDK2AP1, CDKN2B, GAS1, IGF1R, and RB1) with novel insertion were found to be associated with aflatoxin B1 which is produced by fermented areca nut. Genes (ADH6, APC, AR, BARD1, BRMS1, CDKN1A, E2F1, FGFR4, FLNC, HRAS, IGF1R, IL12B, IL8, NBL1, STAT5B, and TP53) with novel SNP were found to be associated with aflatoxin B1. Genes (ATM, BRCA1, CDKN1A, EGFR, IL8, and TP53) with novel SNP were found to be associated with tobacco specific nitrosamines. PMID:24943687

Yadav, Dhirendra Singh; Chattopadhyay, Indranil; Verma, Anand; Devi, Thoudam Regina; Singh, L C; Sharma, Jagannath Dev; Kataki, Amal Ch; Saxena, Sunita; Kapur, Sujala

2014-09-01

237

Final Technical Report for the grant entitled "Genetic Factors Affecting Susceptibility to Low-Dose Radiation"  

SciTech Connect

The goal of this proposal was to test the hypothesis that mice heterozygous for the Nijmegen Breakage Syndrome (NBS1) gene are genetically susceptible to low doses of ionizing radiation. The rationale for this is that patients with NBS are radiation sensitive, because of defects in cellular responses to radiation induced genetic damage and haploinsufficiency at this genetic locus provides the potential for genetic susceptibility to low doses of ionizing radiation. Wild type and heterozygous NBS1 mice were irradiated and followed over their lifetime for radiation induced genomic instability, carcinogenesis and non-specific life shortening. No differences in cytogenetic damage, cancer induction or life span were observed between the hypomorphic mice indicating that genetic imbalance at the NBS1 loci does not modulate low dose radiation sensitivity.

Morgan, William, F., Ph.D., D.Sc.

2006-11-22

238

Genetic variation in the CHRNA5 gene affects mRNA levels and is associated with risk for alcohol dependence.  

PubMed

Alcohol dependence frequently co-occurs with cigarette smoking, another common addictive behavior. Evidence from genetic studies demonstrates that alcohol dependence and smoking cluster in families and have shared genetic vulnerability. Recently a candidate gene study in nicotine dependent cases and nondependent smoking controls reported strong associations between a missense mutation (rs16969968) in exon 5 of the CHRNA5 gene and a variant in the 3'-UTR of the CHRNA3 gene and nicotine dependence. In this study we performed a comprehensive association analysis of the CHRNA5-CHRNA3-CHRNB4 gene cluster in the Collaborative Study on the Genetics of Alcoholism (COGA) families to investigate the role of genetic variants in risk for alcohol dependence. Using the family-based association test, we observed that a different group of polymorphisms, spanning CHRNA5-CHRNA3, demonstrate association with alcohol dependence defined by Diagnostic and Statistical Manual of Mental Disorders, 4th edn (DSM-IV) criteria. Using logistic regression we replicated this finding in an independent case-control series from the family study of cocaine dependence. These variants show low linkage disequilibrium with the SNPs previously reported to be associated with nicotine dependence and therefore represent an independent observation. Functional studies in human brain reveal that the variants associated with alcohol dependence are also associated with altered steady-state levels of CHRNA5 mRNA. PMID:18414406

Wang, J C; Grucza, R; Cruchaga, C; Hinrichs, A L; Bertelsen, S; Budde, J P; Fox, L; Goldstein, E; Reyes, O; Saccone, N; Saccone, S; Xuei, X; Bucholz, K; Kuperman, S; Nurnberger, J; Rice, J P; Schuckit, M; Tischfield, J; Hesselbrock, V; Porjesz, B; Edenberg, H J; Bierut, L J; Goate, A M

2009-05-01

239

Genetic structure of a phytophagous mite species affected by crop practices: the case of Tetranychus urticae in clementine mandarins.  

PubMed

Tetranychus urticae Koch is a cosmopolitan mite considered as the most polyphagous species among spider mites. This mite is a key pest of clementine mandarins in Eastern Spain, where Spanish clementine production concentrates. Crop management practices can affect the population dynamics of this mite and, consequently, its impact on the orchard. Microsatellite markers were used to study mite population genetics from two commercial orchards which had been managed differently following Integrated Pest Management (IPM) or Organic Pest Management (OPM) schemes during four consecutive years. A multiplex system including 20 microsatellite loci was designed specifically and allowed an efficient and inexpensive genotyping of individual mites. We found that the IPM population had a stronger fluctuation of population structure and higher genetic diversity compared to OPM population. Thus, our study concludes that crop management has an impact on the population genetics of T. urticae which may be related to the alternation of some acaricides under IPM. PMID:24233157

Pascual-Ruiz, S; Gómez-Martinez, M A; Ansaloni, T; Segarra-Moragues, J G; Sabater-Muñoz, B; Jacas, J A; Hurtado-Ruiz, M A

2014-04-01

240

Genetic deletion of Rheb1 in the brain reduces food intake and causes hypoglycemia with altered peripheral metabolism.  

PubMed

Excessive food/energy intake is linked to obesity and metabolic disorders, such as diabetes. The hypothalamus in the brain plays a critical role in the control of food intake and peripheral metabolism. The signaling pathways in hypothalamic neurons that regulate food intake and peripheral metabolism need to be better understood for developing pharmacological interventions to manage eating behavior and obesity. Mammalian target of rapamycin (mTOR), a serine/threonine kinase, is a master regulator of cellular metabolism in different cell types. Pharmacological manipulations of mTOR complex 1 (mTORC1) activity in hypothalamic neurons alter food intake and body weight. Our previous study identified Rheb1 (Ras homolog enriched in brain 1) as an essential activator of mTORC1 activity in the brain. Here we examine whether central Rheb1 regulates food intake and peripheral metabolism through mTORC1 signaling. We find that genetic deletion of Rheb1 in the brain causes a reduction in mTORC1 activity and impairs normal food intake. As a result, Rheb1 knockout mice exhibit hypoglycemia and increased lipid mobilization in adipose tissue and ketogenesis in the liver. Our work highlights the importance of central Rheb1 signaling in euglycemia and energy homeostasis in animals. PMID:24451134

Yang, Wanchun; Jiang, Wanxiang; Luo, Liping; Bu, Jicheng; Pang, Dejiang; Wei, Jing; Du, Chongyangzi; Xia, Xiaoqiang; Cui, Yiyuan; Liu, Shuang; Mao, Qing; Chen, Mina

2014-01-01

241

Genetic factors affecting gene transcription and catalytic activity of UDP-glucuronosyltransferases in human liver.  

PubMed

The aim of this study was to discover cis- and trans-acting factors significantly affecting mRNA expression and catalytic activity of human hepatic UDP-glucuronosyltransferases (UGTs). Transcription levels of five major hepatic UGT1A (UGT1A1, UGT1A3, UGT1A4, UGT1A6 and UGT1A9) and five UGT2B (UGT2B4, UGT2B7, UGT2B10, UGT2B15 and UGT2B17) genes were quantified in human liver tissue samples (n = 125) using real-time PCR. Glucuronidation activities of 14 substrates were measured in 47 livers. We genotyped 167 tagSNPs (single-nucleotide polymorphisms) in UGT1A (n = 43) and UGT2B (n = 124), as well as the known functional UGT1A1*28 and UGT2B17 CNV (copy number variation) polymorphisms. Transcription levels of 15 transcription factors (TFs) known to regulate these UGTs were quantified. We found that UGT expression and activity were highly variable among the livers (median and range of coefficient of variations: 135%, 74-217% and 52%, 39-105%, respectively). CAR, PXR and ESR1 were found to be the most important trans-regulators of UGT transcription (median and range of correlation coefficients: 46%, 6-58%; 47%, 9-58%; and 52%, 24-75%, respectively). Hepatic UGT activities were mainly determined by UGT gene transcription levels. Twenty-one polymorphisms were significantly (FDR-adjusted P < 0.05) associated with mRNA expression and/or activities of UGT1A1, UGT1A3 and UGT2B17. We found novel SNPs in the UGT2B17 CNV region accounting for variability in UGT2B17 gene transcription and testosterone glucuronidation rate, in addition to that attributable to the UGT2B17 CNV. Our study discovered novel pharmacogenetic markers and provided detailed insight into the genetic network regulating hepatic UGTs. PMID:24879639

Liu, Wanqing; Ramírez, Jacqueline; Gamazon, Eric R; Mirkov, Snezana; Chen, Peixian; Wu, Kehua; Sun, Chang; Cox, Nancy J; Cook, Edwin; Das, Soma; Ratain, Mark J

2014-10-15

242

Host and vector movement affects genetic diversity and spatial structure of Buggy Creek virus (Togaviridae).  

PubMed

Determining the degree of genetic variability and spatial structure of arthropod-borne viruses (arboviruses) may help in identifying where strains that potentially cause epidemics or epizootics occur. Genetic diversity in arboviruses is assumed to reflect relative mobility of their vertebrate hosts (and invertebrate vectors), with highly mobile hosts such as birds leading to genetic similarity of viruses over large areas. There are no empirical studies that have directly related host or vector movement to virus genetic diversity and spatial structure. Using the entire E2 glycoprotein-coding region of 377 Buggy Creek virus isolates taken from cimicid swallow bugs (Oeciacus vicarius), the principal invertebrate vector for this virus, we show that genetic diversity between sampling sites could be predicted by the extent of movement by transient cliff swallows (Petrochelidon pyrrhonota) between nesting colonies where the virus and vectors occur. Pairwise F(ST) values between colony sites declined significantly with increasing likelihood of a swallow moving between those sites per 2-day interval during the summer nesting season. Sites with more bird movement between them had virus more similar genetically than did pairs of sites with limited or no bird movement. For one virus lineage, Buggy Creek virus showed greater haplotype and nucleotide diversity at sites that had high probabilities of birds moving into or through them during the summer; these sites likely accumulated haplotypes by virtue of frequent virus introductions by birds. Cliff swallows probably move Buggy Creek virus by transporting infected bugs on their feet. The results provide the first empirical demonstration that genetic structure of an arbovirus is strongly associated with host/vector movement, and suggest caution in assuming that bird-dispersed arboviruses always have low genetic differentiation across different sites. PMID:18373533

Brown, Charles R; Bomberger Brown, Mary; Padhi, Abinash; Foster, Jerome E; Moore, Amy T; Pfeffer, Martin; Komar, Nicholas

2008-05-01

243

Spinocerebellar Ataxia: Patient and Health Professional Perspectives on Whether and How Patents Affect Access to Clinical Genetic Testing  

PubMed Central

Genetic testing for spinocerebellar ataxia (SCA) is used in diagnosis of rare movement disorders. Such testing generally does not affect treatment, but confirmation of mutations in a known gene can confirm diagnosis and end an often years-long quest for the cause of distressing and disabling symptoms. Through interviews and a web forum hosted by the National Ataxia Foundation, patients and health professionals related their experiences with patents’ impact on access to genetic testing for SCA. In the United States, Athena Diagnostics holds either a patent or an exclusive license to a patent in the case of 6 SCA variants (SCA1-3 & 6-8) and two other hereditary ataxias (Friedreich’s Ataxia and Early Onset Ataxia). Athena has enforced its exclusive rights to SCA-related patents by sending cease and desist letters to multiple laboratories offering genetic testing for inherited neurological conditions, including SCA. Roughly half of web forum respondents had decided not to get genetic tests. Price, coverage and reimbursement by insurers and health plans, and fear of genetic discrimination were the main reasons cited for deciding not to get tested. Price was cited as an access concern by the physicians, and as sole US provider, coverage and reimbursement depend on having payment agreements between Athena and payers. In cases where payers do not reimburse, the patient is responsible for payment, although some patients can apply to the voluntary Athena Access and Patient Protection Programs offered by the company. PMID:20393313

Powell, Ashton; Chandrasekharan, Subhashini; Cook-Deegan, Robert

2011-01-01

244

Highthroughput soybean gene expression analysis The changes in the atmosphere are altering gene expression and affecting the interaction  

E-print Network

High­throughput soybean gene expression analysis The changes in the atmosphere are altering gene soybean oligoarrays to analyze changes in the gene expression profile. Affymetrix GeneChip® Soybean Genome Arrays contains 37593 probe sets representing 35611 soybean transcripts. Dissecting Signaling Pathways

DeLucia, Evan H.

245

An Experimental Investigation of Parameters Affecting Oil Recovery Efficiency Alteration during a Microbially Aided Water Flooding Process  

Microsoft Academic Search

In order to evaluate the potential of microbial recovery in the Iranian Maroon oilfield, laboratory core flood tests were designed and conducted. The effect of biosurfactant production on the recovery of crude oil during waterflooding and the effect of bioproducts on wettability alteration of the cores was investigated. Three different kinds of microbes in two different kinds of growth media

P. Heidari; A. Kordestany; M. H. Ghazanfari

2011-01-01

246

How do population genetic parameters affect germination of the heterocarpic species Atriplex tatarica (Amaranthaceae)?  

PubMed Central

Background and Aims The heterocarpic species Atriplex tatarica produces two types of seeds. In this study, how basic population genetic parameters correlate with seed germinability under various experimental conditions was tested. Methods Population genetic diversity was ascertained in eight populations of A. tatarica by assessing patterns of variation at nine allozyme loci. Germinability of both seed types from all sampled populations was determined by a common laboratory experiment under different salinity levels. Basic population genetic parameters, i.e. percentage of polymorphic loci, average number of alleles per locus and observed heterozygosity were correlated with observed population germination characteristics. Key Results Atriplex tatarica possesses a remarkable heterocarpy, i.e. one type of seed is non-dormant and the other shows different dormancy levels in relation to experimental conditions. Significant negative correlations have been detected between germination of both seed types and the coefficient of inbreeding, and a significant negative correlation between germination of dormant seeds and other population genetic parameters, i.e. percentage of polymorphic loci and average number of alleles per polymorphic locus. Moreover, populations from the region characterized by a shorter growing season manifested higher germinability, i.e. had lower dormancy, than those from the lower-latitude one. Conclusions In general, germination of non-dormant seeds is probably not under strong genetic control. Hence, they germinate as soon as conditions are favourable, thus ensuring survival in the short term, but populations risk local extinction if conditions become adverse (i.e. a high-risk strategy). In contrast, germination of the dormant type of seeds is under stronger genetic control and is significantly correlated with basic population genetic parameters. These seeds ensure long-term reproduction and survival in the field by protracted germination, albeit in low quantities (i.e. A. tatarica also adopts a low-risk strategy). PMID:19339299

Kochankova, Jana; Mandak, Bohumil

2009-01-01

247

Pubertal Onset in Girls is Strongly Influenced by Genetic Variation Affecting FSH Action  

PubMed Central

Age at pubertal onset varies substantially in healthy girls. Although genetic factors are responsible for more than half of the phenotypic variation, only a small part has been attributed to specific genetic polymorphisms identified so far. Follicle-stimulating hormone (FSH) stimulates ovarian follicle maturation and estradiol synthesis which is responsible for breast development. We assessed the effect of three polymorphisms influencing FSH action on age at breast deveopment in a population-based cohort of 964 healthy girls. Girls homozygous for FSHR -29AA (reduced FSH receptor expression) entered puberty 7.4 (2.5–12.4) months later than carriers of the common variants FSHR -29GG+GA, p = 0.003. To our knowledge, this is the strongest genetic effect on age at pubertal onset in girls published to date. PMID:25231187

Hagen, Casper P.; S?rensen, Kaspar; Aksglaede, Lise; Mouritsen, Annette; Mieritz, Mikkel G.; Tinggaard, Jeanette; Wohlfart-Veje, Christine; Petersen, J?rgen Holm; Main, Katharina M.; Meyts, Ewa Rajpert-De; Almstrup, Kristian; Juul, Anders

2014-01-01

248

Alterations of cell cycle regulators in gliomatosis cerebri  

Microsoft Academic Search

Summary  Gliomatosis cerebri (GC) is regarded as a rare glial neoplasm of unknown origin, and a detailed analysis of molecular alterations underlying this disease has started only recently. However, because GC characteristically affects large parts of the brain and spinal cord, the distribution of genetic alterations may be highly variable between different tumor areas. Additionally, tumor areas with varying degrees of

Christian Mawrin; Elmar Kirches; Regine Schneider-Stock; Carsten Boltze; Christian K. Vorwerk; Andreas von Deimling; Gisela Stoltenburg-Didinger; Antje Bornemann; Bernd Romeike; Bernd Sellhaus; Knut Dietzmann

2005-01-01

249

Genetic variation responsible for mouse strain differences in integrin {alpha}{sub 2} expression is associated with altered platelet responses to collagen  

SciTech Connect

Formation of a thrombus at the site of an injured vessel requires the coordinated action of critical platelet plasma membrane adhesion molecules. The most important initial contact of platelets with the exposed endothelial collagen and von Willebrand factor (VWF) involves the binding of glycoprotein (GP) Ib{alpha} to immobilized VWF. The VWF-GPIb{alpha} interaction is ''fast-on'' and relatively ''fast-off,'' and results in a rolling of platelets along the exposed subendothelium. This slowing of the platelets allows binding of the activating collagen-receptor, GPVI, to its ligand, resulting in activation of platelet integrins and subsequent firm adhesion, where the reactions between receptor and ligand are relatively ''slow-on'' but irreversible. The binding of integrin {alpha}{sub 2} {beta}{sub 1} underlying firm adhesion. Intracellular signaling between and through these adhesive receptors plays a crucial role in platelet adhesion and aggregation. The importance of the GPIb-IX-V and {alpha}{sub IIb} {beta}{sub 3} in normal hemostasis is under scored by the bleeding diatheses that have been reported in patients with quantitative or qualitative deficiencies of the genes that encode them. Mouse models are now commonplace for studying hemostasis and thrombosis, and important insights pertaining to the major platelet adhesive receptors have been gleaned from mouse studies involving targeted disruptions of the genes for GPIb{alpha}, GPVI, and integrin chains 2,9,10 1,4 IIb 11 and 3.12 A variety of different mouse strains have been used to assess hemostasis. For example, the FVB strain is typically used for transgenic experiments, the 129/Sv strain is used to derive embryonic stem (ES) cells, and the C57 strain is used for uniform background breeding studies. Different strains may exhibit different levels of gene expression, a feature that has been used to elucidate crucial gene regions regulating transcription. We and others have previously studied how genetic changes exert quantitative and qualitative alterations in human platelet adhesive receptors. Polymorphisms of both integrin {alpha}{sub 2} and GPIb have been associated with quantitative differences in receptor levels in healthy individuals. The variation of integrin {alpha}{sub 2} in the normal population is 5-fold, and some portion of this variability has been associated with a C/T polymorphism at nucleotide 807. Individuals homozygous for the 807C or 807T alleles have an average 2-fold difference in platelet {alpha}{sub 2} {beta}{sub 1} levels, and this difference has been linked to increased adhesion to collagen and clinical thrombotic events. Comparable alterations in platelet adhesion receptor expression have not been assessed in different mouse strains. Assessing the functional consequences of subtle genetic variations in humans is challenged by numerous gene-gene and gene environment interactions, and studies in mice can greatly minimize these confounding variables. In addition, comparative sequence analyses between species and between nonhuman primates have proved useful for identifying sequences that affect function and expression. Thus, in the case of platelet adhesion receptors, knowing mouse strain differences in expression levels might be valuable for defining the responsible quantitative trait loci as well as affecting strain choice for particular functional experiments.

Li, Tong-Tong; Larrucea, Susana; Souza, Shiloe; Leal, Suzanne M.; Lopez, Jose A.; Rubin, Edward M.; Nieswandt, Bernhard; Bray, Paul F.

2003-11-01

250

Up-Regulation of the Error-Prone DNA Polymerase K Promotes Pleiotropic Genetic Alterations and Tumorigenesis  

Microsoft Academic Search

It is currently widely accepted that genetic instability is key to cancer development. Many types of cancers arise as a consequence of a gradual accumulation of nucleotide aberra- tions, each mutation conferring growth and\\/or survival advantage. Genetic instability could also proceed in sudden bursts leading to a more drastic upheaval of structure and organization of the genome. Genetic instability, as

Clarisse Bavoux; Andreia Machado Leopoldino; Valerie Bergoglio; Jiyang O-Wang; Tomoo Ogi; Anne Bieth; Jean-Gabriel Judde; Marie-France Poupon; Thomas Helleday; Masatoshi Tagawa; CarlosRenato Machado; Jean-Sebastien Hoffmann; Christophe Cazaux

2005-01-01

251

Copyright 1998 by the Genetics Society of America Quantitative Trait Loci Affecting Differences in Floral Morphology  

E-print Network

. cardinalis flowers are visited mostly by hummingbirds. The genetic control of 12 morphological differences between the flowers of M. lewisii and M. cardinalis was explored in a large linkage mapping population pollination, but they of quantitative trait loci (QTLs) controlling adaptive are exserted in M. cardinalis

Bradshaw, Toby

252

Genetic manipulation of polyphosphate metabolism affects cadmium tolerance in Escherichia coli  

Microsoft Academic Search

Microorganisms have evolved several active heavy metal tolerance mechanisms: exclusion, excretion, sequestration, and transformation. They also have passive tolerance mechanisms, and it has been suggested that one such mechanism is intracellular chelation by long chain anionic polymers of phosphate called polyphosphate (polyP). To circumvent precipitation of metal phosphate complexes into the medium and limitation of phosphates, this study genetically munibulated

J. D. Keasling; G. A. Hupf

1996-01-01

253

Morphologic, Pathologic, and Genetic Investigations of Bolbophorus Species Affecting Cultured Channel Catfish in the Mississippi Delta  

Microsoft Academic Search

Trematodes belonging to the genus Bolbophorus have recently been reported as the cause of substantial morbidity and mortality in cultured channel catfish Ictalurus punctatus in Mississippi and Louisiana. Previous investigators identified only a single species, B. confusus. In this investigation, genetic techniques were used to identify all stages of the parasite in all of its hosts. The 18s rRNA genes

M. G. Levy; J. R. Flowers; M. F. Poore; J. E. Mullen; L. H. Khoo; L. M. Pote; I. Paperna; R. Dzikowski; R. W. Litaker

2002-01-01

254

Evidence for a genetic association between alleles of monoamine oxidase A gene and bipolar affective disorder  

Microsoft Academic Search

We present evidence of a genetic association between bipolar disorder and alleles at 3 monoamine oxidase A (MAOA) markers, but not with alleles of a monoamine oxidase B (MAOB) polymorphism. The 3 MAOA markers, including one associated with low MAOA activity, show strong allelic association with each other but surprisingly not with MAOB. Our results are significantly only for females,

Lionel C. C. Lim; P. Sham; D. Castle; Neil Hunt; Robin Murray; Michael Gill

1995-01-01

255

Affective and cognitive attitudes, uncertainty avoidance and intention to obtain genetic testing: an extension of the Theory of Planned Behaviour.  

PubMed

To ensure successful implementation of genetic screening and counselling according to patients best interests, the attitudes and motives of the public are important to consider. The aim of this study was to apply a theoretical framework in order to investigate which individual and disease characteristics might facilitate the uptake of genetic testing. A questionnaire using an extended version of the Theory of Planned Behaviour was developed to assess the predictive value of affective and cognitive expected outcomes, subjective norms, perceived control and uncertainty avoidance on the intention to undergo genetic testing. In addition to these individual characteristics, the predictive power of two disease characteristics was investigated by systematically varying the diseases fatality and penetrance (i.e. the probability of getting ill in case one is a mutation carrier). This resulted in four versions of the questionnaire which was mailed to a random sample of 2400 Norwegians. Results showed genetic test interest to be quite high, and to vary depending on the characteristics of the disease, with participants preferring tests for highly penetrant diseases. The most important individual predictor was uncertainty avoidance. PMID:21347976

Wolff, Katharina; Nordin, Karin; Brun, Wibecke; Berglund, Gunilla; Kvale, Gerd

2011-09-01

256

Negative Affect Shares Genetic and Environmental Influences with Symptoms of Childhood Internalizing and Externalizing Disorders  

ERIC Educational Resources Information Center

The co-occurrence of internalizing and externalizing disorders suggests that they may have common underlying vulnerability factors. Research has shown that negative affect is moderately positively correlated with both internalizing and externalizing disorders in children. The present study is the first to provide an examination of negative affect

Mikolajewski, Amy J.; Allan, Nicholas P.; Hart, Sara A.; Lonigan, Christopher J.; Taylor, Jeanette

2013-01-01

257

Indirect genetic effects and inbreeding: consequences of BLUP selection for socially affected traits on rate of inbreeding  

PubMed Central

Background Social interactions often occur among living organisms, including aquatic animals. There is empirical evidence showing that social interactions may genetically affect phenotypes of individuals and their group mates. In this context, the heritable effect of an individual on the phenotype of another individual is known as an Indirect Genetic Effect (IGE). Selection for socially affected traits may increase response to artificial selection, but also affect rate of inbreeding. Methods A simulation study was conducted to examine the effect of Best Linear Unbiased Prediction (BLUP) selection for socially affected traits on the rate of inbreeding. A base scenario without IGE and three alternative scenarios with different magnitudes of IGE were simulated. In each generation, 25 sires and 50 dams were mated, producing eight progeny per dam. The population was selected for 20 generations using BLUP. Individuals were randomly assigned to groups of eight members in each generation, with two families per group, each contributing four individuals. “Heritabilities” (for both direct and indirect genetic effects) were equal to 0.1, 0.3 or 0.5, and direct–indirect genetic correlations were ?0.8, ?0.4, 0, 0.4, or 0.8. The rate of inbreeding was calculated from generation 10 to 20. Results For the base scenario, the rates of inbreeding were 4.09, 2.80 and 1.95% for “heritabilities” of 0.1, 0.3 and 0.5, respectively. Overall, rates of inbreeding for the three scenarios with IGE ranged from 2.21 to 5.76% and were greater than for the base scenarios. The results show that social interaction within groups of two families increases the resemblance between estimated breeding values of relatives, which, in turn, increases the rate of inbreeding. Conclusion BLUP selection for socially affected traits increased the rate of inbreeding. To maintain inbreeding at an acceptable rate, a selection algorithm that restricts the increase in mean kinship, such as optimum contribution selection, is required. PMID:24961990

2014-01-01

258

Synergistic ablation does not affect atrophy or altered myosin heavy chain expression in the non-weight bearing soleus muscle  

NASA Technical Reports Server (NTRS)

The purpose of this study was to investigate whether the soleus muscle undergoes atrophy and alterations in myosin heavy chain (MHC) composition during non-weight bearing in the absence of synergists. Thirty-two female rats were randomly assigned to four groups: control (C), synergistic ablation (ABL) of the gastrocnemius and plantaris muscles to overload the soleus muscle, hindlimb suspension (HLS), or a combination of synergistic ablation and hindlimb suspension (HLS-ABL). After 28 days of hindlimb suspension, soleus atrophy was more pronounced in HLS (58%) than in HLS-ABL (43%) rats. Compared to C rats, non-weight bearing decreased mixed and myofibrillar protein contents and Type I MHC 49%, 45%, and 7%, respectively, in HLS animals. In addition, de novo expression of fast Type IIx and Type IIb MHC (5% and 2%, respectively) was observed in HLS animals. Similarly, when compared to C rats, mixed and myofibrillar protein contents and Type I MHC decreased 43%, 46%, and 4%, respectively, in HLS-ABL animals. Also, de novo expression of Type IIx (4%) and IIb (1%) MHC was observed. Collectively, these data indicate that the loss of muscle protein and Type I MHC, and the de novo expression of Type IIx and Type IIb MHC in the rat soleus occur independently of the presence of synergists during non-weight bearing. Furthermore, these results confirm the contention that soleus mass and MHC expression are highly sensitive to alterations in mechanical load.

Linderman, J. K.; Talmadge, R. J.; Gosselink, K. L.; Tri, P. N.; Roy, R. R.; Grindeland, R. E.

1996-01-01

259

Statistics of Scientific Procedures on Living Animals 2013: Experimentation continues to rise - the reliance on genetically-altered animals must be addressed.  

PubMed

The 2013 Statistics of Scientific Procedures on Living Animals reveal that the level of animal experimentation in Great Britain continues to rise, with 4.12 million procedures being conducted. The figures indicate that this is almost exclusively a result of the breeding and use of genetically-altered (GA) animals (i.e. genetically-modified animals, plus those with harmful genetic defects). The breeding of GA animals increased to over half (51%) of all the procedures, and GA animals were involved in 61% of all the procedures. Indeed, if these animals were removed from the statistics, the number of procedures would actually have declined by 4%. It is argued that the Coalition Government has failed to address this issue, and, as a consequence, will not be able to deliver its pledge to reduce animal use in science. Recent publications supporting the need to reassess the dominance of genetic alteration are also discussed, as well as the need to move away from the use of dogs as the default second species in safety testing. The general trends in the species used, and the numbers and types of procedures, are also reviewed. Finally, forthcoming changes to the statistics are discussed. PMID:25290946

Hudson-Shore, Michelle

2014-09-01

260

Genetic changes from artificial propagation of Pacific salmon affect the productivity and viability of supplemented populations  

USGS Publications Warehouse

Although several studies have shown genetic differences between hatchery and wild anadromous Pacific salmon (Oncorhynchus spp.), none has provided compelling evidence that artificial propagation poses a genetic threat to conservation of naturally spawning populations. When the published studies and three studies in progress are considered collectively, however, they provide strong evidence that the fitness for natural spawning and rearing can be rapidly and substantially reduced by artificial propagation. This issue takes on great importance in the Pacific Northwest where supplementation of wild salmon populations with hatchery fish has been identified as an important tool for restoring these populations. Recognition of negative aspects may lead to restricted use of supplementation, and better conservation, better evaluation, and greater benefits when supplementation is used.

Reisenbichler, R.R.; Rubin, S.P.

1999-01-01

261

The Major Genetic Determinants of HIV-1 Control Affect HLA Class I Peptide Presentation  

PubMed Central

Infectious and inflammatory diseases have repeatedly shown strong genetic associations within the major histocompatibility complex (MHC); however, the basis for these associations remains elusive. To define host genetic effects on the outcome of a chronic viral infection, we performed genome-wide association analysis in a multiethnic cohort of HIV-1 controllers and progressors, and we analyzed the effects of individual amino acids within the classical human leukocyte antigen (HLA) proteins. We identified >300 genome-wide significant single-nucleotide polymorphisms (SNPs) within the MHC and none elsewhere. Specific amino acids in the HLA-B peptide binding groove, as well as an independent HLA-C effect, explain the SNP associations and reconcile both protective and risk HLA alleles. These results implicate the nature of the HLA–viral peptide interaction as the major factor modulating durable control of HIV infection. PMID:21051598

Pereyra, Florencia; Jia, Xiaoming; McLaren, Paul J.; Telenti, Amalio; de Bakker, Paul I.W.; Walker, Bruce D.; Jia, Xiaoming; McLaren, Paul J.; Ripke, Stephan; Brumme, Chanson J.; Pulit, Sara L.; Telenti, Amalio; Carrington, Mary; Kadie, Carl M.; Carlson, Jonathan M.; Heckerman, David; de Bakker, Paul I.W.; Pereyra, Florencia; de Bakker, Paul I.W.; Graham, Robert R.; Plenge, Robert M.; Deeks, Steven G.; Walker, Bruce D.; Gianniny, Lauren; Crawford, Gabriel; Sullivan, Jordan; Gonzalez, Elena; Davies, Leela; Camargo, Amy; Moore, Jamie M.; Beattie, Nicole; Gupta, Supriya; Crenshaw, Andrew; Burtt, Noel P.; Guiducci, Candace; Gupta, Namrata; Carrington, Mary; Gao, Xiaojiang; Qi, Ying; Yuki, Yuko; Pereyra, Florencia; Piechocka-Trocha, Alicja; Cutrell, Emily; Rosenberg, Rachel; Moss, Kristin L.; Lemay, Paul; O'Leary, Jessica; Schaefer, Todd; Verma, Pranshu; Toth, Ildiko; Block, Brian; Baker, Brett; Rothchild, Alissa; Lian, Jeffrey; Proudfoot, Jacqueline; Alvino, Donna Marie L.; Vine, Seanna; Addo, Marylyn M.; Allen, Todd M.; Altfeld, Marcus; Henn, Matthew R.; Le Gall, Sylvie; Streeck, Hendrik; Walker, Bruce D.; Haas, David W.; Kuritzkes, Daniel R.; Robbins, Gregory K.; Shafer, Robert W.; Gulick, Roy M.; Shikuma, Cecilia M.; Haubrich, Richard; Riddler, Sharon; Sax, Paul E.; Daar, Eric S.; Ribaudo, Heather J.; Agan, Brian; Agarwal, Shanu; Ahern, Richard L.; Allen, Brady L.; Altidor, Sherly; Altschuler, Eric L.; Ambardar, Sujata; Anastos, Kathryn; Anderson, Ben; Anderson, Val; Andrady, Ushan; Antoniskis, Diana; Bangsberg, David; Barbaro, Daniel; Barrie, William; Bartczak, J.; Barton, Simon; Basden, Patricia; Basgoz, Nesli; Bazner, Suzane; Bellos, Nicholaos C.; Benson, Anne M.; Berger, Judith; Bernard, Nicole F.; Bernard, Annette M.; Birch, Christopher; Bodner, Stanley J.; Bolan, Robert K.; Boudreaux, Emilie T.; Bradley, Meg; Braun, James F.; Brndjar, Jon E.; Brown, Stephen J.; Brown, Katherine; Brown, Sheldon T.; Burack, Jedidiah; Bush, Larry M.; Cafaro, Virginia; Campbell, Omobolaji; Campbell, John; Carlson, Robert H.; Carmichael, J. Kevin; Casey, Kathleen K.; Cavacuiti, Chris; Celestin, Gregory; Chambers, Steven T.; Chez, Nancy; Chirch, Lisa M.; Cimoch, Paul J.; Cohen, Daniel; Cohn, Lillian E.; Conway, Brian; Cooper, David A.; Cornelson, Brian; Cox, David T.; Cristofano, Michael V.; Cuchural, George; Czartoski, Julie L.; Dahman, Joseph M.; Daly, Jennifer S.; Davis, Benjamin T.; Davis, Kristine; Davod, Sheila M.; Deeks, Steven G.; DeJesus, Edwin; Dietz, Craig A.; Dunham, Eleanor; Dunn, Michael E.; Ellerin, Todd B.; Eron, Joseph J.; Fangman, John J.W.; Farel, Claire E.; Ferlazzo, Helen; Fidler, Sarah; Fleenor-Ford, Anita; Frankel, Renee; Freedberg, Kenneth A.; French, Neel K.; Fuchs, Jonathan D.; Fuller, Jon D.; Gaberman, Jonna; Gallant, Joel E.; Gandhi, Rajesh T.; Garcia, Efrain; Garmon, Donald; Gathe, Joseph C.; Gaultier, Cyril R.; Gebre, Wondwoosen; Gilman, Frank D.; Gilson, Ian; Goepfert, Paul A.; Gottlieb, Michael S.; Goulston, Claudia; Groger, Richard K.; Gurley, T. Douglas; Haber, Stuart; Hardwicke, Robin; Hardy, W. David; Harrigan, P. Richard; Hawkins, Trevor N.; Heath, Sonya; Hecht, Frederick M.; Henry, W. Keith; Hladek, Melissa; Hoffman, Robert P.; Horton, James M.; Hsu, Ricky K.; Huhn, Gregory D.; Hunt, Peter; Hupert, Mark J.; Illeman, Mark L.; Jaeger, Hans; Jellinger, Robert M.; John, Mina; Johnson, Jennifer A.; Johnson, Kristin L.; Johnson, Heather; Johnson, Kay; Joly, Jennifer; Jordan, Wilbert C.; Kauffman, Carol A.; Khanlou, Homayoon; Killian, Robert K.; Kim, Arthur Y.; Kim, David D.; Kinder, Clifford A.; Kirchner, Jeffrey T.; Kogelman, Laura; Kojic, Erna Milunka; Korthuis, P. Todd; Kurisu, Wayne; Kwon, Douglas S.; LaMar, Melissa; Lampiris, Harry; Lanzafame, Massimiliano; Lederman, Michael M.; Lee, David M.; Lee, Jean M.L.; Lee, Marah J.; Lee, Edward T.Y.; Lemoine, Janice; Levy, Jay A.; Llibre, Josep M.; Liguori, Michael A.; Little, Susan J.; Liu, Anne Y.; Lopez, Alvaro J.; Loutfy, Mono R.; Loy, Dawn; Mohammed, Debbie Y.; Man, Alan; Mansour, Michael K.; Marconi, Vincent C.; Markowitz, Martin; Marques, Rui; Martin, Jeffrey N.; Martin, Harold L.; Mayer, Kenneth Hugh; McElrath, M. Juliana; McGhee, Theresa A.; McGovern, Barbara H.; McGowan, Katherine; McIntyre, Dawn; Mcleod, Gavin X.; Menezes, Prema; Mesa, Greg; Metroka, Craig E.; Meyer-Olson, Dirk; Miller, Andy O.; Montgomery, Kate; Mounzer, Karam C.; Nagami, Ellen H.; Nagin, Iris; Nahass, Ronald G.; Nelson, Margret O.; Nielsen, Craig; Norene, David L.; O'Connor, David H.; Ojikutu, Bisola O.; Okulicz, Jason; Oladehin, Olakunle O.; Oldfield, Edward C.; Olender, Susan A.

2011-01-01

262

The major genetic determinants of HIV-1 control affect HLA class I peptide presentation.  

PubMed

Infectious and inflammatory diseases have repeatedly shown strong genetic associations within the major histocompatibility complex (MHC); however, the basis for these associations remains elusive. To define host genetic effects on the outcome of a chronic viral infection, we performed genome-wide association analysis in a multiethnic cohort of HIV-1 controllers and progressors, and we analyzed the effects of individual amino acids within the classical human leukocyte antigen (HLA) proteins. We identified >300 genome-wide significant single-nucleotide polymorphisms (SNPs) within the MHC and none elsewhere. Specific amino acids in the HLA-B peptide binding groove, as well as an independent HLA-C effect, explain the SNP associations and reconcile both protective and risk HLA alleles. These results implicate the nature of the HLA-viral peptide interaction as the major factor modulating durable control of HIV infection. PMID:21051598

Pereyra, Florencia; Jia, Xiaoming; McLaren, Paul J; Telenti, Amalio; de Bakker, Paul I W; Walker, Bruce D; Ripke, Stephan; Brumme, Chanson J; Pulit, Sara L; Carrington, Mary; Kadie, Carl M; Carlson, Jonathan M; Heckerman, David; Graham, Robert R; Plenge, Robert M; Deeks, Steven G; Gianniny, Lauren; Crawford, Gabriel; Sullivan, Jordan; Gonzalez, Elena; Davies, Leela; Camargo, Amy; Moore, Jamie M; Beattie, Nicole; Gupta, Supriya; Crenshaw, Andrew; Burtt, Noël P; Guiducci, Candace; Gupta, Namrata; Gao, Xiaojiang; Qi, Ying; Yuki, Yuko; Piechocka-Trocha, Alicja; Cutrell, Emily; Rosenberg, Rachel; Moss, Kristin L; Lemay, Paul; O'Leary, Jessica; Schaefer, Todd; Verma, Pranshu; Toth, Ildiko; Block, Brian; Baker, Brett; Rothchild, Alissa; Lian, Jeffrey; Proudfoot, Jacqueline; Alvino, Donna Marie L; Vine, Seanna; Addo, Marylyn M; Allen, Todd M; Altfeld, Marcus; Henn, Matthew R; Le Gall, Sylvie; Streeck, Hendrik; Haas, David W; Kuritzkes, Daniel R; Robbins, Gregory K; Shafer, Robert W; Gulick, Roy M; Shikuma, Cecilia M; Haubrich, Richard; Riddler, Sharon; Sax, Paul E; Daar, Eric S; Ribaudo, Heather J; Agan, Brian; Agarwal, Shanu; Ahern, Richard L; Allen, Brady L; Altidor, Sherly; Altschuler, Eric L; Ambardar, Sujata; Anastos, Kathryn; Anderson, Ben; Anderson, Val; Andrady, Ushan; Antoniskis, Diana; Bangsberg, David; Barbaro, Daniel; Barrie, William; Bartczak, J; Barton, Simon; Basden, Patricia; Basgoz, Nesli; Bazner, Suzane; Bellos, Nicholaos C; Benson, Anne M; Berger, Judith; Bernard, Nicole F; Bernard, Annette M; Birch, Christopher; Bodner, Stanley J; Bolan, Robert K; Boudreaux, Emilie T; Bradley, Meg; Braun, James F; Brndjar, Jon E; Brown, Stephen J; Brown, Katherine; Brown, Sheldon T; Burack, Jedidiah; Bush, Larry M; Cafaro, Virginia; Campbell, Omobolaji; Campbell, John; Carlson, Robert H; Carmichael, J Kevin; Casey, Kathleen K; Cavacuiti, Chris; Celestin, Gregory; Chambers, Steven T; Chez, Nancy; Chirch, Lisa M; Cimoch, Paul J; Cohen, Daniel; Cohn, Lillian E; Conway, Brian; Cooper, David A; Cornelson, Brian; Cox, David T; Cristofano, Michael V; Cuchural, George; Czartoski, Julie L; Dahman, Joseph M; Daly, Jennifer S; Davis, Benjamin T; Davis, Kristine; Davod, Sheila M; DeJesus, Edwin; Dietz, Craig A; Dunham, Eleanor; Dunn, Michael E; Ellerin, Todd B; Eron, Joseph J; Fangman, John J W; Farel, Claire E; Ferlazzo, Helen; Fidler, Sarah; Fleenor-Ford, Anita; Frankel, Renee; Freedberg, Kenneth A; French, Neel K; Fuchs, Jonathan D; Fuller, Jon D; Gaberman, Jonna; Gallant, Joel E; Gandhi, Rajesh T; Garcia, Efrain; Garmon, Donald; Gathe, Joseph C; Gaultier, Cyril R; Gebre, Wondwoosen; Gilman, Frank D; Gilson, Ian; Goepfert, Paul A; Gottlieb, Michael S; Goulston, Claudia; Groger, Richard K; Gurley, T Douglas; Haber, Stuart; Hardwicke, Robin; Hardy, W David; Harrigan, P Richard; Hawkins, Trevor N; Heath, Sonya; Hecht, Frederick M; Henry, W Keith; Hladek, Melissa; Hoffman, Robert P; Horton, James M; Hsu, Ricky K; Huhn, Gregory D; Hunt, Peter; Hupert, Mark J; Illeman, Mark L; Jaeger, Hans; Jellinger, Robert M; John, Mina; Johnson, Jennifer A; Johnson, Kristin L; Johnson, Heather; Johnson, Kay; Joly, Jennifer; Jordan, Wilbert C; Kauffman, Carol A; Khanlou, Homayoon; Killian, Robert K; Kim, Arthur Y; Kim, David D; Kinder, Clifford A; Kirchner, Jeffrey T; Kogelman, Laura; Kojic, Erna Milunka; Korthuis, P Todd; Kurisu, Wayne; Kwon, Douglas S; LaMar, Melissa; Lampiris, Harry; Lanzafame, Massimiliano; Lederman, Michael M; Lee, David M; Lee, Jean M L; Lee, Marah J; Lee, Edward T Y; Lemoine, Janice; Levy, Jay A; Llibre, Josep M; Liguori, Michael A; Little, Susan J; Liu, Anne Y; Lopez, Alvaro J; Loutfy, Mono R; Loy, Dawn; Mohammed, Debbie Y; Man, Alan; Mansour, Michael K; Marconi, Vincent C; Markowitz, Martin; Marques, Rui; Martin, Jeffrey N; Martin, Harold L; Mayer, Kenneth Hugh; McElrath, M Juliana; McGhee, Theresa A; McGovern, Barbara H; McGowan, Katherine; McIntyre, Dawn; Mcleod, Gavin X; Menezes, Prema; Mesa, Greg; Metroka, Craig E; Meyer-Olson, Dirk; Miller, Andy O; Montgomery, Kate; Mounzer, Karam C; Nagami, Ellen H; Nagin, Iris; Nahass, Ronald G; Nelson, Margret O; Nielsen, Craig; Norene, David L; O'Connor, David H; Ojikutu, Bisola O; Okulicz, Jason; Oladehin, Olakunle O; Oldfield, Edward C; Olender, Susan A; Ostrowski, Mario; Owen, William F; Pae, Eunice; Parsonnet, Jeffrey; Pavlatos, Andrew M; Perlmutter, Aaron M; Pierce, Michael N; Pincus, Jonathan M; Pisani, Leandro; Price, Lawrence Jay; Proia, Laurie; Prokesch, Richard C; Pujet, Heather Calderon; Ramgopal, Moti; Rathod, Almas; Rausch, Michael; Ravishankar, J; Rhame, Frank S

2010-12-10

263

Is FKBP5 a genetic marker of affective psychosis? A case control study and analysis of disease related traits  

PubMed Central

Background A dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis has been proposed as an important pathogenic factor in depression. Genetic variants of FKBP5, a protein of the HPA system modulating the glucocorticoid receptor, have been reported to be genetically associated with improved response to medical treatment and an increase of depressive episodes. Methods We examined three single nucleotide polymorphisms (SNPs) in FKBP5, rs4713916 in the proposed promoter region, rs1360780 in the second intron and rs3800373 in the 3'-untranslated region (3'-UTR), in a case-control study of Caucasian origin (affective psychosis: n = 248; controls: n = 188) for genetic association and association with disease related traits. Results Allele and genotype frequencies of rs4713916, rs1360780 and rs3800373 were not significantly different between cases and controls. Two three-locus haplotypes, G-C-T and A-T-G, accounted for 86.2% in controls. Odds ratios were not increased between cases and controls, except the rare haplotype G-C-G (OR 6.81), representing 2.1% of cases and 0.3% of controls. The frequency of rs4713916AG in patients deviated from expected Hardy-Weinberg equilibrium, the genotype AA at rs4713916 in monopolar depression (P = 0.011), and the two-locus haplotype rs1360780T – rs3800373T in the total sample (overall P = 0.045) were nominally associated with longer continuance of disease. Conclusion Our data do not support a significant genetic contribution of FKBP5 polymorphisms and haplotypes to affective psychosis, and the findings are inconclusive regarding their contribution to disease-related traits. PMID:17081296

Gawlik, Micha; Moller-Ehrlich, Kerstin; Mende, Meinhard; Jovnerovski, Michael; Jung, Sven; Jabs, Burkhard; Knapp, Michael; Stoeber, Gerald

2006-01-01

264

Habitat fragmentation affects genetic diversity and differentiation of the Yarkand hare  

Microsoft Academic Search

The Yarkand hare, Lepus yarkandensis, is an endemic, endangered species restricted to the Tarim Basin of the Xinjiang Uygur Autonomous Region, China. The Yarkand\\u000a hare is distributed in scattered oases which are physically isolated by the desert. Its natural fragmentation habitat makes\\u000a it an ideal object for studying effect of habitat fragmentation on its genetic structure. To evaluate the effects

Yonghua Wu; Lin Xia; Qian Zhang; Qisen Yang

2010-01-01

265

Genetic interactions affecting human gene expression identified by variance association mapping  

PubMed Central

Non-additive interaction between genetic variants, or epistasis, is a possible explanation for the gap between heritability of complex traits and the variation explained by identified genetic loci. Interactions give rise to genotype dependent variance, and therefore the identification of variance quantitative trait loci can be an intermediate step to discover both epistasis and gene by environment effects (GxE). Using RNA-sequence data from lymphoblastoid cell lines (LCLs) from the TwinsUK cohort, we identify a candidate set of 508 variance associated SNPs. Exploiting the twin design we show that GxE plays a role in ?70% of these associations. Further investigation of these loci reveals 57 epistatic interactions that replicated in a smaller dataset, explaining on average 4.3% of phenotypic variance. In 24 cases, more variance is explained by the interaction than their additive contributions. Using molecular phenotypes in this way may provide a route to uncovering genetic interactions underlying more complex traits. DOI: http://dx.doi.org/10.7554/eLife.01381.001 PMID:24771767

Brown, Andrew Anand; Buil, Alfonso; Vinuela, Ana; Lappalainen, Tuuli; Zheng, Hou-Feng; Richards, J Brent; Small, Kerrin S; Spector, Timothy D; Dermitzakis, Emmanouil T; Durbin, Richard

2014-01-01

266

Genetic and environmental factors affecting bone mineral density in large families.  

PubMed Central

This study assessed whether relatives with low bone mineral density (BMD) could be identified in five large families using historical, biochemical, and genetic markers for osteoporosis. Fifty of 65 relatives had their bone density and bone turnover markers measured, together with an assessment of their risk factors for osteoporosis. Only 33% (5/15) of siblings, 50% (6/12) of children and 43% (10/23) of nephews and nieces had entirely normal BMD. There was no difference in life-style risk factors for osteoporosis, history of previous fractures or body mass index between normal subjects and those with osteopenia or osteoporosis. Osteopenic individuals had a significantly higher than normal osteocalcin value. Within families, there was no clear association between BMD and any of the genetic markers (vitamin D receptor gene polymorphisms, COL 1A1 and COL 1A2 polymorphisms of the collagen gene), either alone or in combination. The addition of genetic markers to the other risk factors for low BMD did not improve the prediction of BMD. In conclusion, we suggest that the presence of osteoporosis in a first degree relative should be one of the clinical indications for bone density measurement as the individuals at risk would not be picked up by other methods. PMID:9799889

Yeap, S. S.; Beaumont, M.; Bennett, A.; Keating, N. A.; White, D. A.; Hosking, D. J.

1998-01-01

267

Why Control Activity? Evolutionary Selection Pressures Affecting the Development of Physical Activity Genetic and Biological Regulation  

PubMed Central

The literature strongly suggests that daily physical activity is genetically and biologically regulated. Potential identities of the responsible mechanisms are unclear, but little has been written concerning the possible evolutionary selection pressures leading to the development of genetic/biological controls of physical activity. Given the weak relationship between exercise endurance and activity levels and the differential genomic locations associated with the regulation of endurance and activity, it is probable that regulation of endurance and activity evolved separately. This hypothesis paper considers energy expenditures and duration of activity in hunter/gatherers, pretechnology farmers, and modern Western societies and considers the potential of each to selectively influence the development of activity regulation. Food availability is also considered given the known linkage of caloric restriction on physical activity as well as early data relating food oversupply to physical inactivity. Elucidating the selection pressures responsible for the genetic/biological control of activity will allow further consideration of these pressures on activity in today's society, especially the linkages between food and activity. Further, current food abundance is removing the cues for activity that were present for the first 40,000 years of human evolution, and thus future research should investigate the effects of this abundance upon the mechanisms regulating activity. PMID:24455728

2013-01-01

268

Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay  

Microsoft Academic Search

BACKGROUND: Water deficit has significant effects on grape berry composition resulting in improved wine quality by the enhancement of color, flavors, or aromas. While some pathways or enzymes affected by water deficit have been identified, little is known about the global effects of water deficit on grape berry metabolism. RESULTS: The effects of long-term, seasonal water deficit on berries of

Laurent G Deluc; David R Quilici; Alain Decendit; Jérôme Grimplet; Matthew D Wheatley; Karen A Schlauch; Jean-Michel Mérillon; John C Cushman; Grant R Cramer

2009-01-01

269

Lathyrism-induced alterations in collagen cross-links influence the mechanical properties of bone material without affecting the mineral  

PubMed Central

In the present study a rat animal model of lathyrism was employed to decipher whether anatomically confined alterations in collagen cross-links are sufficient to influence the mechanical properties of whole bone. Animal experiments were performed under an ethics committee approved protocol. Sixty-four female (47 day old) rats of equivalent weights were divided into four groups (16 per group): Controls were fed a semi-synthetic diet containing 0.6% calcium and 0.6% phosphorus for 2 or 4 weeks and ?-APN treated animals were fed additionally with ?-aminopropionitrile (0.1% dry weight). At the end of this period the rats in the four groups were sacrificed, and L2–L6 vertebra were collected. Collagen cross-links were determined by both biochemical and spectroscopic (Fourier transform infrared imaging (FTIRI)) analyses. Mineral content and distribution (BMDD) were determined by quantitative backscattered electron imaging (qBEI), and mineral maturity/crystallinity by FTIRI techniques. Micro-CT was used to describe the architectural properties. Mechanical performance of whole bone as well as of bone matrix material was tested by vertebral compression tests and by nano-indentation, respectively. The data of the present study indicate that ?-APN treatment changed whole vertebra properties compared to non-treated rats, including collagen cross-links pattern, trabecular bone volume to tissue ratio and trabecular thickness, which were all decreased (p < 0.05). Further, compression tests revealed a significant negative impact of ?-APN treatment on maximal force to failure and energy to failure, while stiffness was not influenced. Bone mineral density distribution (BMDD) was not altered either. At the material level, ?-APN treated rats exhibited increased Pyd/Divalent cross-link ratios in areas confined to a newly formed bone. Moreover, nano-indentation experiments showed that the E-modulus and hardness were reduced only in newly formed bone areas under the influence of ?-APN, despite a similar mineral content. In conclusion the results emphasize the pivotal role of collagen cross-links in the determination of bone quality and mechanical integrity. However, in this rat animal model of lathyrism, the coupled alterations of tissue structural properties make it difficult to weigh the contribution of the anatomically confined material changes to the overall mechanical performance of whole bone. Interestingly, the collagen cross-link ratio in bone forming areas had the same profile as seen in actively bone forming trabecular surfaces in human iliac crest biopsies of osteoporotic patients. PMID:21920485

Paschalis, E.P.; Tatakis, D.N.; Robins, S.; Fratzl, P.; Manjubala, I.; Zoehrer, R.; Gamsjaeger, S.; Buchinger, B.; Roschger, A.; Phipps, R.; Boskey, A.L.; Dall'Ara, E.; Varga, P.; Zysset, P.; Klaushofer, K.; Roschger, P.

2011-01-01

270

Specific alterations in complement protein activity of little brown myotis (Myotis lucifugus) hibernating in white-nose syndrome affected sites.  

PubMed

White-nose syndrome (WNS) is the most devastating condition ever reported for hibernating bats, causing widespread mortality in the northeastern United States. The syndrome is characterized by cutaneous lesions caused by a recently identified psychrophilic and keratinophylic fungus (Geomyces destructans), depleted fat reserves, atypical behavior, and damage to wings; however, the proximate cause of mortality is still uncertain. To assess relative levels of immunocompetence in bats hibernating in WNS-affected sites compared with levels in unaffected bats, we describe blood plasma complement protein activity in hibernating little brown myotis (Myotis lucifugus) based on microbicidal competence assays using Escherichia coli, Staphylococcus aureus and Candida albicans. Blood plasma from bats collected during mid-hibernation at WNS-affected sites had higher bactericidal ability against E. coli and S. aureus, but lower fungicidal ability against C. albicans when compared with blood plasma from bats collected at unaffected sites. Within affected sites during mid-hibernation, we observed no difference in microbicidal ability between bats displaying obvious fungal infections compared to those without. Bactericidal ability against E. coli decreased significantly as hibernation progressed in bats collected from an affected site. Bactericidal ability against E. coli and fungicidal ability against C. albicans were positively correlated with body mass index (BMI) during late hibernation. We also compared complement activity against the three microbes within individuals and found that the ability of blood plasma from hibernating M. lucifugus to lyse microbial cells differed as follows: E. coli>S. aureus>C. albicans. Overall, bats affected by WNS experience both relatively elevated and reduced innate immune responses depending on the microbe tested, although the cause of observed immunological changes remains unknown. Additionally, considerable trade-offs may exist between energy conservation and immunological responses. Relationships between immune activity and torpor, including associated energy expenditure, are likely critical components in the development of WNS. PMID:22140440

Moore, Marianne S; Reichard, Jonathan D; Murtha, Timothy D; Zahedi, Bita; Fallier, Renee M; Kunz, Thomas H

2011-01-01

271

Specific Alterations in Complement Protein Activity of Little Brown Myotis (Myotis lucifugus) Hibernating in White-Nose Syndrome Affected Sites  

PubMed Central

White-nose syndrome (WNS) is the most devastating condition ever reported for hibernating bats, causing widespread mortality in the northeastern United States. The syndrome is characterized by cutaneous lesions caused by a recently identified psychrophilic and keratinophylic fungus (Geomyces destructans), depleted fat reserves, atypical behavior, and damage to wings; however, the proximate cause of mortality is still uncertain. To assess relative levels of immunocompetence in bats hibernating in WNS-affected sites compared with levels in unaffected bats, we describe blood plasma complement protein activity in hibernating little brown myotis (Myotis lucifugus) based on microbicidal competence assays using Escherichia coli, Staphylococcus aureus and Candida albicans. Blood plasma from bats collected during mid-hibernation at WNS-affected sites had higher bactericidal ability against E. coli and S. aureus, but lower fungicidal ability against C. albicans when compared with blood plasma from bats collected at unaffected sites. Within affected sites during mid-hibernation, we observed no difference in microbicidal ability between bats displaying obvious fungal infections compared to those without. Bactericidal ability against E. coli decreased significantly as hibernation progressed in bats collected from an affected site. Bactericidal ability against E. coli and fungicidal ability against C. albicans were positively correlated with body mass index (BMI) during late hibernation. We also compared complement activity against the three microbes within individuals and found that the ability of blood plasma from hibernating M. lucifugus to lyse microbial cells differed as follows: E. coli>S. aureus>C. albicans. Overall, bats affected by WNS experience both relatively elevated and reduced innate immune responses depending on the microbe tested, although the cause of observed immunological changes remains unknown. Additionally, considerable trade-offs may exist between energy conservation and immunological responses. Relationships between immune activity and torpor, including associated energy expenditure, are likely critical components in the development of WNS. PMID:22140440

Moore, Marianne S.; Reichard, Jonathan D.; Murtha, Timothy D.; Zahedi, Bita; Fallier, Renee M.; Kunz, Thomas H.

2011-01-01

272

Endocannabinoid receptor deficiency affects maternal care and alters the dam's hippocampal oxytocin receptor and brain-derived neurotrophic factor expression.  

PubMed

Maternal care is the newborn's first experience of social interaction, and this influences infant survival, development and social competences throughout life. We recently found that postpartum blocking of the endocannabinoid receptor-1 (CB1R) altered maternal behaviour. In the present study, maternal care was assessed by the time taken to retrieve pups, pups' ultrasonic vocalisations (USVs) and pup body weight, comparing CB1R deleted (CB1R KO) versus wild-type (WT) mice. After culling on postpartum day 8, hippocampal expression of oxytocin receptor (OXTR), brain-derived neurotrophic factor (BDNF) and stress-mediating factors were evaluated in CB1R KO and WT dams. Comparisons were also performed with nulliparous (NP) CB1R KO and WT mice. Compared to WT, CB1R KO dams were slower to retrieve their pups. Although the body weight of the KO pups did not differ from the weight of WT pups, they emitted fewer USVs. This impairment of the dam-pup relationship correlated with a significant reduction of OXTR mRNA and protein levels among CB1R KO dams compared to WT dams. Furthermore, WT dams exhibited elevated OXTR mRNA expression, as well as increased levels of mineralocorticoid and glucocorticoid receptors, compared to WT NP mice. By contrast, CB1R KO dams showed no such elevation of OXTR expression, alongside lower BDNF and mineralocorticoid receptors, as well as elevated corticotrophin-releasing hormone mRNA levels, when compared to CB1R KO NP. Thus, it appears that the disruption of endocannabinoid signalling by CB1R deletion alters expression of the OXTR, apparently leading to deleterious effects upon maternal behaviour. PMID:23895426

Schechter, M; Weller, A; Pittel, Z; Gross, M; Zimmer, A; Pinhasov, A

2013-10-01

273

Altered Sleep Regulation in a Mouse Model of SCN1A-Derived Genetic Epilepsy with Febrile Seizures Plus (GEFS+)  

PubMed Central

Summary Purpose Mutations in the voltage-gated sodium channel SCN1A are responsible for a number of epilepsy disorders, including genetic epilepsy with febrile seizures plus (GEFS+) and Dravet syndrome. In addition to seizures, patients with SCN1A mutations often experience sleep abnormalities, suggesting that SCN1A may also play a role in the neuronal pathways involved in the regulation of sleep. However, to date, a role for SCN1A in the regulation of sleep architecture has not been directly examined. To fill this gap, we tested the hypothesis that SCN1A contributes to the regulation of sleep architecture, and by extension, that SCN1A dysfunction contributes to the sleep abnormalities observed in patients with SCN1A mutations. Methods Using immunohistochemistry we first examined the expression of Scn1a in regions of the mouse brain that are known to be involved in seizure generation and sleep regulation. Next, we performed detailed analysis of sleep and wake electroencephalographic (EEG) patterns during 48 continuous hours of baseline recordings in a knock-in mouse line that expresses the human SCN1A GEFS+ mutation R1648H (RH mutants). We also characterized the sleep-wake pattern following 6 hours of sleep deprivation. Key Findings Immunohistochemistry revealed broad expression of Scn1a in the neocortex, hippocampus, hypothalamus, thalamic reticular nuclei, dorsal raphe nuclei, pedunculopontine and laterodorsal tegmental nuclei. Co-localization between Scn1a immunoreactivity and critical cell types within these regions was also observed. EEG analysis under baseline conditions revealed increased wakefulness and reduced non-rapid eye movement (NREM) and rapid eye movement (REM) sleep amounts during the dark phase in the RH mutants, suggesting a sleep deficit. Nevertheless, the mutants exhibited levels of NREM and REM sleep that were generally similar to WT littermates during the recovery period following 6-hours of sleep deprivation. Significance These results establish a direct role for SCN1A in the regulation of sleep and suggest that patients with SCN1A mutations may experience chronic alterations in sleep, potentially leading to negative outcomes over time. In addition, the expression of Scn1a in specific cells types/brain regions that are known to play critical roles in seizure generation and sleep now provides a mechanistic basis for the clinical features (seizures and sleep abnormalities) associated with human SCN1A mutations. PMID:23311867

Papale, Ligia A.; Makinson, Christopher D.; Ehlen, J. Christopher; Tufik, Sergio; Decker, Michael J.; Paul, Ketema N.; Escayg, Andrew

2013-01-01

274

The Role of Genetic Sex in Affect Regulation and Expression of GABA-Related Genes Across Species.  

PubMed

Although circulating hormones and inhibitory gamma-aminobutyric acid (GABA)-related factors are known to affect mood, considerable knowledge gaps persist for biological mechanisms underlying the female bias in mood disorders. Here, we combine human and mouse studies to investigate sexual dimorphism in the GABA system in the context of major depressive disorder (MDD) and then use a genetic model to dissect the role of sex-related factors in GABA-related gene expression and anxiety-/depressive-like behaviors in mice. First, using meta-analysis of gene array data in human postmortem brain (N?=?51 MDD subjects, 50 controls), we show that the previously reported down-regulation in MDD of somatostatin (SST), a marker of a GABA neuron subtype, is significantly greater in women with MDD. Second, using gene co-expression network analysis in control human subjects (N?=?214; two frontal cortex regions) and expression quantitative trait loci mapping (N?=?170 subjects), we show that expression of SST and the GABA-synthesizing enzymes glutamate decarboxylase 67 (GAD67) and GAD65 are tightly co-regulated and influenced by X-chromosome genetic polymorphisms. Third, using a rodent genetic model [Four Core Genotypes (FCG) mice], in which genetic and gonadal sex are artificially dissociated (N???12/group), we show that genetic sex (i.e., X/Y-chromosome) influences both gene expression (lower Sst, Gad67, Gad65 in XY mice) and anxiety-like behaviors (higher in XY mice). This suggests that in an intact male animal, the observed behavior represents the outcomes of male genetic sex increasing and male-like testosterone decreasing anxiety-like behaviors. Gonadal sex was the only factor influencing depressive-like behavior (gonadal males?genetic sex) on GABA-related genes and anxiety-like behaviors. PMID:24062698

Seney, Marianne L; Chang, Lun-Ching; Oh, Hyunjung; Wang, Xingbin; Tseng, George C; Lewis, David A; Sibille, Etienne

2013-01-01

275

Genetic Diversity of Sockeye Salmon of Cook Inlet, Alaska, and Its Application to Management of Populations Affected by the Exxon Valdez Oil Spill  

Microsoft Academic Search

Genetic data from sockeye salmon Oncorhynchus nerka were collected from all major systems in upper Cook Inlet, Alaska, that produce sockeye salmon, including the Kenai River drainage, a major system that was affected by the Exxon Valdez oil spill. The products of 29 enzymes encoded by 67 protein-encoding loci resolved by allozyme analysis revealed a substantial amount of genetic diversity

Lisa W. Seeb; Chris Habicht; William D. Templin; Kenneth E. Tarbox; Randall Z. Davis; Linda K. Brannian; James E. Seeb

2000-01-01

276

The Genetics of Common Variation affecting Platelet Development, Function and Pharmaceutical Targeting  

PubMed Central

Summary Common variant effects on human platelet function and response to anti-platelet treatment have traditionally been studied using candidate gene approaches involving a limited number of variants and genes. These studies have often been undertaken in clinically defined cohorts. More recently, studies have applied genome-wide scans in larger population samples than prior candidate studies, in some cases scanning relatively healthy individuals. These studies demonstrate synergy with some prior candidate gene findings (e.g., GP6, ADRA2A) but also uncover novel loci involved in platelet function. Here, I summarise findings on common genetic variation influencing platelet development, function and therapeutics. Taken together, candidate gene and genome-wide studies begin to account for common variation in platelet function and provide information that may ultimately be useful in pharmacogenetic applications in the clinic. More than 50 loci have been identified with consistent associations with platelet phenotypes in ?2 populations. Several variants are under further study in clinical trials relating to anti-platelet therapies. In order to have useful clinical applications, variants must have large effects on a modifiable outcome. Regardless of clinical applications, studies of common genetic influences, even of small effect, offer additional insights into platelet biology including the importance of intracellular signalling and novel receptors. Understanding of common platelet-related genetics remains behind parallel fields (e.g., lipids, blood pressure) due to challenges in phenotype ascertainment. Further work is necessary to discover and characterise loci for platelet function, and to assess whether these loci contribute to disease aetiologies or response to therapeutics. PMID:21781261

Johnson, Andrew D.

2011-01-01

277

Copyright 2001 by the Genetics Society of America Functional Divergence in the Caspase Gene Family and Altered Functional  

E-print Network

Copyright 2001 by the Genetics Society of America Functional Divergence in the Caspase Gene Family of Zoology and Genetics, Center for Bioinformatics and Biological Statistics, Iowa State University, Ames assay. Our analysis shows theprocess in which cells commit suicide when they are not needed

Gu, Xun

278

Altered daylength affects dendritic structure in a song-related brain region in red-winged blackbirds.  

PubMed

Substantial neural and behavioral plasticity occurs in the avian song system in adulthood. Changes in the volume of one of the song control nuclei, robustus archistriatalis (RA), have been associated with seasonal changes in singing behavior in adult canaries (Serinus canarius) and red-winged blackbirds (Agelaius phoeniceus). The present work assessed the effects of changed daylength on dendritic morphology in RA in adult male red-winged blackbirds. Brains from hand-reared red-winged blackbirds maintained on long days or long days followed by short days were stained with a Golgi-Cox procedure. Dendritic morphology and spine density of type IV neurons from nucleus RA were compared between long and short day birds. Neurons from short day birds have smaller dendritic fields than neurons from long day birds, with the difference greatest for distal dendrites. In addition, the density of dendritic spines is significantly smaller for neurons from short day birds. Together, these changes result in the loss of approximately 40% of the spines on this neuron class. In previous work in adult female canaries, external testosterone administration has been shown to be associated with increases in dendritic field size and synapse number. The similarity of the neuronal changes in RA that are associated with the two sorts of manipulations suggest that some consequences of altered daylength are mediated by changes in the levels of gonadal steroids. PMID:1759944

Hill, K M; DeVoogd, T J

1991-11-01

279

Alterations in Cytosolic Glucose-Phosphate Metabolism Affect Structural Features and Biochemical Properties of Starch-Related Heteroglycans1[W  

PubMed Central

The cytosolic pools of glucose-1-phosphate (Glc-1-P) and glucose-6-phosphate are essential intermediates in several biosynthetic paths, including the formation of sucrose and cell wall constituents, and they are also linked to the cytosolic starch-related heteroglycans. In this work, structural features and biochemical properties of starch-related heteroglycans were analyzed as affected by the cytosolic glucose monophosphate metabolism using both source and sink organs from wild-type and various transgenic potato (Solanum tuberosum) plants. In leaves, increased levels of the cytosolic phosphoglucomutase (cPGM) did affect the cytosolic heteroglycans, as both the glucosyl content and the size distribution were diminished. By contrast, underexpression of cPGM resulted in an unchanged size distribution and an unaltered or even increased glucosyl content of the heteroglycans. Heteroglycans prepared from potato tubers were found to be similar to those from leaves but were not significantly affected by the level of cPGM activity. However, external glucose or Glc-1-P exerted entirely different effects on the cytosolic heteroglycans when added to tuber discs. Glucose was directed mainly toward starch and cell wall material, but incorporation into the constituents of the cytosolic heteroglycans was very low and roughly reflected the relative monomeric abundance. By contrast, Glc-1-P was selectively taken up by the tuber discs and resulted in a fast increase in the glucosyl content of the heteroglycans that quantitatively reflected the level of the cytosolic phosphorylase activity. Based on 14C labeling experiments, we propose that in the cytosol, glucose and Glc-1-P are metabolized by largely separated paths. PMID:18805950

Fettke, Joerg; Nunes-Nesi, Adriano; Alpers, Jessica; Szkop, Michal; Fernie, Alisdair R.; Steup, Martin

2008-01-01

280

Posters: Psychiatric Genetics, Neurogenetics and Neurodegeneration74 Copy number aberrations affecting adhesion genes involved in the  

E-print Network

affecting adhesion genes involved in the development of the cerebellar vermis are associated with autism investigated neurodevelopmental dysfunctions in autism spectrum disorders (ASD) by a integrative analysis, the BioGPS tissue atlas, the Allen brain atlas, and in situ hybridization histochemistry data from

Hochreiter, Sepp

281

COMT genetic variation confers risk for psychotic and affective disorders: a case control study  

Microsoft Academic Search

BACKGROUND: Variation in the COMT gene has been implicated in a number of psychiatric disorders, including psychotic, affective and anxiety disorders. The majority of these studies have focused on the functional Val108\\/158Met polymorphism and yielded conflicting results, with limited studies examining the relationship between other polymorphisms, or haplotypes, and psychiatric illness. We hypothesized that COMT variation may confer a general

Birgit Funke; Anil K Malhotra; Christine T Finn; Alex M Plocik; Stephen L Lake; Todd Lencz; Pamela DeRosse; John M Kane; Raju Kucherlapati

2005-01-01

282

Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay  

PubMed Central

Background Water deficit has significant effects on grape berry composition resulting in improved wine quality by the enhancement of color, flavors, or aromas. While some pathways or enzymes affected by water deficit have been identified, little is known about the global effects of water deficit on grape berry metabolism. Results The effects of long-term, seasonal water deficit on berries of Cabernet Sauvignon, a red-wine grape, and Chardonnay, a white-wine grape were analyzed by integrated transcript and metabolite profiling. Over the course of berry development, the steady-state transcript abundance of approximately 6,000 Unigenes differed significantly between the cultivars and the irrigation treatments. Water deficit most affected the phenylpropanoid, ABA, isoprenoid, carotenoid, amino acid and fatty acid metabolic pathways. Targeted metabolites were profiled to confirm putative changes in specific metabolic pathways. Water deficit activated the expression of numerous transcripts associated with glutamate and proline biosynthesis and some committed steps of the phenylpropanoid pathway that increased anthocyanin concentrations in Cabernet Sauvignon. In Chardonnay, water deficit activated parts of the phenylpropanoid, energy, carotenoid and isoprenoid metabolic pathways that contribute to increased concentrations of antheraxanthin, flavonols and aroma volatiles. Water deficit affected the ABA metabolic pathway in both cultivars. Berry ABA concentrations were highly correlated with 9-cis-epoxycarotenoid dioxygenase (NCED1) transcript abundance, whereas the mRNA expression of other NCED genes and ABA catabolic and glycosylation processes were largely unaffected. Water deficit nearly doubled ABA concentrations within berries of Cabernet Sauvignon, whereas it decreased ABA in Chardonnay at véraison and shortly thereafter. Conclusion The metabolic responses of grapes to water deficit varied with the cultivar and fruit pigmentation. Chardonnay berries, which lack any significant anthocyanin content, exhibited increased photoprotection mechanisms under water deficit conditions. Water deficit increased ABA, proline, sugar and anthocyanin concentrations in Cabernet Sauvignon, but not Chardonnay berries, consistent with the hypothesis that ABA enhanced accumulation of these compounds. Water deficit increased the transcript abundance of lipoxygenase and hydroperoxide lyase in fatty metabolism, a pathway known to affect berry and wine aromas. These changes in metabolism have important impacts on berry flavor and quality characteristics. Several of these metabolites are known to contribute to increased human-health benefits. PMID:19426499

Deluc, Laurent G; Quilici, David R; Decendit, Alain; Grimplet, Jerome; Wheatley, Matthew D; Schlauch, Karen A; Merillon, Jean-Michel; Cushman, John C; Cramer, Grant R

2009-01-01

283

Affected sib-pair interval mapping and exclusion for complex genetic traits: Inferring identity by descent status from relatives  

SciTech Connect

Affected sib-pair (ASP) methods provide a useful approach for the initial genetic mapping of complex diseases for which mode of inheritance is uncertain. Risch described a method for interval mapping and exclusion based on the ratio lambda comparing disease risk in the first degree relatives of affected individuals to disease risk in the general population. He assumed marker identity by descent (IBD) status for the ASP could be deduced from parental genotypes. For late onset diseases such as type 2 diabetes, parents may be dead or otherwise unavailable, so that marker IBD status generally cannot be inferred with certainty. Guo has developed efficient methods for probabilistic determination of marker IBD sharing for two or more loci. We have combined and extended the methods of Risch and Guo to carry out interval mapping and exclusion when parents are missing but other relatives such as additional siblings are available. Our method is based on calculating the likelihood of marker data of the ASP and their relatives conditional on the disease status of the ASP, as a function of lambda and the position of the disease locus within the genetic map. We currently are using this method to compare the information to detect or exclude linkage provided by various types of ASP nuclear families -- zero, one, or two typed parents and zero, one, two, or more additional siblings -- as a function of sample size, marker density and informativity, and risk ratio lambda.

Hauser, E.R.; Boehnke, M.; Guo, S.W. [Univ. of Michigan, Ann Arbor, MI (United States)] [and others

1994-09-01

284

Genetic mapping of quantitative trait loci affecting susceptibility to Marek's disease virus induced tumors in F2 intercross chickens.  

PubMed

Marek's disease (MD) is a lymphoproliferative disease caused by the MD virus (MDV), which costs the poultry industry nearly $1 billion annually. To identify quantitative trait loci (QTL) affecting MD susceptibility, the inbred lines 6(3) (MD resistant) and 7(2) (MD susceptible) were mated to create more than 300 F2 chickens. The F2 chickens were challenged with MDV JM strain, moderately virulent) at 1 wk of age and assessed for MD susceptibility. The QTL analysis was divided into three stages. In stage 1, 65 DNA markers selected from the chicken genetic maps were typed on the 40 most MD-susceptible and the 40 most MD-resistant F2 chickens, and 21 markers residing near suggestive QTL were revealed by analysis of variance (ANOVA). In stage 2, the suggestive markers plus available flanking markers were typed on 272 F2 chickens, and three suggestive QTL were identified by ANOVA. In stage 3, using the interval mapping program Map Manager and permutation tests, two significant and two suggestive MD QTL were identified on four chromosomal subregions. Three to five loci collected explained between 11 and 23% of the phenotypic MD variation, or 32-68% of the genetic variance. This study constitutes the first report in the domestic chicken on the mapping of non-major histocompatibility complex QTL affecting MD susceptibility. PMID:9475745

Vallejo, R L; Bacon, L D; Liu, H C; Witter, R L; Groenen, M A; Hillel, J; Cheng, H H

1998-01-01

285

Genetic variation in the mouse model of Niemann Pick C1 affects female, as well as male, adiposity, and hepatic bile transporters but has indeterminate effects on caveolae  

PubMed Central

We have previously shown that male Npc1 heterozygous mice (Npc1+/?), as compared to homozygous wild-type mice (Npc1+/+), both maintained on the —lean BALB/cJ genetic background, become obese on a high fat but not on a low fat diet. We have now extended this result for female heterozygous mice. When fed high-fat diet, the Npc1+/? white adipose weight is also increased in females, therefore following the same trend as males. Bile transporters which had previously been found to be altered in Npc1?/? mice on a high fat diet, showed related, but small, changes in mRNA levels but large changes in protein expression. We have addressed the possible role of caveolae in these differences. It has long been known that caveolin 1 is increased in the liver (sex not specified) of Npc1+/? (compared to Npc1+/+ and Npc1?/?) mice and in heterozygous cultured skin fibroblasts of NPC1 carriers. We now find that caveolin 1 is increased in male, but not female liver and female, but not male adipose tissue. The caveolin 1 increase was not accompanied by changes in another caveolar protein, polymerase1 and transcript release factor (Ptrf). The numbers of caveolae in female adipose cells could not be correlated with levels of caveolae. Thus, we conclude that Npc1 affects female as well as male obesity and bile transporters but that effects on caveolin 1 are not discernible. PMID:22020183

Jelinek, David A; Maghsoodi, Bita; Borbon, Ivan A; Hardwick, Rhiannon N.; Cherrington, Nathan J.; Erickson, Robert P

2011-01-01

286

Genetic variation in the mouse model of Niemann Pick C1 affects female, as well as male, adiposity, and hepatic bile transporters but has indeterminate effects on caveolae.  

PubMed

We have previously shown that male Npc1 heterozygous mice (Npc1(+/-)), as compared to homozygous wild-type mice (Npc1(+/+)), both maintained on the "lean" BALB/cJ genetic background, become obese on a high fat but not on a low fat diet. We have now extended this result for female heterozygous mice. When fed high-fat diet, the Npc1(+/-) white adipose weight is also increased in females, therefore following the same trend as males. Bile transporters which had previously been found to be altered in Npc1(-/-) mice on a high fat diet, showed related, but small, changes in mRNA levels but large changes in protein expression. We have addressed the possible role of caveolae in these differences. It has long been known that caveolin 1 is increased in the liver (sex not specified) of Npc1(+/-) (compared to Npc1(+/+) and Npc1(-/-)) mice and in heterozygous cultured skin fibroblasts of NPC1 carriers. We now find that caveolin 1 is increased in male, but not female liver and female, but not male adipose tissue. The caveolin 1 increase was not accompanied by changes in another caveolar protein, polymerase1 and transcript release factor (Ptrf). The numbers of caveolae in female adipose cells could not be correlated with levels of caveolae. Thus, we conclude that Npc1 affects female as well as male obesity and bile transporters but that effects on caveolin 1 are not discernible. PMID:22020183

Jelinek, David A; Maghsoodi, Bita; Borbon, Ivan A; Hardwick, Rhiannon N; Cherrington, Nathan J; Erickson, Robert P

2012-01-10

287

Diet-Induced Alterations of Host Cholesterol Metabolism Are Likely To Affect the Gut Microbiota Composition in Hamsters  

PubMed Central

The gastrointestinal microbiota affects the metabolism of the mammalian host and has consequences for health. However, the complexity of gut microbial communities and host metabolic pathways make functional connections difficult to unravel, especially in terms of causation. In this study, we have characterized the fecal microbiota of hamsters whose cholesterol metabolism was extensively modulated by the dietary addition of plant sterol esters (PSE). PSE intake induced dramatic shifts in the fecal microbiota, reducing several bacterial taxa within the families Coriobacteriaceae and Erysipelotrichaceae. The abundance of these taxa displayed remarkably high correlations with host cholesterol metabolites. Most importantly, the associations between several bacterial taxa with fecal and biliary cholesterol excretion showed an almost perfect fit to a sigmoidal nonlinear model of bacterial inhibition, suggesting that host cholesterol excretion can shape microbiota structure through the antibacterial action of cholesterol. In vitro experiments suggested a modest antibacterial effect of cholesterol, and especially of cholesteryl-linoleate, but not plant sterols when included in model bile micelles. The findings obtained in this study are relevant to our understanding of gut microbiota-host lipid metabolism interactions, as they provide the first evidence for a role of cholesterol excreted with the bile as a relevant host factor that modulates the gut microbiota. The findings further suggest that the connections between Coriobacteriaceae and Erysipelotrichaceae and host lipid metabolism, which have been observed in several studies, could be caused by a metabolic phenotype of the host (cholesterol excretion) affecting the gut microbiota. PMID:23124234

Martinez, Ines; Perdicaro, Diahann J.; Brown, Andrew W.; Hammons, Susan; Carden, Trevor J.; Carr, Timothy P.; Eskridge, Kent M.

2013-01-01

288

Genetic variation in SIRT1 affects susceptibility of lung squamous cell carcinomas in former uranium miners from the Colorado plateau  

PubMed Central

Epidemiological studies of underground miners suggested that occupational exposure to radon causes lung cancer with squamous cell carcinoma (SCC) as the predominant histological type. However, the genetic determinants for susceptibility of radon-induced SCC in miners are unclear. Double-strand breaks induced by radioactive radon daughters are repaired primarily by non-homologous end joining (NHEJ) that is accompanied by the dynamic changes in surrounding chromatin, including nucleosome repositioning and histone modifications. Thus, a molecular epidemiological study was conducted to assess whether genetic variation in 16 genes involved in NHEJ and related histone modification affected susceptibility for SCC in radon-exposed former miners (267 SCC cases and 383 controls) from the Colorado plateau. A global association between genetic variation in the haplotype block where SIRT1 resides and the risk for SCC in miners (P = 0.003) was identified. Haplotype alleles tagged by the A allele of SIRT1 rs7097008 were associated with increased risk for SCC (odds ratio = 1.69, P = 8.2×10?5) and greater survival in SCC cases (hazard ratio = 0.79, P = 0.03) in miners. Functional validation of rs7097008 demonstrated that the A allele was associated with reduced gene expression in bronchial epithelial cells and compromised DNA repair capacity in peripheral lymphocytes. Together, these findings substantiate genetic variation in SIRT1 as a risk modifier for developing SCC in miners and suggest that SIRT1 may also play a tumor suppressor role in radon-induced cancer in miners. PMID:23354305

Belinsky, Steven A.

2013-01-01

289

Recent and Projected Increases in Atmospheric CO2 Concentration Can Enhance Gene Flow between Wild and Genetically Altered Rice (Oryza sativa)  

PubMed Central

Although recent and projected increases in atmospheric carbon dioxide can alter plant phenological development, these changes have not been quantified in terms of floral outcrossing rates or gene transfer. Could differential phenological development in response to rising CO2 between genetically modified crops and wild, weedy relatives increase the spread of novel genes, potentially altering evolutionary fitness? Here we show that increasing CO2 from an early 20th century concentration (300 µmol mol?1) to current (400 µmol mol?1) and projected, mid-21st century (600 µmol mol?1) values, enhanced the flow of genes from wild, weedy rice to the genetically altered, herbicide resistant, cultivated population, with outcrossing increasing from 0.22% to 0.71% from 300 to 600 µmol mol?1. The increase in outcrossing and gene transfer was associated with differential increases in plant height, as well as greater tiller and panicle production in the wild, relative to the cultivated population. In addition, increasing CO2 also resulted in a greater synchronicity in flowering times between the two populations. The observed changes reported here resulted in a subsequent increase in rice dedomestication and a greater number of weedy, herbicide-resistant hybrid progeny. Overall, these data suggest that differential phenological responses to rising atmospheric CO2 could result in enhanced flow of novel genes and greater success of feral plant species in agroecosystems. PMID:22649533

Ziska, Lewis H.; Gealy, David R.; Tomecek, Martha B.; Jackson, Aaron K.; Black, Howard L.

2012-01-01

290

A Genetic Screen to Discover Pathways Affecting Cohesin Function in Schizosaccharomyces pombe Identifies Chromatin Effectors  

PubMed Central

Cohesion, the force that holds sister chromatids together from the time of DNA replication until separation at the metaphase to anaphase transition, is mediated by the cohesin complex. This complex is also involved in DNA damage repair, chromosomes condensation, and gene regulation. To learn more about the cellular functions of cohesin, we conducted a genetic screen in Schizosaccharomyces pombe with two different cohesin mutants (eso1-G799D and mis4-242). We found synthetic negative interactions with deletions of genes involved in DNA replication and heterochromatin formation. We also found a few gene deletions that rescued the growth of eso1-G799D at the nonpermissive temperature, and these genes partially rescue the lagging chromosome phenotype. These genes are all chromatin effectors. Overall, our screen revealed an intimate association between cohesin and chromatin. PMID:23050226

Chen, Zhiming; McCroskey, Scott; Guo, Weichao; Li, Hua; Gerton, Jennifer L.

2012-01-01

291

Genetic changes that affect the virulence of measles virus in a rhesus macaque model.  

PubMed

To identify genetic changes that lead to the attenuation of measles virus (MV), a strain of MV that is pathogenic in rhesus macaques was adapted to grow in Vero cells, Vero/hSLAM cells and, to simulate the process used to derive live attenuated vaccines, in primary chicken embryo fibroblasts (CEF). Comparison of the complete genomic sequences of the pathogenic wild-type (Davis87-wt) and four cell culture-adapted strains derived from it showed complete conservation of sequence in the Vero/hSLAM-passaged virus. Viruses adapted to Vero cells and CEF had predicted amino acid changes in the nucleocapsid protein, phosphoprotein, V protein, C protein, matrix protein, and the cytoplasmic tail of the hemagglutinin protein. All four cell culture-adapted strains, including the Vero/hSLAM cell-passaged virus, were able to productively infect Vero cells, but the peak viral titers differed. The Vero cell-adapted strains were unable to replicate in Chinese Hamster Ovary cells expressing CD46, indicating that they had not adapted to use the CD46 receptor. The Vero/hSLAM cell-passaged virus retained pathogenicity in rhesus macaques as measured by the appearance of a skin rash while the Vero cell-adapted and CEF-adapted strains had lost the ability to cause a rash. There were no significant differences in viral titers in peripheral blood mononuclear cells among monkeys infected with any of the viral stocks tested. These results identify a limited number of genetic changes in the genome of MV that lead to attenuation in vivo. PMID:18155263

Bankamp, Bettina; Hodge, Gregory; McChesney, Michael B; Bellini, William J; Rota, Paul A

2008-03-30

292

Oxytocin and Vasopressin Are Dysregulated in Williams Syndrome, a Genetic Disorder Affecting Social Behavior  

PubMed Central

The molecular and neural mechanisms regulating human social-emotional behaviors are fundamentally important but largely unknown; unraveling these requires a genetic systems neuroscience analysis of human models. Williams Syndrome (WS), a condition caused by deletion of ?28 genes, is associated with a gregarious personality, strong drive to approach strangers, difficult peer interactions, and attraction to music. WS provides a unique opportunity to identify endogenous human gene-behavior mechanisms. Social neuropeptides including oxytocin (OT) and arginine vasopressin (AVP) regulate reproductive and social behaviors in mammals, and we reasoned that these might mediate the features of WS. Here we established blood levels of OT and AVP in WS and controls at baseline, and at multiple timepoints following a positive emotional intervention (music), and a negative physical stressor (cold). We also related these levels to standardized indices of social behavior. Results revealed significantly higher median levels of OT in WS versus controls at baseline, with a less marked increase in AVP. Further, in WS, OT and AVP increased in response to music and to cold, with greater variability and an amplified peak release compared to controls. In WS, baseline OT but not AVP, was correlated positively with approach, but negatively with adaptive social behaviors. These results indicate that WS deleted genes perturb hypothalamic-pituitary release not only of OT but also of AVP, implicating more complex neuropeptide circuitry for WS features and providing evidence for their roles in endogenous regulation of human social behavior. The data suggest a possible biological basis for amygdalar involvement, for increased anxiety, and for the paradox of increased approach but poor social relationships in WS. They also offer insight for translating genetic and neuroendocrine knowledge into treatments for disorders of social behavior. PMID:22719898

Dai, Li; Carter, C. Sue; Ying, Jian; Bellugi, Ursula; Pournajafi-Nazarloo, Hossein; Korenberg, Julie R.

2012-01-01

293

Modelling genetic reorganization in the mouse spinal cord affecting left-right coordination during locomotion  

PubMed Central

The spinal neural circuit contains inhibitory (CINi) and excitatory (CINe) commissural interneurons with axons crossing the mid-line. Direction of these axons to the other side of the cord is controlled by axon guidance molecules, such as Netrin-1 and DCC. The cord also contains glutamatergic interneurons, whose axon guidance involves the EphA4 receptor. In EphA4 knockout (KO) and Netrin-1 KO mice, the normal left–right alternating pattern is replaced with a synchronized hopping gait, and the cord of DCC KO mice exhibits uncoordinated left and right oscillations. To investigate the effects of these genetic transformations, we used a computational model of the spinal circuits containing left and right rhythm-generating neuron populations (RGs), each with a subpopulation of EphA4-positive neurons, and CINi and CINe populations mediating mutual inhibition and excitation between the left and right RGs. In the EphA4 KO circuits, half of the EphA4-positive axons crossed the mid-line and excited the contralateral RG neurons. In the Netrin-1 KO model, the number of contralateral CINi projections was significantly reduced, while in the DCC KO model, the numbers of both CINi and CINe connections were reduced. In our simulations, the EphA4 and Netrin-1 KO circuits switched from the left–right alternating pattern to a synchronized hopping pattern, and the DCC KO network exhibited uncoordinated left–right activity. The amplification of inhibitory interactions re-established an alternating pattern in the EphA4 and DCC KO circuits, but not in the Netrin-1 KO network. The model reproduces the genetic transformations and provides insights into the organization of the spinal locomotor network. PMID:24081162

Rybak, Ilya A; Shevtsova, Natalia A; Kiehn, Ole

2013-01-01

294

Genetic Variability in Nodulation and Root Growth Affects Nitrogen Fixation and Accumulation in Pea  

PubMed Central

Background and Aims Legume nitrogen is derived from two different sources, symbiotically fixed atmospheric N2 and soil N. The effect of genetic variability of root and nodule establishment on N acquisition and seed protein yield was investigated under field conditions in pea (Pisum sativum). In addition, these parameters were related to the variability in preference for rhizobial genotypes. Methods Five different spring pea lines (two hypernodulating mutants and three cultivars), previously identified in artificial conditions as contrasted for both root and nodule development, were characterized under field conditions. Root and nodule establishment was examined from the four-leaf stage up to the beginning of seed filling and was related to the patterns of shoot dry matter and nitrogen accumulation. The genetic structure of rhizobial populations associated with the pea lines was obtained by analysis of nodule samples. The fraction of nitrogen derived from symbiotic fixation was estimated at the beginning of seed filling and at physiological maturity, when seed protein content and yield were determined. Key Results The hypernodulating mutants established nodules earlier and maintained them longer than was the case for the three cultivars, whereas their root development and nitrogen accumulation were lower. The seed protein yield was higher in ‘Athos’ and ‘Austin’, the two cultivars with increased root development, consistent with their higher N absorption during seed filling. Conclusion The hypernodulating mutants did not accumulate more nitrogen, probably due to the C cost for nodulation being higher than for root development. Enhancing exogenous nitrogen supply at the end of the growth cycle, by increasing the potential for root N uptake from soil, seems a good option for improving pea seed filling. PMID:17670753

Bourion, Virginie; Laguerre, Gisele; Depret, Geraldine; Voisin, Anne-Sophie; Salon, Christophe; Duc, Gerard

2007-01-01

295

Identification of Genetic Variants That Affect Histone Modifications in Human Cells  

PubMed Central

Histone modifications are important markers of function and chromatin state, yet the DNA sequence elements that direct them to specific genomic locations are poorly understood. Here, we identify hundreds of quantitative trait loci, genome-wide, that affect histone modification or RNA polymerase II (Pol II) occupancy in Yoruba lymphoblastoid cell lines (LCLs). In many cases, the same variant is associated with quantitative changes in multiple histone marks and Pol II, as well as in deoxyribonuclease I sensitivity and nucleosome positioning. Transcription factor binding site polymorphisms are correlated overall with differences in local histone modification, and we identify specific transcription factors whose binding leads to histone modification in LCLs. Furthermore, variants that affect chromatin at distal regulatory sites frequently also direct changes in chromatin and gene expression at associated promoters. PMID:24136359

McVicker, Graham; van de Geijn, Bryce; Degner, Jacob F.; Cain, Carolyn E.; Banovich, Nicholas E.; Raj, Anil; Lewellen, Noah; Myrthil, Marsha; Gilad, Yoav; Pritchard, Jonathan K.

2014-01-01

296

Alterations of microbial populations and composition in the rhizosphere and bulk soil as affected by residual acetochlor.  

PubMed

Acetochlor is a widely used herbicide in maize fields; however, the ecological risk of its residue in the soil-plant system remains unknown. We investigated the dissipation dynamics of field dose acetochlor and clarified its impact on microbial biomass and community structure both in the rhizosphere and bulk soil over 1 month after its application. Soil microbial parameters such as quantities of culturable bacteria and fungi represented by colony-forming units, soil microbial biomass carbon (SMB(C)), and phospholipid fatty acids (PLFAs) were determined across different sampling times. The results showed that the dissipation half-lives of acetochlor were, respectively, 2.8 and 3.4 days in the rhizosphere and bulk soil, and 0.02-0.07 ?g/g residual acetochlor could be detected in the soil 40 days after its application. Compared to the bulk soil, microbial communities in the rhizosphere soil were inclined to be affected by the application of acetochlor: SMB(C) content and bacterial growth were most likely to be increased; however, fungal growth was prone to be inhibited. The principal component analysis of PLFAs, as well as the comparisons of fungi/bacteria and cy17:0/C16:1?9c ratios between different treatments over sampling time, revealed that the soil microbial community composition was significantly affected by acetochlor at its early application stage (at day 15); thereafter, the effects of acetochlor were attenuated or even could not be detected. Our results suggested that residual acetochlor did not confer a long-term impairment on viable bacterial groups in the rhizosphere and bulk soil. PMID:22811047

Bai, Zhen; Xu, Hui-Juan; He, Hong-Bo; Zheng, Li-Chen; Zhang, Xu-Dong

2013-01-01

297

Your emotion or mine: labeling feelings alters emotional face perception--an ERP study on automatic and intentional affect labeling  

PubMed Central

Empirical evidence suggests that words are powerful regulators of emotion processing. Although a number of studies have used words as contextual cues for emotion processing, the role of what is being labeled by the words (i.e., one's own emotion as compared to the emotion expressed by the sender) is poorly understood. The present study reports results from two experiments which used ERP methodology to evaluate the impact of emotional faces and self- vs. sender-related emotional pronoun-noun pairs (e.g., my fear vs. his fear) as cues for emotional face processing. The influence of self- and sender-related cues on the processing of fearful, angry and happy faces was investigated in two contexts: an automatic (experiment 1) and intentional affect labeling task (experiment 2), along with control conditions of passive face processing. ERP patterns varied as a function of the label's reference (self vs. sender) and the intentionality of the labeling task (experiment 1 vs. experiment 2). In experiment 1, self-related labels increased the motivational relevance of the emotional faces in the time-window of the EPN component. Processing of sender-related labels improved emotion recognition specifically for fearful faces in the N170 time-window. Spontaneous processing of affective labels modulated later stages of face processing as well. Amplitudes of the late positive potential (LPP) were reduced for fearful, happy, and angry faces relative to the control condition of passive viewing. During intentional regulation (experiment 2) amplitudes of the LPP were enhanced for emotional faces when subjects used the self-related emotion labels to label their own emotion during face processing, and they rated the faces as higher in arousal than the emotional faces that had been presented in the “label sender's emotion” condition or the passive viewing condition. The present results argue in favor of a differentiated view of language-as-context for emotion processing. PMID:23888134

Herbert, Cornelia; Sfarlea, Anca; Blumenthal, Terry

2013-01-01

298

Environmental conditions affect spatial genetic structures and dispersal patterns in a solitary rodent.  

PubMed

The study of the spatial distribution of relatives in a population under contrasted environmental conditions provides critical insights into the flexibility of dispersal behaviour and the role of environmental conditions in shaping population relatedness and social structure. Yet few studies have evaluated the effects of fluctuating environmental conditions on relatedness structure of solitary species in the wild. The aim of this study was to determine the impact of interannual variations in environmental conditions on the spatial distribution of relatives [spatial genetic structure (SGS)] and dispersal patterns of a wild population of eastern chipmunks (Tamias striatus), a solitary rodent of North America. Eastern chipmunks depend on the seed of masting trees for reproduction and survival. Here, we combined the analysis of the SGS of adults with direct estimates of juvenile dispersal distance during six contrasted years with different dispersal seasons, population sizes and seed production. We found that environmental conditions influences the dispersal distances of juveniles and that male juveniles dispersed farther than females. The extent of the SGS of adult females varied between years and matched the variation in environmental conditions. In contrast, the SGS of males did not vary between years. We also found a difference in SGS between males and females that was consistent with male-biased dispersal. This study suggests that both the dispersal behaviour and the relatedness structure in a population of a solitary species can be relatively labile and change according to environmental conditions. PMID:23017101

Messier, Gabrielle Dubuc; Garant, Dany; Bergeron, Patrick; Réale, Denis

2012-11-01

299

Strain-specific nuclear genetic background differentially affects mitochondria-related phenotypes in Saccharomyces cerevisiae.  

PubMed

In the course of our studies on mitochondrial defects, we have observed important phenotypic variations in Saccharomyces cerevisiae strains suggesting that a better characterization of the genetic variability will be essential to define the relationship between the mitochondrial efficiency and the presence of different nuclear backgrounds. In this manuscript, we have extended the study of such relations by comparing phenotypic assays related to mitochondrial functions of three wild-type laboratory strains. In addition to the phenotypic variability among the wild-type strains, important differences have been observed among strains bearing identical mitochondrial tRNA mutations that could be related only to the different nuclear background of the cells. Results showed that strains exhibited an intrinsic variability in the severity of the effects of the mitochondrial mutations and that specific strains might be used preferentially to evaluate the phenotypic effect of mitochondrial mutations on carbon metabolism, stress responses, and mitochondrial DNA stability. In particular, while W303-1B and MCC123 strains should be used to study the effect of severe mitochondrial tRNA mutations, D273-10B/A1 strain is rather suitable for studying the effects of milder mutations. PMID:24700775

Montanari, Arianna; Francisci, Silvia; Fazzi D'Orsi, Mario; Bianchi, Michele Maria

2014-06-01

300

Genetic and Environmental Factors Affecting the De Novo Appearance of the [Psi(+)] Prion in Saccharomyces Cerevisiae  

PubMed Central

It has previously been shown that yeast prion [PSI(+)] is cured by GuHCl, although reports on reversibility of curing were contradictory. Here we show that GuHCl treatment of both [PSI(+)] and [psi(-)] yeast strains results in two classes of [psi(-)] derivatives: Pin(+), in which [PSI(+)] can be reinduced by Sup35p overproduction, and Pin(-), in which overexpression of the complete SUP35 gene does not lead to the [PSI(+)] appearance. However, in both Pin(+) and Pin(-) derivatives [PSI(+)] is reinduced by overproduction of a short Sup35p N-terminal fragment, thus, in principle, [PSI(+)] curing remains reversible in both cases. Neither suppression nor growth inhibition caused by SUP35 overexpression in Pin(+) [psi(-)] derivatives are observed in Pin(-) [psi(-)] derivatives. Genetic analyses show that the Pin(+) phenotype is determined by a non-Mendelian factor, which, unlike the [PSI(+)] prion, is independent of the Sup35p N-terminal domain. A Pin(-) [psi(-)] derivative was also generated by transient inactivation of the heat shock protein, Hsp104, while [PSI(+)] curing by Hsp104 overproduction resulted exclusively in Pin(+) [psi(-)] derivatives. We hypothesize that in addition to the [PSI(+)] prion-determining domain in the Sup35p N-terminus, there is another self-propagating conformational determinant in the C-proximal part of Sup35p and that this second prion is responsible for the Pin(+) phenotype. PMID:9335589

Derkatch, I. L.; Bradley, M. E.; Zhou, P.; Chernoff, Y. O.; Liebman, S. W.

1997-01-01

301

Genetic manipulation of the cardiac mitochondrial phosphate carrier does not affect permeability transition.  

PubMed

The Mitochondrial Permeability Transition (MPT) pore is a voltage-sensitive unselective channel known to instigate necrotic cell death during cardiac disease. Recent models suggest that the isomerase cyclophilin D (CypD) regulates the MPT pore by binding to either the F0F1-ATP synthase lateral stalk or the mitochondrial phosphate carrier (PiC). Here we confirm that CypD, through its N-terminus, can directly bind PiC. We then generated cardiac-specific mouse strains overexpressing or with decreased levels of mitochondrial PiC to assess the functionality of such interaction. While PiC overexpression had no observable pathologic phenotype, PiC knockdown resulted in cardiac hypertrophy along with decreased ATP levels. Mitochondria isolated from the hearts of these mouse lines and their respective non-transgenic controls had no divergent phenotype in terms of oxygen consumption and Ca(2+)-induced MPT, as assessed by swelling and Ca(2+)-retention measurements. These results provide genetic evidence indicating that the mitochondrial PiC is not a critical component of the MPT pore. PMID:24768964

Gutiérrez-Aguilar, Manuel; Douglas, Diana L; Gibson, Anne K; Domeier, Timothy L; Molkentin, Jeffery D; Baines, Christopher P

2014-07-01

302

Genetic variation in nicotinic receptors affects brain networks involved in reorienting attention.  

PubMed

Prior evidence suggests that a genetic variation in nicotinic receptors modulates visuospatial attention in humans. Brain areas contributing to this modulation are largely unknown. Here we investigate the influence of the nicotinic receptor gene CHRNA4 (rs 1044396) on brain networks involved in detecting unattended events. Subjects were genotyped and studied with functional magnetic resonance imaging while performing a cued target detection task with valid, neutral and invalid trials. Two brain areas within a core region of the attention network, the right temporoparietal junction, showed a genotype dependent modulation. CHRNA4 C/C homozygotes showed differentially higher neural activity in the right middle temporal gyrus when reorienting attention was required in invalid trials. In contrast, T/T homozygotes had stronger activations within the right superior temporal gyrus. An analysis of functional connectivity further revealed that these temporoparietal regions have a distinct connectivity pattern. The superior temporal gyrus recruited by T/T homozygotes shows stronger connections to temporal and parietal brain regions, which are primarily involved in shifting attention, independent of stimulus frequency. In contrast, the middle temporal gyrus exhibits stronger connections to the caudate nucleus, which is involved in detecting violations of expectations. These findings suggest that, depending on genotype, detection of stimuli outside the focus of attention is more driven by reorienting or by expectation signals. PMID:21821135

Giessing, Carsten; Neber, Tuija; Thiel, Christiane M

2012-01-01

303

Genetic Variations in COMT and DRD2 Modulate Attentional Bias for Affective Facial Expressions  

PubMed Central

Studies have revealed that catechol-O-methyltransferase (COMT) and dopaminegic receptor2 (DRD2) modulate human attention bias for palatable food or tobacco. However, the existing evidence about the modulations of COMT and DRD2 on attentional bias for facial expressions was still limited. In the study, 650 college students were genotyped with regard to COMT Val158Met and DRD2 TaqI A polymorphisms, and the attentional bias for facial expressions was assessed using the spatial cueing task. The results indicated that COMT Val158Met underpinned the individual difference in attentional bias for negative emotional expressions (P?=?0.03) and the Met carriers showed more engagement bias for negative expressions than the Val/Val homozygote. On the contrary, DRD2 TaqIA underpinned the individual difference in attentional bias for positive expressions (P?=?0.003) and individuals with TT genotype showed much more engagement bias for positive expressions than the individuals with CC genotype. Moreover, the two genes exerted significant interactions on the engagements for negative and positive expressions (P?=?0.046, P?=?0.005). These findings suggest that the individual differences in the attentional bias for emotional expressions are partially underpinned by the genetic polymorphisms in COMT and DRD2. PMID:24312552

Gong, Pingyuan; Shen, Guomin; Li, She; Zhang, Guoping; Fang, Hongchao; Lei, Lin; Zhang, Peizhe; Zhang, Fuchang

2013-01-01

304

Characterization and genetic mapping of a mutation affecting apurinic endonuclease activity in Staphylococcus aureus  

SciTech Connect

Protoplast fusion between the Rec- mutant RN981 (L. Wyman, R. V. Goering, and R. P. Novick, Genetics 76:681-702, 1974) of Staphylococcus aureus NCTC 8325 and a Rec+ NCTC 8325 derivative yielded Rec+ recombinants that exhibited the increased sensitivity to N-methyl-N'-nitro-N-nitrosoguanidine characteristic of RN981. Transformation analyses identified a specific mutation, designated ngr-374, that was responsible not only for N-methyl-N'-nitro-N-nitrosoguanidine sensitivity, but also sensitivity to methyl methanesulfonate, ethyl methanesulfonate, nitrous acid, and UV irradiation. However, ngr-374-carrying recombinants showed no significant increase in their sensitivity to mitomycin C or 4-nitroquinoline 1-oxide and were unaffected in recombination proficiency. In vitro assays showed that ngr-374-carrying strains had lower apurinic/apyrimidinic endonuclease activities than the wild type. The chromosomal locus occupied by ngr-374 was shown to exist in the gene order omega(Chr::Tn551)40-ngr-374-thrB106.

Tam, J.E.; Pattee, P.A.

1986-11-01

305

Genetic Ablation of Calcium-independent Phospholipase A2? Leads to Alterations in Hippocampal Cardiolipin Content and Molecular Species Distribution, Mitochondrial Degeneration, Autophagy, and Cognitive Dysfunction*  

PubMed Central

Genetic ablation of calcium-independent phospholipase A2? (iPLA2?) results in profound alterations in hippocampal phospholipid metabolism and mitochondrial phospholipid homeostasis resulting in enlarged and degenerating mitochondria leading to autophagy and cognitive dysfunction. Shotgun lipidomics demonstrated multiple alterations in hippocampal lipid metabolism in iPLA2??/? mice including: 1) a markedly elevated hippocampal cardiolipin content with an altered molecular species composition characterized by a shift to shorter chain length molecular species; 2) alterations in both choline and ethanolamine glycerophospholipids, including a decreased plasmenylethanolamine content; 3) increased oxidized phosphatidylethanolamine molecular species; and 4) an increased content of ceramides. Electron microscopic examination demonstrated the presence of enlarged heteromorphic lamellar structures undergoing degeneration accompanied by the presence of ubiquitin positive spheroid inclusion bodies. Purification of these enlarged heteromorphic lamellar structures by buoyant density centrifugation and subsequent SDS-PAGE and proteomics identified them as degenerating mitochondria. Collectively, these results identify the obligatory role of iPLA2? in neuronal mitochondrial lipid metabolism and membrane structure demonstrating that iPLA2? loss of function results in a mitochondrial neurodegenerative disorder characterized by degenerating mitochondria, autophagy, and cognitive dysfunction. PMID:19840936

Mancuso, David J.; Kotzbauer, Paul; Wozniak, David F.; Sims, Harold F.; Jenkins, Christopher M.; Guan, Shaoping; Han, Xianlin; Yang, Kui; Sun, Gang; Malik, Ibrahim; Conyers, Sara; Green, Karen G.; Schmidt, Robert E.; Gross, Richard W.

2009-01-01

306

Cytogenetic alterations and their molecular genetic correlates in head and neck squamous cell carcinoma: A next generation window to the biology of disease.  

PubMed

Cytogenetic alterations underlie the development of head and neck squamous cell carcinoma (HNSCC), whether tobacco and alcohol use, betel nut chewing, snuff or human papillomavirus (HPV) causes the disease. Many of the molecular genetic aberrations in HNSCC result from these cytogenetic alterations. This review presents a brief introduction to the epidemiology of HNSCC, and discusses the role of HPV in the disease, cytogenetic alterations and their frequencies in HNSCC, their molecular genetic and The Cancer Genome Atlas (TCGA) correlates, prognostic implications, and possible therapeutic considerations. The most frequent cytogenetic alterations in HNSCC are gains of 5p14-15, 8q11-12, and 20q12-13, gains or amplifications of 3q26, 7p11, 8q24, and 11q13, and losses of 3p, 4q35, 5q12, 8p23, 9p21-24, 11q14-23, 13q12-14, 18q23, and 21q22. To understand their effects on tumor cell biology and response to therapy, the cytogenetic findings in HNSCC are increasingly being examined in the context of the biochemical pathways they disrupt. The goal is to minimize morbidity and mortality from HNSCC using cytogenetic abnormalities to identify valuable diagnostic biomarkers for HNSCC, prognostic biomarkers of tumor behavior, recurrence risk, and outcome, and predictive biomarkers of therapeutic response to identify the most efficacious treatment for each individual patient's tumor, all based on a detailed understanding of the next generation biology of HNSCC. © 2014 Wiley Periodicals, Inc. PMID:25183546

Gollin, Susanne M

2014-12-01

307

Fetal Exposure to Maternal Inflammation Does Not Affect Postnatal Development of Genetically-Driven Ileitis and Colitis  

PubMed Central

Background: Chronic inflammatory disorders have been increasing in incidence over the past decades following geographical patterns of industrialization. Fetal exposure to maternal inflammation may alter organ functions and the offspring's disease risk. We studied the development of genetically-driven ileitis and colitis in response to maternal inflammation using mouse models. Methods: Disease susceptible (Tnf?ARE/+ and IL10?/?) and disease-free (Tnf+/+ and IL10?/+) offspring were raised in inflamed and non-inflamed dams. Ileal, caecal and colonic pathology was evaluated in the offspring at 8 or 12 weeks of age. Ly6G-positive cells in inflamed sections from the distal ileum and distal colon were analysed by immunofluorescence microscopy. Gene expression of pro-inflammatory cytokines was measured in whole tissue specimens by quantitative PCR. Microarray analyses were performed on laser microdissected intestinal epithelium. Caecal bacterial communities were assessed by Illumina sequencing of 16S rRNA amplicons. Results: Disease severity, the number of infiltrated neutrophils as well as Tnf and Il12p40 mRNA expression were independent of maternal inflammation in the offspring of mouse models for ileitis (Tnf?ARE/+) and colitis (IL10?/?). Although TNF-driven maternal inflammation regulated 2,174 (wild type) and 3,345 (Tnf?ARE/+) genes in the fetal epithelium, prenatal gene expression patterns were completely overwritten after birth. In addition, co-housing experiments revealed no change in phylogenetic diversity of the offspring's caecal microbiota in response to maternal inflammation. This is independent of the offspring's genotype before and after the onset of tissue pathology. Conclusions: Disease risk and activity in mouse models of chronic ileitis and colitis was independent of the fetal exposure to maternal inflammation. Likewise, maternal inflammation did not alter the diversity and composition of offspring's caecal microbiota, clearly demonstrating that changes of the gene expression program in the fetal gut epithelium were not relevant for the development of chronic inflammatory disorders in the gut. PMID:24849654

Hemmerling, Jana; Heller, Katharina; Hormannsperger, Gabriele; Bazanella, Monika; Clavel, Thomas; Kollias, George; Haller, Dirk

2014-01-01

308

Mutations Affecting Cell Division in TETRAHYMENA PYRIFORMIS . I. Selection and Genetic Analysis  

PubMed Central

Fourteen nitrosoguanidine-induced mutations that bring about temperature-sensitive morphological abnormalities resulting from a specific effect on cell division have been isolated as heterozygous phenotypic assortants in Tetrahymena pyriformis syngen 1. Genetic analysis revealed all to be single-gene recessives. Detailed analysis of the kinetics of assortment for one of the mutated alleles revealed a rate (0.0104 pure lines per fission) consistent with that previously observed at other loci in this organism. The mutations fall into six complementation groups (mo1, mo2, mo3, mo6, mo8 , and mo12). Homozygotes of mo2 are unconditionally expressed, while all alleles of mo1, mo6, mo8, and mo12 are heat sensitive for division arrest. At the mo3 locus two alleles are heat sensitive, one is primarily cold sensitive, while two are sensitive to both heat and cold. Two out of three combinations of different mo3 alleles show conventional Mendelian segregation of conditions of expression. Different alleles of mo1, mo3, mo8, and mo12 also manifest differences in penetrance at the restrictive temperature. Despite these differences involving expression, the abnormal phenotypes themselves are locus-specific and distinctive; in the one case (mo1a and mo1 b) in which two alleles manifest somewhat different phenotypes, the F1 between them is intermediate. One additional recessive mutation (fat1) brings about a nonconditional lengthening of the cell cycle, with some arrest of cell division at the restrictive temperature. These findings demonstrate that selection of heterozygotes undergoing phenotypic assortment can be an effective method for obtaining substantial numbers of a desired class of temperature-sensitive mutations in T. pyriformis. PMID:821816

Frankel, Joseph; Jenkins, Leslie M.; Doerder, F. Paul; Nelsen, E. Marlo

1976-01-01

309

Genetic variation of the RASGRF1 regulatory region affects human hippocampus-dependent memory  

PubMed Central

The guanine nucleotide exchange factor RASGRF1 is an important regulator of intracellular signaling and neural plasticity in the brain. RASGRF1-deficient mice exhibit a complex phenotype with learning deficits and ocular abnormalities. Also in humans, a genome-wide association study has identified the single nucleotide polymorphism (SNP) rs8027411 in the putative transcription regulatory region of RASGRF1 as a risk variant of myopia. Here we aimed to assess whether, in line with the RASGRF1 knockout mouse phenotype, rs8027411 might also be associated with human memory function. We performed computer-based neuropsychological learning experiments in two independent cohorts of young, healthy participants. Tests included the Verbal Learning and Memory Test (VLMT) and the logical memory section of the Wechsler Memory Scale (WMS). Two sub-cohorts additionally participated in functional magnetic resonance imaging (fMRI) studies of hippocampus function. 119 participants performed a novelty encoding task that had previously been shown to engage the hippocampus, and 63 subjects participated in a reward-related memory encoding study. RASGRF1 rs8027411 genotype was indeed associated with memory performance in an allele dosage-dependent manner, with carriers of the T allele (i.e., the myopia risk allele) showing better memory performance in the early encoding phase of the VLMT and in the recall phase of the WMS logical memory section. In fMRI, T allele carriers exhibited increased hippocampal activation during presentation of novel images and during encoding of pictures associated with monetary reward. Taken together, our results provide evidence for a role of the RASGRF1 gene locus in hippocampus-dependent memory and, along with the previous association with myopia, point toward pleitropic effects of RASGRF1 genetic variations on complex neural function in humans. PMID:24808846

Barman, Adriana; Assmann, Anne; Richter, Sylvia; Soch, Joram; Schutze, Hartmut; Wustenberg, Torsten; Deibele, Anna; Klein, Marieke; Richter, Anni; Behnisch, Gusalija; Duzel, Emrah; Zenker, Martin; Seidenbecher, Constanze I.; Schott, Bjorn H.

2014-01-01

310

Expression profiling of the RPE in zebrafish smarca4 mutant revealed altered signals that potentially affect RPE and retinal differentiation  

PubMed Central

Purpose The purpose of this study was to develop a framework for analyzing retinal pigment epithelium (RPE) expression profiles from zebrafish eye mutants. Methods The fish model we used was SWI/SNF-related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4 (smarca4), a retinal dystrophic mutant with a previously described retinal phenotype and expression profiles. Histological and Affymetrix GeneChip analyses were conducted to characterize the RPE defects and underlying differential expression, respectively. Results Histological analysis revealed that smarca4 RPE was formed, but its differentiation was abnormal. In particular, ultrastructural analysis of smarca4 RPE by transmission electron microscopy demonstrated several defects in melanogenesis. The nature of these defects also suggests that the cytoskeletal dynamics, which are tightly linked with melanogenesis, were impaired in smarca4 RPE. To compare the expression profile of normal wild-type (WT) and smarca4 RPE, the gene expression profiles of microdissected retinas and RPE-attached retinas were measured with Affymetrix GeneChip analysis. The RPE expression values were then estimated from these samples by subtracting the retinal expression values from the expression values of the RPE-attached retinas. A factorial analysis was conducted using the expression values of the RPE, retinal, and whole-embryo samples. Specific rules (contrasts) were built using the coefficients of the resulting fitted models to select for three groups of genes: 1) smarca4-regulated RPE genes, 2) smarca4-regulated retinal genes, and 3) smarca4-regulated RPE genes that are not differentially expressed in the retina. Interestingly, the third group consists of 39 genes that are highly related to cytoskeletal dynamics, melanogenesis, and paracrine and intracellular signal transduction. Conclusions Our analytical framework provides an experimental approach to identify differentially-regulated genes in the retina and the RPE of zebrafish mutants in which both of these tissues are affected by the underlying mutation. Specifically, we have used the method to identify a group of 39 genes that can potentially explain the melanogenesis defect in the smarca4 RPE. In addition, several genes in this group are secreted signaling molecules. Thus, this observation further implicates that the smarca4 RPE might play a role in the retinal dystrophic phenotype in smarca4. PMID:24426776

Ma, Ping; Collery, Ross; Trowbridge, Sara; Zhong, Wenxuan; Leung, Yuk Fai

2014-01-01

311

A Functional Genetic Variation of the Serotonin (5-HT) Transporter Affects 5-HT1A Receptor Binding in Humans  

PubMed Central

In humans, 5-HT1A receptors are implicated in anxiety and depressive disorders and their treatment. However, the physiological and genetic factors controlling 5-HT1A receptor expression are undetermined in health and disease. In this study, the influence of two genetic factors on 5-HT1A receptor expression in the living human brain was assessed using the 5-HT1A-selective positron emission tomography (PET) ligand [ 11C]WAY 100635. After the genotyping of 140 healthy volunteers to study population frequencies of known single nucleotide polymorphisms (SNPs) in the 5-HT1A receptor gene, the influence of the common SNP [(?1018) C>G] on 5-HT1A receptor expression was examined in a group of 35 healthy individuals scanned with [ 11C]WAY 100635. In the PET group, we also studied the influence of a common variable number tandem repeat polymorphism [short (S) and long (L) alleles] of the 5-HT transporter (5-HTT) gene on 5-HT1A receptor density. Whereas, the 5-HT1A receptor genotype did not show any significant effects on [ 11C]WAY 100635 binding, 5-HT1A receptor binding potential values were lower in all brain regions in subjects with 5-HTTLPR short (SS or SL) genotypes than those with long (LL) genotypes. Although the PET groups are necessarily a small sample size for a genetic association study, our results demonstrate for the first time that a functional polymorphism in the 5-HTT gene, but not the 5-HT1A receptor gene, affects 5-HT1A receptor availability in man. The results may offer a plausible physiological mechanism underlying the association between 5-HTTLPR genotype, behavioral traits, and mood states. PMID:15758168

David, Sean P.; Murthy, Naga Venkatesha; Rabiner, Eugenii A.; Munafo, Marcus R.; Johnstone, Elaine C.; Jacob, Robyn; Walton, Robert T.; Grasby, Paul M.

2007-01-01

312

Parent-of-origin genetic background affects the transcriptional levels of circadian and neuronal plasticity genes following sleep loss.  

PubMed

Sleep homoeostasis refers to a process in which the propensity to sleep increases as wakefulness progresses and decreases as sleep progresses. Sleep is tightly organized around the circadian clock and is regulated by genetic and epigenetic mechanisms. The homoeostatic response of sleep, which is classically triggered by sleep deprivation, is generally measured as a rebound effect of electrophysiological measures, for example delta sleep. However, more recently, gene expression changes following sleep loss have been investigated as biomarkers of sleep homoeostasis. The genetic background of an individual may affect this sleep-dependent gene expression phenotype. In this study, we investigated whether parental genetic background differentially modulates the expression of genes following sleep loss. We tested the progeny of reciprocal crosses of AKR/J and DBA/2J mouse strains and we show a parent-of-origin effect on the expression of circadian, sleep and neuronal plasticity genes following sleep deprivation. Thus, we further explored, by in silico, specific functions or upstream mechanisms of regulation and we observed that several upstream mechanisms involving signalling pathways (i.e. DICER1, PKA), growth factors (CSF3 and BDNF) and transcriptional regulators (EGR2 and ELK4) may be differentially modulated by parental effects. This is the first report showing that a behavioural manipulation (e.g. sleep deprivation) in adult animals triggers specific gene expression responses according to parent-of-origin genomic mechanisms. Our study suggests that the same mechanism may be extended to other behavioural domains and that the investigation of gene expression following experimental manipulations should take seriously into account parent-of-origin effects. PMID:24446504

Tinarelli, Federico; Garcia-Garcia, Celina; Nicassio, Francesco; Tucci, Valter

2014-03-01

313

Neonatal exposure to estradiol decreases hypothalamic allopregnanolone concentrations and alters agonistic and sexual but not affective behavior in adult female rats.  

PubMed

Exposure of developing female rats to estradiol during the perinatal period induced long-lasting dysregulation of gonadal axis and decreased cerebrocortical and plasma concentrations of allopregnanolone. We have now examined the effects of neonatal estradiol administration in female rats on hypothalamic allopregnanolone concentrations and on exploratory, affective, agonistic and sexual behaviors as well as social learning. A single administration of ?-estradiol 3-benzoate (EB, 10?g) on the day of birth resulted in a delay of vaginal opening, acyclicity and ovarian failure. These alterations were associated with a significant decrease in the concentrations of allopregnanolone in the hypothalamus at 21 and 60days, but not at 7days, after birth. Neonatal administration of EB also increased agonistic behaviors in adult rats, such as dominant behaviors and following of an ovariectomized intruder, while living attacks unaffected. EB-treated rats showed also an increase in anogenital investigation, associated with a drastic reduction in spontaneous and induced female sexual behaviors (receptivity and proceptivity). In contrast, neonatal administration of EB did not affect locomotor activity, anxiety- and mood-related behaviors, the social transmission of flavor preferences, and seizures sensitivity. These effects of estradiol suggest that it plays a major role in regulation of both the abundance of allopregnanolone and the expression of agonistic and sexual behaviors, while failing to influence affective behaviors and social learning. Thus, the pronounced and persistent decrease in hypothalamic allopregnanolone concentration may be related to the manifestation of agonistic and sexual behaviors. PMID:24368289

Berretti, R; Santoru, F; Locci, A; Sogliano, C; Calza, A; Choleris, E; Porcu, P; Concas, A

2014-02-01

314

Low frequency genetic variants in the mu-opioid receptor (OPRM1) affect risk for addiction to heroin and cocaine  

PubMed Central

The ?-opioid receptor (MOR) binds exogenous and endogenous opioids and is known to mediate the rewarding effects of drugs of abuse. Numerous genetic studies have sought to identify common genetic variation in the gene encoding MOR (OPRM1) that affects risk for drug addiction. The purpose of this study was to examine the contribution of rare coding variants in OPRM1 to the risk for addiction. Rare and low frequency variants were selected using the National Heart Lung and Blood Institute –Exome Sequencing Project (NHLBI-ESP) database, which has screened the exomes of over 6500 individuals. Two SNPs (rs62638690 and rs17174794) were selected for genotyping in 1377 European American individuals addicted to heroin and/or cocaine. Two different SNPs (rs1799971 and rs17174801) were genotyped in 1238 African American individuals addicted to heroin and/or cocaine. Using the minor allele frequencies from the NHLBI-ESP dataset as a comparison group, case-control association analyses were performed. Results revealed an association between rs62638690 and cocaine and heroin addiction in European Americans (p=0.02; 95% C.I. 0.47 [0.24–0.92]). This study suggests a potential role for rare OPRM1 variants in addiction disorders and highlights an area worthy of future study. PMID:23454283

Clarke, Toni-Kim; Crist, Richard C.; Kampman, Kyle M.; Dackis, Charles A.; Pettinati, Helen M.; O'Brien, Charles P.; Oslin, David W.; Ferraro, Thomas N.; Lohoff, Falk W.; Berrettini, Wade H.

2013-01-01

315

EZH2 genetic variants affect risk of gastric cancer in the Chinese Han population.  

PubMed

Enhancer of zeste 2 (EZH2) gene encodes a histone methyltransferase that constitutes the catalytic component of the polycomb repressive complex-2 (PRC2) to initiate epigenetic silencing of genes. It is reported that the expression level of EZH2 in gastric cancer tissue was highly correlated with tumor progression, however, whether EZH2 genetic variants were associated with the risk of gastric cancer remains yet unknown. In this study, we conducted a genotyping analysis for EZH2 in 311 cases of gastric cancer and 425 controls from the Chinese Han population. We found five single nucleotide polymorphisms (SNP; rs12670401, rs6464926, rs2072407, rs734005, and rs734004) of EZH2 gene were significantly associated with the risk of gastric cancer. Of which, the rs12670401 with the minor allele C and rs6464926 with the minor allele T revealed strong associations with increased gastric cancer risk [P = 0.009, adjusted odds ratio (aOR)?= 1.327, 95% CI = 1.075-1.683 and P = 0.012, aOR = 1.310, 95% CI = 1.059-1.619]. The other three SNPs, rs2072407, rs734005, and rs734004 contributed to significantly reduced risk of gastric cancer (P = 0.033, aOR?= 0.787, 95% CI = 0.633-0.981, P = 0.045, aOR?= 0.799, 95% CI = 0.642-0.995 and P = 0.048, aOR?= 0.803, 95% CI = 0.645-0.999), respectively. We further found that rs12670401 and rs6464926 were in a strong LD while rs2072407, rs734005, and rs734004 were in another. Haplotype analysis of the five SNPs showed that haplotype CCTCT reduced the risk of gastric cancer (P = 0.031 and aOR?= 0.784), while haplotype GTCTC significantly elevated the risk of gastric cancer (P = 0.011 and aOR?= 1.310). We concluded that EZH2 variants were significantly associated with gastric cancer risk. Our results for the first time provided new insight into susceptibility factors of EZH2 gene variants in carcinogenesis of gastric cancer of the Chinese Han population. PMID:22228224

Zhou, Yuan; Du, Wei-Dong; Wu, Qiang; Liu, Yi; Chen, Gang; Ruan, Jian; Xu, Song; Yang, Feng; Zhou, Fu-Sheng; Tang, Xian-Fa; Tang, Hua-Yang; Zuo, Xian-Bo; Zhang, Feng-Yu; Sun, Liang-Dan; Zhang, Xue-Jun

2014-08-01

316

Evaluation of genetic alterations in inhabitants of a naturally high level background radiation and Kudankulam nuclear power project site in India.  

PubMed

Evaluation of genetic alterations in inhabitants of an area of Tamil Nadu, India, chronically exposed to high background radiation (HBRA), was the major purpose of the present study. A total of 216 samples (exposed inhabitants, 108; control subjects, 108) were selected based on the confirmation of radiation dose level using thermoluminescence dosimetry (TLD). After signing a consent form, volunteers provided blood samples (5 ml each) to establish cell cultures at 52 h. One hundred complete metaphase cells from each subject were evaluated for karyotyping. The frequencies of chromosomal alterations (CA) were found to be higher in the exposed groups and the aberrations predominately observed were of chromatid-type. Smoking was found to have considerable effect on the frequency of CA in exposed subjects. With the comet assay for DNA damage, a significant increase in comet tail frequency was also observed in exposed subjects compared to controls. At present there are no radioepidemiological data regarding the cytogenetic studies in these areas. Furthermore, the Kudankulam nuclear power plant nuclear power plant is being constructed in the same area. The study gives potentially important information on the general health effects due to radiation exposure and increases people's understanding of the hazardous nature of chronic low level natural radiation exposure. However, we may conclude that the HBRA by itself does not pose any significant risk of genetic damage as measured by conventional cytogenetic analysis. PMID:21517228

Balachandar, Vellingiri; Kumar, Ramesh Kumar Mithun; Prakash, Varsha; Devi, Subramaniam Mohana; Kumar, Balasubramanian Lakshman; Manikantan, Pappusamy; Sasikala, Keshavarao; Malathi, Jeyapandian; Brahmanandhan, Muruganandam; Khanna, D; Selvasekarapandian, S

2011-01-01

317

Genetic variation in the endothelin system: do polymorphisms affect the therapeutic strategies?  

PubMed

Endothelin-1 (ET-1) exerts multiple biological effects, including vasoconstriction and the stimulation of cell proliferation in tissues both within and outside of the cardiovascular system. ET-1 is synthesized by ET-converting enzymes (ECE), chymases (CMAs), and non-ECE metalloproteases through a process regulated in an autocrine fashion in vascular and nonvascular cells. ET-1 acts through the activation of G(i)protein-coupled receptors. ET(A) receptors mediate vasoconstriction and cell proliferation, whereas ET(B) receptors are important for aldosterone secretion, endothelial cell (EC) migration, the release of nitric oxide (NO) and prostacyclin, the clearance of ET-1, and the inhibition of ECE-1. ET is activated in scleroderma, hypertension, atherosclerosis, restenosis, heart failure, idiopathic cardiomyopathy, and renal failure. Tissue concentrations more reliably reflect the activation of the ET system because of the predominantly abluminal secretion of the peptide. Experimental studies and clinical trials have demonstrated that ET-1 plays a major role in normal cardiovascular homeostasis and in the functional and structural changes observed in arterial and pulmonary hypertension, glomerulosclerosis, atherosclerosis, and heart failure. Accordingly, ET antagonists are promising new agents in the treatment of cardiovascular diseases. Single nucleotide polymorphisms (SNPs) of the genes of preproET-1, ECE-1, CMA, ET(A) and ET(B) receptors have been identified and can be important for their functional regulation. However, for most of them the association with disease conditions and the evidence for a functional role remain controversial. Thus, even though ET antagonists are being used for the treatment of pulmonary hypertension, there is no convincing evidence for a role of SNPs in affecting the therapeutic strategies. PMID:16855133

Rossi, Gian Paolo; Pitter, Gisella

2006-06-01

318

ONO-2506 inhibits spike-wave discharges in a genetic animal model without affecting traditional convulsive tests via gliotransmission regulation  

PubMed Central

Background and Purpose Anticonvulsants have been developed according to the traditional neurotransmission imbalance hypothesis. However, the anticonvulsive pharmacotherapy currently available remains unsatisfactory. To develop new antiepileptic drugs with novel antiepileptic mechanisms, we have tested the antiepileptic actions of ONO-2506, a glial modulating agent, and its effects on tripartite synaptic transmission. Experimental Approach Dose-dependent effects of ONO-2506 on maximal-electroshock seizure (MES), pentylenetetrazol-induced seizure (PTZ) and epileptic discharge were determined in a genetic model of absence epilepsy in mice (Cacna1atm2Nobs/tm2Nobs strain). Antiepileptic mechanisms of ONO-2506 were analysed by examining the interaction between ONO-2506 and transmission-modulating toxins (tetanus toxin, fluorocitrate, tetrodotoxin) on release of l-glutamate, d-serine, GABA and kynurenic acid in the medial-prefrontal cortex (mPFC) of freely moving rats using microdialysis and primary cultured rat astrocytes. Key Results ONO-2506 inhibited spontaneous epileptic discharges in Cacna1atm2Nobs/tm2Nobs mice without affecting MES or PTZ. Given systemically, ONO-2506 increased basal release of GABA and kynurenic acid in the mPFC through activation of both neuronal and glial exocytosis, but inhibited depolarization-induced releases of all transmitters. ONO-2506 increased basal glial release of kynurenic acid without affecting those of l-glutamate, d-serine or GABA. However, ONO-2506 inhibited AMPA-induced releases of l-glutamate, d-serine, GABA and kynurenic acid. Conclusions and Implications ONO-2506 did not affect traditional convulsive tests but markedly inhibited epileptic phenomena in the genetic epilepsy mouse model. ONO-2506 enhanced release of inhibitory neuro- and gliotransmitters during the resting stage and inhibited tripartite transmission during the hyperactive stage. The results suggest that ONO-2506 is a novel potential glial-targeting antiepileptic drug. Linked Article This article is commented on by Onat, pp. 1086–1087 of this issue. To view this commentary visit http://dx.doi.org/10.1111/bph.12050 PMID:22882023

Yamamura, Satoshi; Hoshikawa, Masamitsu; Dai, Kato; Saito, Hiromitsu; Suzuki, Noboru; Niwa, Osamu; Okada, Motohiro

2013-01-01

319

Importance of genetic background for risk of relapse shown in altered prefrontal cortex gene expression during abstinence following chronic alcohol intoxication  

PubMed Central

Alcoholism is a relapsing disorder associated with excessive consumption after periods of abstinence. Neuroadaptations in brain structure, plasticity and gene expression occur with chronic intoxication but are poorly characterized. Here we report identification of pathways altered during abstinence in prefrontal cortex, a brain region associated with cognitive dysfunction and damage in alcoholics. To determine the influence of genetic differences, an animal model was employed with widely divergent responses to alcohol withdrawal, the Withdrawal Seizure-Resistant (WSR) and Withdrawal Seizure-Prone (WSP) lines. Mice were chronically exposed to highly intoxicating concentrations of ethanol and withdrawn, then left abstinent for 21 days. Transcriptional profiling by microarray analyses identified a total of 562 genes as significantly altered during abstinence. Hierarchical cluster analysis revealed that the transcriptional response correlated with genotype/withdrawal phenotype rather than sex. Gene Ontology category overrepresentation analysis identified thyroid hormone metabolism, glutathione metabolism, axon guidance and DNA damage response as targeted classes of genes in low response WSR mice, with acetylation and histone deacetylase complex as highly dimorphic between WSR and WSP mice. Confirmation studies in WSR mice revealed both increased neurotoxicity by histopathologic examination and elevated T3 levels. Most importantly, relapse drinking was reduced by inhibition of thyroid hormone synthesis in dependent WSR mice compared to controls. These findings provide in vivo physiological and behavioral validation of the pathways identified. Combined, these results indicate a fundamentally distinct neuroadaptive response during abstinence in mice genetically selected for divergent withdrawal severity. Identification of pathways altered in abstinence may aid development of novel therapeutics for targeted treatment of relapse in abstinent alcoholics. PMID:21081154

Hashimoto, Joel G.; Forquer, Melissa R.; Tanchuck, Michelle A.; Finn, Deborah A.; Wiren, Kristine M.

2010-01-01

320

Identification of new genetic polymorphisms that alter the dietary requirement for choline and vary in their distribution across ethnic and racial groups.  

PubMed

Effect alleles (alleles with a polymorphism that is associated with the effect being measured) in a small number of single-nucleotide polymorphisms (SNPs) are known to influence the dietary requirement for choline. In this study, we examined a much larger number of SNPs (n=200) in 10 genes related to choline metabolism for associations with development of organ dysfunction (liver or muscle) when 79 humans were fed a low-choline diet. We confirmed that effect alleles in SNPs such as the C allele of PEMT rs12325817 increase the risk of developing organ dysfunction in women when they consume a diet low in choline, and we identified novel effect alleles, such as the C allele of CHKA SNP rs7928739, that alter dietary choline requirements. When fed a low-choline diet, some people presented with muscle damage rather than liver damage; several effect alleles in SLC44A1 (rs7873937, G allele; rs2771040, G; rs6479313, G; rs16924529, A; and rs3199966, C) and one in CHKB (rs1557502, A) were more common in these individuals. This suggests that pathways related to choline metabolism are more important for normal muscle function than previously thought. In European, Mexican, and Asian Americans, and in individuals of African descent, we examined the prevalence of the effect alleles in SNPs that alter choline requirement and found that they are differentially distributed among people of different ethnic and racial backgrounds. Overall, our study has identified novel genetic variants that modulate choline requirements and suggests that the dietary requirement for choline may be different across racial and ethnic groups.-Da Costa, K.-A., Corbin, K. D., Niculescu, M. D., Galanko, J. A., Zeisel, S. H. Identification of new genetic polymorphisms that alter the dietary requirement for choline and vary in their distribution across ethnic and racial groups. PMID:24671709

da Costa, Kerry-Ann; Corbin, Karen D; Niculescu, Mihai D; Galanko, Joseph A; Zeisel, Steven H

2014-07-01

321

Do recent US Supreme Court rulings on patenting of genes and genetic diagnostics affect the practice of genetic screening and diagnosis in prenatal and reproductive care?  

PubMed

Thousands of patents have been awarded that claim human gene sequences and their uses, and some have been challenged in court. In a recent high-profile case, Association for Molecular Pathology, et al. v. Myriad Genetics, Inc., et al., the US Supreme Court ruled that genes are natural occurring substances and therefore not patentable through 'composition of matter' claims. The consequences of this ruling will extend well beyond ending Myriad's monopoly over BRCA testing and may affect similar monopolies of other commercial laboratories for tests involving other genes. It could also simplify intellectual property issues surrounding genome-wide clinical sequencing, which can generate results for genes covered by intellectual property. Non-invasive prenatal testing (NIPT) for common aneuploidies using cell-free fetal (cff) DNA in maternal blood is currently offered through commercial laboratories and is also the subject of ongoing patent litigation. The recent Supreme Court decision in the Myriad case has already been invoked by a lower district court in NIPT litigation and resulted in invalidation of primary claims in a patent on currently marketed cffDNA-based testing for chromosomal aneuploidies. © 2014 John Wiley & Sons, Ltd. PMID:24989832

Chandrasekharan, Subhashini; McGuire, Amy L; Van den Veyver, Ignatia B

2014-10-01

322

Genetics  

NSDL National Science Digital Library

This activity helps students to understand basic principles of genetics, including relationships of genotype to phenotype, concepts of recessive and dominant alleles, and how understanding meiosis and fertilization provides the basis for understanding inheritance, as summarized in Punnett squares. The Student Handout includes an analysis of the inheritance of albinism that teaches all of these concepts, a Coin Toss Genetics activity that helps students understand the probabilistic nature of Punnett square predictions, and an analysis of the inheritance of sickle cell anemia that reinforces the basic concepts and introduces some of the complexities of genetics. The Genetics Supplement includes two additional activities, an analysis of student data on the sex makeup of sibships and pedigree analyses of recessive and dominant alleles with challenge questions that introduce the role of mutations and an evaluation of Punnett squares and pedigrees as models of inheritance.

Doherty, Jennifer; Waldron, Ingrid; Poethig, Scott

323

Use of the MLPA Assay in the Molecular Diagnosis of Gene Copy Number Alterations in Human Genetic Diseases  

PubMed Central

Multiplex Ligation-dependent Probe Amplification (MLPA) assay is a recently developed technique able to evidence variations in the copy number of several human genes. Due to this ability, MLPA can be used in the molecular diagnosis of several genetic diseases whose pathogenesis is related to the presence of deletions or duplications of specific genes. Moreover, MLPA assay can also be used in the molecular diagnosis of genetic diseases characterized by the presence of abnormal DNA methylation. Due to the large number of genes that can be analyzed by a single technique, MLPA assay represents the gold standard for molecular analysis of all pathologies derived from the presence of gene copy number variation. In this review, the main applications of the MLPA technique for the molecular diagnosis of human diseases are described. PMID:22489151

Stuppia, Liborio; Antonucci, Ivana; Palka, Giandomenico; Gatta, Valentina

2012-01-01

324

Chemical-genetic profile analysis in yeast suggests that a previously uncharacterized open reading frame, YBR261C, affects protein synthesis  

Microsoft Academic Search

BACKGROUND: Functional genomics has received considerable attention in the post-genomic era, as it aims to identify function(s) for different genes. One way to study gene function is to investigate the alterations in the responses of deletion mutants to different stimuli. Here we investigate the genetic profile of yeast non-essential gene deletion array (yGDA, ~4700 strains) for increased sensitivity to paromomycin,

Veronika Eroukova; Matthew Jessulat; Jianhua Xu; Ashkan Golshani

2008-01-01

325

Selection Based on Indirect Genetic Effects for Growth, Environmental Enrichment and Coping Style Affect the Immune Status of Pigs  

PubMed Central

Pigs living in intensive husbandry systems may experience both acute and chronic stress through standard management procedures and limitations in their physical and social environment, which may have implications for their immune status. Here, the effect of a new breeding method where pigs were selected on their heritable influence on their pen mates' growth, and environmental enrichment on the immune status of pigs was investigated. Hereto, 240 pigs with a relatively positive genetic effect on the growth of their pen mates (+SBV) and 240 pigs with a relatively negative genetic effect on the growth of their pen mates (?SBV) were housed in barren or straw-enriched pens from 4 to 23 weeks of age (n ?=? 80 pens in total). A blood sample was taken from the pigs before, three days after a 24 h regrouping test, and at week 22. In addition, effects of coping style, as assessed in a backtest, and gender were also investigated. Mainly, +SBV were found to have lower leukocyte, lymphocyte and haptoglobin concentrations than -SBV pigs. Enriched housed pigs had a lower neutrophil to lymphocyte (N:L) ratio and lower haptoglobin concentrations, but had higher antibody titers specific for Keyhole Limpet Hemocyanin (KLH) than barren housed pigs. No interactions were found between SBV class and housing. Furthermore, pigs with a proactive coping style had higher alternative complement activity and, in the enriched pens, higher antibody titers specific for KLH than pigs with a reactive coping style. Lastly, females tended to have lower leukocyte, but higher haptoglobin concentrations than castrated males. Overall, these results suggest that +SBV pigs and enriched housed pigs were less affected by stress than -SBV and barren housed pigs, respectively. Moreover, immune activation might be differently organized in individuals with different coping styles and to a lesser extent in individuals of opposite genders. PMID:25275507

Reimert, Inonge; Rodenburg, T. Bas; Ursinus, Winanda W.; Kemp, Bas; Bolhuis, J. Elizabeth

2014-01-01

326

Small-scale patterns in snowmelt timing affect gene flow and the distribution of genetic diversity in the alpine dwarf shrub Salix herbacea.  

PubMed

Current threats to biodiversity, such as climate change, are thought to alter the within-species genetic diversity among microhabitats in highly heterogeneous alpine environments. Assessing the spatial organization and dynamics of genetic diversity within species can help to predict the responses of organisms to environmental change. In this study, we evaluated whether small-scale heterogeneity in snowmelt timing restricts gene flow between microhabitats in the common long-lived dwarf shrub Salix herbacea L. We surveyed 273 genets across 12 early- and late-snowmelt sites (that is, ridges and snowbeds) in the Swiss Alps for phenological variation over 2 years and for genetic variation using seven SSR markers. Phenological differentiation triggered by differences in snowmelt timing did not correlate with genetic differentiation between microhabitats. On the contrary, extensive gene flow appeared to occur between microhabitats and slightly less extensively among adjacent mountains. However, ridges exhibited significantly lower levels of genetic diversity than snowbeds, and patterns of effective population size (Ne) and migration (Nem) between microhabitats were strongly asymmetric, with ridges acting as sources and snowbeds as sinks. As no recent genetic bottlenecks were detected in the studied sites, this asymmetry is likely to reflect current meta-population dynamics of the species dominated by gene flow via seeds rather than ancient re-colonization after the last glacial period. Overall, our results suggest that seed dispersal prevents snowmelt-driven genetic isolation, and snowbeds act as sinks of genetic diversity. We discuss the consequences of such small-scale variation in gene flow and diversity levels for population responses to climate change. PMID:24619183

Cortés, A J; Waeber, S; Lexer, C; Sedlacek, J; Wheeler, J A; van Kleunen, M; Bossdorf, O; Hoch, G; Rixen, C; Wipf, S; Karrenberg, S

2014-09-01

327

have been affected by their sparse population coverage. The median line of the Eurasian genetic landscape appears  

E-print Network

­15, 2008, Philadelphia. Available at the following URL: http://www.ashg.org/2008meeting/abstracts/ fulltext Genetics I, No. 60]. Presented at the annual meeting of The American Society of Human Genetics, November 11

Xu, Shuhua

328

From genes to ecosystems: a genetic basis to ecosystem services  

Microsoft Academic Search

Ecosystems provide services, many of which are regulated through species interactions. Emerging research in the fields of\\u000a community and ecosystem genetics indicate that genetic variation in one species can influence species interactions and affect\\u000a subsequent patterns of energy flow and nutrient cycles. Because there can be a genetic basis to community- and ecosystem-level\\u000a processes, evolutionary processes that alter standing genetic

Joseph K. Bailey

2011-01-01

329

Curcumin Intake Affects miRNA Signature in Murine Melanoma with mmu-miR-205-5p Most Significantly Altered  

PubMed Central

Melanoma is the most aggressive form of skin cancer with estimated 48,000 deaths per year worldwide. The polyphenol curcumin derived from the plant Curcuma longa is well known for its anti-inflammatory and anti-cancerogenic properties. Accordingly, dietary intake of this compound may be suitable for melanoma prevention. However, how this compound affects basic cellular mechanisms in developing melanoma still remains elusive. Therefore, the aim of this study was to investigate for the first time the impact of oral curcumin administration on the miRNA signature of engrafting melanoma. For this purpose, the effects of a 4% curcumin diet were tested on melanoma, which were established by injection of murine B78H1 cells in the flank of C57BL/6 mice. Curcumin diet or standard chow (control) was administered two weeks prior to injection of tumor cells until termination of the experiment. High throughput chip-based array analysis was deployed to detect alterations in the miRNA signature of the tumors. Curcumin treatment significantly reduced the growth of the flank tumors. Furthermore the miRNA expression signature in tumors was substantially altered by curcumin intake with mmu-miR-205-5p over 100 times higher expressed when compared to controls. The expression levels of identified key miRNAs in the tumor samples were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR). A comparable expression pattern of these miRNAs was also detected in other curcumin-treated melanoma cell lines under in vitro conditions. Putative targets of curcumin-induced up-regulated miRNAs were enriched in ‘o-glycan biosynthesis’, ‘endoplasmatic reticulum protein processing’ and different cancer-related pathways. Western Blot analyses revealed that of these targets anti-apoptotic B-cell CLL/lymphoma 2 (Bcl-2) and proliferating cell nuclear antigen (PCNA) were significantly down-regulated in curcumin-treated tumors. These findings demonstrate a profound alteration of the miRNA expression signature in engrafting curcumin-treated melanoma with mmu-miR-205-5p being up-regulated most significantly. PMID:24349037

Rudzitis-Auth, Jeannette; Laschke, Matthias W.; Leidinger, Petra; Menger, Michael D.; Meese, Eckart; Mahlknecht, Ulrich

2013-01-01

330

Kiss of the Mutant Mouse: How Genetically Altered Mice Advanced Our Understanding of Kisspeptin's Role in Reproductive Physiology  

PubMed Central

The kisspeptin system has emerged as one of the most important circuits within the central network governing reproduction. Although kisspeptin physiology has been examined in many species, much of our understanding of this system has come from mice. Recently, the study of several innovative strains of genetically engineered mouse models has revealed intriguing and unexpected insights into the functions of kisspeptin signaling in the hypothalamus. Here, we review the advancements in our knowledge of the central kisspeptin system through the use of mutant mice. PMID:23011921

Elias, Carol F.

2012-01-01

331

genetics  

NSDL National Science Digital Library

learning about our genetic make up We've been learning about DNA. Go to each web site, read and follow the instructions of the activities provided. On a piece of paper write your answers to the following questions and submit your work. Put the site for each of the questions you are answering. The first site is, ...

Curran, Carolyn

2011-12-05

332

Altered Cortical GABAA Receptor Composition, Physiology, and Endocytosis in a Mouse Model of a Human Genetic Absence Epilepsy Syndrome*  

PubMed Central

Patients with generalized epilepsy exhibit cerebral cortical disinhibition. Likewise, mutations in the inhibitory ligand-gated ion channels, GABAA receptors (GABAARs), cause generalized epilepsy syndromes in humans. Recently, we demonstrated that heterozygous knock-out (Het?1KO) of the human epilepsy gene, the GABAAR ?1 subunit, produced absence epilepsy in mice. Here, we determined the effects of Het?1KO on the expression and physiology of GABAARs in the mouse cortex. We found that Het?1KO caused modest reductions in the total and surface expression of the ?2 subunit but did not alter ?1 or ?3 subunit expression, results consistent with a small reduction of GABAARs. Cortices partially compensated for Het?1KO by increasing the fraction of residual ?1 subunit on the cell surface and by increasing total and surface expression of ?3, but not ?2, subunits. Co-immunoprecipitation experiments revealed that Het?1KO increased the fraction of ?1 subunits, and decreased the fraction of ?3 subunits, that associated in hybrid ?1?3?? receptors. Patch clamp electrophysiology studies showed that Het?1KO layer VI cortical neurons exhibited reduced inhibitory postsynaptic current peak amplitudes, prolonged current rise and decay times, and altered responses to benzodiazepine agonists. Finally, application of inhibitors of dynamin-mediated endocytosis revealed that Het?1KO reduced base-line GABAAR endocytosis, an effect that probably contributes to the observed changes in GABAAR expression. These findings demonstrate that Het?1KO exerts two principle disinhibitory effects on cortical GABAAR-mediated inhibitory neurotransmission: 1) a modest reduction of GABAAR number and 2) a partial compensation with GABAAR isoforms that possess physiological properties different from those of the otherwise predominant ?1?? GABAARs. PMID:23744069

Zhou, Chengwen; Huang, Zhiling; Ding, Li; Deel, M. Elizabeth; Arain, Fazal M.; Murray, Clark R.; Patel, Ronak S.; Flanagan, Christopher D.; Gallagher, Martin J.

2013-01-01

333

Delineating the role of alterations in lipid metabolism to the pathogenesis of inherited skeletal and cardiac muscle disorders: Thematic Review Series: Genetics of Human Lipid Diseases.  

PubMed

As the specific composition of lipids is essential for the maintenance of membrane integrity, enzyme function, ion channels, and membrane receptors, an alteration in lipid composition or metabolism may be one of the crucial changes occurring during skeletal and cardiac myopathies. Although the inheritance (autosomal dominant, autosomal recessive, and X-linked traits) and underlying/defining mutations causing these myopathies are known, the contribution of lipid homeostasis in the progression of these diseases needs to be established. The purpose of this review is to present the current knowledge relating to lipid changes in inherited skeletal muscle disorders, such as Duchenne/Becker muscular dystrophy, myotonic muscular dystrophy, limb-girdle myopathic dystrophies, desminopathies, rostrocaudal muscular dystrophy, and Dunnigan-type familial lipodystrophy. The lipid modifications in familial hypertrophic and dilated cardiomyopathies, as well as Barth syndrome and several other cardiac disorders associated with abnormal lipid storage, are discussed. Information on lipid alterations occurring in these myopathies will aid in the design of improved methods of screening and therapy in children and young adults with or without a family history of genetic diseases. PMID:22065858

Saini-Chohan, Harjot K; Mitchell, Ryan W; Vaz, Frédéric M; Zelinski, Teresa; Hatch, Grant M

2012-01-01

334

Genetic variation in the CHRNA5 gene affects mRNA levels and is associated with risk for alcohol dependence  

Microsoft Academic Search

Alcohol dependence frequently co-occurs with cigarette smoking, another common addictive behavior. Evidence from genetic studies demonstrates that alcohol dependence and smoking cluster in families and have shared genetic vulnerability. Recently a candidate gene study in nicotine dependent cases and nondependent smoking controls reported strong associations between a missense mutation (rs16969968) in exon 5 of the CHRNA5 gene and a variant

J C Wang; R Grucza; C Cruchaga; A L Hinrichs; S Bertelsen; J P Budde; L Fox; E Goldstein; O Reyes; N Saccone; S Saccone; X Xuei; K Bucholz; S Kuperman; J Nurnberger; J P Rice; M Schuckit; J Tischfield; V Hesselbrock; B Porjesz; H J Edenberg; L J Bierut; A M Goate

2009-01-01

335

Uncertainty Management and Communication Preferences Related to Genetic Relativism Among Families Affected by Down Syndrome, Marfan Syndrome, and Neurofibromatosis  

Microsoft Academic Search

Genes hold opportunities for us to look backward and forward in family health and disease incidence. Our beliefs about genes' roles in health form around frameworks relating to personal control, and the influence of social networks and\\/or religious faith on genetic expression in health. These genetic relativistic frameworks were found to predict levels of illness uncertainty among 541 diagnosed adults

Roxanne Parrott; Kathryn F. Peters; Tara Traeder

2012-01-01

336

Uncertainty Management and Communication Preferences Related to Genetic Relativism Among Families Affected by Down Syndrome, Marfan Syndrome, and Neurofibromatosis  

Microsoft Academic Search

Genes hold opportunities for us to look backward and forward in family health and disease incidence. Our beliefs about genes' roles in health form around frameworks relating to personal control, and the influence of social networks and\\/or religious faith on genetic expression in health. These genetic relativistic frameworks were found to predict levels of illness uncertainty among 541 diagnosed adults

Roxanne Parrott; Kathryn F. Peters; Tara Traeder

2011-01-01

337

Is FKBP5 a genetic marker of affective psychosis? A case control study and analysis of disease related traits  

Microsoft Academic Search

BACKGROUND: A dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis has been proposed as an important pathogenic factor in depression. Genetic variants of FKBP5, a protein of the HPA system modulating the glucocorticoid receptor, have been reported to be genetically associated with improved response to medical treatment and an increase of depressive episodes. METHODS: We examined three single nucleotide polymorphisms (SNPs) in

Micha Gawlik; Kerstin Moller-Ehrlich; Meinhard Mende; Michael Jovnerovski; Sven Jung; Burkhard Jabs; Michael Knapp; Gerald Stoeber

2006-01-01

338

Plant traits correlated with generation time directly affect inbreeding depression and mating system and indirectly genetic structure  

Microsoft Academic Search

BACKGROUND: Understanding the mechanisms that control species genetic structure has always been a major objective in evolutionary studies. The association between genetic structure and species attributes has received special attention. As species attributes are highly taxonomically constrained, phylogenetically controlled methods are necessary to infer causal relationships. In plants, a previous study controlling for phylogenetic signal has demonstrated that Wright's FST,

Jérôme Duminil; Olivier J Hardy; Rémy J Petit

2009-01-01

339

Ras-induced ROS upregulation affecting cell proliferation is connected with cell type-specific alterations of HSF1/SESN3/p21Cip1/WAF1 pathways.  

PubMed

Oncogenes of the RAS family regulate many of the cell's activities, including proliferation, survival and differentiation. Activating mutations in these genes are common events for many types of cancer. One of the contradictory points concerning the biological significance of Ras activation is its dual effect (pro- or anti-proliferative) on cell reproduction. One of mechanisms by which Ras proteins influence cell growth is a regulation of intracellular level of reactive oxygen species (ROS), second messengers affecting variety of cellular processes including cell proliferation. Recently it was shown that repression of SESN1 and SESN3 genes, whose protein products control regeneration of peroxiredoxins, can play a critical role in Ras-induced ROS upregulation. In the present study we have found that Ras-induced repression of SESN3 expression and ROS upregulation is mediated via the modifications of transcriptional activity of HSF1. Interestingly, mutant Ras overexpression altered the activity of HSF1 in opposite directions in different cell contexts, in particular in human normal fibroblasts and HaCaT immortalized keratinocytes, but these opposite changes caused similar repression of SESN3 expression followed by elevation of ROS content and inhibition of cell proliferation in corresponding cell types. The inhibitory effect on cell proliferation was mediated by upregulation of p21(Cip1/WAF1). Thus, HSF1/SESN3/ROS/p21(Cip1/WAF1)-mediated deceleration of cell growth may contribute to cell defense systems protecting the organism from excessive proliferation of cells that overexpress activated Ras oncoproteins. PMID:23388456

Zamkova, Maria; Khromova, Natalia; Kopnin, Boris P; Kopnin, Pavel

2013-03-01

340

Man-Made Climatic Changes: Man's activities have altered the climate of urbanized areas and may affect global climate in the future.  

PubMed

Natural climatic fluctuations, even those of recent years, cover a considerable range. They can be characterized as a "noise" spectrum which masks possible global effects of man-caused increases of atmospheric CO(2) and particulates. Local modifications, either deliberate or inadvertent, measurably affect the microclimate. Some artificial alterations of the microlimate are beneficial in agriculture. Among the unplanned effects, those produced by urbanization on local temperature and on wind field are quite pronounced. The influences on rainfall are still somewhat controversial, but effects may extend considerably beyond the confines of metropolitan areas. They are the result of water vapor released by human activity and of the influence of condensation and freezing nuclei produced in overabundance by motor vehicles and other combustion processes. Therefore it appears that on the local scale man-made influences on climate are substantial but that on the global scale natural forces still prevail. Obviously this should not lead to complacency. The potential for anthropogenic changes of climate on a larger and even a global scale is real. At this stage activation of an adequate worldwide monitoring system to permit early assessment of these changes is urgent. This statement applies particularly to the surveillance of atmospheric composition and radiation balance at sites remote from concentrations of population, which is now entirely inadequate. In my opinion, man-made aerosols, because of their optical properties and possible influences on cloud and precipitation processes, constitute a more acute problem than CO(2). Many of their effects are promptly reversible; hence, one should strive for elimination at the source. Over longer intervals, energy added to the atmosphere by heat rejection and CO(2) absorption remain matters of concern. PMID:17829423

Landsberg, H E

1970-12-18

341

Mutations of glucocorticoid receptor differentially affect AF2 domain activity in a steroid-selective manner to alter the potency and efficacy of gene induction and repression†  

PubMed Central

The transcriptional activity of steroid hormones is intimately associated with their structure. Deacylcortivazol (DAC) contains several features that were predicted to make it an inactive glucocorticoid. Nevertheless, gene induction and repression by complexes of glucocorticoid receptor (GR) with DAC occurs with greater potency (lower EC50) than, and equal efficacy (maximal activity, or Amax) to, the very active and smaller synthetic glucocorticoid dexamethasone (Dex). Guided by a recent x-ray structure of DAC bound to the GR ligand binding domain (LBD), we now report that several point mutants in the LBD have little effect on the binding of either agonist steroid. However, these same mutations dramatically alter the Amax and/or EC50 of exogenous and endogenous genes in a manner that depends on steroid structure. In some cases, Dex is no longer a full agonist. These properties appear to result from a preferential inactivation of the AF2 activation domain in the GR LBD of Dex-, but not DAC-, bound receptors. The Dex-bound receptors display normal binding to, but greatly reduced response to, the coactivator TIF2, thus indicating a defect in the transmission efficiency of GR-steroid complex information to the coactivator TIF2. In addition, all GR mutants that are active in gene induction with either Dex or DAC have greatly reduced activity in gene repression. This contrasts with the reports of GR mutations preferentially suppressing GR-mediated induction. The properties of these GR mutants in gene induction support the hypothesis that the Amax and EC50 of GR-controlled gene expression can be independently modified, indicate that the receptor can be modified to favor activity with a specific agonist steroid, and suggest that new ligands with suitable substituents may be able to affect the same LBD conformational changes and thereby broaden the therapeutic applications of glucocorticoid steroids PMID:18578507

Tao, Yong-guang; Xu, Yong; Xu, H. Eric; Simons, S. Stoney

2009-01-01

342

Genetic variant near cytosolic phospholipase A 2 associated with schizophrenia  

Microsoft Academic Search

Two studies were undertaken to determine a possible genetic basis for alterations in phospholipid metabolism in schizophrenia. Initial results demonstrated an association in 65 schizophrenics compared with a matched normal control population. A follow-up haplotype relative risk study of 44 triads (mother, father, affected offspring), confirmed the results seen in the association study. Results suggest that a genetic variant near

Craig J. Hudson; James L. Kennedy; Andrew Gotowiec; Anna Lin; Nicole King; Katherine Gojtan; Fabio Macciardi; Karl Skorecki; Herbert Y. Meltzer; Jerry J. Warsh; David F. Horrobin

1996-01-01

343

Genetic variability in a population of arbuscular mycorrhizal fungi causes variation in plant growth  

E-print Network

LETTER Genetic variability in a population of arbuscular mycorrhizal fungi causes variation species of arbuscular mycorrhizal fungi (AMF) alter plant growth and affect plant coexistence these important soil organisms. Keywords Arbuscular mycorrhizal fungi, benefits, costs, functional variability

Alvarez, Nadir

344

Reactive biomolecular divergence in genetically altered yeast cells and isolated mitochondria as measured by biocavity laser spectroscopy : a rapid diagnostic method for studying cellular responses to stress and disease.  

SciTech Connect

We report an analysis of four strains of baker's yeast (Saccharomyces cerevisiae) using biocavity laser spectroscopy. The four strains are grouped in two pairs (wild type and altered), in which one strain differs genetically at a single locus, affecting mitochondrial function. In one pair, the wild-type rho+ and a rho0 strain differ by complete removal of mitochondrial DNA (mtDNA). In the second pair, the wild-type rho+ and a rho- strain differ by knock-out of the nuclear gene encoding Cox4, an essential subunit of cytochrome c oxidase. The biocavity laser is used to measure the biophysical optic parameter Deltalambda, a laser wavelength shift relating to the optical density of cell or mitochondria that uniquely reflects its size and biomolecular composition. As such, Deltalambda is a powerful parameter that rapidly interrogates the biomolecular state of single cells and mitochondria. Wild-type cells and mitochondria produce Gaussian-like distributions with a single peak. In contrast, mutant cells and mitochondria produce leptokurtotic distributions that are asymmetric and highly skewed to the right. These distribution changes could be self-consistently modeled with a single, log-normal distribution undergoing a thousand-fold increase in variance of biomolecular composition. These features reflect a new state of stressed or diseased cells that we call a reactive biomolecular divergence (RBD) that reflects the vital interdependence of mitochondria and the nucleus.

Yaffe, Michael P. (University of California, San Diego, CA); Gourley, Paul Lee; Copeland, Robert Guild; McDonald, Anthony Eugene; Hendricks, Judy K.; Naviaux, Robert K. (Univesity of California, San Diego, CA)

2006-12-01

345

Abstract. The climate exerts the dominant control on the spatial distribution of the major vegetation types on a global scale. In turn, vegetation cover affects climate via alteration of the physical characteristics of the land surface  

E-print Network

vegetation types on a global scale. In turn, vegetation cover affects climate via alteration of the physical on "hot spots" where the interaction is the most significant: boreal forests, North Africa, and Amazon of temperate and boreal deforestation. In general, the climate models agree that tropical deforestation exerts

Brovkin, Victor

346

Genetic inhibition of hepatic acetyl-CoA carboxylase activity increases liver fat and alters global protein acetylationa  

PubMed Central

Lipid deposition in the liver is associated with metabolic disorders including fatty liver disease, type II diabetes, and hepatocellular cancer. The enzymes acetyl-CoA carboxylase 1 (ACC1) and ACC2 are powerful regulators of hepatic fat storage; therefore, their inhibition is expected to prevent the development of fatty liver. In this study we generated liver-specific ACC1 and ACC2 double knockout (LDKO) mice to determine how the loss of ACC activity affects liver fat metabolism and whole-body physiology. Characterization of LDKO mice revealed unexpected phenotypes of increased hepatic triglyceride and decreased fat oxidation. We also observed that chronic ACC inhibition led to hyper-acetylation of proteins in the extra-mitochondrial space. In sum, these data reveal the existence of a compensatory pathway that protects hepatic fat stores when ACC enzymes are inhibited. Furthermore, we identified an important role for ACC enzymes in the regulation of protein acetylation in the extra-mitochondrial space. PMID:24944901

Chow, Jenny D.Y.; Lawrence, Robert T.; Healy, Marin E.; Dominy, John E.; Liao, Jason A.; Breen, David S.; Byrne, Frances L.; Kenwood, Brandon M.; Lackner, Carolin; Okutsu, Saeko; Mas, Valeria R.; Caldwell, Stephen H.; Tomsig, Jose L.; Cooney, Gregory J.; Puigserver, Pere B.; Turner, Nigel; James, David E.; Villen, Judit; Hoehn, Kyle L.

2014-01-01

347

Formycin B-resistant mutants of Chinese hamster ovary cells: novel genetic and biochemical phenotype affecting adenosine kinase.  

PubMed Central

Stable mutants which are approximately three- and eightfold resistant to the pyrazolopyrimidine nucleosides formycin A and formycin B (FomR) have been selected in a single step from mutagenized Chinese hamster ovary cells. In cell extracts, the two FomR mutants which were examined were both found to contain no measurable activity of the enzyme adenosine kinase (AK). However, cross-resistance studies with other adenosine analogs such as toyocamycin and tubercidin show that these mutants are distinct from toyocamycin or tubercidin resistant (Toyr) mutants which also contain no measurable AK activity in cell extracts. Studies on the uptake and incorporation of [3H]adenosine and [3H]tubercidin by various mutants and parental cell lines show that unlike the Toyr mutants, which are severely deficient in the phosphorylation of these compounds, the FomR mutants possess nearly normal capacity to phosphorylate these compounds and incorporate them into cellular macromolecules. These results suggest that the FomR mutants contain normal levels of AK activity in vivo. In cell hybrids formed between FomR X FomS cells and FomR X Toyr cells, the formycin-resistant phenotype of both of the FomR mutants behaved codominantly. However, the extracts from these hybrid cells contained either congruent to 50% (FomR X FomS) or no measurable (FomR X Toyr) AK activity, indicating that the lesion in these mutants neither suppresses the wild-type AK activity nor complements the AK deficiency of the Toyr mutants. The presence of AK activity in the FomR mutants in vivo, but not in their cell extracts, along with the codominant behavior of the mutants in hybrids, indicates that the lesions in the FomR mutant are of a novel nature. It is suggested that the genetic lesion in these mutants affects AK activity indirectly and that it may involve an essential cellular function which exists in a complex form with AK. Some implications of these results regarding the mechanism of action of formycin B are discussed. PMID:6312294

Mehta, K D; Gupta, R S

1983-01-01

348

Host Genetic Background Influences the Response to the Opportunistic Pseudomonas aeruginosa Infection Altering Cell-Mediated Immunity and Bacterial Replication  

PubMed Central

Pseudomonas aeruginosa is a common cause of healthcare-associated infections including pneumonia, bloodstream, urinary tract, and surgical site infections. The clinical outcome of P. aeruginosa infections may be extremely variable among individuals at risk and patients affected by cystic fibrosis. However, risk factors for P. aeruginosa infection remain largely unknown. To identify and track the host factors influencing P. aeruginosa lung infections, inbred immunocompetent mouse strains were screened in a pneumonia model system. A/J, BALB/cJ, BALB/cAnNCrl, BALB/cByJ, C3H/HeOuJ, C57BL/6J, C57BL/6NCrl, DBA/2J, and 129S2/SvPasCRL mice were infected with P. aeruginosa clinical strain and monitored for body weight and mortality up to seven days. The most deviant survival phenotypes were observed for A/J, 129S2/SvPasCRL and DBA/2J showing high susceptibility while BALB/cAnNCrl and C3H/HeOuJ showing more resistance to P. aeruginosa infection. Next, one of the most susceptible and resistant mouse strains were characterized for their deviant clinical and immunological phenotype by scoring bacterial count, cell-mediated immunity, cytokines and chemokines profile and lung pathology in an early time course. Susceptible A/J mice showed significantly higher bacterial burden, higher cytokines and chemokines levels but lower leukocyte recruitment, particularly neutrophils, when compared to C3H/HeOuJ resistant mice. Pathologic scores showed lower inflammatory severity, reduced intraluminal and interstitial inflammation extent, bronchial and parenchymal involvement and diminished alveolar damage in the lungs of A/J when compared to C3H/HeOuJ. Our findings indicate that during an early phase of infection a prompt inflammatory response in the airways set the conditions for a non-permissive environment to P. aeruginosa replication and lock the spread to other organs. Host gene(s) may have a role in the reduction of cell-mediated immunity playing a critical role in the control of P. aeruginosa infection. These results now provide a basis for mapping genomic regions underlying host susceptibility to P. aeruginosa infection. PMID:25268734

Lore, Nicola Ivan; Rossi, Giacomo; Cigana, Cristina; De Fino, Ida; Iraqi, Fuad A.; Bragonzi, Alessandra

2014-01-01

349

In vivo detection of exercised-induced ultrastructural changes in genetically-altered murine skeletal muscle using polarization-sensitive optical coherence tomography  

NASA Astrophysics Data System (ADS)

Skeletal muscle fibers are a known source of form birefringence in biological tissue. The birefringence present in skeletal muscle is associated with the ultrastructure of individual sarcomeres, specifically the arrangement of A-bands corresponding to the thick myosin filaments. Certain structural proteins that prevent damage and maintain the structural and functional health of the muscle fiber preserve the organization of the Abands in skeletal muscle. Therefore, the level of birefringence detected can estimate the health of the muscle as well as the damage incurred during exercise. Murine skeletal muscle from both genetically-altered (mdx) and normal (wild-type) specimens were imaged in vivo with a fiber-based PSOCT imaging system to quantitatively determine the level of birefringence present in the tissue before and after exercise. The mdx muscle lacks dystrophin, a structural protein that is mutated in Duchenne muscular dystrophy in humans. Muscle from these mdx mice exhibited a marked decrease in birefringence after exercise, whereas the wild-type muscle was highly birefringent before and after exercise. The quantitative results from this tissue optics study suggest for the first time that there is a distinct relationship between the degree of birefringence detected using PS-OCT and the sarcomeric ultrastructure present within skeletal muscle.

Boppart, Stephen

2006-02-01

350

Genetic modifiers of the Drosophila blue cheese gene link defects in lysosomal transport with decreased life span and altered ubiquitinated-protein profiles.  

PubMed

Defects in lysosomal trafficking pathways lead to decreased cell viability and are associated with progressive disorders in humans. Previously we have found that loss-of-function (LOF) mutations in the Drosophila gene blue cheese (bchs) lead to reduced adult life span, increased neuronal death, and widespread CNS degeneration that is associated with the formation of ubiquitinated-protein aggregates. To identify potential genes that participate in the bchs functional pathway, we conducted a genetic modifier screen based on alterations of an eye phenotype that arises from high-level overexpression of Bchs. We found that mutations in select autophagic and endocytic trafficking genes, defects in cytoskeletal and motor proteins, as well as mutations in the SUMO and ubiquitin signaling pathways behave as modifiers of the Bchs gain-of-function (GOF) eye phenotype. Individual mutant alleles that produced viable adults were further examined for bchs-like phenotypes. Mutations in several lysosomal trafficking genes resulted in significantly decreased adult life spans and several mutants showed changes in ubiquitinated protein profiles as young adults. This work represents a novel approach to examine the role that lysosomal transport and function have on adult viability. The genes characterized in this study have direct human homologs, suggesting that similar defects in lysosomal transport may play a role in human health and age-related processes. PMID:17435236

Simonsen, Anne; Cumming, Robert C; Lindmo, Karine; Galaviz, Vanessa; Cheng, Susan; Rusten, Tor Erik; Finley, Kim D

2007-06-01

351

Am. J. Hum. Genet. 65:14281436, 1999 A Complete Genome Screen in Sib Pairs Affected by Gilles  

E-print Network

reserved. 0002-9297/1999/6505-0027$02.00 (CT), and obsessive-compulsive disorder (OCD) (Pauls et al. 1986) (MIM 137580) is a chronic neuropsychiatric disorder with onset in child- hood. It is characterized for a common genetic basis for GTS, chronic tic disorder Received March 11, 1999; accepted for publication

Kidd, Kenneth

352

Genetic alterations of p53 and ras genes in 1,3-butadiene- and 2',3'-dideoxycytidine-induced lymphomas.  

PubMed

Mutations of p53 and ras genes were analyzed in 40 and 31 1,3-butadiene (BD)-induced lymphomas of B6C3F1 mice (BLFs), respectively, and in 63 2',3'-dideoxycytidine-induced lymphomas, which were collected from B6C3F1 (n = 16) or NIH Swiss mice (DLSs; n = 47). The frequencies of K- and N-ras mutations in BLFs (32 and 13%, respectively) were higher than those in DLSs (13 and 2%, respectively). Seven of 10 K-ras-mutated BLFs contained codon 13 CGC mutations, whereas no mutation in K-ras codon 13 was detected in DLSs, suggesting that the codon 13 CGC mutation is specific for BD exposure. Interestingly, 8 of 13 BLFs with ras mutations were from low-dose (< or = 200 ppm) or stop-exposure (26 weeks) groups. These results suggest that ras mutations play an important role in the development of BD-induced lymphoma and may represent an early event. Analysis of genetic alterations in exons 5-8 of the p53 gene revealed mutations in seven of the BLFs and three of the DLSs. All seven BLFs carrying p53 mutations were collected from the high-dose (625 ppm) continuous exposure group, which might indicate that p53 is involved in the progression of BD-induced lymphoma and in late stage of lymphomagenesis. Mutations in ras and p53 genes are relatively infrequent in 2',3'-dideoxycytidine-induced lymphomas, suggesting that other genes must be involved. PMID:9205081

Zhuang, S M; Cochran, C; Goodrow, T; Wiseman, R W; Söderkvist, P

1997-07-01

353

The Order of Exercise during Concurrent Training for Rehabilitation Does Not Alter Acute Genetic Expression, Mitochondrial Enzyme Activity or Improvements in Muscle Function  

PubMed Central

Concurrent exercise combines different modes of exercise (e.g., aerobic and resistance) into one training protocol, providing stimuli meant to increase muscle strength, aerobic capacity and mass. As disuse is associated with decrements in strength, aerobic capacity and muscle size concurrent training is an attractive modality for rehabilitation. However, interference between the signaling pathways may result in preferential improvements for one of the exercise modes. We recruited 18 young adults (10 ?, 8 ?) to determine if order of exercise mode during concurrent training would differentially affect gene expression, protein content and measures of strength and aerobic capacity after 2 weeks of knee-brace induced disuse. Concurrent exercise sessions were performed 3x/week for 6 weeks at gradually increasing intensities either with endurance exercise preceding (END>RES) or following (RES>END) resistance exercise. Biopsies were collected from the vastus lateralis before, 3 h after the first exercise bout and 48 h after the end of training. Concurrent exercise altered the expression of genes involved in mitochondrial biogenesis (PGC-1?, PRC, PPAR?), hypertrophy (PGC-1?4, REDD2, Rheb) and atrophy (MuRF-1, Runx1), increased electron transport chain complex protein content, citrate synthase and mitochondrial cytochrome c oxidase enzyme activity, muscle mass, maximum isometric strength and VO2peak. However, the order in which exercise was completed (END>RES or RES>END) only affected the protein content of mitochondrial complex II subunit. In conclusion, concurrent exercise training is an effective modality for the rehabilitation of the loss of skeletal muscle mass, maximum strength, and peak aerobic capacity resulting from disuse, regardless of the order in which the modes of exercise are performed. PMID:25289940

MacNeil, Lauren G.; Glover, Elisa; Bergstra, T. Graham; Safdar, Adeel; Tarnopolsky, Mark A.

2014-01-01

354

Alteration of the Alkaloid Profile in Genetically Modified Tobacco Reveals a Role of Methylenetetrahydrofolate Reductase in Nicotine N-Demethylation1[C][W][OA  

PubMed Central

Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme of the tetrahydrofolate (THF)-mediated one-carbon (C1) metabolic network. This enzyme catalyzes the reduction of 5,10-methylene-THF to 5-methyl-THF. The latter donates its methyl group to homocysteine, forming methionine, which is then used for the synthesis of S-adenosyl-methionine, a universal methyl donor for numerous methylation reactions, to produce primary and secondary metabolites. Here, we demonstrate that manipulating tobacco (Nicotiana tabacum) MTHFR gene (NtMTHFR1) expression dramatically alters the alkaloid profile in transgenic tobacco plants by negatively regulating the expression of a secondary metabolic pathway nicotine N-demethylase gene, CYP82E4. Quantitative real-time polymerase chain reaction and alkaloid analyses revealed that reducing NtMTHFR expression by RNA interference dramatically induced CYP82E4 expression, resulting in higher nicotine-to-nornicotine conversion rates. Conversely, overexpressing NtMTHFR1 suppressed CYP82E4 expression, leading to lower nicotine-to-nornicotine conversion rates. However, the reduced expression of NtMTHFR did not affect the methionine and S-adenosyl-methionine levels in the knockdown lines. Our finding reveals a new regulatory role of NtMTHFR1 in nicotine N-demethylation and suggests that the negative regulation of CYP82E4 expression may serve to recruit methyl groups from nicotine into the C1 pool under C1-deficient conditions. PMID:23221678

Hung, Chiu-Yueh; Fan, Longjiang; Kittur, Farooqahmed S.; Sun, Kehan; Qiu, Jie; Tang, She; Holliday, Bronwyn M.; Xiao, Bingguang; Burkey, Kent O.; Bush, Lowell P.; Conkling, Mark A.; Roje, Sanja; Xie, Jiahua

2013-01-01

355

Metabolic alteration in tumorigenesis.  

PubMed

Altered metabolism in cancer was first discovered by Otto Warburg early last century. Although the Warburg Effect has been widely used in tumor detection, relatively little progress had been made in mechanistic understanding of cancer metabolism in the subsequent eight decades. Genetic studies have recently identified mutations in human cancer targeting multiple enzymes involved in intermediate metabolism. One emerging mechanism common to these mutant enzymes is the accumulation of a metabolite that alters the epigenetic control. PMID:24114443

Yang, Hui; Xiong, Yue; Guan, KunLiang

2013-12-01

356

Transgenic tobacco plants expressing the maize Cat2 gene have altered catalase levels that affect plant-pathogen interactions and resistance to oxidative stress  

Microsoft Academic Search

Transgenic tobacco genotypes expressing the maize Cat2 gene were developed with altered catalase (CAT) levels that resulted in a moderate increase of CAT activity in two transgenic lines. Bacterial infection, with a pathogen that does not share homology with the transgene, caused local and systemic down-regulation of the steady state mRNA levels of the 35S-driven transgene in a manner resembling

A. N. Polidoros; P. V. Mylona; J. G. Scandalios

2001-01-01

357

Decreased brain docosahexaenoic acid during development alters dopamine-related behaviors in adult rats that are differentially affected by dietary remediation  

Microsoft Academic Search

Docosahexaenoic acid (DHA) is a major component of neuronal membranes. In rats, low brain levels of DHA during development produce alterations in the mesocortical and mesolimbic dopamine systems. In this study, male Long–Evans rats (n=6–7 per group) were raised from conception on diets with (control) or without ?-linolenic acid, the dietary precursor of DHA. The deficient diet reduced brain DHA

Beth Levant; Jeffery D Radel; Susan E Carlson

2004-01-01

358

Net primary productivity and rain-use efficiency as affected by warming, altered precipitation, and clipping in a mixed-grass prairie.  

PubMed

Grassland productivity in response to climate change and land use is a global concern. In order to explore the effects of climate change and land use on net primary productivity (NPP), NPP partitioning [fBNPP , defined as the fraction of belowground NPP (BNPP) to NPP], and rain-use efficiency (RUE) of NPP, we conducted a field experiment with warming (+3 °C), altered precipitation (double and half), and annual clipping in a mixed-grass prairie in Oklahoma, USA since July, 2009. Across the years, warming significantly increased BNPP, fBNPP , and RUEBNPP by an average of 11.6%, 2.8%, and 6.6%, respectively. This indicates that BNPP was more sensitive to warming than aboveground NPP (ANPP) since warming did not change ANPP and RUEANPP much. Double precipitation stimulated ANPP, BNPP, and NPP but suppressed RUEANPP , RUEBNPP , and RUENPP while half precipitation decreased ANPP, BNPP, and NPP but increased RUEANPP , RUEBNPP , and RUENPP . Clipping interacted with altered precipitation in impacting RUEANPP , RUEBNPP , and RUENPP , suggesting land use could confound the effects of precipitation changes on ecosystem processes. Soil moisture was found to be a main factor in regulating variation in ANPP, BNPP, and NPP while soil temperature was the dominant factor influencing fBNPP . These findings suggest that BNPP is critical point to future research. Additionally, results from single-factor manipulative experiments should be treated with caution due to the non-additive interactive effects of warming with altered precipitation and land use (clipping). PMID:23649795

Xu, Xia; Sherry, Rebecca A; Niu, Shuli; Li, Dejun; Luo, Yiqi

2013-09-01

359

Why Alter Milk Composition?  

Microsoft Academic Search

There are multiple reasons to alter milk composition. This paper delineates and discusses the processing, economic, regulatory, marketing, dietary, and future trends affecting alteration of milk compo- sition. The ability to divide milk into various components creates a multitude of products that can be used as ingredi- ents in both food and nonfood manufac- turing. In almost every use, there

David H. Hettinga

1989-01-01

360

Molecular genetics of growth and development in Populus (Salicaceae). V. Mapping quantitative trait loci affecting leaf variation  

SciTech Connect

The genetic variation of leaf morphology and development was studied in the 2-yr-old replicated plantation of an interspecific hybrid pedigree of Populus trichocarpa T. & G. and P. deltoides Marsh. via both molecular and quantitative genetic methods. Leaf traits chosen showed pronounced differences between the original parents, including leaf size, shape, orientation, color, structure, petiole size, and petiole cross section. In the F{sub 2} generation, leaf traits were all significantly different among genotypes, but with significant effects due to genotype X crown-position interaction. Variation in leaf pigmentation, petiole length, and petiole length proportion appeared to be under the control of few quantitative trait loci (QTLs). More QTLs were associated with single leaf area, leaf shape, lamina angle, abaxial color, and petiole flatness, and in these traits the number of QTLs varied among crown positions. In general the estimates of QTL numbers from Wright`s biometric method were close to those derived from molecular markers. For those traits with few underlying QTLs, a single marker interval could explain from 30-60% of the observed phenotypic variance. For multigenic traits, certain markers contributed more substantially to the observed variation than others. Genetic cluster analysis showed developmentally related traits to be more strongly associated with each other than with unrelated traits. This finding was also supported by the QTL mapping. For example, the same chromosomal segment of linkage group L seemed to account for 20% of the phenotypic variation of all dimension-related traits, leaf size, petiole length, and midrib angle. In both traits, the P. deltoides alleles had positive effects and were dominant to the P. trichocarpa alleles. Similar relationships were also found for lamina angle, abaxial greenness, and petiole flatness. 72 refs., 3 figs., 2 tabs.

Wu, R.; Bradshaw, H.D. Jr.; Stettler, R.F. [Univ. of Washington, Seattle, WA (United States)

1997-02-01

361

Interplay between Genetic and Clinical Variables Affecting Platelet Reactivity and Cardiac Adverse Events in Patients Undergoing Percutaneous Coronary Intervention  

PubMed Central

Several clinical and genetic variables are associated with influencing high on treatment platelet reactivity (HTPR). The aim of the study was to propose a path model explaining a concurrent impact among variables influencing HTPR and ischemic events. In this prospective cohort study polymorphisms of CYP2C19*2, CYP2C19*17, ABCB1, PON1 alleles and platelet function assessed by Multiple Electrode Aggregometry were assessed in 416 patients undergoing percutaneous coronary intervention treated with clopidogrel and aspirin. The rates of major adverse cardiac events (MACE) were recorded during a 12-month follow up. The path model was calculated by a structural equation modelling. Paths from two clinical characteristics (diabetes mellitus and acute coronary syndrome (ACS)) and two genetic variants (CYP2C19*2 and CYP2C19*17) independently predicted HTPR (path coefficients: 0.11 0.10, 0.17, and -0.10, respectively; p<0.05 for all). By use of those four variables a novel score for prediction of HTPR was built: in a factor-weighted model the risk for HTPR was calculated with an OR of 3.8 (95%CI: 3.1–6.8, p<0.001) for a score level of ?1 compared with a score of <1. While MACE was independently predicted by HTPR and age in the multivariate model (path coefficient: 0.14 and 0.13, respectively; p<0.05), the coexistence of HTPR and age ?75 years emerged as the strongest predictor of MACE. Our study suggests a pathway, which might explain indirect and direct impact of variables on clinical outcome: ACS, diabetes mellitus, CYP2C19*2 and CYP2C19*17 genetic variants independently predicted HTPR. In turn, age ?75 years and HTPR were the strongest predictors of MACE. PMID:25051347

Siller-Matula, Jolanta M.; Lang, Irene M.; Neunteufl, Thomas; Kozinski, Marek; Maurer, Gerald; Linkowska, Katarzyna; Grzybowski, Tomasz; Kubica, Jacek; Jilma, Bernd

2014-01-01

362

Vector control measures failed to affect genetic structure of Aedes aegypti in a sentinel metropolitan area of Brazil.  

PubMed

In order to evaluate subpopulation differentiation, effective population size (Ne) and evidence for population bottlenecks at various geographic levels, Aedes aegypti larvae were collected longitudinally from 2007 to 2009 from four areas in the city of Salvador, Brazil. The DNA from each larva was isolated and genotyped with five independent microsatellite markers. FST and Jost's D revealed significant population structuring (P<0.05) at the municipal and regional levels, while only RST was able to detect genetic differentiation at the level of strata within these areas. Ne analysis from longitudinal data did not show any evidence of significant change in population structure. The census population measured by the house index, however, showed a significant trend toward decrease in these areas. Active vector control measures did contribute to vector reduction, but this was not enough to decrease A. aegypti population genetic diversity in Salvador. The understanding of A. aegypti population dynamics may be helpful for planning and evaluation of control measures to make them more effective. PMID:24028791

Souza, Kathleen R; Ribeiro, Gilmar; Silva dos Santos, Carlos Gustavo; de Lima, Eliaci Couto; Melo, Paulo R S; Reis, Mitermayer G; Blanton, Ronald E; Silva, Luciano K

2013-12-01

363

Genetic polymorphism of human cytochrome P-450 (S)-mephenytoin 4-hydroxylase. Studies with human autoantibodies suggest a functionally altered cytochrome P-450 isozyme as cause of the genetic deficiency  

SciTech Connect

The metabolism of the anticonvulsant mephenytoin is subject to a genetic polymorphism. In 2-5% of Caucasians and 18-23% of Japanese subjects a specific cytochrome P-450 isozyme, P-450 meph, is functionally deficient or missing. The authors have accumulated evidence that autoimmune antibodies observed in sera of patients with tienilic acid induced hepatitis (anti-liver kidney microsome 2 or anti-LKM2 antibodies) specifically recognize the cytochrome P-450 involved in the mephrenytoin hydroxylation polymorphism. This is demonstrated by immunoinhibition and immunoprecipitation of microsomal (S)-mephenytoin 4-hydroxylation activity and by the recognition by anti-LKM2 antibodies of a single (/sup 125/I)-protein band on immunoblots of human liver microsomes after sodium dodecyl sulfate-polyacrylamide gel electrophoresis or isoelectric focusing. The cytochrome P-450 recognized by anti-LKM2 antibodies was immunopurified from microsomes derived from livers of extensive (EM) or poor metabolizers (PM) of (S)-mephenytoin. Comparison of the EM-type cytochrome P-450 to that isolated from PM livers revealed no difference in regard to immuno-cross-reactivity, molecular weight, isoelectric point, relative content in microsomes, two-dimensional tryptic peptide maps, one-dimensional peptide maps with three proteases, amino acid composition, and amino-terminal protein sequence. Finally, the same protein was precipitated from microsomes prepared from the liver biopsy of a subject phenotyped in vivo as a poor metabolizer of mephenytoin. These data strongly suggest that the mephenytoin hydroxylation deficiency is caused by a minor structural change leading to a functionally altered cytochrome P-450 isozyme.

Meier, U.T.; Meyer, U.A.

1987-12-15

364

Multiple genetic alterations in primary cutaneous large B-cell lymphoma, leg type support a common lymphomagenesis with activated B-cell-like diffuse large B-cell lymphoma.  

PubMed

Primary cutaneous large B-cell lymphoma, leg type has been individualized from nodal diffuse large B-cell lymphoma. The objective of this study was to screen primary cutaneous large B-cell lymphoma, leg type for genetic alterations recently described in nodal diffuse large B-cell lymphoma. Skin biopsies from 23 patients were analyzed for IRF4, BCL2, BCL6, and MYC expression. FISH testing was performed for BCL2, BCL6, MYC with separation probes and for CDKN2A and PRDM1/BLIMP1 deletion. Multiple sequential FISH analyses with up to six probes were performed to define samples with multiple cytogenetic alterations. MYD88 mutations were studied by Sanger sequencing. All cases but one displayed at least one genetic alteration (96%). Nine patients exhibited a single genetic mutation and 12 combined several alterations (52%). We observed a split for BCL2, BCL6, or MYC in 1/23, 6/23, and 3/23 of cases, respectively. No double-hit lymphoma was observed. CDKN2A deletion was detected by FISH in only 5/23 cases. BLIMP1 and/or 6q deletion was observed at a higher rate in 10/20 of cases. No correlation between rearrangement and immunohistochemical expression was found for BCL2 or MYC. FISH tracking of sequential hybridizations showed that several alterations were carried by the same nuclei. The p.L265P MYD88 mutation was found in 11/18 (61%) of cases. Contrary to most cutaneous lymphomas that rarely harbor primary genetic alteration of their nodal histological equivalent, primary cutaneous large B-cell lymphoma, leg type seems to be a 'cutaneous counterpart' of activated B-cell-like diffuse large B-cell lymphoma with a similar cytogenetic profile and a high rate of MYD88 oncogenic L265P mutation. This also suggests a common lymphomagenesis with NF-?B activation, strong IRF4 expression and terminal B-cell differentiation blockage. Our data support the use of therapies targeting NF-?B, as most patients displayed disease progression and resistance to conventional therapies. PMID:24030746

Pham-Ledard, Anne; Prochazkova-Carlotti, Martina; Andrique, Laetitia; Cappellen, David; Vergier, Béatrice; Martinez, Fabian; Grange, Florent; Petrella, Tony; Beylot-Barry, Marie; Merlio, Jean-Philippe

2014-03-01

365

Genetic variation in four maturity genes affects photoperiod insensitivity and PHYA-regulated post-flowering responses of soybean  

PubMed Central

Background Absence of or low sensitivity to photoperiod is necessary for short-day crops, such as rice and soybean, to adapt to high latitudes. Photoperiod insensitivity in soybeans is controlled by two genetic systems and involves three important maturity genes: E1, a repressor for two soybean orthologs of Arabidopsis FLOWERING LOCUS T (GmFT2a and GmFT5a), and E3 and E4, which are phytochrome A genes. To elucidate the diverse mechanisms underlying photoperiod insensitivity in soybean, we assessed the genotypes of four maturity genes (E1 through E4) in early-flowering photoperiod-insensitive cultivars and their association with post-flowering responses. Results We found two novel dysfunctional alleles in accessions originally considered to have a dominant E3 allele according to known DNA markers. The E3 locus, together with E1 and E4, contained multiple dysfunctional alleles. We identified 15 multi-locus genotypes, which we subdivided into 6 genotypic groups by classifying their alleles by function. Of these, the e1-as/e3/E4 genotypic group required an additional novel gene (different from E1, E3, and E4) to condition photoperiod insensitivity. Despite their common pre-flowering photoperiod insensitivity, accessions with different multi-locus genotypes responded differently to the post-flowering photoperiod. Cultivars carrying E3 or E4 were sensitive to photoperiod for post-flowering characteristics, such as reproductive period and stem growth after flowering. The phytochrome A–regulated expression of the determinate growth habit gene Dt1, an ortholog of Arabidopsis TERMINAL FLOWER1, was involved in the persistence of the vegetative activity at the stem apical meristem of flower-induced plants under long-day conditions. Conclusions Diverse genetic mechanisms underlie photoperiod insensitivity in soybean. At least three multi-locus genotypes consisting of various allelic combinations at E1, E3, and E4 conferred pre-flowering photoperiod insensitivity to soybean cultivars but led to different responses to photoperiod during post-flowering vegetative and reproductive development. The phyA genes E3 and E4 are major controllers underlying not only pre-flowering but also post-flowering photoperiod responses. The current findings improve our understanding of genetic diversity in pre-flowering photoperiod insensitivity and mechanisms of post-flowering photoperiod responses in soybean. PMID:23799885

2013-01-01

366

Agro-Environmental Effects Due to Altered Cultivation Practices with Genetically Modified Herbicide-Tolerant Oilseed Rape and Implications for Monitoring: A Review  

Microsoft Academic Search

Genetically modified herbicide-tolerant oilseed rape or canola (Brassica napus L.) is at the forefront of being introduced into European agriculture. Concerns have been raised about how genetically modified\\u000a oilseed rape cultivation and the modified cropping practices might impair the agro-environment. The present review compiles\\u000a and categorises evidenced and potential agro-environmental effects of cultivating genetically modified oilseed rape and assesses\\u000a the

F. Graef

367

Agro-environmental effects due to altered cultivation practices with genetically modified herbicide-tolerant oilseed rape and implications for monitoring. A review  

Microsoft Academic Search

Genetically modified herbicide-tolerant oilseed rape or canola (Brassica napus L.) is at the forefront of being introduced into European agriculture. Concerns have been raised about how genetically modified\\u000a oilseed rape cultivation and the modified cropping practices might impair the agro-environment. The present review compiles\\u000a and categorises evidenced and potential agro-environmental effects of cultivating genetically modified oilseed rape and assesses\\u000a the

F. Graef

2009-01-01

368

CpG Methylation Modifies the Genetic Stability of Cloned Repeat Sequences  

Microsoft Academic Search

The genetic stability of tandemly repeated DNAs is affected by repeat sequence, tract length, tract purity, and replication direction. Alterations in DNA methylation status are thought to influence many processes of mutagenesis. By use of bacterial and primate cell systems, we have determined the effect of CpG methylation on the genetic stability of cloned di-, tri-, penta- and minisatellite repeated

Kerrie Nichol; Christopher E. Pearson

2002-01-01

369

Some genetic and environmental (sic) factors affecting weaning weight and weaning of grade in Angus cattle in South Texas  

E-print Network

-squares method of fitting constants was used to estimate the effect of the various factors on weaning weight and grade. All factors studied significantly affected weaning weight except birth year. Not all of the factors studied yielded estimates in close... sealer effect causes the coefficients of varia- tion to be equal. In order for correction factors to be most satisfactory, they should equalize means between subclasses and variances within subclasses. The literature fully substantiates the need...

Stasney, Paige Allan

2012-06-07

370

Judaism, genetic screening and genetic therapy.  

PubMed

Genetic screening, gene therapy and other applications of genetic engineering are permissible in Judaism when used for the treatment, cure, or prevention of disease. Such genetic manipulation is not considered to be a violation of God's natural law, but a legitimate implementation of the biblical mandate to heal. If Tay-Sachs disease, diabetes, hemophilia, cystic fibrosis, Huntington's disease or other genetic diseases can be cured or prevented by "gene surgery," then it is certainly permitted in Jewish law. Genetic premarital screening is encouraged in Judaism for the purpose of discouraging at-risk marriages for a fatal illness such as Tay-Sachs disease. Neonatal screening for treatable conditions such as phenylketonuria is certainly desirable and perhaps required in Jewish law. Preimplantation screening and the implantation of only "healthy" zygotes into the mother's womb to prevent the birth of an affected child are probably sanctioned in Jewish law. Whether or not these assisted reproduction techniques may be used to choose the sex of one's offspring, to prevent the birth of a child with a sex-linked disease such as hemophilia, has not yet been ruled on by modern rabbinic decisions. Prenatal screening with the specific intent of aborting an affected fetus is not allowed according to most rabbinic authorities, although a minority view permits it "for great need." Not to have children if both parents are carriers of genetic diseases such as Tay-Sachs is not a Jewish option. Preimplantation screening is preferable. All screening test results must remain confidential. Judaism does not permit the alteration or manipulation of physical traits and characteristics such as height, eye and hair color, facial features and the like, when such change provides no useful benefit to mankind. On the other hand, it is permissible to clone organisms and microorganisms to facilitate the production of insulin, growth hormone, and other agents intended to benefit mankind and to cure and treat diseases. PMID:9844372

Rosner, F

1998-01-01

371

Alterations of rx1 and pax6 expression levels at neural plate stages differentially affect the production of retinal cell types and maintenance of retinal stem cell qualities  

Microsoft Academic Search

rx1 and pax6 are necessary for the establishment of the vertebrate eye field and for the maintenance of the retinal stem cells that give rise to multiple retinal cell types. They also are differentially expressed in cellular layers in the retina when cell fates are being specified, and their expression levels differentially affect the production of amacrine cell subtypes. To

Norann A. Zaghloul; Sally A. Moody

2007-01-01

372

Genetic Analysis of Dystrophin Gene for Affected Male and Female Carriers with Duchenne/Becker Muscular Dystrophy in Korea  

PubMed Central

Duchenne and Becker muscular dystrophy (DMD/BMD) are X-linked recessive disorders caused by mutation in dystrophin gene. We analyzed the results of a genetic test in 29 DMD/BMD patients, their six female relatives, and two myopathic female patients in Korea. As the methods developed, we applied different procedures for dystrophin gene analysis; initially, multiplex polymerase chain reaction was used, followed by multiplex ligation-dependent probe amplification (MLPA). Additionally, we used direct DNA sequencing for some patients who had negative results using the above methods. The overall mutation detection rate was 72.4% (21/29) in DMD/BMD patients, identifying deletions in 58.6% (17/29). Most of the deletions were confined to the central hot spot region between exons 44 and 55 (52.9%, 7/19). The percentage of deletions and duplications revealed by MLPA was 45.5% (5/11) and 27.2% (3/11), respectively. Using the MLPA method, we detected mutations confirming their carrier status in all female relatives and symptomatic female patients. In one patient in whom MLPA revealed a single exon deletion of the dystrophin gene, subsequent DNA sequencing analysis identified a novel nonsense mutation (c.4558G > T; Gln1520X). The MLPA assay is a useful quantitative method for detecting mutation in asymptomatic or symptomatic carriers as well as DMD/BMD patients. PMID:22379338

Lee, Bo Lyun; Nam, Sook Hyun; Lee, Jun Hwa; Ki, Chang Seok; Lee, Munhyang

2012-01-01

373

Few colonies of the host Bombus terrestris disproportionately affect the genetic diversity of its parasite, Crithidia bombi.  

PubMed

Sex and recombination have long been considered as necessary means for hosts to keep up with and resist to their faster reproducing parasites. On the other hand, comparatively little attention has been paid to potential benefits of recombination for the parasites. Using as model organisms the bumblebee Bombus terrestris and its genetically highly variable trypanosomatid parasite Crithidia bombi we analysed the infection dynamics as well as the relative frequency of parasite recombinants over time, in colonies that were either immune-challenged with heat-killed bacteria or sham-inoculated. In addition, we used infective cells from a given colony to infect workers from other, untreated colonies, to investigate whether recombinant parasite strains may have a competitive advantage over the parental strains to infect the surrounding host population. We show that in our experimental setup the host immune status does not influence the proportion of recombinant parasite cells in the infection. Neither do recombinant parasite strains have an advantage over the parental ones at infecting workers unrelated to the host colony the infection originally came from. However, we found that the prevalence of recombinants was highly variable among colonies, with one particular colony producing significantly more recombinant strains than others. As the successful infection of daughter queens--the only individuals surviving the winter to the next year--is proportional to the number of circulating parasite strains in the colony, we suggest that such "super-producing" colonies may be responsible for most of the infections happening in the next year. PMID:24263111

Cisarovsky, Gabriel; Schmid-Hempel, Paul

2014-01-01

374

A large scale survey reveals that chromosomal copy-number alterations significantly affect gene modules involved in cancer initiation and progression  

Microsoft Academic Search

Background  Recent observations point towards the existence of a large number of neighborhoods composed of functionally-related gene modules\\u000a that lie together in the genome. This local component in the distribution of the functionality across chromosomes is probably\\u000a affecting the own chromosomal architecture by limiting the possibilities in which genes can be arranged and distributed across\\u000a the genome. As a direct consequence

Eva Alloza; Fátima Al-Shahrour; Juan C Cigudosa; Joaquín Dopazo

2011-01-01

375

Naphthenic acids affect plant water conductance but do not alter shoot Na + and Cl ? concentrations in jack pine ( Pinus banksiana ) seedlings  

Microsoft Academic Search

Solution culture-grown, six-month old jack pine (Pinus banksiana Lamb.) seedlings were treated with naphthenic acids (NAs) (150 mg l-1) and sodium chloride (45 mM NaCl) which were applied together or separately to roots for four weeks. NAs aggravated the effects of NaCl in inhibiting stomatal conductance (gs) and root hydraulic conductance (Kr). Naphthenic acids did not affect needle and root electrolyte leakage in

Kent G. Apostol; Janusz J. Zwiazek; Michael D. MacKinnon

2004-01-01