These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Epigenetic and Genetic Alterations Affect the WWOX Gene in Head and Neck Squamous Cell Carcinoma  

PubMed Central

Different types of genetic and epigenetic changes are associated with HNSCC. The molecular mechanisms of HNSCC carcinogenesis are still undergoing intensive investigation. WWOX gene expression is altered in many cancers and in a recent work reduced WWOX expression has been associated with miR-134 expression in HNSCC. In this study we investigated the WWOX messenger RNA expression levels in association with the promoter methylation of the WWOX gene and miR-134 expression levels in 80 HNSCC tumor and non-cancerous tissue samples. Our results show that WWOX expression is down-regulated especially in advanced-stage tumor samples or in tumors with SCC. This down-regulation was associated with methylation of the WWOX promoter region but not with miR-134 expression. There was an inverse correlation between the expression level and promoter methylation. We also analyzed whole exons and exon/intron boundries of the WWOX gene by direct sequencing. In our study group we observed 10 different alterations in the coding sequences and 18 different alterations in the non-coding sequences of the WWOX gene in HNSCC tumor samples. These results indicate that the WWOX gene can be functionally inactivated by promoter methylation, epigenetically or by mutations affecting the sequences coding for the enzymatic domain of the gene, functionally. We conclude that inactivation of WWOX gene contributes to the progression of HNSCC. PMID:25612104

Ekizoglu, Seda; Bulut, Pelin; Karaman, Emin; Kilic, Erkan; Buyru, Nur

2015-01-01

2

Genetically Altered Plant Species  

NASA Technical Reports Server (NTRS)

Researchers in Robert Ferl's lab at the University of Florida in Gainesville, genetically altered this Arabdopsis Thaliana (a brassica species) plant to learn how extreme environments, such as the low atmospheric pressure on Mars, affect plant genes. They inserted green fluorescent protein (GFP) near the on/off switches for anoxia and drought genes. When those genes were turned on after exposure to reduced atmospheric pressure, GFP was turned on as well, causing cells expressing those genes to glow green under a blue light. The natural fluorescence of chlorophyll accounts for the red glow.

2003-01-01

3

Human genetic variation altering anthrax toxin sensitivity  

E-print Network

Human genetic variation altering anthrax toxin sensitivity Mikhail Martchenkoa , Sophie I affecting capillary morphogenesis gene 2 (CMG2), which encodes a host membrane protein exploited by anthrax in sensitivity me- diated by the protective antigen (PA) moiety of anthrax toxin by more than four orders

Tang, Hua

4

MRI phenotyping of genetically altered mice.  

PubMed

The laboratory mouse, with its genetic similarity to humans and rich set of tools for manipulating its genome, has emerged as one of the key models for experimental investigation of the genotype/phenotype relationships in mammals. Recent innovations have made MRI an increasingly popular tool for examining the phenotype of genetically altered mice. Advances in field strengths, mouse handling, image analysis and statistics have contributed greatly in this regard. In this chapter, we illustrate the methods necessary to achieve high-throughput phenotyping of genetically altered mice using multiple-mouse MRI combined with advanced image analysis techniques and statistics. PMID:21279611

Lerch, Jason P; Sled, John G; Henkelman, R Mark

2011-01-01

5

Distinct Sets of Genetic Alterations in Melanoma  

Microsoft Academic Search

background Exposure to ultraviolet light is a major causative factor in melanoma, although the re- lationship between risk and exposure is complex. We hypothesized that the clinical heterogeneity is explained by genetically distinct types of melanoma with different sus- ceptibility to ultraviolet light. methods We compared genome-wide alterations in the number of copies of DNA and mutational status of BRAF

John A. Curtin; Jane Fridlyand; Toshiro Kageshita; Hetal N. Patel; Klaus J. Busam; Heinz Kutzner; Kwang-Hyun Cho; Setsuya Aiba; Eva-Bettina Bröcker; Philip E. LeBoit; Dan Pinkel; Boris C. Bastian

2010-01-01

6

PRODUCTION OF EXTRACELLULAR NUCLEIC ACIDS BY GENETICALLY ALTERED BACTERIA IN AQUATIC-ENVIRONMENT MICROCOSMS  

EPA Science Inventory

Factors which affect the production of extracellular DNA by genetically altered strains of Escherichia coli, Pseudomonas aeruginosa, pseudomonas cepacia, and Bradyrhizobium japonicum in aquatic environments were investigated. he presence or absence of the ambient microbial commun...

7

Low temperature alteration processes affecting ultramafic bodies  

Microsoft Academic Search

At low temperatures, in the presence of an aqueous solution, olivine and orthopyroxene are not stable relative to the hydrous phases brucite, serpentine and talc. Alteration of dunite and peridotite to serpentine or steatite bodies must therefore proceed via non-equilibrium processes. The compositions of natural solutions emanating from dunites and peridotites demonstrate that the dissolution of forsterite and\\/or enstatite is

H. Wayne Nesbitt; O. P. Bricker

1978-01-01

8

Characterization of the activity of the PI3K/mTOR inhibitor XL765 (SAR245409) in tumor models with diverse genetic alterations affecting the PI3K pathway.  

PubMed

Activation of the PI3K (phosphoinositide 3-kinase) pathway is a frequent occurrence in human tumors and is thought to promote growth, survival, and resistance to diverse therapies. Here, we report pharmacologic characterization of the pyridopyrimidinone derivative XL765 (SAR245409), a potent and highly selective pan inhibitor of class I PI3Ks (?, ?, ?, and ?) with activity against mTOR. Broad kinase selectivity profiling of >130 protein kinases revealed that XL765 is highly selective for class I PI3Ks and mTOR over other kinases. In cellular assays, XL765 inhibits the formation of PIP(3) in the membrane, and inhibits phosphorylation of AKT, p70S6K, and S6 phosphorylation in multiple tumor cell lines with different genetic alterations affecting the PI3K pathway. In a panel of tumor cell lines, XL765 inhibits proliferation with a wide range of potencies, with evidence of an impact of genotype on sensitivity. In mouse xenograft models, oral administration of XL765 results in dose-dependent inhibition of phosphorylation of AKT, p70S6K, and S6 with a duration of action of approximately 24 hours. Repeat dose administration of XL765 results in significant tumor growth inhibition in multiple human xenograft models in nude mice that is associated with antiproliferative, antiangiogenic, and proapoptotic effects. PMID:24634413

Yu, Peiwen; Laird, A Douglas; Du, Xiangnan; Wu, Jianming; Won, Kwang-Ai; Yamaguchi, Kyoko; Hsu, Pin Pin; Qian, Fawn; Jaeger, Christopher T; Zhang, Wentao; Buhr, Chris A; Shen, Paula; Abulafia, Wendy; Chen, Jason; Young, Jenny; Plonowski, Arthur; Yakes, F Michael; Chu, Felix; Lee, Michelle; Bentzien, Frauke; Lam, Sanh Tan; Dale, Stephanie; Matthews, David J; Lamb, Peter; Foster, Paul

2014-05-01

9

Genetic Programming: Parametric Analysis of Structure Altering Mutation Techniques  

E-print Network

Genetic Programming: Parametric Analysis of Structure Altering Mutation Techniques Alan Piszcz;cally parameters controlling mutation, and performance is non-linear in genetic programs. Genetic pro problems. In this pa- per we study three structure altering mutation techniques using parametric analysis

Fernandez, Thomas

10

Molecular genetics in affective illness  

SciTech Connect

Genetic transmission in manic depressive illness (MDI) has been explored in twins, adoption, association, and linkage studies. The X-linked transmission hypothesis has been tested by using several markers on chromosome X: Xg blood group, color blindness, glucose-6-phosphate dehydrogenase (G6PD), factor IX (hemophilia B), and DNA probes such as DXS15, DXS52, F8C, ST14. The hypothesis of autosomal transmission has been tested by association studies with the O blood group located on chromosome 9, as well as linkage studies on chromosome 6 with the Human Leucocyte Antigens (HLA) haplotypes and on Chromosome 11 with DNA markers for the following genes: D2 dopamine receptor, tyrosinase, C-Harvey-Ras-A (HRAS) oncogene, insuline (ins), and tyrosine hydroxylase (TH). Although linkage studies support the hypothesis of a major locus for the transmission of MDI in the Xq27-28 region, several factors are limiting the results, and are discussed in the present review. 105 refs., 1 fig., 2 tabs.

Mendlewicz, J.; Sevy, S.; Mendelbaum, K. (Erasme Univ. Hospital, Brussels (Belgium))

1993-01-01

11

Molecular genetic alterations in glioblastomas with oligodendroglial component  

Microsoft Academic Search

Glioblastoma multiforme is the most malignant astrocytic glioma and usually resistant to chemotherapy. A small fraction of glioblastomas may contain areas with histological features of oligodendroglial differentiation. To determine the molecular genetic alterations in such \\

Jürgen A. Kraus; Katrin Lamszus; Nicole Glesmann; Martina Beck; Marietta Wolter; Michael Sabel; Dietmar Krex; Thomas Klockgether; Guido Reifenberger; Uwe Schlegel

2001-01-01

12

Genetic factors affecting dental caries risk.  

PubMed

This article reviews the literature on genetic aspects of dental caries and provides a framework for the rapidly changing disease model of caries. The scope is genetic aspects of various dental factors affecting dental caries. The PubMed database was searched for articles with keywords 'caries', 'genetics', 'taste', 'diet' and 'twins'. This was followed by extensive handsearching using reference lists from relevant articles. The post-genomic era will present many opportunities for improvement in oral health care but will also present a multitude of challenges. We can conclude from the literature that genes have a role to play in dental caries; however, both environmental and genetic factors have been implicated in the aetiology of caries. Additional studies will have to be conducted to replicate the findings in a different population. Identification of genetic risk factors will help screen and identify susceptible patients to better understand the contribution of genes in caries aetiopathogenesis. Information derived from these diverse studies will provide new tools to target individuals and/or populations for a more efficient and effective implementation of newer preventive measures and diagnostic and novel therapeutic approaches in the management of this disease. PMID:25721273

Opal, S; Garg, S; Jain, J; Walia, I

2015-03-01

13

Genetic alterations in syndromes with oral manifestations  

PubMed Central

Ever since Gregor Johan Mendel proposed the law of inheritance, genetics has transcended the field of health and has entered all walks of life in its application. Thus, the gene is the pivoting factor for all happenings revolving around it. Knowledge of gene mapping in various diseases would be a valuable tool in prenatally diagnosing the condition and averting the future disability and stigma for the posterity. This article includes an array of genetically determined conditions in patients seen at our college out-patient department with complete manifestation, partial manifestation and array of manifestations not fitting into a particular syndrome. PMID:24379857

Anuthama, Krishnamurthy; Prasad, Harikrishnan; Ramani, Pratibha; Premkumar, Priya; Natesan, Anuja; Sherlin, Herald J.

2013-01-01

14

Genetic alterations in syndromes with oral manifestations.  

PubMed

Ever since Gregor Johan Mendel proposed the law of inheritance, genetics has transcended the field of health and has entered all walks of life in its application. Thus, the gene is the pivoting factor for all happenings revolving around it. Knowledge of gene mapping in various diseases would be a valuable tool in prenatally diagnosing the condition and averting the future disability and stigma for the posterity. This article includes an array of genetically determined conditions in patients seen at our college out-patient department with complete manifestation, partial manifestation and array of manifestations not fitting into a particular syndrome. PMID:24379857

Anuthama, Krishnamurthy; Prasad, Harikrishnan; Ramani, Pratibha; Premkumar, Priya; Natesan, Anuja; Sherlin, Herald J

2013-11-01

15

Network analysis of skin tumor progression identifies a rewired genetic architecture affecting inflammation and tumor susceptibility  

Microsoft Academic Search

BACKGROUND: Germline polymorphisms can influence gene expression networks in normal mammalian tissues and can affect disease susceptibility. We and others have shown that analysis of this genetic architecture can identify single genes and whole pathways that influence complex traits, including inflammation and cancer susceptibility. Whether germline variants affect gene expression in tumors that have undergone somatic alterations, and the extent

David A Quigley; Minh D To; Il Jin Kim; Kevin K Lin; Donna G Albertson; Jonas Sjolund; Jesús Pérez-Losada; Allan Balmain

2011-01-01

16

Distinct Genetic Alterations in Colorectal Cancer  

PubMed Central

Background Colon cancer (CRC) development often includes chromosomal instability (CIN) leading to amplifications and deletions of large DNA segments. Epidemiological, clinical, and cytogenetic studies showed that there are considerable differences between CRC tumors from African Americans (AAs) and Caucasian patients. In this study, we determined genomic copy number aberrations in sporadic CRC tumors from AAs, in order to investigate possible explanations for the observed disparities. Methodology/Principal Findings We applied genome-wide array comparative genome hybridization (aCGH) using a 105k chip to identify copy number aberrations in samples from 15 AAs. In addition, we did a population comparative analysis with aCGH data in Caucasians as well as with a widely publicized list of colon cancer genes (CAN genes). There was an average of 20 aberrations per patient with more amplifications than deletions. Analysis of DNA copy number of frequently altered chromosomes revealed that deletions occurred primarily in chromosomes 4, 8 and 18. Chromosomal duplications occurred in more than 50% of cases on chromosomes 7, 8, 13, 20 and X. The CIN profile showed some differences when compared to Caucasian alterations. Conclusions/Significance Chromosome X amplification in male patients and chromosomes 4, 8 and 18 deletions were prominent aberrations in AAs. Some CAN genes were altered at high frequencies in AAs with EXOC4, EPHB6, GNAS, MLL3 and TBX22 as the most frequently deleted genes and HAPLN1, ADAM29, SMAD2 and SMAD4 as the most frequently amplified genes. The observed CIN may play a distinctive role in CRC in AAs. PMID:20126641

Ashktorab, Hassan; Schäffer, Alejandro A.; Daremipouran, Mohammad; Smoot, Duane T.; Lee, Edward; Brim, Hassan

2010-01-01

17

Targeting genetic alterations in protein methyltransferases for personalized cancer therapeutics  

PubMed Central

The human protein methyltransferases (PMTs) constitute a large enzyme class composed of two families, the protein lysine methyltransferases (PKMTs) and the protein arginine methyltransferases (PRMTs). Examples have been reported of both PKMTs and PRMTs that are genetically altered in specific human cancers, and in several cases these alterations have been demonstrated to confer a unique dependence of the cancer cells on PMT enzymatic activity for the tumorigenic phenotype. Examples of such driver alterations in PMTs will be presented together with a review of current efforts towards the discovery and development of small-molecule inhibitors of these enzymes as personalized cancer therapeutics. PMID:23160372

Copeland, R A; Moyer, M P; Richon, V M

2013-01-01

18

Novel ALPL genetic alteration associated with an odontohypophosphatasia phenotype.  

PubMed

Hypophosphatasia (HPP) is an inherited disorder of mineral metabolism caused by mutations in ALPL, encoding tissue non-specific alkaline phosphatase (TNAP). Here, we report the molecular findings from monozygotic twins, clinically diagnosed with tooth-specific odontohypophosphatasia (odonto-HPP). Sequencing of ALPL identified two genetic alterations in the probands, including a heterozygous missense mutation c.454C>T, leading to change of arginine 152 to cysteine (p.R152C), and a novel heterozygous gene deletion c.1318_1320delAAC, leading to the loss of an asparagine residue at codon 440 (p.N440del). Clinical identification of low serum TNAP activity, dental abnormalities, and pedigree data strongly suggests a genotype-phenotype correlation between p.N440del and odonto-HPP in this family. Computational analysis of the p.N440del protein structure revealed an alteration in the tertiary structure affecting the collagen-binding site (loop 422-452), which could potentially impair the mineralization process. Nevertheless, the probands (compound heterozygous: p.[N440del];[R152C]) feature early-onset and severe odonto-HPP phenotype, whereas the father (p.[N440del];[=]) has only moderate symptoms, suggesting p.R152C may contribute or predispose to a more severe dental phenotype in combination with the deletion. These results assist in defining the genotype-phenotype associations for odonto-HPP, and further identify the collagen-binding site as a region of potential structural importance for TNAP function in the biomineralization. PMID:23791648

Martins, Luciane; Rodrigues, Thaisângela L; Ribeiro, Mariana Martins; Saito, Miki Taketomi; Giorgetti, Ana Paula Oliveira; Casati, Márcio Z; Sallum, Enilson A; Foster, Brian L; Somerman, Martha J; Nociti, Francisco H

2013-10-01

19

Tumor Hypoxia and Genetic Alterations in Sporadic Cancers  

PubMed Central

The cancer genome contains many gene alterations. How cancer cells acquire these alterations is a matter for discussion. One hypothesis is that cancer cells obtain mutations in genome stability genes at an early stage of tumor development, which results in genetic instability and generates a gene pool that enhances cellular proliferation and survival. Another hypothesis puts its emphasis on the natural selection of gene mutations for fitness. Recent data for systematic cancer genome sequencing shows that mutations in stability genes are rare in human sporadic cancers. Instead, many “passenger” mutations that do not drive the carcinogenesis process have been found in the cancer genome. Both the hypotheses mentioned above fall short in explaining recent data. Recently, many studies demonstrate the role of the tumor microenvironment, especially hypoxia and reoxygenation, in genetic instability. In this review, literature will be presented which supports a third hypothesis, i.e. that hypoxia/re-oxygenation induces genetic instability. PMID:21272156

Koi, Minoru; Boland, C.R.

2011-01-01

20

Invasion of Impatiens glandulifera affects terrestrial gastropods by altering microclimate  

NASA Astrophysics Data System (ADS)

Invasive species can have far-reaching impacts on ecosystems. Invasive plants may be able to change habitat structure and quality. We conducted a field experiment to examine whether the invasive plant Impatiens glandulifera affects native terrestrial gastropods. We also evaluated whether the invasive plant alters forest soil characteristics and microclimate which in turn may influence gastropod abundance. We sampled gastropods in plots installed in patches of I. glandulifera, in plots in which I. glandulifera was regularly removed by hand, and in control plots which were not yet colonized by the invasive plant. The three types of plots were equally distributed over three mixed deciduous forest areas that were slightly, moderately or heavily affected by a wind throw 11 years ago. A total of 33 gastropod species were recorded. Gastropod species richness was not affected by delayed effects of the wind throw, but it was significantly higher in invaded plots than in uninvaded plots. Similarly, gastropod abundance was higher in invaded plots than in the two types of control plots. Canonical correspondence analysis revealed marginally significant shifts of gastropod communities between the three types of plots and indicated that soil moisture, presence of I. glandulifera and cover of woody debris affected gastropod species composition. Field measurements showed that soil moisture was higher and daily soil temperature was more damped in patches of I. glandulifera than in the native ground vegetation. The changed microclimatic conditions may favour certain gastropod species. In particular, ubiquitous species and species with a high inundation tolerance increased in abundance in plots invaded by I. glandulifera. Our field experiment demonstrated that an invasive plant can indirectly affect native organisms by changing soil characteristics and microclimate.

Ruckli, Regina; Rusterholz, Hans-Peter; Baur, Bruno

2013-02-01

21

Selected genetic disorders affecting Ashkenazi Jewish families.  

PubMed

Ashkenazi Jews of Central and Eastern European ancestry have a disproportionately high prevalence of several autosomal recessive genetic disorders. This article describes these 9 disorders and their genetic inheritance patterns: Bloom syndrome; Canavan disease; cystic fibrosis; familial dysautonomia; Fanconi anemia; Gaucher disease; Mucolipidosis IV; Niemann-Pick disease; and Tay-Sachs disease. Genetic testing, counseling, and family planning options for the at-risk population are described. The role of the community health nurse is addressed. PMID:17149032

Weinstein, Lenore B

2007-01-01

22

Genetic Alterations in Poorly Differentiated and Undifferentiated Thyroid Carcinomas  

PubMed Central

Thyroid gland presents a wide spectrum of tumours derived from follicular cells that range from well differentiated, papillary and follicular carcinoma (PTC and FTC, respectively), usually carrying a good prognosis, to the clinically aggressive, poorly differentiated (PDTC) and undifferentiated thyroid carcinoma (UTC). It is usually accepted that PDTC and UTC occur either de novo or progress from a pre-existing well differentiated carcinoma through a multistep process of genetic and epigenetic changes that lead to clonal expansion and neoplastic development. Mutations and epigenetic alterations in PDTC and UTC are far from being totally clarified. Assuming that PDTC and UTC may derive from well differentiated thyroid carcinomas (WDTC), it is expected that some PDTC and UTC would harbour genetic alterations that are typical of PTC and FTC. This is the case for some molecular markers (BRAF and NRAS) that are present in WDTC, PDTC and UTC. Other genes, namely P53, are almost exclusively detected in less differentiated and undifferentiated thyroid tumours, supporting a diagnosis of PDTC or, much more often, UTC. Thyroid-specific rearrangements RET/PTC and PAX8/PPAR?, on the other hand, are rarely found in PDTC and UTC, suggesting that these genetic alterations do not predispose cells to dedifferentiation. In the present review we have summarized the molecular changes associated with the two most aggressive types of thyroid cancer. PMID:22654560

Soares, Paula; Lima, Jorge; Preto, Ana; Castro, Patricia; Vinagre, João; Celestino, Ricardo; Couto, Joana P; Prazeres, Hugo; Eloy, Catarina; Máximo, Valdemar; Sobrinho-Simões, M

2011-01-01

23

Alteration of the langerin oligomerization state affects birbeck granule formation.  

PubMed

Langerin, a trimeric C-type lectin specifically expressed in Langerhans cells, has been reported to be a pathogen receptor through the recognition of glycan motifs by its three carbohydrate recognition domains (CRD). In the context of HIV-1 (human immunodeficiency virus-1) transmission, Langerhans cells of genital mucosa play a protective role by internalizing virions in Birbeck Granules (BG) for elimination. Langerin (Lg) is directly involved in virion binding and BG formation through its CRDs. However, nothing is known regarding the mechanism of langerin assembly underlying BG formation. We investigated at the molecular level the impact of two CRD mutations, W264R and F241L, on langerin structure, function, and BG assembly using a combination of biochemical and biophysical approaches. Although the W264R mutation causes CRD global unfolding, the F241L mutation does not affect the overall structure and gp120 (surface HIV-1 glycoprotein of 120 kDa) binding capacities of isolated Lg-CRD. In contrast, this mutation induces major functional and structural alterations of the whole trimeric langerin extracellular domain (Lg-ECD). As demonstrated by small-angle x-ray scattering comparative analysis of wild-type and mutant forms, the F241L mutation perturbs the oligomerization state and the global architecture of Lg-ECD. Correlatively, despite conserved intrinsic lectin activity of the CRD, avidity property of Lg-ECD is affected as shown by a marked decrease of gp120 binding. Beyond the change of residue itself, the F241L mutation induces relocation of the K200 side chain also located within the interface between protomers of trimeric Lg-ECD, thereby explaining the defective oligomerization of mutant Lg. We conclude that not only functional CRDs but also their correct spatial presentation are critical for BG formation as well as gp120 binding. PMID:25650933

Chabrol, Eric; Thépaut, Michel; Dezutter-Dambuyant, Colette; Vivès, Corinne; Marcoux, Julien; Kahn, Richard; Valladeau-Guilemond, Jenny; Vachette, Patrice; Durand, Dominique; Fieschi, Franck

2015-02-01

24

Altered resting-state activity in seasonal affective disorder.  

PubMed

At present, our knowledge about seasonal affective disorder (SAD) is based mainly up on clinical symptoms, epidemiology, behavioral characteristics and light therapy. Recently developed measures of resting-state functional brain activity might provide neurobiological markers of brain disorders. Studying functional brain activity in SAD could enhance our understanding of its nature and possible treatment strategies. Functional network connectivity (measured using ICA-dual regression), and amplitude of low-frequency fluctuations (ALFF) were measured in 45 antidepressant-free patients (39.78 ± 10.64, 30 ?, 15 ?) diagnosed with SAD and compared with age-, gender- and ethnicity-matched healthy controls (HCs) using resting-state functional magnetic resonance imaging. After correcting for Type 1 error at high model orders (inter-RSN correction), SAD patients showed significantly increased functional connectivity in 11 of the 47 identified RSNs. Increased functional connectivity involved RSNs such as visual, sensorimotor, and attentional networks. Moreover, our results revealed that SAD patients compared with HCs showed significant higher ALFF in the visual and right sensorimotor cortex. Abnormally altered functional activity detected in SAD supports previously reported attentional and psychomotor symptoms in patients suffering from SAD. Further studies, particularly under task conditions, are needed in order to specifically investigate cognitive deficits in SAD. PMID:22987670

Abou Elseoud, Ahmed; Nissilä, Juuso; Liettu, Anu; Remes, Jukka; Jokelainen, Jari; Takala, Timo; Aunio, Antti; Starck, Tuomo; Nikkinen, Juha; Koponen, Hannu; Zang, Yu-Feng; Tervonen, Osmo; Timonen, Markku; Kiviniemi, Vesa

2014-01-01

25

On the molecular mechanism of the evolution of genetic code alterations  

Microsoft Academic Search

Alterations to the standard genetic code have been found in both prokaryotes and eukaryotes. This finding demolished the central\\u000a dogma of molecular biology, postulated by Crick in 1968, of an immutable and universal genetic code, and raised the question\\u000a of how organisms survive genetic code alterations. Recent studies suggest that genetic code alterations are driven by selection\\u000a using a mechanism

A. C. Gomes; T. Costa; L. Carreto; M. A. S. Santos

2006-01-01

26

Safety assessment of genetically modified plants with deliberately altered composition.  

PubMed

The development and marketing of 'novel' genetically modified (GM) crops in which composition has been deliberately altered poses a challenge to the European Union (EU)'s risk assessment processes, which are based on the concept of substantial equivalence with a non-GM comparator. This article gives some examples of these novel GM crops and summarizes the conclusions of a report that was commissioned by the European Food Safety Authority on how the EU's risk assessment processes could be adapted to enable their safety to be assessed. PMID:24735114

Halford, Nigel G; Hudson, Elizabeth; Gimson, Amy; Weightman, Richard; Shewry, Peter R; Tompkins, Steven

2014-08-01

27

Safety assessment of genetically modified plants with deliberately altered composition  

PubMed Central

The development and marketing of ‘novel’ genetically modified (GM) crops in which composition has been deliberately altered poses a challenge to the European Union (EU)'s risk assessment processes, which are based on the concept of substantial equivalence with a non-GM comparator. This article gives some examples of these novel GM crops and summarizes the conclusions of a report that was commissioned by the European Food Safety Authority on how the EU's risk assessment processes could be adapted to enable their safety to be assessed. PMID:24735114

Halford, Nigel G; Hudson, Elizabeth; Gimson, Amy; Weightman, Richard; Shewry, Peter R; Tompkins, Steven

2014-01-01

28

Human Genetic Variation Influences Vitamin C Homeostasis by Altering Vitamin C Transport and Antioxidant Enzyme Function  

PubMed Central

New evidence for the regulation of vitamin C homeostasis has emerged from several studies of human genetic variation. Polymorphisms in the genes encoding sodium-dependent vitamin C transport proteins are strongly associated with plasma ascorbate levels and likely impact tissue cellular vitamin C status. Furthermore, genetic variants of proteins that suppress oxidative stress or detoxify oxidatively damaged biomolecules, i.e., haptoglobin, glutathione-S-transferases, and possibly manganese superoxide dismutase, affect ascorbate levels in the human body. There also is limited evidence for a role of glucose transport proteins. In this review, we examine the extent of the variation in these genes, their impact on vitamin C status, and their potential role in altering chronic disease risk. We conclude that future epidemiological studies should take into account genetic variation in order to successfully determine the role of vitamin C nutriture or supplementation in human vitamin C status and chronic disease risk. PMID:23642198

Michels, Alexander J.; Hagen, Tory M.; Frei, Balz

2015-01-01

29

Human genetic variation influences vitamin C homeostasis by altering vitamin C transport and antioxidant enzyme function.  

PubMed

New evidence for the regulation of vitamin C homeostasis has emerged from several studies of human genetic variation. Polymorphisms in the genes encoding sodium-dependent vitamin C transport proteins are strongly associated with plasma ascorbate levels and likely impact tissue cellular vitamin C status. Furthermore, genetic variants of proteins that suppress oxidative stress or detoxify oxidatively damaged biomolecules, i.e., haptoglobin, glutathione-S-transferases, and possibly manganese superoxide dismutase, affect ascorbate levels in the human body. There also is limited evidence for a role of glucose transport proteins. In this review, we examine the extent of the variation in these genes, their impact on vitamin C status, and their potential role in altering chronic disease risk. We conclude that future epidemiological studies should take into account genetic variation in order to successfully determine the role of vitamin C nutriture or supplementation in human vitamin C status and chronic disease risk. PMID:23642198

Michels, Alexander J; Hagen, Tory M; Frei, Balz

2013-01-01

30

Genetic alterations of the WWOX gene in breast cancer.  

PubMed

FRA3B and FRA16D are the most sensitive common chromosomal fragile site loci in the human genome and two tumor suppressor genes FHIT (Fragile Histidine Triad) and WWOX (WW domain-containing oxidoreductase gene) map to this sites. The WWOX gene is composed of 9 exons and encodes a 46-kD protein that contains 414 amino acids. Loss of heterozygosity, homozygous deletions, and chromosomal translocations affecting WWOX has been reported in several types of cancer, including ovarian, esophageal, lung and stomach carcinoma, and multiple myeloma. The aim of this study was to determine the role of WWOX as a tumor suppressor gene in patients with breast cancer. Tumor and adjacent non-cancerous tissue samples were obtained from 81 patients with breast cancer. DNA was isolated from all tissue samples, and all exons and flanking intronic sequences of the WWOX gene were analyzed by PCR amplification and direct sequencing. We detected 14 different alterations in the coding sequence and one base substitution at the intron 6 splice site (+1 G-A). In addition to exonic and splice-site alterations, we detected 23 different alterations in the non-coding region of the gene. All coding region mutations identified in this study were in the exons between 4 and 9. We did not observe any alterations in exons 1-3. We conclude that mutations in critical region of the WWOX gene are frequent and may have an important role in breast carcinogenesis. PMID:21983861

Ekizoglu, Seda; Muslumanoglu, Mahmut; Dalay, Nejat; Buyru, Nur

2012-09-01

31

Identification of Genetic Alterations, as Causative Genetic Defects in Long QT Syndrome, Using Next Generation Sequencing Technology  

PubMed Central

Background Long QT Syndrome is an inherited channelopathy leading to sudden cardiac death due to ventricular arrhythmias. Despite that several genes have been associated with the disease, nearly 20% of cases remain without an identified genetic cause. Other genetic alterations such as copy number variations have been recently related to Long QT Syndrome. Our aim was to take advantage of current genetic technologies in a family affected by Long QT Syndrome in order to identify the cause of the disease. Methods Complete clinical evaluation was performed in all family members. In the index case, a Next Generation Sequencing custom-built panel, including 55 sudden cardiac death-related genes, was used both for detection of sequence and copy number variants. Next Generation Sequencing variants were confirmed by Sanger method. Copy number variations variants were confirmed by Multiplex Ligation dependent Probe Amplification method and at the mRNA level. Confirmed variants and copy number variations identified in the index case were also analyzed in relatives. Results In the index case, Next Generation Sequencing revealed a novel variant in TTN and a large deletion in KCNQ1, involving exons 7 and 8. Both variants were confirmed by alternative techniques. The mother and the brother of the index case were also affected by Long QT Syndrome, and family cosegregation was observed for the KCNQ1 deletion, but not for the TTN variant. Conclusions Next Generation Sequencing technology allows a comprehensive genetic analysis of arrhythmogenic diseases. We report a copy number variation identified using Next Generation Sequencing analysis in Long QT Syndrome. Clinical and familiar correlation is crucial to elucidate the role of genetic variants identified to distinguish the pathogenic ones from genetic noise. PMID:25494010

Mademont-Soler, Irene; Allegue, Catarina; Cesar, Sergi; Ferrer-Costa, Carles; Coll, Monica; Mates, Jesus; Iglesias, Anna; Brugada, Josep; Brugada, Ramon

2014-01-01

32

Molecular reconstruction of a fungal genetic code alteration  

PubMed Central

Fungi of the CTG clade translate the Leu CUG codon as Ser. This genetic code alteration is the only eukaryotic sense-to-sense codon reassignment known to date, is mediated by an ambiguous serine tRNA (tRNACAGSer), exposes unanticipated flexibility of the genetic code and raises major questions about its selection and fixation in this fungal lineage. In particular, the origin of the tRNACAGSer and the evolutionary mechanism of CUG reassignment from Leu to Ser remain poorly understood. In this study, we have traced the origin of the tDNACAGSer gene and studied critical mutations in the tRNACAGSer anticodon-loop that modulated CUG reassignment. Our data show that the tRNACAGSer emerged from insertion of an adenosine in the middle position of the 5?-CGA-3?anticodon of a tRNACGASer ancestor, producing the 5?-CAG-3? anticodon of the tRNACAGSer, without altering its aminoacylation properties. This mutation initiated CUG reassignment while two additional mutations in the anticodon-loop resolved a structural conflict produced by incorporation of the Leu 5?-CAG-3?anticodon in the anticodon-arm of a tRNASer. Expression of the mutant tRNACAGSer in yeast showed that it cannot be expressed at physiological levels and we postulate that such downregulation was essential to maintain Ser misincorporation at sub-lethal levels during the initial stages of CUG reassignment. We demonstrate here that such low level CUG ambiguity is advantageous in specific ecological niches and we propose that misreading tRNAs are targeted for degradation by an unidentified tRNA quality control pathway. PMID:23619021

Mateus, Denisa D.; Paredes, João A.; Español, Yaiza; Ribas de Pouplana, Lluís; Moura, Gabriela R.; Santos, Manuel A.S.

2013-01-01

33

Large-scale natural disturbance alters genetic population structure of the sailfin molly, Poecilia latipinna.  

PubMed

Many inferences about contemporary rates of gene flow are based on the assumption that the observed genetic structure among populations is stable. Recent studies have uncovered several cases in which this assumption is tenuous. Most of those studies have focused on the effects that regular environmental fluctuations can have on genetic structure and gene flow patterns. Occasional catastrophic disturbances could also alter either the distribution of habitat or the spatial distribution of organisms in a way that affects population structure. However, evidence of such effects is sparse in the literature because it is difficult to obtain. Hurricanes, in particular, have the potential to exert dramatic effects on population structure of organisms found on islands or coral reefs or in near shore and coastal habitats. Here we draw on a historic genetic data set and new data to suggest that the genetic structure of sailfin molly (Poecilia latipinna) populations in north Florida was altered dramatically by an unusually large and uncommon type of storm surge associated with Hurricane Dennis in 2005. We compare the spatial pattern of genetic variation in these populations after Hurricane Dennis to the patterns described in an earlier study in this same area. We use comparable genetic data from another region of Florida, collected in the same two periods, to estimate the amount of change expected from typical temporal variation in population structure. The comparative natural history of sailfin mollies in these two regions indicates that the change in population structure produced by the storm surge is not the result of many local extinctions with recolonization from a few refugia but emerged from a pattern of mixing and redistribution. PMID:23348779

Apodaca, Joseph J; Trexler, Joel C; Jue, Nathaniel K; Schrader, Matthew; Travis, Joseph

2013-02-01

34

Landscape location affects genetic variation of Canada lynx (Lynx canadensis).  

PubMed

The effect of a population's location on the landscape on genetic variation has been of interest to population genetics for more than half a century. However, most studies do not consider broadscale biogeography when interpreting genetic data. In this study, we propose an operational definition of a peripheral population, and then explore whether peripheral populations of Canada lynx (Lynx canadensis) have less genetic variation than core populations at nine microsatellite loci. We show that peripheral populations of lynx have fewer mean numbers of alleles per population and lower expected heterozygosity. This is surprising, given the lynx's capacity to move long distances, but can be explained by the fact that peripheral populations often have smaller population sizes, limited opportunities for genetic exchange and may be disproportionately affected by ebbs and flows of species' geographical range. PMID:12803633

Schwartz, M K; Mills, L S; Ortega, Y; Ruggiero, L F; Allendorf, F W

2003-07-01

35

Alterations in psychosocial health of people affected by asbestos poisoning  

PubMed Central

OBJECTIVE To analyze the state of psychosocial and mental health of professionals affected by asbestos. METHODS A cross-sectional study was conducted with 110 professionals working in the Ferrolterra region of Spain, who were affected by asbestos poisoning. This group was compared with a group of 70 shipyard workers with no manifestation of work-related diseases. All the participants were male with a mean age of 67 years. This study was conducted in 2013, between January and June, and used the SCL-90 questionnaire by Derogatis as its primary measure for research. This questionnaire consists of 9 variables that measure psychosomatic symptoms. In addition, an overall index of psychosomatic gravity was calculated. The participants were also asked two questions concerning their overall perception of feeling good. Data were analyzed by ANOVA and logistic regression. RESULTS Participants affected by asbestos poisoning showed high occurrence rates of psychological health variables such as somatization, obsessive-compulsive, interpersonal sensitivity, depression, anxiety, hostility, phobic anxiety, paranoid ideation, psychoticism, and global severity index. CONCLUSIONS Social interaction as a differentiating factor between workers affected by work-related chronic syndromes as compared to healthy participants will possibly aid in the development of intervention programs by improving the social network of affected individuals.

Clemente, Miguel; Reig-Botella, Adela; Prados, Juan Carlos

2015-01-01

36

The Afterlife of Interspecific Indirect Genetic Effects: Genotype Interactions Alter Litter Quality with Consequences for Decomposition and Nutrient Dynamics  

PubMed Central

Aboveground-belowground linkages are recognized as divers of community dynamics and ecosystem processes, but the impacts of plant-neighbor interactions on these linkages are virtually unknown. Plant-neighbor interactions are a type of interspecific indirect genetic effect (IIGE) if the focal plant’s phenotype is altered by the expression of genes in a neighboring heterospecific plant, and IIGEs could persist after plant senescence to affect ecosystem processes. This perspective can provide insight into how plant-neighbor interactions affect evolution, as IIGEs are capable of altering species interactions and community composition over time. Utilizing genotypes of Solidago altissima and Solidago gigantea, we experimentally tested whether IIGEs that had affected living focal plants would affect litter decomposition rate, as well as nitrogen (N) and phosphorous (P) dynamics after the focal plant senesced. We found that species interactions affected N release and genotype interactions affected P immobilization. From a previous study we knew that neighbor genotype influenced patterns of biomass allocation for focal plants. Here we extend those previous results to show that these changes in biomass allocation altered litter quality, that then altered rates of decomposition and nutrient cycling. Our results provide insights into above- and belowground linkages by showing that, through their effects on plant litter quality (e.g., litter lignin:N), IIGEs can have afterlife effects, tying plant-neighbor interactions to ecosystem processes. This holistic approach advances our understanding of decomposition and nutrient cycling by showing that evolutionary processes (i.e., IIGEs) can influence ecosystem functioning after plant senescence. Because plant traits are determined by the combined effects of genetic and environmental influences, and because these traits are known to affect decomposition and nutrient cycling, we suggest that ecosystem processes can be described as gene-less products of genetic interactions among the species comprising ecological communities. PMID:23349735

Genung, Mark A.; Bailey, Joseph K.; Schweitzer, Jennifer A.

2013-01-01

37

ORIGINAL PAPER Genetic diversity affects colony survivorship in commercial  

E-print Network

ORIGINAL PAPER Genetic diversity affects colony survivorship in commercial honey bee colonies David drones), although there is much variation among queens. One main consequence of such extreme polyandry are the primary insect pollinators used in modern commercial production agricul- ture, and their populations have

Tarpy, David R.

38

Alteration of proteoglycan sulfation affects bone growth and remodeling  

PubMed Central

Diastrophic dysplasia (DTD) is a chondrodysplasia caused by mutations in the SLC26A2 gene, leading to reduced intracellular sulfate pool in chondrocytes, osteoblasts and fibroblasts. Hence, proteoglycans are undersulfated in the cartilage and bone of DTD patients. To characterize the bone phenotype of this skeletal dysplasia we used the Slc26a2 knock-in mouse (dtd mouse), that was previously validated as an animal model of DTD in humans. X-rays, bone densitometry, static and dynamic histomorphometry, and in vitro studies revealed a primary bone defect in the dtd mouse model. We showed in vivo that this primary bone defect in dtd mice is due to decreased bone accrual associated with a decreased trabecular and periosteal appositional rate at the cell level in one month-old mice. Although the osteoclast number evaluated by histomorphometry was not different in dtd compared to wild-type mice, urine analysis of deoxypyridinoline cross-links and serum levels of type I collagen C-terminal telopeptides showed a higher resorption rate in dtd mice compared to wild-type littermates. Electron microscopy studies showed that collagen fibrils in bone were thinner and less organized in dtd compared to wild-type mice. These data suggest that the low bone mass observed in mutant mice could possibly be linked to the different bone matrix compositions/organizations in dtd mice triggering changes in osteoblast and osteoclast activities. Overall, these results suggest that proteoglycan undersulfation not only affects the properties of hyaline cartilage, but can also lead to unbalanced bone modeling and remodeling activities, demonstrating the importance of proteoglycan sulfation in bone homeostasis. PMID:23369989

Gualeni, Benedetta; de Vernejoul, Marie-Christine; Marty-Morieux, Caroline; De Leonardis, Fabio; Franchi, Marco; Monti, Luca; Forlino, Antonella; Houillier, Pascal; Rossi, Antonio; Geoffroy, Valerie

2013-01-01

39

Altered functional differentiation of mesoangioblasts in a genetic myopathy  

PubMed Central

Mutations underlying genetic cardiomyopathies might affect differentiation commitment of resident progenitor cells. Cardiac mesoangioblasts (cMabs) are multipotent progenitor cells resident in the myocardium. A switch from cardiac to skeletal muscle differentiation has been recently described in cMabs from ?-sarcoglycan-null mice (?SG?/?), a murine model of genetic myopathy with early myocardial involvement. Although complementation with ?SG gene was inconsequential, knock-in of miRNA669a (missing in ?SG?/? cMabs) partially rescued the mutation-induced molecular phenotype. Here, we undertook a detailed evaluation of functional differentiation of ?SG?/? cMabs and tested the effects of miRNA669a-induced rescue in vitro. To this end, cMabs were compared with neonatal cardiomyocytes (CMs) and skeletal muscle C2C12 cells, representative of cardiac and skeletal muscle respectively. Consistent with previous data on molecular patterns, electrophysiological and Ca2+-handling properties of ?SG?/? cMabs were closer to C2C12 cells than to CM ones. Nevertheless, subtler aspects, including action potential contour, Ca2+-spark properties and RyR isoform expression, distinguished ?SG?/? cMabs from C2C12 cells. Contrary to previous reports, wild-type cMabs failed to show functional differentiation towards either cell type. Knock-in of miRNA669a in ?SG?/? cMabs rescued the wild-type functional phenotype, i.e. it completely prevented development of skeletal muscle functional responses. We conclude that miRNA669a expression, ablated by ?SG deletion, may prevent functional differentiation of cMabs towards the skeletal muscle phenotype. PMID:23387296

Altomare, Claudia; Barile, Lucio; Rocchetti, Marcella; Sala, Luca; Crippa, Stefania; Sampaolesi, Maurilio; Zaza, Antonio

2013-01-01

40

Altered placental expression of PAPPA2 does not affect birth weight in mice  

PubMed Central

Background Pregnancy-associated plasma protein A2 (PAPPA2) is an insulin-like growth factor binding protein (IGFBP) protease expressed in the placenta and upregulated in pregnancies complicated by pre-eclampsia. The mechanism linking PAPPA2 expression and pre-eclampsia and the consequences of altered PAPPA2 expression remain unknown. We previously identified PAPPA2 as a candidate gene for a quantitative trait locus (QTL) affecting growth in mice and in the present study examined whether this QTL affects placental PAPPA2 expression and, in turn, placental or embryonic growth. Methods Using a line of mice that are genetically homogenous apart from a 1 megabase QTL region containing the PAPPA2 gene, we bred mice homozygous for alternate QTL genotypes and collected and weighed placentae and embryos at E12.5. We used quantitative RT-PCR to measure the mRNA levels of PAPPA2, as well as mRNA levels of IGFBP-5 (PAPPA2's substrate), and PAPPA (a closely related IGFBP protease) to examine potential feedback and compensation effects. Western blotting was used to quantify PAPPA2 protein. Birth weight was measured in pregnancies allowed to proceed to parturition. Results PAPPA2 mRNA and protein expression levels in the placenta differed by a factor of 2.5 between genotypes, but we did not find a significant difference between genotypes in embryonic PAPPA2 mRNA levels. Placental IGFBP-5 and PAPPA mRNA expression levels were not altered in response to PAPPA2 levels, and we could not detect IGFBP-5 protein in the placenta by Western blotting. The observed difference in placental PAPPA2 expression had no significant effect on placental or embryonic mass at mid-gestation, birth weight or litter size. Conclusions Despite a significant difference between genotypes in placental PAPPA2 expression similar in magnitude to the difference between pre-eclamptic and normal placentae previously reported, we observed no difference in embryonic, placental or birth weight. Our results suggest that elevated PAPPA2 levels are a consequence, rather than a cause, of pregnancy complications. PMID:20642865

2010-01-01

41

Distinct Effects of Alcohol Consumption and Smoking on Genetic Alterations in Head and Neck Carcinoma  

PubMed Central

Background Tobacco and alcohol consumption are risk factors for head and neck squamous cell carcinoma (HNSCC). Recently, whole-exome sequencing clarified that smoking increased TP53 and other mutations in HNSCC; however, the effects of alcohol consumption on these genetic alterations remain unknown. We explored the association between alcohol consumption and somatic copy-number alterations (SCNAs) across the whole genome in human papillomavirus (HPV)-negative HNSCCs, and compared with the effects of smoking on genetic alterations. Methods SCNA and TP53 mutations in tumor samples were examined by high-resolution comparative genomic hybridization microarray 180K and by direct sequencing, respectively, and statistically analyzed for associations with alcohol consumption and smoking during the 20 years preceding diagnosis of HNSCC. Probes with a corrected p-value (=q-value) less than 0.05 and fold change greater than 1.2 or less than -1.2 were considered statistically significant. Results A total of 248 patients with HNSCC were enrolled. In the HPV-negative patients (n=221), heavy alcohol consumption was significantly associated with SCNAs of oncogenes/oncosuppressors that were previously reported to occur frequently in HNSCCs: CDKN2A (q=0.005), FHIT (q=0.005), 11q13 region including CCND1, FADD and CTTN (q=0.005), ERBB2 (HER2) (q=0.009), 3q25-qter including CCNL1, TP63, DCUN1D1 and PIK3CA (q=0.014), and CSMD1 (q=0.019). But, TP53 mutations were not affected. In contrast, smoking was associated with increased risk of TP53 mutations, but did not induce any significant SCNAs of oncogenes/oncosuppressors. Conclusion These results suggest that both alcohol consumption and smoking had distinct effects on genetic alterations in HNSCCs. Heavy alcohol consumption may trigger previously known and unknown SCNAs, but may not induce TP53 mutation. In contrast, smoking may induce TP53 mutation, but may not trigger any SCNAs. PMID:24278325

Urashima, Mitsuyoshi; Hama, Takanori; Suda, Toshihito; Suzuki, Yutaka; Ikegami, Masahiro; Sakanashi, Chikako; Akutsu, Taisuke; Amagaya, Suguru; Horiuchi, Kazuhumi; Imai, Yu; Mezawa, Hidetoshi; Noya, Miki; Nakashima, Akio; Mafune, Aki; Kato, Takakuni; Kojima, Hiromi

2013-01-01

42

Genetically altered mice for evaluation of mode-of-action (MOA)  

EPA Science Inventory

Genetically altered mice for evaluation of mode-of-action (MOA). Barbara D. Abbott, Cynthia J. Wolf, Kaberi P. Das, Christopher S. Lau. (Presented by B. Abbott). This presentation provides an example of the use of genetically modified mice to determine the mode-of-action of r...

43

Altered Expression of Auxin-binding Protein 1 Affects Cell Expansion and  

E-print Network

Altered Expression of Auxin-binding Protein 1 Affects Cell Expansion and Auxin Pool Size in Tobacco Horticulture Research International, Wellesbourne, Warwick CV35 9EF, United Kingdom ABSTRACT Auxin-binding protein 1 (ABP1) has an essential role in auxin-dependent cell expansion, but its mechanisms of action

Jones, Alan M.

44

Transcriptional Programs following Genetic Alterations in p53, INK4A, and H-Ras Genes along Defined Stages  

E-print Network

Ginsberg, 1 Curtis C. Harris, 3 Eytan Domany, 2 and Varda Rotter 1 Departments of 1 Molecular Cell Biology the genetic alterations in p53, Ras, INK4A locus, and telomerase, introduced in a stepwise manner into primary and coupled with genetic signatures assigned for the genetic alterations in the p53, INK4A locus, and H

Domany, Eytan

45

Genetic Evolution of Shape-Altering Programs for Supersonic Aerodynamics  

NASA Technical Reports Server (NTRS)

Two constrained shape optimization problems relevant to aerodynamics are solved by genetic programming, in which a population of computer programs evolves automatically under pressure of fitness-driven reproduction and genetic crossover. Known optimal solutions are recovered using a small, naive set of elementary operations. Effectiveness is improved through use of automatically defined functions, especially when one of them is capable of a variable number of iterations, even though the test problems lack obvious exploitable regularities. An attempt at evolving new elementary operations was only partially successful.

Kennelly, Robert A., Jr.; Bencze, Daniel P. (Technical Monitor)

2002-01-01

46

Neonatal handling alters the structure of maternal behavior and affects mother-pup bonding.  

PubMed

During early life, a mother and her pups establish a very close relationship, and the olfactory learning of the nest odor is very important for the bond formation. The olfactory bulb (OB) is a structure that plays a fundamental role in the olfactory learning (OL) mechanism that also involves maternal behavior (licking and contact). We hypothesized that handling the pups would alter the structure of the maternal behavior, affect OL, and alter mother-pup relationships. Moreover, changes in the cyclic AMP-response element binding protein phosphorylation (CREB) and neurotrophic factors could be a part of the mechanism of these changes. This study aimed to analyze the effects of neonatal handling, 1 min per day from postpartum day 1 to 10 (PPD 1 to PPD 10), on the maternal behavior and pups' preference for the nest odor in a Y maze (PPD 11). We also tested CREB's phosphorylation and BDNF signaling in the OB of the pups (PPD 7) by Western blot analysis. The results showed that handling alters mother-pups interaction by decreasing mother-pups contact and changing the temporal pattern of all components of the maternal behavior especially the daily licking and nest-building. We found sex-dependent changes in the nest odor preference, CREB and BDNF levels in pups OB. Male pups were more affected by alterations in the licking pattern, and female pups were more affected by changes in the mother-pup contact (the time spent outside the nest and nursing). PMID:24598277

Reis, A R; de Azevedo, M S; de Souza, M A; Lutz, M L; Alves, M B; Izquierdo, I; Cammarota, M; Silveira, P P; Lucion, A B

2014-05-15

47

Linking neocortical, cognitive, and genetic variability in autism with alterations of brain plasticity: the Trigger-Threshold-Target model.  

PubMed

The phenotype of autism involves heterogeneous adaptive traits (strengths vs. disabilities), different domains of alterations (social vs. non-social), and various associated genetic conditions (syndromic vs. nonsyndromic autism). Three observations suggest that alterations in experience-dependent plasticity are an etiological factor in autism: (1) the main cognitive domains enhanced in autism are controlled by the most plastic cortical brain regions, the multimodal association cortices; (2) autism and sensory deprivation share several features of cortical and functional reorganization; and (3) genetic mutations and/or environmental insults involved in autism all appear to affect developmental synaptic plasticity, and mostly lead to its upregulation. We present the Trigger-Threshold-Target (TTT) model of autism to organize these findings. In this model, genetic mutations trigger brain reorganization in individuals with a low plasticity threshold, mostly within regions sensitive to cortical reallocations. These changes account for the cognitive enhancements and reduced social expertise associated with autism. Enhanced but normal plasticity may underlie non-syndromic autism, whereas syndromic autism may occur when a triggering mutation or event produces an altered plastic reaction, also resulting in intellectual disability and dysmorphism in addition to autism. Differences in the target of brain reorganization (perceptual vs. language regions) account for the main autistic subgroups. In light of this model, future research should investigate how individual and sex-related differences in synaptic/regional brain plasticity influence the occurrence of autism. PMID:25155242

Mottron, Laurent; Belleville, Sylvie; Rouleau, Guy A; Collignon, Olivier

2014-11-01

48

GM1 gangliosidosis and Morquio B disease: an update on genetic alterations and clinical findings.  

PubMed

GM1 gangliosidosis and Morquio B syndrome, both arising from beta-galactosidase (GLB1) deficiency, are very rare lysosomal storage diseases with an incidence of about 1:100,000-1:200,000 live births worldwide. Here we report the beta-galactosidase gene (GLB1) mutation analysis of 21 unrelated GM1 gangliosidosis patients, and of 4 Morquio B patients, of whom two are brothers. Clinical features of the patients were collected and compared with those in literature. In silico analyses were performed by standard alignments tools and by an improved version of GLB1 three-dimensional models. The analysed cohort includes remarkable cases. One patient with GM1 gangliosidosis had a triple X syndrome. One patient with juvenile GM1 gangliosidosis was homozygous for a mutation previously identified in Morquio type B. A patient with infantile GM1 gangliosidosis carried a complex GLB1 allele harbouring two genetic variants leading to p.R68W and p.R109W amino acid changes, in trans with the known p.R148C mutation. Molecular analysis showed 27 mutations, 9 of which are new: 5 missense, 3 microdeletions and a nonsense mutation. We also identified four new genetic variants with a predicted polymorphic nature that was further investigated by in silico analyses. Three-dimensional structural analysis of GLB1 homology models including the new missense mutations and the p.R68W and p.R109W amino acid changes showed that all the amino acid replacements affected the resulting protein structures in different ways, from changes in polarity to folding alterations. Genetic and clinical associations led us to undertake a critical review of the classifications of late-onset GM1 gangliosidosis and Morquio B disease. PMID:21497194

Caciotti, Anna; Garman, Scott C; Rivera-Colón, Yadilette; Procopio, Elena; Catarzi, Serena; Ferri, Lorenzo; Guido, Carmen; Martelli, Paola; Parini, Rossella; Antuzzi, Daniela; Battini, Roberta; Sibilio, Michela; Simonati, Alessandro; Fontana, Elena; Salviati, Alessandro; Akinci, Gulcin; Cereda, Cristina; Dionisi-Vici, Carlo; Deodato, Francesca; d'Amico, Adele; d'Azzo, Alessandra; Bertini, Enrico; Filocamo, Mirella; Scarpa, Maurizio; di Rocco, Maja; Tifft, Cynthia J; Ciani, Federica; Gasperini, Serena; Pasquini, Elisabetta; Guerrini, Renzo; Donati, Maria Alice; Morrone, Amelia

2011-07-01

49

GM1 gangliosidosis and Morquio B disease: an update on genetic alterations and clinical findings  

PubMed Central

GM1 gangliosidosis and Morquio B syndrome, both arising from beta-galactosidase (GLB1) deficiency, are very rare lysosomal storage diseases with an incidence of about 1:100,000– 1:200,000 live births worldwide. Here we report the beta-galactosidase gene (GLB1) mutation analysis of 21 unrelated GM1 gangliosidosis patients, and of 4 Morquio B patients, of whom two are brothers. Clinical features of the patients were collected and compared with those in literature. In silico analyses were performed by standard alignments tools and by an improved version of GLB1 three-dimensional models. The analysed cohort includes remarkable cases. One patient with GM1 gangliosidosis had a triple X syndrome. One patient with juvenile GM1 gangliosidosis was homozygous for a mutation previously identified in Morquio type B. A patient with infantile GM1 gangliosidosis carried a complex GLB1 allele harbouring two genetic variants leading to p.R68W and p.R109W amino acid changes, in trans with the known p.R148C mutation. Molecular analysis showed 27 mutations, 9 of which are new: 5 missense, 3 microdeletions and a nonsense mutation. We also identified four new genetic variants with a predicted polymorphic nature that was further investigated by in silico analyses. Three-dimensional structural analysis of GLB1 homology models including the new missense mutations and the p.R68W and p.R109W amino acid changes, showed that all the amino acids replacements affected the resulting protein structures in different ways, from changes in polarity to folding alterations. Genetic and clinical associations led us to undertake a critical review of the classifications of late-onset GM1 gangliosidosis and Morquio B disease. PMID:21497194

Caciotti, Anna; Garman, Scott C; Rivera-Colón, Yadilette; Procopio, Elena; Catarzi, Serena; Ferri, Lorenzo; Guido, Carmen; Martelli, Paola; Parini, Rossella; Antuzzi, Daniela; Battini, Roberta; Sibilio, Michela; Simonati, Alessandro; Fontana, Elena; Salviati, Alessandro; Akinci, Gulcin; Cereda, Cristina; Dionisi-Vici, Carlo; Deodato, Francesca; d’Amico, Adele; d’Azzo, Alessandra; Bertini, Enrico; Filocamo, Mirella; Scarpa, Maurizio; di Rocco, Maja; Tifft, Cynthia J; Ciani, Federica; Gasperini, Serena; Pasquini, Elisabetta; Guerrini, Renzo; Donati, Maria Alice; Morrone, Amelia

2011-01-01

50

Gene flow in genetically altered crops helps progress transgenic turfgrass.  

Technology Transfer Automated Retrieval System (TEKTRAN)

Numerous useful traits are being imparted into transgenic and non-transgenic plants. Gene flow as indicated in a recent publication from the Council for Agricultural Science and Technology (CAST 2007) is the successful transfer of genetic information between different individuals, populations, and g...

51

Single-cell genetic expression of mutant GABAA receptors causing Human genetic epilepsy alters dendritic spine and GABAergic bouton formation in a mutation-specific manner  

PubMed Central

Mutations in genes encoding for GABAA receptor subunits is a well-established cause of genetic generalized epilepsy. GABA neurotransmission is implicated in several developmental processes including neurite outgrowth and synapse formation. Alteration in excitatory/inhibitory synaptic activities plays a critical role in epilepsy, thus here we investigated whether mutations in ?1 subunit of GABAA receptor may affect dendritic spine and GABAergic bouton formation. In particular, we examined the effects of three mutations of the GABRA1 gene (D219N, A322D and K353delins18X) that were found in a cohort of French Canadian families with genetic generalized epilepsy. We used a novel single-cell genetic approach, by preparing cortical organotypic cultures from GABRA1flox/flox mice and simultaneously inactivating endogenous GABRA1 and transfecting mutant ?1 subunits in single glutamatergic pyramidal cells and basket GABAergic interneurons by biolistic transfection. We found that GABRA1?/? GABAergic cells showed reduced innervation field, which was rescued by co-expressing ?1-A322D and ?1-WT but not ?1-D219N. We further found that the expression of the most severe GABRA1 missense mutation (?1-A322D) induced a striking increase of spine density in pyramidal cells along with an increase in the number of mushroom-like spines. In addition, ?1-A322D expression in GABAergic cells slightly increased perisomatic bouton density, whereas other mutations did not alter bouton formation. All together, these results suggest that the effects of different GABAAR mutations on GABAergic bouton and dendritic spine formation are specific to the mutation and cannot be always explained by a simple loss-of-function gene model. The use of single cell genetic manipulation in organotypic cultures may provide a better understanding of the specific and distinct neural circuit alterations caused by different GABAA receptor subunit mutations and will help define the pathophysiology of genetic generalized epilepsy syndromes. PMID:25352779

Lachance-Touchette, Pamela; Choudhury, Mayukh; Stoica, Ana; Di Cristo, Graziella; Cossette, Patrick

2014-01-01

52

A natural genetic polymorphism affects retroactive interference in Drosophila melanogaster.  

PubMed

As environments change, animals update their internal representations of the external world. New information about the environment is learned and retained whereas outdated information is disregarded or forgotten. Retroactive interference (RI) occurs when the retrieval of previously learned information is less available owing to the acquisition of recently acquired information. Even though RI is thought to be a major cause of forgetting, its functional significance is still under debate. We find that natural allelic variants of the Drosophila melanogaster foraging gene known to affect rover and sitter behaviour differ in RI. More specifically, rovers who were previously shown to experience greater environmental heterogeneity while foraging display RI whereas sitters do not. Rover responses are biased towards more recent learning events. These results provide an ecological context to investigate the function of forgetting via RI and a suitable genetic model organism to address the evolutionary relevance of cognitive tasks. PMID:20667877

Reaume, Christopher J; Sokolowski, Marla B; Mery, Frederic

2011-01-01

53

Does bleeding affect fetal Doppler parameters during genetic amniocentesis?  

PubMed Central

Objective The aim of this study was to investigate the relationship between fetal Doppler parameters and bleeding at insertion points during amniocentesis. Material and Methods This prospective study was conducted between July 2010 and February 2011. A total of 215 amniocentesis procedures were performed during this period. Five patients with Down syndrome were excluded from the study. The remaining 210 patients were divided into Group 1 (bleeding at insertion site) and Group 2 as a control group. One needle type was used for all patients. Umbilical artery resistance index (UARI), umbilical artery pulsatility index (UAPI), middle cerebral artery resistance index (MCARI), middle cerebral artery pulsatility index (MCA PI), and middle cerebral artery peak systolic velocity (MCAPSV) were measured immediately and before and after amniocentesis. Results Bleeding at the insertion point during amniocentesis did not significantly change the UARI (34% increase for Group 1 and 46.5% increase for Group 2, p=0.238), the MCARI (52% increase for Group 1 and 45% increase for Group 2, p=0.622), or the MCAPSV (37% increase for Group 1 and 49% increase for Group 2, p=0.199). UARI, MCARI, MCA PI, and MCAPSV were not significantly altered following amniocentesis in Groups 1 and 2. There was a significant increase in UAPI following amniocentesis only in Group 2. Conclusion Bleeding during genetic amniocentesis did not change umbilical artery and middle cerebral artery Doppler parameters. PMID:24976776

?skender, Cantekin; Tar?m, Ebru; Çok, Tayfun; Kalayc?, Hakan; Parlakgümü?, Ay?e; Yalç?nkaya, Cem

2014-01-01

54

Elevated carbon dioxide concentrations indirectly affect plant fitness by altering plant tolerance to herbivory  

Microsoft Academic Search

Global environmental changes, such as rising atmospheric CO2 concentrations, have a wide range of direct effects on plant physiology, growth, and fecundity. These environmental changes\\u000a also can affect plants indirectly by altering interactions with other species. Therefore, the effects of global changes on\\u000a a particular species may depend on the presence and abundance of other community members. We experimentally manipulated

Jennifer A. Lau; Peter Tiffin

2009-01-01

55

Subchronic arsenic exposure through drinking water alters vascular redox homeostasis and affects physical health in rats.  

PubMed

We evaluated whether arsenic can alter vascular redox homeostasis and modulate antioxidant status, taking rat thoracic aorta as a model vascular tissue. In addition, we evaluated whether the altered vascular biochemical homeostasis could be associated with alterations in the physical indicators of toxicity development. Rats were exposed to arsenic as 25, 50, and 100 ppm of sodium arsenite through drinking water for 90 consecutive days. Body weight, food intake, and water consumption were recorded weekly. On the 91st day, rats were sacrificed; vital organs and thoracic aorta were collected. Lipid peroxidation, reactive oxygen species generation, and antioxidants were assessed in the thoracic aorta. Arsenic increased aortic lipid peroxidation and hydrogen peroxide generation while decreased reduced glutathione content in a dose-dependent manner. The activities of the enzymatic antioxidants superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase were decreased. Further, arsenic at 100 ppm decreased feed intake, water consumption, and body weight from the 11th week onward. At this concentration, arsenic increased the relative weights of the liver and kidney. The results suggest that arsenic causes dose-dependent oxidative stress, reduction in antioxidative defense systems, and body weight loss with alteration in hepato-renal organosomatic indices. Overall, subchronic arsenic exposure through drinking water causes alteration in vascular redox homeostasis and at high concentration affects physical health. PMID:25209654

Waghe, Prashantkumar; Sarath, Thengumpallil Sasindran; Gupta, Priyanka; Kutty, Harikumar Sankaran; Kandasamy, Kannan; Mishra, Santosh Kumar; Sarkar, Souvendra Nath

2014-12-01

56

Genetic alterations in ovarian carcinoma: with specific reference to histological subtypes  

Microsoft Academic Search

Multiple genetic changes including activation of proto-oncogenes and inactivation of tumor suppressor gene are involved in the development of human ovarian cancer. We describe such genetic alterations with specific reference to histological subtypes. K-ras activation is specific for mucinous tumors including adenomas. Borderline tumors and carcinomas, suggesting that K-ras activation may be associated with the mucinous differentiation rather than malignant

Masami Fujita; Takayuki Enomoto; Yuji Murata

2003-01-01

57

Does antiepileptogenesis affect sleep in genetic epileptic rats?  

PubMed

Recently it was established that early long lasting treatment with the anti-absence drug ethosuximide (ETX) delays the occurrence of absences and reduces depressive-like symptoms in a genetic model for absence epilepsy, rats of the WAG/Rij strain. Here it is investigated whether anti-epileptogenesis (chronic treatments with ETX for 2 and 4 months) affects REM sleep in this model. Four groups of weaned male WAG/Rij rats were treated with ETX for 4 months, two groups for 2 months (at 2-3 and 4-5 months of age), the fourth group was untreated. Next, the rats were recorded 6 days after the last day of the treatment for 22.5 h. Non-REM sleep and REM sleep parameters and delta power were analyzed in four characteristic and representative hours of the recoding period. Four months treatment with ETX reduced the amount of REM sleep and REM sleep as percentage of total sleep time. Other sleep parameters were not affected by the treatment. Clear differences between the various hours of the light-dark phase in amounts of non-REM and REM sleep and delta power were found, in line with commonly reported circadian sleep patterns. It can be concluded that the reduction of REM sleep is unique for the early and long lasting chronic treatment. The outcomes may explain our earlier finding that a reduction of REM sleep might alleviate depressive like symptoms. PMID:21946343

van Luijtelaar, Gilles; Wilde, Matthias; Citraro, Rita; Scicchitano, Francesca; van Rijn, Clementina

2012-07-01

58

Somatic retrotransposition alters the genetic landscape of the human brain.  

PubMed

Retrotransposons are mobile genetic elements that use a germline 'copy-and-paste' mechanism to spread throughout metazoan genomes. At least 50 per cent of the human genome is derived from retrotransposons, with three active families (L1, Alu and SVA) associated with insertional mutagenesis and disease. Epigenetic and post-transcriptional suppression block retrotransposition in somatic cells, excluding early embryo development and some malignancies. Recent reports of L1 expression and copy number variation in the human brain suggest that L1 mobilization may also occur during later development. However, the corresponding integration sites have not been mapped. Here we apply a high-throughput method to identify numerous L1, Alu and SVA germline mutations, as well as 7,743 putative somatic L1 insertions, in the hippocampus and caudate nucleus of three individuals. Surprisingly, we also found 13,692 somatic Alu insertions and 1,350 SVA insertions. Our results demonstrate that retrotransposons mobilize to protein-coding genes differentially expressed and active in the brain. Thus, somatic genome mosaicism driven by retrotransposition may reshape the genetic circuitry that underpins normal and abnormal neurobiological processes. PMID:22037309

Baillie, J Kenneth; Barnett, Mark W; Upton, Kyle R; Gerhardt, Daniel J; Richmond, Todd A; De Sapio, Fioravante; Brennan, Paul M; Rizzu, Patrizia; Smith, Sarah; Fell, Mark; Talbot, Richard T; Gustincich, Stefano; Freeman, Thomas C; Mattick, John S; Hume, David A; Heutink, Peter; Carninci, Piero; Jeddeloh, Jeffrey A; Faulkner, Geoffrey J

2011-11-24

59

Molecular Markers Show How Pollen and Seed Dispersal Affect Population Genetic  

E-print Network

485 Molecular Markers Show How Pollen and Seed Dispersal Affect Population Genetic Structure of fragmentation and decreased population sizes is reduced genetic diversity as populations become increasingly. Earlier studies indicated biochemical differentiation of central coast populations from those of Northern

Standiford, Richard B.

60

Genetics  

NSDL National Science Digital Library

What affects how physical characteristics are transmitted from parent to offspring? This is a question that can be answered at many levels. Molecular biologists examine the pattern of nucleotides in deoxyribonucleic acid (DNA) and the effect of mutations on the proteins produced. Classical geneticists explore the patterns by which traits are transmitted through families. Medical geneticists attempt to describe and develop treatments for diseases that have a genetic component. Genetic engineers analyze how traits can be altered in organisms through modern technology. These are only a few of the strategies that scientists employ to explain the nature of heredity. Explore historical perspectives on the study of genetics and investigate how cutting-edge technology is being used to expand our understanding of heredity.

National Science Teachers Association (NSTA)

2005-04-01

61

Melanoma: From Melanocyte to Genetic Alterations and Clinical Options  

PubMed Central

Metastatic melanoma remained for decades without any effective treatment and was thus considered as a paradigm of cancer resistance. Recent progress with understanding of the molecular mechanisms underlying melanoma initiation and progression revealed that melanomas are genetically and phenotypically heterogeneous tumors. This recent progress has allowed for the development of treatment able to improve for the first time the overall disease-free survival of metastatic melanoma patients. However, clinical responses are still either too transient or limited to restricted patient subsets. The complete cure of metastatic melanoma therefore remains a challenge in the clinic. This review aims to present the recent knowledge and discoveries of the molecular mechanisms involved in melanoma pathogenesis and their exploitation into clinic that have recently facilitated bench to bedside advances. PMID:24416617

Bertolotto, Corine

2013-01-01

62

Molecular genetic alterations and viral presence in ophthalmic pterygium.  

PubMed

Pterygium is a lesion of the corneoscleral limbus which tends to grow in size, often recurs after surgical excision and is associated with exposure to solar light. Additionally, a family history is frequently reported. Loss of heterozygosity (LOH), increased P53 expression and the presence of oncogenic viruses, such as human papilloma virus (HPV) and herpes simplex virus (HSV), have been detected in pterygia, supporting the possible neoplastic nature of the lesion. Co-infection by HSV and HPV as well as LOH at some loci have also been correlated with clinical features, such as postoperative recurrence and history of conjunctivitis. A possible model of pterygium formation is proposed, in which genetic predisposition, environmental factors and viral infection(s) participate in a multi-step process. Future research may lead to new ways of pterygium treatment such as anti-viral or gene therapy. PMID:10851263

Detorakis, E T; Drakonaki, E E; Spandidos, D A

2000-07-01

63

Update on molecular and genetic alterations in adult medulloblastoma.  

PubMed

Medulloblastoma encompasses a group of aggressively growing cancers that arise either in the cerebellum or brain stem. They present primarily in children, with 80-85 % of medulloblastomas being diagnosed in patients of 16 years and younger. In adults, medulloblastomas are rare and account for less than 1 % of intracranial malignancies. Due to the low incidence of medulloblastoma in adults, the biology and genetics of adult medulloblastomas have long been poorly understood. Many centers therefore still treat adults either by radiotherapy only or by using glioblastoma protocols (both often noncurative), or with standard pediatric medulloblastoma regimes (often associated with dose-limiting toxicity).Current clinical staging systems discriminate between standard-risk or high-risk patients based on clinical and histological parameters. However, clinico-pathological features often fail to accurately predict treatment response. In children, molecularly defined risk assessment has become important to improve survival of high-risk patients and to decrease treatment-related toxicity and long-term sequelae in standard-risk patients. However, several recent studies have shown that adult and pediatric medulloblastomas are genetically distinct and may require different algorithms for molecular risk stratification. Moreover, four subtypes of medulloblastoma have been identified that appear at different frequencies in children and adults and that have a different prognostic impact depending on age. Molecular markers such as chromosome 10q and chromosome 17 statuses can be used for molecular risk stratification of adult medulloblastoma, but only in a subgroup-specific context. Here we present an overview of the current knowledge of the genomics of adult medulloblastoma and how these tumors differ from their pediatric counterparts. PMID:23864912

Kool, Marcel; Korshunov, Andrey; Pfister, Stefan M

2012-09-01

64

Nongenetic variation, genetic-environmental interactions and altered gene expression. III. Posttranslational modifications.  

PubMed

The use of protein electrophoretic data for determining the relationships among species or populations is widespread and generally accepted. However, posttranslational modifications have been discovered in many of the commonly analyzed proteins and enzymes. Posttranslational modifications often alter the electrophoretic mobility of the modified enzyme or protein. Because posttranslational modifications may affect only a fraction of the total enzyme or protein, an additional staining band often appears on gels as a result, and this may confound interpretations. Deamidation, acteylation, proteolytic modification, and oxidation of sulfhydryl groups are modifications that often result in an electrophoretic mobility shift. Sialic acid-induced heterogeneity has been documented for many enzymes, but neuraminidase treatment can often remove sialic acids and produce gel patterns that are easier to interpret. In some cases, ontogenetic and tissue-specific expression may be due to posttranslational modifications rather than gene control and restricted expression, respectively. Methods of preventing, detecting and eliminating posttranslational modifications are discussed. Some posttranslational modifications may be useful for detecting cryptic genetic polymorphisms. PMID:9406434

Poly, W J

1997-11-01

65

Altered gene dosage confirms the genetic interaction between FIAT and ?NAC.  

PubMed

Factor inhibiting ATF4-mediated transcription (FIAT) interacts with Nascent polypeptide associated complex and coregulator alpha (?NAC). In cultured osteoblastic cells, this interaction contributes to maximal FIAT-mediated inhibition of Osteocalcin (Ocn) gene transcription. We set out to demonstrate the physiological relevance of this interaction by altering gene dosage in compound Fiat and Naca (encoding ?NAC) heterozygous mice. Compound Naca(+/-); Fiat(+/-) heterozygous animals were viable, developed normally, and exhibited no significant difference in body weight compared with control littermate genotypes. Animals with a single Fiat allele had reduced Fiat mRNA expression without changes in the expression of related family members. Expression of the osteocyte differentiation marker Dmp1 was elevated in compound heterozygotes. Static histomorphometry parameters were assessed at 8weeks of age using microcomputed tomography (?CT). Trabecular measurements were not different between genotypes. Cortical thickness and area were not affected by gene dosage, but we measured a significant increase in cortical porosity in compound heterozygous mice, without changes in biomechanical parameters. The bone phenotype of compound Naca(+/-); Fiat(+/-) heterozygotes confirms that FIAT and ?NAC are part of a common genetic pathway and support a role for the FIAT/?NAC interaction in normal bone physiology. PMID:24440290

Hekmatnejad, Bahareh; Mandic, Vice; Yu, Vionnie W C; Akhouayri, Omar; Arabian, Alice; St-Arnaud, René

2014-04-01

66

Genetic Alterations of Chromosome 8 Genes in Oral Cancer  

PubMed Central

The clinical relevance of DNA copy number alterations in chromosome 8 were investigated in oral cancers. The copy numbers of 30 selected genes in 33 OSCC patients were detected using the multiplex ligation-dependent probe amplification (MLPA) technique. Amplifications of the EIF3E gene were found in 27.3% of the patients, MYC in 18.2%, RECQL4 in 15.2% and MYBL1 in 12.1% of patients. The most frequent gene losses found were the GATA4 gene (24.2%), FGFR1 gene (24.2%), MSRA (21.2) and CSGALNACT1 (12.1%). The co-amplification of EIF3E and RECQL4 was found in 9% of patients and showed significant association with alcohol drinkers. There was a significant association between the amplification of EIF3E gene with non-betel quid chewers and the negative lymph node status. EIF3E amplifications did not show prognostic significance on survival. Our results suggest that EIF3E may have a role in the carcinogenesis of OSCC in non-betel quid chewers. PMID:25123227

Yong, Zachary Wei Ern; Zaini, Zuraiza Mohamad; Kallarakkal, Thomas George; Karen-Ng, Lee Peng; Rahman, Zainal Ariff Abdul; Ismail, Siti Mazlipah; Sharifah, Noor Akmal; Mustafa, Wan Mahadzir Wan; Abraham, Mannil Thomas; Tay, Keng Kiong; Zain, Rosnah Binti

2014-01-01

67

Alterations in the extracellular matrix proteoglycan profile in Dupuytren's contracture affect the palmar fascia.  

PubMed

Dupuytren's disease is a palmar fibromatosis associated with changes in fibroblast activity that also affect the metabolism of extracellular matrix components. In contrast to disease connected alterations in collagen and non-collagenous glycoproteins (mainly fibronectin), the metabolism of proteoglycans, being glycosaminoglycan modified glycoproteins, is poorly understood. Thus, the aim of the present study was the characterization of matrix proteoglycans (PGs) derived from normal fascia and Dupuytren's fascia. Extracted and purified PGs (particularly small PGs) were analysed for content, molecular mass, immunoreactivity and glycosaminoglycan chain structure. The matrix of normal fascia mainly contains decorin [small dermatan sulfate (DS) PG] with biglycan (another small DSPG) and large chondroitin sulfate(CS)/DSPG representing minor components. Dupuytren's disease is associated with the remodeling of matrix PG composition. The most prominent alteration is an accumulation of biglycan frequently bearing DS chains with higher molecular masses. Moreover, the amount of large CS/DSPG is increased. In contrast, decorin displays changes affecting mainly DS chain structure reflected in (i) an increase in some chain molecular masses, (ii) an enhanced content of iduronate disaccharide clusters, and (iii) oversulfation of disaccharide repeats. The PG alterations observed in Dupuytren's fascia may influence the matrix properties and contribute to disease progression. PMID:15858170

Ko?ma, Ewa Maria; Olczyk, Krystyna; Wisowski, Grzegorz; G?owacki, Andrzej; Bobi?ski, Rafa?

2005-04-01

68

Genetic alterations linked with bladder cancer risk, recurrence, progression, and patient survival  

Cancer.gov

A new analysis by researchers from the University of Texas MD Anderson Cancer Center in Houston has found that genetic alterations in a particular cellular pathway are linked with bladder cancer risk, recurrence, disease progression, and patient survival. Published early online in CANCER, a peer- reviewed journal of the American Cancer Society, the findings could help improve bladder cancer screening and treatment.

69

Genetic variations alter production and behavioral responses following heat stress in two strains of laying hens  

Technology Transfer Automated Retrieval System (TEKTRAN)

Heat stress is a problem for both egg production and hen well-being. Given a stressor, genetic differences alter the type and degree of hens’ responses and their adaptation. This study examined heat stress responses of two strains of White Leghorns: Dekalb XL (DXL), a commercial strain individually ...

70

The Potential for Genetically Altered Microglia to Influence Glioma Treatment  

PubMed Central

Diffuse and unstoppable infiltration of brain and spinal cord tissue by neoplastic glial cells is the single most important therapeutic problem posed by the common glioma group of tumors: astrocytoma, oligoastrocytoma, oligodendroglioma, their malignant variants and glioblastoma. These neoplasms account for more than two thirds of all malignant central nervous system tumors. However, most glioma research focuses on an examination of the tumor cells rather than on host-specific, tumor micro-environmental cells and factors. This can explain why existing diffuse glioma therapies fail and why these tumors have remained incurable. Thus, there is a great need for innovation. We describe a novel strategy for the development of a more effective treatment of diffuse glioma. Our approach centers on gaining control over the behavior of the microglia, the defense cells of the CNS, which are manipulated by malignant glioma and support its growth. Armoring microglia against the influences from glioma is one of our research goals. We further discuss how microglia precursors may be genetically enhanced to track down infiltrating glioma cells. PMID:24047526

Li, W.; Holsinger, R.M.D.; Kruse, C.A.; Flügel, A.; Graeber, M.B.

2014-01-01

71

Altered acquisition and extinction of amphetamine-paired context conditioning in genetic mouse models of altered NMDA receptor function.  

PubMed

Repeated intermittent exposure to amphetamine (AMPH) results in the development of persistent behavioral and neurological changes. When drug exposure is paired with a specific environment, contextual cues can control conditioned responses, context-specific sensitization, and alterations in dendritic morphology in the nucleus accumbens (NAc). Intact N-methyl-D-aspartate (NMDA) glutamate receptor signaling is thought to be required for associative learning. The acquisition of context-specific behavioral sensitization to AMPH and extinction of conditioned hyperactivity have been investigated in two genetically modified mouse strains: the serine racemase homozygous knockout (SR-/-) and glycine transporter 1 heterozygous mutant (GlyT1-/+). These strains have reciprocally altered NMDA receptor co-agonists, D-serine and glycine, levels that result in decreased (SR-/-) or increased (GlyT1-/+) NMDA receptor signaling. AMPH-induced changes in dendritic morphology in the NAc were also examined. SR-/- mice showed reduced expression of context-specific sensitization and conditioned hyperactivity. However, the conditioned hyperactivity in these mice is completely resistant to extinction. Extinction reversed AMPH-induced increased in NAc spine density in wild-type but not SR-/- mice. GlyT1 -/+ mice showed a more rapid acquisition of sensitization, but no alteration in the extinction of conditioned hyperactivity. The SR-/- data demonstrate that a genetic model of NMDA receptor hypofunction displays a reduced ability to extinguish conditioned responses to drug-associated stimuli. Findings also demonstrate that the morphological changes in the NAc encode conditioned responses that are sensitive to extinction and reduced NMDA receptor activity. NMDA receptor hypofunction may contribute to the comorbidity of substance abuse in schizophrenia. PMID:22763616

Benneyworth, Michael A; Coyle, Joseph T

2012-10-01

72

Landscape location affects genetic variation of Canada lynx (Lynx canadensis)  

Microsoft Academic Search

The effect of a population's location on the landscape on genetic variation has been of interest to population genetics for more than half a century. However, most studies do not consider broadscale biogeography when interpreting genetic data. In this study, we propose an operational definition of a peripheral population, and then explore whether peripheral populations of Canada lynx (Lynx canadensis)

M. K. S CHWARTZ; L. S. M ILLS; Y. O RTEGA; L. F. R UGGIERO; F. W. A LLENDORF

2003-01-01

73

Torn at the Genes One Family's Debate Over Genetically Altered Plants  

NSDL National Science Digital Library

The setting for this case is the family dinner table, where a heated discussion about genetically altered foods is taking place. Marsha Cumberland’s brother-in-law has joined the family for dinner. Ed is an industry official whose job it is to decide whether or not new products need pre-market approval by the FDA. He has just returned from a conference on transgenic foods.  When it turns out that some of the food on the dinner table is genetically modified, a debate ensues with different members of the family at different ends of the spectrum. Written for an introductory biology course, the case considers the scientific and ethical issues of genetically altered plants.

Jennifer Nelson

2000-01-01

74

Role of Genetic Alterations in the NLRP3 and CARD8 Genes in Health and Disease  

PubMed Central

The complexity of a common inflammatory disease is influenced by multiple genetic and environmental factors contributing to the susceptibility of disease. Studies have reported that these exogenous and endogenous components may perturb the balance of innate immune response by activating the NLRP3 inflammasome. The multimeric NLRP3 complex results in the caspase-1 activation and the release of potent inflammatory cytokines, like IL-1?. Several studies have been performed on the association of the genetic alterations in genes encoding NLRP3 and CARD8 with the complex diseases with inflammatory background, like inflammatory bowel disease, cardiovascular diseases, rheumatoid arthritis, and type 1 diabetes. The aim of the present review is therefore to summarize the literature regarding genetic alterations in these genes and their association with health and disease.

Paramel, G. V.; Sirsjö, A.; Fransén, K.

2015-01-01

75

Altered nociception in mice with genetically induced hypoglutamatergic tone.  

PubMed

Extensive pharmacological evidence supports the idea that glutamate plays a key role in both acute and chronic pain. In the present study, we investigated the implication of the excitatory amino acid in physiological nociception by using mutant mice deficient in phosphate-activated glutaminase type 1 (GLS1), the enzyme that synthesizes glutamate in central glutamatergic neurons. Because homozygous GLS1-/- mutants die shortly after birth, assays for assessing mechanical, thermal and chemical (formalin) nociception were performed on heterozygous GLS1+/- mutants, which present a clear-cut decrease in glutamate synthesis in central neurons. As compared to paired wild-type mice, adult male GLS1+/- mutants showed decreased responsiveness to mechanical (von Frey filament and tail-pressure, but not tail-clip, tests) and thermal (Hargreaves' plantar, tail-immersion and hot-plate tests) nociceptive stimuli. Genotype-related differences were also found in the formalin test for which GLS1+/- mice exhibited marked decreases in the nociceptive responses (hindlimb lift, lick and flinch) during both phase 1 (0-5min) and phase 2 (16-45min) after formalin injection. On the other hand, acute treatment with memantine (1mg/kg i.p.), an uncompetitive antagonist at NMDA glutamate receptors, reduced nociception responses in wild-type but not GLS1+/- mice. Conversely, antinociceptive response to acute administration of a low dose (1mg/kg s.c.) of morphine was significantly larger in GLS1+/- mutants versus wild-type mice. Our findings indicate that genetically driven hypoactivity of central glutamatergic neurotransmission renders mice hyposensitive to nociceptive stimulations, and promotes morphine antinociception, further emphasizing the critical role of glutamate in physiological nociception and its opioid-mediated control. PMID:25743253

Kayser, V; Viguier, F; Melfort, M; Bourgoin, S; Hamon, M; Masson, J

2015-05-01

76

Toward altering milk composition by genetic manipulation: current status and challenges.  

PubMed

The implementation of large-scale genome mapping and sequencing has improved the understanding of animal genetics. A large number of gene sequences are now available to serve as regulatory elements or genes of interest. Although the central thrust of this work is focused on understanding disease states, the manipulation of normal metabolic processes is feasible. To date, the genetic manipulation of livestock has been limited to the permanent addition of genes of clinical interest. This study explores the utility of genetically engineered cattle as a means of altering milk composition to improve the functional properties of milk, increasing marketability. Improvements would include increasing the concentration of valuable components in milk (e.g., casein), removing undesirable components (e.g., lactose), or altering composition to resemble that of human milk as a means of improving human neonatal nutrition. The protracted time lines of genetically modifying dairy cattle has prompted the development of animal models. A model for dwarf goats is discussed in terms of circumventing the lengthy time lines involved in generating transgenic cattle and allowing for an accelerated expansion of research in molecular genetics of dairy animals. Thus, the genetic manipulation of dairy cattle is feasible and could have significant impacts on milk quality, attributes of novel dairy products, and human health. PMID:9313168

Karatzas, C N; Turner, J D

1997-09-01

77

Altered Expression of MGMT in High-Grade Gliomas Results from the Combined Effect of Epigenetic and Genetic Aberrations  

PubMed Central

MGMT downregulation in high-grade gliomas (HGG) has been mostly attributed to aberrant promoter methylation and is associated with increased sensitivity to alkylating agent-based chemotherapy. However, HGG harboring 10q deletions also benefit from treatment with alkylating agents. Because the MGMT gene is mapped at 10q26, we hypothesized that both epigenetic and genetic alterations might affect its expression and predict response to chemotherapy. To test this hypothesis, promoter methylation and mRNA levels of MGMT were determined by quantitative methylation-specific PCR (qMSP) or methylation-specific multiplex ligation dependent probe amplification (MS-MLPA) and quantitative RT-PCR, respectively, in a retrospective series of 61 HGG. MGMT/chromosome 10 copy number variations were determined by FISH or MS-MLPA analysis. Molecular findings were correlated with clinical parameters to assess their predictive value. Overall, MGMT methylation ratios assessed by qMSP and MS-MLPA were inversely correlated with mRNA expression levels (best coefficient value obtained with MS-MLPA). By FISH analysis in 68.3% of the cases there was loss of 10q26.1 and in 15% of the cases polysomy was demonstrated; the latter displayed the highest levels of transcript. When genetic and epigenetic data were combined, cases with MGMT promoter methylation and MGMT loss depicted the lowest transcript levels, although an impact in response to alkylating agent chemotherapy was not apparent. Cooperation between epigenetic (promoter methylation) and genetic (monosomy, locus deletion) changes affecting MGMT in HGG is required for effective MGMT silencing. Hence, evaluation of copy number alterations might add relevant prognostic and predictive information concerning response to alkylating agent-based chemotherapy. PMID:23505468

Ramalho-Carvalho, João; Pires, Malini; Lisboa, Susana; Graça, Inês; Rocha, Patrícia; Barros-Silva, João Diogo; Savva-Bordalo, Joana; Maurício, Joaquina; Resende, Mário; Teixeira, Manuel R.; Honavar, Mrinalini; Henrique, Rui; Jerónimo, Carmen

2013-01-01

78

Tissue culture-induced genetic and epigenetic alterations in rice pure-lines, F1 hybrids and polyploids  

PubMed Central

Background Genetic and epigenetic alterations can be invoked by plant tissue culture, which may result in heritable changes in phenotypes, a phenomenon collectively termed somaclonal variation. Although extensive studies have been conducted on the molecular nature and spectrum of tissue culture-induced genomic alterations, the issue of whether and to what extent distinct plant genotypes, e.g., pure-lines, hybrids and polyploids, may respond differentially to the tissue culture condition remains poorly understood. Results We investigated tissue culture-induced genetic and epigenetic alterations in a set of rice genotypes including two pure-lines (different subspecies), a pair of reciprocal F1 hybrids parented by the two pure-lines, and a pair of reciprocal tetraploids resulted from the hybrids. Using two molecular markers, amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP), both genetic and DNA methylation alterations were detected in calli and regenerants from all six genotypes, but genetic alteration is more prominent than epigenetic alteration. While significant genotypic difference was observed in frequencies of both types of alterations, only genetic alteration showed distinctive features among the three types of genomes, with one hybrid (N/9) being exceptionally labile. Surprisingly, difference in genetic alteration frequencies between the pair of reciprocal F1 hybrids is much greater than that between the two pure-line subspecies. Difference also exists in the pair of reciprocal tetraploids, but is to a less extent than that between the hybrids. The steady-state transcript abundance of genes involved in DNA repair and DNA methylation was significantly altered in both calli and regenerants, and some of which were correlated with the genetic and/or epigenetic alterations. Conclusions Our results, based on molecular marker analysis of ca. 1,000 genomic loci, document that genetic alteration is the major cause of somaclonal variation in rice, which is concomitant with epigenetic alterations. Perturbed expression by tissue culture of a set of 41 genes encoding for enzymes involved in DNA repair and DNA methylation is associated with both genetic and epigenetic alterations. There exist fundamental differences among distinct genotypes, pure-lines, hybrids and tetraploids, in propensities of generating both genetic and epigenetic alterations under the tissue culture condition. Parent-of-origin has a conspicuous effect on the alteration frequencies. PMID:23642214

2013-01-01

79

Genetic variation in CACNA1C affects neural processing in major depression.  

PubMed

Genetic studies found the A allele of the single nucleotide polymorphism rs1006737 in the CACNA1C gene, which encodes for the alpha 1C subunit of the voltage-dependent, L-type calcium ion channel Cav1.2, to be overrepresented in patients with major depressive disorder (MDD). Altered prefrontal brain functioning and impaired semantic verbal fluency (SVF) are robust findings in these patients. A recent functional magnetic resonance imaging (fMRI) study found the A allele to be associated with poorer performance and increased left inferior frontal gyrus (IFG) activation during SVF tasks in healthy subjects. In the present study, we investigated the effects of rs1006737 on neural processing during SVF in MDD. In response to semantic category cues, 40 patients with MDD and 40 matched controls overtly generated words while brain activity was measured with fMRI. As revealed by whole brain analyses, genotype significantly affected brain activity in patients. Compared to patients with GG genotype, patients with A allele demonstrated increased task-related activation in the left middle/inferior frontal gyrus and the bilateral cerebellum. Patients with A allele also showed enhanced functional coupling between left middle/inferior and right superior/middle frontal gyri. No differential effects of genotype on SVF performance or brain activation were found between diagnostic groups. The current data provide further evidence for an impact of rs1006737 on the left IFG and demonstrate that genetic variation in CACNA1C modulates neural responses in patients with MDD. The observed functional alterations in prefrontal and cerebellar areas might represent a mechanism by which rs1006737 influences susceptibility to MDD. PMID:24612926

Backes, Heidelore; Dietsche, Bruno; Nagels, Arne; Konrad, Carsten; Witt, Stephanie H; Rietschel, Marcella; Kircher, Tilo; Krug, Axel

2014-06-01

80

GENETICS OF AFFECTIVE DISORDERS 1 WENNER GREN CENTER  

E-print Network

in Psychiatry A great difficulty throughout the history of psychiatry, and psychiatric genetics in particular, Sweden, May 26th ­ 28th, 1988 Edited by Lennart Wetterberg Department of Psychiatry Karolinska Institute genetics and psychiatry have gone through their respective revolutions. The two revolutions combined

Kidd, Kenneth

81

Do Knowledge Arrangements Affect Student Reading Comprehension of Genetics?  

ERIC Educational Resources Information Center

Various sequences for teaching genetics have been proposed. Three seventh-grade biology textbooks in Taiwan share similar key knowledge assemblages but have different knowledge arrangements. To investigate the influence of knowledge arrangements on student understanding of genetics, we compared students' reading comprehension of the three…

Wu, Jen-Yi; Tung, Yu-Neng; Hwang, Bi-Chi; Lin, Chen-Yung; Che-Di, Lee; Chang, Yung-Ta

2014-01-01

82

Genetic effects in Drosophila on the potency of diverse general anesthetics: a distinctive pattern of altered sensitivity  

PubMed Central

Mutations that influence the sensitivity of an organism to a volatile general anesthetic can be divided into two classes. In one, sensitivity to all other volatile agents is affected to a similar degree. Although this class may contain mutations of interest for understanding anesthesia, it is also likely to contain mutations that merely alter general health. In the second class, mutations confer non-uniform effects on potency (NEP), i.e., larger effects for some volatile anesthetics than for others. Members of this class are of special interest for studies of arousal and its pharmacological suppression because they not only avoid the pitfall of effects on global health, they imply the existence of drug targets that are preferentially affected by particular agents. In this work we provide the first systematic investigation of the relative frequency and diversity of NEP mutations in Drosophila. As a first step we isolated and characterized a set of P element insertion mutations that confer altered sensitivity of the fruit fly to the clinical anesthetic halothane. Then we tested the members of this collection for their effect on the sensitivity of flies to five other volatile agents. Not only do we find that most of the mutations show non-uniform effects, they share a characteristic arrangement of altered potencies (halothane >>desflurane ? enflurane ? isoflurane ? methoxyflurane > sevoflurane). From this result, although we do not know how direct or indirect are the effects of the mutations, we infer the existence of a biologically relevant target for anesthetic action that has a distinct preference for halothane over other agents. Intriguingly, P element insertions that co-map with several NEP loci have been shown to alter the fly’s response to cocaine and ethanol, suggesting that common genetic elements are involved in the response to all three drugs. PMID:19863272

Campbell, Joseph L.; Gu, Qun; Guo, Dongyu; Nash, Howard A.

2009-01-01

83

Epstein–Barr virus—associated gastric carcinomas: Relation to H. pylori infection and genetic alterations  

Microsoft Academic Search

Background & Aims: The association of Epstein–Barr virus (EBV) and gastric carcinomas (GCs) has been shown to vary among different populations and certain histological subtypes. Few studies have addressed the status of Helicobacter pylori infection and genetic alterations in these EBV-positive or -negative GCs. Methods: Eleven gastric lymphoepithelioma-like carcinomas (LELCs) and 139 cases of common non-LELCs were evaluated for the

2000-01-01

84

Genetic variations alter production and behavioral responses following heat stress in 2 strains of laying hens.  

PubMed

Genetic differences alter the type and degree of hens' responses and their ability to adapt to a stressor. This study examined the effects of genotypic variations on the productivity and behavior of laying hens following heat stress (HS). Two strains of White Leghorn hens were used: DXL (Dekalb XL), a commercial strain individually selected for egg production and KGB (kind, gentle bird), a strain selected for high group productivity and survivability. Ninety hens (48 DXL and 42 KGB) at 28 wk of age were randomly assigned to either a hot (H: mean = 32.6°C) or control (C: mean = 24.3°C) treatment and housed in pairs by strain for 9 d. Egg production and quality, behavior, body and organ weights, and circulating hormone concentrations were measured. Heat-stressed hens had lower egg production [adjusted (adj) P < 0.001] than their respective controls. Among H-DXL hens, egg weight tended to be reduced at d 1 and was reduced at d 9 (adj P = 0.007), but was reduced only at d 9 among H-KGB hens (adj P = 0.007). Eggshell thickness was also reduced among H hens at d 9 (adj P = 0.007), especially among H-KGB hens (adj P = 0.01). Plasma triiodothyronine concentration was reduced among H-hens (adj P = 0.01), especially among H-DXL hens (adj P = 0.01). Neither temperature nor strain affected the plasma thyroxine and plasma and yolk corticosterone concentrations. Heat-stressed hens spent less time walking (adj P = 0.001) and more time drinking (adj P = 0.007) and resting (adj P = 0.001) than C-hens. The results indicate that although HS reduced production and caused behavioral changes among hens from both strains, the responses differed by genotype. The data provide evidence that genetic selection is a useful strategy for reducing HS response in laying hens. The results provide insights for conducting future studies to develop heat-resistant strains to improve hen well-being, especially under the current commercial conditions. PMID:23300291

Mack, L A; Felver-Gant, J N; Dennis, R L; Cheng, H W

2013-02-01

85

Nongenetic Variation, Genetic–Environmental Interactions and Altered Gene Expression. II. Disease, Parasite and Pollution Effects  

Microsoft Academic Search

The use of protein electrophoretic data for determining the relationships among species or populations is widespread and generally accepted. However, there are many confounding factors that may alter the results of an electrophoretic study and may possibly allow erroneous conclusions to be drawn in taxonomic, systematic or population studies. Measured enzyme activities can also be affected significantly. Parasites, disease and

William J. Poly

1997-01-01

86

Identification of novel genetic alterations in samples of malignant glioma patients.  

PubMed

Glioblastoma is the most frequent and malignant human brain tumor. High level of genomic instability detected in glioma cells implies that numerous genetic alterations accumulate during glioma pathogenesis. We investigated alterations in AP-PCR DNA profiles of 30 glioma patients, and detected specific changes in 11 genes not previously associated with this disease: LHFPL3, SGCG, HTR4, ITGB1, CPS1, PROS1, GP2, KCNG2, PDE4D, KIR3DL3, and INPP5A. Further correlations revealed that 8 genes might play important role in pathogenesis of glial tumors, while changes in GP2, KCNG2 and KIR3DL3 should be considered as passenger mutations, consequence of high level of genomic instability. Identified genes have a significant role in signal transduction or cell adhesion, which are important processes for cancer development and progression. According to our results, LHFPL3 might be characteristic of primary glioblastoma, SGCG, HTR4, ITGB1, CPS1, PROS1 and INPP5A were detected predominantly in anaplastic astrocytoma, suggesting their role in progression of secondary glioblastoma, while alterations of PDE4D seem to have important role in development of both glioblastoma subtypes. Some of the identified genes showed significant association with p53, p16, and EGFR, but there was no significant correlation between loss of PTEN and any of identified genes. In conclusion our study revealed genetic alterations that were not previously associated with glioma pathogenesis and could be potentially used as molecular markers of different glioblastoma subtypes. PMID:24358143

Milinkovic, Vedrana; Bankovic, Jasna; Rakic, Miodrag; Stankovic, Tijana; Skender-Gazibara, Milica; Ruzdijic, Sabera; Tanic, Nikola

2013-01-01

87

Identification of Novel Genetic Alterations in Samples of Malignant Glioma Patients  

PubMed Central

Glioblastoma is the most frequent and malignant human brain tumor. High level of genomic instability detected in glioma cells implies that numerous genetic alterations accumulate during glioma pathogenesis. We investigated alterations in AP-PCR DNA profiles of 30 glioma patients, and detected specific changes in 11 genes not previously associated with this disease: LHFPL3, SGCG, HTR4, ITGB1, CPS1, PROS1, GP2, KCNG2, PDE4D, KIR3DL3, and INPP5A. Further correlations revealed that 8 genes might play important role in pathogenesis of glial tumors, while changes in GP2, KCNG2 and KIR3DL3 should be considered as passenger mutations, consequence of high level of genomic instability. Identified genes have a significant role in signal transduction or cell adhesion, which are important processes for cancer development and progression. According to our results, LHFPL3 might be characteristic of primary glioblastoma, SGCG, HTR4, ITGB1, CPS1, PROS1 and INPP5A were detected predominantly in anaplastic astrocytoma, suggesting their role in progression of secondary glioblastoma, while alterations of PDE4D seem to have important role in development of both glioblastoma subtypes. Some of the identified genes showed significant association with p53, p16, and EGFR, but there was no significant correlation between loss of PTEN and any of identified genes. In conclusion our study revealed genetic alterations that were not previously associated with glioma pathogenesis and could be potentially used as molecular markers of different glioblastoma subtypes. PMID:24358143

Milinkovic, Vedrana; Bankovic, Jasna; Rakic, Miodrag; Stankovic, Tijana; Skender-Gazibara, Milica; Ruzdijic, Sabera; Tanic, Nikola

2013-01-01

88

Population genetic dynamics of three-spined sticklebacks (Gasterosteus aculeatus) in anthropogenic altered habitats  

PubMed Central

In industrialized and/or agriculturally used landscapes, inhabiting species are exposed to a variety of anthropogenic changes in their environments. Genetic diversity may be reduced if populations encounter founder events, bottlenecks, or isolation. Conversely, genetic diversity may increase if populations adapt to changes in selective regimes in newly created habitats. With the present study, genetic variability of 918 sticklebacks from 43 samplings (21.3 ± 3.8 per sample) at 36 locations from cultivated landscapes in Northwest Germany was analyzed at nine neutral microsatellite loci. To test if differentiation is influenced by habitat alterations, sticklebacks were collected from ancient running waters and adjacent artificial stagnant waters, from brooks with salt water inflow of anthropogenic and natural origin and adjacent freshwater sites. Overall population structure was dominated by isolation by distance (IBD), which was significant across all populations, and analysis of molecular variance (AMOVA) revealed that 10.6% of the variation was explained by river catchment area. Populations in anthropogenic modified habitats deviated from the general IBD structure and in the AMOVA, grouping by habitat type running/stagnant water explained 4.9% of variation and 1.4% of the variation was explained by salt-/freshwater habitat. Sticklebacks in salt-polluted water systems seem to exhibit elevated migratory activity between fresh- and saltwater habitats, reducing IBD. In other situations, populations showed distinct signs of genetic isolation, which in some locations was attributed to mechanical migration barriers, but in others to potential anthropogenic induced bottleneck or founder effects. The present study shows that anthropogenic habitat alterations may have diverse effects on the population genetic structure of inhabiting species. Depending on the type of habitat change, increased genetic differentiation, diversification, or isolation are possible consequences. PMID:22833789

Scharsack, Joern P; Schweyen, Hannah; Schmidt, Alexander M; Dittmar, Janine; Reusch, Thorsten BH; Kurtz, Joachim

2012-01-01

89

Genetic Polymorphisms in Organic Cation Transporter 1 (OCT1) in Chinese and Japanese Populations Exhibit Altered  

E-print Network

- betic drug metformin. Genetic variants in OCT1 have been identified largely in European populations. Metformin is in- creasingly being used in Asian populations where the incidence of type 2 diabetes (T2D in Chinese and Japanese pop- ulations may affect the differential response to metformin. Introduction

Sali, Andrej

90

Altered precipitation regime affects the function and composition of soil microbial communities on multiple time scales.  

PubMed

Climate change models predict that future precipitation patterns will entail lower-frequency but larger rainfall events, increasing the duration of dry soil conditions. Resulting shifts in microbial C cycling activity could affect soil C storage. Further, microbial response to rainfall events may be constrained by the physiological or nutrient limitation stress of extended drought periods; thus seasonal or multiannual precipitation regimes may influence microbial activity following soil wet-up. We quantified rainfall-driven dynamics of microbial processes that affect soil C loss and retention, and microbial community composition, in soils from a long-term (14-year) field experiment contrasting "Ambient" and "Altered" (extended intervals between rainfalls) precipitation regimes. We collected soil before, the day following, and five days following 2.5-cm rainfall events during both moist and dry periods (June and September 2011; soil water potential = -0.01 and -0.83 MPa, respectively), and measured microbial respiration, microbial biomass, organic matter decomposition potential (extracellular enzyme activities), and microbial community composition (phospholipid fatty acids). The equivalent rainfall events caused equivalent microbial respiration responses in both treatments. In contrast, microbial biomass was higher and increased after rainfall in the Altered treatment soils only, thus microbial C use efficiency (CUE) was higher in Altered than Ambient treatments (0.70 +/- 0.03 > 0.46 +/- 0.10). CUE was also higher in dry (September) soils. C-acquiring enzyme activities (beta-glucosidase, cellobiohydrolase, and phenol oxidase) increased after rainfall in moist (June), but not dry (September) soils. Both microbial biomass C:N ratios and fungal:bacterial ratios were higher at lower soil water contents, suggesting a functional and/or population-level shift in the microbiota at low soil water contents, and microbial community composition also differed following wet-up and between seasons and treatments. Overall, microbial activity may directly (C respiration) and indirectly (enzyme potential) reduce soil organic matter pools less in drier soils, and soil C sequestration potential (CUE) may be higher in soils with a history of extended dry periods between rainfall events. The implications include that soil C loss may be reduced or compensated for via different mechanisms at varying time scales, and that microbial taxa with better stress tolerance or growth efficiency may be associated with these functional shifts. PMID:24358718

Zeglin, L H; Bottomley, P J; Jumpponen, A; Rice, C W; Arango, M; Lindsley, A; McGowan, A; Mfombep, P; Myrold, D D

2013-10-01

91

Comparison of epigenetic and genetic alterations in mucinous cystic neoplasm and serous microcystic adenoma of pancreas.  

PubMed

Mucinous cystic neoplasms and serous microcystic adenomas account for the majority of cystic tumors of pancreas. Mucinous cystic neoplasms and serous microcystic adenomas have different frequencies of progression to malignancy. The genetic and epigenetic alterations of these tumors have not been studied in detail. In this study, we compared methylation status of p16, p14, VHL, and ppENK genes by methylation-specific PCR (MSP), and genetic alterations including K-ras and beta-catenin gene mutations, chromosome 3p loss, and microsatellite instability in 15 mucinous cystic neoplasms (10 benign and 5 borderline) and 16 serous microcystic adenomas. There were no significant differences between mucinous cystic neoplasms and serous microcystic adenomas in methylation of p16 (14%, 2/14 and 12%, 2/16), p14 (15%, 2/13 and 37%, 6/16), VHL (0/14 and 7%, 1/14), and ppENK (0/14 and 0/13), respectively. K-ras mutation was present only in mucinous cystic neoplasms but not in serous microcystic adenomas (33%, 5/15 versus 0/16; P =.004). In addition, LOH at 3p25, the chromosomal location of VHL gene, was present in 57% (8/14) of serous microcystic adenomas compared with in 17% (2/12) of mucinous cystic neoplasms (P =.03). No beta-catenin mutation, microsatellite instability, or mutation of transforming growth factor beta type II receptor was present in either type of tumors. In conclusion, K-ras mutations and allelic loss of VHL locus at 3p25, but not methylation, distinguished mucinous cystic neoplasms and serous microcystic adenomas. The differences in genetic alterations but not epigenetic alterations may explain the pathogenesis and progression to malignancy of these cystic tumors of pancreas. PMID:14614047

Kim, Sang Geol; Wu, Tsung-Teh; Lee, Jae Hyuk; Yun, Young Kook; Issa, Jean-Pierre; Hamilton, Stanley R; Rashid, Asif

2003-11-01

92

Alteration of Fatty-Acid-Metabolizing Enzymes Affects Mitochondrial Form and Function in Hereditary Spastic Paraplegia  

PubMed Central

Hereditary spastic paraplegia (HSP) is considered one of the most heterogeneous groups of neurological disorders, both clinically and genetically. The disease comprises pure and complex forms that clinically include slowly progressive lower-limb spasticity resulting from degeneration of the corticospinal tract. At least 48 loci accounting for these diseases have been mapped to date, and mutations have been identified in 22 genes, most of which play a role in intracellular trafficking. Here, we identified mutations in two functionally related genes (DDHD1 and CYP2U1) in individuals with autosomal-recessive forms of HSP by using either the classical positional cloning or a combination of whole-genome linkage mapping and next-generation sequencing. Interestingly, three subjects with CYP2U1 mutations presented with a thin corpus callosum, white-matter abnormalities, and/or calcification of the basal ganglia. These genes code for two enzymes involved in fatty-acid metabolism, and we have demonstrated in human cells that the HSP pathophysiology includes alteration of mitochondrial architecture and bioenergetics with increased oxidative stress. Our combined results focus attention on lipid metabolism as a critical HSP pathway with a deleterious impact on mitochondrial bioenergetic function. PMID:23176821

Tesson, Christelle; Nawara, Magdalena; Salih, Mustafa A.M.; Rossignol, Rodrigue; Zaki, Maha S.; Al Balwi, Mohammed; Schule, Rebecca; Mignot, Cyril; Obre, Emilie; Bouhouche, Ahmed; Santorelli, Filippo M.; Durand, Christelle M.; Oteyza, Andrés Caballero; El-Hachimi, Khalid H.; Al Drees, Abdulmajeed; Bouslam, Naima; Lamari, Foudil; Elmalik, Salah A.; Kabiraj, Mohammad M.; Seidahmed, Mohammed Z.; Esteves, Typhaine; Gaussen, Marion; Monin, Marie-Lorraine; Gyapay, Gabor; Lechner, Doris; Gonzalez, Michael; Depienne, Christel; Mochel, Fanny; Lavie, Julie; Schols, Ludger; Lacombe, Didier; Yahyaoui, Mohamed; Al Abdulkareem, Ibrahim; Zuchner, Stephan; Yamashita, Atsushi; Benomar, Ali; Goizet, Cyril; Durr, Alexandra; Gleeson, Joseph G.; Darios, Frederic; Brice, Alexis; Stevanin, Giovanni

2012-01-01

93

Genetic interactions between polymorphisms that affect gene expression in yeast  

E-print Network

) at the primary locus and tested each subgroup for further `secondary' loci. We computed the joint significance at different quantitative trait loci (QTLs) are thought to contribute to the genetics of many traits, and can set of quantitative phenotypes--the levels of all transcripts in a cross between two strains

Kruglyak, Leonid

94

Genetic alterations of histone lysine methyltransferases and their significance in breast cancer  

PubMed Central

Histone lysine methyltransferases (HMTs), a large class of enzymes that catalyze site-specific methylation of lysine residues on histones and other proteins, play critical roles in controlling transcription, chromatin architecture, and cellular differentiation. However, the genomic landscape and clinical significance of HMTs in breast cancer remain poorly characterized. Here, we conducted a meta-analysis of approximately 50 HMTs in breast cancer and identified associations among recurrent copy number alterations, mutations, gene expression, and clinical outcome. We identified 12 HMTs with the highest frequency of genetic alterations, including 8 with high-level amplification, 2 with putative homozygous deletion, and 2 with somatic mutation. Different subtypes of breast cancer have different patterns of copy number and expression for each HMT gene. In addition, chromosome 1q contains four HMTs that are concurrently or independently amplified or overexpressed in breast cancer. Copy number or mRNA expression of several HMTs was significantly associated with basal-like breast cancer and shorter patient survival. Integrative analysis identified 8 HMTs (SETDB1, SMYD3, ASH1L, SMYD2, WHSC1L1, SUV420H1, SETDB2, and KMT2C) that are dysregulated by genetic alterations, classifying them as candidate therapeutic targets. Together, our findings provide a strong foundation for further mechanistic research and therapeutic options using HMTs to treat breast cancer. PMID:25537518

Liu, Hui; Holowatyj, Andreana; Yang, Zeng-Quan

2015-01-01

95

Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas.  

PubMed

The most common pediatric brain tumors are low-grade gliomas (LGGs). We used whole-genome sequencing to identify multiple new genetic alterations involving BRAF, RAF1, FGFR1, MYB, MYBL1 and genes with histone-related functions, including H3F3A and ATRX, in 39 LGGs and low-grade glioneuronal tumors (LGGNTs). Only a single non-silent somatic alteration was detected in 24 of 39 (62%) tumors. Intragenic duplications of the portion of FGFR1 encoding the tyrosine kinase domain (TKD) and rearrangements of MYB were recurrent and mutually exclusive in 53% of grade II diffuse LGGs. Transplantation of Trp53-null neonatal astrocytes expressing FGFR1 with the duplication involving the TKD into the brains of nude mice generated high-grade astrocytomas with short latency and 100% penetrance. FGFR1 with the duplication induced FGFR1 autophosphorylation and upregulation of the MAPK/ERK and PI3K pathways, which could be blocked by specific inhibitors. Focusing on the therapeutically challenging diffuse LGGs, our study of 151 tumors has discovered genetic alterations and potential therapeutic targets across the entire range of pediatric LGGs and LGGNTs. PMID:23583981

Zhang, Jinghui; Wu, Gang; Miller, Claudia P; Tatevossian, Ruth G; Dalton, James D; Tang, Bo; Orisme, Wilda; Punchihewa, Chandanamali; Parker, Matthew; Qaddoumi, Ibrahim; Boop, Fredrick A; Lu, Charles; Kandoth, Cyriac; Ding, Li; Lee, Ryan; Huether, Robert; Chen, Xiang; Hedlund, Erin; Nagahawatte, Panduka; Rusch, Michael; Boggs, Kristy; Cheng, Jinjun; Becksfort, Jared; Ma, Jing; Song, Guangchun; Li, Yongjin; Wei, Lei; Wang, Jianmin; Shurtleff, Sheila; Easton, John; Zhao, David; Fulton, Robert S; Fulton, Lucinda L; Dooling, David J; Vadodaria, Bhavin; Mulder, Heather L; Tang, Chunlao; Ochoa, Kerri; Mullighan, Charles G; Gajjar, Amar; Kriwacki, Richard; Sheer, Denise; Gilbertson, Richard J; Mardis, Elaine R; Wilson, Richard K; Downing, James R; Baker, Suzanne J; Ellison, David W

2013-06-01

96

The Transcriptional Regulatory Network of Proneural Glioma Determines the Genetic Alterations Selected During Tumor Progression  

PubMed Central

Proneural Glioblastoma is defined by an expression pattern resembling that of oligodendrocyte progenitor cells, and carries a distinctive set of genetic alterations. Whether there is a functional relationship between the proneural phenotype and the associated genetic alterations is unknown. To evaluate this possible relationship, we performed a longitudinal molecular characterization of tumor progression in a mouse model of proneural glioma. In this setting, the tumors acquired remarkably consistent genetic deletions at late stages of progression, similar to those deleted in human proneural Glioblastoma. Further investigations revealed that p53 is a master regulator of the transcriptional network underlying the proneural phenotype. This p53-centric transcriptional network and its associated phenotype were observed at both the early and late stages of progression, and preceded the proneural-specific deletions. Remarkably, deletion of p53 at the time of tumor initiation obviated the acquisition of later deletions, establishing a link between the proneural transcriptional network and the subtype-specific deletions selected during glioma progression. PMID:24390738

Guarnieri, Paolo; Lei, Liang; Amendolara, Benjamin; Soderquist, Craig; Leung, Richard; Yun, Jonathan; Kennedy, Benjamin; Sisti, Julia; Bruce, Samuel; Bruce, Rachel; Shakya, Reena; Ludwig, Thomas; Rosenfeld, Steven; Sims, Peter A; Bruce, Jeffrey N; Califano, Andrea; Canoll, Peter

2014-01-01

97

Environmental and genetic factors affecting udder characters and milk production in Chios sheep  

E-print Network

Environmental and genetic factors affecting udder characters and milk production in Chios sheep A environmental and genetic factors influencing udder characteristics and milk production in Chios sheep. All. Seasonal effects were significant for udder circumference, test-day milk and total milk production

Paris-Sud XI, Université de

98

Process-induced extracellular matrix alterations affect the mechanisms of soft tissue repair and regeneration  

PubMed Central

Extracellular matrices derived from animal tissues for human tissue repairs are processed by various methods of physical, chemical, or enzymatic decellularization, viral inactivation, and terminal sterilization. The mechanisms of action in tissue repair vary among bioscaffolds and are suggested to be associated with process-induced extracellular matrix modifications. We compared three non-cross-linked, commercially available extracellular matrix scaffolds (Strattice, Veritas, and XenMatrix), and correlated extracellular matrix alterations to in vivo biological responses upon implantation in non-human primates. Structural evaluation showed significant differences in retaining native tissue extracellular matrix histology and ultrastructural features among bioscaffolds. Tissue processing may cause both the condensation of collagen fibers and fragmentation or separation of collagen bundles. Calorimetric analysis showed significant differences in the stability of bioscaffolds. The intrinsic denaturation temperature was measured to be 51°C, 38°C, and 44°C for Strattice, Veritas, and XenMatrix, respectively, demonstrating more extracellular matrix modifications in the Veritas and XenMatrix scaffolds. Consequently, the susceptibility to collagenase degradation was increased in Veritas and XenMatrix when compared to their respective source tissues. Using a non-human primate model, three bioscaffolds were found to elicit different biological responses, have distinct mechanisms of action, and yield various outcomes of tissue repair. Strattice permitted cell repopulation and was remodeled over 6 months. Veritas was unstable at body temperature, resulting in rapid absorption with moderate inflammation. XenMatrix caused severe inflammation and sustained immune reactions. This study demonstrates that extracellular matrix alterations significantly affect biological responses in soft tissue repair and regeneration. The data offer useful insights into the rational design of extracellular matrix products and bioscaffolds of tissue engineering. PMID:24555005

Xu, Hui; Sandor, Maryellen; Lombardi, Jared

2013-01-01

99

Genetic and environmental factors affecting growth and reproduction characters of Morada Nova sheep in Northeastern Brazil  

E-print Network

GENETIC AND ENVIRONMENTAL FACTORS AFFECTING GROWTH AND REPRODUCTION CHARACTERS OF MORADA NOVA SHEEP IN NORTHEASTERN BRAZIL A Thesis by ANTONIO AMAURV ORIA FERNANDES Submitted to the Graduate College of Texas A&M University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1985 Major Subject: Animal Breeding GENETIC AND ENVIRONMENTAL FACTORS AFFECTING GROWTH AND REPRODUCTION CHARACTERS OF MORADA NOVA SHEEP IN NORTHEASTERN BRAZIL A Thesis by ANTONIO...

Fernandes, Antonio Amaury Oria

1985-01-01

100

Molecular genetic alterations in gliomatosis cerebri: What can we learn about the origin and course of the disease?  

Microsoft Academic Search

Gliomatosis cerebri (GC) is a neuroepithelial neoplasm with extensive infiltration of large parts of the brain. Recent data showing the involvement of TP53 mutation or nuclear protein accumulation in some cases have linked the astrocytic phenotype of the tumor cells to TP53 alterations frequently found in common astrocytomas. However, the frequency of these alterations is low, and other molecular genetic

Christian Mawrin

2005-01-01

101

Genetic diversity affects colony survivorship in commercial honey bee colonies.  

PubMed

Honey bee (Apis mellifera) queens mate with unusually high numbers of males (average of approximately 12 drones), although there is much variation among queens. One main consequence of such extreme polyandry is an increased diversity of worker genotypes within a colony, which has been shown empirically to confer significant adaptive advantages that result in higher colony productivity and survival. Moreover, honey bees are the primary insect pollinators used in modern commercial production agriculture, and their populations have been in decline worldwide. Here, we compare the mating frequencies of queens, and therefore, intracolony genetic diversity, in three commercial beekeeping operations to determine how they correlate with various measures of colony health and productivity, particularly the likelihood of queen supersedure and colony survival in functional, intensively managed beehives. We found the average effective paternity frequency (m e ) of this population of honey bee queens to be 13.6?±?6.76, which was not significantly different between colonies that superseded their queen and those that did not. However, colonies that were less genetically diverse (headed by queens with m e ???7.0) were 2.86 times more likely to die by the end of the study when compared to colonies that were more genetically diverse (headed by queens with m e ?>?7.0). The stark contrast in colony survival based on increased genetic diversity suggests that there are important tangible benefits of increased queen mating number in managed honey bees, although the exact mechanism(s) that govern these benefits have not been fully elucidated. PMID:23728203

Tarpy, David R; Vanengelsdorp, Dennis; Pettis, Jeffrey S

2013-08-01

102

Genetic diversity affects colony survivorship in commercial honey bee colonies  

NASA Astrophysics Data System (ADS)

Honey bee ( Apis mellifera) queens mate with unusually high numbers of males (average of approximately 12 drones), although there is much variation among queens. One main consequence of such extreme polyandry is an increased diversity of worker genotypes within a colony, which has been shown empirically to confer significant adaptive advantages that result in higher colony productivity and survival. Moreover, honey bees are the primary insect pollinators used in modern commercial production agriculture, and their populations have been in decline worldwide. Here, we compare the mating frequencies of queens, and therefore, intracolony genetic diversity, in three commercial beekeeping operations to determine how they correlate with various measures of colony health and productivity, particularly the likelihood of queen supersedure and colony survival in functional, intensively managed beehives. We found the average effective paternity frequency ( m e ) of this population of honey bee queens to be 13.6 ± 6.76, which was not significantly different between colonies that superseded their queen and those that did not. However, colonies that were less genetically diverse (headed by queens with m e ? 7.0) were 2.86 times more likely to die by the end of the study when compared to colonies that were more genetically diverse (headed by queens with m e > 7.0). The stark contrast in colony survival based on increased genetic diversity suggests that there are important tangible benefits of increased queen mating number in managed honey bees, although the exact mechanism(s) that govern these benefits have not been fully elucidated.

Tarpy, David R.; vanEngelsdorp, Dennis; Pettis, Jeffrey S.

2013-08-01

103

Humidity affects genetic architecture of heat resistance in Drosophila melanogaster.  

PubMed

Laboratory experiments on Drosophila have often demonstrated increased heritability for morphological and life-history traits under environmental stress. We used parent-offspring comparisons to examine the impact of humidity levels on the heritability of a physiological trait, resistance to heat, measured as knockdown time at constant temperature. Drosophila melanogaster were reared under standard nonstressful conditions and heat-shocked as adults at extreme high or low humidity. Mean knockdown time was decreased in the stressful dry environment, but there was a significant sex-by-treatment interaction: at low humidity, females were more heat resistant than males, whereas at high humidity, the situation was reversed. Phenotypic variability of knockdown time was also lower in the dry environment. The magnitude of genetic correlation between the sexes at high humidity indicated genetic variation for sexual dimorphism in heat resistance. Heritability estimates based on one-parent-offspring regressions tended to be higher under desiccation stress, and this could be explained by decreased environmental variance of heat resistance at low humidity. There was no indication that the additive genetic variance and evolvability of heat resistance differed between the environments. The pattern of heritability estimates suggests that populations of D. melanogaster may have a greater potential for evolving higher thermal tolerance under arid conditions. PMID:22487529

Bubliy, O A; Kristensen, T N; Kellermann, V; Loeschcke, V

2012-06-01

104

Aeromonas proteolyrica bacteria in aerospace environments. [possible genetic alterations and effects on man  

NASA Technical Reports Server (NTRS)

Preflight studies on Aeromonas proteolytica are reported to investigate the possibility of genetic alterations resulting in increased proteolysis in spacecraft environments. This organism may be present on human tissue and could pose medical problems if its endopeptidase and a hemolysin were to be produced in ususually high quantities or altered in such a way as to be more effective in their activities. Considered are: (1) Development of a nutrative holding medium for suspension of organisms; (2) the establishment of baseline information for the standardization of the assay for endopeptidase levels and hemolytic titers; (3) formulation of a method by which intracutaneous hemorrhage could be quantitated in guinea pig tissue; and (4) the responses of these organisms to parameters of spaceflight and experimentation.

Foster, B. G.

1974-01-01

105

Phytoplasmal infection derails genetically preprogrammed meristem fate and alters plant architecture  

PubMed Central

In the life cycle of higher plants, it is the fate of meristem cells that determines the pattern of growth and development, and therefore plant morphotype and fertility. Floral transition, the turning point from vegetative growth to reproductive development, is achieved via genetically programmed sequential changes in meristem fate from vegetative to inflorescence, and to floral, leading to flower formation and eventual seed production. The transition is rarely reversible once initiated. In this communication, we report that a bacterial infection can derail the genetically programmed fate of meristem cells, thereby drastically altering the growth pattern of the host plant. We identified four characteristic symptoms in tomato plants infected with a cell wall-less bacterium, phytoplasma. The symptoms are a manifestation of the pathogen-induced alterations of growth pattern, whereas each symptom corresponds to a distinct phase in the derailment of shoot apical meristem fate. The phases include premature floral meristem termination, suppressed floral meristem initiation, delayed conversion of vegetative meristem to inflorescence meristem, and repetitive initiation and outgrowth of lateral vegetative meristems. We further found that the pathogen-induced alterations of growth pattern were correlated with transcriptional reprogramming of key meristem switching genes. Our findings open an avenue toward understanding pathological alterations in patterns of plant growth and development, thus aiding identification of molecular targets for disease control and symptom alleviation. The findings also provide insights for understanding stem cell pluripotency and raise a tantalizing possibility for using phytoplasma as a tool to dissect the course of normal plant development and to modify plant morphogenesis by manipulating meristem fate. PMID:24191032

Wei, Wei; Davis, Robert Edward; Nuss, Donald L.; Zhao, Yan

2013-01-01

106

A murine tumor progression model for pancreatic cancer recapitulating the genetic alterations of the human disease.  

PubMed

This study describes a tumor progression model for ductal pancreatic cancer in mice overexpressing TGF-alpha. Activation of Ras and Erk causes induction of cyclin D1-Cdk4 without increase of cyclin E or PCNA in ductal lesions. Thus, TGF-alpha is able to promote progression throughout G1, but not S phase. Crossbreeding with p53 null mice accelerates tumor development in TGF-alpha transgenic mice dramatically. In tumors developing in these mice, biallelic deletion of Ink4a/Arf or LOH of the Smad4 locus is found suggesting that loci in addition to p53 are involved in antitumor activities. We conclude that these genetic events are critical for pancreatic tumor formation in mice. This model recapitulates pathomorphological features and genetic alterations of the human disease. PMID:11159909

Wagner, M; Greten, F R; Weber, C K; Koschnick, S; Mattfeldt, T; Deppert, W; Kern, H; Adler, G; Schmid, R M

2001-02-01

107

A murine tumor progression model for pancreatic cancer recapitulating the genetic alterations of the human disease  

PubMed Central

This study describes a tumor progression model for ductal pancreatic cancer in mice overexpressing TGF-?. Activation of Ras and Erk causes induction of cyclin D1-Cdk4 without increase of cyclin E or PCNA in ductal lesions. Thus, TGF-? is able to promote progression throughout G1, but not S phase. Crossbreeding with p53 null mice accelerates tumor development in TGF-? transgenic mice dramatically. In tumors developing in these mice, biallelic deletion of Ink4a/Arf or LOH of the Smad4 locus is found suggesting that loci in addition to p53 are involved in antitumor activities. We conclude that these genetic events are critical for pancreatic tumor formation in mice. This model recapitulates pathomorphological features and genetic alterations of the human disease. PMID:11159909

Wagner, Martin; Greten, Florian R.; Weber, Christoph K.; Koschnick, Stefan; Mattfeldt, Torsten; Deppert, Wolfgang; Kern, Horst; Adler, Guido; Schmid, Roland M.

2001-01-01

108

ADAM17 Deletion in Thymic Epithelial Cells Alters Aire Expression without Affecting T Cell Developmental Progression  

PubMed Central

Background Cellular interactions between thymocytes and thymic stromal cells are critical for normal T cell development. Thymic epithelial cells (TECs) are important stromal niche cells that provide essential growth factors, cytokines, and present self-antigens to developing thymocytes. The identification of genes that mediate cellular crosstalk in the thymus is ongoing. One candidate gene, Adam17, encodes a metalloprotease that functions by cleaving the ectodomain of several transmembrane proteins and regulates various developmental processes. In conventional Adam17 knockout mice, a non-cell autonomous role for ADAM17 in adult T cell development was reported, which strongly suggested that expression of ADAM17 in TECs was required for normal T cell development. However, knockdown of Adam17 results in multisystem developmental defects and perinatal lethality, which has made study of the role of Adam17 in specific cell types difficult. Here, we examined T cell and thymic epithelial cell development using a conditional knockout approach. Methodology/Principal Findings We generated an Adam17 conditional knockout mouse in which floxed Adam17 is deleted specifically in TECs by Cre recombinase under the control of the Foxn1 promoter. Normal T cell lineage choice and development through the canonical ?? T cell stages was observed. Interestingly, Adam17 deficiency in TECs resulted in reduced expression of the transcription factor Aire. However, no alterations in the patterns of TEC phenotypic marker expression and thymus morphology were noted. Conclusions/Significance In contrast to expectation, our data clearly shows that absence of Adam17 in TECs is dispensable for normal T cell development. Differentiation of TECs is also unaffected by loss of Adam17 based on phenotypic markers. Surprisingly, we have uncovered a novel genetic link between Adam17and Aire expression in vivo. The cell type in which ADAM17 mediates its non-cell autonomous impact and the mechanisms by which it regulates intrathymic T cell development remain to be identified. PMID:20976004

Gravano, David M.; McLelland, Bryce T.; Horiuchi, Keisuke; Manilay, Jennifer O.

2010-01-01

109

Genetic Exchange in an Arbuscular Mycorrhizal Fungus Results in Increased Rice Growth and Altered Mycorrhiza-Specific Gene Transcription?†  

PubMed Central

Arbuscular mycorrhizal fungi (AMF) are obligate symbionts with most terrestrial plants. They improve plant nutrition, particularly phosphate acquisition, and thus are able to improve plant growth. In exchange, the fungi obtain photosynthetically fixed carbon. AMF are coenocytic, meaning that many nuclei coexist in a common cytoplasm. Genetic exchange recently has been demonstrated in the AMF Glomus intraradices, allowing nuclei of different Glomus intraradices strains to mix. Such genetic exchange was shown previously to have negative effects on plant growth and to alter fungal colonization. However, no attempt was made to detect whether genetic exchange in AMF can alter plant gene expression and if this effect was time dependent. Here, we show that genetic exchange in AMF also can be beneficial for rice growth, and that symbiosis-specific gene transcription is altered by genetic exchange. Moreover, our results show that genetic exchange can change the dynamics of the colonization of the fungus in the plant. Our results demonstrate that the simple manipulation of the genetics of AMF can have important consequences for their symbiotic effects on plants such as rice, which is considered the most important crop in the world. Exploiting natural AMF genetic variation by generating novel AMF genotypes through genetic exchange is a potentially useful tool in the development of AMF inocula that are more beneficial for crop growth. PMID:21784911

Colard, Alexandre; Angelard, Caroline; Sanders, Ian R.

2011-01-01

110

Genetic and environmental factors affecting menarcheal age in Spanish women.  

PubMed

Genetic and environmental contributions to menarcheal age were studied in 267 Spanish girls and women born between 1948 and 1981, and their mothers born between 1922 and 1959 (n = 200). Recalled age at menarche, as well as family environment characteristics (family size, birth order, father's occupation and father's educational level) were obtained from each woman. Mean age at menarche in mothers (13.45 years; SD = 1.51) was significantly (p < 0.01) greater than in daughters (13.03 +/- 1.28 years). Year of birth and family size accounted for a significant amount of the variation in age at menarche in both mothers and daughters, whereas occupation of the father only appeared related to menarcheal age in the mothers subsample. Birth order and father's educational level did not contribute significantly to the age at menarche. The mother-daughter and sister-sister correlations (maximum likelihood estimates) for age at menarche were 0.30 and 0.35, respectively (both significant at p < 0.001). This supports the genetic and environmental contribution to the age at menarche, even though the influence of environmental variables may change over time. PMID:9161683

Sánchez-Andrés, A

1997-03-01

111

Altered structural connectivity in neonates at genetic risk for schizophrenia: a combined study using morphological and white matter networks.  

PubMed

Recently, an increasing body of evidence suggests that developmental abnormalities related to schizophrenia may occur as early as the neonatal stage. Impairments of brain gray matter and wiring problems of axonal fibers are commonly suspected to be responsible for the disconnection hypothesis in schizophrenia adults, but significantly less is known in neonates. In this study, we investigated 26 neonates who were at genetic risk for schizophrenia and 26 demographically matched healthy neonates using both morphological and white matter networks to examine possible brain connectivity abnormalities. The results showed that both populations exhibited small-world network topology. Morphological network analysis indicated that the brain structural associations of the high-risk neonates tended to have globally lower efficiency, longer connection distance, and less number of hub nodes and edges with relatively higher betweenness. Subgroup analysis showed that male neonates were significantly disease-affected, while the female neonates were not. White matter network analysis, however, showed that the fiber networks were globally unaffected, although several subcortical-cortical connections had significantly less number of fibers in high-risk neonates. This study provides new lines of evidence in support of the disconnection hypothesis, reinforcing the notion that the genetic risk of schizophrenia induces alterations in both gray matter structural associations and white matter connectivity. PMID:22613620

Shi, Feng; Yap, Pew-Thian; Gao, Wei; Lin, Weili; Gilmore, John H; Shen, Dinggang

2012-09-01

112

Phenotypic integration of skeletal traits during growth buffers genetic variants affecting the slenderness of femora in inbred mouse strains  

PubMed Central

Compensatory interactions among adult skeletal traits are critical for establishing strength but complicate the search for fracture susceptibility genes by allowing many genetic variants to exist in a population without loss of function. A better understanding of how these interactions arise during growth will provide new insight into genotype-phenotype relationships and the biological controls that establish skeletal strength. We tested the hypothesis that genetic variants affecting growth in width relative to growth in length (slenderness) are coordinated with movement of the inner bone surface and matrix mineralization to match stiffness with weight-bearing loads during postnatal growth. Midshaft femoral morphology and tissue-mineral density were quantified at ages of 1 day and at 4, 8, and 16 weeks for a panel of 20 female AXB/BXA recombinant inbred mouse strains. Path Analyses revealed significant compensatory interactions among outer-surface expansion rate, inner-surface expansion rate, and tissue-mineral density during postnatal growth, indicating that genetic variants affecting bone slenderness were buffered mechanically by the precise regulation of bone surface movements and matrix mineralization. Importantly, the covariation between morphology and mineralization resulted from a heritable constraint limiting the amount of tissue that could be used to construct a functional femur. The functional interactions during growth explained 56-99% of the variability in adult traits and mechanical properties. These functional interactions provide quantitative expectations of how genetic or environmental variants affecting one trait should be compensated by changes in other traits. Variants that impair this process or that cannot be fully compensated are expected to alter skeletal growth leading to underdesigned (weak) or overdesigned (bulky) structures. PMID:19082857

Jepsen, Karl J.; Hu, Bin; Tommasini, Steven M.; Courtland, Hayden-William; Price, Christopher; Cordova, Matthew; Nadeau, Joseph H.

2009-01-01

113

Phenotypic integration of skeletal traits during growth buffers genetic variants affecting the slenderness of femora in inbred mouse strains.  

PubMed

Compensatory interactions among adult skeletal traits are critical for establishing strength but complicate the search for fracture susceptibility genes by allowing many genetic variants to exist in a population without loss of function. A better understanding of how these interactions arise during growth will provide new insight into genotype-phenotype relationships and the biological controls that establish skeletal strength. We tested the hypothesis that genetic variants affecting growth in width relative to growth in length (slenderness) are coordinated with movement of the inner bone surface and matrix mineralization to match stiffness with weight-bearing loads during postnatal growth. Midshaft femoral morphology and tissue-mineral density were quantified at ages of 1 day and at 4, 8, and 16 weeks for a panel of 20 female AXB/BXA recombinant inbred mouse strains. Path Analyses revealed significant compensatory interactions among outer-surface expansion rate, inner-surface expansion rate, and tissue-mineral density during postnatal growth, indicating that genetic variants affecting bone slenderness were buffered mechanically by the precise regulation of bone surface movements and matrix mineralization. Importantly, the covariation between morphology and mineralization resulted from a heritable constraint limiting the amount of tissue that could be used to construct a functional femur. The functional interactions during growth explained 56-99% of the variability in adult traits and mechanical properties. These functional interactions provide quantitative expectations of how genetic or environmental variants affecting one trait should be compensated by changes in other traits. Variants that impair this process or that cannot be fully compensated are expected to alter skeletal growth leading to underdesigned (weak) or overdesigned (bulky) structures. PMID:19082857

Jepsen, Karl J; Hu, Bin; Tommasini, Steven M; Courtland, Hayden-William; Price, Christopher; Cordova, Matthew; Nadeau, Joseph H

2009-01-01

114

Factors affecting levels of genetic diversity in natural populations.  

PubMed

Genetic variability is the clay of evolution, providing the base material on which adaptation and speciation depend. It is often assumed that most interspecific differences in variability are due primarily to population size effects, with bottlenecked populations carrying less variability than those of stable size. However, we show that population bottlenecks are unlikely to be the only factor, even in classic case studies such as the northern elephant seal and the cheetah, where genetic polymorphism is virtually absent. Instead, we suggest that the low levels of variability observed in endangered populations are more likely to result from a combination of publication biases, which tend to inflate the level of variability which is considered 'normal', and inbreeding effects, which may hasten loss of variability due to drift. To account for species with large population sizes but low variability we advance three hypotheses. First, it is known that certain metapopulation structures can result in effective population sizes far below the census size. Second, there is increasing evidence that heterozygous sites mutate more frequently than equivalent homozygous sites, plausibly because mismatch repair between homologous chromosomes during meiosis provides extra opportunities to mutate. Such a mechanism would undermine the simple relationship between heterozygosity and effective population size. Third, the fact that related species that differ greatly in variability implies that large amounts of variability can be gained or lost rapidly. We argue that such cases are best explained by rapid loss through a genome-wide selective sweep, and suggest a mechanism by which this could come about, based on forced changes to a control gene inducing coevolution in the genes it controls. Our model, based on meiotic drive in mammals, but easily extended to other systems, would tend to facilitate population isolation by generating molecular incompatabilities. Circumstances can even be envisioned in which the process could provide intrinsic impetus to speciation. PMID:9533122

Amos, W; Harwood, J

1998-02-28

115

Genetic and Biochemical Alterations in Non-Small Cell Lung Cancer  

PubMed Central

Despite significant advances in the detection and treatment of lung cancer, it causes the highest number of cancer-related mortality. Recent advances in the detection of genetic alterations in patient samples along with physiologically relevant animal models has yielded a new understanding of the molecular etiology of lung cancer. This has facilitated the development of potent and specific targeted therapies, based on the genetic and biochemical alterations present in the tumor, especially non-small-cell lung cancer (NSCLC). It is now clear that heterogeneous cell signaling pathways are disrupted to promote NSCLC, including mutations in critical growth regulatory proteins (K-Ras, EGFR, B-RAF, MEK-1, HER2, MET, EML-4-ALK, KIF5B-RET, and NKX2.1) and inactivation of growth inhibitory pathways (TP53, PTEN, p16, and LKB-1). How these pathways differ between smokers and non-smokers is also important for clinical treatment strategies and development of targeted therapies. This paper describes these molecular targets in NSCLC, and describes the biological significance of each mutation and their potential to act as a therapeutic target. PMID:22928112

Johnson, Jackie L.; Pillai, Smitha; Chellappan, Srikumar P.

2012-01-01

116

Micronucleus test and observation of nuclear alterations in erythrocytes of Nile tilapia exposed to waters affected by refinery effluent  

Microsoft Academic Search

Micronuclei and nuclear alterations tests were performed on erythrocytes of Oreochromis niloticus (Perciformes, Cichlidae) in order to evaluate the water quality from Paraíba do Sul river, in an area affected by effluents from an oil shale processing plant, located in the city of São José dos Campos, Brazil-SP. Water samples were collected on 2004 May and August (dry season) and

Tatiana da Silva Souza; Carmem S. Fontanetti

2006-01-01

117

Forest Stand Characteristics Altered by Restoration Affect Western Bluebird Habitat Quality  

Microsoft Academic Search

Forest managers are setting Ponderosa pine (Pinus pon- derosa) forests in the southwestern United States on a tra- jectory toward a restored ecosystem by reducing tree densities and managing with prescribed fire. The process of restoration dramatically alters forest stands, and the ef- fects of these changes on wildlife remain unclear. Our research evaluated which aspects of habitat alteration from

Catherine S. Wightman; Stephen S. Germaine

2006-01-01

118

Altered Groundwater Inflow Affects Biogeochemical Patterns in Iron Rich and Acidic Sediments  

NASA Astrophysics Data System (ADS)

Sediments of acidic mining lakes are characterized by steep geochemical gradients. Typically, anoxic and moderately acidic (pH 5) groundwater high in ferrous iron and sulfate passes the sediment (10-20 cm) and the pH drops to values as low as 2.8 in the lake water. In the sediment, bacterial iron reduction predominates; sulfate reduction is viable only at a pH of >5. The uppermost sediment is oxic, ferrous iron is oxidized and precipitates. We tested the hypothesis, that the inflow of moderately acidic (pH 5), anoxic groundwater increases the retention of ferrous iron as sulfide or carbonate in the sediment of an acidic mining lake by altering pore water chemistry and elevating the sediment pH. In a laboratory column experiment, lake sediment was percolated with groundwater of different iron and sulfate concentrations (15 and 10 mmol/l vs. 1 and 1 mmol/l) and flow rates (0, 5 and 20 mm/d). Effects on sediment and pore water chemistry were estimated by sampling the percolate, solid phase and pore water. The effect of different treatments in the first 6 weeks of incubation at 10 °C was low. The outflow remained low in pH and acidity production predominated (4.7-31.4 mol m-2~a-1). High Fe and sulfate concentrations in the outflow indicated reductive dissolution of iron hydroxosulfate minerals. The addition of DOC (25 mg/l) to the percolate and a temperature of 20 °C initiated sulfate reduction (0.3-6.6 mol H+ eq. m-2~a-1) after 60-80 days and increased the pH in the outflow of columns with fast flow rates (20 mm/d) to ~5. Higher pH accelerated schwertmannite transformation into goethite by a factor of >2 but also iron release from the sediment, especially in treatments receiving low concentrations of iron and sulfate. In those treatments the induced groundwater flow remobilised substantial quantities of iron (1.2-20.5 mol m-2~a-1) and sulfate (8.7-20 mol m-2~a-1), making up >50 % of the total load in the outflow. Contrarily, in the treatments receiving dump impacted groundwater, a remarkable amount of ferrous iron was retained (up to 40.5 mol m-2~a-1). The study demonstrates that changes in groundwater inflow will affect geochemical gradients and biogeochemical processes in iron rich and acidic sediments.

Knorr, K.; Blodau, C.

2005-12-01

119

Genetic modification of lignin concentration affects fitness of perennial herbaceous plants  

Microsoft Academic Search

Populations of four perennial herbaceous species that were genetically modified for altered lignin content (or associated\\u000a forage digestibility) by conventional plant breeding were evaluated for two agricultural fitness traits, plant survival and\\u000a plant biomass, in three Northcentral USA environments for more than 4 years. Reduced lignin concentration or increased digestibility\\u000a resulted in increased winter mortality in two of four species

M. D. Casler; D. R. Buxton; K. P. Vogel

2002-01-01

120

Genetic alterations in quadruple malignancies of a patient with multiple sclerosis: their role in malignancy development and response to therapy  

PubMed Central

Multiple cancers represent 2.42% of all human cancers and are mainly double or triple cancers. Many possible causes of multiple malignancies have been reported such as genetic alterations, exposure to anti-cancer chemotherapy, radiotherapy, immunosuppressive therapy and reduced immunologic response. We report a female patient with multiple sclerosis and quadruple cancers of different embryological origin. Patient was diagnosed with stage III (T3, N1a, MO) medullary thyroid carcinoma (MTC), multicentric micropapillary thyroid carcinoma, scapular and lumbar melanomas (Clark II, Breslow II), and lobular invasive breast carcinoma (T1a, NO, MO). All tumors present in our patient except micropapillary thyroid carcinomas were investigated for gene alterations known to have a key role in cancer promotion and progression. Tumor samples were screened for the p16 alterations (loss of heterozygosity and homozygous deletions), loss of heterozygosity of PTEN, p53 alterations (mutational status and loss of heterozygosity) and mutational status of RET, HRAS and KRAS. Each type of tumor investigated had specific pattern of analyzed genetic alterations. The most prominent genetic changes were mutual alterations in PTEN and p53 tumor suppressors present in breast cancer and two melanomas. These co-alterations could be crucial for promoting development of multiple malignancies. Moreover the insertion in 4th codon of HRAS gene was common for all tumor types investigated. It represents frameshift mutation introducing stop codon at position 5 which prevents synthesis of a full-length protein. Since the inactivated RAS enhances sensitivity to tamoxifen and radiotherapy this genetic alteration could be considered as a good prognostic factor for this patient. PMID:24817989

Milosevic, Zorica; Tanic, Nikola; Bankovic, Jasna; Stankovic, Tijana; Buta, Marko; Lavrnic, Dragana; Milovanovic, Zorka; Pupic, Gordana; Stojkovic, Sonja; Milinkovic, Vedrana; Ito, Yasuhiro; Dzodic, Radan

2014-01-01

121

Comparative genomic hybridization reveals population-based genetic alterations in hepatoblastomas  

PubMed Central

Hepatoblastoma is a malignant paediatric liver tumour. In order to approach the genetic background of this malignancy we have screened a panel of eighteen cases from Europe and Japan for chromosomal imbalances using comparative genomic hybridization (CGH). The most frequent losses included chromosomal regions 13q21–q22 (28%) and 9p22-pter (22%), while the most frequent gains occurred on 2q23–q24 (33%), 20q (28%) and 1q24–q25 (28%). A significant difference in CGH alterations between the tumours from patients of Caucasian and Japanese was revealed where loss of 13q was found only in the Japanese samples. In conclusion, the findings indicate several candidate regions for suppressor genes and oncogenes potentially involved in the hepatoblastomas of different ethnic origin. © 2000 Cancer Research Campaign PMID:10993649

Gray, S G; Kytölä, S; Matsunaga, T; Larsson, C; Ekström, T J

2000-01-01

122

Human genetics. The genetics of Mexico recapitulates Native American substructure and affects biomedical traits.  

PubMed

Mexico harbors great cultural and ethnic diversity, yet fine-scale patterns of human genome-wide variation from this region remain largely uncharacterized. We studied genomic variation within Mexico from over 1000 individuals representing 20 indigenous and 11 mestizo populations. We found striking genetic stratification among indigenous populations within Mexico at varying degrees of geographic isolation. Some groups were as differentiated as Europeans are from East Asians. Pre-Columbian genetic substructure is recapitulated in the indigenous ancestry of admixed mestizo individuals across the country. Furthermore, two independently phenotyped cohorts of Mexicans and Mexican Americans showed a significant association between subcontinental ancestry and lung function. Thus, accounting for fine-scale ancestry patterns is critical for medical and population genetic studies within Mexico, in Mexican-descent populations, and likely in many other populations worldwide. PMID:24926019

Moreno-Estrada, Andrés; Gignoux, Christopher R; Fernández-López, Juan Carlos; Zakharia, Fouad; Sikora, Martin; Contreras, Alejandra V; Acuña-Alonzo, Victor; Sandoval, Karla; Eng, Celeste; Romero-Hidalgo, Sandra; Ortiz-Tello, Patricia; Robles, Victoria; Kenny, Eimear E; Nuño-Arana, Ismael; Barquera-Lozano, Rodrigo; Macín-Pérez, Gastón; Granados-Arriola, Julio; Huntsman, Scott; Galanter, Joshua M; Via, Marc; Ford, Jean G; Chapela, Rocío; Rodriguez-Cintron, William; Rodríguez-Santana, Jose R; Romieu, Isabelle; Sienra-Monge, Juan José; del Rio Navarro, Blanca; London, Stephanie J; Ruiz-Linares, Andrés; Garcia-Herrera, Rodrigo; Estrada, Karol; Hidalgo-Miranda, Alfredo; Jimenez-Sanchez, Gerardo; Carnevale, Alessandra; Soberón, Xavier; Canizales-Quinteros, Samuel; Rangel-Villalobos, Héctor; Silva-Zolezzi, Irma; Burchard, Esteban Gonzalez; Bustamante, Carlos D

2014-06-13

123

Genetic Disruption of Both Tryptophan Hydroxylase Genes Dramatically Reduces Serotonin and Affects  

E-print Network

Behavior in Models Sensitive to Antidepressants Katerina V. Savelieva*, Shulei Zhao. , Vladimir M. Behavioral alterations in assays with predictive validity for antidepressants were among the very few and Affects Behavior in Models Sensitive to Antidepressants. PLoS ONE 3(10): e3301. doi:10.1371/journal

Cummings, Molly E.

124

Genetical and comparative genomics of Brassica under altered Ca supply identifies Arabidopsis Ca-transporter orthologs.  

PubMed

Although Ca transport in plants is highly complex, the overexpression of vacuolar Ca(2+) transporters in crops is a promising new technology to improve dietary Ca supplies through biofortification. Here, we sought to identify novel targets for increasing plant Ca accumulation using genetical and comparative genomics. Expression quantitative trait locus (eQTL) mapping to 1895 cis- and 8015 trans-loci were identified in shoots of an inbred mapping population of Brassica rapa (IMB211 × R500); 23 cis- and 948 trans-eQTLs responded specifically to altered Ca supply. eQTLs were screened for functional significance using a large database of shoot Ca concentration phenotypes of Arabidopsis thaliana. From 31 Arabidopsis gene identifiers tagged to robust shoot Ca concentration phenotypes, 21 mapped to 27 B. rapa eQTLs, including orthologs of the Ca(2+) transporters At-CAX1 and At-ACA8. Two of three independent missense mutants of BraA.cax1a, isolated previously by targeting induced local lesions in genomes, have allele-specific shoot Ca concentration phenotypes compared with their segregating wild types. BraA.CAX1a is a promising target for altering the Ca composition of Brassica, consistent with prior knowledge from Arabidopsis. We conclude that multiple-environment eQTL analysis of complex crop genomes combined with comparative genomics is a powerful technique for novel gene identification/prioritization. PMID:25082855

Graham, Neil S; Hammond, John P; Lysenko, Artem; Mayes, Sean; O Lochlainn, Seosamh; Blasco, Bego; Bowen, Helen C; Rawlings, Chris J; Rios, Juan J; Welham, Susan; Carion, Pierre W C; Dupuy, Lionel X; King, Graham J; White, Philip J; Broadley, Martin R

2014-07-01

125

The experience of altered states of consciousness in shamanic ritual: the role of pre-existing beliefs and affective factors.  

PubMed

Much attention has been paid recently to the role of anomalous experiences in the aetiology of certain types of psychopathology, e.g. in the formation of delusions. We examine, instead, the top-down influence of pre-existing beliefs and affective factors in shaping an individual's characterisation of anomalous sensory experiences. Specifically we investigated the effects of paranormal beliefs and alexithymia in determining the intensity and quality of an altered state of consciousness (ASC). Fifty five participants took part in a sweat lodge ceremony, a traditional shamanic ritual which was unfamiliar to them. Participants reported significant alterations in their state of consciousness, quantified using the 'APZ' questionnaire, a standardized measure of ASC experience. Participants endorsing paranormal beliefs compatible with shamanic mythology, and those showing difficulty identifying feelings scored higher on positive dimensions of ASC experience. Our findings demonstrate that variation in an individual's characterisation of anomalous experiences is nuanced by pre-existing beliefs and affective factors. PMID:20558090

Polito, Vince; Langdon, Robyn; Brown, Jac

2010-12-01

126

ISOLATION AND GENETIC CHARACTERIZATION OF A MUTATION AFFECTING RIBOSOMAL RESISTANCE TO CYCLOHEXIMIDE  

E-print Network

TO CYCLOHEXIMIDE IN TETRAHYMENA MANUEL ARES, JR.l AND PETER J. BRUNS2 Section of Botany, Genetics and Development 24,1978 ABSTRACT A dominant mutation at a new locus affecting resistance to cycloheximide has been% recombination. Mini- mal lethal doses of cycloheximide for the four possible combinations of the wild

Ares Jr., Manny

127

Genetic and Pathogenic Variation in Phytophthora cactorum Affecting Fruit and Nut Crops in California  

Microsoft Academic Search

Bhat, R. G., Colowit, P. M., Tai, T. H., Aradhya, M. K., and Browne, G. T. 2006. Genetic and pathogenic variation in Phytophthora cactorum affecting fruit and nut crops in California. Plant Dis. 90:161-169. Isolates of Phytophthora cactorum and 15 other species of Phytophthora were characterized according to their genomic DNA, pathogenicity, and sensitivity to mefenoxam. Amplified frag- ment length

R. G. Bhat; P. M. Colowit; T. H. Tai; M. K. Aradhya; G. T. Browne

2006-01-01

128

Genetic linkage analysis of bipolar affective disorder in an Old Order Amish pedigree  

Microsoft Academic Search

We have used genetic linkage analysis in an effort to identify a gene responsible for bipolar affective disorder (BAD) in an Old Order Amish pedigree. The initial study of this pedigree showed strong evidence for linkage of the chromosome 11p15 markers HRAS1 and the insulin gene (INS) to BAD, whereas a second report found no evidence for linkage. We have

Adam Law; Charles W. Richard; Robert W. Cottingham; G. Mark Lathrop; David R. Cox; Richard M. Myers

1992-01-01

129

Affective Influences on Risk Perceptions of, and Attitudes Toward, Genetically Modified Food  

Microsoft Academic Search

Much has been written about risk perceptions and public understanding of genetically modified (GM) food, yet little if any of the academic writings on this topic take into account the role of feelings or affect in these processes. Here, the available literature on the topic of GM food is explored in order to highlight findings consistent with the notion that

Ellen Townsend

2006-01-01

130

Psychosocial and cultural factors affecting the perceived riskof genetically modified food: an overview of the literature  

Microsoft Academic Search

The rapid globalization of the world economy has increased the need for an astute understanding of cultural differences in perceptions, values, and ways of thinking about new food technologies. In this paper, we describe how socio-psychological and cultural factors may affect public perceptions of the riskof genetically modified (GM) food. We present psychological, sociological, and anthropological research on riskperception as

Melissa L. Finucane; Joan L. Holup

131

Brief Genetics Report Variation in the Calpain-10 Gene Affects Blood Glucose  

E-print Network

--tissues that play the key roles in con- trolling glucose homeostasis. Our data also suggest that variationBrief Genetics Report Variation in the Calpain-10 Gene Affects Blood Glucose Levels in the British resistance, and individuals with the G/G-genotype had significantly higher fasting plasma glucose and 2-h

Cox, Nancy J.

132

Comparative evolutionary genetics of spontaneous mutations affecting fitness in rhabditid nematodes  

E-print Network

Comparative evolutionary genetics of spontaneous mutations affecting fitness in rhabditid nematodes-wide rate of mutation and the effects of new mutations on fitness, but the degree to which genomic variation in the rate of decay of fitness because of new mutations between strains and between species

Lynch, Michael

133

Oxytocin and Vasopressin Are Dysregulated in Williams Syndrome, a Genetic Disorder Affecting Social Behavior  

E-print Network

Oxytocin and Vasopressin Are Dysregulated in Williams Syndrome, a Genetic Disorder Affecting Social with a gregarious personality, strong drive to approach strangers, difficult peer interactions, and attraction of OT and AVP in WS and controls at baseline, and at multiple timepoints following a positive emotional

Bellugi, Ursula

134

Delineation of Behavioral Phenotypes in Genetic Syndromes: Characteristics of Autism Spectrum Disorder, Affect and Hyperactivity  

ERIC Educational Resources Information Center

We investigated autism spectrum disorder (ASD) symptomatology, hyperactivity and affect in seven genetic syndromes; Angelman (AS; n = 104), Cri du Chat (CdCS; 58), Cornelia de Lange (CdLS; 101), Fragile X (FXS; 191), Prader-Willi (PWS; 189), Smith-Magenis (SMS; 42) and Lowe (LS; 56) syndromes (age range 4-51). ASD symptomatology was heightened in…

Oliver, Chris; Berg, Katy; Moss, Jo; Arron, Kate; Burbidge, Cheryl

2011-01-01

135

Copyright 2000 by the Genetics Society of America Deficiency Mapping of Quantitative Trait Loci Affecting Longevity  

E-print Network

Affecting Longevity in Drosophila melanogaster Elena G. Pasyukova,*, Cristina Vieira*,1 and Trudy F. C lines derived from the Oregon and 2b strains of Drosophila melanogaster. Two life span QTL were eachCopyright © 2000 by the Genetics Society of America Deficiency Mapping of Quantitative Trait Loci

Mackay, Trudy F.C.

136

Intracolonial genetic variation affects reproductive skew and colony productivity during colony foundation in a parthenogenetic termite  

PubMed Central

Background In insect societies, intracolonial genetic variation is predicted to affect both colony efficiency and reproductive skew. However, because the effects of genetic variation on these two colony characteristics have been tested independently, it remains unclear whether they are affected by genetic variation independently or in a related manner. Here we test the effect of genetic variation on colony efficiency and reproductive skew in a rhinotermitid termite, Reticulitermes speratus, a species in which female-female pairs can facultatively found colonies. We established colonies using two types of female-female pairs: colonies founded by sisters (i.e., sister-pair colonies) and those founded by females from different colonies (i.e., unrelated-pair colonies). Colony growth and reproductive skew were then compared between the two types of incipient colonies. Results At 15 months after colony foundation, unrelated-pair colonies were larger than sister-pair colonies, although the caste ratio between workers and nymphs, which were alternatively differentiated from young larvae, did not differ significantly. Microsatellite DNA analyses of both founders and their parthenogenetically produced offspring indicated that, in both sister-pair and unrelated-pair colonies, there was no significant skew in the production of eggs, larvae, workers and soldiers. Nymph production, however, was significantly more skewed in the sister-pair colonies than in unrelated-pair colonies. Because nymphs can develop into winged adults (alates) or nymphoid reproductives, they have a higher chance of direct reproduction than workers in this species. Conclusions Our results support the idea that higher genetic variation among colony members could provide an increase in colony productivity, as shown in hymenopteran social insects. Moreover, this study suggests that low genetic variation (high relatedness) between founding females increases reproductive skew via one female preferentially channeling her relatives along the reproductive track. This study thus demonstrated that, in social insects, intracolonial genetic variation can simultaneously affect both colony efficiency and reproductive skew. PMID:25123355

2014-01-01

137

Genetic possibilities for altering sunflower oil quality to obtain novel oils.  

PubMed

The sunflower is one of the four most important oilseed crops in the world, and the nutritional quality of its edible oil ranks among the best vegetable oils in cultivation. Typically up to 90% of the fatty acids in conventional sunflower oil are unsaturated, namely oleic (C 18:1, 16%-19%) and linoleic (C 18:2, 68%-72%) fatty acids. Palmitic (C 16:0, 6%), stearic (C 18:0, 5%), and minor amounts of myristic (C 14:0), myristoleic (C 14:1), palmitoleic (C 16:1), arachidic (C 20:0), behenic (C 22:0), and other fatty acids account for the remaining 10%. Advances in modern genetics, most importantly induced mutations, have altered the fatty acid composition of sunflower oil to a significant extent. Treating sunflower seeds with gamma- and X-rays has produced mutants with 25%-30% palmitic acid. Sunflower seed treatment with X-rays has also resulted in mutants having 30% palmitoleic acid, while treatments with mutagenic sodium azide have produced seeds containing 35% stearic acid. The most important mutations have been obtained by treatment with dimethyl sulfate, which produced genotypes with more than 90% oleic acid. Mutants have also been obtained that have a high linoleic acid content (>80%) by treating seeds with X-rays and ethyl methanesulfonate. Of the vitamin E family of compounds, sunflower oil is known to predominantly contain alpha-tocopherol (>90%). Spontaneous mutations controlled by recessive genes have been discovered that significantly alter tocopherol forms and levels. The genes in question are tph(1) (50% alpha- and 50% beta-tocopherol), tph(2) (0%-5% alpha- and 95%-100% gamma-tocopherol), and tph(1)tph(2) (8%-40% alpha-, 0%-25% beta-, 25%-84% gamma-, and 8%-50% delta-tocopherol). The existence of (mutant) genes for increased levels of individual fatty acids and for different forms and levels of tocopherol enables the development of sunflower hybrids with different oil quality. The greatest progress has been made in developing high-oleic hybrids (>90% oleic acid). There has been considerable work done recently on the development of high-oleic hybrids with altered tocopherol levels, the oil of which will have 10-20 times greater oxidative stability than that of conventional sunflower oil. While sunflower breeders work on developing hybrids with altered oil quality, medical scientists in general and nutritionists in particular will determine the parameters for the use of these novel types of oil that can improve human nutrition and be used in the prevention of cardiovascular diseases. PMID:18418432

Skori?, Dragan; Joci?, Sinisa; Sakac, Zvonimir; Leci?, Nada

2008-04-01

138

Autism spectrum disorders: perceptions of genetic etiology and recurrence risk among Taiwanese parents of affected children.  

PubMed

In Taiwan, autism spectrum disorders (ASDs) are an emerging public health concern. The ongoing scientific progress for understanding the genetic etiology of ASD makes it increasingly important to examine how parents of children with ASD perceive the causes and recurrence risk of having another child with ASD. These perceptions may influence their family planning, attitudes toward genetic services, and willingness to take their children for ASD genetic testing. However, previous studies addressing this issue were conducted primarily in Western countries. As culture might shape an individual's views of genetic/genomic disorders, this first-of-its-kind study examined the perceptions of the genetic etiology for ASD and the recurrence risk among Taiwanese parents of children affected with ASD. In-depth, semi-structured interviews were conducted among 39 parents having at least one child with ASD. Although the majority of participants believed that ASD has a genetic link, less than half perceived genetic factors as the cause of their own child's ASD. Moreover, most participants articulated their recurrence risk incorrectly. Some parents were concerned about their doctors' limited genomic competencies. To provide parents with better education, counseling, and support for making reproductive decisions, ASD-related genomic education among Taiwanese physicians is needed. PMID:25267333

Chen, L S; Li, C; Wang, C H; Amuta, A; Li, M; Huang, T Y; Dhar, S U; Talwar, D; Jung, E

2014-09-30

139

Ramaswamy Govindan, M.D., Talks About Novel Genetic Alterations Found in the TCGA Analysis of Lung Cancer at AACR 2014  

Cancer.gov

Home News and Events Multimedia Library Videos Novel Genetic Alterations Found in the TCGA Analysis of Lung Cancer Ramaswamy Govindan, M.D., Talks About Novel Genetic Alterations Found in the TCGA Analysis of Lung Cancer at AACR 2014 You will need

140

Multiple nutritional requirements of lactobacilli: genetic lesions affecting amino acid biosynthetic pathways.  

PubMed Central

Genetic lesions responsible for amino acid requirements in several species of multiple auxotrophic lactobacilli were investigated. Systematic attempts were made to isolate mutants that could grow in the absence of each of the amino acids required by the parental strains of Lactobacillus plantarum, L. casei, L. helveticus, and L. acidophilus. After treatment with appropriate mutagens, such mutants could be obtained with respect to many but not all required amino acids. Successful isolation of mutants for a given amino acid means that a minor genetic lesion reparable by single-step mutations affects its biosynthesis; a failure to isolate mutants suggests the involvement of more extensive lesions. Analysis of these results as well as the specific requirements exhibited by the parental strains revealed certain regularities; some of the biosynthetic pathways for individual amino acids were virtually unaffected by more extensive lesions in at least species tested, whereas others were affected by more extensive lesions in at least some species. Both the number and the kind of pathways affected by extensive lesions differed appreciably among different species. Furthermore, the growth response of the parental strains to some putative amino acid precursors revealed a clear correlation between the extent of genetic lesions and the occurrence and location of a genetic block(s) for a given pathway. These findings are discussed in relation to the phylogeny, ecology, and evolution of lactic acid bacteria. PMID:6793557

Morishita, T; Deguchi, Y; Yajima, M; Sakurai, T; Yura, T

1981-01-01

141

Alterations in membrane cholesterol that affect structure and function of caveolae.  

PubMed

Most of the available methods for modifying caveolae structure and function depend on altering the cholesterol content of caveolae. The most important aspect of each method is to ensure the reagents are working in the cells that are being studied. The idiosyncrasies of each method are such that they cannot be universally applied without carefully optimizing the conditions. When used correctly, these methods are accepted as a specific way to perturb the structure and function of caveolae. PMID:12078489

Smart, Eric J; Anderson, Richard G W

2002-01-01

142

Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure.  

PubMed

Overexpression of the Gossypium hirsutum sucrose synthase (SuSy) gene under the control of 2 promoters was examined in hybrid poplar (Populus alba x grandidentata). Analysis of RNA transcript abundance, enzyme activity, cell wall composition, and soluble carbohydrates revealed significant changes in the transgenic lines. All lines showed significantly increased SuSy enzyme activity in developing xylem. This activity manifested in altered secondary cell wall cellulose content per dry weight in all lines, with increases of 2% to 6% over control levels, without influencing plant growth. The elevated concentration of cellulose was associated with an increase in cell wall crystallinity but did not alter secondary wall microfibril angle. This finding suggests that the observed increase in crystallinity is a function of altered carbon partitioning to cellulose biosynthesis rather than the result of tension wood formation. Furthermore, the augmented deposition of cellulose in the transgenic lines resulted in thicker xylem secondary cell wall and consequently improved wood density. These findings clearly implicate SuSy as a key regulator of sink strength in poplar trees and demonstrate the tight association of SuSy with cellulose synthesis and secondary wall formation. PMID:19625620

Coleman, Heather D; Yan, Jimmy; Mansfield, Shawn D

2009-08-01

143

Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure  

PubMed Central

Overexpression of the Gossypium hirsutum sucrose synthase (SuSy) gene under the control of 2 promoters was examined in hybrid poplar (Populus alba × grandidentata). Analysis of RNA transcript abundance, enzyme activity, cell wall composition, and soluble carbohydrates revealed significant changes in the transgenic lines. All lines showed significantly increased SuSy enzyme activity in developing xylem. This activity manifested in altered secondary cell wall cellulose content per dry weight in all lines, with increases of 2% to 6% over control levels, without influencing plant growth. The elevated concentration of cellulose was associated with an increase in cell wall crystallinity but did not alter secondary wall microfibril angle. This finding suggests that the observed increase in crystallinity is a function of altered carbon partitioning to cellulose biosynthesis rather than the result of tension wood formation. Furthermore, the augmented deposition of cellulose in the transgenic lines resulted in thicker xylem secondary cell wall and consequently improved wood density. These findings clearly implicate SuSy as a key regulator of sink strength in poplar trees and demonstrate the tight association of SuSy with cellulose synthesis and secondary wall formation. PMID:19625620

Coleman, Heather D.; Yan, Jimmy; Mansfield, Shawn D.

2009-01-01

144

Preschool-Aged Children with Iron Deficiency Anemia Show Altered Affect and Behavior1,2  

PubMed Central

This study compared social looking and response to novelty in preschool-aged children (47–68 mo) with or without iron deficiency anemia (IDA). Iron status of the participants from a low-income community in New Delhi, India, was based on venous hemoglobin, mean corpuscular volume, and red cell distribution width. Children’s social looking toward adults, affect, and wary or hesitant behavior in response to novelty were assessed in a semistructured paradigm during an in-home play observation. Affect and behavior were compared as a function of iron status: IDA (n = 74) vs. nonanemic (n = 164). Compared with nonanemic preschoolers, preschoolers with IDA displayed less social looking toward their mothers, moved close to their mothers more quickly, and were slower to display positive affect and touch novel toys for the first time. These results indicate that IDA in the preschool period has affective and behavioral effects similar to those reported for IDA in infancy. PMID:17311960

Lozoff, Betsy; Corapci, Feyza; Burden, Matthew J.; Kaciroti, Niko; Angulo-Barroso, Rosa; Sazawal, Sunil; Black, Maureen

2012-01-01

145

Dioecy, more than monoecy, affects plant spatial genetic structure: the case study of Ficus  

PubMed Central

In this analysis, we attempt to understand how monoecy and dioecy drive spatial genetic structure (SGS) in plant populations. For this purpose, plants of the genus Ficus were used as a comparative model due to their particular characteristics, including high species diversity, variation in life histories, and sexual systems. One of the main issues we assessed is whether dioecious fig tree populations are more spatially genetically structured than monoecious populations. Using the Sp statistic, which allows for quantitative comparisons among different studies, we compared the extent of SGS between monoecious and dioecious Ficus species. To broaden our conclusions we used published data on an additional 27 monoecious and dioecious plant species. Furthermore, genetic diversity analyses were performed for two monoecious Ficus species using 12 microsatellite markers in order to strengthen our conclusions about SGS. Our results show that dioecy, more than monoecy, significantly contributes to SGS in plant populations. On average, the estimate of Sp was six times higher for dioecious Ficus species than monoecious Ficus species and it was two times higher in dioecious than monoecious plant species. Considering these results, we emphasize that the long-distance pollen dispersal mechanism in monoecious Ficus species seems to be the dominant factor in determining weak spatial genetic structure, high levels of genetic diversity, and lack of inbreeding. Although Ficus constitute a model species to study SGS, a more general comparison encompassing a wider range of plants is required in order to better understand how sexual systems affect genetic structure. PMID:24223285

Nazareno, Alison G; Alzate-Marin, Ana L; Pereira, Rodrigo Augusto S

2013-01-01

146

Withdrawal of dietary phytoestrogens in adult male rats affects hypothalamic regulation of food intake, induces obesity and alters glucose metabolism.  

PubMed

The absence of phytoestrogens in the diet during pregnancy has been reported to result in obesity later in adulthood. We investigated whether phytoestrogen withdrawal in adult life could alter the hypothalamic signals that regulate food intake and affect body weight and glucose homeostasis. Male Wistar rats fed from conception to adulthood with a high phytoestrogen diet were submitted to phytoestrogen withdrawal by feeding a low phytoestrogen diet, or a high phytoestrogen-high fat diet. Withdrawal of dietary phytoestrogens increased body weight, adiposity and energy intake through an orexigenic hypothalamic response characterized by upregulation of AGRP and downregulation of POMC. This was associated with elevated leptin and T4, reduced TSH, testosterone and estradiol, and diminished hypothalamic ER? expression, concomitant with alterations in glucose tolerance. Removing dietary phytoestrogens caused manifestations of obesity and diabetes that were more pronounced than those induced by the high phytoestrogen-high fat diet intake. PMID:25486512

Andreoli, María Florencia; Stoker, Cora; Rossetti, María Florencia; Alzamendi, Ana; Castrogiovanni, Daniel; Luque, Enrique H; Ramos, Jorge Guillermo

2015-02-01

147

Morphological alterations in the tympanic membrane affected by tympanosclerosis: ultrastructural study.  

PubMed

The ultrastructure of tympanoslerotic tissue, surgically excised from patients, has been studied with particular reference to the morphological changes of the connective tissue components and mineralization. Detailed analysis revealed the combination of degenerative and fibroplastic alterations, especially in the circular fibrous layer of the thickened lamina propria. In the biological material in this study the authors recognized different stages of calcium plaque development with discrete, moderate, and severe degree of mineralization. Extracellular matrix vesicles, with or without calcareous deposits, released by degenerating fibroblasts were prominent. In these biopsies no distinct morphological features of an inflammatory reaction were seen. PMID:24134073

Tukaj, Cecylia; Kuczkowski, Jerzy; Sakowicz-Burkiewicz, Monika; Gulida, Gra?yna; Tretiakow, Dymitry; Mionskowski, Tomasz; Pawe?czyk, Tadeusz

2014-04-01

148

Detection of complex genetic alterations in human glioblastoma multiforme using comparative genomic hybridization  

SciTech Connect

The aim of the present study was to detect complex genetic alterations in human glioblastoma multiforme (GBM) by comparative genomic in situ hybridization (CGH). Of the 24 GBM that were examined, increased fluorescence intensities indicating chromosomal polysomy of chromosome 7 and gene amplification at chromosome 7p were found in 42% of the tumors. In addition, signal enhancement of chromosome 19 was present in 29% and at 12q13-15 in 21% of the tumors. We also detected reduction of fluorescence intensities indicating gross deletions on chromosomes 10 (58%), 9p (46%), and 13 (29%). There was a close correlation of CGH results when compared with Southern analysis of the EGFR gene localized on chromosome 7 and loss of heterozygosity detection of chromosome 9 and 10 by microsatellite PCR. A close correlation was also observed between copy number changes of chromosome 7 and deletions of chromosome 10. Amplification of chromosome 12q and deletions of chromosomes 9p and 13 seemed to be complementary in the tumors investigated in the present study. 44 refs., 3 figs., 1 tab.

Schlegel, J.; Stumm, G. [Universitaet Marburg (Germany); Scherthan, H.; Arens, N. [Universitaet Kaiderlautern (Germany)] [and others

1996-01-01

149

[Advancement of Phenotype Transformation of Cancer-associated Fibroblasts: ?from Genetic Alterations to Epigenetic Modification].  

PubMed

In the field of human cancer research, even though the vast majority attentions were paid to tumor cells as "the seeds", the roles of tumor microenvironments as "the soil" are gradually explored in recent years. As a dominant compartment of tumor microenvironments, cancer-associated fibroblasts (CAFs) were discovered to correlated with tumorigenesis, tumor progression and prognosis. And the exploration of the mechanisms of CAF phenotype transformation would conducive to the further understand of the CAFs function in human cancers. As we known that CAFs have four main origins, including epithelial cells, endothelial cells, mesenchymal stem cells (MSCs) and local mesenchymal cells. However, researchers found that all these origins finally conduct similiar phenotypes from intrinsic to extrinsic ones. Thus, what and how a mechanism can conduct the phenotype transformation of CAFs with different origins? Two viewpoints are proposed to try to answer the quetsion, involving genetic alterations and epigenetic modifications. This review will systematically summarize the advancement of mechanisms of CAF phenotype transformations in the aspect of genentic and epigenetic modifications. PMID:25676407

Chen, Dali; Che, Guowei

2015-02-20

150

Genetic and epigenetic alterations of steroidogenic factor?1 in ovarian tumors.  

PubMed

Steroidogenic factor-1 (SF?1), the product of the NR5A1 gene, is an essential transcription factor that is known to regulate steroidogenesis in ovarian epithelia, including the synthesis of progesterone, a suppressor of ovarian cancer. Expression of the SF?1 protein, a potential ovarian tumor suppressor, has been demonstrated in normal OSE cells, but is lost in most ovarian tumors and ovarian tumor cell lines. We examined loss of heterozygosity (LOH) and promoter methylation as potential mechanisms that may explain the loss of SF?1 protein in ovarian tumor tissues. Genotyping of three NR5A1 SNPs in matched tumor/normal tissues identified LOH in 16/36 (44%) of the ovarian tumors successfully analyzed, and somatic mutations (gain of allele) in 10% of the tumors. Furthermore, a methylation-sensitive restriction enzyme method was used to demonstrate statistically significant (p<0.0001) increase in the frequency of NR5A1 gene methylation in ovarian tumors (36/46; 78%) versus normal ovaries (1/11; 9%). These data suggest that the SF?1 encoding gene exhibits frequent genetic (LOH/base substitution) and epigenetic (methylation) somatic alterations in ovarian tumors. These data also present novel molecular mechanisms that may explain the loss of SF?1 protein in ovarian tumors, and its potential role in ovarian carcinogenesis. PMID:23291911

Miller, Sarah; Bhasin, Nobel; Urrego, Heather; Moroz, Krzysztof; Rowan, Brian G; Ramayya, Meera S; Makridakis, Nick M

2013-02-01

151

Defects in Tendon, Ligament, and Enthesis in Response to Genetic Alterations in Key Proteoglycans and Glycoproteins: A Review  

PubMed Central

This review summarizes the genetic alterations and knockdown approaches published in the literature to assess the role of key proteoglycans and glycoproteins in the structural development, function, and repair of tendon, ligament, and enthesis. The information was collected from (i) genetically altered mice, (ii) in vitro knockdown studies, (iii) genetic variants predisposition to injury, and (iv) human genetic diseases. The genes reviewed are for small leucine-rich proteoglycans (lumican, fibromodulin, biglycan, decorin, and asporin); dermatan sulfate epimerase (Dse) that alters structure of glycosaminoglycan and hence the function of small leucine-rich proteoglycans by converting glucuronic to iduronic acid; matricellular proteins (thrombospondin 2, secreted phosphoprotein 1 (Spp1), secreted protein acidic and rich in cysteine (Sparc), periostin, and tenascin X) including human tenascin C variants; and others, such as tenomodulin, leukocyte cell derived chemotaxin 1 (chondromodulin-I, ChM-I), CD44 antigen (Cd44), lubricin (Prg4), and aggrecan degrading gene, a disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin type 1 motif, 5 (Adamts5). Understanding these genes represents drug targets for disrupting pathological mechanisms that lead to tendinopathy, ligamentopathy, enthesopathy, enthesitis and tendon/ligament injury, that is, osteoarthritis and ankylosing spondylitis. PMID:24324885

Juneja, Subhash C.

2013-01-01

152

Altered Emotional Interference Processing in Affective and Cognitive-Control Brain Circuitry in Major  

E-print Network

affective responses, potentially linked to deficits in dorsolateral prefrontal cortex function; or 2 increased activity in right dorsolateral prefrontal cortex (Brodmann areas 46/9) when ignoring fear stimuli dorsolateral prefrontal cortex on posterror trials), but the control group did show them. Conclusions

153

Early Experiences Can Alter Gene Expression and Affect Long-Term Development. Working Paper #10  

ERIC Educational Resources Information Center

New scientific research shows that environmental influences can actually affect whether and how genes are expressed. Thus, the old ideas that genes are "set in stone" or that they alone determine development have been disproven. In fact, scientists have discovered that early experiences can determine how genes are turned on and off and even…

National Scientific Council on the Developing Child, 2010

2010-01-01

154

Factors affecting Agrobacterium tumefaciens -mediated genetic transformation of Lycium barbarum L  

Microsoft Academic Search

Summary  Using the system for genetic transformation and transgenic plant regeneration via somatic embryogenesis (SE) of Lycium barbarum established in this laboratory, this study reports the optimization of the factors affecting the efficiency of transformation,\\u000a including pre-culture period, leaf explant source, use of acetosyringone, strains and density of Agrobacterium, and temperature of co-cultivation. The optimized transformation protocol for L. barbarum included

Zhong Hu; Yi-Rui Wu; Wei Li; Huan-Huan Gao

2006-01-01

155

Individual differences in cognition, affect, and performance: Behavioral, neuroimaging, and molecular genetic approaches  

PubMed Central

We describe the use of behavioral, neuroimaging, and genetic methods to examine individual differences in cognition and affect, guided by three criteria: (1) relevance to human performance in work and everyday settings; (2) interactions between working memory, decision-making, and affective processing; and (3) examination of individual differences. The results of behavioral, functional MRI (fMRI), event-related potential (ERP), and molecular genetic studies show that analyses at the group level often mask important findings associated with sub-groups of individuals. Dopaminergic/noradrenergic genes influencing prefrontal cortex activity contribute to inter-individual variation in working memory and decision behavior, including performance in complex simulations of military decision-making. The interactive influences of individual differences in anxiety, sensation seeking, and boredom susceptibility on evaluative decision-making can be systematically described using ERP and fMRI methods. We conclude that a multi-modal neuroergonomic approach to examining brain function (using both neuroimaging and molecular genetics) can be usefully applied to understanding individual differences in cognition and affect and has implications for human performance at work. PMID:21569853

Parasuraman, Raja; Jiang, Yang

2012-01-01

156

Clinical and Immunopathologic Alterations in Rhesus Macaques Affected with Globoid Cell Leukodystrophy  

PubMed Central

Globoid cell leukodystrophy, or Krabbe’s disease, is a severe disorder of the central and peripheral nervous system caused by the absence of galactocerebrosidase (GALC) activity. Herein, we describe the clinical, neuropathological, histochemical, and immunohistological features observed in rhesus macaques affected with Krabbe’s disease. Clinical signs included pronounced muscle tremors of head and limbs, difficulty ambulating, ataxia, hypermetria, proprioceptive deficits, and respiratory abnormalities. Histopathologically, all animals presented with evidence of demyelination in the peripheral and central nervous systems and accumulation of mononuclear and multinuclear globoid cells in the cerebral and cerebellar white matter associated with severe gliosis. Using immunohistochemistry and multi-label confocal microscopy, it was determined that globoid cells were CD68+, HAM56+, LN5+, CD163+, IBA-1+, and Glut-5+, suggesting that both peripheral blood-derived monocytes/macrophages and resident parenchymal microglia gave rise to globoid cells. Interestingly, many of the globoid cells and parenchymal microglia with a more ameboid morphology expressed HLA-DR, indicating immune activation. Increased expression of iNOS, TNF-?, and IL-1? were observed in the affected white matter, colocalizing with globoid cells, activated microglia, and astrocytes. Cytokine mRNA levels revealed markedly increased gene expression of CCL2 in the brain of affected macaques. CCL2-expressing cells were detected throughout the affected white matter, colocalizing with GFAP+ cells and astrocytes. Collectively, these data suggest that dysregulation of monocyte/macrophage/microglia and up-regulation of certain cytokines may contribute to the pathogenesis of Krabbe’s disease. PMID:18165263

Borda, Juan T.; Alvarez, Xavier; Mohan, Mahesh; Ratterree, Marion S.; Phillippi-Falkenstein, Kathrine; Lackner, Andrew A.; Bunnell, Bruce A.

2008-01-01

157

The Neurosteroids DHEA and DHEAS May Influence Cognitive Performance by Altering Affective State  

Microsoft Academic Search

The effects of Dehydroepiandrosterone (DHEA) and its sulfate ester, Dehydroepiandrosterone sulfate (DHEAS) on performance in various cognitive and affective tasks were investigated. Ovariectomized rats (n = 48) received 0.0, 3.0, or 7.5 mg\\/kg s.c. of DHEA or DHEAS suspended in 10% ethanol\\/sesame oil v\\/v. For the cognitive tasks (water maze, Y-maze, passive avoidance, and object recognition), subjects were injected after

Cheryl A Frye; Elizabeth H Lacey

1999-01-01

158

A large-scale genetic screen for mutants with altered salicylic acid accumulation in Arabidopsis  

PubMed Central

Salicylic acid (SA) is a key defense signal molecule against biotrophic and hemibiotrophic pathogens in plants, but how SA is synthesized in plant cells still remains elusive. Identification of new components involved in pathogen-induced SA accumulation would help address this question. To this end, we performed a large-scale genetic screen for mutants with altered SA accumulation during pathogen infection in Arabidopsis using a bacterial biosensor Acinetobacter sp. ADPWH_lux-based SA quantification method. A total of 35,000 M2 plants in the npr1-3 mutant background have been individually analyzed for the bacterial pathogen Pseudomonas syringae pv. maculicola (Psm) ES4326-induced SA accumulation. Among the mutants isolated, 19 had SA levels lower than npr1 (sln) and two exhibited increased SA accumulation in npr1 (isn). Complementation tests revealed that seven of the sln mutants are new alleles of eds5/sid1, two are sid2/eds16 alleles, one is allelic to pad4, and the remaining seven sln and two isn mutants are new non-allelic SA accumulation mutants. Interestingly, a large group of mutants (in the npr1-3 background), in which Psm ES4326-induced SA levels were similar to those in the wild-type Columbia plants, were identified, suggesting that the signaling network fine-tuning pathogen-induced SA accumulation is complex. We further characterized the sln1 single mutant and found that Psm ES4326-induced defense responses were compromised in this mutant. These defense response defects could be rescued by exogenous SA, suggesting that SLN1 functions upstream of SA. The sln1 mutation was mapped to a region on the north arm of chromosome I, which contains no known genes regulating pathogen-induced SA accumulation, indicating that SLN1 likely encodes a new regulator of SA biosynthesis. Thus, the new sln and isn mutants identified in this genetic screen are valuable for dissecting the molecular mechanisms underlying pathogen-induced SA accumulation in plants. PMID:25610446

Ding, Yezhang; Shaholli, Danjela; Mou, Zhonglin

2014-01-01

159

Examination of Genetic Alterations in Preneoplastic and Neoplastic Lesions of the Lung From Uranium Miners. Final Technical Report  

SciTech Connect

Lung cancer is one of the leading causes of death in the United States and in Western Europe. The incidence of lung cancer in developing countries is rising as their cigarette smoking habits increase. The objectives of this proposed research are to analyze genetic alterations associated with the development and progression on non-small cell lung carcinoma (MSCLC). Endpoints that may be realized from this proposed research are: (1) detection of early genetic and/or cellular alterations which ultimately could lead to diagnostic modalities for the early detection of lung cancer; and (2) detection of novel tumor suppressor genes on chromosome 9p. This proposal will analyze both tumor specimens and sputum samples.

Anderson, Marshall

2000-07-12

160

THE ESTROGENIC AND ANTIANDROGENIC PESTICIDE METHOXYCHLOR ALTERS THE REPRODUCTIVE TRACT AND BEHAVIOR WITHOUT AFFECTING PITUITARY SIZE OR LH AND PROLACTIN SECRETION IN MALE RATS  

EPA Science Inventory

The estrogenic and antiandrogenic pesticide methoxychlor alters the reproductive tract and behavior without affecting pituitary size or LH and prolactin secretion in male rats. Gray LE Jr, Ostby J, Cooper RL, Kelce WR. Endocrinology Branch, United States Environment...

161

Alterations in homocysteine metabolism among alcohol dependent patients--clinical, pathobiochemical and genetic aspects.  

PubMed

Addiction research focusing on homocysteine metabolism and its association with aspects of alcohol dependence has revealed important findings. Recent literature on this topic has been taken into account for the review provided. Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme in the homocysteine metabolism. Plasma homocysteine levels are influenced by the single-nucleotide polymorphism (SNP) MTHFR C677T. Besides genetic factors, environmental factors have an impact on homocysteine plasma levels too. Thus, chronic alcohol intake is associated with elevated homocysteine plasma concentrations. Elevation of plasma homocysteine concentration is considered as a predictor for the occurrence of alcohol withdrawal seizures and--as homocysteine is a cardiovascular risk factor--might contribute to the higher risk for myocardial infarction among alcohol dependent patients. Homocysteine acts as an N-methyl-D-aspartate (NMDA) receptor agonist and has excitotoxic effects. Furthermore, it has been demonstrated that homocysteine has neurotoxic effects especially on dopaminergic neurons. As the rewarding effects of alcohol are mediated by the dopaminergic system, a homocysteine-dependent impairment of the reward system possibly leads to an altered drinking behaviour according to the deficit hypothesis of addiction. Homocysteine is involved in the metabolism of methyl groups and DNA-methylation plays a role in regulation of gene expression. Therefore it has been suggested that homocysteine is an important epigenetic factor. It remains to be determined whether alcohol dependent patients benefit from homocysteine lowering strategies, e.g., via supplementation of folate, vitamin B6 and B12. In this respect it is not clear yet, if a supplementation therapy can reduce the risk for the occurrence of alcohol withdrawal seizures. PMID:19630705

Lutz, Ulrich C

2008-01-01

162

Aniracetam Does Not Alter Cognitive and Affective Behavior in Adult C57BL/6J Mice  

PubMed Central

There is a growing community of individuals who self-administer the nootropic aniracetam for its purported cognitive enhancing effects. Aniracetam is believed to be therapeutically useful for enhancing cognition, alleviating anxiety, and treating various neurodegenerative conditions. Physiologically, aniracetam enhances both glutamatergic neurotransmission and long-term potentiation. Previous studies of aniracetam have demonstrated the cognition-restoring effects of acute administration in different models of disease. No previous studies have explored the effects of aniracetam in healthy subjects. We investigated whether daily 50 mg/kg oral administration improves cognitive performance in naïve C57BL/6J mice in a variety of aspects of cognitive behavior. We measured spatial learning in the Morris water maze test; associative learning in the fear conditioning test; motor learning in the accelerating rotarod test; and odor discrimination. We also measured locomotion in the open field test, anxiety through the elevated plus maze test and by measuring time in the center of the open field test. We measured repetitive behavior through the marble burying test. We detected no significant differences between the naive, placebo, and experimental groups across all measures. Despite several studies demonstrating efficacy in impaired subjects, our findings suggest that aniracetam does not alter behavior in normal healthy mice. This study is timely in light of the growing community of healthy humans self-administering nootropic drugs. PMID:25099639

Elston, Thomas W.; Pandian, Ashvini; Smith, Gregory D.; Holley, Andrew J.; Gao, Nanjing; Lugo, Joaquin N.

2014-01-01

163

Specific Genomic Regions Are Differentially Affected by Copy Number Alterations across Distinct Cancer Types, in Aggregated Cytogenetic Data  

PubMed Central

Background Regional genomic copy number alterations (CNA) are observed in the vast majority of cancers. Besides specifically targeting well-known, canonical oncogenes, CNAs may also play more subtle roles in terms of modulating genetic potential and broad gene expression patterns of developing tumors. Any significant differences in the overall CNA patterns between different cancer types may thus point towards specific biological mechanisms acting in those cancers. In addition, differences among CNA profiles may prove valuable for cancer classifications beyond existing annotation systems. Principal Findings We have analyzed molecular-cytogenetic data from 25579 tumors samples, which were classified into 160 cancer types according to the International Classification of Disease (ICD) coding system. When correcting for differences in the overall CNA frequencies between cancer types, related cancers were often found to cluster together according to similarities in their CNA profiles. Based on a randomization approach, distance measures from the cluster dendrograms were used to identify those specific genomic regions that contributed significantly to this signal. This approach identified 43 non-neutral genomic regions whose propensity for the occurrence of copy number alterations varied with the type of cancer at hand. Only a subset of these identified loci overlapped with previously implied, highly recurrent (hot-spot) cytogenetic imbalance regions. Conclusions Thus, for many genomic regions, a simple null-hypothesis of independence between cancer type and relative copy number alteration frequency can be rejected. Since a subset of these regions display relatively low overall CNA frequencies, they may point towards second-tier genomic targets that are adaptively relevant but not necessarily essential for cancer development. PMID:22937079

von Mering, Christian; Baudis, Michael

2012-01-01

164

Delineation of behavioral phenotypes in genetic syndromes: characteristics of autism spectrum disorder, affect and hyperactivity.  

PubMed

We investigated autism spectrum disorder (ASD) symptomatology, hyperactivity and affect in seven genetic syndromes; Angelman (AS; n = 104), Cri du Chat (CdCS; 58), Cornelia de Lange (CdLS; 101), Fragile X (FXS; 191), Prader-Willi (PWS; 189), Smith-Magenis (SMS; 42) and Lowe (LS; 56) syndromes (age range 4-51). ASD symptomatology was heightened in CdLS and FXS. High levels of impulsivity were seen in SMS, AS, CdCS, FXS and adults with CdLS. Negative affect was prominent in adults with CdLS, while positive affect was prominent in adults with AS and FXS. Heightened levels of overactivity and impulsivity were identified in FXS, AS and SMS while low levels were identified in PWS. These findings confirm and extend previously reported behavioral phenotypes. PMID:21080217

Oliver, Chris; Berg, Katy; Moss, Jo; Arron, Kate; Burbidge, Cheryl

2011-08-01

165

Targeted next-generation sequencing of head and neck squamous cell carcinoma identifies novel genetic alterations in HPV+ and HPV- tumors  

PubMed Central

Background Human papillomavirus positive (HPV+) head and neck squamous cell carcinoma (HNSCC) is an emerging disease, representing a distinct clinical and epidemiological entity. Understanding the genetic basis of this specific subtype of cancer could allow therapeutic targeting of affected pathways for a stratified medicine approach. Methods Twenty HPV+ and 20 HPV- laser-capture microdissected oropharyngeal carcinomas were used for paired-end sequencing of hybrid-captured DNA, targeting 3,230 exons in 182 genes often mutated in cancer. Copy number alteration (CNA) profiling, Sequenom MassArray sequencing and immunohistochemistry were used to further validate findings. Results HPV+ and HPV- oropharyngeal carcinomas cluster into two distinct subgroups. TP53 mutations are detected in 100% of HPV negative cases and abrogation of the G1/S checkpoint by CDKN2A/B deletion and/or CCND1 amplification occurs in the majority of HPV- tumors. Conclusion These findings strongly support a causal role for HPV, acting via p53 and RB pathway inhibition, in the pathogenesis of a subset of oropharyngeal cancers and suggest that studies of CDK inhibitors in HPV- disease may be warranted. Mutation and copy number alteration of PI3 kinase (PI3K) pathway components appears particularly prevalent in HPV+ tumors and assessment of these alterations may aid in the interpretation of current clinical trials of PI3K, AKT, and mTOR inhibitors in HNSCC. PMID:23718828

2013-01-01

166

Atmospheric deposition may affect northern hardwood forest composition by altering soil nutrient supply.  

PubMed

In the northeastern United States, the input of reactive nitrogen (N) via atmospheric deposition has increased rapidly since the onset of the industrial revolution. During the same period of time, acid precipitation and forest harvest have removed substantial quantities of base cations from soil. Because of the dominance of base-poor soils and the low rates of atmospheric base cation deposition, soils throughout the northeastern United States may be increasingly rich in N but poor in calcium (Ca). We studied the consequences of a change in soil N and Ca availability on forest composition by transplanting seedlings of four tree species into replicate plots in the understory and in canopy gaps amended with N and Ca in factorial combination. In this paper, we report on the growth and survivorship of seedlings over a four-year period. Relative to control plots, fertilization with N increased red maple growth by an average of 39% whereas fertilization with Ca decreased survivorship in the understory by 41%. In sugar maple, fertilization with Ca increased growth by 232% and 46% in the forest understory and in canopy gaps, respectively, and significantly increased high light survivorship. Fertilization with N decreased white pine survivorship by 69% in the understory whereas high Ca availability significantly increased survivorship. Fertilization with N or Ca alone reduced red oak growth but had no effect on survivorship. The results of this study suggest that historical losses of soil Ca and the continuing effects of atmospheric-N deposition on N availability are likely to alter the composition of northeastern North American forests because of the positive effects of N enrichment on the growth of red maple and the negative effects of Ca loss on the growth and survivorship of sugar maple and white pine. PMID:17974332

Zaccherio, Meredith T; Finzi, Adrien C

2007-10-01

167

Altering the Ad5 Packaging Domain Affects the Maturation of the Ad Particles  

PubMed Central

We have previously described a new family of mutant adenoviruses carrying different combinations of attB/attP sequences from bacteriophage PhiC31 flanking the Ad5 packaging domain. These novel helper viruses have a significantly delayed viral life cycle and a severe packaging impairment, regardless of the presence of PhiC31 recombinase. Their infectious viral titers are significantly lower (100–1000 fold) than those of control adenovirus at 36 hours post-infection, but allow for efficient packaging of helper-dependent adenovirus. In the present work, we have analyzed which steps of the adenovirus life cycle are altered in attB-helper adenoviruses and investigated whether these viruses can provide the necessary viral proteins in trans. The entry of attB-adenoviral genomes into the cell nucleus early at early timepoints post-infection was not impaired and viral protein expression levels were found to be similar to those of control adenovirus. However, electron microscopy and capsid protein composition analyses revealed that attB-adenoviruses remain at an intermediate state of maturation 36 hours post-infection in comparison to control adenovirus which were fully mature and infective at this time point. Therefore, an additional 20–24 hours were found to be required for the appearance of mature attB-adenovirus. Interestingly, attB-adenovirus assembly and infectivity was restored by inserting a second packaging signal close to the right-end ITR, thus discarding the possibility that the attB-adenovirus genome was retained in a nuclear compartment deleterious for virus assembly. The present study may have substantive implications for helper-dependent adenovirus technology since helper attB-adenovirus allows for preferential packaging of helper-dependent adenovirus genomes. PMID:21611162

Alba, Raul; Cots, Dan; Ostapchuk, Philomena; Bosch, Assumpcio; Hearing, Patrick; Chillon, Miguel

2011-01-01

168

Nuclear DNA content affects the productivity of conifer forests by altering hydraulic architecture  

NASA Astrophysics Data System (ADS)

Predictions of future global climate rely on feedbacks between terrestrial vegetation and the global carbon cycle, but the exact mechanisms underlying this relationship are still being discussed. One of the key knowledge gaps lies on the scaling of cellular processes to the ecosystem level. Here we examine whether an under-explored plant trait, inter-specific variation in the bulk amount of DNA in unreplicated somatic cells (2C DNA content), can explain inter-specific variation in the maximum productivity of conifer forests. We expected 2C DNA content to be negatively related to conifer productivity because: 1) it is positively correlated with cell volume (which, in turn, potentially affects structural features such as leaf mass area, a strong predictor of photosynthetic capacity); 2) it is positively correlated with stomatal size (with larger stomata leading to lower overall stomatal conductance and, by extension, lower CO2 uptake); and 3) larger genome sizes may reduce P availability in RNA (which has been hypothesized to slow growth). We present the results of regression and independent contrasts in different monospecific forests encompassing a 52º latitudinal gradient, each being dominated by 1 of 35 different conifer species. Contrary to expectations, we observed a positive correlation between genome size and maximum Gross Primary Productivity (R2 = 0.47) and also between genome size maximum tree height (R2 = 0.27). This correlation was apparently driven by the effects of genome size on stem hydraulics, since 2C DNA was positively correlated with wood density (R2 = 0.40) and also with resistance to cavitation (P50, R2 = 0.28). That is, increased genome sizes have a positive effect on the productivity of conifer forests by affecting the vascular tissues to increase their capacity for water transport. Our results shed a new light on the evolution of the vascular system of conifer forests and how they affect ecosystem productivity, and indicate the potential to further explore the trait of genome size for understanding global patterns of forest productivity.

Alday, Josu; Resco de Dios, Víctor

2014-05-01

169

Non-conscious visual cues related to affect and action alter perception of effort and endurance performance  

PubMed Central

The psychobiological model of endurance performance proposes that endurance performance is determined by a decision-making process based on perception of effort and potential motivation. Recent research has reported that effort-based decision-making during cognitive tasks can be altered by non-conscious visual cues relating to affect and action. The effects of these non-conscious visual cues on effort and performance during physical tasks are however unknown. We report two experiments investigating the effects of subliminal priming with visual cues related to affect and action on perception of effort and endurance performance. In Experiment 1 thirteen individuals were subliminally primed with happy or sad faces as they cycled to exhaustion in a counterbalanced and randomized crossover design. A paired t-test (happy vs. sad faces) revealed that individuals cycled significantly longer (178 s, p = 0.04) when subliminally primed with happy faces. A 2 × 5 (condition × iso-time) ANOVA also revealed a significant main effect of condition on rating of perceived exertion (RPE) during the time to exhaustion (TTE) test with lower RPE when subjects were subliminally primed with happy faces (p = 0.04). In Experiment 2, a single-subject randomization tests design found that subliminal priming with action words facilitated a significantly longer TTE (399 s, p = 0.04) in comparison to inaction words. Like Experiment 1, this greater TTE was accompanied by a significantly lower RPE (p = 0.03). These experiments are the first to show that subliminal visual cues relating to affect and action can alter perception of effort and endurance performance. Non-conscious visual cues may therefore influence the effort-based decision-making process that is proposed to determine endurance performance. Accordingly, the findings raise notable implications for individuals who may encounter such visual cues during endurance competitions, training, or health related exercise. PMID:25566014

Blanchfield, Anthony; Hardy, James; Marcora, Samuele

2014-01-01

170

Motion and emotion: depression reduces psychomotor performance and alters affective movements in caregiving interactions  

PubMed Central

Background: Impaired social functioning is a well-established feature of depression. Evidence to date suggests that disrupted processing of emotional cues may constitute part of this impairment. Beyond processing of emotional cues, fluent social interactions require that people physically move in synchronized, contingent ways. Disruptions to physical movements are a diagnostic feature of depression (psychomotor disturbance) but have not previously been assessed in the context of social functioning. Here we investigated the impact of psychomotor disturbance in depression on physical responsive behavior in both an experimental and observational setting. Methods: In Experiment 1, we examined motor disturbance in depression in response to salient emotional sounds, using a laboratory-based effortful motor task. In Experiment 2, we explored whether psychomotor disturbance was apparent in real-life social interactions. Using mother-infant interactions as a model affective social situation, we compared physical behaviors of mothers with and without postnatal depression (PND). Results: We found impairments in precise, controlled psychomotor performance in adults with depression relative to healthy adults (Experiment 1). Despite this disruption, all adults showed enhanced performance following exposure to highly salient emotional cues (infant cries). Examining real-life interactions, we found differences in physical movements, namely reduced affective touching, in mothers with PND responding to their infants, compared to healthy mothers (Experiment 2). Conclusions: Together, these findings suggest that psychomotor disturbance may be an important feature of depression that can impair social functioning. Future work investigating whether improvements in physical movement in depression could have a positive impact on social interactions would be of much interest. PMID:25741255

Young, Katherine S.; Parsons, Christine E.; Stein, Alan; Kringelbach, Morten L.

2015-01-01

171

Relationships between protein and mineral during enamel development in normal and genetically altered mice  

PubMed Central

The purpose of this study was to quantify and compare the amounts of volatiles (mostly protein) and mineral present in developing incisor enamel in normal mice and in those genetically engineered for absence of intact enamelin, ameloblastin, matrix metalloproteinase 20 (MMP20) or kallikrein-related peptidase 4 (KLK4). Data indicated that all mice showed peaks in the gross weight of volatiles and a similar weight of mineral at locations on incisors normally associated with early maturation. Thereafter, the content of volatiles on normal incisors declined rapidly by as much as 62%, but not by 100%, over 2 mm, accompanied by increases of ~threefold in mineral weights. Enamelin heterozygous mice (lower incisors) showed a decrease in volatile content across the maturation stage, yet mineral failed to increase significantly. Mmp20 null mice showed no significant loss of volatiles from maturing enamel, yet the amount of mineral increased. Klk4 null mice showed normal mineral acquisition up to early maturation, but the input of new volatiles in mid to late maturation caused the final mineralization to slow below normal levels. These results suggest that it is not only the amount of protein but also the nature or type of protein or fragments present in the local crystallite environment that affects their volumetric expansion as they mature. PMID:22243238

Smith, Charles E.; Hu, Yuanyuan; Richardson, Amelia S.; Bartlett, John D.; Hu, Jan C-C.; Simmer, James P.

2012-01-01

172

Recent developments in statistical methods for detecting genetic loci affecting phenotypic variability  

PubMed Central

A number of recent works have introduced statistical methods for detecting genetic loci that affect phenotypic variability, which we refer to as variability-controlling quantitative trait loci (vQTL). These are genetic variants whose allelic state predicts how much phenotype values will vary about their expected means. Such loci are of great potential interest in both human and non-human genetic studies, one reason being that a detected vQTL could represent a previously undetected interaction with other genes or environmental factors. The simultaneous publication of these new methods in different journals has in many cases precluded opportunity for comparison. We survey some of these methods, the respective trade-offs they imply, and the connections between them. The methods fall into three main groups: classical non-parametric, fully parametric, and semi-parametric two-stage approximations. Choosing between alternatives involves balancing the need for robustness, flexibility, and speed. For each method, we identify important assumptions and limitations, including those of practical importance, such as their scope for including covariates and random effects. We show in simulations that both parametric methods and their semi-parametric approximations can give elevated false positive rates when they ignore mean-variance relationships intrinsic to the data generation process. We conclude that choice of method depends on the trait distribution, the need to include non-genetic covariates, and the population size and structure, coupled with a critical evaluation of how these fit with the assumptions of the statistical model. PMID:22827487

2012-01-01

173

Maternal environment affects the genetic basis of seed dormancy in Arabidopsis thaliana.  

PubMed

The genetic basis of seed dormancy, a key life history trait important for adaptive evolution in plant populations, has yet been studied only using seeds produced under controlled conditions in greenhouse environments. However, dormancy is strongly affected by maternal environmental conditions, and interactions between seed genotype and maternal environment have been reported. Consequently, the genetic basis of dormancy of seeds produced under natural field conditions remains unclear. We examined the effect of maternal environment on the genetic architecture of seed dormancy using a recombinant inbred line (RIL) population derived from a cross between two locally adapted populations of Arabidopsis thaliana from Italy and Sweden. We mapped quantitative trait loci (QTL) for dormancy of seeds produced in the greenhouse and at the native field sites of the parental genotypes. The Italian genotype produced seeds with stronger dormancy at fruit maturation than did the Swedish genotype in all three environments, and the maternal field environments induced higher dormancy levels compared to the greenhouse environment in both genotypes. Across the three maternal environments, a total of nine dormancy QTL were detected, three of which were only detected among seeds matured in the field, and six of which showed significant QTL × maternal environment interactions. One QTL had a large effect on dormancy across all three environments and colocalized with the candidate gene DOG1. Our results demonstrate the importance of studying the genetic basis of putatively adaptive traits under relevant conditions. PMID:25640699

Postma, Froukje M; Ågren, Jon

2015-02-01

174

Altered expression of E-cadherin in hepatocellular carcinoma: correlations with genetic alterations, beta-catenin expression, and clinical features.  

PubMed

E-cadherin is a key cell adhesion protein implicated as a tumor/invasion suppressor in human carcinomas and a binding partner of beta-catenin, which plays a critical role in Wnt signaling and in tumorigenesis. Here we report genetic and expression studies of E-cadherin and beta-catenin in hepatocellular carcinoma (HCC). Immunohistochemical analysis of E-cadherin expression in 37 HCCs and adjacent nontumor tissues revealed important variations among tumor samples, ranging from complete or heterogeneous down-regulation in 35% of cases to marked overexpression in 40% of tumors. Loss of E-cadherin expression was closely associated with loss of heterozygosity (LOH) at the E-cadherin locus and methylation of CpG islands in the promoter region (P <.002), predominantly in hepatitis B virus (HBV)-related tumors (P <.005). No mutation of the E-cadherin gene could be detected in the tumors examined, suggesting the requirement for reversible mechanisms of E-cadherin down-regulation. In most HCCs, including E-cadherin-positive and -negative cases, beta-catenin was strongly expressed at the cell membrane and nuclear accumulation of the protein was correlated with the presence of mutations in the beta-catenin gene itself, but not with E-cadherin loss. At difference with a number of epithelial cancers, vascular invasion was frequently noted in HCCs showing enforced expression of the membranous E-cadherin/beta-catenin complex. In conclusion, these data support the notion that E-cadherin might play diverse and seemingly paradoxic roles in HCC, reflecting specific requirements for tumor growth and spread in the liver environment. PMID:12198663

Wei, Yu; Van Nhieu, Jeanne Tran; Prigent, Sylvie; Srivatanakul, Petcharin; Tiollais, Pierre; Buendia, Marie-Annick

2002-09-01

175

Plant hybrid zones affect biodiversity: Tools for a genetic-based understanding of community structure  

SciTech Connect

Plant hybrid zones are dynamic centers of ecological and evolutionary processes for plants and their associated communities. Studies in the wild and in gardens with synthetic crosses showed that hybrid eucalypts supports the greatest species richness and abundances of insect and fungal taxa. In an updated review of 152 case studies of taxa associated with diverse hybridizing systems, there were 43 (28%) cases of hybrids being more susceptible than their parent species, 7 (5%) resistant, 35 (23%) additive, 35 (23%) dominant, and 32 (21%) showed no response to hybridization. Thus, most taxa respond to hybrids in ways that result in equal or greater abundance, and hybrids tend to accumulate the taxa of their parent species. These studies suggest that genetic-based plant traits affect the distribution of many species and that the variation in hybrids can be used as tools to examine the genetic components of community structure and biodiversity.

Whitham, T.G.; Martinsen, G.D.; Keim, P. [Northern Arizona Univ., Flagstaff, AZ (United States); Floate, K.D. [Agriculture and Agri-Food Canada, Lethbridge, Alberta (Canada); Dungey, H.S. [Univ. of Tasmania, Hobart, Tasmania (Australia)]|[Queensland Forest Research Inst., Gympie, Queensland (Australia); Potts, B.M. [Univ. of Tasmania, Hobart, Tasmania (Australia)

1999-03-01

176

[Clinical and genetic study of a family affected with spinocerebellar ataxia 3 and polycystic kidney disease].  

PubMed

OBJECTIVE To investigate clinical features and genetic mutations of a family affected with spinocerebellar ataxia 3 and polycystic kidney disease. METHODS Polymerase chain reaction and DNA sequencing were employed to analyze exon 10 of the SCA3 gene, in addition with all exons and flanking sequences of PKD1 and PKD2 genes. The clinical features were also carefully analyzed. RESULTS The numbers of CAG repeat in the proband's SCA3 gene were 28/76, with the number of repeats in the mutant allele being in the full range. The sequence of exon 23 of the PKD1 gene was also found to be abnormal. Clinical symptoms of the proband were very serious, which were characterized by obvious ataxia, pyramidal signs, Meige syndrome, depression and high blood pressure. CONCLUSION Hereditary spinocerebellar ataxia 3 and autonomic dominant polycystic kidney disease may co-occur, and genetic testing is the primary means of diagnosis. PMID:25636101

Li, Haijiang; Zhang, Linming; Chen, Tao; Yang, Dan; Zhu, Yangfan; Wang, Lihong

2015-02-10

177

Evidence that disease-induced population decline changes genetic structure and alters dispersal patterns in the Tasmanian devil  

Microsoft Academic Search

Infectious disease has been shown to be a major cause of population declines in wild animals. However, there remains little empirical evidence on the genetic consequences of disease-mediated population declines, or how such perturbations might affect demographic processes such as dispersal. Devil facial tumour disease (DFTD) has resulted in the rapid decline of the Tasmanian devil, Sarcophilus harrisii, and threatens

S Lachish; K J Miller; A Storfer; A W Goldizen; M E Jones

2011-01-01

178

How does altered precipitation and annual grass invasion affect plant N uptake in a native semi-arid shrub community?  

NASA Astrophysics Data System (ADS)

Climate change is expected to alter precipitation patterns, which will change the timing and amount of plant resources. Precipitation patterns determine water and nitrogen (N) availability, because water stimulates microbial N turnover and N transport. In order for plants to utilize water and N, they must coincide with the phenology and meet physiological requirements of the plant. As resource supply shifts, differences in species' ability to acquire resources will affect plant community composition. Semiarid ecosystems, such as shrublands in Southern California, are particularly sensitive to shifts in precipitation because they are severely water limited. This study takes advantage of the altered phenology and resource demands presented by invasive annual grasses in a native semiarid shrubland. The goal is to understand how altered precipitation patterns affect plant N uptake. Rainfall levels were manipulated to 50% and 150% of ambient levels. It is expected that higher rainfall levels promote annual grass invasion because grasses have higher water and N requirements and begin to grow earlier in the season than shrubs. A 15N tracer was added with the first rain event and plant samples were collected regularly to track the movement of N into the plants. Net soil N accumulation was determined using resin bags. Invasive grasses altered the timing and amount of N uptake but amount of rainfall had less effect on N distribution. 15N was detected sooner and at higher level in grasses than shrubs. 24hours after the first rain event 15N was detectable in grasses, 15N accumulated rapidly and peaked 2 months earlier than shrubs. Shrub 15N levels remained at pre-rain event levels for the first 2 months and began to increase at the beginning of spring, peak mid-spring and decline as the shrubs entered summer dormancy. One year later 15N levels in annual grass litter remained high, while 15N levels in shrubs returned to initial background levels as a result of resorption. 15N concentrations are more variable in grasses which could indicate higher plasticity in grass N uptake compared to shrubs. Resin N supports the 15N patterns. Resin N declined more rapidly under grasses and was lower than under shrubs, presumably due to high grass N uptake. Resin N was particularly high under shrubs in wetter conditions indicating that shrubs could not take advantage of high N supply. Together the 15N and resin N patterns indicate that grasses accumulate more N and begin N uptake earlier in the season than shrubs. Although 15N did not differ in response to rainfall, invasion alters the distribution of N in the system. Rain was only manipulated for one growing season; multiple years of altered precipitation may yield significant differences. Early season N uptake by grasses, the low variability in shrub 15N and low shrub 15N in wetter conditions, despite high resin N, indicates that N competition between invasive grasses and native shrubs is weak. If N supply is sufficient for shrub demands, invasive grasses and shrubs could coexist. This study contributes to a broader understanding of how changes in resource supply, plant phenology and functional type interact and respond to climate change.

Mauritz, M.; Lipson, D.; Cleland, E. E.

2012-12-01

179

Seismic properties of rocks affected by hydrothermal alteration: a case study from the Lalor Lake VMS mining camp  

NASA Astrophysics Data System (ADS)

Global demand of base metals, uranium, diamonds, and precious metals has been pushing technological barrier to find and extract minerals at higher depth, which was not feasible in just a few decades ago. Seismic properties of rocks containing and surrounding ore bodies have been useful in characterizing and modeling geologic structures, and mapping high-resolution images of ore bodies. Although seismic surveys and drill hole sonic and density logs are essential for mineral exploration at depth, limited availability of seismic logs to link rock properties of different ore forming geologic structure is a hindrance to seismic interpretations. Volcanogenic Massive Sulphides (VMS) are rich in minerals and of primary interests among geologists and mining industries alike. VMS deposits occur due to focused discharge of metal-enriched fluids associated in the hydrothermal alteration process, and are rich in Zn, Cu, Pb, Ag, Au, etc. Alteration halos surrounding ore deposits can be widespread, and their locations are easier to determine than the deposits within them. Physical rock properties affected by alteration can provide clues on type and potentially size of ore deposits in the surrounding area. In this context, variations in seismic properties of rocks due to hydrothermal alteration near the deposits can help in improving modeling accuracy, and better interpretation of seismic data for economic mineral exploration. While reflection seismic techniques can resolve ore bodies at higher depths than other conventional geophysical techniques, they are relatively expensive both in terms of field data acquisition and post-processing, especially for high-resolution 3D surveys. Acoustic impedance contrasts of ore lenses with their hosting rock environment; geometry, size and spatial location relative to the surface affect their detection with seismic data. Therefore, apriori knowledge of seismic rock properties from drill hole logs and core samples in the potential survey area are essential to determine whether any 2D/3D active survey would be worth conducting. In situ density and velocity logs, and thus, acoustic impedance provide first order control on reflectivity of various lithologies. In this abstract, we analyzed well logs from 12 drill holes geographically located in the northern Manitoba, Canada, in an attempt to characterize lithologies based on their seismic properties. Velocities, density, acoustic impedance and Poisson's ratio of major lithologies were compared among each other. Massive sulphide and Diorite have higher average acoustic impedance than the others. Our quantitative analysis suggests that alteration has considerable effect on overall acoustic impedance of Argillite, Felsic Volcanic and Stringer Sulphide rocks. This can be useful in selecting values of model parameters for seismic wave propagation simulation, which can be used to compare with seismic survey data. In addition, core sample analysis from the same drill holes aided our understanding of mineralization, alteration, and overall composition of different rocks under consideration.

Miah, K.; Bellefleur, G.; Schetselaar, E.

2013-12-01

180

Landscape context affects genetic diversity at a much larger spatial extent than population abundance.  

PubMed

Regional landscape context influences the fate of local populations, yet the spatial extent of this influence (called the "scale of effect") is difficult to predict. Thus, a major problem for conservation management is to understand the factors governing the scale of effect such that landscape structure surrounding a focal area is measured and managed at the biologically relevant spatial scale. One unresolved question is whether and how scale of effect may depend on the population response measured (e.g., abundance vs. presence/absence). If scales of effect differ across population outcomes of a given species, management based on one outcome may compromise another, further complicating conservation decision making. Here we used an individual-based simulation model to investigate how scales of effect of landscapes that vary in the amount and fragmentation of habitat differ among three population responses (local abundance, presence/absence, and genetic diversity). We also explored how the population response measured affects the relative importance of habitat amount and fragmentation in shaping local populations, and how dispersal distance mediates the magnitude and spatial scale of these effects. We found that the spatial scale most strongly influencing local populations depended on the outcome measured and was predicted to be small for abundance, medium-sized for presence/absence, and large for genetic diversity. Increasing spatial scales likely resulted from increasing temporal scales over which outcomes were regulated (with local genetic diversity being regulated over the largest number of generations). Thus, multiple generations of dispersal and gene flow linked local population patterns to regional population size. The effects of habitat amount dominated the effects of fragmentation for all three outcomes. Increased dispersal distance strongly reduced abundance, but not presence/absence or genetic diversity. Our results suggest that managing protected species at spatial scales based on population abundance data may ignore broader landscape effects on population genetic diversity and persistence, lending support to the importance of managing large buffers surrounding areas of conservation concern. PMID:24933807

Jackson, Nathan D; Fahrig, Lenore

2014-04-01

181

Genetic KCa3.1-Deficiency Produces Locomotor Hyperactivity and Alterations in Cerebral Monoamine Levels  

PubMed Central

Background The calmodulin/calcium-activated K+ channel KCa3.1 is expressed in red and white blood cells, epithelia and endothelia, and possibly central and peripheral neurons. However, our knowledge about its contribution to neurological functions and behavior is incomplete. Here, we investigated whether genetic deficiency or pharmacological activation of KCa3.1 change behavior and cerebral monoamine levels in mice. Methodology/Principal Findings In the open field test, KCa3.1-deficiency increased horizontal activity, as KCa3.1?/? mice travelled longer distances (?145% of KCa3.1+/+) and at higher speed (?1.5-fold of KCa3.1+/+). Working memory in the Y-maze was reduced by KCa3.1-deficiency. Motor coordination on the rotarod and neuromuscular functions were unchanged. In KCa3.1?/? mice, HPLC analysis revealed that turn-over rates of serotonin were reduced in frontal cortex, striatum and brain stem, while noradrenalin turn-over rates were increased in the frontal cortex. Dopamine turn-over rates were unaltered. Plasma catecholamine and corticosterone levels were unaltered. Intraperitoneal injections of 10 mg/kg of the KCa3.1/KCa2-activator SKA-31 reduced rearing and turning behavior in KCa3.1+/+ but not in KCa3.1?/? mice, while 30 mg/kg SKA-31 caused strong sedation in 50% of the animals of either genotypes. KCa3.1?/? mice were hyperactive (?+60%) in their home cage and SKA-31-administration reduced nocturnal physical activity in KCa3.1+/+ but not in KCa3.1?/? mice. Conclusions/Significance KCa3.1-deficiency causes locomotor hyperactivity and altered monoamine levels in selected brain regions, suggesting a so far unknown functional link of KCa3.1 channels to behavior and monoaminergic neurotransmission in mice. The tranquilizing effects of low-dose SKA-31 raise the possibility to use KCa3.1/KCa2 channels as novel pharmacological targets for the treatment of neuropsychiatric hyperactivity disorders. PMID:23077667

Sivasaravanaparan, Mithula; Ditzel, Nicholas; Sevelsted-Møller, Linda Maria; Oliván-Viguera, Aida; Rabjerg, Maj; Wulff, Heike; Köhler, Ralf

2012-01-01

182

Gemistocytic astrocytomas: histomorphology, proliferative potential and genetic alterations--a study of 32 cases.  

PubMed

Gemistocytic astrocytomas (GAs) are a distinct variant of astrocytomas, generally classified as WHO grade II, and are associated with an aggressive biological behavior. This study was undertaken to determine the histomorphological spectrum, and correlate these with their proliferative potential and genetic alterations, in order to establish a biological basis for their unfavorable prognosis.A total of 32 GAs diagnosed during an 11-year period (1993-2003) were included in the study. Immunoreactivity for CD3 (T-cells), CD20 (B-cells) and CD68 (macrophages) were evaluated to characterize the perivascular inflammatory infiltrates, while p53, epidermal growth factor receptor (EGFR), cyclin D1 and p27-immunolabeling were studied to analyze the tumor biology.Overall, the mean gemistocytic index in the study was 39.6% (range, 12.2-80.8%), with multinucleation in gemistocytes and mitosis being present in 56.2% and 15.6% respectively. Perivascular mononuclear cell cuffing was seen in 56.2% cases, which was immunopositive for CD3 and CD68 in 14 cases each, with 13 cases being immunopositive for both. Similar type of inflammatory infiltrates was also present within the tumor parenchyma. Proliferation index depicted by MIB-1 LI was low (mean: 3.7%; range: 0.5-10.5%), with 70% cases having LI of <5%. MIB-1 labeling was restricted to the small astrocytic cells, similar to p27 and cyclin D1 immunoreactivity, both of which were present in 71.5% cases. In contrast, p53 protein expression was present in 75% cases, and was strongly positive in both gemistocytes and small cells, denoting neoplastic population. However, EGFR protein expression was consistently negative in all cases. Gemistocytes lack proliferative activity possibly indicating terminal differentiation, while small cells are the proliferating cells and their overall percentage may reflect the biological aggressiveness of these tumors and help to identify GAs of higher grade undergoing malignant progression. Therefore it appears that GAs should not be uniformly graded as grade II but should be subdivided into grades II and III neoplasms based on histological features and MIB-1 LI. The poor prognosis in GAs could be attributed both to the high frequency of p53 mutations and low p27 LI. PMID:16614946

Avninder, Singh; Sharma, Mehar Chand; Deb, Prabal; Mehta, Veer Singh; Karak, Asish Kumar; Mahapatra, Ashok Kumar; Sarkar, Chitra

2006-06-01

183

Delineation of Behavioral Phenotypes in Genetic Syndromes: Characteristics of Autism Spectrum Disorder, Affect and Hyperactivity  

Microsoft Academic Search

We investigated autism spectrum disorder (ASD) symptomatology, hyperactivity and affect in seven genetic syndromes; Angelman\\u000a (AS; n = 104), Cri du Chat (CdCS; 58), Cornelia de Lange (CdLS; 101), Fragile X (FXS; 191), Prader-Willi (PWS; 189), Smith-Magenis\\u000a (SMS; 42) and Lowe (LS; 56) syndromes (age range 4–51). ASD symptomatology was heightened in CdLS and FXS. High levels of\\u000a impulsivity were seen in

Chris Oliver; Katy Berg; Jo Moss; Kate Arron; Cheryl Burbidge

184

NLRP7 affects trophoblast lineage differentiation, binds to overexpressed YY1 and alters CpG methylation  

PubMed Central

Maternal-effect mutations in NLRP7 cause rare biparentally inherited hydatidiform moles (BiHMs), abnormal pregnancies containing hypertrophic vesicular trophoblast but no embryo. BiHM trophoblasts display abnormal DNA methylation patterns affecting maternally methylated germline differentially methylated regions (gDMRs), suggesting that NLRP7 plays an important role in reprogramming imprinted gDMRs. How NLRP7—a component of the CATERPILLAR family of proteins involved in innate immunity and apoptosis—causes these specific DNA methylation and trophoblast defects is unknown. Because rodents lack NLRP7, we used human embryonic stem cells to study its function and demonstrate that NLRP7 interacts with YY1, an important chromatin-binding factor. Reduced NLRP7 levels alter DNA methylation and accelerate trophoblast lineage differentiation. NLRP7 thus appears to function in chromatin reprogramming and DNA methylation in the germline or early embryonic development, functions not previously associated with members of the NLRP family. PMID:24105472

Mahadevan, Sangeetha; Wen, Shu; Wan, Ying-Wooi; Peng, Hsiu-Huei; Otta, Subhendu; Liu, Zhandong; Iacovino, Michelina; Mahen, Elisabeth M.; Kyba, Michael; Sadikovic, Bekim; Van den Veyver, Ignatia B.

2014-01-01

185

Micronucleus test and observation of nuclear alterations in erythrocytes of Nile tilapia exposed to waters affected by refinery effluent.  

PubMed

Micronuclei and nuclear alterations tests were performed on erythrocytes of Oreochromis niloticus (Perciformes, Cichlidae) in order to evaluate the water quality from Paraíba do Sul river, in an area affected by effluents from an oil shale processing plant, located in the city of São José dos Campos, Brazil-SP. Water samples were collected on 2004 May and August (dry season) and on 2004 November and 2005 January (rain season), in three distinct sites, comprising 12 samples. It was possible to detect substances of clastogenic and/or aneugenic potential, as well as cytotoxic substances, chiefly at the point corresponding to the drainage of oil shale plant wastes along the river. The highest incidence of micronuclei and nuclear alterations was detected during May and August, whereas the results obtained in November and January were insignificant. This work shows that the effluent treatment provided by the oil shale plant was not fully efficient to minimize the effect of cytotoxic and mutagenic substances in the test organism surveyed. PMID:16678473

da Silva Souza, Tatiana; Fontanetti, Carmem S

2006-06-16

186

Historical and anthropogenic factors affecting the population genetic structure of Ontario's inland lake populations of Walleye (Sander vitreus).  

PubMed

Populations existing in formerly glaciated areas often display composite historical and contemporary patterns of genetic structure. For Canadian freshwater fishes, population genetic structure is largely reflective of dispersal from glacial refugia and isolation within drainage basins across a range of scales. Enhancement of sport fisheries via hatchery stocking programs and other means has the potential to alter signatures of natural evolutionary processes. Using 11 microsatellite loci genotyped from 2182 individuals, we analyzed the genetic structure of 46 inland lake walleye (Sander vitreus) populations spanning five major drainage basins within the province of Ontario, Canada. Population genetic analyses coupled with genotype assignment allowed us to: 1) characterize broad- and fine-scale genetic structure among Ontario walleye populations; and 2) determine if the observed population divergence is primarily due to natural or historical processes, or recent anthropogenic events. The partitioning of genetic variation revealed higher genetic divergence among lakes than among drainage basins or proposed ancestries-indicative of relatively high isolation among lakes, study-wide. Walleye genotypes were clustered into three major groups, likely reflective of Missourian, Mississippian, and Atlantic glacial refugial ancestry. Despite detectable genetic signatures indicative of anthropogenic influences, province-wide spatial genetic structure remains consistent with the hypothesis of dispersal from distinct glacial refugia and subsequent isolation of lakes within primary drainage basins. Our results provide a novel example of minimal impacts from fishery enhancement to the broad-scale genetic structure of inland fish populations. PMID:23125407

Walter, Ryan P; Cena, Christopher J; Morgan, George E; Heath, Daniel D

2012-01-01

187

Lung Adenocarcinoma of Never Smokers and Smokers Harbor Differential Regions of Genetic Alteration and Exhibit Different Levels of Genomic Instability  

PubMed Central

Recent evidence suggests that the observed clinical distinctions between lung tumors in smokers and never smokers (NS) extend beyond specific gene mutations, such as EGFR, EML4-ALK, and KRAS, some of which have been translated into targeted therapies. However, the molecular alterations identified thus far cannot explain all of the clinical and biological disparities observed in lung tumors of NS and smokers. To this end, we performed an unbiased genome-wide, comparative study to identify novel genomic aberrations that differ between smokers and NS. High resolution whole genome DNA copy number profiling of 69 lung adenocarcinomas from smokers (n?=?39) and NS (n?=?30) revealed both global and regional disparities in the tumor genomes of these two groups. We found that NS lung tumors had a greater proportion of their genomes altered than those of smokers. Moreover, copy number gains on chromosomes 5q, 7p, and 16p occurred more frequently in NS. We validated our findings in two independently generated public datasets. Our findings provide a novel line of evidence distinguishing genetic differences between smoker and NS lung tumors, namely, that the extent of segmental genomic alterations is greater in NS tumors. Collectively, our findings provide evidence that these lung tumors are globally and genetically different, which implies they are likely driven by distinct molecular mechanisms. PMID:22412972

Thu, Kelsie L.; Vucic, Emily A.; Chari, Raj; Zhang, Wei; Lockwood, William W.; English, John C.; Fu, Rong; Wang, Pei; Feng, Ziding; MacAulay, Calum E.; Gazdar, Adi F.; Lam, Stephen; Lam, Wan L.

2012-01-01

188

Knowledge of the Genetic Information Nondiscrimination act among individuals affected by Huntington disease.  

PubMed

The Genetic Information Nondiscrimination Act (GINA) of 2008 was the first US legislation to address genetic discrimination. We sought to assess understanding of GINA among individuals affected by the autosomal dominant condition, Huntington disease (HD). We conducted a cross-sectional survey of individuals with varying risk of HD to assess their familiarity with GINA. As a control, individuals were surveyed about their familiarity with the Health Insurance Portability and Accountability Act (HIPAA). Those who reported familiarity with GINA were asked about their knowledge of specific provisions of the legislation. The survey was offered to 776 participants and completed by 410 (response rate 53%). Respondents across all groups were less familiar with GINA (41% slightly, somewhat, or very familiar) than with HIPAA (65%; p?affected by HD, familiarity with and knowledge of GINA are low. The effectiveness of the legislation may be limited by this lack of knowledge. PMID:23167775

Dorsey, E R; Darwin, K C; Nichols, P E; Kwok, J H; Bennet, C; Rosenthal, L S; Bombard, Y; Shoulson, I; Oster, E

2013-09-01

189

Rare mutations of CACNB2 found in autism spectrum disease-affected families alter calcium channel function.  

PubMed

Autism Spectrum Disorders (ASD) are complex neurodevelopmental diseases clinically defined by dysfunction of social interaction. Dysregulation of cellular calcium homeostasis might be involved in ASD pathogenesis, and genes coding for the L-type calcium channel subunits CaV1.2 (CACNA1C) and CaV?2 (CACNB2) were recently identified as risk loci for psychiatric diseases. Here, we present three rare missense mutations of CACNB2 (G167S, S197F, and F240L) found in ASD-affected families, two of them described here for the first time (G167S and F240L). All these mutations affect highly conserved regions while being absent in a sample of ethnically matched controls. We suggest the mutations to be of physiological relevance since they modulate whole-cell Ba2+ currents through calcium channels when expressed in a recombinant system (HEK-293 cells). Two mutations displayed significantly decelerated time-dependent inactivation as well as increased sensitivity of voltage-dependent inactivation. In contrast, the third mutation (F240L) showed significantly accelerated time-dependent inactivation. By altering the kinetic parameters, the mutations are reminiscent of the CACNA1C mutation causing Timothy Syndrome, a Mendelian disease presenting with ASD. In conclusion, the results of our first-time biophysical characterization of these three rare CACNB2 missense mutations identified in ASD patients support the hypothesis that calcium channel dysfunction may contribute to autism. PMID:24752249

Breitenkamp, Alexandra F S; Matthes, Jan; Nass, Robert Daniel; Sinzig, Judith; Lehmkuhl, Gerd; Nürnberg, Peter; Herzig, Stefan

2014-01-01

190

Alterations in Seed Development Gene Expression Affect Size and Oil Content of Arabidopsis Seeds1[C][W][OPEN  

PubMed Central

Seed endosperm development in Arabidopsis (Arabidopsis thaliana) is under control of the polycomb group complex, which includes Fertilization Independent Endosperm (FIE). The polycomb group complex regulates downstream factors, e.g. Pheres1 (PHE1), by genomic imprinting. In heterozygous fie mutants, an endosperm develops in ovules carrying a maternal fie allele without fertilization, finally leading to abortion. Another endosperm development pathway depends on MINISEED3 (a WRKY10 transcription factor) and HAIKU2 (a leucine-rich repeat kinase). While the role of seed development genes in the embryo and endosperm establishment has been studied in detail, their impact on metabolism and oil accumulation remained unclear. Analysis of oil, protein, and sucrose accumulation in mutants and overexpression plants of the four seed development genes revealed that (1) seeds carrying a maternal fie allele accumulate low oil with an altered composition of triacylglycerol molecular species; (2) homozygous mutant seeds of phe1, mini3, and iku2, which are smaller, accumulate less oil and slightly less protein, and starch, which accumulates early during seed development, remains elevated in mutant seeds; (3) embryo-specific overexpression of FIE, PHE1, and MINI3 has no influence on seed size and weight, nor on oil, protein, or sucrose content; and (4) overexpression of IKU2 results in seeds with increased size and weight, and oil content of overexpressed IKU2 seeds is increased by 35%. Thus, IKU2 overexpression represents a novel strategy for the genetic manipulation of the oil content in seeds. PMID:24014578

Fatihi, Abdelhak; Zbierzak, Anna Maria; Dörmann, Peter

2013-01-01

191

Potential Vulnerability Markers within the Affective Domain in Subjects at Genetic and Clinical High Risk for Schizophrenia  

Microsoft Academic Search

Background: Relative to ample high-risk studies on neurocognitive function, only a few high-risk studies have examined affective functioning components as possible vulnerability markers. In this study, we comprehensively assessed baseline affective functioning in subjects at clinical high risk (CHR) and genetic high risk (GHR) for schizophrenia, and healthy controls (HC), and compared the results to elucidate possible vulnerability markers in

Seung Jae Lee; So Young Yoo; Do-Hyung Kang; Kyung Jin Lee; Tae Hyun Ha; Whee Wee; Ae-Ra Lee; Nam Sick Kim; Jun Soo Kwon

2008-01-01

192

Fire alters patterns of genetic diversity among 3 lizard species in Florida Scrub habitat.  

PubMed

The Florida Sand Skink (Plestiodon reynoldsi), the Florida Scrub Lizard (Sceloporus woodi), and the Six-lined Racerunner (Aspidoscelis sexlineata) occur in the threatened and fire-maintained Florida scrub habitat. Fire may have different consequences to local genetic diversity of these species because they each have different microhabitat preference. We collected tissue samples of each species from 3 sites with different time-since-fire: Florida Sand Skink n = 73, Florida Scrub Lizard n = 70, and Six-lined Racerunner n = 66. We compared the effect of fire on genetic diversity at microsatellite loci for each species. We screened 8 loci for the Florida Sand Skink, 6 loci for the Florida Scrub Lizard, and 6 loci for the Six-lined Racerunner. We also tested 2 potential driving mechanisms for the observed change in genetic diversity, a metapopulation source/sink model and a local demographic model. Genetic diversity varied with fire history, and significant genetic differentiation occurred among sites. The Florida Scrub Lizard had highest genetic variation at more recently burned sites, whereas the Florida Sand Skink and the Six-lined Racerunner had highest genetic variation at less recently burned sites. Habitat preferences of the Florida Sand Skink and the Florida Scrub Lizard may explain their discordant results, and the Six-lined Racerunner may have a more complicated genetic response to fire or is acted on at a different geographic scale than we have investigated. Our results indicate that these species may respond to fire in a more complicated manner than predicted by our metapopulation model or local demographic model. Our results show that the population-level responses in genetic diversity to fire are species-specific mandating conservation management of habitat diversity through a mosaic of burn frequencies. PMID:21622838

Schrey, Aaron W; Ashton, Kyle G; Heath, Stacy; McCoy, Earl D; Mushinsky, Henry R

2011-01-01

193

Genetic analysis of an Indian family with members affected with Waardenburg syndrome and Duchenne muscular dystrophy  

PubMed Central

Purpose Waardenburg syndrome (WS) is characterized by sensorineural hearing loss and pigmentation defects of the eye, skin, and hair. It is caused by mutations in one of the following genes: PAX3 (paired box 3), MITF (microphthalmia-associated transcription factor), EDNRB (endothelin receptor type B), EDN3 (endothelin 3), SNAI2 (snail homolog 2, Drosophila) and SOX10 (SRY-box containing gene 10). Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutations in the DMD gene. The purpose of this study was to identify the genetic causes of WS and DMD in an Indian family with two patients: one affected with WS and DMD, and another one affected with only WS. Methods Blood samples were collected from individuals for genomic DNA isolation. To determine the linkage of this family to the eight known WS loci, microsatellite markers were selected from the candidate regions and used to genotype the family. Exon-specific intronic primers for EDN3 were used to amplify and sequence DNA samples from affected individuals to detect mutations. A mutation in DMD was identified by multiplex PCR and multiplex ligation-dependent probe amplification method using exon-specific probes. Results Pedigree analysis suggested segregation of WS as an autosomal recessive trait in the family. Haplotype analysis suggested linkage of the family to the WS4B (EDN3) locus. DNA sequencing identified a novel missense mutation p.T98M in EDN3. A deletion mutation was identified in DMD. Conclusions This study reports a novel missense mutation in EDN3 and a deletion mutation in DMD in the same Indian family. The present study will be helpful in genetic diagnosis of this family and increases the mutation spectrum of EDN3. PMID:22876130

Kapoor, Saketh; Bindu, Parayil Sankaran; Taly, Arun B.; Sinha, Sanjib; Gayathri, Narayanappa; Rani, S. Vasantha; Chandak, Giriraj Ratan

2012-01-01

194

The diagnosis and management of pre-invasive breast disease: Genetic alterations in pre-invasive lesions  

PubMed Central

The development of modern molecular genetic techniques has allowed breast cancer researchers to clarify the multistep model of breast carcinogenesis. Laser capture microdissection coupled with comparative genomic hybridisation and/or loss-of-heterozygosity methods have confirmed that many pre-invasive lesions of the breast harbour chromosomal abnormalities at loci known to be altered in invasive breast carcinomas. Current data do not provide strong evidence for ductal hyperplasia of usual type as a precursor lesion, although some are monoclonal proliferations; however, atypical hyperplasia and in situ carcinoma appear to be nonobligate precursors. We review current knowledge and the contribution of molecular genetics in the understanding of breast cancer precursors and pre-invasive lesions. PMID:14580249

Reis-Filho, Jorge S; Lakhani, Sunil R

2003-01-01

195

Chemical-genetic profile analysis in yeast suggests that a previously uncharacterized open reading frame, YBR261C, affects protein synthesis  

PubMed Central

Background Functional genomics has received considerable attention in the post-genomic era, as it aims to identify function(s) for different genes. One way to study gene function is to investigate the alterations in the responses of deletion mutants to different stimuli. Here we investigate the genetic profile of yeast non-essential gene deletion array (yGDA, ~4700 strains) for increased sensitivity to paromomycin, which targets the process of protein synthesis. Results As expected, our analysis indicated that the majority of deletion strains (134) with increased sensitivity to paromomycin, are involved in protein biosynthesis. The remaining strains can be divided into smaller functional categories: metabolism (45), cellular component biogenesis and organization (28), DNA maintenance (21), transport (20), others (38) and unknown (39). These may represent minor cellular target sites (side-effects) for paromomycin. They may also represent novel links to protein synthesis. One of these strains carries a deletion for a previously uncharacterized ORF, YBR261C, that we term TAE1 for Translation Associated Element 1. Our focused follow-up experiments indicated that deletion of TAE1 alters the ribosomal profile of the mutant cells. Also, gene deletion strain for TAE1 has defects in both translation efficiency and fidelity. Miniaturized synthetic genetic array analysis further indicates that TAE1 genetically interacts with 16 ribosomal protein genes. Phenotypic suppression analysis using TAE1 overexpression also links TAE1 to protein synthesis. Conclusion We show that a previously uncharacterized ORF, YBR261C, affects the process of protein synthesis and reaffirm that large-scale genetic profile analysis can be a useful tool to study novel gene function(s). PMID:19055778

Alamgir, Md; Eroukova, Veronika; Jessulat, Matthew; Xu, Jianhua; Golshani, Ashkan

2008-01-01

196

Genetic risk for Parkinson's disease correlates with alterations in neuronal manganese sensitivity between two human subjects.  

PubMed

Manganese (Mn) is an environmental risk factor for Parkinson's disease (PD). Recessive inheritance of PARK2 mutations is strongly associated with early onset PD (EOPD). It is widely assumed that the influence of PD environmental risk factors may be enhanced by the presence of PD genetic risk factors in the genetic background of individuals. However, such interactions may be difficult to predict owing to the complexities of genetic and environmental interactions. Here we examine the potential of human induced pluripotent stem (iPS) cell-derived early neural progenitor cells (NPCs) to model differences in Mn neurotoxicity between a control subject (CA) with no known PD genetic risk factors and a subject (SM) with biallelic loss-of-function mutations in PARK2 and family history of PD but no evidence of PD by neurological exam. Human iPS cells were generated from primary dermal fibroblasts of both subjects. We assessed several outcome measures associated with Mn toxicity and PD. No difference in sensitivity to Mn cytotoxicity or mitochondrial fragmentation was observed between SM and CA NPCs. However, we found that Mn exposure was associated with significantly higher reactive oxygen species (ROS) generation in SM compared to CA NPCs despite significantly less intracellular Mn accumulation. Thus, this report offers the first example of human subject-specific differences in PD-relevant environmental health related phenotypes that are consistent with pathogenic interactions between known genetic and environmental risk factors for PD. PMID:23099318

Aboud, Asad A; Tidball, Andrew M; Kumar, Kevin K; Neely, M Diana; Ess, Kevin C; Erikson, Keith M; Bowman, Aaron B

2012-12-01

197

Genetic aspects of adolescent idiopathic scoliosis in a family with multiple affected members: a research article  

PubMed Central

Background The etiology of idiopathic scoliosis remains unknown and different factors have been suggested as causal. Hereditary factors can also determine the etiology of the disease; however, the pattern of inheritance remains unknown. Autosomal dominant, X-linked and multifactorial patterns of inheritances have been reported. Other studies have suggested possible chromosome regions related to the etiology of idiopathic scoliosis. We report the genetic aspects of and investigate chromosome regions for adolescent idiopathic scoliosis in a Brazilian family. Methods Evaluation of 57 family members, distributed over 4 generations of a Brazilian family, with 9 carriers of adolescent idiopathic scoliosis. The proband presented a scoliotic curve of 75 degrees, as determined by the Cobb method. Genomic DNA from family members was genotyped. Results Locating a chromosome region linked to adolescent idiopathic scoliosis was not possible in the family studied. Conclusion While it was not possible to determine a chromosome region responsible for adolescent idiopathic scoliosis by investigation of genetic linkage using microsatellites markers during analysis of four generations of a Brazilian family with multiple affected members, analysis including other types of genomic variations, like single nucleotide polymorphisms (SNPs) could contribute to the continuity of this study. PMID:20374654

2010-01-01

198

Pathologic alterations of cutaneous innervation and vasculature in affected limbs from patients with complex regional pain syndrome.  

PubMed

Complex regional pain syndromes (CRPS, type I and type II) are devastating conditions that can occur following soft tissue (CRPS type I) or nerve (CRPS type II) injury. CRPS type I, also known as reflex sympathetic dystrophy, presents in patients lacking a well-defined nerve lesion, and has been questioned as to whether or not it is a true neuropathic condition with an organic basis. As described here, glabrous and hairy skin samples from the amputated upper and lower extremity from two CRPS type I diagnosed patients were processed for double-label immunofluorescence using a battery of antibodies directed against neural-related proteins and mediators of nociceptive sensory function. In CRPS affected skin, several neuropathologic alterations were detected, including: (1) the presence of numerous abnormal thin caliber NF-positive/MBP-negative axons innervating hair follicles; (2) a decrease in epidermal, sweat gland, and vascular innervation; (3) a loss of CGRP expression on remaining innervation to vasculature and sweat glands; (4) an inappropriate expression of NPY on innervation to superficial arterioles and sweat glands; and (5) a loss of vascular endothelial integrity and extraordinary vascular hypertrophy. The results are evidence of widespread cutaneous neuropathologic changes. Importantly, in these CRPS type I patients, the myriad of clinical symptoms observed had detectable neuropathologic correlates. PMID:16427199

Albrecht, Phillip J; Hines, Scott; Eisenberg, Elon; Pud, Dorit; Finlay, Deborah R; Connolly, M Kari; Paré, Michel; Davar, Gudarz; Rice, Frank L

2006-02-01

199

Altered sucrose synthase and invertase expression affects the local and systemic sugar metabolism of nematode-infected Arabidopsis thaliana plants  

PubMed Central

Sedentary endoparasitic nematodes of plants induce highly specific feeding cells in the root central cylinder. From these, the obligate parasites withdraw all required nutrients. The feeding cells were described as sink tissues in the plant’s circulation system that are supplied with phloem-derived solutes such as sugars. Currently, there are several publications describing mechanisms of sugar import into the feeding cells. However, sugar processing has not been studied so far. Thus, in the present work, the roles of the sucrose-cleaving enzymes sucrose synthases (SUS) and invertases (INV) in the development of Heterodera schachtii were studied. Gene expression analyses indicate that both enzymes are regulated transcriptionally. Nematode development was enhanced on multiple INV and SUS mutants. Syncytia of these mutants were characterized by altered enzyme activity and changing sugar pool sizes. Further, the analyses revealed systemically affected sugar levels and enzyme activities in the shoots of the tested mutants, suggesting changes in the source–sink relationship. Finally, the development of the root-knot nematode Meloidogyne javanica was studied in different INV and SUS mutants and wild-type Arabidopsis plants. Similar effects on the development of both sedentary endoparasitic nematode species (root-knot and cyst nematode) were observed, suggesting a more general role of sucrose-degrading enzymes during plant–nematode interactions. PMID:24187419

Hofmann, Julia

2014-01-01

200

Spatial memory alterations in children with epilepsy of genetic origin or unknown cause.  

PubMed

Genetic generalised epilepsy or epilepsy of unknown cause can remit before adolescence. In many children, the disease does not interfere with their academic achievement. Although there are neuropsychological studies characterising the cognitive profile, there are no studies in this population focused on spatial orientation abilities. In this study, we compared children with genetic generalised epilepsy or epilepsy of unknown cause with a control group using a virtual spatial learning task. Children with epilepsy showed worse performance on the spatial orientation task, although their visuo-spatial memory, attention, and working memory were normal. These results confirm that genetic generalised epilepsy or epilepsy of unknown cause is associated with more cognitive deficits. Virtual reality technologies can complement clinical assessment. PMID:24913814

Cimadevilla, José Manuel; Lizana, Julio Ramos; Roldán, Maria Dolores; Cánovas, Rosa; Rodríguez, Eva

2014-06-01

201

Neutral genetic drift can alter promiscuous protein functions, potentially aiding functional evolution  

Microsoft Academic Search

BACKGROUND: Many of the mutations accumulated by naturally evolving proteins are neutral in the sense that they do not significantly alter a protein's ability to perform its primary biological function. However, new protein functions evolve when selection begins to favor other, \\

Jesse D Bloom; Philip A Romero; Zhongyi Lu; Frances H Arnold

2007-01-01

202

Alterations in K-ras, APC and p53-multiple genetic pathway in colorectal cancer among Indians.  

PubMed

The incidence of colorectal cancer (CRC) is increasing rapidly in Asian countries during the past few decades, but no comprehensive analysis has been done to find out the exact cause of this disease. In this study, we investigated the frequencies of mutations and expression pattern of K-ras, APC (adenomatosis polyposis coli) and p53 in tumor, adjoining and distant normal mucosa and to correlate these alterations with patients clinicopathological parameters as well as with the survival. Polymerase chain reaction (PCR)-restriction digestion was used to detect mutations in K-ras and PCR-SSCP (Single Strand Conformation Polymorphism) followed by DNA sequencing was used to detect mutations in APC and p53 genes. Immunohistochemistry was used to detect the expression pattern of K-ras, APC and p53 proteins. The frequencies of mutations of K-ras, APC and p53 in 30 tumor tissues samples were 26.7 %, 46.7 % and 20 %, respectively. Only 3.3 % of tumors contained mutations in all the three genes. The most common combination of mutation was APC and p53 whereas mutation in both p53 and K-ras were extremely rare. There was no association between the mutations and expression pattern of K-ras, APC and p53 (p>0.05). In Indians, the frequency of alterations of K-ras and APC is similar as in Westerns, whereas the frequency of p53 mutation is slightly lower. The lack of multiple mutations in tumor specimens suggests that these genetic alterations might have independent influences on CRC development and there could be multiple alternative genetic pathways to CRC in our present study cohort. PMID:23526092

Malhotra, Pooja; Anwar, Mumtaz; Nanda, Neha; Kochhar, Rakesh; Wig, Jai Dev; Vaiphei, Kim; Mahmood, Safrun

2013-06-01

203

Embryonic PCB exposure alters phenotypic, genetic, and epigenetic profiles in turtle sex determination, a biomarker of environmental contamination.  

PubMed

In species with temperature-dependent sex determination, embryonic gonadal differentiation can be modified by exposure to exogenous chemicals such as environmental contaminants. Although phenotypic outcomes of such events are well documented, the underlying molecular mechanisms are rarely described. Here we examine the genetic and epigenetic effect of the embryonic exposure to polychlorinated biphenyls (PCBs) on gonad differentiation in red-eared slider turtles (Trachemys scripta). Some PCB congeners are without effect whereas others synergize to alter sex determination in this species. Application of two potent PCB congeners alter the physiological processes of gonad development normally dictated by the male-producing temperature (MPT), resulting sex ratios significantly biased toward female hatchlings. Of these PCB-induced females, oviduct formation is prominently distorted regardless of ovary development. Further, gonadal expression of ovarian markers, aromatase, FoxL2, and Rspo1, is activated whereas testicular markers, Dmrt1 and Sox9, are suppressed compared with typical expression patterns observed at MPT. DNA methylation profiles of the aromatase promoter in PCB-treated gonads do not follow the typical methylation pattern observed in embryos incubating at female-producing temperature. Rather, the MPT-typical methylation profiles is retained despite the induced ovarian formation. Overall, our studies demonstrate that PCB exposure alters the transcriptional profiles of genes responsible for gonadal differentiation but does not re-establish the epigenetic marks of the aromatase promoter normally set by incubation temperatures in embryonic gonads. PMID:25105783

Matsumoto, Yuiko; Hannigan, Brette; Crews, David

2014-11-01

204

Genetic obesity alters recruitment of TANK-binding kinase 1 and AKT into hypothalamic lipid rafts domains.  

PubMed

Lipid rafts (LRs) are membrane subdomains enriched in cholesterol, glycosphingolipids and sphingolipids containing saturated fatty acid. Signaling proteins become concentrated in these microdomains mainly by saturated fatty acid modification, thus facilitating formation of protein complexes and activation of specific signaling pathways. High intake of saturated fatty acids promotes inflammation and insulin resistance, in part by disrupting insulin signaling pathway. Here we investigate whether lipid-induced toxicity in obesity correlates with altered composition of insulin signaling proteins in LRs in the brain. Our results showed that insulin receptor (IR) is highly concentrated in LRs fraction in comparison with soluble or postsynaptic density (PSD) fractions. Analysis of LRs domains from hippocampus of obese mouse showed a significant decrease of IR and its downstream signaling protein AKT, while in the PSD fraction we detected partial decrease of AKT and no changes in the IR concentration. No changes were shown in the soluble extract. In hypothalamus, genetic obesity also decreases interaction of AKT, but we did not detect changes in the IR distribution. However, in this structure genetic obesity increases recruitment of the IR negative regulator TANK-binding kinase 1 (TBK1) into LRs and PSD fraction. No changes of AKT, IR and TBK1 were found in soluble fractions of obese in comparison with lean mice. In vitro studies showed that incubation with saturated palmitic acid but not with unsaturated docosahexaenoic acid (DHA) or palmitoleic acid decreases association of IR and AKT and increases TBK1 recruitment into LRs and PSD domains, emulating what happens in the obese mice. TBK1 recruitment to insoluble domains correlates with decreases of IR tyrosine phosphorylation and ser473 AKT phosphorylation, markers of insulin resistance. These data support the hypothesis that hyperlipidemia associated with genetic obesity alters targeting of TBK1 and insulin signaling proteins into insoluble LRs domains. PMID:25447767

Delint-Ramirez, Ilse; Maldonado Ruiz, Roger; Torre-Villalvazo, Ivan; Fuentes-Mera, Lizeth; Garza Ocañas, Lourdes; Tovar, Armando; Camacho, Alberto

2015-01-01

205

Alterations of uromodulin biology: A common denominator of the genetically heterogeneous  

E-print Network

and medullary cystic kidney diseases type 1 and type 2. In some families the disease is associated in kidney tissues. We proved genetic heterogeneity of the disease. Uromodulin mutations were identified with the observations in the patient's kidney tissue. We found a reduction in urinary uromodulin excretion as a common

Majewski, Jacek

206

Physical characteristics of genetically-altered wheat related to technological protein separation  

Technology Transfer Automated Retrieval System (TEKTRAN)

Wheat protein is a technologically challenging substrate for food and non-food applications because of its compositional diversity and susceptibility to denaturation. Genetic modification could be used to create cultivars capable of producing more uniform or focused and novel protein compositions t...

207

Alteration of Soil Rhizosphere Communities following Genetic Transformation of White Spruce  

Microsoft Academic Search

The application of plant genetic manipulations to agriculture and forestry with the aim of alleviating insect damage through Bacillus thuringiensis transformation could lead to a significant reduction in the release of pesticides into the environment. However, many groups have come forward with very valid and important questions related to potentially adverse effects, and it is crucial to assess and better

Philippe M. LeBlanc; Richard C. Hamelin; Martin Filion

2007-01-01

208

Genetic Alterations in Sporadic and Hereditary Colorectal Cancer: Implementations for Screening and Follow-Up  

Microsoft Academic Search

The genetics underlying an inherited predisposition to cancer are rapidly being uncovered. This fact may ultimately lead to the routine use of molecular tools to diagnose these disorders, and establish interventions to prevent the development of cancer. Among the multiple cancer family syndromes, several are known to be associated with the development of colon cancer. These disorders may be diagnosed

John Souglakos

2007-01-01

209

Partial genetic deletion of neuregulin 1 and adolescent stress interact to alter NMDA receptor binding in the medial prefrontal cortex  

PubMed Central

Schizophrenia is thought to arise due to a complex interaction between genetic and environmental factors during early neurodevelopment. We have recently shown that partial genetic deletion of the schizophrenia susceptibility gene neuregulin 1 (Nrg1) and adolescent stress interact to disturb sensorimotor gating, neuroendocrine activity and dendritic morphology in mice. Both stress and Nrg1 may have converging effects upon N-methyl-D-aspartate receptors (NMDARs) which are implicated in the pathogenesis of schizophrenia, sensorimotor gating and dendritic spine plasticity. Using an identical repeated restraint stress paradigm to our previous study, here we determined NMDAR binding across various brain regions in adolescent Nrg1 heterozygous (HET) and wild-type (WT) mice using [3H] MK-801 autoradiography. Repeated restraint stress increased NMDAR binding in the ventral part of the lateral septum (LSV) and the dentate gyrus (DG) of the hippocampus irrespective of genotype. Partial genetic deletion of Nrg1 interacted with adolescent stress to promote an altered pattern of NMDAR binding in the infralimbic (IL) subregion of the medial prefrontal cortex. In the IL, whilst stress tended to increase NMDAR binding in WT mice, it decreased binding in Nrg1 HET mice. However, in the DG, stress selectively increased the expression of NMDAR binding in Nrg1 HET mice but not WT mice. These results demonstrate a Nrg1-stress interaction during adolescence on NMDAR binding in the medial prefrontal cortex. PMID:25324742

Chohan, Tariq W.; Nguyen, An; Todd, Stephanie M.; Bennett, Maxwell R.; Callaghan, Paul; Arnold, Jonathon C.

2014-01-01

210

DNA ALTERATIONS  

EPA Science Inventory

The exposure of an organism to genotoxic chemicals may induce a cascade of genetic events. nitially, structural alterations to DNA are formed. ext, the DNA damage is processed and subsequently expressed in mutant gene products. inally, diseases result from the genetic damage. he ...

211

Genetic Variant BDNF (Val66Met) Polymorphism Alters Anxiety-Related Behavior  

Microsoft Academic Search

A common single-nucleotide polymorphism in the brain-derived neurotrophic factor (BDNF) gene, a methionine (Met) substitution for valine (Val) at codon 66 (Val66Met), is associated with alterations in brain anatomy and memory, but its relevance to clinical disorders is unclear. We generated a variant BDNF mouse (BDNFMet\\/Met) that reproduces the phenotypic hallmarks in humans with the variant allele. BDNFMet was expressed

Zhe-Yu Chen; Deqiang Jing; Kevin G. Bath; Alessandro Ieraci; Tanvir Khan; Chia-Jen Siao; Daniel G. Herrera; Miklos Toth; Chingwen Yang; Bruce S. McEwen; Barbara L. Hempstead; Francis S. Lee

2006-01-01

212

Genetic variants in ABCA1 promoter affect transcription activity and plasma HDL level in pigs.  

PubMed

Excess accumulation of cholesterol in plasma may result in coronary artery disease. Numerous studies have demonstrated that ATP-binding cassette protein A1 (ABCA1) mediates the efflux of cholesterol and phospholipids to apolipoproteins, a process necessary for plasma high density lipoprotein (HDL) formation. Higher plasma levels of HDL are associated with lower risk for cardiovascular disease. Studies of human disease and animal models had shown that an increased hepatic ABCA1 activity relates to an enhanced plasma HDL level. In this study, we hypothesized that functional mutations in the ABCA1 promoter in pigs may affect gene transcription activity, and consequently the HDL level in plasma. The promoter region of ABCA1 was comparatively scanned by direct sequencing with pool DNA of high- and low-HDL groups (n=30 for each group). Two polymorphisms, c. - 608A>G and c. - 418T>A, were revealed with reverse allele distribution in the two groups. The two polymorphisms were completely linked and formed only G-A or A-T haplotypes when genotyped in a larger population (n=526). Furthermore, we found that the G-A/G-A genotype was associated with higher HDL and ABCA1 mRNA level than A-T/A-T genotype. Luciferase assay also revealed that G-A haplotype promoter had higher activity than A-T haplotype. Single-nucleotide mutant assay showed that c.-418T>A was the causal mutation for ABCA1 transcription activity alteration. Conclusively, we identified two completely linked SNPs in porcine ABCA1 promoter region which have influence on the plasma HDL level by altering ABCA1 gene transcriptional activity. PMID:25445391

Dang, Xiao-yong; Chu, Wei-wei; Shi, Heng-chuan; Yu, Shi-gang; Han, Hai-yin; Gu, Shu-Hua; Chen, Jie

2015-01-25

213

Vanderbilt study finds diverse genetic alterations in triple-negative breast cancers  

Cancer.gov

Most triple-negative breast cancer patients who were treated with chemotherapy to shrink the tumor prior to surgery still had multiple genetic mutations in their tumor cells, according to a study by Vanderbilt-Ingram Cancer Center (VICC) investigators. Finding multiple mutations instead of just one primary mutation that can be targeted for therapy sheds more light on the challenges of treating triple-negative breast cancer.

214

Evaluation of molecular genetic alterations associated with tumor progression in a case of gliomatosis cerebri  

Microsoft Academic Search

Gliomatosis cerebri (GC) is a rare tumor characterized by widespread infiltration of the brain and spinal cord. Although GC\\u000a usually demonstrates histomorphological features of a low-grade tumor, the formation of secondary highly malignant tumor regions\\u000a may occur. In order to reveal molecular genetic changes associated with tumor progression in GC, we analyzed factors known\\u000a to be associated with malignant progression

Stefan Braeuninger; Regine Schneider-Stock; Elmar Kirches; James M. Powers; David N. Korones; Christian Mawrin

2007-01-01

215

Genetic alterations of lung adenocarcinoma in relation to smoking and ethnicity  

Microsoft Academic Search

Adenocarcinoma of the lung is now the most common histologic subtype of non-small-cell lung cancer (NSCLC) worldwide. In Chinese populations, the incidence of lung adenocarcinoma is amongst the highest worldwide and its development in non-smoking females is particularly striking. Information on the associated underlying genetic changes has been, however, minimal to date. The present study represents the first systematic analysis

Shirley M. H. Sy; Nathalie Wong; Tony S. K. Mok; Ming-Sound Tsao; Tak-Wai Lee; Gary Tse; Fiona H. Blackhall; Philip J. Johnson; Anthony P. Yim

2003-01-01

216

Genetic variants of human organic anion transporter 4 demonstrate altered transport of endogenous substrates.  

PubMed

Apical reabsorption from the urine has been shown to be important for such processes as the maintenance of critical metabolites in the blood and the excretion of nephrotoxic compounds. The solute carrier (SLC) transporter OAT4 (SLC22A11) is expressed on the apical membrane of renal proximal tubule cells and is known to mediate the transport of a variety of xenobiotic and endogenous organic anions. Functional characterization of genetic variants of apical transporters thought to mediate reabsorption, such as OAT4, may provide insight into the genetic factors influencing the complex pathways involved in drug elimination and metabolite reclamation occurring in the kidney. Naturally occurring genetic variants of OAT4 were identified in public databases and by resequencing DNA samples from 272 individuals comprising 4 distinct ethnic groups. Nine total nonsynonymous variants were identified and functionally assessed using uptake of three radiolabeled substrates. A nonsense variant, R48Stop, and three other variants (R121C, V155G, and V155M) were found at frequencies of at least 2% in an ethnic group specific fashion. The L29P, R48Stop, and H469R variants displayed a complete loss of function, and kinetic analysis identified a reduced V(max) in the common nonsynonymous variants. Plasma membrane levels of OAT4 protein were absent or reduced in the nonfunctional variants, providing a mechanistic reason for the observed loss of function. Characterization of the genetic variants of reabsorptive transporters such as OAT4 is an important step in understanding variability in tubular reabsorption with important implications in innate homeostatic processes and drug disposition. PMID:20668102

Shima, James E; Komori, Takafumi; Taylor, Travis R; Stryke, Doug; Kawamoto, Michiko; Johns, Susan J; Carlson, Elaine J; Ferrin, Thomas E; Giacomini, Kathleen M

2010-10-01

217

Selective Deletion of a Cell Cycle Checkpoint Kinase (ATR) Reduces Neurogenesis and Alters Responses in Rodent Models of Behavioral Affect  

PubMed Central

Hippocampal function has been implicated in mood and anxiety disorders, as well as in the response to antidepressant (AD) treatment. However, the significance of new neurons in the therapeutic mechanism of ADs remains unclear. In this study, the proliferation of new neurons was inhibited through conditional deletion of ataxia telangeictasia-mutated and rad-3 related (ATR), a cell cycle checkpoint kinase, and cellular and behavioral outcomes following AD exposure were evaluated. ATR was conditionally deleted by microinjecting a Cre recombinase-expressing virus into the hippocampus of floxed-ATR mice. Behavioral assessment in multiple rodent models of affective state revealed anxiolytic-like behavior in the elevated zero maze, marble burying test, and novelty-induced hypophagia (NIH) test. The efficacy of chronic desipramine (DMI) treatment was evaluated in the NIH test, as this paradigm is thought to be sensitive to increases in neurogenesis by chronic AD exposure. Chronic exposure to DMI reduced hyponeophagia in the NIH test in control mice, whereas DMI had no behavioral effect in ATR-deleted mice. Although DMI did not alter cell proliferation in either group, it did produce a robust increase in dendritic spine density in control mice, indicative of enhanced neuronal plasticity. This effect of DMI on spine density was severely attenuated following ATR deletion. These findings demonstrate that reductions in basal neurogenesis produce an anxiolytic phenotype and reduce AD efficacy in behaviors requiring chronic exposure. Furthermore, attenuated capacity for synaptic remodeling may underlie these behaviors. ATR deletion may serve as a valuable model to study the various proposed roles of newborn neurons in the hippocampus. PMID:21248719

Onksen, Jennifer L; Brown, Eric J; Blendy, Julie A

2011-01-01

218

ALTERING THE PHYSICAL ENVIRONMENT AFFECTS GROWTH, MORPHOGENESIS AND ESSENTIAL OIL PRODUCTION IN MENTHA SPICATA L. SHOOTS IN VITRO  

Technology Transfer Automated Retrieval System (TEKTRAN)

Altering the physical environment profoundly alters the growth (fresh weight), morphogenesis (leave, root and shoot numbers) and secondary metabolism [i.e., production of the monoterpene (-)-carvone] of Mentha spicata L. (spearmint) shoots cultured on Murashige and Skoog medium. The type of physica...

219

Next-generation sequencing analysis of lung and colon carcinomas reveals a variety of genetic alterations.  

PubMed

The development of targeted therapies in cancer has accelerated the development of molecular diagnosis. This new cancer discipline is booming, with an increasing number of gene alterations to analyze in a growing number of patients. To deal with this fast-developing activity, current analysis techniques (Sanger sequencing, allelic discrimination and high resolution melting) take more and more time. In recent years, next generation sequencing (NGS) technologies have appeared and given new perspectives in oncology. In this study, we analyzed FFPE lung and colon carcinomas using the Truseq Cancer Panel, which analyzes the mutation hotspots of 48 genes. We also tested the use of whole-genome amplification before NGS analysis. NGS results were compared with the data obtained from routine diagnosis. All of the alterations routinely observed were identified by NGS. Moreover, NGS revealed mutations in the KRAS and EGFR genes in patients diagnosed as wild-type by routine techniques. NGS also identified concomitant mutations in EGFR and KRAS or BRAF mutations, and a 15-nt deletion in exon 19 of EGFR in colon carcinomas. The study of the other genes sequenced in the Panel revealed 14 genes altered by 27 different mutations and three SNP with a possible role in cancer susceptibility or in the response to treatment. In conclusion, this study showed that NGS analysis could be used for the analysis of gDNA extracted from FFPE tissues. However, given the high sensitivity of this technology, high-throughput clinical trials are needed to confirm its reliability for the molecular diagnosis of cancer. PMID:24990411

Chevrier, Sandy; Arnould, Laurent; Ghiringhelli, François; Coudert, Bruno; Fumoleau, Pierre; Boidot, Romain

2014-09-01

220

Does Wheat Genetically Modified for Disease Resistance Affect Root-Colonizing Pseudomonads and Arbuscular Mycorrhizal Fungi?  

PubMed Central

This study aimed to evaluate the impact of genetically modified (GM) wheat with introduced pm3b mildew resistance transgene, on two types of root-colonizing microorganisms, namely pseudomonads and arbuscular mycorrhizal fungi (AMF). Our investigations were carried out in field trials over three field seasons and at two locations. Serial dilution in selective King's B medium and microscopy were used to assess the abundance of cultivable pseudomonads and AMF, respectively. We developed a denaturing gradient gel electrophoresis (DGGE) method to characterize the diversity of the pqqC gene, which is involved in Pseudomonas phosphate solubilization. A major result was that in the first field season Pseudomonas abundances and diversity on roots of GM pm3b lines, but also on non-GM sister lines were different from those of the parental lines and conventional wheat cultivars. This indicates a strong effect of the procedures by which these plants were created, as GM and sister lines were generated via tissue cultures and propagated in the greenhouse. Moreover, Pseudomonas population sizes and DGGE profiles varied considerably between individual GM lines with different genomic locations of the pm3b transgene. At individual time points, differences in Pseudomonas and AMF accumulation between GM and control lines were detected, but they were not consistent and much less pronounced than differences detected between young and old plants, different conventional wheat cultivars or at different locations and field seasons. Thus, we conclude that impacts of GM wheat on plant-beneficial root-colonizing microorganisms are minor and not of ecological importance. The cultivation-independent pqqC-DGGE approach proved to be a useful tool for monitoring the dynamics of Pseudomonas populations in a wheat field and even sensitive enough for detecting population responses to altered plant physiology. PMID:23372672

Foetzki, Andrea; Luginbühl, Carolin; Winzeler, Michael; Kneubühler, Yvan; Matasci, Caterina; Mascher-Frutschi, Fabio; Kalinina, Olena; Boller, Thomas; Keel, Christoph; Maurhofer, Monika

2013-01-01

221

Copyright 0 1991 by the GeneticsSocietyof America New SNF Genes, GAL11 and GRRl Affect SUC2 Expressionin  

E-print Network

Copyright 0 1991 by the GeneticsSocietyof America New SNF Genes, GAL11 and GRRl Affect SUC2 in raffinose utilization.In addition to mutations in SUCP and previously identified SNF genes, we recovered in previous mutant searches (CARLSON,OSMONDand BOTSTEIN1981;NEIGEBORNand CARLSON1984).The SNF (sucrose

Vallier, Laura

222

Psychosocial and cultural factors affecting the perceived risk of genetically modified food: an overview of the literature  

Microsoft Academic Search

The rapid globalization of the world economy has increased the need for an astute understanding of cultural differences in perceptions, values, and ways of thinking about new food technologies. In this paper, we describe how socio-psychological and cultural factors may affect public perceptions of the risk of genetically modified (GM) food. We present psychological, sociological, and anthropological research on risk

Melissa L. Finucane; Joan L. Holup

2005-01-01

223

Genetical and Comparative Genomics of Brassica under Altered Ca Supply Identifies Arabidopsis Ca-Transporter Orthologs[W][OPEN  

PubMed Central

Although Ca transport in plants is highly complex, the overexpression of vacuolar Ca2+ transporters in crops is a promising new technology to improve dietary Ca supplies through biofortification. Here, we sought to identify novel targets for increasing plant Ca accumulation using genetical and comparative genomics. Expression quantitative trait locus (eQTL) mapping to 1895 cis- and 8015 trans-loci were identified in shoots of an inbred mapping population of Brassica rapa (IMB211 × R500); 23 cis- and 948 trans-eQTLs responded specifically to altered Ca supply. eQTLs were screened for functional significance using a large database of shoot Ca concentration phenotypes of Arabidopsis thaliana. From 31 Arabidopsis gene identifiers tagged to robust shoot Ca concentration phenotypes, 21 mapped to 27 B. rapa eQTLs, including orthologs of the Ca2+ transporters At-CAX1 and At-ACA8. Two of three independent missense mutants of BraA.cax1a, isolated previously by targeting induced local lesions in genomes, have allele-specific shoot Ca concentration phenotypes compared with their segregating wild types. BraA.CAX1a is a promising target for altering the Ca composition of Brassica, consistent with prior knowledge from Arabidopsis. We conclude that multiple-environment eQTL analysis of complex crop genomes combined with comparative genomics is a powerful technique for novel gene identification/prioritization. PMID:25082855

Graham, Neil S.; Hammond, John P.; Lysenko, Artem; Mayes, Sean; Ó Lochlainn, Seosamh; Blasco, Bego; Bowen, Helen C.; Rawlings, Chris J.; Rios, Juan J.; Welham, Susan; Carion, Pierre W.C.; Dupuy, Lionel X.; King, Graham J.; White, Philip J.; Broadley, Martin R.

2014-01-01

224

Natural Selection Affects Multiple Aspects of Genetic Variation at Putatively Neutral Sites across the Human Genome  

Microsoft Academic Search

A major question in evolutionary biology is how natural selection has shaped patterns of genetic variation across the human genome. Previous work has documented a reduction in genetic diversity in regions of the genome with low recombination rates. However, it is unclear whether other summaries of genetic variation, like allele frequencies, are also correlated with recombination rate and whether these

Kirk E. Lohmueller; Anders Albrechtsen; Yingrui Li; Su Yeon Kim; Thorfinn Korneliussen; Nicolas Vinckenbosch; Geng Tian; Emilia Huerta-Sanchez; Alison F. Feder; Niels Grarup; Torben Jørgensen; Tao Jiang; Daniel R. Witte; Annelli Sandbæk; Ines Hellmann; Torsten Lauritzen; Torben Hansen; Oluf Pedersen; Jun Wang; Rasmus Nielsen

2011-01-01

225

Genetic activation of pyruvate dehydrogenase alters oxidative substrate selection to induce skeletal muscle insulin resistance.  

PubMed

The pyruvate dehydrogenase complex (PDH) has been hypothesized to link lipid exposure to skeletal muscle insulin resistance through a glucose-fatty acid cycle in which increased fatty acid oxidation increases acetyl-CoA concentrations, thereby inactivating PDH and decreasing glucose oxidation. However, whether fatty acids induce insulin resistance by decreasing PDH flux remains unknown. To genetically examine this hypothesis we assessed relative rates of pyruvate dehydrogenase flux/mitochondrial oxidative flux and insulin-stimulated rates of muscle glucose metabolism in awake mice lacking pyruvate dehydrogenase kinase 2 and 4 [double knockout (DKO)], which results in constitutively activated PDH. Surprisingly, increased glucose oxidation in DKO muscle was accompanied by reduced insulin-stimulated muscle glucose uptake. Preferential myocellular glucose utilization in DKO mice decreased fatty acid oxidation, resulting in increased reesterification of acyl-CoAs into diacylglycerol and triacylglycerol, with subsequent activation of PKC-? and inhibition of insulin signaling in muscle. In contrast, other putative mediators of muscle insulin resistance, including muscle acylcarnitines, ceramides, reactive oxygen species production, and oxidative stress markers, were not increased. These findings demonstrate that modulation of oxidative substrate selection to increase muscle glucose utilization surprisingly results in muscle insulin resistance, offering genetic evidence against the glucose-fatty acid cycle hypothesis of muscle insulin resistance. PMID:25368185

Rahimi, Yasmeen; Camporez, João-Paulo G; Petersen, Max C; Pesta, Dominik; Perry, Rachel J; Jurczak, Michael J; Cline, Gary W; Shulman, Gerald I

2014-11-18

226

Citrus leaf volatiles as affected by developmental stage and genetic type.  

PubMed

Major volatiles from young and mature leaves of different citrus types were analyzed by headspace-solid phase microextraction (HS-SPME)-GC-MS. A total of 123 components were identified form nine citrus cultivars, including nine aldehydes, 19 monoterpene hydrocarbons, 27 oxygenated monoterpenes, 43 sesquiterpene hydrocarbons, eight oxygenated sesquiterpenes, two ketones, six esters and nine miscellaneous. Young leaves produced higher amounts of volatiles than mature leaves in most cultivars. The percentage of aldehyde and monoterpene hydrocarbons increased, whilst oxygenated monoterpenes and sesquiterpenes compounds decreased during leaf development. Linalool was the most abundant compound in young leaves, whereas limonene was the chief component in mature ones. Notably, linalool content decreased, while limonene increased, during leaf development in most cultivars. Leaf volatiles were also affected by genetic types. A most abundant volatile in one or several genotypes can be absent in another one(s), such as limonene in young leaves of lemon vs. Satsuma mandarin and ?-terpinene in mature leaves of three genotypes vs. the other four. Compositional data was subjected to multivariate statistical analysis, and variations in leaf volatiles were identified and clustered into six groups. This research determining the relationship between production of major volatiles from different citrus varieties and leaf stages could be of use for industrial and culinary purposes. PMID:23994837

Azam, Muhammad; Jiang, Qian; Zhang, Bo; Xu, Changjie; Chen, Kunsong

2013-01-01

227

Citrus Leaf Volatiles as Affected by Developmental Stage and Genetic Type  

PubMed Central

Major volatiles from young and mature leaves of different citrus types were analyzed by headspace-solid phase microextraction (HS-SPME)-GC-MS. A total of 123 components were identified form nine citrus cultivars, including nine aldehydes, 19 monoterpene hydrocarbons, 27 oxygenated monoterpenes, 43 sesquiterpene hydrocarbons, eight oxygenated sesquiterpenes, two ketones, six esters and nine miscellaneous. Young leaves produced higher amounts of volatiles than mature leaves in most cultivars. The percentage of aldehyde and monoterpene hydrocarbons increased, whilst oxygenated monoterpenes and sesquiterpenes compounds decreased during leaf development. Linalool was the most abundant compound in young leaves, whereas limonene was the chief component in mature ones. Notably, linalool content decreased, while limonene increased, during leaf development in most cultivars. Leaf volatiles were also affected by genetic types. A most abundant volatile in one or several genotypes can be absent in another one(s), such as limonene in young leaves of lemon vs. Satsuma mandarin and ?-terpinene in mature leaves of three genotypes vs. the other four. Compositional data was subjected to multivariate statistical analysis, and variations in leaf volatiles were identified and clustered into six groups. This research determining the relationship between production of major volatiles from different citrus varieties and leaf stages could be of use for industrial and culinary purposes. PMID:23994837

Azam, Muhammad; Jiang, Qian; Zhang, Bo; Xu, Changjie; Chen, Kunsong

2013-01-01

228

Whole Genome Analysis of Genetic Alterations in Small DNA Samples Using Hyperbranched Strand Displacement Amplification and Array–CGH  

PubMed Central

Structural genetic alterations in cancer often involve gene loss or gene amplification. With the advent of microarray approaches for the analysis of the genome, as exemplified by array–CGH (Comparative Genomic Hybridization), scanning for gene-dosage alterations is limited only by issues of DNA microarray density. However, samples of interest to the pathologist often comprise small clusters of just a few hundred cells, which do not provide sufficient DNA for array–CGH analysis. We sought to develop a simple method that would permit amplification of the whole genome without the use of thermocycling or ligation of DNA adaptors, because such a method would lend itself to the automated processing of a large number of tissue samples. We describe a method that permits the isothermal amplification of genomic DNA with high fidelity and limited sequence representation bias. The method is based on strand displacement reactions that propagate by a hyperbranching mechanism, and generate hundreds, or even thousands, of copies of the genome in a few hours. Using whole genome isothermal amplification, in combination with comparative genomic hybridization on cDNA microarrays, we demonstrate the ability to detect gene losses in yeast and gene dosage imbalances in human breast tumor cell lines. Although sequence representation bias in the amplified DNA presents potential problems for CGH analysis, these problems have been overcome by using amplified DNA in both control and tester samples. Gene-dosage alterations of threefold or more can be observed with high reproducibility with as few as 1000 cells of starting material. PMID:12566408

Lage, José M.; Leamon, John H.; Pejovic, Tanja; Hamann, Stefan; Lacey, Michelle; Dillon, Deborah; Segraves, Richard; Vossbrinck, Bettina; González, Antonio; Pinkel, Daniel; Albertson, Donna G.; Costa, Jose; Lizardi, Paul M.

2003-01-01

229

Genetic and molecular alterations in pancreatic cancer: Implications for personalized medicine  

PubMed Central

Recent advances in human genomics and biotechnologies have profound impacts on medical research and clinical practice. Individual genomic information, including DNA sequences and gene expression profiles, can be used for prediction, prevention, diagnosis, and treatment for many complex diseases. Personalized medicine attempts to tailor medical care to individual patients by incorporating their genomic information. In a case of pancreatic cancer, the fourth leading cause of cancer death in the United States, alteration in many genes as well as molecular profiles in blood, pancreas tissue, and pancreas juice has recently been discovered to be closely associated with tumorigenesis or prognosis of the cancer. This review aims to summarize recent advances of important genes, proteins, and microRNAs that play a critical role in the pathogenesis of pancreatic cancer, and to provide implications for personalized medicine in pancreatic cancer. PMID:24172537

Fang, Yantian; Yao, Qizhi; Chen, Zongyou; Xiang, Jianbin; William, Fisher E.; Gibbs, Richard A.; Chen, Changyi

2013-01-01

230

The role of genetic and epigenetic alterations in neuroblastoma disease pathogenesis  

PubMed Central

Neuroblastoma is a highly heterogeneous tumor accounting for 15 % of all pediatric cancer deaths. Clinical behavior ranges from the spontaneous regression of localized, asymptomatic tumors, as well as metastasized tumors in infants, to rapid progression and resistance to therapy. Genomic amplification of the MYCN oncogene has been used to predict outcome in neuroblastoma for over 30 years, however, recent methodological advances including miR-NA and mRNA profiling, comparative genomic hybridization (array-CGH), and whole-genome sequencing have enabled the detailed analysis of the neuroblastoma genome, leading to the identification of new prognostic markers and better patient stratification. In this review, we will describe the main genetic factors responsible for these diverse clinical phenotypes in neuroblastoma, the chronology of their discovery, and the impact on patient prognosis. PMID:23274701

Domingo-Fernandez, Raquel; Watters, Karen; Piskareva, Olga; Bray, Isabella

2013-01-01

231

Alteration of Box-Jenkins methodology by implementing genetic algorithm method  

NASA Astrophysics Data System (ADS)

A time series is a set of values sequentially observed through time. The Box-Jenkins methodology is a systematic method of identifying, fitting, checking and using integrated autoregressive moving average time series model for forecasting. Box-Jenkins method is an appropriate for a medium to a long length (at least 50) time series data observation. When modeling a medium to a long length (at least 50), the difficulty arose in choosing the accurate order of model identification level and to discover the right parameter estimation. This presents the development of Genetic Algorithm heuristic method in solving the identification and estimation models problems in Box-Jenkins. Data on International Tourist arrivals to Malaysia were used to illustrate the effectiveness of this proposed method. The forecast results that generated from this proposed model outperformed single traditional Box-Jenkins model.

Ismail, Zuhaimy; Maarof, Mohd Zulariffin Md; Fadzli, Mohammad

2015-02-01

232

Anxiety and affective disorder comorbidity related to serotonin and other neurotransmitter systems: obsessive–compulsive disorder as an example of overlapping clinical and genetic heterogeneity  

PubMed Central

Individuals with obsessive–compulsive disorder (OCD) have also been shown to have comorbid lifetime diagnoses of major depressive disorder (MDD; rates greater than 70%), bipolar disorder (rates greater than 10%) and other anxiety disorders (e.g. panic disorder, post-traumatic stress disorder (PTSD)). In addition, overlap exists in some common genetic variants (e.g. the serotonin transporter gene (SLC6A4), the brain-derived neurotrophic factor (BDNF) gene), and rare variants in genes/chromosomal abnormalities (e.g. the 22q11 microdeletion syndrome) found across the affective/anxiety disorder spectrums. OCD has been proposed as a possible independent entity for DSM-5, but by others thought best retained as an anxiety disorder subtype (its current designation in DSM-IV), and yet by others considered best in the affective disorder spectrum. This review focuses on OCD, a well-studied but still puzzling heterogeneous disorder, regarding alterations in serotonergic, dopaminergic and glutamatergic neurotransmission in addition to other systems involved, and how related genes may be involved in the comorbidity of anxiety and affective disorders. OCD resembles disorders such as depression, in which gene × gene interactions, gene × environment interactions and stress elements coalesce to yield OC symptoms and, in some individuals, full-blown OCD with multiple comorbid disorders. PMID:23440468

Murphy, Dennis L.; Moya, Pablo R.; Fox, Meredith A.; Rubenstein, Liza M.; Wendland, Jens R.; Timpano, Kiara R.

2013-01-01

233

Common genetic variants in the CLDN2 and PRSS1-PRSS2 loci alter risk for alcohol-related and sporadic pancreatitis  

PubMed Central

Pancreatitis is a complex, progressively destructive inflammatory disorder. Alcohol was long thought to be the primary causative agent, but genetic contributions have been of interest since the discovery that rare PRSS1, CFTR, and SPINK1 variants were associated with pancreatitis risk. We now report two significant genome-wide associations identified and replicated at PRSS1-PRSS2 (1×10-12) and x-linked CLDN2 (p < 1×10-21) through a two-stage genome-wide study (Stage 1, 676 cases and 4507 controls; Stage 2, 910 cases and 4170 controls). The PRSS1 variant affects susceptibility by altering expression of the primary trypsinogen gene. The CLDN2 risk allele is associated with atypical localization of claudin-2 in pancreatic acinar cells. The homozygous (or hemizygous male) CLDN2 genotype confers the greatest risk, and its alleles interact with alcohol consumption to amplify risk. These results could partially explain the high frequency of alcohol-related pancreatitis in men – male hemizygous frequency is 0.26, female homozygote is 0.07. PMID:23143602

Whitcomb, David C.; LaRusch, Jessica; Krasinskas, Alyssa M.; Klei, Lambertus; Smith, Jill P.; Brand, Randall E.; Neoptolemos, John P.; Lerch, Markus M.; Tector, Matt; Sandhu, Bimaljit S.; Guda, Nalini M.; Orlichenko, Lidiya; Alkaade, Samer; Amann, Stephen T.; Anderson, Michelle A.; Baillie, John; Banks, Peter A.; Conwell, Darwin; Coté, Gregory A.; Cotton, Peter B.; DiSario, James; Farrer, Lindsay A.; Forsmark, Chris E.; Johnstone, Marianne; Gardner, Timothy B.; Gelrud, Andres; Greenhalf, William; Haines, Jonathan L.; Hartman, Douglas J.; Hawes, Robert A.; Lawrence, Christopher; Lewis, Michele; Mayerle, Julia; Mayeux, Richard; Melhem, Nadine M.; Money, Mary E.; Muniraj, Thiruvengadam; Papachristou, Georgios I.; Pericak-Vance, Margaret A.; Romagnuolo, Joseph; Schellenberg, Gerard D.; Sherman, Stuart; Simon, Peter; Singh, Vijay K.; Slivka, Adam; Stolz, Donna; Sutton, Robert; Weiss, Frank Ulrich; Wilcox, C. Mel; Zarnescu, Narcis Octavian; Wisniewski, Stephen R.; O'Connell, Michael R.; Kienholz, Michelle L.; Roeder, Kathryn; Barmada, M. Michael; Yadav, Dhiraj; Devlin, Bernie; Albert, Marilyn S.; Albin, Roger L.; Apostolova, Liana G.; Arnold, Steven E.; Baldwin, Clinton T.; Barber, Robert; Barnes, Lisa L.; Beach, Thomas G.; Beecham, Gary W.; Beekly, Duane; Bennett, David A.; Bigio, Eileen H.; Bird, Thomas D.; Blacker, Deborah; Boxer, Adam; Burke, James R.; Buxbaum, Joseph D.; Cairns, Nigel J.; Cantwell, Laura B.; Cao, Chuanhai; Carney, Regina M.; Carroll, Steven L.; Chui, Helena C.; Clark, David G.; Cribbs, David H.; Crocco, Elizabeth A.; Cruchaga, Carlos; DeCarli, Charles; Demirci, F. Yesim; Dick, Malcolm; Dickson, Dennis W.; Duara, Ranjan; Ertekin-Taner, Nilufer; Faber, Kelley M.; Fallon, Kenneth B.; Farlow, Martin R.; Ferris, Steven; Foroud, Tatiana M.; Frosch, Matthew P.; Galasko, Douglas R.; Ganguli, Mary; Gearing, Marla; Geschwind, Daniel H.; Ghetti, Bernardino; Gilbert, John R.; Gilman, Sid; Glass, Jonathan D.; Goate, Alison M.; Graff-Radford, Neill R.; Green, Robert C.; Growdon, John H.; Hakonarson, Hakon; Hamilton-Nelson, Kara L.; Hamilton, Ronald L.; Harrell, Lindy E.; Head, Elizabeth; Honig, Lawrence S.; Hulette, Christine M.; Hyman, Bradley T.; Jicha, Gregory A.; Jin, Lee-Way; Jun, Gyungah; Kamboh, M. Ilyas; Karydas, Anna; Kaye, Jeffrey A.; Kim, Ronald; Koo, Edward H.; Kowall, Neil W.; Kramer, Joel H.; Kramer, Patricia; Kukull, Walter A.; LaFerla, Frank M.; Lah, James J.; Leverenz, James B.; Levey, Allan I.; Li, Ge; Lin, Chiao-Feng; Lieberman, Andrew P.; Lopez, Oscar L.; Lunetta, Kathryn L.; Lyketsos, Constantine G.; Mack, Wendy J.; Marson, Daniel C.; Martin, Eden R.; Martiniuk, Frank; Mash, Deborah C.; Masliah, Eliezer; McKee, Ann C.; Mesulam, Marsel; Miller, Bruce L.; Miller, Carol A.; Miller, Joshua W.; Montine, Thomas J.; Morris, John C.; Murrell, Jill R.; Naj, Adam C.; Olichney, John M.; Parisi, Joseph E.; Peskind, Elaine; Petersen, Ronald C.; Pierce, Aimee; Poon, Wayne W.; Potter, Huntington; Quinn, Joseph F.; Raj, Ashok; Raskind, Murray; Reiman, Eric M.; Reisberg, Barry; Reitz, Christiane; Ringman, John M.; Roberson, Erik D.; Rosen, Howard J.; Rosenberg, Roger N.; Sano, Mary; Saykin, Andrew J.; Schneider, Julie A.; Schneider, Lon S.; Seeley, William W.; Smith, Amanda G.; Sonnen, Joshua A.; Spina, Salvatore; Stern, Robert A.; Tanzi, Rudolph E.; Trojanowski, John Q.; Troncoso, Juan C.; Tsuang, Debby W.; Valladares, Otto; Van Deerlin, Vivianna M.; Van Eldik, Linda J.; Vardarajan, Badri N.; Vinters, Harry V.; Vonsattel, Jean Paul; Wang, Li-San; Weintraub, Sandra; Welsh-Bohmer, Kathleen A.; Williamson, Jennifer; Woltjer, Randall L.; Wright, Clinton B.; Younkin, Steven G.; Yu, Chang-En; Yu, Lei

2012-01-01

234

Genetic Background Alters the Severity and Onset of Neuromuscular Disease Caused by the Loss of Ubiquitin-Specific Protease 14 (Usp14)  

PubMed Central

In this study, we identified and characterized an N-ethyl-N-nitrosourea (ENU) induced mutation in Usp14 (nmf375) that leads to adult-onset neurological disease. The nmf375 mutation causes aberrant splicing of Usp14 mRNA, resulting in a 95% reduction in USP14. We previously showed that loss of USP14 in ataxia (axJ) mice results in reduced ubiquitin levels, motor endplate disease, Purkinje cell axonal dystrophy and decreased hippocampal paired pulse facilitation (PPF) during the first 4-6 weeks of life, and early postnatal lethality by two months of age. Although the loss of USP14 is comparable between the nmf375 and axJ mice, the nmf375 mice did not exhibit these axJ developmental abnormalities. However, by 12 weeks of age the nmf375 mutants present with ubiquitin depletion and motor endplate disease, indicating a continual role for USP14-mediated regulation of ubiquitin pools and neuromuscular junction (NMJ) structure in adult mice. The observation that motor endplate disease was only seen after ubiquitin depletion suggests that the preservation of NMJ structure requires the stable maintenance of synaptic ubiquitin pools. Differences in genetic background were shown to affect ubiquitin expression and dramatically alter the phenotypes caused by USP14 deficiency. PMID:24358326

Hallengren, Jada J.; Walters, Brandon J.; Dobrunz, Lynn E.; Francillon, Ludwig; Wilson, Julie A.; Phillips, Scott E.; Wilson, Scott M.

2013-01-01

235

ALTERED SENSITIVITY OF THE MOUSE FETUS TO IMPAIRED PROSTATIC BUD FORMATION BY DIOXIN: INFLUENCE OF GENETIC BACKGROUND AND NULL EXPRESSION OF TGF-ALFA AND EGF  

EPA Science Inventory

Altered sensitivity of the mouse fetus to impaired prostatic bud formation by dioxin: Influence of genetic background and null expression of TGF and EGF. Rasmussen, N.T., Lin T-M., Fenton, S.E., Abbott, B.D. and R.E. Peterson. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)...

236

Altered brain gene expression but not steroid biochemistry in a genetic mouse model of neurodevelopmental disorder  

PubMed Central

Background The 39,XY*O mouse, which lacks the orthologues of the ADHD and autism candidate genes STS (steroid sulphatase) and ASMT (acetylserotonin O-methyltransferase), exhibits behavioural phenotypes relevant to developmental disorders. The neurobiology underlying these phenotypes is unclear, although there is evidence for serotonergic abnormalities in the striatum and hippocampus. Methods Using microarray and quantitative gene expression analyses, and gas chromatography–mass spectrometry, we compared brain gene expression and steroid biochemistry in wildtype (40,XY) and 39,XY*O adult mice to identify non-obvious genetic and endocrine candidates for between-group differences in behaviour and neurochemistry. We also tested whether acute STS inhibition by COUMATE in wildtype (40,XY) adult male mice recapitulated any significant gene expression or biochemical findings from the genetic comparison. Data were analysed by unpaired t-test or Mann Whitney U-test depending on normality, with a single factor of KARYOTYPE. Results Microarray analysis indicated seven robust gene expression differences between the two groups (Vmn2r86, Sfi1, Pisd-ps1, Tagap1, C1qc, Metap1d, Erdr1); Erdr1 and C1qc expression was significantly reduced in the 39,XY*O striatum and hippocampus, whilst the expression of Dhcr7 (encoding 7-dehydrocholesterol reductase, a modulator of serotonin system development), was only reduced in the 39,XY*O hippocampus. None of the confirmed gene expression changes could be recapitulated by COUMATE administration. We detected ten free, and two sulphated steroids in 40,XY and 39,XY*O brain; surprisingly, the concentrations of all of these were equivalent between groups. Conclusions Our data demonstrate that the mutation in 39,XY*O mice: i) directly disrupts expression of the adjacent Erdr1 gene, ii) induces a remarkably limited suite of downstream gene expression changes developmentally, with several of relevance to associated neurobehavioural phenotypes and iii) does not elicit large changes in brain steroid biochemistry. It is possible that individuals with STS/ASMT deficiency exhibit a similarly specific pattern of gene expression changes to the 39,XY*O mouse, and that these contribute towards their abnormal neurobiology. Future work may focus on whether complement pathway function, mitochondrial metabolism and cholesterol biosynthesis pathways are perturbed in such subjects. PMID:24602487

2014-01-01

237

Genetic merit for fertility traits in Holstein cows: V. Factors affecting circulating progesterone concentrations.  

PubMed

This study investigated the factors affecting circulating progesterone (P4) concentrations in cows with similar genetic merit for milk production traits, but with extremes of good (Fert+) or poor (Fert-) genetic merit for fertility traits. Study 1: 28 cows were enrolled in an ovulation synchronization protocol at 61±13 (±standard deviation) days postpartum, and data are presented for 13 Fert+ and 9 Fert- cows that remained in the study. Progesterone concentrations were determined from d 0 to 9 (d 0=estrus) and on d 7, corpus luteum (CL) volume and blood flow area (BFA) were measured by B-mode and Doppler ultrasonography, respectively. Cows were administered PGF2? on d 7 in the p.m. and d 8 in the a.m. to regress the CL, and 2 controlled internal drug release devices were inserted per vaginum on d 8 in the a.m. Liver biopsies were collected on d 9 and hepatic mRNA abundance of genes involved in P4 catabolism was determined. On d 10, the controlled internal drug release inserts were removed and frequent blood samples were collected to measure the rate of decline in circulating P4. The Fert+ cows tended to have greater dry matter intake compared with Fert- cows (+0.79kg of dry matter/d), but similar milk production (29.82kg/d). After synchronized ovulation, the rate of increase in circulating P4 concentrations was greater in Fert+ cows compared with Fert- cows. No effect of genotype on CL volume was detected, but BFA was 42% greater in Fert+ cows compared with Fert- cows. The Fert- cows had greater mRNA abundance of cytochrome P450, family 3, subfamily A (CYP3A) compared with Fert+ cows, but the mRNA abundance of aldo-keto reductase family 1, member C1 (AKR1C1), AKR1C3, AKR1C4, and cytochrome P450, family 2, subfamily C (CYP2C) were similar. The half-life and metabolic clearance rate of P4 were similar in Fert+ cows and Fert- cows. Study 2: 23 cows were enrolled in an ovulation synchronization protocol at 55±7 (±standard deviation) d postpartum, and data are presented for 13 Fert+ and 8 Fert- cows that remained in the study. On d 4, 7, 10, and 13 (d 0=estrus), CL volume and BFA were measured as in study 1. Progesterone concentrations were measured from d 1 to 13. Corpus luteum volume was 41% greater in Fert+ cows compared with Fert- cows but no effect of genotype on BFA was detected. Mean circulating P4 concentrations were 79% greater in Fert+ cows compared with Fert- cows. Milk yield was similar in both genotypes. The results indicate that greater circulating P4 concentrations were primarily due to greater CL P4 synthetic capacity rather than differences in P4 clearance in this lactating cow genetic model of fertility. PMID:24952779

Moore, S G; Scully, S; Browne, J A; Fair, T; Butler, S T

2014-09-01

238

Titanium Mass-balance Analysis of Paso Robles Soils: Elemental Gains and Losses as Affected by Acid Alteration Fluids  

NASA Technical Reports Server (NTRS)

The Columbia Hills soils have been exposed to aqueous alteration in alkaline [1] as well as acid conditions [2,3]. The Paso Robles class soils are bright soils that possess the highest S concentration of any soil measured on Mars [2]. Ferric-sulfate detection by Moessbauer analysis indicated that acid solutions were involved in forming these soils [4]. These soils are proposed to have formed by alteration of nearby rock by volcanic hydrothermal or fumarolic activity. The Paso Robles soils consist of the original Paso Robles-disturbed-Pasadena (PR-dist), Paso Robles- PasoLight (PR-PL), Arad-Samra, Arad-Hula, Tyrone- Berker Island1 and Tyrone-MountDarwin [2 ,3. ]Chemical characteristics indicate that the PR-dist and PR-PL soils could be derived from acid weathering of local Wishstone rocks while the Samra and Hula soils are likely derived from local Algonquin-Iroquet rock [3]. The Paso Robles soils were exposed to acidic sulfur bearing fluids; however, little else is known about the chemistry of the alteration fluid and its effects on the alteration of the proposed parent materials. The objectives of this work are to conduct titanium normalized mass-balance analysis to1) assess elemental gains and losses from the parent materials in the formation of the Paso Robles soils and 2) utilize this information to indicate the chemical nature of the alteration fluids.

Sutter, Brad; Ming, Douglas W.

2010-01-01

239

Indirect genetic effects for growth rate in domestic pigs alter aggressive and manipulative biting behaviour.  

PubMed

Indirect genetic effects (IGEs) are heritable effects of an individual on phenotypic values of others, and may result from social interactions. We determined the behavioural consequences of selection for IGEs for growth (IGEg) in pigs in a G × E treatment design. Pigs (n = 480) were selected for high versus low IGEg with a contrast of 14 g average daily gain and were housed in either barren or straw-enriched pens (n = 80). High IGEg pigs showed from 8 to 23 weeks age 40% less aggressive biting (P = 0.006), 27% less ear biting (P = 0.03), and 40% less biting on enrichment material (P = 0.005). High IGEg pigs had a lower tail damage score (high 2.0; low 2.2; P = 0.004), and consumed 30 % less jute sacks (P = 0.002). Selection on high IGEg reduced biting behaviours additive to the, generally much larger, effects of straw-bedding (P < 0.01), with no G × E interactions. These results show opportunities to reduce harmful biting behaviours in pigs. PMID:25227986

Camerlink, Irene; Ursinus, Winanda W; Bijma, Piter; Kemp, Bas; Bolhuis, J Elizabeth

2015-01-01

240

Heteroplasmy of Mouse mtDNA Is Genetically Unstable and Results in Altered Behavior and Cognition  

PubMed Central

SUMMARY Maternal inheritance of mtDNA is the rule in most animals, but the reasons for this pattern remain unclear. To investigate the consequence of overriding uniparental inheritance, we generated mice containing an admixture (heteroplasmy) of NZB and 129S6 mtDNAs in the presence of a congenic C57BL/6J nuclear background. Analysis of the segregation of the two mtDNAs across subsequent maternal generations revealed that proportion of NZB mtDNA was preferentially reduced. Ultimately, this segregation process produced NZB-129 heteroplasmic mice and their NZB or 129 mtDNA homo-plasmic counterparts. Phenotypic comparison of these three mtDNA lines demonstrated that the NZB-129 heteroplasmic mice, but neither homoplasmic counterpart, had reduced activity, food intake, respiratory exchange ratio; accentuated stress response; and cognitive impairment. Therefore, admixture of two normal but different mouse mtDNAs can be genetically unstable and can produce adverse physiological effects, factors that may explain the advantage of uniparental inheritance of mtDNA. PMID:23063123

Eckel-Mahan, Kristin; McManus, Meagan; Crimi, Marco; Waymire, Katrina; Lin, Chun Shi; Masubuchi, Satoru; Friend, Nicole; Koike, Maya; Chalkia, Dimitra; MacGregor, Grant; Sassone-Corsi, Paolo; Wallace, Douglas C.

2014-01-01

241

Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition.  

PubMed

Maternal inheritance of mtDNA is the rule in most animals, but the reasons for this pattern remain unclear. To investigate the consequence of overriding uniparental inheritance, we generated mice containing an admixture (heteroplasmy) of NZB and 129S6 mtDNAs in the presence of a congenic C57BL/6J nuclear background. Analysis of the segregation of the two mtDNAs across subsequent maternal generations revealed that proportion of NZB mtDNA was preferentially reduced. Ultimately, this segregation process produced NZB-129 heteroplasmic mice and their NZB or 129 mtDNA homoplasmic counterparts. Phenotypic comparison of these three mtDNA lines demonstrated that the NZB-129 heteroplasmic mice, but neither homoplasmic counterpart, had reduced activity, food intake, respiratory exchange ratio; accentuated stress response; and cognitive impairment. Therefore, admixture of two normal but different mouse mtDNAs can be genetically unstable and can produce adverse physiological effects, factors that may explain the advantage of uniparental inheritance of mtDNA. PMID:23063123

Sharpley, Mark S; Marciniak, Christine; Eckel-Mahan, Kristin; McManus, Meagan; Crimi, Marco; Waymire, Katrina; Lin, Chun Shi; Masubuchi, Satoru; Friend, Nicole; Koike, Maya; Chalkia, Dimitra; MacGregor, Grant; Sassone-Corsi, Paolo; Wallace, Douglas C

2012-10-12

242

Detection of ultrastructural changes in genetically altered and exercised skeletal muscle using PS-OCT  

NASA Astrophysics Data System (ADS)

Birefringence of skeletal muscle has been associated with the ultrastructure of individual sarcomeres, specifically the arrangement of A-bands corresponding to the thick myosin filaments. Murine skeletal muscle (gastrocnemius) was imaged with a fiber-based PS-OCT imaging system to determine the level of birefringence present in the tissue under various conditions. In addition to muscle controls from wild-type mice, muscle from abnormal mice included: genetically-modified (mdx) mice which model human muscular dystrophy, transgenic mice exhibiting an overexpression of integrin (?7?1), and transgenic integrin (?7?1)knockout mice. Comparisons were also made between rested and exercised muscles to determine the effects of exercise on muscle birefringence for each of these normal and abnormal conditions. The PS-OCT images revealed that the presence of birefringence was similar in the rested muscle with dystrophy-like features (i.e., lacking the structural protein dystrophin - mdx) and in the integrin (?7?1)knockout muscle when compared to the normal (wild-type) control. However, exercising these abnormal muscle tissues drastically reduced the presence of birefringence detected by the PS-OCT system. The muscle exhibiting an overexpression of integrin (?7?1) remained heavily birefringent before and after exercise, similar to the normal (wild-type) muscle. These results suggest that there is a distinct relationship between the degree of birefringence detected using PS-OCT and the sarcomeric ultrastructure present within skeletal muscle.

Pasquesi, James J.; Schlachter, Simon C.; Boppart, Marni D.; Chaney, Eric; Kaufman, Stephen J.; Boppart, Stephen A.

2006-02-01

243

Whole-exome sequencing reveals frequent genetic alterations in BAP1, NF2, CDKN2A, and CUL1 in malignant pleural mesothelioma.  

PubMed

Malignant pleural mesothelioma (MPM) is an aggressive neoplasm associated with asbestos exposure. Although previous studies based on candidate gene approaches have identified important common somatic mutations in MPM, these studies have focused on small sets of genes and have provided a limited view of the genetic alterations underlying this disease. Here, we performed whole-exome sequencing on DNA from 22 MPMs and matched blood samples, and identified 517 somatic mutations across 490 mutated genes. Integrative analysis of mutations and somatic copy-number alterations revealed frequent genetic alterations in BAP1, NF2, CDKN2A, and CUL1. Our study presents the first unbiased view of the genomic basis of MPM. PMID:25488749

Guo, Guangwu; Chmielecki, Juliann; Goparaju, Chandra; Heguy, Adriana; Dolgalev, Igor; Carbone, Michele; Seepo, Sara; Meyerson, Matthew; Pass, Harvey I

2015-01-15

244

Genetically-induced Estrogen Receptor Alpha mRNA (Esr1) Overexpression Does Not Adversely Affect Fertility or Penile Development in Male Mice  

PubMed Central

Previously, we reported that estrogen receptor alpha mRNA (Esr1) or protein (ESR1) overexpression resulting from neonatal exposure to estrogens in rats was associated with infertility and mal-developed penis characterized by reduced length and weight and abnormal accumulation of fat cells. The objective of this study was to determine if mutant male mice overexpressing Esr1 are naturally infertile or have reduced fertility and/or develop abnormal penis. The fertility parameters, including fertility and fecundity indices, numbers of days from the day of cohabitation to the day of delivery, and numbers of pups per female, were not altered from controls, as a result of Esr1 overexpression. Likewise, penile morphology, including the length, weight, and diameter and os penis development, was not altered from controls. Conversely, weights of the seminal vesicles and bulbospongiosus and levator ani (BS/LA) muscles were significantly (P < 0.05) lower as compared to controls; however, the weight of the testis, the morphology of the testis and epididymis, and the plasma and testicular testosterone concentration were not different from controls. Hence, the genetically-induced Esr1 overexpression alone, without an exogenous estrogen exposure during the neonatal period, is unable to adversely affect the development of the penis as well as other male reproductive organs, except limited, but significant, reductions in weights of the seminal vesicles and BS/LA muscles. PMID:20930192

Heath, John; Abdelmageed, Yazeed; Braden, Tim D.; Williams, Carol S.; Williams, John W.; Paulose, Tessie; Hernandez-Ochoa, Isabel; Gupta, Rupesh; Flaws, Jodi A.; Goyal, Hari O.

2011-01-01

245

Ontogeny of Mouse Vestibulo-Ocular Reflex Following Genetic or Environmental Alteration of Gravity Sensing  

PubMed Central

The vestibular organs consist of complementary sensors: the semicircular canals detect rotations while the otoliths detect linear accelerations, including the constant pull of gravity. Several fundamental questions remain on how the vestibular system would develop and/or adapt to prolonged changes in gravity such as during long-term space journey. How do vestibular reflexes develop if the appropriate assembly of otoliths and semi-circular canals is perturbed? The aim of present work was to evaluate the role of gravity sensing during ontogeny of the vestibular system. In otoconia-deficient mice (ied), gravity cannot be sensed and therefore maculo-ocular reflexes (MOR) were absent. While canals-related reflexes were present, the ied deficit also led to the abnormal spatial tuning of the horizontal angular canal-related VOR. To identify putative otolith-related critical periods, normal C57Bl/6J mice were subjected to 2G hypergravity by chronic centrifugation during different periods of development or adulthood (Adult-HG) and compared to non-centrifuged (control) C57Bl/6J mice. Mice exposed to hypergravity during development had completely normal vestibulo-ocular reflexes 6 months after end of centrifugation. Adult-HG mice all displayed major abnormalities in maculo-ocular reflexe one month after return to normal gravity. During the next 5 months, adaptation to normal gravity occurred in half of the individuals. In summary, genetic suppression of gravity sensing indicated that otolith-related signals might be necessary to ensure proper functioning of canal-related vestibular reflexes. On the other hand, exposure to hypergravity during development was not sufficient to modify durably motor behaviour. Hence, 2G centrifugation during development revealed no otolith-specific critical period. PMID:22808156

Beraneck, Mathieu; Bojados, Mickael; Le Séac’h, Anne; Jamon, Marc; Vidal, Pierre-Paul

2012-01-01

246

Computational and genetic evidence that different structural conformations of a non-catalytic region affect the function of plant cellulose synthase  

PubMed Central

The ?-1,4-glucan chains comprising cellulose are synthesized by cellulose synthases in the plasma membranes of diverse organisms including bacteria and plants. Understanding structure–function relationships in the plant enzymes involved in cellulose synthesis (CESAs) is important because cellulose is the most abundant component in the plant cell wall, a key renewable biomaterial. Here, we explored the structure and function of the region encompassing transmembrane helices (TMHs) 5 and 6 in CESA using computational and genetic tools. Ab initio computational structure prediction revealed novel bi-modal structural conformations of the region between TMH5 and 6 that may affect CESA function. Here we present our computational findings on this region in three CESAs of Arabidopsis thaliana (AtCESA1, 3, and 6), the Atcesa3 ixr1-2 mutant, and a novel missense mutation in AtCESA1. A newly engineered point mutation in AtCESA1 (Atcesa1 F954L) that altered the structural conformation in silico resulted in a protein that was not fully functional in the temperature-sensitive Atcesa1 rsw1-1 mutant at the restrictive temperature. The combination of computational and genetic results provides evidence that the ability of the TMH5–6 region to adopt specific structural conformations is important for CESA function. PMID:25262226

Slabaugh, Erin; Sethaphong, Latsavongsakda; Xiao, Chaowen; Amick, Joshua; Anderson, Charles T.; Haigler, Candace H.; Yingling, Yaroslava G.

2014-01-01

247

Computational and genetic evidence that different structural conformations of a non-catalytic region affect the function of plant cellulose synthase.  

PubMed

The ?-1,4-glucan chains comprising cellulose are synthesized by cellulose synthases in the plasma membranes of diverse organisms including bacteria and plants. Understanding structure-function relationships in the plant enzymes involved in cellulose synthesis (CESAs) is important because cellulose is the most abundant component in the plant cell wall, a key renewable biomaterial. Here, we explored the structure and function of the region encompassing transmembrane helices (TMHs) 5 and 6 in CESA using computational and genetic tools. Ab initio computational structure prediction revealed novel bi-modal structural conformations of the region between TMH5 and 6 that may affect CESA function. Here we present our computational findings on this region in three CESAs of Arabidopsis thaliana (AtCESA1, 3, and 6), the Atcesa3(ixr1-2) mutant, and a novel missense mutation in AtCESA1. A newly engineered point mutation in AtCESA1 (Atcesa1(F954L) ) that altered the structural conformation in silico resulted in a protein that was not fully functional in the temperature-sensitive Atcesa1(rsw1-1) mutant at the restrictive temperature. The combination of computational and genetic results provides evidence that the ability of the TMH5-6 region to adopt specific structural conformations is important for CESA function. PMID:25262226

Slabaugh, Erin; Sethaphong, Latsavongsakda; Xiao, Chaowen; Amick, Joshua; Anderson, Charles T; Haigler, Candace H; Yingling, Yaroslava G

2014-12-01

248

Response to Dietary Phosphate Deficiency is Affected by Genetic Background in Growing Pigs  

Technology Transfer Automated Retrieval System (TEKTRAN)

Concern over the environmental impact of phosphate (P) excretion from pig production has led to reduced dietary P supplementation. To examine how genetics influence P utilization, 94 gilts sired by 2 genetic lines (PIC337 and PIC280) were fed either a P adequate diet (PA) or a 20% P deficient diet ...

249

Genetic variation in the CHRNA5 gene affects mRNA levels and is associated with risk for alcohol dependence  

PubMed Central

Alcohol dependence frequently co-occurs with cigarette smoking, another common addictive behavior. Evidence from genetic studies demonstrates that alcohol dependence and smoking cluster in families and have shared genetic vulnerability. Recently a candidate gene study in nicotine dependent cases and nondependent smoking controls reported strong associations between a missense mutation (rs16969968) in exon 5 of the CHRNA5 gene and a variant in the 3?-UTR of the CHRNA3 gene and nicotine dependence. In this study we performed a comprehensive association analysis of the CHRNA5–CHRNA3–CHRNB4 gene cluster in the Collaborative Study on the Genetics of Alcoholism (COGA) families to investigate the role of genetic variants in risk for alcohol dependence. Using the family-based association test, we observed that a different group of polymorphisms, spanning CHRNA5-CHRNA3, demonstrate association with alcohol dependence defined by Diagnostic and Statistical Manual of Mental Disorders, 4th edn (DSM-IV) criteria. Using logistic regression we replicated this finding in an independent case-control series from the family study of cocaine dependence. These variants show low linkage disequilibrium with the SNPs previously reported to be associated with nicotine dependence and therefore represent an independent observation. Functional studies in human brain reveal that the variants associated with alcohol dependence are also associated with altered steady-state levels of CHRNA5 mRNA. PMID:18414406

Wang, JC; Grucza, R; Cruchaga, C; Hinrichs, AL; Bertelsen, S; Budde, JP; Fox, L; Goldstein, E; Reyes, O; Saccone, N; Saccone, S; Xuei, X; Bucholz, K; Kuperman, S; Nurnberger, J; Rice, JP; Schuckit, M; Tischfield, J; Hesselbrock, V; Porjesz, B; Edenberg, HJ; Bierut, LJ; Goate, AM

2015-01-01

250

Autism spectrum disorders: a qualitative study of attitudes toward prenatal genetic testing and termination decisions of affected pregnancies.  

PubMed

In the United States, prenatal genetic testing (PGT) for Autism Spectrum Disorders (ASD) is currently available via clinical genetic services. Such testing may inform parents about their unborn child's risk for ASD, prepare parents for the birth of an affected infant, and allow them to arrange for early interventions. Although PGT for autism has potential benefits, the associated ethical, legal, and social implications (ELSI) should be considered. This first qualitative study employed a hypothetical scenario to explore the attitudes toward PGT and termination decisions of 42 parents of children with ASD. Over half of the participants expressed willingness to undergo PGT for autism. Reasons included better preparation for birth, early and better treatment, termination of affected pregnancy, contribution to research, and curiosity. Of the 31 parents who were either willing or unsure about undergoing the PGT, approximately three-fourths would continue their hypothetical affected pregnancies. Explanations included preparation for birth of the child, bonding or acceptance of existing ASD-affected children, apprehensions about test limitations, and religious concerns. Parents who reported they would terminate the affected pregnancy in this hypothetical situation were primarily Asians. This study contributes to the growing understanding of the ELSI aspects of PGT in clinical practice. PMID:25251361

Chen, L S; Xu, L; Dhar, S U; Li, M; Talwar, D; Jung, E

2014-09-24

251

Altering and assessing persistence of genetically modified E. coli MG1655 in the large bowel.  

PubMed

One of the primary factors limiting the efficacy of probiotic therapies is short persistence time. Utilizing a novel method for assessment of persistence in the large bowel independent of survival of the organisms in the upper GI tract, we tested whether overexpression of the type 1 pilus, a colonization factor, or the presence of secretory immunoglobulin A (sIgA) might increase the persistence time of a laboratory strain of E. coli in the gut. For this purpose, cecal ostomies were created in mice and bacteria were placed in the ostomies, with or without sIgA. The persistence of the bacteria was assessed by evaluating the length of time after placement in which the bacteria were found in fecal samples. E. coli MG1655 expressing pili with the mannose-specific adhesin persisted in vivo significantly longer [mean (hours) +/- SEM: 91.50 +/- 15.98, n = 12] than bacteria expressing pili without adhesin [43.67 +/- 8.22, n = 12] (P = 0.01) and significantly longer than bacteria expressing neither pili nor adhesin [22.00 +/- 4.22, n = 12] (P = 0.0004). Although the persistence time of bacteria was not significantly affected by the presence of sIgA, the sIgA did cause a relative increase in retention of inert particles. These results, combined with an acute increase in stool production and stool water content in those animals not receiving sIgA following introduction of bacteria, suggest that sIgA might have anti-inflammatory properties in the gut when administered with enteric bacteria. Modifying expression of probiotic colonization factors may provide substantial benefit to patients with digestive tract diseases by virtue of increased persistence of the probiotic and, in the case of sIgA, an anti-inflammatory effect. This novel in vivo model may be useful in evaluating persistence time in a variety of current and future probiotic regimens. PMID:19596821

Barbas, Andrew S; Lesher, Aaron P; Thomas, Anitra D; Wyse, Aaron; Devalapalli, Aditya P; Lee, Yu-Huei; Tan, Hung-Enn; Orndorff, Paul E; Bollinger, R Randal; Parker, William

2009-10-01

252

Mapping of genetic modifiers affecting the eye phenotype of ocular retardation ( Chx10 or-J ) mice  

Microsoft Academic Search

Ocular retardation is a recessive murine mutation whose phenotypic expression is greatly affected by genetic background effects.\\u000a Mice of the inbred 129\\/SvJ background that are homozygous for the Chx10or-J mutation are blind and have a thin, poorly differentiated retina and no optic nerve. A backcross between 129\\/SvJ and Mus musculus castaneus (CASA\\/Rk) produced animals that were homozygous for the Chx10or-J

Gilbert Wong; Sharmila Basu Conger; Margit Burmeister

2006-01-01

253

Genetic and epigenetic alterations of bone marrow stromal cells in myelodysplastic syndrome and acute myeloid leukemia patients.  

PubMed

We evaluated the characteristics of bone marrow stromal cells (BMSCs) and hematopoietic cells (HCs) from patients of myelodysplastic syndrome (MDS, n=21) and acute myeloid leukemia (AML, n=58), and compared the results with control BMSCs derived from healthy donors (n=8). The patient BMSCs had lower proliferative activity than that of the controls due to increased senescence. This retarded proliferation induced failure to obtain enough metaphase cells for karyotyping in patient BMSCs (10%). Patient BMSCs were genetically altered which was demonstrated by chromosome abnormalities in 5% of the patients (one MDS and three AML), whereas no clonal abnormalities were detected in the controls. The most common abnormality of the BMSCs was an extra chromosome 5, followed by an extra chromosome 7 and balanced translocations. The proportion of the abnormal metaphase cells was low (17.8%). We also analyzed the epigenetic changes of long interspersed nucleotide element 1 (LINE-1) repetitive element and CDKN2B using pyrosequencing. The quantitative measurement of global LINE-1 methylation demonstrated that patient BMSCs revealed global hypomethylation (68.2±3.8) compared with controls (72.9±3.4, P<0.001) and that the global hypomethylation of BMSCs were more significant in AML than in MDS patients (67.9±3.8, 69.4±4.2, respectively). These findings seem worthy of further evaluation of their association with ineffective hematopoiesis and leukemogenesis. PMID:25665922

Kim, Yonggoo; Jekarl, Dong Wook; Kim, Jiyeon; Kwon, Ahlm; Choi, Hayoung; Lee, Seungok; Kim, Yoo-Jin; Kim, Hee-Je; Kim, Yonghwan; Oh, Il-Hoan; Kim, Myungshin

2015-03-01

254

Fear induced neuronal alterations in a genetic model of depression: an fMRI study on awake animals.  

PubMed

Previous human imaging studies used facial stimuli to explore the potential association between depression and fear. This study aimed at investigating brain alterations in a rodent model of depression when innate fear was induced in the form of the predator odor trimethylthiazoline (TMT). Flinders sensitive line (FSL) rats, a genetic animal model of depression, and their control counterpart Flinders resistant line (FRL), were used in this functional magnetic resonance imaging (fMRI) assessment. Compared to FRL, FSL rats exhibited greater BOLD activation in the cortical amygdala and hypoactivation in the prefrontal cortex in response to TMT, suggesting cortico-amygdalar dysfunction in the depressed strain. In addition, the hyperactivation in the insular cortex in FSL rats may be the basis for enhanced neuronal responses to fear and aversion in depression. These results are evidence for the value of translational models of depression in expanding understanding of the neural circuitries sub-serving common human co-morbidities like depression and fear. PMID:21134416

Huang, Wei; Heffernan, Meghan E; Li, Zhixin; Zhang, Nanyin; Overstreet, David H; King, Jean A

2011-02-01

255

Genetic and Phenotypic Analyses of a Papaver somniferum T-DNA Insertional Mutant with Altered Alkaloid Composition.  

PubMed

The in vitro shoot culture of a T-DNA insertional mutant of Papaver somniferum L. established by the infection of Agrobacterium rhizogenes MAFF03-01724 accumulated thebaine instead of morphine as a major opium alkaloid. To develop a non-narcotic opium poppy and to gain insight into its genetic background, we have transplanted this mutant to soil, and analyzed its alkaloid content along with the manner of inheritance of T-DNA insertion loci among its selfed progenies. In the transplanted T0 primary mutant, the opium (latex) was found to be rich in thebaine (16.3% of dried opium) by HPLC analysis. The analyses on T-DNA insertion loci by inverse PCR, adaptor-ligation PCR, and quantitative real-time PCR revealed that as many as 18 copies of T-DNAs were integrated into a poppy genome in a highly complicated manner. The number of copies of T-DNAs was decreased to seven in the selected T3 progenies, in which the average thebaine content was 2.4-fold that of the wild type plant. This may indicate that the high thebaine phenotype was increasingly stabilized as the number of T-DNA copies was decreased. In addition, by reverse transcription PCR analysis on selected morphine biosynthetic genes, the expression of codeine 6-O-demethylase was clearly shown to be diminished in the T0 in vitro shoot culture, which can be considered as one of the key factors of altered alkaloid composition. PMID:24288085

Kawano, Noriaki; Kiuchi, Fumiyuki; Kawahara, Nobuo; Yoshimatsu, Kayo

2012-01-01

256

Genetic Deletion of Rheb1 in the Brain Reduces Food Intake and Causes Hypoglycemia with Altered Peripheral Metabolism  

PubMed Central

Excessive food/energy intake is linked to obesity and metabolic disorders, such as diabetes. The hypothalamus in the brain plays a critical role in the control of food intake and peripheral metabolism. The signaling pathways in hypothalamic neurons that regulate food intake and peripheral metabolism need to be better understood for developing pharmacological interventions to manage eating behavior and obesity. Mammalian target of rapamycin (mTOR), a serine/threonine kinase, is a master regulator of cellular metabolism in different cell types. Pharmacological manipulations of mTOR complex 1 (mTORC1) activity in hypothalamic neurons alter food intake and body weight. Our previous study identified Rheb1 (Ras homolog enriched in brain 1) as an essential activator of mTORC1 activity in the brain. Here we examine whether central Rheb1 regulates food intake and peripheral metabolism through mTORC1 signaling. We find that genetic deletion of Rheb1 in the brain causes a reduction in mTORC1 activity and impairs normal food intake. As a result, Rheb1 knockout mice exhibit hypoglycemia and increased lipid mobilization in adipose tissue and ketogenesis in the liver. Our work highlights the importance of central Rheb1 signaling in euglycemia and energy homeostasis in animals. PMID:24451134

Yang, Wanchun; Jiang, Wanxiang; Luo, Liping; Bu, Jicheng; Pang, Dejiang; Wei, Jing; Du, Chongyangzi; Xia, Xiaoqiang; Cui, Yiyuan; Liu, Shuang; Mao, Qing; Chen, Mina

2014-01-01

257

Spinocerebellar Ataxia: Patient and Health Professional Perspectives on Whether and How Patents Affect Access to Clinical Genetic Testing  

PubMed Central

Genetic testing for spinocerebellar ataxia (SCA) is used in diagnosis of rare movement disorders. Such testing generally does not affect treatment, but confirmation of mutations in a known gene can confirm diagnosis and end an often years-long quest for the cause of distressing and disabling symptoms. Through interviews and a web forum hosted by the National Ataxia Foundation, patients and health professionals related their experiences with patents’ impact on access to genetic testing for SCA. In the United States, Athena Diagnostics holds either a patent or an exclusive license to a patent in the case of 6 SCA variants (SCA1-3 & 6-8) and two other hereditary ataxias (Friedreich’s Ataxia and Early Onset Ataxia). Athena has enforced its exclusive rights to SCA-related patents by sending cease and desist letters to multiple laboratories offering genetic testing for inherited neurological conditions, including SCA. Roughly half of web forum respondents had decided not to get genetic tests. Price, coverage and reimbursement by insurers and health plans, and fear of genetic discrimination were the main reasons cited for deciding not to get tested. Price was cited as an access concern by the physicians, and as sole US provider, coverage and reimbursement depend on having payment agreements between Athena and payers. In cases where payers do not reimburse, the patient is responsible for payment, although some patients can apply to the voluntary Athena Access and Patient Protection Programs offered by the company. PMID:20393313

Powell, Ashton; Chandrasekharan, Subhashini; Cook-Deegan, Robert

2011-01-01

258

Unusual genetic architecture of natural variation affecting drug resistance in Drosophila melanogaster.  

PubMed

Naturally occurring genetic variation was quantified for survival time of adult Drosophila melanogaster exposed to chronic ingestion of the drugs nicotine, caffeine, dopamine, tyramine and octopamine. Responses to nicotine, tyramine and octopamine were genetically correlated in both sexes, whereas caffeine response correlated with starvation resistance. However, there is also genetic variation that is specific for each of the drugs. Females tended to be more resistant than males to nicotine and caffeine but sex-by-genotype interactions were also seen for these drugs and for the response to dopamine. An unusual and complex genetic architecture was observed in crosses between lines with different responses to caffeine ingestion. Additive and dominance components were clearly seen from the analysis of F1 individuals, but increased female resistance to caffeine in backcross generations and increased male sensitivity in F2 generations confused the interpretation of possible epistatic contributions. PMID:12688659

Carrillo, Roland; Gibson, Greg

2002-12-01

259

NLRP7 affects trophoblast lineage differentiation, binds to overexpressed YY1 and alters CpG methylation  

Technology Transfer Automated Retrieval System (TEKTRAN)

Maternal-effect mutations in NLRP7 cause rare biparentally inherited hydatidiform moles (BiHMs), abnormal pregnancies containing hypertrophic vesicular trophoblast but no embryo. BiHM trophoblasts display abnormal DNA methylation patterns affecting maternally methylated germline differentially methy...

260

Genetic variation in APOJ, LPL, and TNFRSF10B affects plasma fatty acid distribution in Alaskan Eskimos123  

PubMed Central

Background: Alterations in plasma fatty acid distribution are linked to metabolic abnormalities related to type 2 diabetes and cardiovascular disease. Objective: The aim of this study was to investigate genetic factors influencing plasma fatty acid distribution in Alaskan Eskimos from the Genetics of Coronary Artery Disease in Alaska Natives (GOCADAN) study. Design: Fatty acids in plasma were measured by gas chromatography in 761 related individuals (>35 y of age). Results: Quantitative genetic analyses showed that fatty acid distribution is significantly heritable (P < 0.001), with heritabilities ranging from 0.33 to 0.55. A genome-wide scan for plasma fatty acids identified a 20-cM region on chromosome 8 (p12–p21) with a quantitative trait locus for monounsaturated fatty acids (logarithm of odds score = 3.8). The same region had a quantitative trait locus for polyunsaturated fatty acids (logarithm of odds score = 2.6). We genotyped single nucleotide polymorphisms (SNPs) in candidate genes in 8p12–p21 and found a significant association between fatty acids and SNPs in apolipoprotein J (APOJ), lipoprotein lipase (LPL), macrophage scavenger receptor 1 (MSR1), and tumor necrosis factor receptor superfamily member 10b (TNFRSF10B). A Bayesian quantitative trait nucleotide analysis based on a measured genotype model showed that SNPs in LPL, TNFRSF10B, and APOJ had strong statistical evidence of a functional effect (posterior probability ?75%) on plasma fatty acid distribution. Conclusions: The results indicate that there is strong genetic influence on plasma fatty acid distribution and that genetic variation in APOJ, LPL, and TNFRSF10B may play a role. The GOCADAN study was registered at www.clinicaltrials.gov as NCT00006192. PMID:20410100

Voruganti, V Saroja; Cole, Shelley A; Ebbesson, Sven OE; Göring, Harald HH; Haack, Karin; Laston, Sandra; Wenger, Charlotte R; Tejero, M Elizabeth; Devereux, Richard B; Fabsitz, Richard R; MacCluer, Jean W; Umans, Jason G; Howard, Barbara V; Comuzzie, Anthony G

2010-01-01

261

Oxidative stability of purified canola oil triacylglycerols with altered fatty acid compositions as affected by triacylglycerol composition and structure  

Microsoft Academic Search

Canola oil triacylglycerols from genetically modified canola lines (InterMountain Canola Co., Cinnaminson, NJ) have been evaluated\\u000a for their photooxidative and autoxidative stabilities, as influenced by their fatty acid compositions and their triacylglycerol\\u000a compositions and structures. Purified canola oil triacylglycerols were oxidized in duplicate in fluorescent light at 25°C\\u000a and in the dark at 60°C under oxygen, and their oxidative deterioration

W. E. Neff; T. L. Mounts; W. M. Rinsch; H. Konishi; M. A. El-Agaimy

1994-01-01

262

Masked hypodiploidy in anaplastic meningiomas by duplication of the original clone found in atypical meningiomas: illustration of the evolution of genetic alterations.  

PubMed

Meningiomas are common, usually benign neoplasms of the central nervous system. Atypical and anaplastic meningiomas can be aggressive, show more rapid growth, and a greater propensity to recur following resection. General consensus believes that genetic abnormalities leading to anaplastic transformation are present at initial tumor presentation; however, this has not been demonstrated by array-comparative genome hybridization. We confirm the hypothesis by showing the evolution of genetic alterations in the transformation of an atypical meningioma to an anaplastic meningioma. Additionally, we provide potential genes responsible for malignant transformation of meningiomas, which, with further research, may provide diagnostic and therapeutic implications. PMID:24612240

Ely, Erin E; Guzman, Miguel A; Calvey, Laura S; Batanian, Jacqueline R

2014-08-01

263

Genetic variation responsible for mouse strain differences in integrin {alpha}{sub 2} expression is associated with altered platelet responses to collagen  

SciTech Connect

Formation of a thrombus at the site of an injured vessel requires the coordinated action of critical platelet plasma membrane adhesion molecules. The most important initial contact of platelets with the exposed endothelial collagen and von Willebrand factor (VWF) involves the binding of glycoprotein (GP) Ib{alpha} to immobilized VWF. The VWF-GPIb{alpha} interaction is ''fast-on'' and relatively ''fast-off,'' and results in a rolling of platelets along the exposed subendothelium. This slowing of the platelets allows binding of the activating collagen-receptor, GPVI, to its ligand, resulting in activation of platelet integrins and subsequent firm adhesion, where the reactions between receptor and ligand are relatively ''slow-on'' but irreversible. The binding of integrin {alpha}{sub 2} {beta}{sub 1} underlying firm adhesion. Intracellular signaling between and through these adhesive receptors plays a crucial role in platelet adhesion and aggregation. The importance of the GPIb-IX-V and {alpha}{sub IIb} {beta}{sub 3} in normal hemostasis is under scored by the bleeding diatheses that have been reported in patients with quantitative or qualitative deficiencies of the genes that encode them. Mouse models are now commonplace for studying hemostasis and thrombosis, and important insights pertaining to the major platelet adhesive receptors have been gleaned from mouse studies involving targeted disruptions of the genes for GPIb{alpha}, GPVI, and integrin chains 2,9,10 1,4 IIb 11 and 3.12 A variety of different mouse strains have been used to assess hemostasis. For example, the FVB strain is typically used for transgenic experiments, the 129/Sv strain is used to derive embryonic stem (ES) cells, and the C57 strain is used for uniform background breeding studies. Different strains may exhibit different levels of gene expression, a feature that has been used to elucidate crucial gene regions regulating transcription. We and others have previously studied how genetic changes exert quantitative and qualitative alterations in human platelet adhesive receptors. Polymorphisms of both integrin {alpha}{sub 2} and GPIb have been associated with quantitative differences in receptor levels in healthy individuals. The variation of integrin {alpha}{sub 2} in the normal population is 5-fold, and some portion of this variability has been associated with a C/T polymorphism at nucleotide 807. Individuals homozygous for the 807C or 807T alleles have an average 2-fold difference in platelet {alpha}{sub 2} {beta}{sub 1} levels, and this difference has been linked to increased adhesion to collagen and clinical thrombotic events. Comparable alterations in platelet adhesion receptor expression have not been assessed in different mouse strains. Assessing the functional consequences of subtle genetic variations in humans is challenged by numerous gene-gene and gene environment interactions, and studies in mice can greatly minimize these confounding variables. In addition, comparative sequence analyses between species and between nonhuman primates have proved useful for identifying sequences that affect function and expression. Thus, in the case of platelet adhesion receptors, knowing mouse strain differences in expression levels might be valuable for defining the responsible quantitative trait loci as well as affecting strain choice for particular functional experiments.

Li, Tong-Tong; Larrucea, Susana; Souza, Shiloe; Leal, Suzanne M.; Lopez, Jose A.; Rubin, Edward M.; Nieswandt, Bernhard; Bray, Paul F.

2003-11-01

264

Sex differences in the adult HPA axis and affective behaviors are altered by perinatal exposure to a low dose of bisphenol A.  

PubMed

Bisphenol A (BPA), an estrogen-mimicking endocrine disrupter, when administered perinatally can affect affective behaviors in adult rodents, however the underlying mechanisms remain largely unclear. Postnatal day (PND) 80 vehicle-injected control female rats showed more obvious depression- and anxiety-like behaviors than males, indicative of sexually dimorphic affective behaviors. When female breeders were subcutaneously injected with BPA (2µg/kg) from gestation day 10 to lactation day 7, sex difference of affective behaviors was impaired in their offspring (PND80 BPA-rats), as results that female BPA-rats showed a visible "antianxiety-like" behavior, and male BPA-rats increased depression-like behavior compared to vehicle-injected controls. Notably, basal levels of serum corticosterone and adrenocorticotropin (ACTH), and corticotropin-releasing hormone mRNA were increased in male BPA-rats, but not in female BPA-rats, in comparison with vehicle-injected controls. Following mild-stressor the elevation of corticosterone or ACTH levels was higher in male BPA-rats, whereas it was lower in female BPA-rats than vehicle-injected controls. In comparison with vehicle-injected controls, the level of glucocorticoid receptor (GR) mRNA in hippocampus or hypothalamic paraventricular nucleus was increased in female BPA-rats, while decreased in male BPA-rats. In addition, the levels of hippocampal mineralocorticoid receptor (MR) mRNA, neuronal nitric oxide synthase (nNOS) and phospho-cAMP response element binding protein (p-CREB) were increased in female BPA-rats, but were decreased in male BPA-rats. Furthermore, the testosterone level was reduced in male BPA-rats. The results indicate that the perinatal exposure to BPA through altering the GR and MR expression disrupts the GR-mediated feedback of hypothalamic-pituitary-adrenal (HPA) axis and MR-induced nNOS-CREB signaling, which alters sex difference in affective behaviors. PMID:24857958

Chen, Fang; Zhou, Libin; Bai, Yinyang; Zhou, Rong; Chen, Ling

2014-07-01

265

Synergistic ablation does not affect atrophy or altered myosin heavy chain expression in the non-weight bearing soleus muscle  

NASA Technical Reports Server (NTRS)

The purpose of this study was to investigate whether the soleus muscle undergoes atrophy and alterations in myosin heavy chain (MHC) composition during non-weight bearing in the absence of synergists. Thirty-two female rats were randomly assigned to four groups: control (C), synergistic ablation (ABL) of the gastrocnemius and plantaris muscles to overload the soleus muscle, hindlimb suspension (HLS), or a combination of synergistic ablation and hindlimb suspension (HLS-ABL). After 28 days of hindlimb suspension, soleus atrophy was more pronounced in HLS (58%) than in HLS-ABL (43%) rats. Compared to C rats, non-weight bearing decreased mixed and myofibrillar protein contents and Type I MHC 49%, 45%, and 7%, respectively, in HLS animals. In addition, de novo expression of fast Type IIx and Type IIb MHC (5% and 2%, respectively) was observed in HLS animals. Similarly, when compared to C rats, mixed and myofibrillar protein contents and Type I MHC decreased 43%, 46%, and 4%, respectively, in HLS-ABL animals. Also, de novo expression of Type IIx (4%) and IIb (1%) MHC was observed. Collectively, these data indicate that the loss of muscle protein and Type I MHC, and the de novo expression of Type IIx and Type IIb MHC in the rat soleus occur independently of the presence of synergists during non-weight bearing. Furthermore, these results confirm the contention that soleus mass and MHC expression are highly sensitive to alterations in mechanical load.

Linderman, J. K.; Talmadge, R. J.; Gosselink, K. L.; Tri, P. N.; Roy, R. R.; Grindeland, R. E.

1996-01-01

266

The Genetics of Mexico Recapitulates Native American Substructure and Affects Biomedical Traits  

PubMed Central

Mexico harbors great cultural and ethnic diversity, yet fine-scale patterns of human genome-wide variation from this region remain largely uncharacterized. We studied genomic variation within Mexico from over 1,000 individuals representing 20 indigenous and 11 mestizo populations. We found striking genetic stratification among indigenous populations within Mexico at varying degrees of geographic isolation. Some groups were as differentiated as Europeans are from East Asians. Pre-Columbian genetic substructure is recapitulated in the indigenous ancestry of admixed mestizo individuals across the country. Furthermore, two independently phenotyped cohorts of Mexicans and Mexican Americans showed a significant association between sub-continental ancestry and lung function. Thus, accounting for fine-scale ancestry patterns is critical for medical and population genetic studies within Mexico, in Mexican-descent populations, and likely in many other populations worldwide. PMID:24926019

Moreno-Estrada, Andrés; Gignoux, Christopher R.; Fernández-López, Juan Carlos; Zakharia, Fouad; Sikora, Martin; Contreras, Alejandra V.; Acuña-Alonzo, Victor; Sandoval, Karla; Eng, Celeste; Romero-Hidalgo, Sandra; Ortiz-Tello, Patricia; Robles, Victoria; Kenny, Eimear E.; Nuño-Arana, Ismael; Barquera-Lozano, Rodrigo; Macín-Pérez, Gastón; Granados-Arriola, Julio; Huntsman, Scott; Galanter, Joshua M.; Via, Marc; Ford, Jean G.; Chapela, Rocío; Rodriguez-Cintron, William; Rodríguez-Santana, Jose R.; Romieu, Isabelle; Sienra-Monge, Juan José; Navarro, Blanca del Rio; London, Stephanie J.; Ruiz-Linares, Andrés; Garcia-Herrera, Rodrigo; Estrada, Karol; Hidalgo-Miranda, Alfredo; Jimenez-Sanchez, Gerardo; Carnevale, Alessandra; Soberón, Xavier; Canizales-Quinteros, Samuel; Rangel-Villalobos, Héctor; Silva-Zolezzi, Irma; Burchard, Esteban Gonzalez; Bustamante, Carlos D.

2014-01-01

267

Pubertal Onset in Girls is Strongly Influenced by Genetic Variation Affecting FSH Action  

PubMed Central

Age at pubertal onset varies substantially in healthy girls. Although genetic factors are responsible for more than half of the phenotypic variation, only a small part has been attributed to specific genetic polymorphisms identified so far. Follicle-stimulating hormone (FSH) stimulates ovarian follicle maturation and estradiol synthesis which is responsible for breast development. We assessed the effect of three polymorphisms influencing FSH action on age at breast deveopment in a population-based cohort of 964 healthy girls. Girls homozygous for FSHR -29AA (reduced FSH receptor expression) entered puberty 7.4 (2.5–12.4) months later than carriers of the common variants FSHR -29GG+GA, p = 0.003. To our knowledge, this is the strongest genetic effect on age at pubertal onset in girls published to date. PMID:25231187

Hagen, Casper P.; Sørensen, Kaspar; Aksglaede, Lise; Mouritsen, Annette; Mieritz, Mikkel G.; Tinggaard, Jeanette; Wohlfart-Veje, Christine; Petersen, Jørgen Holm; Main, Katharina M.; Meyts, Ewa Rajpert-De; Almstrup, Kristian; Juul, Anders

2014-01-01

268

Highthroughput soybean gene expression analysis The changes in the atmosphere are altering gene expression and affecting the interaction  

E-print Network

silencing in soybean. A short sequence of targeted plant gene is cloned into the vector. Soybean unifoliate expression and affecting the interaction between plants and pathogens and insects. We are using Affymetrix soybean oligoarrays to analyze changes in the gene expression profile. Affymetrix GeneChip® Soybean Genome

DeLucia, Evan H.

269

A Forward Genetic Strategy Reveals Destabilizing Mutations in the Ebolavirus Glycoprotein That Alter Its Protease Dependence during Cell Entry? †  

PubMed Central

Ebolavirus (EBOV) entry into cells requires proteolytic disassembly of the viral glycoprotein, GP. This proteolytic processing, unusually extensive for an enveloped virus entry protein, is mediated by cysteine cathepsins, a family of endosomal/lysosomal proteases. Previous work has shown that cleavage of GP by cathepsin B (CatB) is specifically required to generate a critical entry intermediate. The functions of this intermediate are not well understood. We used a forward genetic strategy to investigate this CatB-dependent step. Specifically, we generated a replication-competent recombinant vesicular stomatitis virus bearing EBOV GP as its sole entry glycoprotein and used it to select viral mutants resistant to a CatB inhibitor. We obtained mutations at six amino acid positions in GP that independently confer complete resistance. All of the mutations reside at or near the GP1-GP2 intersubunit interface in the membrane-proximal base of the prefusion GP trimer. This region forms a part of the “clamp” that holds the fusion subunit GP2 in its metastable prefusion conformation. Biochemical studies suggest that most of the mutations confer CatB independence not by altering specific cleavage sites in GP but rather by inducing conformational rearrangements in the prefusion GP trimer that dramatically enhance its susceptibility to proteolysis. The remaining mutants did not show the preceding behavior, indicating the existence of multiple mechanisms for acquiring CatB independence during entry. Altogether, our findings suggest that CatB cleavage is required to facilitate the triggering of viral membrane fusion by destabilizing the prefusion conformation of EBOV GP. PMID:19846533

Wong, Anthony C.; Sandesara, Rohini G.; Mulherkar, Nirupama; Whelan, Sean P.; Chandran, Kartik

2010-01-01

270

Negative Affect Shares Genetic and Environmental Influences with Symptoms of Childhood Internalizing and Externalizing Disorders  

ERIC Educational Resources Information Center

The co-occurrence of internalizing and externalizing disorders suggests that they may have common underlying vulnerability factors. Research has shown that negative affect is moderately positively correlated with both internalizing and externalizing disorders in children. The present study is the first to provide an examination of negative affect

Mikolajewski, Amy J.; Allan, Nicholas P.; Hart, Sara A.; Lonigan, Christopher J.; Taylor, Jeanette

2013-01-01

271

THE LOCATION OF GENETIC FACTORS AFFECTING A QUANTITATIVE CHARACTER IN WHEAT  

Microsoft Academic Search

a proper understanding of the genetics of continuous variation. it cannot FfeRdoubted that the genes responsible for the control of metrical characters must be isolated so that their individual properties may be investigated. THODAY (1961 ) has emphasised this point of view and has described methods by which genes of this kind can be located. Essentially these methods involve two

C. N. LAW

272

Morphologic, Pathologic, and Genetic Investigations of Bolbophorus Species Affecting Cultured Channel Catfish in the Mississippi Delta  

Microsoft Academic Search

Trematodes belonging to the genus Bolbophorus have recently been reported as the cause of substantial morbidity and mortality in cultured channel catfish Ictalurus punctatus in Mississippi and Louisiana. Previous investigators identified only a single species, B. confusus. In this investigation, genetic techniques were used to identify all stages of the parasite in all of its hosts. The 18s rRNA genes

M. G. Levy; J. R. Flowers; M. F. Poore; J. E. Mullen; L. H. Khoo; L. M. Pote; I. Paperna; R. Dzikowski; R. W. Litaker

2002-01-01

273

Non-genetic factors affecting live weight and daily gain weight in Serrana Transmontano kids  

Microsoft Academic Search

The objective of this study was to evaluate the effect of some non-genetic factors on birth weight, weaning weight and daily gain weight in Serrana Transmontano kids. Data from 8930 records were analysed. Results showed that birth weight (BW), adjusted live weight at 30 days of age (W30), adjusted weaning weight at 60 days of age (WW), average daily gain

M. R. Jiménez-Badillo; S. Rodrigues; C. Sañudo; A. Teixeira

2009-01-01

274

Copyright 1998 by the Genetics Society of America Quantitative Trait Loci Affecting Differences in Floral Morphology  

E-print Network

. cardinalis flowers are visited mostly by hummingbirds. The genetic control of 12 morphological differences between the flowers of M. lewisii and M. cardinalis was explored in a large linkage mapping population pollination, but they of quantitative trait loci (QTLs) controlling adaptive are exserted in M. cardinalis

Bradshaw, Toby

275

Environmental, Management, and Genetic Factors Affecting Semen Production in Holstein Bulls  

Microsoft Academic Search

The objective of this study was to evaluate the importance of environment, management, physiologi- cal status, and genetics on semen quality (volume of the ejaculate, sperm concentration, sperm motility, number of sperm, and number of motile spermatozoa per ejaculate) of Canadian Holstein bulls. For this purpose, semen production data from 198 bulls were analyzed using mixed linear models. Young bulls

M. Mathevon; M. M. Buhr; J. C. M. Dekkers

1998-01-01

276

Environmental, management and genetic factors affecting semen production in French Montbéliard bulls  

Microsoft Academic Search

The objectives of this study were to evaluate the importance of physiological, environmental, management and genetic factors on semen production (semen volume, sperm concentration and number of sperm per ejaculate) and to estimate the correlation between sexual performance of bulls at early age in the test station and at later ages in AI units. Semen production data from three AI

M Mathevon; J. C. M Dekkers; M. M Buhr

1998-01-01

277

Genomic alterations on 8p21-p23 are the most frequent genetic events in stage I squamous cell carcinoma of the lung  

PubMed Central

Genetic alterations in the early stages of cancer have a close correlation with tumor initiation and potentially activate downstream pathways implicated in tumor progression; however, the method of initiation in sporadic neoplasias is largely unknown. In this study, whole-genome microarray-comparative genomic hybridization was performed to identify the early genetic alterations that define the prognosis of patients with stage I squamous cell carcinoma (SCC) of the lung. The most striking finding was the high frequency of copy number losses and hemizygous deletions on chromosome 8p, which occurred in 94.7% (18/19) and 63.2% (12/19) of the cases, respectively, with a delineated minimal common region of 8p21.1-p23.3. More specifically, three loci of homozygous deletions at 8p23.1 were noted in 21.1% (4/19) of the cases. This region contains the following possible target genes, which have previously not been implicated to play a pathogenic role in stage I SCCs: MSRA, MFHAS1, CLDN23, DEFB106A, DEFB105A, LOC441316, FAM90A7P and LOC441318. These findings indicate that genetic alterations on chromosome 8p may be the first step in the initiation of genomic instability in early SCCs, and the newly identified genes in the 8p23.1 chromosomal region might be of interest for the study of the pathophysiology of stage I SCC, as potential targets for therapeutic measures. PMID:25574196

KANG, JIUN

2015-01-01

278

Genetic and Epigenetic Alteration among Three Homoeologous Genes of a Class E MADS Box Gene in Hexaploid Wheat[W][OA  

PubMed Central

Bread wheat (Triticum aestivum) is a hexaploid species with A, B, and D ancestral genomes. Most bread wheat genes are present in the genome as triplicated homoeologous genes (homoeologs) derived from the ancestral species. Here, we report that both genetic and epigenetic alterations have occurred in the homoeologs of a wheat class E MADS box gene. Two class E genes are identified in wheat, wheat SEPALLATA (WSEP) and wheat LEAFY HULL STERILE1 (WLHS1), which are homologs of Os MADS45 and Os MADS1 in rice (Oryza sativa), respectively. The three wheat homoeologs of WSEP showed similar genomic structures and expression profiles. By contrast, the three homoeologs of WLHS1 showed genetic and epigenetic alterations. The A genome WLHS1 homoeolog (WLHS1-A) had a structural alteration that contained a large novel sequence in place of the K domain sequence. A yeast two-hybrid analysis and a transgenic experiment indicated that the WLHS1-A protein had no apparent function. The B and D genome homoeologs, WLHS1-B and WLHS1-D, respectively, had an intact MADS box gene structure, but WLHS1-B was predominantly silenced by cytosine methylation. Consequently, of the three WLHS1 homoeologs, only WLHS1-D functions in hexaploid wheat. This is a situation where three homoeologs are differentially regulated by genetic and epigenetic mechanisms. PMID:17586655

Shitsukawa, Naoki; Tahira, Chikako; Kassai, Ken-ichiro; Hirabayashi, Chizuru; Shimizu, Tomoaki; Takumi, Shigeo; Mochida, Keiichi; Kawaura, Kanako; Ogihara, Yasunari; Murai, Koji

2007-01-01

279

Altered Levels of Histone Deacetylase OsHDT1 Affect Differential Gene Expression Patterns in Hybrid Rice  

Microsoft Academic Search

Hybrids between different inbred varieties display novel patterns of gene expression resulted from parental variation in allelic nucleotide sequences. To study the function of chromatin regulators in hybrid gene expression, the histone deacetylase gene OsHDT1 whose expression displayed a circadian rhythm was over-expressed or inactivated by RNAi in an elite rice parent. Increased OsHDT1 expression did not affect plant growth

Chen Li; Limin Huang; Caiguo Xu; Yu Zhao; Dao-Xiu Zhou

2011-01-01

280

Is FKBP5 a genetic marker of affective psychosis? A case control study and analysis of disease related traits  

PubMed Central

Background A dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis has been proposed as an important pathogenic factor in depression. Genetic variants of FKBP5, a protein of the HPA system modulating the glucocorticoid receptor, have been reported to be genetically associated with improved response to medical treatment and an increase of depressive episodes. Methods We examined three single nucleotide polymorphisms (SNPs) in FKBP5, rs4713916 in the proposed promoter region, rs1360780 in the second intron and rs3800373 in the 3'-untranslated region (3'-UTR), in a case-control study of Caucasian origin (affective psychosis: n = 248; controls: n = 188) for genetic association and association with disease related traits. Results Allele and genotype frequencies of rs4713916, rs1360780 and rs3800373 were not significantly different between cases and controls. Two three-locus haplotypes, G-C-T and A-T-G, accounted for 86.2% in controls. Odds ratios were not increased between cases and controls, except the rare haplotype G-C-G (OR 6.81), representing 2.1% of cases and 0.3% of controls. The frequency of rs4713916AG in patients deviated from expected Hardy-Weinberg equilibrium, the genotype AA at rs4713916 in monopolar depression (P = 0.011), and the two-locus haplotype rs1360780T – rs3800373T in the total sample (overall P = 0.045) were nominally associated with longer continuance of disease. Conclusion Our data do not support a significant genetic contribution of FKBP5 polymorphisms and haplotypes to affective psychosis, and the findings are inconclusive regarding their contribution to disease-related traits. PMID:17081296

Gawlik, Micha; Moller-Ehrlich, Kerstin; Mende, Meinhard; Jovnerovski, Michael; Jung, Sven; Jabs, Burkhard; Knapp, Michael; Stoeber, Gerald

2006-01-01

281

Altered Subcellular Localization of Tumor-Specific Cyclin E Isoforms Affects Cyclin-Dependent Kinase 2 Complex Formation and Proteasomal Regulation  

PubMed Central

In tumors, alternative translation and posttranslational proteolytic cleavage of full-length cyclin E (EL) produces tumorigenic low molecular weight cyclin E (LMW-E) isoforms that lack a portion of the EL amino-terminus containing a nuclear localization sequence. Therefore, we hypothesized that LMW-E isoforms have altered subcellular localization. To explore our hypothesis, we compared EL versus LMW-E localization in cell lysates and in vivo using fractionation and protein complementation assays. Our results reveal that LMW-E isoforms preferentially accumulate in the cytoplasm where they bind the cyclin E kinase partner, cyclin-dependent kinase 2 (Cdk2), and have associated kinase activity. The nuclear ubiquitin ligase Fbw7 targets Cdk2-bound cyclin E for degradation; thus, we examined if altered subcellular localization affected LMW-E degradation. We found that cytoplasmic LMW-E/Cdk2 was less susceptible to Fbw7-mediated degradation. One implication of our findings is that altered LMW-E and LMW-E/Cdk2 subcellular localization may lead to aberrant LMW-E protein interactions, regulation, and activity, ultimately contributing to LMW-E tumorigenicity. PMID:19318554

Delk, Nikki A.; Hunt, Kelly K.; Keyomarsi, Khandan

2009-01-01

282

Statistics of Scientific Procedures on Living Animals 2013: Experimentation continues to rise - the reliance on genetically-altered animals must be addressed.  

PubMed

The 2013 Statistics of Scientific Procedures on Living Animals reveal that the level of animal experimentation in Great Britain continues to rise, with 4.12 million procedures being conducted. The figures indicate that this is almost exclusively a result of the breeding and use of genetically-altered (GA) animals (i.e. genetically-modified animals, plus those with harmful genetic defects). The breeding of GA animals increased to over half (51%) of all the procedures, and GA animals were involved in 61% of all the procedures. Indeed, if these animals were removed from the statistics, the number of procedures would actually have declined by 4%. It is argued that the Coalition Government has failed to address this issue, and, as a consequence, will not be able to deliver its pledge to reduce animal use in science. Recent publications supporting the need to reassess the dominance of genetic alteration are also discussed, as well as the need to move away from the use of dogs as the default second species in safety testing. The general trends in the species used, and the numbers and types of procedures, are also reviewed. Finally, forthcoming changes to the statistics are discussed. PMID:25290946

Hudson-Shore, Michelle

2014-09-01

283

Genetic Diversity of Sockeye Salmon of Cook Inlet, Alaska, and Its Application to Management of Populations Affected by the Exxon Valdez Oil Spill  

Microsoft Academic Search

Genetic data from sockeye salmon Oncorhynchus nerka were collected from all major systems in upper Cook Inlet, Alaska, that produce sockeye salmon, including the Kenai River drainage, a major system that was affected by the Exxon Valdez oil spill. The products of 29 enzymes encoded by 67 protein-encoding loci resolved by allozyme analysis revealed a substantial amount of genetic diversity

Lisa W. Seeb; Chris Habicht; William D. Templin; Kenneth E. Tarbox; Randall Z. Davis; Linda K. Brannian; James E. Seeb

2000-01-01

284

The inhibition of aromatase alters the mechanical and rheological properties of non-small-cell lung cancer cell lines affecting cell migration.  

PubMed

Tumor invasion and metastasis are key aspects of non-small cell lung cancer (NSCLC). During migration, cells undergo mechanical alterations. The mechanical phenotype of breast cancer cells is correlated with aromatase gene expression. We have previously shown that targeting aromatase is a promising strategy for NSCLC. The aim of this study was to examine morphological and mechanical changes of NSCLC cells, upon treatment with aromatase inhibitor and correlate their ability to migrate and invade. In vitro experiments were performed using H23 and A549 NSCLC cell lines and exemestane was used for aromatase inhibition. We demonstrated that exemestane reduced H23 cell migration and invasion and caused changes in cell morphology including increased vacuolar structures and greater pleomorphism. In addition, exemestane changed the distribution of ?-tubulin in H23 and A549 cells in a way that might destabilize microtubules polymerization. These effects were associated with increased cell viscosity and decreased elastic shear modulus. Although exemestane caused similar effects in A549 cells regarding viscosity and elastic shear modulus, it did not affect A549 cell migration and caused an increase in invasion. The increased invasion was in line with vimentin perinuclear localization. Our data show that the treatment of NSCLC cells with an aromatase inhibitor not only affects cell migration and invasion but also alters the mechanical properties of the cells. It suggests that the different origin of cancer cells is associated with different morphological characteristics and mechanical behavior. PMID:25450981

Giannopoulou, E; Siatis, K E; Metsiou, D; Kritikou, I; Papachristou, D J; Kalofonou, M; Koutras, A; Athanassiou, G; Kalofonos, H P

2015-02-01

285

The Major Genetic Determinants of HIV-1 Control Affect HLA Class I Peptide Presentation  

PubMed Central

Infectious and inflammatory diseases have repeatedly shown strong genetic associations within the major histocompatibility complex (MHC); however, the basis for these associations remains elusive. To define host genetic effects on the outcome of a chronic viral infection, we performed genome-wide association analysis in a multiethnic cohort of HIV-1 controllers and progressors, and we analyzed the effects of individual amino acids within the classical human leukocyte antigen (HLA) proteins. We identified >300 genome-wide significant single-nucleotide polymorphisms (SNPs) within the MHC and none elsewhere. Specific amino acids in the HLA-B peptide binding groove, as well as an independent HLA-C effect, explain the SNP associations and reconcile both protective and risk HLA alleles. These results implicate the nature of the HLA–viral peptide interaction as the major factor modulating durable control of HIV infection. PMID:21051598

Pereyra, Florencia; Jia, Xiaoming; McLaren, Paul J.; Telenti, Amalio; de Bakker, Paul I.W.; Walker, Bruce D.; Jia, Xiaoming; McLaren, Paul J.; Ripke, Stephan; Brumme, Chanson J.; Pulit, Sara L.; Telenti, Amalio; Carrington, Mary; Kadie, Carl M.; Carlson, Jonathan M.; Heckerman, David; de Bakker, Paul I.W.; Pereyra, Florencia; de Bakker, Paul I.W.; Graham, Robert R.; Plenge, Robert M.; Deeks, Steven G.; Walker, Bruce D.; Gianniny, Lauren; Crawford, Gabriel; Sullivan, Jordan; Gonzalez, Elena; Davies, Leela; Camargo, Amy; Moore, Jamie M.; Beattie, Nicole; Gupta, Supriya; Crenshaw, Andrew; Burtt, Noël P.; Guiducci, Candace; Gupta, Namrata; Carrington, Mary; Gao, Xiaojiang; Qi, Ying; Yuki, Yuko; Pereyra, Florencia; Piechocka-Trocha, Alicja; Cutrell, Emily; Rosenberg, Rachel; Moss, Kristin L.; Lemay, Paul; O’Leary, Jessica; Schaefer, Todd; Verma, Pranshu; Toth, Ildiko; Block, Brian; Baker, Brett; Rothchild, Alissa; Lian, Jeffrey; Proudfoot, Jacqueline; Alvino, Donna Marie L.; Vine, Seanna; Addo, Marylyn M.; Allen, Todd M.; Altfeld, Marcus; Henn, Matthew R.; Le Gall, Sylvie; Streeck, Hendrik; Walker, Bruce D.; Haas, David W.; Kuritzkes, Daniel R.; Robbins, Gregory K.; Shafer, Robert W.; Gulick, Roy M.; Shikuma, Cecilia M.; Haubrich, Richard; Riddler, Sharon; Sax, Paul E.; Daar, Eric S.; Ribaudo, Heather J.; Agan, Brian; Agarwal, Shanu; Ahern, Richard L.; Allen, Brady L.; Altidor, Sherly; Altschuler, Eric L.; Ambardar, Sujata; Anastos, Kathryn; Anderson, Ben; Anderson, Val; Andrady, Ushan; Antoniskis, Diana; Bangsberg, David; Barbaro, Daniel; Barrie, William; Bartczak, J.; Barton, Simon; Basden, Patricia; Basgoz, Nesli; Bazner, Suzane; Bellos, Nicholaos C.; Benson, Anne M.; Berger, Judith; Bernard, Nicole F.; Bernard, Annette M.; Birch, Christopher; Bodner, Stanley J.; Bolan, Robert K.; Boudreaux, Emilie T.; Bradley, Meg; Braun, James F.; Brndjar, Jon E.; Brown, Stephen J.; Brown, Katherine; Brown, Sheldon T.; Burack, Jedidiah; Bush, Larry M.; Cafaro, Virginia; Campbell, Omobolaji; Campbell, John; Carlson, Robert H.; Carmichael, J. Kevin; Casey, Kathleen K.; Cavacuiti, Chris; Celestin, Gregory; Chambers, Steven T.; Chez, Nancy; Chirch, Lisa M.; Cimoch, Paul J.; Cohen, Daniel; Cohn, Lillian E.; Conway, Brian; Cooper, David A.; Cornelson, Brian; Cox, David T.; Cristofano, Michael V.; Cuchural, George; Czartoski, Julie L.; Dahman, Joseph M.; Daly, Jennifer S.; Davis, Benjamin T.; Davis, Kristine; Davod, Sheila M.; Deeks, Steven G.; DeJesus, Edwin; Dietz, Craig A.; Dunham, Eleanor; Dunn, Michael E.; Ellerin, Todd B.; Eron, Joseph J.; Fangman, John J.W.; Farel, Claire E.; Ferlazzo, Helen; Fidler, Sarah; Fleenor-Ford, Anita; Frankel, Renee; Freedberg, Kenneth A.; French, Neel K.; Fuchs, Jonathan D.; Fuller, Jon D.; Gaberman, Jonna; Gallant, Joel E.; Gandhi, Rajesh T.; Garcia, Efrain; Garmon, Donald; Gathe, Joseph C.; Gaultier, Cyril R.; Gebre, Wondwoosen; Gilman, Frank D.; Gilson, Ian; Goepfert, Paul A.; Gottlieb, Michael S.; Goulston, Claudia; Groger, Richard K.; Gurley, T. Douglas; Haber, Stuart; Hardwicke, Robin; Hardy, W. David; Harrigan, P. Richard; Hawkins, Trevor N.; Heath, Sonya; Hecht, Frederick M.; Henry, W. Keith; Hladek, Melissa; Hoffman, Robert P.; Horton, James M.; Hsu, Ricky K.; Huhn, Gregory D.; Hunt, Peter; Hupert, Mark J.; Illeman, Mark L.; Jaeger, Hans; Jellinger, Robert M.; John, Mina; Johnson, Jennifer A.; Johnson, Kristin L.; Johnson, Heather; Johnson, Kay; Joly, Jennifer; Jordan, Wilbert C.; Kauffman, Carol A.; Khanlou, Homayoon; Killian, Robert K.; Kim, Arthur Y.; Kim, David D.; Kinder, Clifford A.; Kirchner, Jeffrey T.; Kogelman, Laura; Kojic, Erna Milunka; Korthuis, P. Todd; Kurisu, Wayne; Kwon, Douglas S.; LaMar, Melissa; Lampiris, Harry; Lanzafame, Massimiliano; Lederman, Michael M.; Lee, David M.; Lee, Jean M.L.; Lee, Marah J.; Lee, Edward T.Y.; Lemoine, Janice; Levy, Jay A.; Llibre, Josep M.; Liguori, Michael A.; Little, Susan J.; Liu, Anne Y.; Lopez, Alvaro J.; Loutfy, Mono R.; Loy, Dawn; Mohammed, Debbie Y.; Man, Alan; Mansour, Michael K.; Marconi, Vincent C.; Markowitz, Martin; Marques, Rui; Martin, Jeffrey N.; Martin, Harold L.; Mayer, Kenneth Hugh; McElrath, M. Juliana; McGhee, Theresa A.; McGovern, Barbara H.; McGowan, Katherine; McIntyre, Dawn; Mcleod, Gavin X.; Menezes, Prema; Mesa, Greg; Metroka, Craig E.; Meyer-Olson, Dirk; Miller, Andy O.; Montgomery, Kate; Mounzer, Karam C.; Nagami, Ellen H.; Nagin, Iris; Nahass, Ronald G.; Nelson, Margret O.; Nielsen, Craig; Norene, David L.; O’Connor, David H.; Ojikutu, Bisola O.; Okulicz, Jason; Oladehin, Olakunle O.; Oldfield, Edward C.

2011-01-01

286

Identification of genetic loci affecting amylose content and agronomic traits on chromosome 4A of wheat  

Microsoft Academic Search

Chromosome 4A of wheat carries the Wx-B1 gene encoding the granule-bound starch synthase involved in amylose synthesis in the endosperm. To determine the pleiotropic\\u000a effects of this locus and effects of independent QTLs on agronomic traits, genetical analysis of chromosome 4A was conducted\\u000a using 98 single-chromosome recombinant substitution lines derived from a cross of Chinese Spring and Chinese Spring (Kanto107

E. Araki; H. Miura; S. Sawada

1999-01-01

287

Early maternal separation affects ethanol-induced conditioning in a nor-BNI insensitive manner, but does not alter ethanol-induced locomotor activity.  

PubMed

Early environmental stress significantly affects the development of offspring. This stress has been modeled in rats through the maternal separation (MS) paradigm, which alters the functioning of the HPA axis and can enhance ethanol intake at adulthood. Infant rats are sensitive to ethanol's reinforcing effects, which modulate ethanol seeking and intake. Little is known about the impact of MS on sensitivity to ethanol's appetitive and aversive effects during infancy. The present study assessed ethanol-induced conditioned place preference established through second-order conditioning (SOC), spontaneous or ethanol-induced locomotor activity and ethanol intake in preweanling rats that experienced normal animal facility rearing (AFR) or daily episodes of maternal separation (MS) during postnatal days 1-13 (PDs 1-13). Low-ethanol dose (0.5 g/kg) induced appetitive conditioned place preference (via SOC) in control rats given conventional rearing but not in rats given maternal separation in early infancy, whereas 2.0 g/kg ethanol induced aversive conditioned place preference in the former but not the latter. The administration of a kappa antagonist at PD 1 or immediately before testing did not alter ethanol-induced reinforcement. High (i.e., 2.5 and 2.0 g/kg) but not low (i.e., 0.5 g/kg) ethanol dose induced reliable motor stimulation, which was independent of early maternal separation. Ethanol intake and blood alcohol levels during conditioning were unaffected by rearing conditions. Pups given early maternal separation had lower body weights than controls and showed an altered pattern of exploration when placed in an open field. These results indicate that, when assessed in infant rats, earlier maternal separation alters the balance between the appetitive and aversive motivational effects of ethanol but has no effect on the motor activating effects of the drug. PMID:22108648

Pautassi, Ricardo Marcos; Nizhnikov, Michael E; Fabio, Ma Carolina; Spear, Norman E

2012-01-01

288

Altered daylength affects dendritic structure in a song-related brain region in red-winged blackbirds.  

PubMed

Substantial neural and behavioral plasticity occurs in the avian song system in adulthood. Changes in the volume of one of the song control nuclei, robustus archistriatalis (RA), have been associated with seasonal changes in singing behavior in adult canaries (Serinus canarius) and red-winged blackbirds (Agelaius phoeniceus). The present work assessed the effects of changed daylength on dendritic morphology in RA in adult male red-winged blackbirds. Brains from hand-reared red-winged blackbirds maintained on long days or long days followed by short days were stained with a Golgi-Cox procedure. Dendritic morphology and spine density of type IV neurons from nucleus RA were compared between long and short day birds. Neurons from short day birds have smaller dendritic fields than neurons from long day birds, with the difference greatest for distal dendrites. In addition, the density of dendritic spines is significantly smaller for neurons from short day birds. Together, these changes result in the loss of approximately 40% of the spines on this neuron class. In previous work in adult female canaries, external testosterone administration has been shown to be associated with increases in dendritic field size and synapse number. The similarity of the neuronal changes in RA that are associated with the two sorts of manipulations suggest that some consequences of altered daylength are mediated by changes in the levels of gonadal steroids. PMID:1759944

Hill, K M; DeVoogd, T J

1991-11-01

289

Why Control Activity? Evolutionary Selection Pressures Affecting the Development of Physical Activity Genetic and Biological Regulation  

PubMed Central

The literature strongly suggests that daily physical activity is genetically and biologically regulated. Potential identities of the responsible mechanisms are unclear, but little has been written concerning the possible evolutionary selection pressures leading to the development of genetic/biological controls of physical activity. Given the weak relationship between exercise endurance and activity levels and the differential genomic locations associated with the regulation of endurance and activity, it is probable that regulation of endurance and activity evolved separately. This hypothesis paper considers energy expenditures and duration of activity in hunter/gatherers, pretechnology farmers, and modern Western societies and considers the potential of each to selectively influence the development of activity regulation. Food availability is also considered given the known linkage of caloric restriction on physical activity as well as early data relating food oversupply to physical inactivity. Elucidating the selection pressures responsible for the genetic/biological control of activity will allow further consideration of these pressures on activity in today's society, especially the linkages between food and activity. Further, current food abundance is removing the cues for activity that were present for the first 40,000 years of human evolution, and thus future research should investigate the effects of this abundance upon the mechanisms regulating activity. PMID:24455728

2013-01-01

290

Genetic interactions affecting human gene expression identified by variance association mapping  

PubMed Central

Non-additive interaction between genetic variants, or epistasis, is a possible explanation for the gap between heritability of complex traits and the variation explained by identified genetic loci. Interactions give rise to genotype dependent variance, and therefore the identification of variance quantitative trait loci can be an intermediate step to discover both epistasis and gene by environment effects (GxE). Using RNA-sequence data from lymphoblastoid cell lines (LCLs) from the TwinsUK cohort, we identify a candidate set of 508 variance associated SNPs. Exploiting the twin design we show that GxE plays a role in ?70% of these associations. Further investigation of these loci reveals 57 epistatic interactions that replicated in a smaller dataset, explaining on average 4.3% of phenotypic variance. In 24 cases, more variance is explained by the interaction than their additive contributions. Using molecular phenotypes in this way may provide a route to uncovering genetic interactions underlying more complex traits. DOI: http://dx.doi.org/10.7554/eLife.01381.001 PMID:24771767

Brown, Andrew Anand; Buil, Alfonso; Viñuela, Ana; Lappalainen, Tuuli; Zheng, Hou-Feng; Richards, J Brent; Small, Kerrin S; Spector, Timothy D; Dermitzakis, Emmanouil T; Durbin, Richard

2014-01-01

291

Genetics  

MedlinePLUS

... Inheritance; Heterozygous; Inheritance patterns; Heredity and disease; Heritable; Genetic markers ... The chromosomes are made up of strands of genetic information called DNA. Each chromosome contains sections of ...

292

The Role of Genetic Sex in Affect Regulation and Expression of GABA-Related Genes Across Species  

PubMed Central

Although circulating hormones and inhibitory gamma-aminobutyric acid (GABA)-related factors are known to affect mood, considerable knowledge gaps persist for biological mechanisms underlying the female bias in mood disorders. Here, we combine human and mouse studies to investigate sexual dimorphism in the GABA system in the context of major depressive disorder (MDD) and then use a genetic model to dissect the role of sex-related factors in GABA-related gene expression and anxiety-/depressive-like behaviors in mice. First, using meta-analysis of gene array data in human postmortem brain (N?=?51 MDD subjects, 50 controls), we show that the previously reported down-regulation in MDD of somatostatin (SST), a marker of a GABA neuron subtype, is significantly greater in women with MDD. Second, using gene co-expression network analysis in control human subjects (N?=?214; two frontal cortex regions) and expression quantitative trait loci mapping (N?=?170 subjects), we show that expression of SST and the GABA-synthesizing enzymes glutamate decarboxylase 67 (GAD67) and GAD65 are tightly co-regulated and influenced by X-chromosome genetic polymorphisms. Third, using a rodent genetic model [Four Core Genotypes (FCG) mice], in which genetic and gonadal sex are artificially dissociated (N???12/group), we show that genetic sex (i.e., X/Y-chromosome) influences both gene expression (lower Sst, Gad67, Gad65 in XY mice) and anxiety-like behaviors (higher in XY mice). This suggests that in an intact male animal, the observed behavior represents the outcomes of male genetic sex increasing and male-like testosterone decreasing anxiety-like behaviors. Gonadal sex was the only factor influencing depressive-like behavior (gonadal males?genetic sex) on GABA-related genes and anxiety-like behaviors. PMID:24062698

Seney, Marianne L.; Chang, Lun-Ching; Oh, Hyunjung; Wang, Xingbin; Tseng, George C.; Lewis, David A.; Sibille, Etienne

2013-01-01

293

Epidermal growth factor receptor signaling pathway is frequently altered in ampullary carcinoma at protein and genetic levels.  

PubMed

Our objective was to explore alteration of the epidermal growth factor receptor (EGFR) signaling pathway in ampullary carcinoma. Immunohistochemical studies were employed to evaluate expression of amphiregulin as well as expression and activation of EGFR. A lab-developed assay was used to identify mutations in the EGFR pathway genes, including KRAS, BRAF, PIK3CA, PTEN, and AKT1. A total of 52 ampullary carcinomas were identified, including 25 intestinal-type and 24 pancreatobiliary-type tumors, with the intestinal type being associated with a younger age at diagnosis (P=0.03) and a better prognosis (P<0.01). Expression of amphiregulin correlated with better differentiation (P<0.01), but no difference was observed between two major histologic types. Expression and activation of EGFR was more commonly seen in the pancreatobiliary type (P<0.01). Mutations were detected in 50% of the pancreatobiliary type and 60% of the intestinal type. KRAS was the most common gene mutated in the pancreatobiliary type (42%) as well as the intestinal type (52%). Other mutations detected included PIK3CA, SMAD4 and BRAF. KRAS mutations at codons 12 and 13 did not adversely affect overall survival. In conclusion, EGFR expression and activation were different between intestinal- and pancreatobiliary-type ampullary carcinoma. KRAS mutation was common in both histologic types; however, the incidence appeared to be lower in the pancreatobiliary type compared with its pancreatic counterpart, pancreatic ductal adenocarcinoma. Mutational analysis of the EGFR pathway genes may provide important insights into personalized treatment for patients with ampullary carcinoma. PMID:24186143

Mikhitarian, Kaidi; Pollen, Maressa; Zhao, Zhiguo; Shyr, Yu; Merchant, Nipun B; Parikh, Alexander; Revetta, Frank; Washington, M Kay; Vnencak-Jones, Cindy; Shi, Chanjuan

2014-05-01

294

Alteration of BRCA1 expression affects alcohol-induced transcription of RNA Pol III-dependent genes.  

PubMed

Emerging evidence has indicated that alcohol consumption is an established risk factor for breast cancer. Deregulation of RNA polymerase III (Pol III) transcription enhances cellular Pol III gene production, leading to an increase in translational capacity to promote cell transformation and tumor formation. We have reported that alcohol intake increases Pol III gene transcription to promote cell transformation and tumor formation in vitro and in vivo. Studies revealed that tumor suppressors, pRb, p53, PTEN and Maf1 repress the transcription of Pol III genes. BRCA1 is a tumor suppressor and its mutation is tightly related to breast cancer development. However, it is not clear whether BRCA1 expression affects alcohol-induced transcription of Pol III genes. At the present studies, we report that restoring BRCA1 in HCC 1937 cells, which is a BRCA1 deficient cell line, represses Pol III gene transcription. Expressing mutant or truncated BRCA1 in these cells does not affect the ability of repression on Pol III genes. Our analysis has demonstrated that alcohol induces Pol III gene transcription. More importantly, overexpression of BRCA1 in estrogen receptor positive (ER+) breast cancer cells (MCF-7) decreases the induction of tRNA(Leu) and 5S rRNA genes by alcohol, whereas reduction of BRCA1 by its siRNA slightly increases the transcription of the class of genes. This suggests that BRCA1 is associated with alcohol-induced deregulation of Pol III genes. These studies for the first time demonstrate the role of BRCA1 in induction of Pol III genes by alcohol and uncover a novel mechanism of alcohol-associated breast cancer. PMID:25447904

Zhong, Qian; Shi, Ganggang; Zhang, Yanmei; Lu, Lei; Levy, Daniel; Zhong, Shuping

2015-02-01

295

Your emotion or mine: labeling feelings alters emotional face perception—an ERP study on automatic and intentional affect labeling  

PubMed Central

Empirical evidence suggests that words are powerful regulators of emotion processing. Although a number of studies have used words as contextual cues for emotion processing, the role of what is being labeled by the words (i.e., one's own emotion as compared to the emotion expressed by the sender) is poorly understood. The present study reports results from two experiments which used ERP methodology to evaluate the impact of emotional faces and self- vs. sender-related emotional pronoun-noun pairs (e.g., my fear vs. his fear) as cues for emotional face processing. The influence of self- and sender-related cues on the processing of fearful, angry and happy faces was investigated in two contexts: an automatic (experiment 1) and intentional affect labeling task (experiment 2), along with control conditions of passive face processing. ERP patterns varied as a function of the label's reference (self vs. sender) and the intentionality of the labeling task (experiment 1 vs. experiment 2). In experiment 1, self-related labels increased the motivational relevance of the emotional faces in the time-window of the EPN component. Processing of sender-related labels improved emotion recognition specifically for fearful faces in the N170 time-window. Spontaneous processing of affective labels modulated later stages of face processing as well. Amplitudes of the late positive potential (LPP) were reduced for fearful, happy, and angry faces relative to the control condition of passive viewing. During intentional regulation (experiment 2) amplitudes of the LPP were enhanced for emotional faces when subjects used the self-related emotion labels to label their own emotion during face processing, and they rated the faces as higher in arousal than the emotional faces that had been presented in the “label sender's emotion” condition or the passive viewing condition. The present results argue in favor of a differentiated view of language-as-context for emotion processing. PMID:23888134

Herbert, Cornelia; Sfärlea, Anca; Blumenthal, Terry

2013-01-01

296

Affected sib-pair interval mapping and exclusion for complex genetic traits: Inferring identity by descent status from relatives  

SciTech Connect

Affected sib-pair (ASP) methods provide a useful approach for the initial genetic mapping of complex diseases for which mode of inheritance is uncertain. Risch described a method for interval mapping and exclusion based on the ratio lambda comparing disease risk in the first degree relatives of affected individuals to disease risk in the general population. He assumed marker identity by descent (IBD) status for the ASP could be deduced from parental genotypes. For late onset diseases such as type 2 diabetes, parents may be dead or otherwise unavailable, so that marker IBD status generally cannot be inferred with certainty. Guo has developed efficient methods for probabilistic determination of marker IBD sharing for two or more loci. We have combined and extended the methods of Risch and Guo to carry out interval mapping and exclusion when parents are missing but other relatives such as additional siblings are available. Our method is based on calculating the likelihood of marker data of the ASP and their relatives conditional on the disease status of the ASP, as a function of lambda and the position of the disease locus within the genetic map. We currently are using this method to compare the information to detect or exclude linkage provided by various types of ASP nuclear families -- zero, one, or two typed parents and zero, one, two, or more additional siblings -- as a function of sample size, marker density and informativity, and risk ratio lambda.

Hauser, E.R.; Boehnke, M.; Guo, S.W. [Univ. of Michigan, Ann Arbor, MI (United States)] [and others

1994-09-01

297

The Heritability of Bipolar Affective Disorder and the Genetic Relationship to Unipolar Depression  

Microsoft Academic Search

Background: Twin studies of bipolar affective disor- der (BPD) have either been small or have not used ex- plicit diagnostic criteria. There has been little use of ge- netic model fitting and no analyses to explore the etiological overlap with unipolar depression (UPD). Methods: Sixty-seven twin pairs, 30 monozygotic and 37 dizygotic, in which the proband had BPD were ascer-

Peter McGuffin; Fruhling Rijsdijk; Martin Andrew; Pak Sham; Randy Katz; Alastair Cardno

2003-01-01

298

Genetic factors affect the tendency to develop cancer. Predisposing mutations often influence DNA repair,cell-  

E-print Network

disease early in life. Second, these major Mendelian mutations underlie only a small proportion variation is only just beginning, and the most promising line of investigation concerns variants that affect a high level of constant risk of developing cancer later in life, which does not increase with age

Frank, Steven A.

299

Genetics of a Pheromonal Difference Affecting Sexual Isolation between Drosophila Mauritiana and D. Sechellia  

PubMed Central

Females of the sibling species Drosophila sechellia and D. mauritiana differ in their cuticular hydrocarbons: the predominant compound in D. sechellia is 7,11-heptacosadiene (7,11-HD), while that in D. mauritiana is 7-tricosene (7-T). We investigate the genetic basis of this difference and its involvement in reproductive isolation between the species. Behavioral studies involving hydrocarbon transfer suggest that these compounds play a large role in the sexual isolation between D. mauritiana males and D. sechellia females, while sexual isolation in the reciprocal hybridization results more from differences in female behavior than hydrocarbons. This interspecific difference in hydrocarbon profile is due to evolutionary change at a minimum of six loci, all on the third chromosome. The localization of evolutionary change to the third chromosome has been seen in every other genetic analysis of female hydrocarbon differences in the D. melanogaster group. We suggest that the high 7,11-HD phenotype seen in two species evolved twice independently from ancestors having the high 7-T phenotype, and that the recurrent third-chromosome effects are evolutionary convergences that may be due to a concentration of ``hydrocarbon genes'' on that chromosome. PMID:9093854

Coyne, J. A.; Charlesworth, B.

1997-01-01

300

Sperm selection and genetic incompatibility: does relatedness of mates affect male success in sperm competition?  

PubMed Central

Sperm selection may be said to occur if females influence the relative success of ejaculates competing to fertilize their ova. Most evidence that female animals or their ova are capable of sperm selection relates to male genetic incompatibility, although relatively few studies focus on competition between conspecific males. Here I look for evidence of sperm selection with respect to relatedness of mates. Reduced fitness or inbreeding effects in offspring resulting from copulations between close relatives are well documented. If females are capable of sperm selection, they might therefore be expected to discriminate against the sperm of sibling males during sperm competition. I describe an experimental protocol designed to test for evidence of sperm selection while controlling for inbreeding effects. Using decorated field crickets (Gryllodes supplicans), I found that sibling males achieved lower fertilization success in competition with a male unrelated to the female than in competition with another sibling more frequently than expected by chance, although the mean paternity values did not differ significantly between treatments. The tendancy for sibling males to achieve relatively lower fertilization success in competition with males unrelated to the female could not be explained by the effects of increased ejaculate allocation, female control of sperm transfer or inbreeding. This study therefore provides some evidence in support of the idea that female insects (or their ova) may be capable of selection against sperm on the basis of genetic similarity of conspecific males.

Stockley, P.

1999-01-01

301

Sampling issues affecting accuracy of likelihood-based classification using genetical data  

USGS Publications Warehouse

We demonstrate the effectiveness of a genetic algorithm for discovering multi-locus combinations that provide accurate individual assignment decisions and estimates of mixture composition based on likelihood classification. Using simulated data representing different levels of inter-population differentiation (Fst ~ 0.01 and 0.10), genetic diversities (four or eight alleles per locus), and population sizes (20, 40, 100 individuals in baseline populations), we show that subsets of loci can be identified that provide comparable levels of accuracy in classification decisions relative to entire multi-locus data sets, where 5, 10, or 20 loci were considered. Microsatellite data sets from hatchery strains of lake trout, Salvelinus namaycush, representing a comparable range of inter-population levels of differentiation in allele frequencies confirmed simulation results. For both simulated and empirical data sets, assignment accuracy was achieved using fewer loci (e.g., three or four loci out of eight for empirical lake trout studies). Simulation results were used to investigate properties of the 'leave-one-out' (L1O) method for estimating assignment error rates. Accuracy of population assignments based on L1O methods should be viewed with caution under certain conditions, particularly when baseline population sample sizes are low (<50).

Guinand, B.; Scribner, K.T.; Topchy, A.; Page, K.S.; Punch, W.; Burnham-Curtis, M. K.

2004-01-01

302

The genetic and molecular bases of monogenic disorders affecting proteolytic systems  

PubMed Central

Complete and limited proteolysis represents key events that regulate many biological processes. At least 5% of the human genome codes for components of proteolytic processes if proteases, inhibitors, and cofactors are taken into account. Accordingly, disruption of proteolysis is involved in numerous pathological conditions. In particular, molecular genetic studies have identified a growing number of monogenic disorders caused by mutations in protease coding genes, highlighting the importance of this class of enzymes in development, organogenesis, immunity, and brain function. This review provides insights into the current knowledge about the molecular genetic causes of these disorders. It should be noted that most are due to loss of function mutations, indicating absolute requirement of proteolytic activities for normal cellular functions. Recent progress in understanding the function of the implicated proteins and the disease pathogenesis is detailed. In addition to providing important clues to the diagnosis, treatment, and pathophysiology of disease, functional characterisation of mutations in proteolytic systems emphasises the pleiotropic functions of proteases in the body homeostasis. PMID:15994873

Richard, I

2005-01-01

303

Quantifying how fine-grained environmental heterogeneity and genetic variation affect demography in an annual plant population.  

PubMed

The ability of plant species to colonize new habitats and persist in changing environments depends on their ability to respond plastically to environmental variation and on the presence of genetic variation, thus allowing adaptation to new conditions. For invasive species in particular, the relationship between phenotypic trait expression, demography, and the quantitative genetic variation that is available to respond to selection are likely to be important determinants of the successful establishment and persistence of populations. However, the magnitude and sources of individual demographic variation in exotic plant populations remain poorly understood. How important is plasticity versus adaptability in populations of invasive species? Among environmental factors, is temperature, soil nutrients, or competition most influential, and at what scales and life stages do they affect the plants? To investigate these questions we planted seeds of the exotic annual plant Erodium brachycarpum into typical pasture habitat in a spatially nested design. Seeds were drawn from 30 inbred lines to enable quantification of genetic effects. Despite a positive population growth rate, a few plants (0.1 %) produced >50 % of the seeds, suggesting a low effective population size. Emergence and early growth varied by genotype, but as in previous studies on native plants, environmental effects greatly exceeded genetic effects, and survival was unrelated to genotype. Environmental influences shifted from microscale soil compaction and litter depth at emergence through to larger-scale soil nutrient gradients during growth and to competition during later survival and seed production. Temperature had no effect. Most demographic rates were positively correlated, but emergence was negatively correlated with other rates. PMID:22707035

Latimer, Andrew M; Jacobs, Brooke S

2012-11-01

304

Human CLP1 mutations alter tRNA biogenesis, affecting both peripheral and central nervous system function.  

PubMed

CLP1 is a RNA kinase involved in tRNA splicing. Recently, CLP1 kinase-dead mice were shown to display a neuromuscular disorder with loss of motor neurons and muscle paralysis. Human genome analyses now identified a CLP1 homozygous missense mutation (p.R140H) in five unrelated families, leading to a loss of CLP1 interaction with the tRNA splicing endonuclease (TSEN) complex, largely reduced pre-tRNA cleavage activity, and accumulation of linear tRNA introns. The affected individuals develop severe motor-sensory defects, cortical dysgenesis, and microcephaly. Mice carrying kinase-dead CLP1 also displayed microcephaly and reduced cortical brain volume due to the enhanced cell death of neuronal progenitors that is associated with reduced numbers of cortical neurons. Our data elucidate a neurological syndrome defined by CLP1 mutations that impair tRNA splicing. Reduction of a founder mutation to homozygosity illustrates the importance of rare variations in disease and supports the clan genomics hypothesis. PMID:24766809

Karaca, Ender; Weitzer, Stefan; Pehlivan, Davut; Shiraishi, Hiroshi; Gogakos, Tasos; Hanada, Toshikatsu; Jhangiani, Shalini N; Wiszniewski, Wojciech; Withers, Marjorie; Campbell, Ian M; Erdin, Serkan; Isikay, Sedat; Franco, Luis M; Gonzaga-Jauregui, Claudia; Gambin, Tomasz; Gelowani, Violet; Hunter, Jill V; Yesil, Gozde; Koparir, Erkan; Yilmaz, Sarenur; Brown, Miguel; Briskin, Daniel; Hafner, Markus; Morozov, Pavel; Farazi, Thalia A; Bernreuther, Christian; Glatzel, Markus; Trattnig, Siegfried; Friske, Joachim; Kronnerwetter, Claudia; Bainbridge, Matthew N; Gezdirici, Alper; Seven, Mehmet; Muzny, Donna M; Boerwinkle, Eric; Ozen, Mustafa; Clausen, Tim; Tuschl, Thomas; Yuksel, Adnan; Hess, Andreas; Gibbs, Richard A; Martinez, Javier; Penninger, Josef M; Lupski, James R

2014-04-24

305

Mutations altering the gammaretrovirus endoproteolytic motif affect glycosylation of the envelope glycoprotein and early events of the virus life cycle.  

PubMed

Previously, we found that mutation of glutamine to proline in the endoproteolytic cleavage signal of the PERV-C envelope (RQKK to RPKK) resulted in non-infectious vectors. Here, we show that RPKK results in a non-infectious vector when placed in not only a PERV envelope, but also the envelope of a related gammaretrovirus, FeLV-B. The amino acid substitutions do not prevent envelope precursor cleavage, viral core and genome assembly, or receptor binding. Rather, the mutations result in the formation of hyperglycosylated glycoprotein and a reduction in the reverse transcribed minus strand synthesis and undetectable 2-LTR circular DNA in cells exposed to vectors with these mutated envelopes. Our findings suggest novel functions associated with the cleavage signal sequence that may affect trafficking through the glycosylation machinery of the cell. Further, the glycosylation status of the envelope appears to impact post-binding events of the viral life cycle, either membrane fusion, internalization, or reverse transcription. PMID:25462351

Argaw, Takele; Wilson, Carolyn A

2015-01-15

306

Recent and Projected Increases in Atmospheric CO2 Concentration Can Enhance Gene Flow between Wild and Genetically Altered Rice (Oryza sativa)  

PubMed Central

Although recent and projected increases in atmospheric carbon dioxide can alter plant phenological development, these changes have not been quantified in terms of floral outcrossing rates or gene transfer. Could differential phenological development in response to rising CO2 between genetically modified crops and wild, weedy relatives increase the spread of novel genes, potentially altering evolutionary fitness? Here we show that increasing CO2 from an early 20th century concentration (300 µmol mol?1) to current (400 µmol mol?1) and projected, mid-21st century (600 µmol mol?1) values, enhanced the flow of genes from wild, weedy rice to the genetically altered, herbicide resistant, cultivated population, with outcrossing increasing from 0.22% to 0.71% from 300 to 600 µmol mol?1. The increase in outcrossing and gene transfer was associated with differential increases in plant height, as well as greater tiller and panicle production in the wild, relative to the cultivated population. In addition, increasing CO2 also resulted in a greater synchronicity in flowering times between the two populations. The observed changes reported here resulted in a subsequent increase in rice dedomestication and a greater number of weedy, herbicide-resistant hybrid progeny. Overall, these data suggest that differential phenological responses to rising atmospheric CO2 could result in enhanced flow of novel genes and greater success of feral plant species in agroecosystems. PMID:22649533

Ziska, Lewis H.; Gealy, David R.; Tomecek, Martha B.; Jackson, Aaron K.; Black, Howard L.

2012-01-01

307

Evidence for several independent genetic variants affecting lipoprotein (a) cholesterol levels.  

PubMed

Lipoprotein (a) [Lp(a)] is an independent risk factor for atherosclerosis-related events that is under strong genetic control (heritability = 0.68-0.98). However, causal mutations and functional validation of biological pathways modulating Lp(a) metabolism are lacking. We performed a genome-wide association scan to identify genetic variants associated with Lp(a)-cholesterol levels in the Old Order Amish. We confirmed a previously known locus on chromosome 6q25-26 and found Lp(a) levels also to be significantly associated with a SNP near the APOA5-APOA4-APOC3-APOA1 gene cluster on chromosome 11q23 linked in the Amish to the APOC3 R19X null mutation. On 6q locus, we detected associations of Lp(a)-cholesterol with 118 common variants (P = 5 × 10(-8) to 3.91 × 10(-19)) spanning a ?5.3 Mb region that included the LPA gene. To further elucidate variation within LPA, we sequenced LPA and identified two variants most strongly associated with Lp(a)-cholesterol, rs3798220 (P = 1.07 × 10(-14)) and rs10455872 (P = 1.85 × 10(-12)). We also measured copy numbers of kringle IV-2 (KIV-2) in LPA using qPCR. KIV-2 numbers were significantly associated with Lp(a)-cholesterol (P = 2.28 × 10(-9)). Conditional analyses revealed that rs3798220 and rs10455872 were associated with Lp(a)-cholesterol levels independent of each other and KIV-2 copy number. Furthermore, we determined for the first time that levels of LPA mRNA were higher in the carriers than non-carriers of rs10455872 (P = 0.0001) and were not different between carriers and non-carriers of rs3798220. Protein levels of apo(a) were higher in the carriers than non-carriers of both rs10455872 and rs3798220. In summary, we identified multiple independent genetic determinants for Lp(a)-cholesterol. These findings provide new insights into Lp(a) regulation. PMID:25575512

Lu, Wensheng; Cheng, Yu-Ching; Chen, Keping; Wang, Hong; Gerhard, Glenn S; Still, Christopher D; Chu, Xin; Yang, Rongze; Parihar, Ankita; O'Connell, Jeffrey R; Pollin, Toni I; Angles-Cano, Eduardo; Quon, Michael J; Mitchell, Braxton D; Shuldiner, Alan R; Fu, Mao

2015-04-15

308

Large family with both parents affected by distinct BRCA1 mutations: implications for genetic testing  

Microsoft Academic Search

Although the probability of both parents being affected by BRCA1 mutations is not negligible, such families have not been systematically described in the literature. Here we present a large breast-ovarian cancer family, where 3 sisters and 1 half-sister inherited maternal BRCA1 5382insC mutation while the remaining 2 sisters carried paternal BRCA1 1629delC allele. No BRCA1 homozygous mutations has been detected,

Anna P Sokolenko; Dmitry A Voskresenskiy; Aglaya G Iyevleva; Elena M Bit-Sava; Nadezhda I Gutkina; Maxim S Anisimenko; Nathalia Yu Sherina; Nathalia V Mitiushkina; Yulia M Ulibina; Olga S Yatsuk; Olga A Zaitseva; Evgeny N Suspitsin; Alexandr V Togo; Valery A Pospelov; Sergey P Kovalenko; Vladimir F Semiglazov; Evgeny N Imyanitov

2009-01-01

309

Genetic linkage between X-chromosome markers and bipolar affective illness  

Microsoft Academic Search

A pedigree study shows close linkage of bipolar affective illness (manic depression) to the X-chromosome markers colour blindness and glucose-6-phosphate dehydrogenase deficiency. The maximum lod score ranges from 7.52 (assuming homogeneity) to 9.17 (assuming heterogeneity); that is, the odds in favour of linkage range between 3×107 to 1 and 109 to 1. These results provide confirmation that a major psychiatric

Miron Baron; Neil Risch; Rahel Hamburger; Batsheva Mandel; Stuart Kushner; Michael Newman; Dov Drumer; Robert H. Belmaker

1987-01-01

310

Evidence for a genetic association between alleles of monoamine oxidase A gene and bipolar affective disorder  

SciTech Connect

We present evidence of a genetic association between bipolar disorder and alleles at 3 monoamine oxidase A (MAOA) markers, but not with alleles of a monoamine oxidase B (MAOB) polymorphism. The 3 MAOA markers, including one associated with low MAOA activity, show strong allelic association with each other but surprisingly not with MAOB. Our results are significantly only for females, though the number of males in our sample is too small to draw any definite conclusions. Our data is consistent with recent reports of reduced MAOA activity in patients with abnormal behavioral phenotypes. The strength of the association is weak, but significant, which suggests that alleles at the MAOA locus contribute to susceptibility to bipolar disorder rather than being a major determinant. 58 refs., 1 fig., 3 tabs.

Lim, L.C.C.; Sham, P.; Castle, D. [Institute of Psychiatry, London (United Kingdom)] [and others

1995-08-14

311

Genetic Variability in Nodulation and Root Growth Affects Nitrogen Fixation and Accumulation in Pea  

PubMed Central

Background and Aims Legume nitrogen is derived from two different sources, symbiotically fixed atmospheric N2 and soil N. The effect of genetic variability of root and nodule establishment on N acquisition and seed protein yield was investigated under field conditions in pea (Pisum sativum). In addition, these parameters were related to the variability in preference for rhizobial genotypes. Methods Five different spring pea lines (two hypernodulating mutants and three cultivars), previously identified in artificial conditions as contrasted for both root and nodule development, were characterized under field conditions. Root and nodule establishment was examined from the four-leaf stage up to the beginning of seed filling and was related to the patterns of shoot dry matter and nitrogen accumulation. The genetic structure of rhizobial populations associated with the pea lines was obtained by analysis of nodule samples. The fraction of nitrogen derived from symbiotic fixation was estimated at the beginning of seed filling and at physiological maturity, when seed protein content and yield were determined. Key Results The hypernodulating mutants established nodules earlier and maintained them longer than was the case for the three cultivars, whereas their root development and nitrogen accumulation were lower. The seed protein yield was higher in ‘Athos’ and ‘Austin’, the two cultivars with increased root development, consistent with their higher N absorption during seed filling. Conclusion The hypernodulating mutants did not accumulate more nitrogen, probably due to the C cost for nodulation being higher than for root development. Enhancing exogenous nitrogen supply at the end of the growth cycle, by increasing the potential for root N uptake from soil, seems a good option for improving pea seed filling. PMID:17670753

Bourion, Virginie; Laguerre, Gisele; Depret, Geraldine; Voisin, Anne-Sophie; Salon, Christophe; Duc, Gerard

2007-01-01

312

Modelling genetic reorganization in the mouse spinal cord affecting left–right coordination during locomotion  

PubMed Central

The spinal neural circuit contains inhibitory (CINi) and excitatory (CINe) commissural interneurons with axons crossing the mid-line. Direction of these axons to the other side of the cord is controlled by axon guidance molecules, such as Netrin-1 and DCC. The cord also contains glutamatergic interneurons, whose axon guidance involves the EphA4 receptor. In EphA4 knockout (KO) and Netrin-1 KO mice, the normal left–right alternating pattern is replaced with a synchronized hopping gait, and the cord of DCC KO mice exhibits uncoordinated left and right oscillations. To investigate the effects of these genetic transformations, we used a computational model of the spinal circuits containing left and right rhythm-generating neuron populations (RGs), each with a subpopulation of EphA4-positive neurons, and CINi and CINe populations mediating mutual inhibition and excitation between the left and right RGs. In the EphA4 KO circuits, half of the EphA4-positive axons crossed the mid-line and excited the contralateral RG neurons. In the Netrin-1 KO model, the number of contralateral CINi projections was significantly reduced, while in the DCC KO model, the numbers of both CINi and CINe connections were reduced. In our simulations, the EphA4 and Netrin-1 KO circuits switched from the left–right alternating pattern to a synchronized hopping pattern, and the DCC KO network exhibited uncoordinated left–right activity. The amplification of inhibitory interactions re-established an alternating pattern in the EphA4 and DCC KO circuits, but not in the Netrin-1 KO network. The model reproduces the genetic transformations and provides insights into the organization of the spinal locomotor network. PMID:24081162

Rybak, Ilya A; Shevtsova, Natalia A; Kiehn, Ole

2013-01-01

313

Expression profiling of the RPE in zebrafish smarca4 mutant revealed altered signals that potentially affect RPE and retinal differentiation  

PubMed Central

Purpose The purpose of this study was to develop a framework for analyzing retinal pigment epithelium (RPE) expression profiles from zebrafish eye mutants. Methods The fish model we used was SWI/SNF-related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4 (smarca4), a retinal dystrophic mutant with a previously described retinal phenotype and expression profiles. Histological and Affymetrix GeneChip analyses were conducted to characterize the RPE defects and underlying differential expression, respectively. Results Histological analysis revealed that smarca4 RPE was formed, but its differentiation was abnormal. In particular, ultrastructural analysis of smarca4 RPE by transmission electron microscopy demonstrated several defects in melanogenesis. The nature of these defects also suggests that the cytoskeletal dynamics, which are tightly linked with melanogenesis, were impaired in smarca4 RPE. To compare the expression profile of normal wild-type (WT) and smarca4 RPE, the gene expression profiles of microdissected retinas and RPE-attached retinas were measured with Affymetrix GeneChip analysis. The RPE expression values were then estimated from these samples by subtracting the retinal expression values from the expression values of the RPE-attached retinas. A factorial analysis was conducted using the expression values of the RPE, retinal, and whole-embryo samples. Specific rules (contrasts) were built using the coefficients of the resulting fitted models to select for three groups of genes: 1) smarca4-regulated RPE genes, 2) smarca4-regulated retinal genes, and 3) smarca4-regulated RPE genes that are not differentially expressed in the retina. Interestingly, the third group consists of 39 genes that are highly related to cytoskeletal dynamics, melanogenesis, and paracrine and intracellular signal transduction. Conclusions Our analytical framework provides an experimental approach to identify differentially-regulated genes in the retina and the RPE of zebrafish mutants in which both of these tissues are affected by the underlying mutation. Specifically, we have used the method to identify a group of 39 genes that can potentially explain the melanogenesis defect in the smarca4 RPE. In addition, several genes in this group are secreted signaling molecules. Thus, this observation further implicates that the smarca4 RPE might play a role in the retinal dystrophic phenotype in smarca4. PMID:24426776

Ma, Ping; Collery, Ross; Trowbridge, Sara; Zhong, Wenxuan; Leung, Yuk Fai

2014-01-01

314

Genetic Ablation of Calcium-independent Phospholipase A2? Leads to Alterations in Hippocampal Cardiolipin Content and Molecular Species Distribution, Mitochondrial Degeneration, Autophagy, and Cognitive Dysfunction*  

PubMed Central

Genetic ablation of calcium-independent phospholipase A2? (iPLA2?) results in profound alterations in hippocampal phospholipid metabolism and mitochondrial phospholipid homeostasis resulting in enlarged and degenerating mitochondria leading to autophagy and cognitive dysfunction. Shotgun lipidomics demonstrated multiple alterations in hippocampal lipid metabolism in iPLA2??/? mice including: 1) a markedly elevated hippocampal cardiolipin content with an altered molecular species composition characterized by a shift to shorter chain length molecular species; 2) alterations in both choline and ethanolamine glycerophospholipids, including a decreased plasmenylethanolamine content; 3) increased oxidized phosphatidylethanolamine molecular species; and 4) an increased content of ceramides. Electron microscopic examination demonstrated the presence of enlarged heteromorphic lamellar structures undergoing degeneration accompanied by the presence of ubiquitin positive spheroid inclusion bodies. Purification of these enlarged heteromorphic lamellar structures by buoyant density centrifugation and subsequent SDS-PAGE and proteomics identified them as degenerating mitochondria. Collectively, these results identify the obligatory role of iPLA2? in neuronal mitochondrial lipid metabolism and membrane structure demonstrating that iPLA2? loss of function results in a mitochondrial neurodegenerative disorder characterized by degenerating mitochondria, autophagy, and cognitive dysfunction. PMID:19840936

Mancuso, David J.; Kotzbauer, Paul; Wozniak, David F.; Sims, Harold F.; Jenkins, Christopher M.; Guan, Shaoping; Han, Xianlin; Yang, Kui; Sun, Gang; Malik, Ibrahim; Conyers, Sara; Green, Karen G.; Schmidt, Robert E.; Gross, Richard W.

2009-01-01

315

Sensitivity to hepatotoxicity due to epigallocatechin gallate is affected by genetic background in diversity outbred mice.  

PubMed

Consumer use of herbal and dietary supplements has recently grown in the United States and, with increased use, reports of rare adverse reactions have emerged. One such supplement is green tea extract, containing the polyphenol epigallocatechin gallate (EGCG), which has been shown to be hepatotoxic at high doses in animal models. The Drug-Induced Liver Injury Network has identified multiple patients who have experienced liver injury ascribed to green tea extract consumption and the relationship to dose has not been straightforward, indicating that differences in sensitivity may contribute to the adverse response in susceptible people. The Diversity Outbred (DO), a genetically heterogeneous mouse population, provides a potential platform for study of interindividual toxicity responses to green tea extract. Within the DO population, an equal exposure to EGCG (50?mg/kg; daily for three days) was found to be tolerated in the majority of mice; however, a small fraction of the animals (16%; 43/272) exhibited severe hepatotoxicity (10-86.8% liver necrosis) that is analogous to the clinical cases. The data indicate that the DO mice may provide a platform for informing risk of rare, adverse reactions that may occur in consumer populations upon ingestion of concentrated herbal products. PMID:25446466

Church, Rachel J; Gatti, Daniel M; Urban, Thomas J; Long, Nanye; Yang, Xi; Shi, Qiang; Eaddy, J Scott; Mosedale, Merrie; Ballard, Shawn; Churchill, Gary A; Navarro, Victor; Watkins, Paul B; Threadgill, David W; Harrill, Alison H

2015-02-01

316

Genetic markers that influence feed efficiency phenotypes also affect cattle temperament as measured by flight speed.  

PubMed

Flight speed is a predictive indicator of cattle temperament and is associated with feed efficiency phenotypes. Genetic markers associated with both traits may assist with selection of calmer animals with improved economic value. A preliminary genome-wide association study determined chromosomal regions on BTA9, and 17 were associated with flight speed. The genes quaking (QKI), glutamate receptor, ionotropic, AMPA 2 (GRIA2) and glycine receptor ? (GLRB) were identified in these regions as potential functional candidates. Beef steers (n = 1057) were genotyped with SNPs located within and flanking these genes. One SNP located near QKI and one near GRIA2 were nominally associated with flight speed (P ? 0.05) although neither was significant after Bonferroni correction. Several studies have shown a correlation between flight speed and feed intake or gain; therefore, we also analyzed SNPs on BTA6:38-39 Mb known to be associated with average daily gain (ADG) and average daily feed intake (ADFI) for association with flight speed. Several SNPs on BTA6 were associated with flight speed (P ? 0.005), and three were significant after Bonferroni correction. These results suggest that the genes tested are unlikely to contribute to flight speed variation for our cattle population, but SNPs on BTA6 associated with ADG and ADFI may influence temperament. Use of these markers to select for economically important feed efficiency phenotypes may produce cattle with more desirable temperaments. PMID:25515066

Lindholm-Perry, A K; Kuehn, L A; Freetly, H C; Snelling, W M

2015-02-01

317

‘Faceness’ and Affectivity: Evidence for Genetic Contributions to Distinct Components of Electrocortical Response to Human Faces  

PubMed Central

The ability to recognize a variety of different human faces is undoubtedly one of the most important and impressive functions of the human perceptual system. Neuroimaging studies have revealed multiple brain regions (including the FFA, STS, OFA) and electrophysiological studies have identified differing brain event-related potential (ERP) components (e.g., N170, P200) possibly related to distinct types of face information processing. To evaluate the heritability of ERP components associated with face processing, including N170, P200, and LPP, we examined ERP responses to fearful and neutral face stimuli in monozygotic (MZ) and dizygotic (DZ) twins. Concordance levels for early brain response indices of face processing (N170, P200) were found to be stronger for MZ than DZ twins, providing evidence of a heritable basis to each. These findings support the idea that certain key neural mechanisms for face processing are genetically coded. Implications for understanding individual differences in recognition of facial identity and the emotional content of faces are discussed. PMID:23769918

Shannon, Robert W.; Patrick, Christopher J.; Venables, Noah C.; He, Sheng

2014-01-01

318

'Faceness' and affectivity: evidence for genetic contributions to distinct components of electrocortical response to human faces.  

PubMed

The ability to recognize a variety of different human faces is undoubtedly one of the most important and impressive functions of the human perceptual system. Neuroimaging studies have revealed multiple brain regions (including the FFA, STS, OFA) and electrophysiological studies have identified differing brain event-related potential (ERP) components (e.g., N170, P200) possibly related to distinct types of face information processing. To evaluate the heritability of ERP components associated with face processing, including N170, P200, and LPP, we examined ERP responses to fearful and neutral face stimuli in monozygotic (MZ) and dizygotic (DZ) twins. Concordance levels for early brain response indices of face processing (N170, P200) were found to be stronger for MZ than DZ twins, providing evidence of a heritable basis to each. These findings support the idea that certain key neural mechanisms for face processing are genetically coded. Implications for understanding individual differences in recognition of facial identity and the emotional content of faces are discussed. PMID:23769918

Shannon, Robert W; Patrick, Christopher J; Venables, Noah C; He, Sheng

2013-12-01

319

Genetic variants affecting alternative splicing of human cholesteryl ester transfer protein  

PubMed Central

Cholesteryl ester transfer protein (CETP) plays an important role in reverse cholesterol transport, with decreased CETP activity increasing HDL levels. Formation of an alternative splice form lacking exon 9 (?9-CETP) has been associated with two single nucleotide polymorphisms (SNPs) in high linkage disequilibrium with each other, namely rs9930761 T>C located in intron 8 in a putative splicing branch site and rs5883 C>T in a possible exonic splicing enhancer (ESE) site in exon 9. To assess the relative effect of rs9930761 and rs5883 on splicing, mini-gene constructs spanning CETP exons 8 to 10, carrying all four possible allele combinations, were transfected into HEK293 and HepG2 cells. The minor T allele of rs5883 enhanced splicing significantly in both cell lines whereas the minor C allele of rs9930761 did not. In combination, the two alleles did not yield greater splicing than the rs5883 T allele alone in HepG2 cells. These results indicate that the genetic effect on CETP splicing is largely attributable to rs5883. We also confirm that ?9-CETP protein is expressed in the liver but fails to circulate in the blood. PMID:24393849

Suhy, Adam; Hartmann, Katherine; Newman, Leslie; Papp, Audrey; Toneff, Thomas; Hook, Vivian; Sadee, Wolfgang

2014-01-01

320

Genetic Variations in COMT and DRD2 Modulate Attentional Bias for Affective Facial Expressions  

PubMed Central

Studies have revealed that catechol-O-methyltransferase (COMT) and dopaminegic receptor2 (DRD2) modulate human attention bias for palatable food or tobacco. However, the existing evidence about the modulations of COMT and DRD2 on attentional bias for facial expressions was still limited. In the study, 650 college students were genotyped with regard to COMT Val158Met and DRD2 TaqI A polymorphisms, and the attentional bias for facial expressions was assessed using the spatial cueing task. The results indicated that COMT Val158Met underpinned the individual difference in attentional bias for negative emotional expressions (P?=?0.03) and the Met carriers showed more engagement bias for negative expressions than the Val/Val homozygote. On the contrary, DRD2 TaqIA underpinned the individual difference in attentional bias for positive expressions (P?=?0.003) and individuals with TT genotype showed much more engagement bias for positive expressions than the individuals with CC genotype. Moreover, the two genes exerted significant interactions on the engagements for negative and positive expressions (P?=?0.046, P?=?0.005). These findings suggest that the individual differences in the attentional bias for emotional expressions are partially underpinned by the genetic polymorphisms in COMT and DRD2. PMID:24312552

Gong, Pingyuan; Shen, Guomin; Li, She; Zhang, Guoping; Fang, Hongchao; Lei, Lin; Zhang, Peizhe; Zhang, Fuchang

2013-01-01

321

Characterization and genetic mapping of a mutation affecting apurinic endonuclease activity in Staphylococcus aureus  

SciTech Connect

Protoplast fusion between the Rec- mutant RN981 (L. Wyman, R. V. Goering, and R. P. Novick, Genetics 76:681-702, 1974) of Staphylococcus aureus NCTC 8325 and a Rec+ NCTC 8325 derivative yielded Rec+ recombinants that exhibited the increased sensitivity to N-methyl-N'-nitro-N-nitrosoguanidine characteristic of RN981. Transformation analyses identified a specific mutation, designated ngr-374, that was responsible not only for N-methyl-N'-nitro-N-nitrosoguanidine sensitivity, but also sensitivity to methyl methanesulfonate, ethyl methanesulfonate, nitrous acid, and UV irradiation. However, ngr-374-carrying recombinants showed no significant increase in their sensitivity to mitomycin C or 4-nitroquinoline 1-oxide and were unaffected in recombination proficiency. In vitro assays showed that ngr-374-carrying strains had lower apurinic/apyrimidinic endonuclease activities than the wild type. The chromosomal locus occupied by ngr-374 was shown to exist in the gene order omega(Chr::Tn551)40-ngr-374-thrB106.

Tam, J.E.; Pattee, P.A.

1986-11-01

322

A genetic screen for mutations affecting gonad formation in Drosophila reveals a role for the slit/robo pathway  

PubMed Central

Organogenesis is a complex process requiring multiple cell types to associate with one another through correct cell contacts and in the correct location to achieve proper organ morphology and function. To better understand the mechanisms underlying gonad formation, we performed a mutagenesis screen in Drosophila and identified twenty-four genes required for gonadogenesis. These genes affect all different aspects of gonad formation and provide a framework for understanding the molecular mechanisms that control these processes. We find that gonad formation is regulated by multiple, independent pathways; some of these regulate the key cell adhesion molecule DE-cadherin, while others act through distinct mechanisms. In addition, we discover that the Slit/Roundabout pathway, best known for its role in regulating axonal guidance, is essential for proper gonad formation. Our findings shed light on the complexities of gonadogenesis and the genetic regulation required for proper organ formation. PMID:21377458

Weyers, Jill J.; Milutinovich, Allison B.; Takeda, Yasuko; Jemc, Jennifer C.; Doren, Mark Van

2013-01-01

323

Genetic Analysis Identifies DDR2 as a Novel Gene Affecting Bone Mineral Density and Osteoporotic Fractures in Chinese Population  

PubMed Central

DDR2 gene, playing an essential role in regulating osteoblast differentiation and chondrocyte maturation, may influence bone mineral density (BMD) and osteoporosis, but the genetic variations actually leading to the association remain to be elucidated. Therefore, the aim of this study was to investigate whether the genetic variants in DDR2 are associated with BMD and fracture risk. This study was performed in three samples from two ethnicities, including 1,300 Chinese Han subjects, 700 Chinese Han subjects (350 with osteoporotic hip fractures and 350 healthy controls) and 2,286 US white subjects. Twenty-eight SNPs in DDR2 were genotyped and tested for associations with hip BMD and fractures. We identified 3 SNPs in DDR2 significantly associated with hip BMD in the Chinese population after multiple testing adjustments, which were rs7521233 (P = 1.06×10?4, ?: ?0.018 for allele C), rs7553831 (P = 1.30×10?4, ?: ?0.018 for allele T), and rs6697469 (P = 1.59×10?3, ?: ?0.015 for allele C), separately. These three SNPs were in high linkage disequilibrium. Haplotype analyses detected two significantly associated haplotypes, including one haplotype in block 2 (P = 9.54×10?4, ?: ?0.016) where these three SNPs located. SNP rs6697469 was also associated with hip fractures (P = 0.043, OR: 1.42) in the Chinese population. The effect on fracture risk was consistent with its association with lower BMD. However, in the white population, we didn’t observe significant associations with hip BMD. eQTL analyses revealed that SNPs associated with BMD also affected DDR2 mRNA expression levels in Chinese. Our findings, together with the prior biological evidence, suggest that DDR2 could be a new candidate for osteoporosis in Chinese population. Our results also reveal an ethnic difference, which highlights the need for further genetic studies in each ethnic group. PMID:25658585

Guo, Yan; Yang, Tie-Lin; Dong, Shan-Shan; Yan, Han; Hao, Ruo-Han; Chen, Xiao-Feng; Chen, Jia-Bin; Tian, Qing; Li, Jian; Shen, Hui; Deng, Hong-Wen

2015-01-01

324

Phenotypic and genetic diversity in Sinorhizobium meliloti and S. medicae from drought and salt affected regions of Morocco  

PubMed Central

Background Sinorhizobium meliloti and S. medicae are symbiotic nitrogen fixing bacteria in root nodules of forage legume alfalfa (Medicago sativa L.). In Morocco, alfalfa is usually grown in marginal soils of arid and semi-arid regions frequently affected by drought, extremes of temperature and soil pH, soil salinity and heavy metals, which affect biological nitrogen fixing ability of rhizobia and productivity of the host. This study examines phenotypic diversity for tolerance to the above stresses and genotypic diversity at Repetitive Extragenic Pallindromic DNA regions of Sinorhizobium nodulating alfalfa, sampled from marginal soils of arid and semi-arid regions of Morocco. Results RsaI digestion of PCR amplified 16S rDNA of the 157 sampled isolates, assigned 136 isolates as S. meliloti and the rest as S. medicae. Further phenotyping of these alfalfa rhizobia for tolerance to the environmental stresses revealed a large degree of variation: 55.41%, 82.16%, 57.96% and 3.18% of the total isolates were tolerant to NaCl (>513 mM), water stress (-1.5 MPa), high temperature (40°C) and low pH (3.5), respectively. Sixty-seven isolates of S. meliloti and thirteen isolates of S. medicae that were tolerant to salinity were also tolerant to water stress. Most of the isolates of the two species showed tolerance to heavy metals (Cd, Mn and Zn) and antibiotics (chloramphenicol, spectinomycin, streptomycin and tetracycline). The phenotypic clusters observed by the cluster analysis clearly showed adaptations of the S. meliloti and S. medicae strains to the multiple stresses. Genotyping with rep-PCR revealed higher genetic diversity within these phenotypic clusters and classified all the 157 isolates into 148 genotypes. No relationship between genotypic profiles and the phenotypes was observed. The Analysis of Molecular Variance revealed that largest proportion of significant (P < 0.01) genetic variation was distributed within regions (89%) than among regions (11%). Conclusion High degree of phenotypic and genotypic diversity is present in S. meliloti and S. medicae populations from marginal soils affected by salt and drought, in arid and semi-arid regions of Morocco. Some of the tolerant strains have a potential for exploitation in salt and drought affected areas for biological nitrogen fixation in alfalfa. PMID:20089174

2010-01-01

325

Regulation of Enzyme Activities in Drosophila: Genetic Variation Affecting Induction of Glucose 6-Phosphate and 6-Phosphogluconate Dehydrogenases in Larvae  

PubMed Central

The genetic basis of modulation by dietary sucrose of the enzyme activities glucose 6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) activities in third instar larvae of Drosophila melanogaster was investigated, using isogenic lines derived from wild populations. Considerable genetically determined variation in response was detected among lines that differed only in their third chromosome constitution. Comparison of crossreacting material between a responding and a nonresponding line showed that the G6PD activity variation is due to changes in G6PD protein level. These differences in responses are localized in the fat body, with 300 m m sucrose in the diet resulting in a sixfold stimulation of G6PD activity and a fourfold one of 6PGD in the line showing the strongest response. In this tissue, the responses of the two enzymes are closely correlated with one another. Using recombinant lines, we obtained data that suggested the existence of more than one gene on chromosome III involved in the regulation of G6PD in the fat body, and at least one of these genes affects the level of 6PGD as well. PMID:6416921

Cochrane, Bruce J.; Lucchesi, John C.; Laurie-Ahlberg, C. C.

1983-01-01

326

Genetic disruption of the On visual pathway affects cortical orientation selectivity and contrast sensitivity in mice.  

PubMed

The retina signals stimulus contrast via parallel On and Off pathways and sends the information to higher visual centers. Here we study the role of the On pathway using mice that have null mutations in the On-specific GRM6 receptor in the retina (Pinto LH, Vitaterna MH, Shimomura K, Siepka SM, Balannik V, McDearmon EL, Omura C, Lumayag S, Invergo BM, Brandon M, Glawe B, Cantrell DR, Donald R, Inayat S, Olvera MA, Vessey KA, Kirstan A, McCall MA, Maddox D, Morgans CW, Young B, Pletcher MT, Mullins RF, Troy JB, Takahashi JS. Vis Neurosci 24: 111-123, 2007; Maddox DM, Vessey KA, Yarbrough GL, Invergo BM, Cantrell DR, Inayat S, Balannik V, Hicks WL, Hawes NL, Byers S, Smith RS, Hurd R, Howell D, Gregg RG, Chang B, Naggert JK, Troy JB, Pinto LH, Nishina PM, McCall MA. J Physiol 586: 4409-4424, 2008). In these "nob" mice, single unit recordings in the primary visual cortex (V1) reveal degraded selectivity for orientations due to an increased response at nonpreferred orientations. Contrast sensitivity in the nob mice is reduced with severe deficits at low contrast, consistent with the phenotype of night blindness in human patients with mutations in Grm6. These cortical deficits can be largely explained by reduced input drive and increased response variability seen in nob V1. Interestingly, increased variability is also observed in the superior colliculus of these mice but does not affect its tuning properties. Further, the increased response variability in the nob mice is traced to the retina, a result phenocopied by acute pharmacological blockade of the On pathway in wild-type retina. Together, our results suggest that the On and Off pathways normally interact to increase response reliability in the retina, which in turn propagates to various central visual targets and affects their functional properties. PMID:24598523

Sarnaik, Rashmi; Chen, Hui; Liu, Xiaorong; Cang, Jianhua

2014-06-01

327

Rapid Genetic and Epigenetic Alterations under Intergeneric Genomic Shock in Newly Synthesized Chrysanthemum morifolium × Leucanthemum paludosum Hybrids (Asteraceae)  

PubMed Central

The Asteraceae family is at the forefront of the evolution due to frequent hybridization. Hybridization is associated with the induction of widespread genetic and epigenetic changes and has played an important role in the evolution of many plant taxa. We attempted the intergeneric cross Chrysanthemum morifolium × Leucanthemum paludosum. To obtain the success in cross, we have to turn to ovule rescue. DNA profiling of the amphihaploid and amphidiploid was investigated using amplified fragment length polymorphism, sequence-related amplified polymorphism, start codon targeted polymorphism, and methylation-sensitive amplification polymorphism (MSAP). Hybridization induced rapid changes at the genetic and the epigenetic levels. The genetic changes mainly involved loss of parental fragments and gaining of novel fragments, and some eliminated sequences possibly from the noncoding region of L. paludosum. The MSAP analysis indicated that the level of DNA methylation was lower in the amphiploid (?45%) than in the parental lines (51.5–50.6%), whereas it increased after amphidiploid formation. Events associated with intergeneric genomic shock were a feature of C. morifolium × L. paludosum hybrid, given that the genetic relationship between the parental species is relatively distant. Our results provide genetic and epigenetic evidence for understanding genomic shock in wide crosses between species in Asteraceae and suggest a need to expand our current evolutionary framework to encompass a genetic/epigenetic dimension when seeking to understand wide crosses. PMID:24407856

Wang, Haibin; Jiang, Jiafu; Chen, Sumei; Qi, Xiangyu; Fang, Weimin; Guan, Zhiyong; Teng, Nianjun; Liao, Yuan; Chen, Fadi

2014-01-01

328

Genetic variation of the RASGRF1 regulatory region affects human hippocampus-dependent memory  

PubMed Central

The guanine nucleotide exchange factor RASGRF1 is an important regulator of intracellular signaling and neural plasticity in the brain. RASGRF1-deficient mice exhibit a complex phenotype with learning deficits and ocular abnormalities. Also in humans, a genome-wide association study has identified the single nucleotide polymorphism (SNP) rs8027411 in the putative transcription regulatory region of RASGRF1 as a risk variant of myopia. Here we aimed to assess whether, in line with the RASGRF1 knockout mouse phenotype, rs8027411 might also be associated with human memory function. We performed computer-based neuropsychological learning experiments in two independent cohorts of young, healthy participants. Tests included the Verbal Learning and Memory Test (VLMT) and the logical memory section of the Wechsler Memory Scale (WMS). Two sub-cohorts additionally participated in functional magnetic resonance imaging (fMRI) studies of hippocampus function. 119 participants performed a novelty encoding task that had previously been shown to engage the hippocampus, and 63 subjects participated in a reward-related memory encoding study. RASGRF1 rs8027411 genotype was indeed associated with memory performance in an allele dosage-dependent manner, with carriers of the T allele (i.e., the myopia risk allele) showing better memory performance in the early encoding phase of the VLMT and in the recall phase of the WMS logical memory section. In fMRI, T allele carriers exhibited increased hippocampal activation during presentation of novel images and during encoding of pictures associated with monetary reward. Taken together, our results provide evidence for a role of the RASGRF1 gene locus in hippocampus-dependent memory and, along with the previous association with myopia, point toward pleitropic effects of RASGRF1 genetic variations on complex neural function in humans. PMID:24808846

Barman, Adriana; Assmann, Anne; Richter, Sylvia; Soch, Joram; Schütze, Hartmut; Wüstenberg, Torsten; Deibele, Anna; Klein, Marieke; Richter, Anni; Behnisch, Gusalija; Düzel, Emrah; Zenker, Martin; Seidenbecher, Constanze I.; Schott, Björn H.

2014-01-01

329

DNMT1 genetic polymorphisms affect breast cancer risk in the central European Caucasian population  

PubMed Central

Introduction DNA methylation of CpG islands within the promoter region of genes is an epigenetic modification with an important role in the development of cancer and it is typically mediated by DNA methyltransferases (DNMTs). In cancer cells, global hypomethylation of the genome as a whole and regional hypermethylation of CpG islands have been reported. Four groups of DNMTs have been identified: DNMT1, DNMT2 (TRDMT1), DNMT3A and DNMT3B. DNMT2 uses the catalytic mechanism of DNMTs, but does in fact methylate RNA. Little is known about the significance of these genes in human breast cancer. In the study presented herein, we analyzed five distinct DNMT single SNPs with regard to potential associations with breast cancer risk. Case description In this study, we genotyped 221 female Caucasian breast cancer patients and 221 female Caucasian healthy controls, and we used five allele-specific real-time polymerase chain reaction (qPCR) assays. We selected one locus within the DNMT1 gene and two loci within the DNMT3A and DNMT3B genes, respectively. Statistics were calculated using the chi-squared and Fisher’s exact tests, and correlated with clinical parameters such as age, diagnosis, histology, TNM stage, hormonal receptor status, human epidermal growth factor receptor 2 (HER2) status, response to treatment and survival. Statistically significant results were obtained for correlations with the DNMT1 gene. Discussion and Evaluation Five genomic loci within the DNMT1, DNMT3A and DNMT3B genes were assessed. Statistical significance (P = 0.030) was identified for DNMT1 SNP (A201G, rs2228612): six women within the control group were GG homozygous (variant), while this mutation was absent in the breast cancer group. Conclusions We conclude that women with the DNMT1 SNP (A201G, rs2228612) GG homozygous genotype (variant) have a lower risk of developing breast cancer compared to heterozygous or wildtype genotypes. To date, alterations within the DNMT1 gene have not been reported to be associated with cancer in the Caucasian population. PMID:23638630

2013-01-01

330

TNF? Altered Inflammatory Responses, Impaired Health and Productivity, but Did Not Affect Glucose or Lipid Metabolism in Early-Lactation Dairy Cows  

PubMed Central

Inflammation may be a major contributing factor to peripartum metabolic disorders in dairy cattle. We tested whether administering an inflammatory cytokine, recombinant bovine tumor necrosis factor-? (rbTNF?), affects milk production, metabolism, and health during this period. Thirty-three Holstein cows (9 primiparous and 24 multiparous) were randomly assigned to 1 of 3 treatments at parturition. Treatments were 0 (Control), 1.5, or 3.0 µg/kg body weight rbTNF?, which were administered once daily by subcutaneous injection for the first 7 days of lactation. Statistical contrasts were used to evaluate the treatment and dose effects of rbTNF? administration. Plasma TNF? concentrations at 16 h post-administration tended to be increased (P<0.10) by rbTNF? administration, but no dose effect (P>0.10) was detected; rbTNF? treatments increased (P<0.01) concentrations of plasma haptoglobin. Most plasma eicosanoids were not affected (P>0.10) by rbTNF? administration, but 6 out of 16 measured eicosanoids changed (P<0.05) over the first week of lactation, reflecting elevated inflammatory mediators in the days immediately following parturition. Dry matter and water intake, milk yield, and milk fat and protein yields were all decreased (P<0.05) by rbTNF? treatments by 15 to 18%. Concentrations of plasma glucose, insulin, ?-hydroxybutyrate, non-esterified fatty acids, triglyceride, 3-methylhistidine, and liver triglyceride were unaffected (P>0.10) by rbTNF? treatment. Glucose turnover rate was unaffected (P?=?0.18) by rbTNF? administration. The higher dose of rbTNF? tended to increase the risk of cows developing one or more health disorders (P?=?0.08). Taken together, these results indicate that administration of rbTNF? daily for the first 7 days of lactation altered inflammatory responses, impaired milk production and health, but did not significantly affect liver triglyceride accumulation or nutrient metabolism in dairy cows. PMID:24260367

Mamedova, Laman K.; Sordillo, Lorraine M.; Bradford, Barry J.

2013-01-01

331

Genetic Factors Affecting Susceptibility to Low Dose & Low Dose-Rate Radiation  

SciTech Connect

Our laboratory has, among other things, developed and used the gamma H2AX focus assay and other chromosomal and cell killing assays to show that differences in this DNA double strand break (dsb) related response can be clearly and distinctly demonstrated for cells which are mildly hyper-radiosensitive such as those associated with A-T heterozygosity. We have found this level of mild hypersensitivity for cells from some 20 to 30 % of apparently normal individuals and from apparently normal parents of Retinoblastoma patients. We found significant differences in gene expression in somatic cells from unaffected parents of Rb patients as compared with normal controls, suggesting that these parents may harbor some as yet unidentified genetic abnormality. In other experiments we sought to determine the extent of differences in normal human cellular reaponses to radiation depending on their irradiation in 2D monolayer vs 3D organized acinar growth conditions. We exmined cell reproductive death, chromosomal aberration induction, and the levels of ?-H2AX foci in cells after single acute gamma-ray doses and immediately after 20 hours of irradiation at a dose rate of 0.0017 Gy/min. We found no significant differences in the dose-responses of these cells under the 2D or 3D growth conditions. While this does not mean such differences cannot occur in other situations, it does mean that they do not generally or necessarily occur. In another series of studies in collaboration with Dr Chuan Li, with supprt from this current grant. We reported a role for apoptotic cell death in promoting wound healing and tissue regeneration in mice. Apoptotic cells released growth signals that stimulated the proliferation of progenitor or stem cells. In yet another collaboration with Dr, B. Chen with funds from this grant, the relative radiosensitivity to cell killing as well as chromosomal instability of 13 DNA-PKcs site-directed mutant cell lines (defective at phosphorylation sites or kinase activity) were examined after exposure of synchronized G1 cells to 137Cs c rays. DNA-PKcs mutant cells defective in phosphorylation at multiple sites withinthe T2609 cluster or within the PI3K domain displayed extreme radiosensitivity. Cells defective at the S2056 cluster or T2609 single site alone were only mildly radiosensitive, but cells defective at even one site in both the S2056 and T2609 clusters were maximally radiosensitive. Thus a synergism between the capacity for phosphorylation at the S2056 and T2609 clusterswas found to be critical for induction of radiosensitivity.

Bedford, Joel

2014-04-18

332

Host Genetic Factors Affect Susceptibility to Norovirus Infections in Burkina Faso  

PubMed Central

Norovirus (NoV) constitutes the second most common viral pathogen causing pediatric diarrhea after rotavirus. In Africa, diarrhea is a major health problem in children, and yet few studies have been performed regarding NoV. The association of histo-blood group antigens (HBGA) and susceptibility to NoV infection is well established in Caucasian populations with non-secretors being resistant to many common NoV strains. No study regarding HBGA and NoV susceptibility has yet been performed in Africa. We collected 309 stool and 208 saliva samples from diarrheal children in Ouagadougou, Burkina Faso; May 2009 to March 2010. NoV was detected using real-time PCR, and genotyped by sequencing. Saliva samples were ABO, Lewis and secretor phenotyped using in house ELISA assays. NoV was detected in 12% (n?=?37) of the samples. The genotype diversity was unusually large; overall the 37 positive samples belonged to 14 genotypes. Only children <2 years of age were NoV positive and the GII.4 NoVs were more frequent in the late dry season (Jan-May). NoV infections were observed less in children with the secretor-negative phenotype or blood group A (OR 0.18; p?=?0.012 and OR 0.31; p?=?0.054; respectively), with two non-secretors infected with genotypes GII.7 and GII.4 respectively. Lewis-negative (Lea?b?) children, representing 32% of the study population, were susceptible to GII, but were not infected with any NoV GI. GII.4 strains preferentially infected children with blood group B whereas secretor-positive children with blood group O were infected with the largest variety of genotypes. This is the first study identifying host genetic factors associated with susceptibility to NoV in an African population, and suggests that while the non-secretor phenotype provides protection; the Lewis b antigen is not necessary for GII infection. PMID:23894502

Nordgren, Johan; Nitiema, Léon W.; Ouermi, Djeneba; Simpore, Jacques; Svensson, Lennart

2013-01-01

333

Genetic factors affecting the impact of DNA polymerase delta proofreading activity on mutation avoidance in yeast.  

PubMed Central

Base selectivity, proofreading, and postreplication mismatch repair are important for replication fidelity. Because proofreading plays an important role in error correction, we have investigated factors that influence its impact in the yeast Saccharomyces cerevisiae. We have utilized a sensitive mutation detection system based on homonucleotide runs of 4 to 14 bases to examine the impact of DNA polymerase delta proofreading on mutation avoidance. The contribution of DNA polymerase delta proofreading on error avoidance was found to be similar to that of DNA polymerase epsilon proofreading in short homonucleotide runs (A4 and A5) but much greater than the contribution of DNA polymerase epsilon proofreading in longer runs. We have identified an intraprotein interaction affecting mutation prevention that results from mutations in the replication and the proofreading regions, resulting in an antimutator phenotype relative to a proofreading defect. Finally, a diploid strain with a defect in DNA polymerase delta proofreading exhibits a higher mutation rate than a haploid strain. We suggest that in the diploid population of proofreading defective cells there exists a transiently hypermutable fraction that would be inviable if cells were haploids. PMID:10224242

Tran, H T; Degtyareva, N P; Gordenin, D A; Resnick, M A

1999-01-01

334

Genetic and management factors affecting beef quality in grazing Hereford steers.  

PubMed

Attributes contributing to differences in beef quality of 206 Hereford steers finished on pasture were assessed. Beef quality traits evaluated were: Warner-Bratzler meat tenderness and muscle and fat color at one and seven days after slaughter and trained sensory panel traits (tenderness, juiciness, flavor, and marbling) at seven days. Molecular markers were CAPN1 316 and an SNP in exon 2 on the leptin gene (E2FB). Average daily live weight gain, ultrasound monthly backfat thickness gain and rib-eye area gain were estimated. Molecular markers effects on meat quality traits were analyzed by mixed models. Association of meat quality with post weaning growth traits was analyzed by canonical correlations. Muscle color and marbling were affected by CAPN1 316 and E2FB and Warner-Bratzler meat tenderness by the former. The results confirm that marker assisted selection for tenderness is advisable only when beef aging is a common practice. The most important sources of variation in tenderness and color of meat remained unaccounted for. PMID:22818350

Melucci, L M; Panarace, M; Feula, P; Villarreal, E L; Grigioni, G; Carduza, F; Soria, L A; Mezzadra, C A; Arceo, M E; Papaleo Mazzucco, J; Corva, P M; Irurueta, M; Rogberg-Muñoz, A; Miquel, M C

2012-12-01

335

Mutation of the transforming growth factor-beta type II receptor gene in right-sided colorectal cancer: relationship to clinicopathological features and genetic alterations.  

PubMed

The presence of inactivating mutations in the transforming growth factor-beta (TGF-beta) type II receptor (RII) gene in the colon cancer suggests that it may behave like a tumour suppressor gene. RII is mutated in the majority of colon tumours exhibiting widespread microsatellite instability, a characteristic generally referred to as the replication error phenotype (RER+). We investigated the association between RII mutations and various clinicopathological variables and genetic alterations in a large series of sporadic adenocarcinomas arising in the proximal colon. RII mutations were found in 17 per cent (36/210) of right-sided tumours and in 86 per cent (32/37) of those displaying RER+. They were associated with the absence of lymph node invasion (P = 0.04), poor histological differentiation (P = 0.006), and with a trend for improved patient survival. Tumours with an RII mutation also showed non-significant trends for a lower incidence of p53 protein overexpression and of p53, K-ras, and APC gene mutation compared with tumours with normal RII. These results indicate that right-sided colorectal tumours containing RII mutations resemble those with the RER+ phenotype in terms of their clinicopathological features and genetic alterations. PMID:9664904

Iacopetta, B J; Welch, J; Soong, R; House, A K; Zhou, X P; Hamelin, R

1998-04-01

336

Lessons Learned from Whole Exome Sequencing in Multiplex Families Affected by a Complex Genetic Disorder, Intracranial Aneurysm  

PubMed Central

Genetic risk factors for intracranial aneurysm (IA) are not yet fully understood. Genomewide association studies have been successful at identifying common variants; however, the role of rare variation in IA susceptibility has not been fully explored. In this study, we report the use of whole exome sequencing (WES) in seven densely-affected families (45 individuals) recruited as part of the Familial Intracranial Aneurysm study. WES variants were prioritized by functional prediction, frequency, predicted pathogenicity, and segregation within families. Using these criteria, 68 variants in 68 genes were prioritized across the seven families. Of the genes that were expressed in IA tissue, one gene (TMEM132B) was differentially expressed in aneurysmal samples (n=44) as compared to control samples (n=16) (false discovery rate adjusted p-value=0.023). We demonstrate that sequencing of densely affected families permits exploration of the role of rare variants in a relatively common disease such as IA, although there are important study design considerations for applying sequencing to complex disorders. In this study, we explore methods of WES variant prioritization, including the incorporation of unaffected individuals, multipoint linkage analysis, biological pathway information, and transcriptome profiling. Further studies are needed to validate and characterize the set of variants and genes identified in this study. PMID:25803036

Farlow, Janice L.; Lin, Hai; Sauerbeck, Laura; Lai, Dongbing; Koller, Daniel L.; Pugh, Elizabeth; Hetrick, Kurt; Ling, Hua; Kleinloog, Rachel; van der Vlies, Pieter; Deelen, Patrick; Swertz, Morris A.; Verweij, Bon H.; Regli, Luca; Rinkel, Gabriel J. E.; Ruigrok, Ynte M.; Doheny, Kimberly; Liu, Yunlong; Broderick, Joseph; Foroud, Tatiana

2015-01-01

337

Genetic risk for Parkinson’s disease correlates with alterations in neuronal manganese sensitivity between two human subjects  

PubMed Central

Manganese (Mn) is an environmental risk factor for Parkinson’s disease (PD). Recessive inheritance of PARK2 mutations is strongly associated with early onset PD (EOPD). It is widely assumed that the influence of PD environmental risk factors may be enhanced by the presence of PD genetic risk factors in the genetic background of individuals. However, such interactions may be difficult to predict owing to the complexities of genetic and environmental interactions. Here we examine the potential of human induced pluripotent stem cell (iPS)-derived early neural progenitor cells (NPCs) to model differences in Mn neurotoxicity between a control subject (CA) with no known PD genetic risk factors and a subject (SM) with biallelic loss-of-function mutations in PARK2 and family history of PD but no evidence of PD by neurological exam. Human iPS cells were generated from primary dermal fibroblasts of both subjects. We assessed several outcome measures associated with Mn toxicity and PD. No difference in sensitivity to Mn cytotoxicity or mitochondrial fragmentation was observed between SM and CA NPCs. However, we found that Mn exposure was associated with significantly higher reactive oxygen species (ROS) generation in SM compared to CA NPCs despite significantly less intracellular Mn accumulation. Thus, this report offers the first example of human subject-specific differences in PD-relevant environmental health related phenotypes that are consistent with pathogenic interactions between known genetic and environmental risk factors for PD. PMID:23099318

Aboud, Asad A.; Tidball, Andrew M.; Kumar, Kevin K.; Neely, M. Diana; Ess, Kevin C.; Erikson, Keith M.; Bowman, Aaron B.

2012-01-01

338

Pressure-altering agents affect central aortic pressures more than is apparent from upper limb measurements in hypertensive patients: the role of arterial wave reflections.  

PubMed

The pressure pulse does not have the same amplitude in central and peripheral arteries, but it is amplified toward the periphery; the degree of this amplification depends principally on wave reflection. Despite the conventional clinical and epidemiological focus on peripheral pressures, the most physiologically relevant pressures for both cardiac and vascular effects are central pressures. The reflected wave contributes differently in the configuration of the peripheral and central pressure waveform. Therefore, we hypothesized that agents that alter wave reflections could have an unequal effect on central and peripheral pressures in hypertensive patients. Thus, the effect of caffeine was investigated in 10 hypertensive subjects according to a randomized, placebo-controlled, double-blind, crossover design. Central aortic pressures and wave reflection were assessed with applanation tonometry and pulse wave analysis. After caffeine, augmentation index and augmented pressure increased by 4.6%, (P<0.005) and 5.7 mm Hg (P<0.001), respectively, indicating increased effect of wave reflection from the periphery. The increase in aortic systolic pressure was greater compared with that in radial artery pressure at 30 minutes (25%) and marginally greater at 60 minutes (21%). Furthermore, the increase in aortic pulse pressure was greater at 30 and 60 minutes (34% and 40%, respectively). The intensified reflected wave after caffeine was largely responsible for the disparate effect between central and peripheral pressures by boosting the peak of the central and not of the peripheral waveform. This study shows that pressure-altering agents might affect central pressures more than is apparent from the corresponding upper limb values because of the concomitant changes in wave reflection. PMID:11751735

Vlachopoulos, C; Hirata, K; O'Rourke, M F

2001-12-01

339

Nutritional, glycometabolic and genetic factors affecting menarcheal age in cystic fibrosis.  

PubMed

Aims of this study were to investigate menarcheal age (MA) and menarcheal determinants in 25 girls with cystic fibrosis (CF) and to compare their MA with their respective mothers'. Patients' MA (13.3 +/- 1.1 yr) was on average significantly higher (p<0.0005) than that of the respective mothers (12.2 +/- 1.0 yr) and positively related to it (r=0.055, p<0.005). Six girls experienced menarche after 14.2 yr, ie after the uppest limit of their mothers' MA range. The only parameter which significantly differentiated these 6 patients from the remaining 19 cases was body mass percentile (BMP). Moreover, in the entire patient series a negative correlation was found between MA and BMP. None of the other clinical parameters correlated significantly with MA. No differences in terms of MA were detected in the subgroups of patients with a different glucose tolerance (GT) status and the 12 girls with a pathological GT were not older at menarche than those with normal GT. No correlations were found between either glucose or insulin areas during oral GT test and MA. In the subgroups of patients with a different genotype menarche occurred at a similar age, irrespectively of their genotype. On the basis of our findings we conclude that: a) a menarcheal delay of approximately 1 yr exists between CF girls and their mothers; b) menarcheal delay in CF is not related to either genotype or disease severity or glycometabolic status; c) the only two factors which are able to affect MA in CF are maternal MA and nutritional status. PMID:15244104

Arrigo, T; De Luca, F; Lucanto, C; Lombardo, M; Rulli, I; Salzano, G; Lombardo, F

2004-04-01

340

ONO-2506 inhibits spike–wave discharges in a genetic animal model without affecting traditional convulsive tests via gliotransmission regulation  

PubMed Central

Background and Purpose Anticonvulsants have been developed according to the traditional neurotransmission imbalance hypothesis. However, the anticonvulsive pharmacotherapy currently available remains unsatisfactory. To develop new antiepileptic drugs with novel antiepileptic mechanisms, we have tested the antiepileptic actions of ONO-2506, a glial modulating agent, and its effects on tripartite synaptic transmission. Experimental Approach Dose-dependent effects of ONO-2506 on maximal-electroshock seizure (MES), pentylenetetrazol-induced seizure (PTZ) and epileptic discharge were determined in a genetic model of absence epilepsy in mice (Cacna1atm2Nobs/tm2Nobs strain). Antiepileptic mechanisms of ONO-2506 were analysed by examining the interaction between ONO-2506 and transmission-modulating toxins (tetanus toxin, fluorocitrate, tetrodotoxin) on release of l-glutamate, d-serine, GABA and kynurenic acid in the medial-prefrontal cortex (mPFC) of freely moving rats using microdialysis and primary cultured rat astrocytes. Key Results ONO-2506 inhibited spontaneous epileptic discharges in Cacna1atm2Nobs/tm2Nobs mice without affecting MES or PTZ. Given systemically, ONO-2506 increased basal release of GABA and kynurenic acid in the mPFC through activation of both neuronal and glial exocytosis, but inhibited depolarization-induced releases of all transmitters. ONO-2506 increased basal glial release of kynurenic acid without affecting those of l-glutamate, d-serine or GABA. However, ONO-2506 inhibited AMPA-induced releases of l-glutamate, d-serine, GABA and kynurenic acid. Conclusions and Implications ONO-2506 did not affect traditional convulsive tests but markedly inhibited epileptic phenomena in the genetic epilepsy mouse model. ONO-2506 enhanced release of inhibitory neuro- and gliotransmitters during the resting stage and inhibited tripartite transmission during the hyperactive stage. The results suggest that ONO-2506 is a novel potential glial-targeting antiepileptic drug. Linked Article This article is commented on by Onat, pp. 1086–1087 of this issue. To view this commentary visit http://dx.doi.org/10.1111/bph.12050 PMID:22882023

Yamamura, Satoshi; Hoshikawa, Masamitsu; Dai, Kato; Saito, Hiromitsu; Suzuki, Noboru; Niwa, Osamu; Okada, Motohiro

2013-01-01

341

High-level hemicellulosic arabinose predominately affects lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants.  

PubMed

Rice is a major food crop with enormous biomass residue for biofuels. As plant cell wall recalcitrance basically decides a costly biomass process, genetic modification of plant cell walls has been regarded as a promising solution. However, due to structural complexity and functional diversity of plant cell walls, it becomes essential to identify the key factors of cell wall modifications that could not much alter plant growth, but cause an enhancement in biomass enzymatic digestibility. To address this issue, we performed systems biology analyses of a total of 36 distinct cell wall mutants of rice. As a result, cellulose crystallinity (CrI) was examined to be the key factor that negatively determines either the biomass enzymatic saccharification upon various chemical pretreatments or the plant lodging resistance, an integrated agronomic trait in plant growth and grain production. Notably, hemicellulosic arabinose (Ara) was detected to be the major factor that negatively affects cellulose CrI probably through its interlinking with ?-1,4-glucans. In addition, lignin and G monomer also exhibited the positive impact on biomass digestion and lodging resistance. Further characterization of two elite mutants, Osfc17 and Osfc30, showing normal plant growth and high biomass enzymatic digestion in situ and in vitro, revealed the multiple GH9B candidate genes for reducing cellulose CrI and XAT genes for increasing hemicellulosic Ara level. Hence, the results have suggested the potential cell wall modifications for enhancing both biomass enzymatic digestibility and plant lodging resistance by synchronically overexpressing GH9B and XAT genes in rice. PMID:25418842

Li, Fengcheng; Zhang, Mingliang; Guo, Kai; Hu, Zhen; Zhang, Ran; Feng, Yongqing; Yi, Xiaoyan; Zou, Weihua; Wang, Lingqiang; Wu, Changyin; Tian, Jinshan; Lu, Tiegang; Xie, Guosheng; Peng, Liangcai

2014-11-21

342

Curcumin intake affects miRNA signature in murine melanoma with mmu-miR-205-5p most significantly altered.  

PubMed

Melanoma is the most aggressive form of skin cancer with estimated 48,000 deaths per year worldwide. The polyphenol curcumin derived from the plant Curcuma longa is well known for its anti-inflammatory and anti-cancerogenic properties. Accordingly, dietary intake of this compound may be suitable for melanoma prevention. However, how this compound affects basic cellular mechanisms in developing melanoma still remains elusive. Therefore, the aim of this study was to investigate for the first time the impact of oral curcumin administration on the miRNA signature of engrafting melanoma. For this purpose, the effects of a 4% curcumin diet were tested on melanoma, which were established by injection of murine B78H1 cells in the flank of C57BL/6 mice. Curcumin diet or standard chow (control) was administered two weeks prior to injection of tumor cells until termination of the experiment. High throughput chip-based array analysis was deployed to detect alterations in the miRNA signature of the tumors. Curcumin treatment significantly reduced the growth of the flank tumors. Furthermore the miRNA expression signature in tumors was substantially altered by curcumin intake with mmu-miR-205-5p over 100 times higher expressed when compared to controls. The expression levels of identified key miRNAs in the tumor samples were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR). A comparable expression pattern of these miRNAs was also detected in other curcumin-treated melanoma cell lines under in vitro conditions. Putative targets of curcumin-induced up-regulated miRNAs were enriched in 'o-glycan biosynthesis', 'endoplasmatic reticulum protein processing' and different cancer-related pathways. Western Blot analyses revealed that of these targets anti-apoptotic B-cell CLL/lymphoma 2 (Bcl-2) and proliferating cell nuclear antigen (PCNA) were significantly down-regulated in curcumin-treated tumors. These findings demonstrate a profound alteration of the miRNA expression signature in engrafting curcumin-treated melanoma with mmu-miR-205-5p being up-regulated most significantly. PMID:24349037

Dahmke, Indra N; Backes, Christina; Rudzitis-Auth, Jeannette; Laschke, Matthias W; Leidinger, Petra; Menger, Michael D; Meese, Eckart; Mahlknecht, Ulrich

2013-01-01

343

Curcumin Intake Affects miRNA Signature in Murine Melanoma with mmu-miR-205-5p Most Significantly Altered  

PubMed Central

Melanoma is the most aggressive form of skin cancer with estimated 48,000 deaths per year worldwide. The polyphenol curcumin derived from the plant Curcuma longa is well known for its anti-inflammatory and anti-cancerogenic properties. Accordingly, dietary intake of this compound may be suitable for melanoma prevention. However, how this compound affects basic cellular mechanisms in developing melanoma still remains elusive. Therefore, the aim of this study was to investigate for the first time the impact of oral curcumin administration on the miRNA signature of engrafting melanoma. For this purpose, the effects of a 4% curcumin diet were tested on melanoma, which were established by injection of murine B78H1 cells in the flank of C57BL/6 mice. Curcumin diet or standard chow (control) was administered two weeks prior to injection of tumor cells until termination of the experiment. High throughput chip-based array analysis was deployed to detect alterations in the miRNA signature of the tumors. Curcumin treatment significantly reduced the growth of the flank tumors. Furthermore the miRNA expression signature in tumors was substantially altered by curcumin intake with mmu-miR-205-5p over 100 times higher expressed when compared to controls. The expression levels of identified key miRNAs in the tumor samples were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR). A comparable expression pattern of these miRNAs was also detected in other curcumin-treated melanoma cell lines under in vitro conditions. Putative targets of curcumin-induced up-regulated miRNAs were enriched in ‘o-glycan biosynthesis’, ‘endoplasmatic reticulum protein processing’ and different cancer-related pathways. Western Blot analyses revealed that of these targets anti-apoptotic B-cell CLL/lymphoma 2 (Bcl-2) and proliferating cell nuclear antigen (PCNA) were significantly down-regulated in curcumin-treated tumors. These findings demonstrate a profound alteration of the miRNA expression signature in engrafting curcumin-treated melanoma with mmu-miR-205-5p being up-regulated most significantly. PMID:24349037

Rudzitis-Auth, Jeannette; Laschke, Matthias W.; Leidinger, Petra; Menger, Michael D.; Meese, Eckart; Mahlknecht, Ulrich

2013-01-01

344

Identification of new genetic polymorphisms that alter the dietary requirement for choline and vary in their distribution across ethnic and racial groups.  

PubMed

Effect alleles (alleles with a polymorphism that is associated with the effect being measured) in a small number of single-nucleotide polymorphisms (SNPs) are known to influence the dietary requirement for choline. In this study, we examined a much larger number of SNPs (n=200) in 10 genes related to choline metabolism for associations with development of organ dysfunction (liver or muscle) when 79 humans were fed a low-choline diet. We confirmed that effect alleles in SNPs such as the C allele of PEMT rs12325817 increase the risk of developing organ dysfunction in women when they consume a diet low in choline, and we identified novel effect alleles, such as the C allele of CHKA SNP rs7928739, that alter dietary choline requirements. When fed a low-choline diet, some people presented with muscle damage rather than liver damage; several effect alleles in SLC44A1 (rs7873937, G allele; rs2771040, G; rs6479313, G; rs16924529, A; and rs3199966, C) and one in CHKB (rs1557502, A) were more common in these individuals. This suggests that pathways related to choline metabolism are more important for normal muscle function than previously thought. In European, Mexican, and Asian Americans, and in individuals of African descent, we examined the prevalence of the effect alleles in SNPs that alter choline requirement and found that they are differentially distributed among people of different ethnic and racial backgrounds. Overall, our study has identified novel genetic variants that modulate choline requirements and suggests that the dietary requirement for choline may be different across racial and ethnic groups.-Da Costa, K.-A., Corbin, K. D., Niculescu, M. D., Galanko, J. A., Zeisel, S. H. Identification of new genetic polymorphisms that alter the dietary requirement for choline and vary in their distribution across ethnic and racial groups. PMID:24671709

da Costa, Kerry-Ann; Corbin, Karen D; Niculescu, Mihai D; Galanko, Joseph A; Zeisel, Steven H

2014-07-01

345

Small-scale patterns in snowmelt timing affect gene flow and the distribution of genetic diversity in the alpine dwarf shrub Salix herbacea.  

PubMed

Current threats to biodiversity, such as climate change, are thought to alter the within-species genetic diversity among microhabitats in highly heterogeneous alpine environments. Assessing the spatial organization and dynamics of genetic diversity within species can help to predict the responses of organisms to environmental change. In this study, we evaluated whether small-scale heterogeneity in snowmelt timing restricts gene flow between microhabitats in the common long-lived dwarf shrub Salix herbacea L. We surveyed 273 genets across 12 early- and late-snowmelt sites (that is, ridges and snowbeds) in the Swiss Alps for phenological variation over 2 years and for genetic variation using seven SSR markers. Phenological differentiation triggered by differences in snowmelt timing did not correlate with genetic differentiation between microhabitats. On the contrary, extensive gene flow appeared to occur between microhabitats and slightly less extensively among adjacent mountains. However, ridges exhibited significantly lower levels of genetic diversity than snowbeds, and patterns of effective population size (Ne) and migration (Nem) between microhabitats were strongly asymmetric, with ridges acting as sources and snowbeds as sinks. As no recent genetic bottlenecks were detected in the studied sites, this asymmetry is likely to reflect current meta-population dynamics of the species dominated by gene flow via seeds rather than ancient re-colonization after the last glacial period. Overall, our results suggest that seed dispersal prevents snowmelt-driven genetic isolation, and snowbeds act as sinks of genetic diversity. We discuss the consequences of such small-scale variation in gene flow and diversity levels for population responses to climate change. PMID:24619183

Cortés, A J; Waeber, S; Lexer, C; Sedlacek, J; Wheeler, J A; van Kleunen, M; Bossdorf, O; Hoch, G; Rixen, C; Wipf, S; Karrenberg, S

2014-09-01

346

Alteration of Sexual Reproduction and Genetic Diversity in the Kelp Species Laminaria digitata at the Southern Limit of Its Range  

PubMed Central

Adaptation to marginal habitats at species range-limits has often been associated with parthenogenetic reproduction in terrestrial animals and plants. Laboratory observations have shown that brown algae exhibit a high propensity for parthenogenesis by various mechanisms. The kelp Laminaria digitata is an important component of the ecosystem in Northern European rocky intertidal habitats. We studied four L. digitata populations for the effects of marginality on genetic diversity and sexual reproduction. Two populations were marginal: One (Locquirec, in Northern Brittany) was well within the geographic range, but was genetically isolated from other populations by large stretches of sandy beaches. Another population was at the range limits of the species (Quiberon, in Southern Brittany) and was exposed to much higher seasonal temperature changes. Microsatellite analyses confirmed that these populations showed decreased genetic and allelic diversity, consistent with marginality and genetic isolation. Sporophytes from both marginal populations showed greatly diminished spore-production compared to central populations, but only the southern-limit population (Quiberon) showed a high propensity for producing unreduced (2N) spores. Unreduced 2N spores formed phenotypically normal gametophytes with nuclear area consistent with ?2N DNA contents, and microsatellite studies suggested these were produced at least in part by automixis. However, despite this being the dominant path of spore production in Quiberon sporophyte individuals, the genetic evidence indicated the population was maintained mostly by sexual reproduction. Thus, although spore production and development showed the expected tendency of geographical parthenogenesis in marginal populations, this appeared to be a consequence of maladaptation, rather than an adaptation to, life in a marginal habitat. PMID:25019953

Oppliger, Luz Valeria; von Dassow, Peter; Bouchemousse, Sarah; Robuchon, Marine; Valero, Myriam; Correa, Juan A.; Mauger, Stéphane; Destombe, Christophe

2014-01-01

347

Genetic homogeneity of Pelizaeus-Merzbacher disease: tight linkage to the proteolipoprotein locus in 16 affected families. PMD Clinical Group.  

PubMed

Among the numerous leukodystrophies that have an early onset and no biochemical markers, Pelizaeus-Merzbacher disease (PMD) is one that can be identified using strict clinical criteria and demonstrating an abnormal formation of myelin that is restricted to the CNS in electrophysiological studies and brain magnetic resonance imaging (MRI). In PMD, 12 different base substitutions and one total deletion of the genomic region containing the PLP gene have been reported, but, despite extensive analysis, PLP exon mutations have been found in only 10%-25% of the families analyzed. To test the genetic homogeneity of this disease, we have carried out linkage analysis with polymorphic markers of the PLP genomic region in 16 families selected on strict diagnostic criteria of PMD. We observed a tight linkage of the PMD locus with markers of the PLP gene (cDNA PLP, exon IV polymorphism) and of the Xq22 region (DXS17, DXS94, and DXS287), whereas the markers located more proximally (DXYS1X and DXS3) or distally (DXS11) were not linked to the PMD locus. Multipoint analysis gave a maximal location score for the PMD locus (13.98) and the PLP gene (8.32) in the same interval between DXS94 and DXS287, suggesting that in all families PMD is linked to the PLP locus. Mutations of the extraexonic PLP gene sequences or of another unknown close gene could be involved in PMD. In an attempt to identify molecular defects of this genomic region that are responsible for PMD, these results meant that RFLP analysis could be used to improve genetic counseling for the numerous affected families in which a PLP exon mutation could not be demonstrated. PMID:7915877

Boespflug-Tanguy, O; Mimault, C; Melki, J; Cavagna, A; Giraud, G; Pham Dinh, D; Dastugue, B; Dautigny, A

1994-09-01

348

Selection Based on Indirect Genetic Effects for Growth, Environmental Enrichment and Coping Style Affect the Immune Status of Pigs  

PubMed Central

Pigs living in intensive husbandry systems may experience both acute and chronic stress through standard management procedures and limitations in their physical and social environment, which may have implications for their immune status. Here, the effect of a new breeding method where pigs were selected on their heritable influence on their pen mates' growth, and environmental enrichment on the immune status of pigs was investigated. Hereto, 240 pigs with a relatively positive genetic effect on the growth of their pen mates (+SBV) and 240 pigs with a relatively negative genetic effect on the growth of their pen mates (?SBV) were housed in barren or straw-enriched pens from 4 to 23 weeks of age (n ?=? 80 pens in total). A blood sample was taken from the pigs before, three days after a 24 h regrouping test, and at week 22. In addition, effects of coping style, as assessed in a backtest, and gender were also investigated. Mainly, +SBV were found to have lower leukocyte, lymphocyte and haptoglobin concentrations than -SBV pigs. Enriched housed pigs had a lower neutrophil to lymphocyte (N:L) ratio and lower haptoglobin concentrations, but had higher antibody titers specific for Keyhole Limpet Hemocyanin (KLH) than barren housed pigs. No interactions were found between SBV class and housing. Furthermore, pigs with a proactive coping style had higher alternative complement activity and, in the enriched pens, higher antibody titers specific for KLH than pigs with a reactive coping style. Lastly, females tended to have lower leukocyte, but higher haptoglobin concentrations than castrated males. Overall, these results suggest that +SBV pigs and enriched housed pigs were less affected by stress than -SBV and barren housed pigs, respectively. Moreover, immune activation might be differently organized in individuals with different coping styles and to a lesser extent in individuals of opposite genders. PMID:25275507

Reimert, Inonge; Rodenburg, T. Bas; Ursinus, Winanda W.; Kemp, Bas; Bolhuis, J. Elizabeth

2014-01-01

349

Virus-induced gene silencing of PEAM4 affects floral morphology by altering the expression pattern of PsSOC1a and PsPVP in pea.  

PubMed

pea-MADS4 (PEAM4) regulates floral morphology in Pisum sativum L., however, its molecular mechanisms still remain unclear. Virus-induced gene silencing (VIGS) is a recently developed reverse genetic approach that facilities an easier and more rapid study of gene functions. In this study, the PEAM4 gene was effectively silenced by VIGS using a pea early browning virus (PEBV) in wild type pea JI992. The infected plants showed abnormal phenotypes, as the floral organs, especially the sepals and petals changed in both size and shape, which made the corolla less closed. The petals changed in morphology and internal symmetry with, the stamens reduced and carpel dehisced. Larger sepals and longer tendrils with small cauline leaves appeared, with some sepals turning into bracts, and secondary inflorescences with fused floral organs were formed, indicating a flower-to-inflorescence change. The infected plants also displayed a delayed and prolonged flowering time. The PEAM4-VIGS plants with altered floral morphology were similar to the pim (proliferating inflorescence meristem) mutant and also mimicked the phenotypes of ap1 mutants in Arabidopsis. The expression pattern of the homologous genes PsSOC1a and PsSVP, which were involved in flowering time and florescence morphological control downstream of PEAM4, were analyzed by real-time RT-PCR and mRNA in situ hybridization. PsSOC1a and PsSVP were ectopically expressed and enhanced in the floral meristems from PEAM4-silenced plants. Our data suggests that PEAM4 may have a similar molecular mechanism as AtAP1, which inhibits the expression of PsSOC1a and PsSVP in the floral meristem from the early stages of flower development. As such, in this way PEAM4 plays a crucial role in maintaining floral organ identity and flower development in pea. PMID:24331430

Chen, Zhe-Hao; Jia, Fei-Fei; Hu, Jiang-Qin; Pang, Ji-Liang; Xu, Lei; Wang, Li-Lin

2014-01-15

350

Genetic elimination of a starch granule protein, SGP1, of wheat generates an altered starch with apparent high amylose  

Microsoft Academic Search

A starch granule protein, SGP-1, is a starch synthase bound to starch granules in wheat endosperm. A wheat lacking SGP-1 was\\u000a produced by crossing three variants each deficient in one of three SGP-1 classes, namely SGP-A1, -B1 or -D1. This deficient\\u000a wheat (SGP–1 null wheat) showed some alterations in endosperm starch, meaning that SGP-1 is involved in starch synthesis.\\u000a Electrophoretic

M. Yamamori; S. Fujita; K. Hayakawa; J. Matsuki; T. Yasui

2000-01-01

351

Genetics  

Microsoft Academic Search

The author draws on modern research to introduce genetics in a molecular and cellular context. This work covers the structure of DNA and the gene and gene expression, replication, mutation, and recombination, looks at the gene in the context of the cell and organism, describes the elements of genetic analysis and the basic principles of inheritance, and examines classic experiments

1990-01-01

352

Electric stimulation of the tuberomamillary nucleus affects epileptic activity and sleep-wake cycle in a genetic absence epilepsy model.  

PubMed

Deep brain stimulation (DBS) is a promising approach for epilepsy treatment, but the optimal targets and parameters of stimulation are yet to be investigated. Tuberomamillary nucleus (TMN) is involved in EEG desynchronization-one of the proposed mechanisms for DBS action. We studied whether TMN stimulation could interfere with epileptic spike-wave discharges (SWDs) in WAG/Rij rats with inherited absence epilepsy and whether such stimulation would affect sleep-wake cycle. EEG and video registration were used to determine SWD occurrence and stages of sleep and wake during three-hours recording sessions. Stimulation (100Hz) was applied in two modes: closed-loop (with previously determined interruption threshold intensity) or open-loop mode (with 50% or 70% threshold intensity). Closed-loop stimulation successfully interrupted SWDs but elevated their number by 148 ± 54% compared to baseline. It was accompanied by increase in number of episodes but not total duration of both active and passive wakefulness. Open-loop stimulation with amplitude 50% threshold did not change measured parameters, though 70% threshold stimulation reduced SWDs number by 40 ± 9%, significantly raised the amount of active wakefulness and decreased the amount of both slow-wave and rapid eye movement sleep. These results suggest that the TMN is unfavorable as a target for DBS as its stimulation may cause alterations in sleep-wake cycle. A careful choosing of parameters and control of sleep-wake activity is necessary when applying DBS in epilepsy. PMID:25524851

Blik, Vitaliya

2015-01-01

353

ANGPT2 Genetic Variant Is Associated with Trauma-associated Acute Lung Injury and Altered Plasma Angiopoietin-2 Isoform Ratio  

PubMed Central

Rationale: Acute lung injury (ALI) acts as a complex genetic trait, yet its genetic risk factors remain incompletely understood. Large-scale genotyping has not previously been reported for ALI. Objectives: To identify ALI risk variants after major trauma using a large-scale candidate gene approach. Methods: We performed a two-stage genetic association study. We derived findings in an African American cohort (n = 222) using a cardiopulmonary disease–centric 50K single nucleotide polymorphism (SNP) array. Genotype and haplotype distributions were compared between subjects with ALI and without ALI, with adjustment for clinical factors. Top performing SNPs (P < 10?4) were tested in a multicenter European American trauma-associated ALI case-control population (n = 600 ALI; n = 2,266 population-based control subjects) for replication. The ALI-associated genomic region was sequenced, analyzed for in silico prediction of function, and plasma was assayed by ELISA and immunoblot. Measurements and Main Results: Five SNPs demonstrated a significant association with ALI after adjustment for covariates in Stage I. Two SNPs in ANGPT2 (rs1868554 and rs2442598) replicated their significant association with ALI in Stage II. rs1868554 was robust to multiple comparison correction: odds ratio 1.22 (1.06–1.40), P = 0.0047. Resequencing identified predicted novel splice sites in linkage disequilibrium with rs1868554, and immunoblots showed higher proportion of variant angiopoietin-2 (ANG2) isoform associated with rs1868554T (0.81 vs. 0.48; P = 0.038). Conclusions: An ANGPT2 region is associated with both ALI and variation in plasma angiopoietin-2 isoforms. Characterization of the variant isoform and its genetic regulation may yield important insights about ALI pathogenesis and susceptibility. PMID:21257790

Meyer, Nuala J.; Li, Mingyao; Feng, Rui; Bradfield, Jonathan; Gallop, Robert; Bellamy, Scarlett; Fuchs, Barry D.; Lanken, Paul N.; Albelda, Steven M.; Rushefski, Melanie; Aplenc, Richard; Abramova, Helen; Atochina-Vasserman, Elena N.; Beers, Michael F.; Calfee, Carolyn S.; Cohen, Mitchell J.; Pittet, Jean-Francois; Christiani, David C.; O'Keefe, Grant E.; Ware, Lorraine B.; May, Addison K.; Wurfel, Mark M.; Hakonarson, Hakon; Christie, Jason D.

2011-01-01

354

Genetic background of IL10 ?\\/? mice alters host–pathogen interactions with Campylobacter jejuni and influences disease phenotype  

Microsoft Academic Search

We hypothesized that particular genetic backgrounds enhance rates of colonization, increase severity of enteritis, and allow for extraintestinal spread when inbred IL-10?\\/? mice are infected with pathogenic C. jejuni. Campylobacter jejuni stably colonized C57BL\\/6 and NOD mice, while congenic strains lacking IL-10 developed typhlocolitis following colonization that mimicked human campylobacteriosis. However, IL-10 deficiency alone was not necessary for the presence

L. S. Mansfield; J. S. Patterson; B. R. Fierro; A. J. Murphy; V. A. Rathinam; J. J. Kopper; N. I. Barbu; T. J. Onifade; J. A. Bell

2008-01-01

355

Impact of Genetic Vulnerability and Hypoxia on Overall Intelligence by Age 7 in Offspring at High Risk for Schizophrenia Compared With Affective Psychoses  

Microsoft Academic Search

Risk factors for schizophrenia, such as genetic vulnerability and obstetric complications, have been associated with cognitive deficits in schizophrenia. We tested the association of these risk factors with general intellectual ability in offspring at high risk for psychoses and normal control subjects. Offspring of 182 parents with DSM–IV schizophrenia or affective psychoses were recruited and diagnosed from the Boston and

Jill M. Goldstein; Larry J. Seidman; Stephen L. Buka; Nicholas J. Horton; JoAnn L. Donatelli; Ronald O. Rieder; Ming T. Tsuang

2000-01-01

356

Genetics  

NSDL National Science Digital Library

This activity helps students to understand basic principles of genetics, including relationships of genotype to phenotype, concepts of recessive and dominant alleles, and how understanding meiosis and fertilization provides the basis for understanding inheritance, as summarized in Punnett squares. The Student Handout includes an analysis of the inheritance of albinism that teaches all of these concepts, a Coin Toss Genetics activity that helps students understand the probabilistic nature of Punnett square predictions, and an analysis of the inheritance of sickle cell anemia that reinforces the basic concepts and introduces some of the complexities of genetics. The Genetics Supplement includes two additional activities, an analysis of student data on the sex makeup of sibships and pedigree analyses of recessive and dominant alleles with challenge questions that introduce the role of mutations and an evaluation of Punnett squares and pedigrees as models of inheritance.

Jennifer Doherty

357

Genetic Deficiency of Complement Component 3 Does Not Alter Disease Progression in a Mouse Model of Huntington's Disease.  

PubMed

Several genes and proteins of the complement cascade are present at elevated levels in brains of patients with Huntington's disease (HD). The complement cascade is well characterized as an effector arm of the immune system, and in the brain it is important for developmental synapse elimination. We hypothesized that increased levels of complement in HD brains contributes to disease progression, perhaps by contributing to synapse elimination or inflammatory signaling. We tested this hypothesis in the R6/2 mouse model of HD by crossing mice deficient in complement component 3 (C3), a crucial complement protein found at increased levels in HD brains, to R6/2 mice and monitoring behavioral and neuropathological disease progression. We found no alterations in multiple behavioral assays, weight or survival in R6/2 mice lacking C3. We also quantified the expression of several complement cascade genes in R6/2 brains and found that the large scale upregulation of complement genes observed in HD brains is not mirrored in R6/2 brains. These data show that C3 deficiency does not alter disease progression in the R6/2 mouse model of HD. PMID:23097680

Larkin, Paul B; Muchowski, Paul J

2012-01-01

358

Genetic Deficiency of Complement Component 3 Does Not Alter Disease Progression in a Mouse Model of Huntington's Disease  

PubMed Central

Several genes and proteins of the complement cascade are present at elevated levels in brains of patients with Huntington's disease (HD). The complement cascade is well characterized as an effector arm of the immune system, and in the brain it is important for developmental synapse elimination. We hypothesized that increased levels of complement in HD brains contributes to disease progression, perhaps by contributing to synapse elimination or inflammatory signaling. We tested this hypothesis in the R6/2 mouse model of HD by crossing mice deficient in complement component 3 (C3), a crucial complement protein found at increased levels in HD brains, to R6/2 mice and monitoring behavioral and neuropathological disease progression. We found no alterations in multiple behavioral assays, weight or survival in R6/2 mice lacking C3. We also quantified the expression of several complement cascade genes in R6/2 brains and found that the large scale upregulation of complement genes observed in HD brains is not mirrored in R6/2 brains. These data show that C3 deficiency does not alter disease progression in the R6/2 mouse model of HD. PMID:23097680

Larkin, Paul B.; Muchowski, Paul J.

2012-01-01

359

Alteration of JNK-1 signaling in skeletal muscle fails to affect glucose homeostasis and obesity-associated insulin resistance in mice.  

PubMed

Obesity and associated metabolic disturbances, such as increased circulating fatty acids cause prolonged low grade activation of inflammatory signaling pathways in liver, skeletal muscle, adipose tissue and even in the CNS. Activation of inflammatory pathways in turn impairs insulin signaling, ultimately leading to obesity-associated type 2 diabetes mellitus. Conventional JNK-1 knock out mice are protected from high fat diet-induced insulin resistance, characterizing JNK-1-inhibition as a potential approach to improve glucose metabolism in obese patients. However, the cell type-specific role of elevated JNK-1 signaling as present during the course of obesity has not been fully elucidated yet. To investigate the functional contribution of altered JNK-1 activation in skeletal muscle, we have generated a ROSA26 insertion mouse strain allowing for Cre-activatable expression of a JNK-1 constitutive active construct (JNK(C)). To examine the consequence of skeletal muscle-restricted JNK-1 overactivation in the development of insulin resistance and glucose metabolism, JNK(C) mice were crossed to Mck-Cre mice yielding JNK(SM-C) mice. However, despite increased muscle-specific JNK activation, energy homeostasis and glucose metabolism in JNK(SM-C) mice remained largely unaltered compared to controls. In line with these findings, obese mice with skeletal muscle specific disruption of JNK-1, did not affect energy and glucose homeostasis. These experiments indicate that JNK-1 activation in skeletal muscle does not account for the major effects on diet-induced, JNK-1-mediated deterioration of insulin action and points towards a so far underappreciated role of JNK-1 in other tissues than skeletal muscle during the development of obesity-associated insulin resistance. PMID:23349837

Pal, Martin; Wunderlich, Claudia M; Spohn, Gabriele; Brönneke, Hella S; Schmidt-Supprian, Marc; Wunderlich, F Thomas

2013-01-01

360

Alteration of JNK-1 Signaling in Skeletal Muscle Fails to Affect Glucose Homeostasis and Obesity-Associated Insulin Resistance in Mice  

PubMed Central

Obesity and associated metabolic disturbances, such as increased circulating fatty acids cause prolonged low grade activation of inflammatory signaling pathways in liver, skeletal muscle, adipose tissue and even in the CNS. Activation of inflammatory pathways in turn impairs insulin signaling, ultimately leading to obesity-associated type 2 diabetes mellitus. Conventional JNK-1 knock out mice are protected from high fat diet-induced insulin resistance, characterizing JNK-1-inhibition as a potential approach to improve glucose metabolism in obese patients. However, the cell type-specific role of elevated JNK-1 signaling as present during the course of obesity has not been fully elucidated yet. To investigate the functional contribution of altered JNK-1 activation in skeletal muscle, we have generated a ROSA26 insertion mouse strain allowing for Cre-activatable expression of a JNK-1 constitutive active construct (JNKC). To examine the consequence of skeletal muscle-restricted JNK-1 overactivation in the development of insulin resistance and glucose metabolism, JNKC mice were crossed to Mck-Cre mice yielding JNKSM-C mice. However, despite increased muscle-specific JNK activation, energy homeostasis and glucose metabolism in JNKSM-C mice remained largely unaltered compared to controls. In line with these findings, obese mice with skeletal muscle specific disruption of JNK-1, did not affect energy and glucose homeostasis. These experiments indicate that JNK-1 activation in skeletal muscle does not account for the major effects on diet-induced, JNK-1-mediated deterioration of insulin action and points towards a so far underappreciated role of JNK-1 in other tissues than skeletal muscle during the development of obesity-associated insulin resistance. PMID:23349837

Spohn, Gabriele; Brönneke, Hella S.; Schmidt-Supprian, Marc; Wunderlich, F. Thomas

2013-01-01

361

Delineating the role of alterations in lipid metabolism to the pathogenesis of inherited skeletal and cardiac muscle disorders: Thematic Review Series: Genetics of Human Lipid Diseases.  

PubMed

As the specific composition of lipids is essential for the maintenance of membrane integrity, enzyme function, ion channels, and membrane receptors, an alteration in lipid composition or metabolism may be one of the crucial changes occurring during skeletal and cardiac myopathies. Although the inheritance (autosomal dominant, autosomal recessive, and X-linked traits) and underlying/defining mutations causing these myopathies are known, the contribution of lipid homeostasis in the progression of these diseases needs to be established. The purpose of this review is to present the current knowledge relating to lipid changes in inherited skeletal muscle disorders, such as Duchenne/Becker muscular dystrophy, myotonic muscular dystrophy, limb-girdle myopathic dystrophies, desminopathies, rostrocaudal muscular dystrophy, and Dunnigan-type familial lipodystrophy. The lipid modifications in familial hypertrophic and dilated cardiomyopathies, as well as Barth syndrome and several other cardiac disorders associated with abnormal lipid storage, are discussed. Information on lipid alterations occurring in these myopathies will aid in the design of improved methods of screening and therapy in children and young adults with or without a family history of genetic diseases. PMID:22065858

Saini-Chohan, Harjot K; Mitchell, Ryan W; Vaz, Frédéric M; Zelinski, Teresa; Hatch, Grant M

2012-01-01

362

Genetic background of IL-10(-/-) mice alters host-pathogen interactions with Campylobacter jejuni and influences disease phenotype.  

PubMed

We hypothesized that particular genetic backgrounds enhance rates of colonization, increase severity of enteritis, and allow for extraintestinal spread when inbred IL-10(-/-) mice are infected with pathogenic C. jejuni. Campylobacter jejuni stably colonized C57BL/6 and NOD mice, while congenic strains lacking IL-10 developed typhlocolitis following colonization that mimicked human campylobacteriosis. However, IL-10 deficiency alone was not necessary for the presence of C. jejuni in extraintestinal sites. C3H/HeJ tlr4(-/-) mice that specifically express the Cdcs1 allele showed colonization and limited extraintestinal spread without enteritis implicating this interval in the clinical presentation of C. jejuni infection. Furthermore, when the IL-10 gene is inactivated as in C3Bir tlr4(-/-) IL-10(-/-) mice, enteritis and intensive extraintestinal spread were observed, suggesting that clinical presentations of C. jejuni infection are controlled by a complex interplay of factors. These data demonstrate that lack of IL-10 had a greater effect on C. jejuni induced colitis than other immune elements such as TLR4 (C3H/HeJ, C3Bir IL-10(-/-)), MHC H-2g7, diabetogenic genes, and CTLA-4 (NOD) and that host genetic background is in part responsible for disease phenotype. C3Bir IL-10(-/-) mice where Cdcs1 impairs gut barrier function provide a new murine model of C. jejuni and can serve as surrogates for immunocompromised patients with extraintestinal spread. PMID:18586081

Mansfield, L S; Patterson, J S; Fierro, B R; Murphy, A J; Rathinam, V A; Kopper, J J; Barbu, N I; Onifade, T J; Bell, J A

2008-10-01

363

Genetic background of IL-10?/? mice alters host-pathogen interactions with Campylobacter jejuni and influences disease phenotype  

PubMed Central

We hypothesized that particular genetic backgrounds enhance rates of colonization, increase severity of enteritis, and allow for extraintestinal spread when inbred IL-10?/? mice are infected with pathogenic C. jejuni. Campylobacter jejuni stably colonized C57BL/6 and NOD mice, while congenic strains lacking IL-10 developed typhlocolitis following colonization that mimicked human campylobacteriosis. However, IL-10 deficiency alone was not necessary for presence of C. jejuni in extraintestinal sites. C3H/HeJtlr4?/? mice that specifically express the Cdcs1 allele showed colonization and limited extraintestinal spread without enteritis implicating this interval in the clinical presentation of C. jejuni infection. Furthermore, when the IL-10 gene is inactivated as in C3Birtlr4?/? IL-10?/? mice, enteritis and intensive extraintestinal spread were observed, suggesting that clinical presentations of C. jejuni infection are controlled by a complex interplay of factors. These data demonstrate that lack of IL-10 had a greater effect on C. jejuni induced colitis than other immune elements such as TLR4 (C3H/HeJ, C3Bir IL-10?/?), MHC H-2g7, diabetogenic genes, and CTLA-4 (NOD) and that host genetic background is in part responsible for disease phenotype. C3Bir IL-10?/? mice where Cdcs1 impairs gut barrier function provide a new murine model of C. jejuni and can serve as surrogates for immunocompromised patients with extraintestinal spread. PMID:18586081

Mansfield, LS; Patterson, JS; Fierro, BR; Murphy, AJ; Rathinam, VA; Kopper, JJ; Barbu, NI; Onifade, TJ; Bell, JA

2014-01-01

364

Alterations in Oral [1-14C] 18:1n-9 Distribution in Lean Wild-Type and Genetically Obese (ob/ob) Mice.  

PubMed

Obesity may result from altered fatty acid (FA) disposal. Altered FA distribution in obese individuals is poorly understood. Lean wild-type C57BL/6J and obese C57BL/6Job/ob mice received an oral dose of [1-14C]18:1n-9 (oleic acid), and the radioactivity in tissues was evaluated at various time points. The 14C concentration decreased rapidly in gastrointestinal tract but gradually increased and peaked at 96 h in adipose tissue, muscle and skin in lean mice. The 14C concentration was constant in adipose tissue and muscle of obese mice from 4h to 168h. 14C-label content in adipose tissue was significantly affected by genotype, whereas muscle 14C-label content was affected by genotype, time and the interaction between genotype and time. There was higher total 14C retention (47.7%) in obese mice than in lean mice (9.0%) at 168 h (P<0.05). The 14C concentrations in the soleus and gastrocnemius muscle were higher in obese mice than in lean mice (P<0.05). Perirenal adipose tissue contained the highest 14C content in lean mice, whereas subcutaneous adipose tissue (SAT) had the highest 14C content and accounted for the largest proportion of total radioactivity among fat depots in obese mice. More lipid radioactivity was recovered as TAG in SAT from obese mice than from lean mice (P<0.05). Gene expression suggested acyl CoA binding protein and fatty acid binding protein are important for FA distribution in adipose tissue and muscle. The FA distribution in major tissues was altered in ob/ob mice, perhaps contributing to obesity. Understanding the disparity in FA disposal between lean and obese mice may reveal novel targets for the treatment and prevention of obesity. PMID:25826747

Wang, Xinxia; Feng, Jie; Yu, Caihua; Shen, Qingwu W; Wang, Yizhen

2015-01-01

365

Alterations in Oral [1-14C] 18:1n-9 Distribution in Lean Wild-Type and Genetically Obese (ob/ob) Mice  

PubMed Central

Obesity may result from altered fatty acid (FA) disposal. Altered FA distribution in obese individuals is poorly understood. Lean wild-type C57BL/6J and obese C57BL/6Job/ob mice received an oral dose of [1-14C]18:1n-9 (oleic acid), and the radioactivity in tissues was evaluated at various time points. The 14C concentration decreased rapidly in gastrointestinal tract but gradually increased and peaked at 96 h in adipose tissue, muscle and skin in lean mice. The 14C concentration was constant in adipose tissue and muscle of obese mice from 4h to 168h. 14C-label content in adipose tissue was significantly affected by genotype, whereas muscle 14C-label content was affected by genotype, time and the interaction between genotype and time. There was higher total 14C retention (47.7%) in obese mice than in lean mice (9.0%) at 168 h (P<0.05). The 14C concentrations in the soleus and gastrocnemius muscle were higher in obese mice than in lean mice (P<0.05). Perirenal adipose tissue contained the highest 14C content in lean mice, whereas subcutaneous adipose tissue (SAT) had the highest 14C content and accounted for the largest proportion of total radioactivity among fat depots in obese mice. More lipid radioactivity was recovered as TAG in SAT from obese mice than from lean mice (P<0.05). Gene expression suggested acyl CoA binding protein and fatty acid binding protein are important for FA distribution in adipose tissue and muscle. The FA distribution in major tissues was altered in ob/ob mice, perhaps contributing to obesity. Understanding the disparity in FA disposal between lean and obese mice may reveal novel targets for the treatment and prevention of obesity. PMID:25826747

Wang, Xinxia; Feng, Jie; Yu, Caihua; Shen, Qingwu W.; Wang, Yizhen

2015-01-01

366

Concerns of South Korean Patients and Family Members Affected with Genetic Conditions: A Content Analysis of Internet Website Messages  

Microsoft Academic Search

The genetic counseling profession is expanding globally, and many countries, such as South Korea, are in the early stages\\u000a of developing programs to prepare healthcare professionals specifically trained as genetic counselors. However, little research\\u000a has investigated the concerns of South Korean patients and family members that have genetic conditions. The present study\\u000a assessed their concerns by accessing and analyzing messages

Heejung Kang; Patricia McCarthy Veach; Bonnie S. LeRoy

2010-01-01

367

Reactive biomolecular divergence in genetically altered yeast cells and isolated mitochondria as measured by biocavity laser spectroscopy : a rapid diagnostic method for studying cellular responses to stress and disease.  

SciTech Connect

We report an analysis of four strains of baker's yeast (Saccharomyces cerevisiae) using biocavity laser spectroscopy. The four strains are grouped in two pairs (wild type and altered), in which one strain differs genetically at a single locus, affecting mitochondrial function. In one pair, the wild-type rho+ and a rho0 strain differ by complete removal of mitochondrial DNA (mtDNA). In the second pair, the wild-type rho+ and a rho- strain differ by knock-out of the nuclear gene encoding Cox4, an essential subunit of cytochrome c oxidase. The biocavity laser is used to measure the biophysical optic parameter Deltalambda, a laser wavelength shift relating to the optical density of cell or mitochondria that uniquely reflects its size and biomolecular composition. As such, Deltalambda is a powerful parameter that rapidly interrogates the biomolecular state of single cells and mitochondria. Wild-type cells and mitochondria produce Gaussian-like distributions with a single peak. In contrast, mutant cells and mitochondria produce leptokurtotic distributions that are asymmetric and highly skewed to the right. These distribution changes could be self-consistently modeled with a single, log-normal distribution undergoing a thousand-fold increase in variance of biomolecular composition. These features reflect a new state of stressed or diseased cells that we call a reactive biomolecular divergence (RBD) that reflects the vital interdependence of mitochondria and the nucleus.

Yaffe, Michael P. (University of California, San Diego, CA); Gourley, Paul Lee; Copeland, Robert Guild; McDonald, Anthony Eugene; Hendricks, Judy K.; Naviaux, Robert K. (Univesity of California, San Diego, CA)

2006-12-01

368

Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response, and lateral root growth  

NASA Technical Reports Server (NTRS)

Auxin transport is required for important growth and developmental processes in plants, including gravity response and lateral root growth. Several lines of evidence suggest that reversible protein phosphorylation regulates auxin transport. Arabidopsis rcn1 mutant seedlings exhibit reduced protein phosphatase 2A activity and defects in differential cell elongation. Here we report that reduced phosphatase activity alters auxin transport and dependent physiological processes in the seedling root. Root basipetal transport was increased in rcn1 or phosphatase inhibitor-treated seedlings but showed normal sensitivity to the auxin transport inhibitor naphthylphthalamic acid (NPA). Phosphatase inhibition reduced root gravity response and delayed the establishment of differential auxin-induced gene expression across a gravity-stimulated root tip. An NPA treatment that reduced basipetal transport in rcn1 and cantharidin-treated wild-type plants also restored a normal gravity response and asymmetric auxin-induced gene expression, indicating that increased basipetal auxin transport impedes gravitropism. Increased auxin transport in rcn1 or phosphatase inhibitor-treated seedlings did not require the AGR1/EIR1/PIN2/WAV6 or AUX1 gene products. In contrast to basipetal transport, root acropetal transport was normal in phosphatase-inhibited seedlings in the absence of NPA, although it showed reduced NPA sensitivity. Lateral root growth also exhibited reduced NPA sensitivity in rcn1 seedlings, consistent with acropetal transport controlling lateral root growth. These results support the role of protein phosphorylation in regulating auxin transport and suggest that the acropetal and basipetal auxin transport streams are differentially regulated.

Rashotte, A. M.; DeLong, A.; Muday, G. K.; Brown, C. S. (Principal Investigator)

2001-01-01

369

Fluorescence in situ analysis of soft tissue tumor associated genetic alterations in formalin-fixed paraffin-embedded tissue.  

PubMed

No prospective studies are available to date evaluating the combined analysis of chromosomal alterations via interphase FISH in different soft tissue sarcoma (STS) subtypes. We tested 64 consecutive sarcoma specimens with FISH probes to detect aberrations specific for a given STS subtype. We first determined the translocation frequency in the specific STS subtypes in 48 tumors, with the primary pathological diagnosis as the gold standard. Subsequently, to evaluate sensitivity and specificity, all FISH probes were hybridized to 16 STS of hitherto unknown diagnosis. DDIT3 translocations occurred in 8/10 (80%) of myxoid liposarcomas. FOXO1 translocations were noted in 4/4 (100%) of alveolar but in none of 7 embryonal rhabdomyosarcomas. All 15 (100%) Ewing sarcomas/PNET and 4 clear cell sarcomas (4/4) harbored EWSR1 translocations. SS18 rearrangements were demonstrated in 8/9 (89%) synovial sarcomas. MDM2 amplification was noted in 7/8 (88%) atypical lipomatous tumors/well-differentiated and 3/3 (100%) dedifferentiated liposarcomas, respectively, but not in four pleomorphic liposarcomas. Sensitivities and specificities ranged from 80% to 100% and from 93% to 100%, respectively, with the highest values observed for FOXO1 (100% each). We conclude, therefore, that is possible to accurately predict the STS subtype using a panel of different subtype-specific FISH probes, thereby greatly facilitating the differential diagnosis of these tumors. PMID:25446247

Horn, Heike; Allmanritter, Jan; Doglioni, Claudio; Marx, Alexander; Müller, Justus; Gattenlöhner, Stefan; Staiger, Annette M; Rosenwald, Andreas; Ott, German; Ott, M Michaela

2014-12-01

370

The effects of intracellular Ca2+ on cardiac K+ channel expression and activity: novel insights from genetically altered mice.  

PubMed

We tested the hypothesis that chronic changes in intracellular Ca(2+) (Ca(2+)(i)) can result in changes in ion channel expression; this represents a novel mechanism of crosstalk between changes in Ca(2+) cycling proteins and the cardiac action potential (AP) profile. We used a transgenic mouse with cardiac-specific overexpression of sarcoplasmic reticulum Ca(2+) ATPase (SERCA) isoform 1a (SERCA1a OE) with a significant alteration of SERCA protein levels without cardiac hypertrophy or failure. Here, we report significant changes in the expression of a transient outward K(+) current (I(to,f)), a slowly inactivating K(+) current (I(K,slow)) and the steady state current (I(SS)) in the transgenic mice with resultant prolongation in cardiac action potential duration (APD) compared with the wild-type littermates. In addition, there was a significant prolongation of the QT interval on surface electrocardiograms in SERCA1a OE mice. The electrophysiological changes, which correlated with changes in Ca(2+)(i), were further corroborated by measuring the levels of ion channel protein expression. To recapitulate the in vivo experiments, the effects of changes in Ca(2+)(i) on ion channel expression were further tested in cultured adult and neonatal mouse cardiac myocytes. We conclude that a primary defect in Ca(2+) handling proteins without cardiac hypertrophy or failure may produce profound changes in K(+) channel expression and activity as well as cardiac AP. PMID:15564282

Xu, Yanfang; Zhang, Zhao; Timofeyev, Valeriy; Sharma, Dipika; Xu, Danyan; Tuteja, Dipika; Dong, Pei Hong; Ahmmed, Gias Uddin; Ji, Yong; Shull, Gary E; Periasamy, Muthu; Chiamvimonvat, Nipavan

2005-02-01

371

The effects of intracellular Ca2+ on cardiac K+ channel expression and activity: novel insights from genetically altered mice  

PubMed Central

We tested the hypothesis that chronic changes in intracellular Ca2+ (Ca2+i) can result in changes in ion channel expression; this represents a novel mechanism of crosstalk between changes in Ca2+ cycling proteins and the cardiac action potential (AP) profile. We used a transgenic mouse with cardiac-specific overexpression of sarcoplasmic reticulum Ca2+ ATPase (SERCA) isoform 1a (SERCA1a OE) with a significant alteration of SERCA protein levels without cardiac hypertrophy or failure. Here, we report significant changes in the expression of a transient outward K+ current (Ito,f), a slowly inactivating K+ current (IK,slow) and the steady state current (ISS) in the transgenic mice with resultant prolongation in cardiac action potential duration (APD) compared with the wild-type littermates. In addition, there was a significant prolongation of the QT interval on surface electrocardiograms in SERCA1a OE mice. The electrophysiological changes, which correlated with changes in Ca2+i, were further corroborated by measuring the levels of ion channel protein expression. To recapitulate the in vivo experiments, the effects of changes in Ca2+i on ion channel expression were further tested in cultured adult and neonatal mouse cardiac myocytes. We conclude that a primary defect in Ca2+ handling proteins without cardiac hypertrophy or failure may produce profound changes in K+ channel expression and activity as well as cardiac AP. PMID:15564282

Xu, Yanfang; Zhang, Zhao; Timofeyev, Valeriy; Sharma, Dipika; Xu, Danyan; Tuteja, Dipika; Dong, Pei Hong; Ahmmed, Gias Uddin; Ji, Yong; Shull, Gary E; Periasamy, Muthu; Chiamvimonvat, Nipavan

2005-01-01

372

Genetics  

Technology Transfer Automated Retrieval System (TEKTRAN)

The genus Capsicum represents one of several well characterized Solanaceous genera. A wealth of classical and molecular genetics research is available for the genus. Information gleaned from its cultivated relatives, tomato and potato, provide further insight for basic and applied studies. Early ...

373

Genetics  

Technology Transfer Automated Retrieval System (TEKTRAN)

Maintaining genetic variation in wild populations of Arctic organisms is fundamental to the long-term persistence of high latitude biodiversity. Variability is important because it provides options for species to respond to changing environmental conditions and novel challenges such as emerging path...

374

Temporary alterations to postpartum milking frequency affect whole-lactation milk production and the energy status of pasture-grazed dairy cows.  

PubMed

This study investigated the immediate and long-term effects of temporary alterations to postpartum milking frequency (MF) on milk production, body condition score (BCS), and indicators of energy status in pasture-grazed cows supplemented with concentrates. Multiparous Holstein-Friesian cows (n = 150) were randomly assigned to 1 of 5 groups at calving: milked twice daily (2 ×) throughout lactation (control), or milked either once daily (1 ×) or 3 times daily (3 ×) for 3 or 6 wk immediately postpartum, and then 2 × for the remainder of lactation. During wk 1 to 3 postpartum, cows milked 1 × produced 15% less milk and 17% less energy-corrected milk (ECM) than cows milked 2 ×. This immediate production loss increased to 20% less milk and 22% less ECM during wk 4 to 6 postpartum for cows that remained on 1 × milking; these animals also produced less than 1 × cows switched to 2 × milking after 3 wk. During wk 8 to 32, when all cows were milked 2 ×, those previously milked 1 × had sustained reductions in milk (-6%) and ECM (-8%) yields, which were not affected by the duration of reduced postpartum MF. In contrast, cows milked 3 × postpartum had 7% greater milk yields during wk 1 to 6 compared with 2 × controls, irrespective of the duration of increased MF. Milk yields also remained numerically greater (+5%) during wk 8 to 32 in cows previously milked 3 ×. Nevertheless, yields of ECM were not increased by 3 × milking, because of lower milk fat and protein contents that persisted for the rest of lactation. In addition, indicators of cow energy status reflected an increasing state of negative energy balance with increasing MF. Cows milked 1 × postpartum had greater plasma glucose and lower plasma nonesterified fatty acid concentrations during the reduced MF, and plasma glucose remained lower for 2 wk after cows had switched to 2 × milking. Moreover, BCS was improved relative to 2 × controls from wk 5 to 6. In contrast, cows milked 3 × had lower plasma glucose concentrations, greater plasma nonesterified fatty acid concentrations, and greater BCS loss during wk 1 to 3; however, greater body fat mobilization was not sustained, indicating that additional energy supplements may be required to achieve better milk production responses. In conclusion, temporary 1 × milking had lactation-long negative effects on milk and milk component yields but improved cow energy status and BCS, whereas temporary 3 × milking immediately increased milk yield but did not improve milk fat and protein yields in pasture-grazed cows. PMID:25200777

Phyn, C V C; Kay, J K; Rius, A G; Morgan, S R; Roach, C G; Grala, T M; Roche, J R

2014-11-01

375

Genetic manipulation of cardiac Hsp72 levels does not alter substrate metabolism but reveals insights into high-fat feeding-induced cardiac insulin resistance.  

PubMed

Heat shock protein 72 (Hsp72) protects cells against a variety of stressors, and multiple studies have suggested that Hsp72 plays a cardioprotective role. As skeletal muscle Hsp72 overexpression can protect against high-fat diet (HFD)-induced insulin resistance, alterations in substrate metabolism may be a mechanism by which Hsp72 is cardioprotective. We investigated the impact of transgenically overexpressing (Hsp72 Tg) or deleting Hsp72 (Hsp72 KO) on various aspects of cardiac metabolism. Mice were fed a normal chow (NC) or HFD for 12 weeks from 8 weeks of age to examine the impact of diet-induced obesity on metabolic parameters in the heart. The HFD resulted in an increase in cardiac fatty acid oxidation and a decrease in cardiac glucose oxidation and insulin-stimulated cardiac glucose clearance; however, there was no difference in Hsp72 Tg or Hsp72 KO mice in these rates compared with their respective wild-type control mice. Although HFD-induced cardiac insulin resistance was not rescued in the Hsp72 Tg mice, it was preserved in the skeletal muscle, suggesting tissue-specific effects of Hsp72 overexpression on substrate metabolism. Comparison of two different strains of mice (BALB/c vs. C57BL/6J) also identified strain-specific differences in regard to HFD-induced cardiac lipid accumulation and insulin resistance. These strain differences suggest that cardiac lipid accumulation can be dissociated from cardiac insulin resistance. Our study finds that genetic manipulation of Hsp72 does not lead to alterations in metabolic processes in cardiac tissue under resting conditions, but identifies mouse strain-specific differences in cardiac lipid accumulation and insulin-stimulated glucose clearance. PMID:25618331

Henstridge, Darren C; Estevez, E; Allen, T L; Heywood, S E; Gardner, T; Yang, C; Mellett, N A; Kingwell, B A; Meikle, P J; Febbraio, M A

2015-05-01

376

Genetic risk for Alzheimer's disease alters the five-year trajectory of semantic memory activation in cognitively intact elders.  

PubMed

Healthy aging is associated with cognitive declines typically accompanied by increased task-related brain activity in comparison to younger counterparts. The Scaffolding Theory of Aging and Cognition (STAC) (Park and Reuter-Lorenz, 2009; Reuter-Lorenz and Park, 2014) posits that compensatory brain processes are responsible for maintaining normal cognitive performance in older adults, despite accumulation of aging-related neural damage. Cross-sectional studies indicate that cognitively intact elders at genetic risk for Alzheimer's disease (AD) demonstrate patterns of increased brain activity compared to low risk elders, suggesting that compensation represents an early response to AD-associated pathology. Whether this compensatory response persists or declines with the onset of cognitive impairment can only be addressed using a longitudinal design. The current prospective, 5-year longitudinal study examined brain activation in APOE ?4 carriers (N=24) and non-carriers (N=21). All participants, ages 65-85 and cognitively intact at study entry, underwent task-activated fMRI, structural MRI, and neuropsychological assessments at baseline, 18, and 57months. fMRI activation was measured in response to a semantic memory task requiring participants to discriminate famous from non-famous names. Results indicated that the trajectory of change in brain activation while performing this semantic memory task differed between APOE ?4 carriers and non-carriers. The APOE ?4 group exhibited greater activation than the Low Risk group at baseline, but they subsequently showed a progressive decline in activation during the follow-up periods with corresponding emergence of episodic memory loss and hippocampal atrophy. In contrast, the non-carriers demonstrated a gradual increase in activation over the 5-year period. Our results are consistent with the STAC model by demonstrating that compensation varies with the severity of underlying neural damage and can be exhausted with the onset of cognitive symptoms and increased structural brain pathology. Our fMRI results could not be attributed to changes in task performance, group differences in cerebral perfusion, or regional cortical atrophy. PMID:25687593

Rao, Stephen M; Bonner-Jackson, Aaron; Nielson, Kristy A; Seidenberg, Michael; Smith, J Carson; Woodard, John L; Durgerian, Sally

2015-05-01

377

Genetic alterations on chromosome 16 and 17 are important features of ductal carcinoma in situ of the breast and are associated with histologic type  

PubMed Central

We analysed the involvement of known and putative tumour suppressor- and oncogene loci in ductal carcinoma in situ (DCIS) by microsatellite analysis (LOH), Southern blotting and comparative genomic hybridization (CGH). A total of 78 pure DCIS cases, classified histologically as well, intermediately and poorly differentiated, were examined for LOH with 76 markers dispersed along all chromosome arms. LOH on chromosome 17 was more frequent in poorly differentiated DCIS (70%) compared to well-differentiated DCIS (17%), whereas loss on chromosome 16 was associated with well- and intermediately differentiated DCIS (66%). For a subset we have done Southern blot- and CGH analysis. C-erbB2/neu was amplified in 30% of poorly differentiated DCIS. No amplification was found of c-myc, mdm2, bek, flg and the epidermal growth factor (EGF)-receptor. By CGH, most frequent alterations in poorly differentiated DCIS were gains on 8q and 17q22–24 and deletion on 17p, whereas in well-differentiated DCIS amplification on chromosome 1q and deletion on 16q were found. In conclusion, our data indicates that inactivation of a yet unknown tumour suppressor gene on chromosome 16q is implicated in the development of most well and intermediately differentiated DCIS whereas amplification and inactivation of various genes on chromosome 17 are implicated in the development of poorly differentiated DCIS. Furthermore these data show that there is a genetic basis for the classification of DCIS in a well and poorly differentiated type and support the evidence of different genetic routes to develop a specific type of carcinoma in situ of the breast. © 1999 Cancer Research Campaign PMID:10604741

Vos, C B J; Haar, N T ter; Rosenberg, C; Peterse, J L; Cleton-Jansen, A-M; Cornelisse, C J; Vijver, M J van de

1999-01-01

378

Genetic inhibition of hepatic acetyl-CoA carboxylase activity increases liver fat and alters global protein acetylationa  

PubMed Central

Lipid deposition in the liver is associated with metabolic disorders including fatty liver disease, type II diabetes, and hepatocellular cancer. The enzymes acetyl-CoA carboxylase 1 (ACC1) and ACC2 are powerful regulators of hepatic fat storage; therefore, their inhibition is expected to prevent the development of fatty liver. In this study we generated liver-specific ACC1 and ACC2 double knockout (LDKO) mice to determine how the loss of ACC activity affects liver fat metabolism and whole-body physiology. Characterization of LDKO mice revealed unexpected phenotypes of increased hepatic triglyceride and decreased fat oxidation. We also observed that chronic ACC inhibition led to hyper-acetylation of proteins in the extra-mitochondrial space. In sum, these data reveal the existence of a compensatory pathway that protects hepatic fat stores when ACC enzymes are inhibited. Furthermore, we identified an important role for ACC enzymes in the regulation of protein acetylation in the extra-mitochondrial space. PMID:24944901

Chow, Jenny D.Y.; Lawrence, Robert T.; Healy, Marin E.; Dominy, John E.; Liao, Jason A.; Breen, David S.; Byrne, Frances L.; Kenwood, Brandon M.; Lackner, Carolin; Okutsu, Saeko; Mas, Valeria R.; Caldwell, Stephen H.; Tomsig, Jose L.; Cooney, Gregory J.; Puigserver, Pere B.; Turner, Nigel; James, David E.; Villén, Judit; Hoehn, Kyle L.

2014-01-01

379

Disturbance by mowing affects clonal diversity: the genetic structure of Ranunculus ficaria (Ranunculuaceae) in meadows and forests  

Microsoft Academic Search

To study the impact of disturbance by mowing on clonal variation, we compared the genetic structure of Ranunculus ficaria (Ranunculaceae) in meadows and forests located in southeast Germany. We applied random amplified polymorphic DNA (RAPD) analysis\\u000a to investigate the clonal and genetic diversity and analysed a total of 117 samples from three study plots in each habitat\\u000a type. Polymerase chain

Christoph Reisch; Sebastian Scheitler

2009-01-01

380

Disturbance by mowing affects clonal diversity: the genetic structure of Ranunculus ficaria (Ranunculuaceae) in meadows and forests  

Microsoft Academic Search

To study the impact of disturbance by mowing on clonal variation, we compared the genetic structure of Ranunculus ficaria (Ranunculaceae) in meadows and forests located in southeast Germany. We applied random amplified polymorphic DNA (RAPD) analysis\\u000a to investigate the clonal and genetic diversity and analysed a total of 117 samples from three study plots in each habitat\\u000a type. Polymerase chain

Christoph Reisch; Sebastian Scheitler

381

Genetic Disorders  

MedlinePLUS

... This can cause a medical condition called a genetic disorder. You can inherit a gene mutation from ... during your lifetime. There are three types of genetic disorders: Single-gene disorders, where a mutation affects ...

382

Construction of an Interspecific Genetic Map Based on InDel and SSR for Mapping the QTLs Affecting the Initiation of Flower Primordia in Pepper (Capsicum spp.)  

PubMed Central

Re-sequencing permits the mining of genome-wide variations on a large scale and provides excellent resources for the research community. To accelerate the development and application of molecular markers and identify the QTLs affecting the flowering time-related trait in pepper, a total of 1,038 pairs of InDel and 674 SSR primers from different sources were used for genetic mapping using the F2 population (n = 154) derived from a cross between BA3 (C. annuum) and YNXML (C. frutescens). Of these, a total of 224 simple PCR-based markers, including 129 InDels and 95 SSRs, were validated and integrated into a map, which was designated as the BY map. The BY map consisted of 13 linkage groups (LGs) and spanned a total genetic distance of 1,249.77 cM with an average marker distance of 5.60 cM. Comparative analysis of the genetic and physical map based on the anchored markers showed that the BY map covered nearly the whole pepper genome. Based on the BY map, one major and five minor QTLs affecting the number of leaves on the primary axis (Nle) were detected on chromosomes P2, P7, P10 and P11 in 2012. The major QTL on P2 was confirmed based on another subset of the same F2 population (n = 147) in 2014 with selective genotyping of markers from the BY map. With the accomplishment of pepper whole genome sequencing and annotations (release 2.0), 153 candidate genes were predicted to embed in the Nle2.2 region, of which 12 important flowering related genes were obtained. The InDel/SSR-based interspecific genetic map, QTLs and candidate genes obtained by the present study will be useful for the downstream isolation of flowering time-related gene and other genetic applications for pepper. PMID:25781878

Qin, Cheng; Nong, Ding-Guo; Li, Wei-Peng; Tang, Xin; Wu, Zhi-Ming; Hu, Kai-Lin

2015-01-01

383

Construction of an Interspecific Genetic Map Based on InDel and SSR for Mapping the QTLs Affecting the Initiation of Flower Primordia in Pepper (Capsicum spp.).  

PubMed

Re-sequencing permits the mining of genome-wide variations on a large scale and provides excellent resources for the research community. To accelerate the development and application of molecular markers and identify the QTLs affecting the flowering time-related trait in pepper, a total of 1,038 pairs of InDel and 674 SSR primers from different sources were used for genetic mapping using the F2 population (n = 154) derived from a cross between BA3 (C. annuum) and YNXML (C. frutescens). Of these, a total of 224 simple PCR-based markers, including 129 InDels and 95 SSRs, were validated and integrated into a map, which was designated as the BY map. The BY map consisted of 13 linkage groups (LGs) and spanned a total genetic distance of 1,249.77 cM with an average marker distance of 5.60 cM. Comparative analysis of the genetic and physical map based on the anchored markers showed that the BY map covered nearly the whole pepper genome. Based on the BY map, one major and five minor QTLs affecting the number of leaves on the primary axis (Nle) were detected on chromosomes P2, P7, P10 and P11 in 2012. The major QTL on P2 was confirmed based on another subset of the same F2 population (n = 147) in 2014 with selective genotyping of markers from the BY map. With the accomplishment of pepper whole genome sequencing and annotations (release 2.0), 153 candidate genes were predicted to embed in the Nle2.2 region, of which 12 important flowering related genes were obtained. The InDel/SSR-based interspecific genetic map, QTLs and candidate genes obtained by the present study will be useful for the downstream isolation of flowering time-related gene and other genetic applications for pepper. PMID:25781878

Tan, Shu; Cheng, Jiao-Wen; Zhang, Li; Qin, Cheng; Nong, Ding-Guo; Li, Wei-Peng; Tang, Xin; Wu, Zhi-Ming; Hu, Kai-Lin

2015-01-01

384

Host Genetic Background Influences the Response to the Opportunistic Pseudomonas aeruginosa Infection Altering Cell-Mediated Immunity and Bacterial Replication  

PubMed Central

Pseudomonas aeruginosa is a common cause of healthcare-associated infections including pneumonia, bloodstream, urinary tract, and surgical site infections. The clinical outcome of P. aeruginosa infections may be extremely variable among individuals at risk and patients affected by cystic fibrosis. However, risk factors for P. aeruginosa infection remain largely unknown. To identify and track the host factors influencing P. aeruginosa lung infections, inbred immunocompetent mouse strains were screened in a pneumonia model system. A/J, BALB/cJ, BALB/cAnNCrl, BALB/cByJ, C3H/HeOuJ, C57BL/6J, C57BL/6NCrl, DBA/2J, and 129S2/SvPasCRL mice were infected with P. aeruginosa clinical strain and monitored for body weight and mortality up to seven days. The most deviant survival phenotypes were observed for A/J, 129S2/SvPasCRL and DBA/2J showing high susceptibility while BALB/cAnNCrl and C3H/HeOuJ showing more resistance to P. aeruginosa infection. Next, one of the most susceptible and resistant mouse strains were characterized for their deviant clinical and immunological phenotype by scoring bacterial count, cell-mediated immunity, cytokines and chemokines profile and lung pathology in an early time course. Susceptible A/J mice showed significantly higher bacterial burden, higher cytokines and chemokines levels but lower leukocyte recruitment, particularly neutrophils, when compared to C3H/HeOuJ resistant mice. Pathologic scores showed lower inflammatory severity, reduced intraluminal and interstitial inflammation extent, bronchial and parenchymal involvement and diminished alveolar damage in the lungs of A/J when compared to C3H/HeOuJ. Our findings indicate that during an early phase of infection a prompt inflammatory response in the airways set the conditions for a non-permissive environment to P. aeruginosa replication and lock the spread to other organs. Host gene(s) may have a role in the reduction of cell-mediated immunity playing a critical role in the control of P. aeruginosa infection. These results now provide a basis for mapping genomic regions underlying host susceptibility to P. aeruginosa infection. PMID:25268734

Lorè, Nicola Ivan; Rossi, Giacomo; Cigana, Cristina; De Fino, Ida; Iraqi, Fuad A.; Bragonzi, Alessandra

2014-01-01

385

Alterations of protein complexes and pathways in genetic information flow and response to stimulus contribute to Escherichia coli resistance to balofloxacin.  

PubMed

Protein-protein interactions are important biological processes and essential for a global understanding of cell functions. To date, little is known about the protein interactions and roles of the protein interacting networks and protein complexes in bacterial resistance to antibiotics. In the present study, we investigated protein complexes in Escherichia coli exposed to an antibiotic balofloxacin (BLFX). One homomeric and eight heteromeric protein complexes involved in BLFX resistance were detected. Potential roles of these complexes that are played in BLFX resistance were characterized and categorized into four functional areas: information streams, monosaccharide metabolism, response to stimulus and amino acid metabolic processes. Protein complexes involved in information streams and response to stimulus played more significant roles in the resistance. These results are consistent with previously published mechanisms on the acquired quinolone-resistance through the GyrA-GyrB complex, and two novel antibiotic-resistant pathways were identified: upregulation of genetic information flow and alteration of the response to a stimulus. The balance of the two pathways will be a viable means of reducing BLFX-resistance. PMID:22729160

Li, Hui; Pan, Jian-Yi; Liu, Xian-Jie; Gao, Jun-Xia; Wu, Hong-Kai; Wang, Chao; Peng, Xuan-Xian

2012-09-01

386