Sample records for genetic diversity relationships

  1. Genetic relationships and diversity of commercially relevant Echinacea species.

    PubMed

    Kapteyn, J.; Goldsbrough, B.; Simon, E.

    2002-08-01

    The genus Echinacea is comprised of nine species, which are perennial herbs indigenous to North America and which have been traditionally used as medicinal plants for centuries. Three Echinacea species, E. angustifolia, E. purpurea, and E. pallida, are currently being traded internationally in the natural products market. Echinacea products constitute a significant portion of this growing, multi-billion dollar industry. The increasing popularity of Echinacea products has led to the expansion of wildcrafting and commercial cultivation to meet the growing demand for plant material. Echinacea is considered of value as a nonspecific immune stimulant, and claims of its efficacy have been tentatively supported by both laboratory and clinical studies. This study used random amplified polymorphic DNA (RAPD) markers to determine the genetic relationships of the three Echinacea species of commercial interest, to evaluate the level of diversity present within germplasm of each of the three species, and to compare accessions of each species available from different sources. A total of 101 RAPD markers were generated for the 76 individuals of four species included in the analysis. NTSYS-pc was used to evaluate the genetic relationships of the three species and to determine the general level of overall diversity. Analysis of molecular variance (AMOVA) was performed using pruned marker sets corrected for the dominant nature of RAPD markers. AMOVA revealed that most of the variation occurred within accessions of the same species, though some accessions of both E. pallida and E. angustifolia were found to be significantly different from other accessions of the same species. PMID:12582540

  2. DEVELOPMENT OF AQUATIC MODELS FOR TESTING THE RELATIONSHIP BETWEEN GENETIC DIVERSITY AND POPULATION EXTINCTION RISK

    EPA Science Inventory

    The relationship between population adaptive potential and extinction risk in a changing environment is not well understood. Although the expectation is that genetic diversity is directly related to the capacity of populations to adapt, the statistical and predictive aspects of ...

  3. Relationships between adaptive and neutral genetic diversity and ecological structure and functioning: a meta-analysis

    PubMed Central

    Whitlock, Raj

    2014-01-01

    Understanding the effects of intraspecific genetic diversity on the structure and functioning of ecological communities is a fundamentally important part of evolutionary ecology and may also have conservation relevance in identifying the situations in which genetic diversity coincides with species-level diversity.Early studies within this field documented positive relationships between genetic diversity and ecological structure, but recent studies have challenged these findings. Conceptual synthesis has been hampered because studies have used different measures of intraspecific variation (phenotypically adaptive vs. neutral) and have considered different measures of ecological structure in different ecological and spatial contexts. The aim of this study is to strengthen conceptual understanding by providing an empirical synthesis quantifying the relationship between genetic diversity and ecological structure.Here, I present a meta-analysis of the relationship between genetic diversity within plant populations and the structure and functioning of associated ecological communities (including 423 effect sizes from 70 studies). I used Bayesian meta-analyses to examine (i) the strength and direction of this relationship, (ii) the extent to which phenotypically adaptive and neutral (molecular) measures of diversity differ in their association with ecological structure and (iii) variation in outcomes among different measures of ecological structure and in different ecological contexts.Effect sizes measuring the relationship between adaptive diversity (genotypic richness) and both community- and ecosystem-level ecological responses were small, but significantly positive. These associations were supported by genetic effects on species richness and productivity, respectively.There was no overall association between neutral genetic diversity and measures of ecological structure, but a positive correlation was observed under a limited set of demographic conditions. These results suggest that adaptive and neutral genetic diversity should not be treated as ecologically equivalent measures of intraspecific variation.Synthesis. This study advances the debate over whether relationships between genetic diversity and ecological structure are either simply positive or negative, by showing how the strength and direction of these relationships changes with different measures of diversity and in different ecological contexts. The results provide a solid foundation for assessing when and where an expanded synthesis between ecology and genetics will be most fruitful. PMID:25210204

  4. Genetic diversity and relationships of lotus ( Nelumbo) cultivars based on allozyme and ISSR markers

    Microsoft Academic Search

    Hong-Li Tian; Jian-Hua Xue; Jun Wen; Grant Mitchell; Shi-Liang Zhou

    2008-01-01

    Genetic diversity and genetic relationships of lotus (Nelumbo Adanson) cultivars were evaluated using allozyme and ISSR markers. The samples used covered 11 accessions of possible hybrids between Nelumbo nucifera and Nelumbo lutea and 92 accessions of N. nucifera including 69 flower lotus, 13 rhizome lotus, 5 seed lotus and 5 wild lotus. For allozyme studies, a total of 31 alleles

  5. Assessment of Genetic Diversity, Relationships and Structure among Korean Native Cattle Breeds Using Microsatellite Markers

    PubMed Central

    Suh, Sangwon; Kim, Young-Sin; Cho, Chang-Yeon; Byun, Mi-Jeong; Choi, Seong-Bok; Ko, Yeoung-Gyu; Lee, Chang Woo; Jung, Kyoung-Sub; Bae, Kyoung Hun; Kim, Jae-Hwan

    2014-01-01

    Four Korean native cattle (KNC) breeds—Hanwoo, Chikso, Heugu, and Jeju black—are entered in the Domestic Animal Diversity Information System of the United Nations Food and Agriculture Organization (FAO). The objective of this study was to assess the genetic diversity, phylogenetic relationships and population structure of these KNC breeds (n = 120) and exotic breeds (Holstein and Charolais, n = 56). Thirty microsatellite loci recommended by the International Society for Animal Genetics/FAO were genotyped. These genotypes were used to determine the allele frequencies, allelic richness, heterozygosity and polymorphism information content per locus and breed. Genetic diversity was lower in Heugu and Jeju black breeds. Phylogenetic analysis, Factorial Correspondence Analysis and genetic clustering grouped each breed in its own cluster, which supported the genetic uniqueness of the KNC breeds. These results will be useful for conservation and management of KNC breeds as animal genetic resources. PMID:25358313

  6. Assessment of Genetic Diversity, Relationships and Structure among Korean Native Cattle Breeds Using Microsatellite Markers.

    PubMed

    Suh, Sangwon; Kim, Young-Sin; Cho, Chang-Yeon; Byun, Mi-Jeong; Choi, Seong-Bok; Ko, Yeoung-Gyu; Lee, Chang Woo; Jung, Kyoung-Sub; Bae, Kyoung Hun; Kim, Jae-Hwan

    2014-11-01

    Four Korean native cattle (KNC) breeds-Hanwoo, Chikso, Heugu, and Jeju black-are entered in the Domestic Animal Diversity Information System of the United Nations Food and Agriculture Organization (FAO). The objective of this study was to assess the genetic diversity, phylogenetic relationships and population structure of these KNC breeds (n = 120) and exotic breeds (Holstein and Charolais, n = 56). Thirty microsatellite loci recommended by the International Society for Animal Genetics/FAO were genotyped. These genotypes were used to determine the allele frequencies, allelic richness, heterozygosity and polymorphism information content per locus and breed. Genetic diversity was lower in Heugu and Jeju black breeds. Phylogenetic analysis, Factorial Correspondence Analysis and genetic clustering grouped each breed in its own cluster, which supported the genetic uniqueness of the KNC breeds. These results will be useful for conservation and management of KNC breeds as animal genetic resources. PMID:25358313

  7. Intraspecific genetic diversity and composition modify species-level diversity-productivity relationships.

    PubMed

    Schöb, Christian; Kerle, Sarah; Karley, Alison J; Morcillo, Luna; Pakeman, Robin J; Newton, Adrian C; Brooker, Rob W

    2015-01-01

    Biodiversity regulates ecosystem functions such as productivity, and experimental studies of species mixtures have revealed selection and complementarity effects driving these responses. However, the impacts of intraspecific genotypic diversity in these studies are unknown, despite it forming a substantial part of the biodiversity. In a glasshouse experiment we constructed plant communities with different levels of barley (Hordeum vulgare) genotype and weed species diversity and assessed their relative biodiversity effects through additive partitioning into selection and complementarity effects. Barley genotype diversity had weak positive effects on aboveground biomass through complementarity effects, whereas weed species diversity increased biomass predominantly through selection effects. When combined, increasing genotype diversity of barley tended to dilute the selection effect of weeds. We interpret these different effects of barley genotype and weed species diversity as the consequence of small vs large trait variation associated with intraspecific barley diversity and interspecific weed diversity, respectively. The different effects of intra- vs interspecific diversity highlight the underestimated and overlooked role of genetic diversity for ecosystem functioning. PMID:25250812

  8. Relationship between the genetic diversity of Artemisia halodendron and climatic factors

    NASA Astrophysics Data System (ADS)

    Huang, Wenda; Zhao, Xueyong; Zhao, Xin; Li, Yuqiang; Lian, Jie; Yun, Jianying

    2014-02-01

    Artemisia halodendron (Asteraceae) is a dominant sand-fixing semi-shrub species native to the Horqin Sandy Land of northeastern China. In this study, we evaluated levels of genetic variation within and among sampled A. halodendron populations from two different hydrothermal regions of the Horqin Sandy Land using inter-simple sequence repeat (ISSR) markers. We also investigated possible relationships between genetic diversity of this species and climatic factors. Our analysis revealed that A. halodendron is highly genetically diverse, with populations from a low hydrothermal level region having higher genetic diversity index values than those from a high hydrothermal level region. An analysis of molecular variation (AMOVA) revealed relatively high levels (>89.83%) of within-population genetic variation. Based on cluster analysis, the 13 studied A. halodendron populations can be clustered into two clades. Genetic diversities of all populations have been influenced by many climatic factors, and Nei's genetic diversity (h) is strongly correlated with annual temperature range (ART). These results have important implications for restoration and management of degraded ecosystems in arid and semi-arid areas.

  9. Evaluation of Lespedeza Germplasm Genetic Diversity and Its Phylogenetic Relationship with the Genus Kummerowia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genetic diversity of the genus Lespedeza is not well known and the phylogenetic relationship of Lespedeza with the genus Kummerowia is unclear. We report the first study in which polymorphic expressed sequence tag-simple sequence repeat (EST-SSR) markers derived from Medicago, cowpea and soybea...

  10. Genetic diversity and relationships among different tomato varieties revealed by EST-SSR markers.

    PubMed

    Korir, N K; Diao, W; Tao, R; Li, X; Kayesh, E; Li, A; Zhen, W; Wang, S

    2014-01-01

    The genetic diversity and relationship of 42 tomato varieties sourced from different geographic regions was examined with EST-SSR markers. The genetic diversity was between 0.18 and 0.77, with a mean of 0.49; the polymorphic information content ranged from 0.17 to 0.74, with a mean of 0.45. This indicates a fairly high degree of diversity among these tomato varieties. Based on the cluster analysis using unweighted pair-group method with arithmetic average (UPGMA), all the tomato varieties fell into 5 groups, with no obvious geographical distribution characteristics despite their diverse sources. The principal component analysis (PCA) supported the clustering result; however, relationships among varieties were more complex in the PCA scatterplot than in the UPGMA dendrogram. This information about the genetic relationships between these tomato lines helps distinguish these 42 varieties and will be useful for tomato variety breeding and selection. We confirm that the EST-SSR marker system is useful for studying genetic diversity among tomato varieties. The high degree of polymorphism and the large number of bands obtained per assay shows that SSR is the most informative marker system for tomato genotyping for purposes of rights/protection and for the tomato industry in general. It is recommended that these varieties be subjected to identification using an SSR-based manual cultivar identification diagram strategy or other easy-to-use and referable methods so as to provide a complete set of information concerning genetic relationships and a readily usable means of identifying these varieties. PMID:24446286

  11. Genetic diversity and relationships of korean chicken breeds based on 30 microsatellite markers.

    PubMed

    Suh, Sangwon; Sharma, Aditi; Lee, Seunghwan; Cho, Chang-Yeon; Kim, Jae-Hwan; Choi, Seong-Bok; Kim, Hyun; Seong, Hwan-Hoo; Yeon, Seong-Hum; Kim, Dong-Hun; Ko, Yeoung-Gyu

    2014-10-01

    The effective management of endangered animal genetic resources is one of the most important concerns of modern breeding. Evaluation of genetic diversity and relationship of local breeds is an important factor towards the identification of unique and valuable genetic resources. This study aimed to analyze the genetic diversity and population structure of six Korean native chicken breeds (n = 300), which were compared with three imported breeds in Korea (n = 150). For the analysis of genetic diversity, 30 microsatellite markers from FAO/ISAG recommended diversity panel or previously reported microsatellite markers were used. The number of alleles ranged from 2 to 15 per locus, with a mean of 8.13. The average observed heterozygosity within native breeds varied between 0.46 and 0.59. The overall heterozygote deficiency (F IT) in native chicken was 0.234±0.025. Over 30.7% of F IT was contributed by within-population deficiency (F IS). Bayesian clustering analysis, using the STRUCTURE software suggested 9 clusters. This study may provide the background for future studies to identify the genetic uniqueness of the Korean native chicken breeds. PMID:25178290

  12. Microsatellite based genetic diversity and relationships among ten Creole and commercial cattle breeds raised in Brazil

    PubMed Central

    Egito, Andréa A; Paiva, Samuel R; Albuquerque, Maria do Socorro M; Mariante, Arthur S; Almeida, Leonardo D; Castro, Silvia R; Grattapaglia, Dario

    2007-01-01

    Background Brazil holds the largest commercial cattle populations worldwide. Local cattle breeds can be classified according to their origin, as exotic or Creole. Exotic breeds imported in the last 100 years, both zebuine and taurine, currently make up the bulk of the intensively managed populations. Locally adapted Creole breeds, originated from cattle introduced by the European conquerors derive from natural selection and events of breed admixture. While historical knowledge exists on the Brazilian Creole breeds very little is known on their genetic composition. The objective of this study was to assess the levels of genetic diversity, phylogenetic relationships and patterns of taurine/zebuine admixture among ten cattle breeds raised in Brazil. Results Significant reduction of heterozygosity exists due both to within-population inbreeding and to breed differentiation in both subspecies (taurine and zebuine). For taurine breeds the number of markers that contribute to breed differentiation is larger than for zebuine. A consistently similar number of alleles was seen in both subspecies for all microsatellites. Four Creole breeds were the most genetically diverse followed by the zebuine breeds, the two specialized taurine breeds and the Creole Caracu. Pairwise genetic differentiation were all significant indicating that all breeds can be considered as genetically independent entities. A STRUCTURE based diagram indicated introgression of indicine genes in the local Creole breeds and suggested that occasional Creole introgression can be detected in some Zebuine animals. Conclusion This study reports on a comprehensive study of the genetic structure and diversity of cattle breeds in Brazil. A significant amount of genetic variation is maintained in the local cattle populations. The genetic data show that Brazilian Creole breeds constitute an important and diverse reservoir of genetic diversity for bovine breeding and conservation. The genetic data was able to shed light on a number of issues related to the local breeds origin and structure. The Brazilian Creole breeds are all important and viable targets for conservation for they display peculiar traits both phenotypic and of cultural and historical nature that deserve conservation efforts. PMID:18067665

  13. Genetic diversity and relationships among Dutch elm disease tolerant Ulmus pumila L. accessions from China.

    PubMed

    Zalapa, Juan E; Brunet, Johanne; Guries, Raymond P

    2008-07-01

    Elm breeding programs worldwide have relied heavily on Asian elm germplasm, particularly Ulmus pumila, for the breeding of Dutch elm disease tolerant cultivars. However, the extent and patterning of genetic variation in Asian elm species is unknown. Therefore, the objective of this research was to determine the extent of genetic diversity among 53 U. pumila accessions collected throughout the People's Republic of China. Using 23 microsatellite loci recently developed in the genus Ulmus, a total of 94 alleles were identified in 15 polymorphic and 4 monomorphic loci. The average number of alleles per locus was 4.9, with a range of 1-11 alleles. Gene diversity estimates per locus ranged from 0.08 to 0.87, and the non-exclusion probability for the 15 polymorphic loci combined was 0.7 x 10(-9). Nineteen region-specific alleles were identified, and regional gene diversity estimates were moderately high (0.48-0.57). The genetic relationships among accessions and regions were estimated by UPGMA and principal coordinate analysis. Both techniques discriminated all accessions and regions. Two microsatellite markers (UR175 + UR123 or Ulm-3) were sufficient to discriminate up to 99.7% of the accessions studied. This research provides useful information for DNA-based fingerprinting, breeding, ecological studies, and diversity assessment of elm germplasm. PMID:18545273

  14. Genetic diversity, introgression and relationships among West/Central African cattle breeds.

    PubMed

    Ibeagha-Awemu, Eveline Mengwi; Jann, Oliver Carl; Weimann, Christina; Erhardt, Georg

    2004-01-01

    Genetic diversity, introgression and relationships were studied in 521 individuals from 9 African Bos indicus and 3 Bos taurus cattle breeds in Cameroon and Nigeria using genotype information on 28 markers (16 microsatellite, 7 milk protein and 5 blood protein markers). The genotypes of 13 of the 16 microsatellite markers studied on three European (German Angus, German Simmental and German Yellow) and two Indian (Nelore and Ongole) breeds were used to assess the relationships between them and the African breeds. Diversity levels at microsatellite loci were higher in the zebu than in the taurine breeds and were generally similar for protein loci in the breeds in each group. Microsatellite allelic distribution displayed groups of alleles specific to the Indian zebu, African taurine and European taurine. The level of the Indian zebu genetic admixture proportions in the African zebus was higher than the African taurine and European taurine admixture proportions, and ranged from 58.1% to 74.0%. The African taurine breed, Muturu was free of Indian zebu genes while its counter Namchi was highly introgressed (30.2%). Phylogenic reconstruction and principal component analysis indicate close relationships among the zebu breeds in Cameroon and Nigeria and a large genetic divergence between the main cattle groups--African taurine, European taurine and Indian zebu, and a central position for the African zebus. The study presents the first comprehensive information on the hybrid composition of the individual cattle breeds of Cameroon and Nigeria and the genetic relationships existing among them and other breeds outside of Africa. Strong evidence supporting separate domestication events for the Bos species is also provided. PMID:15496287

  15. Genetic diversity and relationships among isolates of Rhizobium leguminosarum biovar phaseoli.

    PubMed Central

    Pinero, D; Martinez, E; Selander, R K

    1988-01-01

    Fifty-one isolates of Rhizobium leguminosarum biovar phaseoli from various geographic and ecological sources, largely in Mexico, were characterized by the electrophoretic mobilities of 15 metabolic enzymes, and 46 distinctive multilocus genotypes (electrophoretic types [ETs]) were distinguished on the basis of allele profiles at the enzyme loci. Mean genetic diversity per enzyme locus among the 46 ETs was 0.691, the highest value yet recorded for any species of bacterium. The occurrence of strong nonrandom associations of alleles over loci suggested a basically clonal population structure, reflecting infrequent recombination of chromosomal genes. Multilocus genotypic diversity was unusually high, with the most strongly differentiated pairs of ETs having distinctive alleles at all 15 loci and major clusters of ETs diverging at genetic distances as large as 0.89. This great diversity in the chromosomal genome raises the possibility that R. leguminosarum biovar phaseoli is a polyphyletic assemblage of strains. As other workers have suggested, the inclusion of all strains capable of nodulating beans in a single biovar or species is genetically unrealistic and taxonomically misleading. A biologically meaningful classification of Rhizobium spp. should be based on assessment of variation in the chromosomal genome rather than on phenotypic characters, especially those mediated for the most part or wholly by plasmid-borne genes, such as host relationships. PMID:3214160

  16. Genetic diversity and evolutionary relationships of the troglodytic "living fossil" Congeria kusceri (Bivalvia: Dreissenidae).

    PubMed

    Stepien, C A; Morton, B; Dabrowska, K A; Guarnera, R A; Radja, T; Radja, B

    2001-08-01

    Population genetic theory predicts that long-term isolation of "living fossils" in relic habitats might reduce genetic variability due to small population sizes and inbreeding. The recent description of a troglodytic "living fossil" Congeria kusceri--the only known subterranean bivalve mollusc--from a genus thought to be extinct since the Miocene, offers a unique opportunity to examine this hypothesis. Here, we use DNA sequences from two mitochondrial genes to compare levels of genetic variability and to test phylogenetic relationships of C. kusceri with surface-dwelling dreissenid relatives. Phylogenetic analyses of sequences from the cytochrome oxidase 1 (COI) and 16S rDNA genes reveal that Mytilopsis is the sister genus to Congeria and this clade forms the sister taxon to Dreissena. Relatively high levels of DNA diversity characterized the population of C. kusceri (haplotypic diversity= 0.50 for 16S rDNA and 0.66 in the COI gene), in contrast to no intraspecific variability in populations of Dreissenapolymorpha, D. bugensis, Mytilopsisleucophaeta, and Corbiculafluminea. Maintenance of genetic variability in C. kusceri may result from long-term population size stability, which merits further investigation. This underground species apparently was buffered from the climatic changes and resultant population bottlenecks that affected its surface-dwelling relatives during the Pliocene and Pleistocene Ice Ages. PMID:11555232

  17. The Relationship between Species Diversity and Genetic Structure in the Rare Picea chihuahuana Tree Species Community, Mexico

    PubMed Central

    Simental-Rodríguez, Sergio Leonel; Quiñones-Pérez, Carmen Zulema; Moya, Daniel; Hernández-Tecles, Enrique; López-Sánchez, Carlos Antonio; Wehenkel, Christian

    2014-01-01

    Species diversity and genetic diversity, the most basic elements of biodiversity, have long been treated as separate topics, although populations evolve within a community context. Recent studies on community genetics and ecology have suggested that genetic diversity is not completely independent of species diversity. The Mexican Picea chihuahuana Martínez is an endemic species listed as “Endangered” on the Red List. Forty populations of Chihuahua spruce have been identified. This species is often associated with tree species of eight genera in gallery forests. This rare Picea chihuahuana tree community covers an area no more than 300 ha and has been subject of several studies involving different topics such as ecology, genetic structure and climate change. The overall aim of these studies was to obtain a dataset for developing management tools to help decision makers implement preservation and conservation strategies. However, this unique forest tree community may also represent an excellent subject for helping us to understand the interplay between ecological and evolutionary processes in determining community structure and dynamics. The AFLP technique and species composition data were used together to test the hypothesis that species diversity is related to the adaptive genetic structure of some dominant tree species (Picea chihuahuana, Pinus strobiformis, Pseudotsuga menziesii and Populus tremuloides) of the Picea chihuahuana tree community at fourteen locations. The Hill numbers were used as a diversity measure. The results revealed a significant correlation between tree species diversity and genetic structure in Populus tremuloides. Because the relationship between the two levels of diversity was found to be positive for the putative adaptive AFLP detected, genetic and species structures of the tree community were possibly simultaneously adapted to a combination of ecological or environmental factors. The present findings indicate that interactions between genetic variants and species diversity may be crucial in shaping tree communities. PMID:25375134

  18. Genetic diversity and relationships among accessions of five crested wheatgrass species (Poaceae: Agropyron) based on gliadin analysis.

    PubMed

    Chen, S Y; Ma, X; Zhang, X Q; Huang, L K; Zhou, J N

    2013-01-01

    Agropyron Gaertn. is the most important genus in Triticeae (Poaceae), which includes many forage grasses with high economic value. The genetic diversity and relationships of 36 accessions from five crested wheatgrass species were analyzed by gliadin markers. A total of 54 product bands were detected after acid polyacrylamide gel electrophoresis (A-PAGE), of which 100% were polymorphic. The genetic similarity coefficient based on Nei-Li's method ranged from 0.065 to 0.755 with an average of 0.451. The Shannon diversity information index showed that there was a high level of genetic diversity among the accessions. An unweighted pair group method with arithmetic average (UPGMA) dendrogram was constructed based on the Nei-Li's genetic similarity coefficients, which showed the phylogenetic relationships among accessions of different species. Analysis of molecular variance (AMOVA) showed that the proportion of variance explained by inter- and intraspecific variance was 9.34 and 90.66%, respectively, which revealed that the genetic variations within species were higher than the variations among species. Based on pairwise genetic distances (?ST) among species, the cluster analysis indicated that A. mongolicum had a low-affinity relationship with other species, while A. fragile showed a close relationship with A. cristatum ssp pectinatum. Finally, the implications of the results for the taxonomy of Agropyron were discussed. PMID:24301939

  19. Genetic Diversity and Genetic Structure of Different Types of Natural Populations in Osmanthus fragrans Lour. and the Relationships with Sex Ratio, Population Structure, and Geographic Isolation

    PubMed Central

    Hu, Shaoqing; Wu, Shuai; Wang, Yiguang; Zhang, Yuanyan

    2014-01-01

    Osmanthus fragrans Lour., an evergreen small tree, has the rare sexual system of androdioecy (coexistence of males and hermaphrodites), once with wide-spread natural distribution in the areas of the South Yangzi river basin. However, due to excessive human utilization, natural distribution became fragmented and the number and size of natural populations reduced sharply. With four different types of natural populations from the same region as research object, we aim to provide a comparative analysis on the relationships among genetic diversity, sexual system, population structure and size, and geographic isolation by ISSR. In genetic parameters of Ne, He, and I, the LQGC population had the highest value and the LQZGQ population had the lowest value. These indicated that LQGC population showed the highest genetic diversity, followed by QDH and JN population, and LQZGQ population exhibited the lowest genetic diversity. Genetic diversity in populations is closely related to population structure, reproduction mode, and sex ratio. However, there seems to be no obvious correlation between genetic diversity and population size. The results of AMOVA showed that genetic variations mostly occurred within populations. It indicates that no significant genetic differentiation among populations occurs, and geographic isolation has no significant effect on genetic diversity. PMID:25436228

  20. Assessment of Genetic Diversity of Lespedeza Germplasm and Analysis of Its Phylogenetic Relationship with the Genus Kummerowia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genetic diversity of genus Lespedeza is not well known and the phylogenetic relationship of Lespedeza with the genus Kummerowia is unclear. We report the first study in which polymorphic expressed sequence tag-simple sequence (EST-SSR) markers derived from Medicago, cowpea and soybean were used...

  1. Potential of Start Codon Targeted (SCoT) Markers to Estimate Genetic Diversity and Relationships among Chinese Elymus sibiricus Accessions.

    PubMed

    Zhang, Junchao; Xie, Wengang; Wang, Yanrong; Zhao, Xuhong

    2015-01-01

    Elymus sibiricus as an important forage grass and gene pool for improving cereal crops, that is widely distributed in West and North China. Information on its genetic diversity and relationships is limited but necessary for germplasm collection, conservation and future breeding. Start Codon Targeted (SCoT) markers were used for studying the genetic diversity and relationships among 53 E. sibiricus accessions from its primary distribution area in China. A total of 173 bands were generated from 16 SCoT primers, 159 bands of which were polymorphic with the percentage of polymorphic bands (PPB) of 91.91%. Based upon population structure analysis five groups were formed. The cluster analysis separated the accessions into two major clusters and three sub-clusters, similar to results of principal coordinate analysis (PCoA). The molecular variance analysis (AMOVA) showed that genetic variation was greater within geographical regions (50.99%) than between them (49.01%). Furthermore, the study also suggested that collecting and evaluating E. sibiricus germplasm for major geographic regions and special environments broadens the available genetic base and illustrates the range of variation. The results of the present study showed that SCoT markers were efficient in assessing the genetic diversity among E. sibiricus accessions. PMID:25853316

  2. Genetic diversity and relationships among 177 public sunflower inbred lines assessed by TRAP markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One hundred and seventy-seven public sunflower inbred lines released by the U.S. Department of Agriculture (USDA)-Agricultural Research Services (ARS) from the 1970s to 2005, were investigated for genetic diversity using the target region amplification polymorphism (TRAP) marker technique. A total ...

  3. [Genetic diversity and kin relationships among wild and cultivated populations of the pejibaye palm (Bactris gasipaes, Palmae) using microsatellite markers].

    PubMed

    Ugalde, José Alfredo Hernández; Urpí, Jorge Mora; Nuñez, Oscar Rocha

    2008-03-01

    Genetic diversity and kin relationships among wild and cultivated populations of the pejibaye palm (Bactris gasipaes, Palmae) using microsatellite markers. The genetic diversity of the peach palm (Pejibaye, Bactris gasipaes Kunth) was evaluated using four nuclear DNA microsatellites in an effort to elucidate the evolution and domestication of this crop. A total of 258 samples from seven wild populations and eleven races were analyzed. All loci were polymorphic and a total of 50 alleles were identified. Average genetic diversity (0.67) and genetic differentiation among populations (Fst=0.16) were high when all populations were considered. Genetic differentiation was lower when the populations were grouped according to their origin into Western and Eastern populations (Fst=0.13 for both). Gene flow was slightly higher among Western populations (Nm=1.71) than among Eastern populations (Nm=1.62). The Putumayo, Yurimaguas, Vaupés, Tucurrique and Guatuso races seem to have been subjected to intense human selection. Hybrid populations exist in Azuero, Tuira, Cauca, Vaupés, Puerto Ayacucho and Solimões, probably resulting from exchange and introgressions among sympatric wild and cultivated populations. Genetic distance (Dm) was estimated to determine the degree of relationship among populations using the neighbor-joining method; the wild populations from Maracaibo were used as the outgroup. The populations were divided into three general groups: Maracaibo (B. caribaea, B. macana var veragua and B. macana var arapuey), Eastern Amazon (Tembe, Pará and Acre) and a third group with two subgroups, Western (Azuero, Chontilla, Tuira, Cauca, Tucurrique and Guatuso) and Upper Amazon (B. dahlgreniana, Puerto Ayacucho, Solimões, Vaupés and Putumayo). The genetic relationships strongly support the hypothesis that peach palm was brought into cultivation independently in no less than three areas: the Western Andes (extending into lower Central America); Upper Amazon (extending into the Solimões and its tributaries), and the Eastern Amazon (extending from Bolivia to the lower Amazon through the Madeira River). PMID:18624239

  4. Ploidy Variation and Genetic Diversity in Dichroa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent evidence suggests a close genetic relationship between Hydrangea macrophylla and D. febrifuga, which supports previous morphological and DNA sequence data. This relationship was confirmed by the production of fertile intergeneric hybrids. Here we characterize the genetic diversity of availab...

  5. Genetic diversity of rbc L gene in Elymus trachycaulus complex and their phylogenetic relationships to several Triticeae species

    Microsoft Academic Search

    Genlou Sun

    2007-01-01

    Elymus trachycaulus complex species are known for their morphological variability, but little is known about their genetic basis. The phylogenetic\\u000a relationships among the E. trachycaulus complex, and their systematic relation to other species in Triticeae remain unknown. Nucleotide diversity of ribulose-1,5\\u000a bisphosphate-carboxylase (rbcL) gene in E. trachycaulus complex species and several other Triticeae was first characterized and compared. A primary

  6. Genetic diversities of 20 novel autosomal STRs in Chinese Xibe ethnic group and its genetic relationships with neighboring populations.

    PubMed

    Meng, Hao-Tian; Zhang, Li-Ping; Wu, Hua; Yang, Chun-Hua; Chen, Jian-Gang; Wang, Yan; Yan, Jiang-Wei; Wang, Hong-Dan; Zhang, Yu-Dang; Liu, Wen-Juan; Zhu, Bo-Feng

    2015-02-25

    In the present study, we investigated the genetic polymorphisms of 20 novel STR loci and one previously studied locus in the Xibe ethnic group from China, as well as its genetic relationships with neighboring populations. Totally 226 unrelated healthy Xibe individuals were involved in the study. At least 5 alleles were observed for each locus, with the minimum and maximum allelic frequencies of 0.0022 and 0.5221, respectively. We obtained the lowest and highest observed heterozygosity and expected heterozygosity at locus D1S1627 and D19S433, respectively. The values of combined power of discrimination and probability of exclusion of all the 21 STR loci were 0.99999999999999999997310 and 0.999998650, respectively. Analyses of interpopulation differentiation, principal component analysis, genetic distance and phylogenetic tree revealed the relationships between Xibe group and its neighboring groups, showing that the studied Xibe group had a close genetic relationship with the Mongolian group. The present results indicated that these 21 STR loci had high genetic polymorphisms in the studied Xibe group, and were capable for the paternity testing and individual identification in forensic application. PMID:25528265

  7. Artificial selection with traditional or genomic relationships: consequences in coancestry and genetic diversity

    PubMed Central

    Rodríguez-Ramilo, Silvia Teresa; García-Cortés, Luis Alberto; de Cara, María Ángeles Rodríguez

    2015-01-01

    Estimated breeding values (EBVs) are traditionally obtained from pedigree information. However, EBVs from high-density genotypes can have higher accuracy than EBVs from pedigree information. At the same time, it has been shown that EBVs from genomic data lead to lower increases in inbreeding compared with traditional selection based on genealogies. Here we evaluate the performance with BLUP selection based on genealogical coancestry with three different genome-based coancestry estimates: (1) an estimate based on shared segments of homozygosity, (2) an approach based on SNP-by-SNP count corrected by allelic frequencies, and (3) the identity by state methodology. We evaluate the effect of different population sizes, different number of genomic markers, and several heritability values for a quantitative trait. The performance of the different measures of coancestry in BLUP is evaluated in the true breeding values after truncation selection and also in terms of coancestry and diversity maintained. Accordingly, cross-performances were also carried out, that is, how prediction based on genealogical records impacts the three other measures of coancestry and inbreeding, and viceversa. Our results show that the genetic gains are very similar for all four coancestries, but the genomic-based methods are superior to using genealogical coancestries in terms of maintaining diversity measured as observed heterozygosity. Furthermore, the measure of coancestry based on shared segments of the genome seems to provide slightly better results on some scenarios, and the increase in inbreeding and loss in diversity is only slightly larger than the other genomic selection methods in those scenarios. Our results shed light on genomic selection vs. traditional genealogical-based BLUP and make the case to manage the population variability using genomic information to preserve the future success of selection programmes.

  8. Genetic diversity and evolutionary relationships among Legionella pneumophila clinical isolates, Portugal, 1987 to 2012.

    PubMed

    Chasqueira, M J; Rodrigues, L; Nascimento, M; Ramos, M; Marques, T

    2014-01-01

    The genetic diversity of 89 clinical Legionella isolates, collected between 1987 and 2012, in 22 hospitals from the five regions of Portugal, was analysed in this study using monoclonal antibodies (MAbs) of the Dresden panel and the sequence-based typing (SBT) protocol. The eBURST algorithm was used to infer levels of relatedness between isolates. All isolates collected were Legionella pneumophila, which were further characterised into four subgroups by MAbs, and 30 sequence types (STs) by SBT. Twelve of the STs were unique to Portugal; one of them (ST100) was represented by 32 epidemiologically related isolates. The ST44 was the profile with the highest number of epidemiologically unrelated isolates. The eBURST analyses indicate that, within the group formed by the 30 STs identified in this study, 17 STs were genetically close to at least another ST in the group. The comparison between the eBURST diagrams obtained with the STs from this study and the entire SBT database of the European Working Group for Legionella, showed that 24 (seven of them unique to Portugal) of our 30 STs were related with STs identified in others countries. These results suggest that the population of L. pneumophila clinical strains in Portugal includes both worldwide and local strains. PMID:25425515

  9. Compromising Baltic salmon genetic diversity -

    E-print Network

    Compromising Baltic salmon genetic diversity - conservation genetic risks associated with compensatory releases of salmon in the Baltic Sea Havs- och vattenmyndighetens rapport 2012:18 #12;Compromising Baltic salmon genetic diversity - conservation genetic risks associated with compensatory releases

  10. Genetic diversity, population structure and relationships in indigenous cattle populations of Ethiopia and Korean Hanwoo breeds using SNP markers.

    PubMed

    Edea, Zewdu; Dadi, Hailu; Kim, Sang-Wook; Dessie, Tadelle; Lee, Taeheon; Kim, Heebal; Kim, Jong-Joo; Kim, Kwan-Suk

    2013-01-01

    In total, 166 individuals from five indigenous Ethiopian cattle populations - Ambo (n = 27), Borana (n = 35), Arsi (n = 30), Horro (n = 36), and Danakil (n = 38) - were genotyped for 8773 single nucleotide polymorphism (SNP) markers to assess genetic diversity, population structure, and relationships. As a representative of taurine breeds, Hanwoo cattle (n = 40) were also included in the study for reference. Among Ethiopian cattle populations, the proportion of SNPs with minor allele frequencies (MAFs) ?0.05 ranged from 81.63% in Borana to 85.30% in Ambo, with a mean of 83.96% across all populations. The Hanwoo breed showed the highest proportion of polymorphism, with MAFs ?0.05, accounting for 95.21% of total SNPs. The mean expected heterozygosity varied from 0.370 in Danakil to 0.410 in Hanwoo. The mean genetic differentiation (F ST; 1%) in Ethiopian cattle revealed that within individual variation accounted for approximately 99% of the total genetic variation. As expected, F ST and Reynold genetic distance were greatest between Hanwoo and Ethiopian cattle populations, with average values of 17.62 and 18.50, respectively. The first and second principal components explained approximately 78.33% of the total variation and supported the clustering of the populations according to their historical origins. At K = 2 and 3, a considerable source of variation among cattle is the clustering of the populations into Hanwoo (taurine) and Ethiopian cattle populations. The low estimate of genetic differentiation (F ST) among Ethiopian cattle populations indicated that differentiation among these populations is low, possibly owing to a common historical origin and high gene flow. Genetic distance, phylogenic tree, principal component analysis, and population structure analyses clearly differentiated the cattle population according to their historical origins, and confirmed that Ethiopian cattle populations are genetically distinct from the Hanwoo breed. PMID:23518904

  11. GENETIC DIVERSITY IN AVOCADO

    Microsoft Academic Search

    Robert J. Knight

    1999-01-01

    People working on avocado germplasm improvement are more fortunate than those work- ing with some other crops (mango for one important example) in that Persea americana in its many genotypes presents a wide variety of genetic diversity. This is probably because avocados evolved in a part of North and Central America characterized itself by consider- able diversity in climates, related

  12. Diet breadth and its relationship with genetic diversity and differentiation: the case of southern beech aphids (Hemiptera: Aphididae).

    PubMed

    Gaete-Eastman, C; Figueroa, C C; Olivares-Donoso, R; Niemeyer, H M; Ramírez, C C

    2004-06-01

    Herbivorous insect species with narrow diet breadth are expected to be more prone to genetic differentiation than insect species with a wider diet breadth. However, a generalist can behave as a local specialist if a single host-plant species is locally available, while a specialist can eventually behave as a generalist if its preferred host is not available. These problems can be addressed by comparing closely related species differing in diet breadth with overlapping distributions of insect and host populations. In this work, diet breadth, genetic diversity and population differentiation of congeneric aphid species from southern beech forests in Chile were compared. While at the species level no major differences in genetic diversity were found, a general trend towards higher genetic diversity as diet breadth increased was apparent. The aphid species with wider diet breadth, Neuquenaphis edwardsi (Laing), showed the highest genetic diversity, while the specialist Neuquenaphis staryi Quednau & Remaudière showed the lowest. These differences were less distinct when the comparisons were made in the same locality and over the same host. Comparison of allopatric populations indicates that genetic differentiation was higher for the specialists, Neuquenaphis similis Hille Ris Lambers and N. staryi, than for the generalist N. edwardsi. Over the same host at different locations, genetic differentiation among populations of N. edwardsi was higher than among populations of N. similis. The results support the assumption that specialists should show more pronounced genetic structuring than generalists, although the geographical distribution of host plants may be playing an important role. PMID:15191623

  13. Close genetic relationships in vast territories: autosomal and X chromosome Alu diversity in Yakuts from Siberia.

    PubMed

    Rocañín-Arjó, Ares; Rodríguez-Botigué, Laura; Esteban, Esther; Theves, Catherine; Evdokimova, Larissa E; Fedorova, Sardana A; Gibert, Morgane; Crubezy, Eric; Moral, Pedro

    2013-01-01

    Twelve autosomal and 8 X chromosome Alu markers were genotyped for the first time in 161 Central and West Yakuts to test their ability to reconstruct the genetic history of these populations, the northernmost Turkic-speaker ethnic group living in Siberia. Autosomal data revealed that both groups showed extremely close genetic distances to other populations of Siberian origins that occupied areas from Lake Baikal, the ancestral place of origin of Yakuts, to North Siberia, their current territories. Autosomal and X chromosome data revealed some discrepancies on the genetic differentiation and the effective sizes of Central and West Yakuts. Such discrepancies could be related to the patrilineal and occasionally polygamous structure of these populations. Autosomal and X Alu markers are informative markers to reconstruct population past demography and history, but their utility is limited by the available data. This study represents a contribution for further investigations on these populations. PMID:24466640

  14. Genetic diversity and relationships assessed by SSRs in the USDA Rice Germplasm Collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding a germplasm collection is essential for mining special genes and further development of the collection. The USDA rice (Oryza sativa L.) collection contains about 20,000 accessions from 116 countries. These diverse originations indicate a variety of different edaphic and climatic enviro...

  15. Candida shehatae — Genetic diversity and phylogenetic relationships with other xylose-fermenting yeasts

    Microsoft Academic Search

    C. P. Kurtzman

    1990-01-01

    The xylose-fermenting yeasts Candida shehatae and Pichia stipitis were compared from extent of nuclear DNA complementarity and ribosomal RNA sequence similarity. Low levels of DNA relatedness confirmed that the two taxa are distinct biological species, but the similarity of rRNA sequences suggests that they only recently diverged. C. shehatae is comprised of three genetically divergent (ca. 50% DNA relatedness) subgroups

  16. Genetic diversity and relationships among Dutch elm disease tolerant Ulmus pumila L. accessions from China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elm breeding programs worldwide have relied heavily on Asian elm germplasm, particularly U. pumila, for the breeding of Dutch elm disease tolerant cultivars. However, the extent and patterning of genetic variation in Asian elm species is unknown. Therefore, the objective of this research was to de...

  17. Genetic diversity and relationships among Venezuelan equine encephalitis virus field isolates from Colombia and Venezuela.

    PubMed

    Moncayo, A C; Medina, G M; Kalvatchev, Z; Brault, A C; Barrera, R; Boshell, J; Ferro, C; Freier, J E; Navarro, J C; Salas, R; De Siger, J; Vasquez, C; Walder, R; Weaver, S C

    2001-12-01

    During field studies of enzootic Venezuelan equine encephalitis (VEE) viruses associated with epizootic emergence, a large number of virus isolates were made in sylvatic foci of Venezuela and Colombia. To rapidly characterize these isolates, antigenic subtypes were determined by means of immunofluorescence and by single-strand conformational polymorphism (SSCP) analysis by use of an 856-bp fragment from the P62 gene, which we used to distinguish genetic variants. Representative isolates were sequenced to assess the sensitivity of SSCP to detect genetic differences. The SSCP analysis distinguished isolates differing by as little as 1 nucleotide; overall, differences of > or = 1 nucleotide were recognized 89% of the time, and the sensitivity to distinguish strains that differed by only 1 or 4 nucleotides was 17 and 57%, respectively. Phylogenetic analyses of representative sequences showed that all recent isolates from the Catatumbo region of western Venezuela and the middle Magdalena Valley of Colombia were closely related to epizootic subtype IAB and IC strains; strains from Yaracuy and Miranda States were more distantly related. Cocirculation of the same virus genotype in both Colombian and Venezuelan foci indicated that these viruses are readily transported between enzootic regions separated by > 300 km. The SSCP analysis appears to be a simple, fast, and relatively efficient method of screening VEE virus isolates to identify meaningful genetic variants. PMID:11791968

  18. Roles of lineage sorting and phylogenetic relationship in the genetic diversity at the self-incompatibility locus of Solanaceae

    Microsoft Academic Search

    Yingqing Lu

    2001-01-01

    Allelic polymorphism at the S locus that determines the gametophytic self-incompatibility (GSI) system in the pistil predates speciation. Understanding the evolution of a GSI system therefore requires knowledge of how lineage sorting and interspecific phylogenetic relationship affect S allele polymorphism. In searching for patterns of lineage sorting among species of various phylogenetic relationships, 22 S-alleles from 34 genets randomly taken

  19. Genetic diversity among INERA maize inbred lines with single nucleotide polymorphism (SNP) markers and their relationship with CIMMYT, IITA, and temperate lines.

    PubMed

    Dao, Abdalla; Sanou, Jacob; Mitchell, Sharon E; Gracen, Vernon; Danquah, Eric Y

    2014-11-25

    BackgroundGenetic diversity provides the capacity for plants to meet changing environments. It is fundamentally important in crop improvement. Fifty-nine local maize lines developed at INERA and 41 exotic (temperate and tropical) inbred lines were characterized using 1057 SNP markers to (1) analyse the genetic diversity in a diverse set of maize inbred lines; (2) determine the level of genetic diversity in INERA inbred lines and patterns of relationships of these inbred lines developed from two sources; and (3) examine the genetic differences between local and exotic germplasms.ResultsRoger¿s genetic distance for about 64% of the pairs of lines fell between 0.300 and 0.400. Sixty one per cent of the pairs of lines also showed relative kinship values of zero. Model-based population structure analysis and principal component analysis revealed the presence of 5 groups that agree, to some extent, with the origin of the germplasm. There was genetic diversity among INERA inbred lines, which were genetically less closely related and showed a low level of heterozygosity. These lines could be divided into 3 major distinct groups and a mixed group consistent with the source population of the lines. Pairwise comparisons between local and exotic germplasms showed that the temperate and some IITA lines were differentiated from INERA lines. There appeared to be substantial levels of genetic variation between local and exotic germplasms as revealed by missing and unique alleles.ConclusionsAllelic frequency differences observed between the germplasms, together with unique alleles identified within each germplasm, shows the potential for a mutual improvement between the sets of germplasm. The results from this study will be useful to breeders in designing inbred-hybrid breeding programs, association mapping population studies and marker assisted breeding. PMID:25421948

  20. Genetic diversity and relationship of Hedychium from Northeast India as dissected using PCA analysis and hierarchical clustering.

    PubMed

    Basak, Supriyo; Ramesh, Aadi Moolam; Kesari, Vigya; Parida, Ajay; Mitra, Sudip; Rangan, Latha

    2014-12-01

    Molecular genetic fingerprints of eleven Hedychium species from Northeast India were developed using PCR based markers. Fifteen inter-simple sequence repeats (ISSRs) and five amplified fragment length polymorphism (AFLP) primers produced 547 polymorphic fragments. Positive correlation (r = 0.46) was observed between the mean genetic similarity and genetic diversity parameters at the inter-species level. AFLP and ISSR markers were able to group the species according to its altitude and intensity of flower aroma. Cophenetic correlation coefficients between the dendrogram and the original similarity matrix were significant for ISSR (r = 0.89) compared to AFLP (r = 0.83) markers. This genetic characterization of Hedychium from Northeast India contributes to the knowledge of genetic structure of the species and can be used to define strategies for their conservation and management. PMID:25606430

  1. Genetic diversity and relationship of Hedychium from Northeast India as dissected using PCA analysis and hierarchical clustering

    PubMed Central

    Basak, Supriyo; Ramesh, Aadi Moolam; Kesari, Vigya; Parida, Ajay; Mitra, Sudip; Rangan, Latha

    2014-01-01

    Molecular genetic fingerprints of eleven Hedychium species from Northeast India were developed using PCR based markers. Fifteen inter-simple sequence repeats (ISSRs) and five amplified fragment length polymorphism (AFLP) primers produced 547 polymorphic fragments. Positive correlation (r = 0.46) was observed between the mean genetic similarity and genetic diversity parameters at the inter-species level. AFLP and ISSR markers were able to group the species according to its altitude and intensity of flower aroma. Cophenetic correlation coefficients between the dendrogram and the original similarity matrix were significant for ISSR (r = 0.89) compared to AFLP (r = 0.83) markers. This genetic characterization of Hedychium from Northeast India contributes to the knowledge of genetic structure of the species and can be used to define strategies for their conservation and management. PMID:25606430

  2. Relationship between plant diversity andRelationship between plant diversity and AMF diversity in grassland ecosystems

    E-print Network

    Bruns, Tom

    Relationship between plant diversity andRelationship between plant diversity and AMF diversity on composition of AMF community #12;Relationship between plant richness and AMF diversity complete;Relationship between plant richness and AMF diversity 18 AMF partial removal 10 12 14 16 hness of A 0

  3. Genetic diversity in Gossypium genus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The overall objectives of this paper are to report on cotton germplasm resources, morphobiological and agronomic diversity of Gossypium genus and review efforts on molecular genetic diversity of cotton gene pools as well as on the challenges and perspectives of exploiting genetic diversity in cotton...

  4. Genetic Diversity among Enterococcus faecalis

    PubMed Central

    McBride, Shonna M.; Fischetti, Vincent A.; LeBlanc, Donald J.; Moellering, Robert C.; Gilmore, Michael S.

    2007-01-01

    Enterococcus faecalis, a ubiquitous member of mammalian gastrointestinal flora, is a leading cause of nosocomial infections and a growing public health concern. The enterococci responsible for these infections are often resistant to multiple antibiotics and have become notorious for their ability to acquire and disseminate antibiotic resistances. In the current study, we examined genetic relationships among 106 strains of E. faecalis isolated over the past 100 years, including strains identified for their diversity and used historically for serotyping, strains that have been adapted for laboratory use, and isolates from previously described E. faecalis infection outbreaks. This collection also includes isolates first characterized as having novel plasmids, virulence traits, antibiotic resistances, and pathogenicity island (PAI) components. We evaluated variation in factors contributing to pathogenicity, including toxin production, antibiotic resistance, polymorphism in the capsule (cps) operon, pathogenicity island (PAI) gene content, and other accessory factors. This information was correlated with multi-locus sequence typing (MLST) data, which was used to define genetic lineages. Our findings show that virulence and antibiotic resistance traits can be found within many diverse lineages of E. faecalis. However, lineages have emerged that have caused infection outbreaks globally, in which several new antibiotic resistances have entered the species, and in which virulence traits have converged. Comparing genomic hybridization profiles, using a microarray, of strains identified by MLST as spanning the diversity of the species, allowed us to identify the core E. faecalis genome as consisting of an estimated 2057 unique genes. PMID:17611618

  5. Genetic relationships and diversity among Tibetan wheat, common wheat and European spelt wheat revealed by RAPD markers

    Microsoft Academic Search

    Qixin Sun; Zhongfu Ni; Zhiyong Liu; Jianwei Gao; Tiecheng Huang

    1998-01-01

    An endemic hexaploid wheat found in Tibet, China was taxonomically classified as a subspecies in common wheat, i.e. Triticum\\u000a aestivum ssp. tibetanum. Seven accessions of the Tibetan wheat, 22 cultivars of common wheat and 17 lines of spelt wheat were\\u000a used for RAPD analysis to study the genetic relationships of the Tibetan wheat with common wheat and spelt wheat, and

  6. Genetic diversity and relationships between wild and cultivated olives ( Olea europaea L.) in Sardinia as assessed by SSR markers

    Microsoft Academic Search

    Patrizia Erre; Innocenza Chessa; Concepción Muñoz-Diez; Angjelina Belaj; Luis Rallo; Isabel Trujillo

    2010-01-01

    The genetic relationships within and between wild and cultivated olives were examined and clarified in an isolated and restricted\\u000a area, such as the Mediterranean island of Sardinia. Wild (21 individuals) and cultivated olive trees (22 local cultivars from\\u000a a germplasm collection and 35 ancient trees) were genotyped by means of 13 SSR loci. Five cases of synonymy were observed\\u000a and

  7. Roles of lineage sorting and phylogenetic relationship in the genetic diversity at the self-incompatibility locus of Solanaceae.

    PubMed

    Lu, Y

    2001-02-01

    Allelic polymorphism at the S locus that determines the gametophytic self-incompatibility (GSI) system in the pistil predates speciation. Understanding the evolution of a GSI system therefore requires knowledge of how lineage sorting and interspecific phylogenetic relationship affect S allele polymorphism. In searching for patterns of lineage sorting among species of various phylogenetic relationships, 22 S-alleles from 34 genets randomly taken at three Tennessee sites from a newly known GSI species Physalis longifolia were sequenced. Analyses of these data along with the previous sequences of three solanaceous species indicate that much of the combined allelic genealogy may be explained by lineage sorting and phylogenetic relationship. Using the mean terminal branch lengths of trans-specific alleles on the allelic genealogy to infer phylogenetic relationship among species, P. longifolia was found to be more closely related to P. cinerascens than to P. crassifolia. Nonetheless, the distribution of terminal branch lengths of P. longifolia was more similar to that of P. crassifolia than to that of P. cinerascens, suggesting phylogenetic relationship may have little effect on species-specific polymorphism. Similar habitat and growth characters, yet contrasting S-polymorphism, between P. longifolia and P. cinerascens also reject previous hypotheses that habitat and growth characters are the major factors responsible for interspecific differences in S-polymorphism. A likely scenario is that species-specific S-polymorphism is based on lineage sorting whose effect is further modified by species age and historical changes in population parameters. PMID:11380665

  8. Genetic diversity and phylogenetic relationship among Tunisian cactus species (Opuntia) as revealed by random amplified microsatellite polymorphism markers.

    PubMed

    Bendhifi Zarroug, M; Baraket, G; Zourgui, L; Souid, S; Salhi Hannachi, A

    2015-01-01

    Opuntia ficus indica is one of the most economically important species in the Cactaceae family. Increased interest in this crop stems from its potential contribution to agricultural diversification, application in the exploitation of marginal lands, and utility as additional income sources for farmers. In Tunisia, O. ficus indica has been affected by drastic genetic erosion resulting from biotic and abiotic stresses. Thus, it is imperative to identify and preserve this germplasm. In this study, we focused on the use of random amplified microsatellite polymorphisms to assess genetic diversity among 25 representatives of Tunisian Opuntia species maintained in the collection of the National Institute of Agronomic Research of Tunisia. Seventy-two DNA markers were screened to discriminate accessions using 16 successful primer combinations. The high percentage of polymorphic band (100%), the resolving power value (5.68), the polymorphic information content (0.94), and the marker index (7.2) demonstrated the efficiency of the primers tested. Therefore, appropriate cluster analysis used in this study illustrated a divergence among the cultivars studied and exhibited continuous variation that occurred independently of geographic origin. O. ficus indica accessions did not cluster separately from the other cactus pear species, indicating that their current taxonomical classifications are not well aligned with their genetic variability or locality of origin. PMID:25730081

  9. Genetic Diversity among the Arabs

    Microsoft Academic Search

    Ahmad S. Teebi; Saeed A. Teebi

    2005-01-01

    The Arabs in general are genetically diverse. Major factors that contributed to their diversity include the migrations of Semitic tribes from the Arabian Peninsula, the Islamic expansion in the 7th century AD, the Crusade wars and the recent migration dynamics. These events have resulted in the admixture of the original Arabs with other populations extending from east and south Asia

  10. Genetic diversity in aspen and its relation to arthropod abundance

    PubMed Central

    Zhang, Chunxia; Vornam, Barbara; Volmer, Katharina; Prinz, Kathleen; Kleemann, Frauke; Köhler, Lars; Polle, Andrea; Finkeldey, Reiner

    2015-01-01

    The ecological consequences of biodiversity have become a prominent public issue. Little is known on the effect of genetic diversity on ecosystem services. Here, a diversity experiment was established with European and North American aspen (Populus tremula, P. tremuloides) planted in plots representing either a single deme only or combinations of two, four and eight demes. The goals of this study were to explore the complex inter- and intraspecific genetic diversity of aspen and to then relate three measures for diversity (deme diversity, genetic diversity determined as Shannon index or as expected heterozygosity) to arthropod abundance. Microsatellite and AFLP markers were used to analyze the genetic variation patterns within and between the aspen demes and deme mixtures. Large differences were observed regarding the genetic diversity within demes. An analysis of molecular variance revealed that most of the total genetic diversity was found within demes, but the genetic differentiation among demes was also high. The complex patterns of genetic diversity and differentiation resulted in large differences of the genetic variation within plots. The average diversity increased from plots with only one deme to plots with two, four, and eight demes, respectively and separated plots with and without American aspen. To test whether intra- and interspecific diversity impacts on ecosystem services, arthropod abundance was determined. Increasing genetic diversity of aspen was related to increasing abundance of arthropods. However, the relationship was mainly driven by the presence of American aspen suggesting that species identity overrode the effect of intraspecific variation of European aspen. PMID:25674097

  11. At the southeast fringe of the Bantu expansion: genetic diversity and phylogenetic relationships to other sub-Saharan tribes

    PubMed Central

    Rowold, Diane; Garcia-Bertrand, Ralph; Calderon, Silvia; Rivera, Luis; Benedico, David Perez; Alfonso Sanchez, Miguel A.; Chennakrishnaiah, Shilpa; Varela, Mangela; Herrera, Rene J.

    2014-01-01

    Here, we present 12 loci paternal haplotypes (Y-STR profiles) against the backdrop of the Y-SNP marker system of Bantu males from the Maputo Province of Southeast Africa, a region believed to represent the southeastern fringe of the Bantu expansion. Our Maputo Bantu group was analyzed within the context of 27 geographically relevant reference populations in order to ascertain its genetic relationship to other Bantu and non Bantu (Pygmy, Khoisan and Nilotic) sub-equatorial tribes from West and East Africa. This study entails statistical pair wise comparisons and multidimensional scaling based on YSTR Rst distances, network analyses of Bantu (B2a-M150) and Pygmy (B2b-M112) lineages as well as an assessment of Y-SNP distribution patterns. Several notable findings include the following: 1) the Maputo Province Bantu exhibits a relatively close paternal affinity with both east and west Bantu tribes due to high proportion of Bantu Y chromosomal markers, 2) only traces of Khoisan (1.3%) and Pygmy (1.3%) markers persist in the Maputo Province Bantu gene pool, 3) the occurrence of R1a1a-M17/M198, a member of the Eurasian R1a-M420 branch in the population of the Maputo Province, may represent back migration events and/or recent admixture events, 4) the shared presence of E1b1b1-M35 in all Tanzanian tribes examined, including Bantu and non-Bantu groups, in conjunction with its nearly complete absence in the West African populations indicate that, in addition to a shared linguistic, cultural and genetic heritage, geography (e.g., east vs. west) may have impacted the paternal landscape of sub-Saharan Africa, 5) the admixture and assimilation processes of Bantu elements were both highly complex and region-specific. PMID:25606451

  12. At the southeast fringe of the Bantu expansion: genetic diversity and phylogenetic relationships to other sub-Saharan tribes.

    PubMed

    Rowold, Diane; Garcia-Bertrand, Ralph; Calderon, Silvia; Rivera, Luis; Benedico, David Perez; Alfonso Sanchez, Miguel A; Chennakrishnaiah, Shilpa; Varela, Mangela; Herrera, Rene J

    2014-12-01

    Here, we present 12 loci paternal haplotypes (Y-STR profiles) against the backdrop of the Y-SNP marker system of Bantu males from the Maputo Province of Southeast Africa, a region believed to represent the southeastern fringe of the Bantu expansion. Our Maputo Bantu group was analyzed within the context of 27 geographically relevant reference populations in order to ascertain its genetic relationship to other Bantu and non Bantu (Pygmy, Khoisan and Nilotic) sub-equatorial tribes from West and East Africa. This study entails statistical pair wise comparisons and multidimensional scaling based on YSTR Rst distances, network analyses of Bantu (B2a-M150) and Pygmy (B2b-M112) lineages as well as an assessment of Y-SNP distribution patterns. Several notable findings include the following: 1) the Maputo Province Bantu exhibits a relatively close paternal affinity with both east and west Bantu tribes due to high proportion of Bantu Y chromosomal markers, 2) only traces of Khoisan (1.3%) and Pygmy (1.3%) markers persist in the Maputo Province Bantu gene pool, 3) the occurrence of R1a1a-M17/M198, a member of the Eurasian R1a-M420 branch in the population of the Maputo Province, may represent back migration events and/or recent admixture events, 4) the shared presence of E1b1b1-M35 in all Tanzanian tribes examined, including Bantu and non-Bantu groups, in conjunction with its nearly complete absence in the West African populations indicate that, in addition to a shared linguistic, cultural and genetic heritage, geography (e.g., east vs. west) may have impacted the paternal landscape of sub-Saharan Africa, 5) the admixture and assimilation processes of Bantu elements were both highly complex and region-specific. PMID:25606451

  13. Community genetics: resource addition has opposing effects on genetic and species diversity in a 150-year experiment

    Microsoft Academic Search

    Jonathan Silvertown; Pamela M. Biss; Joanna Freeland

    2008-01-01

    We used the Park Grass Experiment, begun in 1856, to test alternative hypotheses about the relationship between genetic diversity and plant species diversity. The niche variation hypothesis predicts that populations with few interspecific competitors and hence broader niches are expected to contain greater genetic diversity. The coexistence hypothesis predicts that genetic diversity within species favours coexistence among species and therefore

  14. Genetic diversity and relationships among Chinese Eucommia ulmoides cultivars revealed by sequence-related amplified polymorphism, amplified fragment length polymorphism, and inter-simple sequence repeat markers.

    PubMed

    Li, Y; Wang, S H; Li, Z Q; Jin, C F; Liu, M H

    2014-01-01

    Sequence-related amplified polymorphism (SRAP), amplified fragment length polymorphism (AFLP), and inter-simple sequence repeat (ISSR) markers were used to estimate the genetic diversity and relationships among Eucommia ulmoides cultivars in China. A total of 240, 192, and 150 DNA fragments were detected by 10 SRAP primer combinations, 10 AFLP primer combinations, and 10 ISSR primers, among which 89.2, 65.1, and 88.0% of the fragments were polymorphic, respectively. Cluster analysis revealed that Qinzhong No. 3, Xiaoyeci, Qinzhong No. 1, and Qinzhong No. 2 formed independent clusters. The other 15 cultivars exhibited two clusters. The results of this study will help in the selection of parents for both genome mapping and crossbreeding purposes. PMID:25366761

  15. Genetic diversity and relationship of cattle populations of East India: distinguishing lesser known cattle populations and established breeds based on STR markers.

    PubMed

    Sharma, Rekha; Maitra, Avishek; Singh, Pramod Kumar; Tantia, Madhu Sudan

    2013-01-01

    India has 34 recognized breeds of cattle in addition to many more not characterized and accredited so far. It is imperative to characterize all the cattle germplasm of the country so as to have better breeding and conservation options. Thus, present study was planned for assessing genetic diversity and relationship between three local cattle populations (Gangatiri, Shahabadi and Purnea) and two established cattle breeds (Bachaur and Siri) of eastern India by using 21 FAO and ISAG recommended microsatellite markers. A total of 243 unrelated DNA samples of five cattle populations were collected from respective habitats. A total of 304 microsatellite alleles were identified with number of alleles at one locus ranging from 5 to 29. The average observed heterozygosity lie within the narrow range of 0.681?±?0.04 in Purnea to 0.721?±?0.03 in Siri. Mean estimates of observed and expected heterozygosity over all loci and breeds were 0.704?±?0.02 and 0.720?±?0.01, respectively. In the overall population, the homozygote excess (FIT) of 0.073?±?0.02, was partly due to the homozygote excess within breeds (FIS?=?0.026?±?0.02) and to a larger extent due to genetic differentiation among breeds (FST?=?0.048?±?0.01). The genetic distance, STRUCTURE and Principal Component Analyses concluded that the Siri cattle are most distinct among the investigated cattle populations. Furthermore the analysis of genetic structure indicated that the most probable number of clusters is four. All analysis showed that a significant amount of genetic variation is maintained in local cattle populations of which Shahabadi and Purnea are distinct from the recognized breeds of the area and needs recognition as breeds. PMID:23961421

  16. Genetic structure and systematic relationships within the Ophrys fuciflora aggregate (Orchidaceae: Orchidinae): high diversity in Kent and a wind-induced discontinuity bisecting the Adriatic

    PubMed Central

    Devey, Dion S.; Bateman, Richard M.; Fay, Michael F.; Hawkins, Julie A.

    2009-01-01

    Background and Aims A recent phylogenetic study based on multiple datasets is used as the framework for a more detailed examination of one of the ten molecularly circumscribed groups identified, the Ophrys fuciflora aggregate. The group is highly morphologically variable, prone to phenotypic convergence, shows low levels of sequence divergence and contains an unusually large proportion of threatened taxa, including the rarest Ophrys species in the UK. The aims of this study were to (a) circumscribe minimum resolvable genetically distinct entities within the O. fuciflora aggregate, and (b) assess the likelihood of gene flow between genetically and geographically distinct entities at the species and population levels. Methods Fifty-five accessions sampled in Europe and Asia Minor from the O. fuciflora aggregate were studied using the AFLP genetic fingerprinting technique to evaluate levels of infraspecific and interspecific genetic variation and to assess genetic relationships between UK populations of O. fuciflora s.s. in Kent and in their continental European and Mediterranean counterparts. Key Results The two genetically and geographically distinct groups recovered, one located in England and central Europe and one in south-eastern Europe, are incongruent with current species delimitation within the aggregate as a whole and also within O. fuciflora s.s. Genetic diversity is higher in Kent than in the rest of western and central Europe. Conclusions Gene flow is more likely to occur between populations in closer geographical proximity than those that are morphologically more similar. Little if any gene flow occurs between populations located in the south-eastern Mediterranean and those dispersed throughout the remainder of the distribution, revealing a genetic discontinuity that runs north–south through the Adriatic. This discontinuity is also evident in other clades of Ophrys and is tentatively attributed to the long-term influence of prevailing winds on the long-distance distribution of pollinia and especially seeds. A cline of gene flow connects populations from Kent and central and southern Europe; these individuals should therefore be considered part of an extensive meta-population. Gene flow is also evident among populations from Kent, which appear to constitute a single metapopulation. They show some evidence of hybridization, and possibly also introgression, with O. apifera. PMID:19251716

  17. Rarity and genetic diversity in Indo–Pacific Acropora corals

    PubMed Central

    Richards, Zoe T; Oppen, Madeleine J H

    2012-01-01

    Among various potential consequences of rarity is genetic erosion. Neutral genetic theory predicts that rare species will have lower genetic diversity than common species. To examine the association between genetic diversity and rarity, variation at eight DNA microsatellite markers was documented for 14 Acropora species that display different patterns of distribution and abundance in the Indo–Pacific Ocean. Our results show that the relationship between rarity and genetic diversity is not a positive linear association because, contrary to expectations, some rare species are genetically diverse and some populations of common species are genetically depleted. Our data suggest that inbreeding is the most likely mechanism of genetic depletion in both rare and common corals, and that hybridization is the most likely explanation for higher than expected levels of genetic diversity in rare species. A significant hypothesis generated from our study with direct conservation implications is that as a group, Acropora corals have lower genetic diversity at neutral microsatellite loci than may be expected from their taxonomic diversity, and this may suggest a heightened susceptibility to environmental change. This hypothesis requires validation based on genetic diversity estimates derived from a large portion of the genome. PMID:22957189

  18. Genetic diversity in the Churra tensina and Churra lebrijana endangered Spanish sheep breeds and relationship with other Churra group breeds and Spanish mouflon

    Microsoft Academic Search

    J. H. Calvo; J. Alvarez-Rodriguez; A. Marcos-Carcavilla; M. Serrano; A. Sanz

    2011-01-01

    The aim of the present study was to estimate the genetic intra-breed variability of Churra tensina and Churra lebrijana endangered breeds and to establish genetic relationships with Churra, Latxa and Merino breeds, as well as Spanish mouflon, by using 28 microsatellite markers, to provide useful information for their conservation. Allele frequencies and heterozygosity revealed high genetic variation in the two

  19. Genetic Diversity Increases Insect Herbivory on Oak Saplings

    PubMed Central

    Castagneyrol, Bastien; Lagache, Lélia; Giffard, Brice; Kremer, Antoine; Jactel, Hervé

    2012-01-01

    A growing body of evidence from community genetics studies suggests that ecosystem functions supported by plant species richness can also be provided by genetic diversity within plant species. This is not yet true for the diversity-resistance relationship as it is still unclear whether damage by insect herbivores responds to genetic diversity in host plant populations. We developed a manipulative field experiment based on a synthetic community approach, with 15 mixtures of one to four oak (Quercus robur) half-sib families. We quantified genetic diversity at the plot level by genotyping all oak saplings and assessed overall damage caused by ectophagous and endophagous herbivores along a gradient of increasing genetic diversity. Damage due to ectophagous herbivores increased with the genetic diversity in oak sapling populations as a result of higher levels of damage in mixtures than in monocultures for all families (complementarity effect) rather than because of the presence of more susceptible oak genotypes in mixtures (selection effect). Assemblages of different oak genotypes would benefit polyphagous herbivores via improved host patch location, spill over among neighbouring saplings and diet mixing. By contrast, genetic diversity was a poor predictor of the abundance of endophagous herbivores, which increased with individual sapling apparency. Plant genetic diversity may not provide sufficient functional contrast to prevent tree sapling colonization by specialist herbivores while enhancing the foraging of generalist herbivores. Long term studies are nevertheless required to test whether the effect of genetic diversity on herbivory change with the ontogeny of trees and local adaptation of specialist herbivores. PMID:22937168

  20. Diversity among melon (Cucumis melo L.) landraces from the Indo-Gangetic plains of India and their genetic relationship with U.S.A. melon cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report here the first broad genetic characterization of farmer-developed land races of melon (Cucumis melo L.) from the Indo-Gangetic plains of India, an area overlooked in previous genetic diversity analyses of Indian melon germplasm. Eighty-eight landraces from three melon groups in two subspec...

  1. Population genetic diversity and fitness in multiple environments

    PubMed Central

    2010-01-01

    Background When a large number of alleles are lost from a population, increases in individual homozygosity may reduce individual fitness through inbreeding depression. Modest losses of allelic diversity may also negatively impact long-term population viability by reducing the capacity of populations to adapt to altered environments. However, it is not clear how much genetic diversity within populations may be lost before populations are put at significant risk. Development of tools to evaluate this relationship would be a valuable contribution to conservation biology. To address these issues, we have created an experimental system that uses laboratory populations of an estuarine crustacean, Americamysis bahia with experimentally manipulated levels of genetic diversity. We created replicate cultures with five distinct levels of genetic diversity and monitored them for 16 weeks in both permissive (ambient seawater) and stressful conditions (diluted seawater). The relationship between molecular genetic diversity at presumptive neutral loci and population vulnerability was assessed by AFLP analysis. Results Populations with very low genetic diversity demonstrated reduced fitness relative to high diversity populations even under permissive conditions. Population performance decreased in the stressful environment for all levels of genetic diversity relative to performance in the permissive environment. Twenty percent of the lowest diversity populations went extinct before the end of the study in permissive conditions, whereas 73% of the low diversity lines went extinct in the stressful environment. All high genetic diversity populations persisted for the duration of the study, although population sizes and reproduction were reduced under stressful environmental conditions. Levels of fitness varied more among replicate low diversity populations than among replicate populations with high genetic diversity. There was a significant correlation between AFLP diversity and population fitness overall; however, AFLP markers performed poorly at detecting modest but consequential losses of genetic diversity. High diversity lines in the stressful environment showed some evidence of relative improvement as the experiment progressed while the low diversity lines did not. Conclusions The combined effects of reduced average fitness and increased variability contributed to increased extinction rates for very low diversity populations. More modest losses of genetic diversity resulted in measurable decreases in population fitness; AFLP markers did not always detect these losses. However when AFLP markers indicated lost genetic diversity, these losses were associated with reduced population fitness. PMID:20609254

  2. Benefits of Conservation of Plant Genetic Diversity to Arthropod Diversity

    Microsoft Academic Search

    RANDY K. BANGERT; RICHARD J. TUREK; GREGORY D. MARTINSEN; GINA M. WIMP; JOSEPH K. BAILEY; THOMAS G. WHITHAM

    2005-01-01

    We argue that the genetic diversity of a dominant plant is important to the associated dependent community because dependent species such as herbivores are restricted to a subset of genotypes in the host- plant population. For plants that function as habitat, we predicted that greater genetic diversity in the plant population would be associated with greater diversity in the dependent

  3. Potential use of random amplified polymorphic DNA (RAPD) technique to study the genetic diversity in Indian mustard ( Brassica juncea ) and its relationship to heterosis

    Microsoft Academic Search

    A. Jain; S. Bhatia; S. S. Banga; S. Prakash; M. Lakshmikumaran

    1994-01-01

    RAPD assays were performed, using 34 arbitrary decamer oligonucleotide primers and six combinations of two primers, to detect inherent variations and genetic relationships among 12 Indian and 11 exotic B. juncea genotypes. Of 595 amplification products identified, 500 of them were polymorphic across all genotypes. A low level of genetic variability was detected among the Indian genotypes, while considerable polymorphism

  4. Relationships among Bacterial Cell Size, Productivity, and Genetic Diversity in Aquatic Environments using Cell Sorting and Flow Cytometry

    Microsoft Academic Search

    L. Bernard; C. Courties; P. Servais; M. Troussellier; M. Petit; P. Lebaron

    2000-01-01

    The study of relationships between cell size and productivity is of key importance in microbial ecology to understand which\\u000a members of natural aquatic communities are responsible for the overall activity and\\/or productivity. Flow sorting of microorganisms\\u000a from different environmental samples was used to analyze the activity of bacterial cells depending on their biovolume. Bacterial\\u000a cells from five different natural samples

  5. Genetic Diversity in Chinese melon (Cucumis melo L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Melon (Cucumis melo L.; 2n = 2x = 24) is a morphologically diverse outcrossing Cucurbitaceae species. Genetically mapped random amplified polymorphic DNA (RAPD) markers have been used broadly to define genetic relationships (GR) among melon botanical groups and commercial market classes. Such inform...

  6. The relic Criollo cacao in Belize- genetic diversity and relationship with Trinitario and other cacao clones held in the International Cocoa Genebank, Trinidad

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cacao (Theobroma cacao L.) is native to the South American rainforest but it was domesticated in Mesoamerica. The relic Criollo cocoa in Belize has been well known in the premium chocolate market for its high-quality. Knowledge of genetic diversity in this variety is essential for efficient conserva...

  7. Personalized medicine and human genetic diversity.

    PubMed

    Lu, Yi-Fan; Goldstein, David B; Angrist, Misha; Cavalleri, Gianpiero

    2014-09-01

    Human genetic diversity has long been studied both to understand how genetic variation influences risk of disease and infer aspects of human evolutionary history. In this article, we review historical and contemporary views of human genetic diversity, the rare and common mutations implicated in human disease susceptibility, and the relevance of genetic diversity to personalized medicine. First, we describe the development of thought about diversity through the 20th century and through more modern studies including genome-wide association studies (GWAS) and next-generation sequencing. We introduce several examples, such as sickle cell anemia and Tay-Sachs disease that are caused by rare mutations and are more frequent in certain geographical populations, and common treatment responses that are caused by common variants, such as hepatitis C infection. We conclude with comments about the continued relevance of human genetic diversity in medical genetics and personalized medicine more generally. PMID:25059740

  8. Community genetics: resource addition has opposing effects on genetic and species diversity in a 150-year experiment.

    PubMed

    Silvertown, Jonathan; Biss, Pamela M; Freeland, Joanna

    2009-02-01

    We used the Park Grass Experiment, begun in 1856, to test alternative hypotheses about the relationship between genetic diversity and plant species diversity. The niche variation hypothesis predicts that populations with few interspecific competitors and hence broader niches are expected to contain greater genetic diversity. The coexistence hypothesis predicts that genetic diversity within species favours coexistence among species and therefore species and genetic diversity should be positively correlated. Amplified Fragment Length Polymorphism (AFLP) markers were used to measure the genetic diversity of populations of Anthoxanthum odoratum growing in 10 plots of differing species richness that lie along resource and soil pH gradients. Genetic diversity in A. odoratum was positively correlated with the number of resources added to a plot, but not correlated with species richness. However, separate analyses have shown a negative correlation between resource addition and species richness at Park Grass and elsewhere, so genetic and species diversity appear to respond in opposite directions. PMID:19143828

  9. High genetic diversity, distant phylogenetic relationships and intraspecies recombination events among natural populations of Yam mosaic virus: a contribution to understanding potyvirus evolution

    Microsoft Academic Search

    M. Bousalem; E. J. P. Douzery; D. Fargette

    To evaluate the genetic diversity and understand the evolution of Yam mosaic virus (YMV), a highly destructive pathogen of yam (Dioscorea sp.), sequencing was carried out of the C-terminal part of the replicase (NIb), the coat protein (CP) and the 3«-untranslated region (3«-UTR) of 27 YMV isolates collected from the three main cultivated species (Dioscorea alata, the complex Dioscorea cayenensis-Dioscorea

  10. Bovine Genetic Diversity Revealed By mtDNA Sequence Variation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mitochondrial DNA single nucleotide polymorphism (SNP) data were used to determine genetic distance, nucleotide diversity, construction of haplotypes, estimation of information contents, and phylogenic relationships in bovine HapMap breeds. The Bovine International HapMap panel consists of 720 anima...

  11. Genetic and Metabolite Diversity of Sardinian Populations of Helichrysum italicum

    PubMed Central

    Melito, Sara; Sias, Angela; Petretto, Giacomo L.; Chessa, Mario; Pintore, Giorgio; Porceddu, Andrea

    2013-01-01

    Background Helichrysum italicum (Asteraceae) is a small shrub endemic to the Mediterranean Basin, growing in fragmented and diverse habitats. The species has attracted attention due to its secondary metabolite content, but little effort has as yet been dedicated to assessing the genetic and metabolite diversity present in these populations. Here, we describe the diversity of 50 H. italicum populations collected from a range of habitats in Sardinia. Methods H. italicum plants were AFLP fingerprinted and the composition of their leaf essential oil characterized by GC-MS. The relationships between the genetic structure of the populations, soil, habitat and climatic variables and the essential oil chemotypes present were evaluated using Bayesian clustering, contingency analyses and AMOVA. Key results The Sardinian germplasm could be partitioned into two AFLP-based clades. Populations collected from the southwestern region constituted a homogeneous group which remained virtually intact even at high levels of K. The second, much larger clade was more diverse. A positive correlation between genetic diversity and elevation suggested the action of natural purifying selection. Four main classes of compounds were identified among the essential oils, namely monoterpenes, oxygenated monoterpenes, sesquiterpenes and oxygenated sesquiterpenes. Oxygenated monoterpene levels were significantly correlated with the AFLP-based clade structure, suggesting a correspondence between gene pool and chemical diversity. Conclusions The results suggest an association between chemotype, genetic diversity and collection location which is relevant for the planning of future collections aimed at identifying valuable sources of essential oil. PMID:24260149

  12. GENETIC DIVERSITY OF THE PEANUT MINI CORE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirty-one genomic SSR markers with M13-tail attached were used to assess genetic diversity in the peanut mini core, which is maintained by the USDA-ARS Plant Genetic Resources Conservation Unit (USDA, ARS, PGRCU) in Griffin, GA. The M13-tailed method was effective in discriminating individuals and...

  13. Searching for Diverse, Cooperative Populations with Genetic Algorithms

    E-print Network

    Forrest, Stephanie

    Searching for Diverse, Cooperative Populations with Genetic Algorithms Robert E. Smith Dept Abstract In typical applications, genetic algorithms (GAs) process populations of potential problem a population is necessary for the long term success of any evolutionary system. Genetic diversity helps

  14. High genetic diversity, distant phylogenetic relationships and intraspecies recombination events among natural populations of Yam mosaic virus: a contribution to understanding potyvirus evolution.

    PubMed

    Bousalem, M; Douzery, E J; Fargette, D

    2000-01-01

    To evaluate the genetic diversity and understand the evolution of Yam mosaic virus (YMV), a highly destructive pathogen of yam (Dioscorea sp.), sequencing was carried out of the C-terminal part of the replicase (NIb), the coat protein (CP) and the 3'-untranslated region (3'-UTR) of 27 YMV isolates collected from the three main cultivated species (Dioscorea alata, the complex Dioscorea cayenensis-Dioscorea rotundata and Dioscorea trifida). YMV showed the most variable CP relative to eight other potyviruses. This high variability was structured into nine distant molecular groups, as revealed by phylogenetic analyses and validated by assessment of the molecular evolutionary noise. No correlation was observed between the CP and 3'-UTR diversities and phylogenies. The most diversified and divergent groups included isolates from Africa. The remaining groups clustered in a single clade and a geographical distinction between isolates from the Caribbean, South America and Africa was observed. The role of the host in the selection of particular isolates was illustrated by the case of a divergent cultivar from Burkina Faso. Phylogenetic topological incongruence and complementary statistical tests highlighted the fact that recombination events, with single and multiple crossover sites, largely contributed to the evolution of YMV. We hypothesise an African origin of YMV from the yam complex D. cayenensis-D. rotundata, followed by independent transfers to D. alata and D. trifida during virus evolution. PMID:10640564

  15. [Genetic diversity of Dioscorea alata based on ISSR analysis].

    PubMed

    Wu, Zhigang; Leng, Chunhong; Tao, Zhengming; Wei, Yuhuang; Jiang, Chengxi

    2009-12-01

    This article assessed the genetic relationship and genetic diversity in Dioscorea alata. Twenty samples were examined to identify their original plants, and analyzed by ISSR markers. The results showed that 20 samples were classified into three different plants, such as D. alata, D. persimilis, and D. fordii. There was significant difference in genetic similarity coefficient between D. alata and D. persimi as well as D. fordii. There was distinct differences in D. alata, the genetic similarity coefficient was resulted from 0.672 9 to 0.990 7. With UPGMA clustering method, 16 samples of D. alata could be divided into 4 groups. After comparing samples with the phenotypic characteristics of original plants, it showed that the color and the number of tuber were the most important characteristics of judging the genetic relationship of D. alata. It is concluded that the genetic variation of Dioscorea spp is significant, especially the genetic diversity in D. alata were in a high level. This article supplied a molecular biologic support for distinguishing Dioscorea spp, and also provided basis for breeding of D. alata. PMID:20222414

  16. Genetic diversity of eleven European pig breeds

    Microsoft Academic Search

    Guillaume Laval; Nathalie Iannuccelli; Christian Legault; Denis Milan; Martien AM Groenen; Elisabetta Giuffra; Leif Andersson; Peter H Nissen; Claus B Jørgensen; Petra Beeckmann; Hermann Geldermann; Jean-Louis Foulley; Claude Chevalet; Louis Ollivier

    2000-01-01

    A set of eleven pig breeds originating from six European countries, and including a small sample of wild pigs, was chosen for this study of genetic diversity. Diversity was evaluated on the basis of 18 microsatellite markers typed over a total of 483 DNA samples collected. Average breed heterozygosity varied from 0.35 to 0.60. Genotypic frequencies generally agreed with Hardy-Weinberg

  17. A Brief Overview of Population Diversity Measures in Genetic Programming

    E-print Network

    Fernandez, Thomas

    A Brief Overview of Population Diversity Measures in Genetic Programming Nguyen Thi Hien1, Nguyen a diversity measurement and controls this quantitative metric to maintain genetically diverse populations in a population. In Genetic Programming (GP), population diversity has been long considered as an important

  18. Nephronophthisis: A Genetically Diverse Ciliopathy

    PubMed Central

    Simms, Roslyn J.; Hynes, Ann Marie; Eley, Lorraine; Sayer, John A.

    2011-01-01

    Nephronophthisis (NPHP) is an autosomal recessive cystic kidney disease and a leading genetic cause of established renal failure (ERF) in children and young adults. Early presenting symptoms in children with NPHP include polyuria, nocturia, or secondary enuresis, pointing to a urinary concentrating defect. Renal ultrasound typically shows normal kidney size with increased echogenicity and corticomedullary cysts. Importantly, NPHP is associated with extra renal manifestations in 10–15% of patients. The most frequent extrarenal association is retinal degeneration, leading to blindness. Increasingly, molecular genetic testing is being utilised to diagnose NPHP and avoid the need for a renal biopsy. In this paper, we discuss the latest understanding in the molecular and cellular pathogenesis of NPHP. We suggest an appropriate clinical management plan and screening programme for individuals with NPHP and their families. PMID:21660307

  19. Genetic Diversity in Pollen Abiotic Stress Tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic diversity in reproductive abiotic stress tolerance has been investigated by cotton breeders throughout the public and private sectors. The primary focus of these studies has been the evaluation of abiotic stress responses during the development of the flower prior to anthesis. Sterility in...

  20. Molecular phylogeny and genetic diversity of Lygus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inter- and intraspecific genetic diversity in North American Lygus was using nuclear and mitochondrial DNA. DNA sequences have been obtained from the mitochondrial cox1 and cox2 genes, the nuclear ITS1 spacer, and regions flanking microsatellites (MSFR). The Fargo lab sequenced a region overlapp...

  1. Genetic diversity in pollen abiotic stress tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic diversity in reproductive abiotic stress tolerance has been investigated by cotton breeders throughout the public and private sectors. The primary focus of these studies has been the evaluation of abiotic stress responses during the development of the flower prior to anthesis. Sterility in...

  2. Original article Genetic relationships in Spanish

    E-print Network

    Paris-Sud XI, Université de

    - phism - is maintained in populations by the equilibrium between mutation and genetic drift (Kimura, 1983Original article Genetic relationships in Spanish dog breeds. II. The analysis of biochemical, we studied the genetic differentiation within breeds. In some cases the genetic distances between

  3. Genetic diversity and geographical distribution of indigenous soybean-nodulating Bradyrhizobia in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The relationship of indigenous soybean-nodulating bradyrhizobial genetic diversity and geographical distribution in the United States of America (USA) were investigated using soil isolates from eight states (Michigan, Ohio, Kentucky, North Carolina, Alabama, Georgia, Florida and Louisiana) with thre...

  4. Genetic diversity of Brucella abortus isolates as determined by amplified fragment length polymorphism (AFLP) analysis

    E-print Network

    Bliss, Katherine Ann

    2013-02-22

    with the powerful Bionumerics software package to determine the genetic relationships between B. abortus field isolates, collected from infections in wild herds of elk and bison to achieve a better understanding of the molecular diversity and evolution of B. abortus...

  5. Genetic diversity of eleven European pig breeds

    PubMed Central

    Laval, Guillaume; Iannuccelli, Nathalie; Legault, Christian; Milan, Denis; Groenen, Martien AM; Giuffra, Elisabetta; Andersson, Leif; Nissen, Peter H; Jørgensen, Claus B; Beeckmann, Petra; Geldermann, Hermann; Foulley, Jean-Louis; Chevalet, Claude; Ollivier, Louis

    2000-01-01

    A set of eleven pig breeds originating from six European countries, and including a small sample of wild pigs, was chosen for this study of genetic diversity. Diversity was evaluated on the basis of 18 microsatellite markers typed over a total of 483 DNA samples collected. Average breed heterozygosity varied from 0.35 to 0.60. Genotypic frequencies generally agreed with Hardy-Weinberg expectations, apart from the German Landrace and Schwäbisch-Hällisches breeds, which showed significantly reduced heterozygosity. Breed differentiation was significant as shown by the high among-breed fixation index (overall FST = 0.27), and confirmed by the clustering based on the genetic distances between individuals, which grouped essentially all individuals in 11 clusters corresponding to the 11 breeds. The genetic distances between breeds were first used to construct phylogenetic trees. The trees indicated that a genetic drift model might explain the divergence of the two German breeds, but no reliable phylogeny could be inferred among the remaining breeds. The same distances were also used to measure the global diversity of the set of breeds considered, and to evaluate the marginal loss of diversity attached to each breed. In that respect, the French Basque breed appeared to be the most "unique" in the set considered. This study, which remains to be extended to a larger set of European breeds, indicates that using genetic distances between breeds of farm animals in a classical taxonomic approach may not give clear resolution, but points to their usefulness in a prospective evaluation of diversity. PMID:14736401

  6. Genetic diversity of Kenyan native oyster mushroom (Pleurotus).

    PubMed

    Otieno, Ojwang D; Onyango, Calvin; Onguso, Justus Mungare; Matasyoh, Lexa G; Wanjala, Bramwel W; Wamalwa, Mark; Harvey, Jagger J W

    2015-01-01

    Members of the genus Pleurotus, also commonly known as oyster mushroom, are well known for their socioeconomic and biotechnological potentials. Despite being one of the most important edible fungi, the scarce information about the genetic diversity of the species in natural populations has limited their sustainable utilization. A total of 71 isolates of Pleurotus species were collected from three natural populations: 25 isolates were obtained from Kakamega forest, 34 isolates from Arabuko Sokoke forest and 12 isolates from Mount Kenya forest. Amplified fragment length polymorphism (AFLP) was applied to thirteen isolates of locally grown Pleurotus species obtained from laboratory samples using five primer pair combinations. AFLP markers and internal transcribed spacer (ITS) sequences of the ribosomal DNA were used to estimate the genetic diversity and evaluate phylogenetic relationships, respectively, among and within populations. The five primer pair combinations generated 293 polymorphic loci across the 84 isolates. The mean genetic diversity among the populations was 0.25 with the population from Arabuko Sokoke having higher (0.27) diversity estimates compared to Mount Kenya population (0.24). Diversity between the isolates from the natural population (0.25) and commercial cultivars (0.24) did not differ significantly. However, diversity was greater within (89%; P > 0.001) populations than among populations. Homology search analysis against the GenBank database using 16 rDNA ITS sequences randomly selected from the two clades of AFLP dendrogram revealed three mushroom species: P. djamor, P. floridanus and P. sapidus; the three mushrooms form part of the diversity of Pleurotus species in Kenya. The broad diversity within the Kenyan Pleurotus species suggests the possibility of obtaining native strains suitable for commercial cultivation. PMID:25344263

  7. Genetic diversity increases population productivity in a sessile marine invertebrate.

    PubMed

    Aguirre, J David; Marshall, Dustin J

    2012-05-01

    Reductions in genetic diversity can have widespread ecological consequences: populations with higher genetic diversity are more stable, productive and resistant to disturbance or disease than populations with lower genetic diversity. These ecological effects of genetic diversity differ from the more familiar evolutionary consequences of depleting genetic diversity, because ecological effects manifest within a single generation. If common, genetic diversity effects have the potential to change the way we view and manage populations, but our understanding of these effects is far from complete, and the role of genetic diversity in sexually reproducing animals remains unclear. Here, we examined the effects of genetic diversity in a sexually reproducing marine invertebrate in the field. We manipulated the genetic diversity of experimental populations and then measured individual survival, growth, and fecundity, as well as the size of offspring produced by individuals in high and low genetic diversity populations. Overall, we found greater genetic diversity increased performance across all metrics, and that complementarity effects drove the increased productivity of our high-diversity populations. Our results show that differences in genetic diversity among populations can have pervasive effects on population productivity within remarkably short periods of time. PMID:22764499

  8. Genetic Diversity of US Sheep Breeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the genetic relationships between US sheep breeds is useful in developing conservation strategies and actions. A broad sampling of individual sheep from 28 breeds was performed. Breed types included: fine wool, meat types, long wool, hair, prolific, and fat tailed. Blood and semen samp...

  9. Attitudes about Genetics in Underserved, Culturally Diverse Populations

    Microsoft Academic Search

    Diana S. Catz; Nancy S. Green; Jonathan N. Tobin; Michele A. Lloyd-Puryear; Penny Kyler; Ann Umemoto; Jennifer Cernoch; Roxane Brown; Fredericka Wolman

    2005-01-01

    Objective: New medical discoveries regarding genetic susceptibility to common chronic diseases, and the decoding of the human genome have increased public attention to genetics. What information is understood and what attitudes exist towards genetics and genetic research have not been well examined in underserved, culturally diverse communities. Methods: To better understand attitudes and beliefs towards genetics and genetic testing in

  10. Allozyme diversity and phylogenetic relationships among diploid annual bromes (Bromus, Poaceae)

    Microsoft Academic Search

    Tatjana Oj; Vello Jaaska

    1998-01-01

    Phylogenetic relationships and genetic differentiation among eleven diploid annual brome species were evaluated by cladistic and phenetic analysis of the allozyme diversity of eight enzymes detected by PAGE. All species lacked heterozygous allozyme pheno- types, indicating prevalent autogamy and self-fertilization. Bromus japonicus Thunb. and B. squarrosus L. had the same allozymes, supporting their close genetic affinity. The placement of B.

  11. Concordance between genetic and species diversity in coral reef fishes across the Pacific Ocean biodiversity gradient.

    PubMed

    Messmer, Vanessa; Jones, Geoffrey P; Munday, Philip L; Planes, Serge

    2012-12-01

    The relationship between genetic diversity and species diversity provides insights into biogeography and historic patterns of evolution and is critical for developing contemporary strategies for biodiversity conservation. Although concordant large-scale clines in genetic and species diversity have been described for terrestrial organisms, whether these parameters co-vary in marine species remains largely unknown. We examined patterns of genetic diversity for 11 coral reef fish species sampled at three locations across the Pacific Ocean species diversity gradient (Australia: ?1600 species; New Caledonia: ?1400 species; French Polynesia: ?800 species). Combined genetic diversity for all 11 species paralleled the decline in species diversity from West to East, with French Polynesia exhibiting lowest total haplotype and nucleotide diversities. Haplotype diversity consistently declined toward French Polynesia in all and nucleotide diversity in the majority of species. The French Polynesian population of most species also exhibited significant genetic differentiation from populations in the West Pacific. A number of factors may have contributed to the general positive correlation between genetic and species diversity, including location and time of species origin, vicariance events, reduced gene flow with increasing isolation, and decreasing habitat area from West to East. However, isolation and habitat area, resulting in reduced population size, are likely to be the most influential. PMID:23206145

  12. The Contribution of Genetic Resources and Diversity to Wheat Production in the Punjab of Pakistan

    Microsoft Academic Search

    Melinda Smale; Jason Hartell; Paul W. Heisey; Ben Senauer

    1998-01-01

    Recent criticisms of the “green revolution” wheats concern the effects of their popularity on crop diversity and the consequences for productivity and conservation. We use a Just-Pope production function to test the relationship of genetic resource and diversity variables to mean and variance of wheat yields in the Punjab of Pakistan. In irrigated areas, greater area concentration among varieties is

  13. The LGBT advantage: Examining the relationship among sexual orientation diversity, diversity strategy, and performance

    Microsoft Academic Search

    George B. Cunningham

    2011-01-01

    The purpose of this study was to examine the relationships among sexual orientation diversity, diversity strategy, and organizational performance. Data were gathered from 780 senior-level athletic administrators in 239 organizations. Moderated regression analysis indicated that, while main effects were not observed, there was a significant sexual orientation diversity×proactive diversity strategy interaction. Organizations with high sexual orientation diversity and that followed

  14. Conserving plant genetic diversity for dependent animal communities

    Microsoft Academic Search

    Gina Marie Wimp; William P. Young; Scott A. Woolbright; Gregory D. Martinsen; Paul Keim; Thomas G. Whitham

    2004-01-01

    While population genetic diversity has broad application in species conservation, no studies have examined the community-level consequences of this diversity. We show that population genetic diversity (generated by interspecific hybridization) in a dominant riparian tree affects an arthropod community composed of 207 species. In an experimental garden, plant cross type structured the arthropod community of individual trees, and among stands

  15. Genetic diversity and species diversity of stream fishes covary across a land-use gradient

    Microsoft Academic Search

    Michael J. BlumMark; Mark J. Bagley; David M. Walters; Suzanne A. Jackson; F. Bernard Daniel; Deborah J. Chaloud; Brian S. Cade

    Genetic diversity and species diversity are expected to covary according to area and isolation, but may not always covary\\u000a with environmental heterogeneity. In this study, we examined how patterns of genetic and species diversity in stream fishes\\u000a correspond to local and regional environmental conditions. To do so, we compared population size, genetic diversity and divergence\\u000a in central stonerollers (Campostoma anomalum)

  16. Genetic diversity is overlooked in international conservation policy implementation

    E-print Network

    COMMENTARY Genetic diversity is overlooked in international conservation policy implementation 2010 Ó Springer Science+Business Media B.V. 2010 Abstract The importance of genetic variation for main. This realiza- tion has prompted agreements by world leaders to conserve genetic diversity

  17. Original article Genetic diversity of Pinus halepensis Mill. populations

    E-print Network

    Paris-Sud XI, Université de

    Original article Genetic diversity of Pinus halepensis Mill. populations detected by RAPD loci were calculated. Results showed higher within population genetic variation but also a GST = 13 / RAPD / allelic richness / genetic diversity Résumé ­ Diversité génétique des populations de Pinus

  18. Genetic diversity within a dominant plant outweighs plant species diversity in structuring an arthropod community.

    PubMed

    Crawford, Kerri M; Rudgers, Jennifer A

    2013-05-01

    Plant biodiversity is being lost at a rapid rate. This has spurred much interest in elucidating the consequences of this loss for higher trophic levels. Experimental tests have shown that both plant species diversity and genetic diversity within a plant species can influence arthropod community structure. However, the majority of these studies have been conducted in separate systems, so their relative importance is currently unresolved. Furthermore, potential interactions between the two levels of diversity, which likely occur in natural systems, have not been investigated. To clarify these issues, we conducted three experiments in a freshwater sand dune ecosystem. We (1) independently manipulated plant species diversity, (2) independently manipulated genetic diversity within the dominant plant species, Ammophila breviligulata, and (3) jointly manipulated genetic diversity within the dominant plant and species diversity. We found that genetic diversity within the dominant plant species, Ammophila breviligulata, more strongly influenced arthropod communities than plant species diversity, but this effect was dependent on the presence of other species. In species mixtures, A. breviligulata genetic diversity altered overall arthropod community composition, and arthropod richness and abundance peaked at the highest level of genetic diversity. Positive nonadditive effects of diversity were detected, suggesting that arthropods respond to emergent properties of diverse plant communities. However, in the independent manipulations where A. breviligulata was alone, effects of genetic diversity were weaker, with only arthropod richness responding. In contrast, plant species diversity only influenced arthropods when A. breviligulata was absent, and then only influenced herbivore abundance. In addition to showing that genetic diversity within a dominant plant species can have large effects on arthropod community composition, these results suggest that understanding how species diversity and genetic diversity interact to influence community structure may be critically important for predicting the consequences of biodiversity loss. PMID:23858643

  19. High genetic diversity is not essential for successful introduction

    PubMed Central

    Rollins, Lee A; Moles, Angela T; Lam, Serena; Buitenwerf, Robert; Buswell, Joanna M; Brandenburger, Claire R; Flores-Moreno, Habacuc; Nielsen, Knud B; Couchman, Ellen; Brown, Gordon S; Thomson, Fiona J; Hemmings, Frank; Frankham, Richard; Sherwin, William B

    2013-01-01

    Some introduced populations thrive and evolve despite the presumed loss of diversity at introduction. We aimed to quantify the amount of genetic diversity retained at introduction in species that have shown evidence of adaptation to their introduced environments. Samples were taken from native and introduced ranges of Arctotheca populifolia and Petrorhagia nanteuilii. Using microsatellite data, we identified the source for each introduction, estimated genetic diversity in native and introduced populations, and calculated the amount of diversity retained in introduced populations. These values were compared to those from a literature review of diversity in native, confamilial populations and to estimates of genetic diversity retained at introduction. Gene diversity in the native range of both species was significantly lower than for confamilials. We found that, on average, introduced populations showing evidence of adaptation to their new environments retained 81% of the genetic diversity from the native range. Introduced populations of P. nanteuilii had higher genetic diversity than found in the native source populations, whereas introduced populations of A. populifolia retained only 14% of its native diversity in one introduction and 1% in another. Our literature review has shown that most introductions demonstrating adaptive ability have lost diversity upon introduction. The two species studied here had exceptionally low native range genetic diversity. Further, the two introductions of A. populifolia represent the largest percentage loss of genetic diversity in a species showing evidence of substantial morphological change in the introduced range. While high genetic diversity may increase the likelihood of invasion success, the species examined here adapted to their new environments with very little neutral genetic diversity. This finding suggests that even introductions founded by small numbers of individuals have the potential to become invasive. PMID:24340190

  20. Relationship of Genetic Variation to Population Size in Wildlife

    Microsoft Academic Search

    Richard Frankham

    1996-01-01

    Genetic diversity is one of three levels of biological diversity requiring conservation. Genetic theory predicts that levels of genetic variation should increase with effective population size. Sould (19 76) compiled the first convincing evidence that levels of genetic variation in wildlife were related to population size, but this issue remains controversial. The hypothesis that genetic variation is related to population

  1. Population size and time since island isolation determine genetic diversity loss in insular frog populations.

    PubMed

    Wang, Supen; Zhu, Wei; Gao, Xu; Li, Xianping; Yan, Shaofei; Liu, Xuan; Yang, Ji; Gao, Zengxiang; Li, Yiming

    2014-02-01

    Understanding the factors that contribute to loss of genetic diversity in fragmented populations is crucial for conservation measurements. Land-bridge archipelagoes offer ideal model systems for identifying the long-term effects of these factors on genetic variations in wild populations. In this study, we used nine microsatellite markers to quantify genetic diversity and differentiation of 810 pond frogs (Pelophylax nigromaculatus) from 24 islands of the Zhoushan Archipelago and three sites on nearby mainland China and estimated the effects of the island area, population size, time since island isolation, distance to the mainland and distance to the nearest larger island on reduced genetic diversity of insular populations. The mainland populations displayed higher genetic diversity than insular populations. Genetic differentiations and no obvious gene flow were detected among the frog populations on the islands. Hierarchical partitioning analysis showed that only time since island isolation (square-root-transformed) and population size (log-transformed) significantly contributed to insular genetic diversity. These results suggest that decreased genetic diversity and genetic differentiations among insular populations may have been caused by random genetic drift following isolation by rising sea levels during the Holocene. The results provide strong evidence for a relationship between retained genetic diversity and population size and time since island isolation for pond frogs on the islands, consistent with the prediction of the neutral theory for finite populations. Our study highlights the importance of the size and estimated isolation time of populations in understanding the mechanisms of genetic diversity loss and differentiation in fragmented wild populations. PMID:24351057

  2. Highly structured genetic diversity of the Mycobacterium tuberculosis population in

    E-print Network

    Choisy, Marc

    Highly structured genetic diversity of the Mycobacterium tuberculosis population in Djibouti S, Djibouti Ville, Djibouti Abstract Djibouti is an East African country with a high tuberculosis incidence with pulmonary tuberculosis (TB) were included. Genetic characterization of Mycobacterium tuberculosis, using

  3. Hidden genetic diversity in the green alga Spirogyra (Zygnematophyceae, Streptophyta)

    PubMed Central

    2012-01-01

    Background The unbranched filamentous green alga Spirogyra (Streptophyta, Zygnemataceae) is easily recognizable based on its vegetative morphology, which shows one to several spiral chloroplasts. This simple structure falsely points to a low genetic diversity: Spirogyra is commonly excluded from phylogenetic analyses because the genus is known as a long-branch taxon caused by a high evolutionary rate. Results We focused on this genetic diversity and sequenced 130 Spirogyra small subunit nuclear ribosomal DNA (SSU rDNA) strands of different origin. The resulting SSU rDNA sequences were used for phylogenetic analyses using complex evolutionary models (posterior probability, maximum likelihood, neighbor joining, and maximum parsimony methods). The sequences were between 1672 and 1779 nucleotides long. Sequence comparisons revealed 53 individual clones, but our results still support monophyly of the genus. Our data set did not contain a single slow-evolving taxon that would have been placed on a shorter branch compared to the remaining sequences. Out of 130 accessions analyzed, 72 showed a secondary loss of the 1506 group I intron, which formed a long-branched group within the genus. The phylogenetic relationship to the genus Spirotaenia was not resolved satisfactorily. The genetic distance within the genus Spirogyra exceeded the distances measured within any other genus of the remaining Zygnemataceae included in this study. Conclusion Overall, we define eight distinct clades of Spirogyra, one of them including the genus Sirogonium. A large number of non-homoplasious synapomorphies (NHS; 114 NHS in total) was found for Spirogyra (41 NHS) and for each clade (totaling 73 NHS). This emphasizes the high genetic diversity of this genus and the distance to the remaining Zygnematophyceae. PMID:22655677

  4. Genetic diversity and population structure of American Red Angus cattle.

    PubMed

    Márquez, G C; Speidel, S E; Enns, R M; Garrick, D J

    2010-01-01

    The objective of this study was to characterize the population structure and genetic diversity of registered American Red Angus cattle. Inbreeding and average relationship coefficients, effective population size, effective number of founders, and effective number of herds supplying grandparents to the population were calculated from the recorded pedigree. Inbreeding in 1960 was 10.7% and decreased until 1974 at a rate of 0.2% per year, whereas in 1975 inbreeding was 3.2% and increased until 2005 at a rate of 0.02% per year. The numerator relationship coefficients of the 10 individual paternal grandsires (PGS; sires of sires), paternal granddams (PGD; dams of sires), maternal grandsires (MGS; sires of dams), and maternal granddams (MGD; dams of dams) that had the greatest number of registered grandprogeny, with all other registered animals, increased with their birth year from 1960 on. Average numerator relationships of these with all other PGS, PGD, MGS, MGD, bulls, and sires were greater for paternal (PGS, PGD) than maternal (MGS, MGD) pathways. The effective population size was 445, with 649 effective founders. The effective numbers of herds supplying PGS, PGD, MGS, and MGD were 435, 369, 453, and 459, respectively. Inbreeding is at a low level and the effective population size is large. The effective number of founders and effective number of herds supplying grandparents is small in relation to the total number of animals and herds, indicating the disproportionate influence of a few founders and herds on the genetics of the breed. The calculated parameters indicate satisfactory genetic diversity in American Red Angus cattle. PMID:19783699

  5. Old-Growth Platycladus orientalis as a Resource for Reproductive Capacity and Genetic Diversity

    PubMed Central

    Zhu, Lin; Lou, Anru

    2013-01-01

    Aims Platycladus orientalis (Cupressaceae) is an old-growth tree species which distributed in the imperial parks and ancient temples in Beijing, China. We aim to (1) examine the genetic diversity and reproductive traits of old-growth and young populations of P. orientalis to ascertain whether the older populations contain a higher genetic diversity, more private alleles and a higher reproductive output compared with younger populations; (2) determine the relationships between the age of the population and the genetic diversity and reproductive traits; and (3) determine whether the imperial parks and ancient temples played an important role in maintaining the reproductive capacity and genetic diversity of Platycladus orientalis. Methods Samples from seven young (younger than 100 yrs.) and nine old-growth (older than 300 yrs.) artificial populations were collected. For comparison, three young and two old-growth natural populations were also sampled. Nine microsatellite loci were used to analyze genetic diversity parameters. These parameters were calculated using FSTAT version 2.9.3 and GenAlex v 6.41. Important Findings The old-growth artificial populations of P. orientalis have significantly higher genetic diversity than younger artificial populations and similar levels to those in extant natural populations. The imperial parks and ancient temples, which have protected these old-growth trees for centuries, have played an important role in maintaining the genetic diversity and reproductive capacity of this tree species. PMID:23409190

  6. Does genetic diversity limit disease spread in natural host populations?

    PubMed Central

    King, K C; Lively, C M

    2012-01-01

    It is a commonly held view that genetically homogenous host populations are more vulnerable to infection than genetically diverse populations. The underlying idea, known as the ‘monoculture effect,' is well documented in agricultural studies. Low genetic diversity in the wild can result from bottlenecks (that is, founder effects), biparental inbreeding or self-fertilization, any of which might increase the risk of epidemics. Host genetic diversity could buffer populations against epidemics in nature, but it is not clear how much diversity is required to prevent disease spread. Recent theoretical and empirical studies, particularly in Daphnia populations, have helped to establish that genetic diversity can reduce parasite transmission. Here, we review the present theoretical work and empirical evidence, and we suggest a new focus on finding ‘diversity thresholds.' PMID:22713998

  7. The effect and relative importance of neutral genetic diversity for predicting parasitism varies across parasite taxa.

    PubMed

    Ruiz-López, María José; Monello, Ryan J; Gompper, Matthew E; Eggert, Lori S

    2012-01-01

    Understanding factors that determine heterogeneity in levels of parasitism across individuals is a major challenge in disease ecology. It is known that genetic makeup plays an important role in infection likelihood, but the mechanism remains unclear as does its relative importance when compared to other factors. We analyzed relationships between genetic diversity and macroparasites in outbred, free-ranging populations of raccoons (Procyon lotor). We measured heterozygosity at 14 microsatellite loci and modeled the effects of both multi-locus and single-locus heterozygosity on parasitism using an information theoretic approach and including non-genetic factors that are known to influence the likelihood of parasitism. The association of genetic diversity and parasitism, as well as the relative importance of genetic diversity, differed by parasitic group. Endoparasite species richness was better predicted by a model that included genetic diversity, with the more heterozygous hosts harboring fewer endoparasite species. Genetic diversity was also important in predicting abundance of replete ticks (Dermacentor variabilis). This association fit a curvilinear trend, with hosts that had either high or low levels of heterozygosity harboring fewer parasites than those with intermediate levels. In contrast, genetic diversity was not important in predicting abundance of non-replete ticks and lice (Trichodectes octomaculatus). No strong single-locus effects were observed for either endoparasites or replete ticks. Our results suggest that in outbred populations multi-locus diversity might be important for coping with parasitism. The differences in the relationships between heterozygosity and parasitism for the different parasites suggest that the role of genetic diversity varies with parasite-mediated selective pressures. PMID:23049796

  8. The Effect and Relative Importance of Neutral Genetic Diversity for Predicting Parasitism Varies across Parasite Taxa

    PubMed Central

    Ruiz-López, María José; Monello, Ryan J.; Gompper, Matthew E.; Eggert, Lori S.

    2012-01-01

    Understanding factors that determine heterogeneity in levels of parasitism across individuals is a major challenge in disease ecology. It is known that genetic makeup plays an important role in infection likelihood, but the mechanism remains unclear as does its relative importance when compared to other factors. We analyzed relationships between genetic diversity and macroparasites in outbred, free-ranging populations of raccoons (Procyon lotor). We measured heterozygosity at 14 microsatellite loci and modeled the effects of both multi-locus and single-locus heterozygosity on parasitism using an information theoretic approach and including non-genetic factors that are known to influence the likelihood of parasitism. The association of genetic diversity and parasitism, as well as the relative importance of genetic diversity, differed by parasitic group. Endoparasite species richness was better predicted by a model that included genetic diversity, with the more heterozygous hosts harboring fewer endoparasite species. Genetic diversity was also important in predicting abundance of replete ticks (Dermacentor variabilis). This association fit a curvilinear trend, with hosts that had either high or low levels of heterozygosity harboring fewer parasites than those with intermediate levels. In contrast, genetic diversity was not important in predicting abundance of non-replete ticks and lice (Trichodectes octomaculatus). No strong single-locus effects were observed for either endoparasites or replete ticks. Our results suggest that in outbred populations multi-locus diversity might be important for coping with parasitism. The differences in the relationships between heterozygosity and parasitism for the different parasites suggest that the role of genetic diversity varies with parasite-mediated selective pressures. PMID:23049796

  9. Genetic diversity of a newly established population of golden eagles on the Channel Islands, California

    USGS Publications Warehouse

    Sonsthagen, Sarah A.; Coonan, Timothy J.; Latta, Brian C.; Sage, George K.; Talbot, Sandra L.

    2012-01-01

    Gene flow can have profound effects on the genetic diversity of a founding population depending on the number and relationship among colonizers and the duration of the colonization event. Here we used data from nuclear microsatellite and mitochondrial DNA control region loci to assess genetic diversity in golden eagles of the recently colonized Channel Islands, California. Genetic diversity in the Channel Island population was low, similar to signatures observed for other recent colonizing island populations. Differences in levels of genetic diversity and structure observed between mainland California and the islands suggests that few individuals were involved in the initial founding event, and may have comprised a family group. The spatial genetic structure observed between Channel Island and mainland California golden eagle populations across marker types, and genetic signature of population decline observed for the Channel Island population, suggest a single or relatively quick colonization event. Polarity in gene flow estimates based on mtDNA confirm an initial colonization of the Channel Islands by mainland golden eagles, but estimates from microsatellite data suggest that golden eagles on the islands were dispersing more recently to the mainland, possibly after reaching the carrying capacity of the island system. These results illustrate the strength of founding events on the genetic diversity of a population, and confirm that changes to genetic diversity can occur within just a few generations.

  10. Genetic diversity is positively associated with fine-scale momentary abundance of an invasive ant

    PubMed Central

    Gruber, Monica A M; Hoffmann, Benjamin D; Ritchie, Peter A; Lester, Philip J

    2012-01-01

    Many introduced species become invasive despite genetic bottlenecks that should, in theory, decrease the chances of invasion success. By contrast, population genetic bottlenecks have been hypothesized to increase the invasion success of unicolonial ants by increasing the genetic similarity between descendent populations, thus promoting co-operation. We investigated these alternate hypotheses in the unicolonial yellow crazy ant, Anoplolepis gracilipes, which has invaded Arnhem Land in Australia's Northern Territory. We used momentary abundance as a surrogate measure of invasion success, and investigated the relationship between A. gracilipes genetic diversity and its abundance, and the effect of its abundance on species diversity and community structure. We also investigated whether selected habitat characteristics contributed to differences in A. gracilipes abundance, for which we found no evidence. Our results revealed a significant positive association between A. gracilipes genetic diversity and abundance. Invaded communities were less diverse and differed in structure from uninvaded communities, and these effects were stronger as A. gracilipes abundance increased. These results contradict the hypothesis that genetic bottlenecks may promote unicoloniality. However, our A. gracilipes study population has diverged since its introduction, which may have obscured evidence of the bottleneck that would likely have occurred on arrival. The relative importance of genetic diversity to invasion success may be context dependent, and the role of genetic diversity may be more obvious in the absence of highly favorable novel ecological conditions. PMID:23139870

  11. Genetic landscapes GIS Toolbox: tools to map patterns of genetic divergence and diversity.

    USGS Publications Warehouse

    Vandergast, Amy G.; Perry, William M.; Lugo, Roberto V.; Hathaway, Stacie A.

    2011-01-01

    The Landscape Genetics GIS Toolbox contains tools that run in the Geographic Information System software, ArcGIS, to map genetic landscapes and to summarize multiple genetic landscapes as average and variance surfaces. These tools can be used to visualize the distribution of genetic diversity across geographic space and to study associations between patterns of genetic diversity and geographic features or other geo-referenced environmental data sets. Together, these tools create genetic landscape surfaces directly from tables containing genetic distance or diversity data and sample location coordinates, greatly reducing the complexity of building and analyzing these raster surfaces in a Geographic Information System.

  12. Genetic diversity among and within cultured cyanobionts of diverse species of Azolla.

    PubMed

    Sood, A; Prasanna, R; Prasanna, B M; Singh, P K

    2008-01-01

    The cyanobionts isolated from 10 Azolla accessions belonging to 6 species (Azolla mexicana, A. microphylla, A. rubra, A. caroliniana, A. filiculoides, A. pinnata) were cultured under laboratory conditions and analyzed on the basis of whole cell protein profiles and molecular marker dataset generated using repeat sequence primers (STRR(mod) and HipTG). The biochemical and molecular marker profiles of the cyanobionts were compared with those of the free-living cyanobacteria and symbiotic Nostoc strains from Anthoceros sp., Cycas sp. and Gunnera monoika. Cluster analysis revealed the genetic diversity among the selected strains, and identified 3 distinct clusters. Group 1 included cyanobionts from all the 10 accessions of Azolla, group 2 comprised all the symbiotic Nostoc strains, while group 3 included the free-living cyanobacteria belonging to the genera Nostoc and Anabaena. The interrelationships among the Azolla cyanobionts were further revealed by principal component analysis. Cyanobionts from A. caroliniana-A. microphylla grouped together while cyanobionts associated with A. mexicana-A. filiculoides along with A. pinnata formed another group. A. rubra cyanobionts had intermediate relationship with both the subgroups. This is the first study analyzing the diversity existing among the cultured cyanobionts of diverse Azolla species through the use of biochemical and molecular profiles and also the genetic distinctness of these free-living cyanobionts as compared to cyanobacterial strains of the genera Anabaena and Nostoc. PMID:18481216

  13. Genetic diversity and disease control in rice.

    PubMed

    Zhu, Y; Chen, H; Fan, J; Wang, Y; Li, Y; Chen, J; Fan, J; Yang, S; Hu, L; Leung, H; Mew, T W; Teng, P S; Wang, Z; Mundt, C C

    2000-08-17

    Crop heterogeneity is a possible solution to the vulnerability of monocultured crops to disease. Both theory and observation indicate that genetic heterogeneity provides greater disease suppression when used over large areas, though experimental data are lacking. Here we report a unique cooperation among farmers, researchers and extension personnel in Yunnan Province, China--genetically diversified rice crops were planted in all the rice fields in five townships in 1998 and ten townships in 1999. Control plots of monocultured crops allowed us to calculate the effect of diversity on the severity of rice blast, the major disease of rice. Disease-susceptible rice varieties planted in mixtures with resistant varieties had 89% greater yield and blast was 94% less severe than when they were grown in monoculture. The experiment was so successful that fungicidal sprays were no longer applied by the end of the two-year programme. Our results support the view that intraspecific crop diversification provides an ecological approach to disease control that can be highly effective over a large area and contribute to the sustainability of crop production. PMID:10963595

  14. Respiratory Syncytial Virus Genetic and Antigenic Diversity

    PubMed Central

    Sullender, Wayne M.

    2000-01-01

    Respiratory syncytial virus (RSV) is a major cause of viral lower respiratory tract infections among infants and young children in both developing and developed countries. There are two major antigenic groups of RSV, A and B, and additional antigenic variability occurs within the groups. The most extensive antigenic and genetic diversity is found in the attachment glycoprotein, G. During individual epidemic periods, viruses of both antigenic groups may cocirculate or viruses of one group may predominate. When there are consecutive annual epidemics in which the same group predominates, the dominant viruses are genetically different from year to year. The antigenic differences that occur among these viruses may contribute to the ability of RSV to establish reinfections throughout life. The differences between the two groups have led to vaccine development strategies that should provide protection against both antigenic groups. The ability to discern intergroup and intragroup differences has increased the power of epidemiologic investigations of RSV. Future studies should expand our understanding of the molecular evolution of RSV and continue to contribute to the process of vaccine development. PMID:10627488

  15. Integrating common and rare genetic variation in diverse human populations

    E-print Network

    Keinan, Alon

    of human genetic variation remains limited with respect to variant type, frequency and population diversityARTICLES Integrating common and rare genetic variation in diverse human populations in global populations supports deeper interrogation of genomic variation and its role in human disease

  16. ORIGINAL PAPER Origin and genetic diversity of mosquitofish

    E-print Network

    García-Berthou, Emili

    Gambusia affinis Á Genetic diversity Á Mosquitofish Introduction Beyond their negative effects, invasive and Gambusia affinis (Baird and Girard, 1853), are only native to the United States and Mexico but have beenORIGINAL PAPER Origin and genetic diversity of mosquitofish (Gambusia holbrooki) introduced

  17. The genetic diversity of forest tree species in French Guiana

    Microsoft Academic Search

    Antoine Kremer

    In the early 1990s, INRA initiated a research project to describe and study the evolution of genetic diversity in the Guianan tropical forest. CIRAD joined the project shortly after it began. The basic objective of this project is to establish a general knowledge of the level and distribution of genetic diversity in tropical forests and its future dynamics. It is

  18. RESEARCH ARTICLE Spatially structured genetic diversity of the Amerindian

    E-print Network

    Gepts, Paul

    RESEARCH ARTICLE Spatially structured genetic diversity of the Amerindian yam (Dioscorea trifida L the economically most important cultivated Amerindian yam species, whose origin and domesti- cation are still diversity Á Genetic structure Á Molecular markers Á Traditional agriculture Á Yams Introduction The genus

  19. Genetic Diversity and Population Differentiation of Calanthe tsoongiana, a Rare and Endemic Orchid in China

    PubMed Central

    Qian, Xin; Wang, Cai-xia; Tian, Min

    2013-01-01

    Calanthe tsoongiana is a rare terrestrial orchid endemic to China, and this species has experienced severe habitat loss and fragmentation. Inter-simple sequence repeat (ISSR) markers were employed to assess the genetic diversity and differentiation of six populations of C. tsoongiana. Based on 124 discernible fragments yielded by eleven selected primers, high genetic diversity was revealed at the species level; however, genetic diversity at the population level was relatively low. High-level genetic differentiation among populations was detected based on analysis of molecular variance (AMOVA), indicating potential limited gene flow. No significant relationship was observed between genetic and geographic distances among the sampled populations. These results suggested that restricted gene flow might be due to habitat fragmentation and reduced population size as a result of human activities. Based on the findings, several conservation strategies were proposed for the preservation of this threatened species. PMID:24129175

  20. Genetic Diversity Enhances Restoration Success by Augmenting Ecosystem Services

    PubMed Central

    Reynolds, Laura K.; McGlathery, Karen J.; Waycott, Michelle

    2012-01-01

    Disturbance and habitat destruction due to human activities is a pervasive problem in near-shore marine ecosystems, and restoration is often used to mitigate losses. A common metric used to evaluate the success of restoration is the return of ecosystem services. Previous research has shown that biodiversity, including genetic diversity, is positively associated with the provision of ecosystem services. We conducted a restoration experiment using sources, techniques, and sites similar to actual large-scale seagrass restoration projects and demonstrated that a small increase in genetic diversity enhanced ecosystem services (invertebrate habitat, increased primary productivity, and nutrient retention). In our experiment, plots with elevated genetic diversity had plants that survived longer, increased in density more quickly, and provided more ecosystem services (invertebrate habitat, increased primary productivity, and nutrient retention). We used the number of alleles per locus as a measure of genetic diversity, which, unlike clonal diversity used in earlier research, can be applied to any organism. Additionally, unlike previous studies where positive impacts of diversity occurred only after a large disturbance, this study assessed the importance of diversity in response to potential environmental stresses (high temperature, low light) along a water–depth gradient. We found a positive impact of diversity along the entire depth gradient. Taken together, these results suggest that ecosystem restoration will significantly benefit from obtaining sources (transplants or seeds) with high genetic diversity and from restoration techniques that can maintain that genetic diversity. PMID:22761681

  1. Genetic diversity and differentiation of exotic and American commercial cattle breeds raised in Brazil.

    PubMed

    Brasil, B S A F; Coelho, E G A; Drummond, M G; Oliveira, D A A

    2013-01-01

    The Brazilian cattle population is mainly composed of breeds of zebuine origin and their American derivatives. Comprehensive knowledge about the genetic diversity of these populations is fundamental for animal breeding programs and the conservation of genetic resources. This study aimed to assess the phylogenetic relationships, levels of genetic diversity, and patterns of taurine/zebuine admixture among 9 commercial cattle breeds raised in Brazil. Analysis of DNA polymorphisms was performed on 2965 animals using the 11 microsatellite markers recommended by the International Society of Animal Genetics. High genetic diversity was detected in all breeds, even though significant inbreeding was observed within some. Differences among the breeds accounted for 14.72% of the total genetic variability, and genetic differentiation was higher among taurine than among zebuine cattle. Of note, Nelore cattle presented with high levels of admixture, which is consistent with the history of frequent gene flow during the establishment of this breed in Brazil. Furthermore, significant genetic variability was partitioned within the commercial cattle breeds formed in America, which, therefore, comprise important resources of genetic diversity in the tropics. The genetic characterization of these important Brazilian breeds may now facilitate the development of management and breeding programs for these populations. PMID:24301922

  2. Environmental factors influence both abundance and genetic diversity in a widespread bird species.

    PubMed

    Liu, Yang; Webber, Simone; Bowgen, Katharine; Schmaltz, Lucie; Bradley, Katharine; Halvarsson, Peter; Abdelgadir, Mohanad; Griesser, Michael

    2013-11-01

    Genetic diversity is one of the key evolutionary variables that correlate with population size, being of critical importance for population viability and the persistence of species. Genetic diversity can also have important ecological consequences within populations, and in turn, ecological factors may drive patterns of genetic diversity. However, the relationship between the genetic diversity of a population and how this interacts with ecological processes has so far only been investigated in a few studies. Here, we investigate the link between ecological factors, local population size, and allelic diversity, using a field study of a common bird species, the house sparrow (Passer domesticus). We studied sparrows outside the breeding season in a confined small valley dominated by dispersed farms and small-scale agriculture in southern France. Population surveys at 36 locations revealed that sparrows were more abundant in locations with high food availability. We then captured and genotyped 891 house sparrows at 10 microsatellite loci from a subset of these locations (N = 12). Population genetic analyses revealed weak genetic structure, where each locality represented a distinct substructure within the study area. We found that food availability was the main factor among others tested to influence the genetic structure between locations. These results suggest that ecological factors can have strong impacts on both population size per se and intrapopulation genetic variation even at a small scale. On a more general level, our data indicate that a patchy environment and low dispersal rate can result in fine-scale patterns of genetic diversity. Given the importance of genetic diversity for population viability, combining ecological and genetic data can help to identify factors limiting population size and determine the conservation potential of populations. PMID:24363897

  3. Environmental factors influence both abundance and genetic diversity in a widespread bird species

    PubMed Central

    Liu, Yang; Webber, Simone; Bowgen, Katharine; Schmaltz, Lucie; Bradley, Katharine; Halvarsson, Peter; Abdelgadir, Mohanad; Griesser, Michael

    2013-01-01

    Genetic diversity is one of the key evolutionary variables that correlate with population size, being of critical importance for population viability and the persistence of species. Genetic diversity can also have important ecological consequences within populations, and in turn, ecological factors may drive patterns of genetic diversity. However, the relationship between the genetic diversity of a population and how this interacts with ecological processes has so far only been investigated in a few studies. Here, we investigate the link between ecological factors, local population size, and allelic diversity, using a field study of a common bird species, the house sparrow (Passer domesticus). We studied sparrows outside the breeding season in a confined small valley dominated by dispersed farms and small-scale agriculture in southern France. Population surveys at 36 locations revealed that sparrows were more abundant in locations with high food availability. We then captured and genotyped 891 house sparrows at 10 microsatellite loci from a subset of these locations (N = 12). Population genetic analyses revealed weak genetic structure, where each locality represented a distinct substructure within the study area. We found that food availability was the main factor among others tested to influence the genetic structure between locations. These results suggest that ecological factors can have strong impacts on both population size per se and intrapopulation genetic variation even at a small scale. On a more general level, our data indicate that a patchy environment and low dispersal rate can result in fine-scale patterns of genetic diversity. Given the importance of genetic diversity for population viability, combining ecological and genetic data can help to identify factors limiting population size and determine the conservation potential of populations. PMID:24363897

  4. Reconsideration for conservation units of wild Primula sieboldii in Japan based on adaptive diversity and molecular genetic diversity.

    PubMed

    Yoshida, Yasuko; Honjo, Masanori; Kitamoto, Naoko; Ohsawa, Ryo

    2009-08-01

    Primula sieboldii E. Morren is a perennial clonal herb that is widely distributed in Japan, but in danger of extinction in the wild. In a previous study, we revealed the genetic diversity of the species using chloroplast and nuclear DNA and used this information to define conservation units. However, we lacked information on adaptive genetic diversity, which is important for long-term survival and, thus, for the definition of conservation units. In order to identify adaptive traits that showed adaptive differentiation among populations, we studied the genetic variation in six quantitative traits within and among populations for 3 years in a common garden using 110 genets from five natural populations from three regions of Japan. The number of days to bud initiation was adaptive quantitative trait for which the degree of genetic differentiation among populations (QST) was considerably larger than that in eight microsatellite markers (FST). The relationship between this trait and environmental factors revealed that the number of days to bud initiation was negatively correlated, with the mean temperature during the growing period at each habitat. This suggests that adaptive differentiation in the delay before bud initiation was caused by selective pressure resulting from temperature differences among habitats. Our results suggest that based on adaptive diversity and neutral genetic diversity, the Saitama population represents a new conservation unit. PMID:19640318

  5. Centennial olive trees as a reservoir of genetic diversity

    PubMed Central

    Díez, Concepción M.; Trujillo, Isabel; Barrio, Eladio; Belaj, Angjelina; Barranco, Diego; Rallo, Luis

    2011-01-01

    Background and Aims Genetic characterization and phylogenetic analysis of the oldest trees could be a powerful tool both for germplasm collection and for understanding the earliest origins of clonally propagated fruit crops. The olive tree (Olea europaea L.) is a suitable model to study the origin of cultivars due to its long lifespan, resulting in the existence of both centennial and millennial trees across the Mediterranean Basin. Methods The genetic identity and diversity as well as the phylogenetic relationships among the oldest wild and cultivated olives of southern Spain were evaluated by analysing simple sequence repeat markers. Samples from both the canopy and the roots of each tree were analysed to distinguish which trees were self-rooted and which were grafted. The ancient olives were also put into chronological order to infer the antiquity of traditional olive cultivars. Key Results Only 9·6 % out of 104 a priori cultivated ancient genotypes matched current olive cultivars. The percentage of unidentified genotypes was higher among the oldest olives, which could be because they belong to ancient unknown cultivars or because of possible intra-cultivar variability. Comparing the observed patterns of genetic variation made it possible to distinguish which trees were grafted onto putative wild olives. Conclusions This study of ancient olives has been fruitful both for germplasm collection and for enlarging our knowledge about olive domestication. The findings suggest that grafting pre-existing wild olives with olive cultivars was linked to the beginnings of olive growing. Additionally, the low number of genotypes identified in current cultivars points out that the ancient olives from southern Spain constitute a priceless reservoir of genetic diversity. PMID:21852276

  6. Comparative riverscape genetics reveals reservoirs of genetic diversity for conservation and restoration of Great Plains fishes.

    PubMed

    Osborne, Megan J; Perkin, Joshuah S; Gido, Keith B; Turner, Thomas F

    2014-12-01

    We used comparative landscape genetics to examine the relative roles of historical events, intrinsic traits and landscape factors in determining the distribution of genetic diversity of river fishes across the North American Great Plains. Spatial patterns of diversity were overlaid on a patch-based graphical model and then compared within and among three species that co-occurred across five Great Plains watersheds. Species differing in reproductive strategy (benthic vs. pelagic-spawning) were hypothesized to have different patterns of genetic diversity, but the overriding factor shaping contemporary patterns of diversity was the signature of past climates and geological history. Allelic diversity was significantly higher at southern latitudes for Cyprinella lutrensis and Hybognathus placitus, consistent with northward expansion from southern Pleistocene refugia. Within the historical context, all species exhibited lowered occupancy and abundance in heavily fragmented and drier upstream reaches, particularly H. placitus; a pelagic-spawning species, suggesting rates of extirpation have outpaced losses of genetic diversity in this species. Within most tributary basins, genetically diverse populations of each species persisted. Hence, reconnecting genetically diverse populations with those characterized by reduced diversity (regardless of their position within the riverine network) would provide populations with greater genetic and demographic resilience. We discuss cases where cross-basin transfer may be appropriate to enhance genetic diversity and mitigate negative effects of climate change. Overall, striking similarities in genetic patterns and in response to fragmentation and dewatering suggest a common strategy for genetic resource management in this unique riverine fish assemblage. PMID:25327780

  7. Support from the relationship of genetic and geographic distance in human populations for

    E-print Network

    Rosenberg, Noah

    distance at the global level using 783 microsatellite loci from the Human Genome Diversity Project­Centre d of 1,027 individuals from the HGDP-CEPH Human Genome Diversity Cell Line Panel (10). SeveralSupport from the relationship of genetic and geographic distance in human populations for a serial

  8. Genetic diversity among Angus, American Brahman, Senepol and Romosinuano cattle breeds.

    PubMed

    Brenneman, R A; Chase, C C; Olson, T A; Riley, D G; Coleman, S W

    2007-02-01

    The objective of this study was to quantify the genetic diversity among breeds under evaluation for tropical adaptability traits that affect the performance of beef cattle at the USDA/ARS SubTropical Agricultural Research Station (STARS) near Brooksville, FL, USA. Twenty-six microsatellite loci were used to estimate parameters of genetic diversity among the breeds American Brahman, Angus, Senepol and Romosinuano; the latter was comprised of two distinct bloodlines (Costa Rican and Venezuelan). Genotypes of 47 animals from each of these STARS herds were analysed for genetic diversity and genetic distance. Using two methods, the greatest genetic distance was detected between the Costa Rican line of Romosinuano and the Senepol. Gene diversity ranged between 0.64 (Costa Rican line of Romosinuano) and 0.75 (American Brahman). The breed relationship inferences, which are based on genetic distance, provide additional tools for consideration in future crossbreeding studies and for testing the relationship between quantified breed diversity and observed heterosis. PMID:17257188

  9. Genetic diversity in Monilinia laxa populations in stone fruit species in Hungary.

    PubMed

    Fazekas, Mónika; Madar, Anett; Sipiczki, Matthias; Miklós, Ida; Holb, Imre J

    2014-06-01

    The objectives of this study were firstly, to determine the genetic diversity of Monilinia laxa isolates from Hungary, using the PCR-based inter-simple sequence repeat (ISSR) and randomly amplified polymorphic DNA (RAPD) technique; secondly, to prepare genetic diversity groups based on the dendrograms; and finally, to select some relevant isolates to study their fungicide sensitivity. 55 and 77 random amplified polymorphic ISSR and RAPD markers, of which 23 and 18 were polymorphic and 32 and 59 monomorphic, respectively, were used to assess the genetic diversity and to study the structure of M. laxa populations in Hungary. 27 isolates out of 57 ones were confirmed as M. laxa from several orchards (subpopulations) in three geographical regions, in various inoculum sources and in various hosts, were used. 10 fungicides and 12 isolates selected from genetic diversity groups based on the ISSR dendrograms were used to determine the fungicide sensitivity of the selected isolates. The analysis of population structure revealed that genetic diversity within locations, inoculum sources and host (H(S)) accounted for 99 % of the total genetic diversity (H(T)), while genetic diversity among locations, inoculum sources and host represented only 1 %. The relative magnitude of gene differentiation between subpopulations (G(ST)) and the estimate of the number of migrants per generation (Nm) averaged 0.005-0.009 and 53.9-99.2, respectively, for both ISSR and RAPD data set. The results obtained in dendrograms were in accordance with the gene diversity analysis. Grouping of isolates in the dendrograms was irrespective of whether they came from the same or different geographical locations. There was no relationship between clustering among isolates from inoculum sources and hosts. In the fungicide sensitivity tests, five isolates out of 12 were partly insensitive to boscalid+piraclostrobin, cyprodinil, fenhexamid or prochloraz. Obtained results in genetic diversity of M. laxa populations are discussed together with implications for the management of brown rot. PMID:24474390

  10. Genetic diversity of Broussonetia papyrifera populations in southwest China.

    PubMed

    Liao, S X; Deng, Z H; Cui, K; Cui, Y Z; Zhang, C H

    2014-01-01

    Broussonetia papyrifera is an important native tree species with high economic value in southwest China. Its resources are drastically reduced because of over-harvesting and habitat fragmentation. In this study, 17 natural populations of B. papyrifera were analyzed using inter-simple sequence repeat (ISSR) markers to assess the genetic diversity and population structure. In total, 100 bands were obtained from 16 ISSR primers. The B. papyrifera populations showed relatively high genetic diversity at the species level [percentage of polymorphic bands (PPB): 96%; Nei's genetic diversity (HE): 0.3074; Shannon's information index (I): 0.4617], while the genetic diversity at the population level was relatively low (PPB: 53.2%; HE: 0.1826; I: 0.2735). Relatively high level of genetic differentiation among populations (41%) was disclosed by analysis of molecular variance, which agrees with the Nei's genetic diversity statistics (40.59%) and Shannon's information measure (40.76%). Gene flow among populations (NM) was only 0.7318. A significant correlation was observed between genetic and geographic distance among the studied populations (r=0.2948). We conjectured that the genetic diversity of B. papyrifera resulted from human disturbance, habitat fragmentation, small effective population size, and geographic barrier. Given the high genetic differentiation among populations, some utilization and conservation strategies were proposed. This study provides a reference for the sustainable use of the species in southwest China. PMID:25222255

  11. Multiple paternity does not depend on male genetic diversity

    PubMed Central

    Thonhauser, Kerstin E.; Raveh, Shirley; Penn, Dustin J.

    2014-01-01

    Polyandry is common in many species and it has been suggested that females engage in multiple mating to increase the genetic diversity of their offspring (genetic diversity hypothesis). Multiple paternity occurs in 30% of litters in wild populations of house mice, Mus musculus musculus, and multiple-sired litters are genetically more diverse than single-sired ones. Here, we aimed to test whether female house mice produce multiple-sired litters when they have the opportunity to produce genetically diverse litters. We assessed the rates of multiple paternity when females could choose to mate with two males that were genetically dissimilar to each other (i.e. nonsiblings and MHC dissimilar) compared with when females could choose to mate with two males that were genetically similar to each other (i.e. siblings and shared MHC alleles). Multiple mating may depend upon a female's own condition, and, therefore, we also tested whether inbred (from full-sibling matings) females were more likely to produce multiple-sired progeny than outbred controls. Overall we found that 29% of litters had multiple sires, but we found no evidence that females were more likely to produce multiple-sired litters when they had the opportunity to mate with genetically dissimilar males compared with controls, regardless of whether females were inbred or outbred. Thus, our findings do not support the idea that female mice increase multiple paternity when they have the opportunity to increase the genetic diversity of their offspring, as expected from the genetic diversity hypothesis. PMID:25018559

  12. Estimation of genetic diversity using SSR markers in sunflower.

    PubMed

    Zia, Z U; Sadaqat, H A; Tahir, M H N; Sadia, B; Bushman, B S; Hole, D; Michaels, L; Malik, W

    2014-05-01

    Microsatellites or simple sequence repeats (SSRs) were used for the estimation of genetic diversity among a group of 40 sunflower lines developed at the research area of Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad. Total numbers of alleles amplified by 22 polymorphic primers were 135 with an average of 6.13 alleles per locus, suggesting that SSR is a powerful technique for assessment of genetic diversity at molecular level. The expected heterozygosity (PIC) ranged from 0.17 to 0.89. The highest PIC value was observed at the locus C1779. The genetic distances ranged from 9 to 37%. The highest genetic distance was observed between the lines L50 and V3. Genetic distances were low showing lesser amount of genetic diversity among the sunflower lines. PMID:25715473

  13. Genetic diversity and population structure of cucumber (Cucumis sativus L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding genetic variation in germplasm collection is essential for the conservation and their efficient use in plant breeding. Cucumber is an important vegetable crop worldwide. Previous studies revealed a low genetic diversity in cucumber, but detailed insights into the crop’s genetic structu...

  14. Genetic diversity of human RNase 8

    PubMed Central

    2012-01-01

    Background Ribonuclease 8 is a member of the RNase A family of secretory ribonucleases; orthologs of this gene have been found only in primate genomes. RNase 8 is a divergent paralog of RNase 7, which is lysine-enriched, highly conserved, has prominent antimicrobial activity, and is expressed in both normal and diseased skin; in contrast, the physiologic function of RNase 8 remains uncertain. Here, we examine the genetic diversity of human RNase 8, a subject of significant interest given the existence of functional pseudogenes (coding sequences that are otherwise intact but with mutations in elements crucial for ribonucleolytic activity) in non-human primate genomes. Results RNase 8 expression was detected in adult human lung, spleen and testis tissue by quantitative reverse-transcription PCR. Only two single-nucleotide polymorphisms and four unique alleles were identified within the RNase 8 coding sequence; nucleotide sequence diversity (? = 0.00122 ± 0.00009 per site) was unremarkable for a human nuclear gene. We isolated transcripts encoding RNase 8 via rapid amplification of cDNA ends (RACE) and RT-PCR which included a distal potential translational start site followed by sequence encoding an additional 30 amino acids that are conserved in the genomes of several higher primates. The distal translational start site is functional and promotes RNase 8 synthesis in transfected COS-7 cells. Conclusions These results suggest that RNase 8 may diverge considerably from typical RNase A family ribonucleases and may likewise exhibit unique function. This finding prompts a reconsideration of what we have previously termed functional pseudogenes, as RNase 8 may be responding to constraints that promote significant functional divergence from the canonical structure and enzymatic activity characteristic of the RNase A family. PMID:22272736

  15. The Genetic Relationship between Indentical Twins.

    ERIC Educational Resources Information Center

    Herman, Rosemary

    1984-01-01

    Reviews current research on a woman's chances of bearing twins and the genetic relationship, prenatal competition, and personality similarities between twins. In addition, the nature/nurture controversy is discussed in terms of evidence from studies of identical twins reared apart. Future studies are suggested to discover the ways twinning might…

  16. Relationship between vegetation diversity and soil functional diversity in native mixed-oak forests

    Microsoft Academic Search

    Gloria Rodríguez-Loinaz; Miren Onaindia; Ibone Amezaga; Iker Mijangos; Carlos Garbisu

    2008-01-01

    Most studies on the interactions between aboveground vegetation and belowground soil diversity have been carried out in microcosms or manipulated field plots. In the current study, we investigated the relationship between forest vegetation diversity and soil functional diversity (calculated from the activity of soil enzymes) in naturally developed plant communities of native mixed-oak forests without imposing any disturbances to already

  17. Examining the Relationships among Coaching Staff Diversity, Perceptions of Diversity, Value Congruence, and Life Satisfaction

    ERIC Educational Resources Information Center

    Cunningham, George B.

    2009-01-01

    The purpose of this study was to examine relationships among coaching staff diversity, perceptions of diversity, value congruence, and life satisfaction. Data were collected from 71 coaching staffs (N = 196 coaches). Observed path analysis was used to examine the study predictions. Results indicate that actual staff diversity was positively…

  18. Flooding stress: acclimations and genetic diversity.

    PubMed

    Bailey-Serres, J; Voesenek, L A C J

    2008-01-01

    Flooding is an environmental stress for many natural and man-made ecosystems worldwide. Genetic diversity in the plant response to flooding includes alterations in architecture, metabolism, and elongation growth associated with a low O(2) escape strategy and an antithetical quiescence scheme that allows endurance of prolonged submergence. Flooding is frequently accompanied with a reduction of cellular O(2) content that is particularly severe when photosynthesis is limited or absent. This necessitates the production of ATP and regeneration of NAD(+) through anaerobic respiration. The examination of gene regulation and function in model systems provides insight into low-O(2)-sensing mechanisms and metabolic adjustments associated with controlled use of carbohydrate and ATP. At the developmental level, plants can escape the low-O(2) stress caused by flooding through multifaceted alterations in cellular and organ structure that promote access to and diffusion of O(2). These processes are driven by phytohormones, including ethylene, gibberellin, and abscisic acid. This exploration of natural variation in strategies that improve O(2) and carbohydrate status during flooding provides valuable resources for the improvement of crop endurance of an environmental adversity that is enhanced by global warming. PMID:18444902

  19. Genetic diversity assessment of summer squash landraces using molecular markers.

    PubMed

    Mady, Emad A; Helaly, Alaa Al-Din; Abu El-Hamd, Abdel Naem; Abdou, Arafa; Shanan, Shamel A; Craker, Lyle E

    2013-07-01

    Plant identification, classification, and genotyping within a germplasm collection are essential elements for establishing a breeding program that enhances the probability of plants with desirable characteristics in the market place. In this study, random amplified polymorphic DNA (RAPD) was used as a molecular tool to assess the diversity and relationship among 20 summer squash (Curcubita pepo L.) landraces traditionally used to treat hypertension and prostate hyperplasia. A total of 10 RAPD primers produced 65 reproducible bands of which 46 (70.77 %) were polymorphic, indicating a large number of genotypes within the summer squash lines. Cluster analysis divided the summer squash germplasm into two groups, one including one landrace and a second containing 19 landraces that could be divided into five sub-groups. Results of this study indicate the potential of RAPD markers for the identification and assessment of genetic variations among squash landraces and provide a number of choices for developing a successful breeding program to improve summer squash. PMID:23666102

  20. Genetic diversity and differentiation of Juniperus thurifera in Spain and Morocco as determined by SSR.

    PubMed

    Teixeira, Helena; Rodríguez-Echeverría, Susana; Nabais, Cristina

    2014-01-01

    Juniperus thurifera L. is an important tree endemic to the western Mediterranean basin that it is able to grow in semi-arid climates. It nowadays exhibits a disjunct distribution pattern, occurring in North Africa, Spain, France and the Italian Alps. The Strait of Gibraltar has acted as an efficient barrier against gene flow between African and European populations, which are considered different subspecies by some authors. We aimed at describing the intraspecific genetic diversity of J. thurifera in populations from the Iberian Peninsula and Morocco and the phylogeographical relationships among these populations. The ploidy level of J. thurifera was examined and eleven nuclear microsatellites (nSSRs) developed for J. thurifera were assessed for genotyping this species. Six nSSRs were polymorphic and subsequently used to assess the genetic diversity and structure of the studied populations. Genotyping of the tetraploid J. thurifera using nuclear microsatellites supports the separation of Moroccan and Spanish populations into two genetically differentiated groups that correspond to the proposed subspecies africana and thurifera. High values of within population genetic diversity were found, that accounted for 90% of the total genetic variance, while population structure was weak. The estimators of genetic diversity were higher in populations of Spain than in populations of Morocco pointing for a possible loss of genetic diversity during the spread of this species to Africa from Europe. PMID:24533164

  1. Genetic structure and diversity of animal populations exposed to metal pollution.

    PubMed

    Mussali-Galante, Patricia; Tovar-Sánchez, Efraín; Valverde, Mahara; Rojas, Emilio

    2014-01-01

    Studying the genetic diversity of wild populations that are affected by pollution provides a basis for estimating the risks of environmental contamination to both wildlife, and indirectly to humans. Such research strives to produce both a better understanding of the underlying mechanisms by which genetic diversity is affected,and the long-term effects of the pollutants involved.In this review, we summarize key aspects of the field of genetic ecotoxicology that encompasses using genetic patterns to examine metal pollutants as environmental stressors of natural animal populations. We address genetic changes that result from xenobiotic exposure versus genetic alterations that result from natural ecological processes. We also describe the relationship between metal exposure and changes in the genetic diversity of chronically exposed populations, and how the affected populations respond to environmental stress. Further, we assess the genetic diversity of animal populations that were exposed to metals, focusing on the literature that has been published since the year 2000.Our review disclosed that the most common metals found in aquatic and terrestrial ecosystems were Cd, Zn, Cu and Pb; however, differences in the occurrence between aquatic (Cd=Zn>Cu>Pb>Hg) and terrestrial (Cu>Cd>Pb>Zn>Ni)environments were observed. Several molecular markers were used to assess genetic diversity in impacted populations, the order of the most common ones of which were SSR's > allozyme > RAPD's > mtDNA sequencing> other molecular markers.Genetic diversity was reduced for nearly all animal populations that were exposed to a single metal, or a mixture of metals in aquatic ecosystems (except in Hyalella azteca, Littorina littorea, Salmo trutta, and Gobio gobio); however, the pattern was less clear when terrestrial ecosystems were analyzed.We propose that future research in the topic area of this paper emphasizes seven key areas of activity that pertain to the methodological design of genetic ecotoxicological studies. Collectively, these points are designed to provide more accurate data and a deeper understanding of the relationship between alterations in genetic diversity of impacted populations and metal exposures. In particular, we believe that the exact nature of all tested chemical pollutants be clearly described, biomarkers be included, sentinel organisms be used, testing be performed at multiple experimental sites, reference populations be sampled in close geographical proximity to where pollution occurs, and genetic structure parameters and high-throughput technology be more actively employed. Furthermore, we propose a new class of biomarkers,termed "biomarkers of permanent effect," which may include measures of genetic variability in impacted populations. PMID:24158580

  2. Low Genetic Differentiation of and Close Evolutionary Relationships between Anas platyrhynchos and Anas poecilorhyncha : RAPD–PCR Evidence

    Microsoft Academic Search

    I. V. Kulikova; G. N. Chelomina; Yu. N. Zhuravlev

    2003-01-01

    Using RAPD–PCR, we examined genetic diversity and phylogenetic relationships in two groups of river ducks: Anas platyrhynchos, A. poecilorhyncha, A. streperaand A. crecca, A. formosa, A. querquedula. Molecular taxon-specific markers were found for teals (A. crecca, A. formosa, A. querquedula) and gadwall (A. strepera). Each of the species examined was shown to exhibit high genetic diversity. The mean levels of

  3. Genetic diversity of mango cultivars estimated using Start Codon Targeted (SCoT) markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diversity and genetic relationships among 23 mango germplasm accessions, collected from different locations in Guangxi province in China, were analyzed by using a novel and simple gene targeted DNA marker: Start Codon Targeted (SCoT) markers. This technique uses a single, 18-mer primer PCR amplifica...

  4. Surviving with low genetic diversity: the case of albatrosses

    PubMed Central

    Milot, Emmanuel; Weimerskirch, Henri; Duchesne, Pierre; Bernatchez, Louis

    2007-01-01

    Low genetic diversity is predicted to negatively impact species viability and has been a central concern for conservation. In contrast, the possibility that some species may thrive in spite of a relatively poor diversity has received little attention. The wandering and Amsterdam albatrosses (Diomedea exulans and Diomedea amsterdamensis) are long-lived seabirds standing at an extreme along the gradient of life strategies, having traits that may favour inbreeding and low genetic diversity. Divergence time of the two species is estimated at 0.84?Myr ago from cytochrome b data. We tested the hypothesis that both albatrosses inherited poor genetic diversity from their common ancestor. Within the wandering albatross, per cent polymorphic loci and expected heterozygosity at amplified fragment length polymorphisms were approximately one-third of the minimal values reported in other vertebrates. Genetic diversity in the Amsterdam albatross, which is recovering from a severe bottleneck, was about twice as low as in the wandering albatross. Simulations supported the hypothesis that genetic diversity in albatrosses was already depleted prior to their divergence. Given the generally high breeding success of these species, it is likely that they are not suffering much from their impoverished diversity. Whether albatrosses are unique in this regard is unknown, but they appear to challenge the classical view about the negative consequences of genetic depletion on species survival. PMID:17251114

  5. Genetic diversity and its consequences for light adaptation in Prochlorococcus

    E-print Network

    Kettler, Gregory C. (Gregory Carl)

    2011-01-01

    When different cells thrive across diverse environments, their genetic differences can reveal what genes are essential to survival in a particular environment. Prochlorococcus, a cyanobacterium that dominates the open ...

  6. Pathogenesis and genetic diversity of rodent Torque teno virus 

    E-print Network

    Nishiyama, Shoko

    2013-11-29

    Torque teno virus (TTV) is a single stranded circular DNA virus and, despite its widespread nature in the human population, its pathogenesis is still unknown. Factors complicating TTV research include its huge genetic diversity, difficulties...

  7. Assessment of genetic diversity in seed plants based on a uniform ? criterion.

    PubMed

    Ai, Bin; Kang, Ming; Huang, Hongwen

    2014-01-01

    Despite substantial advances in genotyping techniques and massively accumulated data over the past half century, a uniform measurement of neutral genetic diversity derived by different molecular markers across a wide taxonomical range has not yet been formulated. We collected genetic diversity data on seed plants derived by AFLP, allozyme, ISSR, RAPD, SSR and nucleotide sequences, converted expected heterozygosity (He) to nucleotide diversity (?), and reassessed the relationship between plant genetic diversity and life history traits or extinction risk. We successfully established a uniform ? criterion and developed a comprehensive plant genetic diversity database. The mean population-level and species-level ? values across seed plants were 0.00374 (966 taxa, 155 families, 47 orders) and 0.00569 (728 taxa, 130 families, 46 orders), respectively. Significant differences were recovered for breeding system (p < 0.001) at the population level and geographic range (p = 0.023) at the species level. Selfing taxa had significantly lower ? values than outcrossing and mixed-mating taxa, whereas narrowly distributed taxa had significantly lower ? values than widely distributed taxa. Despite significant differences between the two extreme threat categories (critically endangered and least concern), the genetic diversity reduction on the way to extinction was difficult to detect in early stages. PMID:25470277

  8. The Role of Propagule Pressure, Genetic Diversity and Microsite Availability for Senecio vernalis Invasion

    PubMed Central

    Erfmeier, Alexandra; Hantsch, Lydia; Bruelheide, Helge

    2013-01-01

    Genetic diversity is supposed to support the colonization success of expanding species, in particular in situations where microsite availability is constrained. Addressing the role of genetic diversity in plant invasion experimentally requires its manipulation independent of propagule pressure. To assess the relative importance of these components for the invasion of Senecio vernalis, we created propagule mixtures of four levels of genotype diversity by combining seeds across remote populations, across proximate populations, within single populations and within seed families. In a first container experiment with constant Festuca rupicola density as matrix, genotype diversity was crossed with three levels of seed density. In a second experiment, we tested for effects of establishment limitation and genotype diversity by manipulating Festuca densities. Increasing genetic diversity had no effects on abundance and biomass of S. vernalis but positively affected the proportion of large individuals to small individuals. Mixtures composed from proximate populations had a significantly higher proportion of large individuals than mixtures composed from within seed families only. High propagule pressure increased emergence and establishment of S. vernalis but had no effect on individual growth performance. Establishment was favoured in containers with Festuca, but performance of surviving seedlings was higher in open soil treatments. For S. vernalis invasion, we found a shift in driving factors from density dependence to effects of genetic diversity across life stages. While initial abundance was mostly linked to the amount of seed input, genetic diversity, in contrast, affected later stages of colonization probably via sampling effects and seemed to contribute to filtering the genotypes that finally grew up. In consequence, when disentangling the mechanistic relationships of genetic diversity, seed density and microsite limitation in colonization of invasive plants, a clear differentiation between initial emergence and subsequent survival to juvenile and adult stages is required. PMID:23437301

  9. Stress-related hormones and genetic diversity in sea otters (Enhydra lutris)

    USGS Publications Warehouse

    Larson, S.; Monson, D.; Ballachey, B.; Jameson, R.; Wasser, S.K.

    2009-01-01

    Sea otters (Enhydra lutris) once ranged throughout the coastal regions of the north Pacific, but were extirpated throughout their range during the fur trade of the 18th and 19th centuries, leaving only small, widely scattered, remnant populations. All extant sea otter populations are believed to have experienced a population bottleneck and thus have lost genetic variation. Populations that undergo severe population reduction and associated inbreeding may suffer from a general reduction in fitness termed inbreeding depression. Inbreeding depression may result in decreased testosterone levels in males, and reduced ability to respond to stressful stimuli associated with an increase in the stress-related adrenal glucocorticoid hormones, cortisol and corticosterone. We investigated correlations of testosterone, cortisol, and corticosterone with genetic diversity in sea otters from five populations. We found a significant negative correlation between genetic diversity and both mean population-level (r2 = 0.27, P < 0.001) and individual-level (r2 = 0.54, P < 0.001) corticosterone values, as well as a negative correlation between genetic diversity and cortisol at the individual level (r2 = 0.17, P = 0.04). No relationship was found between genetic diversity and testosterone (P = 0.57). The strength of the correlations, especially with corticosterone, suggests potential negative consequences for overall population health, particularly for populations with the lowest genetic diversity. ?? 2009 by the Society for Marine Mammalogy.

  10. Genetic Resources and the Convention on Biological Diversity

    NSDL National Science Digital Library

    RICHARD BLAUSTEIN (; )

    2006-07-01

    This peer-reviewed article from BioScience is about effect the convention on biological diversity had on US genetic resources. At a meeting in Brazil in March, the Convention on Biological Diversity moved a step closer to finalizing an international regulatory regime for access to and benefit sharing of genetic resources. Discussions now under way will be influential in determining policies governing biodiversity research and bioprospecting.

  11. A call for tiger management using "reserves" of genetic diversity.

    PubMed

    Bay, Rachael A; Ramakrishnan, Uma; Hadly, Elizabeth A

    2014-01-01

    Tigers (Panthera tigris), like many large carnivores, are threatened by anthropogenic impacts, primarily habitat loss and poaching. Current conservation plans for tigers focus on population expansion, with the goal of doubling census size in the next 10 years. Previous studies have shown that because the demographic decline was recent, tiger populations still retain a large amount of genetic diversity. Although maintaining this diversity is extremely important to avoid deleterious effects of inbreeding, management plans have yet to consider predictive genetic models. We used coalescent simulations based on previously sequenced mitochondrial fragments (n = 125) from 5 of 6 extant subspecies to predict the population growth needed to maintain current genetic diversity over the next 150 years. We found that the level of gene flow between populations has a large effect on the local population growth necessary to maintain genetic diversity, without which tigers may face decreases in fitness. In the absence of gene flow, we demonstrate that maintaining genetic diversity is impossible based on known demographic parameters for the species. Thus, managing for the genetic diversity of the species should be prioritized over the riskier preservation of distinct subspecies. These predictive simulations provide unique management insights, hitherto not possible using existing analytical methods. PMID:24336928

  12. Genetic diversity and selection in the maize starch pathway

    PubMed Central

    Whitt, Sherry R.; Wilson, Larissa M.; Tenaillon, Maud I.; Gaut, Brandon S.; Buckler, Edward S.

    2002-01-01

    Maize is both phenotypically and genetically diverse. Sequence studies generally confirm the extensive genetic variability in modern maize is consistent with a lack of selection. For more than 6,000 years, Native Americans and modern breeders have exploited the tremendous genetic diversity of maize (Zea mays ssp. mays) to create the highest yielding grain crop in the world. Nonetheless, some loci have relatively low levels of genetic variation, particularly loci that have been the target of artificial selection, like c1 and tb1. However, there is limited information on how selection may affect an agronomically important pathway for any crop. These pathways may retain the signature of artificial selection and may lack genetic variation in contrast to the rest of the genome. To evaluate the impact of selection across an agronomically important pathway, we surveyed nucleotide diversity at six major genes involved in starch metabolism and found unusually low genetic diversity and strong evidence of selection. Low diversity in these critical genes suggests that a paradigm shift may be required for future maize breeding. Rather than relying solely on the diversity within maize or on transgenics, future maize breeding would perhaps benefit from the incorporation of alleles from maize's wild relatives. PMID:12244216

  13. GEOGRAPHICAL APPROACHES TO CROP CONSERVATION: THE PARTITIONINGOF GENETIC DIVERSITY IN

    E-print Network

    Douches, David S.

    and Williams 1984). Systematic field re- search indicates a geographically uneven persis- tence of diverseGEOGRAPHICAL APPROACHES TO CROP CONSERVATION: THE PARTITIONINGOF GENETIC DIVERSITY IN ANDEAN:ThEPARTmO~GOFGENETICDIVERSITYINA~q~Ea,NPOTATOES.Economic Botany 45(2): 176-189. 1991. The geographical concepts of spatial scale and the human-geographic region

  14. Genetic Diversity and Grain Protein Composition of Tetraploid Wheat

    E-print Network

    of origin, the highest Shannon- Weaver diversity index (H) was mainly due to plant height, a major agronomicGenetic Diversity and Grain Protein Composition of Tetraploid Wheat (Triticum durum Desf Department of Plant Breeding and Biotechnology Alnarp Doctoral Thesis Swedish University of Agricultural

  15. Benefits of host genetic diversity for resistance to infection depend on parasite diversity

    PubMed Central

    Ganz, Holly H.; Ebert, Dieter

    2011-01-01

    Host populations with high genetic diversity are predicted to have lower levels of infection prevalence. This theory assumes that host genetic diversity results in variation in susceptibility and that parasites exhibit variation in infectivity. Empirical studies on the effects of host heterogeneity typically neglect the role of parasite diversity. We conducted three laboratory experiments designed to test if genetic variation in Daphnia magna populations and genetic variation in its parasites together influence the course of parasite spread after introduction. We found that a natural D. magna population exhibited variation in susceptibility to infection by three parasite species and had strong host clone–parasite species interactions. There was no effect of host heterogeneity in experimental host populations (polycultures and monocultures) separately exposed to single strains of three parasite species. When we manipulated the genetic diversity of a single parasite species and exposed them to host monocultures and polycultures, we found that parasite prevalence increased with the number of parasite strains. Host monocultures exposed to several parasite strains had higher mean parasite prevalence and higher variance than polycultures. These results indicate that effect of host genetic diversity on the spread of infection depends on the level of genetic diversity in the parasite population. PMID:20503859

  16. Target region amplification polymorphism (TRAP) for assessing genetic diversity and marker-trait associations in chickpea (Cicer arietinum l.) germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Utilization of crop diversity held in genebanks is dependent on knowledge of useful traits including those identified genotypically. Target region amplification polymorphism (TRAP) markers were used to evaluate the genetic diversity and relationship among a sample of 263 chickpea landrace germplasm ...

  17. Historical origins and genetic diversity of wine grapes

    Microsoft Academic Search

    Patrice This; Thierry Lacombe; Mark R. Thomas

    2006-01-01

    Thegenomicresourcesthatareavailabletothegrapevine research community have increased enormously during the past five years, in parallel with a renewed interest in grapevine (Vitis vinifera L.) germplasm resources and analysis of genetic diversity in grapes. Genetic variation, either natural or induced, is invaluable for crop improvement and understanding gene function, and the same is true for the grapevine. The history and vineyard cultural practices

  18. Paradox lost: genetic diversity and the success of aquatic invasions

    E-print Network

    Roman, Joe

    of aquatic invasive species has occurred despite what some have dubbed a `genetic paradox' (see GlossaryParadox lost: genetic diversity and the success of aquatic invasions Joe Roman1 and John A Darling2 of founder effects in the majority of successful aquatic invasions. Multiple introductions, in particular

  19. TEMPORAL CHANGES OF GENETIC DIVERSITY IN SUGARCANE BREEDING POPULATIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concerns about decline of genetic diversity in sugarcane (Saccharum spp.) breeding programs need be addressed to define better breeding strategies aimed at achieving greater genetic gains. The objectives of this study were to reconstruct the divergence in the Canal Point breeding populations as temp...

  20. DEFINING TURTLE DIVERSITY PROCEEDINGS OF A WORKSHOP ON GENETICS, ETHICS,

    E-print Network

    Canberra, University of

    DEFINING TURTLE DIVERSITY PROCEEDINGS OF A WORKSHOP ON GENETICS, ETHICS, AND TAXONOMY OF FRESHWATER TURTLES AND TORTOISES CAMBRIDGE, MASSACHUSETTS, 8­12 AUGUST 2005 EDITED BY H. BRADLEY SHAFFER, ARTHUR and Freshwater Turtle Specialist Group #12;Preface Genetics. Conservation. Genomics. Systematics. Ethics

  1. The Kuroshio current influences genetic diversity and population genetic structure of a tropical seagrass, Enhalus acoroides.

    PubMed

    Nakajima, Yuichi; Matsuki, Yu; Lian, Chunlan; Fortes, Miguel D; Uy, Wilfredo H; Campos, Wilfredo L; Nakaoka, Masahiro; Nadaoka, Kazuo

    2014-12-01

    Information on genetic diversity and differentiation of seagrass populations is essential for the conservation of coastal ecosystems. However, little is known about the seagrasses in the Indo-West Pacific Ocean, where the world's highest diversity of seagrasses occurs. The influence of sea currents on these populations is also unknown. We estimated the genetic diversity and population genetic structure and identified reproductive features in Enhalus acoroides populations from the Yaeyama Islands, Hainan Island and the Philippines. The Philippines are situated at the centre of the E. acoroides range, Yaeyama and Hainan are peripheral populations, and the Yaeyama population is at the northern limit of the species range. The powerful Kuroshio Current flows from the Philippines to Yaeyama. Genetic analyses using nine microsatellite markers indicated that reproduction of E. acoroides is mostly sexual. Clonal diversity does not decrease in northern populations, although genetic diversity does. However, the genetic diversity of the Yaeyama populations is greater than that of the Hainan populations. Significant genetic differentiation among most populations was evident; however, the Yaeyama and north-east Philippines populations were genetically similar, despite being separated by ~1100 km. An assignment test suggested that recruitment occurs from the north-east Philippines to Yaeyama. The strong current in this region is probably responsible for the extant genetic diversity and recruitment patterns. PMID:25384848

  2. Genetic diversity and molecular typing of Listeria monocytogenes in China

    PubMed Central

    2012-01-01

    Background Listeria monocytogenes can cause invasive diseases in humans and farm animals and is frequently isolated from dairy products and poultry. Listeriosis is uncommon in China but L. monocytogenes has been isolated from foods and food processing environments in China. However little is known of genetic diversity of Chinese L. monocytogenes isolates and their relationships with global isolates. Results Two hundred and twelve isolates of L. monocytogenes from food sources from 12 provinces/cities in China were analysed by serotyping, Pulsed Field Gel Electrophoresis (PFGE) and Multi-locus Sequence Typing (MLST). The predominant serotypes are 1/2a, 1/2b and 1/2c accounting for 90.1% of the isolates. PFGE divided the isolates into 61 pulse types (PTs). Twenty nine PTs were represented by more than one isolates with PT GX6A16.0004 containing the most number of isolates. MLST differentiated the isolates into 36 STs, among which 15 were novel. The 3 most common STs were ST9 (29.1%), ST8 (10.7%) and ST87 (9.2%), accounting for 49.0% of the isolates. Conclusions STs prevalent in other parts of the world are also prevalent in China including 7 STs (ST1-ST3, ST5, ST6, ST8, ST9) which caused maternal fetal infections or outbreaks, suggesting that these STs potentially can also cause severe human infections or outbreaks in China. Surveillance of these STs will provide important information for prevention of listeriosis. This study also enhances our understanding of genetic diversity of L. monocytogenes in China. PMID:22727037

  3. Elephant behaviour and conservation: social relationships, the effects of poaching, and genetic tools for management.

    PubMed

    Archie, Elizabeth A; Chiyo, Patrick I

    2012-02-01

    Genetic tools are increasingly valuable for understanding the behaviour, evolution, and conservation of social species. In African elephants, for instance, genetic data provide basic information on the population genetic causes and consequences of social behaviour, and how human activities alter elephants' social and genetic structures. As such, African elephants provide a useful case study to understand the relationships between social behaviour and population genetic structure in a conservation framework. Here, we review three areas where genetic methods have made important contributions to elephant behavioural ecology and conservation: (1) understanding kin-based relationships in females and the effects of poaching on the adaptive value of elephant relationships, (2) understanding patterns of paternity in elephants and how poaching can alter these patterns, and (3) conservation genetic tools to census elusive populations, track ivory, and understand the behavioural ecology of crop-raiding. By comparing studies from populations that have experienced a range of poaching intensities, we find that human activities have a large effect on elephant behaviour and genetic structure. Poaching disrupts kin-based association patterns, decreases the quality of elephant social relationships, and increases male reproductive skew, with important consequences for population health and the maintenance of genetic diversity. In addition, we find that genetic tools to census populations or gather forensic information are almost always more accurate than non-genetic alternatives. These results contribute to a growing understanding of poaching on animal behaviour, and how genetic tools can be used to understand and conserve social species. PMID:21880086

  4. Analysis of genetic diversity in Japanese apricot ( Prunus mume Sieb. et Zucc.) based on REMAP and IRAP molecular markers

    Microsoft Academic Search

    Shen Yuying; Ding Xiajun; Wang Fei; Cai Binhua; Gao Zhihong; Zhang Zhen

    Japanese apricot (mei) originated in China, and was divided into two types: fruiting mei and flowering mei, and fruiting mei can be divided by their pericarp into green mei, red mei and white mei. 84 cultivars (43 fruiting mei and 41 flowering mei) were used in this study. To identify their genetic relationships, genetic diversity analysis using REMAP with IRAP

  5. Limited Genetic Diversity in the Endophytic Sugarcane Bacterium Acetobacter diazotrophicus.

    PubMed

    Caballero-Mellado, J; Martinez-Romero, E

    1994-05-01

    Acetobacter diazotrophicus isolates that originated from different sugarcane cultivars growing in diverse geographic regions of Mexico and Brazil were shown to have limited genetic diversity. Measurements of polymorphism in the electrophoretic mobilities of metabolic enzymes revealed that the mean genetic diversity per enzyme locus (among the four electrophoretic types distinguished) was 0.064. The results of the genetic analysis indicate that the genetic structure of A. diazotrophicus is clonal, with one largely predominant clone. Plasmids were present in 20 of 24 isolates, and the molecular sizes of the plasmids ranged from 2.0 to 170 kb. Two plasmids (a 20- to 24-kb plasmid detected in all 20 plasmid-containing isolates and a 170-kb plasmid observed in 14 isolates) were highly conserved among the isolates examined. Regardless of the presence of plasmids, all of the isolates shared a common pattern of nif structural gene organization on the chromosome. PMID:16349254

  6. Limited Genetic Diversity in the Endophytic Sugarcane Bacterium Acetobacter diazotrophicus

    PubMed Central

    Caballero-Mellado, Jesus; Martinez-Romero, Esperanza

    1994-01-01

    Acetobacter diazotrophicus isolates that originated from different sugarcane cultivars growing in diverse geographic regions of Mexico and Brazil were shown to have limited genetic diversity. Measurements of polymorphism in the electrophoretic mobilities of metabolic enzymes revealed that the mean genetic diversity per enzyme locus (among the four electrophoretic types distinguished) was 0.064. The results of the genetic analysis indicate that the genetic structure of A. diazotrophicus is clonal, with one largely predominant clone. Plasmids were present in 20 of 24 isolates, and the molecular sizes of the plasmids ranged from 2.0 to 170 kb. Two plasmids (a 20- to 24-kb plasmid detected in all 20 plasmid-containing isolates and a 170-kb plasmid observed in 14 isolates) were highly conserved among the isolates examined. Regardless of the presence of plasmids, all of the isolates shared a common pattern of nif structural gene organization on the chromosome. Images PMID:16349254

  7. Population structure and genetic diversity of the orchid bee Eufriesea violacea (Hymenoptera,

    E-print Network

    Population structure and genetic diversity of the orchid bee Eufriesea violacea (Hymenoptera Abstract ­ In this study, both the genetic diversity and population genetic structure of Eufriesea violacea microsatellite markers. The results showed that genetic diversity was high in all populations and the genetic

  8. Genetic diversity and population differentiation of Sclerotinia sclerotiorum collected from canola in China and in USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic and phenotypic diversity and population differentiation of Sclerotinia sclerotiorum isolates infecting canola from China and the United States were investigated. Genetic diversity was assessed with eight microsatellite markers and mycelial compatibility groups (MCGs). Phenotypic diversity wa...

  9. Genetic Diversity in Cotton Out-Crossing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously we have reported on the finding of genetic differences in the abiotic stress tolerance of cotton pollen. Genetic differences in sensitivity to humidity were observed impacting pollen survival in dry environments. The present study evaluated out-crossing rates in cotton lines whose polle...

  10. Cotton gene flow: Genetic diversity in outcrossing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously we have reported on the finding of genetic differences in the abiotic stress tolerance of cotton pollen. Genetic differences in sensitivity to humidity were observed impacting pollen survival in dry environments. The present study evaluated out-crossing rates in cotton lines whose pollen ...

  11. Biased morph ratios and skewed mating success contribute to loss of genetic diversity in the distylous Pulmonaria officinalis

    PubMed Central

    Meeus, Sofie; Honnay, Olivier; Brys, Rein; Jacquemyn, Hans

    2012-01-01

    Background and Aims In heterostylous plant species, skewed morph ratios are not uncommon and may arise from a range of factors. Despite the recognized importance of skewed morph ratios on overall reproductive success within populations, little is known about the impact of skewed morph ratios on population genetic diversity and differentiation in heterostylous species. This study specifically aimed to clarify the effect of population size and morph bias on population genetic diversity and differentiation in the temperate forest herb Pulmonaria officinalis. This species is characterized by a distylous breeding system and shows morph-specific differences in reproductive success. Methods Genetic diversity was determined for 27 P. officinalis populations in northern Belgium by using eight recently developed microsatellite markers. Multiple regressions were used to assess the relationship between genetic diversity, morph bias and population size, and FST-values were calculated for short- and long-styled morphs separately to study genetic differentiation as a function of morph type. Key Results For all genetic measures used, morph bias was more important in explaining patterns of genetic diversity than population size, and in all cases patterns of population genetic diversity followed a quadratic function, which showed a symmetrical decrease in genetic diversity with increasing morph bias. However, probably due to the reproductive advantage of L-morphs relative to S-morphs, maximum genetic diversity was found in populations showing an excess of L-morphs (60·7 % L-morph). On the other hand, no significant difference in pairwise genetic distances between populations was observed between L- (0·107) and S-morphs (0·106). Conclusions Our results indicate that significant deviations from equal morph ratios not only affect plant reproductive success but also population genetic diversity of heterostylous plant species. Hence, when defining conservation measures for populations of heterostylous plant species, morph ratios should be considered as an important trait affecting their long-term population viability. PMID:22021814

  12. Assessment of genetic diversity of sweet potato in Puerto Rico.

    PubMed

    Rodriguez-Bonilla, Lorraine; Cuevas, Hugo E; Montero-Rojas, Milly; Bird-Pico, Fernando; Luciano-Rosario, Dianiris; Siritunga, Dimuth

    2014-01-01

    Sweet potato (Ipomoea batatas L.) is the seventh most important food crop due to its distinct advantages, such as adaptability to different environmental conditions and high nutritional value. Assessing the genetic diversity of this important crop is necessary due to the constant increase of demand for food and the need for conservation of agricultural and genetic resources. In Puerto Rico (PR), the genetic diversity of sweet potato has been poorly understood, although it has been part of the diet since Pre-Columbus time. Thus, 137 landraces from different localities around PR were collected and subjected to a genetic diversity analysis using 23 SSR-markers. In addition, 8 accessions from a collection grown in Gurabo, PR at the Agricultural Experimental Station (GAES), 10 US commercial cultivars and 12 Puerto Rican accessions from the USDA repository collection were included in this assessment. The results of the analysis of the 23 loci showed 255 alleles in the 167 samples. Observed heterozygosity was high across populations (0.71) while measurements of total heterozygosity revealed a large genetic diversity throughout the population and within populations. UPGMA clustering method revealed two main clusters. Cluster 1 contained 12 PR accessions from the USDA repository collection, while cluster 2 consisted of PR landraces, US commercial cultivars and the PR accessions from GAES. Population structure analysis grouped PR landraces in five groups including four US commercial cultivars. Our study shows the presence of a high level of genetic diversity of sweet potato across PR which can be related to the genetic makeup of sweet potato, human intervention and out-crossing nature of the plant. The history of domestication and dispersal of sweet potato in the Caribbean and the high levels of genetic diversity found through this study makes sweet potato an invaluable resource that needs to be protected and further studied. PMID:25551388

  13. Assessment of Genetic Diversity of Sweet Potato in Puerto Rico

    PubMed Central

    Rodriguez-Bonilla, Lorraine; Cuevas, Hugo E.; Montero-Rojas, Milly; Bird-Pico, Fernando; Luciano-Rosario, Dianiris; Siritunga, Dimuth

    2014-01-01

    Sweet potato (Ipomoea batatas L.) is the seventh most important food crop due to its distinct advantages, such as adaptability to different environmental conditions and high nutritional value. Assessing the genetic diversity of this important crop is necessary due to the constant increase of demand for food and the need for conservation of agricultural and genetic resources. In Puerto Rico (PR), the genetic diversity of sweet potato has been poorly understood, although it has been part of the diet since Pre-Columbus time. Thus, 137 landraces from different localities around PR were collected and subjected to a genetic diversity analysis using 23 SSR-markers. In addition, 8 accessions from a collection grown in Gurabo, PR at the Agricultural Experimental Station (GAES), 10 US commercial cultivars and 12 Puerto Rican accessions from the USDA repository collection were included in this assessment. The results of the analysis of the 23 loci showed 255 alleles in the 167 samples. Observed heterozygosity was high across populations (0.71) while measurements of total heterozygosity revealed a large genetic diversity throughout the population and within populations. UPGMA clustering method revealed two main clusters. Cluster 1 contained 12 PR accessions from the USDA repository collection, while cluster 2 consisted of PR landraces, US commercial cultivars and the PR accessions from GAES. Population structure analysis grouped PR landraces in five groups including four US commercial cultivars. Our study shows the presence of a high level of genetic diversity of sweet potato across PR which can be related to the genetic makeup of sweet potato, human intervention and out-crossing nature of the plant. The history of domestication and dispersal of sweet potato in the Caribbean and the high levels of genetic diversity found through this study makes sweet potato an invaluable resource that needs to be protected and further studied. PMID:25551388

  14. Glacial refugia and modern genetic diversity of 22 western North American tree species.

    PubMed

    Roberts, David R; Hamann, Andreas

    2015-04-01

    North American tree species, subspecies and genetic varieties have primarily evolved in a landscape of extensive continental ice and restricted temperate climate environments. Here, we reconstruct the refugial history of western North American trees since the last glacial maximum using species distribution models, validated against 3571 palaeoecological records. We investigate how modern subspecies structure and genetic diversity corresponds to modelled glacial refugia, based on a meta-analysis of allelic richness and expected heterozygosity for 473 populations of 22 tree species. We find that species with strong genetic differentiation into subspecies had widespread and large glacial refugia, whereas species with restricted refugia show no differentiation among populations and little genetic diversity, despite being common over a wide range of environments today. In addition, a strong relationship between allelic richness and the size of modelled glacial refugia (r(2) = 0.55) suggest that population bottlenecks during glacial periods had a pronounced effect on the presence of rare alleles. PMID:25761711

  15. Rapid range expansion increases genetic differentiation while causing limited reduction in genetic diversity in a damselfly

    PubMed Central

    Swaegers, J; Mergeay, J; Therry, L; Larmuseau, M H D; Bonte, D; Stoks, R

    2013-01-01

    Many ectothermic species are currently expanding their geographic range due to global warming. This can modify the population genetic diversity and structure of these species because of genetic drift during the colonization of new areas. Although the genetic signatures of historical range expansions have been investigated in an array of species, the genetic consequences of natural, contemporary range expansions have received little attention, with the only studies available focusing on range expansions along a narrow front. We investigate the genetic consequences of a natural range expansion in the Mediterranean damselfly Coenagrion scitulum, which is currently rapidly expanding along a broad front in different directions. We assessed genetic diversity and genetic structure using 12 microsatellite markers in five centrally located populations and five recently established populations at the edge of the geographic distribution. Our results suggest that, although a marginal significant decrease in the allelic richness was found in the edge populations, genetic diversity has been preserved during the range expansion of this species. Nevertheless, edge populations were genetically more differentiated compared with core populations, suggesting genetic drift during the range expansion. The smaller effective population sizes of the edge populations compared with central populations also suggest a contribution of genetic drift after colonization. We argue and document that range expansion along multiple axes of a broad expansion front generates little reduction in genetic diversity, yet stronger differentiation of the edge populations. PMID:23820582

  16. Plant Chitinases: Genetic Diversity and Physiological Roles

    Microsoft Academic Search

    Anita Grover

    2012-01-01

    Chitinase proteins are widely distributed across diverse biological systems. Chitinases hydrolyze chitin, chitosan, lipochitooligosaccharides, peptidoglycan, arabinogalactan and glycoproteins containing N-acetylglucosamine. Analyses of genome-wide sequence and microarray expression profilings show that chitinase genes are represented by large families and the individual member genes are expressed in diverse conditions. Chitinase proteins are members in the group of the pathogenesis-related proteins that are

  17. Genotyping by sequencing reveals the genetic diversity of the USDA pisum diversity collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA expanded Pisum Single Plant (PSP) core collection is a unique resource that represents the breadth of the genetic diversity of the genus in an inbred format that facilitates genetic study. The collection includes inbred accessions from the refined pea core collection, parent lines of USDA r...

  18. [Genetic diversity of different populations of lilyturf revealed by RSAP analysis].

    PubMed

    Xu, Hu-Chao; Zhang, Jun-Yi; Si, Can

    2014-10-01

    Restriction site amplification polymorphism (RSAP) markers were employed to access the genetic diversity and relationship of 120 lilyturf germplasms from different geographical origins. Sixteen RSAP primer pairs generated 326 polymorphic bands, of which 318 (97.55%) were polymorphic. The value of polymorphism information content (PIC) ranged from 0.87 to 0.95 with an average of 0.92. These results indicated there was abundant genetic diversity among samples. The results of data analysis on 20 population showed that the value of percentage of polymorphic locus (PPL), Nei's gene diversity (H) and Shannon's information index (I) were 19.94%-85.58%, 0.082 6-0.210 7, 0.120 6-0.328 1 respectively. The most abundant genetic diversity was found in the O. japonicus population from Zhejiang and the least in the Liriope minor population. The genetic distance among 20 population was 0.024 6-0.286 8, of which the minimum genetic distance was 0.024 6 between population I and population 13 while the maximum 0.286 8 between population 5 and population 15. Coefficient of genetic differentiation among natural populations was 0.115 3 (Gst). And the gene differentiation contributed to 43.07% of the total genetic variation among populations and to 56.93% within populations. The total gene flow (Nm) was 0.660 9. UPMGA clustering analysis was basically similar to of the principle coordinate analysis (PCA). The 120 samples were classified into four major groups, which were basically corresponded with the genetic relationships based on morphological traits. The results of UPMGA and PCA were also consistent with geographical origins. PMID:25751940

  19. Polishing the craft of genetic diversity creation in directed evolution.

    PubMed

    Tee, Kang Lan; Wong, Tuck Seng

    2013-12-01

    Genetic diversity creation is a core technology in directed evolution where a high quality mutant library is crucial to its success. Owing to its importance, the technology in genetic diversity creation has seen rapid development over the years and its application has diversified into other fields of scientific research. The advances in molecular cloning and mutagenesis since 2008 were reviewed. Specifically, new cloning techniques were classified based on their principles of complementary overhangs, homologous sequences, overlapping PCR and megaprimers and the advantages, drawbacks and performances of these methods were highlighted. New mutagenesis methods developed for random mutagenesis, focused mutagenesis and DNA recombination were surveyed. The technical requirements of these methods and the mutational spectra were compared and discussed with references to commonly used techniques. The trends of mutant library preparation were summarised. Challenges in genetic diversity creation were discussed with emphases on creating "smart" libraries, controlling the mutagenesis spectrum and specific challenges in each group of mutagenesis methods. An outline of the wider applications of genetic diversity creation includes genome engineering, viral evolution, metagenomics and a study of protein functions. The review ends with an outlook for genetic diversity creation and the prospective developments that can have future impact in this field. PMID:24012599

  20. Genetic diversity and structure of livestock breeds 

    E-print Network

    Wilkinson, Samantha

    2012-06-30

    This thesis addresses the genetic characterisation of livestock breeds, a key aspect of the long-term future breed preservation and, thus, of primary interest for animal breeders and management in the industry. First, ...

  1. Analysis of genetic diversity and differentiation of seven stocks of Litopenaeus vannamei using microsatellite markers

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Wang, Weiji; Li, Weiya; Zhang, Quanqi; Kong, Jie

    2014-08-01

    Seven microsatellite markers were used to evaluate the genetic diversity and differentiation of seven stocks of Litopenaeus vannamei, which were introduced from Central and South America to China. All seven microsatellite loci were polymorphic, with polymorphism information content ( PIC) values ranging from 0.593 to 0.952. Totally 92 alleles were identified, and the number of alleles ( Na) and effective alleles ( Ne) varied between 4 and 21 and 2.7 and 14.6, respectively. Observed heterozygosity ( H o) values were lower than the expected heterozygosity ( H e) values (0.526-0.754), which indicated that the seven stocks possessed a rich genetic diversity. Thirty-seven tests were detected for reasonable significant deviation from Hardy-Weinberg equilibrium. F is values were positive at five loci, suggesting that there was a relatively high degree of inbreeding within stocks. Pairwise F st values ranged from 0.0225 to 0.151, and most of the stock pairs were moderately differentiated. Genetic distance and cluster analysis using UPGMA revealed a close genetic relationship of L. vannamei between Pop2 and Pop3. AMOVA indicated that the genetic variation among stocks (11.3%) was much lower than that within stocks (88.7%). Although the seven stocks had a certain degree of genetic differentiation and a rich genetic diversity, there is an increasing risk of decreased performance due to inbreeding in subsequent generations.

  2. Admixture and the organization of genetic diversity in a butterfly species complex revealed through common and rare genetic variants.

    PubMed

    Gompert, Zachariah; Lucas, Lauren K; Buerkle, C Alex; Forister, Matthew L; Fordyce, James A; Nice, Chris C

    2014-09-01

    Detailed information about the geographic distribution of genetic and genomic variation is necessary to better understand the organization and structure of biological diversity. In particular, spatial isolation within species and hybridization between them can blur species boundaries and create evolutionary relationships that are inconsistent with a strictly bifurcating tree model. Here, we analyse genome-wide DNA sequence and genetic ancestry variation in Lycaeides butterflies to quantify the effects of admixture and spatial isolation on how biological diversity is organized in this group. We document geographically widespread and pervasive historical admixture, with more restricted recent hybridization. This includes evidence supporting previously known and unknown instances of admixture. The genome composition of admixed individuals varies much more among than within populations, and tree- and genetic ancestry-based analyses indicate that multiple distinct admixed lineages or populations exist. We find that most genetic variants in Lycaeides are rare (minor allele frequency <0.5%). Because the spatial and taxonomic distributions of alleles reflect demographic and selective processes since mutation, rare alleles, which are presumably younger than common alleles, were spatially and taxonomically restricted compared with common variants. Thus, we show patterns of genetic variation in this group are multifaceted, and we argue that this complexity challenges simplistic notions concerning the organization of biological diversity into discrete, easily delineated and hierarchically structured entities. PMID:24866941

  3. Paradox lost: genetic diversity and the success of aquatic invasions.

    PubMed

    Roman, Joe; Darling, John A

    2007-09-01

    There is mounting evidence that reduced genetic diversity in invasive populations is not as commonplace as expected. Recent studies indicate that high propagule vectors, such as ballast water and shellfish transplantations, and multiple introductions contribute to the elimination of founder effects in the majority of successful aquatic invasions. Multiple introductions, in particular, can promote range expansion of introduced populations through both genetic and demographic mechanisms. Closely related to vectors and corridors of introduction, propagule pressure can play an important role in determining the genetic outcome of introduction events. Even low-diversity introductions have numerous means of avoiding the negative impact of diversity loss. The interaction of high propagule vectors and multiple introductions reveal important patterns associated with invasion success and deserve closer scrutiny. PMID:17673331

  4. Original article Important genetic diversity revealed

    E-print Network

    Boyer, Edmond

    an even larger diversity for K. marxianus. After its use with Saccharomyces cerevisiae, the inter-LTR PCR-Savoie () D. hansenii 32 K. marxianus 43 D. hansenii K. marxianus LTR-PCR Saccharomyces cerevisiae. marxianus. Apres son utilisation chez Saccharomyces cerevisiae, la PCR inter-LTR s'est montrée très efficace

  5. Regional specificity of genetically diverse garlic varieties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Garlic is a profitable crop for small to medium-sized vegetable farmers. Despite the increasing market for specialty garlic, it is remarkable how little is known about the diverse types of garlic available. Farmers need to know which garlic types perform well under their growing conditions, and th...

  6. Genetic diversity of ‘Candidatus Liberibacter asiaticus’ strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Huanglongbing (HLB) is a highly destructive disease of citrus production worldwide. The disease is associated with ‘Candidatus Liberibacter asiaticus’. Information about strain diversity of ‘Ca. L. asiaticus’ has been limited and is needed for research in disease epidemiology and bacterial biology...

  7. Genetic diversity analysis among collected purslane (Portulaca oleracea L.) accessions using ISSR markers.

    PubMed

    Alam, M Amirul; Juraimi, Abdul Shukor; Rafii, Mohd Yusop; Hamid, Azizah Abdul; Arolu, Ibrahim Wasiu; Abdul Latif, M

    2015-01-01

    Genetic diversity and relationships among 45 collected purslane accessions were evaluated using ISSR markers. The 28 primers gave a total of 167 bands, among which 163 were polymorphic (97.6%). The genetic diversity as estimated by Shannon's information index was 0.513, revealing a quite high level of genetic diversity in the germplasm. The average number of observed allele, effective allele, expected heterozygosity, polymorphic information content (PIC) and Nei's index were 5.96, 1.59, 0.43, 0.35 and 0.35, respectively. The UPGMA dendrogram based on Nei's genetic distance grouped the whole germplasm into 7 distinct clusters. The analysis of molecular variance (AMOVA) revealed that 89% of total variation occurred within population, while 11% were found among populations. Based on the constructed dendrogram using ISSR markers those accessions that are far from each other by virtue of genetic origin and diversity index (like Ac1 and Ac42; Ac19 and Ac45; Ac9 and Ac23; Ac18 and A25; Ac24 and Ac18) are strongly recommended to select as parent for future breeding program to develop high yielding and stress tolerant purslane variety in contribution to global food security. PMID:25468001

  8. High-Pitched Notes during Vocal Contests Signal Genetic Diversity in Ocellated Antbirds

    PubMed Central

    Araya-Ajoy, Yi-men; Chaves-Campos, Johel; Kalko, Elisabeth K. V.; DeWoody, J. Andrew

    2009-01-01

    Animals use honest signals to assess the quality of competitors during aggressive interactions. Current theory predicts that honest signals should be costly to produce and thus reveal some aspects of the phenotypic or genetic quality of the sender. In songbirds, research indicates that biomechanical constraints make the production of some acoustic features costly. Furthermore, recent studies have found that vocal features are related to genetic diversity. We linked these two lines of research by evaluating if constrained acoustic features reveal male genetic diversity during aggressive interactions in ocellated antbirds (Phaenostictus mcleannani). We recorded the aggressive vocalizations of radiotagged males at La Selva Biological Station in Costa Rica, and found significant variation in the highest frequency produced among individuals. Moreover, we detected a negative relationship between the frequency of the highest pitched note and vocalization duration, suggesting that high pitched notes might constrain the duration of vocalizations through biomechanical and/or energetic limitations. When we experimentally exposed wild radiotagged males to simulated acoustic challenges, the birds increased the pitch of their vocalization. We also found that individuals with higher genetic diversity (as measured by zygosity across 9 microsatellite loci) produced notes of higher pitch during aggressive interactions. Overall, our results suggest that the ability to produce high pitched notes is an honest indicator of male genetic diversity in male-male aggressive interactions. PMID:19956580

  9. The Host Genetic Diversity in Malaria Infection

    PubMed Central

    de Mendonça, Vitor R. R.; Goncalves, Marilda Souza; Barral-Netto, Manoel

    2012-01-01

    Populations exposed to Plasmodium infection develop genetic mechanisms of protection against severe disease. The clinical manifestation of malaria results primarily from the lysis of infected erythrocytes and subsequent immune and inflammatory responses. Herein, we review the genetic alterations associated with erythrocytes or mediators of the immune system, which might influence malaria outcome. Moreover, polymorphisms in genes related to molecules involved in mechanisms of cytoadherence and their influence on malaria pathology are also discussed. The results of some studies have suggested that the combinatorial effects of a set of genetic factors in the erythrocyte-immunology pathway might be relevant to host resistance or susceptibility against Plasmodium infection. However, these results must be interpreted with caution because of the differences observed in the functionality and frequency of polymorphisms within different populations. With the recent advances in molecular biology techniques, more robust studies with reliable data have been reported, and the results of these studies have identified individual genetic factors for consideration in preventing severe disease and the individual response to treatment. PMID:23316245

  10. GENETIC CHARACTERIZATION AND DIVERSITY OF RATHAYIBACTER TOXICUS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Twenty-two strains of Rathayibacter toxicus from Australia were characterized using amplified fragment length polymorphism (AFLP) and pulse field gel electrophoresis (PFGE). No plasmids were detected. AFLP analysis grouped the 22 strains into three genetic clusters that correspond to their geographi...

  11. Genetic diversity of yellow grouper (Epinephelus awoara)

    E-print Network

    China Sea. Materials and methods Sample preparation and DNA extraction Yellow grouper were obtained from at -20°C until analysis. Genomic DNA was extracted according to the DNA extraction method of DeSalle et to investigate Most other DNA-based methods are the genetic variation in two popula- more laborious and time

  12. Genetic Diversity and Genome Complexity of Sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane (Saccharum spp.) as a C4 plant, is one of the most efficient crops in converting solar energy into chemical energy. Sugarcane cultivar improvement programs have not yet systematically utilized the most of the genetic sources of yield potential and resistance to stresses that may exist in t...

  13. Genome-wide genetic diversity, population structure and admixture analysis in African and Asian cattle breeds.

    PubMed

    Edea, Z; Bhuiyan, M S A; Dessie, T; Rothschild, M F; Dadi, H; Kim, K S

    2015-02-01

    Knowledge about genetic diversity and population structure is useful for designing effective strategies to improve the production, management and conservation of farm animal genetic resources. Here, we present a comprehensive genome-wide analysis of genetic diversity, population structure and admixture based on 244 animals sampled from 10 cattle populations in Asia and Africa and genotyped for 69,903 autosomal single-nucleotide polymorphisms (SNPs) mainly derived from the indicine breed. Principal component analysis, STRUCTURE and distance analysis from high-density SNP data clearly revealed that the largest genetic difference occurred between the two domestic lineages (taurine and indicine), whereas Ethiopian cattle populations represent a mosaic of the humped zebu and taurine. Estimation of the genetic influence of zebu and taurine revealed that Ethiopian cattle were characterized by considerable levels of introgression from South Asian zebu, whereas Bangladeshi populations shared very low taurine ancestry. The relationships among Ethiopian cattle populations reflect their history of origin and admixture rather than phenotype-based distinctions. The high within-individual genetic variability observed in Ethiopian cattle represents an untapped opportunity for adaptation to changing environments and for implementation of within-breed genetic improvement schemes. Our results provide a basis for future applications of genome-wide SNP data to exploit the unique genetic makeup of indigenous cattle breeds and to facilitate their improvement and conservation. PMID:25359181

  14. Structural Diversity and Close Interracial Relationships in College

    ERIC Educational Resources Information Center

    Bowman, Nicholas A.

    2012-01-01

    Recent legal and political actions have challenged the use of race-conscious college admissions policies. Earlier research offers mixed evidence about the link between an institution's racial/ethnic composition (i.e., structural diversity) and the formation of close interracial relationships, so the present study examines this topic directly for…

  15. The Impact of Relationship Education on Adolescents of Diverse Backgrounds

    ERIC Educational Resources Information Center

    Adler-Baeder, Francesca; Kerpelman, Jennifer L.; Schramm, David G.; Higginbotham, Brian; Paulk, Amber

    2007-01-01

    Adolescent-focused marriage education is a relatively uncharted research area. Using a quasi-experimental design, this study examined the effectiveness of an adapted version of the curriculum entitled, "Love U2: Increasing Your Relationship Smarts" with an economically, geographically, and racially diverse sample of 340 high school students.…

  16. Analysis of genetic diversity through population history Nicholas Freitag McPhee and Nicholas J. Hopper

    E-print Network

    Minnesota, University of

    Analysis of genetic diversity through population history Nicholas Freitag McPhee and Nicholas J of a population based on the genetic history of the individuals. We then apply these measures to the genetic of diversity in GP populations is indeed a significant issue. 1.1 MEASURING GENETIC DIVERSITY One

  17. Isolated populations of a rare alpine plant show high genetic diversity and considerable population differentiation

    PubMed Central

    Ægisdóttir, Hafdís Hanna; Kuss, Patrick; Stöcklin, Jürg

    2009-01-01

    Background and Aims Gene flow and genetic variability within and among alpine plant populations can be greatly influenced by the steep environmental gradients and heterogeneous topography of alpine landscapes. In this study, the effects are examined of natural isolation of alpine habitats on genetic diversity and geographic structure in populations of C. thyrsoides, a rare and isolated European Alpine monocarpic perennial with limited seed dispersal capacity. Methods Molecular diversity was analysed for 736 individuals from 32 populations in the Swiss Alps and adjacent Jura mountains using five polymorphic microsatellite loci. Pollen flow was estimated using pollen grain-sized fluorescent powder. In addition, individual-based Bayesian approaches were applied to examine population structure. Key Results High within-population genetic diversity (HE = 0·76) and a relatively low inbreeding coefficient (FIS = 0·022) were found. Genetic differentiation among populations measured with a standardized measure was considerable (G?ST = 0·53). A significant isolation-by-distance relationship was found (r = 0·62, P < 0·001) and a significant geographic sub-structure, coinciding with proposed postglacial migration patterns. Altitudinal location and size of populations did not influence molecular variation. Direct measures of pollen flow revealed that insect-mediated pollen dispersal was restricted to short distances within a population. Conclusions The natural isolation of suitable habitats for C. thyrsoides restricts gene flow among the populations as expected for a monocarpic species with very limited seed dispersal capacities. The observed high within-population genetic diversity in this rare monocarpic perennial is best explained by its outcrossing behaviour, long-lived individuals and overlapping generations. Despite the high within-population genetic diversity, the considerable genetic differentiation and the clear western–eastern differentiation in this species merits consideration in future conservation efforts. PMID:19797423

  18. Genetic relationships between cultivated and wild olives of Corsica and Sardinia using RAPD markers

    Microsoft Academic Search

    Virginie Bronzini de Caraffa; Jean Giannettini; Claude Gambotti; Jacques Maury

    2002-01-01

    In order to ensure the genetic diversity of the Olea europaea complex,it is necessary to characterize the cultivated varieties and the wildpopulations. In the present study, we focused on the olives growing on twoMediterranean islands, Corsica and Sardinia. On these two islands, there areolives with many denominations, as well as forests of oleasters. Here, it wasproposed to determine the relationships

  19. Evaluation of genetic diversity and population structure of West-Central Indian cattle breeds.

    PubMed

    Shah, Tejas M; Patel, Jaina S; Bhong, Chandrakant D; Doiphode, Aakash; Umrikar, Uday D; Parmar, Shivnandan S; Rank, Dharamshibhai N; Solanki, Jitendra V; Joshi, Chaitanya G

    2013-08-01

    Evaluations of genetic diversity in domestic livestock populations are necessary to implement region-specific conservation measures. We determined the genetic diversity and evolutionary relationships among eight geographically and phenotypically diverse cattle breeds indigenous to west-central India by genotyping these animals for 22 microsatellite loci. A total of 326 alleles were detected, and the expected heterozygosity ranged from 0.614 (Kenkatha) to 0.701 (Dangi). The mean number of alleles among the cattle breeds ranged from 7.182 (Khillar) to 9.409 (Gaolao). There were abundant genetic variations displayed within breeds, and the genetic differentiation was also high between the Indian cattle breeds, which displayed 15.9% of the total genetic differentiation among the different breeds. The genetic differentiation (pairwise FST ) among the eight Indian breeds varied from 0.0126 for the Kankrej-Malvi pair to 0.2667 for Khillar-Kenkatha pair. The phylogeny, principal components analysis, and structure analysis further supported close grouping of Kankrej, Malvi, Nimari and Gir; Gaolao and Kenkatha, whereas Dangi and Khillar remained at distance from other breeds. PMID:23216283

  20. Genetic Diversity among Ancient Nordic Populations

    PubMed Central

    Melchior, Linea; Lynnerup, Niels; Siegismund, Hans R.; Kivisild, Toomas; Dissing, Jørgen

    2010-01-01

    Using established criteria for work with fossil DNA we have analysed mitochondrial DNA from 92 individuals from 18 locations in Denmark ranging in time from the Mesolithic to the Medieval Age. Unequivocal assignment of mtDNA haplotypes was possible for 56 of the ancient individuals; however, the success rate varied substantially between sites; the highest rates were obtained with untouched, freshly excavated material, whereas heavy handling, archeological preservation and storage for many years influenced the ability to obtain authentic endogenic DNA. While the nucleotide diversity at two locations was similar to that among extant Danes, the diversity at four sites was considerably higher. This supports previous observations for ancient Britons. The overall occurrence of haplogroups did not deviate from extant Scandinavians, however, haplogroup I was significantly more frequent among the ancient Danes (average 13%) than among extant Danes and Scandinavians (?2.5%) as well as among other ancient population samples reported. Haplogroup I could therefore have been an ancient Southern Scandinavian type “diluted” by later immigration events. Interestingly, the two Neolithic samples (4,200 YBP, Bell Beaker culture) that were typed were haplogroup U4 and U5a, respectively, and the single Bronze Age sample (3,300–3,500 YBP) was haplogroup U4. These two haplogroups have been associated with the Mesolithic populations of Central and Northern Europe. Therefore, at least for Southern Scandinavia, our findings do not support a possible replacement of a haplogroup U dominated hunter-gatherer population by a more haplogroup diverse Neolithic Culture. PMID:20689597

  1. Genetic Diversity and Population Structure of Cucumber (Cucumis sativus L.)

    PubMed Central

    Shao, Guangjin; Li, Hang; Sun, Zhanyong; Weng, Yiqun; Shang, Yi; Gu, Xingfang; Li, Xixiang; Zhu, Xiaoguo; Zhang, Jinzhe; van Treuren, Robbert; van Dooijeweert, Willem; Zhang, Zhonghua; Huang, Sanwen

    2012-01-01

    Knowing the extent and structure of genetic variation in germplasm collections is essential for the conservation and utilization of biodiversity in cultivated plants. Cucumber is the fourth most important vegetable crop worldwide and is a model system for other Cucurbitaceae, a family that also includes melon, watermelon, pumpkin and squash. Previous isozyme studies revealed a low genetic diversity in cucumber, but detailed insights into the crop's genetic structure and diversity are largely missing. We have fingerprinted 3,342 accessions from the Chinese, Dutch and U.S. cucumber collections with 23 highly polymorphic Simple Sequence Repeat (SSR) markers evenly distributed in the genome. The data reveal three distinct populations, largely corresponding to three geographic regions. Population 1 corresponds to germplasm from China, except for the unique semi-wild landraces found in Xishuangbanna in Southwest China and East Asia; population 2 to Europe, America, and Central and West Asia; and population 3 to India and Xishuangbanna. Admixtures were also detected, reflecting hybridization and migration events between the populations. The genetic background of the Indian germplasm is heterogeneous, indicating that the Indian cucumbers maintain a large proportion of the genetic diversity and that only a small fraction was introduced to other parts of the world. Subsequently, we defined a core collection consisting of 115 accessions and capturing over 77% of the SSR alleles. Insight into the genetic structure of cucumber will help developing appropriate conservation strategies and provides a basis for population-level genome sequencing in cucumber. PMID:23071663

  2. Genetic diversity and population structure of cucumber (Cucumis sativus L.).

    PubMed

    Lv, Jing; Qi, Jianjian; Shi, Qiuxiang; Shen, Di; Zhang, Shengping; Shao, Guangjin; Li, Hang; Sun, Zhanyong; Weng, Yiqun; Shang, Yi; Gu, Xingfang; Li, Xixiang; Zhu, Xiaoguo; Zhang, Jinzhe; van Treuren, Robbert; van Dooijeweert, Willem; Zhang, Zhonghua; Huang, Sanwen

    2012-01-01

    Knowing the extent and structure of genetic variation in germplasm collections is essential for the conservation and utilization of biodiversity in cultivated plants. Cucumber is the fourth most important vegetable crop worldwide and is a model system for other Cucurbitaceae, a family that also includes melon, watermelon, pumpkin and squash. Previous isozyme studies revealed a low genetic diversity in cucumber, but detailed insights into the crop's genetic structure and diversity are largely missing. We have fingerprinted 3,342 accessions from the Chinese, Dutch and U.S. cucumber collections with 23 highly polymorphic Simple Sequence Repeat (SSR) markers evenly distributed in the genome. The data reveal three distinct populations, largely corresponding to three geographic regions. Population 1 corresponds to germplasm from China, except for the unique semi-wild landraces found in Xishuangbanna in Southwest China and East Asia; population 2 to Europe, America, and Central and West Asia; and population 3 to India and Xishuangbanna. Admixtures were also detected, reflecting hybridization and migration events between the populations. The genetic background of the Indian germplasm is heterogeneous, indicating that the Indian cucumbers maintain a large proportion of the genetic diversity and that only a small fraction was introduced to other parts of the world. Subsequently, we defined a core collection consisting of 115 accessions and capturing over 77% of the SSR alleles. Insight into the genetic structure of cucumber will help developing appropriate conservation strategies and provides a basis for population-level genome sequencing in cucumber. PMID:23071663

  3. Individual genetic diversity and probability of infection by avian malaria parasites in blue tits (Cyanistes caeruleus).

    PubMed

    Ferrer, E S; García-Navas, V; Sanz, J J; Ortego, J

    2014-11-01

    Understanding the importance of host genetic diversity for coping with parasites and infectious diseases is a long-standing goal in evolutionary biology. Here, we study the association between probability of infection by avian malaria (Plasmodium relictum) and individual genetic diversity in three blue tit (Cyanistes caeruleus) populations that strongly differ in prevalence of this parasite. For this purpose, we screened avian malaria infections and genotyped 789 blue tits across 26 microsatellite markers. We used two different arrays of markers: 14 loci classified as neutral and 12 loci classified as putatively functional. We found a significant relationship between probability of infection and host genetic diversity estimated at the subset of neutral markers that was not explained by strong local effects and did not differ among the studied populations. This relationship was not linear, and probability of infection increased up to values of homozygosity by locus (HL) around 0.15, reached a plateau at values of HL from 0.15 to 0.40 and finally declined among a small proportion of highly homozygous individuals (HL > 0.4). We did not find evidence for significant identity disequilibrium, which may have resulted from a low variance of inbreeding in the study populations and/or the small power of our set of markers to detect it. A combination of subtle positive and negative local effects and/or a saturation threshold in the association between probability of infection and host genetic diversity in combination with increased resistance to parasites in highly homozygous individuals may explain the observed negative quadratic relationship. Overall, our study highlights that parasites play an important role in shaping host genetic variation and suggests that the use of large sets of neutral markers may be more appropriate for the study of heterozygosity-fitness correlations. PMID:25264126

  4. AFLP Analyses of Genetic Diversity in Bentgrass

    Microsoft Academic Search

    G. V. Vergara; S. S. Bughrara

    2003-01-01

    ABSTRACT,Vasey are known to exist in tetraploid and hexaploid forms (2n 6x 42). In a wide collection of A. gigantea, Bentgrasses (Agrostis spp.) are widely occurring temperate grasses Jones (1955a) only found,hexaploids. Because of the with more than 220 species that represent a vast resource for genetic outcrossing nature of bentgrass, ploidy levels need to improvement of turfgrass cultivars. Bentgrasses

  5. Changes in Human Immunodeficiency Virus Type 1 Fitness and Genetic Diversity during Disease Progression

    Microsoft Academic Search

    Ryan M. Troyer; Kalonji R. Collins; Awet Abraha; Erika Fraundorf; Dawn M. Moore; Randall W. Krizan; Zahra Toossi; Robert L. Colebunders; Mark A. Jensen; James I. Mullins; Guido Vanham; Eric J. Arts

    2005-01-01

    This study examined the relationship between ex vivo human immunodeficiency virus type 1 (HIV-1) fitness and viral genetic diversity during the course of HIV-1 disease. Primary HIV-1 isolates from 10 patients at different time points were competed against control HIV-1 strains in peripheral blood mononuclear cell (PBMC) cultures to determine relative fitness values. Patient HIV-1 isolates sequentially gained fitness during

  6. Genetic diversity patterns of microbial communities in a subtropical riverine ecosystem (Jiulong River, southeast China)

    Microsoft Academic Search

    Lemian LiuJun; Jun Yang; Yongyu Zhang

    Prokaryotic and eukaryotic microbes are key organisms in aquatic ecosystems and play pivotal roles in the biogeochemical cycles,\\u000a but little is known about genetic diversity of these communities in subtropical rivers. In this study, microbial planktonic\\u000a communities were determined by using denaturing gradient gel electrophoresis (DGGE) analysis from the Jiulong River, southeast\\u000a China, and their relationships with local environmental factors

  7. High risks of losing genetic diversity in an endemic Mauritian gecko: implications for conservation.

    PubMed

    Buckland, Steeves; Cole, Nik C; Groombridge, Jim J; Küpper, Clemens; Burke, Terry; Dawson, Deborah A; Gallagher, Laura E; Harris, Stephen

    2014-01-01

    Genetic structure can be a consequence of recent population fragmentation and isolation, or a remnant of historical localised adaptation. This poses a challenge for conservationists since misinterpreting patterns of genetic structure may lead to inappropriate management. Of 17 species of reptile originally found in Mauritius, only five survive on the main island. One of these, Phelsuma guimbeaui (lowland forest day gecko), is now restricted to 30 small isolated subpopulations following severe forest fragmentation and isolation due to human colonisation. We used 20 microsatellites in ten subpopulations and two mitochondrial DNA (mtDNA) markers in 13 subpopulations to: (i) assess genetic diversity, population structure and genetic differentiation of subpopulations; (ii) estimate effective population sizes and migration rates of subpopulations; and (iii) examine the phylogenetic relationships of haplotypes found in different subpopulations. Microsatellite data revealed significant population structure with high levels of genetic diversity and isolation by distance, substantial genetic differentiation and no migration between most subpopulations. MtDNA, however, showed no evidence of population structure, indicating that there was once a genetically panmictic population. Effective population sizes of ten subpopulations, based on microsatellite markers, were small, ranging from 44 to 167. Simulations suggested that the chance of survival and allelic diversity of some subpopulations will decrease dramatically over the next 50 years if no migration occurs. Our DNA-based evidence reveals an urgent need for a management plan for the conservation of P. guimbeaui. We identified 18 threatened and 12 viable subpopulations and discuss a range of management options that include translocation of threatened subpopulations to retain maximum allelic diversity, and habitat restoration and assisted migration to decrease genetic erosion and inbreeding for the viable subpopulations. PMID:24963708

  8. High Risks of Losing Genetic Diversity in an Endemic Mauritian Gecko: Implications for Conservation

    PubMed Central

    Buckland, Steeves; Cole, Nik C.; Groombridge, Jim J.; Küpper, Clemens; Burke, Terry; Dawson, Deborah A.; Gallagher, Laura E.; Harris, Stephen

    2014-01-01

    Genetic structure can be a consequence of recent population fragmentation and isolation, or a remnant of historical localised adaptation. This poses a challenge for conservationists since misinterpreting patterns of genetic structure may lead to inappropriate management. Of 17 species of reptile originally found in Mauritius, only five survive on the main island. One of these, Phelsuma guimbeaui (lowland forest day gecko), is now restricted to 30 small isolated subpopulations following severe forest fragmentation and isolation due to human colonisation. We used 20 microsatellites in ten subpopulations and two mitochondrial DNA (mtDNA) markers in 13 subpopulations to: (i) assess genetic diversity, population structure and genetic differentiation of subpopulations; (ii) estimate effective population sizes and migration rates of subpopulations; and (iii) examine the phylogenetic relationships of haplotypes found in different subpopulations. Microsatellite data revealed significant population structure with high levels of genetic diversity and isolation by distance, substantial genetic differentiation and no migration between most subpopulations. MtDNA, however, showed no evidence of population structure, indicating that there was once a genetically panmictic population. Effective population sizes of ten subpopulations, based on microsatellite markers, were small, ranging from 44 to 167. Simulations suggested that the chance of survival and allelic diversity of some subpopulations will decrease dramatically over the next 50 years if no migration occurs. Our DNA-based evidence reveals an urgent need for a management plan for the conservation of P. guimbeaui. We identified 18 threatened and 12 viable subpopulations and discuss a range of management options that include translocation of threatened subpopulations to retain maximum allelic diversity, and habitat restoration and assisted migration to decrease genetic erosion and inbreeding for the viable subpopulations. PMID:24963708

  9. Genetic Diversity and Geographic Population Structure of Bovine Neospora caninum Determined by Microsatellite Genotyping Analysis

    PubMed Central

    Regidor-Cerrillo, Javier; Díez-Fuertes, Francisco; García-Culebras, Alicia; Moore, Dadín P.; González-Warleta, Marta; Cuevas, Carmen; Schares, Gereon; Katzer, Frank; Pedraza-Díaz, Susana; Mezo, Mercedes; Ortega-Mora, Luis M.

    2013-01-01

    The cyst-forming protozoan parasite Neosporacaninum is one of the main causes of bovine abortion worldwide and is of great economic importance in the cattle industry. Recent studies have revealed extensive genetic variation among N. caninum isolates based on microsatellite sequences (MSs). MSs may be suitable molecular markers for inferring the diversity of parasite populations, molecular epidemiology and the basis for phenotypic variations in N. caninum, which have been poorly defined. In this study, we evaluated nine MS markers using a panel of 11 N. caninum-derived reference isolates from around the world and 96 N. caninum bovine clinical samples and one ovine clinical sample collected from four countries on two continents, including Spain, Argentina, Germany and Scotland, over a 10-year period. These markers were used as molecular tools to investigate the genetic diversity, geographic distribution and population structure of N. caninum. Multilocus microsatellite genotyping based on 7 loci demonstrated high levels of genetic diversity in the samples from all of the different countries, with 96 microsatellite multilocus genotypes (MLGs) identified from 108 N. caninum samples. Geographic sub-structuring was present in the country populations according to pairwise FST. Principal component analysis (PCA) and Neighbor Joining tree topologies also suggested MLG segregation partially associated with geographical origin. An analysis of the MLG relationships, using eBURST, confirmed that the close genetic relationship observed between the Spanish and Argentinean populations may be the result of parasite migration (i.e., the introduction of novel MLGs from Spain to South America) due to cattle movement. The eBURST relationships also revealed genetically different clusters associated with the abortion. The presence of linkage disequilibrium, the co-existence of specific MLGs to individual farms and eBURST MLG relationships suggest a predominant clonal propagation for Spanish N. caninum MLGs in cattle. PMID:23940816

  10. Hybridisation and genetic diversity in introduced Mimulus (Phrymaceae)

    PubMed Central

    Vallejo-Marin, M; Lye, G C

    2013-01-01

    Hybridisation among taxa with different ploidy levels is often associated with hybrid sterility. Clonal reproduction can stabilise these hybrids, but pervasive clonality may have a profound impact on the distribution of genetic diversity in natural populations. Here we investigate a widespread triploid taxon resulting from hybridisation between diploid Mimulus guttatus and tetraploid Mimulus luteus, two species that were introduced into the United Kingdom (UK) in the nineteenth century. This hybrid, Mimulus x robertsii, is largely sterile but capable of prolific vegetative propagation and has been recorded in the wild since 1872. We surveyed 40 Mimulus populations from localities across the UK to examine the current incidence of hybrids, and selected seventeen populations for genetic analysis using codominant markers. Cluster analyses revealed two main groups of genetically distinct individuals, corresponding to either diploid (M. guttatus) or polyploid (M. luteus and M. x robertsii) samples. Triploid hybrids were found in around 50% of sampled sites, sometimes coexisting with one of the parental species (M. guttatus). The other parent, M. luteus, was restricted to a single locality. Individual populations of M. x robertsii were genetically variable, containing multiple, highly heterozygous clones, with the majority of genetic variation distributed among- rather than within populations. Our findings demonstrate that this largely sterile, clonal taxon can preserve non-negligible amounts of genetic variation. The presence of genetically variable hybrid populations may provide the material for the continued success of asexual taxa in diverse environments. PMID:23169562

  11. Parasites and genetic diversity in an invasive bumblebee.

    PubMed

    Jones, Catherine M; Brown, Mark J F

    2014-04-21

    Biological invasions are facilitated by the global transportation of species and climate change. Given that invasions may cause ecological and economic damage and pose a major threat to biodiversity, understanding the mechanisms behind invasion success is essential. Both the release of non-native populations from natural enemies, such as parasites, and the genetic diversity of these populations may play key roles in their invasion success. We investigated the roles of parasite communities, through enemy release and parasite acquisition, and genetic diversity in the invasion success of the non-native bumblebee, Bombus hypnorum, in the United Kingdom. The invasive B. hypnorum had higher parasite prevalence than most, or all native congeners for two high-impact parasites, probably due to higher susceptibility and parasite acquisition. Consequently parasites had a higher impact on B. hypnorum queens' survival and colony-founding success than on native species. Bombus hypnorum also had lower functional genetic diversity at the sex-determining locus than native species. Higher parasite prevalence and lower genetic diversity have not prevented the rapid invasion of the United Kingdom by B. hypnorum. These data may inform our understanding of similar invasions by commercial bumblebees around the world. This study suggests that concerns about parasite impacts on the small founding populations common to re-introduction and translocation programs may be less important than currently believed. PMID:24749545

  12. Assessment of Genetic Diversity of Sweet Potato in Puerto Rico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sweet potato (Ipomoea batatas L.) is the seventh most important food crop due to its distinct advantages, such as adaptability to different environmental conditions and high nutritional value. Assessing the genetic diversity of this important crop is necessary due to the constant increase of demand ...

  13. Genetic diversity in advanced derivatives of Brassica interspecific hybrids

    Microsoft Academic Search

    B. R. Choudhary; P. Joshi

    2001-01-01

    Genetic diversity among the 88 entries including eighty F4 derivatives i.e., 20 each selected from Brassica crosses viz., B. juncea × B. napus, B. juncea × B. rapa var. toria, B. juncea ×B. rapa var. yellowsarson and B. tournefortii × B. juncea, and eight parent genotypes was assessed through multivariate analysis (D2 statistic). Significant differences among the family groupsas well

  14. Genetic diversity in Spanish donkey breeds using microsatellite DNA markers

    Microsoft Academic Search

    José Aranguren-Méndez; Jordi Jordana; Mariano Gomez

    2001-01-01

    Genetic diversity at 13 equine microsatellite loci was compared in five endangered Spanish donkey breeds: Andaluza, Catalana, Mallorquina, Encartaciones and Zamorano-Leonesa. All of the equine microsatellites used in this study were amplified and were polymorphic in the domestic donkey breeds with the exception of HMS1, which was monomorphic, and ASB2, which failed to amplify. Allele number, frequency distributions and mean

  15. RESEARCH Open Access Genetic diversity of Plasmodium falciparum

    E-print Network

    Paris-Sud XI, Université de

    , antimalarial drug efficacy trials based on MSP genotyping should be carefully interpreted. Background Malaria antimalarial drug resis- tance and aborted vaccines trials [2,3]. Genetic diversity determines the intensity of malaria transmission, thus providing baseline data for any antimalarial drug efficacy trial

  16. Genetic Diversity Among Wheat Cultivars Using Molecular Markers

    Microsoft Academic Search

    Babak Abdollahi Mandoulakani; Ali-Akbar Shahnejat-Bushehri; Badredin Ebrahim Sayed Tabatabaei; Sepideh Torabi; Alireza Mohammadi Hajiabad

    2010-01-01

    The objective of this study was to compare amplified fragment length polymorphism (AFLP), random amplified polymorphic DNA (RAPD), and DNA amplification fingerprinting (DAF) marker systems for estimating genetic diversity among 13 Iranian wheat (Triticum aestivum L.) cultivars through average expected heterozygosity (Hav), sum of effective number of alleles (SENA), and marker index (MI). The AFLP markers had the highest values

  17. Apomixis and the Management of Genetic Diversity Introduction

    E-print Network

    Bhattacharyya, Madan Kumar

    Apomixis and the Management of Genetic Diversity Matt Sorge Introduction: Apomixis is a form, hybrid plants using apomixis as their reproductive mechanism would not be subject to this variability (1, sorghum, and pearl millet), apomixis would enable breeders to more easily select unique gene combinations

  18. Stubborn: Genetic Diversity of Spiroplasma Citri in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citrus stubborn disease, caused by Spiroplasma citri, has caused economical losses to the citrus industry. Current detection methods are labor intensive and are not consistent. As part of a project is to improve the detection methods for Spiroplasma, we are assessing the genetic diversity of isolate...

  19. PCR Studies on Genetic Diversity of Rhizobial Strains

    Microsoft Academic Search

    MUHAMMAD SAJJAD; TANWIR AHMAD MALIK; MUHAMMAD ARSHAD; ZAHIR AHMAD ZAHIR

    2008-01-01

    Genetic diversity in rhizobial strains was studied by using Random Amplified Polymorphic DNA (RAPD) markers. The strains isolated, using dilution plate method, from nodules of lentil plant grown at different sites of Punjab, Pakistan were used in the study. Slow and fast growing colonies of rhizobial isolates were selected, isolated and purified by streaking. About 10 mL of broth culture

  20. Coalescence and genetic diversity in sexual populations under selection

    PubMed Central

    Neher, Richard A.; Kessinger, Taylor A.; Shraiman, Boris I.

    2013-01-01

    In sexual populations, selection operates neither on the whole genome, which is repeatedly taken apart and reassembled by recombination, nor on individual alleles that are tightly linked to the chromosomal neighborhood. The resulting interference between linked alleles reduces the efficiency of selection and distorts patterns of genetic diversity. Inference of evolutionary history from diversity shaped by linked selection requires an understanding of these patterns. Here, we present a simple but powerful scaling analysis identifying the unit of selection as the genomic “linkage block” with a characteristic length, , determined in a self-consistent manner by the condition that the rate of recombination within the block is comparable to the fitness differences between different alleles of the block. We find that an asexual model with the strength of selection tuned to that of the linkage block provides an excellent description of genetic diversity and the site frequency spectra compared with computer simulations. This linkage block approximation is accurate for the entire spectrum of strength of selection and is particularly powerful in scenarios with many weakly selected loci. The latter limit allows us to characterize coalescence, genetic diversity, and the speed of adaptation in the infinitesimal model of quantitative genetics. PMID:24019480

  1. Coalescence and genetic diversity in sexual populations under selection.

    PubMed

    Neher, Richard A; Kessinger, Taylor A; Shraiman, Boris I

    2013-09-24

    In sexual populations, selection operates neither on the whole genome, which is repeatedly taken apart and reassembled by recombination, nor on individual alleles that are tightly linked to the chromosomal neighborhood. The resulting interference between linked alleles reduces the efficiency of selection and distorts patterns of genetic diversity. Inference of evolutionary history from diversity shaped by linked selection requires an understanding of these patterns. Here, we present a simple but powerful scaling analysis identifying the unit of selection as the genomic "linkage block" with a characteristic length, , determined in a self-consistent manner by the condition that the rate of recombination within the block is comparable to the fitness differences between different alleles of the block. We find that an asexual model with the strength of selection tuned to that of the linkage block provides an excellent description of genetic diversity and the site frequency spectra compared with computer simulations. This linkage block approximation is accurate for the entire spectrum of strength of selection and is particularly powerful in scenarios with many weakly selected loci. The latter limit allows us to characterize coalescence, genetic diversity, and the speed of adaptation in the infinitesimal model of quantitative genetics. PMID:24019480

  2. Genetic diversity in cyanobacterial symbionts of thalloid bryophytes

    Microsoft Academic Search

    Jouko Rikkinen; Viivi Virtanen

    2010-01-01

    Two species of thalloid liverworts, Blasia pusilla and Cavicularia densa, form stable symbioses with nitro- gen-fixing cyanobacteria. Both bryophytes promote the persistence of their cyanobacterial associations by producing specialized gemmae, which facilitate the simultaneous dispersal of the host and its nitrogen- fixing symbionts. Here the genetic diversity of cyano- bacterial symbionts of Blasia and Cavicularia is examined. The results indicate

  3. Genetic diversity and management of Nearctic rock ptarmigan (Lagopus mutus)

    E-print Network

    Montgomerie, Bob

    Genetic diversity and management of Nearctic rock ptarmigan (Lagopus mutus) Karen Holder, Robert Montgomerie, and Vicki L. Friesen Abstract: Though the rock ptarmigan, Lagopus mutus (Montin, 1776: Lagopus mutus evermanni (Elliot, 1896) on Attu I., Alaska, Lagopus mutus welchi (Brewster, 1885

  4. Genetic diversity of Chelonibia caretta, commensal barnacles of the endangered

    E-print Network

    Schizas, Nikolaos

    Genetic diversity of Chelonibia caretta, commensal barnacles of the endangered hawksbill sea turtle studied in Chelonibia caretta, commensal barnacles of the endangered hawksbill sea turtle Eretmochelys of Chelonibia caretta whose host (the hawksbill sea turtle) has been included in the Endangered Species List

  5. ORIGINAL PAPER Genetic diversity affects colony survivorship in commercial

    E-print Network

    Tarpy, David R.

    ORIGINAL PAPER Genetic diversity affects colony survivorship in commercial honey bee colonies David drones), although there is much variation among queens. One main consequence of such extreme polyandry are the primary insect pollinators used in modern commercial production agricul- ture, and their populations have

  6. PLANT GENETIC DETERMINANTS OF ARTHROPOD COMMUNITY STRUCTURE AND DIVERSITY

    Microsoft Academic Search

    Gina M. Wimp; Gregory D. Martinsen; Kevin D. Floate; Randy K. Bangert; Thomas G. Whitham

    2005-01-01

    To test the hypothesis that genes have extended phenotypes on the community, we quantified how genetic differences among cottonwoods affect the diversity, abundance, and composition of the dependent arthropod com- munity. Over two years, five major patterns were observed in both field and common-garden studies that focused on two species of cottonwoods and their naturally occurring F1 and backcross hybrids

  7. ESTIMATING GENETIC DIVERSITY OF CANADA THISTLE WITHIN NORTH DAKOTA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Canadian Thistle, Cirsium arvense, is a noxious weed that occurs in a wide range of habitats and is difficult to control due to its extensive root system. It causes crop yield loss and invades natural grassland communities. Here, we have concentrated on estimating the level of genetic diversity be...

  8. GENETIC DIVERSITY OF CANADA THISTLE (CIRSIUM ARVENSE) IN NORTH DAKOTA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Canada thistle, Cirsium arvense, is a noxious weed that occurs in a wide range of habitats and is difficult to control due to its extensive root system and prolific seed production. Here, we focused on estimating the level of genetic diversity between populations in North Dakota as a first step in e...

  9. Defining Turtle Diversity: Proceedings of a Workshop on Genetics, Ethics,

    E-print Network

    Grether, Gregory

    Defining Turtle Diversity: Proceedings of a Workshop on Genetics, Ethics, and Taxonomy of Freshwater Turtles and Tortoises EXECUTIVE SUMMARY H. BRADLEY SHAFFER, NANCY N. FITZSIMMONS, ARTHUR GEORGES of evolutionary, conservation, and population biology. Turtles are particularly well suited to benefit from

  10. Genetic diversity and distinctiveness in Scottish alpine plants

    Microsoft Academic Search

    Kristine B. Westergaard; Inger G. Alsos; Dorothee Ehrich; Pernille B. Eidesen; Peter M. Hollingsworth; Christian Brochmann

    2008-01-01

    Background: Many alpine plants are rare in Scotland. Their persistence depends on their ability to withstand habitat fragmentation and loss due to changes in land use, increased grazing pressure, and climate change.Aims: We use a phylogeographic approach to address the origin and genetic diversity of Scottish populations, which is relevant for their future management and protection.Methods: We review phylogeographic studies

  11. Parasites and genetic diversity in an invasive bumblebee

    PubMed Central

    Jones, Catherine M; Brown, Mark J F; Ings, Thomas

    2014-01-01

    Biological invasions are facilitated by the global transportation of species and climate change. Given that invasions may cause ecological and economic damage and pose a major threat to biodiversity, understanding the mechanisms behind invasion success is essential. Both the release of non-native populations from natural enemies, such as parasites, and the genetic diversity of these populations may play key roles in their invasion success. We investigated the roles of parasite communities, through enemy release and parasite acquisition, and genetic diversity in the invasion success of the non-native bumblebee, Bombus hypnorum, in the United Kingdom. The invasive B. hypnorum had higher parasite prevalence than most, or all native congeners for two high-impact parasites, probably due to higher susceptibility and parasite acquisition. Consequently parasites had a higher impact on B. hypnorum queens’ survival and colony-founding success than on native species. Bombus hypnorum also had lower functional genetic diversity at the sex-determining locus than native species. Higher parasite prevalence and lower genetic diversity have not prevented the rapid invasion of the United Kingdom by B. hypnorum. These data may inform our understanding of similar invasions by commercial bumblebees around the world. This study suggests that concerns about parasite impacts on the small founding populations common to re-introduction and translocation programs may be less important than currently believed. PMID:24749545

  12. GENETIC DIVERSITY OF SCLEROTINIA SCLEROTIORUM FROM A SINGLE LENTIL FIELD.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic diversity of a S. sclerotiorum population from a single field was assessed by mycelial compatibility groups (MCGs) and presence of double stranded RNA (dsRNA). Thirty-seven isolates were obtained from scleritia on 31 diseased lentil plants in a field in eastern Washington. The sampled plan...

  13. Genetic Diversity in the Paramecium aurelia Species Complex

    PubMed Central

    Catania, Francesco; Wurmser, François; Potekhin, Alexey A.; Przybo?, Ewa; Lynch, Michael

    2009-01-01

    Current understanding of the population genetics of free-living unicellular eukaryotes is limited, and the amount of genetic variability in these organisms is still a matter of debate. We characterized—reproductively and genetically—worldwide samples of multiple Paramecium species belonging to a cryptic species complex, Paramecium aurelia, whose species have been shown to be reproductively isolated. We found that levels of genetic diversity both in the nucleus and in the mitochondrion are substantial within groups of reproductively compatible P. aurelia strains but drop considerably when strains are partitioned according to their phylogenetic groupings. Our study reveals the existence of discrepancies between the mating behavior of a number of P. aurelia strains and their multilocus genetic profile, a controversial finding that has major consequences for both the current methods of species assignment and the species problem in the P. aurelia complex. PMID:19023087

  14. Maintenance of genetic diversity through plant-herbivore interactions

    PubMed Central

    Gloss, Andrew D.; Dittrich, Anna C. Nelson; Goldman-Huertas, Benjamin; Whiteman, Noah K.

    2013-01-01

    Identifying the factors governing the maintenance of genetic variation is a central challenge in evolutionary biology. New genomic data, methods and conceptual advances provide increasing evidence that balancing selection, mediated by antagonistic species interactions, maintains functionally-important genetic variation within species and natural populations. Because diverse interactions between plants and herbivorous insects dominate terrestrial communities, they provide excellent systems to address this hypothesis. Population genomic studies of Arabidopsis thaliana and its relatives suggest spatial variation in herbivory maintains adaptive genetic variation controlling defense phenotypes, both within and among populations. Conversely, inter-species variation in plant defenses promotes adaptive genetic variation in herbivores. Emerging genomic model herbivores of Arabidopsis could illuminate how genetic variation in herbivores and plants interact simultaneously. PMID:23834766

  15. Cryptic genetic diversity and complex phylogeography of the boreal North American scorpion, Paruroctonus boreus (Vaejovidae).

    PubMed

    Miller, A L; Makowsky, R A; Formanowicz, D R; Prendini, L; Cox, C L

    2014-02-01

    Diverse studies in western North America have revealed the role of topography for dynamically shaping genetic diversity within species though vicariance, dispersal and range expansion. We examined patterns of phylogeographical diversity in the widespread but poorly studied North American vaejovid scorpion, Paruroctonus boreus Girard 1854. We used mitochondrial sequence data and parsimony, likelihood, and Bayesian inference to reconstruct phylogenetic relationships across the distributional range of P. boreus, focusing on intermontane western North America. Additionally, we developed a species distribution model to predict its present and historical distributions during the Last Glacial Maximum and the Last Interglacial Maximum. Our results documented complex phylogeographic relationships within P. boreus, with multiple, well-supported crown clades that are either geographically-circumscribed or widespread and separated by short, poorly supported internodes. We also observed subtle variation in predicted habitat suitability, especially at the northern, eastern and southern edges of the predicted distributional range under past climatic conditions. The complex phylogenetic relationships of P. boreus suggests that historical isolation and expansion of populations may have occurred. Variation in the predicted distributional range over time may implicate past climatic fluctuations in generating the patterns of genetic diversity observed in P. boreus. These findings highlight both the potential for cryptic biodiversity in widespread North American scorpion species and the importance of phylogeographical studies for understanding the factors responsible for generating the biodiversity of western North America. PMID:24269314

  16. Molecular diversity and relationships among Cymbidium goeringii cultivars based on inter-simple sequence repeat (ISSR) markers.

    PubMed

    Wang, Hui-Zhong; Wu, Zhen-Xing; Lu, Jiang-Jie; Shi, Nong-Nong; Zhao, Yan; Zhang, Zhi-Tao; Liu, Jun-Jun

    2009-07-01

    Spring orchid (Cymbidium goeringii) is a popular flowering plant species. There have been few molecular studies of the genetic diversity and conservation genetics on this species. An assessment of the level of genetic diversity in cultivated spring orchid would facilitate development of the future germplasm conservation for cultivar improvement. In the present study, DNA markers of intersimple sequence repeats (ISSR) were identified and the ISSR fingerprinting technique was used to evaluate genetic diversity in C. goeringii cultivars. Twenty-five ISSR primers were selected to produce a total of 224 ISSR loci for evaluation of the genetic diversity. A wide genetic variation was found in the 50 tested cultivars with Nei's gene diversity (H = 0.2241) and 93.75% of polymorphic loci. Fifty cultivars were unequivocally distinguished based on ISSR fingerprinting. Cultivar-specific ISSR markers were identified in seven of 50 tested cultivars. Unweighted pair-group mean analysis (UPGMA) and principal coordinates analysis (PCA) grouped them into two clusters: one composed the cultivars mainly from Japan, and the other contained three major subclusters mainly from China. Two Chinese subclusters were generally consistent with horticultural classification, and the third Chinese subcluster contained cultivars from various horticultural groups. Our results suggest that the ISSR technique provides a powerful tool for cultivar identification and establishment of genetic relationships of cultivars in C. goeringii. PMID:19085060

  17. Genetic diversity and multilocus genetic structure in the relictual endemic herb Japonolirion osense (Petrosaviaceae)

    Microsoft Academic Search

    Akihiko Hoya; Hideki Takahashi; Masashi Ohara

    2004-01-01

    Plant clonality may greatly reduce effective population size and influence management strategies of rare and endangered species. We examined genetic diversity and the extent of clonality in four populations of the monotypic herbaceous perennial Japonolirion osense, which is one of the most rare flowering plants in Japan. Allozyme analysis revealed moderate levels of genetic variation, and the proportion of polymorphic

  18. Population genetic structure and genetic diversity of soybean aphids from USA, Korea and Japan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Following its recent invasion of North America, the soybean aphid (Aphis glycines Matsumura) has become the number one insect pest of soybean (Glycine max L. Merr.) in the north central states of USA. Very little is known about the population genetic structure and genetic diversity of the soybean ap...

  19. Microsatellite polymorphism in the sexually transmitted human pathogen Trichomonas vaginalis indicates a genetically diverse parasite

    PubMed Central

    Conrad, Melissa; Zubacova, Zuzana; Dunn, Linda A.; Upcroft, Jacqui; Sullivan, Steven A.; Tachezy, Jan; Carlton, Jane M.

    2010-01-01

    Given the growing appreciation of serious health sequelae from widespread Trichomonas vaginalis infection, new tools are needed to study the parasite's genetic diversity. To this end we have identified and characterized a panel of 21 microsatellites and six single-copy genes from the T. vaginalis genome, using seven laboratory strains of diverse origin. We have (1) adapted our microsatellite typing method to incorporate affordable fluorescent labeling, (2) determined that the microsatellite loci remain stable in parasites continuously cultured up to 17 months, and (3) evaluated microsatellite marker coverage of the six chromosomes that comprise the T. vaginalis genome using fluorescent in situ hybridization (FISH). We have used the markers to show that T. vaginalis is a genetically diverse parasite in a population of commonly used laboratory strains. In addition, we have used phylogenetic methods to infer evolutionary relationships from our markers in order to validate their utility in future population analyses. Our panel is the first series of robust polymorphic genetic markers for T. vaginalis that can be used to classify and monitor lab strains, as well as provide a means to measure the genetic diversity and population structure of extant and future T. vaginalis isolates. PMID:20813140

  20. Genetic diversity and molecular phylogeography of Chinese domestic goats by large-scale mitochondrial DNA analysis.

    PubMed

    Zhao, Yongju; Zhao, Runze; Zhao, Zhongquan; Xu, Huizhong; Zhao, Erhu; Zhang, Jiahua

    2014-06-01

    Mitochondrial DNA (mtDNA) D-loop sequences of 666 individuals (including 109 new individuals, 557 individuals retrieved from GenBank) from 33 Chinese domestic goat breeds throughout China were used to investigate their mtDNA variability and molecular phylogeography. The results showed that all goat breeds in this study proved to be extremely diverse, and the average haplotype diversity and nucleotide diversity were 0.990 ± 0.001 and 0.032 ± 0.001, respectively. The 666 sequences gave 326 different haplotypes. Phylogenetic analyses revealed that there were 4 mtDNA haplogroups identified in Chinese domestic goats, in which haplogroup A was predominant and widely distributed. Our finding was consistent with archaeological data and other genetic diversity studies. Amova analysis showed there was significant geographical structuring. Almost 84.31% of genetic variation was included in the within-breed variance component and only 4.69% was observed among the geographic distributions. This genetic diversity results further supported the previous view of multiple maternal origins of Chinese domestic goats, and the results on the phylogenetic relationship contributed to a better understanding of the history of goat domestication and modern production of domestic goats. PMID:24532161

  1. Genetic diversity and population structure in the tomato-like nightshades Solanum lycopersicoides and S. sitiens

    PubMed Central

    Albrecht, Elena; Escobar, Miguel; Chetelat, Roger T.

    2010-01-01

    Background and Aims Two closely related, wild tomato-like nightshade species, Solanum lycopersicoides and Solanum sitiens, inhabit a small area within the Atacama Desert region of Peru and Chile. Each species possesses unique traits, including abiotic and biotic stress tolerances, and can be hybridized with cultivated tomato. Conservation and utilization of these tomato relatives would benefit from an understanding of genetic diversity and relationships within and between populations. Methods Levels of genetic diversity and population genetic structure were investigated by genotyping representative accessions of each species with a set of simple sequence repeat (SSR) and allozyme markers. Key Results As expected for self-incompatible species, populations of S. lycopersicoides and S. sitiens were relatively diverse, but contained less diversity than the wild tomato Solanum chilense, a related allogamous species native to this region. Populations of S. lycopersicoides were slightly more diverse than populations of S. sitiens according to SSRs, but the opposite trend was found with allozymes. A higher coefficient of inbreeding was noted in S. sitiens. A pattern of isolation by distance was evident in both species, consistent with the highly fragmented nature of the populations in situ. The populations of each taxon showed strong geographical structure, with evidence for three major groups, corresponding to the northern, central and southern elements of their respective distributions. Conclusions This information should be useful for optimizing regeneration strategies, for sampling of the populations for genes of interest, and for guiding future in situ conservation efforts. PMID:20154348

  2. Synthetic biology: advancing the design of diverse genetic systems

    PubMed Central

    Wang, Yen-Hsiang; Wei, Kathy Y.; Smolke, Christina D.

    2013-01-01

    A main objective of synthetic biology is to make the process of designing genetically-encoded biological systems more systematic, predictable, robust, scalable, and efficient. The examples of genetic systems in the field vary widely in terms of operating hosts, compositional approaches, and network complexity, ranging from a simple genetic switch to search-and-destroy systems. While significant advances in synthesis capabilities support the potential for the implementation of pathway- and genome-scale programs, several design challenges currently restrict the scale of systems that can be reasonably designed and implemented. Synthetic biology offers much promise in developing systems to address challenges faced in manufacturing, the environment and sustainability, and health and medicine, but the realization of this potential is currently limited by the diversity of available parts and effective design frameworks. As researchers make progress in bridging this design gap, advances in the field hint at ever more diverse applications for biological systems. PMID:23413816

  3. Genetic Diversity Analysis of Sugarcane Parents in Chinese Breeding Programmes Using gSSR Markers

    PubMed Central

    You, Qian; Xu, Liping; Zheng, Yifeng; Que, Youxiong

    2013-01-01

    Sugarcane is the most important sugar and bioenergy crop in the world. The selection and combination of parents for crossing rely on an understanding of their genetic structures and molecular diversity. In the present study, 115 sugarcane genotypes used for parental crossing were genotyped based on five genomic simple sequence repeat marker (gSSR) loci and 88 polymorphic alleles of loci (100%) as detected by capillary electrophoresis. The values of genetic diversity parameters across the populations indicate that the genetic variation intrapopulation (90.5%) was much larger than that of interpopulation (9.5%). Cluster analysis revealed that there were three groups termed as groups I, II, and III within the 115 genotypes. The genotypes released by each breeding programme showed closer genetic relationships, except the YC series released by Hainan sugarcane breeding station. Using principle component analysis (PCA), the first and second principal components accounted for a cumulative 76% of the total variances, in which 43% were for common parents and 33% were for new parents, respectively. The knowledge obtained in this study should be useful to future breeding programs for increasing genetic diversity of sugarcane varieties and cultivars to meet the demand of sugarcane cultivation for sugar and bioenergy use. PMID:23990759

  4. Genetic diversity analysis of sugarcane parents in Chinese breeding programmes using gSSR markers.

    PubMed

    You, Qian; Xu, Liping; Zheng, Yifeng; Que, Youxiong

    2013-01-01

    Sugarcane is the most important sugar and bioenergy crop in the world. The selection and combination of parents for crossing rely on an understanding of their genetic structures and molecular diversity. In the present study, 115 sugarcane genotypes used for parental crossing were genotyped based on five genomic simple sequence repeat marker (gSSR) loci and 88 polymorphic alleles of loci (100%) as detected by capillary electrophoresis. The values of genetic diversity parameters across the populations indicate that the genetic variation intrapopulation (90.5%) was much larger than that of interpopulation (9.5%). Cluster analysis revealed that there were three groups termed as groups I, II, and III within the 115 genotypes. The genotypes released by each breeding programme showed closer genetic relationships, except the YC series released by Hainan sugarcane breeding station. Using principle component analysis (PCA), the first and second principal components accounted for a cumulative 76% of the total variances, in which 43% were for common parents and 33% were for new parents, respectively. The knowledge obtained in this study should be useful to future breeding programs for increasing genetic diversity of sugarcane varieties and cultivars to meet the demand of sugarcane cultivation for sugar and bioenergy use. PMID:23990759

  5. Mitochondrial DNA perspective of Serbian genetic diversity.

    PubMed

    Davidovic, Slobodan; Malyarchuk, Boris; Aleksic, Jelena M; Derenko, Miroslava; Topalovic, Vladanka; Litvinov, Andrey; Stevanovic, Milena; Kovacevic-Grujicic, Natasa

    2015-03-01

    Although south-Slavic populations have been studied to date from various aspects, the population of Serbia, occupying the central part of the Balkan Peninsula, is still genetically understudied at least at the level of mitochondrial DNA (mtDNA) variation. We analyzed polymorphisms of the first and the second mtDNA hypervariable segments (HVS-I and HVS-II) and informative coding-region markers in 139 Serbians to shed more light on their mtDNA variability, and used available data on other Slavic and neighboring non-Slavic populations to assess their interrelations in a broader European context. The contemporary Serbian mtDNA profile is consistent with the general European maternal landscape having a substantial proportion of shared haplotypes with eastern, central, and southern European populations. Serbian population was characterized as an important link between easternmost and westernmost south-Slavic populations due to the observed lack of genetic differentiation with all other south-Slavic populations and its geographical positioning within the Balkan Peninsula. An increased heterogeneity of south Slavs, most likely mirroring turbulent demographic events within the Balkan Peninsula over time (i.e., frequent admixture and differential introgression of various gene pools), and a marked geographical stratification of Slavs to south-, east-, and west-Slavic groups, were also found. A phylogeographic analyses of 20 completely sequenced Serbian mitochondrial genomes revealed not only the presence of mtDNA lineages predominantly found within the Slavic gene pool (U4a2a*, U4a2a1, U4a2c, U4a2g, HV10), supporting a common Slavic origin, but also lineages that may have originated within the southern Europe (H5*, H5e1, H5a1v) and the Balkan Peninsula in particular (H6a2b and L2a1k). Am J Phys Anthropol 156:449-465, 2015. © 2014 Wiley Periodicals, Inc. PMID:25418795

  6. PCR-based fingerprinting using AFLPs as a tool for studying genetic relationships in Lactuca spp.

    PubMed

    Hill, M; Witsenboer, H; Zabeau, M; Vos, P; Kesseli, R; Michelmore, R

    1996-12-01

    AFLP markers were evaluated for determining the phylogenetic relationships Lactuca spp. Genetic distances based on AFLP data were estimated for 44 morphologically diverse lines of cultivated L. sativa and 13 accessions of the wild species L. serriola, L. saligna, L. virosa, L. perennis, and L. indica. The same genotypes were analyzed as in a previous study that had utilized RFLP markers. The phenetic tree based on AFLP data was consistent with known taxonomic relationships and similar to a tree developed with RFLP data. The genetic distance matrices derived from AFLP and RFLP data were compared using least squares regression analysis and, for the cultivar data, by principal component analysis. There was also a positive linear relationship between distance estimates based on AFLP data and kinship coefficients calculated from pedigree data. AFLPs represent reliable PCR-based markers for studies of genetic relationships at a variety of taxonomic levels. PMID:24162531

  7. Population connectivity buffers genetic diversity loss in a seabird

    PubMed Central

    2013-01-01

    Background Ancient DNA has revolutionized conservation genetic studies as it allows monitoring of the genetic variability of species through time and predicting the impact of ecosystems’ threats on future population dynamics and viability. Meanwhile, the consequences of anthropogenic activities and climate change to island faunas, particularly seabirds, remain largely unknown. In this study, we examined temporal changes in the genetic diversity of a threatened seabird, the Cory’s shearwater (Calonectris borealis). Findings We analysed the mitochondrial DNA control region of ancient bone samples from the late-Holocene retrieved from the Canary archipelago (NE Atlantic) together with modern DNA sequences representative of the entire breeding range of the species. Our results show high levels of ancient genetic diversity in the Canaries comparable to that of the extant population. The temporal haplotype network further revealed rare but recurrent long-distance dispersal between ocean basins. The Bayesian demographic analyses reveal both regional and local population size expansion events, and this is in spite of the demographic decline experienced by the species over the last millennia. Conclusions Our findings suggest that population connectivity of the species has acted as a buffer of genetic losses and illustrate the use of ancient DNA to uncover such cryptic genetic events. PMID:23688345

  8. Genetic diversity of FLO1 and FLO5 genes in wine flocculent Saccharomyces cerevisiae strains.

    PubMed

    Tofalo, Rosanna; Perpetuini, Giorgia; Di Gianvito, Paola; Schirone, Maria; Corsetti, Aldo; Suzzi, Giovanna

    2014-11-17

    Twenty-eight flocculent wine strains were tested for adhesion and flocculation phenotypic variability. Moreover, the expression patterns of the main genes involved in flocculation (FLO1, FLO5 and FLO8) were studied both in synthetic medium and in presence of ethanol stress. Molecular identification and typing were achieved by PCR-RFLP of the 5.8S ITS rRNA region and microsatellite PCR fingerprinting, respectively. All isolates belong to Saccharomyces cerevisiae species. The analysis of microsatellites highlighted the intraspecific genetic diversity of flocculent wine S. cerevisiae strains allowing obtaining strain-specific profiles. Moreover, strains were characterized on the basis of adhesive properties. A wide biodiversity was observed even if none of the tested strains were able to form biofilms (or 'mats'), or to adhere to polystyrene. Moreover, genetic diversity of FLO1 and FLO5 flocculating genes was determined by PCR. Genetic diversity was detected for both genes, but a relationship with the flocculation degree was not found. So, the expression patterns of FLO1, FLO5 and FLO8 genes was investigated in a synthetic medium and a relationship between the expression of FLO5 gene and the flocculation capacity was established. To study the expression of FLO1, FLO5 and FLO8 genes in floc formation and ethanol stress resistance qRT-PCR was carried out and also in this case strains with flocculent capacity showed higher levels of FLO5 gene expression. This study confirmed the diversity of flocculation phenotype and genotype in wine yeasts. Moreover, the importance of FLO5 gene in development of high flocculent characteristic of wine yeasts was highlighted. The obtained collection of S. cerevisiae flocculent wine strains could be useful to study the relationship between the genetic variation and flocculation phenotype in wine yeasts. PMID:25218464

  9. ASSOCIATIONS BETWEEN GENETIC DIVERSITY AND ANTHROPOGENIC DISTURBANCE IN MIDWESTERN STREAM-DWELLING MINNOWS

    EPA Science Inventory

    Anthropogenic disturbances may leave imprints on patterns of intraspecific genetic diversity through their effects on population size, adaptation, migration, and mutation. We examined patterns of genetic diversity for a stream-dwelling minnow (the central stoneroller, Campostoma...

  10. Molecular genetic diversity and genetic structure of Vietnamese indigenous pig populations.

    PubMed

    Pham, L D; Do, D N; Nam, L Q; Van Ba, N; Minh, L T A; Hoan, T X; Cuong, V C; Kadarmideen, H N

    2014-10-01

    The study characterized genetic diversity and genetic structure of five indigenous pig populations (Ha Lang, Muong Te, Mong Cai, Lung and Lung Pu), two wild pig populations (Vietnamese and Thai wild pigs) and an exotic pig breed (Yorkshire) using FAO/ISAG recommended 16 microsatellite markers in 236 samples. All estimated loci were very polymorphic indicated by high values of polymorphism information content (from 0.76 in S0225 to 0.92 in Sw2410). Indigenous populations had very high level of genetic diversity (mean He = 0.75); of all indigenous breeds, Lung Pu showed highest mean number of alleles (MNA = 10.1), gene diversity (He = 0.82), allele richness (5.33) and number of private alleles (10). Thirteen percentage of the total genetic variation observed was due to differences among populations. The neighbour-joining dendrogram obtained from Nei's standard genetic distance differentiated eight populations into four groups including Yorkshire, two wild populations, Mong Cai population and a group of four other indigenous populations. The Bayesian clustering with the admixture model implemented in Structure 2.1 indicated seven possible homogenous clusters among eight populations. From 79% (Ha Lang) to 98% (Mong Cai). individuals in indigenous pigs were assigned to their own populations. The results confirmed high level of genetic diversity and shed a new light on genetic structure of Vietnam indigenous pig populations. PMID:24373066

  11. Understanding Genetic Diversity and Population Structure of a Poa pratensis Worldwide Collection through Morphological, Nuclear and Chloroplast Diversity Analysis.

    PubMed

    Raggi, Lorenzo; Bitocchi, Elena; Russi, Luigi; Marconi, Gianpiero; Sharbel, Timothy F; Veronesi, Fabio; Albertini, Emidio

    2015-01-01

    Poa pratensis L. is a forage and turf grass species well adapted to a wide range of mesic to moist habitats. Due to its genome complexity little is known regarding evolution, genome composition and intraspecific phylogenetic relationships of this species. In the present study we investigated the morphological and genetic diversity of 33 P. pratensis accessions from 23 different countries using both nuclear and chloroplast molecular markers as well as flow cytometry of somatic tissues. This with the aim of shedding light on the genetic diversity and phylogenetic relationships of the collection that includes both cultivated and wild materials. Morphological characterization showed that the most relevant traits able to distinguish cultivated from wild forms were spring growth habit and leaf colour. The genome size analysis revealed high variability both within and between accessions in both wild and cultivated materials. The sequence analysis of the trnL-F chloroplast region revealed a low polymorphism level that could be the result of the complex mode of reproduction of this species. In addition, a strong reduction of chloroplast SSR variability was detected in cultivated materials, where only two alleles were conserved out of the four present in wild accessions. Contrarily, at nuclear level, high variability exist in the collection where the analysis of 11 SSR loci allowed the detection of a total of 91 different alleles. A Bayesian analysis performed on nuclear SSR data revealed that studied materials belong to two main clusters. While wild materials are equally represented in both clusters, the domesticated forms are mostly belonging to cluster P2 which is characterized by lower genetic diversity compared to the cluster P1. In the Neighbour Joining tree no clear distinction was found between accessions with the exception of those from China and Mongolia that were clearly separated from all the others. PMID:25893249

  12. Using Plant Functional Traits to Explain Diversity–Productivity Relationships

    PubMed Central

    Roscher, Christiane; Schumacher, Jens; Gubsch, Marlén; Lipowsky, Annett; Weigelt, Alexandra; Buchmann, Nina; Schmid, Bernhard; Schulze, Ernst-Detlef

    2012-01-01

    Background The different hypotheses proposed to explain positive species richness–productivity relationships, i.e. selection effect and complementarity effect, imply that plant functional characteristics are at the core of a mechanistic understanding of biodiversity effects. Methodology/Principal Findings We used two community-wide measures of plant functional composition, (1) community-weighted means of trait values (CWM) and (2) functional trait diversity based on Rao’s quadratic diversity (FDQ) to predict biomass production and measures of biodiversity effects in experimental grasslands (Jena Experiment) with different species richness (2, 4, 8, 16 and 60) and different functional group number and composition (1 to 4; legumes, grasses, small herbs, tall herbs) four years after establishment. Functional trait composition had a larger predictive power for community biomass and measures of biodiversitity effects (40–82% of explained variation) than species richness per se (<1–13% of explained variation). CWM explained a larger amount of variation in community biomass (80%) and net biodiversity effects (70%) than FDQ (36 and 38% of explained variation respectively). FDQ explained similar proportions of variation in complementarity effects (24%, positive relationship) and selection effects (28%, negative relationship) as CWM (27% of explained variation for both complementarity and selection effects), but for all response variables the combination of CWM and FDQ led to significant model improvement compared to a separate consideration of different components of functional trait composition. Effects of FDQ were mainly attributable to diversity in nutrient acquisition and life-history strategies. The large spectrum of traits contributing to positive effects of CWM on biomass production and net biodiversity effects indicated that effects of dominant species were associated with different trait combinations. Conclusions/Significance Our results suggest that the identification of relevant traits and the relative impacts of functional identity of dominant species and functional diversity are essential for a mechanistic understanding of the role of plant diversity for ecosystem processes such as aboveground biomass production. PMID:22623961

  13. Defining the landscape of adaptive genetic diversity.

    PubMed

    Eckert, Andrew J; Dyer, Rodney J

    2012-06-01

    Whether they are used to describe fitness, genome architecture or the spatial distribution of environmental variables, the concept of a landscape has figured prominently in our collective reasoning. The tradition of landscapes in evolutionary biology is one of fitness mapped onto axes defined by phenotypes or molecular sequence states. The characteristics of these landscapes depend on natural selection, which is structured across both genomic and environmental landscapes, and thus, the bridge among differing uses of the landscape concept (i.e. metaphorically or literally) is that of an adaptive phenotype and its distribution across geographical landscapes in relation to selective pressures. One of the ultimate goals of evolutionary biology should thus be to construct fitness landscapes in geographical space. Natural plant populations are ideal systems with which to explore the feasibility of attaining this goal, because much is known about the quantitative genetic architecture of complex traits for many different plant species. What is less known are the molecular components of this architecture. In this issue of Molecular Ecology, Parchman et al. (2012) pioneer one of the first truly genome-wide association studies in a tree that moves us closer to this form of mechanistic understanding for an adaptive phenotype in natural populations of lodgepole pine (Pinus contorta Dougl. ex Loud.). PMID:22676074

  14. Meta-analysis reveals lower genetic diversity in overfished populations.

    PubMed

    Pinsky, Malin L; Palumbi, Stephen R

    2014-01-01

    While population declines can drive the loss of genetic diversity under some circumstances, it has been unclear whether this loss is a general consequence of overharvest in highly abundant marine fishes. We compiled data from 11 049 loci across 140 species and found that allelic richness was lower in overfished populations within 9 of 12 genera and families. A multiple linear regression showed that allelic richness was on average 12% lower (P < 0.0001) in overharvested populations after accounting for the effects of body size, latitude and other factors. Heterozygosity was on average 2% lower (P = 0.030). Simulations confirmed that these patterns are consistent with a recent bottleneck in abundant species and also showed that our analysis likely underestimates the loss of rare alleles by a factor of two or three. This evidence suggests that overharvest drives the decay of genetic diversity across a wide range of marine fishes. Such reductions of genetic diversity in some of the world's most abundant species may lead to a long-term impact of fishing on their evolutionary potential, particularly if abundance remains low and diversity continues to decay. PMID:24372754

  15. Genetic diversity affects colony survivorship in commercial honey bee colonies.

    PubMed

    Tarpy, David R; Vanengelsdorp, Dennis; Pettis, Jeffrey S

    2013-08-01

    Honey bee (Apis mellifera) queens mate with unusually high numbers of males (average of approximately 12 drones), although there is much variation among queens. One main consequence of such extreme polyandry is an increased diversity of worker genotypes within a colony, which has been shown empirically to confer significant adaptive advantages that result in higher colony productivity and survival. Moreover, honey bees are the primary insect pollinators used in modern commercial production agriculture, and their populations have been in decline worldwide. Here, we compare the mating frequencies of queens, and therefore, intracolony genetic diversity, in three commercial beekeeping operations to determine how they correlate with various measures of colony health and productivity, particularly the likelihood of queen supersedure and colony survival in functional, intensively managed beehives. We found the average effective paternity frequency (m e ) of this population of honey bee queens to be 13.6?±?6.76, which was not significantly different between colonies that superseded their queen and those that did not. However, colonies that were less genetically diverse (headed by queens with m e ???7.0) were 2.86 times more likely to die by the end of the study when compared to colonies that were more genetically diverse (headed by queens with m e ?>?7.0). The stark contrast in colony survival based on increased genetic diversity suggests that there are important tangible benefits of increased queen mating number in managed honey bees, although the exact mechanism(s) that govern these benefits have not been fully elucidated. PMID:23728203

  16. Genetic diversity affects colony survivorship in commercial honey bee colonies

    NASA Astrophysics Data System (ADS)

    Tarpy, David R.; vanEngelsdorp, Dennis; Pettis, Jeffrey S.

    2013-08-01

    Honey bee ( Apis mellifera) queens mate with unusually high numbers of males (average of approximately 12 drones), although there is much variation among queens. One main consequence of such extreme polyandry is an increased diversity of worker genotypes within a colony, which has been shown empirically to confer significant adaptive advantages that result in higher colony productivity and survival. Moreover, honey bees are the primary insect pollinators used in modern commercial production agriculture, and their populations have been in decline worldwide. Here, we compare the mating frequencies of queens, and therefore, intracolony genetic diversity, in three commercial beekeeping operations to determine how they correlate with various measures of colony health and productivity, particularly the likelihood of queen supersedure and colony survival in functional, intensively managed beehives. We found the average effective paternity frequency ( m e ) of this population of honey bee queens to be 13.6 ± 6.76, which was not significantly different between colonies that superseded their queen and those that did not. However, colonies that were less genetically diverse (headed by queens with m e ? 7.0) were 2.86 times more likely to die by the end of the study when compared to colonies that were more genetically diverse (headed by queens with m e > 7.0). The stark contrast in colony survival based on increased genetic diversity suggests that there are important tangible benefits of increased queen mating number in managed honey bees, although the exact mechanism(s) that govern these benefits have not been fully elucidated.

  17. Genetic diversity in Leavenworthia populations with different inbreeding levels.

    PubMed Central

    Liu, F; Zhang, L; Charlesworth, D

    1998-01-01

    Levels of neutral genetic diversity within and between populations were compared between outcrossing (self-incompatible) and inbreeding populations in the annual plant genus Leavenworthia. Two taxonomically independent comparisons are possible, since self-incompatibility has been lost twice in the group of species studied. Within inbred populations of L.uniflora and L.crassa, no DNA sequence variants were seen among the alleles sampled, but high diversity was seen in alleles from populations of the outcrosser L. stylosa, and in self-incompatible L. crassa populations. Diversity between populations was seen in all species. Although total diversity values were lower in the sets of inbreeding populations, between-population values were as high or higher, than those in the outcrossing taxa. Possible reasons for these diversity patterns are discussed. As the effect of inbreeding appears to be a greater than twofold reduction in diversity, we argue that some process such as selection for advantageous mutations, or against deleterious mutations, or bottlenecks occurring predominantly in the inbreeders, appears necessary to account for the findings. If selection for advantageous mutations is responsible, it appears that it must be some form of local adaptive selection, rather than substitution of alleles that are advantageous throughout the species. This is consistent with the finding of high between-population diversity in the inbreeding taxa. PMID:9523432

  18. Genetic diversity of Mycosphaerella graminicola isolates from a single field.

    PubMed

    Siah, A; Reignault, Ph; Halama, P

    2013-01-01

    Septoria tritici blotch caused by Mycosphaerella graminicola is currently one of the most economically damaging diseases on wheat crops worldwide. Two hundred and sixty single-conidial isolates of this fungus were sampled in April 2012 in the Nord-Pas de Calais region (France). They have all been collected from 13 distinct plots in a single field. The corresponding isolates were then fingerprinted using 8 microsatellite markers in order to assess the genetic diversity and population structure of M. graminicola at the single field scale. The results revealed a high genotypic diversity within the collected population, with the detection of 83% of unique haplotypes among the isolates tested (clonal fraction = 17%). A high genic diversity was also found as indicated by the Nei's index value (0.50) and strong allele diversity obtained (number of alleles per locus ranged from 7 to 17, with an average of 10 alleles per locus). Further analyses showed a low population differentiation (G(ST) = 0.08) and a high gene flow (Nm = 5.64) between the 13 sampled plots. Our study suggests that sexual reproduction, by its frequency, plays a major role in the genetic diversification of M. graminicola at the field level and in the distribution and homogenization of this diversity in the field via wind-born ascospores. PMID:25151819

  19. No loss of genetic diversity in small and isolated populations of Medicago sativa subsp. falcata

    Microsoft Academic Search

    Karin Kaljund; Vello Jaaska

    2010-01-01

    Molecular allozyme markers of three polymorphic isozymes were used to estimate the genetic diversity among the seed progeny in fragmented Estonian populations of sickle medic Medicago sativa ssp. falcata L. depending on the population size and the isolation degree. Genetic diversity He was high in all populations, ranging between 0.795 and 0.893. No correlation between the genetic diversity measures and

  20. [Genetic diversity of Mongolian gazelle Procapra guttorosa Pallas, 1777].

    PubMed

    Sorokin, P A; Kiriliuk, V E; Lushchekina, A A; Kholodova, M V

    2005-10-01

    The mitochondrial DNA D-loop hypervariable fragment sequence polymorphism was examined in 27 Mongolian gazelles from Mongolia, Russia, and China. Intraspecific polymorphism of the D-loop fragment examined was demonstrated. All haplotypes described were unique. The average nucleotide diversity (pi) for the mtDNA fragment investigated constituted 5.85 +/- 2.92%. A relatively high number of insertions and deletions was observed. In particular, a haplotype with the 77-bp insertion was described. The data obtained point to high genetic diversity of Mongolian populations. There was no correlation between the distribution of haplotypes examined and geographical location of the animal tissue sampling sites. PMID:16316006

  1. GENETIC DIVERSITY AND THE ORIGINS OF CULTURAL FRAGMENTATION

    PubMed Central

    Ashraf, Quamrul; Galor, Oded

    2013-01-01

    Despite the importance attributed to the effects of diversity on the stability and prosperity of nations, the origins of the uneven distribution of ethnic and cultural fragmentation across countries have been underexplored. Building on the role of deeply-rooted biogeographical forces in comparative development, this research empirically demonstrates that genetic diversity, predominantly determined during the prehistoric “out of Africa” migration of humans, is an underlying cause of various existing manifestations of ethnolinguistic heterogeneity. Further exploration of this uncharted territory may revolutionize the understanding of the effects of deeply-rooted factors on economic development and the composition of human capital across the globe. PMID:25506084

  2. Genetic relationships among cherry species with transferability of simple sequence repeat loci.

    PubMed

    Khadivi-Khub, Abdollah

    2014-09-01

    Sweet and sour cherries are two economically important species in the world. The capability to distinguish among cherry genotypes in breeding, cultivation and germplasm collection is extremely important for scientific as well as economic reasons. In the present research, sixteen simple sequences repeat (SSR) loci were used to estimate the relationships among sweet, sour, duke and wild cherries. All of the SSR markers showed high transferability across the studied species that allowed us to study genetic diversity in them. Totally 96 alleles were generated with SSR loci, of which 93 were found polymorphic with 97.57 % polymorphism. Values of genetic similarity between genotypes varied from 0.16 to 0.97 which indicated high level of genetic diversity. On the basis of their genetic similarities, SSR analysis allowed to group the genotypes into three main clusters according to their species. These results have an important implication for cherry germplasm characterization, improvement, and conservation. PMID:24973884

  3. Turtle Carapace Anomalies: The Roles of Genetic Diversity and Environment

    PubMed Central

    Velo-Antón, Guillermo; Becker, C. Guilherme; Cordero-Rivera, Adolfo

    2011-01-01

    Background Phenotypic anomalies are common in wild populations and multiple genetic, biotic and abiotic factors might contribute to their formation. Turtles are excellent models for the study of developmental instability because anomalies are easily detected in the form of malformations, additions, or reductions in the number of scutes or scales. Methodology/Principal Findings In this study, we integrated field observations, manipulative experiments, and climatic and genetic approaches to investigate the origin of carapace scute anomalies across Iberian populations of the European pond turtle, Emys orbicularis. The proportion of anomalous individuals varied from 3% to 69% in local populations, with increasing frequency of anomalies in northern regions. We found no significant effect of climatic and soil moisture, or climatic temperature on the occurrence of anomalies. However, lower genetic diversity and inbreeding were good predictors of the prevalence of scute anomalies among populations. Both decreasing genetic diversity and increasing proportion of anomalous individuals in northern parts of the Iberian distribution may be linked to recolonization events from the Southern Pleistocene refugium. Conclusions/Significance Overall, our results suggest that developmental instability in turtle carapace formation might be caused, at least in part, by genetic factors, although the influence of environmental factors affecting the developmental stability of turtle carapace cannot be ruled out. Further studies of the effects of environmental factors, pollutants and heritability of anomalies would be useful to better understand the complex origin of anomalies in natural populations. PMID:21533278

  4. Genetic diversity of rhizobia isolated from Astragalus adsurgens growing in different geographical regions of China.

    PubMed

    Gao, J; Terefework, Z; Chen, W; Lindström, K

    2001-10-01

    The genetic diversity among 95 isolates from Astragalus adsurgens was investigated using molecular biological methods. All of the isolates and 24 reference strains could be differentiated by AFLP, REP-, ERIC- and BOX-PCR fingerprinting analysis. By cluster analysis of the data, 31 AFLP and 38 Rep-PCR genomic groups were delineated, indicating considerable genetic diversity among the isolates. Fifty-four representative strains were further analyzed by RFLP of PCR-amplified 16S and 23S rDNA, revealing 26 rDNA genotypes among the isolates. The phylogenetic relationship of the isolates was determined by partial sequencing of 16S rRNA genes of 16 strains. The results suggest that the A. adsurgens rhizobia belong to the genera Agrobacterium, Mesorhizobium, Rhizobium and Sinorhizobium. PMID:11566387

  5. Morphological and genetic diversity of symbiotic cyanobacteria from cycads.

    PubMed

    Thajuddin, Nooruddin; Muralitharan, Gangatharan; Sundaramoorthy, Mariappan; Ramamoorthy, Rengasamy; Ramachandran, Srinivasan; Akbarsha, Mohamed Abdulkadar; Gunasekaran, Muthukumaran

    2010-06-01

    The morphological and genetic diversity of cyanobacteria associated with cycads was examined using PCR amplification techniques and 16S rRNA gene sequence analysis. Eighteen symbiotic cyanobacteria were isolated from different cycad species. One of the symbiotic isolates was a species of Calothrix, a genus not previously reported to form symbioses with Cycadaceae family, and the remainder were Nostoc spp. Axenic cyanobacterial strains were compared by DNA amplification using PCR with either short arbitrary primers or primers specific for the repetitive sequences. Based on fingerprint patterns and phenograms, it was revealed that cyanobacterial symbionts exhibit important genetic diversity among host plants, both within and between cycad populations. A phylogenetic analysis based on 16S rRNA gene sequence analysis revealed that most of the symbiotic cyanobacterial isolates fell into well-separated clades. PMID:20473963

  6. GENETIC DIVERSITY OF CARICA PAPAYA AS REVEALED BY AFLP MARKERS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic relationships among Carica papaya cultivars, breeding lines, unimproved germplasm, and related species were established using amplified fragment length polymorphism (AFLP) markers. Seventy-one papaya accessions and related species were analyzed with nine EcoRI-MseI primer combinations. A t...

  7. Genetic Diversity and Pathogenicity of Cylindrocarpon destructans Isolates Obtained from Korean Panax ginseng

    PubMed Central

    Song, Jeong Young; Seo, Mun Won; Kim, Sun Ick; Nam, Myeong Hyeon; Lim, Hyoun Sub

    2014-01-01

    We analyzed the genetic diversity of Cylindrocarpon destructans isolates obtained from Korean ginseng (i.e., Panax ginseng) roots by performing virulence tests and nuclear ribosomal gene internal transcribed spacer (ITS) and mitochondrial small subunit (mt SSU) rDNA sequence analysis. The phylogenetic relationship analysis performed using ITS DNA sequences and isolates from other hosts helped confirm that all the Korean C. destructans isolates belonged to Nectria/Neonectria radicicola complex. The results of in vivo and ex vivo virulence tests showed that the C. destructans isolates could be divided into two groups according to their distinctive difference in virulence and the genetic diversity. The highly virulent Korean isolates in pathogenicity group II (PG II), together with foreign isolates from P. ginseng and P. quinquefolius, formed a single group. The weakly virulent isolates in pathogenicity group I, together with the foreign isolates from other host plants, formed another group and exhibited a greater genetic diversity than the isolates of PG II, as confirmed by the mt SSU rDNA sequence analysis. In addition, as the weakly virulent Korean isolates were genetically very similar to the foreign isolates from other hosts, they were likely to originate from hosts other than the ginseng plants. PMID:25071387

  8. Analysis of genetic diversity among Chinese wild Vitis species revealed with SSR and SRAP markers.

    PubMed

    Jing, Z B; Wang, X P; Cheng, J M

    2013-01-01

    The genetic diversity among 80 Vitis materials including 62 indigenous accessions of 17 wild Vitis species in China and 7 interspecific hybrids, 10 V. vinifera L. cultivars, and 1 V. riparia Michaux were evaluated by simple sequence repeat and sequence-related amplified polymorphism markers. A total of 10 simple sequence repeat primers and 11 sequence-related amplified polymorphism primer combinations were amplified, and 260 bands were generated, of which 252 were polymorphic with an average polymorphism rate of 97.02%. Genetic relationships among the different Vitis species indicated that V. ficifolia and V. yeshanensis could be considered a separate species. As for the 4 major ecogeographic regions of Chinese wild Vitis species, the genetic diversities of Chinese wild Vitis species from the Qinling Mountain region (H = 0.1947, I = 0.3067) and the mid-downstream Yangtze River region (H = 0.1834, I = 0.2925) were higher, with results suggesting that these regions may be one of the major centers of Vitis origin. An understanding of the genetic diversity of these Chinese wild Vitis species could provide the theoretical foundation for further protection and reasonable utilization in grape breeding. PMID:23913379

  9. Genetic diversity for wheat improvement as a conduit to food security

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic diversity is paramount for any crops genetic improvement and this resides in three gene pools of the Triticeae for wheat. Access to the diversity and its exploitation is based upon genetic distance of the species relatives from the wheat genomes. Apart from the conventional genetic base fo...

  10. Genetic diversity among Lagenaria siceraria accessions containing resistance to root-knot nematodes, whiteflies, ZYMV or powdery mildew

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, there has been an increased interest in Europe and in the U.S. in grafting watermelon onto bottle gourd, Lagenaria siceraria (Mol.) Standl. In this study, genetic diversity and relationships were examined [using 240 sequence related amplified polymorphism (SRAP) markers] among 56 U...

  11. Genetic diversity among isolates of Phaeomoniella chlamydospora on grapevines

    Microsoft Academic Search

    L. Mostert; E. C. A. Abeln; F. Halleen; P. W. Crous

    2006-01-01

    Phaeomoniella chlamydospora is one of the main causal agents of Petri disease and esca of grapevines. Although it is known to have a coelomycete synanamorph,\\u000a no teleomorph has thus far been reported for P. chlamydospora, and its disease cycle remains largely unknown. The present study compared the genetic diversity of P. chlamydospora isolates from different grapevine-growing countries using amplified fragment

  12. Assessment of genetic diversity in Azadirachta indica using AFLP markers

    Microsoft Academic Search

    A. Singh; M. S. Negi; J. Rajagopal; S. Bhatia; U. K. Tomar; P. S. Srivastava; M. Lakshmikumaran

    1999-01-01

    Genetic diversity was estimated in 37 neem accessions from different eco-geographic regions of India and four exotic lines\\u000a from Thailand using AFLP markers. Seven AFLP selective primer combinations generated a total of 422 amplification products.\\u000a The average number of scorable fragments was 60 per experiment, and a high degree (69.8%) of polymorphism was obtained per\\u000a assay with values ranging from

  13. Genetic diversity and isolation in African Buffalo ( Syncerus caffer)

    Microsoft Academic Search

    J. P. Grobler; F. H. Van Der Bank

    1996-01-01

    We studied genetic diversity in 58 buffalo from the Kruger National Park (KNP) and Willem Pretorius Nature Reserve (WPNR). Thirty-three protein-encoding loci were resolved; three were polymorphic. Average heterozygosity (H) values did not differ substantially between adult and sub-adult animals from the KNP (2.65 and 2.89%, respectively), but were lower in animals from the isolated WPNR herd (H = 1.48%

  14. Genetic diversity and population structure of disjunct Newfoundland and central Ontario

    E-print Network

    Innes, David J.

    Genetic diversity and population structure of disjunct Newfoundland and central Ontario populations years presents an opportunity to determine and monitor population bottleneck effects on genetic populations examined. The Newfoundland populations were as genetically variable as those from Ontario

  15. A MULTI-LOCUS, MULTI-TAXA PHYLOGEOGRAPHICAL ANALYSIS OF GENETIC DIVERSITY

    EPA Science Inventory

    In addition to measuring spatial patterns of genetic diversity, population genetic measures of biological resources should include temporal data that indicate whether the observed patterns are the result of historical or contemporary processes. In general, genetic measures focus...

  16. Diversity Array Technology Markers: Genetic Diversity Analyses and Linkage Map Construction in Rapeseed (Brassica napus L.)

    PubMed Central

    Raman, Harsh; Raman, Rosy; Nelson, Matthew N.; Aslam, M.N.; Rajasekaran, Ravikesavan; Wratten, Neil; Cowling, Wallace A.; Kilian, A.; Sharpe, Andrew G.; Schondelmaier, Joerg

    2012-01-01

    We developed Diversity Array Technology (DArT) markers for application in genetic studies of Brassica napus and other Brassica species with A or C genomes. Genomic representation from 107 diverse genotypes of B. napus L. var. oleifera (rapeseed, AACC genomes) and B. rapa (AA genome) was used to develop a DArT array comprising 11 520 clones generated using PstI/BanII and PstI/BstN1 complexity reduction methods. In total, 1547 polymorphic DArT markers of high technical quality were identified and used to assess molecular diversity among 89 accessions of B. napus, B. rapa, B. juncea, and B. carinata collected from different parts of the world. Hierarchical cluster and principal component analyses based on genetic distance matrices identified distinct populations clustering mainly according to their origin/pedigrees. DArT markers were also mapped in a new doubled haploid population comprising 131 lines from a cross between spring rapeseed lines ‘Lynx-037DH’ and ‘Monty-028DH’. Linkage groups were assigned on the basis of previously mapped simple sequence repeat (SSRs), intron polymorphism (IP), and gene-based markers. The map consisted of 437 DArT, 135 SSR, 6 IP, and 6 gene-based markers and spanned 2288 cM. Our results demonstrate that DArT markers are suitable for genetic diversity analysis and linkage map construction in rapeseed. PMID:22193366

  17. Diversity array technology markers: genetic diversity analyses and linkage map construction in rapeseed (Brassica napus L.).

    PubMed

    Raman, Harsh; Raman, Rosy; Nelson, Matthew N; Aslam, M N; Rajasekaran, Ravikesavan; Wratten, Neil; Cowling, Wallace A; Kilian, A; Sharpe, Andrew G; Schondelmaier, Joerg

    2012-01-01

    We developed Diversity Array Technology (DArT) markers for application in genetic studies of Brassica napus and other Brassica species with A or C genomes. Genomic representation from 107 diverse genotypes of B. napus L. var. oleifera (rapeseed, AACC genomes) and B. rapa (AA genome) was used to develop a DArT array comprising 11 520 clones generated using PstI/BanII and PstI/BstN1 complexity reduction methods. In total, 1547 polymorphic DArT markers of high technical quality were identified and used to assess molecular diversity among 89 accessions of B. napus, B. rapa, B. juncea, and B. carinata collected from different parts of the world. Hierarchical cluster and principal component analyses based on genetic distance matrices identified distinct populations clustering mainly according to their origin/pedigrees. DArT markers were also mapped in a new doubled haploid population comprising 131 lines from a cross between spring rapeseed lines 'Lynx-037DH' and 'Monty-028DH'. Linkage groups were assigned on the basis of previously mapped simple sequence repeat (SSRs), intron polymorphism (IP), and gene-based markers. The map consisted of 437 DArT, 135 SSR, 6 IP, and 6 gene-based markers and spanned 2288 cM. Our results demonstrate that DArT markers are suitable for genetic diversity analysis and linkage map construction in rapeseed. PMID:22193366

  18. Genetic diversity of Plasmodium vivax malaria in China and Myanmar

    PubMed Central

    Zhong, Daibin; Bonizzoni, Mariangela; Zhou, Guofa; Wang, Guangze; Chen, Bin; Vardo-Zalik, Anne; Cui, Liwang; Yan, Guiyun; Zheng, Bin

    2011-01-01

    Genetic diversity and population structure of Plasmodium vivax parasites are valuable to the prediction of the origin and spread of novel variants within and between populations, and to the program evaluation of malaria control measures. Using two polymorphic genetic markers, the merozoite surface protein genes PvMSP-3? and PvMSP-3?, we investigated the genetic diversity of four Southeast Asian P. vivax populations, representing both subtropical and temperate strains with dramatically divergent relapse patterns. PCR amplification of PvMSP-3? and PvMSP-3? genes detected three and four major size polymorphisms among the 235 infections examined, respectively, while restriction analysis detected 15 and 19 alleles, respectively. Samples from different geographical areas differed dramatically in their PvMSP-3? and PvMSP-3? allele composition and frequency. Samples tended to cluster on the basis of their PCR-RFLP polymorphism. These results indicated that different parasite genotypes were circulating in each endemic area, and that geographic isolation may exist. Multiple infections were detected in all four parasite populations, ranging from 20.5% to 31.8%, strongly indicating that P. vivax populations were highly diverse and multiple clonal infections are common in these malaria-hypoendemic regions of Southeast Asia. PMID:21624503

  19. Genetic diversity and recombination analysis of sweepoviruses from Brazil

    PubMed Central

    2012-01-01

    Background Monopartite begomoviruses (genus Begomovirus, family Geminiviridae) that infect sweet potato (Ipomoea batatas) around the world are known as sweepoviruses. Because sweet potato plants are vegetatively propagated, the accumulation of viruses can become a major constraint for root production. Mixed infections of sweepovirus species and strains can lead to recombination, which may contribute to the generation of new recombinant sweepoviruses. Results This study reports the full genome sequence of 34 sweepoviruses sampled from a sweet potato germplasm bank and commercial fields in Brazil. These sequences were compared with others from public nucleotide sequence databases to provide a comprehensive overview of the genetic diversity and patterns of genetic exchange in sweepoviruses isolated from Brazil, as well as to review the classification and nomenclature of sweepoviruses in accordance with the current guidelines proposed by the Geminiviridae Study Group of the International Committee on Taxonomy of Viruses (ICTV). Co-infections and extensive recombination events were identified in Brazilian sweepoviruses. Analysis of the recombination breakpoints detected within the sweepovirus dataset revealed that most recombination events occurred in the intergenic region (IR) and in the middle of the C1 open reading frame (ORF). Conclusions The genetic diversity of sweepoviruses was considerably greater than previously described in Brazil. Moreover, recombination analysis revealed that a genomic exchange is responsible for the emergence of sweepovirus species and strains and provided valuable new information for understanding the diversity and evolution of sweepoviruses. PMID:23082767

  20. Microsatellite genetic diversity of Apis mellifera meda skorikov.

    PubMed

    Rahimi, Ataollah; Mirmoayedi, Alinaghi; Kahrizi, Danial; Abdolshahi, Rohollah; Kazemi, Elham; Yari, Kheirollah

    2014-12-01

    The genetic diversity of three Iranian honey bee populations (Apis mellifera meda) was studied using morphological and microsatellite loci in south Iran. For this purpose ten morphological characters and five microsatellite loci were studied. Morphometric analysis resulted in a distinct classification of three investigated populations but showed low diversity among them. The grouping results of the diversity study by microsatellite markers were in agreement with the results of morphometry. The cluster analysis showed that the honey bees have clustered together in one group. These populations displayed low variability estimated from both the number of alleles and heterozygosity values. Genetic differentiation within the populations is low and low heterozygosity was also presented between diverse populations. These results indicate the existence of a single population structure. The results of current research confirmed us the previous findings concerning morphological and biochemical indications of uniformity in the honey bee population of the south Iran in spite of the fact that the cities which was studied by us separated from each other by a distance of 500 km. PMID:25103023

  1. Genetic and Functional Diversity of Propagating Cells in Glioblastoma

    PubMed Central

    Piccirillo, Sara G.M.; Colman, Sue; Potter, Nicola E.; van Delft, Frederik W.; Lillis, Suzanne; Carnicer, Maria-Jose; Kearney, Lyndal; Watts, Colin; Greaves, Mel

    2014-01-01

    Summary Glioblastoma (GBM) is a lethal malignancy whose clinical intransigence has been linked to extensive intraclonal genetic and phenotypic diversity and the common emergence of therapeutic resistance. This interpretation embodies the implicit assumption that cancer stem cells or tumor-propagating cells are themselves genetically and functionally diverse. To test this, we screened primary GBM tumors by SNP array to identify copy number alterations (a minimum of three) that could be visualized in single cells by multicolor fluorescence in situ hybridization. Interrogation of neurosphere-derived cells (from four patients) and cells derived from secondary transplants of these same cells in NOD-SCID mice allowed us to infer the clonal and phylogenetic architectures. Whole-exome sequencing and single-cell genetic analysis in one case revealed a more complex clonal structure. This proof-of-principle experiment revealed that subclones in each GBM had variable regenerative or stem cell activity, and highlighted genetic alterations associated with more competitive propagating activity in vivo. PMID:25533637

  2. Promoting utilization of Saccharum spp. genetic resources through genetic diversity analysis and core collection construction.

    PubMed

    Nayak, Spurthi N; Song, Jian; Villa, Andrea; Pathak, Bhuvan; Ayala-Silva, Tomas; Yang, Xiping; Todd, James; Glynn, Neil C; Kuhn, David N; Glaz, Barry; Gilbert, Robert A; Comstock, Jack C; Wang, Jianping

    2014-01-01

    Sugarcane (Saccharum spp.) and other members of Saccharum spp. are attractive biofuel feedstocks. One of the two World Collections of Sugarcane and Related Grasses (WCSRG) is in Miami, FL. This WCSRG has 1002 accessions, presumably with valuable alleles for biomass, other important agronomic traits, and stress resistance. However, the WCSRG has not been fully exploited by breeders due to its lack of characterization and unmanageable population. In order to optimize the use of this genetic resource, we aim to 1) genotypically evaluate all the 1002 accessions to understand its genetic diversity and population structure and 2) form a core collection, which captures most of the genetic diversity in the WCSRG. We screened 36 microsatellite markers on 1002 genotypes and recorded 209 alleles. Genetic diversity of the WCSRG ranged from 0 to 0.5 with an average of 0.304. The population structure analysis and principal coordinate analysis revealed three clusters with all S. spontaneum in one cluster, S. officinarum and S. hybrids in the second cluster and mostly non-Saccharum spp. in the third cluster. A core collection of 300 accessions was identified which captured the maximum genetic diversity of the entire WCSRG which can be further exploited for sugarcane and energy cane breeding. Sugarcane and energy cane breeders can effectively utilize this core collection for cultivar improvement. Further, the core collection can provide resources for forming an association panel to evaluate the traits of agronomic and commercial importance. PMID:25333358

  3. Promoting Utilization of Saccharum spp. Genetic Resources through Genetic Diversity Analysis and Core Collection Construction

    PubMed Central

    Pathak, Bhuvan; Ayala-Silva, Tomas; Yang, Xiping; Todd, James; Glynn, Neil C.; Kuhn, David N.; Glaz, Barry; Gilbert, Robert A.; Comstock, Jack C.; Wang, Jianping

    2014-01-01

    Sugarcane (Saccharum spp.) and other members of Saccharum spp. are attractive biofuel feedstocks. One of the two World Collections of Sugarcane and Related Grasses (WCSRG) is in Miami, FL. This WCSRG has 1002 accessions, presumably with valuable alleles for biomass, other important agronomic traits, and stress resistance. However, the WCSRG has not been fully exploited by breeders due to its lack of characterization and unmanageable population. In order to optimize the use of this genetic resource, we aim to 1) genotypically evaluate all the 1002 accessions to understand its genetic diversity and population structure and 2) form a core collection, which captures most of the genetic diversity in the WCSRG. We screened 36 microsatellite markers on 1002 genotypes and recorded 209 alleles. Genetic diversity of the WCSRG ranged from 0 to 0.5 with an average of 0.304. The population structure analysis and principal coordinate analysis revealed three clusters with all S. spontaneum in one cluster, S. officinarum and S. hybrids in the second cluster and mostly non-Saccharum spp. in the third cluster. A core collection of 300 accessions was identified which captured the maximum genetic diversity of the entire WCSRG which can be further exploited for sugarcane and energy cane breeding. Sugarcane and energy cane breeders can effectively utilize this core collection for cultivar improvement. Further, the core collection can provide resources for forming an association panel to evaluate the traits of agronomic and commercial importance. PMID:25333358

  4. Inter simple sequence repeat (ISSR) analysis of genetic diversity in tef [Eragrostis tef (Zucc.) Trotter].

    PubMed

    Assefa, Kebebew; Merker, Arnulf; Tefera, Hailu

    2003-01-01

    The DNA polymorphism among 92 selected tef genotypes belonging to eight origin groups was assessed using eight inter simple sequence repeat (ISSR) primers. The objectives were to examine the possibility of using ISSR markers for unravelling genetic diversity in tef, and to assess the extent and pattern of genetic diversity in the test germplasm with respect to origin groups. The eight primers were able to separate or distinguish all of the 92 tef genotypes based on a total of 110 polymorphic bands among the test lines. The Jaccard similarity coefficient among the test genotypes ranged from 0.26 to 0.86, and at about 60 % similarity level the clustering of this matrix using the unweighted pair-group method based on arithmetic average (UPGMA) resulted in the formation of six major clusters of 2 to 37 lines with further eight lines remaining ungrouped. The standardized Nei genetic distance among the eight groups of origin ranged between 0.03 and 0.32. The UPGMA clustering using the standardized genetic distance matrix resulted in the identification of three clusters of the eight groups of origin with bootstrap values ranging from 56 to 97. The overall mean Shannon Weaver diversity index of the test lines was 0.73, indicating better resolution of genetic diversity in tef with ISSR markers than with phenotypic (morphological) traits used in previous studies. This can be attributed mainly to the larger number of loci generated for evaluation with ISSR analysis as compared to the few number of phenotypic traits amenable for assessment and which are further greatly affected by environment and genotype x environment interaction. Analysis of variance of mean Shannon Weaver diversity indices revealed substantial (P < or = 0.05) variation in the level of diversity among the eight groups of origin. In conclusion, our results indicate that ISSR can be useful as DNA-based molecular markers for studying genetic diversity and phylogenetic relationships, DNA fingerprinting for the identification of varieties or cultivars, and also for genome mapping in tef. PMID:15061798

  5. Molecular analysis for genetic diversity and distance of introduced Grus antigone sharpii L. to Thailand.

    PubMed

    Tanee, T; Chaveerach, A; Anuniwat, A; Tanomtong, A; Pinthong, K; Sudmoon, R; Mokkamul, P

    2009-01-15

    The genetic relationship was examined in a population of Grus antigone sharpii L. using DNA markers from the ISSR technique for applying towards breeding purposes for conservation of species. Since their extinction from Thailand, sixteen eastern sarus cranes: Grus antigone sharpii L. provided from Cambodia were fed and bred to sixty individuals at Nakhonratchasima Zoo, Northeastern Thailand to re-exist in Thai natural sites. Their genetic diversity and distance were examined to test their possibility to adapt to environmental variation. Blood samples from 27 individuals of Grus antigone sharpii L. were collected and DNA was extracted. These DNA samples were amplified using the successful fifteen from twenty four primers inter simple sequences repeat markers. A dendrogram was constructed and shows distance values of the species between 12.1 and 53.5. The samples produced 63.96% polymorphic banding profiles. The genetic diversity (H') in this population was estimated using Shannon's index. The high H' value of 0.501 reflected the somewhat wide range of distribution sites, which would adapt to environmental variations. Genetic evenness is 0.152. This value supports that all the studied samples have a small equal genetic abundance. PMID:19579938

  6. Cryptic changes in the genetic structure of a highly clonal coral population and the relationship with ecological performance

    NASA Astrophysics Data System (ADS)

    Williams, Dana E.; Miller, M. W.; Baums, I. B.

    2014-09-01

    Elkhorn coral , Acropora palmata, relies heavily on clonal propagation and often displays low genotypic (clonal) diversity. Populations in the Florida Keys experienced rapid declines in tissue cover between 2004 and 2006, largely due to hurricanes and disease, but remained stable from 2006 to 2010. All elkhorn colonies in 150 m2 permanent study plots were genotyped in 2006 ( n = 15 plots) and 2010 ( n = 24 plots), and plots sampled in both years were examined for changes in allelic and genotypic diversity during this period of stable ecological abundance. Overall, genetic diversity of Florida plots was low and declined further over the 4-yr period; seven of the 36 original genets and two of 67 alleles (among five microsatellite loci) were lost completely from the sampled population, and an additional 15 alleles were lost from individual reefs. In 2010, Florida plots (~19 colonies) contained an average of 2.2 ± 1.38 (mean ± SD) genets with a significant negative correlation between colony abundance and genotypic diversity. When scaled to total tissue abundance, genotypic diversity is even lower, with 43 % of genets below the size of sexual maturity. We examined the hypothesized positive relationship of local genotypic diversity with ecological performance measures. In Florida plots ( n = 15), genotypic diversity was not significantly correlated with tissue loss associated with chronic predation, nor with acute disease and storm-fragmentation events, though this relationship may be obscured by the low range of observed diversity and potential confounding with abundance. When more diverse plots in Curaçao ( n = 9) were examined, genotypic diversity was not significantly correlated with resistance during an acute storm disturbance or rate of recovery following disturbance. Cryptic loss of genetic diversity occurred in the apparently stable Florida population and confirms that stable or even increasing abundance does not necessarily indicate genetic stability.

  7. AFLP analysis of genetic diversity in charcoal rot fungal populations impacted by crop rotations.

    PubMed

    Brooker, N; Lord, J R; Long, J; Jayawardhana, A

    2008-01-01

    The application of molecular markers enables scientists to clarify the genetic relationships among fungi who are difficult to classify or partition into sub-species using traditional morphological or physiological criteria. One such fungus is Macrophomina phaseolina, a plant pathogenic soil-borne fungus that is the causative agent of Charcoal Rot on soybeans and 500 other plant species world-wide. This plant pathogenic fungus is a very heterogeneous species and disease population dynamics and pathogen genetic diversity are poorly understood. Using a multi-variant Amplified Fragment Length Polymorphism (AFLP) approach for the analysis of genomic data, valuable insight into cultural and environmental pressures that shape the fungal genome was possible. Fungal isolates from 12-year rotated field plots ranging from 1-3 years of crop rotations of the same plant type(s), rotation duration and plant maturity groups provided a unique opportunity to survey M. phaseolina isolates taken from the different crop rotation conditions. Using different data interval partitioning of amplified restriction fragments it was possible to see trends associated with the specific cropping history of the fungal isolates. AFLP neutral primers of intermediate and large amplified products using 20-bp intervals were the most efficient and reliable for demonstrating intra-population dynamics. Results indicate that the highest amount of M. phaseolina genetic diversity was conclusively found in fungal isolates taken from three-year rotation plots. Lesser amounts of genetic diversity were found in two-year rotated and non-rotated fungal isolates. Insight gained from this study may now be incorporated into a larger understanding of how crop rotation and the availability of hosts shape and influence the genetic variability within Macrophomina isolates and populations. This information can then be used to make better-informed decisions regarding crop protection strategies against this diverse and economically important fungal pathogen. PMID:19226737

  8. Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape

    PubMed Central

    2013-01-01

    Background The economic importance of grapevine has driven significant efforts in genomics to accelerate the exploitation of Vitis resources for development of new cultivars. However, although a large number of clonally propagated accessions are maintained in grape germplasm collections worldwide, their use for crop improvement is limited by the scarcity of information on genetic diversity, population structure and proper phenotypic assessment. The identification of representative and manageable subset of accessions would facilitate access to the diversity available in large collections. A genome-wide germplasm characterization using molecular markers can offer reliable tools for adjusting the quality and representativeness of such core samples. Results We investigated patterns of molecular diversity at 22 common microsatellite loci and 384 single nucleotide polymorphisms (SNPs) in 2273 accessions of domesticated grapevine V. vinifera ssp. sativa, its wild relative V. vinifera ssp. sylvestris, interspecific hybrid cultivars and rootstocks. Despite the large number of putative duplicates and extensive clonal relationships among the accessions, we observed high level of genetic variation. In the total germplasm collection the average genetic diversity, as quantified by the expected heterozygosity, was higher for SSR loci (0.81) than for SNPs (0.34). The analysis of the genetic structure in the grape germplasm collection revealed several levels of stratification. The primary division was between accessions of V. vinifera and non-vinifera, followed by the distinction between wild and domesticated grapevine. Intra-specific subgroups were detected within cultivated grapevine representing different eco-geographic groups. The comparison of a phenological core collection and genetic core collections showed that the latter retained more genetic diversity, while maintaining a similar phenotypic variability. Conclusions The comprehensive molecular characterization of our grape germplasm collection contributes to the knowledge about levels and distribution of genetic diversity in the existing resources of Vitis and provides insights into genetic subdivision within the European germplasm. Genotypic and phenotypic information compared in this study may efficiently guide further exploration of this diversity for facilitating its practical use. PMID:23497049

  9. Genetic diversity and differentiation of five Cuban cattle breeds using 30 microsatellite loci.

    PubMed

    Acosta, A C; Uffo, O; Sanz, A; Ronda, R; Osta, R; Rodellar, C; Martin-Burriel, I; Zaragoza, P

    2013-02-01

    Conservation and improvement strategies in farm animals should be based on a combination of genetic and phenotypic characteristics. Genotype data from 30 microsatellites were used to assess the genetic diversity and relationships among five Cuban cattle breeds (Siboney de Cuba, Criollo Cubano, Cebú Cubano, Mambí de Cuba and Taíno de Cuba). All microsatellite markers were highly polymorphic in all the breeds. The expected heterozygosity ranged from 0.67 ± 0.02 in the Taíno de Cuba breed to 0.75 ± 0.02 in the Mambí de Cuba breed, and the observed heterozygosity ranged from 0.66 ± 0.03 in the Cebú Cubano breed to 0.73 ± 0.02 in the Siboney de Cuba breed. The genetic differentiation between the breeds was significant (p < 0.01) based on the infinitesimal model (F(ST)). The exact test for Hardy-Weinberg equilibrium within breeds showed a significant deviation in each breed (p < 0.0003) for one or more loci. The genetic distance and structure analysis showed that a significant amount of genetic variation is maintained in the local cattle population and that all breeds studied could be considered genetically distinct. The Siboney de Cuba and Mambí de Cuba breeds seem to be the most genetically related among the studied five breeds. PMID:23317068

  10. How Much Diversity Is Enough? The Curvilinear Relationship between College Diversity Interactions and First-Year Student Outcomes

    ERIC Educational Resources Information Center

    Bowman, Nicholas A.

    2013-01-01

    Recent legal challenges to race-conscious college admissions processes have called into question what constitutes a sufficient level of diversity on college campuses. Previous research on the educational benefits of diversity has examined the linear relationship between diversity interactions and student outcomes, but multiple theoretical…

  11. Testing heterogeneity-diversity relationships in tropical forest restoration.

    PubMed

    Holl, Karen D; Stout, Victoria M; Reid, J Leighton; Zahawi, Rakan A

    2013-10-01

    Restoring small-scale habitat heterogeneity in highly diverse systems, like tropical forests, is a conservation challenge and offers an excellent opportunity to test factors affecting community assembly. We investigated whether (1) the applied nucleation restoration strategy (planting tree islands) resulted in higher habitat heterogeneity than more homogeneous forest restoration approaches, (2) increased heterogeneity resulted in more diverse tree recruitment, and (3) the mean or coefficient of variation of habitat variables best explained tree recruitment. We measured soil nutrients, overstory and understory vegetation structure, and tree recruitment at six sites with three 5- to 7-year-old restoration treatments: control (no planting), planted tree islands, and conventional, mixed-species tree plantations. Canopy openness and soil base saturation were more variable in island treatments than in controls and plantations, whereas most soil nutrients had similar coefficients of variation across treatments, and bare ground was more variable in control plots. Seedling and sapling species density were equivalent in plantations and islands, and were substantially higher than in controls. Species spatial turnover, diversity, and richness were similar in island and plantation treatments. Mean canopy openness, rather than heterogeneity, explained the largest proportion of variance in species density. Our results show that, whereas canopy openness and soil base saturation are more heterogeneous with the applied nucleation restoration strategy, this pattern does not translate into greater tree diversity. The lack of a heterogeneity-diversity relationship is likely due to the fact that recruits respond more strongly to mean resource gradients than variability at this early stage in succession, and that seed dispersal limitation likely reduces the available species pool. Results show that planting tree islands facilitates tree recruitment to a similar degree as intensive plantation-style restoration strategies. PMID:23525802

  12. Peach genetic resources: diversity, population structure and linkage disequilibrium

    PubMed Central

    2013-01-01

    Background Peach (Prunus persica (L.) Batsch) is one of the most important model fruits in the Rosaceae family. Native to the west of China, where peach has been domesticated for more than 4,000 years, its cultivation spread from China to Persia, Mediterranean countries and to America. Chinese peach has had a major impact on international peach breeding programs due to its high genetic diversity. In this research, we used 48 highly polymorphic SSRs, distributed over the peach genome, to investigate the difference in genetic diversity, and linkage disequilibrium (LD) among Chinese cultivars, and North American and European cultivars, and the evolution of current peach cultivars. Results In total, 588 alleles were obtained with 48 SSRs on 653 peach accessions, giving an average of 12.25 alleles per locus. In general, the average value of observed heterozygosity (0.47) was lower than the expected heterozygosity (0.60). The separate analysis of groups of accessions according to their origin or reproductive strategies showed greater variability in Oriental cultivars, mainly due to the high level of heterozygosity in Chinese landraces. Genetic distance analysis clustered the cultivars into two main groups: one included four wild related Prunus, and the other included most of the Oriental and Occidental landraces and breeding cultivars. STRUCTURE analysis assigned 469 accessions to three subpopulations: Oriental (234), Occidental (174), and Landraces (61). Nested STRUCTURE analysis divided the Oriental subpopulation into two different subpopulations: ‘Yu Lu’ and ‘Hakuho’. The Occidental breeding subpopulation was also subdivided into nectarine and peach subpopulations. Linkage disequilibrium (LD) analysis in each of these subpopulations showed that the percentage of linked (r2?>?0.1) intra-chromosome comparisons ranged between 14% and 47%. LD decayed faster in Oriental (1,196 Kbp) than in Occidental (2,687 Kbp) samples. In the ‘Yu Lu’ subpopulation there was considerable LD extension while no variation of LD with physical distance was observed in the landraces. From the first STRUCTURE result, LG1 had the greatest proportion of alleles in LD within all three subpopulations. Conclusions Our study demonstrates a high level of genetic diversity and relatively fast decay of LD in the Oriental peach breeding program. Inclusion of Chinese landraces will have a greater effect on increasing genetic diversity in Occidental breeding programs. Fingerprinting with genotype data for all 658 cultivars will be used for accession management in different germplasms. A higher density of markers are needed for association mapping in Oriental germplasm due to the low extension of LD. Population structure and evaluation of LD provides valuable information for GWAS experiment design in peach. PMID:24041442

  13. Genetic Diversity of Pectobacterium carotovorum subsp. brasiliensis Isolated in Korea

    PubMed Central

    Lee, Dong Hwan; Kim, Jin-Beom; Lim, Jeong-A; Han, Sang-Wook; Heu, Sunggi

    2014-01-01

    The plant pathogenic bacterial genus Pectobacteirum consists of heterogeneous strains. The P. carotovorum species is a complex strain showing divergent characteristics, and a new subspecies named P. carotovorum subsp. brasiliensis has been identified recently. In this paper, we re-identified the P. carotovorum subsp. brasiliensis isolates from those classified under the subspecies carotovorum and newly isolated P. carotovorum subsp. brasiliensis strains. All isolates were able to produce plant cell-wall degrading enzymes such as pectate lyase, polygalacturonase, cellulase and protease. We used genetic and biochemical methods to examine the diversity of P. carotovorum subsp. brasiliensis isolates, and found genetic diversity within the brasiliensis subsp. isolates in Korea. The restriction fragment length polymorphism analysis based on the recA gene revealed a unique pattern for the brasiliensis subspecies. The Korean brasiliensis subsp. isolates were divided into four clades based on pulsed-field gel electrophoresis. However, correlations between clades and isolated hosts or year could not be found, suggesting that diverse brasiliensis subsp. isolates existed. PMID:25288994

  14. LYGUS GENETICS: INTER- AND INTRASPECIFIC MITOCHONDRIAL GENETIC DIVERSITY IN NORTH AMERICA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mitochondrial DNA (mtDNA) was employed to investigate inter- and intraspecific genetic diversity within the Lygus genus. The main emphasis was on L. lineolaris because it is a widely dispersed species occurring in many regions of North America. Part of the mtDNA cox1 and cox2 gene regions were used ...

  15. Genetic Variation and Phylogenetic Relationships of Indian Buffaloes of Uttar Pradesh

    PubMed Central

    Joshi, Jyoti; Salar, R. K.; Banerjee, Priyanka; S, Upasna; Tantia, M. S.; Vijh, R. K.

    2013-01-01

    India possesses a total buffalo population of 105 million out of which 26.1% inhabit Uttar Pradesh. The buffalo of Uttar Pradesh are described as nondescript or local buffaloes. Currently, there is no report about the genetic diversity, phylogenetic relationship and matrilineal genetic structure of these buffaloes. To determine the origin and genetic diversity of UP buffaloes, we sequenced and analysed the mitochondrial DNA D-loop sequences in 259 samples from entire Uttar Pradesh. One hundred nine haplotypes were identified in UP buffaloes that were defined by 96 polymorphic sites. We implemented neutrality tests to assess signatures of recent historical demographic events like Tajima’s D test and Fu’s Fs test. The phylogenetic studies revealed that there was no geographic differentiation and UP buffaloes had a single maternal lineage while buffaloes of Eastern UP were distinctive from rest of the UP buffaloes. PMID:25049904

  16. Genetic Diversity and Ecosystem Functioning in the Face of Multiple Stressors

    PubMed Central

    Roger, Fabian; Godhe, Anna; Gamfeldt, Lars

    2012-01-01

    Species diversity is important for a range of ecosystem processes and properties, including the resistance to single and multiple stressors. It has been suggested that genetic diversity may play a similar role, but empirical evidence is still relatively scarce. Here, we report the results of a microcosm experiment where four strains of the marine diatom Skeletonema marinoi were grown in monoculture and in mixture under a factorial combination of temperature and salinity stress. The strains differed in their susceptibility to the two stressors and no strain was able to survive both stressors simultaneously. Strong competition between the genotypes resulted in the dominance of one strain under both control and salinity stress conditions. The overall productivity of the mixture, however, was not related to the dominance of this strain, but was instead dependent on the treatment; under control conditions we observed a positive effect of genetic richness, whereas a negative effect was observed in the stress treatments. This suggests that interactions among the strains can be both positive and negative, depending on the abiotic environment. Our results provide additional evidence that the biodiversity-ecosystem functioning relationship is also relevant at the level of genetic diversity. PMID:23028735

  17. The legend of the Canadian horse: genetic diversity and breed origin.

    PubMed

    Khanshour, Anas; Juras, Rytis; Blackburn, Rick; Cothran, E Gus

    2015-01-01

    The Canadian breed of horse invokes a fascinating chapter of North American history and as such it is now a heritage breed and the national horse of Canada. The aims of this study were to determine the level of genetic diversity in the Canadian, investigate the possible foundation breeds and the role it had in the development of the US horse breeds, such as Morgan Horse. We tested a total of 981 horses by using 15 microsatellite markers. We found that Canadian horses have high values of genetic diversity indices and show no evidence of a serious loss of genetic diversity and the inbreeding coefficient was not significantly different from zero. Belgian, Percheron, Breton and Dales Pony, unlike the light French horses, may have common ancestries with the Canadian and could be important founders. However, the Shire and Clydesdale influenced the Canadian to a lesser extent than French and Belgian draft breeds. Furthermore, our finding indicated that there was no evidence of a clear relationship between Canadian and Oriental or Iberian breeds. Also, the Canadian likely contributed to the early development of the Morgan. Finally, these findings support the ancient legends of the Canadian Horse as North America’s first equine breed and the foundation bloodstock to many American breeds and may help in the management and breeding program of this outstanding breed in North America. PMID:25416795

  18. Genetic Relationships Between Selection for Growth and Reproductive Effectiveness

    Microsoft Academic Search

    G. F. BARBATO

    The domestic and international poultry industries have gone through many changes over the last 50 yr. One constant in the meat-type poultry industry has been the emphasis on genetic improvement of growth. Using lines from a double, divergent selection experiment, data are presented on the genetic relationships between growth to different ages and reproductive parameters. During the last three genera-

  19. Genetic diversity of almonds ( Prunus dulcis) using RAPD technique

    Microsoft Academic Search

    N MirAli; I Nabulsi

    2003-01-01

    Randomly amplified polymorphic DNA (RAPD) technology was used to study the genetic relationships between 19 almond cultivars grown at two gene banks in southern Syria (Izraa and Jillin). Forty decamer primers were used and only one (OP-I14) did not produce any polymorphism. The remaining 39 primers ranged in their amplification fragments between one (OP-I19 and OP-N20) and eight (OP-A20, OP-N14,

  20. Genetic diversity of different Tunisian fig ( Ficus carica L.) collections revealed by RAPD fingerprints

    Microsoft Academic Search

    AMEL SALHI-HANNACHI; KHALED CHATTI; OLFA SADDOUD; MESSAOUD MARS; ABDELMAJID RHOUMA; MOHAMED MARRAKCHI; MOKHTAR TRIFI

    2006-01-01

    The genetic diversity in Tunisian fig (Ficus carica L.) was studied using RAPD markers. Thirtyfive fig cultivars originating from diverse geographical areas and belonging to three collections were analysed. Random decamer primers were screened to assess their ability to detect polymorphisms in this crop. Fortyfour RAPD markers were revealed and used to survey the genetic diversity and to detect cases

  1. GENETIC DIVERSITY OF STRIGA AND IMPLICATIONS FOR CONTROL AND MODELING FUTURE DISTRIBUTIONS

    E-print Network

    Hammerton, James

    , and represents several generations of plant parasites.5 In addition crop breeders must cope with the diversityCHAPTER 6 GENETIC DIVERSITY OF STRIGA AND IMPLICATIONS FOR CONTROL AND MODELING FUTURE of Kansas, Lawrence, KS, USA. The current knowledge of genetic diversity of Striga asiatica, S. hermonthica

  2. Genetic Diversity of Mycobacterium tuberculosis in Peru and Exploration of Phylogenetic Associations with Drug

    E-print Network

    Paris-Sud XI, Université de

    Genetic Diversity of Mycobacterium tuberculosis in Peru and Exploration of Phylogenetic, et al. (2013) Genetic Diversity of Mycobacterium tuberculosis in Peru and Exploration of Phylogenetic of America Abstract Background: There is limited available data on the strain diversity of M tuberculosis

  3. How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings

    PubMed Central

    Spurgin, Lewis G.; Richardson, David S.

    2010-01-01

    Major histocompatibility complex (MHC) genes have been put forward as a model for studying how genetic diversity is maintained in wild populations. Pathogen-mediated selection (PMS) is believed to generate the extraordinary levels of MHC diversity observed. However, establishing the relative importance of the three proposed mechanisms of PMS (heterozygote advantage, rare-allele advantage and fluctuating selection) has proved extremely difficult. Studies have attempted to differentiate between mechanisms of PMS using two approaches: (i) comparing MHC diversity with that expected under neutrality and (ii) relating MHC diversity to pathogen regime. Here, we show that in many cases the same predictions arise from the different mechanisms under these approaches, and that most studies that have inferred one mechanism of selection have not fully considered the alternative explanations. We argue that, while it may be possible to demonstrate that particular mechanisms of PMS are occurring, resolving their relative importance within a system is probably impossible. A more realistic target is to continue to demonstrate when and where the different mechanisms of PMS occur, with the aim of determining their relative importance across systems. We put forward what we believe to be the most promising approaches that will allow us to progress towards achieving this. PMID:20071384

  4. Genome instability: does genetic diversity amplification drive tumorigenesis?

    PubMed

    Lane, Andrew B; Clarke, Duncan J

    2012-11-01

    Recent data show that catastrophic events during one cell cycle can cause massive genome damage producing viable clones with unstable genomes. This is in contrast with the traditional view that tumorigenesis requires a long-term process in which mutations gradually accumulate over decades. These sudden events are likely to result in a large increase in genomic diversity within a relatively short time, providing the opportunity for selective advantages to be gained by a subset of cells within a population. This genetic diversity amplification, arising from a single aberrant cell cycle, may drive a population conversion from benign to malignant. However, there is likely a period of relative genome stability during the clonal expansion of tumors - this may provide an opportunity for therapeutic intervention, especially if mechanisms that limit tolerance of aneuploidy are exploited. PMID:22948965

  5. Genetic diversity in black South Africans from Soweto

    PubMed Central

    2013-01-01

    Background Due to the unparalleled genetic diversity of its peoples, Africa is attracting growing research attention. Several African populations have been assessed in global initiatives such as the International HapMap and 1000 Genomes Projects. Notably excluded, however, is the southern Africa region, which is inhabited predominantly by southeastern Bantu-speakers, currently suffering under the dual burden of infectious and non-communicable diseases. Limited reference data for these individuals hampers medical research and prevents thorough understanding of the underlying population substructure. Here, we present the most detailed exploration, to date, of genetic diversity in 94 unrelated southeastern Bantu-speaking South Africans, resident in urban Soweto (Johannesburg). Results Participants were typed for ~4.3 million SNPs using the Illumina Omni5 beadchip. PCA and ADMIXTURE plots were used to compare the observed variation with that seen in selected populations worldwide. Results indicated that Sowetans, and other southeastern Bantu-speakers, are a clearly distinct group from other African populations previously investigated, reflecting a unique genetic history with small, but significant contributions from diverse sources. To assess the suitability of our sample as representative of Sowetans, we compared our results to participants in a larger rheumatoid arthritis case–control study. The control group showed good clustering with our sample, but among the cases were individuals who demonstrated notable admixture. Conclusions Sowetan population structure appears unique compared to other black Africans, and may have clinical implications. Our data represent a suitable reference set for southeastern Bantu-speakers, on par with a HapMap type reference population, and constitute a prelude to the Southern African Human Genome Programme. PMID:24059264

  6. Genetic diversity and population structure of Butea monosperma (Lam.) Taub.- a potential medicinal legume tree.

    PubMed

    Vashishtha, Amit; Jehan, Tabassum; Lakhanpaul, Suman

    2013-07-01

    Three molecular marker systems, Random Amplified Polymorphic DNA (RAPD), Inter-Simple Sequence Repeats (ISSR) and Sequence-Related Amplified Polymorphism (SRAP) were employed to investigate the genetic structure and diversity among the 14 natural populations of Butea monosperma collected from different geographical regions of India. Detected by 17 RAPD, 15 ISSR and 11 SRAP primer combinations, the proportions of polymorphic bands were 84.2 %, 77.2 % and 91.9 %, respectively, and the mean Nei's genetic distances among the populations were 0.13, 0.10 and 0.13, respectively. Partitioning of genetic variability by Analysis of molecular variance (AMOVA) revealed that the high genetic diversity was distributed within the populations. AMOVA also revealed that the coefficient of gene differentiation among populations based on FST was very high irrespective of markers used. The overall gene flow among populations (Nm) was very low. Cophenetic correlation coefficients of Nei's distance values and clustering pattern by Mental test were statistically significant for all three marker systems used but poor fit for ISSR data than for RAPD, SRAP and combined data set of all three markers. For all markers, a high similarity in dendrogram topologies was obtained, although some differences were observed with ISSR. The dendrogram obtained by RAPD, SRAP and combined data set of all three markers reflect relationship of most of the populations according to their geographic distribution. PMID:24431507

  7. Genetic diversity and population history of the endangered killifish Aphanius baeticus.

    PubMed

    Gonzalez, Elena G; Pedraza-Lara, Carlos; Doadrio, Ignacio

    2014-01-01

    The secondary freshwater fish fauna of the western-Iberian Peninsula basin is primarily restricted to local coastal streams, and man-made salt evaporation ponds, etc., which are susceptible to periodical flood and drought events. Despite its uniqueness in ecological adaptation to high saltwater tolerance, very little is known about this fauna's population dynamics and evolutionary history. The killifish, Aphanius baeticus (Cyprinodontidae) is an endemic species restricted to river basins on Spain's southern Atlantic coastline, considered as "Endangered." In this study, the genetic structure, diversity and historical demography of A. baeticus were analyzed using mitochondrial (cytochrome b, N=131) and nuclear (4 out of 19 microsatellites tested, N=288) markers across its distribution range. The phylogenetic and networking reconstruction revealed subtle phylogeographic structuring. A scattered expansion at the beginning of the interglacial periods, coupled with posterior events of extinction and colonization caused by periodical cycles of flooding, could explain the absence of well-defined phylogenetic relationships among populations. Moreover, very low genetic diversity values and a weak population differentiation were detected. We proposed that dispersals allowed by periodic floods connecting river drainages may have promoted a wide genetic exchange among populations and could have contributed to the current genetic relatedness of these populations. PMID:24939890

  8. Habitat Loss other than Fragmentation per se Decreased Nuclear and Chloroplast Genetic Diversity in a Monoecious Tree

    PubMed Central

    Shen, Dong-Wei; Chen, Xiao-Yong

    2012-01-01

    Generally, effect of fragmentation per se on biodiversity has not been separated from the effect of habitat loss. In this paper, using nDNA and cpDNA SSRs, we studied genetic diversity of Castanopsis sclerophylla (Lindl. & Paxton) Schotty populations and decoupled the effects of habitat loss and fragmentation per se. We selected seven nuclear and six cpDNA microsatellite loci and genotyped 460 individuals from mainland and island populations, which were located in the impoundment created in 1959. Number of alleles per locus of populations in larger habitats was significantly higher than that in smaller habitats. There was a significant relationship between the number of alleles per locus and habitat size. Based on this relationship, the predicted genetic diversity of an imaginary population of size equaling the total area of the islands was lower than that of the global population on the islands. Re-sampling demonstrated that low genetic diversity of populations in small habitats was caused by unevenness in sample size. Fisher's ? index was similar among habitat types. These results indicate that the decreased nuclear and chloroplast genetic diversity of populations in smaller habitats was mainly caused by habitat loss. For nuclear and chloroplast microsatellite loci, values of FST were 0.066 and 0.893, respectively, and the calculated pollen/seed dispersal ratio was 162.2. When separated into pre-and post-fragmentation cohorts, pollen/seed ratios were 121.2 and 189.5, respectively. Our results suggest that habitat loss explains the early decrease in genetic diversity, while fragmentation per se may play a major role in inbreeding and differentiation among fragmented populations and later loss of genetic diversity. PMID:22723951

  9. Genetic diversity and differentiation in a southern beech subjected to introgressive hybridization

    Microsoft Academic Search

    P Marchelli; L A Gallo

    2001-01-01

    Diversity and differentiation among 11 Argentine populations of the South American southern beech, Nothofagus nervosa (Phil.) Dimitri & Milano, were studied using eight isozyme gene markers. Genetic diversity, observed heterozygosity, mean number of alleles per locus, Gregorius’ genetic distance, amount of genetic differentiation and mean level of differentiation among populations were estimated. Introgression of N. obliqua into the gene pool

  10. The influence of malaria parasite genetic diversity and anaemia on mosquito feeding and fecundity

    E-print Network

    Rivero, Ana

    The influence of malaria parasite genetic diversity and anaemia on mosquito feeding and fecundity H genetics and infection genetic diversity on the fecundity of mosquitoes carrying malaria parasites. The malaria vector Anopheles stephensi was infected with either of 2 different genotypes of the rodent malaria

  11. Genetic diversity of water use efficiency in Jerusalem artichoke (Helianthus tuberosus L.) germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic diversity in crop germplasm is an important resource for crop improvement, but information on genetic diversity is rare for Jerusalem artichoke, especially for traits related to water use efficiency. The objectives of this study were to investigate genetic variations for water use and water...

  12. Environmental and Climatic Determinants of Molecular Diversity and Genetic Population Structure in a Coenagrionid Damselfly

    Microsoft Academic Search

    Maren Wellenreuther; Rosa A. Sánchez-Guillén; Adolfo Cordero-Rivera; Erik I. Svensson; Bengt Hansson; Daniel Ortiz-Barrientos

    2011-01-01

    Identifying environmental factors that structure intraspecific genetic diversity is of interest for both habitat preservation and biodiversity conservation. Recent advances in statistical and geographical genetics make it possible to investigate how environmental factors affect geographic organisation and population structure of molecular genetic diversity within species. Here we present a study on a common and wide ranging insect, the blue tailed

  13. Genetic Diversity and Gene Flow in the Endangered Dwarf Bear Poppy, Arctomecon humilis (Papaveraceae)

    Microsoft Academic Search

    Loreen Allphin; Michael D. Windham; Kimball T. Harper

    1998-01-01

    Arctomecon humilis is a critically endangered species endemic to the Moenkopi shale of Washington County, Utah. Recovery plans for the species would be improved by an understanding of genetic diversity and gene flow among its remaining populations. Ten variable isozyme loci were used to calculate genetic diversity statistics for study populations. Westerly populations possessed higher levels of genetic variability than

  14. Diversity and genetic structure of the endangered cycad Dioon sonorense (Zamiaceae) from Sonora, Mexico

    E-print Network

    González Astorga, Jorge Arturo - INECOL

    Diversity and genetic structure of the endangered cycad Dioon sonorense (Zamiaceae) from Sonora: Conservation genetics Cycads Dioon sonorense IUCN Red List Narrow endemic species Pleistocene a b s t r a c t The diversity and genetic structure of the cycad Dioon sonorense (De Luca, Sabato & Va´zq. Torres) Chemnick, T

  15. Spatio-temporal change in the relationship between habitat heterogeneity and species diversity

    NASA Astrophysics Data System (ADS)

    González-Megías, Adela; Gómez, José María; Sánchez-Piñero, Francisco

    2011-05-01

    Beta diversity plays an important role in mediating species diversity and therefore improves our understanding of species-diversity patterns. One principal theoretical framework exists for such patterns, the "habitat-heterogeneity hypothesis (HHH)", which postulates a positive relationship between species diversity and habitat heterogeneity. Although HHH is widely accepted, spatial and temporal variability has been found in the relationship between diversity and heterogeneity. Species turnover has been proposed as the main factor explaining spatial variation in the relationship between species diversity and habitat heterogeneity. In this study, we tested the role of species turnover in explaining spatial and temporal variability on diversity-heterogeneity relationship in a Mediterranean ecosystem, using beetles as the study organisms. A hierarchical design including different habitats and years was used to test our hypothesis. Using different multivariate analyses, we tested for spatial and temporal variability in beta diversity, and in the beetle diversity-heterogeneity relationship using two diversity indices. Our study showed that beetle composition changed spatially and temporally, although temporal change was evident only between sampling periods but not between years. Notably, there was spatial and temporal change in the relationship between habitat descriptors and beetle diversity. Nevertheless, there was no correlation between the changes in beetle composition with the changes in the habitat-heterogeneity relationships. In this Mediterranean system, spatial and temporal changes in the diversity-heterogeneity relationships cannot be predicted by species turnover, and other mechanisms need to be explored to satisfactorily explain this variability.

  16. Stanford study reveals genetic diversity in cells shed by tumors

    Cancer.gov

    The cells that slough off from a cancerous tumor into the bloodstream are a genetically diverse bunch, Stanford University School of Medicine researchers have found. Some have genes turned on that give them the potential to lodge themselves in new places, helping a cancer spread between organs. Others have completely different patterns of gene expression and might be more benign, or less likely to survive in a new tissue. Some cells may even express genes that could predict their response to a specific therapy. Even within one patient, the tumor cells that make it into circulating blood vary drastically.

  17. Non-genetic diversity shapes infectious capacity and host resistance

    PubMed Central

    Stewart, Mary K.; Cookson, Brad T.

    2013-01-01

    The spontaneous generation of distinct phenotypes within a clonal population of cells allows for both bet-hedging at the population level and the division of labor among subpopulations. This is emerging as an important theme in bacterial pathogenesis, because bacterial pathogens exhibit phenotypic heterogeneity with respect to characteristics that impact virulence. The phenomenon of persister cells and models of Salmonella enterica serovar Typhimurium pathogenesis illustrate the importance of non-genetic diversity in the disease process. Such heterogeneity can arise from specific genetic architectures amplifying stochastic fluctuations in factors affecting gene expression, which drives variation in eukaryotic cells as well. Thus reproducible variation in both host and pathogen processes affects the outcome of infection. PMID:22889945

  18. Molecular insights into the genetic diversity of Hemarthria compressa germplasm collections native to southwest China.

    PubMed

    Guo, Zhi-Hui; Fu, Kai-Xin; Zhang, Xin-Quan; Bai, Shi-Qie; Fan, Yan; Peng, Yan; Huang, Lin-Kai; Yan, Yan-Hong; Liu, Wei; Ma, Xiao

    2014-01-01

    Start codon targeted polymorphism (SCoT) analysis was employed to distinguish 37 whipgrass (Hemarthria compressa L.) clones and assess the genetic diversity and population structure among these genotypes. The informativeness of markers was also estimated using various parameters. Using 25 highly reproducible primer sets, 368 discernible fragments were generated. Of these, 282 (77.21%) were polymorphic. The number of alleles per locus ranged from five to 21, and the genetic variation indices varied. The polymorphism information content (PIC) was 0.358, the Shannon diversity index (H) was 0.534, the marker index (MI) was 4.040, the resolving power (RP) was 6.108, and the genotype index (GI) was 0.782. Genetic similarity coefficients (GS) between the accessions ranged from 0.563 to 0.872, with a mean of 0.685. Their patterns observed in a dendrogram constructed using the unweighted pair group method with arithmetic mean analysis (UPGMA) based on GS largely confirmed the results of principal coordinate analysis (PCoA). PCoA was further confirmed by Bayesian model-based STRUCTURE analysis, which revealed no direct association between genetic relationship and geographical origins as validated by Mantel's test (r = 0.2268, p = 0.9999). In addition, high-level genetic variation within geographical groups was significantly greater than that between groups, as determined by Shannon diversity analysis, analysis of molecular variance (AMOVA) and Bayesian analysis. Overall, SCoT analysis is a simple, effective and reliable technique for characterizing and maintaining germplasm collections of whipgrass and related species. PMID:25532848

  19. Detecting DNA polymorphism and genetic diversity in Lentil (Lens culinaris Medik.) germplasm: comparison of ISSR and DAMD marker.

    PubMed

    Seyedimoradi, Hiva; Talebi, Reza

    2014-10-01

    Genetic diversity and interrelationships among 31 lentil genotypes were evaluated using 10 Inter-Simple Sequence Repeat (ISSR) and 10 directed amplification of minisatellite DNA region (DAMD) primers. A total of 43 and 48 polymorphic bands were amplified by ISSR and DAMD markers, respectively. Average polymorphism information content (PIC) for ISSR and DAMD markers were 0.37 and 0.41, respectively. All 31 lentil genotypes could be distinguished by ISSR markers into three groups and by DAMD markers into two groups. Various molecular markers show a different efficiency for evaluating DNA polymorphism in lentil and indicate that the patterns of variation are clearly influenced by the genetic marker used. Comparatively, the genetic diversity of examined lentil genotypes by two different marker techniques (ISSR and DAMD) was high and indicated that ISSR and DAMD are effective and promising marker systems for fingerprinting in lentil and give useful information on its genetic relationships. PMID:25320472

  20. Genetic Relationships of Ethnic Minorities in Southwest China Revealed by Microsatellite Markers

    PubMed Central

    Zhang, Feng; Huang, Xiaoqin; Lin, Keqin; Shi, Lei; Hu, Songnian; Chu, Jiayou; Wang, Duen-Mei

    2010-01-01

    Population migrations in Southwest and South China have played an important role in the formation of East Asian populations and led to a high degree of cultural diversity among ethnic minorities living in these areas. To explore the genetic relationships of these ethnic minorities, we systematically surveyed the variation of 10 autosomal STR markers of 1,538 individuals from 30 populations of 25 ethnic minorities, of which the majority were chosen from Southwest China, especially Yunnan Province. With genotyped data of the markers, we constructed phylogenies of these populations with both DA and DC measures and performed a principal component analysis, as well as a clustering analysis by structure. Results showed that we successfully recovered the genetic structure of analyzed populations formed by historical migrations. Aggregation patterns of these populations accord well with their linguistic affiliations, suggesting that deciphering of genetic relationships does in fact offer clues for study of ethnic differentiation. PMID:20360948

  1. Genetic diversity in tetraploid switchgrass revealed by AFLP marker polymorphisms.

    PubMed

    Todd, J; Wu, Y Q; Wang, Z; Samuels, T

    2011-01-01

    Switchgrass (Panicum virgatum) is a perennial warm-season grass native to North America that has been identified as a dedicated cellulosic biofuel crop. We quantified genetic diversity in tetraploid switchgrass germplasm collected at Oklahoma State University and characterized genetic relatedness among the collections from distinct regions. Fifty-six tetraploid accessions, including seven upland and 49 lowland genotypes from throughout the US, were examined. The amplified fragment length polymorphism (AFLP) procedure was utilized to generate DNA profiling patterns that were scored visually. Sixteen selective AFLP primer combinations were used to amplify 452 polymorphic bands. The accessions' genetic similarity coefficients, UPGMA (unweighted pair-group method with arithmetic averaging) cluster analysis and principle coordinate analysis, were performed. The upland and lowland accessions clustered according to ecotypes, with one exception (TN104). Genetic similarity coefficients among the accessions ranged from 0.73 to 0.95. Analysis of molecular variance (AMOVA) was performed, showing significant differences between the upland and lowland genotypes. The trnL marker confirmed that TN104 was a lowland genotype, but the trnL marker identification of upland and lowland genotypes was not consistent with the AFLP analysis in two germplasms (Miami and AR4). PMID:22180031

  2. Further evidence on the relationship between population diversity and violent crime

    Microsoft Academic Search

    Gregory J. Howard; Graeme Newman; Joshua D. Freilich

    2002-01-01

    This paper seeks further evidence on the relationship between population diversity and violent crime. In an earlier paper, we elaborated on Peter Blau's theory of population diversity by developing a conception of population diversity consisting of four types: biological, structural, cultural, and dynamic. Further, we argued that each type of population diversity could be distinguished along two dimensions that we

  3. Multifaceted diversity-area relationships reveal global hotspots of mammalian species, trait and lineage diversity

    PubMed Central

    Mazel, Florent; Guilhaumon, François; Mouquet, Nicolas; Devictor, Vincent; Gravel, Dominique; Renaud, Julien; Cianciaruso, Marcus Vinicius; Loyola, Rafael Dias; Diniz-Filho, José Alexandre Felizola; Mouillot, David; Thuiller, Wilfried

    2014-01-01

    Aim To define biome-scale hotspots of phylogenetic and functional mammalian biodiversity (PD and FD, respectively) and compare them to ‘classical’ hotspots based on species richness (SR) only. Location Global Methods SR, PD & FD were computed for 782 terrestrial ecoregions using distribution ranges of 4616 mammalian species. We used a set of comprehensive diversity indices unified by a recent framework that incorporates the species relative coverage in each ecoregion. We build large-scale multifaceted diversity-area relationships to rank ecoregions according to their levels of biodiversity while accounting for the effect of area on each diversity facet. Finally we defined hotspots as the top-ranked ecoregions. Results While ignoring species relative coverage led to a relative good congruence between biome top ranked SR, PD and FD hotspots, ecoregions harboring a rich and abundantly represented evolutionary history and functional diversity did not match with top ranked ecoregions defined by species richness. More importantly PD and FD hotspots showed important spatial mismatches. We also found that FD and PD generally reached their maximum values faster than species richness as a function of area. Main conclusions The fact that PD/FD reach faster their maximal value than SR may suggest that the two former facets might be less vulnerable to habitat loss than the latter. While this point is expected, it is the first time that it is quantified at global scale and should have important consequences in conservation. Incorporating species relative coverage into the delineation of multifaceted hotspots of diversity lead to weak congruence between SR, PD and FD hotspots. This means that maximizing species number may fail at preserving those nodes (in the phylogenetic or functional tree) that are relatively abundant in the ecoregion. As a consequence it may be of prime importance to adopt a multifaceted biodiversity perspective to inform conservation strategies at global scale. PMID:25071413

  4. Microsatellite analysis of genetic relationships between wild and cultivated melons in Northwest and Central China.

    PubMed

    Hu, Jianbin; Wang, Panqiao; Li, Qiong; Su, Yan

    2014-12-01

    The genetic relationships between the wild and cultivated melon accessions from Northwest and Central China were dissected using 22 microsatellite markers. A total of 153 alleles, a high level of expected heterozygosity (0.669), and a low observed heterozygosity (0.156) were detected in the total panel. Differences on the allelic composition and heterozygosity levels were found between the two accession types and the wild accessions revealed a higher level of genetic diversity. The UPGMA analysis of the total panel showed that (a) most wild accessions from Northwest China were clustered independently from the cultivated accessions, and (b) the wild and cultivated accessions from Central China presented a high genetic closeness and showed a divergence from those of Northwest China. Similar positioning of the most accessions was observed with the principal coordinate analysis and STRUCTURE analysis. Pairwise FST and Nei's genetic distance quantified the genetic differentiation among the different accession types and further verified our findings. We concluded that the wild melons from Northwest China have a distinctive genetic background and could be the true wild forms, while the wild melons from Central China showed a close relationship to the local cultivars and could be a return from the cultivated melons in the same region. Our results offer an insight into the genetic resources of the main melon producing regions in China, which is essential for maximizing utilization of the traits of interest in wild melons. PMID:25109253

  5. Genetic Diversity within Cryptosporidium parvum and Related Cryptosporidium Species

    PubMed Central

    Xiao, Lihua; Morgan, Una M.; Limor, Josef; Escalante, Ananias; Arrowood, Michael; Shulaw, William; Thompson, R. C. A.; Fayer, Ronald; Lal, Altaf A.

    1999-01-01

    To assess the genetic diversity in Cryptosporidium parvum, we have sequenced the small subunit (SSU) rRNA gene of seven Cryptosporidium spp., various isolates of C. parvum from eight hosts, and a Cryptosporidium isolate from a desert monitor. Phylogenetic analysis of the SSU rRNA sequences confirmed the multispecies nature of the genus Cryptosporidium, with at least four distinct species (C. parvum, C. baileyi, C. muris, and C. serpentis). Other species previously defined by biologic characteristics, including C. wrairi, C. meleagridis, and C. felis, and the desert monitor isolate, clustered together or within C. parvum. Extensive genetic diversities were present among C. parvum isolates from humans, calves, pigs, dogs, mice, ferrets, marsupials, and a monkey. In general, specific genotypes were associated with specific host species. A PCR-restriction fragment length polymorphism technique previously developed by us could differentiate most Cryptosporidium spp. and C. parvum genotypes, but sequence analysis of the PCR product was needed to differentiate C. wrairi and C. meleagridis from some of the C. parvum genotypes. These results indicate a need for revision in the taxonomy and assessment of the zoonotic potential of some animal C. parvum isolates. PMID:10427023

  6. Genetic diversity in bread wheat (Triticum aestivum L.) genotypes.

    PubMed

    Degewione, A; Alamerew, S

    2013-11-01

    Wheat is one most important cereal crops grown in Ethiopia. Yet, keeping in view insufficient information on exotic bread wheat genotypes is limiting the access to useful traits present among the genotypes in the Somali region of Ethiopia. The aim of the study was to assess the extent of genetic diversity among bread wheat genotypes. Twenty six bread wheat (Triticum aestivum L.) genotypes obtained from ICARDA-CIMMYT were tested at Gode and Kelafo research sites at three cropping seasons (2009/10, 2010/11 and 2011/12) under irrigation. The experiment was conducted in randomized complete block design with three replications. Ten agronomic traits were included in the study. The mean values, ranges and the coefficient of variation of the 10 characters indicated the existence of sufficient variability among genotypes. Multivariate techniques were used to classify 26 bread wheat genotypes. Principal component analysis showed that the first six principal components explained about 91.87% of the total variation. D2 analysis showed the 26 bread wheat genotypes grouped into six clusters. This made to become moderate diversity among the genotypes. The crosses between genotypes selected from cluster-III with cluster-VI and cluster V with cluster VI are expected to produce better genetic recombination and segregation in their progenies. Therefore, these bread wheat genotypes need to be crossed and selected to develop high yielding pure line variety. PMID:24511742

  7. Clan, Language, and Migration History Has Shaped Genetic Diversity in Haida and Tlingit Populations From Southeast Alaska

    PubMed Central

    Schurr, Theodore G.; Dulik, Matthew C.; Owings, Amanda C.; Zhadanov, Sergey I.; Gaieski, Jill B.; Vilar, Miguel G.; Ramos, Judy; Moss, Mary Beth; Natkong, Francis

    2013-01-01

    The linguistically distinctive Haida and Tlingit tribes of Southeast Alaska are known for their rich material culture, complex social organization, and elaborate ritual practices. However, much less is known about these tribes from a population genetic perspective. For this reason, we analyzed mtDNA and Y-chromosome variation in Haida and Tlingit populations to elucidate several key issues pertaining to the history of this region. These included the genetic relationships of Haida and Tlingit to other indigenous groups in Alaska and Canada; the relationship between linguistic and genetic data for populations assigned to the Na-Dene linguistic family, specifically, the inclusion of Haida with Athapaskan, Eyak, and Tlingit in the language family; the possible influence of matrilineal clan structure on patterns of genetic variation in Haida and Tlingit populations; and the impact of European entry into the region on the genetic diversity of these indigenous communities. Our analysis indicates that, while sharing a “northern” genetic profile, the Haida and the Tlingit are genetically distinctive from each other. In addition, Tlingit groups themselves differ across their geographic range, in part due to interactions of Tlingit tribes with Athapaskan and Eyak groups to the north. The data also reveal a strong influence of maternal clan identity on mtDNA variation in these groups, as well as the significant influence of non-native males on Y-chromosome diversity. These results yield new details about the histories of the Haida and Tlingit tribes in this region. PMID:22549307

  8. Genetic diversity and performance of maize varieties from Zimbabwe, Zambia and Malawi

    E-print Network

    Magorokosho, Cosmos

    2007-04-25

    . The third study revealed high levels of molecular diversity between landraces originating from different growing environments and between landraces and commercially-bred varieties. The Simple Sequence Repeat (SSR) data also showed that the genetic diversity...

  9. USE OF SEQUENCE-BASED POLYMORPHISMS FOR STUDING GENETIC DIVERSITY OF WINTER SQUASH

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Germplasm conservation of facilities require an accurate understanding of the patterns of genetic diversity within and among accessions (unique populations) that comprise germplasm collections and the ecogeographical patterns of this diversity. This information facilitates the efficient management o...

  10. Genetic relationships within Brassica rapa as inferred from AFLP fingerprints

    Microsoft Academic Search

    Jianjun Zhao; Xiaowu Wang; Bo Deng; Ping Lou; Jian Wu; Rifei Sun; Zeyong Xu; Jaap Vromans; Maarten Koornneef; Guusje Bonnema

    2005-01-01

    Amplified fragment length polymorphism (AFLP) markers were employed to assess the genetic diversity amongst two large collections of Brassica rapa accessions. Collection A consisted of 161 B. rapa accessions representing different morphotypes among the cultivated B. rapa, including traditional and modern cultivars and breeding materials from geographical locations from all over the world and two Brassica napus accessions. Collection B consisted of

  11. Global relationship between phytoplankton diversity and productivity in the ocean.

    PubMed

    Vallina, S M; Follows, M J; Dutkiewicz, S; Montoya, J M; Cermeno, P; Loreau, M

    2014-01-01

    The shape of the productivity-diversity relationship (PDR) for marine phytoplankton has been suggested to be unimodal, that is, diversity peaking at intermediate levels of productivity. However, there are few observations and there has been little attempt to understand the mechanisms that would lead to such a shape for planktonic organisms. Here we use a marine ecosystem model together with the community assembly theory to explain the shape of the unimodal PDR we obtain at the global scale. The positive slope from low to intermediate productivity is due to grazer control with selective feeding, which leads to the predator-mediated coexistence of prey. The negative slope at high productivity is due to seasonal blooms of opportunist species that occur before they are regulated by grazers. The negative side is only unveiled when the temporal scale of the observation captures the transient dynamics, which are especially relevant at highly seasonal latitudes. Thus selective predation explains the positive side while transient competitive exclusion explains the negative side of the unimodal PDR curve. The phytoplankton community composition of the positive and negative sides is mostly dominated by slow-growing nutrient specialists and fast-growing nutrient opportunist species, respectively. PMID:24980772

  12. Global relationship between phytoplankton diversity and productivity in the ocean

    PubMed Central

    Vallina, S. M.; Follows, M. J.; Dutkiewicz, S.; Montoya, J. M.; Cermeno, P.; Loreau, M.

    2014-01-01

    The shape of the productivity–diversity relationship (PDR) for marine phytoplankton has been suggested to be unimodal, that is, diversity peaking at intermediate levels of productivity. However, there are few observations and there has been little attempt to understand the mechanisms that would lead to such a shape for planktonic organisms. Here we use a marine ecosystem model together with the community assembly theory to explain the shape of the unimodal PDR we obtain at the global scale. The positive slope from low to intermediate productivity is due to grazer control with selective feeding, which leads to the predator-mediated coexistence of prey. The negative slope at high productivity is due to seasonal blooms of opportunist species that occur before they are regulated by grazers. The negative side is only unveiled when the temporal scale of the observation captures the transient dynamics, which are especially relevant at highly seasonal latitudes. Thus selective predation explains the positive side while transient competitive exclusion explains the negative side of the unimodal PDR curve. The phytoplankton community composition of the positive and negative sides is mostly dominated by slow-growing nutrient specialists and fast-growing nutrient opportunist species, respectively. PMID:24980772

  13. Genetic diversity in tef [Eragrostis tef (Zucc.) Trotter].

    PubMed

    Assefa, Kebebew; Cannarozzi, Gina; Girma, Dejene; Kamies, Rizqah; Chanyalew, Solomon; Plaza-Wüthrich, Sonia; Blösch, Regula; Rindisbacher, Abiel; Rafudeen, Suhail; Tadele, Zerihun

    2015-01-01

    Tef [Eragrostis tef (Zucc.) Trotter] is a cereal crop resilient to adverse climatic and soil conditions, and possessing desirable storage properties. Although tef provides high quality food and grows under marginal conditions unsuitable for other cereals, it is considered to be an orphan crop because it has benefited little from genetic improvement. Hence, unlike other cereals such as maize and wheat, the productivity of tef is extremely low. In spite of the low productivity, tef is widely cultivated by over six million small-scale farmers in Ethiopia where it is annually grown on more than three million hectares of land, accounting for over 30% of the total cereal acreage. Tef, a tetraploid with 40 chromosomes (2n = 4x = 40), belongs to the family Poaceae and, together with finger millet (Eleusine coracana Gaerth.), to the subfamily Chloridoideae. It was originated and domesticated in Ethiopia. There are about 350 Eragrostis species of which E. tef is the only species cultivated for human consumption. At the present time, the gene bank in Ethiopia holds over five thousand tef accessions collected from geographical regions diverse in terms of climate and elevation. These germplasm accessions appear to have huge variability with regard to key agronomic and nutritional traits. In order to properly utilize the variability in developing new tef cultivars, various techniques have been implemented to catalog the extent and unravel the patterns of genetic diversity. In this review, we show some recent initiatives investigating the diversity of tef using genomics, transcriptomics and proteomics and discuss the prospect of these efforts in providing molecular resources that can aid modern tef breeding. PMID:25859251

  14. Genetic diversity in tef [Eragrostis tef (Zucc.) Trotter

    PubMed Central

    Assefa, Kebebew; Cannarozzi, Gina; Girma, Dejene; Kamies, Rizqah; Chanyalew, Solomon; Plaza-Wüthrich, Sonia; Blösch, Regula; Rindisbacher, Abiel; Rafudeen, Suhail; Tadele, Zerihun

    2015-01-01

    Tef [Eragrostis tef (Zucc.) Trotter] is a cereal crop resilient to adverse climatic and soil conditions, and possessing desirable storage properties. Although tef provides high quality food and grows under marginal conditions unsuitable for other cereals, it is considered to be an orphan crop because it has benefited little from genetic improvement. Hence, unlike other cereals such as maize and wheat, the productivity of tef is extremely low. In spite of the low productivity, tef is widely cultivated by over six million small-scale farmers in Ethiopia where it is annually grown on more than three million hectares of land, accounting for over 30% of the total cereal acreage. Tef, a tetraploid with 40 chromosomes (2n = 4x = 40), belongs to the family Poaceae and, together with finger millet (Eleusine coracana Gaerth.), to the subfamily Chloridoideae. It was originated and domesticated in Ethiopia. There are about 350 Eragrostis species of which E. tef is the only species cultivated for human consumption. At the present time, the gene bank in Ethiopia holds over five thousand tef accessions collected from geographical regions diverse in terms of climate and elevation. These germplasm accessions appear to have huge variability with regard to key agronomic and nutritional traits. In order to properly utilize the variability in developing new tef cultivars, various techniques have been implemented to catalog the extent and unravel the patterns of genetic diversity. In this review, we show some recent initiatives investigating the diversity of tef using genomics, transcriptomics and proteomics and discuss the prospect of these efforts in providing molecular resources that can aid modern tef breeding. PMID:25859251

  15. Variation of Genetic Diversity in a Rapidly Expanding Population of the Greater Long-Tailed Hamster (Tscherskia triton) as Revealed by Microsatellites

    PubMed Central

    Xu, Laixiang; Xue, Huiliang; Song, Mingjing; Zhao, Qinghua; Dong, Jingping; Liu, Juan; Guo, Yu; Xu, Tongqin; Cao, Xiaoping; Wang, Fusheng; Wang, Shuqing; Hao, Shushen; Yang, Hefang; Zhang, Zhibin

    2013-01-01

    Genetic diversity is essential for persistence of animal populations over both the short- and long-term. Previous studies suggest that genetic diversity may decrease with population decline due to genetic drift or inbreeding of small populations. For oscillating populations, there are some studies on the relationship between population density and genetic diversity, but these studies were based on short-term observation or in low-density phases. Evidence from rapidly expanding populations is lacking. In this study, genetic diversity of a rapidly expanding population of the Greater long-tailed hamsters during 1984–1990, in the Raoyang County of the North China Plain was studied using DNA microsatellite markers. Results show that genetic diversity was positively correlated with population density (as measured by % trap success), and the increase in population density was correlated with a decrease of genetic differentiation between the sub-population A and B. The genetic diversity tended to be higher in spring than in autumn. Variation in population density and genetic diversity are consistent between sub-population A and B. Such results suggest that dispersal is density- and season-dependent in a rapidly expanding population of the Greater long-tailed hamster. For typically solitary species, increasing population density can increase intra-specific attack, which is a driving force for dispersal. This situation is counterbalanced by decreasing population density caused by genetic drift or inbreeding as the result of small population size. Season is a major factor influencing population density and genetic diversity. Meanwhile, roads, used to be considered as geographical isolation, have less effect on genetic differentiation in a rapidly expanding population. Evidences suggest that gene flow (Nm) is positively correlated with population density, and it is significant higher in spring than that in autumn. PMID:23349815

  16. Late Quaternary loss of genetic diversity in muskox (Ovibos)

    PubMed Central

    MacPhee, Ross DE; Tikhonov, Alexei N; Mol, Dick; Greenwood, Alex D

    2005-01-01

    Background The modern wildherd of the tundra muskox (Ovibos moschatus) is native only to the New World (northern North America and Greenland), and its genetic diversity is notably low. However, like several other megafaunal mammals, muskoxen enjoyed a holarctic distribution during the late Pleistocene. To investigate whether collapse in range and loss of diversity might be correlated, we collected mitochondrial sequence data (hypervariable region and cytochrome b) from muskox fossil material recovered from localities in northeastern Asia and the Arctic Archipelago of northern North America, dating from late Pleistocene to late Holocene, and compared our results to existing databases for modern muskoxen. Results Two classes of haplotypes were detected in the fossil material. "Surviving haplotypes" (SHs), closely similar or identical to haplotypes found in modern muskoxen and ranging in age from ~22,000 to ~160 yrbp, were found in all New World samples as well as some samples from northeastern Asia. "Extinct haplotypes" (EHs), dating between ~44,000 and ~18,000 yrbp, were found only in material from the Taimyr Peninsula and New Siberian Islands in northeastern Asia. EHs were not found in the Holocene muskoxen specimens available for this study, nor have they been found in other studies of extant muskox populations. Conclusion We provisionally interpret this evidence as showing that genetic variability was reduced in muskoxen after the Last Glacial Maximum but before the mid-Holocene, or roughly within the interval 18,000-4,000 yrbp. Narrowing this gap further will require the recovery of more fossils and additional genetic information from this interval. PMID:16209705

  17. Genetic characterization of northeastern Italian population isolates in the context of broader European genetic diversity

    PubMed Central

    Esko, Tõnu; Mezzavilla, Massimo; Nelis, Mari; Borel, Christelle; Debniak, Tadeusz; Jakkula, Eveliina; Julia, Antonio; Karachanak, Sena; Khrunin, Andrey; Kisfali, Peter; Krulisova, Veronika; Aušrelé Ku?inskiené, Zita; Rehnström, Karola; Traglia, Michela; Nikitina-Zake, Liene; Zimprich, Fritz; Antonarakis, Stylianos E; Estivill, Xavier; Glava?, Damjan; Gut, Ivo; Klovins, Janis; Krawczak, Michael; Ku?inskas, Vaidutis; Lathrop, Mark; Macek, Milan; Marsal, Sara; Meitinger, Thomas; Melegh, Béla; Limborska, Svetlana; Lubinski, Jan; Paolotie, Aarno; Schreiber, Stefan; Toncheva, Draga; Toniolo, Daniela; Wichmann, H-Erich; Zimprich, Alexander; Metspalu, Mait; Gasparini, Paolo; Metspalu, Andres; D'Adamo, Pio

    2013-01-01

    Population genetic studies on European populations have highlighted Italy as one of genetically most diverse regions. This is possibly due to the country's complex demographic history and large variability in terrain throughout the territory. This is the reason why Italy is enriched for population isolates, Sardinia being the best-known example. As the population isolates have a great potential in disease-causing genetic variants identification, we aimed to genetically characterize a region from northeastern Italy, which is known for isolated communities. Total of 1310 samples, collected from six geographically isolated villages, were genotyped at >145?000 single-nucleotide polymorphism positions. Newly genotyped data were analyzed jointly with the available genome-wide data sets of individuals of European descent, including several population isolates. Despite the linguistic differences and geographical isolation the village populations still show the greatest genetic similarity to other Italian samples. The genetic isolation and small effective population size of the village populations is manifested by higher levels of genomic homozygosity and elevated linkage disequilibrium. These estimates become even more striking when the detected substructure is taken into account. The observed level of genetic isolation in Friuli-Venezia Giulia region is more extreme according to several measures of isolation compared with Sardinians, French Basques and northern Finns, thus proving the status of an isolate. PMID:23249956

  18. AFRICAN GENETIC DIVERSITY: Implications for Human Demographic History, Modern Human Origins, and Complex Disease Mapping

    PubMed Central

    Campbell, Michael C.; Tishkoff, Sarah A.

    2010-01-01

    Comparative studies of ethnically diverse human populations, particularly in Africa, are important for reconstructing human evolutionary history and for understanding the genetic basis of phenotypic adaptation and complex disease. African populations are characterized by greater levels of genetic diversity, extensive population substructure, and less linkage disequilibrium (LD) among loci compared to non-African populations. Africans also possess a number of genetic adaptations that have evolved in response to diverse climates and diets, as well as exposure to infectious disease. This review summarizes patterns and the evolutionary origins of genetic diversity present in African populations, as well as their implications for the mapping of complex traits, including disease susceptibility. PMID:18593304

  19. The impact of global climate change on genetic diversity within populations and species.

    PubMed

    Pauls, Steffen U; Nowak, Carsten; Bálint, Miklós; Pfenninger, Markus

    2013-02-01

    Genetic diversity provides the basic substrate for evolution, yet few studies assess the impacts of global climate change (GCC) on intraspecific genetic variation. In this review, we highlight the importance of incorporating neutral and non-neutral genetic diversity when assessing the impacts of GCC, for example, in studies that aim to predict the future distribution and fate of a species or ecological community. Specifically, we address the following questions: Why study the effects of GCC on intraspecific genetic diversity? How does GCC affect genetic diversity? How is the effect of GCC on genetic diversity currently studied? Where is potential for future research? For each of these questions, we provide a general background and highlight case studies across the animal, plant and microbial kingdoms. We further discuss how cryptic diversity can affect GCC assessments, how genetic diversity can be integrated into studies that aim to predict species' responses on GCC and how conservation efforts related to GCC can incorporate and profit from inclusion of genetic diversity assessments. We argue that studying the fate of intraspecifc genetic diversity is an indispensable and logical venture if we are to fully understand the consequences of GCC on biodiversity on all levels. PMID:23279006

  20. Diversity and genetic structure of three species of Dioon Lindl. (Zamiaceae, Cycadales) from

    E-print Network

    González Astorga, Jorge Arturo - INECOL

    December 2007 We have estimated levels of genetic diversity and partitioning in the Mexican endemic cycad have been practiced to char- acterize genetic variation between species of cycads of the same genus

  1. EFFECTS OF CHEMICAL CONTAMINANTS ON GENETIC DIVERSITY IN NATURAL POPULATIONS: IMPLICATIONS FOR BIOMONITORING AND ECOTOXICOLOGY

    EPA Science Inventory

    The conservation of genetic diversity has emerged as one of the central issues in conservation biology. Although researchers in the areas of evolutionary biology, population management, and conservation biology routinely investigate genetic variability in natural populations, onl...

  2. Genetic diversity and genetic structure of Northern Goshawk ( Accipiter gentilis ) populations in eastern Japan and Central Asia

    Microsoft Academic Search

    Yoshihide Takaki; Takayuki Kawahara; Hisashi Kitamura; Ko-ichi Endo; Takuma Kudo

    2009-01-01

    Japanese goshawk was classified as a vulnerable species in the Red Data Book. There have been possibilities of a decrease\\u000a of genetic diversity accompanied by habitat loss and genetic pollution due to hybridization with escaping imported goshawks.\\u000a In this paper, genetic diversity, gene flow and conservation of Northern Goshawk (Accipiter gentilis) in Japan are discussed and compared with that in

  3. Genetic Diversity and Geographical Distribution of Indigenous Soybean-Nodulating Bradyrhizobia in the United States

    PubMed Central

    Shiro, Sokichi; Matsuura, Syota; Saiki, Rina; Sigua, Gilbert C.; Yamamoto, Akihiro; Umehara, Yosuke; Hayashi, Masaki

    2013-01-01

    We investigated the relationship between the genetic diversity of indigenous soybean-nodulating bradyrhizobia and their geographical distribution in the United States using nine soil isolates from eight states. The bradyrhizobia were inoculated on three soybean Rj genotypes (non-Rj, Rj2Rj3, and Rj4). We analyzed their genetic diversity and community structure by means of restriction fragment length polymorphisms of PCR amplicons to target the 16S-23S rRNA gene internal transcribed spacer region, using 11 USDA Bradyrhizobium strains as reference strains. We also performed diversity analysis, multidimensional scaling analysis based on the Bray-Curtis index, and polar ordination analysis to describe the structure and geographical distribution of the soybean-nodulating bradyrhizobial community. The major clusters were Bradyrhizobium japonicum Bj123, in the northern United States, and Bradyrhizobium elkanii, in the middle to southern regions. Dominance of bradyrhizobia in a community was generally larger for the cluster belonging to B. elkanii than for the cluster belonging to B. japonicum. The indigenous American soybean-nodulating bradyrhizobial community structure was strongly correlated with latitude. Our results suggest that this community varies geographically. PMID:23563944

  4. Phylogenetic analysis of Portuguese Feline Immunodeficiency Virus sequences reveals high genetic diversity.

    PubMed

    Duarte, Ana; Tavares, Luis

    2006-04-16

    Feline Immunodeficiency Virus (FIV) is a Lentivirus responsible for an immunodeficiency like disease in domestic cats. Based on the genetic diversity of the V3-V5 region of env gene FIV is divided in five phylogenetic subtypes (A, B, C, D and E) with a world-wide distribution. To understand the subtype diversity of FIV in Portugal a serological survey was conducted during 1 year in the Veterinary Faculty Hospital, Lisbon, Portugal to identify seropositive animals. Two viral genomic regions were amplified by a nested PCR, sequenced and the phylogenetic relationships between 24 new Portuguese FIV sequences and other previously published FIV isolates were assessed. The introduction of these sequences induced a subclustering in subtype B including most of the new Portuguese sequences. Moreover, a new cluster emerged, with two highly divergent new sequences that might represent a new subtype. The study of these new FIV isolates showed the presence in Portugal of a unique viral population subclustering within subtype B and of sequences clearly divergent from the five known subtypes, providing a contribution for the understanding of FIV's genetic diversity. PMID:16384661

  5. Comparison of statistical methods for assessment of population genetic diversity by DNA fingerprinting

    SciTech Connect

    Leonard, T. [Univ. of Cincinnati, OH (United States); Roth, A.; Gordon, D.; Wessendarp, T.; Smith, M.K. [Environmental Protection Agency, Cincinnati, OH (United States); Silbiger, R. [Dyncorp, Cincinnati, OH (United States); Torsella, J. [Oak Ridge Inst. of Science, Cincinnati, OH (United States)

    1995-12-31

    The advent of newer techniques for genomic characterization, e.g., Random Amplified Polymorphic DNA (RAPD) fingerprinting, has motivated development of a number of statistical approaches for creating hypothesis tests using this genetic information. The authors specific interest is methods for deriving relative genetic diversity measures of feral populations subjected to varying degrees of environmental impacts. Decreased polymorphism and loss of alleles have been documented in stressed populations of some species as assayed by allozyme analysis and, more recently, by DNA fingerprinting. Multilocus fingerprinting techniques (such as RAPDS) differ from allozyme analysis in that they do not explicitly yield information of allelism and heterozygosity. Therefore, in order to infer these parameters, assumptions must be made concerning the relationship of observed data to the underlying DNA architecture. In particular, assessments of population genetic diversity from DNA fingerprint data have employed at least three approaches based on different assumptions about the data. The authors compare different statistics, using a previously presented set of RAPD fingerprints of three populations of brown bullhead catfish. Furthermore, the behavior of these statistics is examined--as the sample sizes of fish/population and polymorphisms/fish are varied. Sample sizes are reduced either randomly or, in the case of polymorphisms (which are electrophoretic bands), systematically pruned using the criteria of high reproducibility between duplicate samples for inclusion of data. Implications for sampling individuals and loci in assessments of population genetic diversities are discussed. Concern about population N value and statistical power is very relevant to field situations where individuals available for sampling may be limited in number.

  6. Genetic Diversity and Population Genetics of Mosquitoes (Diptera: Culicidae: Culex spp.) from the Sonoran Desert of North America

    PubMed Central

    Pfeiler, Edward; Flores-López, Carlos A.; Mada-Vélez, Jesús Gerardo; Escalante-Verdugo, Juan; Markow, Therese A.

    2013-01-01

    The population genetics and phylogenetic relationships of Culex mosquitoes inhabiting the Sonoran Desert region of North America were studied using mitochondrial DNA and microsatellite molecular markers. Phylogenetic analyses of mitochondrial cytochrome c oxidase subunit I (COI) from mosquitoes collected over a wide geographic area, including the Baja California peninsula, and mainland localities in southern Arizona, USA and Sonora, Mexico, showed several well-supported partitions corresponding to Cx. quinquefasciatus, Cx. tarsalis, and two unidentified species, Culex sp. 1 and sp. 2. Culex quinquefasciatus was found at all localities and was the most abundant species collected. Culex tarsalis was collected only at Tucson, Arizona and Guaymas, Sonora. The two unidentified species of Culex were most abundant at Navojoa in southern Sonora. Haplotype and nucleotide diversities in the COI gene segment were substantially lower in Cx. quinquefasciatus compared with the other three species. Analysis of molecular variance revealed little structure among seven populations of Cx. quinquefasciatus, whereas significant structure was found between the two populations of Cx. tarsalis. Evidence for an historical population expansion beginning in the Pleistocene was found for Cx. tarsalis. Possible explanations for the large differences in genetic diversity between Cx. quinquefasciatus and the other species of Culex are presented. PMID:24302868

  7. Genetic diversity through the looking glass: Effect of enrichment bias

    SciTech Connect

    Dunbar, J.; Forney, L. [Michigan State Univ., East Lansing, MI (United States); White, S. [Los Alamos National Lab., NM (United States)

    1997-04-01

    The effect of enrichment bias on the diversity of 2,4-dichlorophenoxyacetate (2,4-D)-degrading (2,4-D{sup +}) bacteria recovered from soil was evaluated by comparing the diversity of isolates obtained by direct plating to the diversity of isolates obtained from 85 liquid batch cultures. By the two methods, a total of 159 isolates were purified from 1 g of soil and divided into populations based on repeated extragenic palindromic sequence PCR (rep-PCR) genomic fingerprints. Approximately 42% of the direct-plating isolates hybridized with the tfdA and tfdB genes from Alcaligenes eutrophus JMP134(pJP4), 27% hybridized with the tfdA and tfdB genes from Burk holderia sp. strain RASC, and 30% hybridized with none of the probes. In contrast, the enrichment isolates not only represented fewer populations than the isolates obtained by direct plating but also exhibited, almost exclusively, a single hybridization pattern with 2,4-D catabolic gene probes. Approximately 98% of the enrichment isolates possessed pJP4-type tfd4 and tfdB genes, whereas isolates containing RASC-type tfdA and tfdB genes were obtained from only 2 of the 85 enrichment cultures. The skewed occurrence of the pJP4-type genes among the isolates obtained by enrichment suggests that the competitive fitness of 2,4-D{sup +} populations during growth with 2,4-D may be influenced either by specific tfd alleles or by genetic factors linked to these alleles. Moreover, the results indicate that evaluation of the diversity and distribution of catabolic pathways in nature can be highly distorted by the use of enrichment culture techniques. 34 refs., 4 figs., 1 tab.

  8. Genetic diversity, structure and differentiation in cultivated walnut (juglans regia l.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An analysis of genetic structure and differentiation in cultivated walnut (Juglans regia) using 15 microsatellite loci revealed a considerable amount of genetic variation with a mild genetic structure indicating five genetic groups corresponding to the centers of diversity within the home range of w...

  9. [Genetic diversity of microsatellite loci in captive Amur tigers].

    PubMed

    Zhang, Yu-Gaung; Li, Di-Qiang; Xiao, Qi-Ming; Rao, Li-Qun; Zhang, Xue-Wen

    2004-09-01

    The tiger is one of the most threatened wildlife species since the abundance and distribution of tiger have decreased dramatically in the last century. The wild Amur tiger (Panthera tigris altaica) only distributed in northeast China, the far east area of Russia and the north Korea and its size of wild population is about 450 in the world and 20 in China. Several hundred captive populations of Amur tigers are the main source to protect gene library of tiger and the source of recovering the wild populations. The Breeding Center for Felidae at Hengdaohezi and Haoerbin Tiger Park in Heilongjiang Province is the biggest captive breeding base in China. How to make clear the genetic pedigree and establish reasonable breeding system is the urgent issues. So we use the microsatellite DNA markers and non-invasive technology to research on the genetic diversity of captive Amur tiger in this study. Ten microsatellite loci (Fca005, Fca075, Fca094, Fca152, Fca161, Fca294, Pti002, Pti003, Pti007 and Pti010), highly variable nuclear markers, were studied their genetic diversity in 113 captive Amur tigers. The PCR amplified products of microsatellite loci were detected by non-denatured polyacrylamide gel electrophoresis. Allele numbers, allelic frequency, gene heterozygosity(H(e)), polymorphism information content(PIC) and effective number of allele(N(e)) were calculated. 41 alleles were found and their size were ranged from 110bp to 250bp in ten microsatellite loci, Fca152 had 6 alleles, Fca075, Fca094 and Fca294 had 5 alleles, Fca005 and Pti002 had 4 alleles and the others had 3 alleles in all tiger samples, respectively. The allelic frequencies were from 0.009 to 0.767; The He ranged from 0.385 to 0.707, and Fca294 and Pti010 locus had the highest and lowest value; the PIC were from 0.353 to 0.658, Fca294 and Pti010 locus had the highest and lowest value; and N(e) were from 1.626 to 3.409, Fca294 and Pti010 locus had the highest and lowest value, which showed the ten microsatellie loci had high or medium polymorphism in these Amur tigers and had high genetic diversity. At the same time, we only found even bases variability which showed the even bases repeat sequence (CA/GT) maybe the basic unit for length variability of microsatellite in all loci. In this study, the samples were made up of 75 hair specimens, 23 blood specimens and 15 tissue specimens, we obtained the genome DNA from hairs using the non-invasive DNA technology and demonstrated that DNA derived from hair samples is as good as that obtained from blood samples for the analysis of microsatellite polymorphism. These results imply that microsatellite DNA markers and non-invasive DNA technology can help study the genetic diversity of Amur tiger. This method could be used in the captive management of other endangered species. PMID:15640074

  10. 107TURTLE CONSERVATION GENETICS WORKING GROUP Genetics Issues Defining Turtle Diversity: Proceedings of a Workshop on Genetics, Ethics, and Taxonomy of Freshwater Turtles and Tortoises

    E-print Network

    Janzen, Fredric

    107TURTLE CONSERVATION GENETICS WORKING GROUP ­ Genetics Issues Defining Turtle Diversity: Proceedings of a Workshop on Genetics, Ethics, and Taxonomy of Freshwater Turtles and Tortoises H. Bradley 4:107­123 · © 2007 by Chelonian Research Foundation Genetic Issues in Freshwater Turtle and Tortoise

  11. Social Category Diversity Promotes Premeeting Elaboration: The Role of Relationship Focus

    E-print Network

    Loyd, Denise Lewin

    A purported downside of social category diversity is decreased relationship focus (i.e., one’s focus on establishing a positive social bond with a coworker). However, we argue that this lack of relationship focus serves ...

  12. Genetic Breeding and Diversity of the Genus Passiflora: Progress and Perspectives in Molecular and Genetic Studies

    PubMed Central

    Cerqueira-Silva, Carlos Bernard M.; Jesus, Onildo N.; Santos, Elisa S. L.; Corrêa, Ronan X.; Souza, Anete P.

    2014-01-01

    Despite the ecological and economic importance of passion fruit (Passiflora spp.), molecular markers have only recently been utilized in genetic studies of this genus. In addition, both basic genetic researches related to population studies and pre-breeding programs of passion fruit remain scarce for most Passiflora species. Considering the number of Passiflora species and the increasing use of these species as a resource for ornamental, medicinal, and food purposes, the aims of this review are the following: (i) to present the current condition of the passion fruit crop; (ii) to quantify the applications and effects of using molecular markers in studies of Passiflora; (iii) to present the contributions of genetic engineering for passion fruit culture; and (iv) to discuss the progress and perspectives of this research. Thus, the present review aims to summarize and discuss the relationship between historical and current progress on the culture, breeding, and molecular genetics of passion fruit. PMID:25196515

  13. Genetic breeding and diversity of the genus Passiflora: progress and perspectives in molecular and genetic studies.

    PubMed

    Cerqueira-Silva, Carlos Bernard M; Jesus, Onildo N; Santos, Elisa S L; Corrêa, Ronan X; Souza, Anete P

    2014-01-01

    Despite the ecological and economic importance of passion fruit (Passiflora spp.), molecular markers have only recently been utilized in genetic studies of this genus. In addition, both basic genetic researches related to population studies and pre-breeding programs of passion fruit remain scarce for most Passiflora species. Considering the number of Passiflora species and the increasing use of these species as a resource for ornamental, medicinal, and food purposes, the aims of this review are the following: (i) to present the current condition of the passion fruit crop; (ii) to quantify the applications and effects of using molecular markers in studies of Passiflora; (iii) to present the contributions of genetic engineering for passion fruit culture; and (iv) to discuss the progress and perspectives of this research. Thus, the present review aims to summarize and discuss the relationship between historical and current progress on the culture, breeding, and molecular genetics of passion fruit. PMID:25196515

  14. [Genetic variation and relationship in orchardgrass (Dactylis glomerata L.) germplasm detected by SSR markers].

    PubMed

    Xie, Wen-Gang; Zhang, Xin-Quan; Ma, Xiao; Peng, Yan; Huang, Lin-Kai

    2009-06-01

    Genetic variation and relationship of 53 accessions of D. glomerata collected from 5 continents were analyzed using simple sequence repeat (SSR) molecular markers with 15 SSR primer pairs. The following results were obtained. (1) A total of 127 alleles were detected at 15 loci. The number of alleles per locus ranged from 5 to 12, with an average of 8.5. The rate of polymorphic sites (P) was 95.21%; the polymorphic information content (PIC) ranged from 0.30(A04C24)to 0.44(A01F24) with an average of 0.36. (2) The genetic similarity (GS) among all accessions ranged from 0.43 to 0.94, for all geographical groups GS ranged from 0.73 to 0.91, and high genetic diversity was observed in Asia (P, 90.55%) and Europe (P, 86.61%) groups. These results suggested that there was rich genetic diversity among all orchardgrass accessions tested. (3) Based on the cluster and principal component analyses, 53 accessions could be divided into five groups according to the nearest phylogenetic relationship, and accessions from the same continent were classified into the same group associated with their geographical distributions. PMID:19586867

  15. Genetic diversity among isolates of Paenibacillus larvae from Austria.

    PubMed

    Loncaric, Igor; Derakhshifar, Irmgard; Oberlerchner, Josua T; Köglberger, Hemma; Moosbeckhofer, Rudolf

    2009-01-01

    Genetic diversity of 214 Paenibacillus larvae strains from Austria was studied. Genotyping of isolates was performed by polymerase chain reaction (PCR) with primers corresponding to enterobacterial repetitive intergenic consensus (ERIC), BOX repetitive and extragenic palindromic (REP) elements (collectively known as rep-PCR) using ERIC primers, BOX A1R and MBO REP1 primers. Using ERIC-PCR technique two genotypes could be differentiated (ERIC I and II), whereas using combined typing by BOX- and REP-PCR, five different genotypes were detected (ab, aB, Ab, AB and alphab). Genotypes aB and alphab are new and have not been reported in other studies using the same techniques. PMID:18831978

  16. Genetic diversity in cyanobacterial symbionts of thalloid bryophytes.

    PubMed

    Rikkinen, Jouko; Virtanen, Viivi

    2008-01-01

    Two species of thalloid liverworts, Blasia pusilla and Cavicularia densa, form stable symbioses with nitrogen-fixing cyanobacteria. Both bryophytes promote the persistence of their cyanobacterial associations by producing specialized gemmae, which facilitate the simultaneous dispersal of the host and its nitrogen-fixing symbionts. Here the genetic diversity of cyanobacterial symbionts of Blasia and Cavicularia is examined. The results indicate that the primary symbionts of both bryophytes are closely related and belong to a specific group of symbiotic Nostoc strains. Related strains have previously been reported from hornworts and cycads, and from many terricolous cyanolichens. The evolutionary origins of all these symbioses may trace back to pre-Permian times. While the laboratory strain Nostoc punctiforme PCC 73102 has been widely used in experimental studies of bryophyte-Nostoc associations, sequence-identical cyanobionts have not yet been identified from thalloid liverworts in the field. PMID:18325923

  17. Epidemiology and genetic diversity of Taenia asiatica: a systematic review.

    PubMed

    Ale, Anita; Victor, Bjorn; Praet, Nicolas; Gabriël, Sarah; Speybroeck, Niko; Dorny, Pierre; Devleesschauwer, Brecht

    2014-01-01

    Taenia asiatica has made a remarkable journey through the scientific literature of the past 50 years, starting with the paradoxical observation of high prevalences of T. saginata-like tapeworms in non-beef consuming populations, to the full description of its mitochondrial genome. Experimental studies conducted in the 1980s and 1990s have made it clear that the life cycle of T. asiatica is comparable to that of T. saginata, except for pigs being the preferential intermediate host and liver the preferential location of the cysts. Whether or not T. asiatica can cause human cysticercosis, as is the case for Taenia solium, remains unclear. Given the specific conditions needed to complete its life cycle, in particular the consumption of raw or poorly cooked pig liver, the transmission of T. asiatica shows an important ethno-geographical association. So far, T. asiatica has been identified in Taiwan, South Korea, Indonesia, the Philippines, Thailand, south-central China, Vietnam, Japan and Nepal. Especially this last observation indicates that its distribution is not restricted to South-East-Asia, as was thought so far. Indeed, the molecular tools developed over the last 20 years have made it increasingly possible to differentiate T. asiatica from other taeniids. Such tools also indicated that T. asiatica is related more closely to T. saginata than to T. solium, feeding the debate on its taxonomic status as a separate species versus a subspecies of T. saginata. Furthermore, the genetic diversity within T. asiatica appears to be very minimal, indicating that this parasite may be on the verge of extinction. However, recent studies have identified potential hybrids between T. asiatica and T. saginata, reopening the debate on the genetic diversity of T. asiatica and its status as a separate species. PMID:24450957

  18. Epidemiology and genetic diversity of Taenia asiatica: a systematic review

    PubMed Central

    2014-01-01

    Taenia asiatica has made a remarkable journey through the scientific literature of the past 50 years, starting with the paradoxical observation of high prevalences of T. saginata-like tapeworms in non-beef consuming populations, to the full description of its mitochondrial genome. Experimental studies conducted in the 1980s and 1990s have made it clear that the life cycle of T. asiatica is comparable to that of T. saginata, except for pigs being the preferential intermediate host and liver the preferential location of the cysts. Whether or not T. asiatica can cause human cysticercosis, as is the case for Taenia solium, remains unclear. Given the specific conditions needed to complete its life cycle, in particular the consumption of raw or poorly cooked pig liver, the transmission of T. asiatica shows an important ethno-geographical association. So far, T. asiatica has been identified in Taiwan, South Korea, Indonesia, the Philippines, Thailand, south-central China, Vietnam, Japan and Nepal. Especially this last observation indicates that its distribution is not restricted to South-East-Asia, as was thought so far. Indeed, the molecular tools developed over the last 20 years have made it increasingly possible to differentiate T. asiatica from other taeniids. Such tools also indicated that T. asiatica is related more closely to T. saginata than to T. solium, feeding the debate on its taxonomic status as a separate species versus a subspecies of T. saginata. Furthermore, the genetic diversity within T. asiatica appears to be very minimal, indicating that this parasite may be on the verge of extinction. However, recent studies have identified potential hybrids between T. asiatica and T. saginata, reopening the debate on the genetic diversity of T. asiatica and its status as a separate species. PMID:24450957

  19. Genetic Diversity Revealed by Single Nucleotide Polymorphism Markers in a Worldwide Germplasm Collection of Durum Wheat

    PubMed Central

    Ren, Jing; Sun, Daokun; Chen, Liang; You, Frank M.; Wang, Jirui; Peng, Yunliang; Nevo, Eviatar; Sun, Dongfa; Luo, Ming-Cheng; Peng, Junhua

    2013-01-01

    Evaluation of genetic diversity and genetic structure in crops has important implications for plant breeding programs and the conservation of genetic resources. Newly developed single nucleotide polymorphism (SNP) markers are effective in detecting genetic diversity. In the present study, a worldwide durum wheat collection consisting of 150 accessions was used. Genetic diversity and genetic structure were investigated using 946 polymorphic SNP markers covering the whole genome of tetraploid wheat. Genetic structure was greatly impacted by multiple factors, such as environmental conditions, breeding methods reflected by release periods of varieties, and gene flows via human activities. A loss of genetic diversity was observed from landraces and old cultivars to the modern cultivars released during periods of the Early Green Revolution, but an increase in cultivars released during the Post Green Revolution. Furthermore, a comparative analysis of genetic diversity among the 10 mega ecogeographical regions indicated that South America, North America, and Europe possessed the richest genetic variability, while the Middle East showed moderate levels of genetic diversity. PMID:23538839

  20. Inferring population structure and genetic diversity of broad range of wild diploid alfalfa ( Medicago sativa L.) accessions using SSR markers

    Microsoft Academic Search

    Muhammet ?akiro?lu; Jeffrey J. Doyle; E. Charles Brummer

    2010-01-01

    Diversity analyses in alfalfa have mainly evaluated genetic relationships of cultivated germplasm, with little known about\\u000a variation in diploid germplasm in the M. sativa–falcata complex. A collection of 374 individual genotypes derived from 120 unimproved diploid accessions from the National Plant\\u000a Germplasm System, including M. sativa subsp. caerulea, falcata, and hemicycla, were evaluated with 89 polymorphic SSR loci in order

  1. Genetic diversity of Babesia bovis in virulent and attenuated strains.

    PubMed

    Mazuz, M L; Molad, T; Fish, L; Leibovitz, B; Wolkomirsky, R; Fleiderovitz, L; Shkap, V

    2012-03-01

    The aim of this study was to compare the genetic diversity of the single copy Bv80 gene sequences of Babesia bovis in populations of attenuated and virulent parasites. PCR/ RT-PCR followed by cloning and sequence analyses of 4 attenuated and 4 virulent strains were performed. Multiple fragments in the range of 420 to 744 bp were amplified by PCR or RT-PCR. Cloning of the PCR fragments and sequence analyses revealed the presence of mixed subpopulations in either virulent or attenuated parasites with a total of 19 variants with 12 different sequences that differed in number and type of tandem repeats. High levels of intra- and inter-strain diversity of the Bv80 gene, with the presence of mixed populations of parasites were found in both the virulent field isolates and the attenuated vaccine strains. In addition, during the attenuation process, sequence analyses showed changes in the pattern of the parasite subpopulations. Despite high polymorphism found by sequence analyses, the patterns observed and the number of repeats, order, or motifs found could not discriminate between virulent field isolates and attenuated vaccine strains of the parasite. PMID:22075976

  2. Genetic and Functional Diversity of Pseudomonas aeruginosa Lipopolysaccharide

    PubMed Central

    Lam, Joseph S.; Taylor, Véronique L.; Islam, Salim T.; Hao, Youai; Kocíncová, Dana

    2011-01-01

    Lipopolysccharide (LPS) is an integral component of the Pseudomonas aeruginosa cell envelope, occupying the outer leaflet of the outer membrane in this Gram-negative opportunistic pathogen. It is important for bacterium–host interactions and has been shown to be a major virulence factor for this organism. Structurally, P. aeruginosa LPS is composed of three domains, namely, lipid A, core oligosaccharide, and the distal O antigen (O-Ag). Most P. aeruginosa strains produce two distinct forms of O-Ag, one a homopolymer of D-rhamnose that is a common polysaccharide antigen (CPA, formerly termed A band), and the other a heteropolymer of three to five distinct (and often unique dideoxy) sugars in its repeat units, known as O-specific antigen (OSA, formerly termed B band). Compositional differences in the O units among the OSA from different strains form the basis of the International Antigenic Typing Scheme for classification via serotyping of different strains of P. aeruginosa. The focus of this review is to provide state-of-the-art knowledge on the genetic and resultant functional diversity of LPS produced by P. aeruginosa. The underlying factors contributing to this diversity will be thoroughly discussed and presented in the context of its contributions to host–pathogen interactions and the control/prevention of infection. PMID:21687428

  3. High Genetic Diversity in the Chemoreceptor Superfamily of Caenorhabditis elegans

    PubMed Central

    Stewart, Mary K.; Clark, Nathaniel L.; Merrihew, Gennifer; Galloway, Evan M.; Thomas, James H.

    2005-01-01

    We investigated genetic polymorphism in the Caenorhabditis elegans srh and str chemoreceptor gene families, each of which consists of ?300 genes encoding seven-pass G-protein-coupled receptors. Almost one-third of the genes in each family are annotated as pseudogenes because of apparent functional defects in N2, the sequenced wild-type strain of C. elegans. More than half of these “pseudogenes” have only one apparent defect, usually a stop codon or deletion. We sequenced the defective region for 31 such genes in 22 wild isolates of C. elegans. For 10 of the 31 genes, we found an apparently functional allele in one or more wild isolates, suggesting that these are not pseudogenes but instead functional genes with a defective allele in N2. We suggest the term “flatliner” to describe genes whose functional vs. pseudogene status is unclear. Investigations of flatliner gene positions, dN/dS ratios, and phylogenetic trees indicate that they are not readily distinguished from functional genes in N2. We also report striking heterogeneity in the frequency of other polymorphisms among these genes. Finally, the large majority of polymorphism was found in just two strains from geographically isolated islands, Hawaii and Madeira. This suggests that our sampling of wild diversity in C. elegans is narrow and that identification of additional strains from similarly isolated regions will greatly expand the diversity available for study. PMID:15520260

  4. Genetic diversity of ITS sequences of Bursaphelenchus xylophilus.

    PubMed

    Cardoso, J M S; Fonseca, L; Abrantes, I

    2012-01-01

    The sequence variation of internal transcribed spacer (ITS) regions of ribosomal DNA has been routinely used for species identification and species-level phylogeny of the pinewood nematode, Bursaphelenchus xylophilus. In this study, the intraspecies ITS genetic diversity of B. xylophilus was evaluated. Three pinewood nematode isolates from the United States, Japan, and Portugal were used for polymerase chain reaction (PCR) ITS region amplification and sequencing. Multiple peaks were observed in sequencing chromatograms from ITS regions of American and Japanese isolates, suggesting the presence of more than one ribosomal sequence for each isolate. PCR products were further cloned and 10 clones of each isolate were subsequently sequenced. Additionally, the ITS regions of individual nematodes from each isolate were amplified, cloned and sequenced. Among the 3 B. xylophilus isolates analyzed, an intraspecific and intra-isolate molecular variability was found. The intra-isolate ITS molecular diversity in the American isolate was higher than that in the Japanese and Portuguese isolates. However, the level of sequence variation observed within isolates was about the same as that described among ITS repeats within individuals. PMID:23096915

  5. Genetic diversity of symbiotic cyanobacteria in Cycas revoluta (Cycadaceae).

    PubMed

    Yamada, Shuntaro; Ohkubo, Satoshi; Miyashita, Hideaki; Setoguchi, Hiroaki

    2012-09-01

    The diversity of cyanobacterial species within the coralloid roots of an individual and populations of Cycas revoluta was investigated based on 16S rRNA gene sequences. Sixty-six coralloid roots were collected from nine natural populations of cycads on Kyushu and the Ryukyu Islands, covering the entire distribution range of the species. Approximately 400 bp of the 5'-end of 16S rRNA genes was amplified, and each was identified by denaturing gradient gel electrophoresis. Most coralloid roots harbored only one cyanobiont, Nostoc, whereas some contained two or three, representing cyanobiont diversity within a single coralloid root isolated from a natural habitat. Genotypes of Nostoc within a natural population were occasionally highly diverged and lacked DNA sequence similarity, implying genetic divergence of Nostoc. On the other hand, Nostoc genotypes showed no phylogeographic structure across the distribution range, while host cycads exhibited distinct north-south differentiation. Cycads may exist in symbiosis with either single or multiple Nostoc strains in natural soil habitats. PMID:22537413

  6. Extensive genetic diversity within the Dutch clinical Cryptococcus neoformans population.

    PubMed

    Hagen, Ferry; Illnait-Zaragozí, María-Teresa; Meis, Jacques F; Chew, William H M; Curfs-Breuker, Ilse; Mouton, Johan W; Hoepelman, Andy I M; Spanjaard, Lodewijk; Verweij, Paul E; Kampinga, Greetje A; Kuijper, Ed J; Boekhout, Teun; Klaassen, Corné H W

    2012-06-01

    A set of 300 Dutch Cryptococcus neoformans isolates, obtained from 237 patients during 1977 to 2007, was investigated by determining the mating type, serotype, and AFLP and microsatellite genotype and susceptibility to seven antifungal compounds. Almost half of the studied cases were from HIV-infected patients, followed by a patient group of individuals with other underlying diseases and immunocompetent individuals. The majority of the isolates were mating type ? and serotype A, followed by ?D isolates and other minor categories. The most frequently observed genotype was AFLP1, distantly followed by AFLP2 and AFLP3. Microsatellite typing revealed a high genetic diversity among serotype A isolates but a lower diversity within the serotype D set of isolates. One patient was infected by multiple AFLP genotypes. Fluconazole and flucytosine had the highest geometric mean MICs of 2.9 and 3.5 ?g/ml, respectively, while amphotericin B (0.24 ?g/ml), itraconazole (0.08 ?g/ml), voriconazole (0.07 ?g/ml), posaconazole (0.06 ?g/ml), and isavuconazole (0.03 ?g/ml) had much lower geometric mean MICs. One isolate had a high flucytosine MIC (>64 ?g/ml), while decreased susceptibility (?16 ?g/ml) for flucytosine and fluconazole was found in 9 and 10 C. neoformans isolates, respectively. PMID:22442325

  7. Extensive Genetic Diversity within the Dutch Clinical Cryptococcus neoformans Population

    PubMed Central

    Hagen, Ferry; Illnait-Zaragozí, María-Teresa; Meis, Jacques F.; Chew, William H. M.; Curfs-Breuker, Ilse; Mouton, Johan W.; Hoepelman, Andy I. M.; Spanjaard, Lodewijk; Verweij, Paul E.; Kampinga, Greetje A.; Kuijper, Ed J.; Klaassen, Corné H. W.

    2012-01-01

    A set of 300 Dutch Cryptococcus neoformans isolates, obtained from 237 patients during 1977 to 2007, was investigated by determining the mating type, serotype, and AFLP and microsatellite genotype and susceptibility to seven antifungal compounds. Almost half of the studied cases were from HIV-infected patients, followed by a patient group of individuals with other underlying diseases and immunocompetent individuals. The majority of the isolates were mating type ? and serotype A, followed by ?D isolates and other minor categories. The most frequently observed genotype was AFLP1, distantly followed by AFLP2 and AFLP3. Microsatellite typing revealed a high genetic diversity among serotype A isolates but a lower diversity within the serotype D set of isolates. One patient was infected by multiple AFLP genotypes. Fluconazole and flucytosine had the highest geometric mean MICs of 2.9 and 3.5 ?g/ml, respectively, while amphotericin B (0.24 ?g/ml), itraconazole (0.08 ?g/ml), voriconazole (0.07 ?g/ml), posaconazole (0.06 ?g/ml), and isavuconazole (0.03 ?g/ml) had much lower geometric mean MICs. One isolate had a high flucytosine MIC (>64 ?g/ml), while decreased susceptibility (?16 ?g/ml) for flucytosine and fluconazole was found in 9 and 10 C. neoformans isolates, respectively. PMID:22442325

  8. Genetic diversity of Toxoplasma gondii in animals and humans

    PubMed Central

    Sibley, L. David; Khan, Asis; Ajioka, James W.; Rosenthal, Benjamin M.

    2009-01-01

    Toxoplasma gondii is one of the most widespread parasites of domestic, wild, and companion animals, and it also commonly infects humans. Toxoplasma gondii has a complex life cycle. Sexual development occurs only in the cat gut, while asexual replication occurs in many vertebrate hosts. These features combine to create an unusual population structure. The vast majority of strains in North America and Europe fall into three recently derived, clonal lineages known as types I, II and III. Recent studies have revealed that South American strains are more genetically diverse and comprise distinct genotypes. These differences have been shaped by infrequent sexual recombination, population sweeps and biogeography. The majority of human infections that have been studied in North America and Europe are caused by type II strains, which are also common in agricultural animals from these regions. In contrast, several diverse genotypes of T. gondii are associated with severe infections in humans in South America. Defining the population structure of T. gondii from new regions has important implications for transmission, immunogenicity and pathogenesis. PMID:19687043

  9. Low genetic diversity and strong but shallow population differentiation suggests genetic homogenization by metapopulation dynamics in a social spider.

    PubMed

    Settepani, V; Bechsgaard, J; Bilde, T

    2014-12-01

    Mating systems and population dynamics influence genetic diversity and structure. Species that experience inbreeding and limited gene flow are expected to evolve isolated, divergent genetic lineages. Metapopulation dynamics with frequent extinctions and colonizations may, on the other hand, deplete and homogenize genetic variation, if extinction rate is sufficiently high compared to the effect of drift in local demes. We investigated these theoretical predictions empirically in social spiders that are highly inbred. Social spiders show intranest mating, female-biased sex ratio, and frequent extinction and colonization events, factors that deplete genetic diversity within nests and populations and limit gene flow. We characterized population genetic structure in Stegodyphus sarasinorum, a social spider distributed across the Indian subcontinent. Species-wide genetic diversity was estimated over approximately 2800 km from Sri Lanka to Himalayas, by sequencing 16 protein-coding nuclear loci. We found 13 SNPs in 6592 bp (? = 0.00045) indicating low species-wide nucleotide diversity. Three genetic lineages were strongly differentiated; however, only one fixed difference among them suggests recent divergence. This is consistent with a scenario of metapopulation dynamics that homogenizes genetic diversity across the species' range. Ultimately, low standing genetic variation may hamper a species' ability to track environmental change and render social inbreeding spiders 'evolutionary dead-ends'. PMID:25348843

  10. Genetic relationships of introduced Colorado potato beetle Leptinotarsa decemlineata populations in Xinjiang, China.

    PubMed

    Zhang, Jing-Jie; Yang, Juan; Li, Ying-Chao; Liu, Ning; Zhang, Run-Zhi

    2013-10-01

    The Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say), is an infamous invasive species worldwide that aggressively attacks potato and other Solanaceae crops. CPB was first found in China in 1993 and has since spread across 2.77 × 10(5) km(2) in Xinjiang Uygur Autonomous Region. To better understand genetic variation and migration patterns, we used seven polymorphic microsatellite loci to elucidate the genetic relationships and gene flow among 10 CPB populations across Xinjiang. (i) Overall low levels of genetic diversity were detected on the entire population in Xinjiang but most of the diversity was retained among populations during invasion. (ii) The mean pairwise FST was low (0.071 ± 0.043) among populations. The genetic differentiation was little (pairwise FST 0.038 ± 0.016) between the five interior populations (Wusu, Urumqi, Jimsar, Qitai and Mulei) and Tacheng population. The six populations might come from the same genetic group via Bayesian clustering and were closely related on a neighbor-joining tree. Combining the history data, the five interior populations may have originated from Tacheng. (iii) Gene flow was frequent, especially among the five interior populations. Individuals from the interior populations could be assigned to Tacheng at higher probabilities (means 0.518 ± 0.127) than vice versa (means 0.328 ± 0.074), suggesting that the beetle population has spread from the border to the interior in Xinjiang. PMID:23955877

  11. Genetic diversity contribution to errors in short oligonucleotide microarray analysis.

    PubMed

    Kirst, Matias; Caldo, Rico; Casati, Paula; Tanimoto, Gene; Walbot, Virginia; Wise, Roger P; Buckler, Edward S

    2006-09-01

    DNA arrays based on short oligonucleotide (< or = 25-mer) probes are being developed for many species, and are being applied to quantify transcript abundance variation in species with high genetic diversity. To define the parameters necessary to design short oligo arrays for maize (Zea mays L.), a species with particularly high nucleotide (single nucleotide polymorphism, SNP) and insertion-deletion (indel) polymorphism frequencies, we analysed gene expression estimates generated for four maize inbred lines using a custom Affymetrix DNA array, and identified biases associated with high levels of polymorphism between lines. Statistically significant interactions between probes and maize inbreds were detected, affecting five or more probes (out of 30 probes per transcript) in the majority of cases. SNPs and indels were identified by re-sequencing; they are the primary source of probe-by-line interactions, affecting probeset level estimates and reducing the power of detecting transcript level variation between maize inbreds. This analysis identified 36,196 probes in 5118 probesets containing markers that may be used for genotyping in natural and segregating populations for association gene analysis and genetic mapping. PMID:17309725

  12. Internal Lattice Reconfiguration for Diversity Tuning in Cellular Genetic Algorithms

    PubMed Central

    Morales-Reyes, Alicia; Erdogan, Ahmet T.

    2012-01-01

    Cellular Genetic Algorithms (cGAs) have attracted the attention of researchers due to their high performance, ease of implementation and massive parallelism. Maintaining an adequate balance between exploitative and explorative search is essential when studying evolutionary optimization techniques. In this respect, cGAs inherently possess a number of structural configuration parameters that are able to sustain diversity during evolution. In this study, the internal reconfiguration of the lattice is proposed to constantly or adaptively control the exploration-exploitation trade-off. Genetic operators are characterized in their simplest form since algorithmic performance is assessed on implemented reconfiguration mechanisms. Moreover, internal reconfiguration allows the adjacency of individuals to be maintained. Hence, any improvement in performance is only a consequence of topological changes. Two local selection methods presenting opposite selection pressures are used in order to evaluate the influence of the proposed techniques. Problems ranging from continuous to real world and combinatorial are tackled. Empirical results are supported statistically in terms of efficiency and efficacy. PMID:22859973

  13. Genetic diversity of pestivirus isolates in cattle from Western Austria.

    PubMed

    Hornberg, Andrea; Fernández, Sandra Revilla; Vogl, Claus; Vilcek, Stefan; Matt, Monika; Fink, Maria; Köfer, Josef; Schöpf, Karl

    2009-03-30

    The genetic diversity of bovine viral diarrhoea virus (BVDV) isolates in infected cattle from Tyrol and Vorarlberg (Austria) was investigated. Blood samples were collected within the compulsory Austrian BVDV control programme during 2005 and 2006. The 5'-untranslated region (5'-UTR) and partially the N-terminal autoprotease (N(pro)) were amplified by one-step reverse transcriptase-polymerase chain reaction (RT-PCR) and the PCR products were subsequently sequenced. Phylogenetic analysis based on 5'-UTR and N(pro) sequences demonstrated that almost all isolates (307/310) were of the BVDV-1 genotype. They were clustered into eight different subtypes, here listed by their frequency of occurrence: BVDV-1h (143), BVDV-1f (79), BVDV-1b (41), BVDV-1d (28), BVDV-1e (6), BVDV-1a (4), BVDV-1g (3) and BVDV1-k (3). Two pestivirus isolates were typed as BVDV-2 and one isolate as BDV closely related to Gifhorn strain (BDV-3). Correlation among isolates could only be observed at the farm level, i.e., within a herd. However, no correlation between the genetic and geographical distances could be observed above the farm level. Because of the wide distribution of certain BVDV-1 subtypes and the low prevalence of herd-specific strains, a determination of tracing routes of infection was not possible. Furthermore, recombination events were not detected. PMID:19019571

  14. Genetic Structure and Diversity among U.S. sheep breeds: Identification of the major gene pools.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding existing levels of genetic diversity of sheep breeds facilitates in situ and ex situ conservation activities. A comprehensive evaluation of US sheep breeds has not been previously performed therefore we evaluated the genetic diversity among and within 28 US sheep breeds. Both major and...

  15. Genetic diversity of thiamine and folate in primitive cultivated and wild potato (Solanum) species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofortification of staple crops like potato via breeding is an attractive strategy to reduce human micronutrient deficiencies. A prerequisite is metabolic phenotyping of genetically diverse material which can be used as parents in breeding programs. Thus, the natural genetic diversity of thiamine a...

  16. Successional changes in the genetic diversity of a marine bacterial assemblage during confinement

    Microsoft Academic Search

    Hendrik Schäfer; Pierre Servais; Gerard Muyzer

    2000-01-01

    The successional changes in the genetic diversity of Mediterranean bacterioplankton subjected to confinement were studied in an experimental 300 l seawater enclosure. Five samples were taken at different times and analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) fingerprinting to rapidly monitor changes in the bacterial genetic diversity. DGGE analysis clearly showed variations between the samples. Three of the

  17. Genetic diversity between the Angus, the American Brahman, the Senepol, and the Romosinuano cattle breeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to quantify the genetic diversity among the breeds under evaluation at the USDA, ARS, Subtropical Agricultural Research Station (STARS). Twenty-six microsatellite loci were used to estimate parameters of genetic diversity among a Bos indicus breed, Brahman (B), and t...

  18. (Titel) 1Vitis 44 (2), ?? (2005) Genetic diversity among twelve grape cultivars indigenous to the

    E-print Network

    2005-01-01

    (Titel) 1Vitis 44 (2), ?­? (2005) Genetic diversity among twelve grape cultivars indigenous, University of Pécs, Hungary Summary Twelve cultivars (Vitis vinifera L.) were subjected to RAPD analysis e y w o r d s : RAPD, Vitis vinifera L., Carpathian-Basin, genetic diversity, cultivar

  19. High fidelity of RecA-catalyzed recombination: a watchdog of genetic diversity

    E-print Network

    Tlusty, Tsvi

    High fidelity of RecA-catalyzed recombination: a watchdog of genetic diversity Dror Sagi, Tsvi recombination plays a key role in generating genetic diversity, while maintaining protein functionality of heterology was studied in vitro, using fluores- cence resonant energy transfer. RecA can detect single

  20. Protecting crop genetic diversity for food security: political, ethical and technical challenges

    Microsoft Academic Search

    José Esquinas-Alcázar

    2005-01-01

    Crop genetic diversity — which is crucial for feeding humanity, for the environment and for sustainable development — is being lost at an alarming rate. Given the enormous interdependence of countries and generations on this genetic diversity, this loss raises critical socio-economic, ethical and political questions. The recent ratification of a binding international treaty, and the development of powerful new

  1. Genetic diversity of fringed brome ( Bromus ciliatus ) as determined by amplified fragment length polymorphism

    Microsoft Academic Search

    Yong-Bi Fu; Bruce E. Coulman; Yasas S. N. Ferdinandez; Jacques Cayouette; Paul M. Peterson

    2005-01-01

    Fringed brome (Bromus ciliatus L.) is found in native stands throughout a large area of North America. Little is known about the genetic diversity of this species. The amplified fragment length polymorphism (AFLP) technique was applied to assess the genetic diversity of 16 fringed brome populations sampled in Canada from the provinces of Alberta, British Columbia, Quebec, and Saskatchewan. Four

  2. Impact of marker ascertainment bias on genomic selection accuracy and estimates of genetic diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome-wide molecular markers are readily being applied to evaluate genetic diversity in germplasm collections and for making genomic selections in breeding programs. To accurately predict phenotypes and assay genetic diversity, molecular markers should assay a representative sample of the polymorp...

  3. Genetic diversity of Uapaca kirkiana Muel. Årg. populations as revealed by amplified fragment length polymorphisms (AFLPs)

    Microsoft Academic Search

    Weston F. Mwase; Å. Bjørnstad; B. Stedje; J. M. Bokosi; M. B. Kwapata

    2006-01-01

    Uapaca kirkiana is a priority fruit tree species for domestication in miombo woodlands of Southern Africa. Natural populations of U. kirkiana are declining through out the woodlands due to deforestation, forest fragmentation and wildfires. Knowledge of population structure and genetic diversity is prerequisite for development of conservation strategies. Amplified fragment length polymorphisms (AFLP) were used to assess the genetic diversity

  4. Genetic diversity, population structure and sex-biased dispersal in three co-evolving species

    E-print Network

    Genetic diversity, population structure and sex-biased dispersal in three co-evolving species S, but also their adaptive potential (Gandon & Nuismer, 2009). It is hard to study the evolutionary potential; population structure; sex-biased dispersal. Abstract Genetic diversity and spatial structure of populations

  5. Genetic diversity through life history of Dioon edule Lindley (Zamiaceae, Cycadales)

    Microsoft Academic Search

    P. Octavio-Aguilar; J. González-Astorga; A. P. Vovides

    2009-01-01

    The distribution of genetic diversity and structure for three populations of Dioon edule Lindley (Zamiaceae) at Monte Oscuro (MO), El Farallon (EF) and Rancho del Nino (RN) in Veracruz, Mexico was studied using 20 allo- zyme loci, considering four life history classes: seeds, seedlings, juveniles and adults. The MO population is genetically less diverse than the EF and RN populations.

  6. Genotypic and Genetic Diversity of the Common Weed Cirsium arvense (Asteraceae)

    Microsoft Academic Search

    Magali Sole; Walter Durka; Sabine Eber; Roland Brandlz

    2004-01-01

    In many clonal species, seedling establishment is restricted to early successional stages when recruitment is still possible. Then, one expects that adapted genotypes become dominant and genotypic and genetic diversity should decrease with time. We investigated genotypic and genetic diversity within recently founded and established populations of the common weed Cirsium arvense. We used highly polymorphic amplified fragments length polymorphism

  7. Phylogeography, genetic diversity and conservation of the large copper butterfly Lycaena dispar in Europe

    Microsoft Academic Search

    Bo-Chi G. Lai; Andrew S. Pullin

    2004-01-01

    We argue that insect species conservation at large scales should take account of the distribution of genetic diversity among populations. Maintenance of genetic diversity may be vital in retaining a species' adaptive capacity and evolutionary potential. We illustrate the concept using the example of the large copper butterfly Lycaena dispar in Europe. This species has become extinct in parts of

  8. Genetic Diversity in a Collection of Chinese Sorghum Landraces Assessed by Microsattelites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic diversity was characterized in a collection of 171 sorghum landraces originally gathered from the colder region (primarily the northwestern provinces) of China. Genetic diversity was analyzed using 41 microsattelite or simple sequence repeat (SSR) markers distributed throughout the 10 chromo...

  9. Genetic relationship among Labisia pumila (Myrsinaceae) species based on ISSR-PCR.

    PubMed

    Karimi, E; Jaafar, H Z E; Aziz, M A; Taheri, S; AzadiGonbad, R

    2014-01-01

    The genus Labisia (Myrsinaceae) is a popular medicinal plant in Malaysia. We examined the genetic relationship among three varieties of L. pumila var. pumila, L. pumila var. alata, L. pumila var. lanceolata and Labisia paucifolia using an ISSR assay. Fifty-eight primers were tested, among which 18 gave reliable polymorphic banding patterns; these yielded 264 polymorphic markers. A similarity matrix was used to construct a dendrogram, and a principal component plot was developed to examine genetic relationships among varieties. Jaccard's similarity coefficient among species ranged from 0.09 to 0.14. At a similarity of 0.117%, species were divided into two main clusters. The mean value of the observed number of alleles, the effective number of alleles, mean Nei's gene diversity, and Shannon's information index were 1.98, 1.64, 0.38, and 0.57, respectively. PMID:24841662

  10. Deciphering genetic diversity and inheritance of tomato fruit weight and composition through a systems biology approach

    PubMed Central

    Pascual, Laura; Xu, Jiaxin; Causse, Mathilde

    2013-01-01

    Integrative systems biology proposes new approaches to decipher the variation of phenotypic traits. In an effort to link the genetic variation and the physiological and molecular bases of fruit composition, the proteome (424 protein spots), metabolome (26 compounds), enzymatic profile (26 enzymes), and phenotypes of eight tomato accessions, covering the genetic diversity of the species, and four of their F1 hybrids, were characterized at two fruit developmental stages (cell expansion and orange-red). The contents of metabolites varied among the genetic backgrounds, while enzyme profiles were less variable, particularly at the cell expansion stage. Frequent genotype by stage interactions suggested that the trends observed for one accession at a physiological level may change in another accession. In agreement with this, the inheritance modes varied between crosses and stages. Although additivity was predominant, 40% of the traits were non-additively inherited. Relationships among traits revealed associations between different levels of expression and provided information on several key proteins. Notably, the role of frucktokinase, invertase, and cysteine synthase in the variation of metabolites was highlighted. Several stress-related proteins also appeared related to fruit weight differences. These key proteins might be targets for improving metabolite contents of the fruit. This systems biology approach provides better understanding of networks controlling the genetic variation of tomato fruit composition. In addition, the wide data sets generated provide an ideal framework to develop innovative integrated hypothesis and will be highly valuable for the research community. PMID:24151307

  11. Soil fungal pathogens and the relationship between plant diversity and productivity

    E-print Network

    Cleveland, Cory

    LETTER Soil fungal pathogens and the relationship between plant diversity and productivity John L community productivity often increases with increasing plant diversity. Most frequently, resource- based whether suppression of plant productivity by soil fungal pathogens might also drive a positive diversity

  12. Biogenic habitat creation affects biomass–diversity relationships in plant communities

    Microsoft Academic Search

    Ernesto I. Badano; Pablo A. Marquet

    2009-01-01

    Biogenic habitat creation refers to the ability of some organisms to create, maintain or destroy habitats. These habitat changes affect species diversity of natural communities, but it remains to be elucidated if this process also affects the link between ecosystem functions and species diversity. Based on the widely accepted positive relationships between ecosystem functions and species diversity, we hypothesize that

  13. Original article Genetic variability of host-parasite relationship

    E-print Network

    Paris-Sud XI, Université de

    Original article Genetic variability of host-parasite relationship traits: utilization of isofemale lines in a Drosophila simulans parasitic wasp Y. Carton P. Capy A.J. Nappi 1Centre National de la in the successful parasitization of larvae of Drosophila melanogaster and D. simulans by the hymenopteran parasite

  14. Developmenrt of EST-SSR and genomic-SSR markers to assess genetic diversity in Jatropha Curcas L.

    PubMed Central

    2010-01-01

    Background Jatropha curcas L. has attracted a great deal of attention worldwide, regarding its potential as a new biodiesel crop. However, the understanding of this crop remains very limited and little genomic research has been done. We used simple sequence repeat (SSR) markers that could be transferred from Manihot esculenta (cassava) to analyze the genetic relationships among 45 accessions of J. curcas from our germplasm collection. Results In total, 187 out of 419 expressed sequence tag (EST)-SSR and 54 out of 182 genomic (G)-SSR markers from cassava were polymorphic among the J. curcas accessions. The EST-SSR markers comprised 26.20% dinucleotide repeats, 57.75% trinucleotide repeats, 7.49% tetranucleotide repeats, and 8.56% pentanucleotide repeats, whereas the majority of the G-SSR markers were dinucleotide repeats (62.96%). The 187 EST-SSRs resided in genes that are involved mainly in biological and metabolic processes. Thirty-six EST-SSRs and 20 G-SSRs were chosen to analyze the genetic diversity among 45 J. curcas accessions. A total of 183 polymorphic alleles were detected. On the basis of the distribution of these polymorphic alleles, the 45 accessions were classified into six groups, in which the genotype showed a correlation with geographic origin. The estimated mean genetic diversity index was 0.5572, which suggests that our J. curcas germplasm collection has a high level of genetic diversity. This should facilitate subsequent studies on genetic mapping and molecular breeding. Conclusion We identified 241 novel EST-SSR and G-SSR markers in J. curcas, which should be useful for genetic mapping and quantitative trait loci analysis of important agronomic traits. By using these markers, we found that the intergroup gene diversity of J. curcas was greater than the intragroup diversity, and that the domestication of the species probably occurred partly in America and partly in Hainan, China. PMID:20181259

  15. How does genetic diversity change towards the range periphery? An empirical and theoretical test

    Microsoft Academic Search

    Salit Kark; Lilach Hadany; Uriel N. Safriel; Imanuel Noy-Meir; Niles Eldredge; Cristiano Tabarroni; Ettore Randi

    2008-01-01

    Question: How does genetic diversity change as one moves along a species' range, towards the periphery? Previous work shows contradictory evidence for an increase, decrease or no clear trend along the range. Hypothesis: A hump-shaped unimodal pattern of within-population genetic diversity will occur along the range with peak diversity in sub-peripheral populations. This hypothesis incorporates and explains some of the

  16. Analysis of the genetic diversity of Chinese native Cannabis sativa cultivars by using ISSR and chromosome markers.

    PubMed

    Zhang, L G; Chang, Y; Zhang, X F; Guan, F Z; Yuan, H M; Yu, Y; Zhao, L J

    2014-01-01

    Hemp (Cannabis sativa) is an important fiber crop, and native cultivars exist widely throughout China. In the present study, we analyzed the genetic diversity of 27 important Chinese native hemp cultivars, by using inter-simple sequence repeats (ISSR) and chromosome markers. We determined the following chromosome formulas: 2n = 20 = 14m + 6sm; 2n = 20 = 20m; 2n = 20 = 18m + 2sm; 2n = 20 = 16m + 4sm; and 2n = 20 = 12m + 8sm. The results of our ISSR analysis revealed the genetic relationships among the 27 cultivars; these relationships were analyzed by using the unweighted pair-group method based on DNA polymorphism. Our results revealed that all of the native cultivars showed considerable genetic diversity. At a genetic distance of 0.324, the 27 varieties could be classified into five categories; this grouping corresponded well with the chromosome formulas. All of the investigated hemp cultivars represent relatively primitive types; moreover, the genetic distances show a geographical distribution, with a small amount of regional hybridity. PMID:25511032

  17. Inferring population structure and genetic diversity of broad range of wild diploid alfalfa (Medicago sativa L.) accessions using SSR markers.

    PubMed

    Sakiro?lu, Muhammet; Doyle, Jeffrey J; Charles Brummer, E

    2010-08-01

    Diversity analyses in alfalfa have mainly evaluated genetic relationships of cultivated germplasm, with little known about variation in diploid germplasm in the M. sativa-falcata complex. A collection of 374 individual genotypes derived from 120 unimproved diploid accessions from the National Plant Germplasm System, including M. sativa subsp. caerulea, falcata, and hemicycla, were evaluated with 89 polymorphic SSR loci in order to estimate genetic diversity, infer the genetic bases of current morphology-based taxonomy, and determine population structure. Diploid alfalfa is highly variable. A model-based clustering analysis of the genomic data identified two clearly discrete subpopulations, corresponding to the morphologically defined subspecies falcata and caerulea, with evidence of the hybrid nature of the subspecies hemicycla based on genome composition. Two distinct subpopulations exist within each subsp. caerulea and subsp. falcata. The distinction of caerulea was based on geographical distribution. The two falcata groups were separated based on ecogeography. The results show that taxonomic relationships based on morphology are reflected in the genetic marker data with some exceptions, and that clear distinctions among subspecies are evident at the diploid level. This research provides a baseline from which to systematically evaluate variability in tetraploid alfalfa and serves as a starting point for exploring diploid alfalfa for genetic and breeding experiments. PMID:20352180

  18. Use of EST-SSR markers for evaluating genetic diversity and fingerprinting celery (Apium graveolens L.) cultivars.

    PubMed

    Fu, Nan; Wang, Ping-Yong; Liu, Xiao-Dan; Shen, Huo-Lin

    2014-01-01

    Celery (Apium graveolens L.) is one of the most economically important vegetables worldwide, but genetic and genomic resources supporting celery molecular breeding are quite limited, thus few studies on celery have been conducted so far. In this study we made use of simple sequence repeat (SSR) markers generated from previous celery transcriptome sequencing and attempted to detect the genetic diversity and relationships of commonly used celery accessions and explore the efficiency of the primers used for cultivars identification. Analysis of molecular variance (AMOVA) of Apium graveolens L. var. dulce showed that approximately 43% of genetic diversity was within accessions, 45% among accessions, and 22% among horticultural types. The neighbor-joining tree generated by unweighted pair group method with arithmetic mean (UPGMA), and population structure analysis, as well as principal components analysis (PCA), separated the cultivars into clusters corresponding to the geographical areas where they originated. Genetic distance analysis suggested that genetic variation within Apium graveolens was quite limited. Genotypic diversity showed any combinations of 55 genic SSRs were able to distinguish the genotypes of all 30 accessions. PMID:24518809

  19. Population structure and genetic diversity of black redhorse ( Moxostoma duquesnei ) in a highly fragmented watershed

    Microsoft Academic Search

    Scott M. Reid; Chris C. Wilson; Nicholas E. Mandrak; Leon M. Carl

    2008-01-01

    Dams have the potential to affect population size and connectivity, reduce genetic diversity, and increase genetic differences\\u000a among isolated riverine fish populations. Previous research has reported adverse effects on the distribution and demographics\\u000a of black redhorse (Moxostoma duquesnei), a threatened fish species in Canada. However, effects on genetic diversity and population structure are unknown. We used\\u000a microsatellite DNA markers to

  20. MULTILOCUS SIMPLE SEQUENCE REPEATS AND SINGLE NUCLEOTIDE POLYMORPHISM MARKERS FOR GENOTYPING AND ASSESSING GENETIC DIVERSITY OF XYLELLA FASTIDIOSA IN CALIFORNIA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To develop effective disease management strategies, we need to understand population structure and genetic diversity of pathogens in agricultural ecosystems. Current information regarding population structure and genetic diversity of Xylella fastidiosa (Xf) in California is insufficient to adequate...

  1. Mitochondrial and nuclear genetic relationships among Pacific Island and Asian populations.

    PubMed Central

    Lum, J K; Cann, R L; Martinson, J J; Jorde, L B

    1998-01-01

    Mitochondrial and autosomal short tandem-repeat (STR) genetic distances among 28 Pacific Island and Asian populations are significantly correlated (r=.25, P<.01) but describe distinct patterns of relationships. Maternally inherited-mtDNA data suggest that Remote Oceanic Islanders originated in island Southeast Asia. In contrast, biparental STR data reveal substantial genetic affinities between Remote Oceanic Islanders and Near Oceanic populations from highland Papua New Guinea and Australia. The low correlation between maternal and biparental genetic markers from the same individuals may reflect differences in genome-effective population sizes or in sex-biased gene flow. To explore these possibilities, we have examined genetic diversity, gene flow, and correlations among genetic, linguistic, and geographic distances within four sets of populations representing potential geographic and cultural spheres of interaction. GST estimates (a measure of genetic differentiation inversely proportional to gene flow) from mtDNA sequences vary between 0.13 and 0.39 and are typically five times greater than GST estimates from STR loci (0.05-0.08). Significant correlations (r>.5, P<.05) between maternal genetic and linguistic distances are coincident with high mtDNA GST estimates (>0.38). Thus, genetic and linguistic distances may coevolve, and their correspondence may be preserved under conditions of genetic isolation. A significant correlation (r=.65, P<.01) between biparental genetic and geographic distances is coincident with a low STR GST estimate (0.05), indicating that isolation by distance is observed under conditions of high nuclear-gene flow. These results are consistent with an initial settlement of Remote Oceania from island Southeast Asia and with extensive postcolonization male-biased gene flow with Near Oceania. PMID:9683581

  2. Highest genetic diversity at the northern range limit of the rare orchid Isotria medeoloides

    PubMed Central

    Stone, J L; Crystal, P A; Devlin, E E; Downer, R H LeB; Cameron, D S

    2012-01-01

    Populations in previously glaciated regions are often genetically depauperate in comparison with populations at lower latitudes, due either to bottlenecks experienced in post-glacial colonization or to contemporary genetic drift in small, peripheral populations. Populations of the rare self-fertilizing North American orchid Isotria medeoloides are largest in the previously glaciated region near the northern range limit, allowing us to examine the role of historical versus contemporary processes in determining population genetic diversity and structure. If contemporary processes predominate, genetic diversity should increase with increasing census size. In contrast, if sequential bottlenecks associated with colonization are paramount, diversity should decrease with latitude and be relatively insensitive to census size. We genotyped 299 individuals from 20 populations at four variable microsatellite loci to contrast genetic diversity and structure for populations in previously glaciated regions versus previously unglaciated regions. Populations were highly inbred (F=0.95) and highly differentiated (RST=0.485). Across all sampled populations, genetic diversity decreased and genetic differentiation increased with declining population size. Small southern populations were especially differentiated and genetically depauperate. In the glaciated part of the range, genetic diversity increased as populations approached the northern range limit, demonstrating the centrality of contemporary processes for this post-glacial colonist. PMID:22692268

  3. Explicit Control of Diversity and Effective Variation Distance in Linear Genetic Programming

    E-print Network

    Fernandez, Thomas

    algorithms like evolution strategies (ES), genetic programming (GP) may fulfill the principle of strongExplicit Control of Diversity and Effective Variation Distance in Linear Genetic Programming Markus distance metrics for linear genetic pro- grams. Causal connections between changes of the genotype

  4. Viruses are the most numerous and diverse genetic entities on earth. They are environmentally ubiquitous

    E-print Network

    Paris-Sud XI, Université de

    , horizontal transmission is the transfer of genetic material by means other than sex. Vertical transmissionViruses are the most numerous and diverse genetic entities on earth. They are environmentally horizontally between individuals and across species, many viruses can also become part of the genetic material

  5. High genetic diversity in a rare and endangered sunflower as compared to a common congener

    Microsoft Academic Search

    J. R. ELLIS; C. H. PASHLEY; J. M. BURKE; D. E. M C CAULEY

    2006-01-01

    Determining the genetic structure of isolated or fragmented species is of critical importance when planning a suitable conservation strategy. In this study, we use nuclear and chloroplast SSRs (simple sequence repeats) to investigate the population genetics of an extremely rare sunflower, Helianthus verticillatus Small, which is known from only three locations in North America. We investigated levels of genetic diversity

  6. Mountain Goat Genetic Diversity and Population Connectivity in Washington and Southern British Columbia

    E-print Network

    Wallin, David O.

    Mountain Goat Genetic Diversity and Population Connectivity in Washington and Southern British, is not allowed without my written permission. Leslie C. Parks February 14, 2013 #12;Mountain Goat Genetic by resistance (IBR), that are driving genetic isolation. Although the mountain goat (Oreamnos americanus

  7. Genetic diversity of siderophore-producing bacteria of tobacco rhizosphere.

    PubMed

    Tian, Fang; Ding, Yanqin; Zhu, Hui; Yao, Liangtong; Du, Binghai

    2009-04-01

    The genetic diversity of siderophore-producing bacteria of tobacco rhizosphere was studied by amplified ribosomal DNA restriction analysis (ARDRA), 16S rRNA sequence homology and phylogenetics analysis methods. Studies demonstrated that 85% of the total 354 isolates produced siderophores in iron limited liquid medium. A total of 28 ARDRA patterns were identified among the 299 siderophore-producing bacterial isolates. The 28 ARDRA patterns represented bacteria of 14 different genera belonging to six bacterial divisions, namely ?-, ?-, ?-Proteobacteria, Sphingobacteria, Bacilli, and Actinobacteria. Especially, ?-Proteobacteria consisting of Pseudomonas, Enterobacter, Serratia, Pantoea, Erwinia and Stenotrophomonas genus encountered 18 different ARDRA groups. Results also showed a greater siderophore-producing bacterial diversity than previous researches. For example, Sphingobacterium (isolates G-2-21-1 and G-2-27-2), Pseudomonas poae (isolate G-2-1-1), Enterobacter endosymbiont (isolates G-2-10-2 and N-5-10), Delftia acidovorans (isolate G-1-15), and Achromobacter xylosoxidans (isolates N-46-11HH and N-5-20) were reported to be able to produce siderophores under low-iron conditions for the first time. Gram-negative isolates were more frequently encountered, with more than 95% total frequency. For Gram-positive bacteria, the Bacillus and Rhodococcus were the only two genera, with 1.7% total frequency. Furthermore, the Pseudomonas and Enterobacter were dominant in this environment, with 44.5% and 24.7% total frequency, respectively. It was also found that 75 percent of the isolates that had the high percentages of siderophore units (% between 40 and 60) belonged to Pseudomonas. Pseudomonas sp. G-229-21 screened out in this study may have potential to apply to low-iron soil to prevent plant soil-borne fungal pathogen diseases. PMID:24031358

  8. Genetic Diversity Among Botulinum Neurotoxin Producing Clostridial Strains

    SciTech Connect

    Hill, K K; Smith, T J; Helma, C H; Ticknor, L O; Foley, B T; Svennson, R T; Brown, J L; Johnson, E A; Smith, L A; Okinaka, R T; Jackson, P J; Marks, J D

    2006-07-06

    Clostridium botulinum is a taxonomic designation for many diverse anaerobic spore forming rod-shaped bacteria which have the common property of producing botulinum neurotoxins (BoNTs). The BoNTs are exoneurotoxins that can cause severe paralysis and even death in humans and various other animal species. A collection of 174 C. botulinum strains were examined by amplified fragment length polymorphism (AFLP) analysis and by sequencing of the 16S rRNA gene and BoNT genes to examine genetic diversity within this species. This collection contained representatives of each of the seven different serotypes of botulinum neurotoxins (BoNT A-G). Analysis of the16S rRNA sequences confirmed earlier reports of at least four distinct genomic backgrounds (Groups I-IV) each of which has independently acquired one or more BoNT serotypes through horizontal gene transfer. AFLP analysis provided higher resolution, and can be used to further subdivide the four groups into sub-groups. Sequencing of the BoNT genes from serotypes A, B and E in multiple strains confirmed significant sequence variation within each serotype. Four distinct lineages within each of the BoNT A and B serotypes, and five distinct lineages of serotype E strains were identified. The nucleotide sequences of the seven serotypes of BoNT were compared and show varying degrees of interrelatedness and recombination as has been previously noted for the NTNH gene which is linked to BoNT. These analyses contribute to the understanding of the evolution and phylogeny within this species and assist in the development of improved diagnostics and therapeutics for treatment of botulism.

  9. Limited genetic diversity in Salmonella enterica Serovar Enteritidis PT13

    PubMed Central

    Olson, Adam B; Andrysiak, Ashleigh K; Tracz, Dobryan M; Guard-Bouldin, Jean; Demczuk, Walter; Ng, Lai-King; Maki, Anne; Jamieson, Frances; Gilmour, Matthew W

    2007-01-01

    Background Salmonella enterica serovar Enteritidis has emerged as a significant foodborne pathogen throughout the world and is commonly characterized by phage typing. In Canada phage types (PT) 4, 8 and 13 predominate and in 2005 a large foodborne PT13 outbreak occurred in the province of Ontario. The ability to link strains during this outbreak was difficult due to the apparent clonality of PT13 isolates in Canada, as there was a single dominant pulsed-field gel electrophoresis (PFGE) profile amongst epidemiologically linked human and food isolates as well as concurrent sporadic strains. The aim of this study was to perform comparative genomic hybridization (CGH), DNA sequence-based typing (SBT) genomic analyses, plasmid analyses, and automated repetitive sequence-based PCR (rep-PCR) to identify epidemiologically significant traits capable of subtyping S. Enteritidis PT13. Results CGH using an oligonucleotide array based upon chromosomal coding sequences of S. enterica serovar Typhimurium strain LT2 and the Salmonella genomic island 1 successfully determined major genetic differences between S. Typhimurium and S. Enteritidis PT13, but no significant strain-to-strain differences were observed between S. Enteritidis PT13 isolates. Individual loci (safA and fliC) that were identified as potentially divergent in the CGH data set were sequenced in a panel of S. Enteritidis strains, and no differences were detected between the PT13 strains. Additional sequence-based typing was performed at the fimA, mdh, manB, cyaA, citT, caiC, dmsA, ratA and STM0660 loci. Similarly, no diversity was observed amongst PT13 strains. Variation in plasmid content between PT13 strains was observed, but macrorestriction with BglII did not identify further differences. Automated rep-PCR patterns were variable between serovars, but S. Enteritidis PT13 strains could not be differentiated. Conclusion None of the methods identified any significant variation between PT13 strains. Greater than 11,300 base pairs of sequence for each of seven S. Enteritidis PT13 strains were analyzed without detecting a single polymorphic site, although diversity between different phage types of S. Enteritidis was observed. These data suggest that Canadian S. Enteritidis PT13 strains are highly related genetically. PMID:17908316

  10. Centres of Crop Diversity and\\/or Origin, Genetically Modified Crops and Implications for Plant Genetic Resources Conservation

    Microsoft Academic Search

    J. M. M. Engels; A. W. Ebert; I. Thormann; M. C. de Vicente

    2006-01-01

    The concept of centres of crop diversity and\\/or origin of agriculture is briefly reviewed. The conservation status of crop genetic resources, either ex situ or in situ, cultivated or wild, has been assessed for species of the Central American and Mexican centre, demonstrating that that region is indeed one of the important centres of crop diversity for human kind. Furthermore,

  11. Genetic Diversity of Five Local Swedish Chicken Breeds Detected by Microsatellite Markers

    PubMed Central

    Abebe, Abiye Shenkut; Mikko, Sofia; Johansson, Anna M.

    2015-01-01

    This study aimed at investigating the genetic diversity, relationship and population structure of 110 local Swedish chickens derived from five breeds (Gotlandshöna, Hedemorahöna, Öländsk dvärghöna, Skånsk blommehöna, and Bohuslän- Dals svarthöna, in the rest of the paper the shorter name Svarthöna is used) using 24 microsatellite markers. In total, one hundred thirteen alleles were detected in all populations, with a mean of 4.7 alleles per locus. For the five chicken breeds, the observed and expected heterozygosity ranged from 0.225 to 0.408 and from 0.231 to 0.515, with the lowest scores for the Svarthöna and the highest scores for the Skånsk blommehöna breeds, respectively. Similarly, the average within breed molecular kinship varied from 0.496 to 0.745, showing high coancestry, with Skånsk blommehöna having the lowest and Svarthöna the highest coancestry. Furthermore, all breeds showed significant deviations from Hardy-Weinberg expectations. Across the five breeds, the global heterozygosity deficit (FIT) was 0.545, population differentiation index (FST) was 0.440, and the global inbreeding of individuals within breed (FIS) was 0.187. The phylogenetic relationships of chickens were examined using neighbor-joining trees constructed at the level of breeds and individual samples. The neighbor-joining tree constructed at breed level revealed two main clusters, with Hedemorahöna and Öländsk dvärghöna breeds in one cluster, and Gotlandshöna and Svarthöna breeds in the second cluster leaving the Skånsk blommehöna in the middle. Based on the results of the STRUCTURE analysis, the most likely number of clustering of the five breeds was at K = 4, with Hedemorahöna, Gotlandshöna and Svarthöna breeds forming their own distinct clusters, while Öländsk dvärghöna and Skånsk blommehöna breeds clustered together. Losses in the overall genetic diversity of local Swedish chickens due to breeds extinction varied from -1.46% to -6.723%. The results of the current study can be used as baseline genetic information for genetic conservation program, for instance, to control inbreeding and to implement further genetic studies in local Swedish chickens. PMID:25855978

  12. Prevalence, Genetic Diversity, and Host Range of Tectiviruses among Members of the Bacillus cereus Group

    PubMed Central

    Gillis, Annika

    2014-01-01

    GIL01, Bam35, GIL16, AP50, and Wip1 are tectiviruses preying on the Bacillus cereus group. Despite the significant contributions of phages in different biological processes, little is known about the dealings taking place between tectiviruses and their Gram-positive bacterial hosts. Therefore, this work focuses on characterizing the interactions between tectiviruses and the B. cereus group by assessing their occurrence and genetic diversity and evaluating their host range. To study the occurrence of tectiviruses in the B. cereus group, 2,000 isolates were evaluated using primers designed to be specific to two variable regions detected in previously described elements. PCR and propagation tests revealed that tectivirus-like elements occurred in less than 3% of the isolates. Regardless of this limited distribution, several novel tectiviruses were found, and partial DNA sequencing indicated that a greater diversity exists within the family Tectiviridae. Analyses of the selected variable regions, along with their host range, showed that tectiviruses in the B. cereus group can be clustered mainly into two different groups: the ones infecting B. anthracis and those isolated from other B. cereus group members. In order to address the host range of some novel tectiviruses, 120 strains were tested for sensitivity. The results showed that all the tested tectiviruses produced lysis in at least one B. cereus sensu lato strain. Moreover, no simple relationship between the infection patterns of the tectiviruses and their diversity was found. PMID:24795369

  13. Whole-Genome Genetic Diversity in a Sample of Australians with Deep Aboriginal Ancestry

    PubMed Central

    McEvoy, Brian P.; Lind, Joanne M.; Wang, Eric T.; Moyzis, Robert K.; Visscher, Peter M.; van Holst Pellekaan, Sheila M.; Wilton, Alan N.

    2010-01-01

    Australia was probably settled soon after modern humans left Africa, but details of this ancient migration are not well understood. Debate centers on whether the Pleistocene Sahul continent (composed of New Guinea, Australia, and Tasmania) was first settled by a single wave followed by regional divergence into Aboriginal Australian and New Guinean populations (common origin) or whether different parts of the continent were initially populated independently. Australia has been the subject of relatively few DNA studies even though understanding regional variation in genomic structure and diversity will be important if disease-association mapping methods are to be successfully evaluated and applied across populations. We report on a genome-wide investigation of Australian Aboriginal SNP diversity in a sample of participants from the Riverine region. The phylogenetic relationship of these Aboriginal Australians to a range of other global populations demonstrates a deep common origin with Papuan New Guineans and Melanesians, with little evidence of substantial later migration until the very recent arrival of European colonists. The study provides valuable and robust insights into an early and important phase of human colonization of the globe. A broader survey of Australia, including diverse geographic sample populations, will be required to fully appreciate the continent's unique population history and consequent genetic heritage, as well as the importance of both to the understanding of health issues. PMID:20691402

  14. Low genetic diversity and high differentiation among relict populations of the neotropical gymnosperm Podocarpus sellowii (Klotz.) in the Atlantic Forest.

    PubMed

    Dantas, Liliane G; Esposito, Tiago; de Sousa, Adna Cristina Barbosa; Félix, Leonardo; Amorim, Lidiane L B; Benko-Iseppon, Ana Maria; Batalha-Filho, Henrique; Pedrosa-Harand, Andrea

    2015-02-01

    Podocarpus sellowii (Podocarpaceae) is one of only a few gymnosperms native to Brazil and the sole species of the genus found in the northeastern region of that country. It has a very restricted distribution in this region, with only three known populations in highland forests (called Brejos de Altitude), which apparently have been isolated from each other since the Pleistocene. Due to this long-term isolation and the fact that these populations have few adult individuals and suffer great anthropogenic pressure, low genetic variability is expected, compromising their long-term viability. The present work assessed the genetic variability and structure of northeastern populations of P. sellowii to investigate the role of Pleistocene glaciations on the genetic relationships between them and to propose strategies for their conservation by analyzing the SSR and ISSR markers of adult and juvenile individuals. Low genetic diversity was found with both markers, associated with a high differentiation of the Brejo de Baturité population in relation to the others-suggesting their isolation at different points in time, probably during the Pleistocene. Actions directed towards increasing the genetic diversity of these populations will be needed, such as planting seedlings with high genetic variability-but the high degrees of differentiation observed between the populations must be taken into account. PMID:25532751

  15. Genetic Diversity in Passiflora Species Assessed by Morphological and ITS Sequence Analysis

    PubMed Central

    Ramaiya, Shiamala Devi; Bujang, Japar Sidik; Zakaria, Muta Harah

    2014-01-01

    This study used morphological characterization and phylogenetic analysis of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA to investigate the phylogeny of Passiflora species. The samples were collected from various regions of East Malaysia, and discriminant function analysis based on linear combinations of morphological variables was used to classify the Passiflora species. The biplots generated five distinct groups discriminated by morphological variables. The group consisted of cultivars of P. edulis with high levels of genetic similarity; in contrast, P. foetida was highly divergent from other species in the morphological biplots. The final dataset of aligned sequences from nine studied Passiflora accessions and 30 other individuals obtained from GenBank database (NCBI) yielded one most parsimonious tree with two strongly supported clades. Maximum parsimony (MP) tree showed the phylogenetic relationships within this subgenus Passiflora support the classification at the series level. The constructed phylogenic tree also confirmed the divergence of P. foetida from all other species and the closeness of wild and cultivated species. The phylogenetic relationships were consistent with results of morphological assessments. The results of this study indicate that ITS region analysis represents a useful tool for evaluating genetic diversity in Passiflora at the species level. PMID:25050402

  16. Genetic diversity and molecular evolution of human and non-human primate Gammaherpesvirinae.

    PubMed

    Lacoste, Vincent; Lavergne, Anne; de Thoisy, Benoît; Pouliquen, Jean-François; Gessain, Antoine

    2010-01-01

    The Gammaherpesvirinae sub-family is divided into two genera: Lymphocryptovirus and Rhadinovirus. Until the middle of the 1990s, the Rhadinovirus genus was only represented by Herpesvirus saimiri and Herpesvirus ateles, which infect New World monkey species. Until the year 2000, Epstein-Barr virus (EBV), the human prototype of the Lymphocryptovirus, and simian homologues had only been detected in humans and Old World non-human primates. It was thought, therefore, that the separation of the continents had resulted in drastic changes in Gammaherpesvirinae evolution. The discovery of Kaposi's sarcoma-associated herpesvirus in humans, belonging to the Rhadinovirus, followed by the identification of CalHV3 (Callitrichine herpesvirus 3), a lymphocryptovirus of the marmoset, challenged this paradigm. The description of numerous viruses belonging to this sub-family from various Old and New World primate species enabled a cospeciation hypothesis for these viruses and their hosts to be developed. This review focuses on the current knowledge of primate Gammaherpesvirinae genetic diversity and molecular evolution. We discuss the various theories based on current genetic data regarding evolutionary relationships between lymphocryptoviruses of Old World primates, the use of these data as a tool to study evolutionary relationships between New World monkey species, and the possible existence of a ninth human herpesvirus belonging to the Rhadinovirus genus. PMID:19879975

  17. Genetic diversity in cultivated carioca common beans based on molecular marker analysis

    PubMed Central

    Küpper Cardoso Perseguini, Juliana Morini; Chioratto, Alisson Fernando; Zucchi, Maria Imaculada; Colombo, Carlos Augusto; Carbonell, Sérgio Augusto Moraes; Costa Mondego, Jorge Mauricio; Gazaffi, Rodrigo; Franco Garcia, Antonio Augusto; de Campos, Tatiana; de Souza, Anete Pereira; Rubiano, Luciana Benchimol

    2011-01-01

    A wide array of molecular markers has been used to investigate the genetic diversity among common bean species. However, the best combination of markers for studying such diversity among common bean cultivars has yet to be determined. Few reports have examined the genetic diversity of the carioca bean, commercially one of the most important common beans in Brazil. In this study, we examined the usefulness of two molecular marker systems (simple sequence repeats – SSRs and amplified fragment length polymorphisms – AFLPs) for assessing the genetic diversity of carioca beans. The amount of information provided by Roger’s modified genetic distance was used to analyze SSR data and Jaccards similarity coefficient was used for AFLP data. Seventy SSRs were polymorphic and 20 AFLP primer combinations produced 635 polymorphic bands. Molecular analysis showed that carioca genotypes were quite diverse. AFLPs revealed greater genetic differentiation and variation within the carioca genotypes (Gst = 98% and Fst = 0.83, respectively) than SSRs and provided better resolution for clustering the carioca genotypes. SSRs and AFLPs were both suitable for assessing the genetic diversity of Brazilian carioca genotypes since the number of markers used in each system provided a low coefficient of variation. However, fingerprint profiles were generated faster with AFLPs, making them a better choice for assessing genetic diversity in the carioca germplasm. PMID:21637550

  18. Prevalence and genetic diversity of clinical Vibrio parahaemolyticus isolates from China, revealed by multilocus sequence typing scheme

    PubMed Central

    Han, Dongsheng; Tang, Hui; Ren, Chuanli; Wang, Guangzhou; Zhou, Lin; Han, Chongxu

    2015-01-01

    The population structure of clinical Vibrio parahaemolyticus isolates spreading in China remains undefined. We brought 218 clinical isolates from the pubMLST database originating from different regions of China collected since the year of 1990, analyzed by multilocus sequence typing (MLST), to elucidate the prevalence and genetic diversity of V. parahaemolyticus circulating in Chinese population. The MLST scheme produced 137 sequence types (STs). These STs were clustered into six clonal complexes (CCs), six doublets, and 91 singletons, exhibiting a high level of genetic diversity. However, less diversity was displayed on the peptide level: only 46 different peptide sequence type (pST) were generated, with pST2 (44.0%, 96/218) and pST1 (15.1%, 33/218) the predominant. Further analysis confirmed all the pSTs belong to a single complex founded by pST1, pST2, pST3, and pST4. recA presented the highest degree of nucleotide diversity (0.026) and the largest number of variable sites (176) on the nucleotide level. pyrC was the most diverse locus on the peptide level, possessing the highest percentage of variable sites (9.2%, 15/163). Significant linkage disequilibrium with the alleles was detected when the Standardized Index of Association (ISA) was calculated both for the entire isolates collection (0.7169, P < 0.01) and for the 137 STs (ISA = 0.2648, P < 0.01). In conclusion, we provide an overview of prevalence and genetic diversity of clinical V. parahaemolyticus spreading in Chinese population using MLST analysis. The results would offer genetic evidences for uncovering the microevolution relationship of V. parahaemolyticus populations.

  19. Genetic diversity of feline morbilliviruses isolated in Japan.

    PubMed

    Sakaguchi, Shoichi; Nakagawa, So; Yoshikawa, Rokusuke; Kuwahara, Chieko; Hagiwara, Hiroko; Asai, Ken-ichi; Kawakami, Kazuo; Yamamoto, Yu; Ogawa, Makoto; Miyazawa, Takayuki

    2014-07-01

    Feline morbillivirus (FmoPV) is an emerging virus in domestic cats and considered to be associated with tubulointerstitial nephritis. Although FmoPV was first described in China in 2012, there has been no report of the isolation of this virus in other countries. In this report, we describe the isolation and characterization of FmoPV from domestic cats in Japan. By using reverse transcription (RT)-PCR, we found that three of 13 urine samples from cats brought to veterinary hospitals were positive for FmoPV. FmoPV strains SS1 to SS3 were isolated from the RT-PCR-positive urine samples. Crandell-Rees feline kidney (CRFK) cells exposed to FmoPV showed cytopathic effects with syncytia formation, and FmoPV N protein was detected by indirect immunofluorescence assays. In addition, pleomorphic virus particles with apparent glycoprotein envelope spikes were observed by electron microscopy. By sequence analysis of FmoPV H and L genes, we found that FmoPVs showed genetic diversity; however, signatures of positive selection were not identified. PMID:24728711

  20. Genetic Diversity among Xanthomonas campestris Strains Pathogenic for Small Grains

    PubMed Central

    Bragard, C.; Verdier, V.; Maraite, H.

    1995-01-01

    A collection of 51 Xanthomonas campestris strains from throughout the world was studied to detect and assess genetic diversity among pathogens of small grains. Isolates from barley, bread wheat, bromegrass, canary grass, cassava, maize, orchard grass, rice, rough-stalked meadow grass, rye, timothy, and triticale were analyzed by pathogenicity tests on bread wheat cv. Alondra and barley cv. Corona, indirect immunofluorescence, and restriction fragment length polymorphism (RFLP). Three probes were used for the RFLP analysis. They were an acetylaminofluorene-labelled 16S+23S rRNA probe from Escherichia coli and two (sup32)P-labelled restriction fragments from either plasmidic (pBSF2) or chromosomal (pBS8) DNA of X. campestris pv. manihotis. Strains clustered in 9 and 20 groups with the rRNA probe and the pBSF2 DNA probe, respectively. Strains of X. campestris pv. graminis, X. campestris pv. phleipratensis, and X. campestris pv. poae are shown to be related but are also distinguishable by RFLP patterns, serology, and pathogenicity on bread wheat. Strains pathogenic only for barley and not for wheat grouped together. Another group is temporarily designated deviant X. campestris pv. undulosa. These South American isolates from bread wheat did not react by indirect immunofluorescence and produced atypical lesions in pathogenicity tests. The results stress the need to perform pathogenicity tests before strains are named at the pathovar level. The importance of the different probes used for epidemiological studies or phylogenetic studies of closely related strains is underlined. PMID:16534952

  1. Genetic diversity of Chlamydia among captive birds from central Argentina.

    PubMed

    Frutos, María C; Monetti, Marina S; Vaulet, Lucia Gallo; Cadario, María E; Fermepin, Marcelo Rodríguez; Ré, Viviana E; Cuffini, Cecilia G

    2015-01-01

    To study the occurrence of Chlamydia spp. and their genetic diversity, we analysed 793 cloacal swabs from 12 avian orders, including 76 genera, obtained from 80 species of asymptomatic wild and captive birds that were examined with conventional nested polymerase chain reaction and quantitative polymerase chain reaction. Chlamydia spp. were not detected in wild birds; however, four species (Chlamydia psittaci, Chlamydia pecorum, Chlamydia pneumoniae and Chlamydia gallinacea) were identified among captive birds (Passeriformes, n = 20; Psittaciformes, n = 15; Rheiformes, n = 8; Falconiformes n = 2; Piciformes n = 2; Anseriformes n = 1; Galliformes n = 1; Strigiformes n = 1). Two pathogens (C. pneumoniae and C. pecorum) were identified simultaneously in samples obtained from captive birds. Based on nucleotide-sequence variations of the ompA gene, three C. psittaci-positive samples detected were grouped into a cluster with the genotype WC derived from mammalian hosts. A single positive sample was phylogenetically related to a new strain of C. gallinacea. This report contributes to our increasing understanding of the abundance of Chlamydia in the animal kingdom. PMID:25469538

  2. Diversity and general student scholarship recipient essays: 2010 National Society of Genetic Counselors Membership Committee.

    PubMed

    Liu, Tina; Patek, Kyla; Schneider, Kami Wolfe

    2011-12-01

    In an effort to increase the diversity of the membership of the National Society of Genetic Counselors (NSGC), the Membership Committee provided two $500 scholarships to genetic counseling students planning to attend the NSGC AEC meeting in Dallas, Texas in October 2010. Requirements for applicants of both scholarships included enrollment in the fall of 2010, good standing at an accredited genetic counseling training program, and NSGC membership or plans to join in 2011. Students who are from communities underrepresented in the NSGC, including, but not limited to, those of minority cultural/ethnic backgrounds and those with disabilities were eligible to apply for the "Diversity" scholarship. Students from all backgrounds who have an interest in diversity issues were eligible to apply for the "General" scholarship. Applicants wrote essays 1000 words or less answering the following questions: How has your identity as a member of a group underrepresented in the genetic counseling profession affected your pursuit of this career? What do you feel is lacking in genetic counseling to address the issues of underrepresented groups? What strategies do you recommend for addressing these issues and/or increasing diversity? Why do you think diversity is an important issue for the field of genetic counseling? What strategies do you recommend to attract and retain students, especially those from underrepresented populations, into the field of genetic counseling? How do you envision contributing to these strategies? The essays by the award recipients elucidated interesting perspectives and ideas for increasing diversity in the genetic counseling profession. PMID:21717287

  3. Genetic diversity of Guernsey population using pedigree data and gene-dropping simulations.

    PubMed

    Melka, M G; Sargolzaei, M; Miglior, F; Schenkel, F

    2013-02-01

    The objectives of this study were to analyze the trend of within-breed genetic diversity and identify major causes leading to loss of genetic diversity in Guernsey breed in three countries. Pedigree files of Canadian (GCN), South African (GSA) and American (GUS) Guernsey populations containing 130 927, 18 593 and 1 851 624 records, respectively, were analyzed. Several parameters derived from the in-depth pedigree analyses were used to measure trends and current levels of genetic diversity. Pedigree completeness index of GCN, GSA and GUS populations, in the most recent year (2007), was 97%, 74% and 79%, respectively, considering four generations back in the analysis. The rate of inbreeding in each population was 0.19%, 0.16% and 0.17% between 2002 and 2007, respectively. For the same period, the estimated effective population size for GCN, GSA and GUS was 46, 57 and 46, respectively. The estimated percentage of genetic diversity lost within each population over the last four decades was 8%, 3% and 5%, respectively. The relative proportion of genetic diversity lost due to random genetic drift in the three populations was 93%, 91% and 86%, respectively. In conclusion, the results suggested that GCN and GUS have lost more genetic diversity than GSA over the past four decades, and this loss is gaining momentum due to increasing rates of inbreeding. Therefore, strategies such as optimum contribution selection and migration of genetic material are advised to increase effective population size, particularly in GCN and GUS. PMID:23032118

  4. Compare Identity By Sequence Relationships of the Ames Diversity Panel using TYPSimSelector [abstract

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize genetic diversity has been exploited by mankind for 10,000 years. Scientific approaches applied to it by breeders for over a century transformed it into the world’s number one crop. Maize genomic diversity provides a rich resource of interest to evolutionary and population geneticists, constit...

  5. Determination of Genetic Diversity among Korean Hanwoo Cattle Based on Physical Characteristics

    PubMed Central

    Choi, T. J.; Lee, S. S.; Yoon, D. H.; Kang, H. S.; Kim, C. D.; Hwang, I. H.; Kim, C. Y.; Jin, X.; Yang, C. G.; Seo, K. S.

    2012-01-01

    This study was conducted to establish genetic criteria for phenotypic characteristics of Hanwoo cattle based on allele frequencies and genetic variance analysis using microsatellite markers. Analysis of the genetic diversity among 399 Hanwoo cattle classified according to nose pigmentation and coat color was carried out using 22 microsatellite markers. The results revealed that the INRA035 locus was associated with the highest Fis (0.536). Given that the Fis value for the Hanwoo INRA035 population ranged from 0.533 (white) to 1.000 (white spotted), this finding was consistent with the loci being fixed in Hanwoo cattle. Expected heterozygosities of the Hanwoo groups classified by coat colors and degree of nose pigmentation ranged from 0.689±0.023 (Holstein) to 0.743±0.021 (nose pigmentation level of d). Normal Hanwoo and animals with a mixed white coat showed the closest relationship because the lowest DA value was observed between these groups. However, a pair-wise differentiation test of Fst showed no significant difference among the Hanwoo groups classified by coat color and degree of nose pigmentation (p<0.01). Moreover, results of the neighbor-joining tree based on a DA genetic distance matrix within 399 Hanwoo individuals and principal component analyses confirmed that different groups of cattle with mixed coat color and nose pigmentation formed other specific groups representing Hanwoo genetic and phenotypic characteristics. The results of this study support a relaxation of policies regulating bull selection or animal registration in an effort to minimize financial loss, and could provide basic information that can be used for establishing criteria to classify Hanwoo phenotypes. PMID:25049682

  6. Factors affecting levels of genetic diversity in natural populations.

    PubMed

    Amos, W; Harwood, J

    1998-02-28

    Genetic variability is the clay of evolution, providing the base material on which adaptation and speciation depend. It is often assumed that most interspecific differences in variability are due primarily to population size effects, with bottlenecked populations carrying less variability than those of stable size. However, we show that population bottlenecks are unlikely to be the only factor, even in classic case studies such as the northern elephant seal and the cheetah, where genetic polymorphism is virtually absent. Instead, we suggest that the low levels of variability observed in endangered populations are more likely to result from a combination of publication biases, which tend to inflate the level of variability which is considered 'normal', and inbreeding effects, which may hasten loss of variability due to drift. To account for species with large population sizes but low variability we advance three hypotheses. First, it is known that certain metapopulation structures can result in effective population sizes far below the census size. Second, there is increasing evidence that heterozygous sites mutate more frequently than equivalent homozygous sites, plausibly because mismatch repair between homologous chromosomes during meiosis provides extra opportunities to mutate. Such a mechanism would undermine the simple relationship between heterozygosity and effective population size. Third, the fact that related species that differ greatly in variability implies that large amounts of variability can be gained or lost rapidly. We argue that such cases are best explained by rapid loss through a genome-wide selective sweep, and suggest a mechanism by which this could come about, based on forced changes to a control gene inducing coevolution in the genes it controls. Our model, based on meiotic drive in mammals, but easily extended to other systems, would tend to facilitate population isolation by generating molecular incompatabilities. Circumstances can even be envisioned in which the process could provide intrinsic impetus to speciation. PMID:9533122

  7. Elucidating Genetic Diversity among Sour Orange Rootstocks: a Comparative Study of the Efficiency of RAPD and SSR Markers.

    PubMed

    Lamine, Myriam; Mliki, Ahmed

    2015-03-01

    In order to compare the effectiveness of two molecular marker systems, a set of six RAPD and nine SSR markers were used to study the genetic diversity in a population of 46 sour orange accessions, a common rootstock used in almost all citrus orchards in Tunisia. Genetic diversity parameters [average and effective number of alleles, percentage of polymorphism, polymorphic information content (PIC), effective marker index (EMI), and marker index (MI) parameters] for RAPD, SSR, and RAPD?+?SSR were determined in order to assess the efficiency of the two marker systems. The results revealed that these parameters were significantly higher when using RAPD markers. Similarly, cluster analysis using the results of RAPD was practically the same as that obtained when combining data from the two marker systems (RAPD?+?SSR) demonstrating the efficiency of RAPD in discriminating between sour orange accessions. Therefore, the use of SSR markers, known to be more efficient and discriminatory, does not bring significant supplementary information in this work. Indeed, results would have been obtained using only the RAPD markers. Accordingly, this work highlights the efficiency and advantages of RAPD, as an easy and efficient technique, in studying citrus rootstock's genetic diversity, and establishing genetic relationships among citrus accessions. PMID:25586488

  8. The Relationship between Diverse Components of Intelligence and Creativity

    ERIC Educational Resources Information Center

    Cho, Sun Hee; Nijenhuis, Jan Te; van Vianen, Annelies E. M.; Kim, Heui Baik; Lee, Kun Ho

    2010-01-01

    Intelligence and creativity are accounted for in terms of two different mental operations referred to as "convergent thinking" and "divergent thinking", respectively. Nevertheless, psychometric evidence on the relationship between intelligence and creativity has been controversial. To clarify their relationship, we characterized the relationship…

  9. Genetic diversity in Capsicum baccatum is significantly influenced by its ecogeographical distribution

    PubMed Central

    2012-01-01

    Background The exotic pepper species Capsicum baccatum, also known as the aji or Peruvian hot pepper, is comprised of wild and domesticated botanical forms. The species is a valuable source of new genes useful for improving fruit quality and disease resistance in C. annuum sweet bell and hot chile pepper. However, relatively little research has been conducted to characterize the species, thus limiting its utilization. The structure of genetic diversity in a plant germplasm collection is significantly influenced by its ecogeographical distribution. Together with DNA fingerprints derived from AFLP markers, we evaluated variation in fruit and plant morphology of plants collected across the species native range in South America and evaluated these characters in combination with the unique geography, climate and ecology at different sites where plants originated. Results The present study mapped the ecogeographic distribution, analyzed the spatial genetic structure, and assessed the relationship between the spatial genetic pattern and the variation of morphological traits in a diverse C. baccatum germplasm collection spanning the species distribution. A combined diversity analysis was carried out on the USDA-ARS C. baccatum germplasm collection using data from GIS, morphological traits and AFLP markers. The results demonstrate that the C. baccatum collection covers wide geographic areas and is adapted to divergent ecological conditions in South America ranging from cool Andean highland to Amazonia rainforest. A high level of morphological diversity was evident in the collection, with fruit weight the leading variable. The fruit weight distribution pattern was compatible to AFLP-based clustering analysis for the collection. A significant spatial structure was observed in the C. baccatum gene pool. Division of the domesticated germplasm into two major regional groups (Western and Eastern) was further supported by the pattern of spatial population structure. Conclusions The results reported improve our understanding of the combined effects of geography, ecology and human intervention on organization of the C. baccatum genepool. The results will facilitate utilization of C. baccatum for crop improvement and species conservation by providing a framework for efficient germplasm collection management and guidance for future plant acquisitions. PMID:22866868

  10. Genetic relationship between ethanol-induced conditioned place preference and other ethanol phenotypes in 15 inbred mouse strains.

    PubMed

    Cunningham, Christopher L

    2014-08-01

    The genetic relationships between different behaviors used to index the rewarding or reinforcing effects of alcohol are poorly understood. To address this issue, ethanol-induced conditioned place preference (CPP) was tested in a genetically diverse panel of inbred mouse strains, and strain means from this study and other inbred strain studies were used to examine the genetic correlation between CPP and several ethanol-related phenotypes, including activity measures recorded during CPP training and testing. Mice from each strain were exposed to a well-characterized unbiased place conditioning procedure using ethanol doses of 2 or 4 g/kg; an additional group from each strain was exposed to saline alone on all trials. Genotype had a significant effect on CPP, basal locomotor activity, ethanol-stimulated activity, and the effect of repeated ethanol exposure on activity. Correlational analyses showed significant negative genetic correlations between CPP and sweetened ethanol intake and between CPP and test session activity, as well as a significant positive genetic correlation between CPP and chronic ethanol withdrawal severity. Moreover, there was a trend toward a positive genetic correlation between CPP and ethanol-induced conditioned taste aversion. These genetic correlations suggest overlap in the genetic mechanisms underlying CPP and each of these traits. The patterns of genetic relationships suggest a greater impact of ethanol's aversive effects on drinking and a greater impact of ethanol's rewarding effects on CPP. Overall, these data support the idea that genotype influences ethanol's rewarding effect, a factor that may contribute importantly to addictive vulnerability. PMID:24841742

  11. Genetic diversity and population structure of Plasmodium vivax isolates from Sudan, Madagascar, French Guiana and Armenia.

    PubMed

    Menegon, Michela; Durand, Patrick; Menard, Didier; Legrand, Eric; Picot, Stéphane; Nour, Bakri; Davidyants, Vladimir; Santi, Flavia; Severini, Carlo

    2014-10-01

    Polymorphic genetic markers and especially microsatellite analysis can be used to investigate multiple aspects of the biology of Plasmodium species. In the current study, we characterized 7 polymorphic microsatellites in a total of 281 Plasmodium vivax isolates to determine the genetic diversity and population structure of P. vivax populations from Sudan, Madagascar, French Guiana, and Armenia. All four parasite populations were highly polymorphic with 3-32 alleles per locus. Mean genetic diversity values was 0.83, 0.79, 0.78 and 0.67 for Madagascar, French Guiana, Sudan, and Armenia, respectively. Significant genetic differentiation between all four populations was observed. PMID:25102032

  12. Genetic diversity in two introduced biofouling amphipods (Amphipods valida and Jassa marmorata) along the Pacific North American coast: investigation into molecular identification and cryptic diversity

    EPA Science Inventory

    We investigated patterns of genetic diversity among invasive populations of A. valida and J. marmorata from the Pacific North American coast to assess the accuracy of morphological identification and determine whether or not cryptic diversity and multiple introductions contribute...

  13. Peak and Persistent Excess of Genetic Diversity Following an Abrupt Migration Increase

    PubMed Central

    Alcala, Nicolas; Streit, Daniela; Goudet, Jérôme; Vuilleumier, Séverine

    2013-01-01

    Genetic diversity is essential for population survival and adaptation to changing environments. Demographic processes (e.g., bottleneck and expansion) and spatial structure (e.g., migration, number, and size of populations) are known to shape the patterns of the genetic diversity of populations. However, the impact of temporal changes in migration on genetic diversity has seldom been considered, although such events might be the norm. Indeed, during the millions of years of a species’ lifetime, repeated isolation and reconnection of populations occur. Geological and climatic events alternately isolate and reconnect habitats. We analytically document the dynamics of genetic diversity after an abrupt change in migration given the mutation rate and the number and sizes of the populations. We demonstrate that during transient dynamics, genetic diversity can reach unexpectedly high values that can be maintained over thousands of generations. We discuss the consequences of such processes for the evolution of species based on standing genetic variation and how they can affect the reconstruction of a population’s demographic and evolutionary history from genetic data. Our results also provide guidelines for the use of genetic data for the conservation of natural populations. PMID:23307901

  14. Genetic diversity in caribou linked to past and future climate change

    NASA Astrophysics Data System (ADS)

    Yannic, Glenn; Pellissier, Loïc; Ortego, Joaquín; Lecomte, Nicolas; Couturier, Serge; Cuyler, Christine; Dussault, Christian; Hundertmark, Kris J.; Irvine, R. Justin; Jenkins, Deborah A.; Kolpashikov, Leonid; Mager, Karen; Musiani, Marco; Parker, Katherine L.; Røed, Knut H.; Sipko, Taras; Þórisson, Skarphéðinn G.; Weckworth, Byron V.; Guisan, Antoine; Bernatchez, Louis; Côté, Steeve D.

    2014-02-01

    Climate-driven range fluctuations during the Pleistocene have continuously reshaped species distribution leading to populations of contrasting genetic diversity. Contemporary climate change is similarly influencing species distribution and population structure, with important consequences for patterns of genetic diversity and species' evolutionary potential. Yet few studies assess the impacts of global climatic changes on intraspecific genetic variation. Here, combining analyses of molecular data with time series of predicted species distributions and a model of diffusion through time over the past 21kyr, we unravel caribou response to past and future climate changes across its entire Holarctic distribution. We found that genetic diversity is geographically structured with two main caribou lineages, one originating from and confined to Northeastern America, the other originating from Euro-Beringia but also currently distributed in western North America. Regions that remained climatically stable over the past 21kyr maintained a high genetic diversity and are also predicted to experience higher climatic stability under future climate change scenarios. Our interdisciplinary approach, combining genetic data and spatial analyses of climatic stability (applicable to virtually any taxon), represents a significant advance in inferring how climate shapes genetic diversity and impacts genetic structure.

  15. SNP-revealed genetic diversity in wild emmer wheat correlates with ecological factors

    PubMed Central

    2013-01-01

    Background Patterns of genetic diversity between and within natural plant populations and their driving forces are of great interest in evolutionary biology. However, few studies have been performed on the genetic structure and population divergence in wild emmer wheat using a large number of EST-related single nucleotide polymorphism (SNP) markers. Results In the present study, twenty-five natural wild emmer wheat populations representing a wide range of ecological conditions in Israel and Turkey were used. Genetic diversity and genetic structure were investigated using over 1,000 SNP markers. A moderate level of genetic diversity was detected due to the biallelic property of SNP markers. Clustering based on Bayesian model showed that grouping pattern is related to the geographical distribution of the wild emmer wheat. However, genetic differentiation between populations was not necessarily dependent on the geographical distances. A total of 33 outlier loci under positive selection were identified using a FST-outlier method. Significant correlations between loci and ecogeographical factors were observed. Conclusions Natural selection appears to play a major role in generating adaptive structures in wild emmer wheat. SNP markers are appropriate for detecting selectively-channeled adaptive genetic diversity in natural populations of wild emmer wheat. This adaptive genetic diversity is significantly associated with ecological factors. PMID:23937410

  16. Assessing Genetic Diversity among Brettanomyces Yeasts by DNA Fingerprinting and Whole-Genome Sequencing

    PubMed Central

    Crauwels, Sam; Zhu, Bo; Steensels, Jan; Busschaert, Pieter; De Samblanx, Gorik; Marchal, Kathleen; Willems, Kris A.

    2014-01-01

    Brettanomyces yeasts, with the species Brettanomyces (Dekkera) bruxellensis being the most important one, are generally reported to be spoilage yeasts in the beer and wine industry due to the production of phenolic off flavors. However, B. bruxellensis is also known to be a beneficial contributor in certain fermentation processes, such as the production of certain specialty beers. Nevertheless, despite its economic importance, Brettanomyces yeasts remain poorly understood at the genetic and genomic levels. In this study, the genetic relationship between more than 50 Brettanomyces strains from all presently known species and from several sources was studied using a combination of DNA fingerprinting techniques. This revealed an intriguing correlation between the B. bruxellensis fingerprints and the respective isolation source. To further explore this relationship, we sequenced a (beneficial) beer isolate of B. bruxellensis (VIB X9085; ST05.12/22) and compared its genome sequence with the genome sequences of two wine spoilage strains (AWRI 1499 and CBS 2499). ST05.12/22 was found to be substantially different from both wine strains, especially at the level of single nucleotide polymorphisms (SNPs). In addition, there were major differences in the genome structures between the strains investigated, including the presence of large duplications and deletions. Gene content analysis revealed the presence of 20 genes which were present in both wine strains but absent in the beer strain, including many genes involved in carbon and nitrogen metabolism, and vice versa, no genes that were missing in both AWRI 1499 and CBS 2499 were found in ST05.12/22. Together, this study provides tools to discriminate Brettanomyces strains and provides a first glimpse at the genetic diversity and genome plasticity of B. bruxellensis. PMID:24814796

  17. Molecular biology and genetic diversity of Rift Valley fever virus

    PubMed Central

    Ikegami, Tetsuro

    2013-01-01

    Rift Valley fever virus (RVFV), a member of the family Bunyaviridae, genus Phlebovirus, is the causative agent of Rift Valley fever (RVF), a mosquito-borne disease of ruminant animals and humans. The generation of a large sequence database has facilitated studies of the evolution and spread of the virus. Bayesian analyses indicate that currently circulating strains of RVFV are descended from an ancestral species that emerged from a natural reservoir in Africa when large-scale cattle and sheep farming were introduced during the 19th century. Viruses descended from multiple lineages persist in that region, through infection of reservoir animals and vertical transmission in mosquitoes, emerging in years of heavy rainfall to cause epizootics and epidemics. On a number of occasions, viruses from these lineages have been transported outside the enzootic region through the movement of infected animals or mosquitoes, triggering outbreaks in countries such as Egypt, Saudi Arabia, Mauritania and Madagascar, where RVF had not previously been seen. Such viruses could potentially become established in their new environments through infection of wild and domestic ruminants and other animals and vertical transmission in local mosquito species. Despite their extensive geographic dispersion, all strains of RVFV remain closely related at the nucleotide and amino acid level. The high degree of conservation of genes encoding the virion surface glycoproteins suggests that a single vaccine should protect against all currently circulating RVFV strains. Similarly, preservation of the sequence of the RNA-dependent RNA polymerase across viral lineages implies that antiviral drugs targeting the enzyme should be effective against all strains. Researchers should be encouraged to collect additional RVFV isolates and perform whole-genome sequencing and phylogenetic analysis, so as to enhance our understanding of the continuing evolution of this important virus. This review forms part of a series of invited papers in Antiviral Research on the genetic diversity of emerging viruses. PMID:22710362

  18. Molecular biology and genetic diversity of Rift Valley fever virus.

    PubMed

    Ikegami, Tetsuro

    2012-09-01

    Rift Valley fever virus (RVFV), a member of the family Bunyaviridae, genus Phlebovirus, is the causative agent of Rift Valley fever (RVF), a mosquito-borne disease of ruminant animals and humans. The generation of a large sequence database has facilitated studies of the evolution and spread of the virus. Bayesian analyses indicate that currently circulating strains of RVFV are descended from an ancestral species that emerged from a natural reservoir in Africa when large-scale cattle and sheep farming were introduced during the 19th century. Viruses descended from multiple lineages persist in that region, through infection of reservoir animals and vertical transmission in mosquitoes, emerging in years of heavy rainfall to cause epizootics and epidemics. On a number of occasions, viruses from these lineages have been transported outside the enzootic region through the movement of infected animals or mosquitoes, triggering outbreaks in countries such as Egypt, Saudi Arabia, Mauritania and Madagascar, where RVF had not previously been seen. Such viruses could potentially become established in their new environments through infection of wild and domestic ruminants and other animals and vertical transmission in local mosquito species. Despite their extensive geographic dispersion, all strains of RVFV remain closely related at the nucleotide and amino acid level. The high degree of conservation of genes encoding the virion surface glycoproteins suggests that a single vaccine should protect against all currently circulating RVFV strains. Similarly, preservation of the sequence of the RNA-dependent RNA polymerase across viral lineages implies that antiviral drugs targeting the enzyme should be effective against all strains. Researchers should be encouraged to collect additional RVFV isolates and perform whole-genome sequencing and phylogenetic analysis, so as to enhance our understanding of the continuing evolution of this important virus. This review forms part of a series of invited papers in Antiviral Research on the genetic diversity of emerging viruses. PMID:22710362

  19. Parasite genetic diversity does not influence TNF-mediated effects on 

    E-print Network

    Long, Gráinne Helen; Chan, Brian; Allen, Judith; Read, Andrew F; Graham, Andrea

    2006-01-01

    The pro-inflammatory cytokine tumour necrosis factor alpha (TNF-?) is associated with malaria virulence (disease severity) in both rodents and humans. We are interested in whether parasite genetic diversity influences TNF-mediated effects on malaria...

  20. Origin of Chinese Goldfish and Sequential Loss of Genetic Diversity Accompanies New Breeds

    E-print Network

    Murphy, Bob

    Origin of Chinese Goldfish and Sequential Loss of Genetic Diversity Accompanies New Breeds Shu Background: Goldfish, Carassius auratus, have experienced strong anthropogenic selection during Carassius. To locate the geographic origin of goldfish, we analyzed nucleotide sequences from part

  1. Genetic Diversity and Population Structure of the Arabian Horse Populations from Syria and other Countries

    E-print Network

    Khanshour, Anas M

    2013-07-05

    different populations of Arabians representing Middle Eastern and Western populations. The main two aims of this study were to provide the genetic diversity description of Arabians from different origins and to examine the traditional classification system...

  2. Tetraploid Wheat Landraces in the Mediterranean Basin: Taxonomy, Evolution and Genetic Diversity

    PubMed Central

    Oliveira, Hugo R.; Campana, Michael G.; Jones, Huw; Hunt, Harriet V.; Leigh, Fiona; Redhouse, David I.; Lister, Diane L.; Jones, Martin K.

    2012-01-01

    The geographic distribution of genetic diversity and the population structure of tetraploid wheat landraces in the Mediterranean basin has received relatively little attention. This is complicated by the lack of consensus concerning the taxonomy of tetraploid wheats and by unresolved questions regarding the domestication and spread of naked wheats. These knowledge gaps hinder crop diversity conservation efforts and plant breeding programmes. We investigated genetic diversity and population structure in tetraploid wheats (wild emmer, emmer, rivet and durum) using nuclear and chloroplast simple sequence repeats, functional variations and insertion site-based polymorphisms. Emmer and wild emmer constitute a genetically distinct population from durum and rivet, the latter seeming to share a common gene pool. Our population structure and genetic diversity data suggest a dynamic history of introduction and extinction of genotypes in the Mediterranean fields. PMID:22615891

  3. Patch connectivity and genetic diversity conservation in the federally endangered and narrowly endemic

    E-print Network

    Neel, Maile

    endemic plant species Astragalus albens (Fabaceae) Maile C. Neel* Departments of Plant Science in promoting the long-term persistence of the endangered plant Astragalus albens, patterns of genetic diversity

  4. Global patterns of the beta diversity-energy relationship in terrestrial vertebrates

    NASA Astrophysics Data System (ADS)

    Qian, Hong; Xiao, Ming

    2012-02-01

    Patterns in beta diversity or species turnover, describing the change in species composition between places, have their wide implication for ecological and evolutionary issues. It is thought that beta diversity increases with increasing energy availability, but very few studies have directly tested this hypothesis. We examined the beta diversity-energy relationship for four classes of terrestrial vertebrates (mammals, birds, reptiles, and amphibians) in ecoregions across the world. The relationship was examined for each class in each of six biogeographic realms. We show that beta diversity is generally higher in areas with higher energy availability, measured as annual potential evapotranspiration. A higher level of beta diversity in areas with higher energy availability may have contributed to the well-known latitudinal diversity gradient (i.e., species richness increases towards the equator).

  5. Genetic diversity demonstrated by pulsed field gel electrophoresis of Salmonella enterica isolates obtained from diverse sources in Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to determine the genetic diversity of Salmonella isolates recovered from a variety of sources using pulsed-field gel electrophoresis (PFGE) to assess their possible relatedness. Salmonella was isolated from ca. 52% of samples from a pepper var. Bell production system. A to...

  6. The Effect of Diversity Courses on International Students from China and Hong Kong: A Focus on Intergroup Peer Relationships

    ERIC Educational Resources Information Center

    Daniels, Sonja Gail

    2010-01-01

    This dissertation explores the perceptions and experiences of international students from China and Hong Kong with diversity courses. Using theoretical frameworks that examine the diversity classroom, informal interactional diversity, a diversity typology used to categorize diversity courses, intergroup peer relationships and student…

  7. Patterns of ancestry and genetic diversity in reintroduced populations of the slimy sculpin: Implications for conservation

    USGS Publications Warehouse

    Huff, D.D.; Miller, L.M.; Vondracek, B.

    2010-01-01

    Reintroductions are a common approach for preserving intraspecific biodiversity in fragmented landscapes. However, they may exacerbate the reduction in genetic diversity initially caused by population fragmentation because the effective population size of reintroduced populations is often smaller and reintroduced populations also tend to be more geographically isolated than native populations. Mixing genetically divergent sources for reintroduction purposes is a practice intended to increase genetic diversity. We documented the outcome of reintroductions from three mixed sources on the ancestral composition and genetic variation of a North American fish, the slimy sculpin (Cottus cognatus). We used microsatellite markers to evaluate allelic richness and heterozygosity in the reintroduced populations relative to computer simulated expectations. Sculpins in reintroduced populations exhibited higher levels of heterozygosity and allelic richness than any single source, but only slightly higher than the single most genetically diverse source population. Simulations intended to mimic an ideal scenario for maximizing genetic variation in the reintroduced populations also predicted increases, but they were only moderately greater than the most variable source population. We found that a single source contributed more than the other two sources at most reintroduction sites. We urge caution when choosing whether to mix source populations in reintroduction programs. Genetic characteristics of candidate source populations should be evaluated prior to reintroduction if feasible. When combined with knowledge of the degree of genetic distinction among sources, simulations may allow the genetic diversity benefits of mixing populations to be weighed against the risks of outbreeding depression in reintroduced and nearby populations. ?? 2010 US Government.

  8. Global diversity and genetic contributions of chicken populations from African, Asian and European regions.

    PubMed

    Lyimo, C M; Weigend, A; Msoffe, P L; Eding, H; Simianer, H; Weigend, S

    2014-12-01

    Genetic diversity and population structure of 113 chicken populations from Africa, Asia and Europe were studied using 29 microsatellite markers. Among these, three populations of wild chickens and nine commercial purebreds were used as reference populations for comparison. Compared to commercial lines and chickens sampled from the European region, high mean numbers of alleles and a high degree of heterozygosity were found in Asian and African chickens as well as in Red Junglefowl. Population differentiation (FST ) was higher among European breeds and commercial lines than among African, Asian and Red Junglefowl populations. Neighbour-Net genetic clustering and structure analysis revealed two main groups of Asian and north-west European breeds, whereas African populations overlap with other breeds from Eastern Europe and the Mediterranean region. Broilers and brown egg layers were situated between the Asian and north-west European clusters. structure analysis confirmed a lower degree of population stratification in African and Asian chickens than in European breeds. High genetic differentiation and low genetic contributions to global diversity have been observed for single European breeds. Populations with low genetic variability have also shown a low genetic contribution to a core set of diversity in attaining maximum genetic variation present from the total populations. This may indicate that conservation measures in Europe should pay special attention to preserving as many single chicken breeds as possible to maintain maximum genetic diversity given that higher genetic variations come from differentiation between breeds. PMID:25315897

  9. The importance of control populations for the identification and management of genetic diversity.

    PubMed

    Bouzat, J L

    2000-01-01

    A fundamental criterion for recognizing species or populations as potentially endangered is the presence/absence of genetic diversity. However, the lack of control populations in many studies of natural systems deprives one from unambiguous criteria for evaluating the genetic effects of small population size and its potential effects on fitness. In this study, I present an example of how the lack of adequate controls may lead to erroneous conclusions for understanding the role that population size may play in the preservation of genetic diversity and fitness of natural populations. The genetic analysis of a population of greater prairie chickens from Illinois, USA, between two time periods (1974-1987 and 1988-1993) in which the studied population experienced a substantial reduction in size and fitness showed no apparent associations between population size and genetic diversity. However, genetic analysis of museum specimens from early this century indicated that Illinois prairie chickens had originally higher levels of genetic diversity, which suggest the Illinois population was already bottlenecked by the 1970s. This study emphasizes the importance of using historical controls to evaluate the temporal dynamics of genetic variability in natural populations. The large number of museum collections worldwide may provide a valuable source of genetic information from past populations, particularly in species currently endangered as a result of human activities. PMID:11678501

  10. Genome-wide characterization of genetic diversity and population structure in Secale

    PubMed Central

    2014-01-01

    Background Numerous rye accessions are stored in ex situ genebanks worldwide. Little is known about the extent of genetic diversity contained in any of them and its relation to contemporary varieties, since to date rye genetic diversity studies had a very limited scope, analyzing few loci and/ or few accessions. Development of high throughput genotyping methods for rye opened the possibility for genome wide characterizations of large accessions sets. In this study we used 1054 Diversity Array Technology (DArT) markers with defined chromosomal location to characterize genetic diversity and population structure in a collection of 379 rye accessions including wild species, landraces, cultivated materials, historical and contemporary rye varieties. Results Average genetic similarity (GS) coefficients and average polymorphic information content (PIC) values varied among chromosomes. Comparison of chromosome specific average GS within and between germplasm sub-groups indicated regions of chromosomes 1R and 4R as being targeted by selection in current breeding programs. Bayesian clustering, principal coordinate analysis and Neighbor Joining clustering demonstrated that source and improvement status contributed significantly to the structure observed in the analyzed set of Secale germplasm. We revealed a relatively limited diversity in improved rye accessions, both historical and contemporary, as well as lack of correlation between clustering of improved accessions and geographic origin, suggesting common genetic background of rye accessions from diverse geographic regions and extensive germplasm exchange. Moreover, contemporary varieties were distinct from the remaining accessions. Conclusions Our results point to an influence of reproduction methods on the observed diversity patterns and indicate potential of ex situ collections for broadening the genetic diversity in rye breeding programs. Obtained data show that DArT markers provide a realistic picture of the genetic diversity and population structure present in the collection of 379 rye accessions and are an effective platform for rye germplasm characterization and association mapping studies. PMID:25085433

  11. Genetic diversity of rhizobia isolated from Astragalus adsurgens growing in different geographical regions of China

    Microsoft Academic Search

    Junlian Gao; Zewdu Terefework; Wenxin Chen; Kristina Lindström

    2001-01-01

    The genetic diversity among 95 isolates from Astragalus adsurgens was investigated using molecular biological methods. All of the isolates and 24 reference strains could be differentiated by AFLP, REP-, ERIC- and BOX-PCR fingerprinting analysis. By cluster analysis of the data, 31 AFLP and 38 Rep-PCR genomic groups were delineated, indicating considerable genetic diversity among the isolates. Fifty-four representative strains were

  12. Estimating genetic diversity of Arabidopsis thaliana ecotypes with amplified fragment length polymorphisms (AFLP)

    Microsoft Academic Search

    S. Erschadi; G. Haberer; M. Schöniger; R. A. Torres-Ruiz

    2000-01-01

    The extensive natural variation of Arabidopsis thaliana ecotypes is being increasingly exploited as a source of variants of genes which control (agronomically) important traits.\\u000a We have subjected 19 different Arabidopsis thaliana ecotypes to an analysis using the anplified fragment length polymorphism (AFLP) technique in order to estimate their genetic\\u000a diversity. The genetic diversity was estimated applying the method of Nei

  13. Frankia bacteria in Alnus rubra forests: genetic diversity and determinants of assemblage structure

    Microsoft Academic Search

    Peter G. Kennedy; Marjorie G. Weber; Andrew A. Bluhm

    2010-01-01

    To quantify the genetic diversity of Frankia bacteria associated with Alnus rubra in natural settings and to examine the relative importance of site age, management, and geographic location in structuring\\u000a Frankia assemblages in A. rubra forests, root nodules from four A. rubra sites in the Pacific Northwest, USA were sampled. Frankia genetic diversity at each site was compared using sequence-based

  14. Phylogenetic analysis of European Scutovertex mites (Acari, Oribatida, Scutoverticidae) reveals paraphyly and cryptic diversity – a molecular genetic and morphological approach

    PubMed Central

    Schäffer, Sylvia; Pfingstl, Tobias; Koblmüller, Stephan; Winkler, Kathrin A.; Sturmbauer, Christian; Krisper, Günther

    2014-01-01

    The soil and moss dwelling oribatid mite family Scutoverticidae is considered to represent an assemblage of distantly related but morphologically similar genera. We used nucleotide sequences of one mitochondrial (COI) and two nuclear (28S rDNA, ef-1?) genes, and 79 morphological characters to elucidate the phylogenetic relationships among eleven nominal plus two undescribed European mite species of the family Scutoverticidae with a particular focus on the genus Scutovertex. Both molecular genetic and morphological data revealed a paraphyletic genus Scutovertex, with S. pictus probably representing a distinct genus, and Provertex kuehnelti was confirmed as member of the family Scutoverticidae. Molecular genetic data confirmed several recently described Scutovertex species and thus the high species diversity within this genus in Europe and suggest that S. sculptus represents a complex of several cryptic species exhibiting marked genetic, but hardly any morphological divergence. PMID:20006724

  15. An empirical relationship for path diversity gain. [earth-space microwave propagation attenuation

    NASA Technical Reports Server (NTRS)

    Hodge, D. B.

    1976-01-01

    Existing 15.3 and 16 GHz path diversity gain data for earth-space propagation paths are used to generate an empirical relationship for diversity gain as a function of terminal separation distance and single terminal fade depth. The agreement between the resulting closed form expression and the data is within 0.75 dB in all cases.

  16. The energy–diversity relationship of complex bacterial communities in Arctic deep-sea sediments

    Microsoft Academic Search

    Christina Bienhold; Antje Boetius; Alban Ramette

    2012-01-01

    The availability of nutrients and energy is a main driver of biodiversity for plant and animal communities in terrestrial and marine ecosystems, but we are only beginning to understand whether and how energy–diversity relationships may be extended to complex natural bacterial communities. Here, we analyzed the link between phytodetritus input, diversity and activity of bacterial communities of the Siberian continental

  17. Bryophyte vegetation in a wooded meadow: relationships with phanerogam diversity and responses to fertilisation

    Microsoft Academic Search

    Nele Ingerpuu; Kalevi Kull; Kai Vellak

    1998-01-01

    In the Laelatu wooded meadow in Estonia, famous for its phanerogam diversity, the bryophyte community has been investigated in order to compare its flora and diversity relationships with those of the vascular plant community. Ninety-six bryophyte species were found, 13 of them are hepatics; the majority of the bryophytes are epigeic species common to meadows and forests, including many calciphilous

  18. Genetic diversity and structure in Asian native goat analyzed by newly developed SNP markers.

    PubMed

    Lin, Bang Zhong; Kato, Taiki; Kaneda, Makoto; Matsumoto, Hirokazu; Sasazaki, Shinji; Mannen, Hideyuki

    2013-08-01

    In the current study, a total of 65 single nucleotide polymorphisms (SNPs) within the intron region were developed in goat (Capra hircus) by utilizing genomic information of cattle and sheep due to poor available genomic information on goat. Using these markers, we carried out genetic diversity and structure analyses for 10 Asian goat populations. The phylogenetic tree and principal components analysis showed good correspondence between clustered populations and their geographic locations. The STRUCTURE software analysis illustrated six divergent genetic structures among 10 populations. Myanmar and Cambodia populations showed high admixture patterns with different ancestry, suggesting genetic introgression into native goat populations. We also investigated the correlation between genetic diversity and geographic distance from a domestication center. This result showed a decreasing trend of genetic diversity according to the distance (P = 0.014). This result supported common consensus that western Asia is one of the centers of origin for modern Asian domestic goat. PMID:23607488

  19. Genetic Education to Diverse Communities Employing a Community Empowerment Model

    Microsoft Academic Search

    Ilana Suez Mittman

    1998-01-01

    Lack of equity in access to health care, in general, and genetic services in particular, places communities of color at a distinct disadvantage when considering the rapidly evolving genetic technology. Much of this disparity is owed to lack of trust and credibility in the genetic care system as well as multiple ethnocultural barriers to services. This paper presents a 3-year

  20. Genetic relationships between Lolium (Poaceae) species revealed by RAPD markers.

    PubMed

    Ma, X; Gu, X-Y; Chen, T-T; Chen, S-Y; Huang, L-K; Zhang, X-Q

    2013-01-01

    The genus Lolium is one of the most important groupings of temperate forage grasses, including about eight recognized species that are native to some temperate and subtropical regions of the northern hemisphere. We examined genetic relationships among 18 accessions representing all Lolium species using RAPD markers. Among 50 random primers that we screened, 13 gave reproducible amplification banding patterns. Each of these 13 primers generated 19-43 scorable fragments. A total of 367 RAPD fragments were detected, of which 95.9% were polymorphic across all the Lolium accessions. Dice's coefficient of dissimilarity ranged from 0.016 to 0.622, which is indicative of substantial genetic variations in these Lolium accessions. A neighbor-joining cluster analysis, with bootstrap permutation, produced an unrooted dendrogram, which grouped 18 accessions into two main clades, supporting high bootstrap values (98 and 96%). The first clade included the self-pollinated species, L. persicum, L. temulentum, L. remotum, and L. subulatum. The cross-pollinated species, i.e., L. multiflorum, L. perenne, L. rigidum, and L. canariense, composed the second clade, in which L. canariense formed a distinct subclade, indicating its higher genetic separation from other allogamous species. The value of r = 0.97 in the Mantel test for cophenetic correlation applied to the cluster analysis indicated the high degree of fit of the accessions to a group. A principal coordinate analysis, whose first three coordinates explained 72.6% of the variation, showed similar groupings as in the cluster analysis. The genetic relationships estimated by the polymorphism of RAPD markers are basically in agreement with those previously inferred with other genetic markers. PMID:23546973

  1. Phylogenetic comparative methods strengthen evidence for reduced genetic diversity among endangered tetrapods.

    PubMed

    Flight, Patrick A

    2010-10-01

    The fitness of species with little genetic diversity is expected to be affected by inbreeding and an inability to respond to environmental change. Conservation theory suggests that endangered species will generally demonstrate lower genetic diversity than taxa that are not threatened. This hypothesis has been challenged because the time frame of anthropogenic extinction may be too fast to expect genetic factors to significantly contribute. I conducted a meta-analysis to examine how genetic diversity in 894 tetrapods correlates with extinction threat level. Because species are not evolutionarily independent, I used a phylogenetic regression framework to address this issue. Mean genetic diversity of tetrapods, as assessed by protein heterozygosity, was 29.7-31.5% lower on average in threatened species than in their nonthreatened relatives, a highly significant reduction. Within amphibians as diversity decreased extinction risk increased in phylogenetic models, but not in nonphylogenetic regressions. The effects of threatened status on diversity also remained significant after accounting for body size in mammals. These results support the hypothesis that genetic effects on population fitness are important in the extinction process. PMID:20345400

  2. Genetic Diversity and Evolution of Chinese Traditional Medicinal Fungus Polyporus umbellatus (Polyporales, Basidiomycota)

    PubMed Central

    Xing, Xiaoke; Ma, Xueting; Hart, Miranda M.; Wang, Airong; Guo, Shunxing

    2013-01-01

    Background Polyporus umbellatus is an important medicinal fungus distributed throughout most area of China. Its wide distribution may have resulted in substantial intraspecific genetic diversity for the fungus, potentially creating variation in its medical value. To date, we know little about the intraspecific genetic diversity of P. umbellatus. Methodology/Principal Findings The objective of this research was to assess genetic differences of P. umbellatus from geographically diverse regions of China based on nrDNA ITS and 28S rRNA (LSU, large subunit) sequences. Significant sequence variations in the ITS and LSU sequences were detected. All sclerotial samples were clustered into four clades based on phylogenetic analysis of ITS, LSU and a combined data set of both regions. Heterogeneity of ITS and LSU sequences was detected in 5 and 7 samples respectively. All clone sequences clustered into the same clade except for one LSU clone sequences (from Henan province) which clustered into two clades (Clade I and Clade II). Significant genetic divergence in P. umbellatus was observed and the genetic diversification was greater among sclerotial samples from Shaanxi, Henan and Gansu provinces than among other provinces. Polymorphism of ITS and LSU sequences indicated that in China, P. umbellatus may spread from a center (Shaanxi, Henan and Gansu province) to other regions. Conclusions/Significance We found sclerotial samples of P. umbellatus contained levels of intraspecific genetic diversity. These findings suggested that P. umbellatus populations in Shaanxi, Henan and Gansu are important resources of genetic diversity and should be conserved accordingly. PMID:23554929

  3. Non-random distribution of individual genetic diversity along an environmental gradient

    PubMed Central

    Porlier, Mélody; Bélisle, Marc; Garant, Dany

    2009-01-01

    Improving our knowledge of the links between ecology and evolution is especially critical in the actual context of global rapid environmental changes. A critical step in that direction is to quantify how variation in ecological factors linked to habitat modifications might shape observed levels of genetic variability in wild populations. Still, little is known on the factors affecting levels and distribution of genetic diversity at the individual level, despite its vital underlying role in evolutionary processes. In this study, we assessed the effects of habitat quality on population structure and individual genetic diversity of tree swallows (Tachycineta bicolor) breeding along a gradient of agricultural intensification in southern Québec, Canada. Using a landscape genetics approach, we found that individual genetic diversity was greater in poorer quality habitats. This counter-intuitive result was partly explained by the settlement patterns of tree swallows across the landscape. Individuals of higher genetic diversity arrived earlier on their breeding grounds and settled in the first available habitats, which correspond to intensive cultures. Our results highlight the importance of investigating the effects of environmental variability on individual genetic diversity, and of integrating information on landscape structure when conducting such studies. PMID:19414469

  4. Molecular and genetic diversity of cultivars in the U.S. cotton germplasm collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although a large range of untapped genetic diversity exists within the U.S. Cotton Germplasm Collection, much of this diversity has not been characterized and its sources identified. Our objective in this study was to characterize a subset of cultivated Gossypium hirsutum germplasm within the colle...

  5. Genetic diversity in populations of Xanthomonas campestris pv. camestris in cruciferous weeds in central coastal California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Xanthomonas campestris pv. campestris infects a large number of cruciferous plants, including weeds. California has one of the largest and most diverse populations of wild cruciferous plants in the world. Although considerable information is available on the genetic diversity of X. campestris pv. ca...

  6. A novel approach in parameter adaptation and diversity maintenance for genetic algorithms

    Microsoft Academic Search

    Yuk-yin Wong; Kin-hong Lee; Kwong-sak Leung; C.-W. Ho

    2003-01-01

    In this paper, we propose a probabilistic rule-driven adaptive model (PRAM) for parameter adaptation and a repelling approach for diversity maintenance in genetic algorithms. PRAM uses three parameter values and a set of greedy rules to adapt the value of the control parameters automatically. The repelling algorithm is proposed to maintain the population diversity. It modifies the fitness value to

  7. Genetic diversity evaluation of wild Persian shallot ( Allium hirtifolium Boiss.) using morphological and RAPD markers

    Microsoft Academic Search

    R. Ebrahimi; Z. Zamani; A. Kashi

    2009-01-01

    Persian shallot, a bulb producing plant from Alliaceae, is a wildly growing plant collected for its bulbs. Bulbs of Persian shallot, called “Mooseer” in Farsi, are oval, white skinned, usually of one and rarely of two main bulbs and are completely different from common shallot (Allium ascalonicum). There is no information about genetic diversity of this species; therefore, the diversity

  8. GENETIC DIVERSITY IN POPULATIONS OF XANTHOMONAS CAMPESTRIS PV. CAMPESTRIS IN CRUCIFEROUS WEEDS IN CENTRAL COASTAL CALIFORNIA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Xanthomonas campestris pv. campestris (Xcc) infects a large number of cruciferous plants, including weeds. California has one of the largest and most diverse populations of wild cruciferous plants in the world. Although considerable information is available on the genetic diversity of Xcc in commerc...

  9. Copyright 2004 by the Genetics Society of America Nucleotide Diversity in Gorillas

    E-print Network

    Seaman, Michael I.

    Copyright 2004 by the Genetics Society of America Nucleotide Diversity in Gorillas Ning Yu,*,1. In the present study we sequenced the same 50 segments in 15 western lowland gorillas and estimated to be 0, available mtDNA sequence data also suggest a twofold higher nucleotide diversity in gorillas than in humans

  10. Genetic and clonal diversity of two cattail species, Typha latifolia and T. angustifolia (Typhaceae), from Ukraine

    Microsoft Academic Search

    O. V. Tsyusko; MICHAEL H. SMITH; R EBECCA R. SHARITZ; TRAVIS C. GLENN

    2005-01-01

    Genetic and clonal diversity vary between two closely related cattail species ( Typha angustifolia and T. latifolia) from Ukraine. This diversity was calculated from microsatellite data. Forty-eight percent of the total variation was partitioned between species, which formed distinct clusters in a dendrogram with no indication of hybrid populations. Typha angustifolia had higher heterozygosity at the species (Hes 5 0.66)

  11. Evaluation of maize microsatellite markers for genetic diversity analysis and fingerprinting in sugarcane.

    PubMed

    Selvi, A; Nair, N V; Balasundaram, N; Mohapatra, T

    2003-06-01

    The use of maize microsatellite markers as a potential cost-effective method for molecular analysis of sugarcane was evaluated. Of the 34 primer pairs obtained from maize genomic libraries, 14 showed repeatable amplifications in Saccharum species clones, commercial hybrids, and the related genera Erianthus, accounting for 41.17% cross transferability. Complex banding patterns were encountered in sugarcane with the number of amplified fragments ranging from 7 to 14 with an average of 10 per primer, indicating the high polyploidy and heterozygosity existing in sugarcane. Phenetic analysis of the SSR polymorphisms produced by nine primers could clearly differentiate the different species of Saccharum and Erianthus and revealed the relationships that existed between them. Genetic similarity co-efficient indicated low diversity existing among the S. officinarum clones (82%) and a relatively higher level of diversity in the S. spontaneum clones (69.7%). Higher level of divergence of Erianthus from Saccharum was also clearly estabilished. Five primers produced genus- and species-specific fragments for Erianthus, S. spontaneum, S. officinarum, and S. barberi. The polymorphic primers, when tested on a panel of 30 commercial sugarcane cultivars, revealed a broad range (32.4-83.3%) of pair-wise similarity values, indicating their ability to detect high levels of polymorphism. A combination of two primers could differentiate all the varieties, further emphasizing their potential in fingerprinting and varietal identification. PMID:12834055

  12. [Genetic diversity of modern Russian durum wheat cultivars at the gliadin-coding loci].

    PubMed

    2014-05-01

    The allelic diversity at four gliadin-coding loci was examined in modern cultivars of the spring and winter durum wheat Triticum durum Desf. Comparative analysis of the allelic diversity showed that the gene pools of these two types of durum wheat, having different life styles, were considerably different. For the modern spring durum wheat cultivars, a certain reduction of the genetic diversity was observed compared to the cultivars bred in the 20th century. PMID:25715471

  13. The Relationship between Diversity Training, Organizational Commitment, and Career Satisfaction

    ERIC Educational Resources Information Center

    Yap, Margaret; Holmes, Mark Robert; Hannan, Charity-Ann; Cukier, Wendy

    2010-01-01

    Purpose: The purpose of this paper is to investigate the association between employees' perceptions of diversity training (DT) existence and effectiveness with organizational commitment (OC), and career satisfaction (CS). Design/methodology/approach: The analyses in this paper utilize survey data collected between 2006 and 2007 from over 11,000…

  14. Relationship between soil chemical factors and grassland diversity

    Microsoft Academic Search

    F. Janssens; A. Peeters; J. R. B. Tallowin; J. P. Bakker; R. M. Bekker; F. Fillat; M. J. M. Oomes

    1998-01-01

    Many studies carried out during these last few years have focused on the factors influencing plant diversity in species-rich grasslands. This is due to the fact that these ecosystems, among the most diversified in temperate climates, are extremely threatened; in some areas, they have almost disappeared. The re-establishment of these habitats implies to know the living conditions of the associations

  15. Genetic diversity and distribution of Peromyscus-borne hantaviruses in North America.

    PubMed Central

    Monroe, M. C.; Morzunov, S. P.; Johnson, A. M.; Bowen, M. D.; Artsob, H.; Yates, T.; Peters, C. J.; Rollin, P. E.; Ksiazek, T. G.; Nichol, S. T.

    1999-01-01

    The 1993 outbreak of hantavirus pulmonary syndrome (HPS) in the southwestern United States was associated with Sin Nombre virus, a rodent-borne hantavirus; The virus' primary reservoir is the deer mouse (Peromyscus maniculatus). Hantavirus-infected rodents were identified in various regions of North America. An extensive nucleotide sequence database of an 139 bp fragment amplified from virus M genomic segments was generated. Phylogenetic analysis confirmed that SNV-like hantaviruses are widely distributed in Peromyscus species rodents throughout North America. Classic SNV is the major cause of HPS in North America, but other Peromyscine-borne hantaviruses, e.g., New York and Monongahela viruses, are also associated with HPS cases. Although genetically diverse, SNV-like viruses have slowly coevolved with their rodent hosts. We show that the genetic relationships of hantaviruses in the Americas are complex, most likely as a result of the rapid radiation and speciation of New World sigmodontine rodents and occasional virus-host switching events. PMID:10081674

  16. RAPD analysis of the genetic diversity among accessions of Fabaceous forages (Poincianella spp) from the Caatinga.

    PubMed

    Mendes, R F M; Araujo Neto, R B; Nascimento, M P S B C; Lima, P S C

    2014-01-01

    Among members of the Fabaceae family, native to the Brazilian Caatinga, the species Poincianella pyramidalis and P. bracteosa exhibit particular potential as forage for cattle, sheep and goats. With the aim of establishing genetic relationships within Poincianella, random amplified polymorphic DNA analysis was performed on eight accessions of P. pyramidalis and two accessions of P. bracteosa, originating from the semiarid zone of the state of Piauí, northeastern Brazil, and present in the germplasm bank of Embrapa Meio Norte (Teresina, Piauí, Brazil). Amplification reactions using 11 selected arbitrary sequence primers generated 167 fragments with an overall polymorphism of 70.38%. Five monomorphic loci were generated exclusively in P. pyramidalis accessions, while three unique monomorphic loci were associated with P. bracteosa, and these represented potential species-specific markers. The similarity coefficients between Poincianella accessions were low (mean value 0.59) but with a wide variation (range 0.443 to 0.748). The similarity matrix and the dendrogram constructed using the unweighted pair group method allowed the separation of Poincianella accessions into two major clusters represented by the two distinct species, while the accessions of P. pyramidalis could be separated further into three subgroups. The high level of genetic diversity detected in the genus Poincianella could be used in future breeding programs to produce enhanced cultivars, although the variability could be better exploited if more specimens were collected from other locations within the semiarid region of northeastern Brazil. PMID:25117341

  17. Microsatellite analysis of genetic diversity and population structure of Chinese mitten crab (Eriocheir sinensis).

    PubMed

    Chang, Yumei; Liang, Liqun; Ma, Haitao; He, Jianguo; Sun, Xiaowen

    2008-03-01

    Chinese mitten crab (Eriocheir sinensis) has higher commercial value as food source than any other species of Eriocheir in China. To evaluate the germplasm resources and characterize the genetic diversity and population structure of the crabs in different water systems, two stocks and two farming populations were assessed with 25 polymorphic microsallite loci available in public GenBank. Basic statistics showed that the average observed heterozygosity (Ho) amongst populations ranged from 0.5789 to 0.6824. However, a remarkable presence of inbreeding and heterozygote deficiencies were observed. To analyze population structure, pairwise F(ST) coefficients explained only approximately 10.3% variability from the subdivision of mitten crab populations, the remaining variability stems from the subdivision within subpopulations. Although the four populations had slight differentiation, different allelic frequencies resulted in distinct population structures. Two stocks and one farming population were clustered together to the phylogenetic branch of Yangtze crab, with an approximate membership of 95%. Whereas, another farming population was clustered singly to the phylogenetic branch of the Liaohe crab, with a membership of 97.1%. The tests for individual admixture showed that Yangtze crab had probably been contaminated with individuals from other water systems. Genetic relationships between populations also supported the conclusion that Yangtze crab and Liaohe crab had different gene pools in spite of the origins of the same species. PMID:18355760

  18. The Effect and Relative Importance of Neutral Genetic Diversity for Predicting Parasitism Varies across Parasite

    E-print Network

    Gompper, Matthew E.

    The Effect and Relative Importance of Neutral Genetic Diversity for Predicting Parasitism Varies across Parasite Taxa Mari´a Jose´ Ruiz-Lo´ pez1,2 *, Ryan J. Monello1¤ , Matthew E. Gompper1 , Lori S of parasitism across individuals is a major challenge in disease ecology. It is known that genetic makeup plays

  19. Genetic diversity of Ovis aries populations near domestication centers and in the new world

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Domestic sheep in Kazakhstan may provide an interesting source of genetic variability due to their proximately to the center of domestication and the Silk Route. Additionally, those breeds have never been compared to new world sheep populations. This report compares genetic diversity among five Kaza...

  20. Patterns of intra- and inter-population genetic diversity in Alaskan coho salmon: Implications for conservation

    Microsoft Academic Search

    Jeffrey B. Olsen; Steve J. Miller; William J. Spearman; John K. Wenburg

    2003-01-01

    Little is known about the genetic diversityof coho salmon in Alaska, although this arearepresents half of the species' North Americanrange. In this study, nine microsatellite lociwere used to genotype 32 putative coho salmonpopulations from seven regions of Alaska. Theprimary objectives were to estimate andevaluate the degree and spatial distribution ofneutral genetic diversity within and amongpopulations of Alaskan coho salmon. Geneticanalysis

  1. Genetic diversity of carrot (Daucus carota L.) cultivars revealed by analysis of SSR loci

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work we evaluate a collection of 88 carrot cultivars and landraces for polymorphisms at SSR loci and use the obtained markers to assess the genetic diversity, and we show molecular evidence for divergence between Asiatic and Western carrot genetic pools. The use of primer pairs flanking repe...

  2. The history of effective population size and genetic diversity in the Yellowstone grizzly (Ursus arctos)

    E-print Network

    Kalinowski, Steven T

    that the Yellowstone grizzly bear has low levels of genetic variability compared with other Ursus arctos populationsThe history of effective population size and genetic diversity in the Yellowstone grizzly (Ursus arctos): Implications for conservation Craig R. Miller* and Lisette P. Waits Department of Fish

  3. Biogeography and Genetic Diversity of Pearl Millet (Pennisetum glaucum) from Sahelian Africa

    Microsoft Academic Search

    Laura R. Lewis

    2010-01-01

    Sahelian Africa makes up the native range of pearl millet and the impact of domestication on the genetic diversity of wild, intermediate, and cultivated subspecies is still poorly understood. Wild populations are known to spontaneously germinate throughout this range and hybridize with cultivated material. To investigate genetic structure, populations of pearl millet from several African countries were analyzed at the

  4. Whole genome snp discovery and analysis of genetic diversity in turkey (meleagris gallopavo)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The presence of genetic diversity in domestic livestock species is of great importance for sustained genetic improvement of selected breeds in various environments, as well as to facilitate rapid adaptation to potential changes in breeding goals. The goal of this project was to investigate turkey g...

  5. Genetic diversity, structure, and patterns of differentiation in the genus vitis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vitis (Vitaceae) is a taxonomically complicated genus with ca. 60 taxa divided into two subgenera, Vitis and Muscadinia. We used population genetic approaches to gain insights into the genetic diversity, patterns of evolutionary differentiation and to decipher the taxonomic status of some of the con...

  6. Genetic diversity and population structure of Korean and Chinese soybean [Glycine max (L.) Merr.] accessions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Korean and Chinese cultivated soybean [Glycine max (L.) Merr.] populations are major soybean gene pools. Information has been reported comparing genetic diversity between soybeans from the two countries using an unequal number of accessions and only 6 to 35 genetic markers. This study compares diffe...

  7. A second-site suppressor strategy for chemical genetic analysis of diverse protein kinases

    E-print Network

    Cai, Long

    A second-site suppressor strategy for chemical genetic analysis of diverse protein kinases Chao Templeton3 & Kevan M Shokat1 Chemical genetic analysis of protein kinases involves engineering kinases the necessary modification to the ATP binding pocket, as they lose catalytic activity or cellular function upon

  8. Temporal changes on genetic diversity in a sugarcane breeding population using TRAP markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential effect of a genetic bottleneck or founder event may explain the reduced level of genetic diversity observed in sugarcane (Saccharum spp.) breeding populations, which were founded on a very small group of interspecific clones. Understanding the impact of plant breeding in reducing this ...

  9. Genetic diversity, structure, and patterns of differentiation in the genus Vitis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vitis (Vitaceae) is a taxonomically complicated genus with ca. 60 taxa divided into two subgenera, Vitis and Muscadinia. We used population genetic approaches to gain insights into the genetic diversity, patterns of evolutionary differentiation and to decipher the taxonomic status of some of the con...

  10. Examining the genetic diversity of Stipa grandis under various grazing pressures

    Microsoft Academic Search

    Dan Shan; Mengli Zhao; Bing Han; Guodong Han

    2006-01-01

    The Stipa grandis steppe in the Inner Mongolia Autonomous Region occupies an area of 2798081 hm2. On the basis of the genetic variation, it was found that its adaptability to the environmental conditions under grazing pressure was significant. Using the Inter-Simple Sequence Repeat (ISSR) procedure, the changes to the genetic diversity of the Stipa grandis population under different grazing pressures

  11. Genetic diversity in caribou linked to past and future climate change

    E-print Network

    Bernatchez, Louis

    advance in inferring how climate shapes genetic diversity and impacts genetic structure. When looking locally have major biological, societal and economical implications. Yet, the persistence of caribou throughout its present range is under threat12,13 and a worldwide decline of many major populations has been

  12. GENETIC DIVERSITY AND STRUCTURE OF AFRICAN PLASMODIUM FALCIPARUM POPULATIONS IN URBAN AND RURAL AREAS

    E-print Network

    , Djibouti Ville, République de Djibouti; Institut Pasteur, Paris, France Abstract. The genetic variability (Djibouti, Dakar, Niamey, and Zouan-Hounien, n 240 blood samples). Results have shown a P. falciparum population structure in Africa (Fst 0.17­0.24), lower genetic diversity in Djibouti (He 0.53) than

  13. High and Distinct Range-Edge Genetic Diversity despite Local Bottlenecks

    PubMed Central

    Assis, Jorge; Castilho Coelho, Nelson; Alberto, Filipe; Valero, Myriam; Raimondi, Pete; Reed, Dan; Alvares Serrão, Ester

    2013-01-01

    The genetic consequences of living on the edge of distributional ranges have been the subject of a largely unresolved debate. Populations occurring along persistent low latitude ranges (rear-edge) are expected to retain high and unique genetic diversity. In contrast, currently less favourable environmental conditions limiting population size at such range-edges may have caused genetic erosion that prevails over past historical effects, with potential consequences on reducing future adaptive capacity. The present study provides an empirical test of whether population declines towards a peripheral range might be reflected on decreasing diversity and increasing population isolation and differentiation. We compare population genetic differentiation and diversity with trends in abundance along a latitudinal gradient towards the peripheral distribution range of Saccorhizapolyschides, a large brown seaweed that is the main structural species of kelp forests in SW Europe. Signatures of recent bottleneck events were also evaluated to determine whether the recently recorded distributional shifts had a negative influence on effective population size. Our findings show decreasing population density and increasing spatial fragmentation and local extinctions towards the southern edge. Genetic data revealed two well supported groups with a central contact zone. As predicted, higher differentiation and signs of bottlenecks were found at the southern edge region. However, a decrease in genetic diversity associated with this pattern was not verified. Surprisingly, genetic diversity increased towards the edge despite bottlenecks and much lower densities, suggesting that extinctions and recolonizations have not strongly reduced diversity or that diversity might have been even higher there in the past, a process of shifting genetic baselines. PMID:23967038

  14. Inbreeding and Genetic Diversity in Three Imported Swine Breeds in China Using Pedigree Data

    PubMed Central

    Tang, G. Q.; Xue, J.; Lian, M. J.; Yang, R. F.; Liu, T. F.; Zeng, Z. Y.; Jiang, A. A.; Jiang, Y. Z.; Zhu, L.; Bai, L.; Wang, Z.; Li, X. W.

    2013-01-01

    The accumulation of inbreeding and the loss of genetic diversity is a potential problem in the modern swine breeds in China. Therefore, the purpose of this study was to analyze the pedigrees of Chinese Duroc (CD), Landrace (CL) and Yorkshire (CY) swine to estimate the past and current rates of inbreeding, and to identify the main causes of genetic diversity loss. Pedigree files from CD, CL and CY containing, 4529, 16,776 and 22,600 records, respectively, were analyzed. Pedigree completeness indexes of the three breeds, accounting for one generation back, were 83.72, 93.93 and 93.59%, respectively. The estimated average annual inbreeding rates for CD, CL and CY in recent three years were 0.21, 0.19 and 0.13%, respectively. The estimated average percentage of genetic diversity loss within each breed in recent three years was about 8.92, 2.19, and 3.36%, respectively. The average relative proportion of genetic diversity loss due to unequal contributions of founders in CD, CL and CY was 69.09, 57.95 and 60.57%, and due to random genetic drift was 30.91, 42.05 and 39.43%, respectively. The estimated current effective population size for CD, CL and CY was 76, 117 and 202, respectively. Therefore, CD has been found to have lost considerable genetic diversity, demanding priority for optimizing the selection and mating to control future coancestry and inbreeding. Unequal contribution of founders was a major cause of genetic diversity loss in Chinese swine breeds and random genetic drift also showed substantial impact on the loss of diversity. PMID:25049847

  15. Ethnolinguistic structuring of sorghum genetic diversity in Africa and the role of local seed systems.

    PubMed

    Westengen, Ola T; Okongo, Mark Atam; Onek, Leo; Berg, Trygve; Upadhyaya, Hari; Birkeland, Siri; Kaur Khalsa, Siri Dharma; Ring, Kristoffer H; Stenseth, Nils C; Brysting, Anne K

    2014-09-30

    Sorghum is a drought-tolerant crop with a vital role in the livelihoods of millions of people in marginal areas. We examined genetic structure in this diverse crop in Africa. On the continent-wide scale, we identified three major sorghum populations (Central, Southern, and Northern) that are associated with the distribution of ethnolinguistic groups on the continent. The codistribution of the Central sorghum population and the Nilo-Saharan language family supports a proposed hypothesis about a close and causal relationship between the distribution of sorghum and languages in the region between the Chari and the Nile rivers. The Southern sorghum population is associated with the Bantu languages of the Niger-Congo language family, in agreement with the farming-language codispersal hypothesis as it has been related to the Bantu expansion. The Northern sorghum population is distributed across early Niger-Congo and Afro-Asiatic language family areas with dry agroclimatic conditions. At a finer geographic scale, the genetic substructure within the Central sorghum population is associated with language-group expansions within the Nilo-Saharan language family. A case study of the seed system of the Pari people, a Western-Nilotic ethnolinguistic group, provides a window into the social and cultural factors involved in generating and maintaining the continent-wide diversity patterns. The age-grade system, a cultural institution important for the expansive success of this ethnolinguistic group in the past, plays a central role in the management of sorghum landraces and continues to underpin the resilience of their traditional seed system. PMID:25225391

  16. Ethnolinguistic structuring of sorghum genetic diversity in Africa and the role of local seed systems

    PubMed Central

    Westengen, Ola T.; Okongo, Mark Atam; Onek, Leo; Berg, Trygve; Upadhyaya, Hari; Birkeland, Siri; Kaur Khalsa, Siri Dharma; Ring, Kristoffer H.; Stenseth, Nils C.; Brysting, Anne K.

    2014-01-01

    Sorghum is a drought-tolerant crop with a vital role in the livelihoods of millions of people in marginal areas. We examined genetic structure in this diverse crop in Africa. On the continent-wide scale, we identified three major sorghum populations (Central, Southern, and Northern) that are associated with the distribution of ethnolinguistic groups on the continent. The codistribution of the Central sorghum population and the Nilo-Saharan language family supports a proposed hypothesis about a close and causal relationship between the distribution of sorghum and languages in the region between the Chari and the Nile rivers. The Southern sorghum population is associated with the Bantu languages of the Niger-Congo language family, in agreement with the farming-language codispersal hypothesis as it has been related to the Bantu expansion. The Northern sorghum population is distributed across early Niger-Congo and Afro-Asiatic language family areas with dry agroclimatic conditions. At a finer geographic scale, the genetic substructure within the Central sorghum population is associated with language-group expansions within the Nilo-Saharan language family. A case study of the seed system of the Pari people, a Western-Nilotic ethnolinguistic group, provides a window into the social and cultural factors involved in generating and maintaining the continent-wide diversity patterns. The age-grade system, a cultural institution important for the expansive success of this ethnolinguistic group in the past, plays a central role in the management of sorghum landraces and continues to underpin the resilience of their traditional seed system. PMID:25225391

  17. Genetic Diversity of Maternal Lineage in the Endangered Kiso Horse Based on Polymorphism of the Mitochondrial DNA D-Loop Region

    PubMed Central

    TAKASU, Masaki; ISHIHARA, Namiko; TOZAKI, Teruaki; KAKOI, Hironaga; MAEDA, Masami; MUKOYAMA, Harutaka

    2014-01-01

    ABSTRACT To determine genetic characteristics of the maternal lineage of the Kiso horse based on polymorphisms of the mitochondrial DNA D-loop region, we collected blood samples from 136 Kiso horses, 91% of the entire population, and sequenced 411 bp from 15,437 to 15,847 in the region. First of all, we estimated the demographic history; by searching homology between the obtained and known sequences using Basic Local Alignment Search Tool, by mismatch analysis to evaluate the mutation processes using Arlequin, and by building a phylogenetic tree showing the relationship of the mtDNA haplotypes for 24 horse breeds around the world using Molecular Evolutionary Genetics Analysis softwear. The results suggested that various horses that came to Japan stayed at Kiso region and became ancestors of Kiso horse and also genetically supported the theory that the Kiso horse was historically improved by other Japanese native horse breeds. Next, we analyzed the diversity of current maternal lineage by classifying the resulting sequences, and by calculating the haplotype diversity and nucleotide diversity using Arlequin. Then, we visualized the relationship among haplotypes by a median-joining network using NETWORK 4.6.0.0. The results suggested the diversity of maternal lineage in the Kiso horse was reasonably maintained. Lastly, we predicted future change of the diversity of maternal lineage in Kiso horse by assessing the regional distribution of the acquired haplotypes. The distribution suggested that diversity of maternal lineage would possibly be reducing. PMID:25056676

  18. Genetic diversity of maternal lineage in the endangered Kiso horse based on polymorphism of the mitochondrial DNA D-loop region.

    PubMed

    Takasu, Masaki; Ishihara, Namiko; Tozaki, Teruaki; Kakoi, Hironaga; Maeda, Masami; Mukoyama, Harutaka

    2014-11-01

    To determine genetic characteristics of the maternal lineage of the Kiso horse based on polymorphisms of the mitochondrial DNA D-loop region, we collected blood samples from 136 Kiso horses, 91% of the entire population, and sequenced 411 bp from 15,437 to 15,847 in the region. First of all, we estimated the demographic history; by searching homology between the obtained and known sequences using Basic Local Alignment Search Tool, by mismatch analysis to evaluate the mutation processes using Arlequin, and by building a phylogenetic tree showing the relationship of the mtDNA haplotypes for 24 horse breeds around the world using Molecular Evolutionary Genetics Analysis softwear. The results suggested that various horses that came to Japan stayed at Kiso region and became ancestors of Kiso horse and also genetically supported the theory that the Kiso horse was historically improved by other Japanese native horse breeds. Next, we analyzed the diversity of current maternal lineage by classifying the resulting sequences, and by calculating the haplotype diversity and nucleotide diversity using Arlequin. Then, we visualized the relationship among haplotypes by a median-joining network using NETWORK 4.6.0.0. The results suggested the diversity of maternal lineage in the Kiso horse was reasonably maintained. Lastly, we predicted future change of the diversity of maternal lineage in Kiso horse by assessing the regional distribution of the acquired haplotypes. The distribution suggested that diversity of maternal lineage would possibly be reducing. PMID:25056676

  19. Fire alters patterns of genetic diversity among 3 lizard species in Florida Scrub habitat.

    PubMed

    Schrey, Aaron W; Ashton, Kyle G; Heath, Stacy; McCoy, Earl D; Mushinsky, Henry R

    2011-01-01

    The Florida Sand Skink (Plestiodon reynoldsi), the Florida Scrub Lizard (Sceloporus woodi), and the Six-lined Racerunner (Aspidoscelis sexlineata) occur in the threatened and fire-maintained Florida scrub habitat. Fire may have different consequences to local genetic diversity of these species because they each have different microhabitat preference. We collected tissue samples of each species from 3 sites with different time-since-fire: Florida Sand Skink n = 73, Florida Scrub Lizard n = 70, and Six-lined Racerunner n = 66. We compared the effect of fire on genetic diversity at microsatellite loci for each species. We screened 8 loci for the Florida Sand Skink, 6 loci for the Florida Scrub Lizard, and 6 loci for the Six-lined Racerunner. We also tested 2 potential driving mechanisms for the observed change in genetic diversity, a metapopulation source/sink model and a local demographic model. Genetic diversity varied with fire history, and significant genetic differentiation occurred among sites. The Florida Scrub Lizard had highest genetic variation at more recently burned sites, whereas the Florida Sand Skink and the Six-lined Racerunner had highest genetic variation at less recently burned sites. Habitat preferences of the Florida Sand Skink and the Florida Scrub Lizard may explain their discordant results, and the Six-lined Racerunner may have a more complicated genetic response to fire or is acted on at a different geographic scale than we have investigated. Our results indicate that these species may respond to fire in a more complicated manner than predicted by our metapopulation model or local demographic model. Our results show that the population-level responses in genetic diversity to fire are species-specific mandating conservation management of habitat diversity through a mosaic of burn frequencies. PMID:21622838

  20. Ecology provides a pragmatic solution to the maintenance of genetic diversity in sustainably managed tropical rain forests

    Microsoft Academic Search

    S. B Jennings; N. D Brown; D. H Boshier; T. C Whitmore; J. do C. A Lopes

    2001-01-01

    An important aspect of the sustainable management of tropical rain forests is the maintenance of genetic diversity within populations of commercial tree species. Logging may reduce genetic variation directly and may also affect genetic processes, leading possibly to genetic erosion and ultimately even species extinction. It is, however, impractical for the forest manager to make meaningful measurements of genetic variation