These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Genetic diversity and relationships among Pistacia species and cultivars  

Microsoft Academic Search

Iran is one of the two major centres of Pistacia diversity and the main producer of pistachios in the world. About 282 Iranian pistachio genotypes (Pistacia spp.), together with 22 foreign cultivars (P. vera), were genotyped using 10 simple sequence repeat (SSR) markers to analyse the genetic diversity and relationships among Pistacia species and cultivars. The results revealed that the

Leila Pazouki; Mohsen Mardi; Parvin Salehi Shanjani; Marianna Hagidimitriou; Seyed M. Pirseyedi; Mohammad R. Naghavi; Damiano Avanzato; Elisa Vendramin; Salih Kafkas; Behzad Ghareyazie; M. R. Ghaffari; S. M. Khayam Nekoui

2010-01-01

2

RESEARCH PAPER Population genetic diversity and species relationships in the  

E-print Network

and Estonian endemic R. osiliensis. Rhinanthus javorkae and R. minor were genetically most differentiatedRESEARCH PAPER Population genetic diversity and species relationships in the genus Rhinanthus L:10.1111/plb.12057 ABSTRACT The genus Rhinanthus L. is complex, containing many taxonomically

Helenurm, Kaius

3

DEVELOPMENT OF AQUATIC MODELS FOR TESTING THE RELATIONSHIP BETWEEN GENETIC DIVERSITY AND POPULATION EXTINCTION RISK  

EPA Science Inventory

The relationship between population adaptive potential and extinction risk in a changing environment is not well understood. Although the expectation is that genetic diversity is directly related to the capacity of populations to adapt, the statistical and predictive aspects of ...

4

Analysis of Genetic Diversity and Relationships in the China Rose Group  

E-print Network

ANALYSIS OF GENETIC DIVERSITY AND RELATIONSHIPS IN THE CHINA ROSE GROUP A Thesis by VALERIE ANN SOULES Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 2009 Major Subject: Plant Breeding ANALYSIS OF GENETIC DIVERSITY AND RELATIONSHIPS IN THE CHINA ROSE GROUP A Thesis by VALERIE ANN SOULES Submitted to the Office of Graduate Studies...

Soules, Valerie Ann

2011-02-22

5

Assessment of Genetic Diversity, Relationships and Structure among Korean Native Cattle Breeds Using Microsatellite Markers  

PubMed Central

Four Korean native cattle (KNC) breeds—Hanwoo, Chikso, Heugu, and Jeju black—are entered in the Domestic Animal Diversity Information System of the United Nations Food and Agriculture Organization (FAO). The objective of this study was to assess the genetic diversity, phylogenetic relationships and population structure of these KNC breeds (n = 120) and exotic breeds (Holstein and Charolais, n = 56). Thirty microsatellite loci recommended by the International Society for Animal Genetics/FAO were genotyped. These genotypes were used to determine the allele frequencies, allelic richness, heterozygosity and polymorphism information content per locus and breed. Genetic diversity was lower in Heugu and Jeju black breeds. Phylogenetic analysis, Factorial Correspondence Analysis and genetic clustering grouped each breed in its own cluster, which supported the genetic uniqueness of the KNC breeds. These results will be useful for conservation and management of KNC breeds as animal genetic resources. PMID:25358313

Suh, Sangwon; Kim, Young-Sin; Cho, Chang-Yeon; Byun, Mi-Jeong; Choi, Seong-Bok; Ko, Yeoung-Gyu; Lee, Chang Woo; Jung, Kyoung-Sub; Bae, Kyoung Hun; Kim, Jae-Hwan

2014-01-01

6

Intraspecific genetic diversity and composition modify species-level diversity-productivity relationships.  

PubMed

Biodiversity regulates ecosystem functions such as productivity, and experimental studies of species mixtures have revealed selection and complementarity effects driving these responses. However, the impacts of intraspecific genotypic diversity in these studies are unknown, despite it forming a substantial part of the biodiversity. In a glasshouse experiment we constructed plant communities with different levels of barley (Hordeum vulgare) genotype and weed species diversity and assessed their relative biodiversity effects through additive partitioning into selection and complementarity effects. Barley genotype diversity had weak positive effects on aboveground biomass through complementarity effects, whereas weed species diversity increased biomass predominantly through selection effects. When combined, increasing genotype diversity of barley tended to dilute the selection effect of weeds. We interpret these different effects of barley genotype and weed species diversity as the consequence of small vs large trait variation associated with intraspecific barley diversity and interspecific weed diversity, respectively. The different effects of intra- vs interspecific diversity highlight the underestimated and overlooked role of genetic diversity for ecosystem functioning. PMID:25250812

Schöb, Christian; Kerle, Sarah; Karley, Alison J; Morcillo, Luna; Pakeman, Robin J; Newton, Adrian C; Brooker, Rob W

2015-01-01

7

Relationship between the genetic diversity of Artemisia halodendron and climatic factors  

NASA Astrophysics Data System (ADS)

Artemisia halodendron (Asteraceae) is a dominant sand-fixing semi-shrub species native to the Horqin Sandy Land of northeastern China. In this study, we evaluated levels of genetic variation within and among sampled A. halodendron populations from two different hydrothermal regions of the Horqin Sandy Land using inter-simple sequence repeat (ISSR) markers. We also investigated possible relationships between genetic diversity of this species and climatic factors. Our analysis revealed that A. halodendron is highly genetically diverse, with populations from a low hydrothermal level region having higher genetic diversity index values than those from a high hydrothermal level region. An analysis of molecular variation (AMOVA) revealed relatively high levels (>89.83%) of within-population genetic variation. Based on cluster analysis, the 13 studied A. halodendron populations can be clustered into two clades. Genetic diversities of all populations have been influenced by many climatic factors, and Nei's genetic diversity (h) is strongly correlated with annual temperature range (ART). These results have important implications for restoration and management of degraded ecosystems in arid and semi-arid areas.

Huang, Wenda; Zhao, Xueyong; Zhao, Xin; Li, Yuqiang; Lian, Jie; Yun, Jianying

2014-02-01

8

Genetic Diversity and Relationships of Korean Chicken Breeds Based on 30 Microsatellite Markers  

PubMed Central

The effective management of endangered animal genetic resources is one of the most important concerns of modern breeding. Evaluation of genetic diversity and relationship of local breeds is an important factor towards the identification of unique and valuable genetic resources. This study aimed to analyze the genetic diversity and population structure of six Korean native chicken breeds (n = 300), which were compared with three imported breeds in Korea (n = 150). For the analysis of genetic diversity, 30 microsatellite markers from FAO/ISAG recommended diversity panel or previously reported microsatellite markers were used. The number of alleles ranged from 2 to 15 per locus, with a mean of 8.13. The average observed heterozygosity within native breeds varied between 0.46 and 0.59. The overall heterozygote deficiency (FIT) in native chicken was 0.234±0.025. Over 30.7% of FIT was contributed by within-population deficiency (FIS). Bayesian clustering analysis, using the STRUCTURE software suggested 9 clusters. This study may provide the background for future studies to identify the genetic uniqueness of the Korean native chicken breeds PMID:25178290

Suh, Sangwon; Sharma, Aditi; Lee, Seunghwan; Cho, Chang-Yeon; Kim, Jae-Hwan; Choi, Seong-Bok; Kim, Hyun; Seong, Hwan-Hoo; Yeon, Seong-Hum; Kim, Dong-Hun; Ko, Yeoung-Gyu

2014-01-01

9

Genetic diversity and relationships of korean chicken breeds based on 30 microsatellite markers.  

PubMed

The effective management of endangered animal genetic resources is one of the most important concerns of modern breeding. Evaluation of genetic diversity and relationship of local breeds is an important factor towards the identification of unique and valuable genetic resources. This study aimed to analyze the genetic diversity and population structure of six Korean native chicken breeds (n = 300), which were compared with three imported breeds in Korea (n = 150). For the analysis of genetic diversity, 30 microsatellite markers from FAO/ISAG recommended diversity panel or previously reported microsatellite markers were used. The number of alleles ranged from 2 to 15 per locus, with a mean of 8.13. The average observed heterozygosity within native breeds varied between 0.46 and 0.59. The overall heterozygote deficiency (F IT) in native chicken was 0.234±0.025. Over 30.7% of F IT was contributed by within-population deficiency (F IS). Bayesian clustering analysis, using the STRUCTURE software suggested 9 clusters. This study may provide the background for future studies to identify the genetic uniqueness of the Korean native chicken breeds. PMID:25178290

Suh, Sangwon; Sharma, Aditi; Lee, Seunghwan; Cho, Chang-Yeon; Kim, Jae-Hwan; Choi, Seong-Bok; Kim, Hyun; Seong, Hwan-Hoo; Yeon, Seong-Hum; Kim, Dong-Hun; Ko, Yeoung-Gyu

2014-10-01

10

Genetic diversity and relationships among isolates of Rhizobium leguminosarum biovar phaseoli.  

PubMed Central

Fifty-one isolates of Rhizobium leguminosarum biovar phaseoli from various geographic and ecological sources, largely in Mexico, were characterized by the electrophoretic mobilities of 15 metabolic enzymes, and 46 distinctive multilocus genotypes (electrophoretic types [ETs]) were distinguished on the basis of allele profiles at the enzyme loci. Mean genetic diversity per enzyme locus among the 46 ETs was 0.691, the highest value yet recorded for any species of bacterium. The occurrence of strong nonrandom associations of alleles over loci suggested a basically clonal population structure, reflecting infrequent recombination of chromosomal genes. Multilocus genotypic diversity was unusually high, with the most strongly differentiated pairs of ETs having distinctive alleles at all 15 loci and major clusters of ETs diverging at genetic distances as large as 0.89. This great diversity in the chromosomal genome raises the possibility that R. leguminosarum biovar phaseoli is a polyphyletic assemblage of strains. As other workers have suggested, the inclusion of all strains capable of nodulating beans in a single biovar or species is genetically unrealistic and taxonomically misleading. A biologically meaningful classification of Rhizobium spp. should be based on assessment of variation in the chromosomal genome rather than on phenotypic characters, especially those mediated for the most part or wholly by plasmid-borne genes, such as host relationships. PMID:3214160

Pinero, D; Martinez, E; Selander, R K

1988-01-01

11

Relationships between population size and loss of genetic diversity: comparisons of experimental results with theoretical predictions  

Microsoft Academic Search

Preservation of genetic diversity is of fundamental concern toconservation biology, as genetic diversity is required for evolutionarychange. Predictions of neutral theory are used to guide conservationactions, especially genetic management of captive populations ofendangered species. Loss of heterozygosity is predicted to be inverselyrelated to effective population size. However, there is controversy asto whether allozymes behave as predicted by this theory. Loss

Margaret E. Montgomery; Lynn M. Woodworth; Roderick K. Nurthen; Dean M. Gilligan; David A. Briscoe; Richard Frankham

2000-01-01

12

SSR-BASED GENETIC DIVERSITIES AMONG MAIZE INBRED LINES AND THEIR RELATIONSHIPS WITH F1 PHENOTYPIC DATA OF MR4  

Microsoft Academic Search

A study was done to assess genetic diversities in 34 maize inbreed lines and to determine relationships between genetic distances and phenotypic data. The lines represent the different Indonesian flint maize germplasms. Thirty microsatellite loci distributed throughout the maize genome were chosen based on their level of polymorphism. A total of 133 alleles were detected with a range of 2-8

Marcia B. Pabendon; H. Aswidinnoor

2009-01-01

13

Microsatellite diversity delineates genetic relationships of Shia and Sunni Muslim populations of Uttar Pradesh, India.  

PubMed

In this study we characterize the genetic diversity and relationships between the Shia and Sunni Muslim populations of North India and geographically targeted neighboring and global populations. We examined a number of parameters of population genetic and forensic interest based on the allele frequencies from 15 autosomal STR loci (D8S1179, D21S11, D7S820, CSF1PO, D19S433, VWA, TPOX, D18S51, D3S1358, THO1, D13S317, D16S539, D2S1338, D5S818, and FGA). All the studied loci were consistent with Hardy-Weinberg equilibrium, except loci D18S51 and FGA for both Muslim populations, even after applying the Bonferroni correction. The combined power of exclusion and combined power of discrimination values for all 15 STR loci were 0.9999 and >0.99999, respectively, in both Muslim populations. Gene diversity values ranged from 0.6784 (TPOX) to 0.9027 (FGA) for Shia Muslims and from 0.7152 (CSF1PO) to 0.9120 (D18S51) for Sunni Muslims. The observed heterozygosity (H(o)) ranged from 0.5833 (D18S51) to 0.8595 (VWA) in Shia Muslims and from 0.6818 (CSF1PO) to 0.8333 (D21S11) in Sunni Muslims and was lower than the expected heterozygosity (H(e)) for 11 out of the 15 STRs typed. We analyzed the genetic affinities of the Shia and Sunni Muslim populations with their geographically closest neighboring North Indian, Middle Eastern, East Asian, and European populations using distance-based methods, including neighbor-joining trees and multidimensional scaling. In addition, we estimated the genetic contribution of the putative parental populations included in the analysis to the Shia and Sunni Muslim gene pool using admixture analysis. Although we observed a certain degree of genetic contribution from Iran to both Muslim populations, the results of the phylogenetic analyses based on autosomal STRs suggest genetic relatedness with some of the geographically closest neighboring Hindu religious populations. PMID:20067368

Eaaswarkhanth, Muthukrishnan; Dubey, Bhawna; Ramakodi Meganathan, Poorlin; Noor, Sabahat; Haque, Ikramul

2009-08-01

14

Genetic diversity and relationships among accessions of five crested wheatgrass species (Poaceae: Agropyron) based on gliadin analysis.  

PubMed

Agropyron Gaertn. is the most important genus in Triticeae (Poaceae), which includes many forage grasses with high economic value. The genetic diversity and relationships of 36 accessions from five crested wheatgrass species were analyzed by gliadin markers. A total of 54 product bands were detected after acid polyacrylamide gel electrophoresis (A-PAGE), of which 100% were polymorphic. The genetic similarity coefficient based on Nei-Li's method ranged from 0.065 to 0.755 with an average of 0.451. The Shannon diversity information index showed that there was a high level of genetic diversity among the accessions. An unweighted pair group method with arithmetic average (UPGMA) dendrogram was constructed based on the Nei-Li's genetic similarity coefficients, which showed the phylogenetic relationships among accessions of different species. Analysis of molecular variance (AMOVA) showed that the proportion of variance explained by inter- and intraspecific variance was 9.34 and 90.66%, respectively, which revealed that the genetic variations within species were higher than the variations among species. Based on pairwise genetic distances (?ST) among species, the cluster analysis indicated that A. mongolicum had a low-affinity relationship with other species, while A. fragile showed a close relationship with A. cristatum ssp pectinatum. Finally, the implications of the results for the taxonomy of Agropyron were discussed. PMID:24301939

Chen, S Y; Ma, X; Zhang, X Q; Huang, L K; Zhou, J N

2013-01-01

15

Genetic Diversity and Genetic Structure of Different Types of Natural Populations in Osmanthus fragrans Lour. and the Relationships with Sex Ratio, Population Structure, and Geographic Isolation  

PubMed Central

Osmanthus fragrans Lour., an evergreen small tree, has the rare sexual system of androdioecy (coexistence of males and hermaphrodites), once with wide-spread natural distribution in the areas of the South Yangzi river basin. However, due to excessive human utilization, natural distribution became fragmented and the number and size of natural populations reduced sharply. With four different types of natural populations from the same region as research object, we aim to provide a comparative analysis on the relationships among genetic diversity, sexual system, population structure and size, and geographic isolation by ISSR. In genetic parameters of Ne, He, and I, the LQGC population had the highest value and the LQZGQ population had the lowest value. These indicated that LQGC population showed the highest genetic diversity, followed by QDH and JN population, and LQZGQ population exhibited the lowest genetic diversity. Genetic diversity in populations is closely related to population structure, reproduction mode, and sex ratio. However, there seems to be no obvious correlation between genetic diversity and population size. The results of AMOVA showed that genetic variations mostly occurred within populations. It indicates that no significant genetic differentiation among populations occurs, and geographic isolation has no significant effect on genetic diversity. PMID:25436228

Hu, Shaoqing; Wu, Shuai; Wang, Yiguang; Zhang, Yuanyan

2014-01-01

16

Ploidy Variation and Genetic Diversity in Dichroa  

Technology Transfer Automated Retrieval System (TEKTRAN)

Recent evidence suggests a close genetic relationship between Hydrangea macrophylla and D. febrifuga, which supports previous morphological and DNA sequence data. This relationship was confirmed by the production of fertile intergeneric hybrids. Here we characterize the genetic diversity of availab...

17

Population genetic diversity and species relationships in the genus Rhinanthus L. based on microsatellite markers.  

PubMed

The genus Rhinanthus L. is complex, containing many taxonomically unresolved taxa. In this paper we studied genetic variation and species relationships in 15 populations of six Rhinanthus species from three sections. For this purpose, we developed new microsatellite primers for R. osiliensis and used them to investigate genetic variation in two narrow endemics (R. osiliensis, R. javorkae) and in four widespread species (R. rumelicus R. wagneri, R. angustifolius and R. minor). Species-specific private alleles were found in all species except R. osiliensis and R. angustifolius. The Bulgarian endemic R. javorkae showed the lowest genetic variation, followed by widespread R. minor and Estonian endemic R. osiliensis. Rhinanthus javorkae and R. minor were genetically most differentiated. Section Cleistolemus is weakly structured genetically, indicating close affinity between R. osiliensis, R. rumelicus, R. wagneri and R. angustifolius. PMID:23889942

Talve, T; McGlaughlin, M E; Helenurm, K; Wallace, L E; Oja, T

2014-03-01

18

Genetic diversities of 20 novel autosomal STRs in Chinese Xibe ethnic group and its genetic relationships with neighboring populations.  

PubMed

In the present study, we investigated the genetic polymorphisms of 20 novel STR loci and one previously studied locus in the Xibe ethnic group from China, as well as its genetic relationships with neighboring populations. Totally 226 unrelated healthy Xibe individuals were involved in the study. At least 5 alleles were observed for each locus, with the minimum and maximum allelic frequencies of 0.0022 and 0.5221, respectively. We obtained the lowest and highest observed heterozygosity and expected heterozygosity at locus D1S1627 and D19S433, respectively. The values of combined power of discrimination and probability of exclusion of all the 21 STR loci were 0.99999999999999999997310 and 0.999998650, respectively. Analyses of interpopulation differentiation, principal component analysis, genetic distance and phylogenetic tree revealed the relationships between Xibe group and its neighboring groups, showing that the studied Xibe group had a close genetic relationship with the Mongolian group. The present results indicated that these 21 STR loci had high genetic polymorphisms in the studied Xibe group, and were capable for the paternity testing and individual identification in forensic application. PMID:25528265

Meng, Hao-Tian; Zhang, Li-Ping; Wu, Hua; Yang, Chun-Hua; Chen, Jian-Gang; Wang, Yan; Yan, Jiang-Wei; Wang, Hong-Dan; Zhang, Yu-Dang; Liu, Wen-Juan; Zhu, Bo-Feng

2015-02-25

19

Soybean Molecular Genetic Diversity  

Technology Transfer Automated Retrieval System (TEKTRAN)

A history of the various DNA marker types used in the assessment of molecular genetic diversity in soybean [Glycine max (L.) Merr.] is followed by a description of a number of studies on the assessment of genetic diversity. These studies include a review of reports on 1) the quantification and comp...

20

Genetic diversity and relationships in cultivars of Lolium multiflorum Lam. using sequence-related amplified polymorphism markers.  

PubMed

Sequence-related amplified polymorphism (SRAP) markers were used to analyze and estimate the genetic variability, level of diversity, and relationships among 20 cultivars and strains of annual ryegrass (Lolium multiflorum Lam.). Eighteen SRAP primer combinations generated 334 amplification bands, of which 298 were polymorphic. The polymorphism information content ranged from 0.4715 (me10 + em1) to 0.5000 (me5 + em7), with an average of 0.4921. The genetic similarity coefficient ranged from 0.4304 to 0.8529, and coefficients between 0.65 and 0.90 accounted for 90.00%. The cluster analysis separated the accessions into five groups partly according to their germplasm resource origins. PMID:25501225

Huang, L K; Jiang, X Y; Huang, Q T; Xiao, Y F; Chen, Z H; Zhang, X Q; Miao, J M; Yan, H D

2014-01-01

21

Compromising Baltic salmon genetic diversity -  

E-print Network

Compromising Baltic salmon genetic diversity - conservation genetic risks associated with compensatory releases of salmon in the Baltic Sea Havs- och vattenmyndighetens rapport 2012:18 #12;Compromising Baltic salmon genetic diversity - conservation genetic risks associated with compensatory releases

22

REGION-WIDE GENETIC STRUCTURE OF THE CENTRAL STONEROLLER (CAMPOSTOMA ANOMALUM) AND THE RELATIONSHIP OF GENETIC DIVERSITY TO ENVIRONMENTAL QUALITY  

EPA Science Inventory

Anthropogenic stressors that reduce population size, alter migration corridors or modify mutational and selective forces on populations are expected to leave a lasting genetic footprint on the distribution of intraspecific genetic variation. Thus, the pattern of intraspecific gen...

23

Close genetic relationships in vast territories: autosomal and X chromosome Alu diversity in Yakuts from Siberia.  

PubMed

Twelve autosomal and 8 X chromosome Alu markers were genotyped for the first time in 161 Central and West Yakuts to test their ability to reconstruct the genetic history of these populations, the northernmost Turkic-speaker ethnic group living in Siberia. Autosomal data revealed that both groups showed extremely close genetic distances to other populations of Siberian origins that occupied areas from Lake Baikal, the ancestral place of origin of Yakuts, to North Siberia, their current territories. Autosomal and X chromosome data revealed some discrepancies on the genetic differentiation and the effective sizes of Central and West Yakuts. Such discrepancies could be related to the patrilineal and occasionally polygamous structure of these populations. Autosomal and X Alu markers are informative markers to reconstruct population past demography and history, but their utility is limited by the available data. This study represents a contribution for further investigations on these populations. PMID:24466640

Rocañín-Arjó, Ares; Rodríguez-Botigué, Laura; Esteban, Esther; Theves, Catherine; Evdokimova, Larissa E; Fedorova, Sardana A; Gibert, Morgane; Crubezy, Eric; Moral, Pedro

2013-01-01

24

Genetic diversity and relationships assessed by SSRs in the USDA Rice Germplasm Collection  

Technology Transfer Automated Retrieval System (TEKTRAN)

Understanding a germplasm collection is essential for mining special genes and further development of the collection. The USDA rice (Oryza sativa L.) collection contains about 20,000 accessions from 116 countries. These diverse originations indicate a variety of different edaphic and climatic enviro...

25

Genetic diversity and relationships among Dutch elm disease tolerant Ulmus pumila L. accessions from China  

Technology Transfer Automated Retrieval System (TEKTRAN)

Elm breeding programs worldwide have relied heavily on Asian elm germplasm, particularly U. pumila, for the breeding of Dutch elm disease tolerant cultivars. However, the extent and patterning of genetic variation in Asian elm species is unknown. Therefore, the objective of this research was to de...

26

Contrasting genetic diversity relationships are revealed in rice (Oryza sativa L.) using different marker types  

Microsoft Academic Search

Genetic variation between samples of Oryza sativa from 19 localities in Bangladesh and Bhutan was assessed using two PCR-based molecular marker systems: RAPD (random amplification of polymorphic DNA) and ISSR-PCR (inter-simple sequence repeat polymerase chain reaction). Employing RAPD, a set of 14 decanucleotides of arbitrary sequence directed the amplification of 94 reproducible marker bands, 47 (50%) of which were polymorphic.

Beverley J. Parsons; H. John Newbury; Michael T. Jackson; Brian V. Ford-Lloyd

1997-01-01

27

The Relationship between Imputation Error and Statistical Power in Genetic Association Studies in Diverse Populations  

Microsoft Academic Search

square test, we describe a relationship between genotype-imputation error rates and the sample-size inflation required for achieving statistical power at an imputed marker equal to that obtained if genotypes at the marker were known with certainty. Surprisingly, typical imputation error rates (~2%-6%) lead to a large increase in the required sample size (~10%-60%), and in some African populations whose genotypes

Lucy Huang; Chaolong Wang; Noah A. Rosenberg

2009-01-01

28

Genetic diversity among INERA maize inbred lines with single nucleotide polymorphism (SNP) markers and their relationship with CIMMYT, IITA, and temperate lines.  

PubMed

BackgroundGenetic diversity provides the capacity for plants to meet changing environments. It is fundamentally important in crop improvement. Fifty-nine local maize lines developed at INERA and 41 exotic (temperate and tropical) inbred lines were characterized using 1057 SNP markers to (1) analyse the genetic diversity in a diverse set of maize inbred lines; (2) determine the level of genetic diversity in INERA inbred lines and patterns of relationships of these inbred lines developed from two sources; and (3) examine the genetic differences between local and exotic germplasms.ResultsRoger¿s genetic distance for about 64% of the pairs of lines fell between 0.300 and 0.400. Sixty one per cent of the pairs of lines also showed relative kinship values of zero. Model-based population structure analysis and principal component analysis revealed the presence of 5 groups that agree, to some extent, with the origin of the germplasm. There was genetic diversity among INERA inbred lines, which were genetically less closely related and showed a low level of heterozygosity. These lines could be divided into 3 major distinct groups and a mixed group consistent with the source population of the lines. Pairwise comparisons between local and exotic germplasms showed that the temperate and some IITA lines were differentiated from INERA lines. There appeared to be substantial levels of genetic variation between local and exotic germplasms as revealed by missing and unique alleles.ConclusionsAllelic frequency differences observed between the germplasms, together with unique alleles identified within each germplasm, shows the potential for a mutual improvement between the sets of germplasm. The results from this study will be useful to breeders in designing inbred-hybrid breeding programs, association mapping population studies and marker assisted breeding. PMID:25421948

Dao, Abdalla; Sanou, Jacob; Mitchell, Sharon E; Gracen, Vernon; Danquah, Eric Y

2014-11-25

29

Evaluation of genetic diversity and relationships within and between two breeds of duck based on microsatellite markers  

Microsoft Academic Search

The genetic diversity of two natural populations (M, N) of Beijing duck (Anas platyrhynchos) and 11 artificially selected lines of Beijing duck (A, B, E–L, O) from China Gold Star Duck Production Ltd., along with two Cherry Valley duck lines (C and D) from the British Cherry Valley Livestock Division, was evaluated using 18 microsatellite markers covering 16 linkage groups.

Fei Wu; Yinghua Huang; Ying Ma; Shengqiang Hu; Jinping Hao; Ning Li

2009-01-01

30

Genetic diversity and relationship of Hedychium from Northeast India as dissected using PCA analysis and hierarchical clustering.  

PubMed

Molecular genetic fingerprints of eleven Hedychium species from Northeast India were developed using PCR based markers. Fifteen inter-simple sequence repeats (ISSRs) and five amplified fragment length polymorphism (AFLP) primers produced 547 polymorphic fragments. Positive correlation (r = 0.46) was observed between the mean genetic similarity and genetic diversity parameters at the inter-species level. AFLP and ISSR markers were able to group the species according to its altitude and intensity of flower aroma. Cophenetic correlation coefficients between the dendrogram and the original similarity matrix were significant for ISSR (r = 0.89) compared to AFLP (r = 0.83) markers. This genetic characterization of Hedychium from Northeast India contributes to the knowledge of genetic structure of the species and can be used to define strategies for their conservation and management. PMID:25606430

Basak, Supriyo; Ramesh, Aadi Moolam; Kesari, Vigya; Parida, Ajay; Mitra, Sudip; Rangan, Latha

2014-12-01

31

Genetic diversity and relationship of Hedychium from Northeast India as dissected using PCA analysis and hierarchical clustering  

PubMed Central

Molecular genetic fingerprints of eleven Hedychium species from Northeast India were developed using PCR based markers. Fifteen inter-simple sequence repeats (ISSRs) and five amplified fragment length polymorphism (AFLP) primers produced 547 polymorphic fragments. Positive correlation (r = 0.46) was observed between the mean genetic similarity and genetic diversity parameters at the inter-species level. AFLP and ISSR markers were able to group the species according to its altitude and intensity of flower aroma. Cophenetic correlation coefficients between the dendrogram and the original similarity matrix were significant for ISSR (r = 0.89) compared to AFLP (r = 0.83) markers. This genetic characterization of Hedychium from Northeast India contributes to the knowledge of genetic structure of the species and can be used to define strategies for their conservation and management. PMID:25606430

Basak, Supriyo; Ramesh, Aadi Moolam; Kesari, Vigya; Parida, Ajay; Mitra, Sudip; Rangan, Latha

2014-01-01

32

Genetic diversity, structure, gene flow and evolutionary relationships within the Sorghum bicolor wild-weedy-crop complex in a western African region.  

PubMed

Gene flow between domesticated plants and their wild relatives is one of the major evolutionary processes acting to shape their structure of genetic diversity. Earlier literature, in the 1970s, reported on the interfertility and the sympatry of wild, weedy and cultivated sorghum belonging to the species Sorghum bicolor in most regions of sub-Saharan Africa. However, only a few recent surveys have addressed the geographical and ecological distribution of sorghum wild relatives and their genetic structure. These features are poorly documented, especially in western Africa, a centre of diversity for this crop. We report here on an exhaustive in situ collection of wild, weedy and cultivated sorghum assembled in Mali and in Guinea. The extent and pattern of genetic diversity were assessed with 15 SSRs within the cultivated pool (455 accessions), the wild pool (91 wild and weedy forms) and between them. F (ST) and R (ST) statistics, distance-based trees, Bayesian clustering methods, as well as isolation by distance models, were used to infer evolutionary relationships within the wild-weedy-crop complex. Firstly, our analyses highlighted a strong racial structure of genetic diversity within cultivated sorghum (F (ST) = 0.40). Secondly, clustering analyses highlighted the introgressed nature of most of the wild and weedy sorghum and grouped them into two eco-geographical groups. Such closeness between wild and crop sorghum could be the result of both sorghum's domestication history and preferential post-domestication crop-to-wild gene flow enhanced by farmers' practices. Finally, isolation by distance analyses showed strong spatial genetic structure within each pool, due to spatially limited dispersal, and suggested consequent gene flow between the wild and the crop pools, also supported by R (ST) analyses. Our findings thus revealed important features for the collection, conservation and biosafety of domesticated and wild sorghum in their centre of diversity. PMID:21811819

Sagnard, Fabrice; Deu, Monique; Dembélé, Dékoro; Leblois, Raphaël; Touré, Lassana; Diakité, Mohamed; Calatayud, Caroline; Vaksmann, Michel; Bouchet, Sophie; Mallé, Yaya; Togola, Sabine; Traoré, Pierre C Sibiry

2011-11-01

33

Genetic Diversity and Human Equality.  

ERIC Educational Resources Information Center

The idea of equality often, if not frequently, bogs down in confusion and apparent contradictions; equality is confused with identity, and diversity with inequality. It would seem that the easiest way to discredit the idea of equality is to show that people are innately, genetically, and, therefore, irremediably diverse and unlike. The snare is,…

Dobzhansky, Theodosius

34

Genetic diversity in aspen and its relation to arthropod abundance.  

PubMed

The ecological consequences of biodiversity have become a prominent public issue. Little is known on the effect of genetic diversity on ecosystem services. Here, a diversity experiment was established with European and North American aspen (Populus tremula, P. tremuloides) planted in plots representing either a single deme only or combinations of two, four and eight demes. The goals of this study were to explore the complex inter- and intraspecific genetic diversity of aspen and to then relate three measures for diversity (deme diversity, genetic diversity determined as Shannon index or as expected heterozygosity) to arthropod abundance. Microsatellite and AFLP markers were used to analyze the genetic variation patterns within and between the aspen demes and deme mixtures. Large differences were observed regarding the genetic diversity within demes. An analysis of molecular variance revealed that most of the total genetic diversity was found within demes, but the genetic differentiation among demes was also high. The complex patterns of genetic diversity and differentiation resulted in large differences of the genetic variation within plots. The average diversity increased from plots with only one deme to plots with two, four, and eight demes, respectively and separated plots with and without American aspen. To test whether intra- and interspecific diversity impacts on ecosystem services, arthropod abundance was determined. Increasing genetic diversity of aspen was related to increasing abundance of arthropods. However, the relationship was mainly driven by the presence of American aspen suggesting that species identity overrode the effect of intraspecific variation of European aspen. PMID:25674097

Zhang, Chunxia; Vornam, Barbara; Volmer, Katharina; Prinz, Kathleen; Kleemann, Frauke; Köhler, Lars; Polle, Andrea; Finkeldey, Reiner

2014-01-01

35

Genetic diversity in aspen and its relation to arthropod abundance  

PubMed Central

The ecological consequences of biodiversity have become a prominent public issue. Little is known on the effect of genetic diversity on ecosystem services. Here, a diversity experiment was established with European and North American aspen (Populus tremula, P. tremuloides) planted in plots representing either a single deme only or combinations of two, four and eight demes. The goals of this study were to explore the complex inter- and intraspecific genetic diversity of aspen and to then relate three measures for diversity (deme diversity, genetic diversity determined as Shannon index or as expected heterozygosity) to arthropod abundance. Microsatellite and AFLP markers were used to analyze the genetic variation patterns within and between the aspen demes and deme mixtures. Large differences were observed regarding the genetic diversity within demes. An analysis of molecular variance revealed that most of the total genetic diversity was found within demes, but the genetic differentiation among demes was also high. The complex patterns of genetic diversity and differentiation resulted in large differences of the genetic variation within plots. The average diversity increased from plots with only one deme to plots with two, four, and eight demes, respectively and separated plots with and without American aspen. To test whether intra- and interspecific diversity impacts on ecosystem services, arthropod abundance was determined. Increasing genetic diversity of aspen was related to increasing abundance of arthropods. However, the relationship was mainly driven by the presence of American aspen suggesting that species identity overrode the effect of intraspecific variation of European aspen.

Zhang, Chunxia; Vornam, Barbara; Volmer, Katharina; Prinz, Kathleen; Kleemann, Frauke; Köhler, Lars; Polle, Andrea; Finkeldey, Reiner

2015-01-01

36

At the southeast fringe of the Bantu expansion: genetic diversity and phylogenetic relationships to other sub-Saharan tribes  

PubMed Central

Here, we present 12 loci paternal haplotypes (Y-STR profiles) against the backdrop of the Y-SNP marker system of Bantu males from the Maputo Province of Southeast Africa, a region believed to represent the southeastern fringe of the Bantu expansion. Our Maputo Bantu group was analyzed within the context of 27 geographically relevant reference populations in order to ascertain its genetic relationship to other Bantu and non Bantu (Pygmy, Khoisan and Nilotic) sub-equatorial tribes from West and East Africa. This study entails statistical pair wise comparisons and multidimensional scaling based on YSTR Rst distances, network analyses of Bantu (B2a-M150) and Pygmy (B2b-M112) lineages as well as an assessment of Y-SNP distribution patterns. Several notable findings include the following: 1) the Maputo Province Bantu exhibits a relatively close paternal affinity with both east and west Bantu tribes due to high proportion of Bantu Y chromosomal markers, 2) only traces of Khoisan (1.3%) and Pygmy (1.3%) markers persist in the Maputo Province Bantu gene pool, 3) the occurrence of R1a1a-M17/M198, a member of the Eurasian R1a-M420 branch in the population of the Maputo Province, may represent back migration events and/or recent admixture events, 4) the shared presence of E1b1b1-M35 in all Tanzanian tribes examined, including Bantu and non-Bantu groups, in conjunction with its nearly complete absence in the West African populations indicate that, in addition to a shared linguistic, cultural and genetic heritage, geography (e.g., east vs. west) may have impacted the paternal landscape of sub-Saharan Africa, 5) the admixture and assimilation processes of Bantu elements were both highly complex and region-specific. PMID:25606451

Rowold, Diane; Garcia-Bertrand, Ralph; Calderon, Silvia; Rivera, Luis; Benedico, David Perez; Alfonso Sanchez, Miguel A.; Chennakrishnaiah, Shilpa; Varela, Mangela; Herrera, Rene J.

2014-01-01

37

Relationship between plant diversity andRelationship between plant diversity and AMF diversity in grassland ecosystems  

E-print Network

Experimental designdesign 44 Plant Function Groups (PFG)Plant Function Groups (PFG) PR(PR(perennial rhizomeRelationship between plant diversity andRelationship between plant diversity and AMF diversity)replicates (96 plots) A i i (A i i ( AMF community in plant roots (TAMF community in plant roots (T-- RFLP

Bruns, Tom

38

Genetic selection and conservation of genetic diversity*.  

PubMed

For 100s of years, livestock producers have employed various types of selection to alter livestock populations. Current selection strategies are little different, except our technologies for selection have become more powerful. Genetic resources at the breed level have been in and out of favour over time. These resources are the raw materials used to manipulate populations, and therefore, they are critical to the past and future success of the livestock sector. With increasing ability to rapidly change genetic composition of livestock populations, the conservation of these genetic resources becomes more critical. Globally, awareness of the need to steward genetic resources has increased. A growing number of countries have embarked on large scale conservation efforts by using in situ, ex situ (gene banking), or both approaches. Gene banking efforts have substantially increased and data suggest that gene banks are successfully capturing genetic diversity for research or industry use. It is also noteworthy that both industry and the research community are utilizing gene bank holdings. As pressures grow to meet consumer demands and potential changes in production systems, the linkage between selection goals and genetic conservation will increase as a mechanism to facilitate continued livestock sector development. PMID:22827378

Blackburn, H D

2012-08-01

39

Diversity among melon (Cucumis melo L.) landraces from the Indo-Gangetic plains of India and their genetic relationship with U.S.A. melon cultivars  

Technology Transfer Automated Retrieval System (TEKTRAN)

We report here the first broad genetic characterization of farmer-developed land races of melon (Cucumis melo L.) from the Indo-Gangetic plains of India, an area overlooked in previous genetic diversity analyses of Indian melon germplasm. Eighty-eight landraces from three melon groups in two subspec...

40

Genetic Diversity Increases Insect Herbivory on Oak Saplings  

PubMed Central

A growing body of evidence from community genetics studies suggests that ecosystem functions supported by plant species richness can also be provided by genetic diversity within plant species. This is not yet true for the diversity-resistance relationship as it is still unclear whether damage by insect herbivores responds to genetic diversity in host plant populations. We developed a manipulative field experiment based on a synthetic community approach, with 15 mixtures of one to four oak (Quercus robur) half-sib families. We quantified genetic diversity at the plot level by genotyping all oak saplings and assessed overall damage caused by ectophagous and endophagous herbivores along a gradient of increasing genetic diversity. Damage due to ectophagous herbivores increased with the genetic diversity in oak sapling populations as a result of higher levels of damage in mixtures than in monocultures for all families (complementarity effect) rather than because of the presence of more susceptible oak genotypes in mixtures (selection effect). Assemblages of different oak genotypes would benefit polyphagous herbivores via improved host patch location, spill over among neighbouring saplings and diet mixing. By contrast, genetic diversity was a poor predictor of the abundance of endophagous herbivores, which increased with individual sapling apparency. Plant genetic diversity may not provide sufficient functional contrast to prevent tree sapling colonization by specialist herbivores while enhancing the foraging of generalist herbivores. Long term studies are nevertheless required to test whether the effect of genetic diversity on herbivory change with the ontogeny of trees and local adaptation of specialist herbivores. PMID:22937168

Castagneyrol, Bastien; Lagache, Lélia; Giffard, Brice; Kremer, Antoine; Jactel, Hervé

2012-01-01

41

JNCC Report The conservation of genetic diversity  

E-print Network

JNCC Report No: 383 The conservation of genetic diversity: Science and policy needs in a changing should be cited as: Gregory, A. et al. 2006 The conservation of genetic diversity: Science and policy needs in a changing world JNCC report, No. 383 2 #12;The conservation of genetic diversity: science

Merilä, Juha

42

Population genetic diversity and fitness in multiple environments  

PubMed Central

Background When a large number of alleles are lost from a population, increases in individual homozygosity may reduce individual fitness through inbreeding depression. Modest losses of allelic diversity may also negatively impact long-term population viability by reducing the capacity of populations to adapt to altered environments. However, it is not clear how much genetic diversity within populations may be lost before populations are put at significant risk. Development of tools to evaluate this relationship would be a valuable contribution to conservation biology. To address these issues, we have created an experimental system that uses laboratory populations of an estuarine crustacean, Americamysis bahia with experimentally manipulated levels of genetic diversity. We created replicate cultures with five distinct levels of genetic diversity and monitored them for 16 weeks in both permissive (ambient seawater) and stressful conditions (diluted seawater). The relationship between molecular genetic diversity at presumptive neutral loci and population vulnerability was assessed by AFLP analysis. Results Populations with very low genetic diversity demonstrated reduced fitness relative to high diversity populations even under permissive conditions. Population performance decreased in the stressful environment for all levels of genetic diversity relative to performance in the permissive environment. Twenty percent of the lowest diversity populations went extinct before the end of the study in permissive conditions, whereas 73% of the low diversity lines went extinct in the stressful environment. All high genetic diversity populations persisted for the duration of the study, although population sizes and reproduction were reduced under stressful environmental conditions. Levels of fitness varied more among replicate low diversity populations than among replicate populations with high genetic diversity. There was a significant correlation between AFLP diversity and population fitness overall; however, AFLP markers performed poorly at detecting modest but consequential losses of genetic diversity. High diversity lines in the stressful environment showed some evidence of relative improvement as the experiment progressed while the low diversity lines did not. Conclusions The combined effects of reduced average fitness and increased variability contributed to increased extinction rates for very low diversity populations. More modest losses of genetic diversity resulted in measurable decreases in population fitness; AFLP markers did not always detect these losses. However when AFLP markers indicated lost genetic diversity, these losses were associated with reduced population fitness. PMID:20609254

2010-01-01

43

Genetic Diversity among Enterococcus faecalis  

Microsoft Academic Search

Enterococcus faecalis, a ubiquitous member of mammalian gastrointestinal flora, is a leading cause of nosocomial infections and a growing public health concern. The enterococci responsible for these infections are often resistant to multiple antibiotics and have become notorious for their ability to acquire and disseminate antibiotic resistances. In the current study, we examined genetic relationships among 106 strains of E.

Shonna M. McBride; Vincent A. Fischetti; Donald J. Leblanc; Robert C. Moellering; Michael S. Gilmore; Leah Cowen

2007-01-01

44

Genetic Diversity in a Soybean Collection  

Microsoft Academic Search

Soybean (Glycine max (L.) Merr.) was domesti- cated in China, and cultivated landraces were initially distributed throughout Asia and more recently extended to Europe and America. Pre- vious studies of genetic diversity suggest a strong genetic bottleneck between Asian and North American soybean genetic pools. How- ever, little is known about the potentially useful genetic diversity present in European soybean

M. Tavaud-Pirra; P. Sartre; R. Nelson; S. Santoni; N. Texier; P. Roumet

2009-01-01

45

Potential use of random amplified polymorphic DNA (RAPD) technique to study the genetic diversity in Indian mustard ( Brassica juncea ) and its relationship to heterosis  

Microsoft Academic Search

RAPD assays were performed, using 34 arbitrary decamer oligonucleotide primers and six combinations of two primers, to detect inherent variations and genetic relationships among 12 Indian and 11 exotic B. juncea genotypes. Of 595 amplification products identified, 500 of them were polymorphic across all genotypes. A low level of genetic variability was detected among the Indian genotypes, while considerable polymorphism

A. Jain; S. Bhatia; S. S. Banga; S. Prakash; M. Lakshmikumaran

1994-01-01

46

The relic Criollo cacao in Belize- genetic diversity and relationship with Trinitario and other cacao clones held in the International Cocoa Genebank, Trinidad  

Technology Transfer Automated Retrieval System (TEKTRAN)

Cacao (Theobroma cacao L.) is native to the South American rainforest but it was domesticated in Mesoamerica. The relic Criollo cocoa in Belize has been well known in the premium chocolate market for its high-quality. Knowledge of genetic diversity in this variety is essential for efficient conserva...

47

Genetic diversity and phylogenic relationships in date-palms ( Phoenix dactylifera L.) as assessed by random amplified microsatellite polymorphism markers (RAMPOs)  

Microsoft Academic Search

Random amplified microsatellite polymorphisms (RAMPOs) were used to assess genetic diversity among 30 date-palm cultivars and 10 male trees. Using 18 primers combinations, 197 bands were scored and 186 were polymorphic suggesting the high level of polymorphism among studied cultivars. Moreover, taking into account the high percentage of polymorphic bands (ppb), the resolving power (Rp) together with the polymorphism information

Soumaya Rhouma; Sonia Dakhlaoui-Dkhil; Ali Ould Mohamed Salem; Salwa Zehdi-Azouzi; Abdelmajid Rhouma; Mohamed Marrakchi; Mokhtar Trifi

2008-01-01

48

[AFLP analysis on genetic diversity of Haloxylon ammodendron in China].  

PubMed

To determine the genetic diversity of Haloxylon ammodendron collected from 14 sites in 5 provinces, 103 H. ammodendron samples of 12 wild populations and 2 cultivated which collected from 14 sites in 5 provinces were analyzed by amplified fragment length polymorphism (AFLP) DNA markers. PopGen32 and NTSYSpc2.1 was applied to evaluate genetic diversity of H. ammodendron populations. The average percentage of polymorphic loci (PPL) of total H. ammodendron populations was 94.13%, the average Nei's gene diversity index (H(e)) from 14 populations was 0.308 0, and the Shannon's genetic diversity index (I) was 0.467 6. The results indicated that the genetic diversity of H. ammodendron populations was high. Genetic differentiation index (G(st)) was 0.313 8, and the gene flow (N(m)) was 1.093 5 at the population level. The level of gene flow of H. ammodendron showed it possessed the feature of wind-pollinated outcrossing plants. AMOVA analysis indicated that genetic variation of H. ammodendron was much higher within groups (89.34%) than that among groups (10.66%), moreover genetic variation within groups mainly occurred among populations in different producing areas (84.80%). Cluster analysis (UPGMA) was applied to generate dendrogram based on Nei's genetic distances of 14 populations. Samples from Xinjiang and Qinghai were clustered respectively as a clade for their distant genetic relationship, while Samples from Gansu, Inner Mongolia and Ningxia were clustered together for their close genetic relationship. Genetic diversity of H. ammodendron populations is high in China, and genetic differentiation among regions is small, thus abundance within this specie is high at this stage. Therefore, wild nursery and artificial cultivating in different areas are effective measures for the conservation and sustainable utilization of H. ammodendron resources. PMID:24956833

Shen, Liang; Xu, Rong; Chen, Jun; Chen, An-Ping; Zhu, Guo-Qiang; Lv, Jia; Wang, Wei; Liu, Tong-Ning

2014-03-01

49

Adaptive vs. neutral genetic diversity: implications for landscape genetics  

Microsoft Academic Search

Genetic diversity is important for the maintenance of the viability and the evolutionary or adaptive potential of populations\\u000a and species. However, there are two principal types of genetic diversity: adaptive and neutral – a fact widely neglected by\\u000a non-specialists. We introduce these two types of genetic diversity and critically point to their potential uses and misuses\\u000a in population or landscape

Rolf Holderegger; Urs Kamm; Felix Gugerli

2006-01-01

50

Genetic diversity among Bolivian arenaviruses?  

PubMed Central

Machupo virus and Chapare virusare members of the Tacaribe serocomplex (virus family Arenaviridae) and etiological agents of hemorrhagic fever in humans in Bolivia. The nucleotide sequences of the complete Z genes, a large fragment of the RNA-dependent RNA polymerase genes, the complete glycoprotein precursor genes, and the complete nucleocapsid protein genes of 8 strains of Machupo virus were determined to increase our knowledge of the genetic diversity among the Bolivian arenaviruses. The results of analyses of the predicted amino acid sequences of the glycoproteins of the Machupo virus strains and Chapare virus strain 200001071 indicated that immune plasma from hemorrhagic fever cases caused by Machupo virus may prove beneficial in the treatment of Bolivian hemorrhagic fever but not hemorrhagic fever caused by Chapare virus. PMID:19041349

Cajimat, Maria N.B.; Milazzo, Mary Louise; Rollin, Pierre E.; Nichol, Stuart T.; Bowen, Michael D.; Ksiazek, Thomas G.; Fulhorst, Charles F.

2009-01-01

51

Genetic diversity-fitness correlation revealed by microsatellite analyses in European alpine marmots (Marmota marmota)  

Microsoft Academic Search

The relationship between individual genetic diversity and fitness-related traits are poorly understood in the wild. The availability of highly polymorphic molecular markers, such as microsatellites, has made research on this subject more feasible. We used three microsatellite-based measures of genetic diversity, individual heterozygosity H, mean d2 and mean d2outbreeding to test for a relationship between individual genetic diversity and important

A. Da Silva; G. Luikart; N. G. Yoccoz; A. Cohas; D. Allaine

2005-01-01

52

Original article Genetic diversity of the west  

E-print Network

Original article Genetic diversity of the west European honey bee (Apis mellifera mellifera and A, 34090 Montpellier cedex, France Abstract - The genetic variability and differentiation of west European microsatellite loci. These two subspecies are characterised by a lower genetic variability than most other

Boyer, Edmond

53

Genetic diversity is overlooked in international conservation policy implementation  

E-print Network

COMMENTARY Genetic diversity is overlooked in international conservation policy implementation. This realiza- tion has prompted agreements by world leaders to conserve genetic diversity taken to protect genetic diversity on a global scale. International conservation efforts to halt

54

Synthesis and assessment of date palm genetic diversity studies  

Technology Transfer Automated Retrieval System (TEKTRAN)

A thorough assessment of genetic diversity and population differentiation of Phoenix dactylifera are critical for its dynamic conservation and sustainable utilization of its genetic diversity. Estimates of genetic diversity based on phenotypic, biochemical and molecular markers; and fruit quality tr...

55

Bovine Genetic Diversity Revealed By mtDNA Sequence Variation  

Technology Transfer Automated Retrieval System (TEKTRAN)

Mitochondrial DNA single nucleotide polymorphism (SNP) data were used to determine genetic distance, nucleotide diversity, construction of haplotypes, estimation of information contents, and phylogenic relationships in bovine HapMap breeds. The Bovine International HapMap panel consists of 720 anima...

56

Teaching Relationship Skills in Diversity.  

ERIC Educational Resources Information Center

In-class activities that provide students with intercultural interactions and supplemental lectures that define critical concepts can facilitate the appreciation of diversity in the classroom. One such activity, useful for the beginning of courses, involves the creation of two separate culture codes, or set of instructions, for introducing…

Hammond, Ron J.

57

Genetic and Metabolite Diversity of Sardinian Populations of Helichrysum italicum  

PubMed Central

Background Helichrysum italicum (Asteraceae) is a small shrub endemic to the Mediterranean Basin, growing in fragmented and diverse habitats. The species has attracted attention due to its secondary metabolite content, but little effort has as yet been dedicated to assessing the genetic and metabolite diversity present in these populations. Here, we describe the diversity of 50 H. italicum populations collected from a range of habitats in Sardinia. Methods H. italicum plants were AFLP fingerprinted and the composition of their leaf essential oil characterized by GC-MS. The relationships between the genetic structure of the populations, soil, habitat and climatic variables and the essential oil chemotypes present were evaluated using Bayesian clustering, contingency analyses and AMOVA. Key results The Sardinian germplasm could be partitioned into two AFLP-based clades. Populations collected from the southwestern region constituted a homogeneous group which remained virtually intact even at high levels of K. The second, much larger clade was more diverse. A positive correlation between genetic diversity and elevation suggested the action of natural purifying selection. Four main classes of compounds were identified among the essential oils, namely monoterpenes, oxygenated monoterpenes, sesquiterpenes and oxygenated sesquiterpenes. Oxygenated monoterpene levels were significantly correlated with the AFLP-based clade structure, suggesting a correspondence between gene pool and chemical diversity. Conclusions The results suggest an association between chemotype, genetic diversity and collection location which is relevant for the planning of future collections aimed at identifying valuable sources of essential oil. PMID:24260149

Melito, Sara; Sias, Angela; Petretto, Giacomo L.; Chessa, Mario; Pintore, Giorgio; Porceddu, Andrea

2013-01-01

58

Diversity and Relationships of Eggplants from Three Geographically Distant Secondary Centers of Diversity  

PubMed Central

Eggplant (Solanum melongena L.) was domesticated in the Indo-Birmanian region, which is also the primary center of diversity for this crop. From there eggplant spread to other regions, and diversity accumulated in several secondary centers of diversity. We have assessed the diversity and relationships of 52 accessions of eggplant from three geographically distant secondary centers of diversity (China, Spain, and Sri Lanka) using 28 morphological descriptors and 12 highly polymorphic genomic SSRs. A wide variation was found for most morphological traits, and significant differences among the three centers of diversity were detected for 22 of these traits. The PCA analysis showed that eggplants from the three origins were morphologically differentiated, and accessions from each of the three secondary centers of diversity presented a typical combination of morphological characteristics. In this respect, discriminant analysis showed that accessions could be correctly classified to their origin using only six traits. The SSR characterization identified 110 alleles and allowed obtaining a unique genetic fingerprint for each accession. Many alleles were found to be private to each origin, but no universal alleles were found for any of the origins. The PCA analysis showed that the genetic differentiation among origins was less clear than for morphological traits, although the analysis of the population structure shows that accessions mostly group according to the origin, but also provides evidence of migration among the three secondary centers of diversity. The genetic diversity (HT) within each origin was high, ranging between HT?=?0.5400 (Sri Lanka) and HT?=?0.4943 (China), while the standardized genetic differentiation (G’ST) among origins was moderate (G’ST?=?0.2657). The correlation between morphological and SSR distances was non-significant (r?=?0.044), indicating that both data are complementary for the conservation of germplasm and breeding of eggplant. These results are relevant for the management of genetic resources, breeding programmes, and evolutionary studies of eggplant. PMID:22848589

Hurtado, Maria; Vilanova, Santiago; Plazas, Mariola; Gramazio, Pietro; Fonseka, H. Hemal; Fonseka, Ramya; Prohens, Jaime

2012-01-01

59

Evolution and genetic diversity of Theileria.  

PubMed

Theileria parasites infect a wide range of domestic and wild ruminants worldwide, causing diseases with varying degrees of severity. A broad classification, based on the parasite's ability to transform the leukocytes of host animals, divides Theileria into two groups, consisting of transforming and non-transforming species. The evolution of transforming Theileria has been accompanied by drastic changes in its genetic makeup, such as acquisition or expansion of gene families, which are thought to play critical roles in the transformation of host cells. Genetic variation among Theileria parasites is sometimes linked with host specificity and virulence in the parasites. Immunity against Theileria parasites primarily involves cell-mediated immune responses in the host. Immunodominance and major histocompatibility complex class I phenotype-specificity result in a host immunity that is tightly focused and strain-specific. Immune escape in Theileria is facilitated by genetic diversity in its antigenic determinants, which potentially results in a loss of T cell receptor recognition in its host. In the recent past, several reviews have focused on genetic diversity in the transforming species, Theileriaparva and Theileriaannulata. In contrast, genetic diversity in Theileriaorientalis, a benign non-transforming parasite, which occasionally causes disease outbreaks in cattle, has not been extensively examined. In this review, therefore, we provide an outline of the evolution of Theileria, which includes T. orientalis, and discuss the possible mechanisms generating genetic diversity among parasite populations. Additionally, we discuss the potential implications of a genetically diverse parasite population in the context of Theileria vaccine development. PMID:25102031

Sivakumar, Thillaiampalam; Hayashida, Kyoko; Sugimoto, Chihiro; Yokoyama, Naoaki

2014-10-01

60

THE ECOLOGY AND GENETICS OF MICROBIAL DIVERSITY  

Microsoft Academic Search

Ke yW ords fitness, genetic variation, niche, natural selection, microbial ecology ? Abstract Natural communities of microbes are often diverse, a fact that is difficult to reconcile with the action of natural selection in simple, uniform environments. We suggest that this apparent paradox may be resolved by considering the origin and fate of diversity in an explicitly ecological context. Here,

Rees Kassen; Paul B. Rainey

2004-01-01

61

Original article Genetic diversity of the west  

E-print Network

Original article Genetic diversity of the west European honey bee (Apis mellifera mellifera and A studied in 973 colonies from 23 populations of the west European honey bees (lineage M) using restriction. INTRODUCTION When describing the genetic variability of the honey bee, an unusually large number

Paris-Sud XI, Université de

62

GENETIC DIVERSITY OF THE PEANUT MINI CORE  

Technology Transfer Automated Retrieval System (TEKTRAN)

Thirty-one genomic SSR markers with M13-tail attached were used to assess genetic diversity in the peanut mini core, which is maintained by the USDA-ARS Plant Genetic Resources Conservation Unit (USDA, ARS, PGRCU) in Griffin, GA. The M13-tailed method was effective in discriminating individuals and...

63

Vietnamese chickens: a gate towards Asian genetic diversity  

Microsoft Academic Search

BACKGROUND: Chickens represent an important animal genetic resource and the conservation of local breeds is an issue for the preservation of this resource. The genetic diversity of a breed is mainly evaluated through its nuclear diversity. However, nuclear genetic diversity does not provide the same information as mitochondrial genetic diversity. For the species Gallus gallus, at least 8 maternal lineages

C Berthouly-Salazar; X Rognon; T Nhu Van; M Gély; C Vu Chi; M Tixier-Boichard; B Bed'Hom; N Bruneau; E Verrier; JC Maillard; JR Michaux

2010-01-01

64

REVIEWS AND SYNTHESES Connections between species diversity and genetic  

E-print Network

@interchange.ubc.ca Abstract Species diversity and genetic diversity remain the nearly exclusive domains of community ecology of close parallels between these two levels of diversity. Species diversity within communities and genetic of genes and species. Keywords Biodiversity, coexistence, community ecology, drift, genetic diversity

Vellend, Mark

65

Genetic diversity-fitness correlation revealed by microsatellite analysesin European alpine marmots ( Marmota marmota )  

Microsoft Academic Search

The relationship between individual genetic diversity and fitness-related traits are poorly understood in the wild. The availability\\u000a of highly polymorphic molecular markers, such as microsatellites, has made research on this subject more feasible. We used\\u000a three microsatellite-based measures of genetic diversity, individual heterozygosity H, mean d\\u000a 2 and mean d\\u000a 2\\u000a outbreeding to test for a relationship between individual genetic

A. Da Silva; G. Luikart; N. G. Yoccoz; A. Cohas; D. Allainé

2006-01-01

66

Genetic diversity of Cypripedium calceolus in Poland  

Microsoft Academic Search

In this work we assessed the genetic diversity of 32 C. calceolus populations from Poland. Mean genetic diversity was moderate (P = 36.4%, A = 1.58, H\\u000a O = 0.143, F\\u000a IS = 0.059), and seven geographic regions did not differ significantly in their levels of polymorphism (p > 0.05), although allele frequencies varied greatly. Only four unique alleles were found, at three sites in southern and\\u000a southeastern Poland. Genetic (P,

Emilia Brzosko; Ada Wróblewska; Izabela Ta?a?aj; Edyta Wasilewska

2011-01-01

67

Comparing the influences of traditional seed exchange and modern crop improvement on population structuring and genetic diversity  

E-print Network

diversity and relationships among traditional European maize populations. Theor Appl Genet 105: 91 structuring and genetic diversity by Brook Brouwer and Adam Peterson Main Questions: - How do traditional seed exchange networks influence crop genetic diversity and population structuring? - How do these systems

Gomulkiewicz, Richard

68

Genetic relationships among the oral streptococci.  

PubMed Central

Genetic relationships and species limits among the oral streptococci were determined by an analysis of electrophoretically demonstrable variation in 16 metabolic enzymes. Fifty isolates represented 40 electrophoretic types, among which the mean genetic diversity per locus was 0.857. Mannitol-1-phosphate dehydrogenase was not detected in isolates of the sanguis species complex, and glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were absent in species of the mutans complex. Clustering from a matrix of Gower's coefficient of genetic similarity placed the 40 electrophoretic types in 10 well-defined groups corresponding to the Streptococcus species S. mutans, S. sobrinus, S. cricetus, S. rattus, S. ferus, S. oralis (mitior), two distinct assemblages of S. sanguis strains, and two subdivisions of "S. milleri." The assignments of isolates to these groups were the same as those indicated by DNA hybridization experiments, and the coefficient of correlation between genetic distance estimated by multilocus enzyme electrophoresis and genetic similarity indexed by DNA hybridization was -0.897 (P less than 0.001) for 50 pairwise combinations of isolates. S. ferus, which is widely believed to be a member of the mutans complex, was shown to be phylogenetically closer to species of the sanguis complex. PMID:3667531

Gilmour, M N; Whittam, T S; Kilian, M; Selander, R K

1987-01-01

69

Genetic diversity analysis of common beans based on molecular markers  

PubMed Central

A core collection of the common bean (Phaseolus vulgaris L.), representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico) Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions) was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each), as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP) +3/+3 primer combinations and seven simple sequence repeats (SSR) loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA) and molecular variance (AMOVA) analyses. AFLP analysis produced 530 bands (88.5% polymorphic) while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus). AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation. PMID:22215964

Gill-Langarica, Homar R.; Muruaga-Martínez, José S.; Vargas-Vázquez, M.L. Patricia; Rosales-Serna, Rigoberto; Mayek-Pérez, Netzahualcoyotl

2011-01-01

70

Molecular phylogeny and genetic diversity of Lygus  

Technology Transfer Automated Retrieval System (TEKTRAN)

Inter- and intraspecific genetic diversity in North American Lygus was using nuclear and mitochondrial DNA. DNA sequences have been obtained from the mitochondrial cox1 and cox2 genes, the nuclear ITS1 spacer, and regions flanking microsatellites (MSFR). The Fargo lab sequenced a region overlapp...

71

Common Sequence Polymorphisms Shaping Genetic Diversity in  

E-print Network

Common Sequence Polymorphisms Shaping Genetic Diversity in Arabidopsis thaliana Richard M. Clark,1 to the reference genome sequence. Patterns of polymorphism are highly nonrandom among gene families, with genes- phism data set captures much of the common sequence variation in the worldwide A. thaliana pop- ulation

Weigel, Detlef

72

Genetic diversity in pollen abiotic stress tolerance  

Technology Transfer Automated Retrieval System (TEKTRAN)

Genetic diversity in reproductive abiotic stress tolerance has been investigated by cotton breeders throughout the public and private sectors. The primary focus of these studies has been the evaluation of abiotic stress responses during the development of the flower prior to anthesis. Sterility in...

73

Genetic Diversity in Pollen Abiotic Stress Tolerance  

Technology Transfer Automated Retrieval System (TEKTRAN)

Genetic diversity in reproductive abiotic stress tolerance has been investigated by cotton breeders throughout the public and private sectors. The primary focus of these studies has been the evaluation of abiotic stress responses during the development of the flower prior to anthesis. Sterility in...

74

Does Genetic Diversity Predict Health in Humans?  

PubMed Central

Genetic diversity, especially at genes important for immune functioning within the Major Histocompatibility Complex (MHC), has been associated with fitness-related traits, including disease resistance, in many species. Recently, genetic diversity has been associated with mate preferences in humans. Here we asked whether these preferences are adaptive in terms of obtaining healthier mates. We investigated whether genetic diversity (heterozygosity and standardized mean d2) at MHC and nonMHC microsatellite loci, predicted health in 153 individuals. Individuals with greater allelic diversity (d2) at nonMHC loci and at one MHC locus, linked to HLA-DRB1, reported fewer symptoms over a four-month period than individuals with lower d2. In contrast, there were no associations between MHC or nonMHC heterozygosity and health. NonMHC-d2 has previously been found to predict male preferences for female faces. Thus, the current findings suggest that nonMHC diversity may play a role in both natural and sexual selection acting on human populations. PMID:19633717

Lie, Hanne C.; Simmons, Leigh W.; Rhodes, Gillian

2009-01-01

75

Genetic diversity of eleven European pig breeds  

PubMed Central

A set of eleven pig breeds originating from six European countries, and including a small sample of wild pigs, was chosen for this study of genetic diversity. Diversity was evaluated on the basis of 18 microsatellite markers typed over a total of 483 DNA samples collected. Average breed heterozygosity varied from 0.35 to 0.60. Genotypic frequencies generally agreed with Hardy-Weinberg expectations, apart from the German Landrace and Schwäbisch-Hällisches breeds, which showed significantly reduced heterozygosity. Breed differentiation was significant as shown by the high among-breed fixation index (overall FST = 0.27), and confirmed by the clustering based on the genetic distances between individuals, which grouped essentially all individuals in 11 clusters corresponding to the 11 breeds. The genetic distances between breeds were first used to construct phylogenetic trees. The trees indicated that a genetic drift model might explain the divergence of the two German breeds, but no reliable phylogeny could be inferred among the remaining breeds. The same distances were also used to measure the global diversity of the set of breeds considered, and to evaluate the marginal loss of diversity attached to each breed. In that respect, the French Basque breed appeared to be the most "unique" in the set considered. This study, which remains to be extended to a larger set of European breeds, indicates that using genetic distances between breeds of farm animals in a classical taxonomic approach may not give clear resolution, but points to their usefulness in a prospective evaluation of diversity. PMID:14736401

Laval, Guillaume; Iannuccelli, Nathalie; Legault, Christian; Milan, Denis; Groenen, Martien AM; Giuffra, Elisabetta; Andersson, Leif; Nissen, Peter H; Jørgensen, Claus B; Beeckmann, Petra; Geldermann, Hermann; Foulley, Jean-Louis; Chevalet, Claude; Ollivier, Louis

2000-01-01

76

Genetic diversity of Kenyan native oyster mushroom (Pleurotus).  

PubMed

Members of the genus Pleurotus, also commonly known as oyster mushroom, are well known for their socioeconomic and biotechnological potentials. Despite being one of the most important edible fungi, the scarce information about the genetic diversity of the species in natural populations has limited their sustainable utilization. A total of 71 isolates of Pleurotus species were collected from three natural populations: 25 isolates were obtained from Kakamega forest, 34 isolates from Arabuko Sokoke forest and 12 isolates from Mount Kenya forest. Amplified fragment length polymorphism (AFLP) was applied to thirteen isolates of locally grown Pleurotus species obtained from laboratory samples using five primer pair combinations. AFLP markers and internal transcribed spacer (ITS) sequences of the ribosomal DNA were used to estimate the genetic diversity and evaluate phylogenetic relationships, respectively, among and within populations. The five primer pair combinations generated 293 polymorphic loci across the 84 isolates. The mean genetic diversity among the populations was 0.25 with the population from Arabuko Sokoke having higher (0.27) diversity estimates compared to Mount Kenya population (0.24). Diversity between the isolates from the natural population (0.25) and commercial cultivars (0.24) did not differ significantly. However, diversity was greater within (89%; P > 0.001) populations than among populations. Homology search analysis against the GenBank database using 16 rDNA ITS sequences randomly selected from the two clades of AFLP dendrogram revealed three mushroom species: P. djamor, P. floridanus and P. sapidus; the three mushrooms form part of the diversity of Pleurotus species in Kenya. The broad diversity within the Kenyan Pleurotus species suggests the possibility of obtaining native strains suitable for commercial cultivation. PMID:25344263

Otieno, Ojwang D; Onyango, Calvin; Onguso, Justus Mungare; Matasyoh, Lexa G; Wanjala, Bramwel W; Wamalwa, Mark; Harvey, Jagger J W

2015-01-01

77

Does Inbreeding and Loss of Genetic Diversity Decrease Disease Resistance?  

Microsoft Academic Search

Inbreeding and loss of genetic diversity are predicted to decrease the resistance of species to disease. However, this issue is controversial and there is limited rigorous scientific evidence available. To test whether inbreeding and loss of genetic diversity affect a host's resistance to disease, Drosophila melanogasterpopulations with different levels of inbreeding and genetic diversity were exposed separately to (a) thuringiensin,

Derek Spielman; Barry W. Brook; David A. Briscoe; Richard Frankham

2004-01-01

78

Analysis of genetic diversity of Lactarius hatsudake in south China.  

PubMed

Lactarius hatsudake is a type of ectomycorrhizal fungus that significantly influences the growth of pine trees. It is widely prevalent in Asian countries and has a high economic value. Artificial cultivation of this fungus has not been achieved as yet; therefore, excessive manual harvesting may cause serious damages to the site of its production. In this study, we analyzed 41 samples of L. hatsudake from south China using internal transcribed spacer (ITS) sequences. By comparing the differences among ITS sequences to identify the haplotype diversity within each population, the relationships among local populations, the relationship between the level of genetic differentiation and geographical separation, and the contributions of local and regional geographical separations to the overall ITS haplotype variation were analyzed. Genetic analysis indicates that ITS sequences obtained from these 41 L. hatsudake samples could be identified as 18 haplotypes, of which 13 haplotypes were contained in only a single sample, whereas the remaining sequence types all were contained in two or more samples. The most common sequence type, haplotype 6, was found in 16 samples and was distributed across nearly every region. The Mantel test demonstrated that there is no significant linear relationship between geographical distance and the F(ST) value of genetic difference. Results of this research illustrates that there exists a certain degree of genetic intermixing among natural populations of L. hatsudake. From the group genetic analysis, it appears that there exists genetic differentiation of lower frequencies in natural populations of L. hatsudake; however, the linear relationship between the degree of genetic differentiation and geographical distance is not distinctly apparent. PMID:21815833

He, Li; Liang, Guo; Guoying, Zhou; Jun-ang, Liu

2011-08-01

79

Inbreeding, outbreeding and environmental effects on genetic diversity in 46 walleye (Sander vitreus) populations.  

PubMed

Genetic diversity is recognized as an important population attribute for both conservation and evolutionary purposes; however, the functional relationships between the environment, genetic diversity, and fitness-related traits are poorly understood. We examined relationships between selected lake parameters and population genetic diversity measures in 46 walleye (Sander vitreus) populations across the province of Ontario, Canada, and then tested for relationships between six life history traits (in three categories: growth, reproductive investment, and mortality) that are closely related to fitness, and genetic diversity measures (heterozygosity, d2, and Wright's inbreeding coefficient). Positive relationships were observed between lake surface area, growing degree days, number of species, and hatchery supplementation versus genetic diversity. Walleye early growth rate was the only life history trait significantly correlated with population heterozygosity in both males and females. The relationship between FIS and male early growth rate was negative and significant (P < 0.01) and marginally nonsignificant for females (P = 0.06), consistent with inbreeding depression effects. Only one significant relationship was observed for d2: female early growth rate (P < 0.05). Stepwise regression models showed that surface area and heterozygosity had a significant effect on female early growth rate, while hatchery supplementation, surface area and heterozygosity had a significant effect on male early growth rate. The strong relationship between lake parameters, such as surface area, and hatchery supplementation, versus genetic diversity suggests inbreeding and outbreeding in some of the populations; however, the weak relationships between genetic diversity and life history traits indicate that inbreeding and outbreeding depression are not yet seriously impacting Ontario walleye populations. PMID:16448402

Cena, Christopher J; Morgan, George E; Malette, Michael D; Heath, Daniel D

2006-02-01

80

Genetic connectivity across populations is crucial in maintaining genetic diversity and is therefore a priority for  

E-print Network

Abstract Genetic connectivity across populations is crucial in maintaining genetic diversity genetically connected populations improve species resilience and can benefit local fisheries. Species' life of genetic connectivity or isolation across geographically distinct populations. We will assess the degree

81

SSR analysis of genetic diversity among maize inbred lines adapted to cold regions of Japan  

Microsoft Academic Search

Information regarding diversity and relationships among breeding material is necessary for hybrid maize (Zea mays L.) breeding. Simple-sequence repeat (SSR) analysis of the 60 loci distributed uniformly throughout the maize genome was carried out for 65 inbred lines adapted to cold regions of Japan in order to assess genetic diversity among the inbred lines and to assign them to heterotic

H. Enoki; H. Sato; K. Koinuma

2002-01-01

82

High levels of genetic diversity in Penaeus monodon populations from the east coast of India.  

PubMed

Quality production of the shrimp Penaeus monodon in hatchery operations depends heavily on the evaluation of genetic diversity and population structure of brood stocks. Mitochondrial DNA (mtDNA) sequences have been widely used to study genetic variability and relationships in many crustacean groups, and these same markers may be incorporated into evaluation studies of shrimp broods and populations. For this purpose we looked at variation in mitochondrial D-loop sequences as an indicator of genetic diversity in shrimp populations from a region of India that represents the main sources of new material for brood stocks. In our study of these populations the overall mean genetic diversity was 0.191. The highest level of genetic diversity (0.357) was observed in the Kakinada population, whereas the lowest diversity (0.0171) was observed in the Nellore population. The results also indicate that overall, the populations along the Andhra Pradesh coast are genetically diverse despite the fact that there is considerable gene flow between them. From the results, it is evident that east cost of India shows high genetic diversity among P. monodon broods and no evidence of loss of diversity due to excessive inbreeding. The fact that the genetic variability of these populations has been maintained, despite ten years of dependence on these broods, shows that at the present time there is no indication of over exploitation. PMID:24363984

Khedkar, Gulab Dattarao; Reddy, A Chandrashekar; Ron, Tetszuan Benny; Haymer, David

2013-01-01

83

Genetic Diversity and Competitive Abilities of Dalea purpurea (Fabaceae) from Remnant and Restored Grasslands  

Microsoft Academic Search

Allozyme and randomly amplified polymorphic DNA (RAPD) analyses were used to characterize the genetic relationships of Dalea purpurea from remnant and restored Illinois tallgrass prairies and a large remnant tallgrass prairie in Kansas. The remnant Illinois populations were less genetically diverse than the restored Illinois populations and the Kansas population. These restored Illinois populations were established with at least two

Danny J. Gustafson; David J. Gibson; Daniel L. Nickrent

2002-01-01

84

Conserving plant genetic diversity for dependent animal communities  

Microsoft Academic Search

While population genetic diversity has broad application in species conservation, no studies have examined the community-level consequences of this diversity. We show that population genetic diversity (generated by interspecific hybridization) in a dominant riparian tree affects an arthropod community composed of 207 species. In an experimental garden, plant cross type structured the arthropod community of individual trees, and among stands

Gina Marie Wimp; William P. Young; Scott A. Woolbright; Gregory D. Martinsen; Paul Keim; Thomas G. Whitham

2004-01-01

85

ORIGINAL PAPER Origin and genetic diversity of mosquitofish  

E-print Network

ORIGINAL PAPER Origin and genetic diversity of mosquitofish (Gambusia holbrooki) introduced with the low number of introduced fish. At the local scale, some European populations gained diversity from Gambusia affinis Á Genetic diversity Á Mosquitofish Introduction Beyond their negative effects, invasive

García-Berthou, Emili

86

Original article Host sex and parasite genetic diversity  

E-print Network

Original article Host sex and parasite genetic diversity Damien Caillaud a,c,1 , Franck Prugnolle a 21 June 2006 Available online 10 July 2006 Abstract Is the genetic diversity of parasites infecting). Using seven microsatellite markers, we demonstrate that parasites from male hosts are genetically more

87

Genetic diversity and species diversity of stream fishes covary across a land-use gradient  

USGS Publications Warehouse

Genetic diversity and species diversity are expected to covary according to area and isolation, but may not always covary with environmental heterogeneity. In this study, we examined how patterns of genetic and species diversity in stream fishes correspond to local and regional environmental conditions. To do so, we compared population size, genetic diversity and divergence in central stonerollers (Campostoma anomalum) to measures of species diversity and turnover in stream fish assemblages among similarly sized watersheds across an agriculture-forest land-use gradient in the Little Miami River basin (Ohio, USA). Significant correlations were found in many, but not all, pair-wise comparisons. Allelic richness and species richness were strongly correlated, for example, but diversity measures based on allele frequencies and assemblage structure were not. In-stream conditions related to agricultural land use were identified as significant predictors of genetic diversity and species diversity. Comparisons to population size indicate, however, that genetic diversity and species diversity are not necessarily independent and that variation also corresponds to watershed location and glaciation history in the drainage basin. Our findings demonstrate that genetic diversity and species diversity can covary in stream fish assemblages, and illustrate the potential importance of scaling observations to capture responses to hierarchical environmental variation. More comparisons according to life history variation could further improve understanding of conditions that give rise to parallel variation in genetic diversity and species diversity, which in turn could improve diagnosis of anthropogenic influences on aquatic ecosystems. ?? 2011 Springer-Verlag.

Blum, M.J.; Bagley, M.J.; Walters, D.M.; Jackson, S.A.; Daniel, F.B.; Chaloud, D.J.; Cade, B.S.

2012-01-01

88

Relationship of Genetic Variation to Population Size in Wildlife  

Microsoft Academic Search

Genetic diversity is one of three levels of biological diversity requiring conservation. Genetic theory predicts that levels of genetic variation should increase with effective population size. Sould (19 76) compiled the first convincing evidence that levels of genetic variation in wildlife were related to population size, but this issue remains controversial. The hypothesis that genetic variation is related to population

Richard Frankham

1996-01-01

89

Restoration of coral populations in light of genetic diversity estimates  

Microsoft Academic Search

Due to the importance of preserving the genetic integrity of populations, strategies to restore damaged coral reefs should\\u000a attempt to retain the allelic diversity of the disturbed population; however, genetic diversity estimates are not available\\u000a for most coral populations. To provide a generalized estimate of genetic diversity (in terms of allelic richness) of scleractinian\\u000a coral populations, the literature was surveyed

T. L. Shearer; I. Porto; A. L. Zubillaga

2009-01-01

90

High genetic diversity is not essential for successful introduction  

PubMed Central

Some introduced populations thrive and evolve despite the presumed loss of diversity at introduction. We aimed to quantify the amount of genetic diversity retained at introduction in species that have shown evidence of adaptation to their introduced environments. Samples were taken from native and introduced ranges of Arctotheca populifolia and Petrorhagia nanteuilii. Using microsatellite data, we identified the source for each introduction, estimated genetic diversity in native and introduced populations, and calculated the amount of diversity retained in introduced populations. These values were compared to those from a literature review of diversity in native, confamilial populations and to estimates of genetic diversity retained at introduction. Gene diversity in the native range of both species was significantly lower than for confamilials. We found that, on average, introduced populations showing evidence of adaptation to their new environments retained 81% of the genetic diversity from the native range. Introduced populations of P. nanteuilii had higher genetic diversity than found in the native source populations, whereas introduced populations of A. populifolia retained only 14% of its native diversity in one introduction and 1% in another. Our literature review has shown that most introductions demonstrating adaptive ability have lost diversity upon introduction. The two species studied here had exceptionally low native range genetic diversity. Further, the two introductions of A. populifolia represent the largest percentage loss of genetic diversity in a species showing evidence of substantial morphological change in the introduced range. While high genetic diversity may increase the likelihood of invasion success, the species examined here adapted to their new environments with very little neutral genetic diversity. This finding suggests that even introductions founded by small numbers of individuals have the potential to become invasive. PMID:24340190

Rollins, Lee A; Moles, Angela T; Lam, Serena; Buitenwerf, Robert; Buswell, Joanna M; Brandenburger, Claire R; Flores-Moreno, Habacuc; Nielsen, Knud B; Couchman, Ellen; Brown, Gordon S; Thomson, Fiona J; Hemmings, Frank; Frankham, Richard; Sherwin, William B

2013-01-01

91

Highly structured genetic diversity of the Mycobacterium tuberculosis population in  

E-print Network

Highly structured genetic diversity of the Mycobacterium tuberculosis population in Djibouti S, Djibouti Ville, Djibouti Abstract Djibouti is an East African country with a high tuberculosis incidence with pulmonary tuberculosis (TB) were included. Genetic characterization of Mycobacterium tuberculosis, using

Choisy, Marc

92

Genetic diversity of Ehrlichia canis in Brazil.  

PubMed

Canine monocytic ehrlichiosis is a highly prevalent disease in Brazil, where the genetic diversity of Ehrlichia canis remains undefined. In this study, we used the TRP36 gene to examine the genetic diversity of E. canis strains from naturally infected dogs residing in five distinct geographic regions in Brazil. E. canis DNA was detected in 82/126 (65%) dogs by dsb-specific PCR and E. canis was isolated in cell culture from 13 dogs. Sequences obtained from dsb genes amplified from the isolates were identical to the US E. canis strain. An extended molecular characterization based on the TRP36 gene identified two major genogroups based on differences among eight isolates. Isolates with tandem repeat amino acid sequence (TEDSVSAPA) identical to the previously reported TRP36 sequence were found in the midwest, northeast and southeast regions of Brazil, and classified into the US genogroup. A novel Brazilian genotype with a different tandem repeat sequence (ASVVPEAE) was also identified in midwest, northern and southern regions. Similarity in the N-terminal sequence of a US genogroup member with the Brazilian genogroup suggested that genomic recombination between the two genogroups may have occurred. Other subtypes within the Brazilian genogroup were also identified using C-terminal amino acid divergence. We identified two distinct major Brazilian genogroups and several subtypes based on analysis of TRP36, and such information will be useful for further genotyping and possible associations with disease severity, understanding of the genetic and antigenic variability of E. canis, and for developing strain-specific vaccines and diagnostic methods based on TRP36. PMID:23490559

Aguiar, D M; Zhang, X; Melo, A L T; Pacheco, T A; Meneses, A M C; Zanutto, M S; Horta, M C; Santarém, V A; Camargo, L M A; McBride, J W; Labruna, M B

2013-06-28

93

Restoration of coral populations in light of genetic diversity estimates  

NASA Astrophysics Data System (ADS)

Due to the importance of preserving the genetic integrity of populations, strategies to restore damaged coral reefs should attempt to retain the allelic diversity of the disturbed population; however, genetic diversity estimates are not available for most coral populations. To provide a generalized estimate of genetic diversity (in terms of allelic richness) of scleractinian coral populations, the literature was surveyed for studies describing the genetic structure of coral populations using microsatellites. The mean number of alleles per locus across 72 surveyed scleractinian coral populations was 8.27 (±0.75 SE). In addition, population genetic datasets from four species ( Acropora palmata, Montastraea cavernosa, Montastraea faveolata and Pocillopora damicornis) were analyzed to assess the minimum number of donor colonies required to retain specific proportions of the genetic diversity of the population. Rarefaction analysis of the population genetic datasets indicated that using 10 donor colonies randomly sampled from the original population would retain >50% of the allelic diversity, while 35 colonies would retain >90% of the original diversity. In general, scleractinian coral populations are genetically diverse and restoration methods utilizing few clonal genotypes to re-populate a reef will diminish the genetic integrity of the population. Coral restoration strategies using 10-35 randomly selected local donor colonies will retain at least 50-90% of the genetic diversity of the original population.

Shearer, T. L.; Porto, I.; Zubillaga, A. L.

2009-09-01

94

Hidden genetic diversity in the green alga Spirogyra (Zygnematophyceae, Streptophyta)  

PubMed Central

Background The unbranched filamentous green alga Spirogyra (Streptophyta, Zygnemataceae) is easily recognizable based on its vegetative morphology, which shows one to several spiral chloroplasts. This simple structure falsely points to a low genetic diversity: Spirogyra is commonly excluded from phylogenetic analyses because the genus is known as a long-branch taxon caused by a high evolutionary rate. Results We focused on this genetic diversity and sequenced 130 Spirogyra small subunit nuclear ribosomal DNA (SSU rDNA) strands of different origin. The resulting SSU rDNA sequences were used for phylogenetic analyses using complex evolutionary models (posterior probability, maximum likelihood, neighbor joining, and maximum parsimony methods). The sequences were between 1672 and 1779 nucleotides long. Sequence comparisons revealed 53 individual clones, but our results still support monophyly of the genus. Our data set did not contain a single slow-evolving taxon that would have been placed on a shorter branch compared to the remaining sequences. Out of 130 accessions analyzed, 72 showed a secondary loss of the 1506 group I intron, which formed a long-branched group within the genus. The phylogenetic relationship to the genus Spirotaenia was not resolved satisfactorily. The genetic distance within the genus Spirogyra exceeded the distances measured within any other genus of the remaining Zygnemataceae included in this study. Conclusion Overall, we define eight distinct clades of Spirogyra, one of them including the genus Sirogonium. A large number of non-homoplasious synapomorphies (NHS; 114 NHS in total) was found for Spirogyra (41 NHS) and for each clade (totaling 73 NHS). This emphasizes the high genetic diversity of this genus and the distance to the remaining Zygnematophyceae. PMID:22655677

2012-01-01

95

Old-Growth Platycladus orientalis as a Resource for Reproductive Capacity and Genetic Diversity  

PubMed Central

Aims Platycladus orientalis (Cupressaceae) is an old-growth tree species which distributed in the imperial parks and ancient temples in Beijing, China. We aim to (1) examine the genetic diversity and reproductive traits of old-growth and young populations of P. orientalis to ascertain whether the older populations contain a higher genetic diversity, more private alleles and a higher reproductive output compared with younger populations; (2) determine the relationships between the age of the population and the genetic diversity and reproductive traits; and (3) determine whether the imperial parks and ancient temples played an important role in maintaining the reproductive capacity and genetic diversity of Platycladus orientalis. Methods Samples from seven young (younger than 100 yrs.) and nine old-growth (older than 300 yrs.) artificial populations were collected. For comparison, three young and two old-growth natural populations were also sampled. Nine microsatellite loci were used to analyze genetic diversity parameters. These parameters were calculated using FSTAT version 2.9.3 and GenAlex v 6.41. Important Findings The old-growth artificial populations of P. orientalis have significantly higher genetic diversity than younger artificial populations and similar levels to those in extant natural populations. The imperial parks and ancient temples, which have protected these old-growth trees for centuries, have played an important role in maintaining the genetic diversity and reproductive capacity of this tree species. PMID:23409190

Zhu, Lin; Lou, Anru

2013-01-01

96

The Effect and Relative Importance of Neutral Genetic Diversity for Predicting Parasitism Varies across Parasite Taxa  

PubMed Central

Understanding factors that determine heterogeneity in levels of parasitism across individuals is a major challenge in disease ecology. It is known that genetic makeup plays an important role in infection likelihood, but the mechanism remains unclear as does its relative importance when compared to other factors. We analyzed relationships between genetic diversity and macroparasites in outbred, free-ranging populations of raccoons (Procyon lotor). We measured heterozygosity at 14 microsatellite loci and modeled the effects of both multi-locus and single-locus heterozygosity on parasitism using an information theoretic approach and including non-genetic factors that are known to influence the likelihood of parasitism. The association of genetic diversity and parasitism, as well as the relative importance of genetic diversity, differed by parasitic group. Endoparasite species richness was better predicted by a model that included genetic diversity, with the more heterozygous hosts harboring fewer endoparasite species. Genetic diversity was also important in predicting abundance of replete ticks (Dermacentor variabilis). This association fit a curvilinear trend, with hosts that had either high or low levels of heterozygosity harboring fewer parasites than those with intermediate levels. In contrast, genetic diversity was not important in predicting abundance of non-replete ticks and lice (Trichodectes octomaculatus). No strong single-locus effects were observed for either endoparasites or replete ticks. Our results suggest that in outbred populations multi-locus diversity might be important for coping with parasitism. The differences in the relationships between heterozygosity and parasitism for the different parasites suggest that the role of genetic diversity varies with parasite-mediated selective pressures. PMID:23049796

Ruiz-López, María José; Monello, Ryan J.; Gompper, Matthew E.; Eggert, Lori S.

2012-01-01

97

The effect and relative importance of neutral genetic diversity for predicting parasitism varies across parasite taxa.  

PubMed

Understanding factors that determine heterogeneity in levels of parasitism across individuals is a major challenge in disease ecology. It is known that genetic makeup plays an important role in infection likelihood, but the mechanism remains unclear as does its relative importance when compared to other factors. We analyzed relationships between genetic diversity and macroparasites in outbred, free-ranging populations of raccoons (Procyon lotor). We measured heterozygosity at 14 microsatellite loci and modeled the effects of both multi-locus and single-locus heterozygosity on parasitism using an information theoretic approach and including non-genetic factors that are known to influence the likelihood of parasitism. The association of genetic diversity and parasitism, as well as the relative importance of genetic diversity, differed by parasitic group. Endoparasite species richness was better predicted by a model that included genetic diversity, with the more heterozygous hosts harboring fewer endoparasite species. Genetic diversity was also important in predicting abundance of replete ticks (Dermacentor variabilis). This association fit a curvilinear trend, with hosts that had either high or low levels of heterozygosity harboring fewer parasites than those with intermediate levels. In contrast, genetic diversity was not important in predicting abundance of non-replete ticks and lice (Trichodectes octomaculatus). No strong single-locus effects were observed for either endoparasites or replete ticks. Our results suggest that in outbred populations multi-locus diversity might be important for coping with parasitism. The differences in the relationships between heterozygosity and parasitism for the different parasites suggest that the role of genetic diversity varies with parasite-mediated selective pressures. PMID:23049796

Ruiz-López, María José; Monello, Ryan J; Gompper, Matthew E; Eggert, Lori S

2012-01-01

98

Does genetic diversity limit disease spread in natural host populations?  

PubMed Central

It is a commonly held view that genetically homogenous host populations are more vulnerable to infection than genetically diverse populations. The underlying idea, known as the ‘monoculture effect,' is well documented in agricultural studies. Low genetic diversity in the wild can result from bottlenecks (that is, founder effects), biparental inbreeding or self-fertilization, any of which might increase the risk of epidemics. Host genetic diversity could buffer populations against epidemics in nature, but it is not clear how much diversity is required to prevent disease spread. Recent theoretical and empirical studies, particularly in Daphnia populations, have helped to establish that genetic diversity can reduce parasite transmission. Here, we review the present theoretical work and empirical evidence, and we suggest a new focus on finding ‘diversity thresholds.' PMID:22713998

King, K C; Lively, C M

2012-01-01

99

Genetic diversity of a newly established population of golden eagles on the Channel Islands, California  

USGS Publications Warehouse

Gene flow can have profound effects on the genetic diversity of a founding population depending on the number and relationship among colonizers and the duration of the colonization event. Here we used data from nuclear microsatellite and mitochondrial DNA control region loci to assess genetic diversity in golden eagles of the recently colonized Channel Islands, California. Genetic diversity in the Channel Island population was low, similar to signatures observed for other recent colonizing island populations. Differences in levels of genetic diversity and structure observed between mainland California and the islands suggests that few individuals were involved in the initial founding event, and may have comprised a family group. The spatial genetic structure observed between Channel Island and mainland California golden eagle populations across marker types, and genetic signature of population decline observed for the Channel Island population, suggest a single or relatively quick colonization event. Polarity in gene flow estimates based on mtDNA confirm an initial colonization of the Channel Islands by mainland golden eagles, but estimates from microsatellite data suggest that golden eagles on the islands were dispersing more recently to the mainland, possibly after reaching the carrying capacity of the island system. These results illustrate the strength of founding events on the genetic diversity of a population, and confirm that changes to genetic diversity can occur within just a few generations.

Sonsthagen, Sarah A.; Coonan, Timothy J.; Latta, Brian C.; Sage, George K.; Talbot, Sandra L.

2012-01-01

100

High genetic diversity in Sarracenia leucophylla(Sarraceniaceae), a carnivorous wetland herb.  

PubMed

Eighteen allozyme loci were used to examine genetic diversity in 10 natural populations of Sarracenia leucophylla Raf., a pitcher plant restricted to the southeastern United States. One ex situ population propagated for restoration in Georgia was also analyzed. S. leucophylla is an insect-pollinated, outcrossing perennial wetland herb that is threatened over much of its geographic range. Fifteen loci (83.3%) were polymorphic, with a mean number of alleles of 3.33. Compared to species having similar life-history traits and to previously analyzed Sarracenia species, S. leucophylla displayed unexpectedly high genetic diversity. For example, genetic diversity within the species (Hes) was 0.224 and mean population genetic diversity (Hep) was 0.183. Although small S. leucophylla populations maintained less genetic diversity than larger ones, these differences were not statistically significant. Nonetheless, this suggests that small populations may have lost rare alleles. Statistically significant genetic differentiation among populations was found (theta = 0.192, P < .01), although it was not atypical considering the species' life-history characteristics. A significant correlation (P < .01) between genetic and geographic distance was found, indicating an isolation-by-distance effect. However, the correlation coefficient for this relationship was low (r = 0.46), suggesting that factors other than gene flow play a prominent role in the geographic distribution of genetic diversity within the species. The ex situ population captured most of the allozyme variation found in its source population. PMID:15220390

Wang, Z-F; Hamrick, J L; Godt, M J W

2004-01-01

101

Genetic diversity is positively associated with fine-scale momentary abundance of an invasive ant  

PubMed Central

Many introduced species become invasive despite genetic bottlenecks that should, in theory, decrease the chances of invasion success. By contrast, population genetic bottlenecks have been hypothesized to increase the invasion success of unicolonial ants by increasing the genetic similarity between descendent populations, thus promoting co-operation. We investigated these alternate hypotheses in the unicolonial yellow crazy ant, Anoplolepis gracilipes, which has invaded Arnhem Land in Australia's Northern Territory. We used momentary abundance as a surrogate measure of invasion success, and investigated the relationship between A. gracilipes genetic diversity and its abundance, and the effect of its abundance on species diversity and community structure. We also investigated whether selected habitat characteristics contributed to differences in A. gracilipes abundance, for which we found no evidence. Our results revealed a significant positive association between A. gracilipes genetic diversity and abundance. Invaded communities were less diverse and differed in structure from uninvaded communities, and these effects were stronger as A. gracilipes abundance increased. These results contradict the hypothesis that genetic bottlenecks may promote unicoloniality. However, our A. gracilipes study population has diverged since its introduction, which may have obscured evidence of the bottleneck that would likely have occurred on arrival. The relative importance of genetic diversity to invasion success may be context dependent, and the role of genetic diversity may be more obvious in the absence of highly favorable novel ecological conditions. PMID:23139870

Gruber, Monica A M; Hoffmann, Benjamin D; Ritchie, Peter A; Lester, Philip J

2012-01-01

102

Limited Genetic Diversity of Brucella spp.  

PubMed Central

Multilocus enzyme electrophoresis (MLEE) of 99 Brucella isolates, including the type strains from all recognized species, revealed a very limited genetic diversity and supports the proposal of a monospecific genus. In MLEE-derived dendrograms, Brucella abortus and a marine Brucella sp. grouped into a single electrophoretic type related to Brucella neotomae and Brucella ovis. Brucella suis and Brucella canis formed another cluster linked to Brucella melitensis and related to Rhizobium tropici. The Brucella strains tested that were representatives of the six electrophoretic types had the same rRNA gene restriction fragment length polymorphism patterns and identical ribotypes. All 99 isolates had similar chromosome profiles as revealed by the Eckhardt procedure. PMID:11136777

Gándara, Benjamín; Merino, Ahidé López; Rogel, Marco Antonio; Martínez-Romero, Esperanza

2001-01-01

103

Genetic landscapes GIS Toolbox: tools to map patterns of genetic divergence and diversity.  

USGS Publications Warehouse

The Landscape Genetics GIS Toolbox contains tools that run in the Geographic Information System software, ArcGIS, to map genetic landscapes and to summarize multiple genetic landscapes as average and variance surfaces. These tools can be used to visualize the distribution of genetic diversity across geographic space and to study associations between patterns of genetic diversity and geographic features or other geo-referenced environmental data sets. Together, these tools create genetic landscape surfaces directly from tables containing genetic distance or diversity data and sample location coordinates, greatly reducing the complexity of building and analyzing these raster surfaces in a Geographic Information System.

Vandergast, Amy G.; Perry, William M.; Lugo, Roberto V.; Hathaway, Stacie A.

2011-01-01

104

Genetic diversity and combining ability among sorghum conversion lines  

E-print Network

an estimate of the genetic diversity existing in a set of sorghum conversion lines. The objectives of this study were: (1) to estimate the genetic diversity present among a set of 16 sorghum conversion lines; (2) to classify this set of lines based...

Mateo Moncada, Rafael Arturo

2007-04-25

105

Does genetic diversity hinder parasite evolution in social insect colonies?  

Microsoft Academic Search

Polyandry is often difficult to explain because benefits of the behaviour have proved elusive. In social insects, polyandry increases the genetic diversity of workers within a colony and this has been suggested to improve the resistance of the colony to disease. Here we examine the possible impact of host genetic diversity on parasite evolution by carrying out serial passages of

W. O. H. HUGHES; J. J. BOOMSMA

2005-01-01

106

Genetic diversity among varieties of Chia ( Salvia hispanica L.)  

Microsoft Academic Search

Chia, Salvia hispanica L., was a staple crop in pre-Columbian Mesoamerica. Despite the great potential of the species as an oilseed crop, little research related to domesticated and wild varieties exists. A study was undertaken to assess genetic diversity among 38 wild and domesticated accessions of S. hispanica collected throughout Mesoamerica by using RAPD markers. Genetic diversity was higher among

Cahill P. Joseph

2004-01-01

107

Environmental factors influence both abundance and genetic diversity in a widespread bird species.  

PubMed

Genetic diversity is one of the key evolutionary variables that correlate with population size, being of critical importance for population viability and the persistence of species. Genetic diversity can also have important ecological consequences within populations, and in turn, ecological factors may drive patterns of genetic diversity. However, the relationship between the genetic diversity of a population and how this interacts with ecological processes has so far only been investigated in a few studies. Here, we investigate the link between ecological factors, local population size, and allelic diversity, using a field study of a common bird species, the house sparrow (Passer domesticus). We studied sparrows outside the breeding season in a confined small valley dominated by dispersed farms and small-scale agriculture in southern France. Population surveys at 36 locations revealed that sparrows were more abundant in locations with high food availability. We then captured and genotyped 891 house sparrows at 10 microsatellite loci from a subset of these locations (N = 12). Population genetic analyses revealed weak genetic structure, where each locality represented a distinct substructure within the study area. We found that food availability was the main factor among others tested to influence the genetic structure between locations. These results suggest that ecological factors can have strong impacts on both population size per se and intrapopulation genetic variation even at a small scale. On a more general level, our data indicate that a patchy environment and low dispersal rate can result in fine-scale patterns of genetic diversity. Given the importance of genetic diversity for population viability, combining ecological and genetic data can help to identify factors limiting population size and determine the conservation potential of populations. PMID:24363897

Liu, Yang; Webber, Simone; Bowgen, Katharine; Schmaltz, Lucie; Bradley, Katharine; Halvarsson, Peter; Abdelgadir, Mohanad; Griesser, Michael

2013-11-01

108

Environmental factors influence both abundance and genetic diversity in a widespread bird species  

PubMed Central

Genetic diversity is one of the key evolutionary variables that correlate with population size, being of critical importance for population viability and the persistence of species. Genetic diversity can also have important ecological consequences within populations, and in turn, ecological factors may drive patterns of genetic diversity. However, the relationship between the genetic diversity of a population and how this interacts with ecological processes has so far only been investigated in a few studies. Here, we investigate the link between ecological factors, local population size, and allelic diversity, using a field study of a common bird species, the house sparrow (Passer domesticus). We studied sparrows outside the breeding season in a confined small valley dominated by dispersed farms and small-scale agriculture in southern France. Population surveys at 36 locations revealed that sparrows were more abundant in locations with high food availability. We then captured and genotyped 891 house sparrows at 10 microsatellite loci from a subset of these locations (N = 12). Population genetic analyses revealed weak genetic structure, where each locality represented a distinct substructure within the study area. We found that food availability was the main factor among others tested to influence the genetic structure between locations. These results suggest that ecological factors can have strong impacts on both population size per se and intrapopulation genetic variation even at a small scale. On a more general level, our data indicate that a patchy environment and low dispersal rate can result in fine-scale patterns of genetic diversity. Given the importance of genetic diversity for population viability, combining ecological and genetic data can help to identify factors limiting population size and determine the conservation potential of populations. PMID:24363897

Liu, Yang; Webber, Simone; Bowgen, Katharine; Schmaltz, Lucie; Bradley, Katharine; Halvarsson, Peter; Abdelgadir, Mohanad; Griesser, Michael

2013-01-01

109

Preliminary study of genetic diversity in Swedish flax (Linum usitatissimum)  

Microsoft Academic Search

To investigate the genetic diversity of Linum usitatissimumL. in Sweden, 18 accessions, including 13 cultivars and five landraces, were analysed. This study was based on genetic variation in three enzyme systems (i.e., PGD, GPI and MDH) by using horizontal starch gel electrophoresis. The total genetic diversity of the studied flax material was very high (HT= 0.62). Even though the highest

E. Månsby; O. Díaz; R. von Bothmer

2000-01-01

110

Comparative riverscape genetics reveals reservoirs of genetic diversity for conservation and restoration of Great Plains fishes.  

PubMed

We used comparative landscape genetics to examine the relative roles of historical events, intrinsic traits and landscape factors in determining the distribution of genetic diversity of river fishes across the North American Great Plains. Spatial patterns of diversity were overlaid on a patch-based graphical model and then compared within and among three species that co-occurred across five Great Plains watersheds. Species differing in reproductive strategy (benthic vs. pelagic-spawning) were hypothesized to have different patterns of genetic diversity, but the overriding factor shaping contemporary patterns of diversity was the signature of past climates and geological history. Allelic diversity was significantly higher at southern latitudes for Cyprinella lutrensis and Hybognathus placitus, consistent with northward expansion from southern Pleistocene refugia. Within the historical context, all species exhibited lowered occupancy and abundance in heavily fragmented and drier upstream reaches, particularly H. placitus; a pelagic-spawning species, suggesting rates of extirpation have outpaced losses of genetic diversity in this species. Within most tributary basins, genetically diverse populations of each species persisted. Hence, reconnecting genetically diverse populations with those characterized by reduced diversity (regardless of their position within the riverine network) would provide populations with greater genetic and demographic resilience. We discuss cases where cross-basin transfer may be appropriate to enhance genetic diversity and mitigate negative effects of climate change. Overall, striking similarities in genetic patterns and in response to fragmentation and dewatering suggest a common strategy for genetic resource management in this unique riverine fish assemblage. PMID:25327780

Osborne, Megan J; Perkin, Joshuah S; Gido, Keith B; Turner, Thomas F

2014-12-01

111

Multiple paternity does not depend on male genetic diversity.  

PubMed

Polyandry is common in many species and it has been suggested that females engage in multiple mating to increase the genetic diversity of their offspring (genetic diversity hypothesis). Multiple paternity occurs in 30% of litters in wild populations of house mice, Mus musculus musculus, and multiple-sired litters are genetically more diverse than single-sired ones. Here, we aimed to test whether female house mice produce multiple-sired litters when they have the opportunity to produce genetically diverse litters. We assessed the rates of multiple paternity when females could choose to mate with two males that were genetically dissimilar to each other (i.e. nonsiblings and MHC dissimilar) compared with when females could choose to mate with two males that were genetically similar to each other (i.e. siblings and shared MHC alleles). Multiple mating may depend upon a female's own condition, and, therefore, we also tested whether inbred (from full-sibling matings) females were more likely to produce multiple-sired progeny than outbred controls. Overall we found that 29% of litters had multiple sires, but we found no evidence that females were more likely to produce multiple-sired litters when they had the opportunity to mate with genetically dissimilar males compared with controls, regardless of whether females were inbred or outbred. Thus, our findings do not support the idea that female mice increase multiple paternity when they have the opportunity to increase the genetic diversity of their offspring, as expected from the genetic diversity hypothesis. PMID:25018559

Thonhauser, Kerstin E; Raveh, Shirley; Penn, Dustin J

2014-07-01

112

GEOGRAPHICAL APPROACHES TO CROP CONSERVATION: THE PARTITIONINGOF GENETIC DIVERSITY IN  

E-print Network

GEOGRAPHICAL APPROACHES TO CROP CONSERVATION: THE PARTITIONINGOF GENETIC DIVERSITY IN ANDEAN offer significant contributions to the conservation of crop genetic resources. They are used-geographic concepts. First proposed during the early 1970s, the in situ conservation ofcrop genetic resources merits

Douches, David S.

113

Genetic Diversity and Population Structure Analysis of European Hexaploid Bread Wheat (Triticum aestivum L.)  

E-print Network

Genetic Diversity and Population Structure Analysis of European Hexaploid Bread Wheat (Triticum, Jahoor A (2014) Genetic Diversity and Population Structure Analysis of European Hexaploid Bread Wheat Progress in plant breeding is facilitated by accurate information about genetic structure and diversity

Schierup, Mikkel Heide

114

Genetic relationships between Dioscorea alata L. cultivars  

Microsoft Academic Search

Isozyme variation was studied to determine genetic relationships among 269 cultivars of Dioscorea alata originating from the South Pacific, Asia, Africa and the Caribbean. Four polymorphic enzyme systems (MDH, PGI, SkDH, 6PGD) revealed 66 isozyme phenotypes, or zymotypes, each uniquely characterized by the presence or absence of 27 electromorphs. Identical zymotypes were found to be distributed in different geographical areas

V. Lebot; B. Trilles; J. L. Noyer; J. Modesto

1998-01-01

115

Examining the Relationships among Coaching Staff Diversity, Perceptions of Diversity, Value Congruence, and Life Satisfaction  

ERIC Educational Resources Information Center

The purpose of this study was to examine relationships among coaching staff diversity, perceptions of diversity, value congruence, and life satisfaction. Data were collected from 71 coaching staffs (N = 196 coaches). Observed path analysis was used to examine the study predictions. Results indicate that actual staff diversity was positively…

Cunningham, George B.

2009-01-01

116

Elevated genetic diversity of mitochondrial genes in asexual populations of Bark Lice ('Psocoptera': Echmepteryx hageni).  

PubMed

Asexual reproduction is commonly thought to be associated with low genetic diversity in animals. Echmepteryx hageni (Insecta: 'Psocoptera') is one of several psocopteran species that are primarily parthenogenetic, but also exists in small, isolated sexual populations. We used mitochondrial DNA sequences to investigate the population history and genealogical relationships between the sexual and asexual forms of this species. The asexual population of E. hageni exhibits extremely high mitochondrial haplotype diversity (H=0.98), whereas the sexual forms had significantly lower haplotypic diversity (H=0.25, after correcting for sample size). This diversity in asexuals represents one the greatest genetic diversities reported for asexual animals in the literature. Nucleotide diversities were also higher in asexual compared to sexual populations (?=0.0071 vs. 0.00027). Compared to other reported estimates of ? in insects, asexual nucleotide diversity is high, but not remarkably elevated. Three hypotheses might explain the elevated genetic diversity of asexual populations: (i) larger effective population size, (ii) greater mutation rate or (iii) possible recent origin of sexuals. In addition, phylogeographic analysis revealed little geographic structure among asexual E. hageni, although specimens from the upper Midwest form a single clade and are genetically differentiated. The mismatch distribution and neutrality tests indicate a historical population size increase, possibly associated with expansion from glacial refugia. PMID:21981306

Shreve, Scott M; Mockford, Edward L; Johnson, Kevin P

2011-11-01

117

Low Genetic Differentiation of and Close Evolutionary Relationships between Anas platyrhynchos and Anas poecilorhyncha : RAPD–PCR Evidence  

Microsoft Academic Search

Using RAPD–PCR, we examined genetic diversity and phylogenetic relationships in two groups of river ducks: Anas platyrhynchos, A. poecilorhyncha, A. streperaand A. crecca, A. formosa, A. querquedula. Molecular taxon-specific markers were found for teals (A. crecca, A. formosa, A. querquedula) and gadwall (A. strepera). Each of the species examined was shown to exhibit high genetic diversity. The mean levels of

I. V. Kulikova; G. N. Chelomina; Yu. N. Zhuravlev

2003-01-01

118

[Genetic structure and genetic diversity of Artemisia annua varieties (strains) populations based on SCoT markers].  

PubMed

To reveal the genetic diversity and genetic structure in Artemisia annua varieties (strains) populations, we detected the genetic polymorphism within and among eight varieties (strains) populations (192 individuals) by the approach of Start Codon Targeted Polymorphism (SCoT). The associated genetic parameters were calculated by POPGENE1.31 and the relationship was constructed based on UPGMA method. The results showed that, using 20 screened primers, a total of 145 bands were produced, of which 122 were polymorphic loci. At species level, there was a high level of genetic diversity among eight varieties (strains) populations (PPB = 84.1% ,H = 0.217 3 and H(sp) = 0.341 9). However, at the variety (strains) population level, genetic diversity was lower, the average of genetic parameters was PPB = 41.9%, H = 0.121 5, H(pop) = 0.186 8. The Nei's genetic differentiation coefficient was 0.441 0, indicate that most of the genetic variation in this species existed within the variety populations. The gene flow (N(m) = 0.633 9) was less among populations, indicating that the degree of genetic differentiation was higher. Genetic similarity coefficient were changed from 0.755 1 to 0.985 7. By clustering analysis, eight varieties (strains) were clustered into two major categories and it was also showed the same or similar genetic background varieties (strains) have a tendency to gather in the same group. Results suggest that, in variety breeding, breeders should strengthen the exchange of bred germplasm and increase mutual penetration of excellent genes, which would broaden the genetic base of A. annua. PMID:25522606

Chen, Da-xia; Cui, Guang-lin; Zhang, Xue; Li, Long-yun

2014-09-01

119

Genetic diversity of Clostridium perfringens type A isolates from animals, food poisoning outbreaks and sludge  

Microsoft Academic Search

BACKGROUND: Clostridium perfringens, a serious pathogen, causes enteric diseases in domestic animals and food poisoning in humans. The epidemiological relationship between C. perfringens isolates from the same source has previously been investigated chiefly by pulsed-field gel electrophoresis (PFGE). In this study the genetic diversity of C. perfringens isolated from various animals, from food poisoning outbreaks and from sludge was investigated.

Anders Johansson; Anna Aspan; Elisabeth Bagge; Viveca Båverud; Björn E Engström; Karl-Erik Johansson

2006-01-01

120

Genetic Diversity of Bacillus cereus \\/ B. thuringiensis Isolates from Natural Sources  

Microsoft Academic Search

.   The genetic diversity and relationships among 154 Bacillus cereus\\/B. thuringiensis isolates recovered from soil samples from five geographic areas in Norway were investigated with multilocus enzyme electrophoresis\\u000a (MEE). Cluster analysis revealed two major groups (designated cluster I and cluster II) separated at genetic distance greater\\u000a than 0.55. Cluster I included 62 electrophoretic types (ETs) originating from all five locations,

Erlendur Helgason; Dominique A. Caugant; Marguerite-M. Lecadet; Yahua Chen; Jacques Mahillon; Ann Lövgren; Ida Hegna; Kirsti Kvaløy; Anne-Brit Kolstø

1998-01-01

121

HLA class II Genetic Diversity in Arabs and Jews of Iran  

Microsoft Academic Search

Background: Anthropological studies based on highly polymorphic HLA genes pro- vide useful information for bone marrow donor registry, forensic medicine, disease as- sociation studies, as well as designing peptide vaccines against tumors, and infectious or autoimmune diseases. Objective: This study was designed to investigate the genetic relationship of Iranian Arabs and Jews using HLA-class II genetic diversity Methods: HLA-DRB1, DQA1,

Shirin Farjadian; Abbas Ghaderi

122

Surviving with low genetic diversity: the case of albatrosses  

PubMed Central

Low genetic diversity is predicted to negatively impact species viability and has been a central concern for conservation. In contrast, the possibility that some species may thrive in spite of a relatively poor diversity has received little attention. The wandering and Amsterdam albatrosses (Diomedea exulans and Diomedea amsterdamensis) are long-lived seabirds standing at an extreme along the gradient of life strategies, having traits that may favour inbreeding and low genetic diversity. Divergence time of the two species is estimated at 0.84?Myr ago from cytochrome b data. We tested the hypothesis that both albatrosses inherited poor genetic diversity from their common ancestor. Within the wandering albatross, per cent polymorphic loci and expected heterozygosity at amplified fragment length polymorphisms were approximately one-third of the minimal values reported in other vertebrates. Genetic diversity in the Amsterdam albatross, which is recovering from a severe bottleneck, was about twice as low as in the wandering albatross. Simulations supported the hypothesis that genetic diversity in albatrosses was already depleted prior to their divergence. Given the generally high breeding success of these species, it is likely that they are not suffering much from their impoverished diversity. Whether albatrosses are unique in this regard is unknown, but they appear to challenge the classical view about the negative consequences of genetic depletion on species survival. PMID:17251114

Milot, Emmanuel; Weimerskirch, Henri; Duchesne, Pierre; Bernatchez, Louis

2007-01-01

123

Contrasting patterns of genetic diversity at three different genetic markers in a marine mammal metapopulation  

E-print Network

microsatellites or mtDNA. Keywords: amplified fragment length polymorphism (AFLP), conservation genetics, demograContrasting patterns of genetic diversity at three different genetic markers in a marine mammal, WA 99815-6349, USA Abstract Many studies use genetic markers to explore population structure

Dasmahapatra, Kanchon

124

Assessment of Genetic Diversity in Seed Plants Based on a Uniform ? Criterion.  

PubMed

Despite substantial advances in genotyping techniques and massively accumulated data over the past half century, a uniform measurement of neutral genetic diversity derived by different molecular markers across a wide taxonomical range has not yet been formulated. We collected genetic diversity data on seed plants derived by AFLP, allozyme, ISSR, RAPD, SSR and nucleotide sequences, converted expected heterozygosity (He) to nucleotide diversity (?), and reassessed the relationship between plant genetic diversity and life history traits or extinction risk. We successfully established a uniform ? criterion and developed a comprehensive plant genetic diversity database. The mean population-level and species-level ? values across seed plants were 0.00374 (966 taxa, 155 families, 47 orders) and 0.00569 (728 taxa, 130 families, 46 orders), respectively. Significant differences were recovered for breeding system (p < 0.001) at the population level and geographic range (p = 0.023) at the species level. Selfing taxa had significantly lower ? values than outcrossing and mixed-mating taxa, whereas narrowly distributed taxa had significantly lower ? values than widely distributed taxa. Despite significant differences between the two extreme threat categories (critically endangered and least concern), the genetic diversity reduction on the way to extinction was difficult to detect in early stages. PMID:25470277

Ai, Bin; Kang, Ming; Huang, Hongwen

2014-01-01

125

The Role of Propagule Pressure, Genetic Diversity and Microsite Availability for Senecio vernalis Invasion  

PubMed Central

Genetic diversity is supposed to support the colonization success of expanding species, in particular in situations where microsite availability is constrained. Addressing the role of genetic diversity in plant invasion experimentally requires its manipulation independent of propagule pressure. To assess the relative importance of these components for the invasion of Senecio vernalis, we created propagule mixtures of four levels of genotype diversity by combining seeds across remote populations, across proximate populations, within single populations and within seed families. In a first container experiment with constant Festuca rupicola density as matrix, genotype diversity was crossed with three levels of seed density. In a second experiment, we tested for effects of establishment limitation and genotype diversity by manipulating Festuca densities. Increasing genetic diversity had no effects on abundance and biomass of S. vernalis but positively affected the proportion of large individuals to small individuals. Mixtures composed from proximate populations had a significantly higher proportion of large individuals than mixtures composed from within seed families only. High propagule pressure increased emergence and establishment of S. vernalis but had no effect on individual growth performance. Establishment was favoured in containers with Festuca, but performance of surviving seedlings was higher in open soil treatments. For S. vernalis invasion, we found a shift in driving factors from density dependence to effects of genetic diversity across life stages. While initial abundance was mostly linked to the amount of seed input, genetic diversity, in contrast, affected later stages of colonization probably via sampling effects and seemed to contribute to filtering the genotypes that finally grew up. In consequence, when disentangling the mechanistic relationships of genetic diversity, seed density and microsite limitation in colonization of invasive plants, a clear differentiation between initial emergence and subsequent survival to juvenile and adult stages is required. PMID:23437301

Erfmeier, Alexandra; Hantsch, Lydia; Bruelheide, Helge

2013-01-01

126

Stress-related hormones and genetic diversity in sea otters (Enhydra lutris)  

USGS Publications Warehouse

Sea otters (Enhydra lutris) once ranged throughout the coastal regions of the north Pacific, but were extirpated throughout their range during the fur trade of the 18th and 19th centuries, leaving only small, widely scattered, remnant populations. All extant sea otter populations are believed to have experienced a population bottleneck and thus have lost genetic variation. Populations that undergo severe population reduction and associated inbreeding may suffer from a general reduction in fitness termed inbreeding depression. Inbreeding depression may result in decreased testosterone levels in males, and reduced ability to respond to stressful stimuli associated with an increase in the stress-related adrenal glucocorticoid hormones, cortisol and corticosterone. We investigated correlations of testosterone, cortisol, and corticosterone with genetic diversity in sea otters from five populations. We found a significant negative correlation between genetic diversity and both mean population-level (r2 = 0.27, P < 0.001) and individual-level (r2 = 0.54, P < 0.001) corticosterone values, as well as a negative correlation between genetic diversity and cortisol at the individual level (r2 = 0.17, P = 0.04). No relationship was found between genetic diversity and testosterone (P = 0.57). The strength of the correlations, especially with corticosterone, suggests potential negative consequences for overall population health, particularly for populations with the lowest genetic diversity. ?? 2009 by the Society for Marine Mammalogy.

Larson, S.; Monson, D.; Ballachey, B.; Jameson, R.; Wasser, S.K.

2009-01-01

127

AFRICANS AND ASIANS ABROAD: Genetic Diversity in Europe  

Microsoft Academic Search

? Abstract Besides its obvious intrinsic value, knowledge of population history, and of the demographic and evolutionary changes that accompany it, has proven funda- mental to address applied research in human,genetics. In this review we place current European genetic diversity in the context of the global human,genome,diversity and review,the evidence,supporting,a recent African origin of the Europeans. We then discuss the

Guido Barbujani; David B. Goldstein

2004-01-01

128

Genetic Resources and the Convention on Biological Diversity  

NSDL National Science Digital Library

This peer-reviewed article from BioScience is about effect the convention on biological diversity had on US genetic resources. At a meeting in Brazil in March, the Convention on Biological Diversity moved a step closer to finalizing an international regulatory regime for access to and benefit sharing of genetic resources. Discussions now under way will be influential in determining policies governing biodiversity research and bioprospecting.

RICHARD BLAUSTEIN (;)

2006-07-01

129

Late Quaternary loss of genetic diversity in muskox (Ovibos)  

Microsoft Academic Search

BACKGROUND: The modern wildherd of the tundra muskox (Ovibos moschatus) is native only to the New World (northern North America and Greenland), and its genetic diversity is notably low. However, like several other megafaunal mammals, muskoxen enjoyed a holarctic distribution during the late Pleistocene. To investigate whether collapse in range and loss of diversity might be correlated, we collected mitochondrial

Ross DE MacPhee; Alexei N Tikhonov; Dick Mol; Alex D Greenwood

2005-01-01

130

Symbiotic and Genetic Diversity of Rhizobium galegae Isolates Collected from the Galega orientalis Gene Center in the Caucasus  

Microsoft Academic Search

This paper explores the relationship between the genetic diversity of rhizobia and the morphological diversity of their plant hosts. Rhizobium galegae strains were isolated from nodules of wild Galega orientalis and Galega officinalis in the Caucasus, the center of origin for G. orientalis. All 101 isolates were characterized by genomic amplified fragment length polymorphism fingerprinting and by PCR-restriction fragment length

E. E. Andronov; Z. Terefework; M. L. Roumiantseva; N. I. Dzyubenko; O. P. Onichtchouk; O. N. Kurchak; A. Dresler-Nurmi; J. P. W. Young; B. V. Simarov; K. Lindstrom

2003-01-01

131

Benefits of host genetic diversity for resistance to infection depend on parasite diversity  

PubMed Central

Host populations with high genetic diversity are predicted to have lower levels of infection prevalence. This theory assumes that host genetic diversity results in variation in susceptibility and that parasites exhibit variation in infectivity. Empirical studies on the effects of host heterogeneity typically neglect the role of parasite diversity. We conducted three laboratory experiments designed to test if genetic variation in Daphnia magna populations and genetic variation in its parasites together influence the course of parasite spread after introduction. We found that a natural D. magna population exhibited variation in susceptibility to infection by three parasite species and had strong host clone–parasite species interactions. There was no effect of host heterogeneity in experimental host populations (polycultures and monocultures) separately exposed to single strains of three parasite species. When we manipulated the genetic diversity of a single parasite species and exposed them to host monocultures and polycultures, we found that parasite prevalence increased with the number of parasite strains. Host monocultures exposed to several parasite strains had higher mean parasite prevalence and higher variance than polycultures. These results indicate that effect of host genetic diversity on the spread of infection depends on the level of genetic diversity in the parasite population. PMID:20503859

Ganz, Holly H.; Ebert, Dieter

2011-01-01

132

DEFINING TURTLE DIVERSITY PROCEEDINGS OF A WORKSHOP ON GENETICS, ETHICS,  

E-print Network

DEFINING TURTLE DIVERSITY PROCEEDINGS OF A WORKSHOP ON GENETICS, ETHICS, AND TAXONOMY OF FRESHWATER TURTLES AND TORTOISES CAMBRIDGE, MASSACHUSETTS, 8­12 AUGUST 2005 EDITED BY H. BRADLEY SHAFFER, ARTHUR and Freshwater Turtle Specialist Group #12;Preface Genetics. Conservation. Genomics. Systematics. Ethics

Canberra, University of

133

Historical origins and genetic diversity of wine grapes  

Microsoft Academic Search

Thegenomicresourcesthatareavailabletothegrapevine research community have increased enormously during the past five years, in parallel with a renewed interest in grapevine (Vitis vinifera L.) germplasm resources and analysis of genetic diversity in grapes. Genetic variation, either natural or induced, is invaluable for crop improvement and understanding gene function, and the same is true for the grapevine. The history and vineyard cultural practices

Patrice This; Thierry Lacombe; Mark R. Thomas

2006-01-01

134

The Influence of Recombination on Human Genetic Diversity  

E-print Network

of recombination on human genetic diversity. PLoS Genet 2(9): e148. DOI: 10.1371/ journal.pgen.0020148 Introduction The extent to which adaptive evolution has shaped the recent evolutionary history of humans is much debated since the human-chimpanzee split is unknown. However, adaptive evolution is also expected to leave its

Nachman, Michael

135

Genetic diversity of Toxoplama gondii isolates from Ethiopian feral cats  

Technology Transfer Automated Retrieval System (TEKTRAN)

Recent studies indicate greater genetic variability among isolates of Toxoplasma gondii worldwide than previously thought. However, there is no information on genetic diversity of T. gondii from any host in Ethiopia. In the present study, genotyping was performed on viable T. gondii isolates by bioa...

136

Postcopulatory Sexual Selection Reduces Genetic Diversity in Experimental  

E-print Network

Postcopulatory Sexual Selection Reduces Genetic Diversity in Experimental PopulationsMunyon at the address above, or e-mail: cwlamunyon@csupomona.edu. Abstract Postcopulatory sexual selection affects populations. By inference, we conclude that genetic hitchhiking due to sexual selection in the experimental

Cutter, Asher D.

137

Effects of genetic impoverishment on plant community diversity  

Microsoft Academic Search

Summary 1 Established individuals removed at random from populations of 11 long-lived herbaceous species coexisting in a local area of ancient limestone pasture at Cress- brookdale in North Derbyshire were subjected to clonal propagation to produce stocks of genetically identical individuals sufficient to create 36 model communities identical in species composition but widely contrasted in genetic diversity. 2 Three levels

Rosemary E. Booth; J. Philip Grime

2003-01-01

138

The Kuroshio Current influences genetic diversity and population genetic structure of a tropical seagrass, Enhalus acoroides.  

PubMed

Information on genetic diversity and differentiation of seagrass populations is essential for the conservation of coastal ecosystems. However, little is known about the seagrasses in the Indo-West Pacific Ocean, where the world's highest diversity of seagrasses occurs. The influence of sea currents on these populations is also unknown. We estimated the genetic diversity and population genetic structure and identified reproductive features in Enhalus acoroides populations from the Yaeyama Islands, Hainan Island and the Philippines. The Philippines are situated at the centre of the E. acoroides range, Yaeyama and Hainan are peripheral populations, and the Yaeyama population is at the northern limit of the species range. The powerful Kuroshio Current flows from the Philippines to Yaeyama. Genetic analyses using nine microsatellite markers indicated that reproduction of E. acoroides is mostly sexual. Clonal diversity does not decrease in northern populations, although genetic diversity does. However, the genetic diversity of the Yaeyama populations is greater than that of the Hainan populations. Significant genetic differentiation among most populations was evident; however, the Yaeyama and north-east Philippines populations were genetically similar, despite being separated by ~1100 km. An assignment test suggested that recruitment occurs from the north-east Philippines to Yaeyama. The strong current in this region is probably responsible for the extant genetic diversity and recruitment patterns. PMID:25384848

Nakajima, Yuichi; Matsuki, Yu; Lian, Chunlan; Fortes, Miguel D; Uy, Wilfredo H; Campos, Wilfredo L; Nakaoka, Masahiro; Nadaoka, Kazuo

2014-12-01

139

Aggregate diversity: New approach combining within- and between-breed genetic diversity  

Microsoft Academic Search

Between-breed genetic diversity is classically considered as a major criterion to be taken into account when setting priorities for conservation of domestic animal breeds. However, it has been argued that methods based on the between-breed component of genetic diversity may not be optimal because they ignore the within-breed component of variation. The paper considers the most common methods used to

Louis Ollivier; Jean-Louis Foulley

2005-01-01

140

Genetic diversity measures of local European beef cattle breeds for conservation purposes  

PubMed Central

This study was undertaken to determine the genetic structure, evolutionary relationships, and the genetic diversity among 18 local cattle breeds from Spain, Portugal, and France using 16 microsatellites. Heterozygosities, estimates of Fst, genetic distances, multivariate and diversity analyses, and assignment tests were performed. Heterozygosities ranged from 0.54 in the Pirenaica breed to 0.72 in the Barrosã breed. Seven percent of the total genetic variability can be attributed to differences among breeds (mean Fst = 0.07; P < 0.01). Five different genetic distances were computed and compared with no correlation found to be significantly different from 0 between distances based on the effective size of the population and those which use the size of the alleles. The Weitzman recursive approach and a multivariate analysis were used to measure the contribution of the breeds diversity. The Weitzman approach suggests that the most important breeds to be preserved are those grouped into two clusters: the cluster formed by the Mirandesa and Alistana breeds and that of the Sayaguesa and Tudanca breeds. The hypothetical extinction of one of those clusters represents a 17% loss of diversity. A correspondence analysis not only distinguished four breed groups but also confirmed results of previous studies classifying the important breeds contributing to diversity. In addition, the variation between breeds was sufficiently high so as to allow individuals to be assigned to their breed of origin with a probability of 99% for simulated samples. PMID:11403750

Cañón, Javier; Alexandrino, Paolo; Bessa, Isabel; Carleos, Carlos; Carretero, Yolanda; Dunner, Susana; Ferran, Nuno; Garcia, David; Jordana, Jordi; Laloë, Denis; Pereira, Albano; Sanchez, Armand; Moazami-Goudarzi, Katayoun

2001-01-01

141

Limited Genetic Diversity in the Endophytic Sugarcane Bacterium Acetobacter diazotrophicus  

PubMed Central

Acetobacter diazotrophicus isolates that originated from different sugarcane cultivars growing in diverse geographic regions of Mexico and Brazil were shown to have limited genetic diversity. Measurements of polymorphism in the electrophoretic mobilities of metabolic enzymes revealed that the mean genetic diversity per enzyme locus (among the four electrophoretic types distinguished) was 0.064. The results of the genetic analysis indicate that the genetic structure of A. diazotrophicus is clonal, with one largely predominant clone. Plasmids were present in 20 of 24 isolates, and the molecular sizes of the plasmids ranged from 2.0 to 170 kb. Two plasmids (a 20- to 24-kb plasmid detected in all 20 plasmid-containing isolates and a 170-kb plasmid observed in 14 isolates) were highly conserved among the isolates examined. Regardless of the presence of plasmids, all of the isolates shared a common pattern of nif structural gene organization on the chromosome. Images PMID:16349254

Caballero-Mellado, Jesus; Martinez-Romero, Esperanza

1994-01-01

142

Biased morph ratios and skewed mating success contribute to loss of genetic diversity in the distylous Pulmonaria officinalis  

PubMed Central

Background and Aims In heterostylous plant species, skewed morph ratios are not uncommon and may arise from a range of factors. Despite the recognized importance of skewed morph ratios on overall reproductive success within populations, little is known about the impact of skewed morph ratios on population genetic diversity and differentiation in heterostylous species. This study specifically aimed to clarify the effect of population size and morph bias on population genetic diversity and differentiation in the temperate forest herb Pulmonaria officinalis. This species is characterized by a distylous breeding system and shows morph-specific differences in reproductive success. Methods Genetic diversity was determined for 27 P. officinalis populations in northern Belgium by using eight recently developed microsatellite markers. Multiple regressions were used to assess the relationship between genetic diversity, morph bias and population size, and FST-values were calculated for short- and long-styled morphs separately to study genetic differentiation as a function of morph type. Key Results For all genetic measures used, morph bias was more important in explaining patterns of genetic diversity than population size, and in all cases patterns of population genetic diversity followed a quadratic function, which showed a symmetrical decrease in genetic diversity with increasing morph bias. However, probably due to the reproductive advantage of L-morphs relative to S-morphs, maximum genetic diversity was found in populations showing an excess of L-morphs (60·7 % L-morph). On the other hand, no significant difference in pairwise genetic distances between populations was observed between L- (0·107) and S-morphs (0·106). Conclusions Our results indicate that significant deviations from equal morph ratios not only affect plant reproductive success but also population genetic diversity of heterostylous plant species. Hence, when defining conservation measures for populations of heterostylous plant species, morph ratios should be considered as an important trait affecting their long-term population viability. PMID:22021814

Meeus, Sofie; Honnay, Olivier; Brys, Rein; Jacquemyn, Hans

2012-01-01

143

Genetic Diversity in Cotton Out-Crossing  

Technology Transfer Automated Retrieval System (TEKTRAN)

Previously we have reported on the finding of genetic differences in the abiotic stress tolerance of cotton pollen. Genetic differences in sensitivity to humidity were observed impacting pollen survival in dry environments. The present study evaluated out-crossing rates in cotton lines whose polle...

144

Assessment of genetic diversity of sweet potato in puerto rico.  

PubMed

Sweet potato (Ipomoea batatas L.) is the seventh most important food crop due to its distinct advantages, such as adaptability to different environmental conditions and high nutritional value. Assessing the genetic diversity of this important crop is necessary due to the constant increase of demand for food and the need for conservation of agricultural and genetic resources. In Puerto Rico (PR), the genetic diversity of sweet potato has been poorly understood, although it has been part of the diet since Pre-Columbus time. Thus, 137 landraces from different localities around PR were collected and subjected to a genetic diversity analysis using 23 SSR-markers. In addition, 8 accessions from a collection grown in Gurabo, PR at the Agricultural Experimental Station (GAES), 10 US commercial cultivars and 12 Puerto Rican accessions from the USDA repository collection were included in this assessment. The results of the analysis of the 23 loci showed 255 alleles in the 167 samples. Observed heterozygosity was high across populations (0.71) while measurements of total heterozygosity revealed a large genetic diversity throughout the population and within populations. UPGMA clustering method revealed two main clusters. Cluster 1 contained 12 PR accessions from the USDA repository collection, while cluster 2 consisted of PR landraces, US commercial cultivars and the PR accessions from GAES. Population structure analysis grouped PR landraces in five groups including four US commercial cultivars. Our study shows the presence of a high level of genetic diversity of sweet potato across PR which can be related to the genetic makeup of sweet potato, human intervention and out-crossing nature of the plant. The history of domestication and dispersal of sweet potato in the Caribbean and the high levels of genetic diversity found through this study makes sweet potato an invaluable resource that needs to be protected and further studied. PMID:25551388

Rodriguez-Bonilla, Lorraine; Cuevas, Hugo E; Montero-Rojas, Milly; Bird-Pico, Fernando; Luciano-Rosario, Dianiris; Siritunga, Dimuth

2014-01-01

145

Assessment of Genetic Diversity of Sweet Potato in Puerto Rico  

PubMed Central

Sweet potato (Ipomoea batatas L.) is the seventh most important food crop due to its distinct advantages, such as adaptability to different environmental conditions and high nutritional value. Assessing the genetic diversity of this important crop is necessary due to the constant increase of demand for food and the need for conservation of agricultural and genetic resources. In Puerto Rico (PR), the genetic diversity of sweet potato has been poorly understood, although it has been part of the diet since Pre-Columbus time. Thus, 137 landraces from different localities around PR were collected and subjected to a genetic diversity analysis using 23 SSR-markers. In addition, 8 accessions from a collection grown in Gurabo, PR at the Agricultural Experimental Station (GAES), 10 US commercial cultivars and 12 Puerto Rican accessions from the USDA repository collection were included in this assessment. The results of the analysis of the 23 loci showed 255 alleles in the 167 samples. Observed heterozygosity was high across populations (0.71) while measurements of total heterozygosity revealed a large genetic diversity throughout the population and within populations. UPGMA clustering method revealed two main clusters. Cluster 1 contained 12 PR accessions from the USDA repository collection, while cluster 2 consisted of PR landraces, US commercial cultivars and the PR accessions from GAES. Population structure analysis grouped PR landraces in five groups including four US commercial cultivars. Our study shows the presence of a high level of genetic diversity of sweet potato across PR which can be related to the genetic makeup of sweet potato, human intervention and out-crossing nature of the plant. The history of domestication and dispersal of sweet potato in the Caribbean and the high levels of genetic diversity found through this study makes sweet potato an invaluable resource that needs to be protected and further studied. PMID:25551388

Rodriguez-Bonilla, Lorraine; Cuevas, Hugo E.; Montero-Rojas, Milly; Bird-Pico, Fernando; Luciano-Rosario, Dianiris; Siritunga, Dimuth

2014-01-01

146

Microsatellites as Indicators of Genetic Diversity in Natural Populations of Black Walnut (Juglans nigra L.)  

E-print Network

Microsatellites as Indicators of Genetic Diversity in Natural Populations of Black Walnut (Juglans #12;Introduction Introduction Black walnut is an important species ecologically, culturally Indiana populations to describe black walnut genetic diversity and how black walnut partitions its genetic

147

Plant Chitinases: Genetic Diversity and Physiological Roles  

Microsoft Academic Search

Chitinase proteins are widely distributed across diverse biological systems. Chitinases hydrolyze chitin, chitosan, lipochitooligosaccharides, peptidoglycan, arabinogalactan and glycoproteins containing N-acetylglucosamine. Analyses of genome-wide sequence and microarray expression profilings show that chitinase genes are represented by large families and the individual member genes are expressed in diverse conditions. Chitinase proteins are members in the group of the pathogenesis-related proteins that are

Anita Grover

2012-01-01

148

[Evolutionary process unveiled by the maximum genetic diversity hypothesis].  

PubMed

As two major popular theories to explain evolutionary facts, the neutral theory and Neo-Darwinism, despite their proven virtues in certain areas, still fail to offer comprehensive explanations to such fundamental evolutionary phenomena as the genetic equidistance result, abundant overlap sites, increase in complexity over time, incomplete understanding of genetic diversity, and inconsistencies with fossil and archaeological records. Maximum genetic diversity hypothesis (MGD), however, constructs a more complete evolutionary genetics theory that incorporates all of the proven virtues of existing theories and adds to them the novel concept of a maximum or optimum limit on genetic distance or diversity. It has yet to meet a contradiction and explained for the first time the half-century old Genetic Equidistance phenomenon as well as most other major evolutionary facts. It provides practical and quantitative ways of studying complexity. Molecular interpretation using MGD-based methods reveal novel insights on the origins of humans and other primates that are consistent with fossil evidence and common sense, and reestablished the important role of China in the evolution of humans. MGD theory has also uncovered an important genetic mechanism in the construction of complex traits and the pathogenesis of complex diseases. We here made a series of sequence comparisons among yeasts, fishes and primates to illustrate the concept of limit on genetic distance. The idea of limit or optimum is in line with the yin-yang paradigm in the traditional Chinese view of the universal creative law in nature. PMID:23732666

Huang, Yi-Min; Xia, Meng-Ying; Huang, Shi

2013-05-01

149

Analysis of genetic diversity and differentiation of seven stocks of Litopenaeus vannamei using microsatellite markers  

NASA Astrophysics Data System (ADS)

Seven microsatellite markers were used to evaluate the genetic diversity and differentiation of seven stocks of Litopenaeus vannamei, which were introduced from Central and South America to China. All seven microsatellite loci were polymorphic, with polymorphism information content ( PIC) values ranging from 0.593 to 0.952. Totally 92 alleles were identified, and the number of alleles ( Na) and effective alleles ( Ne) varied between 4 and 21 and 2.7 and 14.6, respectively. Observed heterozygosity ( H o) values were lower than the expected heterozygosity ( H e) values (0.526-0.754), which indicated that the seven stocks possessed a rich genetic diversity. Thirty-seven tests were detected for reasonable significant deviation from Hardy-Weinberg equilibrium. F is values were positive at five loci, suggesting that there was a relatively high degree of inbreeding within stocks. Pairwise F st values ranged from 0.0225 to 0.151, and most of the stock pairs were moderately differentiated. Genetic distance and cluster analysis using UPGMA revealed a close genetic relationship of L. vannamei between Pop2 and Pop3. AMOVA indicated that the genetic variation among stocks (11.3%) was much lower than that within stocks (88.7%). Although the seven stocks had a certain degree of genetic differentiation and a rich genetic diversity, there is an increasing risk of decreased performance due to inbreeding in subsequent generations.

Zhang, Kai; Wang, Weiji; Li, Weiya; Zhang, Quanqi; Kong, Jie

2014-08-01

150

Clonal structure and genetic diversity of three desert phreatophytes.  

PubMed

The objective of this paper was to assess clone sizes of three perennial desert plant species with AFLP markers and to relate them to clonal and genetic diversity and to hydroecology. The study was carried out at the southern rim of the Taklamakan Desert, where sexual regeneration is only possible shortly after rare flooding events, resulting in rarely established cohorts with subsequent extensive vertical growth and horizontal clonal spread. In this environment, repeated seedling establishment is excluded. We expected decreasing clonal and genetic diversity with increasing clone size and increasing distance to the groundwater table and a common response pattern among all study species. Maximum sizes of Populus euphratica and Alhagi sparsifolia clones were 121 ha and 6.1 ha, respectively, while Tamarix ramosissima clones reached a maximum size of only 38 m(2). In P. euphratica and A. sparsifolia, clonal diversity declined with increasing clone size and increasing distance to the groundwater table, while genetic diversity remained unaffected. Tamarix ramosissima differed from the other species because of a much smaller clonality. Clone size and clonal diversity were found to be good proxy variables for clone age. Despite the considerable age of the clones, genetic diversity is maintained in the populations. PMID:21622383

Vonlanthen, Beatrix; Zhang, Ximing; Bruelheide, Helge

2010-02-01

151

Genetic Diversity of Vietnamese Pig Breeds  

Microsoft Academic Search

Directed selection for economically desirable traits can lead to genetic erosion of individual breeds. A genetic base thus\\u000a diminished is likely to limit the potential for improving production characteristics that may be vital for sustainable agricultural\\u000a systems in the future. According to the FAO inventory 55% of the world’s pigs are located in the Asian and Pacific region,\\u000a representing 37%

Nguyen Thi Dieu Thuy; E. Melchinger; Andreas W. Kuss; T. Peischl; Heinz Bartenschlager; V. C. Nguyen; Hermann Geldermann

152

The genetic basis of delay discounting and its genetic relationship to alcohol dependence  

Microsoft Academic Search

Delay discounting is steeper for individuals who drink heavily or are alcohol dependent, but the reasons for this are unclear. Given the substantial genetic component for alcohol dependence it is not unreasonable to ask whether discounting and alcohol dependence have a genetic relationship. For there to be a genetic relationship, delay discounting must have a genetic component (heritability). A review

Suzanne H. Mitchell

2011-01-01

153

Admixture and the organization of genetic diversity in a butterfly species complex revealed through common and rare genetic variants.  

PubMed

Detailed information about the geographic distribution of genetic and genomic variation is necessary to better understand the organization and structure of biological diversity. In particular, spatial isolation within species and hybridization between them can blur species boundaries and create evolutionary relationships that are inconsistent with a strictly bifurcating tree model. Here, we analyse genome-wide DNA sequence and genetic ancestry variation in Lycaeides butterflies to quantify the effects of admixture and spatial isolation on how biological diversity is organized in this group. We document geographically widespread and pervasive historical admixture, with more restricted recent hybridization. This includes evidence supporting previously known and unknown instances of admixture. The genome composition of admixed individuals varies much more among than within populations, and tree- and genetic ancestry-based analyses indicate that multiple distinct admixed lineages or populations exist. We find that most genetic variants in Lycaeides are rare (minor allele frequency <0.5%). Because the spatial and taxonomic distributions of alleles reflect demographic and selective processes since mutation, rare alleles, which are presumably younger than common alleles, were spatially and taxonomically restricted compared with common variants. Thus, we show patterns of genetic variation in this group are multifaceted, and we argue that this complexity challenges simplistic notions concerning the organization of biological diversity into discrete, easily delineated and hierarchically structured entities. PMID:24866941

Gompert, Zachariah; Lucas, Lauren K; Buerkle, C Alex; Forister, Matthew L; Fordyce, James A; Nice, Chris C

2014-09-01

154

Comparative analysis of genetic diversity in sacred lotus (Nelumbo nucifera Gaertn.) using AFLP and SSR markers.  

PubMed

The sacred lotus (Nelumbo nucifera Gaertn.) is an aquatic plant of economic and ornamental importance in China. In this study, we developed twenty novel sacred lotus SSR markers, and used AFLP and SSR markers to investigate the genetic diversity and genetic relationships among 58 accessions of N. nucifera including 15 seed lotus, 12 rhizome lotus, 24 flower lotus and 7 wild lotus. Our results showed that sacred lotus exhibited a low level of genetic diversity, which may attribute to asexual reproduction and long-term artificial selection. A dendrogram based on both AFLP and SSR clustering data showed that: (1) the seed lotus accessions and rhizome lotus accessions were distinctly clustered into different groups, which indicated the significant genetic differentiation between them. This may be attributed to the two modes of reproduction and lack of genetic exchange; (2) the accessions of Thailand wild lotus were separated from other wild lotus accessions. This implied that the Thailand lotus might be genetically differentiated from other wild lotuses. In addition, Mantel test conducted gave highly significant correlation between AFLP-SSR data and each of the AFLP and SSR ones, with the values of r = 0.941 and r = 0.879, respectively, indicating the higher efficiency of the combination of these techniques (AFLP and SSR) in estimation and validation of the genetic diversity among the accession of sacred lotus. This knowledge of the genetic diversity and genetic relatedness of N. nucifera is potentially useful to improve the current strategies in breeding and germplasm conservation to enhance the ornamental and economic value of sacred lotus. PMID:21735103

Hu, Jihong; Pan, Lei; Liu, Honggao; Wang, Shuzhen; Wu, Zhihua; Ke, Weidong; Ding, Yi

2012-04-01

155

Genetic diversity analysis among collected purslane (Portulaca oleracea L.) accessions using ISSR markers.  

PubMed

Genetic diversity and relationships among 45 collected purslane accessions were evaluated using ISSR markers. The 28 primers gave a total of 167 bands, among which 163 were polymorphic (97.6%). The genetic diversity as estimated by Shannon's information index was 0.513, revealing a quite high level of genetic diversity in the germplasm. The average number of observed allele, effective allele, expected heterozygosity, polymorphic information content (PIC) and Nei's index were 5.96, 1.59, 0.43, 0.35 and 0.35, respectively. The UPGMA dendrogram based on Nei's genetic distance grouped the whole germplasm into 7 distinct clusters. The analysis of molecular variance (AMOVA) revealed that 89% of total variation occurred within population, while 11% were found among populations. Based on the constructed dendrogram using ISSR markers those accessions that are far from each other by virtue of genetic origin and diversity index (like Ac1 and Ac42; Ac19 and Ac45; Ac9 and Ac23; Ac18 and A25; Ac24 and Ac18) are strongly recommended to select as parent for future breeding program to develop high yielding and stress tolerant purslane variety in contribution to global food security. PMID:25468001

Alam, M Amirul; Juraimi, Abdul Shukor; Rafii, Mohd Yusop; Hamid, Azizah Abdul; Arolu, Ibrahim Wasiu; Abdul Latif, M

2015-01-01

156

Structural Diversity and Close Interracial Relationships in College  

ERIC Educational Resources Information Center

Recent legal and political actions have challenged the use of race-conscious college admissions policies. Earlier research offers mixed evidence about the link between an institution's racial/ethnic composition (i.e., structural diversity) and the formation of close interracial relationships, so the present study examines this topic directly for…

Bowman, Nicholas A.

2012-01-01

157

Genome-wide genetic diversity, population structure and admixture analysis in African and Asian cattle breeds.  

PubMed

Knowledge about genetic diversity and population structure is useful for designing effective strategies to improve the production, management and conservation of farm animal genetic resources. Here, we present a comprehensive genome-wide analysis of genetic diversity, population structure and admixture based on 244 animals sampled from 10 cattle populations in Asia and Africa and genotyped for 69 903 autosomal single-nucleotide polymorphisms (SNPs) mainly derived from the indicine breed. Principal component analysis, STRUCTURE and distance analysis from high-density SNP data clearly revealed that the largest genetic difference occurred between the two domestic lineages (taurine and indicine), whereas Ethiopian cattle populations represent a mosaic of the humped zebu and taurine. Estimation of the genetic influence of zebu and taurine revealed that Ethiopian cattle were characterized by considerable levels of introgression from South Asian zebu, whereas Bangladeshi populations shared very low taurine ancestry. The relationships among Ethiopian cattle populations reflect their history of origin and admixture rather than phenotype-based distinctions. The high within-individual genetic variability observed in Ethiopian cattle represents an untapped opportunity for adaptation to changing environments and for implementation of within-breed genetic improvement schemes. Our results provide a basis for future applications of genome-wide SNP data to exploit the unique genetic makeup of indigenous cattle breeds and to facilitate their improvement and conservation. PMID:25359181

Edea, Z; Bhuiyan, M S A; Dessie, T; Rothschild, M F; Dadi, H; Kim, K S

2015-02-01

158

Genetic diversity of Actinobacillus lignieresii isolates from different hosts  

PubMed Central

Genetic diversity detected by analysis of amplified fragment length polymorphisms (AFLPs) of 54 Actinobacilus lignieresii isolates from different hosts and geographic localities is described. On the basis of variances in AFLP profiles, the strains were grouped in two major clusters; one comprising strains isolated from horses and infected wounds of humans bitten by horses and another consisting of strains isolated from bovine and ovine hosts. The present data indicate a comparatively higher degree of genetic diversity among strains isolated from equine hosts and confirm the existence of a separate genomospecies for A. lignieresi-like isolates from horses. Among the isolates from bovine and ovine hosts some clonal lines appear to be genetically stable over time and could be detected at very distant geographic localities. Although all ovine strains investigated grouped in a single cluster, the existence of distinct genetic lineages that have evolved specificity for ovine hosts is not obvious and needs to be confirmed in other studies. PMID:21303512

2011-01-01

159

The Host Genetic Diversity in Malaria Infection  

PubMed Central

Populations exposed to Plasmodium infection develop genetic mechanisms of protection against severe disease. The clinical manifestation of malaria results primarily from the lysis of infected erythrocytes and subsequent immune and inflammatory responses. Herein, we review the genetic alterations associated with erythrocytes or mediators of the immune system, which might influence malaria outcome. Moreover, polymorphisms in genes related to molecules involved in mechanisms of cytoadherence and their influence on malaria pathology are also discussed. The results of some studies have suggested that the combinatorial effects of a set of genetic factors in the erythrocyte-immunology pathway might be relevant to host resistance or susceptibility against Plasmodium infection. However, these results must be interpreted with caution because of the differences observed in the functionality and frequency of polymorphisms within different populations. With the recent advances in molecular biology techniques, more robust studies with reliable data have been reported, and the results of these studies have identified individual genetic factors for consideration in preventing severe disease and the individual response to treatment. PMID:23316245

de Mendonça, Vitor R. R.; Goncalves, Marilda Souza; Barral-Netto, Manoel

2012-01-01

160

Dwindling genetic diversity in European ground squirrels?  

Microsoft Academic Search

The European ground squirrel (Spermophilus citellus) is endangered and in decline. Populations are increasingly fragmented, and only a coordinated conservation effort at the European level may guarantee its long-term survival. To obtain a general population genetic picture on a larger geographic scale, we screened 117 individuals from seven local populations in Hungary, Romania, and Austria for allelic variation at eleven

Hichem Ben Slimen; Csongor I. Gedeon; Ilse E. Hoffmann; Franz Suchentrunk

161

Genetics and the diversity of behavior  

Microsoft Academic Search

Genetic fixity and developmental rigidity of behavior may be advantageous where the environment is uniform in space and stable in time, and in organisms with short life spans with little or no opportunity for learning. A Drosophila fly hatching from a pupa must \\

Theodosius Dobzhansky

1972-01-01

162

Genetic Diversity and Genome Complexity of Sugarcane  

Technology Transfer Automated Retrieval System (TEKTRAN)

Sugarcane (Saccharum spp.) as a C4 plant, is one of the most efficient crops in converting solar energy into chemical energy. Sugarcane cultivar improvement programs have not yet systematically utilized the most of the genetic sources of yield potential and resistance to stresses that may exist in t...

163

Genetic evolution and diversity of common carp Cyprinus carpio L  

Microsoft Academic Search

Knowledge of genetic variation and population structure of existing strains of both farmed and wild common carp Cyprinus carpio L. is absolutely necessary for any efficient fish management and\\/or conservation program. To assess genetic diversity in\\u000a common carp populations, a variety of molecular markers were analyzed. Of those, microsatellites and mitochondrial DNA were\\u000a most frequently used in the analysis of

Dimitry A. Chistiakov; Natalia V. Voronova

2009-01-01

164

Isolated populations of a rare alpine plant show high genetic diversity and considerable population differentiation  

PubMed Central

Background and Aims Gene flow and genetic variability within and among alpine plant populations can be greatly influenced by the steep environmental gradients and heterogeneous topography of alpine landscapes. In this study, the effects are examined of natural isolation of alpine habitats on genetic diversity and geographic structure in populations of C. thyrsoides, a rare and isolated European Alpine monocarpic perennial with limited seed dispersal capacity. Methods Molecular diversity was analysed for 736 individuals from 32 populations in the Swiss Alps and adjacent Jura mountains using five polymorphic microsatellite loci. Pollen flow was estimated using pollen grain-sized fluorescent powder. In addition, individual-based Bayesian approaches were applied to examine population structure. Key Results High within-population genetic diversity (HE = 0·76) and a relatively low inbreeding coefficient (FIS = 0·022) were found. Genetic differentiation among populations measured with a standardized measure was considerable (G?ST = 0·53). A significant isolation-by-distance relationship was found (r = 0·62, P < 0·001) and a significant geographic sub-structure, coinciding with proposed postglacial migration patterns. Altitudinal location and size of populations did not influence molecular variation. Direct measures of pollen flow revealed that insect-mediated pollen dispersal was restricted to short distances within a population. Conclusions The natural isolation of suitable habitats for C. thyrsoides restricts gene flow among the populations as expected for a monocarpic species with very limited seed dispersal capacities. The observed high within-population genetic diversity in this rare monocarpic perennial is best explained by its outcrossing behaviour, long-lived individuals and overlapping generations. Despite the high within-population genetic diversity, the considerable genetic differentiation and the clear western–eastern differentiation in this species merits consideration in future conservation efforts. PMID:19797423

Ægisdóttir, Hafdís Hanna; Kuss, Patrick; Stöcklin, Jürg

2009-01-01

165

Evaluating the Genetic Diversity of Triticale with Wheat and Rye SSR Markers  

Microsoft Academic Search

Triticale (3Triticosecale Wittmack) is becoming increasingly im- portant in agriculture and understanding its genetic diversity is es- sential for its continued improvement. Simple sequence repeat (SSR) markers are highly polymorphic and widely used for genetic diversity studies. Previous genetic diversity studies using SSRs have focused on the European winter triticale gene pool. Our objective was to investi- gate the genetic

C. Kuleung; P. S. Baenziger; S. D. Kachman; I. Dweikat

2006-01-01

166

Patterns in genetic diversity of Trifolium pallescens populations do not reflect chronosequence on alpine glacier forelands  

Microsoft Academic Search

How does genetic diversity within populations of plants develop during primary succession on alpine glacier forelands? Theory predicts that pioneer populations are characterized by low genetic diversity due to founder effects and that genetic diversity increases within populations as they mature and recurrent gene flow occurs. However, few genetic studies have so far been carried out on plants on glacier

C Raffl; R Holderegger; W Parson; B Erschbamer

2008-01-01

167

Genetic (RAPD) diversity in Peromyscus maniculatus populations in a naturally fragmented landscape.  

PubMed

We assessed the effects of long-term habitat fragmentation on genetic (random amplified polymorphic DNA) diversity in 11 Peromyscus maniculatus populations in the Lake Superior watershed. We analysed genetic structure at two spatial scales and the effect of island size and isolation on genetic diversity. At the regional scale, island populations differed from mainland populations (FST = 0.36), but mainland populations did not differ from each other (FST = 0.01). At the local scale, populations of the main island of Isle Royale differed from adjacent islet populations (P < 0.001; Monte Carlo approximation of Fisher's exact test), but not from each other (combined P = 0.63). Although geographical distance and genetic distance were positively correlated (P < 0.01; Mantel test), cluster analysis revealed some inconsistencies. Finally, genetic diversity was inversely related to isolation (P = 0.01), but had an unexpectedly negative relationship with island area (P = 0.03). The genetic structure of P. maniculatus populations in portions of the Lake Superior watershed appears to have been affected by long-term habitat fragmentation. PMID:11251785

Vucetich, L M; Vucetich, J A; Joshi, C P; Waite, T A; Peterson, R O

2001-01-01

168

Genetic Diversity, Linkage Disequilibrium and Association Mapping  

Microsoft Academic Search

Maize, at all levels of resolution, is one of the most diverse crop species. Large insertions and deletions are common between\\u000a maize inbreds, and include tandem repeat clusters, abundant retroelement and transposons. At the gene level, single nucleotide\\u000a polymorphisms are common, especially in introns and untranslated regions of genes. Depending on choice of experimental population\\u000a and region in the genome,

Antoni Rafalski; Evgueni Ananiev

169

Genetic diversity and structure in two species of Leavenworthia with self-incompatible and self-compatible populations  

PubMed Central

Self-fertilization is a common mating system in plants and is known to reduce genetic diversity, increase genetic structure and potentially put populations at greater risk of extinction. In this study, we measured the genetic diversity and structure of two cedar glade endemic species, Leavenworthia alabamica and L. crassa. These species have self-incompatible (SI) and self-compatible (SC) populations and are therefore ideal for understanding how the mating system affects genetic diversity and structure. We found that L. alabamica and L. crassa had high species-level genetic diversity (He=0.229 and 0.183, respectively) and high genetic structure among their populations (FST=0.45 and 0.36, respectively), but that mean genetic diversity was significantly lower in SC compared with SI populations (SC vs SI, He for L. alabamica was 0.065 vs 0.206 and for L. crassa was 0.084 vs 0.189). We also found significant genetic structure using maximum-likelihood clustering methods. These data indicate that the loss of SI leads to the loss of genetic diversity within populations. In addition, we examined genetic distance relationships between SI and SC populations to analyze possible population history and origins of self-compatibility. We find there may have been multiple origins of self-compatibility in L. alabamica and L. crassa. However, further work is required to test this hypothesis. Finally, given their high genetic structure and that individual populations harbor unique alleles, conservation strategies seeking to maximize species-level genetic diversity for these or similar species should protect multiple populations. PMID:20485327

Koelling, V A; Hamrick, J L; Mauricio, R

2011-01-01

170

Molecular identification and genetic relationships of Palestinian grapevine cultivars.  

PubMed

Palestine has a wide range of agro-ecological concerns and hosts a large variety of plants. Grapes are part of the cultural heritage and provide an indispensable food ingredient. Local cultivars have been traditionally identified on the basis of morphological traits, geographical origin, or names of the vineyard owner; therefore, the occurrence of homonymy, synonymy, and misnaming significantly prevents their valorization. DNA profiling by 22 common SSR markers was used to characterize 43 putative cultivars grown mainly for local table grape consumption at the southern highland regions of West-Bank, to further evaluate genetic diversity and relationships of the population. Consistent matching of SSR markers with grapevines cultivated in neighboring countries or maintained in European germplasm collections was found for 8 of the 21 different non-redundant genotypes discovered, suggesting possible synonyms as well as the occurrence of breeding selections formerly developed in the USA. Genetic relationships inferred from SSR markers clearly assigned Palestinian cultivars to the Proles orientalis subpr. Antasiatica ancestral population, and they even remarked the connection between local resources and cultivars generated from international table grape breeding. This study supports the value of collection and conservation of vines endemic to a region of immense historical importance for viticulture. PMID:24469973

Basheer-Salimia, Rezq; Lorenzi, Silvia; Batarseh, Fadi; Moreno-Sanz, Paula; Emanuelli, Francesco; Grando, M Stella

2014-06-01

171

Genetic Diversity among Ancient Nordic Populations  

PubMed Central

Using established criteria for work with fossil DNA we have analysed mitochondrial DNA from 92 individuals from 18 locations in Denmark ranging in time from the Mesolithic to the Medieval Age. Unequivocal assignment of mtDNA haplotypes was possible for 56 of the ancient individuals; however, the success rate varied substantially between sites; the highest rates were obtained with untouched, freshly excavated material, whereas heavy handling, archeological preservation and storage for many years influenced the ability to obtain authentic endogenic DNA. While the nucleotide diversity at two locations was similar to that among extant Danes, the diversity at four sites was considerably higher. This supports previous observations for ancient Britons. The overall occurrence of haplogroups did not deviate from extant Scandinavians, however, haplogroup I was significantly more frequent among the ancient Danes (average 13%) than among extant Danes and Scandinavians (?2.5%) as well as among other ancient population samples reported. Haplogroup I could therefore have been an ancient Southern Scandinavian type “diluted” by later immigration events. Interestingly, the two Neolithic samples (4,200 YBP, Bell Beaker culture) that were typed were haplogroup U4 and U5a, respectively, and the single Bronze Age sample (3,300–3,500 YBP) was haplogroup U4. These two haplogroups have been associated with the Mesolithic populations of Central and Northern Europe. Therefore, at least for Southern Scandinavia, our findings do not support a possible replacement of a haplogroup U dominated hunter-gatherer population by a more haplogroup diverse Neolithic Culture. PMID:20689597

Melchior, Linea; Lynnerup, Niels; Siegismund, Hans R.; Kivisild, Toomas; Dissing, Jørgen

2010-01-01

172

Analysis of genetic diversity in Chinese sweetpotato [Ipomoea batatas (L.) Lam.] germplasm using DNA amplification fingerprinting.  

PubMed

The genetic diversity and evolutionary relationships in a representative sample of Chinese sweetpotato collection were assessed using the DNA amplification fingerprinting approach. DNA fingerprint profiles were developed for all 42 accessions tested. There were 19-26 bands for each accession and an average of 20.7 such bands were polymorphic. Chinese sweetpotato germplasm tested exhibited a high degree of genetic diversity. Phenetic analysis revealed five major clusters with the following components: (1) landraces from Guangdong Province, (2) landraces from Fujian province, (3) Chinese cultivars, (4) those closely related to Japanese sweetpotato cultivars, and (5) those closely related to the US sweetpotato cv. Nancy Hall. The genetic association observed between accessions was largely consistent with the known pedigree records. The DNA amplification fingerprinting may provide reliable insights into the domestication history of the sweetpotato crop and may be useful in germplasm enhancement. PMID:12296360

Wang, J; He, G; Prakash, C S; Lu, S

1998-01-01

173

Increased Extinction Potential of Insular Fish Populations with Reduced Life History Variation and Low Genetic Diversity  

PubMed Central

Theoretical work has shown that reduced phenotypic heterogeneity leads to population instability and can increase extinction potential, yet few examples exist of natural populations that illustrate how varying levels expressed diversity may influence population persistence, particularly during periods of stochastic environmental fluctuation. In this study, we assess levels of expressed variation and genetic diversity among demographically independent populations of tidewater goby (Eucyclogobius newberryi), show that reductions in both factors typically coincide, and describe how low levels of diversity contribute to the extinction risk of these isolated populations. We illustrate that, for this annual species, continuous reproduction is a safeguard against reproductive failure by any one population segment, as natural, stochastically driven salinity increases frequently result in high mortality among juvenile individuals. Several study populations deviated from the natural pattern of year-round reproduction typical for the species, rendering those with severely truncated reproductive periods vulnerable to extinction in the event of environmental fluctuation. In contrast, demographically diverse populations are more likely to persist through such periods through the continuous presence of adults with broader physiological tolerance to abrupt salinity changes. Notably, we found a significant correlation between genetic diversity and demographic variation in the study populations, which could be the result of population stressors that restrict both of these diversity measures simultaneously, or suggestive of a causative relationship between these population characteristics. These findings demonstrate the importance of biocomplexity at the population level, and assert that the maintenance of diversity contributes to population resilience and conservation of this endangered species. PMID:25409501

Hellmair, Michael; Kinziger, Andrew P.

2014-01-01

174

High risks of losing genetic diversity in an endemic Mauritian gecko: implications for conservation.  

PubMed

Genetic structure can be a consequence of recent population fragmentation and isolation, or a remnant of historical localised adaptation. This poses a challenge for conservationists since misinterpreting patterns of genetic structure may lead to inappropriate management. Of 17 species of reptile originally found in Mauritius, only five survive on the main island. One of these, Phelsuma guimbeaui (lowland forest day gecko), is now restricted to 30 small isolated subpopulations following severe forest fragmentation and isolation due to human colonisation. We used 20 microsatellites in ten subpopulations and two mitochondrial DNA (mtDNA) markers in 13 subpopulations to: (i) assess genetic diversity, population structure and genetic differentiation of subpopulations; (ii) estimate effective population sizes and migration rates of subpopulations; and (iii) examine the phylogenetic relationships of haplotypes found in different subpopulations. Microsatellite data revealed significant population structure with high levels of genetic diversity and isolation by distance, substantial genetic differentiation and no migration between most subpopulations. MtDNA, however, showed no evidence of population structure, indicating that there was once a genetically panmictic population. Effective population sizes of ten subpopulations, based on microsatellite markers, were small, ranging from 44 to 167. Simulations suggested that the chance of survival and allelic diversity of some subpopulations will decrease dramatically over the next 50 years if no migration occurs. Our DNA-based evidence reveals an urgent need for a management plan for the conservation of P. guimbeaui. We identified 18 threatened and 12 viable subpopulations and discuss a range of management options that include translocation of threatened subpopulations to retain maximum allelic diversity, and habitat restoration and assisted migration to decrease genetic erosion and inbreeding for the viable subpopulations. PMID:24963708

Buckland, Steeves; Cole, Nik C; Groombridge, Jim J; Küpper, Clemens; Burke, Terry; Dawson, Deborah A; Gallagher, Laura E; Harris, Stephen

2014-01-01

175

AFLP Analyses of Genetic Diversity in Bentgrass  

Microsoft Academic Search

ABSTRACT,Vasey are known to exist in tetraploid and hexaploid forms (2n 6x 42). In a wide collection of A. gigantea, Bentgrasses (Agrostis spp.) are widely occurring temperate grasses Jones (1955a) only found,hexaploids. Because of the with more than 220 species that represent a vast resource for genetic outcrossing nature of bentgrass, ploidy levels need to improvement of turfgrass cultivars. Bentgrasses

G. V. Vergara; S. S. Bughrara

2003-01-01

176

Genetic Diversity in the Interference Selection Limit  

PubMed Central

Pervasive natural selection can strongly influence observed patterns of genetic variation, but these effects remain poorly understood when multiple selected variants segregate in nearby regions of the genome. Classical population genetics fails to account for interference between linked mutations, which grows increasingly severe as the density of selected polymorphisms increases. Here, we describe a simple limit that emerges when interference is common, in which the fitness effects of individual mutations play a relatively minor role. Instead, similar to models of quantitative genetics, molecular evolution is determined by the variance in fitness within the population, defined over an effectively asexual segment of the genome (a “linkage block”). We exploit this insensitivity in a new “coarse-grained” coalescent framework, which approximates the effects of many weakly selected mutations with a smaller number of strongly selected mutations that create the same variance in fitness. This approximation generates accurate and efficient predictions for silent site variability when interference is common. However, these results suggest that there is reduced power to resolve individual selection pressures when interference is sufficiently widespread, since a broad range of parameters possess nearly identical patterns of silent site variability. PMID:24675740

Good, Benjamin H.; Walczak, Aleksandra M.; Neher, Richard A.; Desai, Michael M.

2014-01-01

177

Classification of Meteorites and Their Genetic Relationships  

NASA Astrophysics Data System (ADS)

In this chapter, we review current classification of meteorites, which is based on several primary classification parameters the whole-rock chemical compositions, oxygen isotopic compositions, carbon and nitrogen abundances and isotopic compositions, stable-isotope anomalies, mineralogy and petrography. Secondary classification parameters - petrologic type and shock metamorphism stages - provide clues to the thermal and shock history of meteorites, and degree of terrestrial weathering. We summarize the major mineralogical and geochemical characteristics of chondrite groups (H, L, LL, EH, EL, R, K, CI, CM, CR, CO, CK, CV, CH, and CB), and nonchondritic meteorites, both asteroidal (winonaites, acapulcoites-lodranites, brachinites, ureilites, angrites, howardites-eucrites-diogenites, mesosiderites, pallasites, and irons) and planetary (lunar and Martian - shergottites, nakhlites, chassignites, and orthopyroxenites). Finally, we discuss possible genetic relationships among meteorite groups.

Krot, A. N.; Keil, K.; Scott, E. R. D.; Goodrich, C. A.; Weisberg, M. K.

178

Genetic diversity within and genetic differentiation between blooms of a microalgal species  

PubMed Central

The field of genetic diversity in protists, particularly phytoplankton, is under expansion. However, little is known regarding variation in genetic diversity within populations over time. The aim of our study was to investigate intrapopulation genetic diversity and genetic differentiation in the freshwater bloom-forming microalga Gonyostomum semen (Raphidophyceae). The study covered a 2-year period including all phases of the bloom. Amplified fragment length polymorphism (AFLP) was used to determine the genetic structure and diversity of the population. Our results showed a significant differentiation between samples collected during the two blooms from consecutive years. Also, an increase of gene diversity and a loss of differentiation among sampling dates were observed over time within a single bloom. The latter observations may reflect the continuous germination of cysts from the sediment. The life cycle characteristics of G. semen, particularly reproduction and recruitment, most likely explain a high proportion of the observed variation. This study highlights the importance of the life cycle for the intraspecific genetic diversity of microbial species, which alternates between sexual and asexual reproduction. PMID:22568551

Lebret, Karen; Kritzberg, Emma S; Figueroa, Rosa; Rengefors, Karin

2012-01-01

179

Genetic Diversity and Geographic Population Structure of Bovine Neospora caninum Determined by Microsatellite Genotyping Analysis  

PubMed Central

The cyst-forming protozoan parasite Neosporacaninum is one of the main causes of bovine abortion worldwide and is of great economic importance in the cattle industry. Recent studies have revealed extensive genetic variation among N. caninum isolates based on microsatellite sequences (MSs). MSs may be suitable molecular markers for inferring the diversity of parasite populations, molecular epidemiology and the basis for phenotypic variations in N. caninum, which have been poorly defined. In this study, we evaluated nine MS markers using a panel of 11 N. caninum-derived reference isolates from around the world and 96 N. caninum bovine clinical samples and one ovine clinical sample collected from four countries on two continents, including Spain, Argentina, Germany and Scotland, over a 10-year period. These markers were used as molecular tools to investigate the genetic diversity, geographic distribution and population structure of N. caninum. Multilocus microsatellite genotyping based on 7 loci demonstrated high levels of genetic diversity in the samples from all of the different countries, with 96 microsatellite multilocus genotypes (MLGs) identified from 108 N. caninum samples. Geographic sub-structuring was present in the country populations according to pairwise FST. Principal component analysis (PCA) and Neighbor Joining tree topologies also suggested MLG segregation partially associated with geographical origin. An analysis of the MLG relationships, using eBURST, confirmed that the close genetic relationship observed between the Spanish and Argentinean populations may be the result of parasite migration (i.e., the introduction of novel MLGs from Spain to South America) due to cattle movement. The eBURST relationships also revealed genetically different clusters associated with the abortion. The presence of linkage disequilibrium, the co-existence of specific MLGs to individual farms and eBURST MLG relationships suggest a predominant clonal propagation for Spanish N. caninum MLGs in cattle. PMID:23940816

Regidor-Cerrillo, Javier; Díez-Fuertes, Francisco; García-Culebras, Alicia; Moore, Dadín P.; González-Warleta, Marta; Cuevas, Carmen; Schares, Gereon; Katzer, Frank; Pedraza-Díaz, Susana; Mezo, Mercedes; Ortega-Mora, Luis M.

2013-01-01

180

Genetic diversity in Canadian, mountain and moorland, and Nordic pony populations.  

E-print Network

??The legally binding international declaration of the Convention on Biological Diversity (signed by over 180 countries) recently acknowledged the importance of conserving genetic diversity within… (more)

Prystupa, Jaclyn Mercedes

2012-01-01

181

Hybridisation and genetic diversity in introduced Mimulus (Phrymaceae)  

PubMed Central

Hybridisation among taxa with different ploidy levels is often associated with hybrid sterility. Clonal reproduction can stabilise these hybrids, but pervasive clonality may have a profound impact on the distribution of genetic diversity in natural populations. Here we investigate a widespread triploid taxon resulting from hybridisation between diploid Mimulus guttatus and tetraploid Mimulus luteus, two species that were introduced into the United Kingdom (UK) in the nineteenth century. This hybrid, Mimulus x robertsii, is largely sterile but capable of prolific vegetative propagation and has been recorded in the wild since 1872. We surveyed 40 Mimulus populations from localities across the UK to examine the current incidence of hybrids, and selected seventeen populations for genetic analysis using codominant markers. Cluster analyses revealed two main groups of genetically distinct individuals, corresponding to either diploid (M. guttatus) or polyploid (M. luteus and M. x robertsii) samples. Triploid hybrids were found in around 50% of sampled sites, sometimes coexisting with one of the parental species (M. guttatus). The other parent, M. luteus, was restricted to a single locality. Individual populations of M. x robertsii were genetically variable, containing multiple, highly heterozygous clones, with the majority of genetic variation distributed among- rather than within populations. Our findings demonstrate that this largely sterile, clonal taxon can preserve non-negligible amounts of genetic variation. The presence of genetically variable hybrid populations may provide the material for the continued success of asexual taxa in diverse environments. PMID:23169562

Vallejo-Marin, M; Lye, G C

2013-01-01

182

Increased Genetic Diversity of HIV1 Circulating in Hong Kong  

Microsoft Academic Search

HIV-1 group M strains are characterized into 9 pure subtypes and 48 circulating recombinant forms (CRFs). Recent studies have identified the presence of new HIV-1 recombinants in Hong Kong and their complexity continues to increase. This study aims to characterize the HIV-1 genetic diversity in Hong Kong. Phylogenetic analyses were performed by using HIV-1 pol sequences including protease and partial

Jonathan Hon-Kwan Chen; Ka-Hing Wong; Zhiwei Chen; Kenny Chan; Ho-Yin Lam; Sabrina Wai-Chi To; Vincent Chi-Chung Cheng; Kwok-Yung Yuen; Wing-Cheong Yam; Vladimir N. Uversky

2010-01-01

183

Defining Turtle Diversity: Proceedings of a Workshop on Genetics, Ethics,  

E-print Network

Defining Turtle Diversity: Proceedings of a Workshop on Genetics, Ethics, and Taxonomy of Freshwater Turtles and Tortoises EXECUTIVE SUMMARY H. BRADLEY SHAFFER, NANCY N. FITZSIMMONS, ARTHUR GEORGES of evolutionary, conservation, and population biology. Turtles are particularly well suited to benefit from

Grether, Gregory

184

Sex ratio, reproductive mode and genetic diversity in Triops cancriformis  

Microsoft Academic Search

SUMMARY 1. Aquatic invertebrates display a wide array of alternative reproductive modes from apomixis to hermaphroditism and cyclical parthenogenesis. These have important effects on genetic diversity and population structure. Populations of the 'living fossil' Triops cancriformis display a range of sex ratios, and various reproductive modes are thought to underlie this variation. Using sex ratio information and histological analyses European

THORID Z IEROLD; J AVIER M ONTERO-PAU; AFRICA G OMEZ

2009-01-01

185

Genetic diversity and distinctiveness in Scottish alpine plants  

Microsoft Academic Search

Background: Many alpine plants are rare in Scotland. Their persistence depends on their ability to withstand habitat fragmentation and loss due to changes in land use, increased grazing pressure, and climate change.Aims: We use a phylogeographic approach to address the origin and genetic diversity of Scottish populations, which is relevant for their future management and protection.Methods: We review phylogeographic studies

Kristine B. Westergaard; Inger G. Alsos; Dorothee Ehrich; Pernille B. Eidesen; Peter M. Hollingsworth; Christian Brochmann

2008-01-01

186

Apomixis and the Management of Genetic Diversity Introduction  

E-print Network

Apomixis and the Management of Genetic Diversity Matt Sorge Introduction: Apomixis is a form, hybrid plants using apomixis as their reproductive mechanism would not be subject to this variability (1, sorghum, and pearl millet), apomixis would enable breeders to more easily select unique gene combinations

Bhattacharyya, Madan Kumar

187

Parasites and genetic diversity in an invasive bumblebee.  

PubMed

Biological invasions are facilitated by the global transportation of species and climate change. Given that invasions may cause ecological and economic damage and pose a major threat to biodiversity, understanding the mechanisms behind invasion success is essential. Both the release of non-native populations from natural enemies, such as parasites, and the genetic diversity of these populations may play key roles in their invasion success. We investigated the roles of parasite communities, through enemy release and parasite acquisition, and genetic diversity in the invasion success of the non-native bumblebee, Bombus hypnorum, in the United Kingdom. The invasive B. hypnorum had higher parasite prevalence than most, or all native congeners for two high-impact parasites, probably due to higher susceptibility and parasite acquisition. Consequently parasites had a higher impact on B. hypnorum queens' survival and colony-founding success than on native species. Bombus hypnorum also had lower functional genetic diversity at the sex-determining locus than native species. Higher parasite prevalence and lower genetic diversity have not prevented the rapid invasion of the United Kingdom by B. hypnorum. These data may inform our understanding of similar invasions by commercial bumblebees around the world. This study suggests that concerns about parasite impacts on the small founding populations common to re-introduction and translocation programs may be less important than currently believed. PMID:24749545

Jones, Catherine M; Brown, Mark J F

2014-04-21

188

Parasites and genetic diversity in an invasive bumblebee  

PubMed Central

Biological invasions are facilitated by the global transportation of species and climate change. Given that invasions may cause ecological and economic damage and pose a major threat to biodiversity, understanding the mechanisms behind invasion success is essential. Both the release of non-native populations from natural enemies, such as parasites, and the genetic diversity of these populations may play key roles in their invasion success. We investigated the roles of parasite communities, through enemy release and parasite acquisition, and genetic diversity in the invasion success of the non-native bumblebee, Bombus hypnorum, in the United Kingdom. The invasive B. hypnorum had higher parasite prevalence than most, or all native congeners for two high-impact parasites, probably due to higher susceptibility and parasite acquisition. Consequently parasites had a higher impact on B. hypnorum queens’ survival and colony-founding success than on native species. Bombus hypnorum also had lower functional genetic diversity at the sex-determining locus than native species. Higher parasite prevalence and lower genetic diversity have not prevented the rapid invasion of the United Kingdom by B. hypnorum. These data may inform our understanding of similar invasions by commercial bumblebees around the world. This study suggests that concerns about parasite impacts on the small founding populations common to re-introduction and translocation programs may be less important than currently believed. PMID:24749545

Jones, Catherine M; Brown, Mark J F; Ings, Thomas

2014-01-01

189

Genetic diversity of Chelonibia caretta, commensal barnacles of the endangered  

E-print Network

Genetic diversity of Chelonibia caretta, commensal barnacles of the endangered hawksbill sea turtle studied in Chelonibia caretta, commensal barnacles of the endangered hawksbill sea turtle Eretmochelys studies of barnacles attached to fixed substrate. However, the estimated levels of p from C. caretta were

Schizas, Nikolaos

190

Integrating common and rare genetic variation in diverse human populations  

E-print Network

ARTICLES Integrating common and rare genetic variation in diverse human populations-wide studies that fully examine less common alleles in populations with a wide range of ancestry. To inform the design and interpretation of such studies, we genotyped 1.6 million common single nucleotide

Keinan, Alon

191

BIOGEOGRAPHY AND GENETIC DIVERSITY OF TOXIN PRODUCING CYANOBACTERIA IN  

E-print Network

BIOGEOGRAPHY AND GENETIC DIVERSITY OF TOXIN PRODUCING CYANOBACTERIA IN A LAURENTIAN GREAT LAKE on a global scale, as they hold ~18 % of the potable water resources on our planet. Cyanobacteria of the genus in Lake Erie. The reasons for the success for these potentially toxic cyanobacteria in Lake Erie

Wilhelm, Steven W.

192

Genetic Diversity Among Wheat Cultivars Using Molecular Markers  

Microsoft Academic Search

The objective of this study was to compare amplified fragment length polymorphism (AFLP), random amplified polymorphic DNA (RAPD), and DNA amplification fingerprinting (DAF) marker systems for estimating genetic diversity among 13 Iranian wheat (Triticum aestivum L.) cultivars through average expected heterozygosity (Hav), sum of effective number of alleles (SENA), and marker index (MI). The AFLP markers had the highest values

Babak Abdollahi Mandoulakani; Ali-Akbar Shahnejat-Bushehri; Badredin Ebrahim Sayed Tabatabaei; Sepideh Torabi; Alireza Mohammadi Hajiabad

2010-01-01

193

RESEARCH ARTICLE Open Access Prevalence, genetic diversity and antiretroviral  

E-print Network

-associated mutations among untreated HIV-1-infected pregnant women in Gabon, central Africa Mélanie Caron1 , Sonia to antiretroviral drugs, Untreated pregnant women, Gabon, Central Africa Background Human immunodeficiency virus,3 and Mirdad Kazanji1,4* Abstract Background: In Africa, the wide genetic diversity of HIV has resulted

Paris-Sud XI, Université de

194

Genetic diversity analysis in Cymbopogon species using DNA markers  

Microsoft Academic Search

Genetic diversity of 25 accessions of Cymbopogon aromatic grasses including eight species, two hybrids and one mutant strain were analyzed using DNA markers generated by employing 20 primer pairs derived from cDNAs containing simple sequence repeat (SSR) of rice genome. A total of 151 bands were produced ranging from 3 to 12 per primer pair. The polymorphic information content values

J. Kumar; V. Verma; A. Goyal; A. K. Shahi; R. Sparoo; R. S. Sangwan; G. N. Qazi

195

PLANT GENETIC DETERMINANTS OF ARTHROPOD COMMUNITY STRUCTURE AND DIVERSITY  

Microsoft Academic Search

To test the hypothesis that genes have extended phenotypes on the community, we quantified how genetic differences among cottonwoods affect the diversity, abundance, and composition of the dependent arthropod com- munity. Over two years, five major patterns were observed in both field and common-garden studies that focused on two species of cottonwoods and their naturally occurring F1 and backcross hybrids

Gina M. Wimp; Gregory D. Martinsen; Kevin D. Floate; Randy K. Bangert; Thomas G. Whitham

2005-01-01

196

Coalescence and genetic diversity in sexual populations under selection  

PubMed Central

In sexual populations, selection operates neither on the whole genome, which is repeatedly taken apart and reassembled by recombination, nor on individual alleles that are tightly linked to the chromosomal neighborhood. The resulting interference between linked alleles reduces the efficiency of selection and distorts patterns of genetic diversity. Inference of evolutionary history from diversity shaped by linked selection requires an understanding of these patterns. Here, we present a simple but powerful scaling analysis identifying the unit of selection as the genomic “linkage block” with a characteristic length, , determined in a self-consistent manner by the condition that the rate of recombination within the block is comparable to the fitness differences between different alleles of the block. We find that an asexual model with the strength of selection tuned to that of the linkage block provides an excellent description of genetic diversity and the site frequency spectra compared with computer simulations. This linkage block approximation is accurate for the entire spectrum of strength of selection and is particularly powerful in scenarios with many weakly selected loci. The latter limit allows us to characterize coalescence, genetic diversity, and the speed of adaptation in the infinitesimal model of quantitative genetics. PMID:24019480

Neher, Richard A.; Kessinger, Taylor A.; Shraiman, Boris I.

2013-01-01

197

"Living together apart": the hidden genetic diversity of sponge populations.  

PubMed

Intraorganism genetic stability is assumed in most organisms. However, here we show for the first time intraorganism genetic heterogeneity in natural populations of marine sponges. A total of 36 different multilocus genotypes (MLGs) were detected in 13 individuals of Scopalina lophyropoda sampled at 4 distant points within each sponge. All genotypes (showing a mosaic distribution), were transmitted to the progeny, thus contributing to the high genetic diversity and low clonality reported for this species, although its populations are small and structured and show high fission rates. There did not seem to be intraindividual genotype conflicts; on the contrary, chimeric individuals are expected to show low mortality thanks to the differential mortality of their different MLGs. This novel mechanism may also counterbalance genetic constraints in other benthic invertebrate species. The presence of sponge chimerism also suggests that results from previous population genetics studies could have been misinterpreted. PMID:21498599

Blanquer, Andrea; Uriz, Maria-J

2011-09-01

198

Genetic Diversity in the Paramecium aurelia Species Complex  

PubMed Central

Current understanding of the population genetics of free-living unicellular eukaryotes is limited, and the amount of genetic variability in these organisms is still a matter of debate. We characterized—reproductively and genetically—worldwide samples of multiple Paramecium species belonging to a cryptic species complex, Paramecium aurelia, whose species have been shown to be reproductively isolated. We found that levels of genetic diversity both in the nucleus and in the mitochondrion are substantial within groups of reproductively compatible P. aurelia strains but drop considerably when strains are partitioned according to their phylogenetic groupings. Our study reveals the existence of discrepancies between the mating behavior of a number of P. aurelia strains and their multilocus genetic profile, a controversial finding that has major consequences for both the current methods of species assignment and the species problem in the P. aurelia complex. PMID:19023087

Catania, Francesco; Wurmser, François; Potekhin, Alexey A.; Przybo?, Ewa; Lynch, Michael

2009-01-01

199

Genetic Structure of Wild Bonobo Populations: Diversity of Mitochondrial DNA and Geographical Distribution  

PubMed Central

Bonobos (Pan paniscus) inhabit regions south of the Congo River including all areas between its southerly tributaries. To investigate the genetic diversity and evolutionary relationship among bonobo populations, we sequenced mitochondrial DNA from 376 fecal samples collected in seven study populations located within the eastern and western limits of the species’ range. In 136 effective samples from different individuals (range: 7–37 per population), we distinguished 54 haplotypes in six clades (A1, A2, B1, B2, C, D), which included a newly identified clade (D). MtDNA haplotypes were regionally clustered; 83 percent of haplotypes were locality-specific. The distribution of haplotypes across populations and the genetic diversity within populations thus showed highly geographical patterns. Using population distance measures, seven populations were categorized in three clusters: the east, central, and west cohorts. Although further elucidation of historical changes in the geological setting is required, the geographical patterns of genetic diversity seem to be shaped by paleoenvironmental changes during the Pleistocene. The present day riverine barriers appeared to have a weak effect on gene flow among populations, except for the Lomami River, which separates the TL2 population from the others. The central cohort preserves a high genetic diversity, and two unique clades of haplotypes were found in the Wamba/Iyondji populations in the central cohort and in the TL2 population in the eastern cohort respectively. This knowledge may contribute to the planning of bonobo conservation. PMID:23544084

Higuchi, Shoko; Sakamaki, Tetsuya; Hart, John A.; Hart, Terese B.; Tokuyama, Nahoko; Reinartz, Gay E.; Guislain, Patrick; Dupain, Jef; Cobden, Amy K.; Mulavwa, Mbangi N.; Yangozene, Kumugo; Darroze, Serge; Devos, Céline; Furuichi, Takeshi

2013-01-01

200

Population genetic structure and genetic diversity of soybean aphids from USA, Korea and Japan  

Technology Transfer Automated Retrieval System (TEKTRAN)

Following its recent invasion of North America, the soybean aphid (Aphis glycines Matsumura) has become the number one insect pest of soybean (Glycine max L. Merr.) in the north central states of USA. Very little is known about the population genetic structure and genetic diversity of the soybean ap...

201

Population genetic estimation of the loss of genetic diversity during horizontal transmission of HIV1  

Microsoft Academic Search

BACKGROUND: Genetic diversity of the human immunodeficiency virus type 1 (HIV-1) population within an individual is lost during transmission to a new host. The demography of transmission is an important determinant of evolutionary dynamics, particularly the relative impact of natural selection and genetic drift immediately following HIV-1 infection. Despite this, the magnitude of this population bottleneck is unclear. RESULTS: We

Charles TT Edwards; Edward C Holmes; Daniel J Wilson; Raphael P Viscidi; Elaine J Abrams; Rodney E Phillips; Alexei J Drummond

2006-01-01

202

Genetic diversity and molecular phylogeography of Chinese domestic goats by large-scale mitochondrial DNA analysis.  

PubMed

Mitochondrial DNA (mtDNA) D-loop sequences of 666 individuals (including 109 new individuals, 557 individuals retrieved from GenBank) from 33 Chinese domestic goat breeds throughout China were used to investigate their mtDNA variability and molecular phylogeography. The results showed that all goat breeds in this study proved to be extremely diverse, and the average haplotype diversity and nucleotide diversity were 0.990 ± 0.001 and 0.032 ± 0.001, respectively. The 666 sequences gave 326 different haplotypes. Phylogenetic analyses revealed that there were 4 mtDNA haplogroups identified in Chinese domestic goats, in which haplogroup A was predominant and widely distributed. Our finding was consistent with archaeological data and other genetic diversity studies. Amova analysis showed there was significant geographical structuring. Almost 84.31% of genetic variation was included in the within-breed variance component and only 4.69% was observed among the geographic distributions. This genetic diversity results further supported the previous view of multiple maternal origins of Chinese domestic goats, and the results on the phylogenetic relationship contributed to a better understanding of the history of goat domestication and modern production of domestic goats. PMID:24532161

Zhao, Yongju; Zhao, Runze; Zhao, Zhongquan; Xu, Huizhong; Zhao, Erhu; Zhang, Jiahua

2014-06-01

203

Relationships between bed age, bed size, and genetic structure in Chesapeake Bay (Virginia, USA) eelgrass (Zostera marina L.)  

E-print Network

Relationships between bed age, bed size, and genetic structure in Chesapeake Bay (Virginia, USA population's genetic diversity is influenced by demography, especially its age and size (Wright 1978-mail: jennifer.rhode@gcsu.edu) Received 25 September 2003; accepted 29 March 2004 Key words: age, FST, Nei

Duffy, J. Emmett

204

Genetic relationships in European and Asiatic Buxus species based on AFLP markers, genome sizes and chromosome numbers  

Microsoft Academic Search

The genetic relationships and diversity within the European and Asiatic Buxus species were analysed using AFLP, genome size analysis and chromosome counts. Based on these results two major clusters could\\u000a be defined. One genetic cluster contained B. sempervirens and B. balearica, European species, and B. colchica, an Asiatic species but with leaf morphology similar to B. sempervirens. Species in this

Katrijn Van Laere; Didier Hermans; Leen Leus; Johan Van Huylenbroeck

2011-01-01

205

PCR-based fingerprinting using AFLPs as a tool for studying genetic relationships in Lactuca spp.  

PubMed

AFLP markers were evaluated for determining the phylogenetic relationships Lactuca spp. Genetic distances based on AFLP data were estimated for 44 morphologically diverse lines of cultivated L. sativa and 13 accessions of the wild species L. serriola, L. saligna, L. virosa, L. perennis, and L. indica. The same genotypes were analyzed as in a previous study that had utilized RFLP markers. The phenetic tree based on AFLP data was consistent with known taxonomic relationships and similar to a tree developed with RFLP data. The genetic distance matrices derived from AFLP and RFLP data were compared using least squares regression analysis and, for the cultivar data, by principal component analysis. There was also a positive linear relationship between distance estimates based on AFLP data and kinship coefficients calculated from pedigree data. AFLPs represent reliable PCR-based markers for studies of genetic relationships at a variety of taxonomic levels. PMID:24162531

Hill, M; Witsenboer, H; Zabeau, M; Vos, P; Kesseli, R; Michelmore, R

1996-12-01

206

Synthetic biology: advancing the design of diverse genetic systems  

PubMed Central

A main objective of synthetic biology is to make the process of designing genetically-encoded biological systems more systematic, predictable, robust, scalable, and efficient. The examples of genetic systems in the field vary widely in terms of operating hosts, compositional approaches, and network complexity, ranging from a simple genetic switch to search-and-destroy systems. While significant advances in synthesis capabilities support the potential for the implementation of pathway- and genome-scale programs, several design challenges currently restrict the scale of systems that can be reasonably designed and implemented. Synthetic biology offers much promise in developing systems to address challenges faced in manufacturing, the environment and sustainability, and health and medicine, but the realization of this potential is currently limited by the diversity of available parts and effective design frameworks. As researchers make progress in bridging this design gap, advances in the field hint at ever more diverse applications for biological systems. PMID:23413816

Wang, Yen-Hsiang; Wei, Kathy Y.; Smolke, Christina D.

2013-01-01

207

Using mitochondrial nucleotide sequences to investigate diversity and genealogical relationships within common carp (Cyprinus carpio L.).  

PubMed

Direct sequencing of mitochondrial DNA (mtDNA) D-loop (745 bp) and MTATPase6/MTATPase8 (857 bp) regions was used to investigate genetic variation within common carp and develop a global genealogy of common carp strains. The D-loop region was more variable than the MTATPase6/MTATPase8 region, but given the wide distribution of carp the overall levels of sequence divergence were low. Levels of haplotype diversity varied widely among countries with Chinese, Indonesian and Vietnamese carp showing the greatest diversity whereas Japanese Koi and European carp had undetectable nucleotide variation. A genealogical analysis supports a close relationship between Vietnamese, Koi and Chinese Color carp strains and to a lesser extent, European carp. Chinese and Indonesian carp strains were the most divergent, and their relationships do not support the evolution of independent Asian and European lineages and current taxonomic treatments. PMID:15670127

Thai, B T; Burridge, C P; Pham, T A; Austin, C M

2005-02-01

208

Mitochondrial DNA perspective of Serbian genetic diversity.  

PubMed

Although south-Slavic populations have been studied to date from various aspects, the population of Serbia, occupying the central part of the Balkan Peninsula, is still genetically understudied at least at the level of mitochondrial DNA (mtDNA) variation. We analyzed polymorphisms of the first and the second mtDNA hypervariable segments (HVS-I and HVS-II) and informative coding-region markers in 139 Serbians to shed more light on their mtDNA variability, and used available data on other Slavic and neighboring non-Slavic populations to assess their interrelations in a broader European context. The contemporary Serbian mtDNA profile is consistent with the general European maternal landscape having a substantial proportion of shared haplotypes with eastern, central, and southern European populations. Serbian population was characterized as an important link between easternmost and westernmost south-Slavic populations due to the observed lack of genetic differentiation with all other south-Slavic populations and its geographical positioning within the Balkan Peninsula. An increased heterogeneity of south Slavs, most likely mirroring turbulent demographic events within the Balkan Peninsula over time (i.e., frequent admixture and differential introgression of various gene pools), and a marked geographical stratification of Slavs to south-, east-, and west-Slavic groups, were also found. A phylogeographic analyses of 20 completely sequenced Serbian mitochondrial genomes revealed not only the presence of mtDNA lineages predominantly found within the Slavic gene pool (U4a2a*, U4a2a1, U4a2c, U4a2g, HV10), supporting a common Slavic origin, but also lineages that may have originated within the southern Europe (H5*, H5e1, H5a1v) and the Balkan Peninsula in particular (H6a2b and L2a1k). Am J Phys Anthropol, 2014. © 2014 Wiley Periodicals, Inc. PMID:25418795

Davidovic, Slobodan; Malyarchuk, Boris; Aleksic, Jelena M; Derenko, Miroslava; Topalovic, Vladanka; Litvinov, Andrey; Stevanovic, Milena; Kovacevic-Grujicic, Natasa

2014-11-24

209

Diversity and Phylogenetic Relationships among the North American Tacaribe Serocomplex Viruses (Family Arenaviridae)  

PubMed Central

The purpose of this study was to extend our knowledge of the genetic diversity and phylogenetic relationships among the North American Tacaribe serocomplex viruses. Analyses of glycoprotein precursor gene sequence data separated the North American arenaviruses into 7 major phylogenetic groups. The results of analyses of Z gene and nucleocapsid protein gene sequence data were not remarkably different from the glycoprotein precursor gene tree. In contrast, the tree generated from RNA-dependent RNA polymerase gene sequences differed from the glycoprotein precursor gene tree with regard to phylogenetic relationships among the viruses associated with woodrats captured in the western United States, Texas, or northern Mexico. Further analyses of the polymerase gene sequence data set suggested that the difference in topology was a consequence of incongruence among the gene tree data sets or chance rather than genetic reassortment or recombination between arenaviruses. PMID:21982818

Cajimat, Maria N. B.; Milazzo, Mary Louise; Haynie, Michelle L.; Hanson, J. Delton; Bradley, Robert D.; Fulhorst, Charles F.

2011-01-01

210

Population connectivity buffers genetic diversity loss in a seabird  

PubMed Central

Background Ancient DNA has revolutionized conservation genetic studies as it allows monitoring of the genetic variability of species through time and predicting the impact of ecosystems’ threats on future population dynamics and viability. Meanwhile, the consequences of anthropogenic activities and climate change to island faunas, particularly seabirds, remain largely unknown. In this study, we examined temporal changes in the genetic diversity of a threatened seabird, the Cory’s shearwater (Calonectris borealis). Findings We analysed the mitochondrial DNA control region of ancient bone samples from the late-Holocene retrieved from the Canary archipelago (NE Atlantic) together with modern DNA sequences representative of the entire breeding range of the species. Our results show high levels of ancient genetic diversity in the Canaries comparable to that of the extant population. The temporal haplotype network further revealed rare but recurrent long-distance dispersal between ocean basins. The Bayesian demographic analyses reveal both regional and local population size expansion events, and this is in spite of the demographic decline experienced by the species over the last millennia. Conclusions Our findings suggest that population connectivity of the species has acted as a buffer of genetic losses and illustrate the use of ancient DNA to uncover such cryptic genetic events. PMID:23688345

2013-01-01

211

ASSOCIATIONS BETWEEN GENETIC DIVERSITY AND ANTHROPOGENIC DISTURBANCE IN MIDWESTERN STREAM-DWELLING MINNOWS  

EPA Science Inventory

Anthropogenic disturbances may leave imprints on patterns of intraspecific genetic diversity through their effects on population size, adaptation, migration, and mutation. We examined patterns of genetic diversity for a stream-dwelling minnow (the central stoneroller, Campostoma...

212

Genetic diversity of bradyrhizobial populations from diverse geographic origins that nodulate Lupinus spp. and Ornithopus spp.  

PubMed

The genetic diversity of 45 bradyrhizobial isolates that nodulate several Lupinus and Ornithopus species in different geographic locations was investigated by 16S rDNA PCR-RFLP and sequence analysis, 16S-23S rDNA intergenic spacer (IGS) PCR-RFLP analysis, and ERIC-PCR genomic fingerprinting. Reference strains of Bradyrhizobium japonicum, B. liaoningense and B. elkanii and some Canarian isolates from endemic woody legumes in the tribe Genisteae were also included. The 16S rDNA-RFLP analysis resolved 9 genotypes of lupin isolates, a group of fourteen isolates presented restriction-genotypes identical or very similar to B. japonicum, while another two main groups of isolates (69%) presented genotypes that clearly separated them from the reference species of soybean. 16S rDNA sequencing of representative strains largely agreed with restriction analysis, except for a group of six isolates, and showed that all the lupin isolates are relatives of B. japonicum, but different lineages were observed. The 16S-23S IGS-RFLP analysis showed a high resolution level, resolving 19 distinct genotypes among 30 strains analysed, and so demonstrating the heterogeneity of the 16S-RFLP groups. ERIC-PCR fingerprint analysis showed an enormous genetic diversity producing a different pattern for each but two of the isolates. Phylogeny of nodC gene was independent from the 16S rRNA phylogeny, and showed a tight relationship in the symbiotic region of the lupin isolates with isolates from Canarian genistoid woody legumes, and in concordance, cross-nodulation was found. We conclude that Lupinus is a promiscuous host legume that is nodulated by rhizobia with very different chromosomal genotypes, which could even belong to several species of Bradyrhizobium. No correlation among genomic background, original host plant and geographic location was found, so, different chromosomal genotypes could be detected at a single site and in a same plant species, on the contrary, an identical genotype was detected in very different geographical locations and plants. PMID:14666990

Jarabo-Lorenzo, Adriana; Pérez-Galdona, Ricardo; Donate-Correa, Javier; Rivas, Raúl; Velázquez, Encarna; Hernández, Mariano; Temprano, Francisco; Martínez-Molina, Eustoquio; Ruiz-Argüeso, Tomás; León-Barrios, Milagros

2003-11-01

213

Functional Roles Affect Diversity-Succession Relationships for Boreal Beetles  

PubMed Central

Species diversity commonly increases with succession and this relationship is an important justification for conserving large areas of old-growth habitats. However, species with different ecological roles respond differently to succession. We examined the relationship between a range of diversity measures and time since disturbance for boreal forest beetles collected over a 285 year forest chronosequence. We compared responses of “functional” groups related to threat status, dependence on dead wood habitats, diet and the type of trap in which they were collected (indicative of the breadth of ecologies of species). We examined fits of commonly used rank-abundance models for each age class and traditional and derived diversity indices. Rank abundance distributions were closest to the Zipf-Mandelbrot distribution, suggesting little role for competition in structuring most assemblages. Diversity measures for most functional groups increased with succession, but differences in slopes were common. Evenness declined with succession; more so for red-listed species than common species. Saproxylic species increased in diversity with succession while non-saproxylic species did not. Slopes for fungivores were steeper than other diet groups, while detritivores were not strongly affected by succession. Species trapped using emergence traps (log specialists) responded more weakly to succession than those trapped using flight intercept traps (representing a broader set of ecologies). Species associated with microhabitats that accumulate with succession (fungi and dead wood) thus showed the strongest diversity responses to succession. These clear differences between functional group responses to forest succession should be considered in planning landscapes for optimum conservation value, particularly functional resilience. PMID:23977350

Gibb, Heloise; Johansson, Therese; Stenbacka, Fredrik; Hjältén, Joakim

2013-01-01

214

Molecular genetic diversity and genetic structure of Vietnamese indigenous pig populations.  

PubMed

The study characterized genetic diversity and genetic structure of five indigenous pig populations (Ha Lang, Muong Te, Mong Cai, Lung and Lung Pu), two wild pig populations (Vietnamese and Thai wild pigs) and an exotic pig breed (Yorkshire) using FAO/ISAG recommended 16 microsatellite markers in 236 samples. All estimated loci were very polymorphic indicated by high values of polymorphism information content (from 0.76 in S0225 to 0.92 in Sw2410). Indigenous populations had very high level of genetic diversity (mean He = 0.75); of all indigenous breeds, Lung Pu showed highest mean number of alleles (MNA = 10.1), gene diversity (He = 0.82), allele richness (5.33) and number of private alleles (10). Thirteen percentage of the total genetic variation observed was due to differences among populations. The neighbour-joining dendrogram obtained from Nei's standard genetic distance differentiated eight populations into four groups including Yorkshire, two wild populations, Mong Cai population and a group of four other indigenous populations. The Bayesian clustering with the admixture model implemented in Structure 2.1 indicated seven possible homogenous clusters among eight populations. From 79% (Ha Lang) to 98% (Mong Cai). individuals in indigenous pigs were assigned to their own populations. The results confirmed high level of genetic diversity and shed a new light on genetic structure of Vietnam indigenous pig populations. PMID:24373066

Pham, L D; Do, D N; Nam, L Q; Van Ba, N; Minh, L T A; Hoan, T X; Cuong, V C; Kadarmideen, H N

2014-10-01

215

Historical bottlenecks decrease genetic diversity in natural populations of Dryopteris cristata.  

PubMed

The reconstruction of recent historical population sizes allowed us to investigate the influence of random evolutionary processes on present-day genetic diversity in populations of Dryopteris cristata. This long-lived, allotetraploid fern is rare and endangered in the study area at the southwestern border of its European distribution. Random amplified polymorphic DNA (RAPD) diversity of 280 individuals from 14 populations of D. cristata was extraordinarily low, suggesting an ancient bottleneck in the species' history. Analysis of molecular variance (AMOVA) of 25 different RAPD multiband phenotypes revealed significant genetic variation among three geographical regions (15%) and among populations within regions (34%); 51% of total variance was attributed to variation within populations. High population differentiation indicated limited gene flow among populations, and genetic divergence was not correlated with geographical distance. There was no relationship between genetic variation within population, estimated as molecular variance, and present-day population size. Populations with recent historical bottlenecks of fewer than 25 individuals showed a substantial and significant reduction in genetic variation, compared with populations without bottlenecks. Comparatively high levels of genetic variation were still maintained in small remnants (60-110 individuals) of formerly large populations. Average deviations of frequencies of widespread polymorphic markers within populations from their frequencies in the whole dataset were significantly higher in small or recently bottlenecked populations than in constantly large populations, thus providing evidence for random sampling effects during genetic bottlenecks and drift in small populations. The present investigation demonstrates the importance of population history for understanding present-day genetic diversity within natural populations, as well as for conservation biology. PMID:11737281

Landergott, U; Holderegger, R; Kozlowski, G; Schneller, J J

2001-09-01

216

Defining the landscape of adaptive genetic diversity.  

PubMed

Whether they are used to describe fitness, genome architecture or the spatial distribution of environmental variables, the concept of a landscape has figured prominently in our collective reasoning. The tradition of landscapes in evolutionary biology is one of fitness mapped onto axes defined by phenotypes or molecular sequence states. The characteristics of these landscapes depend on natural selection, which is structured across both genomic and environmental landscapes, and thus, the bridge among differing uses of the landscape concept (i.e. metaphorically or literally) is that of an adaptive phenotype and its distribution across geographical landscapes in relation to selective pressures. One of the ultimate goals of evolutionary biology should thus be to construct fitness landscapes in geographical space. Natural plant populations are ideal systems with which to explore the feasibility of attaining this goal, because much is known about the quantitative genetic architecture of complex traits for many different plant species. What is less known are the molecular components of this architecture. In this issue of Molecular Ecology, Parchman et al. (2012) pioneer one of the first truly genome-wide association studies in a tree that moves us closer to this form of mechanistic understanding for an adaptive phenotype in natural populations of lodgepole pine (Pinus contorta Dougl. ex Loud.). PMID:22676074

Eckert, Andrew J; Dyer, Rodney J

2012-06-01

217

Genetic diversity affects colony survivorship in commercial honey bee colonies  

NASA Astrophysics Data System (ADS)

Honey bee ( Apis mellifera) queens mate with unusually high numbers of males (average of approximately 12 drones), although there is much variation among queens. One main consequence of such extreme polyandry is an increased diversity of worker genotypes within a colony, which has been shown empirically to confer significant adaptive advantages that result in higher colony productivity and survival. Moreover, honey bees are the primary insect pollinators used in modern commercial production agriculture, and their populations have been in decline worldwide. Here, we compare the mating frequencies of queens, and therefore, intracolony genetic diversity, in three commercial beekeeping operations to determine how they correlate with various measures of colony health and productivity, particularly the likelihood of queen supersedure and colony survival in functional, intensively managed beehives. We found the average effective paternity frequency ( m e ) of this population of honey bee queens to be 13.6 ± 6.76, which was not significantly different between colonies that superseded their queen and those that did not. However, colonies that were less genetically diverse (headed by queens with m e ? 7.0) were 2.86 times more likely to die by the end of the study when compared to colonies that were more genetically diverse (headed by queens with m e > 7.0). The stark contrast in colony survival based on increased genetic diversity suggests that there are important tangible benefits of increased queen mating number in managed honey bees, although the exact mechanism(s) that govern these benefits have not been fully elucidated.

Tarpy, David R.; vanEngelsdorp, Dennis; Pettis, Jeffrey S.

2013-08-01

218

Genetic diversity affects colony survivorship in commercial honey bee colonies.  

PubMed

Honey bee (Apis mellifera) queens mate with unusually high numbers of males (average of approximately 12 drones), although there is much variation among queens. One main consequence of such extreme polyandry is an increased diversity of worker genotypes within a colony, which has been shown empirically to confer significant adaptive advantages that result in higher colony productivity and survival. Moreover, honey bees are the primary insect pollinators used in modern commercial production agriculture, and their populations have been in decline worldwide. Here, we compare the mating frequencies of queens, and therefore, intracolony genetic diversity, in three commercial beekeeping operations to determine how they correlate with various measures of colony health and productivity, particularly the likelihood of queen supersedure and colony survival in functional, intensively managed beehives. We found the average effective paternity frequency (m e ) of this population of honey bee queens to be 13.6?±?6.76, which was not significantly different between colonies that superseded their queen and those that did not. However, colonies that were less genetically diverse (headed by queens with m e ???7.0) were 2.86 times more likely to die by the end of the study when compared to colonies that were more genetically diverse (headed by queens with m e ?>?7.0). The stark contrast in colony survival based on increased genetic diversity suggests that there are important tangible benefits of increased queen mating number in managed honey bees, although the exact mechanism(s) that govern these benefits have not been fully elucidated. PMID:23728203

Tarpy, David R; Vanengelsdorp, Dennis; Pettis, Jeffrey S

2013-08-01

219

Genetic diversity in Leavenworthia populations with different inbreeding levels.  

PubMed Central

Levels of neutral genetic diversity within and between populations were compared between outcrossing (self-incompatible) and inbreeding populations in the annual plant genus Leavenworthia. Two taxonomically independent comparisons are possible, since self-incompatibility has been lost twice in the group of species studied. Within inbred populations of L.uniflora and L.crassa, no DNA sequence variants were seen among the alleles sampled, but high diversity was seen in alleles from populations of the outcrosser L. stylosa, and in self-incompatible L. crassa populations. Diversity between populations was seen in all species. Although total diversity values were lower in the sets of inbreeding populations, between-population values were as high or higher, than those in the outcrossing taxa. Possible reasons for these diversity patterns are discussed. As the effect of inbreeding appears to be a greater than twofold reduction in diversity, we argue that some process such as selection for advantageous mutations, or against deleterious mutations, or bottlenecks occurring predominantly in the inbreeders, appears necessary to account for the findings. If selection for advantageous mutations is responsible, it appears that it must be some form of local adaptive selection, rather than substitution of alleles that are advantageous throughout the species. This is consistent with the finding of high between-population diversity in the inbreeding taxa. PMID:9523432

Liu, F; Zhang, L; Charlesworth, D

1998-01-01

220

Genetic relationships among cherry species with transferability of simple sequence repeat loci.  

PubMed

Sweet and sour cherries are two economically important species in the world. The capability to distinguish among cherry genotypes in breeding, cultivation and germplasm collection is extremely important for scientific as well as economic reasons. In the present research, sixteen simple sequences repeat (SSR) loci were used to estimate the relationships among sweet, sour, duke and wild cherries. All of the SSR markers showed high transferability across the studied species that allowed us to study genetic diversity in them. Totally 96 alleles were generated with SSR loci, of which 93 were found polymorphic with 97.57 % polymorphism. Values of genetic similarity between genotypes varied from 0.16 to 0.97 which indicated high level of genetic diversity. On the basis of their genetic similarities, SSR analysis allowed to group the genotypes into three main clusters according to their species. These results have an important implication for cherry germplasm characterization, improvement, and conservation. PMID:24973884

Khadivi-Khub, Abdollah

2014-09-01

221

Assessment of diversity in Podophyllum hexandrum by genetic and phytochemical markers  

Microsoft Academic Search

For successful conservation and domestication of a species, evaluation of its genetic diversity by different markers is important. Morphological characteristics, phytochemical variation and random amplified polymorphic DNA (RAPD) profiles were generated in different accessions of Podophyllum hexandrum in order to determine the genetic diversity. Random amplified polymorphic DNA (RAPD) analysis revealed a high degree of genetic diversity among the accessions

P. Sultan; A. S. Shawl; P. W. Ramteke; A. Kour; P. H. Qazi

2008-01-01

222

Science for conServation 293 Loss of genetic diversity and  

E-print Network

Science for conServation 293 Loss of genetic diversity and inbreeding in New Zealand's threatened of Conservation. This paper may be cited as: Jamieson, I.G. 2009: Loss of genetic diversity and inbreeding in New bird species #12;Loss of genetic diversity and inbreeding in New Zealand's threatened bird species Ian

Jamieson, Ian

223

Genetic Diversity and Conservation Implications of Four Cupressus Species in China as Revealed  

E-print Network

Genetic Diversity and Conservation Implications of Four Cupressus Species in China as Revealed Understanding the extent and distribution of genetic diversity is crucial for the conservation and management and economically important species in China. We investigated their genetic diversity, population structure

Adams, Robert P.

224

Crop genetic diversity, farm productivity and the management of environmental risk in rainfed agriculture  

Microsoft Academic Search

This paper presents an assessment of the linkages between crop genetic diversity, farm productivity and risk management. A flexible moment-based approach is used to analyse the impact of crop genetic diversity on the mean, variance and skewness of yield. Using farm-level data from Sicily (Italy), econometric evidence shows how crop genetic diversity can increase farm productivity and reduce risk exposure.

Salvatore Di Falco; Jean-Paul Chavas

2006-01-01

225

Invasion success despite reduction of genetic diversity in the European populations of eastern mosquitofish (Gambusia holbrooki)  

E-print Network

Invasion success despite reduction of genetic diversity in the European populations of eastern and heterozygosity, in all four European populations. Despite this great reduction in genetic diversity, eastern (RADP­PCR) we found a strong reduction of genetic diversity, in terms of both number of polymorphic loci

Pilastro, Andrea

226

No loss of genetic diversity in small and isolated populations of Medicago sativa subsp. falcata  

Microsoft Academic Search

Molecular allozyme markers of three polymorphic isozymes were used to estimate the genetic diversity among the seed progeny in fragmented Estonian populations of sickle medic Medicago sativa ssp. falcata L. depending on the population size and the isolation degree. Genetic diversity He was high in all populations, ranging between 0.795 and 0.893. No correlation between the genetic diversity measures and

Karin Kaljund; Vello Jaaska

2010-01-01

227

[Genetic diversity of Mongolian gazelle Procapra guttorosa Pallas, 1777].  

PubMed

The mitochondrial DNA D-loop hypervariable fragment sequence polymorphism was examined in 27 Mongolian gazelles from Mongolia, Russia, and China. Intraspecific polymorphism of the D-loop fragment examined was demonstrated. All haplotypes described were unique. The average nucleotide diversity (pi) for the mtDNA fragment investigated constituted 5.85 +/- 2.92%. A relatively high number of insertions and deletions was observed. In particular, a haplotype with the 77-bp insertion was described. The data obtained point to high genetic diversity of Mongolian populations. There was no correlation between the distribution of haplotypes examined and geographical location of the animal tissue sampling sites. PMID:16316006

Sorokin, P A; Kiriliuk, V E; Lushchekina, A A; Kholodova, M V

2005-10-01

228

Exploiting a wheat EST database to assess genetic diversity.  

PubMed

Expressed sequence tag (EST) markers have been used to assess variety and genetic diversity in wheat (Triticum aestivum). In this study, 1549 ESTs from wheat infested with yellow rust were used to examine the genetic diversity of six susceptible and resistant wheat cultivars. The aim of using these cultivars was to improve the competitiveness of public wheat breeding programs through the intensive use of modern, particularly marker-assisted, selection technologies. The F(2) individuals derived from cultivar crosses were screened for resistance to yellow rust at the seedling stage in greenhouses and adult stage in the field to identify DNA markers genetically linked to resistance. Five hundred and sixty ESTs were assembled into 136 contigs and 989 singletons. BlastX search results showed that 39 (29%) contigs and 96 (10%) singletons were homologous to wheat genes. The database-matched contigs and singletons were assigned to eight functional groups related to protein synthesis, photosynthesis, metabolism and energy, stress proteins, transporter proteins, protein breakdown and recycling, cell growth and division and reactive oxygen scavengers. PCR analyses with primers based on the contigs and singletons showed that the most polymorphic functional categories were photosynthesis (contigs) and metabolism and energy (singletons). EST analysis revealed considerable genetic variability among the Turkish wheat cultivars resistant and susceptible to yellow rust disease and allowed calculation of the mean genetic distance between cultivars, with the greatest similarity (0.725) being between Harmankaya99 and Sönmez2001, and the lowest (0.622) between Aytin98 and Izgi01. PMID:21637582

Karakas, Ozge; Gurel, Filiz; Uncuoglu, Ahu Altinkut

2010-10-01

229

Turtle Carapace Anomalies: The Roles of Genetic Diversity and Environment  

PubMed Central

Background Phenotypic anomalies are common in wild populations and multiple genetic, biotic and abiotic factors might contribute to their formation. Turtles are excellent models for the study of developmental instability because anomalies are easily detected in the form of malformations, additions, or reductions in the number of scutes or scales. Methodology/Principal Findings In this study, we integrated field observations, manipulative experiments, and climatic and genetic approaches to investigate the origin of carapace scute anomalies across Iberian populations of the European pond turtle, Emys orbicularis. The proportion of anomalous individuals varied from 3% to 69% in local populations, with increasing frequency of anomalies in northern regions. We found no significant effect of climatic and soil moisture, or climatic temperature on the occurrence of anomalies. However, lower genetic diversity and inbreeding were good predictors of the prevalence of scute anomalies among populations. Both decreasing genetic diversity and increasing proportion of anomalous individuals in northern parts of the Iberian distribution may be linked to recolonization events from the Southern Pleistocene refugium. Conclusions/Significance Overall, our results suggest that developmental instability in turtle carapace formation might be caused, at least in part, by genetic factors, although the influence of environmental factors affecting the developmental stability of turtle carapace cannot be ruled out. Further studies of the effects of environmental factors, pollutants and heritability of anomalies would be useful to better understand the complex origin of anomalies in natural populations. PMID:21533278

Velo-Antón, Guillermo; Becker, C. Guilherme; Cordero-Rivera, Adolfo

2011-01-01

230

Mobilizing diversity: transposable element insertions in genetic variation and disease  

PubMed Central

Transposable elements (TEs) comprise a large fraction of mammalian genomes. A number of these elements are actively jumping in our genomes today. As a consequence, these insertions provide a source of genetic variation and, in rare cases, these events cause mutations that lead to disease. Yet, the extent to which these elements impact their host genomes is not completely understood. This review will summarize our current understanding of the mechanisms underlying transposon regulation and the contribution of TE insertions to genetic diversity in the germline and in somatic cells. Finally, traditional methods and emerging technologies for identifying transposon insertions will be considered. PMID:20813032

2010-01-01

231

Genetics and Medicine: An Evolving Relationship  

ERIC Educational Resources Information Center

Described is the importance of genetic factors in health and disease and calls for the development of services for genetic screening, diagnosis, and counseling. Such services presently available in Canada are described. (BB)

Scriver, Charles R.; And Others

1978-01-01

232

Prevalence and genetic diversity of arcobacter in food products in the north of Spain.  

PubMed

The bacterial contamination of food products can cause serious public health problems. Interest in Arcobacter contamination has increased due to the relationship between these bacteria and human enteritis. We studied the prevalence and genetic diversity of Arcobacter species at the retail level in the province of Alava in Basque Country, Spain. The results showed a high genetic diversity and indicated the regular presence of the main Arcobacter spp. associated with human enteric illness in food products. Arcobacter butzleri, Arcobacter cryaerophilus, and Arcobacter skirrowii were detected with an overall prevalence close to 40% and were isolated from 15 (42.8%) fresh cow's milk samples, 12 (73.3%) shellfish samples, 11 (55%) chicken samples, 2 (10%) pork samples, and 1 (5%) beef sample. The results indicate the need to investigate the impact of Arcobacter spp. on public health. PMID:23905804

Nieva-Echevarria, Barbara; Martinez-Malaxetxebarria, Irati; Girbau, Cecilia; Alonso, Rodrigo; Fernández-Astorga, Aurora

2013-08-01

233

Genetic diversity of rhizobia isolated from Astragalus adsurgens growing in different geographical regions of China.  

PubMed

The genetic diversity among 95 isolates from Astragalus adsurgens was investigated using molecular biological methods. All of the isolates and 24 reference strains could be differentiated by AFLP, REP-, ERIC- and BOX-PCR fingerprinting analysis. By cluster analysis of the data, 31 AFLP and 38 Rep-PCR genomic groups were delineated, indicating considerable genetic diversity among the isolates. Fifty-four representative strains were further analyzed by RFLP of PCR-amplified 16S and 23S rDNA, revealing 26 rDNA genotypes among the isolates. The phylogenetic relationship of the isolates was determined by partial sequencing of 16S rRNA genes of 16 strains. The results suggest that the A. adsurgens rhizobia belong to the genera Agrobacterium, Mesorhizobium, Rhizobium and Sinorhizobium. PMID:11566387

Gao, J; Terefework, Z; Chen, W; Lindström, K

2001-10-01

234

Analysis of genetic diversity among Chinese wild Vitis species revealed with SSR and SRAP markers.  

PubMed

The genetic diversity among 80 Vitis materials including 62 indigenous accessions of 17 wild Vitis species in China and 7 interspecific hybrids, 10 V. vinifera L. cultivars, and 1 V. riparia Michaux were evaluated by simple sequence repeat and sequence-related amplified polymorphism markers. A total of 10 simple sequence repeat primers and 11 sequence-related amplified polymorphism primer combinations were amplified, and 260 bands were generated, of which 252 were polymorphic with an average polymorphism rate of 97.02%. Genetic relationships among the different Vitis species indicated that V. ficifolia and V. yeshanensis could be considered a separate species. As for the 4 major ecogeographic regions of Chinese wild Vitis species, the genetic diversities of Chinese wild Vitis species from the Qinling Mountain region (H = 0.1947, I = 0.3067) and the mid-downstream Yangtze River region (H = 0.1834, I = 0.2925) were higher, with results suggesting that these regions may be one of the major centers of Vitis origin. An understanding of the genetic diversity of these Chinese wild Vitis species could provide the theoretical foundation for further protection and reasonable utilization in grape breeding. PMID:23913379

Jing, Z B; Wang, X P; Cheng, J M

2013-01-01

235

Genetic Diversity and Pathogenicity of Cylindrocarpon destructans Isolates Obtained from Korean Panax ginseng  

PubMed Central

We analyzed the genetic diversity of Cylindrocarpon destructans isolates obtained from Korean ginseng (i.e., Panax ginseng) roots by performing virulence tests and nuclear ribosomal gene internal transcribed spacer (ITS) and mitochondrial small subunit (mt SSU) rDNA sequence analysis. The phylogenetic relationship analysis performed using ITS DNA sequences and isolates from other hosts helped confirm that all the Korean C. destructans isolates belonged to Nectria/Neonectria radicicola complex. The results of in vivo and ex vivo virulence tests showed that the C. destructans isolates could be divided into two groups according to their distinctive difference in virulence and the genetic diversity. The highly virulent Korean isolates in pathogenicity group II (PG II), together with foreign isolates from P. ginseng and P. quinquefolius, formed a single group. The weakly virulent isolates in pathogenicity group I, together with the foreign isolates from other host plants, formed another group and exhibited a greater genetic diversity than the isolates of PG II, as confirmed by the mt SSU rDNA sequence analysis. In addition, as the weakly virulent Korean isolates were genetically very similar to the foreign isolates from other hosts, they were likely to originate from hosts other than the ginseng plants. PMID:25071387

Song, Jeong Young; Seo, Mun Won; Kim, Sun Ick; Nam, Myeong Hyeon; Lim, Hyoun Sub

2014-01-01

236

GENETIC DIVERSITY OF CARICA PAPAYA AS REVEALED BY AFLP MARKERS  

Technology Transfer Automated Retrieval System (TEKTRAN)

Genetic relationships among Carica papaya cultivars, breeding lines, unimproved germplasm, and related species were established using amplified fragment length polymorphism (AFLP) markers. Seventy-one papaya accessions and related species were analyzed with nine EcoRI-MseI primer combinations. A t...

237

The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity.  

PubMed

Flavonoids are representative plant secondary products. In the model plant Arabidopsis thaliana, at least 54 flavonoid molecules (35 flavonols, 11 anthocyanins and 8 proanthocyanidins) are found. Scaffold structures of flavonoids in Arabidopsis are relatively simple. These include kaempferol, quercetin and isorhamnetin for flavonols, cyanidin for anthocyanins and epicatechin for proanthocyanidins. The chemical diversity of flavonoids increases enormously by tailoring reactions which modify these scaffolds, including glycosylation, methylation and acylation. Genes responsible for the formation of flavonoid aglycone structures and their subsequent modification reactions have been extensively characterized by functional genomic efforts - mostly the integration of transcriptomics and metabolic profiling followed by reverse genetic experimentation. This review describes the state-of-art of flavonoid biosynthetic pathway in Arabidopsis regarding both structural and genetic diversity, focusing on the genes encoding enzymes for the biosynthetic reactions and vacuole translocation. PMID:23473981

Saito, Kazuki; Yonekura-Sakakibara, Keiko; Nakabayashi, Ryo; Higashi, Yasuhiro; Yamazaki, Mami; Tohge, Takayuki; Fernie, Alisdair R

2013-11-01

238

Molecular phylogeography and genetic diversity of East Asian goats.  

PubMed

The domestic goat is one of the most important livestock species, but its origins and genetic diversity still remain uncertain. Multiple highly divergent maternal lineages of goat have been reported in previous studies. Although one of the mitochondrial DNA lineages, lineage B, was detected only in eastern and southern Asia, the geographic distribution of these lineages was previously unclear. Here, we examine the genetic diversity and phylogeographic structure of Asian goats by mitochondrial DNA sequences and morphological characteristics. The analyses of a total of 1661 Asian goats from 12 countries revealed a high frequency of lineage B in Southeast Asia. The frequency of this lineage tended to be higher in mountain areas than in plain areas in Southeast Asian countries, and there was a significant correlation between its frequency and morphological traits. The results suggest an original predominance of lineage B in Southeast Asia and the recent infiltration of lineage A into Southeast Asian goats. PMID:22524237

Lin, B Z; Odahara, S; Ishida, M; Kato, T; Sasazaki, S; Nozawa, K; Mannen, H

2013-02-01

239

Genetic diversity and phylogenetic classification of viral hemorrhagic septicemia virus (VHSV)  

E-print Network

Genetic diversity and phylogenetic classification of viral hemorrhagic septicemia virus (VHSV) B the genetic diversity of viral hemorrhagic septicemia virus (VHSV) and to gain insight into the molecular into a highly homogeneous genetic group, European isolates exhibited a higher genetic variability. Sub- grouping

Paris-Sud XI, Université de

240

Genetic diversity and the genetic structure of natural populations of Chamaecyparis obtusa: implications for management and conservation.  

PubMed

We investigated 25 natural populations of Chamaecyparis obtusa using 51 cleaved amplified polymorphic sequence (CAPS) markers, which were developed using information on sequence-tagged sites (STS) in Cryptomeria japonica. Most CAPS markers have codominant expression patterns, and are suitable for population studies because of their robustness and convenience. We estimated various genetic diversity parameters, including average heterozygosity (H(e)) and allelic richness and found that the more peripheral populations tended to have lower genetic diversity than central populations, in agreement with a previous theoretical study. The overall genetic differentiation between populations was low, but statistically significant (G(ST)=0.039), and similar to the level reported in a previous allozyme study. We attempted to detect non-neutral loci associated with local adaptation to clarify the relationship between the fixation index (F(ST)) and H(e) values for each locus and found seven candidates non-neutral loci. Phylogenetic tree analysis of the populations and Bayesian clustering analysis revealed a pattern of gradually increasing isolation of populations with increasing geographical distance. Three populations had a high degree of linkage disequilibrium, which we attribute to severe bottlenecks due to human disturbance or competition with other species during their migration from refugia after the most recent glaciation. We concluded that the small populations in western Japan and in Kanto district are more important, from a conservation perspective, than the populations in central Japan, due to their genetic divergence, relatively small sizes and restricted areas. PMID:17473864

Tsumura, Y; Matsumoto, A; Tani, N; Ujino-Ihara, T; Kado, T; Iwata, H; Uchida, K

2007-08-01

241

A MULTI-LOCUS, MULTI-TAXA PHYLOGEOGRAPHICAL ANALYSIS OF GENETIC DIVERSITY  

EPA Science Inventory

In addition to measuring spatial patterns of genetic diversity, population genetic measures of biological resources should include temporal data that indicate whether the observed patterns are the result of historical or contemporary processes. In general, genetic measures focus...

242

Assessment of genetic diversity in Azadirachta indica using AFLP markers  

Microsoft Academic Search

Genetic diversity was estimated in 37 neem accessions from different eco-geographic regions of India and four exotic lines\\u000a from Thailand using AFLP markers. Seven AFLP selective primer combinations generated a total of 422 amplification products.\\u000a The average number of scorable fragments was 60 per experiment, and a high degree (69.8%) of polymorphism was obtained per\\u000a assay with values ranging from

A. Singh; M. S. Negi; J. Rajagopal; S. Bhatia; U. K. Tomar; P. S. Srivastava; M. Lakshmikumaran

1999-01-01

243

Genetic diversity and isolation in African Buffalo ( Syncerus caffer)  

Microsoft Academic Search

We studied genetic diversity in 58 buffalo from the Kruger National Park (KNP) and Willem Pretorius Nature Reserve (WPNR). Thirty-three protein-encoding loci were resolved; three were polymorphic. Average heterozygosity (H) values did not differ substantially between adult and sub-adult animals from the KNP (2.65 and 2.89%, respectively), but were lower in animals from the isolated WPNR herd (H = 1.48%

J. P. Grobler; F. H. Van Der Bank

1996-01-01

244

Diversity array technology markers: genetic diversity analyses and linkage map construction in rapeseed (Brassica napus L.).  

PubMed

We developed Diversity Array Technology (DArT) markers for application in genetic studies of Brassica napus and other Brassica species with A or C genomes. Genomic representation from 107 diverse genotypes of B. napus L. var. oleifera (rapeseed, AACC genomes) and B. rapa (AA genome) was used to develop a DArT array comprising 11 520 clones generated using PstI/BanII and PstI/BstN1 complexity reduction methods. In total, 1547 polymorphic DArT markers of high technical quality were identified and used to assess molecular diversity among 89 accessions of B. napus, B. rapa, B. juncea, and B. carinata collected from different parts of the world. Hierarchical cluster and principal component analyses based on genetic distance matrices identified distinct populations clustering mainly according to their origin/pedigrees. DArT markers were also mapped in a new doubled haploid population comprising 131 lines from a cross between spring rapeseed lines 'Lynx-037DH' and 'Monty-028DH'. Linkage groups were assigned on the basis of previously mapped simple sequence repeat (SSRs), intron polymorphism (IP), and gene-based markers. The map consisted of 437 DArT, 135 SSR, 6 IP, and 6 gene-based markers and spanned 2288 cM. Our results demonstrate that DArT markers are suitable for genetic diversity analysis and linkage map construction in rapeseed. PMID:22193366

Raman, Harsh; Raman, Rosy; Nelson, Matthew N; Aslam, M N; Rajasekaran, Ravikesavan; Wratten, Neil; Cowling, Wallace A; Kilian, A; Sharpe, Andrew G; Schondelmaier, Joerg

2012-01-01

245

Genetic diversity and recombination analysis of sweepoviruses from Brazil  

PubMed Central

Background Monopartite begomoviruses (genus Begomovirus, family Geminiviridae) that infect sweet potato (Ipomoea batatas) around the world are known as sweepoviruses. Because sweet potato plants are vegetatively propagated, the accumulation of viruses can become a major constraint for root production. Mixed infections of sweepovirus species and strains can lead to recombination, which may contribute to the generation of new recombinant sweepoviruses. Results This study reports the full genome sequence of 34 sweepoviruses sampled from a sweet potato germplasm bank and commercial fields in Brazil. These sequences were compared with others from public nucleotide sequence databases to provide a comprehensive overview of the genetic diversity and patterns of genetic exchange in sweepoviruses isolated from Brazil, as well as to review the classification and nomenclature of sweepoviruses in accordance with the current guidelines proposed by the Geminiviridae Study Group of the International Committee on Taxonomy of Viruses (ICTV). Co-infections and extensive recombination events were identified in Brazilian sweepoviruses. Analysis of the recombination breakpoints detected within the sweepovirus dataset revealed that most recombination events occurred in the intergenic region (IR) and in the middle of the C1 open reading frame (ORF). Conclusions The genetic diversity of sweepoviruses was considerably greater than previously described in Brazil. Moreover, recombination analysis revealed that a genomic exchange is responsible for the emergence of sweepovirus species and strains and provided valuable new information for understanding the diversity and evolution of sweepoviruses. PMID:23082767

2012-01-01

246

Cryptic changes in the genetic structure of a highly clonal coral population and the relationship with ecological performance  

NASA Astrophysics Data System (ADS)

Elkhorn coral , Acropora palmata, relies heavily on clonal propagation and often displays low genotypic (clonal) diversity. Populations in the Florida Keys experienced rapid declines in tissue cover between 2004 and 2006, largely due to hurricanes and disease, but remained stable from 2006 to 2010. All elkhorn colonies in 150 m2 permanent study plots were genotyped in 2006 ( n = 15 plots) and 2010 ( n = 24 plots), and plots sampled in both years were examined for changes in allelic and genotypic diversity during this period of stable ecological abundance. Overall, genetic diversity of Florida plots was low and declined further over the 4-yr period; seven of the 36 original genets and two of 67 alleles (among five microsatellite loci) were lost completely from the sampled population, and an additional 15 alleles were lost from individual reefs. In 2010, Florida plots (~19 colonies) contained an average of 2.2 ± 1.38 (mean ± SD) genets with a significant negative correlation between colony abundance and genotypic diversity. When scaled to total tissue abundance, genotypic diversity is even lower, with 43 % of genets below the size of sexual maturity. We examined the hypothesized positive relationship of local genotypic diversity with ecological performance measures. In Florida plots ( n = 15), genotypic diversity was not significantly correlated with tissue loss associated with chronic predation, nor with acute disease and storm-fragmentation events, though this relationship may be obscured by the low range of observed diversity and potential confounding with abundance. When more diverse plots in Curaçao ( n = 9) were examined, genotypic diversity was not significantly correlated with resistance during an acute storm disturbance or rate of recovery following disturbance. Cryptic loss of genetic diversity occurred in the apparently stable Florida population and confirms that stable or even increasing abundance does not necessarily indicate genetic stability.

Williams, Dana E.; Miller, M. W.; Baums, I. B.

2014-09-01

247

Genetic diversity of hydrothermal-vent barnacles in Manus Basin  

NASA Astrophysics Data System (ADS)

We evaluated mitochondrial cytochrome oxidase I genetic diversity of two barnacle species (Eochionelasmus ohtai manusensis, Vulcanolepas cf. parensis) at three sites in Manus Basin (Solwara 1, South Su, Solwara 8). There was no evidence for within-site or between-site genetic differentiation for either species. While E. ohtai manusensis showed limited genetic variation, V. cf. parensis showed greater variation, with sequences distributed between two divergent groups. Assuming the cytochrome oxidase I gene is not under selection, significantly negative Tajima's D in E. ohtai manusensis is consistent with a recent population expansion due to a bottleneck or founder effect, whereas V. cf. parensis (combined groups) did not depart from a stable effective population size. Considering the groups separately, V. cf. parensis Group 1 (but not Group 2) showed a negative Tajima's D, indicating these groups may have encountered different historical demographic conditions. Data reported here are part of a baseline study against which recovery of genetic diversity following mineral extraction at Solwara 1 can be measured.

Plouviez, Sophie; Schultz, Thomas F.; McGinnis, Gwendolyn; Minshall, Halle; Rudder, Meghan; Van Dover, Cindy L.

2013-12-01

248

Genetic and functional diversity of propagating cells in glioblastoma.  

PubMed

Glioblastoma (GBM) is a lethal malignancy whose clinical intransigence has been linked to extensive intraclonal genetic and phenotypic diversity and the common emergence of therapeutic resistance. This interpretation embodies the implicit assumption that cancer stem cells or tumor-propagating cells are themselves genetically and functionally diverse. To test this, we screened primary GBM tumors by SNP array to identify copy number alterations (a minimum of three) that could be visualized in single cells by multicolor fluorescence in situ hybridization. Interrogation of neurosphere-derived cells (from four patients) and cells derived from secondary transplants of these same cells in NOD-SCID mice allowed us to infer the clonal and phylogenetic architectures. Whole-exome sequencing and single-cell genetic analysis in one case revealed a more complex clonal structure. This proof-of-principle experiment revealed that subclones in each GBM had variable regenerative or stem cell activity, and highlighted genetic alterations associated with more competitive propagating activity in vivo. PMID:25533637

Piccirillo, Sara G M; Colman, Sue; Potter, Nicola E; van Delft, Frederik W; Lillis, Suzanne; Carnicer, Maria-Jose; Kearney, Lyndal; Watts, Colin; Greaves, Mel

2015-01-13

249

Genetic and Functional Diversity of Propagating Cells in Glioblastoma  

PubMed Central

Summary Glioblastoma (GBM) is a lethal malignancy whose clinical intransigence has been linked to extensive intraclonal genetic and phenotypic diversity and the common emergence of therapeutic resistance. This interpretation embodies the implicit assumption that cancer stem cells or tumor-propagating cells are themselves genetically and functionally diverse. To test this, we screened primary GBM tumors by SNP array to identify copy number alterations (a minimum of three) that could be visualized in single cells by multicolor fluorescence in situ hybridization. Interrogation of neurosphere-derived cells (from four patients) and cells derived from secondary transplants of these same cells in NOD-SCID mice allowed us to infer the clonal and phylogenetic architectures. Whole-exome sequencing and single-cell genetic analysis in one case revealed a more complex clonal structure. This proof-of-principle experiment revealed that subclones in each GBM had variable regenerative or stem cell activity, and highlighted genetic alterations associated with more competitive propagating activity in vivo. PMID:25533637

Piccirillo, Sara G.M.; Colman, Sue; Potter, Nicola E.; van Delft, Frederik W.; Lillis, Suzanne; Carnicer, Maria-Jose; Kearney, Lyndal; Watts, Colin; Greaves, Mel

2014-01-01

250

Promoting utilization of Saccharum spp. genetic resources through genetic diversity analysis and core collection construction.  

PubMed

Sugarcane (Saccharum spp.) and other members of Saccharum spp. are attractive biofuel feedstocks. One of the two World Collections of Sugarcane and Related Grasses (WCSRG) is in Miami, FL. This WCSRG has 1002 accessions, presumably with valuable alleles for biomass, other important agronomic traits, and stress resistance. However, the WCSRG has not been fully exploited by breeders due to its lack of characterization and unmanageable population. In order to optimize the use of this genetic resource, we aim to 1) genotypically evaluate all the 1002 accessions to understand its genetic diversity and population structure and 2) form a core collection, which captures most of the genetic diversity in the WCSRG. We screened 36 microsatellite markers on 1002 genotypes and recorded 209 alleles. Genetic diversity of the WCSRG ranged from 0 to 0.5 with an average of 0.304. The population structure analysis and principal coordinate analysis revealed three clusters with all S. spontaneum in one cluster, S. officinarum and S. hybrids in the second cluster and mostly non-Saccharum spp. in the third cluster. A core collection of 300 accessions was identified which captured the maximum genetic diversity of the entire WCSRG which can be further exploited for sugarcane and energy cane breeding. Sugarcane and energy cane breeders can effectively utilize this core collection for cultivar improvement. Further, the core collection can provide resources for forming an association panel to evaluate the traits of agronomic and commercial importance. PMID:25333358

Nayak, Spurthi N; Song, Jian; Villa, Andrea; Pathak, Bhuvan; Ayala-Silva, Tomas; Yang, Xiping; Todd, James; Glynn, Neil C; Kuhn, David N; Glaz, Barry; Gilbert, Robert A; Comstock, Jack C; Wang, Jianping

2014-01-01

251

Promoting Utilization of Saccharum spp. Genetic Resources through Genetic Diversity Analysis and Core Collection Construction  

PubMed Central

Sugarcane (Saccharum spp.) and other members of Saccharum spp. are attractive biofuel feedstocks. One of the two World Collections of Sugarcane and Related Grasses (WCSRG) is in Miami, FL. This WCSRG has 1002 accessions, presumably with valuable alleles for biomass, other important agronomic traits, and stress resistance. However, the WCSRG has not been fully exploited by breeders due to its lack of characterization and unmanageable population. In order to optimize the use of this genetic resource, we aim to 1) genotypically evaluate all the 1002 accessions to understand its genetic diversity and population structure and 2) form a core collection, which captures most of the genetic diversity in the WCSRG. We screened 36 microsatellite markers on 1002 genotypes and recorded 209 alleles. Genetic diversity of the WCSRG ranged from 0 to 0.5 with an average of 0.304. The population structure analysis and principal coordinate analysis revealed three clusters with all S. spontaneum in one cluster, S. officinarum and S. hybrids in the second cluster and mostly non-Saccharum spp. in the third cluster. A core collection of 300 accessions was identified which captured the maximum genetic diversity of the entire WCSRG which can be further exploited for sugarcane and energy cane breeding. Sugarcane and energy cane breeders can effectively utilize this core collection for cultivar improvement. Further, the core collection can provide resources for forming an association panel to evaluate the traits of agronomic and commercial importance. PMID:25333358

Pathak, Bhuvan; Ayala-Silva, Tomas; Yang, Xiping; Todd, James; Glynn, Neil C.; Kuhn, David N.; Glaz, Barry; Gilbert, Robert A.; Comstock, Jack C.; Wang, Jianping

2014-01-01

252

Reconsideration for conservation units of wild Primula sieboldii in Japan based on adaptive diversity and molecular genetic diversity  

Microsoft Academic Search

Summary Primula sieboldii E. Morren is a perennial clonal herb that is widely distributed in Japan, but in danger of extinction in the wild. In a previous study, we revealed the genetic diversity of the species using chloroplast and nuclear DNA and used this information to define conservation units. However, we lacked information on adaptive genetic diversity, which is important

YASUKO YOSHIDA; MASANORI HONJO; NAOKO KITAMOTO; RYO OHSAWA

2009-01-01

253

[Genetic diversity in goat breeds based on microsatellite analysis].  

PubMed

Fluorescence PCR was applied to investigate the genetic diversities of 9 indigenous Chinese goat breeds and 1 exotic breed with 10 microsatellite DNA markers recommended by the Food and Agriculture Organization of the United Nations and the International Livestock Research Institute of Animal Genetics, which provide data for the preservation and utilization of indigenous goat breeds genetic resource. We found that the 7 breeds were high polymorphic while 3 breeds were moderate polymorphic. We also detected 119 alleles, and the effective allele number ranged from 1.4641 to 9.2911. The average heterozygosity of loci and breeds respectively varied from 0.2618 to 0.7672 and from 0.5196 to 0.7024. As well as SRCRSP23 site and Hexi cashmere goat had the highest average heterozygosity. Then we analyzed the phylogenetic trees (NJ and UPGMA), and found both of them were generally in accordance with their original breeding history and localities. PMID:20684301

Xu, Limei; Liu, Chousheng; Zhang, Liping; Wang, Zhigang; Han, Xu; Li, Xiaoxia; Chang, Shuang

2010-05-01

254

Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape  

PubMed Central

Background The economic importance of grapevine has driven significant efforts in genomics to accelerate the exploitation of Vitis resources for development of new cultivars. However, although a large number of clonally propagated accessions are maintained in grape germplasm collections worldwide, their use for crop improvement is limited by the scarcity of information on genetic diversity, population structure and proper phenotypic assessment. The identification of representative and manageable subset of accessions would facilitate access to the diversity available in large collections. A genome-wide germplasm characterization using molecular markers can offer reliable tools for adjusting the quality and representativeness of such core samples. Results We investigated patterns of molecular diversity at 22 common microsatellite loci and 384 single nucleotide polymorphisms (SNPs) in 2273 accessions of domesticated grapevine V. vinifera ssp. sativa, its wild relative V. vinifera ssp. sylvestris, interspecific hybrid cultivars and rootstocks. Despite the large number of putative duplicates and extensive clonal relationships among the accessions, we observed high level of genetic variation. In the total germplasm collection the average genetic diversity, as quantified by the expected heterozygosity, was higher for SSR loci (0.81) than for SNPs (0.34). The analysis of the genetic structure in the grape germplasm collection revealed several levels of stratification. The primary division was between accessions of V. vinifera and non-vinifera, followed by the distinction between wild and domesticated grapevine. Intra-specific subgroups were detected within cultivated grapevine representing different eco-geographic groups. The comparison of a phenological core collection and genetic core collections showed that the latter retained more genetic diversity, while maintaining a similar phenotypic variability. Conclusions The comprehensive molecular characterization of our grape germplasm collection contributes to the knowledge about levels and distribution of genetic diversity in the existing resources of Vitis and provides insights into genetic subdivision within the European germplasm. Genotypic and phenotypic information compared in this study may efficiently guide further exploration of this diversity for facilitating its practical use. PMID:23497049

2013-01-01

255

AFLP analysis of genetic diversity in charcoal rot fungal populations impacted by crop rotations.  

PubMed

The application of molecular markers enables scientists to clarify the genetic relationships among fungi who are difficult to classify or partition into sub-species using traditional morphological or physiological criteria. One such fungus is Macrophomina phaseolina, a plant pathogenic soil-borne fungus that is the causative agent of Charcoal Rot on soybeans and 500 other plant species world-wide. This plant pathogenic fungus is a very heterogeneous species and disease population dynamics and pathogen genetic diversity are poorly understood. Using a multi-variant Amplified Fragment Length Polymorphism (AFLP) approach for the analysis of genomic data, valuable insight into cultural and environmental pressures that shape the fungal genome was possible. Fungal isolates from 12-year rotated field plots ranging from 1-3 years of crop rotations of the same plant type(s), rotation duration and plant maturity groups provided a unique opportunity to survey M. phaseolina isolates taken from the different crop rotation conditions. Using different data interval partitioning of amplified restriction fragments it was possible to see trends associated with the specific cropping history of the fungal isolates. AFLP neutral primers of intermediate and large amplified products using 20-bp intervals were the most efficient and reliable for demonstrating intra-population dynamics. Results indicate that the highest amount of M. phaseolina genetic diversity was conclusively found in fungal isolates taken from three-year rotation plots. Lesser amounts of genetic diversity were found in two-year rotated and non-rotated fungal isolates. Insight gained from this study may now be incorporated into a larger understanding of how crop rotation and the availability of hosts shape and influence the genetic variability within Macrophomina isolates and populations. This information can then be used to make better-informed decisions regarding crop protection strategies against this diverse and economically important fungal pathogen. PMID:19226737

Brooker, N; Lord, J R; Long, J; Jayawardhana, A

2008-01-01

256

How Much Diversity Is Enough? The Curvilinear Relationship between College Diversity Interactions and First-Year Student Outcomes  

ERIC Educational Resources Information Center

Recent legal challenges to race-conscious college admissions processes have called into question what constitutes a sufficient level of diversity on college campuses. Previous research on the educational benefits of diversity has examined the linear relationship between diversity interactions and student outcomes, but multiple theoretical…

Bowman, Nicholas A.

2013-01-01

257

Genetic diversity and networks of exchange: a combined approach to assess intra-breed diversity  

PubMed Central

Background Cryopreservation of three endangered Belgian sheep breeds required to characterize their intra-breed genetic diversity. It is assumed that the genetic structure of a livestock breed depends mostly on gene flow due to exchanges between herds. To quantify this relation, molecular data and analyses of the exchanges were combined for three endangered Belgian breeds. Methods For each breed, between 91 and 225 sheep were genotyped with 19 microsatellites. Genetic differentiations between breeds and among herds within a breed were evaluated and the genetic structure of the breeds was described using Bayesian clustering (Structure). Exchanges of animals between 20, 46 and 95 herds according to breed were identified via semi-directed interviews and were analyzed using the concepts of the network theory to calculate average degrees and shortest path lengths between herds. Correlation between the Reynolds’ genetic distances and the shortest path lengths between each pair of herds was assessed by a Mantel test approach. Results Genetic differentiation between breeds was high (0.16). Overall Fst values among herds were high in each breed (0.17, 0.11 and 0.10). Use of the Bayesian approach made it possible to identify genetic groups of herds within a breed. Significant correlations between the shortest path lengths and the Reynolds’ genetic distances were found in each breed (0.87, 0.33 and 0.41), which demonstrate the influence of exchanges between herds on the genetic diversity. Correlation differences between breeds could be explained by differences in the average degree of the animal exchange networks, which is a measure of the number of exchanges per herd. The two breeds with the highest average degree showed the lowest correlation. Information from the exchange networks was used to assign individuals to the genetic groups when molecular information was incomplete or missing to identify donors for a cryobank. Conclusions A fine-scale picture of the population genetic structure at the herd level was obtained for the three breeds. Network analysis made it possible to highlight the influence of exchanges on genetic structure and to complete or replace molecular information in establishing a conservation program. PMID:22620856

2012-01-01

258

Genetic calibration of species diversity among North America's freshwater fishes  

PubMed Central

Freshwater ecosystems are being heavily exploited and degraded by human activities all over the world, including in North America, where fishes and fisheries are strongly affected. Despite centuries of taxonomic inquiry, problems inherent to species identification continue to hamper the conservation of North American freshwater fishes. Indeed, nearly 10% of species diversity is thought to remain undescribed. To provide an independent calibration of taxonomic uncertainty and to establish a more accessible molecular identification key for its application, we generated a standard reference library of mtDNA sequences (DNA barcodes) derived from expert-identified museum specimens for 752 North American freshwater fish species. This study demonstrates that 90% of known species can be delineated using barcodes. Moreover, it reveals numerous genetic discontinuities indicative of independently evolving lineages within described species, which points to the presence of morphologically cryptic diversity. From the 752 species analyzed, our survey flagged 138 named species that represent as many as 347 candidate species, which suggests a 28% increase in species diversity. In contrast, several species of parasitic and nonparasitic lampreys lack such discontinuity and may represent alternative life history strategies within single species. Therefore, it appears that the current North American freshwater fish taxonomy at the species level significantly conceals diversity in some groups, although artificially creating diversity in others. In addition to providing an easily accessible digital identification system, this study identifies 151 fish species for which taxonomic revision is required. PMID:21670289

April, Julien; Mayden, Richard L.; Hanner, Robert H.; Bernatchez, Louis

2011-01-01

259

Assessing ecosystem integrity of restored prairie wetlands from species production–diversity relationships  

Microsoft Academic Search

We assessed ecosystem integrity in restored prairie wetlands in eastern South Dakota, U.S.A., by examining the relationship between and diatom diversity and production. We asked three questions: (1) Is production related to species diversity? (2) Can production-diversity relationships be used to distinguish between restored and reference wetlands with the purpose of assessing ecological integrity? (3) Are production-diversity relationships influenced by

Paul M. Mayer; Susan M. Galatowitsch

2001-01-01

260

Genetic Variation and Phylogenetic Relationships of Indian Buffaloes of Uttar Pradesh  

PubMed Central

India possesses a total buffalo population of 105 million out of which 26.1% inhabit Uttar Pradesh. The buffalo of Uttar Pradesh are described as nondescript or local buffaloes. Currently, there is no report about the genetic diversity, phylogenetic relationship and matrilineal genetic structure of these buffaloes. To determine the origin and genetic diversity of UP buffaloes, we sequenced and analysed the mitochondrial DNA D-loop sequences in 259 samples from entire Uttar Pradesh. One hundred nine haplotypes were identified in UP buffaloes that were defined by 96 polymorphic sites. We implemented neutrality tests to assess signatures of recent historical demographic events like Tajima’s D test and Fu’s Fs test. The phylogenetic studies revealed that there was no geographic differentiation and UP buffaloes had a single maternal lineage while buffaloes of Eastern UP were distinctive from rest of the UP buffaloes. PMID:25049904

Joshi, Jyoti; Salar, R. K.; Banerjee, Priyanka; S, Upasna; Tantia, M. S.; Vijh, R. K.

2013-01-01

261

Whole genome analysis of diverse Chlamydia trachomatis strains identifies phylogenetic relationships masked by current clinical typing  

PubMed Central

Chlamydia trachomatis is responsible for both trachoma and sexually transmitted infections causing substantial morbidity and economic cost globally. Despite this, our knowledge of its population and evolutionary genetics is limited. Here we present a detailed whole genome phylogeny from representative strains of both trachoma and lymphogranuloma venereum (LGV) biovars from temporally and geographically diverse sources. Our analysis demonstrates that predicting phylogenetic structure using the ompA gene, traditionally used to classify Chlamydia, is misleading because extensive recombination in this region masks true relationships. We show that in many instances ompA is a chimera that can be exchanged in part or whole, both within and between biovars. We also provide evidence for exchange of, and recombination within, the cryptic plasmid, another important diagnostic target. We have used our phylogenetic framework to show how genetic exchange has manifested itself in ocular, urogenital and LGV C. trachomatis strains, including the epidemic LGV serotype L2b. PMID:22406642

Harris, Simon R.; Clarke, Ian N.; Seth-Smith, Helena M. B.; Solomon, Anthony W.; Cutcliffe, Lesley T.; Marsh, Peter; Skilton, Rachel J.; Holland, Martin J.; Mabey, David; Peeling, Rosanna W.; Lewis, David A.; Spratt, Brian G.; Unemo, Magnus; Persson, Kenneth; Bjartling, Carina; Brunham, Robert; de Vries, Henry J.C.; Morré, Servaas A.; Speksnijder, Arjen; Bébéar, Cécile M.; Clerc, Maïté; de Barbeyrac, Bertille; Parkhill, Julian; Thomson, Nicholas R.

2012-01-01

262

Low-Cot DNA sequences for fingerprinting analysis of germplasm diversity and relationships in Amaranthus.  

PubMed

We examined genetic diversity and relationships among 24 cultivated and wild Amaranthus accessions using the total low-Cot DNA and five individual repetitive sequences as probes. These low-Cot DNA probes were obtained by the isolation of various classes of repetitive-DNA sequences, including satellites, minisatellites, microsatellites, rDNA, retrotransposon-like sequences, and other unidentified novel repetitive sequences. DNA fingerprints generated by different types of repetitive-DNA probes revealed different levels of polymorphism in the Amaranthus genomes. A repetitive sequence containing microsatellites was found to be a suitable probe for characterizing intraspecific accessions, whereas more conservative sequences (e.g. rDNA) were informative for resolving phylogenetic relationships among distantly related species.Genetic diversity, measured as restriction fragment length polymorphism (RFLP) and the similarity index at the low-Cot DNA level, was equally high among intraspecific accessions between the two species groups: grain amaranths (A. caudatus, A. cruentus, and A. hypochondriacus) and their putative wild progenitors (A. hybridus, A. powellii, and A. quitensis). At the interspecific level, however, the grain amaranth species are less divergent from each other than their wild progenitors. With the rare exceptions of certain A. caudatus accessions, grain amaranths were found to be closely related to A. hybridus. The results based on low-Cot DNA were comparable with previous RAPD and isozyme studies of the same set of species/accessions of Amaranthus, indicating that low-Cot DNA sequences are suitable probes for a fingerprinting analysis of plant germplasm diversity and for determining phylogenetic relationships. PMID:22665179

Sun, M; Chen, H; Leung, F C

1999-08-01

263

Peach genetic resources: diversity, population structure and linkage disequilibrium  

PubMed Central

Background Peach (Prunus persica (L.) Batsch) is one of the most important model fruits in the Rosaceae family. Native to the west of China, where peach has been domesticated for more than 4,000 years, its cultivation spread from China to Persia, Mediterranean countries and to America. Chinese peach has had a major impact on international peach breeding programs due to its high genetic diversity. In this research, we used 48 highly polymorphic SSRs, distributed over the peach genome, to investigate the difference in genetic diversity, and linkage disequilibrium (LD) among Chinese cultivars, and North American and European cultivars, and the evolution of current peach cultivars. Results In total, 588 alleles were obtained with 48 SSRs on 653 peach accessions, giving an average of 12.25 alleles per locus. In general, the average value of observed heterozygosity (0.47) was lower than the expected heterozygosity (0.60). The separate analysis of groups of accessions according to their origin or reproductive strategies showed greater variability in Oriental cultivars, mainly due to the high level of heterozygosity in Chinese landraces. Genetic distance analysis clustered the cultivars into two main groups: one included four wild related Prunus, and the other included most of the Oriental and Occidental landraces and breeding cultivars. STRUCTURE analysis assigned 469 accessions to three subpopulations: Oriental (234), Occidental (174), and Landraces (61). Nested STRUCTURE analysis divided the Oriental subpopulation into two different subpopulations: ‘Yu Lu’ and ‘Hakuho’. The Occidental breeding subpopulation was also subdivided into nectarine and peach subpopulations. Linkage disequilibrium (LD) analysis in each of these subpopulations showed that the percentage of linked (r2?>?0.1) intra-chromosome comparisons ranged between 14% and 47%. LD decayed faster in Oriental (1,196 Kbp) than in Occidental (2,687 Kbp) samples. In the ‘Yu Lu’ subpopulation there was considerable LD extension while no variation of LD with physical distance was observed in the landraces. From the first STRUCTURE result, LG1 had the greatest proportion of alleles in LD within all three subpopulations. Conclusions Our study demonstrates a high level of genetic diversity and relatively fast decay of LD in the Oriental peach breeding program. Inclusion of Chinese landraces will have a greater effect on increasing genetic diversity in Occidental breeding programs. Fingerprinting with genotype data for all 658 cultivars will be used for accession management in different germplasms. A higher density of markers are needed for association mapping in Oriental germplasm due to the low extension of LD. Population structure and evaluation of LD provides valuable information for GWAS experiment design in peach. PMID:24041442

2013-01-01

264

Genetic Diversity and Molecular Evolution of Chinese Waxy Maize Germplasm  

PubMed Central

Waxy maize (Zea mays L. var. certaina Kulesh), with many excellent characters in terms of starch composition and economic value, has grown in China for a long history and its production has increased dramatically in recent decades. However, the evolution and origin of waxy maize still remains unclear. We studied the genetic diversity of Chinese waxy maize including typical landraces and inbred lines by SSR analysis and the results showed a wide genetic diversity in the Chinese waxy maize germplasm. We analyzed the origin and evolution of waxy maize by sequencing 108 samples, and downloading 52 sequences from GenBank for the waxy locus in a number of accessions from genus Zea. A sharp reduction of nucleotide diversity and significant neutrality tests (Tajima’s D and Fu and Li’s F*) were observed at the waxy locus in Chinese waxy maize but not in nonglutinous maize. Phylogenetic analysis indicated that Chinese waxy maize originated from the cultivated flint maize and most of the modern waxy maize inbred lines showed a distinct independent origin and evolution process compared with the germplasm from Southwest China. The results indicated that an agronomic trait can be quickly improved to meet production demand by selection. PMID:23818949

Zheng, Hongjian; Wang, Hui; Yang, Hua; Wu, Jinhong; Shi, Biao; Cai, Run; Xu, Yunbi; Wu, Aizhong; Luo, Lijun

2013-01-01

265

Genetic diversity of polysporic isolates of Moniliophthora perniciosa (Tricholomataceae).  

PubMed

The causal agent of witches' broom disease, Moniliophthora perniciosa is a hemibiotrophic and endemic fungus of the Amazon basin and the most important cocoa disease in Brazil. The purpose of this study was to analyze the genetic diversity of polysporic isolates of M. perniciosa to evaluate the adaptation of the pathogen from different Brazilian regions and its association with different hosts. Polysporic isolates obtained previously in potato dextrose agar cultures of M. perniciosa from different Brazilian states and different hosts (Theobroma cacao, Solanum cernuum, S. paniculatum, S. lycocarpum, Solanum sp, and others) were analyzed by somatic compatibility grouping where the mycelium interactions were distinguished after 4-8 weeks of confrontation between the different isolates of M. perniciosa based on the precipitation line in the transition zone and by protein electrophoresis through SDS-PAGE. The diversity of polysporic isolates of M. perniciosa was grouped according to geographic proximity and respective hosts. The great genetic diversity of M. perniciosa strains from different Brazilian states and hosts favored adaptation in unusual environments and dissemination at long distances generating new biotypes. PMID:22869076

Ferreira, L F R; Duarte, K M R; Gomes, L H; Carvalho, R S; Leal Junior, G A; Aguiar, M M; Armas, R D; Tavares, F C A

2012-01-01

266

Genetic Diversity of Pectobacterium carotovorum subsp. brasiliensis Isolated in Korea  

PubMed Central

The plant pathogenic bacterial genus Pectobacteirum consists of heterogeneous strains. The P. carotovorum species is a complex strain showing divergent characteristics, and a new subspecies named P. carotovorum subsp. brasiliensis has been identified recently. In this paper, we re-identified the P. carotovorum subsp. brasiliensis isolates from those classified under the subspecies carotovorum and newly isolated P. carotovorum subsp. brasiliensis strains. All isolates were able to produce plant cell-wall degrading enzymes such as pectate lyase, polygalacturonase, cellulase and protease. We used genetic and biochemical methods to examine the diversity of P. carotovorum subsp. brasiliensis isolates, and found genetic diversity within the brasiliensis subsp. isolates in Korea. The restriction fragment length polymorphism analysis based on the recA gene revealed a unique pattern for the brasiliensis subspecies. The Korean brasiliensis subsp. isolates were divided into four clades based on pulsed-field gel electrophoresis. However, correlations between clades and isolated hosts or year could not be found, suggesting that diverse brasiliensis subsp. isolates existed. PMID:25288994

Lee, Dong Hwan; Kim, Jin-Beom; Lim, Jeong-A; Han, Sang-Wook; Heu, Sunggi

2014-01-01

267

Limited Genetic Diversity Preceded Extinction of the Tasmanian Tiger  

PubMed Central

The Tasmanian tiger or thylacine was the largest carnivorous marsupial when Europeans first reached Australia. Sadly, the last known thylacine died in captivity in 1936. A recent analysis of the genome of the closely related and extant Tasmanian devil demonstrated limited genetic diversity between individuals. While a similar lack of diversity has been reported for the thylacine, this analysis was based on just two individuals. Here we report the sequencing of an additional 12 museum-archived specimens collected between 102 and 159 years ago. We examined a portion of the mitochondrial DNA hyper-variable control region and determined that all sequences were on average 99.5% identical at the nucleotide level. As a measure of accuracy we also sequenced mitochondrial DNA from a mother and two offspring. As expected, these samples were found to be 100% identical, validating our methods. We also used 454 sequencing to reconstruct 2.1 kilobases of the mitochondrial genome, which shared 99.91% identity with the two complete thylacine mitochondrial genomes published previously. Our thylacine genomic data also contained three highly divergent putative nuclear mitochondrial sequences, which grouped phylogenetically with the published thylacine mitochondrial homologs but contained 100-fold more polymorphisms than the conserved fragments. Together, our data suggest that the thylacine population in Tasmania had limited genetic diversity prior to its extinction, possibly as a result of their geographic isolation from mainland Australia approximately 10,000 years ago. PMID:22530022

Menzies, Brandon R.; Renfree, Marilyn B.; Heider, Thomas; Mayer, Frieder; Hildebrandt, Thomas B.; Pask, Andrew J.

2012-01-01

268

Genetic diversity and molecular evolution of Chinese waxy maize germplasm.  

PubMed

Waxy maize (Zea mays L. var. certaina Kulesh), with many excellent characters in terms of starch composition and economic value, has grown in China for a long history and its production has increased dramatically in recent decades. However, the evolution and origin of waxy maize still remains unclear. We studied the genetic diversity of Chinese waxy maize including typical landraces and inbred lines by SSR analysis and the results showed a wide genetic diversity in the Chinese waxy maize germplasm. We analyzed the origin and evolution of waxy maize by sequencing 108 samples, and downloading 52 sequences from GenBank for the waxy locus in a number of accessions from genus Zea. A sharp reduction of nucleotide diversity and significant neutrality tests (Tajima's D and Fu and Li's F*) were observed at the waxy locus in Chinese waxy maize but not in nonglutinous maize. Phylogenetic analysis indicated that Chinese waxy maize originated from the cultivated flint maize and most of the modern waxy maize inbred lines showed a distinct independent origin and evolution process compared with the germplasm from Southwest China. The results indicated that an agronomic trait can be quickly improved to meet production demand by selection. PMID:23818949

Zheng, Hongjian; Wang, Hui; Yang, Hua; Wu, Jinhong; Shi, Biao; Cai, Run; Xu, Yunbi; Wu, Aizhong; Luo, Lijun

2013-01-01

269

Allozyme Evidence for Genetic Autopolyploidy and High Genetic Diversity in Tetraploid Cranberry, Vaccinium oxycoccos (Ericaceae)  

Microsoft Academic Search

Polyploidy has been important in the evolution of angiosperms and may significantly affect population genetic diversity and structure. Nineteen isoenzyme loci were studied in diploid and tetraploid populations of Vaccinium oxycoccos (Ericaceae), and the results are compared with data previously reported for the related V. macrocarpon. Diploid V. oxycoccos and V. macrocarpon were readily discriminated based on their allozymic variation.

Gregory Mahy; Leo P. Bruederle; Bridget Connors; Michael Van Hofwegen; Nicholi Vorsa

2000-01-01

270

LYGUS GENETICS: INTER- AND INTRASPECIFIC MITOCHONDRIAL GENETIC DIVERSITY IN NORTH AMERICA  

Technology Transfer Automated Retrieval System (TEKTRAN)

Mitochondrial DNA (mtDNA) was employed to investigate inter- and intraspecific genetic diversity within the Lygus genus. The main emphasis was on L. lineolaris because it is a widely dispersed species occurring in many regions of North America. Part of the mtDNA cox1 and cox2 gene regions were used ...

271

Genetic relationship of populations in China  

PubMed Central

Despite the fact that the continuity of morphology of fossil specimens of modern humans found in China has repeatedly challenged the Out-of-Africa hypothesis, Chinese populations are underrepresented in genetic studies. Genetic profiles of 28 populations sampled in China supported the distinction between southern and northern populations, while the latter are biphyletic. Linguistic boundaries are often transgressed across language families studied, reflecting substantial gene flow between populations. Nevertheless, genetic evidence does not support an independent origin of Homo sapiens in China. The phylogeny also suggested that it is more likely that ancestors of the populations currently residing in East Asia entered from Southeast Asia. PMID:9751739

Chu, J. Y.; Huang, W.; Kuang, S. Q.; Wang, J. M.; Xu, J. J.; Chu, Z. T.; Yang, Z. Q.; Lin, K. Q.; Li, P.; Wu, M.; Geng, Z. C.; Tan, C. C.; Du, R. F.; Jin, L.

1998-01-01

272

Genetic and clonal diversity of two cattail species, Typha latifolia and T. angustifolia (Typhaceae), from Ukraine.  

PubMed

Genetic and clonal diversity vary between two closely related cattail species (Typha angustifolia and T. latifolia) from Ukraine. This diversity was calculated from microsatellite data. Forty-eight percent of the total variation was partitioned between species, which formed distinct clusters in a dendrogram with no indication of hybrid populations. Typha angustifolia had higher heterozygosity at the species (H(es) = 0.66) and population (H(ep) = 0.49) levels than did T. latifolia (H(es) = 0.37 and H(ep) = 0.29, respectively). The higher number of alleles in T. angustifolia may be indicative of larger effective population sizes due to its higher seed production. Clonal diversity of T. angustifolia was lower than that of T. latifolia (N(g)/N(r) = 0.40 and 0.61, Simpson's D = 0.82 and 0.94, respectively). Correlations between clonal and genetic diversity were higher for T. latifolia than T. angustifolia, suggesting that the importance of factors and their interactions affecting this relationship are different for the two species. Latitudinal and longitudinal trends were not observed in either species despite the large sampling area. Population differentiation was relatively high with F(ST) of 0.24 and 0.29 for T. angustifolia and T. latifolia, respectively. Weak isolation by distance was observed for T. latifolia but not for T. angustifolia. PMID:21646138

Tsyusko, Olga V; Smith, Michael H; Sharitz, Rebecca R; Glenn, Travis C

2005-07-01

273

Bioinformatics analysis and genetic diversity of the poliovirus.  

PubMed

Poliomyelitis, a disease which can manifest as muscle paralysis, is caused by the poliovirus, which is a human enterovirus and member of the family Picornaviridae that usually transmits by the faecal-oral route. The viruses of the OPV (oral poliovirus attenuated-live vaccine) strains can mutate in the human intestine during replication and some of these mutations can lead to the recovery of serious neurovirulence. Informatics research of the poliovirus genome can be used to explain further the characteristics of this virus. In this study, sequences from 100 poliovirus isolates were acquired from GenBank. To determine the evolutionary relationship between the strains, we compared and analysed the sequences of the complete poliovirus genome and the VP1 region. The reconstructed phylogenetic trees for the complete sequences and the VP1 sequences were both divided into two branches, indicating that the genetic relationships of the whole poliovirus genome and the VP1 sequences are very similar. This branching indicates that the virulence and pathogenicity of poliomyelitis may be associated with the VP1 region. Sequence alignment of the VP1 region revealed numerous mutation sites in which mutation rates of >30?% were detected. In a group of strains recorded in the USA, mutation sites and mutation types were the same and this may be associated with their distribution in the evolutionary tree and their genetic relationship. In conclusion, the genetic evolutionary relationships of poliovirus isolate sequences are determined to a great extent by the VP1 protein, and poliovirus strains located on the same branch of the phylogenetic tree contain the same mutation spots and mutation types. Hence, the genetic characteristics of the VP1 region in the poliovirus genome should be analysed to identify the transmission route of poliovirus and provide the basis of viral immunity development. PMID:25261065

Liu, Yanhan; Ma, Tengfei; Liu, Jianzhu; Zhao, Xiaona; Cheng, Ziqiang; Guo, Huijun; Wang, Shujing; Xu, Ruixue

2014-12-01

274

Allozyme diversity and population genetic structure of three medicinal Epimedium species from Hubei.  

PubMed

Three Epimedium species, E. pubescens Maxim., E. sagittatum (Sieb. & Zucc.) Maxim., and E. wushanense T. S. Ying, which are sympatrically distributed in the western Hubei Province, have been used in traditional Chinese medicine (TCM) for about 2,000 years. Genetic variability and population genetic structure of 11 natural populations of these Epimedium species were investigated using isoelectric focusing in thin-layer polyacrylamide slab gels. Of the 22 enzyme systems prescreened, six coding for 13 loci and 45 alleles were resolved, which were used for analyzing genetic diversity and population structure at both intraspecific and interspecific levels. The results showed that: 1) high levels of genetic diversity were observed in all three species (A = 2.6-3.2, P = 69.2%-84.6%, H(O) = 0.274-0.377, H(E) = 0.282-0.369), which were higher than that of other herbaceous and animal-pollinated species with similar life-history characteristics; 2) there was significant deviation from Hardy-Weinberg Equilibrium, with one half of the loci showing heterozygote excess and the other homozygote excess, in all populations, suggesting the complicated breeding system of Epimedium species; 3) the low level of intraspecific and interspecific genetic differentiation (G(ST) = 0.0246-0.0409 and 0.0495-0.1213, respectively) indicated a high level of gene flow among populations and close genetic relationship among the three species; and 4) UPGMA cluster analysis further showed that E. pubescens was more closely related to E. sagittatum than to E. wushanense, which was in good agreement with the morphological characters and the recent phylogenetic analysis of these species. On the basis of these results, it was concluded that the mixed breeding system, long-lived perennial life form, ancient evolutionary history, and seed dispersal by ants in Epimedium are responsible for the genetic variation and population structure of these species. PMID:17469778

Xu, Yanqin; Li, Zuozhou; Wang, Ying; Huang, Hongwen

2007-01-01

275

Multiple Mating But Not Recombination Causes Quantitative Increase in Offspring Genetic Diversity for Varying Genetic Architectures  

PubMed Central

Explaining the evolution of sex and recombination is particularly intriguing for some species of eusocial insects because they display exceptionally high mating frequencies and genomic recombination rates. Explanations for both phenomena are based on the notion that both increase colony genetic diversity, with demonstrated benefits for colony disease resistance and division of labor. However, the relative contributions of mating number and recombination rate to colony genetic diversity have never been simultaneously assessed. Our study simulates colonies, assuming different mating numbers, recombination rates, and genetic architectures, to assess their worker genotypic diversity. The number of loci has a strong negative effect on genotypic diversity when the allelic effects are inversely scaled to locus number. In contrast, dominance, epistasis, lethal effects, or limiting the allelic diversity at each locus does not significantly affect the model outcomes. Mating number increases colony genotypic variance and lowers variation among colonies with quickly diminishing returns. Genomic recombination rate does not affect intra- and inter-colonial genotypic variance, regardless of mating frequency and genetic architecture. Recombination slightly increases the genotypic range of colonies and more strongly the number of workers with unique allele combinations across all loci. Overall, our study contradicts the argument that the exceptionally high recombination rates cause a quantitative increase in offspring genotypic diversity across one generation. Alternative explanations for the evolution of high recombination rates in social insects are therefore needed. Short-term benefits are central to most explanations of the evolution of multiple mating and high recombination rates in social insects but our results also apply to other species. PMID:23077571

Rueppell, Olav; Meier, Stephen; Deutsch, Roland

2012-01-01

276

Genetic diversity of Phytophthora infestans in the Northern-Andean region  

E-print Network

population studies are scarce [25,26]. These studies showed that the P. infes- tans population revealed low genetic diversity, with no evidence of sexual reproduction, and consisted mostly of the A1 mating type. It should be noted that the A2 mat- ing type... and not the result of sexual reproduction. The gene networks for the different regions showed, as a general pattern, that the relationships between the haplotypes in each population of the Northern Andean region are consistent with variation within a clonal...

Cardenas, Martha; Grajales, Alejandro; Sierra, Roberto; Rojas, Alejandro; Gonzalez-Almario, Adriana; Vargas, Angela; Marin, Mauricio; Fermin, Gustavo; Lagos, Luz E; Grunwald, Niklaus J; Bernal, Adriana; Salazar, Camilo; Restrepo, Silvia

2011-02-09

277

Genetic diversity within honeybee colonies prevents severe infections and promotes colony growth.  

PubMed Central

Multiple mating by social insect queens increases the genetic diversity among colony members, thereby reducing intracolony relatedness and lowering the potential inclusive fitness gains of altruistic workers. Increased genetic diversity may be adaptive, however, by reducing the prevalence of disease within a nest. Honeybees, whose queens have the highest levels of multiple mating among social insects, were investigated to determine whether genetic variation helps to prevent chronic infections. I instrumentally inseminated honeybee queens with semen that was either genetically similar (from one male) or genetically diverse (from multiple males), and then inoculated their colonies with spores of Ascosphaera apis, a fungal pathogen that kills developing brood. I show that genetically diverse colonies had a lower variance in disease prevalence than genetically similar colonies, which suggests that genetic diversity may benefit colonies by preventing severe infections. PMID:12596763

Tarpy, David R

2003-01-01

278

Diverse genetic origin of Indian Muslims: evidence from autosomal STR loci.  

PubMed

The origin and relationships of Indian Muslims is still dubious and are not yet genetically well studied. In the light of historically attested movements into Indian subcontinent during the demic expansion of Islam, the present study aims to substantiate whether it had been accompanied by any gene flow or only a cultural transformation phenomenon. An array of 13 autosomal STR markers that are common in the worldwide data sets was used to explore the genetic diversity of Indian Muslims. The austere endogamy being practiced for several generations was confirmed by the genetic demarcation of each of the six Indian Muslim communities in the phylogenetic assessments for the markers examined. The analyses were further refined by comparison with geographically closest neighboring Hindu religious groups (including several caste and tribal populations) and the populations from Middle East, East Asia and Europe. We found that some of the Muslim populations displayed high level of regional genetic affinity rather than religious affinity. Interestingly, in Dawoodi Bohras (TN and GUJ) and Iranian Shia significant genetic contribution from West Asia, especially Iran (49, 47 and 46%, respectively) was observed. This divulges the existence of Middle Eastern genetic signatures in some of the contemporary Indian Muslim populations. Our study reveals that the spread of Islamic faith in the Indian subcontinent was predominantly cultural transformation associated with minor gene flow from West Asia. PMID:19424286

Eaaswarkhanth, Muthukrishnan; Dubey, Bhawna; Meganathan, Poorlin Ramakodi; Ravesh, Zeinab; Khan, Faizan Ahmed; Singh, Lalji; Thangaraj, Kumarasamy; Haque, Ikramul

2009-06-01

279

How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings  

PubMed Central

Major histocompatibility complex (MHC) genes have been put forward as a model for studying how genetic diversity is maintained in wild populations. Pathogen-mediated selection (PMS) is believed to generate the extraordinary levels of MHC diversity observed. However, establishing the relative importance of the three proposed mechanisms of PMS (heterozygote advantage, rare-allele advantage and fluctuating selection) has proved extremely difficult. Studies have attempted to differentiate between mechanisms of PMS using two approaches: (i) comparing MHC diversity with that expected under neutrality and (ii) relating MHC diversity to pathogen regime. Here, we show that in many cases the same predictions arise from the different mechanisms under these approaches, and that most studies that have inferred one mechanism of selection have not fully considered the alternative explanations. We argue that, while it may be possible to demonstrate that particular mechanisms of PMS are occurring, resolving their relative importance within a system is probably impossible. A more realistic target is to continue to demonstrate when and where the different mechanisms of PMS occur, with the aim of determining their relative importance across systems. We put forward what we believe to be the most promising approaches that will allow us to progress towards achieving this. PMID:20071384

Spurgin, Lewis G.; Richardson, David S.

2010-01-01

280

Genetic Relationships of Ethnic Minorities in Southwest China Revealed by Microsatellite Markers  

PubMed Central

Population migrations in Southwest and South China have played an important role in the formation of East Asian populations and led to a high degree of cultural diversity among ethnic minorities living in these areas. To explore the genetic relationships of these ethnic minorities, we systematically surveyed the variation of 10 autosomal STR markers of 1,538 individuals from 30 populations of 25 ethnic minorities, of which the majority were chosen from Southwest China, especially Yunnan Province. With genotyped data of the markers, we constructed phylogenies of these populations with both DA and DC measures and performed a principal component analysis, as well as a clustering analysis by structure. Results showed that we successfully recovered the genetic structure of analyzed populations formed by historical migrations. Aggregation patterns of these populations accord well with their linguistic affiliations, suggesting that deciphering of genetic relationships does in fact offer clues for study of ethnic differentiation. PMID:20360948

Zhang, Feng; Huang, Xiaoqin; Lin, Keqin; Shi, Lei; Hu, Songnian; Chu, Jiayou; Wang, Duen-Mei

2010-01-01

281

Genetic diversity in black South Africans from Soweto  

PubMed Central

Background Due to the unparalleled genetic diversity of its peoples, Africa is attracting growing research attention. Several African populations have been assessed in global initiatives such as the International HapMap and 1000 Genomes Projects. Notably excluded, however, is the southern Africa region, which is inhabited predominantly by southeastern Bantu-speakers, currently suffering under the dual burden of infectious and non-communicable diseases. Limited reference data for these individuals hampers medical research and prevents thorough understanding of the underlying population substructure. Here, we present the most detailed exploration, to date, of genetic diversity in 94 unrelated southeastern Bantu-speaking South Africans, resident in urban Soweto (Johannesburg). Results Participants were typed for ~4.3 million SNPs using the Illumina Omni5 beadchip. PCA and ADMIXTURE plots were used to compare the observed variation with that seen in selected populations worldwide. Results indicated that Sowetans, and other southeastern Bantu-speakers, are a clearly distinct group from other African populations previously investigated, reflecting a unique genetic history with small, but significant contributions from diverse sources. To assess the suitability of our sample as representative of Sowetans, we compared our results to participants in a larger rheumatoid arthritis case–control study. The control group showed good clustering with our sample, but among the cases were individuals who demonstrated notable admixture. Conclusions Sowetan population structure appears unique compared to other black Africans, and may have clinical implications. Our data represent a suitable reference set for southeastern Bantu-speakers, on par with a HapMap type reference population, and constitute a prelude to the Southern African Human Genome Programme. PMID:24059264

2013-01-01

282

Genetic (RAPD) diversity in Peromyscus maniculatus populations in a naturally fragmented landscape  

Microsoft Academic Search

We assessed the effects of long-term habitat fragmentation on genetic (random amplified polymorphic DNA) diversity in 11 Peromyscus maniculatus populations in the Lake Superior watershed. We analysed genetic structure at two spatial scales and the effect of island size and isolation on genetic diversity. At the regional scale, island populations differed from mainland populations ( F ST = 0.36), but

L. M. Vucetich; J. A. Vucetich; C. P. Joshi; T. A. Waite; R. O. Peterson

2001-01-01

283

The influence of malaria parasite genetic diversity and anaemia on mosquito feeding and fecundity  

E-print Network

The influence of malaria parasite genetic diversity and anaemia on mosquito feeding and fecundity H genetics and infection genetic diversity on the fecundity of mosquitoes carrying malaria parasites. The malaria vector Anopheles stephensi was infected with either of 2 different genotypes of the rodent malaria

Rivero, Ana

284

AFLPs detect low genetic diversity for Phytophthora nemorosa and P. pseudosyringae in the US and Europe  

E-print Network

AFLPs detect low genetic diversity for Phytophthora nemorosa and P. pseudosyringae in the US variants. There is no ev- idence that genetic diversity is partitioned by host or location in P. nemorosa, but the US P. pseudosyringae clonal lineage is largely nested within a more genetically variable European

California at Berkeley, University of

285

Distribution and Conservation of Genetic Diversity Among UK Calcareous Grassland Regions: A Case Study Using Insects  

Microsoft Academic Search

Conservation strategies for whole communities at the landscape scale have rarely been able to take into account genetic diversity because of the number of species involved. However, if species can be grouped together by geographic distribution of genetic diversity and patterns of relatedness, then landscape and genetic conservation might be more effectively combined to cope with problems of fragmentation. We

Bo-Chi G. Lai; Andrew S. Pullin

2005-01-01

286

Genetic diversity within and between European pig breeds using microsatellite markers  

Microsoft Academic Search

An important prerequisite for a conservation programme is a comprehensive description of genetic diversity. The aim of this study was to use anonymous genetic markers to assess the between- and the within-population components of genetic diversity for European pig breeds at the scale of the whole continent using microsatellites. Fifty-eight European pig breeds and lines were analysed including local breeds,

M. SanCristobal; C. Chevalet; C. S. Haley; R. Joosten; A. P. Rattink; B. Harlizius; M. A. M. Groenen; Y. Amigues; M.-Y. Boscher; G. Russell; A. Law; R. Davoli; V. Russo; C. Desautes; L. Alderson; E. Fimland; M. Bagga; J. V. Delgado; J. L. Vega-Pla; A. M. Martinez; M. Ramos; P. Glodek; J. N. Meyer; G. C. Gandini; D. Matassino; G. S. Plastow; K. W. Siggens; G. Laval; A. L. Archibald; D. Milan; K. Hammond; R. Cardellino

2006-01-01

287

Genetic diversity of a relict plant species, Ligularia sibirica (L.) Cass. (Asteraceae)  

Microsoft Academic Search

Rare plant species can be divided into naturally, ‘old rare’ species and anthropogenically, ‘new rare’ species. Many recent studies explored genetic diversity of ‘new rare’ species. Less is, however, known about genetic diversity of ‘old rare’ species. We examined isozyme genetic variability of 20 populations of an ‘old rare’ plant species, Ligularia sibirica (Asteraceae) in the Czech and Slovak Republic.

Anna Šmídová; Zuzana Münzbergová; Ivana Pla?ková

2011-01-01

288

Effects of inbreeding on the genetic diversity of populations.  

PubMed Central

The study of variability within species is important to all biologists who use genetic markers. Since the discovery of molecular variability among normal individuals, data have been collected from a wide range of organisms, and it is important to understand the major factors affecting diversity levels and patterns. Comparisons of inbreeding and outcrossing populations can contribute to this understanding, and therefore studying plant populations is important, because related species often have different breeding systems. DNA sequence data are now starting to become available from suitable plant and animal populations, to measure and compare variability levels and test predictions. PMID:12831472

Charlesworth, Deborah

2003-01-01

289

The impact of recent events on human genetic diversity  

PubMed Central

The historical record tells us stories of migrations, population expansions and colonization events in the last few thousand years, but what was their demographic impact? Genetics can throw light on this issue, and has mostly done so through the maternally inherited mitochondrial DNA (mtDNA) and the male-specific Y chromosome. However, there are a number of problems, including marker ascertainment bias, possible influences of natural selection, and the obscuring layers of the palimpsest of historical and prehistorical events. Y-chromosomal lineages are particularly affected by genetic drift, which can be accentuated by recent social selection. A diversity of approaches to expansions in Europe is yielding insights into the histories of Phoenicians, Roma, Anglo-Saxons and Vikings, and new methods for producing and analysing genome-wide data hold much promise. The field would benefit from more consensus on appropriate methods, and better communication between geneticists and experts in other disciplines, such as history, archaeology and linguistics. PMID:22312046

Jobling, Mark A.

2012-01-01

290

Effects of metapopulation processes on measures of genetic diversity.  

PubMed Central

Many species persist as a metapopulation under a balance between the local extinction of subpopulations or demes and their recolonization through dispersal from occupied patches. Here we review the growing body of literature dealing with the genetic consequences of such population turnover. We focus our attention principally on theoretical studies of a classical metapopulation with a 'finite-island' model of population structure, rather than on 'continent-island' models or 'source-sink' models. In particular, we concern ourselves with the subset of geographically subdivided population models in which it is assumed that all demes are liable to extinction from time to time and that all demes receive immigrants. Early studies of the genetic effects of population turnover focused on population differentiation, such as measured by F(ST). A key advantage of F(ST) over absolute measures of diversity is its relative independence of the mutation process, so that different genes in the same species may be compared. Another advantage is that F(ST) will usually equilibrate more quickly following perturbations than will absolute levels of diversity. However, because F(ST) is a ratio of between-population differentiation to total diversity, the genetic effects of metapopulation processes may be difficult to interpret in terms of F(ST) on its own, so that the analysis of absolute measures of diversity in addition is likely to be informative. While population turnover may either increase or decrease F(ST), depending on the mode of colonization, recurrent extinction and recolonization is expected always to reduce levels of both within-population and species-wide diversity (piS and piT, respectively). One corollary of this is that piS cannot be used as an unbiased estimate of the scaled mutation rate, theta, as it can, with some assumptions about the migration process, in species whose demes do not fluctuate in size. The reduction of piT in response to population turnover reflects shortened mean coalescent times, although the distribution of coalescence times under extinction colonization equilibrium is not yet known. Finally, we review current understanding of the effect of metapopulation dynamics on the effective population size. PMID:11205346

Pannell, J R; Charlesworth, B

2000-01-01

291

Molecular Insights into the Genetic Diversity of Hemarthria compressa Germplasm Collections Native to Southwest China.  

PubMed

Start codon targeted polymorphism (SCoT) analysis was employed to distinguish 37 whipgrass (Hemarthria compressa L.) clones and assess the genetic diversity and population structure among these genotypes. The informativeness of markers was also estimated using various parameters. Using 25 highly reproducible primer sets, 368 discernible fragments were generated. Of these, 282 (77.21%) were polymorphic. The number of alleles per locus ranged from five to 21, and the genetic variation indices varied. The polymorphism information content (PIC) was 0.358, the Shannon diversity index (H) was 0.534, the marker index (MI) was 4.040, the resolving power (RP) was 6.108, and the genotype index (GI) was 0.782. Genetic similarity coefficients (GS) between the accessions ranged from 0.563 to 0.872, with a mean of 0.685. Their patterns observed in a dendrogram constructed using the unweighted pair group method with arithmetic mean analysis (UPGMA) based on GS largely confirmed the results of principal coordinate analysis (PCoA). PCoA was further confirmed by Bayesian model-based STRUCTURE analysis, which revealed no direct association between genetic relationship and geographical origins as validated by Mantel's test (r = 0.2268, p = 0.9999). In addition, high-level genetic variation within geographical groups was significantly greater than that between groups, as determined by Shannon diversity analysis, analysis of molecular variance (AMOVA) and Bayesian analysis. Overall, SCoT analysis is a simple, effective and reliable technique for characterizing and maintaining germplasm collections of whipgrass and related species. PMID:25532848

Guo, Zhi-Hui; Fu, Kai-Xin; Zhang, Xin-Quan; Bai, Shi-Qie; Fan, Yan; Peng, Yan; Huang, Lin-Kai; Yan, Yan-Hong; Liu, Wei; Ma, Xiao

2014-01-01

292

Genetic diversity in tetraploid switchgrass revealed by AFLP marker polymorphisms.  

PubMed

Switchgrass (Panicum virgatum) is a perennial warm-season grass native to North America that has been identified as a dedicated cellulosic biofuel crop. We quantified genetic diversity in tetraploid switchgrass germplasm collected at Oklahoma State University and characterized genetic relatedness among the collections from distinct regions. Fifty-six tetraploid accessions, including seven upland and 49 lowland genotypes from throughout the US, were examined. The amplified fragment length polymorphism (AFLP) procedure was utilized to generate DNA profiling patterns that were scored visually. Sixteen selective AFLP primer combinations were used to amplify 452 polymorphic bands. The accessions' genetic similarity coefficients, UPGMA (unweighted pair-group method with arithmetic averaging) cluster analysis and principle coordinate analysis, were performed. The upland and lowland accessions clustered according to ecotypes, with one exception (TN104). Genetic similarity coefficients among the accessions ranged from 0.73 to 0.95. Analysis of molecular variance (AMOVA) was performed, showing significant differences between the upland and lowland genotypes. The trnL marker confirmed that TN104 was a lowland genotype, but the trnL marker identification of upland and lowland genotypes was not consistent with the AFLP analysis in two germplasms (Miami and AR4). PMID:22180031

Todd, J; Wu, Y Q; Wang, Z; Samuels, T

2011-01-01

293

Multifaceted diversity-area relationships reveal global hotspots of mammalian species, trait and lineage diversity  

PubMed Central

Aim To define biome-scale hotspots of phylogenetic and functional mammalian biodiversity (PD and FD, respectively) and compare them to ‘classical’ hotspots based on species richness (SR) only. Location Global Methods SR, PD & FD were computed for 782 terrestrial ecoregions using distribution ranges of 4616 mammalian species. We used a set of comprehensive diversity indices unified by a recent framework that incorporates the species relative coverage in each ecoregion. We build large-scale multifaceted diversity-area relationships to rank ecoregions according to their levels of biodiversity while accounting for the effect of area on each diversity facet. Finally we defined hotspots as the top-ranked ecoregions. Results While ignoring species relative coverage led to a relative good congruence between biome top ranked SR, PD and FD hotspots, ecoregions harboring a rich and abundantly represented evolutionary history and functional diversity did not match with top ranked ecoregions defined by species richness. More importantly PD and FD hotspots showed important spatial mismatches. We also found that FD and PD generally reached their maximum values faster than species richness as a function of area. Main conclusions The fact that PD/FD reach faster their maximal value than SR may suggest that the two former facets might be less vulnerable to habitat loss than the latter. While this point is expected, it is the first time that it is quantified at global scale and should have important consequences in conservation. Incorporating species relative coverage into the delineation of multifaceted hotspots of diversity lead to weak congruence between SR, PD and FD hotspots. This means that maximizing species number may fail at preserving those nodes (in the phylogenetic or functional tree) that are relatively abundant in the ecoregion. As a consequence it may be of prime importance to adopt a multifaceted biodiversity perspective to inform conservation strategies at global scale. PMID:25071413

Mazel, Florent; Guilhaumon, François; Mouquet, Nicolas; Devictor, Vincent; Gravel, Dominique; Renaud, Julien; Cianciaruso, Marcus Vinicius; Loyola, Rafael Dias; Diniz-Filho, José Alexandre Felizola; Mouillot, David; Thuiller, Wilfried

2014-01-01

294

Genetic diversity in bambara groundnut (Vigna subterranea (L.) Verdc) landraces revealed by AFLP markers.  

PubMed

Bambara groundnut (Vigna subterranea (L.) Verdc), an African indigenous legume, is popular in most parts of Africa. The present study was undertaken to establish genetic relationships among 16 cultivated bambara groundnut landraces using fluorescence-based amplified fragment length polymorphism (AFLP) markers. Seven selective primer combinations generated 504 amplification products, ranging from 50 to 400 bp. Several landrace-specific products were identified that could be effectively used to produce landrace-specific markers for identification purposes. On average, each primer combination generated 72 amplified products that were detectable by an ABI Prism 310 DNA sequencer. The polymorphisms obtained ranged from 68.0 to 98.0%, with an average of 84.0%. The primer pairs M-ACA + P-GCC and M-ACA + P-GGA produced more polymorphic fragments than any other primer pairs and were better at differentiating landraces. The dendrogram generated by the UPGMA (unweighted pair-group method with arithmetic averaging) grouped 16 landraces into 3 clusters, mainly according to their place of collection or geographic origin. DipC1995 and Malawi5 were the most genetically related landraces. AFLP analysis provided sufficient polymorphism to determine the amount of genetic diversity and to establish genetic relationships in bambara groundnut landraces. The results will help in the formulation of marker-assisted breeding in bambara groundnut. PMID:12502264

Massawe, F J; Dickinson, M; Roberts, J A; Azam-Ali, S N

2002-12-01

295

Genetic relationships within Brassica rapa as inferred from AFLP fingerprints  

Microsoft Academic Search

Amplified fragment length polymorphism (AFLP) markers were employed to assess the genetic diversity amongst two large collections of Brassica rapa accessions. Collection A consisted of 161 B. rapa accessions representing different morphotypes among the cultivated B. rapa, including traditional and modern cultivars and breeding materials from geographical locations from all over the world and two Brassica napus accessions. Collection B consisted of

Jianjun Zhao; Xiaowu Wang; Bo Deng; Ping Lou; Jian Wu; Rifei Sun; Zeyong Xu; Jaap Vromans; Maarten Koornneef; Guusje Bonnema

2005-01-01

296

Genetic Relationships among Populations of Florida Bass  

Microsoft Academic Search

Florida bass Micropterus floridanus are endemic to peninsular Florida and co-occur with largemouth bass M. salmoides in a natural intergrade zone in the northern portions of the state. In this study, we resolved the genetic population structure among populations of largemouth bass, Florida bass, and their interspecific hybrids from 48 lakes and streams across Florida, and we updated and refined

Brandon L. Barthel; Dijar J. Lutz-Carrillo; Kristen E. Norberg; Wesley F. Porak; Michael D. Tringali; Todd W. Kassler; William E. Johnson; Anne M. Readel; Richard A. Krause; David P. Philipp

2010-01-01

297

Genetic diversity in a world germplasm collection of tall fescue.  

PubMed

Festuca arundinacea Schreb., commonly known as tall fescue, is a major forage crop in temperate regions. Recently, a molecular analysis of different accessions of a world germplasm collection of tall fescue has demonstrated that it contains different species from the genus Festuca and allowed their rapid classification into the three major morphotypes (Continental, Mediterranean and Rhizomatous). In this study, we explored the genetic diversity of 161 accessions of Festuca species from 29 countries, including 28 accessions of INTA (Argentina), by analyzing 15 polymorphic SSR markers by capillary electrophoresis. These molecular markers allowed us to detect a total of 214 alleles. The number of alleles per locus varied between 5 and 24, and the values of polymorphic information content ranged from 0.627 to 0.840. In addition, the accessions analyzed by flow cytometry showed different ploidy levels (diploid, tetraploid, hexaploid and octaploid), placing in evidence that the world germplasm collection consisted of multiple species, as previously suggested. Interestingly, almost all accessions of INTA germplasm collection were true hexaploid tall fescue, belonging to two eco-geographic races (Continental and Mediterranean). Finally, the data presented revealed an ample genetic diversity of tall fescue showing the importance of preserving the INTA collection for future breeding programs. PMID:23885206

Cuyeu, Romina; Rosso, Beatriz; Pagano, Elba; Soto, Gabriela; Fox, Romina; Ayub, Nicolás Daniel

2013-07-01

298

Genetic diversity in bread wheat (Triticum aestivum L.) genotypes.  

PubMed

Wheat is one most important cereal crops grown in Ethiopia. Yet, keeping in view insufficient information on exotic bread wheat genotypes is limiting the access to useful traits present among the genotypes in the Somali region of Ethiopia. The aim of the study was to assess the extent of genetic diversity among bread wheat genotypes. Twenty six bread wheat (Triticum aestivum L.) genotypes obtained from ICARDA-CIMMYT were tested at Gode and Kelafo research sites at three cropping seasons (2009/10, 2010/11 and 2011/12) under irrigation. The experiment was conducted in randomized complete block design with three replications. Ten agronomic traits were included in the study. The mean values, ranges and the coefficient of variation of the 10 characters indicated the existence of sufficient variability among genotypes. Multivariate techniques were used to classify 26 bread wheat genotypes. Principal component analysis showed that the first six principal components explained about 91.87% of the total variation. D2 analysis showed the 26 bread wheat genotypes grouped into six clusters. This made to become moderate diversity among the genotypes. The crosses between genotypes selected from cluster-III with cluster-VI and cluster V with cluster VI are expected to produce better genetic recombination and segregation in their progenies. Therefore, these bread wheat genotypes need to be crossed and selected to develop high yielding pure line variety. PMID:24511742

Degewione, A; Alamerew, S

2013-11-01

299

Genetic Diversity of Mycobacterium tuberculosis Isolates from Inner Mongolia, China  

PubMed Central

Background Tuberculosis (TB) is a serious public health problem in China, and within China, Inner Mongolia has a high prevalence area of TB. Though studies on the genetic diversity of Mycobacterium tuberculosis (MTB) have been reported in many provinces, there are no such studies to date in Inner Mongolia. In this study, we investigated the genetic diversity of MTB in Inner Mongolia. Methodology/Principal Findings In this study, we analyzed 372 clinical MTB isolates with 22-loci mycobacterial interspersed repetitive unit and variable-number tandem repeats (MIRU-VNTR), spoligotyping, large sequence polymorphism (LSP), and NTF region analysis to understand the TB genotypes prevalent in Inner Mongolia. We found that the Beijing family was the most prevalent genotype (85.48%, 318/372), and the “modern” sublineage accounted for 76.73% (244/318) of the isolates. Our data also showed that there was no statistically significant association between the two major nationalities and the Beijing genotype (?2?=?3.612, P?=?0.057; P>0.05). Conclusion/Significance The Beijing genotype is the most prevalent family of M. tuberculosis in Inner Mongolia, and we do not find any correlation between the Beijing genotype and the major nationalities. PMID:23658680

Zhao, Xiuqin; Yang, Xiaomin; Dong, Haiyan; Liu, Yao; Lian, Lulu; Wan, Li; Wu, Yimou; Wan, Kanglin

2013-01-01

300

Distribution of genetic diversity among disjunct populations of the rare forest understory herb, Trillium reliquum  

Microsoft Academic Search

We assessed genetic diversity and its distribution in the rare southeastern US forest understory species, Trillium reliquum. In all, 21 loci were polymorphic (PS=95.5%) and the mean number of alleles per polymorphic locus was 3.05. However, genetic diversity was relatively low (Hes=0.120) considering the level of polymorphism observed for this outcrossing species. A relatively high portion of the genetic diversity

E Gonzales; J L Hamrick

2005-01-01

301

Variation of Genetic Diversity in a Rapidly Expanding Population of the Greater Long-Tailed Hamster (Tscherskia triton) as Revealed by Microsatellites  

PubMed Central

Genetic diversity is essential for persistence of animal populations over both the short- and long-term. Previous studies suggest that genetic diversity may decrease with population decline due to genetic drift or inbreeding of small populations. For oscillating populations, there are some studies on the relationship between population density and genetic diversity, but these studies were based on short-term observation or in low-density phases. Evidence from rapidly expanding populations is lacking. In this study, genetic diversity of a rapidly expanding population of the Greater long-tailed hamsters during 1984–1990, in the Raoyang County of the North China Plain was studied using DNA microsatellite markers. Results show that genetic diversity was positively correlated with population density (as measured by % trap success), and the increase in population density was correlated with a decrease of genetic differentiation between the sub-population A and B. The genetic diversity tended to be higher in spring than in autumn. Variation in population density and genetic diversity are consistent between sub-population A and B. Such results suggest that dispersal is density- and season-dependent in a rapidly expanding population of the Greater long-tailed hamster. For typically solitary species, increasing population density can increase intra-specific attack, which is a driving force for dispersal. This situation is counterbalanced by decreasing population density caused by genetic drift or inbreeding as the result of small population size. Season is a major factor influencing population density and genetic diversity. Meanwhile, roads, used to be considered as geographical isolation, have less effect on genetic differentiation in a rapidly expanding population. Evidences suggest that gene flow (Nm) is positively correlated with population density, and it is significant higher in spring than that in autumn. PMID:23349815

Xu, Laixiang; Xue, Huiliang; Song, Mingjing; Zhao, Qinghua; Dong, Jingping; Liu, Juan; Guo, Yu; Xu, Tongqin; Cao, Xiaoping; Wang, Fusheng; Wang, Shuqing; Hao, Shushen; Yang, Hefang; Zhang, Zhibin

2013-01-01

302

Evaluation of the genetic diversity of avian paramyxovirus type 4  

PubMed Central

Avian paramyxoviruses (APMVs) belong to the genus Avulavirus in the family Paramyxoviridae and include at least nine serotypes, APMV-1 to -9, as well as two additional provisional serotypes. Newcastle disease virus (NDV), which comprises APMV-1, is the most extensively studied APMV because it is an important poultry pathogen. A moderate level of antigenic and genetic diversity is recognized for APMV-1 isolates, but our knowledge of the antigenic and genetic diversity of the other APMV serotypes is limited. APMV-4 is frequently isolated from waterfowl around the world. To date complete genome sequences of APMV-4 are available for only strains, which were isolated from ducks in Hong Kong, Korea and Belgium over a period of 37 years. We have carried out genome sequencing from the nucleocapsid (N) gene-end signal to the polymerase (L) gene-start signal of five APMV-4 strains recently isolated from Italy. Each of the eight APMV-4 strains has the same F protein cleavage site, DIQPR?F. They also share a high level of nucleotide and amino acid sequence identity: for example, the F and HN glycoproteins have greater than 97% sequence identity between the various strains. Thus, comparison of these eight strains of APMV-4 did not provide evidence of substantial diversity, in contrast to similar studies with APMV-2, -3, and -6, in which the F and HN glycoproteins exhibited up to 20-30% amino acid sequence variation within a subgroup. Reciprocal cross-HI assay using post infection chicken sera also failed to detect significant antigenic variation among the available APMV-4 strains. PMID:23178589

Nayak, Baibaswata; Nayak, Shreeraj; Paldurai, Anandan; Kumar, Sachin; De Nardi, Roberta; Terregino, Calogero; Collins, Peter L; Samal, Siba K

2012-01-01

303

AFRICAN GENETIC DIVERSITY: Implications for Human Demographic History, Modern Human Origins, and Complex Disease Mapping  

PubMed Central

Comparative studies of ethnically diverse human populations, particularly in Africa, are important for reconstructing human evolutionary history and for understanding the genetic basis of phenotypic adaptation and complex disease. African populations are characterized by greater levels of genetic diversity, extensive population substructure, and less linkage disequilibrium (LD) among loci compared to non-African populations. Africans also possess a number of genetic adaptations that have evolved in response to diverse climates and diets, as well as exposure to infectious disease. This review summarizes patterns and the evolutionary origins of genetic diversity present in African populations, as well as their implications for the mapping of complex traits, including disease susceptibility. PMID:18593304

Campbell, Michael C.; Tishkoff, Sarah A.

2010-01-01

304

Genetic diversity and population structure of disjunct Newfoundland and central Ontario  

E-print Network

Genetic diversity and population structure of disjunct Newfoundland and central Ontario populations geographical range in Newfoundland for comparison with three populations from its central range in Ontario populations examined. The Newfoundland populations were as genetically variable as those from Ontario

Innes, David J.

305

EFFECTS OF CHEMICAL CONTAMINANTS ON GENETIC DIVERSITY IN NATURAL POPULATIONS: IMPLICATIONS FOR BIOMONITORING AND ECOTOXICOLOGY  

EPA Science Inventory

The conservation of genetic diversity has emerged as one of the central issues in conservation biology. Although researchers in the areas of evolutionary biology, population management, and conservation biology routinely investigate genetic variability in natural populations, onl...

306

Genetic relationships of Jamestown Canyon virus strains infecting mosquitoes collected in Connecticut.  

PubMed

Jamestown Canyon virus (JCV) (family Bunyaviridae, genus Orthobunyavirus) is maintained in a mosquito-deer cycle and has been implicated in the etiology of meningitis and encephalitis with human cases reported from Ontario, Canada, Michigan, Connecticut, and New York. Despite the recognition of symptomatic cases in the northeastern United States, little is known about the genetic relationships of JCV variants circulating in this region. Accordingly, we compared the phylogenetic relationships of 56 JCV isolates from mosquitoes collected in Connecticut over a 40-year period to evaluate their evolutionary history and characterize patterns of genetic diversity in the state. We distinguished at least two major lineages in Connecticut on the basis of phylogenetic reconstruction of small (S), medium (M), and large (L) segment nucleotide sequences. Viruses representing each lineage infected a diverse group of mosquito species over multiple years of sampling and appeared to be geographically structured along an east-west axis. One of these lineages was detected in Connecticut from 1966 through 2006 with few mutational changes accumulating over time. Phylogenetic trees generated from portions of the M and L segments yielded different topologies from S segment sequences as three clades became consolidated into two. Although direct evidence for genetic exchange by reassortment was lacking among cocirculating strains in Connecticut, molecular trees from S, M, and L segments were incongruent, which suggests a distinct evolutionary history or process for each genomic segment. These results suggest that JCV variants are stably maintained in Connecticut where they infect a wide diversity of mosquito species. PMID:18165540

Armstrong, Philip M; Andreadis, Theodore G

2007-12-01

307

Association between host's genetic diversity and parasite burden in damselflies.  

PubMed

Recent research indicates that low genetic variation in individuals can increase susceptibility to parasite infection, yet evidence from natural invertebrate populations remains scarce. Here, we studied the relationship between genetic heterozygosity, measured as AFLP-based inbreeding coefficient fAFLP , and gregarine parasite burden from eleven damselfly, Calopteryx splendens, populations. We found that in the studied populations, 5-92% of males were parasitized by endoparasitic gregarines (Apicomplexa: Actinocephalidae). Number of parasites ranged from none to 47 parasites per male, and parasites were highly aggregated in a few hosts. Mean individual fAFLP did not differ between populations. Moreover, we found a positive association between individual's inbreeding coefficient and parasite burden. In other words, the more homozygous the individual, the more parasites it harbours. Thus, parasites are likely to pose strong selection pressure against inbreeding and homozygosity. Our results support the heterozygosity-fitness correlation hypothesis, which suggests the importance of heterozygosity for an individual's pathogen resistance. PMID:23865399

Kaunisto, K M; Viitaniemi, H M; Leder, E H; Suhonen, J

2013-08-01

308

Testing the species--genetic diversity correlation in the Aegean archipelago: toward a haplotype-based macroecology?  

PubMed

A positive correlation between species diversity and genetic diversity has been proposed, consistent with neutral predictions in macroecology. We assessed the species--genetic diversity correlation in tenebrionid beetle communities of the Aegean archipelago on 15 islands of different sizes, distances to mainland, and ages of isolation. Alpha and beta diversity of species and haplotypes were assessed using sequences of > 1,000 individuals (mitochondrial cytochrome oxidase 1 and nuclear muscular protein 20). We show that (i) there is a strong species-area and haplotype-area relationship; (ii) species richness in island communities is correlated with intraspecific genetic diversity in the constituent species except when island size or distance to mainland is factored out in partial correlations; (iii) community similarity declines exponentially at an increasing rate when calculated on the basis of species, nuclear, and mtDNA haplotypes; and (iv) distance decay of community similarity is slower in dispersive sand-dwelling lineages compared with less dispersive lineages that are not sand obligate. Taken together, these correlated patterns at the species and haplotype level are consistent with individual-based stochastic dispersal proposed by neutral theories of biodiversity. The results also demonstrate the utility of haplotype data for exploring macroecological patterns in poorly known biota and predicting large-scale biodiversity patterns based on genetic inventories of local samples. PMID:21750387

Papadopoulou, Anna; Anastasiou, Ioannis; Spagopoulou, Foteini; Stalimerou, Malda; Terzopoulou, Sofia; Legakis, Anastasios; Vogler, Alfried P

2011-08-01

309

Genetic diversity and geographical distribution of indigenous soybean-nodulating bradyrhizobia in the United States.  

PubMed

We investigated the relationship between the genetic diversity of indigenous soybean-nodulating bradyrhizobia and their geographical distribution in the United States using nine soil isolates from eight states. The bradyrhizobia were inoculated on three soybean Rj genotypes (non-Rj, Rj(2)Rj(3), and Rj(4)). We analyzed their genetic diversity and community structure by means of restriction fragment length polymorphisms of PCR amplicons to target the 16S-23S rRNA gene internal transcribed spacer region, using 11 USDA Bradyrhizobium strains as reference strains. We also performed diversity analysis, multidimensional scaling analysis based on the Bray-Curtis index, and polar ordination analysis to describe the structure and geographical distribution of the soybean-nodulating bradyrhizobial community. The major clusters were Bradyrhizobium japonicum Bj123, in the northern United States, and Bradyrhizobium elkanii, in the middle to southern regions. Dominance of bradyrhizobia in a community was generally larger for the cluster belonging to B. elkanii than for the cluster belonging to B. japonicum. The indigenous American soybean-nodulating bradyrhizobial community structure was strongly correlated with latitude. Our results suggest that this community varies geographically. PMID:23563944

Shiro, Sokichi; Matsuura, Syota; Saiki, Rina; Sigua, Gilbert C; Yamamoto, Akihiro; Umehara, Yosuke; Hayashi, Masaki; Saeki, Yuichi

2013-06-01

310

Genetic Diversity and Geographical Distribution of Indigenous Soybean-Nodulating Bradyrhizobia in the United States  

PubMed Central

We investigated the relationship between the genetic diversity of indigenous soybean-nodulating bradyrhizobia and their geographical distribution in the United States using nine soil isolates from eight states. The bradyrhizobia were inoculated on three soybean Rj genotypes (non-Rj, Rj2Rj3, and Rj4). We analyzed their genetic diversity and community structure by means of restriction fragment length polymorphisms of PCR amplicons to target the 16S-23S rRNA gene internal transcribed spacer region, using 11 USDA Bradyrhizobium strains as reference strains. We also performed diversity analysis, multidimensional scaling analysis based on the Bray-Curtis index, and polar ordination analysis to describe the structure and geographical distribution of the soybean-nodulating bradyrhizobial community. The major clusters were Bradyrhizobium japonicum Bj123, in the northern United States, and Bradyrhizobium elkanii, in the middle to southern regions. Dominance of bradyrhizobia in a community was generally larger for the cluster belonging to B. elkanii than for the cluster belonging to B. japonicum. The indigenous American soybean-nodulating bradyrhizobial community structure was strongly correlated with latitude. Our results suggest that this community varies geographically. PMID:23563944

Shiro, Sokichi; Matsuura, Syota; Saiki, Rina; Sigua, Gilbert C.; Yamamoto, Akihiro; Umehara, Yosuke; Hayashi, Masaki

2013-01-01

311

Conservation priorities for Ethiopian sheep breeds combining threat status, breed merits and contributions to genetic diversity  

Microsoft Academic Search

Prioritizing livestock breeds for conservation needs to incorporate both genetic and non-genetic aspects important for the survival of the breeds. Here, we apply a maximum-utility-strategy to prioritize 14 traditional Ethiopian sheep breeds based on their threat status, contributions to farmer livelihoods (current breed merits) and contributions to genetic diversity. Contributions of the breeds to genetic diversity were quantified using Eding's

Solomon Gizaw; Hans Komen; Jack J. WINDIG; Olivier Hanotte; Johan AM van Arendonk

2008-01-01

312

Genetic Diversity and Population Genetics of Mosquitoes (Diptera: Culicidae: Culex spp.) from the Sonoran Desert of North America  

PubMed Central

The population genetics and phylogenetic relationships of Culex mosquitoes inhabiting the Sonoran Desert region of North America were studied using mitochondrial DNA and microsatellite molecular markers. Phylogenetic analyses of mitochondrial cytochrome c oxidase subunit I (COI) from mosquitoes collected over a wide geographic area, including the Baja California peninsula, and mainland localities in southern Arizona, USA and Sonora, Mexico, showed several well-supported partitions corresponding to Cx. quinquefasciatus, Cx. tarsalis, and two unidentified species, Culex sp. 1 and sp. 2. Culex quinquefasciatus was found at all localities and was the most abundant species collected. Culex tarsalis was collected only at Tucson, Arizona and Guaymas, Sonora. The two unidentified species of Culex were most abundant at Navojoa in southern Sonora. Haplotype and nucleotide diversities in the COI gene segment were substantially lower in Cx. quinquefasciatus compared with the other three species. Analysis of molecular variance revealed little structure among seven populations of Cx. quinquefasciatus, whereas significant structure was found between the two populations of Cx. tarsalis. Evidence for an historical population expansion beginning in the Pleistocene was found for Cx. tarsalis. Possible explanations for the large differences in genetic diversity between Cx. quinquefasciatus and the other species of Culex are presented. PMID:24302868

Pfeiler, Edward; Flores-López, Carlos A.; Mada-Vélez, Jesús Gerardo; Escalante-Verdugo, Juan; Markow, Therese A.

2013-01-01

313

Discovering relationships in genetic regulatory networks  

E-print Network

The development of cDNA microarray technology has made it possible to simultaneously monitor the expression status of thousands of genes. A natural use for this vast amount of information would be to try and ?gure out inter-gene relationships...

Pal, Ranadip

2004-11-15

314

American Journal of Botany 89(4): 613622. 2002. GENETIC DIVERSITY IN DELPHINIUM VARIEGATUM  

E-print Network

expected to have depleted levels of genetic variation due to genetic drift in small populations and strong directional selection leading to genetic uniformity in a limited array of environments (Wright, 1931; Van613 American Journal of Botany 89(4): 613­622. 2002. GENETIC DIVERSITY IN DELPHINIUM VARIEGATUM

Helenurm, Kaius

315

Genetic diversity, structure and differentiation in cultivated walnut (juglans regia l.)  

Technology Transfer Automated Retrieval System (TEKTRAN)

An analysis of genetic structure and differentiation in cultivated walnut (Juglans regia) using 15 microsatellite loci revealed a considerable amount of genetic variation with a mild genetic structure indicating five genetic groups corresponding to the centers of diversity within the home range of w...

316

Genetic diversity analysis of mitochondrial DNA control region in artificially propagated Chinese sucker Myxocyprinus asiaticus.  

PubMed

Abstract The genetic diversity of the three major artificially propagated populations of Chinese sucker, an endangered freshwater fish species, was investigated using the sequences of mitochondrial DNA (mtDNA) control regions. Among the 89 individuals tested, 66 variable sites (7.26%) and 10 haplotypes were detected (Haplotype diversity Hd?=?0.805, Nucleotide diversity ??=?0.0287). In general, genetic diversity was lower in artificially propagated populations than in wild populations. This reduction in genetic diversity may be due to population bottlenecks, genetic drift and human selection. A stepping-stone pattern of gene flow was detected in the populations studied, showing much higher gene flow between neighbouring populations. To increase the genetic diversity, wild lineages should be introduced, and more lineages should be shared among artificially propagated populations. PMID:24409897

Wan, Yuan; Zhou, Chun-Hua; Ouyang, Shan; Huang, Xiao-Chen; Zhan, Yang; Zhou, Ping; Rong, Jun; Wu, Xiao-Ping

2014-01-10

317

107TURTLE CONSERVATION GENETICS WORKING GROUP Genetics Issues Defining Turtle Diversity: Proceedings of a Workshop on Genetics, Ethics, and Taxonomy of Freshwater Turtles and Tortoises  

E-print Network

107TURTLE CONSERVATION GENETICS WORKING GROUP ­ Genetics Issues Defining Turtle Diversity: Proceedings of a Workshop on Genetics, Ethics, and Taxonomy of Freshwater Turtles and Tortoises H. Bradley 4:107­123 · © 2007 by Chelonian Research Foundation Genetic Issues in Freshwater Turtle and Tortoise

Janzen, Fredric

318

Genetic Breeding and Diversity of the Genus Passiflora: Progress and Perspectives in Molecular and Genetic Studies  

PubMed Central

Despite the ecological and economic importance of passion fruit (Passiflora spp.), molecular markers have only recently been utilized in genetic studies of this genus. In addition, both basic genetic researches related to population studies and pre-breeding programs of passion fruit remain scarce for most Passiflora species. Considering the number of Passiflora species and the increasing use of these species as a resource for ornamental, medicinal, and food purposes, the aims of this review are the following: (i) to present the current condition of the passion fruit crop; (ii) to quantify the applications and effects of using molecular markers in studies of Passiflora; (iii) to present the contributions of genetic engineering for passion fruit culture; and (iv) to discuss the progress and perspectives of this research. Thus, the present review aims to summarize and discuss the relationship between historical and current progress on the culture, breeding, and molecular genetics of passion fruit. PMID:25196515

Cerqueira-Silva, Carlos Bernard M.; Jesus, Onildo N.; Santos, Elisa S. L.; Corrêa, Ronan X.; Souza, Anete P.

2014-01-01

319

Genetic breeding and diversity of the genus Passiflora: progress and perspectives in molecular and genetic studies.  

PubMed

Despite the ecological and economic importance of passion fruit (Passiflora spp.), molecular markers have only recently been utilized in genetic studies of this genus. In addition, both basic genetic researches related to population studies and pre-breeding programs of passion fruit remain scarce for most Passiflora species. Considering the number of Passiflora species and the increasing use of these species as a resource for ornamental, medicinal, and food purposes, the aims of this review are the following: (i) to present the current condition of the passion fruit crop; (ii) to quantify the applications and effects of using molecular markers in studies of Passiflora; (iii) to present the contributions of genetic engineering for passion fruit culture; and (iv) to discuss the progress and perspectives of this research. Thus, the present review aims to summarize and discuss the relationship between historical and current progress on the culture, breeding, and molecular genetics of passion fruit. PMID:25196515

Cerqueira-Silva, Carlos Bernard M; Jesus, Onildo N; Santos, Elisa S L; Corrêa, Ronan X; Souza, Anete P

2014-01-01

320

Gene flow, historical population dynamics and genetic diversity within French Guianan populations of a rainforest tree species, Vouacapoua americana  

Microsoft Academic Search

Both gene flow and historical events influence the genetic diversity of natural populations. One way to understand their respective impact is to analyze population genetic structure at large spatial scales. We studied the distribution of genetic diversity of 17 populations of Vouacapoua americana (Caesalpiniaceae) in French Guiana, using nine microsatellite loci. Low genetic diversity was observed within populations, with a

C Dutech; H I Joly; P Jarne

2004-01-01

321

Population Genetics of Trypanosoma brucei rhodesiense: Clonality and Diversity within and between Foci  

PubMed Central

African trypanosomes are unusual among pathogenic protozoa in that they can undergo their complete morphological life cycle in the tsetse fly vector with mating as a non-obligatory part of this development. Trypanosoma brucei rhodesiense, which infects humans and livestock in East and Southern Africa, has classically been described as a host-range variant of the non-human infective Trypanosoma brucei that occurs as stable clonal lineages. We have examined T. b. rhodesiense populations from East (Uganda) and Southern (Malawi) Africa using a panel of microsatellite markers, incorporating both spatial and temporal analyses. Our data demonstrate that Ugandan T. b. rhodesiense existed as clonal populations, with a small number of highly related genotypes and substantial linkage disequilibrium between pairs of loci. However, these populations were not stable as the dominant genotypes changed and the genetic diversity also reduced over time. Thus these populations do not conform to one of the criteria for strict clonality, namely stability of predominant genotypes over time, and our results show that, in a period in the mid 1990s, the previously predominant genotypes were not detected but were replaced by a novel clonal population with limited genetic relationship to the original population present between 1970 and 1990. In contrast, the Malawi T. b. rhodesiense population demonstrated significantly greater diversity and evidence for frequent genetic exchange. Therefore, the population genetics of T. b. rhodesiense is more complex than previously described. This has important implications for the spread of the single copy T. b. rhodesiense gene that allows human infectivity, and therefore the epidemiology of the human disease, as well as suggesting that these parasites represent an important organism to study the influence of optional recombination upon population genetic dynamics. PMID:24244771

Duffy, Craig W.; MacLean, Lorna; Sweeney, Lindsay; Cooper, Anneli; Turner, C. Michael R.; Tait, Andy; Sternberg, Jeremy; Morrison, Liam J.; MacLeod, Annette

2013-01-01

322

Genetic diversity of Gallibacterium anatis isolates from different chicken flocks.  

PubMed

Amplified fragment length polymorphisms (AFLPs) were used to characterize the genotypic diversity of a total of 114 Gallibacterium anatis isolates originating from a reference collection representing 15 biovars from four countries and isolates obtained from tracheal and cloacal swab samples of chickens from an organic, egg-producing flock and a layer parent flock. A subset of strains was also characterized by pulsed-field gel electrophoresis and biotyping. The organic flock isolates were characterized by more than 94% genetic similarity, indicating that only a single clone was apparent in the flock. The layer parent flock isolates were grouped into two subclusters, each with similarity above 90%. One subcluster contained only tracheal isolates, while the other primarily included cloacal isolates. In conclusion, we show that AFLP analysis enables fingerprinting of G. anatis, which seems to have a clonal population structure within natural populations. There was further evidence of clonal lineages, which may have adapted to different sites within the same animal. PMID:12791918

Bojesen, Anders Miki; Torpdahl, Mia; Christensen, Henrik; Olsen, John Elmerdahl; Bisgaard, Magne

2003-06-01

323

Genetic Diversity of Gallibacterium anatis Isolates from Different Chicken Flocks  

PubMed Central

Amplified fragment length polymorphisms (AFLPs) were used to characterize the genotypic diversity of a total of 114 Gallibacterium anatis isolates originating from a reference collection representing 15 biovars from four countries and isolates obtained from tracheal and cloacal swab samples of chickens from an organic, egg-producing flock and a layer parent flock. A subset of strains was also characterized by pulsed-field gel electrophoresis and biotyping. The organic flock isolates were characterized by more than 94% genetic similarity, indicating that only a single clone was apparent in the flock. The layer parent flock isolates were grouped into two subclusters, each with similarity above 90%. One subcluster contained only tracheal isolates, while the other primarily included cloacal isolates. In conclusion, we show that AFLP analysis enables fingerprinting of G. anatis, which seems to have a clonal population structure within natural populations. There was further evidence of clonal lineages, which may have adapted to different sites within the same animal. PMID:12791918

Bojesen, Anders Miki; Torpdahl, Mia; Christensen, Henrik; Olsen, John Elmerdahl; Bisgaard, Magne

2003-01-01

324

[Genetic diversity of Besermyan based on mitochondrial DNA polymorphism].  

PubMed

The first data on mtDNA diversity in Besermyan, the Finno-Ugric ethnic group, related to Udmurts, are presented. An analysis of mtDNA polymorphism showed that Besermyan stood out from the other populations of Volga-Ural region due to the presence of a large proportion of the mongoloid component. The sample of Besermyan contained East Eurasian haplotypes not detected in ethnic populations of the Volga region and Cisurals, while they were detected in South Siberia, mostly among Turkic-speaking populations. An analysis of the genetic distances between Besermyan and the neighboring ethnic groups showed that Besermyan were distant from other populations of Volga-Ural region and close to Turkic-speaking populations of South Siberia. Thus, the data obtained favor the suggestion on the mixed Udmurto-Turkic origin of Besermyan. PMID:25470935

Grosheva, A N; Shneider, Yu V; Morozova, I Yu; Zhukova, O V; Rychkov, S Yu

2013-11-01

325

[Genetic diversity of Besermyan based on mitochondrial DNA polymorphism].  

PubMed

The first data on mtDNA diversity in Besermyan, the Finno-Ugric ethnic group, related to Udmurts, are presented. An analysis of mtDNA polymorphism showed that Besermyan stood out from the other populations of Volga-Ural region due to the presence of a large proportion of the mongoloid component. The sample of Besermyan contained East Eurasian haplotypes not detected in ethnic populations of the Volga region and Cisurals, while they were detected in South Siberia, mostly among Turkic-speaking populations. An analysis of the genetic distances between Besermyan and the neighboring ethnic groups showed that Besermyan were distant from other populations of Volga-Ural region and close to Turkic-speaking populations of South Siberia. Thus, the data obtained favor the suggestion on the mixed Udmurto-Turkic origin of Besermyan. PMID:25508562

2013-11-01

326

Genetic diversity among isolates of Paenibacillus larvae from Austria.  

PubMed

Genetic diversity of 214 Paenibacillus larvae strains from Austria was studied. Genotyping of isolates was performed by polymerase chain reaction (PCR) with primers corresponding to enterobacterial repetitive intergenic consensus (ERIC), BOX repetitive and extragenic palindromic (REP) elements (collectively known as rep-PCR) using ERIC primers, BOX A1R and MBO REP1 primers. Using ERIC-PCR technique two genotypes could be differentiated (ERIC I and II), whereas using combined typing by BOX- and REP-PCR, five different genotypes were detected (ab, aB, Ab, AB and alphab). Genotypes aB and alphab are new and have not been reported in other studies using the same techniques. PMID:18831978

Loncaric, Igor; Derakhshifar, Irmgard; Oberlerchner, Josua T; Köglberger, Hemma; Moosbeckhofer, Rudolf

2009-01-01

327

Genetic Diversity of Cryptosporidium spp. in Captive Reptiles  

PubMed Central

The genetic diversity of Cryptosporidium in reptiles was analyzed by PCR-restriction fragment length polymorphism and sequence analysis of the small subunit rRNA gene. A total of 123 samples were analyzed, of which 48 snake samples, 24 lizard samples, and 3 tortoise samples were positive for Cryptosporidium. Nine different types of Cryptosporidium were found, including Cryptosporidium serpentis, Cryptosporidium desert monitor genotype, Cryptosporidium muris, Cryptosporidium parvum bovine and mouse genotypes, one C. serpentis-like parasite in a lizard, two new Cryptosporidium spp. in snakes, and one new Cryptosporidium sp. in tortoises. C. serpentis and the desert monitor genotype were the most common parasites and were found in both snakes and lizards, whereas the C. muris and C. parvum parasites detected were probably the result of ingestion of infected rodents. Sequence and biologic characterizations indicated that the desert monitor genotype was Cryptosporidium saurophilum. Two host-adapted C. serpentis genotypes were found in snakes and lizards. PMID:14766569

Xiao, Lihua; Ryan, Una M.; Graczyk, Thaddeus K.; Limor, Josef; Li, Lixia; Kombert, Mark; Junge, Randy; Sulaiman, Irshad M.; Zhou, Ling; Arrowood, Michael J.; Koudela, B?etislav; Modrý, David; Lal, Altaf A.

2004-01-01

328

A decade of norovirus genetic diversity in Belgium.  

PubMed

Outbreaks of norovirus-associated gastroenteritis occur during all seasons and in various locations, and are recognized as one of the most common causes of nonbacterial food-borne infections. The molecular epidemiology of norovirus infections has not been well characterized in Belgium. To study the incidence of norovirus infections and the nature of the circulating genotypes, 3080 specimens were collected from patients with acute gastroenteritis between 2004 and 2014. Norovirus was detected with RT-PCR in 554 samples (18%). The circulating strains were genotyped based on the variability in the 5' end of the capsid gene (region C). The GII.4 genotype, which is detected predominantly worldwide, was also the most prevalent genotype in our study (87%). This study shows a high frequency and genetic diversity of norovirus in patients with acute gastroenteritis in health care facilities in Flanders, Belgium. PMID:25497349

Wollants, Elke; De Coster, Sarah; Van Ranst, Marc; Maes, Piet

2015-03-01

329

Genetic diversity of the Plasmodium vivax merozoite surface protein-5 locus from diverse geographic origins  

PubMed Central

Plasmodium vivax merozoite surface protein-5 (PvMsp-5), a potential vaccine candidate, is encoded by a two-exon single copy gene. We have conducted a comprehensive analysis of PvMsp-5 by sequencing the entire gene of four parasite populations from northwestern Thailand (n = 73), southern Thailand (n = 53), Indonesia (n = 25) and Brazil (n = 24), and five isolates from other endemic areas. Results reveal that exon I exhibits a significantly higher level of nucleotide diversity at both synonymous and nonsynonymous sites than exon II (p < 0.01). Neutrality tests based on both intraspecific and interspecific nucleotide polymorphism have detected a signature of positive selection in exon I of all populations while substitutions in exon II mainly followed neutral expectation except that three residues in exon II of northwestern Thailand population appear to be positively selected using the Bayes Empirical Bayes method. Short imperfect repeats were identified in exon I at an equivalent region to its orthologue in P. knowlesi, supporting their close genetic relatedness. Significant levels of population subdivision were detected among most populations including those between northwestern and southern Thailand (p < 10?5), implying absent or minimal gene flow between these populations. Importantly, evidences for intragenic recombination in PvMsp-5 were found in most populations except that from southern Thailand in which haplotype diversity and nucleotide diversity were exceptionally low. Results from Fu and Li’s D*, F* and D and F tests suggested that PvMsp-5 of most P. vivax populations have been maintained by balancing selection whereas southern Thailand population could have gone through recent bottleneck events. These findings are concordant with a substantial reduction in number of P. vivax cases in southern Thailand during the past decade, followed by a very recent population expansion. Therefore, spatio-temporal monitoring of parasite population genetics provides important implications for disease control. PMID:20178839

Putaporntip, Chaturong; Udomsangpetch, Rachanee; Pattanawong, Urassaya; Cui, Liwang; Jongwutiwes, Somchai

2010-01-01

330

Inferring population structure and genetic diversity of broad range of wild diploid alfalfa ( Medicago sativa L.) accessions using SSR markers  

Microsoft Academic Search

Diversity analyses in alfalfa have mainly evaluated genetic relationships of cultivated germplasm, with little known about\\u000a variation in diploid germplasm in the M. sativa–falcata complex. A collection of 374 individual genotypes derived from 120 unimproved diploid accessions from the National Plant\\u000a Germplasm System, including M. sativa subsp. caerulea, falcata, and hemicycla, were evaluated with 89 polymorphic SSR loci in order

Muhammet ?akiro?lu; Jeffrey J. Doyle; E. Charles Brummer

2010-01-01

331

Genetic Diversity Revealed by Single Nucleotide Polymorphism Markers in a Worldwide Germplasm Collection of Durum Wheat  

PubMed Central

Evaluation of genetic diversity and genetic structure in crops has important implications for plant breeding programs and the conservation of genetic resources. Newly developed single nucleotide polymorphism (SNP) markers are effective in detecting genetic diversity. In the present study, a worldwide durum wheat collection consisting of 150 accessions was used. Genetic diversity and genetic structure were investigated using 946 polymorphic SNP markers covering the whole genome of tetraploid wheat. Genetic structure was greatly impacted by multiple factors, such as environmental conditions, breeding methods reflected by release periods of varieties, and gene flows via human activities. A loss of genetic diversity was observed from landraces and old cultivars to the modern cultivars released during periods of the Early Green Revolution, but an increase in cultivars released during the Post Green Revolution. Furthermore, a comparative analysis of genetic diversity among the 10 mega ecogeographical regions indicated that South America, North America, and Europe possessed the richest genetic variability, while the Middle East showed moderate levels of genetic diversity. PMID:23538839

Ren, Jing; Sun, Daokun; Chen, Liang; You, Frank M.; Wang, Jirui; Peng, Yunliang; Nevo, Eviatar; Sun, Dongfa; Luo, Ming-Cheng; Peng, Junhua

2013-01-01

332

Epidemiology and genetic diversity of Taenia asiatica: a systematic review.  

PubMed

Taenia asiatica has made a remarkable journey through the scientific literature of the past 50 years, starting with the paradoxical observation of high prevalences of T. saginata-like tapeworms in non-beef consuming populations, to the full description of its mitochondrial genome. Experimental studies conducted in the 1980s and 1990s have made it clear that the life cycle of T. asiatica is comparable to that of T. saginata, except for pigs being the preferential intermediate host and liver the preferential location of the cysts. Whether or not T. asiatica can cause human cysticercosis, as is the case for Taenia solium, remains unclear. Given the specific conditions needed to complete its life cycle, in particular the consumption of raw or poorly cooked pig liver, the transmission of T. asiatica shows an important ethno-geographical association. So far, T. asiatica has been identified in Taiwan, South Korea, Indonesia, the Philippines, Thailand, south-central China, Vietnam, Japan and Nepal. Especially this last observation indicates that its distribution is not restricted to South-East-Asia, as was thought so far. Indeed, the molecular tools developed over the last 20 years have made it increasingly possible to differentiate T. asiatica from other taeniids. Such tools also indicated that T. asiatica is related more closely to T. saginata than to T. solium, feeding the debate on its taxonomic status as a separate species versus a subspecies of T. saginata. Furthermore, the genetic diversity within T. asiatica appears to be very minimal, indicating that this parasite may be on the verge of extinction. However, recent studies have identified potential hybrids between T. asiatica and T. saginata, reopening the debate on the genetic diversity of T. asiatica and its status as a separate species. PMID:24450957

Ale, Anita; Victor, Bjorn; Praet, Nicolas; Gabriël, Sarah; Speybroeck, Niko; Dorny, Pierre; Devleesschauwer, Brecht

2014-01-01

333

Genetic diversity of Echinococcus granulosus in center of Iran.  

PubMed

Hydatid cyst caused by Echinococcus granulosus is one of the most important parasitic diseases around the world and many countries in Asia, including Iran, are involved with this infection. This disease can cause high mortality in humans as well as economic losses in livestock. To date, several molecular methods have been used to determine the genetic diversity of E. granulosus. So far, identification of E. granulosus using real-time PCR fluorescence-based quantitative assays has not been studied worldwide, also in Iran. Therefore, the aim of this study was to investigate the genetic diversity of E. granulosus from center of Iran using real-time PCR method. A total of 71 hydatid cysts were collected from infected sheep, goat, and cattle slaughtered in Isfahan, Iran during 2013. DNA was extracted from protoscolices and/or germinal layers from each individual cyst and used as template to amplify the mitochondrial cytochrome c oxidase subunit 1 gene (cox1) (420 bp). Five cattle isolates out of 71 isolates were sterile and excluded from further investigation. Overall, of 66 isolates, partial sequences of the cox1 gene of E. granulosus indicated the presence of genotypes G1 in 49 isolates (74.2%), G3 in 15 isolates (22.7%), and G6 in 2 isolates (3.0%) in infected intermediate hosts. Sixteen sequences of G1 genotype had microgenetic variants, and they were compared to the original sequence of cox1. However, isolates identified as G3 and G6 genotypes were completely consistent with original sequences. G1 genotype in livestock was the dominant genotype in Isfahan region, Iran. PMID:25246720

Pestechian, Nader; Hosseini Safa, Ahmad; Tajedini, Mohammadhasan; Rostami-Nejad, Mohammad; Mousavi, Mohammad; Yousofi, Hosseinali; Haghjooy Javanmard, Shaghayegh

2014-08-01

334

Epidemiology and genetic diversity of Taenia asiatica: a systematic review  

PubMed Central

Taenia asiatica has made a remarkable journey through the scientific literature of the past 50 years, starting with the paradoxical observation of high prevalences of T. saginata-like tapeworms in non-beef consuming populations, to the full description of its mitochondrial genome. Experimental studies conducted in the 1980s and 1990s have made it clear that the life cycle of T. asiatica is comparable to that of T. saginata, except for pigs being the preferential intermediate host and liver the preferential location of the cysts. Whether or not T. asiatica can cause human cysticercosis, as is the case for Taenia solium, remains unclear. Given the specific conditions needed to complete its life cycle, in particular the consumption of raw or poorly cooked pig liver, the transmission of T. asiatica shows an important ethno-geographical association. So far, T. asiatica has been identified in Taiwan, South Korea, Indonesia, the Philippines, Thailand, south-central China, Vietnam, Japan and Nepal. Especially this last observation indicates that its distribution is not restricted to South-East-Asia, as was thought so far. Indeed, the molecular tools developed over the last 20 years have made it increasingly possible to differentiate T. asiatica from other taeniids. Such tools also indicated that T. asiatica is related more closely to T. saginata than to T. solium, feeding the debate on its taxonomic status as a separate species versus a subspecies of T. saginata. Furthermore, the genetic diversity within T. asiatica appears to be very minimal, indicating that this parasite may be on the verge of extinction. However, recent studies have identified potential hybrids between T. asiatica and T. saginata, reopening the debate on the genetic diversity of T. asiatica and its status as a separate species. PMID:24450957

2014-01-01

335

Genetic Diversity of Echinococcus granulosus in Center of Iran  

PubMed Central

Hydatid cyst caused by Echinococcus granulosus is one of the most important parasitic diseases around the world and many countries in Asia, including Iran, are involved with this infection. This disease can cause high mortality in humans as well as economic losses in livestock. To date, several molecular methods have been used to determine the genetic diversity of E. granulosus. So far, identification of E. granulosus using real-time PCR fluorescence-based quantitative assays has not been studied worldwide, also in Iran. Therefore, the aim of this study was to investigate the genetic diversity of E. granulosus from center of Iran using real-time PCR method. A total of 71 hydatid cysts were collected from infected sheep, goat, and cattle slaughtered in Isfahan, Iran during 2013. DNA was extracted from protoscolices and/or germinal layers from each individual cyst and used as template to amplify the mitochondrial cytochrome c oxidase subunit 1 gene (cox1) (420 bp). Five cattle isolates out of 71 isolates were sterile and excluded from further investigation. Overall, of 66 isolates, partial sequences of the cox1 gene of E. granulosus indicated the presence of genotypes G1 in 49 isolates (74.2%), G3 in 15 isolates (22.7%), and G6 in 2 isolates (3.0%) in infected intermediate hosts. Sixteen sequences of G1 genotype had microgenetic variants, and they were compared to the original sequence of cox1. However, isolates identified as G3 and G6 genotypes were completely consistent with original sequences. G1 genotype in livestock was the dominant genotype in Isfahan region, Iran. PMID:25246720

Pestechian, Nader; Tajedini, Mohammadhasan; Rostami-Nejad, Mohammad; Mousavi, Mohammad; Yousofi, Hosseinali; Haghjooy Javanmard, Shaghayegh

2014-01-01

336

Genetic diversity and chemical polymorphism of some Thymus species.  

PubMed

To ascertain whether there are chemical and genetic relationships among some Thymus species and also to determine correlation between these two sets of data, the essential-oil composition and genetic variability of six populations of Thymus including: T. daenensis ?ELAK. (two populations), T. fallax FISCH. & C.A.MEY., T. fedtschenkoi RONNIGER, T. migricus KLOKOV & DES.-SHOST., and T. vulgaris L. were analyzed by GC and GC/MS, and also by randomly amplified polymorphic DNA (RAPD). Thus, 27 individuals were analyzed using 16 RAPD primers, which generated 264 polymorphic scorable bands and volatiles isolated by distillation extraction were subjected to GC and GC/MS analyses. The yields of oils ranged from 2.1 to 3.8% (v/w), and 34 components were identified, amounting to a total percentage of 97.8-99.9%. RAPD Markers allowed a perfect distinction between the different species based on their distinctive genetic background. However, they did not show identical clustering with the volatile-oil profiles. PMID:23776024

Rustaiee, Ali Reza; Yavari, Alireza; Nazeri, Vahideh; Shokrpour, Majid; Sefidkon, Fatemeh; Rasouli, Musa

2013-06-01

337

Genetic and Functional Diversity of Pseudomonas aeruginosa Lipopolysaccharide  

PubMed Central

Lipopolysccharide (LPS) is an integral component of the Pseudomonas aeruginosa cell envelope, occupying the outer leaflet of the outer membrane in this Gram-negative opportunistic pathogen. It is important for bacterium–host interactions and has been shown to be a major virulence factor for this organism. Structurally, P. aeruginosa LPS is composed of three domains, namely, lipid A, core oligosaccharide, and the distal O antigen (O-Ag). Most P. aeruginosa strains produce two distinct forms of O-Ag, one a homopolymer of D-rhamnose that is a common polysaccharide antigen (CPA, formerly termed A band), and the other a heteropolymer of three to five distinct (and often unique dideoxy) sugars in its repeat units, known as O-specific antigen (OSA, formerly termed B band). Compositional differences in the O units among the OSA from different strains form the basis of the International Antigenic Typing Scheme for classification via serotyping of different strains of P. aeruginosa. The focus of this review is to provide state-of-the-art knowledge on the genetic and resultant functional diversity of LPS produced by P. aeruginosa. The underlying factors contributing to this diversity will be thoroughly discussed and presented in the context of its contributions to host–pathogen interactions and the control/prevention of infection. PMID:21687428

Lam, Joseph S.; Taylor, Véronique L.; Islam, Salim T.; Hao, Youai; Kocíncová, Dana

2011-01-01

338

Genetic diversity of Toxoplasma gondii in animals and humans  

PubMed Central

Toxoplasma gondii is one of the most widespread parasites of domestic, wild, and companion animals, and it also commonly infects humans. Toxoplasma gondii has a complex life cycle. Sexual development occurs only in the cat gut, while asexual replication occurs in many vertebrate hosts. These features combine to create an unusual population structure. The vast majority of strains in North America and Europe fall into three recently derived, clonal lineages known as types I, II and III. Recent studies have revealed that South American strains are more genetically diverse and comprise distinct genotypes. These differences have been shaped by infrequent sexual recombination, population sweeps and biogeography. The majority of human infections that have been studied in North America and Europe are caused by type II strains, which are also common in agricultural animals from these regions. In contrast, several diverse genotypes of T. gondii are associated with severe infections in humans in South America. Defining the population structure of T. gondii from new regions has important implications for transmission, immunogenicity and pathogenesis. PMID:19687043

Sibley, L. David; Khan, Asis; Ajioka, James W.; Rosenthal, Benjamin M.

2009-01-01

339

Genetic diversity in European winter triticale determined with SSR markers and coancestry coefficient  

Microsoft Academic Search

Knowledge of the genetic diversity of a species is important for the choice of crossing parents in line and hybrid breeding. Our objective was to investigate European winter triticale using simple sequence repeat (SSR) markers and the coancestry coefficient (f) with regard to genetic diversity and grouping of germplasm. Three to five primer pairs for each of the 42 chromosomes

S. H. Tams; E. Bauer; G. Oettler; A. E. Melchinger

2004-01-01

340

Proceedings of the Sudden Oak Death Fifth Science Symposium Genetic Diversity of Phytophthora ramorum in  

E-print Network

Proceedings of the Sudden Oak Death Fifth Science Symposium 33 Genetic Diversity of Phytophthora, genetic diversity, nursery, managed environment Introduction Although Phytophthora ramorum was first percent of the isolates belonging to the main European genotype EU1MG1 and 13 unique detected genotypes

Standiford, Richard B.

341

Genetic diversity and differentiation in European beech ( Fagus sylvatica L.) stands varying in management history  

Microsoft Academic Search

The impact of forest management on genetic diversity and mating was examined in European beech (Fagus sylvatica L.). Ten beech stands located in Europe were studied in pair-wise plots, differing in management intensity. The stands were genotyped with four highly polymorphic microsatellite loci. Comparison for genetic diversity measures between the stands with limited management and the high management-intensity stands (mostly

J. Buiteveld; G. G. Vendramin; S. Leonardi; K. Kramer; T. Geburek

2007-01-01

342

Genetic diversity of thiamine and folate in primitive cultivated and wild potato (Solanum) species  

Technology Transfer Automated Retrieval System (TEKTRAN)

Biofortification of staple crops like potato via breeding is an attractive strategy to reduce human micronutrient deficiencies. A prerequisite is metabolic phenotyping of genetically diverse material which can be used as parents in breeding programs. Thus, the natural genetic diversity of thiamine a...

343

Title: Crop genetic diversity benefits farmland biodiversity in cultivated fields1 Carole Chateila, b  

E-print Network

to biodiversity loss in agroecosystems17 18 Key words19 Carabids; crop management practices; farmland biodiversity genetic diversity benefits farmland biodiversity in cultivated fields1 2 Authors3 Carole Chateila, b whether increasing crop genetic diversity benefited farmland biodiversity in5 bread wheat (Triticum

Paris-Sud XI, Université de

344

Evidence of Recombination and Genetic Diversity in Human Rhinoviruses in Children with Acute Respiratory  

E-print Network

Evidence of Recombination and Genetic Diversity in Human Rhinoviruses in Children with Acute Background: Human rhinoviruses (HRVs) are a highly prevalent cause of acute respiratory infection in children) Evidence of Recombination and Genetic Diversity in Human Rhinoviruses in Children with Acute Respiratory

Paris-Sud XI, Université de

345

Molecular genetic diversity of the French-American grapevine hybrids cultivated in North America.  

PubMed

French-American hybrid grapevines are most popular in eastern and mid-western North America: they are hardy cultivars derived from crosses between the European Vitis vinifera and American wild vines. The aim of this study was to characterize their genetic background using 6 microsatellite (SSR) markers and a set of 33 diagnostic RAPD markers. The latter were reproducible with different PCR thermal cyclers. Two SSR loci were found to be synonymous, VrZAG47 and VVMD27. The DNA profile frequencies estimated for each cultivar were much lower with multi-locus SSR data than that obtained from multi-fragment RAPD data. There was no significant correlation between the multi-locus DNA profile frequencies derived from SSRs and those from RAPDs. Estimates of genetic diversity derived from SSRs were generally higher and the average similarity between cultivars was generally lower than values reported for subgroups of V. vinifera, in accordance with expectations for hybrid cultivars. The phenetic relationships depicted by UPGMA (unweighted pair-group method with arithmetic averaging) and neighbor-joining analyses of microsatellite data were congruent and, to a large extent, in agreement with the known pedigree or history of each cultivar. A major dichotomy was observed between one group where the known genetic background was dominated by the North American Vitis riparia and Vitis labrusca, and another one where the genetic background was dominated by the European V. vinifera. Two Kulhmann varieties thought to be synonymous were found to be different, though closely related. PMID:14663522

Pollefeys, Patrick; Bousquet, Jean

2003-12-01

346

Genetic diversity of Leishmania infantum field populations from Brazil.  

PubMed

Leishmania infantum (syn. Leishmania chagasi) is the etiological agent of visceral leishmaniasis (VL) in Brazil. The epidemiology of VL is poorly understood. Therefore, a more detailed molecular characterization at an intraspecific level is certainly needed. Herein, three independent molecular methods, multilocus microsatellite typing (MLMT), random amplification of polymorphic DNA (RAPD) and simple sequence repeats-polymerase chain reaction (SSR-PCR), were used to evaluate the genetic diversity of 53 L. infantum isolates from five different endemic areas in Brazil. Population structures were inferred by distance-based and Bayesian-based approaches. Eighteen very similar genotypes were detected by MLMT, most of them differed in only one locus and no correlation was found between MLMT profiles, geographical origin or the estimated population structure. However, complex profiles composed of 182 bands obtained by both RAPD and SSR-PCR assays gave different results. Unweighted pair group method with arithmetic mean trees built from these data revealed a high degree of homogeneity within isolates of L. infantum. Interestingly, despite this genetic homogeneity, most of the isolates clustered according to their geographical origin. PMID:22310534

Segatto, Marcela; Ribeiro, Lucas Secchim; Costa, Dorcas Lamounier; Costa, Carlos Henrique Nery; Oliveira, Márcia Rosa de; Carvalho, Sílvio Fernando Guimarães; Macedo, Andréa Mara; Valadares, Helder Magno Silva; Dietze, Reynaldo; Brito, Cristiana Ferreira Alves de; Lemos, Elenice Moreira

2012-02-01

347

Original article Genetic variability of host-parasite relationship  

E-print Network

Original article Genetic variability of host-parasite relationship traits: utilization of isofemale lines in a Drosophila simulans parasitic wasp Y. Carton P. Capy A.J. Nappi 1Centre National de la in the successful parasitization of larvae of Drosophila melanogaster and D. simulans by the hymenopteran parasite

Paris-Sud XI, Université de

348

Levels of genetic diversity vary dramatically between Blastocystis subtypes.  

PubMed

Blastocystis is a common single-celled parasite of humans and other animals comprising at least 13 genetically distinct small subunit ribosomal RNA lineages (subtypes (STs)). In this study we investigated intra-subtype genetic diversity and host specificity of two of the most common subtypes in humans, namely ST3 and ST4, by analysing and comparing over 400 complete and partial nuclear SSU-rDNAs and data from multilocus sequence typing (MLST) of the mitochondrion-like organelle (MLO) genome of 132 samples. Inferences from phylogenetic analyses of nuclear SSU-rDNA and concatenated MLST sequences were compatible. Human ST3 infections were restricted to one of four identified MLO clades except where exposure to non-human primates had occurred. This suggests relatively high host specificity within ST3, that human ST3 infections are caused predominantly by human-to-human transmission, and that human strains falling into other clades are almost certainly the result of zoonotic transmission. ST4 from humans belonged almost exclusively to one of two SSU-rDNA clades, and only five MLST sequence types were found among 50 ST4s belonging to Clade 1 (discriminatory index: 0.41) compared to 58 MLST sequence types among 81 ST3s (discriminatory index: 0.99). The remarkable differences in intra-subtype genetic variability suggest that ST4 has a more recent history of colonising humans than ST3. This is congruent with the apparently restricted geographical distribution of ST4 relative to ST3. The implications of this observation are unclear, however, and the population structure and distribution of ST4 should be subject to further scrutiny in view of the fact ST4 is being increasingly linked with intestinal disease. PMID:22116021

Stensvold, C Rune; Alfellani, Mohammed; Clark, C Graham

2012-03-01

349

Longitudinal patterns in species richness and genetic diversity in European oaks and oak gallwasps  

Microsoft Academic Search

While latitudinal patterns of genetic diversity are well known for many taxa in Europe, there has been little analysis of\\u000a longitudinal patterns across Pleistocene glacial refugia. Here we analyze longitudinal patterns in two aspects of diversity\\u000a (species richness and intraspecific genetic diversity) for two trophically related groups of organisms – oaks (Fagaceae, genus\\u000a Quercus) and their associated gallwasps (Hymenoptera: Cynipidae)

Rachel J. Atkinson; Antonis Rokas; Graham N. Stone

350

How does genetic diversity change towards the range periphery? An empirical and theoretical test  

Microsoft Academic Search

Question: How does genetic diversity change as one moves along a species' range, towards the periphery? Previous work shows contradictory evidence for an increase, decrease or no clear trend along the range. Hypothesis: A hump-shaped unimodal pattern of within-population genetic diversity will occur along the range with peak diversity in sub-peripheral populations. This hypothesis incorporates and explains some of the

Salit Kark; Lilach Hadany; Uriel N. Safriel; Imanuel Noy-Meir; Niles Eldredge; Cristiano Tabarroni; Ettore Randi

2008-01-01

351

Inferring population structure and genetic diversity of broad range of wild diploid alfalfa (Medicago sativa L.) accessions using SSR markers.  

PubMed

Diversity analyses in alfalfa have mainly evaluated genetic relationships of cultivated germplasm, with little known about variation in diploid germplasm in the M. sativa-falcata complex. A collection of 374 individual genotypes derived from 120 unimproved diploid accessions from the National Plant Germplasm System, including M. sativa subsp. caerulea, falcata, and hemicycla, were evaluated with 89 polymorphic SSR loci in order to estimate genetic diversity, infer the genetic bases of current morphology-based taxonomy, and determine population structure. Diploid alfalfa is highly variable. A model-based clustering analysis of the genomic data identified two clearly discrete subpopulations, corresponding to the morphologically defined subspecies falcata and caerulea, with evidence of the hybrid nature of the subspecies hemicycla based on genome composition. Two distinct subpopulations exist within each subsp. caerulea and subsp. falcata. The distinction of caerulea was based on geographical distribution. The two falcata groups were separated based on ecogeography. The results show that taxonomic relationships based on morphology are reflected in the genetic marker data with some exceptions, and that clear distinctions among subspecies are evident at the diploid level. This research provides a baseline from which to systematically evaluate variability in tetraploid alfalfa and serves as a starting point for exploring diploid alfalfa for genetic and breeding experiments. PMID:20352180

Sakiro?lu, Muhammet; Doyle, Jeffrey J; Charles Brummer, E

2010-08-01

352

Genetic structure and diversity of coffee (Coffea) across Africa and the Indian Ocean islands revealed using microsatellites  

PubMed Central

Background and Aims The coffee genus (Coffea) comprises 124 species, and is indigenous to the Old World Tropics. Due to its immense economic importance, Coffea has been the focus of numerous genetic diversity studies, but despite this effort it remains insufficiently studied. In this study the genetic diversity and genetic structure of Coffea across Africa and the Indian Ocean islands is investigated. Methods Genetic data were produced using 13 polymorphic nuclear microsatellite markers (simple sequence repeats, SSRs), including seven expressed sequence tag-SSRs, and the data were analysed using model- and non-model-based methods. The study includes a total of 728 individuals from 60 species. Key Results Across Africa and the Indian Ocean islands Coffea comprises a closely related group of species with an overall pattern of genotypes running from west to east. Genetic structure was identified in accordance with pre-determined geographical regions and phylogenetic groups. There is a good relationship between morpho-taxonomic species delimitations and genetic units. Genetic diversity in African and Indian Ocean Coffea is high in terms of number of alleles detected, and Madagascar appears to represent a place of significant diversification in terms of allelic richness and species diversity. Conclusions Cross-species SSR transferability in African and Indian Ocean islands Coffea was very efficient. On the basis of the number of private alleles, diversification in East Africa and the Indian Ocean islands appears to be more recent than in West and West-Central Africa, although this general trend is complicated in Africa by the position of species belonging to lineages connecting the main geographical regions. The general pattern of phylogeography is not in agreement with an overall east to west (Mascarene, Madagascar, East Africa, West Africa) increase in genome size, the high proportion of shared alleles between the four regions or the high numbers of exclusive shared alleles between pairs or triplets of regions. PMID:23275631

Razafinarivo, Norosoa J.; Guyot, Romain; Davis, Aaron P.; Couturon, Emmanuel; Hamon, Serge; Crouzillat, Dominique; Rigoreau, Michel; Dubreuil-Tranchant, Christine; Poncet, Valerie; De Kochko, Alexandre; Rakotomalala, Jean-Jacques; Hamon, Perla

2013-01-01

353

MULTILOCUS SIMPLE SEQUENCE REPEATS AND SINGLE NUCLEOTIDE POLYMORPHISM MARKERS FOR GENOTYPING AND ASSESSING GENETIC DIVERSITY OF XYLELLA FASTIDIOSA IN CALIFORNIA  

Technology Transfer Automated Retrieval System (TEKTRAN)

To develop effective disease management strategies, we need to understand population structure and genetic diversity of pathogens in agricultural ecosystems. Current information regarding population structure and genetic diversity of Xylella fastidiosa (Xf) in California is insufficient to adequate...

354

Drainage-independent genetic structure and high genetic diversity of endangered freshwater pearl mussels ( Margaritifera margaritifera ) in northern Europe  

Microsoft Academic Search

Freshwater pearl mussels (Margaritifera margaritifera) are among the most critically threatened bivalve molluscs worldwide. An understanding of spatial patterns of genetic diversity\\u000a is crucial for the development of integrative conservation strategies. We used microsatellites to study the genetic diversity\\u000a and differentiation of 14 populations of M. margaritifera in central Sweden, an area which was described as a major secondary contact

Juergen Geist; Håkan Söderberg; Andreas Karlberg; Ralph Kuehn

2010-01-01

355

Marker based estimates of between and within population kinships for the conservation of genetic diversity  

Microsoft Academic Search

Summary In this article coefficients of kinship between and within populations are proposed as a tool to assess genetic diversity for conservation of genetic variation. However, pedigree-based kinships are often not available, especially between populations. A method of estimation of kinship from genetic marker data was applied to simulated data from random breeding populations in order to study the suitability

H. Eding; T. H. E. Meuwissen

2001-01-01

356

Gene flow and genetic diversity: a comparison of freshwater bryozoan populations in Europe and North America  

Microsoft Academic Search

We have used microsatellite and mitochondrial sequence data to gain insight into patterns of gene flow and genetic diversity among North American and European populations of the freshwater bryozoan Cristatella mucedo. Mitochondrial sequence data reveal numerous, widely distributed, divergent genetic lineages in North America that can be broadly categorized into two groups, one of which is genetically homogenous and relatively

Joanna R Freeland; Chiara Romualdi; Beth Okamura

2000-01-01

357

Mountain Goat Genetic Diversity and Population Connectivity in Washington and Southern British Columbia  

E-print Network

Mountain Goat Genetic Diversity and Population Connectivity in Washington and Southern British, is not allowed without my written permission. Leslie C. Parks February 14, 2013 #12;Mountain Goat Genetic by resistance (IBR), that are driving genetic isolation. Although the mountain goat (Oreamnos americanus

Wallin, David O.

358

Conservation of genetic diversity in the endangered plant Eriogonum ovalifolium var. vineum (Polygonaceae)  

Microsoft Academic Search

The purpose of his research was to describethe organization of genetic variation in thefederally endangered plant taxon Eriogonumovalifolium var. vineum using allozymes. Such information can help prioritize sites andmanagement choices for capturing andmaintaining genetic variation and can reducethe number of populations necessary to committo conservation, thus reducing costs andconflicts with competing land uses. Information on genetic diversity patterns alsoprovides insight

Maile C. Neel; Norman C. Ellstrand

2003-01-01

359

Environmental fluctuations and the maintenance of genetic diversity in age or stage-structured populations  

Microsoft Academic Search

The ability of random fluctuations in selection to maintain genetic diversity is greatly increased when generations overlap. This result has been derived previously using genetic models with very special assumptions about the population age structure. Here we explore its robustness in more realistic population models, with very general age structure or physiological structure. For a range of genetic models (haploid,

Stephen Ellner

1996-01-01

360

Effects of chemical contaminants on genetic diversity in natural populations: implications for biomonitoring and ecotoxicology  

Microsoft Academic Search

The conservation of genetic diversity has emerged as one of the central issues in conservation biology. Although researchers in the areas of evolutionary biology, population management, and conservation biology routinely investigate genetic variability in natural populations, only a handful of studies have addressed the effects of chemical contamination on population genetics. Chemical contamination can cause population reduction by the effects

John W Bickham; Shabeg Sandhu; Paul D. N Hebert; Lounes Chikhi; Raghbir Athwal

2000-01-01

361

Genetic diversity of siderophore-producing bacteria of tobacco rhizosphere.  

PubMed

The genetic diversity of siderophore-producing bacteria of tobacco rhizosphere was studied by amplified ribosomal DNA restriction analysis (ARDRA), 16S rRNA sequence homology and phylogenetics analysis methods. Studies demonstrated that 85% of the total 354 isolates produced siderophores in iron limited liquid medium. A total of 28 ARDRA patterns were identified among the 299 siderophore-producing bacterial isolates. The 28 ARDRA patterns represented bacteria of 14 different genera belonging to six bacterial divisions, namely ?-, ?-, ?-Proteobacteria, Sphingobacteria, Bacilli, and Actinobacteria. Especially, ?-Proteobacteria consisting of Pseudomonas, Enterobacter, Serratia, Pantoea, Erwinia and Stenotrophomonas genus encountered 18 different ARDRA groups. Results also showed a greater siderophore-producing bacterial diversity than previous researches. For example, Sphingobacterium (isolates G-2-21-1 and G-2-27-2), Pseudomonas poae (isolate G-2-1-1), Enterobacter endosymbiont (isolates G-2-10-2 and N-5-10), Delftia acidovorans (isolate G-1-15), and Achromobacter xylosoxidans (isolates N-46-11HH and N-5-20) were reported to be able to produce siderophores under low-iron conditions for the first time. Gram-negative isolates were more frequently encountered, with more than 95% total frequency. For Gram-positive bacteria, the Bacillus and Rhodococcus were the only two genera, with 1.7% total frequency. Furthermore, the Pseudomonas and Enterobacter were dominant in this environment, with 44.5% and 24.7% total frequency, respectively. It was also found that 75 percent of the isolates that had the high percentages of siderophore units (% between 40 and 60) belonged to Pseudomonas. Pseudomonas sp. G-229-21 screened out in this study may have potential to apply to low-iron soil to prevent plant soil-borne fungal pathogen diseases. PMID:24031358

Tian, Fang; Ding, Yanqin; Zhu, Hui; Yao, Liangtong; Du, Binghai

2009-04-01

362

Genetic diversity of siderophore-producing bacteria of tobacco rhizosphere  

PubMed Central

The genetic diversity of siderophore-producing bacteria of tobacco rhizosphere was studied by amplified ribosomal DNA restriction analysis (ARDRA), 16S rRNA sequence homology and phylogenetics analysis methods. Studies demonstrated that 85% of the total 354 isolates produced siderophores in iron limited liquid medium. A total of 28 ARDRA patterns were identified among the 299 siderophore-producing bacterial isolates. The 28 ARDRA patterns represented bacteria of 14 different genera belonging to six bacterial divisions, namely ?-, ?-, ?-Proteobacteria, Sphingobacteria, Bacilli, and Actinobacteria. Especially, ?-Proteobacteria consisting of Pseudomonas, Enterobacter, Serratia, Pantoea, Erwinia and Stenotrophomonas genus encountered 18 different ARDRA groups. Results also showed a greater siderophore-producing bacterial diversity than previous researches. For example, Sphingobacterium (isolates G-2-21-1 and G-2-27-2), Pseudomonas poae (isolate G-2-1-1), Enterobacter endosymbiont (isolates G-2-10-2 and N-5-10), Delftia acidovorans (isolate G-1-15), and Achromobacter xylosoxidans (isolates N-46-11HH and N-5-20) were reported to be able to produce siderophores under low-iron conditions for the first time. Gram-negative isolates were more frequently encountered, with more than 95% total frequency. For Gram-positive bacteria, the Bacillus and Rhodococcus were the only two genera, with 1.7% total frequency. Furthermore, the Pseudomonas and Enterobacter were dominant in this environment, with 44.5% and 24.7% total frequency, respectively. It was also found that 75 percent of the isolates that had the high percentages of siderophore units (% between 40 and 60) belonged to Pseudomonas. Pseudomonas sp. G-229-21 screened out in this study may have potential to apply to low-iron soil to prevent plant soil-borne fungal pathogen diseases. PMID:24031358

Tian, Fang; Ding, Yanqin; Zhu, Hui; Yao, Liangtong; Du, Binghai

2009-01-01

363

Genetic Diversity Among Botulinum Neurotoxin Producing Clostridial Strains  

SciTech Connect

Clostridium botulinum is a taxonomic designation for many diverse anaerobic spore forming rod-shaped bacteria which have the common property of producing botulinum neurotoxins (BoNTs). The BoNTs are exoneurotoxins that can cause severe paralysis and even death in humans and various other animal species. A collection of 174 C. botulinum strains were examined by amplified fragment length polymorphism (AFLP) analysis and by sequencing of the 16S rRNA gene and BoNT genes to examine genetic diversity within this species. This collection contained representatives of each of the seven different serotypes of botulinum neurotoxins (BoNT A-G). Analysis of the16S rRNA sequences confirmed earlier reports of at least four distinct genomic backgrounds (Groups I-IV) each of which has independently acquired one or more BoNT serotypes through horizontal gene transfer. AFLP analysis provided higher resolution, and can be used to further subdivide the four groups into sub-groups. Sequencing of the BoNT genes from serotypes A, B and E in multiple strains confirmed significant sequence variation within each serotype. Four distinct lineages within each of the BoNT A and B serotypes, and five distinct lineages of serotype E strains were identified. The nucleotide sequences of the seven serotypes of BoNT were compared and show varying degrees of interrelatedness and recombination as has been previously noted for the NTNH gene which is linked to BoNT. These analyses contribute to the understanding of the evolution and phylogeny within this species and assist in the development of improved diagnostics and therapeutics for treatment of botulism.

Hill, K K; Smith, T J; Helma, C H; Ticknor, L O; Foley, B T; Svennson, R T; Brown, J L; Johnson, E A; Smith, L A; Okinaka, R T; Jackson, P J; Marks, J D

2006-07-06

364

Gut microbiology - broad genetic diversity, yet specific metabolic niches.  

PubMed

Analysis of 16S ribosomal RNA (rRNA)-encoding gene sequences from gut microbial ecosystems reveals bewildering genetic diversity. Some metabolic functions, such as glucose utilisation, are fairly widespread throughout the genetic spectrum. Others, however, are not. Despite so many phylotypes being present, single species or perhaps only two or three species often carry out key functions. Among ruminal bacteria, only three species can break down highly structured cellulose, despite the prevalence and importance of cellulose in ruminant diets, and one of those species, Fibrobacter succinogenes, is distantly related to the most abundant ruminal species. Fatty acid biohydrogenation in the rumen, particularly the final step of biohydrogenation of C18 fatty acids, stearate formation, is achieved only by a small sub-group of bacteria related to Butyrivibrio fibrisolvens. Individuals who lack Oxalobacter formigenes fail to metabolise oxalate and suffer kidney stones composed of calcium oxalate. Perhaps the most celebrated example of the difference a single species can make is the 'mimosine story' in ruminants. Mimosine is a toxic amino acid found in the leguminous plant, Leucaena leucocephala. Mimosine can cause thyroid problems by being converted to the goitrogen, 3-hydroxy-4(1H)-pyridone, in the rumen. Observations that mimosine-containing plants were toxic to ruminants in some countries but not others led to the discovery of Synergistes jonesii, which metabolises 3-hydroxy-4(1H)-pyridone and protects animals from toxicity. Thus, despite the complexities indicated by molecular microbial ecology and genomics, it should never be forgotten that gut communities contain important metabolic niches inhabited by species with highly specific metabolic capability. PMID:22443591

John Wallace, R

2008-05-01

365

Prevalence, Genetic Diversity, and Host Range of Tectiviruses among Members of the Bacillus cereus Group  

PubMed Central

GIL01, Bam35, GIL16, AP50, and Wip1 are tectiviruses preying on the Bacillus cereus group. Despite the significant contributions of phages in different biological processes, little is known about the dealings taking place between tectiviruses and their Gram-positive bacterial hosts. Therefore, this work focuses on characterizing the interactions between tectiviruses and the B. cereus group by assessing their occurrence and genetic diversity and evaluating their host range. To study the occurrence of tectiviruses in the B. cereus group, 2,000 isolates were evaluated using primers designed to be specific to two variable regions detected in previously described elements. PCR and propagation tests revealed that tectivirus-like elements occurred in less than 3% of the isolates. Regardless of this limited distribution, several novel tectiviruses were found, and partial DNA sequencing indicated that a greater diversity exists within the family Tectiviridae. Analyses of the selected variable regions, along with their host range, showed that tectiviruses in the B. cereus group can be clustered mainly into two different groups: the ones infecting B. anthracis and those isolated from other B. cereus group members. In order to address the host range of some novel tectiviruses, 120 strains were tested for sensitivity. The results showed that all the tested tectiviruses produced lysis in at least one B. cereus sensu lato strain. Moreover, no simple relationship between the infection patterns of the tectiviruses and their diversity was found. PMID:24795369

Gillis, Annika

2014-01-01

366

Low genetic diversity and high differentiation among relict populations of the neotropical gymnosperm Podocarpus sellowii (Klotz.) in the Atlantic Forest.  

PubMed

Podocarpus sellowii (Podocarpaceae) is one of only a few gymnosperms native to Brazil and the sole species of the genus found in the northeastern region of that country. It has a very restricted distribution in this region, with only three known populations in highland forests (called Brejos de Altitude), which apparently have been isolated from each other since the Pleistocene. Due to this long-term isolation and the fact that these populations have few adult individuals and suffer great anthropogenic pressure, low genetic variability is expected, compromising their long-term viability. The present work assessed the genetic variability and structure of northeastern populations of P. sellowii to investigate the role of Pleistocene glaciations on the genetic relationships between them and to propose strategies for their conservation by analyzing the SSR and ISSR markers of adult and juvenile individuals. Low genetic diversity was found with both markers, associated with a high differentiation of the Brejo de Baturité population in relation to the others-suggesting their isolation at different points in time, probably during the Pleistocene. Actions directed towards increasing the genetic diversity of these populations will be needed, such as planting seedlings with high genetic variability-but the high degrees of differentiation observed between the populations must be taken into account. PMID:25532751

Dantas, Liliane G; Esposito, Tiago; de Sousa, Adna Cristina Barbosa; Félix, Leonardo; Amorim, Lidiane L B; Benko-Iseppon, Ana Maria; Batalha-Filho, Henrique; Pedrosa-Harand, Andrea

2015-02-01

367

Genetic diversity in Passiflora species assessed by morphological and its sequence analysis.  

PubMed

This study used morphological characterization and phylogenetic analysis of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA to investigate the phylogeny of Passiflora species. The samples were collected from various regions of East Malaysia, and discriminant function analysis based on linear combinations of morphological variables was used to classify the Passiflora species. The biplots generated five distinct groups discriminated by morphological variables. The group consisted of cultivars of P. edulis with high levels of genetic similarity; in contrast, P. foetida was highly divergent from other species in the morphological biplots. The final dataset of aligned sequences from nine studied Passiflora accessions and 30 other individuals obtained from GenBank database (NCBI) yielded one most parsimonious tree with two strongly supported clades. Maximum parsimony (MP) tree showed the phylogenetic relationships within this subgenus Passiflora support the classification at the series level. The constructed phylogenic tree also confirmed the divergence of P. foetida from all other species and the closeness of wild and cultivated species. The phylogenetic relationships were consistent with results of morphological assessments. The results of this study indicate that ITS region analysis represents a useful tool for evaluating genetic diversity in Passiflora at the species level. PMID:25050402

Ramaiya, Shiamala Devi; Bujang, Japar Sidik; Zakaria, Muta Harah

2014-01-01

368

Genetic Diversity in Passiflora Species Assessed by Morphological and ITS Sequence Analysis  

PubMed Central

This study used morphological characterization and phylogenetic analysis of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA to investigate the phylogeny of Passiflora species. The samples were collected from various regions of East Malaysia, and discriminant function analysis based on linear combinations of morphological variables was used to classify the Passiflora species. The biplots generated five distinct groups discriminated by morphological variables. The group consisted of cultivars of P. edulis with high levels of genetic similarity; in contrast, P. foetida was highly divergent from other species in the morphological biplots. The final dataset of aligned sequences from nine studied Passiflora accessions and 30 other individuals obtained from GenBank database (NCBI) yielded one most parsimonious tree with two strongly supported clades. Maximum parsimony (MP) tree showed the phylogenetic relationships within this subgenus Passiflora support the classification at the series level. The constructed phylogenic tree also confirmed the divergence of P. foetida from all other species and the closeness of wild and cultivated species. The phylogenetic relationships were consistent with results of morphological assessments. The results of this study indicate that ITS region analysis represents a useful tool for evaluating genetic diversity in Passiflora at the species level. PMID:25050402

Ramaiya, Shiamala Devi; Bujang, Japar Sidik; Zakaria, Muta Harah

2014-01-01

369

Patterns of human genetic diversity: implications for human evolutionary history and disease.  

PubMed

Since the completion of the human genome sequencing project, the discovery and characterization of human genetic variation is a principal focus for future research. Comparative studies across ethnically diverse human populations and across human and nonhuman primate species is important for reconstructing human evolutionary history and for understanding the genetic basis of human disease. In this review, we summarize data on patterns of human genetic diversity and the evolutionary forces (mutation, genetic drift, migration, and selection) that have shaped these patterns of variation across both human populations and the genome. African population samples typically have higher levels of genetic diversity, a complex population substructure, and low levels of linkage disequilibrium (LD) relative to non-African populations. We discuss these differences and their implications for mapping disease genes and for understanding how population and genomic diversity have been important in the evolution, differentiation, and adaptation of humans. PMID:14527305

Tishkoff, Sarah A; Verrelli, Brian C

2003-01-01

370

Empirical Relationships between Species Richness, Evenness, and Proportional Diversity  

Microsoft Academic Search

Diversity (or biodiversity) is typically measured by a spe- cies count (richness) and sometimes with an evenness index; it may also be measured by a proportional statistic that combines both mea- sures (e.g., Shannon-Weiner index or ). These diversity measures ? H are hypothesized to be positively and strongly correlated, but this null hypothesis has not been tested empirically. We

Gray Stirling; Brian Wilsey

2001-01-01

371

Genetic relationship among reproductive traits in Nellore cattle.  

PubMed

In order to achieve improvements in production efficiency in livestock, herds of high sexual precocity and good fertility are needed. These traits increase the availability of animals in herd, either for sale or selection, allowing both greater selective intensity and greater genetic progress. This study aimed at estimating genetic parameters for reproductive traits measured directly in females in order to verify whether they could be used as selection criteria for genetic improvement in Nellore cows, as well as estimating the genetic relationship among these traits and scrotal circumference (SC), the traditional selection criterion for sexual precocity in cattle. In addition to SC, stayability (STAY), number of calvings at 53 months (NC53) and heifers rebreeding (HR) were studied. The (co)variances and genetic parameters were estimated using Bayesian inference. STAY, NC53 and HR were analyzed assuming a threshold model, whereas SC was analyzed with a linear model. Heritability estimated for NC53 was 0.22, and this trait was strongly and positively correlated with STAY, meaning selection for NC53 would improve productive longevity of Nellore cows. Correlations estimated between HR and STAY (?0.97) and between HR and NC53 (?0.99) allow an improvement on HR rates if selection was applied to traits related to longevity. Genetic correlations among SC and female reproductive traits were positive but weak, suggesting the need to use reproductive traits directly measured in females in order to obtain greater improvements in sexual precocity and longevity. PMID:25483394

Guarini, A R; Neves, H H R; Schenkel, F S; Carvalheiro, R; Oliveira, J A; Queiroz, S A

2014-12-01

372

Diversity and general student scholarship recipient essays: 2010 National Society of Genetic Counselors Membership Committee.  

PubMed

In an effort to increase the diversity of the membership of the National Society of Genetic Counselors (NSGC), the Membership Committee provided two $500 scholarships to genetic counseling students planning to attend the NSGC AEC meeting in Dallas, Texas in October 2010. Requirements for applicants of both scholarships included enrollment in the fall of 2010, good standing at an accredited genetic counseling training program, and NSGC membership or plans to join in 2011. Students who are from communities underrepresented in the NSGC, including, but not limited to, those of minority cultural/ethnic backgrounds and those with disabilities were eligible to apply for the "Diversity" scholarship. Students from all backgrounds who have an interest in diversity issues were eligible to apply for the "General" scholarship. Applicants wrote essays 1000 words or less answering the following questions: How has your identity as a member of a group underrepresented in the genetic counseling profession affected your pursuit of this career? What do you feel is lacking in genetic counseling to address the issues of underrepresented groups? What strategies do you recommend for addressing these issues and/or increasing diversity? Why do you think diversity is an important issue for the field of genetic counseling? What strategies do you recommend to attract and retain students, especially those from underrepresented populations, into the field of genetic counseling? How do you envision contributing to these strategies? The essays by the award recipients elucidated interesting perspectives and ideas for increasing diversity in the genetic counseling profession. PMID:21717287

Liu, Tina; Patek, Kyla; Schneider, Kami Wolfe

2011-12-01

373

Complex spatial dynamics maintain northern leopard frog (Lithobates pipiens) genetic diversity in a temporally varying landscape  

USGS Publications Warehouse

In contrast to most local amphibian populations, northeastern populations of the Northern Leopard Frog (Lithobates pipiens) have displayed uncharacteristically high levels of genetic diversity that have been attributed to large, stable populations. However, this widely distributed species also occurs in areas known for great climatic fluctuations that should be reflected in corresponding fluctuations in population sizes and reduced genetic diversity. To test our hypothesis that Northern Leopard Frog genetic diversity would be reduced in areas subjected to significant climate variability, we examined the genetic diversity of L. pipiens collected from 12 sites within the Prairie Pothole Region of North Dakota. Despite the region's fluctuating climate that includes periods of recurring drought and deluge, we found unexpectedly high levels of genetic diversity approaching that of northeastern populations. Further, genetic structure at a landscape scale was strikingly homogeneous; genetic differentiation estimates (Dest) averaged 0.10 (SD = 0.036) across the six microsatellite loci we studied, and two Bayesian assignment tests (STRUCTURE and BAPS) failed to reveal the development of significant population structure across the 68 km breadth of our study area. These results suggest that L. pipiens in the Prairie Pothole Region consists of a large, panmictic population capable of maintaining high genetic diversity in the face of marked climate variability.

Mushet, David M.; Euliss, Ned H.; Chen, Yongjiu; Stockwell, Craig A.

2013-01-01

374

Genotyping of ancient Mycobacterium tuberculosis strains reveals historic genetic diversity  

PubMed Central

The evolutionary history of the Mycobacterium tuberculosis complex (MTBC) has previously been studied by analysis of sequence diversity in extant strains, but not addressed by direct examination of strain genotypes in archaeological remains. Here, we use ancient DNA sequencing to type 11 single nucleotide polymorphisms and two large sequence polymorphisms in the MTBC strains present in 10 archaeological samples from skeletons from Britain and Europe dating to the second–nineteenth centuries AD. The results enable us to assign the strains to groupings and lineages recognized in the extant MTBC. We show that at least during the eighteenth–nineteenth centuries AD, strains of M. tuberculosis belonging to different genetic groups were present in Britain at the same time, possibly even at a single location, and we present evidence for a mixed infection in at least one individual. Our study shows that ancient DNA typing applied to multiple samples can provide sufficiently detailed information to contribute to both archaeological and evolutionary knowledge of the history of tuberculosis. PMID:24573854

Müller, Romy; Roberts, Charlotte A.; Brown, Terence A.

2014-01-01

375

Genotyping of ancient Mycobacterium tuberculosis strains reveals historic genetic diversity.  

PubMed

The evolutionary history of the Mycobacterium tuberculosis complex (MTBC) has previously been studied by analysis of sequence diversity in extant strains, but not addressed by direct examination of strain genotypes in archaeological remains. Here, we use ancient DNA sequencing to type 11 single nucleotide polymorphisms and two large sequence polymorphisms in the MTBC strains present in 10 archaeological samples from skeletons from Britain and Europe dating to the second-nineteenth centuries AD. The results enable us to assign the strains to groupings and lineages recognized in the extant MTBC. We show that at least during the eighteenth-nineteenth centuries AD, strains of M. tuberculosis belonging to different genetic groups were present in Britain at the same time, possibly even at a single location, and we present evidence for a mixed infection in at least one individual. Our study shows that ancient DNA typing applied to multiple samples can provide sufficiently detailed information to contribute to both archaeological and evolutionary knowledge of the history of tuberculosis. PMID:24573854

Müller, Romy; Roberts, Charlotte A; Brown, Terence A

2014-04-22

376

Genetic diversity of Chlamydia among captive birds from central Argentina.  

PubMed

To study the occurrence of Chlamydia spp. and their genetic diversity, we analysed 793 cloacal swabs from 12 avian orders, including 76 genera, obtained from 80 species of asymptomatic wild and captive birds that were examined with conventional nested polymerase chain reaction and quantitative polymerase chain reaction. Chlamydia spp. were not detected in wild birds; however, four species (Chlamydia psittaci, Chlamydia pecorum, Chlamydia pneumoniae and Chlamydia gallinacea) were identified among captive birds (Passeriformes, n = 20; Psittaciformes, n = 15; Rheiformes, n = 8; Falconiformes n = 2; Piciformes n = 2; Anseriformes n = 1; Galliformes n = 1; Strigiformes n = 1). Two pathogens (C. pneumoniae and C. pecorum) were identified simultaneously in samples obtained from captive birds. Based on nucleotide-sequence variations of the ompA gene, three C. psittaci-positive samples detected were grouped into a cluster with the genotype WC derived from mammalian hosts. A single positive sample was phylogenetically related to a new strain of C. gallinacea. This report contributes to our increasing understanding of the abundance of Chlamydia in the animal kingdom. PMID:25469538

Frutos, María C; Monetti, Marina S; Vaulet, Lucia Gallo; Cadario, María E; Fermepin, Marcelo Rodríguez; Ré, Viviana E; Cuffini, Cecilia G

2015-02-01

377

Landscape models for nuclear genetic diversity and genetic structure in white-footed mice (Peromyscus leucopus).  

PubMed

Dramatic changes in the North American landscape over the last 12?000 years have shaped the genomes of the small mammals, such as the white-footed mouse (Peromyscus leucopus), which currently inhabit the region. However, very recent interactions of populations with each other and the environment are expected to leave the most pronounced signature on rapidly evolving nuclear microsatellite loci. We analyzed landscape characteristics and microsatellite markers of P. leucopus populations along a transect from southern Ohio to northern Michigan, in order to evaluate hypotheses about the spatial distribution of genetic heterogeneity. Genetic diversity increased to the north and was best approximated by a single-variable model based on habitat availability within a 0.5-km radius of trapping sites. Interpopulation differentiation measured by clustering analysis was highly variable and not significantly related to latitude or habitat availability. Interpopulation differentiation measured as FST values and chord distance was correlated with the proportion of habitat intervening, but was best explained by agricultural distance and by latitude. The observed gradients in diversity and interpopulation differentiation were consistent with recent habitat availability being the major constraint on effective population size in this system, and contradicted the predictions of both the postglacial expansion and core-periphery hypotheses. PMID:24448564

Taylor, Z S; Hoffman, S M G

2014-06-01

378

Promoting Sustained Engagement with Diversity: The Reciprocal Relationships between Informal and Formal College Diversity Experiences  

ERIC Educational Resources Information Center

College diversity experiences have been praised not only for their role in promoting student growth but also for contributing to future engagement with diversity. However, the evidence supporting this latter claim is quite limited, often relying on cross-sectional analyses. This study examines whether and how students' first-year diversity…

Bowman, Nicholas A.

2012-01-01

379

Prevalent Ciliate Symbiosis on Copepods: High Genetic Diversity and Wide Distribution Detected Using Small Subunit Ribosomal RNA Gene  

PubMed Central

Toward understanding the genetic diversity and distribution of copepod-associated symbiotic ciliates and the evolutionary relationships with their hosts in the marine environment, we developed a small subunit ribosomal RNA gene (18S rDNA)-based molecular method and investigated the genetic diversity and genotype distribution of the symbiotic ciliates on copepods. Of the 10 copepod species representing six families collected from six locations of Pacific and Atlantic Oceans, 9 were found to harbor ciliate symbionts. Phylogenetic analysis of the 391 ciliate 18S rDNA sequences obtained revealed seven groups (ribogroups), six (containing 99% of all the sequences) belonging to subclass Apostomatida, the other clustered with peritrich ciliate Vorticella gracilis. Among the Apostomatida groups, Group III were essentially identical to Vampyrophrya pelagica, and the other five groups represented the undocumented ciliates that were close to Vampyrophrya/Gymnodinioides/Hyalophysa. Group VI ciliates were found in all copepod species but one (Calanus sinicus), and were most abundant among all ciliate sequences obtained, indicating that they are the dominant symbiotic ciliates universally associated with copepods. In contrast, some ciliate sequences were found only in some of the copepods examined, suggesting the host selectivity and geographic differentiation of ciliates, which requires further verification by more extensive sampling. Our results reveal the wide occurrence and high genetic diversity of symbiotic ciliates on marine copepods and highlight the need to systematically investigate the host- and geography-based genetic differentiation and ecological roles of these ciliates globally. PMID:23024768

Guo, Zhiling; Liu, Sheng; Hu, Simin; Li, Tao; Huang, Yousong; Liu, Guangxing; Zhang, Huan; Lin, Senjie

2012-01-01

380

Genomic diversity and relationship of Bacillus thuringiensis and Bacillus cereus by multi-REP-PCR fingerprinting.  

PubMed

The genomic diversity and relationship among 56 Bacillus thuringiensis and Bacillus cereus type strains were investigated by multi-REP-PCR fingerprinting consisting of three PCR reactions targeting the enterobacterial ERIC1 and ERIC2 and the streptococcal BOXA1R consensus sequences. A total of 113 polymorphic bands were generated in the REP-PCR profiles that allowed tracing of a single dendrogram with three major groups. Bacillus cereus strains clustered together in the A and B groups. Most of the B. thuringiensis strains clustered in group C, which included groups of serovars with a within-group similarity higher than 40% as follows: darmstadiensis, israelensis, and morrisoni; aizawai, kenyae, pakistani, and thompsoni; canadensis, entomocidus, galleriae, kurstaki, and tolworthi; alesti, dendrolimus, and kurstaki; and finitimus, sotto, and thuringiensis. Multi-REP-PCR fingerprinting clustered B. thuringiensis serovars in agreement with previously developed multilocus sequence typing schemes, indicating that it represents a rapid shortcut for addressing the genetic relationship of unknown strains with the major known serovars. PMID:17538643

Cherif, Ameur; Ettoumi, Besma; Raddadi, Noura; Daffonchio, Daniele; Boudabous, Abdellatif

2007-03-01

381

Factors affecting levels of genetic diversity in natural populations.  

PubMed Central

Genetic variability is the clay of evolution, providing the base material on which adaptation and speciation depend. It is often assumed that most interspecific differences in variability are due primarily to population size effects, with bottlenecked populations carrying less variability than those of stable size. However, we show that population bottlenecks are unlikely to be the only factor, even in classic case studies such as the northern elephant seal and the cheetah, where genetic polymorphism is virtually absent. Instead, we suggest that the low levels of variability observed in endangered populations are more likely to result from a combination of publication biases, which tend to inflate the level of variability which is considered 'normal', and inbreeding effects, which may hasten loss of variability due to drift. To account for species with large population sizes but low variability we advance three hypotheses. First, it is known that certain metapopulation structures can result in effective population sizes far below the census size. Second, there is increasing evidence that heterozygous sites mutate more frequently than equivalent homozygous sites, plausibly because mismatch repair between homologous chromosomes during meiosis provides extra opportunities to mutate. Such a mechanism would undermine the simple relationship between heterozygosity and effective population size. Third, the fact that related species that differ greatly in variability implies that large amounts of variability can be gained or lost rapidly. We argue that such cases are best explained by rapid loss through a genome-wide selective sweep, and suggest a mechanism by which this could come about, based on forced changes to a control gene inducing coevolution in the genes it controls. Our model, based on meiotic drive in mammals, but easily extended to other systems, would tend to facilitate population isolation by generating molecular incompatabilities. Circumstances can even be envisioned in which the process could provide intrinsic impetus to speciation. PMID:9533122

Amos, W; Harwood, J

1998-01-01

382

Genetic diversity in Capsicum baccatum is significantly influenced by its ecogeographical distribution  

PubMed Central

Background The exotic pepper species Capsicum baccatum, also known as the aji or Peruvian hot pepper, is comprised of wild and domesticated botanical forms. The species is a valuable source of new genes useful for improving fruit quality and disease resistance in C. annuum sweet bell and hot chile pepper. However, relatively little research has been conducted to characterize the species, thus limiting its utilization. The structure of genetic diversity in a plant germplasm collection is significantly influenced by its ecogeographical distribution. Together with DNA fingerprints derived from AFLP markers, we evaluated variation in fruit and plant morphology of plants collected across the species native range in South America and evaluated these characters in combination with the unique geography, climate and ecology at different sites where plants originated. Results The present study mapped the ecogeographic distribution, analyzed the spatial genetic structure, and assessed the relationship between the spatial genetic pattern and the variation of morphological traits in a diverse C. baccatum germplasm collection spanning the species distribution. A combined diversity analysis was carried out on the USDA-ARS C. baccatum germplasm collection using data from GIS, morphological traits and AFLP markers. The results demonstrate that the C. baccatum collection covers wide geographic areas and is adapted to divergent ecological conditions in South America ranging from cool Andean highland to Amazonia rainforest. A high level of morphological diversity was evident in the collection, with fruit weight the leading variable. The fruit weight distribution pattern was compatible to AFLP-based clustering analysis for the collection. A significant spatial structure was observed in the C. baccatum gene pool. Division of the domesticated germplasm into two major regional groups (Western and Eastern) was further supported by the pattern of spatial population structure. Conclusions The results reported improve our understanding of the combined effects of geography, ecology and human intervention on organization of the C. baccatum genepool. The results will facilitate utilization of C. baccatum for crop improvement and species conservation by providing a framework for efficient germplasm collection management and guidance for future plant acquisitions. PMID:22866868

2012-01-01

383

Genetic diversity of the tropical tree Terminalia amazonia (Combretaceae) in naturally fragmented populations.  

PubMed

The effect of long-term fragmentation on the genetic diversity of populations of the neotropical tree species, Terminalia amazonia, was studied using random amplified polymorphic DNA (RAPD) analysis. Leaf material from 104 trees was collected from three naturally fragmented gallery forest patches and three plots in nearby continuous forest in the Mountain Pine Ridge, Belize. In total, 30 RAPD bands generated by five decamer primers were used to compare the genetic diversity of the six populations in the two groups. Genetic variation within the populations (H0), as estimated by the Shannon diversity index, ranged from 0.32 to 0.38, with an overall diversity of 0.38 (Hspecies). Analysis of molecular variation revealed that most (94.4%, P<0.001) of the variation was attributable to differences among individuals within populations. Population differentiation was significantly (P=0.038) lower among the fragmented populations than among continuous forest populations. On average, the fragmented populations also had slightly, but statistically significant (P=0.046) lower levels of genetic diversity. However, one gallery forest site had a higher level of genetic diversity than two of the continuous forest sites. We suggest that the long-term effect of fragmentation on the genetic diversity of tropical trees will depend upon the amount of local forest cover in proximity to the fragmented populations. PMID:12939633

Pither, R; Shore, J S; Kellman, M

2003-09-01

384

Genetic connections among Turkic-speaking Iranian ethnic groups based on HLA class II gene diversity.  

PubMed

Iran is a linguistically heterogeneous nation where Persian, Turkic and Arabic are the three main language families spoken. Based on their linguistic properties, Qashqais, Turkmens and Azeris are Turkic-speaking people. The purpose of this study was to investigate whether any genetic relationship exists among the Turkic-speaking Iranian subpopulations based on HLA class II gene diversity. HLA-DRB1, DQA1 and DQB1 alleles were identified by PCR-based methods in 100 Qashqais and 66 Turkmens, and the results were compared with our previously published HLA data for Azeris. Despite a number of allelic and haplotypic similarities, Qashqais, Turkmens and Azeris were not in the same clade of the phylogenetic tree. However, based on the results of principal coordinates analysis, they are grouped together with Kurds and Bakhtiaris. Contrary to their common linguistic features, the Turkic-speaking people of Iran are closer to other Iranian subpopulations than to the people of Turkey and central Asia. Overall, it seems that linguistic criteria alone are not able to determine the relationships among these populations, and a combination of different kinds of anthropological information should be used to determine their actual phylogenetic relationships. PMID:23745951

Farjadian, S; Safi, S

2013-12-01

385

Genetic Diversity and Relationships of Vietnamese and European Pig Breeds  

Microsoft Academic Search

Indigenous resources of the Asian pig population are less defined and only rarely compared with European breeds. In this study, five indigenous pig breeds from Viet Nam (Mong Cai, Muong Khuong, Co, Meo, Tap Na), two exotic breeds kept in Viet Nam (Large White, Landrace), three European commercial breeds (Pietrain, Landrace, Large White), and European Wild Boar were chosen for

N. T. D. Thuy; E. Melchinger; A. W. Kuss; T. Peischl; H. Bartenschlager; N. V. Cuong; H. Geldermann

386

Relationships Between Residual Feed Intake and Performance of Heifers of Diverse Breedtypes and Brahman Cows  

E-print Network

These studies were designed to evaluate the relationships between residual feed intake (RFI) and performance of growing heifers and Brahman cows. Residual feed intake was determined for 77 heifers of diverse breedtypes (Angus, Brahman, Hereford...

Loyd, Andrea N.

2010-10-12

387

Global patterns of the beta diversity-energy relationship in terrestrial vertebrates  

NASA Astrophysics Data System (ADS)

Patterns in beta diversity or species turnover, describing the change in species composition between places, have their wide implication for ecological and evolutionary issues. It is thought that beta diversity increases with increasing energy availability, but very few studies have directly tested this hypothesis. We examined the beta diversity-energy relationship for four classes of terrestrial vertebrates (mammals, birds, reptiles, and amphibians) in ecoregions across the world. The relationship was examined for each class in each of six biogeographic realms. We show that beta diversity is generally higher in areas with higher energy availability, measured as annual potential evapotranspiration. A higher level of beta diversity in areas with higher energy availability may have contributed to the well-known latitudinal diversity gradient (i.e., species richness increases towards the equator).

Qian, Hong; Xiao, Ming

2012-02-01

388

Assessing Genetic Diversity among Brettanomyces Yeasts by DNA Fingerprinting and Whole-Genome Sequencing  

PubMed Central

Brettanomyces yeasts, with the species Brettanomyces (Dekkera) bruxellensis being the most important one, are generally reported to be spoilage yeasts in the beer and wine industry due to the production of phenolic off flavors. However, B. bruxellensis is also known to be a beneficial contributor in certain fermentation processes, such as the production of certain specialty beers. Nevertheless, despite its economic importance, Brettanomyces yeasts remain poorly understood at the genetic and genomic levels. In this study, the genetic relationship between more than 50 Brettanomyces strains from all presently known species and from several sources was studied using a combination of DNA fingerprinting techniques. This revealed an intriguing correlation between the B. bruxellensis fingerprints and the respective isolation source. To further explore this relationship, we sequenced a (beneficial) beer isolate of B. bruxellensis (VIB X9085; ST05.12/22) and compared its genome sequence with the genome sequences of two wine spoilage strains (AWRI 1499 and CBS 2499). ST05.12/22 was found to be substantially different from both wine strains, especially at the level of single nucleotide polymorphisms (SNPs). In addition, there were major differences in the genome structures between the strains investigated, including the presence of large duplications and deletions. Gene content analysis revealed the presence of 20 genes which were present in both wine strains but absent in the beer strain, including many genes involved in carbon and nitrogen metabolism, and vice versa, no genes that were missing in both AWRI 1499 and CBS 2499 were found in ST05.12/22. Together, this study provides tools to discriminate Brettanomyces strains and provides a first glimpse at the genetic diversity and genome plasticity of B. bruxellensis. PMID:24814796

Crauwels, Sam; Zhu, Bo; Steensels, Jan; Busschaert, Pieter; De Samblanx, Gorik; Marchal, Kathleen; Willems, Kris A.

2014-01-01

389

Assessing genetic diversity among Brettanomyces yeasts by DNA fingerprinting and whole-genome sequencing.  

PubMed

Brettanomyces yeasts, with the species Brettanomyces (Dekkera) bruxellensis being the most important one, are generally reported to be spoilage yeasts in the beer and wine industry due to the production of phenolic off flavors. However, B. bruxellensis is also known to be a beneficial contributor in certain fermentation processes, such as the production of certain specialty beers. Nevertheless, despite its economic importance, Brettanomyces yeasts remain poorly understood at the genetic and genomic levels. In this study, the genetic relationship between more than 50 Brettanomyces strains from all presently known species and from several sources was studied using a combination of DNA fingerprinting techniques. This revealed an intriguing correlation between the B. bruxellensis fingerprints and the respective isolation source. To further explore this relationship, we sequenced a (beneficial) beer isolate of B. bruxellensis (VIB X9085; ST05.12/22) and compared its genome sequence with the genome sequences of two wine spoilage strains (AWRI 1499 and CBS 2499). ST05.12/22 was found to be substantially different from both wine strains, especially at the level of single nucleotide polymorphisms (SNPs). In addition, there were major differences in the genome structures between the strains investigated, including the presence of large duplications and deletions. Gene content analysis revealed the presence of 20 genes which were present in both wine strains but absent in the beer strain, including many genes involved in carbon and nitrogen metabolism, and vice versa, no genes that were missing in both AWRI 1499 and CBS 2499 were found in ST05.12/22. Together, this study provides tools to discriminate Brettanomyces strains and provides a first glimpse at the genetic diversity and genome plasticity of B. bruxellensis. PMID:24814796

Crauwels, Sam; Zhu, Bo; Steensels, Jan; Busschaert, Pieter; De Samblanx, Gorik; Marchal, Kathleen; Willems, Kris A; Verstrepen, Kevin J; Lievens, Bart

2014-07-01

390

Peak and Persistent Excess of Genetic Diversity Following an Abrupt Migration Increase  

PubMed Central

Genetic diversity is essential for population survival and adaptation to changing environments. Demographic processes (e.g., bottleneck and expansion) and spatial structure (e.g., migration, number, and size of populations) are known to shape the patterns of the genetic diversity of populations. However, the impact of temporal changes in migration on genetic diversity has seldom been considered, although such events might be the norm. Indeed, during the millions of years of a species’ lifetime, repeated isolation and reconnection of populations occur. Geological and climatic events alternately isolate and reconnect habitats. We analytically document the dynamics of genetic diversity after an abrupt change in migration given the mutation rate and the number and sizes of the populations. We demonstrate that during transient dynamics, genetic diversity can reach unexpectedly high values that can be maintained over thousands of generations. We discuss the consequences of such processes for the evolution of species based on standing genetic variation and how they can affect the reconstruction of a population’s demographic and evolutionary history from genetic data. Our results also provide guidelines for the use of genetic data for the conservation of natural populations. PMID:23307901

Alcala, Nicolas; Streit, Daniela; Goudet, Jérôme; Vuilleumier, Séverine

2013-01-01

391

Genetic diversity in caribou linked to past and future climate change  

NASA Astrophysics Data System (ADS)

Climate-driven range fluctuations during the Pleistocene have continuously reshaped species distribution leading to populations of contrasting genetic diversity. Contemporary climate change is similarly influencing species distribution and population structure, with important consequences for patterns of genetic diversity and species' evolutionary potential. Yet few studies assess the impacts of global climatic changes on intraspecific genetic variation. Here, combining analyses of molecular data with time series of predicted species distributions and a model of diffusion through time over the past 21kyr, we unravel caribou response to past and future climate changes across its entire Holarctic distribution. We found that genetic diversity is geographically structured with two main caribou lineages, one originating from and confined to Northeastern America, the other originating from Euro-Beringia but also currently distributed in western North America. Regions that remained climatically stable over the past 21kyr maintained a high genetic diversity and are also predicted to experience higher climatic stability under future climate change scenarios. Our interdisciplinary approach, combining genetic data and spatial analyses of climatic stability (applicable to virtually any taxon), represents a significant advance in inferring how climate shapes genetic diversity and impacts genetic structure.

Yannic, Glenn; Pellissier, Loïc; Ortego, Joaquín; Lecomte, Nicolas; Couturier, Serge; Cuyler, Christine; Dussault, Christian; Hundertmark, Kris J.; Irvine, R. Justin; Jenkins, Deborah A.; Kolpashikov, Leonid; Mager, Karen; Musiani, Marco; Parker, Katherine L.; Røed, Knut H.; Sipko, Taras; Þórisson, Skarphéðinn G.; Weckworth, Byron V.; Guisan, Antoine; Bernatchez, Louis; Côté, Steeve D.

2014-02-01

392

Evaluation of the relationship between diversion percentage and delay in a freeway corridor in Houston, Texas  

E-print Network

and content by: Raymond A. Krammes (Chair of Committee) Thomas Urbanik (Member) R. Quinn Brackett (Member) James T. P. ao (Head of Department) August 1991 ABSTRACT Evaluation of the Relationship between Diversion Percentage and Delay in a Freeway... CORFLO INPUT AND OUTPUT DATA 54 56 VITA 73 LIST OF TABLES Table 1 Summary of Simulation Results Page 33 LIST OF FIGURES Page Figure 1 Hypothetical Relationship between Diversion Percentage and System Performance . 10 Figure 2 Figure 3 Figure...

Lee, Sibok

1991-01-01

393

Characterization of the Active Microbiotas Associated with Honey Bees Reveals Healthier and Broader Communities when Colonies are Genetically Diverse  

PubMed Central

Recent losses of honey bee colonies have led to increased interest in the microbial communities that are associated with these important pollinators. A critical function that bacteria perform for their honey bee hosts, but one that is poorly understood, is the transformation of worker-collected pollen into bee bread, a nutritious food product that can be stored for long periods in colonies. We used 16S rRNA pyrosequencing to comprehensively characterize in genetically diverse and genetically uniform colonies the active bacterial communities that are found on honey bees, in their digestive tracts, and in bee bread. This method provided insights that have not been revealed by past studies into the content and benefits of honey bee-associated microbial communities. Colony microbiotas differed substantially between sampling environments and were dominated by several anaerobic bacterial genera never before associated with honey bees, but renowned for their use by humans to ferment food. Colonies with genetically diverse populations of workers, a result of the highly promiscuous mating behavior of queens, benefited from greater microbial diversity, reduced pathogen loads, and increased abundance of putatively helpful bacteria, particularly species from the potentially probiotic genus Bifidobacterium. Across all colonies, Bifidobacterium activity was negatively correlated with the activity of genera that include pathogenic microbes; this relationship suggests a possible target for understanding whether microbes provide protective benefits to honey bees. Within-colony diversity shapes microbiotas associated with honey bees in ways that may have important repercussions for colony function and health. Our findings illuminate the importance of honey bee-bacteria symbioses and examine their intersection with nutrition, pathogen load, and genetic diversity, factors that are considered key to understanding honey bee decline. PMID:22427917

Mattila, Heather R.; Rios, Daniela; Walker-Sperling, Victoria E.; Roeselers, Guus; Newton, Irene L. G.

2012-01-01

394

Metabolism of sugars by genetically diverse species of oral Leptotrichia  

PubMed Central

SUMMARY Leptotrichia buccalis ATCC 14201 is a Gram-negative, anaerobic rod-shaped bacterium resident in oral biofilm at the tooth surface. The sequenced genome of this organism reveals three contiguous genes at loci: Lebu_1525,1526 and 1527. The translation products of these genes exhibit significant homology with phospho-?-glucosidase (Pagl), a regulatory protein (GntR) and a phosphoenol pyruvate-dependent sugar transport protein (EIICB), respectively. In non-oral bacterial species, these genes comprise the sim operon that facilitates sucrose isomer metabolism. Growth studies showed that L. buccalis fermented a wide variety of carbohydrates, including four of the five isomers of sucrose. Growth on the isomeric disaccharides elicited expression of a 50kDa polypeptide comparable in size to that encoded by Lebu_1525. The latter gene was cloned, and the expressed protein was purified to homogeneity from Escherichia coli TOP 10 cells. In the presence of two cofactors, NAD+ and Mn2+ ion, the enzyme readily hydrolyzed p-nitrophenyl-?-glucopyranoside 6-phosphate (pNP?G6P), a chromogenic analog of the phosphorylated isomers of sucrose. By comparative sequence alignment, immuno-reactivity and signature motifs, the enzyme can be assigned to the phospho-?-glucosidase (Pagl) clade of Family 4 of the glycosyl hydrolase super family. We suggest that the products of Lebu_1527 and 1525, catalyze the phosphorylative translocation and hydrolysis of sucrose isomers in L. buccalis, respectively. Four genetically diverse, but 16S rDNA related species of Leptotrichia have recently been described: L. goodfellowii, L. hofstadii, L. shahii and L. wadei. The phenotypic traits of these new species, with respect to carbohydrate utilization, have also been determined. PMID:22230464

Thompson, John; Pikis, Andreas

2011-01-01

395

Metabolism of sugars by genetically diverse species of oral Leptotrichia.  

PubMed

Leptotrichia buccalis ATCC 14201 is a gram-negative, anaerobic rod-shaped bacterium resident in oral biofilm at the tooth surface. The sequenced genome of this organism reveals three contiguous genes at loci: Lebu_1525, Lebu_1526 and Lebu_1527. The translation products of these genes exhibit significant homology with phospho-?-glucosidase (Pagl), a regulatory protein (GntR) and a phosphoenol pyruvate-dependent sugar transport protein (EIICB), respectively. In non-oral bacterial species, these genes comprise the sim operon that facilitates sucrose isomer metabolism. Growth studies showed that L. buccalis fermented a wide variety of carbohydrates, including four of the five isomers of sucrose. Growth on the isomeric disaccharides elicited expression of a 50-kDa polypeptide comparable in size to that encoded by Lebu_1525. The latter gene was cloned, and the expressed protein was purified to homogeneity from Escherichia coli TOP10 cells. In the presence of two cofactors, NAD(+) and Mn(2+) ions, the enzyme readily hydrolyzed p-nitrophenyl-?-glucopyranoside 6-phosphate (pNP?G6P), a chromogenic analogue of the phosphorylated isomers of sucrose. By comparative sequence alignment, immunoreactivity and signature motifs, the enzyme can be assigned to the phospho-?-glucosidase (Pagl) clade of Family 4 of the glycosyl hydrolase super family. We suggest that the products of Lebu_1527 and Lebu_1525, catalyze the phosphorylative translocation and hydrolysis of sucrose isomers in L. buccalis, respectively. Four genetically diverse, but 16S rDNA-related, species of Leptotrichia have recently been described: L. goodfellowii, L. hofstadii, L. shahii and L. wadei. The phenotypic traits of these new species, with respect to carbohydrate utilization, have also been determined. PMID:22230464

Thompson, J; Pikis, A

2012-02-01

396

Patch connectivity and genetic diversity conservation in the federally endangered and narrowly endemic  

E-print Network

endemic plant species Astragalus albens (Fabaceae) Maile C. Neel* Departments of Plant Science in promoting the long-term persistence of the endangered plant Astragalus albens, patterns of genetic diversity

Neel, Maile

397

GENETIC DIVERSITY, POPULATION SUBDIVISION AND GENE FLOW IN MORELET'S CROCODILE (CROCODYLUS MORELETII) FROM BELIZE, CENTRAL  

E-print Network

1 Title: GENETIC DIVERSITY, POPULATION SUBDIVISION AND GENE FLOW IN MORELET'S CROCODILE (CROCODYLUS, microsatellites, conservation Suggested Running Head: Gene flow in Morelet's crocodile populations Manuscript surrounding natural history and ecology of the endangered Morelet's crocodile (Crocodylus moreletii) has

Dever, Jennifer A.

398

High genetic diversity and population differentiation in Boechera fecunda, a rare relative of Arabidopsis.  

PubMed

Conservation of endangered species becomes a critical issue with the increasing rates of extinction. In this study, we use 13 microsatellite loci and 27 single-copy nuclear loci to investigate the population genetics of Boechera fecunda, a rare relative of Arabidopsis thaliana, known from only 21 populations in Montana. We investigated levels of genetic diversity and population structure in comparison to its widespread congener, Boechera stricta, which shares similar life history and mating system. Despite its rarity, B. fecunda had levels of genetic diversity similar to B. stricta for both microsatellites and nucleotide polymorphism. Populations of B. fecunda are highly differentiated, with a majority of genetic diversity existing among populations (F(ST) = 0.57). Differences in molecular diversity and allele frequencies between western and eastern population groups suggest they experienced very different evolutionary histories. PMID:17784916

Song, Bao-Hua; Mitchell-Olds, Thomas

2007-10-01

399

Bryophyte vegetation in a wooded meadow: relationships with phanerogam diversity and responses to fertilisation  

Microsoft Academic Search

In the Laelatu wooded meadow in Estonia, famous for its phanerogam diversity, the bryophyte community has been investigated in order to compare its flora and diversity relationships with those of the vascular plant community. Ninety-six bryophyte species were found, 13 of them are hepatics; the majority of the bryophytes are epigeic species common to meadows and forests, including many calciphilous

Nele Ingerpuu; Kalevi Kull; Kai Vellak

1998-01-01

400

The role of extinction in large-scale diversity–stability relationships  

PubMed Central

More-diverse communities are thought to be ecologically stable because a greater number of ecological interactions among members allows for the increases in robustness and resilience. Diversity–stability relationships have mostly been studied on short ecological time scales but one study has identified such patterns over million-year time scales in reef communities. Here we propose and test a hypothesis for the mechanism of large-scale diversity–stability relationships in reefs. The extinction of community members destabilizes the community as a whole, unless there is sufficient diversity to buffer the community from the stochastic loss of members, thereby preventing collapse. If genera have high extinction rates, any variation in diversity among communities will result in a diversity–stability relationship. Conversely, in the absence of other mechanisms, the stability of low extinction communities is expected to be independent of diversity. We compare the extinction rates of six reef-building metazoan taxa to patterns of reef community stability and reef volume. We find that extinction of reef-builders occurs independent of reef volume, and that the strength of the diversity–stability relationship varies positively with extinction rate. PMID:20007184

Simpson, Carl; Kiessling, Wolfgang

2010-01-01

401

The role of extinction in large-scale diversity-stability relationships.  

PubMed

More-diverse communities are thought to be ecologically stable because a greater number of ecological interactions among members allows for the increases in robustness and resilience. Diversity-stability relationships have mostly been studied on short ecological time scales but one study has identified such patterns over million-year time scales in reef communities. Here we propose and test a hypothesis for the mechanism of large-scale diversity-stability relationships in reefs. The extinction of community members destabilizes the community as a whole, unless there is sufficient diversity to buffer the community from the stochastic loss of members, thereby preventing collapse. If genera have high extinction rates, any variation in diversity among communities will result in a diversity-stability relationship. Conversely, in the absence of other mechanisms, the stability of low extinction communities is expected to be independent of diversity. We compare the extinction rates of six reef-building metazoan taxa to patterns of reef community stability and reef volume. We find that extinction of reef-builders occurs independent of reef volume, and that the strength of the diversity-stability relationship varies positively with extinction rate. PMID:20007184

Simpson, Carl; Kiessling, Wolfgang

2010-05-01

402

An empirical relationship for path diversity gain. [earth-space microwave propagation attenuation  

NASA Technical Reports Server (NTRS)

Existing 15.3 and 16 GHz path diversity gain data for earth-space propagation paths are used to generate an empirical relationship for diversity gain as a function of terminal separation distance and single terminal fade depth. The agreement between the resulting closed form expression and the data is within 0.75 dB in all cases.

Hodge, D. B.

1976-01-01

403

Genetic relationships between Lolium (Poaceae) species revealed by RAPD markers.  

PubMed

The genus Lolium is one of the most important groupings of temperate forage grasses, including about eight recognized species that are native to some temperate and subtropical regions of the northern hemisphere. We examined genetic relationships among 18 accessions representing all Lolium species using RAPD markers. Among 50 random primers that we screened, 13 gave reproducible amplification banding patterns. Each of these 13 primers generated 19-43 scorable fragments. A total of 367 RAPD fragments were detected, of which 95.9% were polymorphic across all the Lolium accessions. Dice's coefficient of dissimilarity ranged from 0.016 to 0.622, which is indicative of substantial genetic variations in these Lolium accessions. A neighbor-joining cluster analysis, with bootstrap permutation, produced an unrooted dendrogram, which grouped 18 accessions into two main clades, supporting high bootstrap values (98 and 96%). The first clade included the self-pollinated species, L. persicum, L. temulentum, L. remotum, and L. subulatum. The cross-pollinated species, i.e., L. multiflorum, L. perenne, L. rigidum, and L. canariense, composed the second clade, in which L. canariense formed a distinct subclade, indicating its higher genetic separation from other allogamous species. The value of r = 0.97 in the Mantel test for cophenetic correlation applied to the cluster analysis indicated the high degree of fit of the accessions to a group. A principal coordinate analysis, whose first three coordinates explained 72.6% of the variation, showed similar groupings as in the cluster analysis. The genetic relationships estimated by the polymorphism of RAPD markers are basically in agreement with those previously inferred with other genetic markers. PMID:23546973

Ma, X; Gu, X-Y; Chen, T-T; Chen, S-Y; Huang, L-K; Zhang, X-Q

2013-01-01

404

Patterns of ancestry and genetic diversity in reintroduced populations of the slimy sculpin: Implications for conservation  

USGS Publications Warehouse

Reintroductions are a common approach for preserving intraspecific biodiversity in fragmented landscapes. However, they may exacerbate the reduction in genetic diversity initially caused by population fragmentation because the effective population size of reintroduced populations is often smaller and reintroduced populations also tend to be more geographically isolated than native populations. Mixing genetically divergent sources for reintroduction purposes is a practice intended to increase genetic diversity. We documented the outcome of reintroductions from three mixed sources on the ancestral composition and genetic variation of a North American fish, the slimy sculpin (Cottus cognatus). We used microsatellite markers to evaluate allelic richness and heterozygosity in the reintroduced populations relative to computer simulated expectations. Sculpins in reintroduced populations exhibited higher levels of heterozygosity and allelic richness than any single source, but only slightly higher than the single most genetically diverse source population. Simulations intended to mimic an ideal scenario for maximizing genetic variation in the reintroduced populations also predicted increases, but they were only moderately greater than the most variable source population. We found that a single source contributed more than the other two sources at most reintroduction sites. We urge caution when choosing whether to mix source populations in reintroduction programs. Genetic characteristics of candidate source populations should be evaluated prior to reintroduction if feasible. When combined with knowledge of the degree of genetic distinction among sources, simulations may allow the genetic diversity benefits of mixing populations to be weighed against the risks of outbreeding depression in reintroduced and nearby populations. ?? 2010 US Government.

Huff, D.D.; Miller, L.M.; Vondracek, B.

2010-01-01

405

Global diversity and genetic contributions of chicken populations from African, Asian and European regions.  

PubMed

Genetic diversity and population structure of 113 chicken populations from Africa, Asia and Europe were studied using 29 microsatellite markers. Among these, three populations of wild chickens and nine commercial purebreds were used as reference populations for comparison. Compared to commercial lines and chickens sampled from the European region, high mean numbers of alleles and a high degree of heterozygosity were found in Asian and African chickens as well as in Red Junglefowl. Population differentiation (FST ) was higher among European breeds and commercial lines than among African, Asian and Red Junglefowl populations. Neighbour-Net genetic clustering and structure analysis revealed two main groups of Asian and north-west European breeds, whereas African populations overlap with other breeds from Eastern Europe and the Mediterranean region. Broilers and brown egg layers were situated between the Asian and north-west European clusters. structure analysis confirmed a lower degree of population stratification in African and Asian chickens than in European breeds. High genetic differentiation and low genetic contributions to global diversity have been observed for single European breeds. Populations with low genetic variability have also shown a low genetic contribution to a core set of diversity in attaining maximum genetic variation present from the total populations. This may indicate that conservation measures in Europe should pay special attention to preserving as many single chicken breeds as possible to maintain maximum genetic diversity given that higher genetic variations come from differentiation between breeds. PMID:25315897

Lyimo, C M; Weigend, A; Msoffe, P L; Eding, H; Simianer, H; Weigend, S

2014-12-01

406

Genetic diversity of Annona crassiflora (Annonaceae) in northern Minas Gerais State.  

PubMed

Genetic diversity analyses of tropical tree species are relevant to landscape management, plant genetic resource inventory, and biological conservation of threatened species. Annona crassiflora is an endangered fruit tree native to the Cerrado biome that is threatened by reduction of natural populations and fruit extraction. We examined the intra- and interpopulational genetic diversity of this species in the northern region of Minas Gerais State. Seventy-two individuals from four natural populations were genotyped using RAPD markers. We found moderate genetic diversity among populations, with Shannon's I index varying between 0.31 and 0.44, and Nei's genetic diversity (H(E)) for the population set equal to 0.31. AMOVA indicated a greater genetic variation within (77.38%) rather than among populations (22.62%), tending towards isolation by distance (Mantel's r = 0.914; P = 0.089). Nei's genetic identity estimates among populations revealed a hierarchical pattern of genetic similarity of form [(CA1, CA2), MC], [(GM)], corroborating the high genetic differentiation between spatially isolated populations. PMID:21968724

Cota, L G; Vieira, F A; Melo Júnior, A F; Brandão, M M; Santana, K N O; Guedes, M L; Oliveira, D A

2011-01-01

407

Phylogenetic analysis of European Scutovertex mites (Acari, Oribatida, Scutoverticidae) reveals paraphyly and cryptic diversity – a molecular genetic and morphological approach  

PubMed Central

The soil and moss dwelling oribatid mite family Scutoverticidae is considered to represent an assemblage of distantly related but morphologically similar genera. We used nucleotide sequences of one mitochondrial (COI) and two nuclear (28S rDNA, ef-1?) genes, and 79 morphological characters to elucidate the phylogenetic relationships among eleven nominal plus two undescribed European mite species of the family Scutoverticidae with a particular focus on the genus Scutovertex. Both molecular genetic and morphological data revealed a paraphyletic genus Scutovertex, with S. pictus probably representing a distinct genus, and Provertex kuehnelti was confirmed as member of the family Scutoverticidae. Molecular genetic data confirmed several recently described Scutovertex species and thus the high species diversity within this genus in Europe and suggest that S. sculptus represents a complex of several cryptic species exhibiting marked genetic, but hardly any morphological divergence. PMID:20006724

Schäffer, Sylvia; Pfingstl, Tobias; Koblmüller, Stephan; Winkler, Kathrin A.; Sturmbauer, Christian; Krisper, Günther

2014-01-01

408

Genome-wide characterization of genetic diversity and population structure in Secale  

PubMed Central

Background Numerous rye accessions are stored in ex situ genebanks worldwide. Little is known about the extent of genetic diversity contained in any of them and its relation to contemporary varieties, since to date rye genetic diversity studies had a very limited scope, analyzing few loci and/ or few accessions. Development of high throughput genotyping methods for rye opened the possibility for genome wide characterizations of large accessions sets. In this study we used 1054 Diversity Array Technology (DArT) markers with defined chromosomal location to characterize genetic diversity and population structure in a collection of 379 rye accessions including wild species, landraces, cultivated materials, historical and contemporary rye varieties. Results Average genetic similarity (GS) coefficients and average polymorphic information content (PIC) values varied among chromosomes. Comparison of chromosome specific average GS within and between germplasm sub-groups indicated regions of chromosomes 1R and 4R as being targeted by selection in current breeding programs. Bayesian clustering, principal coordinate analysis and Neighbor Joining clustering demonstrated that source and improvement status contributed significantly to the structure observed in the analyzed set of Secale germplasm. We revealed a relatively limited diversity in improved rye accessions, both historical and contemporary, as well as lack of correlation between clustering of improved accessions and geographic origin, suggesting common genetic background of rye accessions from diverse geographic regions and extensive germplasm exchange. Moreover, contemporary varieties were distinct from the remaining accessions. Conclusions Our results point to an influence of reproduction methods on the observed diversity patterns and indicate potential of ex situ collections for broadening the genetic diversity in rye breeding programs. Obtained data show that DArT markers provide a realistic picture of the genetic diversity and population structure present in the collection of 379 rye accessions and are an effective platform for rye germplasm characterization and association mapping studies. PMID:25085433

2014-01-01

409

Genetic diversity of rhizobia isolated from Astragalus adsurgens growing in different geographical regions of China  

Microsoft Academic Search

The genetic diversity among 95 isolates from Astragalus adsurgens was investigated using molecular biological methods. All of the isolates and 24 reference strains could be differentiated by AFLP, REP-, ERIC- and BOX-PCR fingerprinting analysis. By cluster analysis of the data, 31 AFLP and 38 Rep-PCR genomic groups were delineated, indicating considerable genetic diversity among the isolates. Fifty-four representative strains were

Junlian Gao; Zewdu Terefework; Wenxin Chen; Kristina Lindström

2001-01-01

410

Genetic diversity in fragmented populations of the critically endangered spider orchid Caladenia huegelii : implications for conservation  

Microsoft Academic Search

The Orchidaceae is characterised by a diverse range of life histories, reproductive strategies and geographic distribution,\\u000a reflected in a variety of patterns in the population genetic structure of different species. In this study, the genetic diversity\\u000a and structure was assessed within and among remnant populations of the critically endangered sexually deceptive orchid, Caladenia huegelii. This species has experienced severe recent

Nigel D. Swarts; Elizabeth A. Sinclair; Siegfried L. Krauss; Kingsley W. Dixon

2009-01-01

411

Genetic diversity and population structure of the invasive alien red swamp crayfish  

Microsoft Academic Search

High genetic diversity is thought to characterize successful invasive species, as the potential to adapt to new environments\\u000a is enhanced and inbreeding is reduced. The red swamp crayfish, Procambarus clarkii, native to northeastern Mexico and south-central USA was introduced to Nanjing, China from Japan in 1929. Little is known\\u000a about the genetic diversity and population structure of this species in

Gen Hua Yue; Jiale Li; Zhiyi Bai; Chun Ming Wang; Felicia Feng

2010-01-01

412

Large mainland populations of South Island robins retain greater genetic diversity than offshore island refuges  

Microsoft Academic Search

For conservation purposes islands are considered safe refuges for many species, particularly in regions where introduced predators\\u000a form a major threat to the native fauna, but island populations are also known to possess low levels of genetic diversity.\\u000a The New Zealand archipelago provides an ideal system to compare genetic diversity of large mainland populations where introduced\\u000a predators are common, to

Sanne Boessenkool; Sabrina S. Taylor; Carolyn K. Tepolt; Jan Komdeur; Ian G. Jamieson

2007-01-01

413

Genetic diversity in European chestnut populations by means of genomic and genic microsatellite markers  

Microsoft Academic Search

Microsatellite or simple sequence repeats (SSRs) are one of the most used markers in population genetic studies. SSR markers\\u000a developed from expressed sequence tags (EST) have proved useful to examine functional diversity in relation to adaptive variation.\\u000a The information provided by both genomic and genic microsatellite markers could offer more accurate indication on the distribution\\u000a of the genetic diversity among

M. Angela Martin; Claudia Mattioni; Marcello Cherubini; Daniela Taurchini; Fiorella Villani

2010-01-01

414

Allozyme diversity and genetic structure of European populations of Sorbus aucuparia L. (Rosaceae: Maloideae)  

Microsoft Academic Search

Genetic diversity at 10 loci encoding six enzymes was studied in 17 European populations of Sorbus aucuparia L. (the rowan), distributed among five regions, from Finland to the Pyrenees. Levels of genetic diversity were high both at the species level (He=0.229) and within populations (mean He=0.212), whereas levels of differentiation among populations were very low (GST=0.060). These values were comparable

Olivier Raspé; Anne-Laure Jacquemart

1998-01-01

415

Genetic diversity and structure of natural and transplanted eelgrass populations in the Chesapeake and Chincoteague Bays  

Microsoft Academic Search

The objective of this study was to gain baseline population data on the genetic diversity and differentiation of eelgrass\\u000a (Zostera marïna L.) populations in the Chesapeake and Chincoteague bays. Natural and transplanted eelgrass beds were compared using starch\\u000a gel electrophoresis of allozymes. Transplanted eelgrass beds were not reduced in genetic diversity compared with natural beds.\\u000a Inbreeding coefficients (FIS) indicated that

Susan L. Williams; Robert J. Orth

1998-01-01

416

Genetic diversity and investigation of polledness in divergent goat populations using 52 088 SNPs.  

PubMed

The recent availability of a genome-wide SNP array for the goat genome dramatically increases the power to investigate aspects of genetic diversity and to conduct genome-wide association studies in this important domestic species. We collected and analysed genotypes from 52 088 SNPs in Boer, Cashmere and Rangeland goats that had both polled and horned individuals. Principal components analysis revealed a clear genetic division between animals for each population, and model-based clustering successfully detected evidence of admixture that matched aspects of their recorded history. For example, shared co-ancestry was detected, suggesting Boer goats have been introgressed into the Rangeland population. Further, allele frequency data successfully tracked the altered genetic profile that has taken place after 40 years of breeding Australian Cashmere goats using the Rangeland animals as the founding population. Genome-wide association mapping of the POLL locus revealed a strong signal on goat chromosome 1. The 769-kb critical interval contained the polled intersex syndrome locus, confirming the genetic basis in non-European animals is the same as identified previously in Saanen goats. Interestingly, analysis of the haplotypes carried by a small set of sex-reversed animals, known to be associated with polledness, revealed some animals carried the wild-type chromosome associated with the presence of horns. This suggests a more complex basis for the relationship between polledness and the intersex condition than initially thought while validating the application of the goat SNP50 BeadChip for fine-mapping traits in goat. PMID:23216229

Kijas, James W; Ortiz, Judit S; McCulloch, Russell; James, Andrew; Brice, Blair; Swain, Ben; Tosser-Klopp, Gwenola

2013-06-01

417

Effects of a recent founding event and intrinsic population dynamics on genetic diversity in an ungulate population  

Microsoft Academic Search

Maintenance of genetic diversity has recently become a management goal for a number of species, due to its importance for\\u000a present and future population viability. Genetic drift, primarily through differential reproductive success and inbreeding,\\u000a can accelerate the loss of genetic diversity in recently recovered populations. We attempt to quantify the consequences of\\u000a these factors on the genetic diversity contained in

Gregory A. Wilson; John S. Nishi; Brett T. Elkin; Curtis Strobeck

2005-01-01

<