Science.gov

Sample records for genetic diversity relationships

  1. Ethnohistory, intertribal relationships, and genetic diversity among Amazonian Indians.

    PubMed

    Aguiar, G F

    1991-12-01

    The influence of recent ethnohistorical factors on the microevolution of South American Indians has not been adequately evaluated by population geneticists. This makes difficult a reasonable interpretation of the present genetic structure of these groups. In this article the genetic diversity of 18 tribes of the Amazon and neighboring areas belonging to 3 linguistic groups (Tupi, Carib, and Gê) is analyzed in light of documentary sources about historical events, such as demographic changes, geographic movements, intertribal relationships, and marriage practices, that have taken place since the end of the eighteenth century. The high depopulation rate suffered by the Tupi groups (61.4% on average) is a probable factor conditioning the large intergroup genetic distances in this linguistic stock, for depopulation is a phenomenon associated with random genetic drift caused by a bottleneck effect. On the other hand, the relatively high similarity of the Gê and the Carib shows an association with two main factors: (1) reduced spatial dispersion of the Gê in the recent past, providing adequate conditions for within-stock gene flow, and (2) strong tradition of intergroup contacts among the Carib, frequently followed by genetic admixture and even fusion of groups, as verified for the Wayana and the Aparaí. The patterns of biologic variation of some Tupi tribes (Waiãpi, Emerillon, Parakanã, and Assurini) are better explained by historical and regional contingencies than by linguistic classification. PMID:1959909

  2. Genetic diversity, structure, and breed relationships in Iberian cattle.

    PubMed

    Martín-Burriel, I; Rodellar, C; Cañón, J; Cortés, O; Dunner, S; Landi, V; Martínez-Martínez, A; Gama, L T; Ginja, C; Penedo, M C T; Sanz, A; Zaragoza, P; Delgado, J V

    2011-04-01

    In Iberia there are 51 officially recognized cattle breeds of which 15 are found in Portugal and 38 in Spain. We present here a comprehensive analysis of the genetic diversity and structure of Iberian cattle. Forty of these breeds were genotyped with 19 highly polymorphic microsatellite markers. Asturiana de los Valles displayed the greatest allelic diversity and Mallorquina the least. Unbiased heterozygosity values ranged from 0.596 to 0.787. The network based on Reynolds distances was star-shaped with few pairs of interrelated breeds and a clear cluster of 4 breeds (Alistana/Arouquesa/Marinhoa/Mirandesa). The analysis of the genetic structure of Iberian cattle indicated that the most probable number of population clusters included in the study would be 36. Distance results were supported by the STRUCTURE software indicating a relatively recent origin or possible crossbreeding or both between pairs or small groups of breeds. Five clusters included 2 different breeds (Betizu/Pirenaica, Morucha/Avileña, Parda de Montaña/Bruna de los Pirineos, Barrosã/Cachena, and Toro de Lidia/Brava de Lide), 3 breeds (Berrenda en Negro, Negra Andaluza, and Mertolenga) were divided in 2 independent clusters each, and 2 breeds were considered admixed (Asturiana de los Valles and Berrenda en Colorado). Individual assignation to breeds was not possible in the 2 admixed breeds and the pair Parda de Montaña/Bruna de los Pirineos. The relationship between Iberian cattle reflects their geographical origin rather than their morphotypes. Exceptions to this geographic clustering are most probably a consequence of crossbreeding with foreign breeds. The relative genetic isolation within their geographical origin, the consequent genetic drift, the adaptation to specific environment and production systems, and the influence of African and European cattle have contributed to the current genetic status of Iberian cattle, which are grouped according to their geographical origin. The greater

  3. DEVELOPMENT OF AQUATIC MODELS FOR TESTING THE RELATIONSHIP BETWEEN GENETIC DIVERSITY AND POPULATION EXTINCTION RISK

    EPA Science Inventory

    The relationship between population adaptive potential and extinction risk in a changing environment is not well understood. Although the expectation is that genetic diversity is directly related to the capacity of populations to adapt, the statistical and predictive aspects of ...

  4. Relationships between adaptive and neutral genetic diversity and ecological structure and functioning: a meta-analysis

    PubMed Central

    Whitlock, Raj

    2014-01-01

    Understanding the effects of intraspecific genetic diversity on the structure and functioning of ecological communities is a fundamentally important part of evolutionary ecology and may also have conservation relevance in identifying the situations in which genetic diversity coincides with species-level diversity.Early studies within this field documented positive relationships between genetic diversity and ecological structure, but recent studies have challenged these findings. Conceptual synthesis has been hampered because studies have used different measures of intraspecific variation (phenotypically adaptive vs. neutral) and have considered different measures of ecological structure in different ecological and spatial contexts. The aim of this study is to strengthen conceptual understanding by providing an empirical synthesis quantifying the relationship between genetic diversity and ecological structure.Here, I present a meta-analysis of the relationship between genetic diversity within plant populations and the structure and functioning of associated ecological communities (including 423 effect sizes from 70 studies). I used Bayesian meta-analyses to examine (i) the strength and direction of this relationship, (ii) the extent to which phenotypically adaptive and neutral (molecular) measures of diversity differ in their association with ecological structure and (iii) variation in outcomes among different measures of ecological structure and in different ecological contexts.Effect sizes measuring the relationship between adaptive diversity (genotypic richness) and both community- and ecosystem-level ecological responses were small, but significantly positive. These associations were supported by genetic effects on species richness and productivity, respectively.There was no overall association between neutral genetic diversity and measures of ecological structure, but a positive correlation was observed under a limited set of demographic conditions. These

  5. Genetic diversity and relationship of chicory (Cichorium intybus L.) using sequence-related amplified polymorphism markers.

    PubMed

    Liang, X Y; Zhang, X Q; Bai, S Q; Huang, L K; Luo, X M; Ji, Y; Jiang, L F

    2014-01-01

    Chicory is a crop with economically important roles and is cultivated worldwide. The genetic diversity and relationship of 80 accessions of chicories and endives were evaluated by sequence-related amplified polymorphism (SRAP) markers to provide a theoretical basis for future breeding programs in China. The polymorphic rate was 96.83%, and the average polymorphic information content was 0.323, suggesting the rich genetic diversity of chicory. The genetic diversity degree of chicory was higher (GS = 0.677) than that of endive (GS = 0.701). The accessions with the highest genetic diversity (effective number of alleles, NE = 1.609; Nei's genetic diversity, H = 0.372; Shannon information index, I = 0.556) were from Italy. The richest genetic diversity was revealed in a chicory line (NE = 1.478, H = 0.289, I = 0.443) among the 3 types (line, wild, and cultivar). The chicory genetic structure of 8 geographical groups showed that the genetic differentiation coefficient (GST) was 14.20% and the number of immigrants per generation (Nm) was 3.020. A GST of 6.80% and an Nm of 6.853 were obtained from different types. This observation suggests that these chicory lines, especially those from the Mediterranean region, have potential for providing rich genetic resources for further breeding programs, that the chicory genetic structure among different countries obviously differs with a certain amount of gene flow, and that SRAP markers could be applied to analyze genetic relationships and classifications of Cichorium intybus and C. endivia. PMID:25299087

  6. Relationship between the genetic diversity of Artemisia halodendron and climatic factors

    NASA Astrophysics Data System (ADS)

    Huang, Wenda; Zhao, Xueyong; Zhao, Xin; Li, Yuqiang; Lian, Jie; Yun, Jianying

    2014-02-01

    Artemisia halodendron (Asteraceae) is a dominant sand-fixing semi-shrub species native to the Horqin Sandy Land of northeastern China. In this study, we evaluated levels of genetic variation within and among sampled A. halodendron populations from two different hydrothermal regions of the Horqin Sandy Land using inter-simple sequence repeat (ISSR) markers. We also investigated possible relationships between genetic diversity of this species and climatic factors. Our analysis revealed that A. halodendron is highly genetically diverse, with populations from a low hydrothermal level region having higher genetic diversity index values than those from a high hydrothermal level region. An analysis of molecular variation (AMOVA) revealed relatively high levels (>89.83%) of within-population genetic variation. Based on cluster analysis, the 13 studied A. halodendron populations can be clustered into two clades. Genetic diversities of all populations have been influenced by many climatic factors, and Nei's genetic diversity (h) is strongly correlated with annual temperature range (ART). These results have important implications for restoration and management of degraded ecosystems in arid and semi-arid areas.

  7. Evaluation of Lespedeza Germplasm Genetic Diversity and Its Phylogenetic Relationship with the Genus Kummerowia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genetic diversity of the genus Lespedeza is not well known and the phylogenetic relationship of Lespedeza with the genus Kummerowia is unclear. We report the first study in which polymorphic expressed sequence tag-simple sequence repeat (EST-SSR) markers derived from Medicago, cowpea and soybea...

  8. Genetic diversity and phylogenetic relationships among sugarcane and related species determined from microsatellite DNA data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic diversity and phylogenetic relationships were assessed among 105 clones of commercial sugarcane hybrids and related Saccharum species using 22 microsatellite (SSR) DNA markers. These included 17 sugarcane cultivars from the U.S. mainland, 23 S. officinarum clones, 16 S. robustum clones, 15 ...

  9. Genetic Diversity and Relationships of Korean Chicken Breeds Based on 30 Microsatellite Markers

    PubMed Central

    Suh, Sangwon; Sharma, Aditi; Lee, Seunghwan; Cho, Chang-Yeon; Kim, Jae-Hwan; Choi, Seong-Bok; Kim, Hyun; Seong, Hwan-Hoo; Yeon, Seong-Hum; Kim, Dong-Hun; Ko, Yeoung-Gyu

    2014-01-01

    The effective management of endangered animal genetic resources is one of the most important concerns of modern breeding. Evaluation of genetic diversity and relationship of local breeds is an important factor towards the identification of unique and valuable genetic resources. This study aimed to analyze the genetic diversity and population structure of six Korean native chicken breeds (n = 300), which were compared with three imported breeds in Korea (n = 150). For the analysis of genetic diversity, 30 microsatellite markers from FAO/ISAG recommended diversity panel or previously reported microsatellite markers were used. The number of alleles ranged from 2 to 15 per locus, with a mean of 8.13. The average observed heterozygosity within native breeds varied between 0.46 and 0.59. The overall heterozygote deficiency (FIT) in native chicken was 0.234±0.025. Over 30.7% of FIT was contributed by within-population deficiency (FIS). Bayesian clustering analysis, using the STRUCTURE software suggested 9 clusters. This study may provide the background for future studies to identify the genetic uniqueness of the Korean native chicken breeds PMID:25178290

  10. AFLP analysis of genetic diversity and phylogenetic relationships of Brassica oleracea in Ireland.

    PubMed

    El-Esawi, Mohamed A; Germaine, Kieran; Bourke, Paula; Malone, Renee

    2016-01-01

    Brassica oleracea L. is one of the most economically important vegetable crop species of the genus Brassica L. This species is threatened in Ireland, without any prior reported genetic studies. The use of this species is being very limited due to its imprecise phylogeny and uncompleted genetic characterisation. The main objective of this study was to assess the genetic diversity and phylogenetic relationships of a set of 25 Irish B. oleracea accessions using the powerful amplified fragment length polymorphism (AFLP) technique. A total of 471 fragments were scored across all the 11 AFLP primer sets used, out of which 423 (89.8%) were polymorphic and could differentiate the accessions analysed. The dendrogram showed that cauliflowers were more closely related to cabbages than kales were, and accessions of some cabbage types were distributed among different clusters within cabbage subgroups. Approximately 33.7% of the total genetic variation was found among accessions, and 66.3% of the variation resided within accessions. The total genetic diversity (HT) and the intra-accessional genetic diversity (HS) were 0.251 and 0.156, respectively. This high level of variation demonstrates that the Irish B. oleracea accessions studied should be managed and conserved for future utilisation and exploitation in food and agriculture. In conclusion, this study addressed important phylogenetic questions within this species, and provided a new insight into the inclusion of four accessions of cabbages and kales in future breeding programs for improving varieties. AFLP markers were efficient for assessing genetic diversity and phylogenetic relationships in Irish B. oleracea species. PMID:27156498

  11. Genetic diversity and relationship of global faba bean (Vicia faba L.) germplasm revealed by ISSR markers.

    PubMed

    Wang, Hai-Fei; Zong, Xu-Xiao; Guan, Jian-Ping; Yang, Tao; Sun, Xue-Lian; Ma, Yu; Redden, Robert

    2012-03-01

    Genetic diversity and relationships of 802 faba bean (Vicia faba L.) landraces and varieties from different geographical locations of China and abroad were examined using ISSR markers. A total of 212 repeatable amplified bands were generated with 11 ISSR primers, of which 209 were polymorphic. Accessions from North China showed highest genetic diversity, while accessions from central China showed low level of diversity. Chinese spring faba bean germplasm was clearly separated from Chinese winter faba bean, based on principal component analysis and UPGMA clustering analysis. Winter accessions from Zhejiang (East China), Jiangxi (East China), Sichuan (Southwest China) and Guizhou (Southwest China) were quite distinct to that from other provinces in China. Great differentiation between Chinese accessions and those from rest of the world was shown with a UPGMA dendrogram. AMOVA analyses demonstrated large variation and differentiation within and among groups of accessions from China. As a continental geographic group, accessions from Europe were genetically closer to those from North Africa. Based on ISSR data, grouping results of accessions from Asia, Europe and Africa were obviously associated with their geographical origin. The overall results indicated that the genetic relationship of faba bean germplasm was closely associated with their geographical origin and their ecological habit. PMID:22204023

  12. Genetic diversity, introgression and relationships among West/Central African cattle breeds

    PubMed Central

    Ibeagha-Awemu, Eveline Mengwi; Jann, Oliver Carl; Weimann, Christina; Erhardt, Georg

    2004-01-01

    Genetic diversity, introgression and relationships were studied in 521 individuals from 9 African Bos indicus and 3 Bos taurus cattle breeds in Cameroon and Nigeria using genotype information on 28 markers (16 microsatellite, 7 milk protein and 5 blood protein markers). The genotypes of 13 of the 16 microsatellite markers studied on three European (German Angus, German Simmental and German Yellow) and two Indian (Nelore and Ongole) breeds were used to assess the relationships between them and the African breeds. Diversity levels at microsatellite loci were higher in the zebu than in the taurine breeds and were generally similar for protein loci in the breeds in each group. Microsatellite allelic distribution displayed groups of alleles specific to the Indian zebu, African taurine and European taurine. The level of the Indian zebu genetic admixture proportions in the African zebus was higher than the African taurine and European taurine admixture proportions, and ranged from 58.1% to 74.0%. The African taurine breed, Muturu was free of Indian zebu genes while its counter Namchi was highly introgressed (30.2%). Phylogenic reconstruction and principal component analysis indicate close relationships among the zebu breeds in Cameroon and Nigeria and a large genetic divergence between the main cattle groups – African taurine, European taurine and Indian zebu, and a central position for the African zebus. The study presents the first comprehensive information on the hybrid composition of the individual cattle breeds of Cameroon and Nigeria and the genetic relationships existing among them and other breeds outside of Africa. Strong evidence supporting separate domestication events for the Bos species is also provided. PMID:15496287

  13. Genetic diversity and phylogenetic relationships in local cattle breeds of Senegal based on autosomal microsatellite markers

    PubMed Central

    Ndiaye, Ndèye Penda; Sow, Adama; Dayo, Guiguigbaza-Kossigan; Ndiaye, Saliou; Sawadogo, Germain Jerôme; Sembène, Mbacké

    2015-01-01

    Aim: In Senegal, uncontrolled cross-breeding of cattle breeds and changes in production systems are assumed to lead to an increase of gene flow between populations. This might constitute a relevant threat to livestock improvement. Therewith, this study was carried out to assess the current genetic diversity and the phylogenetic relationships of the four native Senegalese cattle breeds (Gobra zebu, Maure zebu, Djakoré, and N’Dama). Methods: Genomic DNA was isolated from blood samples of 120 unrelated animals collected from three agro-ecological areas of Senegal according to their phenotypic traits. Genotyping was done using 11 specific highly polymorphic microsatellite makers recommended by Food and Agriculture Organization. The basic measures of genetic variation and phylogenetic trees were computed using bioinformatics’ software. Results: A total of 115 alleles were identified with a number of alleles (Na) at one locus ranging from 6 to 16. All loci were polymorphic with a mean polymorphic information content of 0.76. The mean allelic richness (Rs) lay within the narrow range of 5.14 in N’Dama taurine to 6.10 in Gobra zebu. While, the expected heterozygosity (HE) per breed was high in general with an overall mean of 0.76±0.04. Generally, the heterozygote deficiency (FIS) of 0.073±0.026 was relatively due to inbreeding among these cattle breeds or the occurrence of population substructure. The high values of allelic and gene diversity showed that Senegalese native cattle breeds represented an important reservoir of genetic variation. The genetic distances and clustering trees concluded that the N’Dama cattle were most distinct among the investigated cattle populations. So, the principal component analyses showed qualitatively that there was an intensive genetic admixture between the Gobra zebu and Maure zebu breeds. Conclusions: The broad genetic diversity in Senegalese cattle breeds will allow for greater opportunities for improvement of productivity

  14. Analysis of genetic diversity and phylogenetic relationship of red deer subspecies in XinJiang, China.

    PubMed

    Jia, Bin; Li, Ren-Yan; Zhao, Zong-Sheng; Yan, Gen-Qiang; Xi, Ji-Feng; Blair, Hugh T; Li, Da-Quan; Zhang, Jian-Xin; Zhao, Xi-Tang

    2011-08-01

    Polymorphisms for seven microsatellite loci in three red deer subspecies (9 populations) found in XinJiang were detected by polymerase chain reaction (PCR), 12% nondenaturation polyacrylamide gel electrophoresis and the Sanguinetti silver staining method. Numbers of alleles, average effective numbers of alleles (E) and the average rate of homozygosity, allelic frequencies of seven microsatellite loci, polymorphism information content (PIC), mean heterozygosity (H) and genetic distances among the populations were calculated for each population. Dendrograms were constructed based on genetic distances by the neighbor-joining method (NJ), utilizing molecular evolutionary genetics analysis software PHYLIP (3.6). The phylogenetic tree was constructed based on allelic frequencies using maximum likelihood (ML); the bootstrap value was estimated by bootstrap test in the tree. Lastly, phylogenesis was analyzed. The results showed that four of the seven microsatellite loci were highly polymorphic, but BMS2508 and Celjp0023 showed no polymorphism and BM5004 was a neutral polymorphism. It is our conclusion that the four microsatellite loci are effective DNA markers for the analysis of genetic diversity and phylogenetic relationships among the three red deer subspecies. The mean PIC, H and E-values across the microsatellite loci were 0.5393, 0.5736 and 2.64, which showed that these microsatellite loci are effective DNA markers for the genetic analysis of red deer. C.e. songaricus populations from Regiment 104, 151 and Hami are clustered together. C.e. yarkandensis populations from Regiment 35, Xaya and Alaer are clustered together. These two clusters also cluster together. Lastly, C.e. sibiricus populations from Burqin, Regiment 188 and the first two clusters were clustered together. The phylogenetic relationship among different red deer populations is consistent with the known origin, history of breeding and geographic distributions of populations. PMID:21794008

  15. Geographic description of genetic diversity and genetic relationships in the USDA Rice World Collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Asian cultivated rice (Oryza sativa L.) is structured into five genetic groups, indica, AUS, tropical japonica, temperate japonica and aromatic. Genetic characterization of a global rice collection could help better serve the global research community. Collecting worldwide rice germplasm started in ...

  16. LTR-retrotransposons Tnt1 and T135 markers reveal genetic diversity and evolutionary relationships of domesticated peppers.

    PubMed

    Tam, Sheh May; Lefebvre, Véronique; Palloix, Alain; Sage-Palloix, Anne-Marie; Mhiri, Corinne; Grandbastien, Marie-Angèle

    2009-10-01

    Plant genetic resources often constitute the foundation of successful breeding programs. Pepper (Capsicum annuum L.) is one of the most economically important and diversely utilized Solanaceous crop species worldwide, but less studied compared to tomato and potato. We developed and used molecular markers based on two copia-type retrotransposons, Tnt1 and T135, in a set of Capsicum species and wild relatives from diverse geographical origins. Results showed that Tnt1 and T135 insertion polymorphisms are very useful for studying genetic diversity and relationships within and among pepper species. Clusters of accessions correspond to cultivar types based on fruit shape, pungency, geographic origin and pedigree. Genetic diversity values, normally reflective of past transposition activity and population dynamics, showed positive correlation with the average number of insertions per accession. Similar evolutionary relationships are observed to that inferred by previous karyosystematics studies. These observations support the possibility that retrotransposons have contributed to genome inflation during Capsicum evolution. PMID:19618162

  17. Genetic diversity and relationship of Yunnan native cattle breeds and introduced beef cattle breeds.

    PubMed

    Yu, Ying; Lian, Lin-Sheng; Wen, Ji-Kun; Shi, Xian-Wei; Zhu, Fang-Xian; Nie, Long; Zhang, Ya-Ping

    2004-02-01

    In this study, random amplified polymorphic DNA (RAPD) analysis was used to estimate genetic diversity and relationship in 134 samples belonging to two native cattle breeds from the Yunnan province of China (DeHong cattle and DiQing cattle) and four introduced beef cattle breeds (Brahman, Simmental, MurryGrey, and ShortHorn). Ten primers were used, and a total of 84 bands were scored, of which 63 bands (75.0%) were polymorphic. The genetic distance matrix was obtained by proportions of shared fragment. The results indicate that the Yunnnan DeHong cattle breed is closely related to the Brahman (Bos indicus), and the Yunnan DiQing cattle breed is closely related to the Simmental, ShortHorn, and MurryGrey (Bos taurus) breeds. Our results imply that Bos indicus and Bos taurus were the two main origins of Yunnan native cattle. The results also provide the basic genetic materials for conservation of cattle resources and crossbreeding of beef cattle breeds in South China. PMID:15068334

  18. [Genetic diversity and phylogenetic relationships among Chinese Macacas based on protein electrophoresis].

    PubMed

    Su, B; Wang, W; Lan, H; Zhang, Y

    1997-04-01

    In this paper, using protein electrophoresis method, we studied proteinpolymorphism and genetic divergence of 5 species in Genus Macaca: M. mulatta, M. arctoides, M. assamensis, M. thibetana, M. fascicularis. A total of 30 genetic loci were analyzed for 29 individuals, including 4 Nycticebus pygmaeus as outgroup. For the 19 M. mulatta, 9 loci were found to be polymorphic. Accordingly, the percentage of polymorphic loci, P = 0.3; the mean number of alleles, A = 1.4, and the mean heterozygosity, H = 0.1045, indicating a rather high level of genetic diversity in this species. Furthermore, 10 loci showed polymorphic among the 5 species, which can be used as information loci for phylogenetic reconstruction. Three programs (conml, neighbor, fitch) in PHYLIP 3.5 c were chosen to construct phylogenetic trees. All of the three trees show support a close relationship between M. mulatta and M. fascicularis. However, two trees have the same topology, suggesting that M. arctoides belongs to an independent species group, while M. assamensis and M. thibetana are closely related and belong to another species group, and the other tree gives a different topology which implies that M. arctoides, M. assamensis and M. thibetana belong to one species group. PMID:9254965

  19. The relationship between species diversity and genetic structure in the rare Picea chihuahuana tree species community, Mexico.

    PubMed

    Simental-Rodríguez, Sergio Leonel; Quiñones-Pérez, Carmen Zulema; Moya, Daniel; Hernández-Tecles, Enrique; López-Sánchez, Carlos Antonio; Wehenkel, Christian

    2014-01-01

    Species diversity and genetic diversity, the most basic elements of biodiversity, have long been treated as separate topics, although populations evolve within a community context. Recent studies on community genetics and ecology have suggested that genetic diversity is not completely independent of species diversity. The Mexican Picea chihuahuana Martínez is an endemic species listed as "Endangered" on the Red List. Forty populations of Chihuahua spruce have been identified. This species is often associated with tree species of eight genera in gallery forests. This rare Picea chihuahuana tree community covers an area no more than 300 ha and has been subject of several studies involving different topics such as ecology, genetic structure and climate change. The overall aim of these studies was to obtain a dataset for developing management tools to help decision makers implement preservation and conservation strategies. However, this unique forest tree community may also represent an excellent subject for helping us to understand the interplay between ecological and evolutionary processes in determining community structure and dynamics. The AFLP technique and species composition data were used together to test the hypothesis that species diversity is related to the adaptive genetic structure of some dominant tree species (Picea chihuahuana, Pinus strobiformis, Pseudotsuga menziesii and Populus tremuloides) of the Picea chihuahuana tree community at fourteen locations. The Hill numbers were used as a diversity measure. The results revealed a significant correlation between tree species diversity and genetic structure in Populus tremuloides. Because the relationship between the two levels of diversity was found to be positive for the putative adaptive AFLP detected, genetic and species structures of the tree community were possibly simultaneously adapted to a combination of ecological or environmental factors. The present findings indicate that interactions between

  20. The Relationship between Species Diversity and Genetic Structure in the Rare Picea chihuahuana Tree Species Community, Mexico

    PubMed Central

    Simental-Rodríguez, Sergio Leonel; Quiñones-Pérez, Carmen Zulema; Moya, Daniel; Hernández-Tecles, Enrique; López-Sánchez, Carlos Antonio; Wehenkel, Christian

    2014-01-01

    Species diversity and genetic diversity, the most basic elements of biodiversity, have long been treated as separate topics, although populations evolve within a community context. Recent studies on community genetics and ecology have suggested that genetic diversity is not completely independent of species diversity. The Mexican Picea chihuahuana Martínez is an endemic species listed as “Endangered” on the Red List. Forty populations of Chihuahua spruce have been identified. This species is often associated with tree species of eight genera in gallery forests. This rare Picea chihuahuana tree community covers an area no more than 300 ha and has been subject of several studies involving different topics such as ecology, genetic structure and climate change. The overall aim of these studies was to obtain a dataset for developing management tools to help decision makers implement preservation and conservation strategies. However, this unique forest tree community may also represent an excellent subject for helping us to understand the interplay between ecological and evolutionary processes in determining community structure and dynamics. The AFLP technique and species composition data were used together to test the hypothesis that species diversity is related to the adaptive genetic structure of some dominant tree species (Picea chihuahuana, Pinus strobiformis, Pseudotsuga menziesii and Populus tremuloides) of the Picea chihuahuana tree community at fourteen locations. The Hill numbers were used as a diversity measure. The results revealed a significant correlation between tree species diversity and genetic structure in Populus tremuloides. Because the relationship between the two levels of diversity was found to be positive for the putative adaptive AFLP detected, genetic and species structures of the tree community were possibly simultaneously adapted to a combination of ecological or environmental factors. The present findings indicate that interactions

  1. Genetic Diversity and Genetic Structure of Different Types of Natural Populations in Osmanthus fragrans Lour. and the Relationships with Sex Ratio, Population Structure, and Geographic Isolation

    PubMed Central

    Hu, Shaoqing; Wu, Shuai; Wang, Yiguang; Zhang, Yuanyan

    2014-01-01

    Osmanthus fragrans Lour., an evergreen small tree, has the rare sexual system of androdioecy (coexistence of males and hermaphrodites), once with wide-spread natural distribution in the areas of the South Yangzi river basin. However, due to excessive human utilization, natural distribution became fragmented and the number and size of natural populations reduced sharply. With four different types of natural populations from the same region as research object, we aim to provide a comparative analysis on the relationships among genetic diversity, sexual system, population structure and size, and geographic isolation by ISSR. In genetic parameters of Ne, He, and I, the LQGC population had the highest value and the LQZGQ population had the lowest value. These indicated that LQGC population showed the highest genetic diversity, followed by QDH and JN population, and LQZGQ population exhibited the lowest genetic diversity. Genetic diversity in populations is closely related to population structure, reproduction mode, and sex ratio. However, there seems to be no obvious correlation between genetic diversity and population size. The results of AMOVA showed that genetic variations mostly occurred within populations. It indicates that no significant genetic differentiation among populations occurs, and geographic isolation has no significant effect on genetic diversity. PMID:25436228

  2. Genetic diversity and genetic structure of different types of natural populations in Osmanthus fragrans Lour. and the relationships with sex ratio, population structure, and geographic isolation.

    PubMed

    Hu, Shaoqing; Wu, Shuai; Wang, Yiguang; Zhao, Hongbo; Zhang, Yuanyan

    2014-01-01

    Osmanthus fragrans Lour., an evergreen small tree, has the rare sexual system of androdioecy (coexistence of males and hermaphrodites), once with wide-spread natural distribution in the areas of the South Yangzi river basin. However, due to excessive human utilization, natural distribution became fragmented and the number and size of natural populations reduced sharply. With four different types of natural populations from the same region as research object, we aim to provide a comparative analysis on the relationships among genetic diversity, sexual system, population structure and size, and geographic isolation by ISSR. In genetic parameters of N e , H e , and I, the LQGC population had the highest value and the LQZGQ population had the lowest value. These indicated that LQGC population showed the highest genetic diversity, followed by QDH and JN population, and LQZGQ population exhibited the lowest genetic diversity. Genetic diversity in populations is closely related to population structure, reproduction mode, and sex ratio. However, there seems to be no obvious correlation between genetic diversity and population size. The results of AMOVA showed that genetic variations mostly occurred within populations. It indicates that no significant genetic differentiation among populations occurs, and geographic isolation has no significant effect on genetic diversity. PMID:25436228

  3. Genetic diversity and relationship among faba bean (Vicia faba L.) germplasm entries as revealed by TRAP markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Target region amplification polymorphism (TRAP) markers were used to assess genetic diversity and relationship among 151 world-wide collected faba bean (Vicia faba L.) entries (137 accessions maintained at the USDA-ARS, Pullman, WA, two commercial varieties and 12 elite cultivars and advanced breedi...

  4. Assessment of Genetic Diversity of Lespedeza Germplasm and Analysis of Its Phylogenetic Relationship with the Genus Kummerowia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genetic diversity of genus Lespedeza is not well known and the phylogenetic relationship of Lespedeza with the genus Kummerowia is unclear. We report the first study in which polymorphic expressed sequence tag-simple sequence (EST-SSR) markers derived from Medicago, cowpea and soybean were used...

  5. Genetic diversity and relationship of Mauremys mutica and M. annamensis assessed by DNA barcoding sequences.

    PubMed

    Zhao, Jian; Li, Wei; Wen, Ping; Zhang, Dandan; Zhu, Xinping

    2016-09-01

    The mitochondrial DNA cytochrome c oxidase subunit I gene (COI) has been used as an efficient barcoding tool for species identification of animals. In this study, the barcoding sequences were used to assess the genetic diversity and relationship of Mauremy mutica and M. annamensis. Four currently recognized groups of M. mutica were classified into two groups in this study, with 6% intergroup distances, the S group and the N group, consistent to the calling of "southern turtle" and "northern turtle" in folk of China. The north population and Taiwan population formed the N group, and further, the Taiwan population was differentiated as a monophyly originated from the north population, consistent to the calling of "big green head" for the Taiwan population and "small green head" for the north population. The Vietnam, Hainan population, and M. annamensis formed the S group, and the barcoding sequences could not distinguish them from each other. Based on the molecular data and phenotypes of existing hybrids, hybrid origin of M. annamensis may be another possibility. PMID:26260182

  6. Potential of Start Codon Targeted (SCoT) markers to estimate genetic diversity and relationships among Chinese Elymus sibiricus accessions.

    PubMed

    Zhang, Junchao; Xie, Wengang; Wang, Yanrong; Zhao, Xuhong

    2015-01-01

    Elymus sibiricus as an important forage grass and gene pool for improving cereal crops, that is widely distributed in West and North China. Information on its genetic diversity and relationships is limited but necessary for germplasm collection, conservation and future breeding. Start Codon Targeted (SCoT) markers were used for studying the genetic diversity and relationships among 53 E. sibiricus accessions from its primary distribution area in China. A total of 173 bands were generated from 16 SCoT primers, 159 bands of which were polymorphic with the percentage of polymorphic bands (PPB) of 91.91%. Based upon population structure analysis five groups were formed. The cluster analysis separated the accessions into two major clusters and three sub-clusters, similar to results of principal coordinate analysis (PCoA). The molecular variance analysis (AMOVA) showed that genetic variation was greater within geographical regions (50.99%) than between them (49.01%). Furthermore, the study also suggested that collecting and evaluating E. sibiricus germplasm for major geographic regions and special environments broadens the available genetic base and illustrates the range of variation. The results of the present study showed that SCoT markers were efficient in assessing the genetic diversity among E. sibiricus accessions. PMID:25853316

  7. Ploidy Variation and Genetic Diversity in Dichroa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent evidence suggests a close genetic relationship between Hydrangea macrophylla and D. febrifuga, which supports previous morphological and DNA sequence data. This relationship was confirmed by the production of fertile intergeneric hybrids. Here we characterize the genetic diversity of availab...

  8. Soybean Molecular Genetic Diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A history of the various DNA marker types used in the assessment of molecular genetic diversity in soybean [Glycine max (L.) Merr.] is followed by a description of a number of studies on the assessment of genetic diversity. These studies include a review of reports on 1) the quantification and comp...

  9. Relationships between Genetic Diversity and Fusarium Toxin Profiles of Winter Wheat Cultivars

    PubMed Central

    Góral, Tomasz; Stuper-Szablewska, Kinga; Buśko, Maciej; Boczkowska, Maja; Walentyn-Góral, Dorota; Wiśniewska, Halina; Perkowski, Juliusz

    2015-01-01

    Fusarium head blight is one of the most important and most common diseases of winter wheat. In order to better understanding this disease and to assess the correlations between different factors, 30 cultivars of this cereal were evaluated in a two-year period. Fusarium head blight resistance was evaluated and the concentration of trichothecene mycotoxins was analysed. Grain samples originated from plants inoculated with Fusarium culmorum and naturally infected with Fusarium species. The genetic distance between the tested cultivars was determined and data were analysed using multivariate data analysis methods. Genetic dissimilarity of wheat cultivars ranged between 0.06 and 0.78. They were grouped into three distinct groups after cluster analysis of genetic distance. Wheat cultivars differed in resistance to spike and kernel infection and in resistance to spread of Fusarium within a spike (type II). Only B trichothecenes (deoxynivalenol, 3-acetyldeoxynivalenol and nivalenol) produced by F. culmorum in grain samples from inoculated plots were present. In control samples trichothecenes of groups A (H-2 toxin, T-2 toxin, T-2 tetraol, T-2 triol, scirpentriol, diacetoxyscirpenol) and B were detected. On the basis of Fusarium head blight assessment and analysis of trichothecene concentration in the grain relationships between morphological characters, Fusarium head blight resistance and mycotoxins in grain of wheat cultivars were examined. The results were used to create of matrices of distance between cultivars – for trichothecene concentration in inoculated and naturally infected grain as well as for FHB resistance Correlations between genetic distance versus resistance/mycotoxin profiles were calculated using the Mantel test. A highly significant correlation between genetic distance and mycotoxin distance was found for the samples inoculated with Fusarium culmorum. Significant but weak relationships were found between genetic distance matrix and FHB resistance or

  10. Assessment of genetic diversity and relationships among wild and cultivated Tunisian plums (Prunus spp) using random amplified microsatellite polymorphism markers.

    PubMed

    Ben Tamarzizt, H; Ben Mustapha, S; Baraket, G; Abdallah, D; Salhi-Hannachi, A

    2015-01-01

    The usefulness of random amplified microsatellite polymorphism markers to study the genetic diversity and relationships among cultivars belonging to Prunus salicina and P. domestica and their wild relatives (P. insititia and P. spinosa) was investigated. A total of 226 of 234 bands were polymorphic (96.58%). The 226 random amplified microsatellite polymorphism markers were screened using 15 random amplified polymorphic DNA and inter-simple sequence repeat primers combinations for 54 Tunisian plum accessions. The percentage of polymorphic bands (96.58%), the resolving power of primers values (135.70), and the polymorphic information content demonstrated the efficiency of the primers used in this study. The genetic distances between accessions ranged from 0.18 to 0.79 with a mean of 0.24, suggesting a high level of genetic diversity at the intra- and interspecific levels. The unweighted pair group with arithmetic mean dendrogram and principal component analysis discriminated cultivars efficiently and illustrated relationships and divergence between spontaneous, locally cultivated, and introduced plum types. These procedures showed continuous variation that occurs independently of the status of the species and geographical origin of the plums. In this study, random amplified microsatellite polymorphism was found to be as a reliable molecular marker for fingerprinting and for examining the diversity study of the plum and its relatives. PMID:25867340

  11. Determinants of genetic diversity.

    PubMed

    Ellegren, Hans; Galtier, Nicolas

    2016-07-01

    Genetic polymorphism varies among species and within genomes, and has important implications for the evolution and conservation of species. The determinants of this variation have been poorly understood, but population genomic data from a wide range of organisms now make it possible to delineate the underlying evolutionary processes, notably how variation in the effective population size (Ne) governs genetic diversity. Comparative population genomics is on its way to providing a solution to 'Lewontin's paradox' - the discrepancy between the many orders of magnitude of variation in population size and the much narrower distribution of diversity levels. It seems that linked selection plays an important part both in the overall genetic diversity of a species and in the variation in diversity within the genome. Genetic diversity also seems to be predictable from the life history of a species. PMID:27265362

  12. [Genetic diversity and kin relationships among wild and cultivated populations of the pejibaye palm (Bactris gasipaes, Palmae) using microsatellite markers].

    PubMed

    Ugalde, José Alfredo Hernández; Urpí, Jorge Mora; Nuñez, Oscar Rocha

    2008-03-01

    Genetic diversity and kin relationships among wild and cultivated populations of the pejibaye palm (Bactris gasipaes, Palmae) using microsatellite markers. The genetic diversity of the peach palm (Pejibaye, Bactris gasipaes Kunth) was evaluated using four nuclear DNA microsatellites in an effort to elucidate the evolution and domestication of this crop. A total of 258 samples from seven wild populations and eleven races were analyzed. All loci were polymorphic and a total of 50 alleles were identified. Average genetic diversity (0.67) and genetic differentiation among populations (Fst=0.16) were high when all populations were considered. Genetic differentiation was lower when the populations were grouped according to their origin into Western and Eastern populations (Fst=0.13 for both). Gene flow was slightly higher among Western populations (Nm=1.71) than among Eastern populations (Nm=1.62). The Putumayo, Yurimaguas, Vaupés, Tucurrique and Guatuso races seem to have been subjected to intense human selection. Hybrid populations exist in Azuero, Tuira, Cauca, Vaupés, Puerto Ayacucho and Solimões, probably resulting from exchange and introgressions among sympatric wild and cultivated populations. Genetic distance (Dm) was estimated to determine the degree of relationship among populations using the neighbor-joining method; the wild populations from Maracaibo were used as the outgroup. The populations were divided into three general groups: Maracaibo (B. caribaea, B. macana var veragua and B. macana var arapuey), Eastern Amazon (Tembe, Pará and Acre) and a third group with two subgroups, Western (Azuero, Chontilla, Tuira, Cauca, Tucurrique and Guatuso) and Upper Amazon (B. dahlgreniana, Puerto Ayacucho, Solimões, Vaupés and Putumayo). The genetic relationships strongly support the hypothesis that peach palm was brought into cultivation independently in no less than three areas: the Western Andes (extending into lower Central America); Upper Amazon (extending

  13. Artificial selection with traditional or genomic relationships: consequences in coancestry and genetic diversity

    PubMed Central

    Rodríguez-Ramilo, Silvia Teresa; García-Cortés, Luis Alberto; de Cara, María Ángeles Rodríguez

    2015-01-01

    Estimated breeding values (EBVs) are traditionally obtained from pedigree information. However, EBVs from high-density genotypes can have higher accuracy than EBVs from pedigree information. At the same time, it has been shown that EBVs from genomic data lead to lower increases in inbreeding compared with traditional selection based on genealogies. Here we evaluate the performance with BLUP selection based on genealogical coancestry with three different genome-based coancestry estimates: (1) an estimate based on shared segments of homozygosity, (2) an approach based on SNP-by-SNP count corrected by allelic frequencies, and (3) the identity by state methodology. We evaluate the effect of different population sizes, different number of genomic markers, and several heritability values for a quantitative trait. The performance of the different measures of coancestry in BLUP is evaluated in the true breeding values after truncation selection and also in terms of coancestry and diversity maintained. Accordingly, cross-performances were also carried out, that is, how prediction based on genealogical records impacts the three other measures of coancestry and inbreeding, and viceversa. Our results show that the genetic gains are very similar for all four coancestries, but the genomic-based methods are superior to using genealogical coancestries in terms of maintaining diversity measured as observed heterozygosity. Furthermore, the measure of coancestry based on shared segments of the genome seems to provide slightly better results on some scenarios, and the increase in inbreeding and loss in diversity is only slightly larger than the other genomic selection methods in those scenarios. Our results shed light on genomic selection vs. traditional genealogical-based BLUP and make the case to manage the population variability using genomic information to preserve the future success of selection programmes. PMID:25904933

  14. Genetic diversity of local Yunnan chicken breeds and their relationships with Red Junglefowl.

    PubMed

    Huo, J L; Wu, G S; Chen, T; Huo, H L; Yuan, F; Liu, L X; Ge, C R; Miao, Y W

    2014-01-01

    Yunnan is situated in the Southwest China and encompasses regions having high biodiversity, including habitats for several ancestral species of domestic animals such as chicken. Domestic chickens in Yunnan were kept by peoples of varied ethnic and economic backgrounds living in highly varied geographic environments. To identify the genetic background of Yunnan domestic chickens and their relationships with Red Junglefowl, we applied 28 widely used microsatellite DNA markers to genotype 340 birds from 7 chicken breeds and Red Junglefowl indigenous to Yunnan. Among a total of 342 alleles identified, 121 (35.4%) were breed specific, with Red Junglefowl harboring most microsatellite alleles (23). High levels of heterozygosity were observed within populations indicated by a mean unbiased HE value of 0.663, which was higher than the reported for most populations elsewhere. The FIS value of domestic populations ranged from -0.098-0.005, indicating a lack of inbreeding among these populations. A high proportion of significant departures (89) from the 224 HWE tests for each locus in each population reflected an excess of heterozygosity and population substructure. Individual assignment tests, high FST values (0.1757-0.3015), and Nei's DA genetic distances (0.4232-0.6950) indicated clear differentiation among these populations. These observations, along with the close genetic distance between indigenous domestic populations and Red Junglefowl, were consistent with the primitive and ancestral state of Yunnan indigenous chickens. Protecting the unique variants of these indigenous poultry varieties from contamination with commercial breeds might provide values for improving modern agricultural livestock and breeding programs. Thus, the current study may benefit breeding management and conservation efforts. PMID:24841782

  15. Genetic diversity, population structure and relationships in indigenous cattle populations of Ethiopia and Korean Hanwoo breeds using SNP markers

    PubMed Central

    Edea, Zewdu; Dadi, Hailu; Kim, Sang-Wook; Dessie, Tadelle; Lee, Taeheon; Kim, Heebal; Kim, Jong-Joo; Kim, Kwan-Suk

    2013-01-01

    In total, 166 individuals from five indigenous Ethiopian cattle populations – Ambo (n = 27), Borana (n = 35), Arsi (n = 30), Horro (n = 36), and Danakil (n = 38) – were genotyped for 8773 single nucleotide polymorphism (SNP) markers to assess genetic diversity, population structure, and relationships. As a representative of taurine breeds, Hanwoo cattle (n = 40) were also included in the study for reference. Among Ethiopian cattle populations, the proportion of SNPs with minor allele frequencies (MAFs) ≥0.05 ranged from 81.63% in Borana to 85.30% in Ambo, with a mean of 83.96% across all populations. The Hanwoo breed showed the highest proportion of polymorphism, with MAFs ≥0.05, accounting for 95.21% of total SNPs. The mean expected heterozygosity varied from 0.370 in Danakil to 0.410 in Hanwoo. The mean genetic differentiation (FST; 1%) in Ethiopian cattle revealed that within individual variation accounted for approximately 99% of the total genetic variation. As expected, FST and Reynold genetic distance were greatest between Hanwoo and Ethiopian cattle populations, with average values of 17.62 and 18.50, respectively. The first and second principal components explained approximately 78.33% of the total variation and supported the clustering of the populations according to their historical origins. At K = 2 and 3, a considerable source of variation among cattle is the clustering of the populations into Hanwoo (taurine) and Ethiopian cattle populations. The low estimate of genetic differentiation (FST) among Ethiopian cattle populations indicated that differentiation among these populations is low, possibly owing to a common historical origin and high gene flow. Genetic distance, phylogenic tree, principal component analysis, and population structure analyses clearly differentiated the cattle population according to their historical origins, and confirmed that Ethiopian cattle populations are genetically distinct from the Hanwoo breed. PMID:23518904

  16. Imposing genetic diversity.

    PubMed

    Sparrow, Robert

    2015-01-01

    The idea that a world in which everyone was born "perfect" would be a world in which something valuable was missing often comes up in debates about the ethics of technologies of prenatal testing and preimplantation genetic diagnosis (PGD). This thought plays an important role in the "disability critique" of prenatal testing. However, the idea that human genetic variation is an important good with significant benefits for society at large is also embraced by a wide range of figures writing in the bioethics literature, including some who are notoriously hostile to the idea that we should not select against disability. By developing a number of thought experiments wherein we are to contemplate increasing genetic diversity from a lower baseline in order to secure this value, I argue that this powerful intuition is more problematic than is generally recognized, especially where the price of diversity is the well-being of particular individuals. PMID:26030484

  17. REGION-WIDE GENETIC STRUCTURE OF THE CENTRAL STONEROLLER (CAMPOSTOMA ANOMALUM) AND THE RELATIONSHIP OF GENETIC DIVERSITY TO ENVIRONMENTAL QUALITY

    EPA Science Inventory

    Anthropogenic stressors that reduce population size, alter migration corridors or modify mutational and selective forces on populations are expected to leave a lasting genetic footprint on the distribution of intraspecific genetic variation. Thus, the pattern of intraspecific gen...

  18. Genetic Diversity of A-Genome Cotton.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since Upland cotton (Gossypium hirsutum L.) is known to have relatively low levels of genetic diversity or variation in genetic makeup among individuals, a better understanding of this variation and relationships among possible sources of novel genes would be valuable. Therefore, analysis of genetic...

  19. Genetic diversity and phylogenetic relationship in AA Oryza species as revealed by Rim2/Hipa CACTA transposon display.

    PubMed

    Kwon, Soon-Jae; Lee, Ju Kyong; Hong, Sung-Won; Park, Yong-Jin; McNally, Kenneth L; Kim, Nam-Soo

    2006-04-01

    CACTA is a class 2 transposon, that is very abundantly present in plant genomes. Using Rim2/Hipa CACTA transposon display (hereafter Rim2/Hipa-TD), we analyzed several A-genome diploid Oryza species that have a high distribution of the CACTA motifs. High levels of polymorphism were detected within and between the Oryza species. The African taxa, O. glaberrima and O. barthii, both showed lower levels of polymorphism than the Asian taxa, O. sativa, O. rufipogon, and O. nivara. However, O. longistaminata, another African taxon, showed levels of polymorphism that were similar to the Asian taxa. The Latin American taxon, O. glumaepatula, and the Australian taxon, O. meridionalis, exhibited intermediate levels of polymorphism between those of the Asian and African taxa. The lowest level of polymorphism was observed in O. glaberrima (32.1%) and the highest level of polymorphism was observed in O. rufipogon (95.7%). The phylogenetic tree revealed three major groups at the genetic similarity level of 0.409. The first group consisted of three Asian taxa, O. sativa, O. rufipogon and O. nivara. The second group consisted of three African taxa, O. glaberrima, O. barthii, O. longistaminata, and an American taxon, O. glumaepatula. The third group contained an Australian taxon, O. meridionalis. The clustering patterns of these species matched well with their geographical origins. Rim2/Hipa-TD appears to be a useful marker system for studying the genetic diversity and species relationships among the AA diploid Oryza species. PMID:16755133

  20. Genetic diversity and condition factor: a significant relationship in Flemish but not in German populations of the European bullhead (Cottus gobio L.).

    PubMed

    Knaepkens, G; Knapen, D; Bervoets, L; Hänfling, B; Verheyen, E; Eens, M

    2002-10-01

    Although evidence of associations between genetic diversity and fitness in wild species has been published, the lack of a comprehensive review across species and the existence of contradictory results have led to scepticism remaining about its existence and importance in natural populations. In this study, the relationship between genetic diversity at six microsatellite loci and condition factor (a fitness related trait) was investigated at the population level in both Flemish and German populations of the European bullhead (Cottus gobio). A significant positive correlation was observed between genetic variability and the condition factor in Flemish but not in German bullhead populations. Environmental conditions such as conductivity of the water seemed more important in determining the condition factor of these latter populations. Regardless of the underlying mechanism(s) responsible for the different relationships, the results of this study suggest that both genetic and environmental variables can influence condition factor of bullhead populations. PMID:12242644

  1. Genetic Diversity and Societally Important Disparities

    PubMed Central

    Rosenberg, Noah A.; Kang, Jonathan T. L.

    2015-01-01

    The magnitude of genetic diversity within human populations varies in a way that reflects the sequence of migrations by which people spread throughout the world. Beyond its use in human evolutionary genetics, worldwide variation in genetic diversity sometimes can interact with social processes to produce differences among populations in their relationship to modern societal problems. We review the consequences of genetic diversity differences in the settings of familial identification in forensic genetic testing, match probabilities in bone marrow transplantation, and representation in genome-wide association studies of disease. In each of these three cases, the contribution of genetic diversity to social differences follows from population-genetic principles. For a fourth setting that is not similarly grounded, we reanalyze with expanded genetic data a report that genetic diversity differences influence global patterns of human economic development, finding no support for the claim. The four examples describe a limit to the importance of genetic diversity for explaining societal differences while illustrating a distinction that certain biologically based scenarios do require consideration of genetic diversity for solving problems to which populations have been differentially predisposed by the unique history of human migrations. PMID:26354973

  2. Genetic diversity in Gossypium genus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The overall objectives of this paper are to report on cotton germplasm resources, morphobiological and agronomic diversity of Gossypium genus and review efforts on molecular genetic diversity of cotton gene pools as well as on the challenges and perspectives of exploiting genetic diversity in cotton...

  3. Molecular Epidemiology of Novel Pathogen “Brachyspira hampsonii” Reveals Relationships between Diverse Genetic Groups, Regions, Host Species, and Other Pathogenic and Commensal Brachyspira Species

    PubMed Central

    Mirajkar, Nandita S.; Bekele, Aschalew Z.; Chander, Yogesh Y.

    2015-01-01

    Outbreaks of bloody diarrhea in swine herds in the late 2000s signaled the reemergence of an economically significant disease, swine dysentery, in the United States. Investigations confirmed the emergence of a novel spirochete in swine, provisionally designated “Brachyspira hampsonii,” with two genetically distinct clades. Although it has since been detected in swine and migratory birds in Europe and North America, little is known about its genetic diversity or its relationships with other Brachyspira species. This study characterizes B. hampsonii using a newly developed multilocus sequence typing (MLST) approach and elucidates the diversity, distribution, population structure, and genetic relationships of this pathogen from diverse epidemiological sources globally. Genetic characterization of 81 B. hampsonii isolates, originating from six countries, with our newly established MLST scheme identified a total of 20 sequence types (STs) belonging to three clonal complexes (CCs). B. hampsonii showed a heterogeneous population structure with evidence of microevolution locally in swine production systems, while its clustering patterns showed associations with its epidemiological origins (country, swine production system, and host species). The close genetic relatedness of B. hampsonii isolates from different countries and host species highlights the importance of strict biosecurity control measures. A comparative analysis of 430 isolates representing seven Brachyspira species (pathogens and commensals) from 19 countries and 10 host species depicted clustering by microbial species. It revealed the close genetic relatedness of B. hampsonii with commensal Brachyspira species and also provided support for the two clades of B. hampsonii to be considered a single species. PMID:26135863

  4. Molecular Epidemiology of Novel Pathogen "Brachyspira hampsonii" Reveals Relationships between Diverse Genetic Groups, Regions, Host Species, and Other Pathogenic and Commensal Brachyspira Species.

    PubMed

    Mirajkar, Nandita S; Bekele, Aschalew Z; Chander, Yogesh Y; Gebhart, Connie J

    2015-09-01

    Outbreaks of bloody diarrhea in swine herds in the late 2000s signaled the reemergence of an economically significant disease, swine dysentery, in the United States. Investigations confirmed the emergence of a novel spirochete in swine, provisionally designated "Brachyspira hampsonii," with two genetically distinct clades. Although it has since been detected in swine and migratory birds in Europe and North America, little is known about its genetic diversity or its relationships with other Brachyspira species. This study characterizes B. hampsonii using a newly developed multilocus sequence typing (MLST) approach and elucidates the diversity, distribution, population structure, and genetic relationships of this pathogen from diverse epidemiological sources globally. Genetic characterization of 81 B. hampsonii isolates, originating from six countries, with our newly established MLST scheme identified a total of 20 sequence types (STs) belonging to three clonal complexes (CCs). B. hampsonii showed a heterogeneous population structure with evidence of microevolution locally in swine production systems, while its clustering patterns showed associations with its epidemiological origins (country, swine production system, and host species). The close genetic relatedness of B. hampsonii isolates from different countries and host species highlights the importance of strict biosecurity control measures. A comparative analysis of 430 isolates representing seven Brachyspira species (pathogens and commensals) from 19 countries and 10 host species depicted clustering by microbial species. It revealed the close genetic relatedness of B. hampsonii with commensal Brachyspira species and also provided support for the two clades of B. hampsonii to be considered a single species. PMID:26135863

  5. Genetic diversity and relationship of Hedychium from Northeast India as dissected using PCA analysis and hierarchical clustering

    PubMed Central

    Basak, Supriyo; Ramesh, Aadi Moolam; Kesari, Vigya; Parida, Ajay; Mitra, Sudip; Rangan, Latha

    2014-01-01

    Molecular genetic fingerprints of eleven Hedychium species from Northeast India were developed using PCR based markers. Fifteen inter-simple sequence repeats (ISSRs) and five amplified fragment length polymorphism (AFLP) primers produced 547 polymorphic fragments. Positive correlation (r = 0.46) was observed between the mean genetic similarity and genetic diversity parameters at the inter-species level. AFLP and ISSR markers were able to group the species according to its altitude and intensity of flower aroma. Cophenetic correlation coefficients between the dendrogram and the original similarity matrix were significant for ISSR (r = 0.89) compared to AFLP (r = 0.83) markers. This genetic characterization of Hedychium from Northeast India contributes to the knowledge of genetic structure of the species and can be used to define strategies for their conservation and management. PMID:25606430

  6. Genetic Diversity among Enterococcus faecalis

    PubMed Central

    McBride, Shonna M.; Fischetti, Vincent A.; LeBlanc, Donald J.; Moellering, Robert C.; Gilmore, Michael S.

    2007-01-01

    Enterococcus faecalis, a ubiquitous member of mammalian gastrointestinal flora, is a leading cause of nosocomial infections and a growing public health concern. The enterococci responsible for these infections are often resistant to multiple antibiotics and have become notorious for their ability to acquire and disseminate antibiotic resistances. In the current study, we examined genetic relationships among 106 strains of E. faecalis isolated over the past 100 years, including strains identified for their diversity and used historically for serotyping, strains that have been adapted for laboratory use, and isolates from previously described E. faecalis infection outbreaks. This collection also includes isolates first characterized as having novel plasmids, virulence traits, antibiotic resistances, and pathogenicity island (PAI) components. We evaluated variation in factors contributing to pathogenicity, including toxin production, antibiotic resistance, polymorphism in the capsule (cps) operon, pathogenicity island (PAI) gene content, and other accessory factors. This information was correlated with multi-locus sequence typing (MLST) data, which was used to define genetic lineages. Our findings show that virulence and antibiotic resistance traits can be found within many diverse lineages of E. faecalis. However, lineages have emerged that have caused infection outbreaks globally, in which several new antibiotic resistances have entered the species, and in which virulence traits have converged. Comparing genomic hybridization profiles, using a microarray, of strains identified by MLST as spanning the diversity of the species, allowed us to identify the core E. faecalis genome as consisting of an estimated 2057 unique genes. PMID:17611618

  7. Genetic diversity of Lycoris endemic to Korea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extensive taxonomic relationships among Lycoris Herb. (Amaryllidaceae) taxa native to Korea have not been analyzed previously. This study was carried out to investigate the hybrid origin, genetic diversity, and relationships of Lycoris taxa (L. flavescens, L. uydoensis, L. chejuensis, L. chinensis ...

  8. Relationship of disease-associated gene expression to cardiac phenotype is buffered by genetic diversity and chromatin regulation.

    PubMed

    Karbassi, Elaheh; Monte, Emma; Chapski, Douglas J; Lopez, Rachel; Rosa Garrido, Manuel; Kim, Joseph; Wisniewski, Nicholas; Rau, Christoph D; Wang, Jessica J; Weiss, James N; Wang, Yibin; Lusis, Aldons J; Vondriska, Thomas M

    2016-08-01

    Expression of a cohort of disease-associated genes, some of which are active in fetal myocardium, is considered a hallmark of transcriptional change in cardiac hypertrophy models. How this transcriptome remodeling is affected by the common genetic variation present in populations is unknown. We examined the role of genetics, as well as contributions of chromatin proteins, to regulate cardiac gene expression and heart failure susceptibility. We examined gene expression in 84 genetically distinct inbred strains of control and isoproterenol-treated mice, which exhibited varying degrees of disease. Unexpectedly, fetal gene expression was not correlated with hypertrophic phenotypes. Unbiased modeling identified 74 predictors of heart mass after isoproterenol-induced stress, but these predictors did not enrich for any cardiac pathways. However, expanded analysis of fetal genes and chromatin remodelers as groups correlated significantly with individual systemic phenotypes. Yet, cardiac transcription factors and genes shown by gain-/loss-of-function studies to contribute to hypertrophic signaling did not correlate with cardiac mass or function in disease. Because the relationship between gene expression and phenotype was strain specific, we examined genetic contribution to expression. Strikingly, strains with similar transcriptomes in the basal heart did not cluster together in the isoproterenol state, providing comprehensive evidence that there are different genetic contributors to physiological and pathological gene expression. Furthermore, the divergence in transcriptome similarity versus genetic similarity between strains is organ specific and genome-wide, suggesting chromatin is a critical buffer between genetics and gene expression. PMID:27287924

  9. High-throughput multiplex cpDNA resequencing clarifies the genetic diversity and genetic relationships among Brassica napus, Brassica rapa and Brassica oleracea.

    PubMed

    Qiao, Jiangwei; Cai, Mengxian; Yan, Guixin; Wang, Nian; Li, Feng; Chen, Binyun; Gao, Guizhen; Xu, Kun; Li, Jun; Wu, Xiaoming

    2016-01-01

    Brassica napus (rapeseed) is a recent allotetraploid plant and the second most important oilseed crop worldwide. The origin of B. napus and the genetic relationships with its diploid ancestor species remain largely unresolved. Here, chloroplast DNA (cpDNA) from 488 B. napus accessions of global origin, 139 B. rapa accessions and 49 B. oleracea accessions were populationally resequenced using Illumina Solexa sequencing technologies. The intraspecific cpDNA variants and their allelic frequencies were called genomewide and further validated via EcoTILLING analyses of the rpo region. The cpDNA of the current global B. napus population comprises more than 400 variants (SNPs and short InDels) and maintains one predominant haplotype (Bncp1). Whole-genome resequencing of the cpDNA of Bncp1 haplotype eliminated its direct inheritance from any accession of the B. rapa or B. oleracea species. The distribution of the polymorphism information content (PIC) values for each variant demonstrated that B. napus has much lower cpDNA diversity than B. rapa; however, a vast majority of the wild and cultivated B. oleracea specimens appeared to share one same distinct cpDNA haplotype, in contrast to its wild C-genome relatives. This finding suggests that the cpDNA of the three Brassica species is well differentiated. The predominant B. napus cpDNA haplotype may have originated from uninvestigated relatives or from interactions between cpDNA mutations and natural/artificial selection during speciation and evolution. These exhaustive data on variation in cpDNA would provide fundamental data for research on cpDNA and chloroplasts. PMID:26031705

  10. Genetic Diversity and Human Equality.

    ERIC Educational Resources Information Center

    Dobzhansky, Theodosius

    The idea of equality often, if not frequently, bogs down in confusion and apparent contradictions; equality is confused with identity, and diversity with inequality. It would seem that the easiest way to discredit the idea of equality is to show that people are innately, genetically, and, therefore, irremediably diverse and unlike. The snare is,…

  11. Genetic Diversity of Toscana Virus

    PubMed Central

    Collao, Ximena; Palacios, Gustavo; Sanbonmatsu-Gámez, Sara; Pérez-Ruiz, Mercedes; Negredo, Ana I.; Navarro-Marí, José-María; Grandadam, Marc; Aransay, Ana Maria; Lipkin, W. Ian; Tenorio, Antonio

    2009-01-01

    Distribution of Toscana virus (TOSV) is evolving with climate change, and pathogenicity may be higher in nonexposed populations outside areas of current prevalence (Mediterranean Basin). To characterize genetic diversity of TOSV, we determined the coding sequences of isolates from Spain and France. TOSV is more diverse than other well-studied phleboviruses (e.g.,Rift Valley fever virus). PMID:19331735

  12. Genetic diversity and phylogenetic relationship among Tunisian cactus species (Opuntia) as revealed by random amplified microsatellite polymorphism markers.

    PubMed

    Bendhifi Zarroug, M; Baraket, G; Zourgui, L; Souid, S; Salhi Hannachi, A

    2015-01-01

    Opuntia ficus indica is one of the most economically important species in the Cactaceae family. Increased interest in this crop stems from its potential contribution to agricultural diversification, application in the exploitation of marginal lands, and utility as additional income sources for farmers. In Tunisia, O. ficus indica has been affected by drastic genetic erosion resulting from biotic and abiotic stresses. Thus, it is imperative to identify and preserve this germplasm. In this study, we focused on the use of random amplified microsatellite polymorphisms to assess genetic diversity among 25 representatives of Tunisian Opuntia species maintained in the collection of the National Institute of Agronomic Research of Tunisia. Seventy-two DNA markers were screened to discriminate accessions using 16 successful primer combinations. The high percentage of polymorphic band (100%), the resolving power value (5.68), the polymorphic information content (0.94), and the marker index (7.2) demonstrated the efficiency of the primers tested. Therefore, appropriate cluster analysis used in this study illustrated a divergence among the cultivars studied and exhibited continuous variation that occurred independently of geographic origin. O. ficus indica accessions did not cluster separately from the other cactus pear species, indicating that their current taxonomical classifications are not well aligned with their genetic variability or locality of origin. PMID:25730081

  13. Assessment of genetic diversity and relationships among Egyptian mango (Mangifera indica L.) cultivers grown in Suez Canal and Sinai region using RAPD markers.

    PubMed

    Mansour, Hassan; Mekki, Laila E; Hussein, Mohammed A

    2014-01-01

    DNA-based RAPD (Random Amplification of Polymorphic DNA) markers have been used extensively to study genetic diversity and relationships in a number of fruit crops. In this study, 10 (7 commercial mango cultivars and 3 accessions) mango genotypes traditionally grown in Suez Canal and Sinai region of Egypt, were selected to assess genetic diversity and relatedness. Total genomic DNA was extracted and subjected to RAPD analysis using 30 arbitrary 10-mer primers. Of these, eleven primers were selected which gave 92 clear and bright fragments. A total of 72 polymorphic RAPD bands were detected out of 92 bands, generating 78% polymorphisms. The mean PIC values scores for all loci were of 0.85. This reflects a high level of discriminatory power of a marker and most of these primers produced unique band pattern for each cultivar. A dendrogram based on Nei's Genetic distance co-efficient implied a moderate degree of genetic diversity among the cultivars used for experimentation, with some differences. The hybrid which had derived from cultivar as female parent was placed together. In the cluster, the cultivars and accessions formed separate groups according to bearing habit and type of embryo and the members in each group were very closely linked. Cluster analysis clearly showed two main groups, the first consisting of indigenous to the Delta of Egypt cultivars and the second consisting of indigenous to the Suez Canal and Sinai region. From the analysis of results, it appears the majority of mango cultivars originated from a local mango genepool and were domesticated later. The results indicated the potential of RAPD markers for the identification and management of mango germplasm for breeding purposes. PMID:24783778

  14. Genetic diversity in aspen and its relation to arthropod abundance

    PubMed Central

    Zhang, Chunxia; Vornam, Barbara; Volmer, Katharina; Prinz, Kathleen; Kleemann, Frauke; Köhler, Lars; Polle, Andrea; Finkeldey, Reiner

    2015-01-01

    The ecological consequences of biodiversity have become a prominent public issue. Little is known on the effect of genetic diversity on ecosystem services. Here, a diversity experiment was established with European and North American aspen (Populus tremula, P. tremuloides) planted in plots representing either a single deme only or combinations of two, four and eight demes. The goals of this study were to explore the complex inter- and intraspecific genetic diversity of aspen and to then relate three measures for diversity (deme diversity, genetic diversity determined as Shannon index or as expected heterozygosity) to arthropod abundance. Microsatellite and AFLP markers were used to analyze the genetic variation patterns within and between the aspen demes and deme mixtures. Large differences were observed regarding the genetic diversity within demes. An analysis of molecular variance revealed that most of the total genetic diversity was found within demes, but the genetic differentiation among demes was also high. The complex patterns of genetic diversity and differentiation resulted in large differences of the genetic variation within plots. The average diversity increased from plots with only one deme to plots with two, four, and eight demes, respectively and separated plots with and without American aspen. To test whether intra- and interspecific diversity impacts on ecosystem services, arthropod abundance was determined. Increasing genetic diversity of aspen was related to increasing abundance of arthropods. However, the relationship was mainly driven by the presence of American aspen suggesting that species identity overrode the effect of intraspecific variation of European aspen. PMID:25674097

  15. Genetic diversity in Trichomonas vaginalis.

    PubMed

    Meade, John C; Carlton, Jane M

    2013-09-01

    Recent advances in genetic characterisation of Trichomonas vaginalis isolates show that the extensive clinical variability in trichomoniasis and its disease sequelae are matched by significant genetic diversity in the organism itself, suggesting a connection between the genetic identity of isolates and their clinical manifestations. Indeed, a high degree of genetic heterogeneity in T vaginalis isolates has been observed using multiple genotyping techniques. A unique two-type population structure that is both local and global in distribution has been identified, and there is evidence of recombination within each group, although sexual recombination between the groups appears to be constrained. There is conflicting evidence in these studies for correlations between T vaginalis genetic identity and clinical presentation, metronidazole susceptibility, and the presence of T vaginalis virus, underscoring the need for adoption of a common standard for genotyping the parasite. Moving forward, microsatellite genotyping and multilocus sequence typing are the most robust techniques for future investigations of T vaginalis genotype-phenotype associations. PMID:23702460

  16. At the southeast fringe of the Bantu expansion: genetic diversity and phylogenetic relationships to other sub-Saharan tribes.

    PubMed

    Rowold, Diane; Garcia-Bertrand, Ralph; Calderon, Silvia; Rivera, Luis; Benedico, David Perez; Alfonso Sanchez, Miguel A; Chennakrishnaiah, Shilpa; Varela, Mangela; Herrera, Rene J

    2014-12-01

    Here, we present 12 loci paternal haplotypes (Y-STR profiles) against the backdrop of the Y-SNP marker system of Bantu males from the Maputo Province of Southeast Africa, a region believed to represent the southeastern fringe of the Bantu expansion. Our Maputo Bantu group was analyzed within the context of 27 geographically relevant reference populations in order to ascertain its genetic relationship to other Bantu and non Bantu (Pygmy, Khoisan and Nilotic) sub-equatorial tribes from West and East Africa. This study entails statistical pair wise comparisons and multidimensional scaling based on YSTR Rst distances, network analyses of Bantu (B2a-M150) and Pygmy (B2b-M112) lineages as well as an assessment of Y-SNP distribution patterns. Several notable findings include the following: 1) the Maputo Province Bantu exhibits a relatively close paternal affinity with both east and west Bantu tribes due to high proportion of Bantu Y chromosomal markers, 2) only traces of Khoisan (1.3%) and Pygmy (1.3%) markers persist in the Maputo Province Bantu gene pool, 3) the occurrence of R1a1a-M17/M198, a member of the Eurasian R1a-M420 branch in the population of the Maputo Province, may represent back migration events and/or recent admixture events, 4) the shared presence of E1b1b1-M35 in all Tanzanian tribes examined, including Bantu and non-Bantu groups, in conjunction with its nearly complete absence in the West African populations indicate that, in addition to a shared linguistic, cultural and genetic heritage, geography (e.g., east vs. west) may have impacted the paternal landscape of sub-Saharan Africa, 5) the admixture and assimilation processes of Bantu elements were both highly complex and region-specific. PMID:25606451

  17. At the southeast fringe of the Bantu expansion: genetic diversity and phylogenetic relationships to other sub-Saharan tribes

    PubMed Central

    Rowold, Diane; Garcia-Bertrand, Ralph; Calderon, Silvia; Rivera, Luis; Benedico, David Perez; Alfonso Sanchez, Miguel A.; Chennakrishnaiah, Shilpa; Varela, Mangela; Herrera, Rene J.

    2014-01-01

    Here, we present 12 loci paternal haplotypes (Y-STR profiles) against the backdrop of the Y-SNP marker system of Bantu males from the Maputo Province of Southeast Africa, a region believed to represent the southeastern fringe of the Bantu expansion. Our Maputo Bantu group was analyzed within the context of 27 geographically relevant reference populations in order to ascertain its genetic relationship to other Bantu and non Bantu (Pygmy, Khoisan and Nilotic) sub-equatorial tribes from West and East Africa. This study entails statistical pair wise comparisons and multidimensional scaling based on YSTR Rst distances, network analyses of Bantu (B2a-M150) and Pygmy (B2b-M112) lineages as well as an assessment of Y-SNP distribution patterns. Several notable findings include the following: 1) the Maputo Province Bantu exhibits a relatively close paternal affinity with both east and west Bantu tribes due to high proportion of Bantu Y chromosomal markers, 2) only traces of Khoisan (1.3%) and Pygmy (1.3%) markers persist in the Maputo Province Bantu gene pool, 3) the occurrence of R1a1a-M17/M198, a member of the Eurasian R1a-M420 branch in the population of the Maputo Province, may represent back migration events and/or recent admixture events, 4) the shared presence of E1b1b1-M35 in all Tanzanian tribes examined, including Bantu and non-Bantu groups, in conjunction with its nearly complete absence in the West African populations indicate that, in addition to a shared linguistic, cultural and genetic heritage, geography (e.g., east vs. west) may have impacted the paternal landscape of sub-Saharan Africa, 5) the admixture and assimilation processes of Bantu elements were both highly complex and region-specific. PMID:25606451

  18. Genetic selection and conservation of genetic diversity*.

    PubMed

    Blackburn, H D

    2012-08-01

    For 100s of years, livestock producers have employed various types of selection to alter livestock populations. Current selection strategies are little different, except our technologies for selection have become more powerful. Genetic resources at the breed level have been in and out of favour over time. These resources are the raw materials used to manipulate populations, and therefore, they are critical to the past and future success of the livestock sector. With increasing ability to rapidly change genetic composition of livestock populations, the conservation of these genetic resources becomes more critical. Globally, awareness of the need to steward genetic resources has increased. A growing number of countries have embarked on large scale conservation efforts by using in situ, ex situ (gene banking), or both approaches. Gene banking efforts have substantially increased and data suggest that gene banks are successfully capturing genetic diversity for research or industry use. It is also noteworthy that both industry and the research community are utilizing gene bank holdings. As pressures grow to meet consumer demands and potential changes in production systems, the linkage between selection goals and genetic conservation will increase as a mechanism to facilitate continued livestock sector development. PMID:22827378

  19. Genetic structure and systematic relationships within the Ophrys fuciflora aggregate (Orchidaceae: Orchidinae): high diversity in Kent and a wind-induced discontinuity bisecting the Adriatic

    PubMed Central

    Devey, Dion S.; Bateman, Richard M.; Fay, Michael F.; Hawkins, Julie A.

    2009-01-01

    Background and Aims A recent phylogenetic study based on multiple datasets is used as the framework for a more detailed examination of one of the ten molecularly circumscribed groups identified, the Ophrys fuciflora aggregate. The group is highly morphologically variable, prone to phenotypic convergence, shows low levels of sequence divergence and contains an unusually large proportion of threatened taxa, including the rarest Ophrys species in the UK. The aims of this study were to (a) circumscribe minimum resolvable genetically distinct entities within the O. fuciflora aggregate, and (b) assess the likelihood of gene flow between genetically and geographically distinct entities at the species and population levels. Methods Fifty-five accessions sampled in Europe and Asia Minor from the O. fuciflora aggregate were studied using the AFLP genetic fingerprinting technique to evaluate levels of infraspecific and interspecific genetic variation and to assess genetic relationships between UK populations of O. fuciflora s.s. in Kent and in their continental European and Mediterranean counterparts. Key Results The two genetically and geographically distinct groups recovered, one located in England and central Europe and one in south-eastern Europe, are incongruent with current species delimitation within the aggregate as a whole and also within O. fuciflora s.s. Genetic diversity is higher in Kent than in the rest of western and central Europe. Conclusions Gene flow is more likely to occur between populations in closer geographical proximity than those that are morphologically more similar. Little if any gene flow occurs between populations located in the south-eastern Mediterranean and those dispersed throughout the remainder of the distribution, revealing a genetic discontinuity that runs north–south through the Adriatic. This discontinuity is also evident in other clades of Ophrys and is tentatively attributed to the long-term influence of prevailing winds on the long

  20. Genetic Diversity Increases Insect Herbivory on Oak Saplings

    PubMed Central

    Castagneyrol, Bastien; Lagache, Lélia; Giffard, Brice; Kremer, Antoine; Jactel, Hervé

    2012-01-01

    A growing body of evidence from community genetics studies suggests that ecosystem functions supported by plant species richness can also be provided by genetic diversity within plant species. This is not yet true for the diversity-resistance relationship as it is still unclear whether damage by insect herbivores responds to genetic diversity in host plant populations. We developed a manipulative field experiment based on a synthetic community approach, with 15 mixtures of one to four oak (Quercus robur) half-sib families. We quantified genetic diversity at the plot level by genotyping all oak saplings and assessed overall damage caused by ectophagous and endophagous herbivores along a gradient of increasing genetic diversity. Damage due to ectophagous herbivores increased with the genetic diversity in oak sapling populations as a result of higher levels of damage in mixtures than in monocultures for all families (complementarity effect) rather than because of the presence of more susceptible oak genotypes in mixtures (selection effect). Assemblages of different oak genotypes would benefit polyphagous herbivores via improved host patch location, spill over among neighbouring saplings and diet mixing. By contrast, genetic diversity was a poor predictor of the abundance of endophagous herbivores, which increased with individual sapling apparency. Plant genetic diversity may not provide sufficient functional contrast to prevent tree sapling colonization by specialist herbivores while enhancing the foraging of generalist herbivores. Long term studies are nevertheless required to test whether the effect of genetic diversity on herbivory change with the ontogeny of trees and local adaptation of specialist herbivores. PMID:22937168

  1. Diversity among melon (Cucumis melo L.) landraces from the Indo-Gangetic plains of India and their genetic relationship with U.S.A. melon cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report here the first broad genetic characterization of farmer-developed land races of melon (Cucumis melo L.) from the Indo-Gangetic plains of India, an area overlooked in previous genetic diversity analyses of Indian melon germplasm. Eighty-eight landraces from three melon groups in two subspec...

  2. Population genetic diversity and fitness in multiple environments

    PubMed Central

    2010-01-01

    Background When a large number of alleles are lost from a population, increases in individual homozygosity may reduce individual fitness through inbreeding depression. Modest losses of allelic diversity may also negatively impact long-term population viability by reducing the capacity of populations to adapt to altered environments. However, it is not clear how much genetic diversity within populations may be lost before populations are put at significant risk. Development of tools to evaluate this relationship would be a valuable contribution to conservation biology. To address these issues, we have created an experimental system that uses laboratory populations of an estuarine crustacean, Americamysis bahia with experimentally manipulated levels of genetic diversity. We created replicate cultures with five distinct levels of genetic diversity and monitored them for 16 weeks in both permissive (ambient seawater) and stressful conditions (diluted seawater). The relationship between molecular genetic diversity at presumptive neutral loci and population vulnerability was assessed by AFLP analysis. Results Populations with very low genetic diversity demonstrated reduced fitness relative to high diversity populations even under permissive conditions. Population performance decreased in the stressful environment for all levels of genetic diversity relative to performance in the permissive environment. Twenty percent of the lowest diversity populations went extinct before the end of the study in permissive conditions, whereas 73% of the low diversity lines went extinct in the stressful environment. All high genetic diversity populations persisted for the duration of the study, although population sizes and reproduction were reduced under stressful environmental conditions. Levels of fitness varied more among replicate low diversity populations than among replicate populations with high genetic diversity. There was a significant correlation between AFLP diversity and

  3. Hidden relationships and genetic diversity: Molecular phylogeny and phylogeography of the Levantine lizards of the genus Phoenicolacerta (Squamata: Lacertidae).

    PubMed

    Tamar, Karin; Carranza, Salvador; In den Bosch, Herman; Sindaco, Roberto; Moravec, Jiří; Meiri, Shai

    2015-10-01

    The Levant region witnessed dramatic tectonic events and climatic fluctuations that changed the historical landscape of the area and consequently influenced the cladogenesis and distribution of the local biota. In this study we use information from two mitochondrial and two nuclear genes and species delimitation methods in order to obtain the first robust time-calibrated molecular phylogeny of the Levantine rock lizards of the genus Phoenicolacerta. We sampled from across its distributional range with the aim to clarify its systematics, biogeography and evolution. Our results suggest that the genus includes two well-supported clades, one comprising solely the montane species Phoenicolacerta kulzeri, and the other including the three remaining species, the relatively widespread, P. laevis, the Syrian-Turkish P. cyanisparsa and the Cypriot endemic P. troodica. We found that both P. laevis and P. cyanisparsa are not monophyletic, as the Turkish populations of P. laevis branch within P. cyanisparsa. We found high levels of undescribed diversity within P. laevis which necessitate a thorough revision. We suggest that Phoenicolacerta started radiating during the mid-late Miocene, and that both vicariance and dispersal events shaped the diversification and distribution of the genus concomitantly with the formation of major geological structures and climatic fluctuations in the Levant. These results highlight the region as an important center of speciation, contributing to the species diversity of the eastern Mediterranean. PMID:25987529

  4. Phenotypic and genetic diversity of Saccharomyces contaminants isolated from lager breweries and their phylogenetic relationship with brewing yeasts.

    PubMed

    Jespersen, L; van der Kühle, A; Petersen, K M

    2000-09-15

    A taxonomic study was carried out for isolates of Saccharomyces spp. identified as contaminants ("wild yeast") in 24 different lager breweries. With reference to the current taxonomy all isolates were found to belong to the Saccharomyces sensu stricto complex and 58% of the isolates were further identified as S. cerevisiae, 26% as S. pastorianus and 3% as S. bayanus. The remaining isolates (13%) could not be identified to the species level based on their phenotypic characteristics. However, some of these isolates were identified as S. cerevisiae by HaeIII restriction digest of PCR-amplified intergenic transcribed spacer (ITS) regions. Chromosome length polymorphism (CLP) was evident among the Saccharomyces brewing contaminants with chromosome profiles typical of Saccharomyces sensu stricto. Based upon cluster analysis of their chromosome profiles the majority of the brewing contaminants could be grouped as either S. cerevisiae or S. pastorianus/S. bayanus. Further, the technique was able to differentiate between almost all brewing contaminants and to separate them from any specific lager brewing yeast. The diversity of the Saccharomyces brewing contaminants clearly demonstrated by their CLP was further reflected by MAL genotyping. For the majority of the isolates more than two MAL loci were found with MAL1, MAL2 MAL3, MAL4 and MAL11, MAL31, MAL41 as the dominant genotypes. For all isolates MAL11 and MAL31 were found whereas MAL61 only was found for one isolate. The high number of MAL loci found in the SaccharomYces brewing contaminants indicate their adaptation to a maltose-enriched environment. PMID:11014521

  5. Personalized medicine and human genetic diversity.

    PubMed

    Lu, Yi-Fan; Goldstein, David B; Angrist, Misha; Cavalleri, Gianpiero

    2014-09-01

    Human genetic diversity has long been studied both to understand how genetic variation influences risk of disease and infer aspects of human evolutionary history. In this article, we review historical and contemporary views of human genetic diversity, the rare and common mutations implicated in human disease susceptibility, and the relevance of genetic diversity to personalized medicine. First, we describe the development of thought about diversity through the 20th century and through more modern studies including genome-wide association studies (GWAS) and next-generation sequencing. We introduce several examples, such as sickle cell anemia and Tay-Sachs disease that are caused by rare mutations and are more frequent in certain geographical populations, and common treatment responses that are caused by common variants, such as hepatitis C infection. We conclude with comments about the continued relevance of human genetic diversity in medical genetics and personalized medicine more generally. PMID:25059740

  6. Personalized Medicine and Human Genetic Diversity

    PubMed Central

    Lu, Yi-Fan; Goldstein, David B.; Angrist, Misha; Cavalleri, Gianpiero

    2014-01-01

    Human genetic diversity has long been studied both to understand how genetic variation influences risk of disease and infer aspects of human evolutionary history. In this article, we review historical and contemporary views of human genetic diversity, the rare and common mutations implicated in human disease susceptibility, and the relevance of genetic diversity to personalized medicine. First, we describe the development of thought about diversity through the 20th century and through more modern studies including genome-wide association studies (GWAS) and next-generation sequencing. We introduce several examples, such as sickle cell anemia and Tay–Sachs disease that are caused by rare mutations and are more frequent in certain geographical populations, and common treatment responses that are caused by common variants, such as hepatitis C infection. We conclude with comments about the continued relevance of human genetic diversity in medical genetics and personalized medicine more generally. PMID:25059740

  7. AFLP-Based Analysis of Genetic Diversity, Population Structure, and Relationships with Agronomic Traits in Rice Germplasm from North Region of Iran and World Core Germplasm Set.

    PubMed

    Sorkheh, Karim; Masaeli, Mohammad; Chaleshtori, Maryam Hosseini; Adugna, Asfaw; Ercisli, Sezai

    2016-04-01

    Analysis of the genetic diversity and population structure of crops is very important for use in breeding programs and for genetic resources conservation. We analyzed the genetic diversity and population structure of 47 rice genotypes from diverse origins using amplified fragment length polymorphism (AFLP) markers and morphological characters. The 47 genotypes, which were composed of four populations: Iranian native varieties, Iranian improved varieties, International Rice Research Institute (IRRI) rice varieties, and world rice collections, were analyzed using ten primer combinations. A total of 221 scorable bands were produced with an average of 22.1 alleles per pair of primers, of which 120 (54.30%) were polymorphic. The polymorphism information content (PIC) values varied from 0.32 to 0.41 with an average of 0.35. The high percentage of polymorphic bands (%PB) was found to be 64.71 and the resolving power (R p) collections were 63.36. UPGMA clustering based on numerical data from AFLP patterns clustered all 47 genotypes into three large groups. The genetic similarity between individuals ranged from 0.54 to 0.94 with an average of 0.74. Population genetic tree showed that Iranian native cultivars formed far distant cluster from the other populations, which may indicate that these varieties had minimal genetic change over time. Analysis of molecular variance (AMOVA) revealed that the largest proportion of the variation (84%) to be within populations showing the inbreeding nature of rice. Therefore, Iranian native varieties (landraces) may have unique genes, which can be used for future breeding programs and there is a need to conserve this unique diversity. Furthermore, crossing of Iranian genotypes with the genetically distant genotypes in the other three populations may result in useful combinations, which can be used as varieties and/or lines for future rice breeding programs. PMID:26762294

  8. The relic Criollo cacao in Belize- genetic diversity and relationship with Trinitario and other cacao clones held in the International Cocoa Genebank, Trinidad

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cacao (Theobroma cacao L.) is native to the South American rainforest but it was domesticated in Mesoamerica. The relic Criollo cocoa in Belize has been well known in the premium chocolate market for its high-quality. Knowledge of genetic diversity in this variety is essential for efficient conserva...

  9. Diversity of potato genetic resources

    PubMed Central

    Machida-Hirano, Ryoko

    2015-01-01

    A considerable number of highly diverse species exist in genus Solanum. Because they can adapt to a broad range of habitats, potato wild relatives are promising sources of desirable agricultural traits. Potato taxonomy is quite complex because of introgression, interspecific hybridization, auto- and allopolyploidy, sexual compatibility among many species, a mixture of sexual and asexual reproduction, possible recent species divergence, phenotypic plasticity, and the consequent high morphological similarity among species. Recent researchers using molecular tools have contributed to the identification of genes controlling several types of resistance as well as to the revision of taxonomical relationships among potato species. Historically, primitive forms of cultivated potato and its wild relatives have been used in breeding programs and there is still an enormous and unimaginable potential for discovering desirable characteristics, particularly in wild species Different methods have been developed to incorporate useful alleles from these wild species into the improved cultivars. Potato germplasm comprising of useful alleles for different breeding objectives is preserved in various gene banks worldwide. These materials, with their invaluable information, are accessible for research and breeding purposes. Precise identification of species base on the new taxonomy is essential for effective use of the germplasm collection. PMID:25931978

  10. How does ecological disturbance influence genetic diversity?

    PubMed

    Banks, Sam C; Cary, Geoffrey J; Smith, Annabel L; Davies, Ian D; Driscoll, Don A; Gill, A Malcolm; Lindenmayer, David B; Peakall, Rod

    2013-11-01

    Environmental disturbance underpins the dynamics and diversity of many of the ecosystems of the world, yet its influence on the patterns and distribution of genetic diversity is poorly appreciated. We argue here that disturbance history may be the major driver that shapes patterns of genetic diversity in many natural populations. We outline how disturbance influences genetic diversity through changes in both selective processes and demographically driven, selectively neutral processes. Our review highlights the opportunities and challenges presented by genetic approaches, such as landscape genomics, for better understanding and predicting the demographic and evolutionary responses of natural populations to disturbance. Developing this understanding is now critical because disturbance regimes are changing rapidly in a human-modified world. PMID:24054910

  11. Genetic diversity, parasite prevalence and immunity in wild bumblebees

    PubMed Central

    Whitehorn, Penelope R.; Tinsley, Matthew C.; Brown, Mark J. F.; Darvill, Ben; Goulson, Dave

    2011-01-01

    Inbreeding and a consequent loss of genetic diversity threaten small, isolated populations. One mechanism by which genetically impoverished populations may become extinct is through decreased immunocompetence and higher susceptibility to parasites. Here, we investigate the relationship between immunity and inbreeding in bumblebees, using Hebridean island populations of Bombus muscorum. We sampled nine populations and recorded parasite prevalence and measured two aspects of immunity: the encapsulation response and levels of phenoloxidase (PO). We found that prevalence of the gut parasite Crithidia bombi was higher in populations with lower genetic diversity. Neither measure of immune activity was correlated with genetic diversity. However, levels of PO declined with age and were also negatively correlated with parasite abundance. Our results suggest that as insect populations lose heterozygosity, the impact of parasitism will increase, pushing threatened populations closer to extinction. PMID:20926436

  12. Bovine Genetic Diversity Revealed By mtDNA Sequence Variation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mitochondrial DNA single nucleotide polymorphism (SNP) data were used to determine genetic distance, nucleotide diversity, construction of haplotypes, estimation of information contents, and phylogenic relationships in bovine HapMap breeds. The Bovine International HapMap panel consists of 720 anima...

  13. Estimation of genetic diversity using SSR markers in sunflower

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sunflower is a major oilseed crop in central Asia, but little is known of the molecular diversity among collections of sunflower from Pakistan region. This paper described inherent genetic relationships among sunflower collections using Simple Sequence Repeat molecular markers. Results should help...

  14. Implications of recurrent disturbance for genetic diversity.

    PubMed

    Davies, Ian D; Cary, Geoffrey J; Landguth, Erin L; Lindenmayer, David B; Banks, Sam C

    2016-02-01

    Exploring interactions between ecological disturbance, species' abundances and community composition provides critical insights for ecological dynamics. While disturbance is also potentially an important driver of landscape genetic patterns, the mechanisms by which these patterns may arise by selective and neutral processes are not well-understood. We used simulation to evaluate the relative importance of disturbance regime components, and their interaction with demographic and dispersal processes, on the distribution of genetic diversity across landscapes. We investigated genetic impacts of variation in key components of disturbance regimes and spatial patterns that are likely to respond to climate change and land management, including disturbance size, frequency, and severity. The influence of disturbance was mediated by dispersal distance and, to a limited extent, by birth rate. Nevertheless, all three disturbance regime components strongly influenced spatial and temporal patterns of genetic diversity within subpopulations, and were associated with changes in genetic structure. Furthermore, disturbance-induced changes in temporal population dynamics and the spatial distribution of populations across the landscape resulted in disrupted isolation by distance patterns among populations. Our results show that forecast changes in disturbance regimes have the potential to cause major changes to the distribution of genetic diversity within and among populations. We highlight likely scenarios under which future changes to disturbance size, severity, or frequency will have the strongest impacts on population genetic patterns. In addition, our results have implications for the inference of biological processes from genetic data, because the effects of dispersal on genetic patterns were strongly mediated by disturbance regimes. PMID:26839689

  15. Genetic and Metabolite Diversity of Sardinian Populations of Helichrysum italicum

    PubMed Central

    Melito, Sara; Sias, Angela; Petretto, Giacomo L.; Chessa, Mario; Pintore, Giorgio; Porceddu, Andrea

    2013-01-01

    Background Helichrysum italicum (Asteraceae) is a small shrub endemic to the Mediterranean Basin, growing in fragmented and diverse habitats. The species has attracted attention due to its secondary metabolite content, but little effort has as yet been dedicated to assessing the genetic and metabolite diversity present in these populations. Here, we describe the diversity of 50 H. italicum populations collected from a range of habitats in Sardinia. Methods H. italicum plants were AFLP fingerprinted and the composition of their leaf essential oil characterized by GC-MS. The relationships between the genetic structure of the populations, soil, habitat and climatic variables and the essential oil chemotypes present were evaluated using Bayesian clustering, contingency analyses and AMOVA. Key results The Sardinian germplasm could be partitioned into two AFLP-based clades. Populations collected from the southwestern region constituted a homogeneous group which remained virtually intact even at high levels of K. The second, much larger clade was more diverse. A positive correlation between genetic diversity and elevation suggested the action of natural purifying selection. Four main classes of compounds were identified among the essential oils, namely monoterpenes, oxygenated monoterpenes, sesquiterpenes and oxygenated sesquiterpenes. Oxygenated monoterpene levels were significantly correlated with the AFLP-based clade structure, suggesting a correspondence between gene pool and chemical diversity. Conclusions The results suggest an association between chemotype, genetic diversity and collection location which is relevant for the planning of future collections aimed at identifying valuable sources of essential oil. PMID:24260149

  16. Genetic diversity and differentiation of Mongolian and Russian yak populations.

    PubMed

    Xuebin, Q; Jianlin, H; Lkhagva, B; Chekarova, I; Badamdorj, D; Rege, J E O; Hanotte, O

    2005-04-01

    In this study we examined the genetic diversity of yak populations in the northernmost part of their current global distribution. Five Mongolian and one Russian yak populations as well as one Chinese yak population from the Qinghai-Tibetan Plateau, the putative centre of yak domestication, were analysed with 15 microsatellite loci to determine the level of genetic variation within populations as well as the genetic differentiation and relationship between populations. A total of 116 microsatellite alleles were identified. The mean number of alleles per locus (MNA) across populations was 7.73 +/- 1.98 and the mean expected heterozygosity (HE) was 0.696 +/- 0.026. The relative magnitude of gene differentiation (F(ST)) among populations was 4.1%, and all genetic differentiations (F(ST)) between populations were significant (p < 0.001). A significant inbreeding effect (F(IS)) was detected in the Hovsgol yak (p < 0.01). There was no indication of a recent bottleneck in any of the populations studied. The results showed that yak populations in Mongolia and Russia have maintained high genetic diversity within populations and a low, although significant, genetic differentiation between populations. Both phylogenetic and principal component analyses support a close genetic relationship between the Gobi Altai, south Gobi and north Hangai populations, and between the Hovsgol and Buryatia populations respectively. Our results indicate that these yak populations should be considered as distinct genetic entities in respect of conservation and breeding programmes. PMID:16130478

  17. Teaching Relationship Skills in Diversity.

    ERIC Educational Resources Information Center

    Hammond, Ron J.

    In-class activities that provide students with intercultural interactions and supplemental lectures that define critical concepts can facilitate the appreciation of diversity in the classroom. One such activity, useful for the beginning of courses, involves the creation of two separate culture codes, or set of instructions, for introducing…

  18. Genetic diversity analysis of common beans based on molecular markers.

    PubMed

    Gill-Langarica, Homar R; Muruaga-Martínez, José S; Vargas-Vázquez, M L Patricia; Rosales-Serna, Rigoberto; Mayek-Pérez, Netzahualcoyotl

    2011-10-01

    A core collection of the common bean (Phaseolus vulgaris L.), representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico) Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions) was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each), as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP) +3/+3 primer combinations and seven simple sequence repeats (SSR) loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA) and molecular variance (AMOVA) analyses. AFLP analysis produced 530 bands (88.5% polymorphic) while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus). AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation. PMID:22215964

  19. Genetic diversity analysis of common beans based on molecular markers

    PubMed Central

    Gill-Langarica, Homar R.; Muruaga-Martínez, José S.; Vargas-Vázquez, M.L. Patricia; Rosales-Serna, Rigoberto; Mayek-Pérez, Netzahualcoyotl

    2011-01-01

    A core collection of the common bean (Phaseolus vulgaris L.), representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico) Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions) was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each), as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP) +3/+3 primer combinations and seven simple sequence repeats (SSR) loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA) and molecular variance (AMOVA) analyses. AFLP analysis produced 530 bands (88.5% polymorphic) while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus). AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation. PMID:22215964

  20. Genetic diversity in pollen abiotic stress tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic diversity in reproductive abiotic stress tolerance has been investigated by cotton breeders throughout the public and private sectors. The primary focus of these studies has been the evaluation of abiotic stress responses during the development of the flower prior to anthesis. Sterility in...

  1. Molecular phylogeny and genetic diversity of Lygus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inter- and intraspecific genetic diversity in North American Lygus was using nuclear and mitochondrial DNA. DNA sequences have been obtained from the mitochondrial cox1 and cox2 genes, the nuclear ITS1 spacer, and regions flanking microsatellites (MSFR). The Fargo lab sequenced a region overlapp...

  2. Genetic Diversity in Pollen Abiotic Stress Tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic diversity in reproductive abiotic stress tolerance has been investigated by cotton breeders throughout the public and private sectors. The primary focus of these studies has been the evaluation of abiotic stress responses during the development of the flower prior to anthesis. Sterility in...

  3. Genetic Diversity of Natural Crossing in Cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have shown previously genetic diversity in mature cotton pollen sensitivity to low humidity. This study investigated the impact of pollen sensitivity to low humidity on the amount of outcrossing to neighboring plants. We utilized “red” and “green” pigmented cotton, in addition to gossypol glan...

  4. Genetic diversity and population genetics of large lungworms (Dictyocaulus, Nematoda) in wild deer in Hungary.

    PubMed

    Ács, Zoltán; Hayward, Alexander; Sugár, László

    2016-09-01

    Dictyocaulus nematode worms live as parasites in the lower airways of ungulates and can cause significant disease in both wild and farmed hosts. This study represents the first population genetic analysis of large lungworms in wildlife. Specifically, we quantify genetic variation in Dictyocaulus lungworms from wild deer (red deer, fallow deer and roe deer) in Hungary, based on mitochondrial cytochrome c oxidase subunit 1 (cox1) sequence data, using population genetic and phylogenetic analyses. The studied Dictyocaulus taxa display considerable genetic diversity. At least one cryptic species and a new parasite-host relationship are revealed by our molecular study. Population genetic analyses for Dictyocaulus eckerti revealed high gene flow amongst weakly structured spatial populations that utilise the three host deer species considered here. Our results suggest that D. eckerti is a widespread generalist parasite in ungulates, with a diverse genetic backround and high evolutionary potential. In contrast, evidence of cryptic genetic structure at regional geographic scales was observed for Dictyocaulus capreolus, which infects just one host species, suggesting it is a specialist within the studied area. D. capreolus displayed lower genetic diversity overall, with only moderate gene flow compared to the closely related D. eckerti. We suggest that the differing vagility and dispersal behaviour of hosts are important contributing factors to the population structure of lungworms, and possibly other nematode parasites with single-host life cycles. Our findings are of relevance for the management of lungworms in deer farms and wild deer populations. PMID:27150969

  5. Genetic diversity in widespread species is not congruent with species richness in alpine plant communities.

    PubMed

    Taberlet, Pierre; Zimmermann, Niklaus E; Englisch, Thorsten; Tribsch, Andreas; Holderegger, Rolf; Alvarez, Nadir; Niklfeld, Harald; Coldea, Gheorghe; Mirek, Zbigniew; Moilanen, Atte; Ahlmer, Wolfgang; Marsan, Paolo Ajmone; Bona, Enzo; Bovio, Maurizio; Choler, Philippe; Cieślak, Elżbieta; Colli, Licia; Cristea, Vasile; Dalmas, Jean-Pierre; Frajman, Božo; Garraud, Luc; Gaudeul, Myriam; Gielly, Ludovic; Gutermann, Walter; Jogan, Nejc; Kagalo, Alexander A; Korbecka, Grażyna; Küpfer, Philippe; Lequette, Benoît; Letz, Dominik Roman; Manel, Stéphanie; Mansion, Guilhem; Marhold, Karol; Martini, Fabrizio; Negrini, Riccardo; Niño, Fernando; Paun, Ovidiu; Pellecchia, Marco; Perico, Giovanni; Piękoś-Mirkowa, Halina; Prosser, Filippo; Puşcaş, Mihai; Ronikier, Michał; Scheuerer, Martin; Schneeweiss, Gerald M; Schönswetter, Peter; Schratt-Ehrendorfer, Luise; Schüpfer, Fanny; Selvaggi, Alberto; Steinmann, Katharina; Thiel-Egenter, Conny; van Loo, Marcela; Winkler, Manuela; Wohlgemuth, Thomas; Wraber, Tone; Gugerli, Felix; Vellend, Mark

    2012-12-01

    The Convention on Biological Diversity (CBD) aims at the conservation of all three levels of biodiversity, that is, ecosystems, species and genes. Genetic diversity represents evolutionary potential and is important for ecosystem functioning. Unfortunately, genetic diversity in natural populations is hardly considered in conservation strategies because it is difficult to measure and has been hypothesised to co-vary with species richness. This means that species richness is taken as a surrogate of genetic diversity in conservation planning, though their relationship has not been properly evaluated. We tested whether the genetic and species levels of biodiversity co-vary, using a large-scale and multi-species approach. We chose the high-mountain flora of the Alps and the Carpathians as study systems and demonstrate that species richness and genetic diversity are not correlated. Species richness thus cannot act as a surrogate for genetic diversity. Our results have important consequences for implementing the CBD when designing conservation strategies. PMID:23006492

  6. EPA'S GENETIC DIVERSITY RESEARCH PROGRAM: ECOLOGICAL INDICATOR DEVELOPMENT

    EPA Science Inventory

    Genetic diversity is a fundamental component of biodiversity that is affected by environmental stressors in predictable ways and limits potential responses of a population to future stressors. Understanding patterns of genetic diversity enhances the value and interpretation of o...

  7. Inbreeding levels in swine: Ramifications for Genetic Diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Globally, genetic diversity of livestock populations is contracting. Knowing the true extent of the contraction is needed to develop effective conservation strategies. While contractions of genetic diversity have been documented at the breed level, little within breed documentation has occurred. ...

  8. Genetic diversity of Kenyan native oyster mushroom (Pleurotus).

    PubMed

    Otieno, Ojwang D; Onyango, Calvin; Onguso, Justus Mungare; Matasyoh, Lexa G; Wanjala, Bramwel W; Wamalwa, Mark; Harvey, Jagger J W

    2015-01-01

    Members of the genus Pleurotus, also commonly known as oyster mushroom, are well known for their socioeconomic and biotechnological potentials. Despite being one of the most important edible fungi, the scarce information about the genetic diversity of the species in natural populations has limited their sustainable utilization. A total of 71 isolates of Pleurotus species were collected from three natural populations: 25 isolates were obtained from Kakamega forest, 34 isolates from Arabuko Sokoke forest and 12 isolates from Mount Kenya forest. Amplified fragment length polymorphism (AFLP) was applied to thirteen isolates of locally grown Pleurotus species obtained from laboratory samples using five primer pair combinations. AFLP markers and internal transcribed spacer (ITS) sequences of the ribosomal DNA were used to estimate the genetic diversity and evaluate phylogenetic relationships, respectively, among and within populations. The five primer pair combinations generated 293 polymorphic loci across the 84 isolates. The mean genetic diversity among the populations was 0.25 with the population from Arabuko Sokoke having higher (0.27) diversity estimates compared to Mount Kenya population (0.24). Diversity between the isolates from the natural population (0.25) and commercial cultivars (0.24) did not differ significantly. However, diversity was greater within (89%; P > 0.001) populations than among populations. Homology search analysis against the GenBank database using 16 rDNA ITS sequences randomly selected from the two clades of AFLP dendrogram revealed three mushroom species: P. djamor, P. floridanus and P. sapidus; the three mushrooms form part of the diversity of Pleurotus species in Kenya. The broad diversity within the Kenyan Pleurotus species suggests the possibility of obtaining native strains suitable for commercial cultivation. PMID:25344263

  9. Genetic Diversity of US Sheep Breeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the genetic relationships between US sheep breeds is useful in developing conservation strategies and actions. A broad sampling of individual sheep from 28 breeds was performed. Breed types included: fine wool, meat types, long wool, hair, prolific, and fat tailed. Blood and semen samp...

  10. Analysis of genetic diversity of Lactarius hatsudake in south China.

    PubMed

    He, Li; Liang, Guo; Guoying, Zhou; Jun-ang, Liu

    2011-08-01

    Lactarius hatsudake is a type of ectomycorrhizal fungus that significantly influences the growth of pine trees. It is widely prevalent in Asian countries and has a high economic value. Artificial cultivation of this fungus has not been achieved as yet; therefore, excessive manual harvesting may cause serious damages to the site of its production. In this study, we analyzed 41 samples of L. hatsudake from south China using internal transcribed spacer (ITS) sequences. By comparing the differences among ITS sequences to identify the haplotype diversity within each population, the relationships among local populations, the relationship between the level of genetic differentiation and geographical separation, and the contributions of local and regional geographical separations to the overall ITS haplotype variation were analyzed. Genetic analysis indicates that ITS sequences obtained from these 41 L. hatsudake samples could be identified as 18 haplotypes, of which 13 haplotypes were contained in only a single sample, whereas the remaining sequence types all were contained in two or more samples. The most common sequence type, haplotype 6, was found in 16 samples and was distributed across nearly every region. The Mantel test demonstrated that there is no significant linear relationship between geographical distance and the F(ST) value of genetic difference. Results of this research illustrates that there exists a certain degree of genetic intermixing among natural populations of L. hatsudake. From the group genetic analysis, it appears that there exists genetic differentiation of lower frequencies in natural populations of L. hatsudake; however, the linear relationship between the degree of genetic differentiation and geographical distance is not distinctly apparent. PMID:21815833

  11. Genetic diversity of koala retroviral envelopes.

    PubMed

    Xu, Wenqin; Gorman, Kristen; Santiago, Jan Clement; Kluska, Kristen; Eiden, Maribeth V

    2015-03-01

    Genetic diversity, attributable to the low fidelity of reverse transcription, recombination and mutation, is an important feature of infectious retroviruses. Under selective pressure, such as that imposed by superinfection interference, gammaretroviruses commonly adapt their envelope proteins to use alternative receptors to overcome this entry block. The first characterized koala retroviruses KoRV subgroup A (KoRV-A) were remarkable in their absence of envelope genetic variability. Once it was determined that KoRV-A was present in all koalas in US zoos, regardless of their disease status, we sought to isolate a KoRV variant whose presence correlated with neoplastic malignancies. More than a decade after the identification of KoRV-A, we isolated a second subgroup of KoRV, KoRV-B from koalas with lymphomas. The envelope proteins of KoRV-A and KoRV-B are sufficiently divergent to confer the ability to bind and employ distinct receptors for infection. We have now obtained a number of additional KoRV envelope variants. In the present studies we report these variants, and show that they differ from KoRV-A and KoRV-B envelopes in their host range and superinfection interference properties. Thus, there appears to be considerable variation among KoRVs envelope genes suggesting genetic diversity is a factor following the KoRV-A infection process. PMID:25789509

  12. Does population size affect genetic diversity? A test with sympatric lizard species.

    PubMed

    Hague, M T J; Routman, E J

    2016-01-01

    Genetic diversity is a fundamental requirement for evolution and adaptation. Nonetheless, the forces that maintain patterns of genetic variation in wild populations are not completely understood. Neutral theory posits that genetic diversity will increase with a larger effective population size and the decreasing effects of drift. However, the lack of compelling evidence for a relationship between genetic diversity and population size in comparative studies has generated some skepticism over the degree that neutral sequence evolution drives overall patterns of diversity. The goal of this study was to measure genetic diversity among sympatric populations of related lizard species that differ in population size and other ecological factors. By sampling related species from a single geographic location, we aimed to reduce nuisance variance in genetic diversity owing to species differences, for example, in mutation rates or historical biogeography. We compared populations of zebra-tailed lizards and western banded geckos, which are abundant and short-lived, to chuckwallas and desert iguanas, which are less common and long-lived. We assessed population genetic diversity at three protein-coding loci for each species. Our results were consistent with the predictions of neutral theory, as the abundant species almost always had higher levels of haplotype diversity than the less common species. Higher population genetic diversity in the abundant species is likely due to a combination of demographic factors, including larger local population sizes (and presumably effective population sizes), faster generation times and high rates of gene flow with other populations. PMID:26306730

  13. The silent threat of low genetic diversity

    USGS Publications Warehouse

    Hunter, Margaret E.

    2013-01-01

    Across the Caribbean, protected coastal waters have served as primary feeding and breeding grounds for the endangered Antillean manatee. Unfortunately, these same coastal waters are also a popular “habitat” for humans. In the past, the overlap between human and manatee habitat allowed for manatee hunting and threatened the survival of these gentle marine mammals. Today, however, threats are much more inadvertent and are often related to coastal development, degraded habitats and boat strikes. In the state of Florida, decades of research on the species’ biological needs have helped conservationists address threats to its survival. For example, low wake zones and boater education have protected manatees from boat strikes, and many of their critical winter refuges are now protected. The Florida population has grown steadily, thus increasing from approximately 1,200 in 1991 to more than 5,000 in 2010. It is conceivable that in Florida manatees may one day be reclassified as “threatened” rather than “endangered.” Yet, in other parts of the Caribbean, threats still loom. This includes small, isolated manatee populations found on islands that can be more susceptible to extinction and lack of genetic diversity. To ensure the species’ long-term viability, scientists have turned their sights to the overall population dynamics of manatees throughout the Caribbean. Molecular genetics has provided new insights into long-term threats the species faces. Fortunately, the emerging field of conservation genetics provides managers with tools and strategies for protecting the species’ long-term viability.

  14. Assessment of Genetic Diversity and Population Genetic Structure of Corylus mandshurica in China Using SSR Markers

    PubMed Central

    Zong, Jian-Wei; Zhao, Tian-Tian; Ma, Qing-Hua; Liang, Li-Song; Wang, Gui-Xi

    2015-01-01

    Corylus mandshurica, also known as pilose hazelnut, is an economically and ecologically important species in China. In this study, ten polymorphic simple sequence repeat (SSR) markers were applied to evaluate the genetic diversity and population structure of 348 C. mandshurica individuals among 12 populations in China. The SSR markers expressed a relatively high level of genetic diversity (Na = 15.3, Ne = 5.6604, I = 1.8853, Ho = 0.6668, and He = 0.7777). According to the coefficient of genetic differentiation (Fst = 0.1215), genetic variation within the populations (87.85%) were remarkably higher than among populations (12.15%). The average gene flow (Nm = 1.8080) significantly impacts the genetic structure of C. mandshurica populations. The relatively high gene flow (Nm = 1.8080) among wild C. mandshurica may be caused by wind-pollinated flowers, highly nutritious seeds and self-incompatible mating system. The UPGMA (unweighted pair group method of arithmetic averages) dendrogram was divided into two main clusters. Moreover, the results of STRUCTURE analysis suggested that C. mandshurica populations fell into two main clusters. Comparison of the UPGMA dendrogram and the Bayesian STRUCTURE analysis showed general agreement between the population subdivisions and the genetic relationships among populations of C. mandshurica. Group I accessions were located in Northeast China, while Group II accessions were in North China. It is worth noting that a number of genetically similar populations were located in the same geographic region. The results further showed that there was obvious genetic differentiation among populations from Northeast China to North China. Results from the Mantel test showed a weak but still significant positive correlation between Nei’s genetic distance and geographic distance (km) among populations (r = 0.419, P = 0.005), suggesting that genetic differentiation in the 12 C. mandshurica populations might be related to geographic distance

  15. Assessment of Genetic Diversity and Population Genetic Structure of Corylus mandshurica in China Using SSR Markers.

    PubMed

    Zong, Jian-Wei; Zhao, Tian-Tian; Ma, Qing-Hua; Liang, Li-Song; Wang, Gui-Xi

    2015-01-01

    Corylus mandshurica, also known as pilose hazelnut, is an economically and ecologically important species in China. In this study, ten polymorphic simple sequence repeat (SSR) markers were applied to evaluate the genetic diversity and population structure of 348 C. mandshurica individuals among 12 populations in China. The SSR markers expressed a relatively high level of genetic diversity (Na = 15.3, Ne = 5.6604, I = 1.8853, Ho = 0.6668, and He = 0.7777). According to the coefficient of genetic differentiation (Fst = 0.1215), genetic variation within the populations (87.85%) were remarkably higher than among populations (12.15%). The average gene flow (Nm = 1.8080) significantly impacts the genetic structure of C. mandshurica populations. The relatively high gene flow (Nm = 1.8080) among wild C. mandshurica may be caused by wind-pollinated flowers, highly nutritious seeds and self-incompatible mating system. The UPGMA (unweighted pair group method of arithmetic averages) dendrogram was divided into two main clusters. Moreover, the results of STRUCTURE analysis suggested that C. mandshurica populations fell into two main clusters. Comparison of the UPGMA dendrogram and the Bayesian STRUCTURE analysis showed general agreement between the population subdivisions and the genetic relationships among populations of C. mandshurica. Group I accessions were located in Northeast China, while Group II accessions were in North China. It is worth noting that a number of genetically similar populations were located in the same geographic region. The results further showed that there was obvious genetic differentiation among populations from Northeast China to North China. Results from the Mantel test showed a weak but still significant positive correlation between Nei's genetic distance and geographic distance (km) among populations (r = 0.419, P = 0.005), suggesting that genetic differentiation in the 12 C. mandshurica populations might be related to geographic distance. These

  16. Genetic diversity and maternal origin of Bangladeshi chicken.

    PubMed

    Bhuiyan, M S A; Chen, Shanyuan; Faruque, S; Bhuiyan, A K F H; Beja-Pereira, Albano

    2013-06-01

    Local domestic chicken populations are of paramount importance as a source of protein in developing countries. Bangladesh possesses a large number of native chicken populations which display a broad range of phenotypes well adapted to the extreme wet and hot environments of this region. This and the fact that wild jungle fowls (JFs) are still available in some regions of the country, it urges to study the present genetic diversity and relationships between Bangladeshi autochthonous chicken populations. Here, we report the results of the mitochondrial DNA (mtDNA) sequence polymorphisms analyses to assess the genetic diversity and possible maternal origin of Bangladeshi indigenous chickens. A 648-bp fragment of mtDNA control region (D-loop) was analyzed in 96 samples from four different chicken populations and one red JF population. Sequence analysis revealed 39 variable sites that defined 25 haplotypes. Estimates of haplotype and nucleotide diversities ranged from 0.745 to 0.901 and from 0.011 to 0.016, respectively. The pairwise differences between populations ranged from 0.091 to 1.459 while most of the PhiST (ΦST) values were significant. Furthermore, AMOVA analysis revealed 89.16 % of the total genetic diversity was accounted for within population variation, indicating little genetic differentiation among the studied populations. The median network analysis from haplotypes of Bangladeshi chickens illustrated five distinct mitochondrial haplogroups (A, D, E, F and I). Individuals from all Bangladeshi chicken populations were represented in the major clades D and E; those maternal origins are presumed to be from Indian Subcontinent and Southeast Asian countries, more particularly from South China, Vietnam, Myanmar and Thailand. Further, phylogenetic analysis between indigenous chicken populations and sub-species of red JFs showed G. g. gallus and G. g. spadiceus shared with almost all haplogroups and had major influence than G. g. murghi in the origin of

  17. Genetic diversity and species diversity of stream fishes covary across a land-use gradient

    USGS Publications Warehouse

    Blum, M.J.; Bagley, M.J.; Walters, D.M.; Jackson, S.A.; Daniel, F.B.; Chaloud, D.J.; Cade, B.S.

    2012-01-01

    Genetic diversity and species diversity are expected to covary according to area and isolation, but may not always covary with environmental heterogeneity. In this study, we examined how patterns of genetic and species diversity in stream fishes correspond to local and regional environmental conditions. To do so, we compared population size, genetic diversity and divergence in central stonerollers (Campostoma anomalum) to measures of species diversity and turnover in stream fish assemblages among similarly sized watersheds across an agriculture-forest land-use gradient in the Little Miami River basin (Ohio, USA). Significant correlations were found in many, but not all, pair-wise comparisons. Allelic richness and species richness were strongly correlated, for example, but diversity measures based on allele frequencies and assemblage structure were not. In-stream conditions related to agricultural land use were identified as significant predictors of genetic diversity and species diversity. Comparisons to population size indicate, however, that genetic diversity and species diversity are not necessarily independent and that variation also corresponds to watershed location and glaciation history in the drainage basin. Our findings demonstrate that genetic diversity and species diversity can covary in stream fish assemblages, and illustrate the potential importance of scaling observations to capture responses to hierarchical environmental variation. More comparisons according to life history variation could further improve understanding of conditions that give rise to parallel variation in genetic diversity and species diversity, which in turn could improve diagnosis of anthropogenic influences on aquatic ecosystems. ?? 2011 Springer-Verlag.

  18. Genetic diversity is related to climatic variation and vulnerability in threatened bull trout

    USGS Publications Warehouse

    Kovach, Ryan; Muhlfeld, Clint C.; Wade, Alisa A.; Hand, Brian K.; Whited, Diane C.; DeHaan, Patrick W.; Al-Chokhachy, Robert K.; Luikart, Gordon

    2015-01-01

    Understanding how climatic variation influences ecological and evolutionary processes is crucial for informed conservation decision-making. Nevertheless, few studies have measured how climatic variation influences genetic diversity within populations or how genetic diversity is distributed across space relative to future climatic stress. Here, we tested whether patterns of genetic diversity (allelic richness) were related to climatic variation and habitat features in 130 bull trout (Salvelinus confluentus) populations from 24 watersheds (i.e., ~4–7th order river subbasins) across the Columbia River Basin, USA. We then determined whether bull trout genetic diversity was related to climate vulnerability at the watershed scale, which we quantified on the basis of exposure to future climatic conditions (projected scenarios for the 2040s) and existing habitat complexity. We found a strong gradient in genetic diversity in bull trout populations across the Columbia River Basin, where populations located in the most upstream headwater areas had the greatest genetic diversity. After accounting for spatial patterns with linear mixed models, allelic richness in bull trout populations was positively related to habitat patch size and complexity, and negatively related to maximum summer temperature and the frequency of winter flooding. These relationships strongly suggest that climatic variation influences evolutionary processes in this threatened species and that genetic diversity will likely decrease due to future climate change. Vulnerability at a watershed scale was negatively correlated with average genetic diversity (r = −0.77;P < 0.001); watersheds containing populations with lower average genetic diversity generally had the lowest habitat complexity, warmest stream temperatures, and greatest frequency of winter flooding. Together, these findings have important conservation implications for bull trout and other imperiled species. Genetic diversity is already

  19. Genetic Diversity and Population Structure of Teosinte

    PubMed Central

    Fukunaga, Kenji; Hill, Jason; Vigouroux, Yves; Matsuoka, Yoshihiro; Sanchez G., Jesus; Liu, Kejun; Buckler, Edward S.; Doebley, John

    2005-01-01

    The teosintes, the closest wild relatives of maize, are important resources for the study of maize genetics and evolution and for plant breeding. We genotyped 237 individual teosinte plants for 93 microsatellites. Phylogenetic relationships among species and subspecific taxa were largely consistent with prior analyses for other types of molecular markers. Plants of all species formed monophyletic clades, although relationships among species were not fully resolved. Phylogenetic analysis indicated that the Mexican annual teosintes divide into two clusters that largely correspond to the previously defined subspecies, Z. mays ssp. parviglumis and ssp. mexicana, although there are a few samples that represent either evolutionary intermediates or hybrids between these two subspecies. The Mexican annual teosintes show genetic substructuring along geographic lines. Hybridization or introgression between some teosintes and maize occurs at a low level and appears most common with Z. mays ssp. mexicana. Phylogeographic and phylogenetic analyses of the Mexican annual teosintes indicated that ssp. parviglumis diversified in the eastern part of its distribution and spread from east to west and that ssp. mexicana diversified in the Central Plateau of Mexico and spread along multiple paths to the north and east. We defined core sets of collections of Z. mays ssp. mexicana and ssp. parviglumis that attempt to capture the maximum number of microsatellite alleles for given sample sizes. PMID:15687282

  20. Does genetic diversity limit disease spread in natural host populations?

    PubMed Central

    King, K C; Lively, C M

    2012-01-01

    It is a commonly held view that genetically homogenous host populations are more vulnerable to infection than genetically diverse populations. The underlying idea, known as the ‘monoculture effect,' is well documented in agricultural studies. Low genetic diversity in the wild can result from bottlenecks (that is, founder effects), biparental inbreeding or self-fertilization, any of which might increase the risk of epidemics. Host genetic diversity could buffer populations against epidemics in nature, but it is not clear how much diversity is required to prevent disease spread. Recent theoretical and empirical studies, particularly in Daphnia populations, have helped to establish that genetic diversity can reduce parasite transmission. Here, we review the present theoretical work and empirical evidence, and we suggest a new focus on finding ‘diversity thresholds.' PMID:22713998

  1. Genetic diversity of coronaviruses in Miniopterus fuliginosus bats.

    PubMed

    Du, Jiang; Yang, Li; Ren, Xianwen; Zhang, Junpeng; Dong, Jie; Sun, Lilian; Zhu, Yafang; Yang, Fan; Zhang, Shuyi; Wu, Zhiqiang; Jin, Qi

    2016-06-01

    Coronaviruses, such as severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus, pose significant public health threats. Bats have been suggested to act as natural reservoirs for both these viruses, and periodic monitoring of coronaviruses in bats may thus provide important clues about emergent infectious viruses. The Eastern bent-wing bat Miniopterus fuliginosus is distributed extensively throughout China. We therefore analyzed the genetic diversity of coronaviruses in samples of M. fuliginosus collected from nine Chinese provinces during 2011-2013. The only coronavirus genus found was Alphacoronavirus. We established six complete and five partial genomic sequences of alphacoronaviruses, which revealed that they could be divided into two distinct lineages, with close relationships to coronaviruses in Miniopterus magnater and Miniopterus pusillus. Recombination was confirmed by detecting putative breakpoints of Lineage 1 coronaviruses in M. fuliginosus and M. pusillus (Wu et al., 2015), which supported the results of topological and phylogenetic analyses. The established alphacoronavirus genome sequences showed high similarity to other alphacoronaviruses found in other Miniopterus species, suggesting that their transmission in different Miniopterus species may provide opportunities for recombination with different alphacoronaviruses. The genetic information for these novel alphacoronaviruses will improve our understanding of the evolution and genetic diversity of coronaviruses, with potentially important implications for the transmission of human diseases. PMID:27125516

  2. Population size and time since island isolation determine genetic diversity loss in insular frog populations.

    PubMed

    Wang, Supen; Zhu, Wei; Gao, Xu; Li, Xianping; Yan, Shaofei; Liu, Xuan; Yang, Ji; Gao, Zengxiang; Li, Yiming

    2014-02-01

    Understanding the factors that contribute to loss of genetic diversity in fragmented populations is crucial for conservation measurements. Land-bridge archipelagoes offer ideal model systems for identifying the long-term effects of these factors on genetic variations in wild populations. In this study, we used nine microsatellite markers to quantify genetic diversity and differentiation of 810 pond frogs (Pelophylax nigromaculatus) from 24 islands of the Zhoushan Archipelago and three sites on nearby mainland China and estimated the effects of the island area, population size, time since island isolation, distance to the mainland and distance to the nearest larger island on reduced genetic diversity of insular populations. The mainland populations displayed higher genetic diversity than insular populations. Genetic differentiations and no obvious gene flow were detected among the frog populations on the islands. Hierarchical partitioning analysis showed that only time since island isolation (square-root-transformed) and population size (log-transformed) significantly contributed to insular genetic diversity. These results suggest that decreased genetic diversity and genetic differentiations among insular populations may have been caused by random genetic drift following isolation by rising sea levels during the Holocene. The results provide strong evidence for a relationship between retained genetic diversity and population size and time since island isolation for pond frogs on the islands, consistent with the prediction of the neutral theory for finite populations. Our study highlights the importance of the size and estimated isolation time of populations in understanding the mechanisms of genetic diversity loss and differentiation in fragmented wild populations. PMID:24351057

  3. Genetic landscapes GIS Toolbox: tools to map patterns of genetic divergence and diversity.

    USGS Publications Warehouse

    Vandergast, Amy G.; Perry, William M.; Lugo, Roberto V.; Hathaway, Stacie A.

    2011-01-01

    The Landscape Genetics GIS Toolbox contains tools that run in the Geographic Information System software, ArcGIS, to map genetic landscapes and to summarize multiple genetic landscapes as average and variance surfaces. These tools can be used to visualize the distribution of genetic diversity across geographic space and to study associations between patterns of genetic diversity and geographic features or other geo-referenced environmental data sets. Together, these tools create genetic landscape surfaces directly from tables containing genetic distance or diversity data and sample location coordinates, greatly reducing the complexity of building and analyzing these raster surfaces in a Geographic Information System.

  4. Status of genetic diversity of U. S. dairy goat breeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic diversity underpins the livestock breeders’ ability to improve the production potential of their livestock. Therefore, it is important to periodically assess genetic diversity within a breed. Such an analysis was conducted on U.S. dairy goat breeds: Alpine, LaMancha, Nigerian Dwarf, Nubian, ...

  5. Comparison of Genetic Diversity Between US and Kazak Sheep Breeds.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To secure US genetic diversity it is beneficial to compare US and non-US breeds. Such information may also be used to identify areas of sampling for diverse genetic resources. Kazakhstan (KZ) provides an interesting comparison due to its history of sheep production and proximity to the Silk Route, w...

  6. Status of genetic diversity of U. S. dairy goat breeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic diversity underpins the livestock breeders’ ability to improve the production potential of their livestock. Therefore, it is important to periodically assess genetic diversity within a breed. Such an analysis was conducted on U.S. dairy goat breeds and this article is an overview of that wo...

  7. Bovine herpesvirus-1: Genetic diversity of field strains from cattle with respiratory disease, genital, fetal disease and systemic neonatal disease and their relationship to vaccine strains.

    PubMed

    Fulton, R W; d'Offay, J M; Dubovi, E J; Eberle, R

    2016-09-01

    Bovine herpesvirus-1 (BoHV-1) causes disease in cattle with varied clinical forms. In the U.S. there are two BoHV1 subtypes, BoHV-1.1 and BoHV-1.2b. Control programs in North America incorporate modified live (MLV) or killed (KV) viral vaccines. However, BoHV-1 strains continue to be isolated from diseased animals or fetuses after vaccination. It is possible to differentiate BoHV-1 wild-type from MLV vaccine strains by determining their single nucleotide polymorphism (SNP) patterns through either whole-genome sequencing or PCR sequencing of genomic regions containing vaccine-defining SNPs. To determine the BoHV-1 subtype in clinical isolates and their relationship to MLV strains, 8 isolates from varied clinical disease at three different laboratories in the U.S. were sequenced and phylogenetically analyzed. Five samples were isolated within the past 5 years from New York and 3 were archived samples recovered 35 years prior from Oklahoma and Louisiana. Based on phylogenetic analysis, four of the cases appeared to be due to an MLV vaccine: 3 cases of aborted fetuses and one neonate with systemic BoHV-1 disease. One aborted fetus was from a herd with no reported history of MLV vaccination in two years. The remaining four isolates did not group with any MLV vaccines: two were associated with bovine respiratory disease, one with vulvovaginitis, and a fourth was determined to be a BoHV-1.2b respiratory isolate. Recovery of BoHV-1.1 that is very closely related to an MLV vaccine virus from a herd not receiving vaccines in an extended period prior to its isolation suggests that MLV viruses may remain latent or circulate within herds for long periods. PMID:27374060

  8. Genetic relationships of the Portuguese Lidia bovine populations

    PubMed Central

    Correia, P; Baron, E; da Silva, J. M; Cortés, O

    2014-01-01

    To clarify the genetic relationships among the Lidia breed lineages and two main Portuguese Lidia bovine populations, Casta Portuguesa and Brava dos Açores, 24 autosomal microsatellites were analyzed in 120 samples. Brava dos Açores showed the highest observed and expected heterozygosity (0.73 and 0.70, respectively) while Casta Portuguesa showed the lowest observed and expected heterozygosity (0.51 and 0.50, respectively). The results of this study were compared with the previous microsatellites data from the main Lidia bovine lineages. Casta Portuguesa was the most genetically isolated Lidia bovine population as revealed by the average FST genetic distance value with respect to the other lineages (32%). All the populations of Portuguese Lidia had negative FIS values. The Neighbour-joining dendrogram grouped Casta Portuguesa in the same branch with Miura, which was supported by the STRUCTURE software. The results evidenced low levels of genetic diversity and high levels of genetic differentiation in Casta Portuguesa and high levels of genetic diversity in Brava dos Açores populations, probably due to the crossbreeding of different bovine lineages at origin, and genetic flow among herds. PMID:27175132

  9. The Effect and Relative Importance of Neutral Genetic Diversity for Predicting Parasitism Varies across Parasite Taxa

    PubMed Central

    Ruiz-López, María José; Monello, Ryan J.; Gompper, Matthew E.; Eggert, Lori S.

    2012-01-01

    Understanding factors that determine heterogeneity in levels of parasitism across individuals is a major challenge in disease ecology. It is known that genetic makeup plays an important role in infection likelihood, but the mechanism remains unclear as does its relative importance when compared to other factors. We analyzed relationships between genetic diversity and macroparasites in outbred, free-ranging populations of raccoons (Procyon lotor). We measured heterozygosity at 14 microsatellite loci and modeled the effects of both multi-locus and single-locus heterozygosity on parasitism using an information theoretic approach and including non-genetic factors that are known to influence the likelihood of parasitism. The association of genetic diversity and parasitism, as well as the relative importance of genetic diversity, differed by parasitic group. Endoparasite species richness was better predicted by a model that included genetic diversity, with the more heterozygous hosts harboring fewer endoparasite species. Genetic diversity was also important in predicting abundance of replete ticks (Dermacentor variabilis). This association fit a curvilinear trend, with hosts that had either high or low levels of heterozygosity harboring fewer parasites than those with intermediate levels. In contrast, genetic diversity was not important in predicting abundance of non-replete ticks and lice (Trichodectes octomaculatus). No strong single-locus effects were observed for either endoparasites or replete ticks. Our results suggest that in outbred populations multi-locus diversity might be important for coping with parasitism. The differences in the relationships between heterozygosity and parasitism for the different parasites suggest that the role of genetic diversity varies with parasite-mediated selective pressures. PMID:23049796

  10. Endemic insular and coastal Tunisian date palm genetic diversity.

    PubMed

    Zehdi-Azouzi, Salwa; Cherif, Emira; Guenni, Karim; Abdelkrim, Ahmed Ben; Bermil, Aymen; Rhouma, Soumaya; Salah, Mohamed Ben; Santoni, Sylvain; Pintaud, Jean Christophe; Aberlenc-Bertossi, Frédérique; Hannachi, Amel Salhi

    2016-04-01

    The breeding of crop species relies on the valorisation of ancestral or wild varieties to enrich the cultivated germplasm. The Tunisian date palm genetic patrimony is being threatened by diversity loss and global climate change. We have conducted a genetic study to evaluate the potential of spontaneous coastal resources to improve the currently exploited Tunisian date palm genetic pool. Eighteen microsatellite loci of Phoenix dactylifera L. were used to compare the genetic diversity of coastal accessions from Kerkennah, Djerba, Gabès and continental date palm accessions from Tozeur. A collection of 105 date palms from the four regions was analysed. This study has provided us with an extensive understanding of the local genetic diversity and its distribution. The coastal date palm genotypes exhibit a high and specific genetic diversity. These genotypes are certainly an untapped reservoir of agronomically important genes to improve cultivated germplasm in continental date palm. PMID:26895027

  11. Genetic diversity of a newly established population of golden eagles on the Channel Islands, California

    USGS Publications Warehouse

    Sonsthagen, Sarah A.; Coonan, Timothy J.; Latta, Brian C.; Sage, George K.; Talbot, Sandra L.

    2012-01-01

    Gene flow can have profound effects on the genetic diversity of a founding population depending on the number and relationship among colonizers and the duration of the colonization event. Here we used data from nuclear microsatellite and mitochondrial DNA control region loci to assess genetic diversity in golden eagles of the recently colonized Channel Islands, California. Genetic diversity in the Channel Island population was low, similar to signatures observed for other recent colonizing island populations. Differences in levels of genetic diversity and structure observed between mainland California and the islands suggests that few individuals were involved in the initial founding event, and may have comprised a family group. The spatial genetic structure observed between Channel Island and mainland California golden eagle populations across marker types, and genetic signature of population decline observed for the Channel Island population, suggest a single or relatively quick colonization event. Polarity in gene flow estimates based on mtDNA confirm an initial colonization of the Channel Islands by mainland golden eagles, but estimates from microsatellite data suggest that golden eagles on the islands were dispersing more recently to the mainland, possibly after reaching the carrying capacity of the island system. These results illustrate the strength of founding events on the genetic diversity of a population, and confirm that changes to genetic diversity can occur within just a few generations.

  12. Comparative riverscape genetics reveals reservoirs of genetic diversity for conservation and restoration of Great Plains fishes

    PubMed Central

    Osborne, Megan J; Perkin, Joshuah S.; Gido, Keith B.; Turner, Thomas F.

    2014-01-01

    We used comparative landscape genetics to examine the relative roles of historical events, intrinsic traits, and landscape factors in determining the distribution of genetic diversity of river fishes across the North American Great Plains. Spatial patterns of diversity were overlaid on a patch-based graphical model, and then compared within and among three species that co-occurred across five Great Plains watersheds. Species differing in reproductive strategy (benthic vs. pelagic spawning) were hypothesized to have different patterns of genetic diversity, but the overriding factor shaping contemporary patterns of diversity was the signature of past climates and geological history. Allelic diversity was significantly higher at southern latitudes for Cyprinella lutrensis and Hybognathus placitus, consistent with northward expansion from southern Pleistocene refugia. Within the historical context, all species exhibited lowered occupancy and abundance in heavily fragmented and drier upstream reaches, particularly H. placitus; a pelagic-spawning species, suggesting rates of extirpation have outpaced losses of genetic diversity in this species. Within most basins, genetically diverse populations of each species persisted. Hence, reconnecting genetically diverse populations with those characterized by reduced diversity (regardless of their position within the riverine network) would provide populations with greater genetic and demographic resilience. We discuss cases where cross-basin transfer may be appropriate to enhance genetic diversity and mitigate negative effects of climate change. Overall, striking similarities in genetic patterns and response to fragmentation and dewatering suggest a common strategy for genetic resource management in this unique riverine fish assemblage. PMID:25327780

  13. Beauveria bassiana: Quercetinase production and genetic diversity

    PubMed Central

    Eula Maria de M. B., Costa; Fabiana Cristina, Pimenta; Christian, Luz; Valéria de, Oliveira; Marília, Oliveira; Elda, Bueno; Silvana, Petrofeza

    2011-01-01

    Beauveria bassiana genetic diversity and ability to synthesize quercetin 2,3-dioxygenase (quercetinase) were analyzed. B. bassiana isolates, obtained from Brazilian soil samples, produced quercetinase after induction using 0.5 g/L quercetin. B. bassiana ATCC 7159 (29.6 nmol/mL/min) and isolate IP 11 (27.5 nmol/ml/min) showed the best performances and IP 3a (9.5 nmol/mL/min) presented the lowest level of quercetinase activity in the culture supernatant. A high level of polymorphism was detected by random amplified polymorphic DNA (RAPD) analysis. The use of internal-transcribed-spacer ribosomal region restriction fragment length polymorphism (ITS-RFLP) did not reveal characteristic markers to differentiate isolates. However, the ITS1-5.8S-ITS2 region sequence analysis provided more information on polymorphism among the isolates, allowing them to be clustered by relative similarity into three large groups. Correlation was tested according to the Person's correlation. Data of our studies showed, that lower associations among groups, level of quercetinase production, or geographical origin could be observed. This study presents the production of a novel biocatalyst by B. bassiana and suggests the possible industrial application of this fungal species in large-scale biotechnological manufacture of quercetinase. PMID:24031599

  14. Centennial olive trees as a reservoir of genetic diversity

    PubMed Central

    Díez, Concepción M.; Trujillo, Isabel; Barrio, Eladio; Belaj, Angjelina; Barranco, Diego; Rallo, Luis

    2011-01-01

    Background and Aims Genetic characterization and phylogenetic analysis of the oldest trees could be a powerful tool both for germplasm collection and for understanding the earliest origins of clonally propagated fruit crops. The olive tree (Olea europaea L.) is a suitable model to study the origin of cultivars due to its long lifespan, resulting in the existence of both centennial and millennial trees across the Mediterranean Basin. Methods The genetic identity and diversity as well as the phylogenetic relationships among the oldest wild and cultivated olives of southern Spain were evaluated by analysing simple sequence repeat markers. Samples from both the canopy and the roots of each tree were analysed to distinguish which trees were self-rooted and which were grafted. The ancient olives were also put into chronological order to infer the antiquity of traditional olive cultivars. Key Results Only 9·6 % out of 104 a priori cultivated ancient genotypes matched current olive cultivars. The percentage of unidentified genotypes was higher among the oldest olives, which could be because they belong to ancient unknown cultivars or because of possible intra-cultivar variability. Comparing the observed patterns of genetic variation made it possible to distinguish which trees were grafted onto putative wild olives. Conclusions This study of ancient olives has been fruitful both for germplasm collection and for enlarging our knowledge about olive domestication. The findings suggest that grafting pre-existing wild olives with olive cultivars was linked to the beginnings of olive growing. Additionally, the low number of genotypes identified in current cultivars points out that the ancient olives from southern Spain constitute a priceless reservoir of genetic diversity. PMID:21852276

  15. On the relative roles of background selection and genetic hitchhiking in shaping human cytomegalovirus genetic diversity.

    PubMed

    Renzette, Nicholas; Kowalik, Timothy F; Jensen, Jeffrey D

    2016-01-01

    A central focus of population genetics has been examining the contribution of selective and neutral processes in shaping patterns of intraspecies diversity. In terms of selection specifically, surveys of higher organisms have shown considerable variation in the relative contributions of background selection and genetic hitchhiking in shaping the distribution of polymorphisms, although these analyses have rarely been extended to bacteria and viruses. Here, we study the evolution of a ubiquitous, viral pathogen, human cytomegalovirus (HCMV), by analysing the relationship among intraspecies diversity, interspecies divergence and rates of recombination. We show that there is a strong correlation between diversity and divergence, consistent with expectations of neutral evolution. However, after correcting for divergence, there remains a significant correlation between intraspecies diversity and recombination rates, with additional analyses suggesting that this correlation is largely due to the effects of background selection. In addition, a small number of loci, centred on long noncoding RNAs, also show evidence of selective sweeps. These data suggest that HCMV evolution is dominated by neutral mechanisms as well as background selection, expanding our understanding of linked selection to a novel class of organisms. PMID:26211679

  16. Historical origins and genetic diversity of wine grapes.

    PubMed

    This, Patrice; Lacombe, Thierry; Thomas, Mark R

    2006-09-01

    The genomic resources that are available to the grapevine research community have increased enormously during the past five years, in parallel with a renewed interest in grapevine (Vitis vinifera L.) germplasm resources and analysis of genetic diversity in grapes. Genetic variation, either natural or induced, is invaluable for crop improvement and understanding gene function, and the same is true for the grapevine. The history and vineyard cultural practices have largely determined the genetic diversity that exists today in grapevines. In this article, we provide a synopsis of what is known about the origin and genetics of grapes and how molecular genetics is helping us understand more about this plant: its evolution, historical development, genetic diversity and potential for genetic improvement. PMID:16872714

  17. Multiple paternity does not depend on male genetic diversity

    PubMed Central

    Thonhauser, Kerstin E.; Raveh, Shirley; Penn, Dustin J.

    2014-01-01

    Polyandry is common in many species and it has been suggested that females engage in multiple mating to increase the genetic diversity of their offspring (genetic diversity hypothesis). Multiple paternity occurs in 30% of litters in wild populations of house mice, Mus musculus musculus, and multiple-sired litters are genetically more diverse than single-sired ones. Here, we aimed to test whether female house mice produce multiple-sired litters when they have the opportunity to produce genetically diverse litters. We assessed the rates of multiple paternity when females could choose to mate with two males that were genetically dissimilar to each other (i.e. nonsiblings and MHC dissimilar) compared with when females could choose to mate with two males that were genetically similar to each other (i.e. siblings and shared MHC alleles). Multiple mating may depend upon a female's own condition, and, therefore, we also tested whether inbred (from full-sibling matings) females were more likely to produce multiple-sired progeny than outbred controls. Overall we found that 29% of litters had multiple sires, but we found no evidence that females were more likely to produce multiple-sired litters when they had the opportunity to mate with genetically dissimilar males compared with controls, regardless of whether females were inbred or outbred. Thus, our findings do not support the idea that female mice increase multiple paternity when they have the opportunity to increase the genetic diversity of their offspring, as expected from the genetic diversity hypothesis. PMID:25018559

  18. Genetic diversity and population structure of cucumber (Cucumis sativus L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding genetic variation in germplasm collection is essential for the conservation and their efficient use in plant breeding. Cucumber is an important vegetable crop worldwide. Previous studies revealed a low genetic diversity in cucumber, but detailed insights into the crop’s genetic structu...

  19. Genetic diversity of Swiss sheep breeds in the focus of conservation research.

    PubMed

    Glowatzki-Mullis, M-L; Muntwyler, J; Bäumle, E; Gaillard, C

    2009-04-01

    There is constant pressure to improve evaluation of animal genetic resources in order to prevent their erosion. Maintaining the integrity of livestock species as well as their genetic diversity is of paramount interest for long-term agricultural policies. One major use of DNA techniques in conservation is to reveal genetic diversity within and between populations. Forty-one microsatellites were analysed to assess genetic diversity in nine Swiss sheep breeds and to measure the loss of the overall diversity when one breed would become extinct. The expected heterozygosities varied from 0.65 to 0.74 and 10.8% of the total genetic diversity can be explained by the variation among breeds. Based on the proportion of shared alleles, each of the nine breeds were clearly defined in their own cluster in the neighbour-joining tree describing the relationships among the breeds. Bayesian clustering methods assign individuals to groups based on their genetic similarity and infer the number of populations. In STRUCTURE, this approach pooled the Valais Blacknose and the Valais Red. With BAPS method the two Valais sheep breeds could be separated. Caballero & Toro approach (2002) was used to calculate the loss or gain of genetic diversity when each of the breeds would be removed from the set. The changes in diversity based on between-breed variation ranged from -12.2% (Valais Blacknose) to 0% (Swiss Black Brown Mountain and Mirror Sheep); based on within-breed diversity the removal of a breed could also produce an increase in diversity (-0.6% to + 0.6%). Allelic richness ranged from 4.9 (Valais Red) to 6.7 (Brown Headed Meat sheep and Red Engadine Sheep). Breed conservation decisions cannot be limited to genetic diversity alone. In Switzerland, conservation goals are embedded in the desire to carry the cultural legacy over to future generations. PMID:19320774

  20. Analysis of genetic diversity of Persea bombycina "Som" using RAPD-based molecular markers.

    PubMed

    Bhau, Brijmohan Singh; Medhi, Kalyani; Das, Ambrish P; Saikia, Siddhartha P; Neog, Kartik; Choudhury, S N

    2009-08-01

    The utility of RAPD markers in assessing genetic diversity and phenetic relationships in Persea bombycina, a major tree species for golden silk (muga) production, was investigated using 48 genotypes from northeast India. Thirteen RAPD primer combinations generated 93 bands. On average, seven RAPD fragments were amplified per reaction. In a UPGMA phenetic dendrogram based on Jaccard's coefficient, the P. bombycina accessions showed a high level of genetic variation, as indicated by genetic similarity. The grouping in the phenogram was highly consistent, as indicated by high values of cophenetic correlation and high bootstrap values at the key nodes. The accessions were scattered on a plot derived from principal correspondence analysis. The study concluded that the high level of genetic diversity in the P. bombycina accessions may be attributed to the species' outcrossing nature. This study may be useful in identifying diverse genetic stocks of P. bombycina, which may then be conserved on a priority basis. PMID:19424786

  1. Genetic Diversity and Population Differentiation of Calanthe tsoongiana, a Rare and Endemic Orchid in China

    PubMed Central

    Qian, Xin; Wang, Cai-xia; Tian, Min

    2013-01-01

    Calanthe tsoongiana is a rare terrestrial orchid endemic to China, and this species has experienced severe habitat loss and fragmentation. Inter-simple sequence repeat (ISSR) markers were employed to assess the genetic diversity and differentiation of six populations of C. tsoongiana. Based on 124 discernible fragments yielded by eleven selected primers, high genetic diversity was revealed at the species level; however, genetic diversity at the population level was relatively low. High-level genetic differentiation among populations was detected based on analysis of molecular variance (AMOVA), indicating potential limited gene flow. No significant relationship was observed between genetic and geographic distances among the sampled populations. These results suggested that restricted gene flow might be due to habitat fragmentation and reduced population size as a result of human activities. Based on the findings, several conservation strategies were proposed for the preservation of this threatened species. PMID:24129175

  2. Environmental factors influence both abundance and genetic diversity in a widespread bird species

    PubMed Central

    Liu, Yang; Webber, Simone; Bowgen, Katharine; Schmaltz, Lucie; Bradley, Katharine; Halvarsson, Peter; Abdelgadir, Mohanad; Griesser, Michael

    2013-01-01

    Genetic diversity is one of the key evolutionary variables that correlate with population size, being of critical importance for population viability and the persistence of species. Genetic diversity can also have important ecological consequences within populations, and in turn, ecological factors may drive patterns of genetic diversity. However, the relationship between the genetic diversity of a population and how this interacts with ecological processes has so far only been investigated in a few studies. Here, we investigate the link between ecological factors, local population size, and allelic diversity, using a field study of a common bird species, the house sparrow (Passer domesticus). We studied sparrows outside the breeding season in a confined small valley dominated by dispersed farms and small-scale agriculture in southern France. Population surveys at 36 locations revealed that sparrows were more abundant in locations with high food availability. We then captured and genotyped 891 house sparrows at 10 microsatellite loci from a subset of these locations (N = 12). Population genetic analyses revealed weak genetic structure, where each locality represented a distinct substructure within the study area. We found that food availability was the main factor among others tested to influence the genetic structure between locations. These results suggest that ecological factors can have strong impacts on both population size per se and intrapopulation genetic variation even at a small scale. On a more general level, our data indicate that a patchy environment and low dispersal rate can result in fine-scale patterns of genetic diversity. Given the importance of genetic diversity for population viability, combining ecological and genetic data can help to identify factors limiting population size and determine the conservation potential of populations. PMID:24363897

  3. Extreme genetic diversity in asexual grass thrips populations.

    PubMed

    Fontcuberta García-Cuenca, A; Dumas, Z; Schwander, T

    2016-05-01

    The continuous generation of genetic variation has been proposed as one of the main factors explaining the maintenance of sexual reproduction in nature. However, populations of asexual individuals may attain high levels of genetic diversity through within-lineage diversification, replicate transitions to asexuality from sexual ancestors and migration. How these mechanisms affect genetic variation in populations of closely related sexual and asexual taxa can therefore provide insights into the role of genetic diversity for the maintenance of sexual reproduction. Here, we evaluate patterns of intra- and interpopulation genetic diversity in sexual and asexual populations of Aptinothrips rufus grass thrips. Asexual A. rufus populations are found throughout the world, whereas sexual populations appear to be confined to few locations in the Mediterranean region. We found that asexual A. rufus populations are characterized by extremely high levels of genetic diversity, both in comparison with their sexual relatives and in comparison with other asexual species. Migration is extensive among asexual populations over large geographic distances, whereas close sexual populations are strongly isolated from each other. The combination of extensive migration with replicate evolution of asexual lineages, and a past demographic expansion in at least one of them, generated high local clone diversities in A. rufus. These high clone diversities in asexual populations may mimic certain benefits conferred by sex via genetic diversity and could help explain the extreme success of asexual A. rufus populations. PMID:26864612

  4. Distribution of genetic diversity among disjunct populations of the rare forest understory herb, Trillium reliquum.

    PubMed

    Gonzales, E; Hamrick, J L

    2005-10-01

    We assessed genetic diversity and its distribution in the rare southeastern US forest understory species, Trillium reliquum. In all, 21 loci were polymorphic (PS=95.5%) and the mean number of alleles per polymorphic locus was 3.05. However, genetic diversity was relatively low (Hes=0.120) considering the level of polymorphism observed for this outcrossing species. A relatively high portion of the genetic diversity (29.7%) was distributed among populations. There was no relationship between population size and genetic diversity, and we did not detect significant inbreeding. These results are best explained by the apparent self-incompatibility of this species, its longevity and clonal reproduction. To address questions regarding the history of T. reliquum's rarity, we compared results for T. reliquum with that of its more common and partially sympatric congener, T. cuneatum. Despite shared life history traits and history of land use, we observed significant genetic differences between the two species. Although T. cuneatum contains slightly lower polymorphism (Ps=85%), we detected significantly higher genetic diversity (Hes=0.217); most of its genetic diversity is contained within its populations (GST=0.092). Our results suggest that not only is there little gene flow among extant T. reliquum populations, but that rarity and population isolation in this species is of ancient origins, rather than due to more recent anthropogenic fragmentation following European colonization. The Chattahoochee River was identified as a major barrier to gene exchange. PMID:16094302

  5. Application of restriction site amplified polymorphism (RSAP) to genetic diversity in Saccharina japonica

    NASA Astrophysics Data System (ADS)

    Zhao, Cui; Liu, Cui; Li, Wei; Chi, Shan; Feng, Rongfang; Liu, Tao

    2013-07-01

    Restriction site amplified polymorphism (RSAP) was used, for the first time, to analyze the genetic structure and diversity of four, mainly cultivated, varieties of the brown alga, Saccharina japonica. Eighty-eight samples from varieties " Rongfu ", " Fujian ", " Ailunwan " and " Shengchanzhong " were used for the genetic analyses. One hundred and ninety-eight bands were obtained using eight combinations of primers. One hundred and ninety-one (96.46%) were polymorphic bands. Nei's genetic diversity was 0.360, and the coefficient of genetic differentiation was 0.357. No inbreeding-type recession was found in the four brown alga varieties and the results of the " Ailunwan " variety using samples from 2 years showed that the variety was becoming less diverse during the selection inherent in the breeding program. Genetic diversity and cluster analyses results were consistent with these genetic relationships. The results show the RSAP method is suitable for genetic analysis. Continuous inbreeding and selection could reduce the genetic diversity effectively; therefore periodical supervision is required.

  6. Genetic diversity in Monilinia laxa populations in stone fruit species in Hungary.

    PubMed

    Fazekas, Mónika; Madar, Anett; Sipiczki, Matthias; Miklós, Ida; Holb, Imre J

    2014-06-01

    The objectives of this study were firstly, to determine the genetic diversity of Monilinia laxa isolates from Hungary, using the PCR-based inter-simple sequence repeat (ISSR) and randomly amplified polymorphic DNA (RAPD) technique; secondly, to prepare genetic diversity groups based on the dendrograms; and finally, to select some relevant isolates to study their fungicide sensitivity. 55 and 77 random amplified polymorphic ISSR and RAPD markers, of which 23 and 18 were polymorphic and 32 and 59 monomorphic, respectively, were used to assess the genetic diversity and to study the structure of M. laxa populations in Hungary. 27 isolates out of 57 ones were confirmed as M. laxa from several orchards (subpopulations) in three geographical regions, in various inoculum sources and in various hosts, were used. 10 fungicides and 12 isolates selected from genetic diversity groups based on the ISSR dendrograms were used to determine the fungicide sensitivity of the selected isolates. The analysis of population structure revealed that genetic diversity within locations, inoculum sources and host (H(S)) accounted for 99 % of the total genetic diversity (H(T)), while genetic diversity among locations, inoculum sources and host represented only 1 %. The relative magnitude of gene differentiation between subpopulations (G(ST)) and the estimate of the number of migrants per generation (Nm) averaged 0.005-0.009 and 53.9-99.2, respectively, for both ISSR and RAPD data set. The results obtained in dendrograms were in accordance with the gene diversity analysis. Grouping of isolates in the dendrograms was irrespective of whether they came from the same or different geographical locations. There was no relationship between clustering among isolates from inoculum sources and hosts. In the fungicide sensitivity tests, five isolates out of 12 were partly insensitive to boscalid+piraclostrobin, cyprodinil, fenhexamid or prochloraz. Obtained results in genetic diversity of M. laxa

  7. The Genetic Relationship between Indentical Twins.

    ERIC Educational Resources Information Center

    Herman, Rosemary

    1984-01-01

    Reviews current research on a woman's chances of bearing twins and the genetic relationship, prenatal competition, and personality similarities between twins. In addition, the nature/nurture controversy is discussed in terms of evidence from studies of identical twins reared apart. Future studies are suggested to discover the ways twinning might…

  8. Analysis of the genetic diversity of super sweet corn inbred lines using SSR and SSAP markers.

    PubMed

    Ko, W R; Sa, K J; Roy, N S; Choi, H-J; Lee, J K

    2016-01-01

    In this study, we compared the efficiency of simple sequence repeat (SSR) and sequence specific amplified polymorphism (SSAP) markers for analyzing genetic diversity, genetic relationships, and population structure of 87 super sweet corn inbred lines from different origins. SSR markers showed higher average gene diversity and Shannon's information index than SSAP markers. To assess genetic relationships and characterize inbred lines using SSR and SSAP markers, genetic similarity (GS) matrices were constructed. The dendrogram using SSR marker data showed a complex pattern with nine clusters and a GS of 53.0%. For SSAP markers, three clusters were observed with a GS of 50.8%. Results of combined marker data showed six clusters with 53.5% GS. To analyze the genetic population structure of SSR and SSAP marker data, the 87 inbred lines were divided into groups I, II, and admixed based on the membership probability threshold of 0.8. Using combined marker data, the population structure was K = 3 and was divided into groups I, II, III, and admixed. This study represents a comparative analysis of SSR and SSAP marker data for the study of genetic diversity and genetic relationships in super sweet corn inbred lines. Our results would be useful for maize-breeding programs in Korea. PMID:26909914

  9. Demographic Events and Evolutionary Forces Shaping European Genetic Diversity

    PubMed Central

    Veeramah, Krishna R.; Novembre, John

    2014-01-01

    Europeans have been the focus of some of the largest studies of genetic diversity in any species to date. Recent genome-wide data have reinforced the hypothesis that present-day European genetic diversity is strongly correlated with geography. The remaining challenge now is to understand more precisely how patterns of diversity in Europe reflect ancient demographic events such as postglacial expansions or the spread of farming. It is likely that recent advances in paleogenetics will give us some of these answers. There has also been progress in identifying specific segments of European genomes that reflect adaptations to selective pressures from the physical environment, disease, and dietary shifts. A growing understanding of how modern European genetic diversity has been shaped by demographic and evolutionary forces is not only of basic historical and anthropological interest but also aids genetic studies of disease. PMID:25059709

  10. Demographic events and evolutionary forces shaping European genetic diversity.

    PubMed

    Veeramah, Krishna R; Novembre, John

    2014-09-01

    Europeans have been the focus of some of the largest studies of genetic diversity in any species to date. Recent genome-wide data have reinforced the hypothesis that present-day European genetic diversity is strongly correlated with geography. The remaining challenge now is to understand more precisely how patterns of diversity in Europe reflect ancient demographic events such as postglacial expansions or the spread of farming. It is likely that recent advances in paleogenetics will give us some of these answers. There has also been progress in identifying specific segments of European genomes that reflect adaptations to selective pressures from the physical environment, disease, and dietary shifts. A growing understanding of how modern European genetic diversity has been shaped by demographic and evolutionary forces is not only of basic historical and anthropological interest but also aids genetic studies of disease. PMID:25059709

  11. Sexual selection and individual genetic diversity in a songbird.

    PubMed

    Marshall, Rupert C; Buchanan, Katherine L; Catchpole, Clive K

    2003-11-01

    Here, we report for the first time, to our knowledge, a strong correlation between a measure of individual genetic diversity and song complexity, a sexually selected male trait in sedge warblers, Acrocephalus schoenobaenus. We also find that females prefer to mate with males who will maximize this diversity in individual progeny. The genetic diversity of each offspring is further increased by means of nonrandom fertilization, as we also show that the fertilizing sperm contains a haplotype more genetically distant to that of the egg than expected by chance. These findings suggest that species' mating preferences may be subject to fine tuning aimed at increasing offspring viability through increased genetic diversity. This includes external and internal mechanisms of selection, even within the ejaculate of a single male. PMID:14667396

  12. Genetic diversity and structure in two protected Posidonia oceanica meadows.

    PubMed

    Micheli, Carla; D'Esposito, Daniela; Belmonte, Alessandro; Peirano, Andrea; Valiante, Luigi Maria; Procaccini, Gabriele

    2015-08-01

    Posidonia oceanica meadows growing along the west Mediterranean coastline are under continuous anthropogenic pressure. The way meadow health correlates with genetic and genotypic diversity in P. oceanica, is still under debate. Here we report a microsatellite analysis of two P. oceanica meadows living in protected areas of the Ligurian (Monterosso al Mare, MPA of "Cinque Terre") and central Tyrrhenian Sea (Santa Marinella, regional Site of Community Importance). Both meadows were recently classified as "disturbed", according to shoot density and other phenological parameters. Between the two meadows, Santa Marinella showed higher genetic diversity, while clear genetic substructure was present in both sites, reflecting high spatial heterogeneity. The present study suggests that genetic diversity does not match unequivocally with shoot density and leaf morphology and that small scale intra-meadow heterogeneity is an important factor to consider for establishing the relation between genetic/genotypic variability and health of natural seagrass meadows. PMID:26164681

  13. Genetic diversity based on SSR analysis of the cultured snakehead fish, Channa argus, (Channidae) in China.

    PubMed

    Zhu, S-R; Li, J-L; Xie, N; Zhu, L-M; Wang, Q; Yue, G-H

    2014-01-01

    The snakehead fish Channa argus is an important food fish in China. We identified six microsatellite loci for C. argus. These six microsatellite loci and four other microsatellite markers were used to analyze genetic diversity in four cultured populations of C. argus (SD, JX, HN, and ZJ) and determine their relationships. A total of 154 alleles were detected at the 10 microsatellite loci. The average expected and observed heterozygosities varied from 0.70-0.84 and 0.69-0.83, respectively, and polymorphism information content ranged between 0.66 and 0.82 in the four populations, indicating high genetic diversity. Population JX deviated from mutation-drift equilibrium and may have experienced a recent bottleneck. Analysis of pairwise genetic differentiation revealed FST values that ranged from 0.028 to 0.100, which indicates a moderate level of genetic differentiation. The largest distances were observed between populations HN and SD, whereas the smallest distances were obtained between populations HN and JX. Genetic clustering analysis demonstrated that the ZJ and HN populations probably share the same origin. This information about the genetic diversity within each of the four populations, and their genetic relationships will be useful for future genetic improvement of C. argus through selective breeding. PMID:24615092

  14. Implications of the apportionment of human genetic diversity for the apportionment of human phenotypic diversity

    PubMed Central

    Edge, Michael D.; Rosenberg, Noah A.

    2015-01-01

    Researchers in many fields have considered the meaning of two results about genetic variation for concepts of “race.” First, at most genetic loci, apportionments of human genetic diversity find that worldwide populations are genetically similar. Second, when multiple genetic loci are examined, it is possible to distinguish people with ancestry from different geographical regions. These two results raise an important question about human phenotypic diversity: To what extent do populations typically differ on phenotypes determined by multiple genetic loci? It might be expected that such phenotypes follow the pattern of similarity observed at individual loci. Alternatively, because they have a multilocus genetic architecture, they might follow the pattern of greater differentiation suggested by multilocus ancestry inference. To address the question, we extend a well-known classification model of Edwards (2003) by adding a selectively neutral quantitative trait. Using the extended model, we show, in line with previous work in quantitative genetics, that regardless of how many genetic loci influence the trait, one neutral trait is approximately as informative about ancestry as a single genetic locus. The results support the relevance of single-locus genetic-diversity partitioning for predictions about phenotypic diversity. PMID:25677859

  15. Inference of genetic diversity in popcorn S3 progenies.

    PubMed

    Pena, G F; do Amaral, A T; Ribeiro, R M; Ramos, H C C; Boechat, M S B; Santos, J S; Mafra, G S; Kamphorst, S H; de Lima, V J; Vivas, M; de Souza Filho, G A

    2016-01-01

    Molecular markers are a useful tool for identification of complementary heterotic groups in breeding programs aimed at the production of superior hybrids, particularly for crops such as popcorn in which heterotic groups are not well-defined. The objective of the present study was to analyze the genetic diversity of 47 genotypes of tropical popcorn to identify possible heterotic groups for the development of superior hybrids. Four genotypes of high genetic value were studied: hybrid IAC 125, strain P2, and varieties UENF 14 and BRS Angela. In addition, 43 endogamous S3 progenies obtained from variety UENF 14 were used. Twenty-five polymorphic SSR-EST markers were analyzed. A genetic distance matrix was obtained and the following molecular diversity parameters were estimated: number of alleles, number of effective alleles, polymorphism information content (PIC), observed and expected heterozygosities, Shannon diversity index, and coefficient of inbreeding. We found a moderate PIC and high diversity index, indicating that the studied population presents both good discriminatory ability and high informativeness for the utilized markers. The dendrogram built based on the dissimilarity matrix indicated six distinct groups. Our findings demonstrate the genetic diversity among the evaluated genotypes and provide evidence for heterotic groups in popcorn. Furthermore, the functional genetic diversity indicates that there are informative genetic markers for popcorn. PMID:27173336

  16. Genetic Diversity in Cotton Out-Crossing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously we have reported on the finding of genetic differences in the abiotic stress tolerance of cotton pollen. Genetic differences in sensitivity to humidity were observed impacting pollen survival in dry environments. The present study evaluated out-crossing rates in cotton lines whose polle...

  17. Cotton gene flow: Genetic diversity in outcrossing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously we have reported on the finding of genetic differences in the abiotic stress tolerance of cotton pollen. Genetic differences in sensitivity to humidity were observed impacting pollen survival in dry environments. The present study evaluated out-crossing rates in cotton lines whose pollen ...

  18. Genetic structure and diversity of animal populations exposed to metal pollution.

    PubMed

    Mussali-Galante, Patricia; Tovar-Sánchez, Efraín; Valverde, Mahara; Rojas, Emilio

    2014-01-01

    Studying the genetic diversity of wild populations that are affected by pollution provides a basis for estimating the risks of environmental contamination to both wildlife, and indirectly to humans. Such research strives to produce both a better understanding of the underlying mechanisms by which genetic diversity is affected,and the long-term effects of the pollutants involved.In this review, we summarize key aspects of the field of genetic ecotoxicology that encompasses using genetic patterns to examine metal pollutants as environmental stressors of natural animal populations. We address genetic changes that result from xenobiotic exposure versus genetic alterations that result from natural ecological processes. We also describe the relationship between metal exposure and changes in the genetic diversity of chronically exposed populations, and how the affected populations respond to environmental stress. Further, we assess the genetic diversity of animal populations that were exposed to metals, focusing on the literature that has been published since the year 2000.Our review disclosed that the most common metals found in aquatic and terrestrial ecosystems were Cd, Zn, Cu and Pb; however, differences in the occurrence between aquatic (Cd=Zn>Cu>Pb>Hg) and terrestrial (Cu>Cd>Pb>Zn>Ni)environments were observed. Several molecular markers were used to assess genetic diversity in impacted populations, the order of the most common ones of which were SSR's > allozyme > RAPD's > mtDNA sequencing> other molecular markers.Genetic diversity was reduced for nearly all animal populations that were exposed to a single metal, or a mixture of metals in aquatic ecosystems (except in Hyalella azteca, Littorina littorea, Salmo trutta, and Gobio gobio); however, the pattern was less clear when terrestrial ecosystems were analyzed.We propose that future research in the topic area of this paper emphasizes seven key areas of activity that pertain to the methodological design of genetic

  19. Understanding Genetic Diversity of Sorghum Using Quantitative Traits

    PubMed Central

    Sinha, Sweta; Kumaravadivel, N.

    2016-01-01

    Sorghum is the important cereal crop around the world and hence understanding and utilizing the genetic variation in sorghum accessions are essential for improving the crop. A good understanding of genetic variability among the accessions will enable precision breeding. So profiling the genetic diversity of sorghum is imminent. In the present investigation, forty sorghum accessions consisting of sweet sorghum, grain sorghum, forage sorghum, mutant lines, maintainer lines, and restorer lines were screened for genetic diversity using quantitative traits. Observations were recorded on 14 quantitative traits, out of which 9 diverse traits contributing to maximum variability were selected for genetic diversity analysis. The principle component analysis revealed that the panicle width, stem girth, and leaf breadth contributed maximum towards divergence. By using hierarchical cluster analysis, the 40 accessions were grouped under 6 clusters. Cluster I contained maximum number of accessions and cluster VI contained the minimum. The maximum intercluster distance was observed between cluster VI and cluster IV. Cluster III had the highest mean value for hundred-seed weight and yield. Hence the selection of parents must be based on the wider intercluster distance and superior mean performance for yield and yield components. Thus in the present investigation quantitative data were able to reveal the existence of a wide genetic diversity among the sorghum accessions used providing scope for further genetic improvement. PMID:27382499

  20. Accumulation of genetic diversity in the US Potato Genebank

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efficient management of ex-situ collections includes understanding how conservation technologies impact the genetic diversity and integrity of these collections. For over 60 years, research at the US Potato Genebank has produced helpful scientific insights on diverse aspects of potato conservation. ...

  1. Ginning Efficiency between Diverse Genetic Groups of Upland Cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rising cost of energy in ginning cotton necessitates the evaluation of a diverse array of germplasm, currently available, for improving ginning efficiency. The objective was to study genetic variability for net ginning energy requirement and speed of ginning among five diverse groups of upland c...

  2. TEMPORAL CHANGES OF GENETIC DIVERSITY IN SUGARCANE BREEDING POPULATIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concerns about decline of genetic diversity in sugarcane (Saccharum spp.) breeding programs need be addressed to define better breeding strategies aimed at achieving greater genetic gains. The objectives of this study were to reconstruct the divergence in the Canal Point breeding populations as temp...

  3. Genetic diversity of Toxoplama gondii isolates from Ethiopian feral cats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies indicate greater genetic variability among isolates of Toxoplasma gondii worldwide than previously thought. However, there is no information on genetic diversity of T. gondii from any host in Ethiopia. In the present study, genotyping was performed on viable T. gondii isolates by bioa...

  4. Genetic diversity of mango cultivars estimated using Start Codon Targeted (SCoT) markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diversity and genetic relationships among 23 mango germplasm accessions, collected from different locations in Guangxi province in China, were analyzed by using a novel and simple gene targeted DNA marker: Start Codon Targeted (SCoT) markers. This technique uses a single, 18-mer primer PCR amplifica...

  5. Genetic Diversity of Citrus tristeza Virus Isolates Collected Recently in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surveys conducted over the past several years show a dramatic increase in Citrus tristeza virus (CTV) incidence in several locations in Central California. Our objective was to assess genetic diversity of current CTV field populations and determine their phylogenetic relationships with representati...

  6. Genetic diversity of sweet sorghum germplasm in Mexico using AFLP and SSR markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this work was to evaluate the diversity and genetic relationships between lines and varieties of the sweet sorghum (Sorghum bicolor) germplasm bank of the National Institute for Forestry, Agriculture and Livestock Research, Mexico, using AFLP and SSR markers. The molecular markers ...

  7. Stress-related hormones and genetic diversity in sea otters (Enhydra lutris)

    USGS Publications Warehouse

    Larson, S.; Monson, D.; Ballachey, B.; Jameson, R.; Wasser, S.K.

    2009-01-01

    Sea otters (Enhydra lutris) once ranged throughout the coastal regions of the north Pacific, but were extirpated throughout their range during the fur trade of the 18th and 19th centuries, leaving only small, widely scattered, remnant populations. All extant sea otter populations are believed to have experienced a population bottleneck and thus have lost genetic variation. Populations that undergo severe population reduction and associated inbreeding may suffer from a general reduction in fitness termed inbreeding depression. Inbreeding depression may result in decreased testosterone levels in males, and reduced ability to respond to stressful stimuli associated with an increase in the stress-related adrenal glucocorticoid hormones, cortisol and corticosterone. We investigated correlations of testosterone, cortisol, and corticosterone with genetic diversity in sea otters from five populations. We found a significant negative correlation between genetic diversity and both mean population-level (r2 = 0.27, P < 0.001) and individual-level (r2 = 0.54, P < 0.001) corticosterone values, as well as a negative correlation between genetic diversity and cortisol at the individual level (r2 = 0.17, P = 0.04). No relationship was found between genetic diversity and testosterone (P = 0.57). The strength of the correlations, especially with corticosterone, suggests potential negative consequences for overall population health, particularly for populations with the lowest genetic diversity. ?? 2009 by the Society for Marine Mammalogy.

  8. The role of propagule pressure, genetic diversity and microsite availability for Senecio vernalis invasion.

    PubMed

    Erfmeier, Alexandra; Hantsch, Lydia; Bruelheide, Helge

    2013-01-01

    Genetic diversity is supposed to support the colonization success of expanding species, in particular in situations where microsite availability is constrained. Addressing the role of genetic diversity in plant invasion experimentally requires its manipulation independent of propagule pressure. To assess the relative importance of these components for the invasion of Senecio vernalis, we created propagule mixtures of four levels of genotype diversity by combining seeds across remote populations, across proximate populations, within single populations and within seed families. In a first container experiment with constant Festuca rupicola density as matrix, genotype diversity was crossed with three levels of seed density. In a second experiment, we tested for effects of establishment limitation and genotype diversity by manipulating Festuca densities. Increasing genetic diversity had no effects on abundance and biomass of S. vernalis but positively affected the proportion of large individuals to small individuals. Mixtures composed from proximate populations had a significantly higher proportion of large individuals than mixtures composed from within seed families only. High propagule pressure increased emergence and establishment of S. vernalis but had no effect on individual growth performance. Establishment was favoured in containers with Festuca, but performance of surviving seedlings was higher in open soil treatments. For S. vernalis invasion, we found a shift in driving factors from density dependence to effects of genetic diversity across life stages. While initial abundance was mostly linked to the amount of seed input, genetic diversity, in contrast, affected later stages of colonization probably via sampling effects and seemed to contribute to filtering the genotypes that finally grew up. In consequence, when disentangling the mechanistic relationships of genetic diversity, seed density and microsite limitation in colonization of invasive plants, a clear

  9. The Role of Propagule Pressure, Genetic Diversity and Microsite Availability for Senecio vernalis Invasion

    PubMed Central

    Erfmeier, Alexandra; Hantsch, Lydia; Bruelheide, Helge

    2013-01-01

    Genetic diversity is supposed to support the colonization success of expanding species, in particular in situations where microsite availability is constrained. Addressing the role of genetic diversity in plant invasion experimentally requires its manipulation independent of propagule pressure. To assess the relative importance of these components for the invasion of Senecio vernalis, we created propagule mixtures of four levels of genotype diversity by combining seeds across remote populations, across proximate populations, within single populations and within seed families. In a first container experiment with constant Festuca rupicola density as matrix, genotype diversity was crossed with three levels of seed density. In a second experiment, we tested for effects of establishment limitation and genotype diversity by manipulating Festuca densities. Increasing genetic diversity had no effects on abundance and biomass of S. vernalis but positively affected the proportion of large individuals to small individuals. Mixtures composed from proximate populations had a significantly higher proportion of large individuals than mixtures composed from within seed families only. High propagule pressure increased emergence and establishment of S. vernalis but had no effect on individual growth performance. Establishment was favoured in containers with Festuca, but performance of surviving seedlings was higher in open soil treatments. For S. vernalis invasion, we found a shift in driving factors from density dependence to effects of genetic diversity across life stages. While initial abundance was mostly linked to the amount of seed input, genetic diversity, in contrast, affected later stages of colonization probably via sampling effects and seemed to contribute to filtering the genotypes that finally grew up. In consequence, when disentangling the mechanistic relationships of genetic diversity, seed density and microsite limitation in colonization of invasive plants, a clear

  10. Limited Genetic Diversity in the Endophytic Sugarcane Bacterium Acetobacter diazotrophicus

    PubMed Central

    Caballero-Mellado, Jesus; Martinez-Romero, Esperanza

    1994-01-01

    Acetobacter diazotrophicus isolates that originated from different sugarcane cultivars growing in diverse geographic regions of Mexico and Brazil were shown to have limited genetic diversity. Measurements of polymorphism in the electrophoretic mobilities of metabolic enzymes revealed that the mean genetic diversity per enzyme locus (among the four electrophoretic types distinguished) was 0.064. The results of the genetic analysis indicate that the genetic structure of A. diazotrophicus is clonal, with one largely predominant clone. Plasmids were present in 20 of 24 isolates, and the molecular sizes of the plasmids ranged from 2.0 to 170 kb. Two plasmids (a 20- to 24-kb plasmid detected in all 20 plasmid-containing isolates and a 170-kb plasmid observed in 14 isolates) were highly conserved among the isolates examined. Regardless of the presence of plasmids, all of the isolates shared a common pattern of nif structural gene organization on the chromosome. Images PMID:16349254

  11. Effect of fluoride pollution on genetic diversity of a medicinal tree, Syzygium cumini.

    PubMed

    Khan, Suphiya; Baunthiyal, Mamta; Kumari, Alka; Sharma, Vinay

    2012-07-01

    Syzygium cumini Linn. (Myrtaceae) is a medicinal tree (Jamun) used worldwide in treatment of diabetes. However, no molecular data is available on genetic polymorphism and its relationship, if any with fluoride pollution. In the present study, the genetic variability of two populations of S. cumini growing in fluoride rich soils and normal soils located in Rajasthan and Haryana regions of India, respectively was determined using random amplified polymorphic DNA (RAPD) markers. Different measures of diversity in Rajasthan populations: Shannon's index of phenotypic diversity (I) = 0.440; Nei's genetic diversity (h) = 0.292; effective number of alleles per locus (Ne) = 1.497; total species diversity (Hsp) = 0.307 and within population diversity (Hpop) = 0.158 showed high diversity in comparison to Haryana populations. Thus, it seems that Rajasthan population responds with increased genetic variation resulting possibly from new mutation that affect allele frequencies as a consequence of adaptation to contaminated environment. This may imply that the increased diversity levels may act as a buffer to combat fluoride stress. Cluster analysis and principal component analysis (PCA) results showed mixing between the populations. PMID:23360002

  12. Rapid range expansion increases genetic differentiation while causing limited reduction in genetic diversity in a damselfly

    PubMed Central

    Swaegers, J; Mergeay, J; Therry, L; Larmuseau, M H D; Bonte, D; Stoks, R

    2013-01-01

    Many ectothermic species are currently expanding their geographic range due to global warming. This can modify the population genetic diversity and structure of these species because of genetic drift during the colonization of new areas. Although the genetic signatures of historical range expansions have been investigated in an array of species, the genetic consequences of natural, contemporary range expansions have received little attention, with the only studies available focusing on range expansions along a narrow front. We investigate the genetic consequences of a natural range expansion in the Mediterranean damselfly Coenagrion scitulum, which is currently rapidly expanding along a broad front in different directions. We assessed genetic diversity and genetic structure using 12 microsatellite markers in five centrally located populations and five recently established populations at the edge of the geographic distribution. Our results suggest that, although a marginal significant decrease in the allelic richness was found in the edge populations, genetic diversity has been preserved during the range expansion of this species. Nevertheless, edge populations were genetically more differentiated compared with core populations, suggesting genetic drift during the range expansion. The smaller effective population sizes of the edge populations compared with central populations also suggest a contribution of genetic drift after colonization. We argue and document that range expansion along multiple axes of a broad expansion front generates little reduction in genetic diversity, yet stronger differentiation of the edge populations. PMID:23820582

  13. Rapid range expansion increases genetic differentiation while causing limited reduction in genetic diversity in a damselfly.

    PubMed

    Swaegers, J; Mergeay, J; Therry, L; Larmuseau, M H D; Bonte, D; Stoks, R

    2013-11-01

    Many ectothermic species are currently expanding their geographic range due to global warming. This can modify the population genetic diversity and structure of these species because of genetic drift during the colonization of new areas. Although the genetic signatures of historical range expansions have been investigated in an array of species, the genetic consequences of natural, contemporary range expansions have received little attention, with the only studies available focusing on range expansions along a narrow front. We investigate the genetic consequences of a natural range expansion in the Mediterranean damselfly Coenagrion scitulum, which is currently rapidly expanding along a broad front in different directions. We assessed genetic diversity and genetic structure using 12 microsatellite markers in five centrally located populations and five recently established populations at the edge of the geographic distribution. Our results suggest that, although a marginal significant decrease in the allelic richness was found in the edge populations, genetic diversity has been preserved during the range expansion of this species. Nevertheless, edge populations were genetically more differentiated compared with core populations, suggesting genetic drift during the range expansion. The smaller effective population sizes of the edge populations compared with central populations also suggest a contribution of genetic drift after colonization. We argue and document that range expansion along multiple axes of a broad expansion front generates little reduction in genetic diversity, yet stronger differentiation of the edge populations. PMID:23820582

  14. Assessment of Genetic Diversity of Sweet Potato in Puerto Rico

    PubMed Central

    Rodriguez-Bonilla, Lorraine; Cuevas, Hugo E.; Montero-Rojas, Milly; Bird-Pico, Fernando; Luciano-Rosario, Dianiris; Siritunga, Dimuth

    2014-01-01

    Sweet potato (Ipomoea batatas L.) is the seventh most important food crop due to its distinct advantages, such as adaptability to different environmental conditions and high nutritional value. Assessing the genetic diversity of this important crop is necessary due to the constant increase of demand for food and the need for conservation of agricultural and genetic resources. In Puerto Rico (PR), the genetic diversity of sweet potato has been poorly understood, although it has been part of the diet since Pre-Columbus time. Thus, 137 landraces from different localities around PR were collected and subjected to a genetic diversity analysis using 23 SSR-markers. In addition, 8 accessions from a collection grown in Gurabo, PR at the Agricultural Experimental Station (GAES), 10 US commercial cultivars and 12 Puerto Rican accessions from the USDA repository collection were included in this assessment. The results of the analysis of the 23 loci showed 255 alleles in the 167 samples. Observed heterozygosity was high across populations (0.71) while measurements of total heterozygosity revealed a large genetic diversity throughout the population and within populations. UPGMA clustering method revealed two main clusters. Cluster 1 contained 12 PR accessions from the USDA repository collection, while cluster 2 consisted of PR landraces, US commercial cultivars and the PR accessions from GAES. Population structure analysis grouped PR landraces in five groups including four US commercial cultivars. Our study shows the presence of a high level of genetic diversity of sweet potato across PR which can be related to the genetic makeup of sweet potato, human intervention and out-crossing nature of the plant. The history of domestication and dispersal of sweet potato in the Caribbean and the high levels of genetic diversity found through this study makes sweet potato an invaluable resource that needs to be protected and further studied. PMID:25551388

  15. Theory predicts the uneven distribution of genetic diversity within species.

    PubMed

    Rauch, Erik M; Bar-Yam, Yaneer

    2004-09-23

    Global efforts to conserve species have been strongly influenced by the heterogeneous distribution of species diversity across the Earth. This is manifest in conservation efforts focused on diversity hotspots. The conservation of genetic diversity within an individual species is an important factor in its survival in the face of environmental changes and disease. Here we show that diversity within species is also distributed unevenly. Using simple genealogical models, we show that genetic distinctiveness has a scale-free power law distribution. This property implies that a disproportionate fraction of the diversity is concentrated in small sub-populations, even when the population is well-mixed. Small groups are of such importance to overall population diversity that even without extrinsic perturbations, there are large fluctuations in diversity owing to extinctions of these small groups. We also show that diversity can be geographically non-uniform--potentially including sharp boundaries between distantly related organisms--without extrinsic causes such as barriers to gene flow or past migration events. We obtained these results by studying the fundamental scaling properties of genealogical trees. Our theoretical results agree with field data from global samples of Pseudomonas bacteria. Contrary to previous studies, our results imply that diversity loss owing to severe extinction events is high, and focusing conservation efforts on highly distinctive groups can save much of the diversity. PMID:15386012

  16. The structural diversity of artificial genetic polymers.

    PubMed

    Anosova, Irina; Kowal, Ewa A; Dunn, Matthew R; Chaput, John C; Van Horn, Wade D; Egli, Martin

    2016-02-18

    Synthetic genetics is a subdiscipline of synthetic biology that aims to develop artificial genetic polymers (also referred to as xeno-nucleic acids or XNAs) that can replicate in vitro and eventually in model cellular organisms. This field of science combines organic chemistry with polymerase engineering to create alternative forms of DNA that can store genetic information and evolve in response to external stimuli. Practitioners of synthetic genetics postulate that XNA could be used to safeguard synthetic biology organisms by storing genetic information in orthogonal chromosomes. XNA polymers are also under active investigation as a source of nuclease resistant affinity reagents (aptamers) and catalysts (xenozymes) with practical applications in disease diagnosis and treatment. In this review, we provide a structural perspective on known antiparallel duplex structures in which at least one strand of the Watson-Crick duplex is composed entirely of XNA. Currently, only a handful of XNA structures have been archived in the Protein Data Bank as compared to the more than 100 000 structures that are now available. Given the growing interest in xenobiology projects, we chose to compare the structural features of XNA polymers and discuss their potential to access new regions of nucleic acid fold space. PMID:26673703

  17. Unlocking the genetic diversity of Creole wheats.

    PubMed

    Vikram, Prashant; Franco, Jorge; Burgueño-Ferreira, Juan; Li, Huihui; Sehgal, Deepmala; Saint Pierre, Carolina; Ortiz, Cynthia; Sneller, Clay; Tattaris, Maria; Guzman, Carlos; Sansaloni, Carolina Paola; Fuentes-Davila, Guillermo; Reynolds, Matthew; Sonders, Kai; Singh, Pawan; Payne, Thomas; Wenzl, Peter; Sharma, Achla; Bains, Navtej Singh; Singh, Gyanendra Pratap; Crossa, José; Singh, Sukhwinder

    2016-01-01

    Climate change and slow yield gains pose a major threat to global wheat production. Underutilized genetic resources including landraces and wild relatives are key elements for developing high-yielding and climate-resilient wheat varieties. Landraces introduced into Mexico from Europe, also known as Creole wheats, are adapted to a wide range of climatic regimes and represent a unique genetic resource. Eight thousand four hundred and sixteen wheat landraces representing all dimensions of Mexico were characterized through genotyping-by-sequencing technology. Results revealed sub-groups adapted to specific environments of Mexico. Broadly, accessions from north and south of Mexico showed considerable genetic differentiation. However, a large percentage of landrace accessions were genetically very close, although belonged to different regions most likely due to the recent (nearly five centuries before) introduction of wheat in Mexico. Some of the groups adapted to extreme environments and accumulated high number of rare alleles. Core reference sets were assembled simultaneously using multiple variables, capturing 89% of the rare alleles present in the complete set. Genetic information about Mexican wheat landraces and core reference set can be effectively utilized in next generation wheat varietal improvement. PMID:26976656

  18. The structural diversity of artificial genetic polymers

    PubMed Central

    Anosova, Irina; Kowal, Ewa A.; Dunn, Matthew R.; Chaput, John C.; Van Horn, Wade D.; Egli, Martin

    2016-01-01

    Synthetic genetics is a subdiscipline of synthetic biology that aims to develop artificial genetic polymers (also referred to as xeno-nucleic acids or XNAs) that can replicate in vitro and eventually in model cellular organisms. This field of science combines organic chemistry with polymerase engineering to create alternative forms of DNA that can store genetic information and evolve in response to external stimuli. Practitioners of synthetic genetics postulate that XNA could be used to safeguard synthetic biology organisms by storing genetic information in orthogonal chromosomes. XNA polymers are also under active investigation as a source of nuclease resistant affinity reagents (aptamers) and catalysts (xenozymes) with practical applications in disease diagnosis and treatment. In this review, we provide a structural perspective on known antiparallel duplex structures in which at least one strand of the Watson–Crick duplex is composed entirely of XNA. Currently, only a handful of XNA structures have been archived in the Protein Data Bank as compared to the more than 100 000 structures that are now available. Given the growing interest in xenobiology projects, we chose to compare the structural features of XNA polymers and discuss their potential to access new regions of nucleic acid fold space. PMID:26673703

  19. Unlocking the genetic diversity of Creole wheats

    PubMed Central

    Vikram, Prashant; Franco, Jorge; Burgueño-Ferreira, Juan; Li, Huihui; Sehgal, Deepmala; Saint Pierre, Carolina; Ortiz, Cynthia; Sneller, Clay; Tattaris, Maria; Guzman, Carlos; Sansaloni, Carolina Paola; Fuentes-Davila, Guillermo; Reynolds, Matthew; Sonders, Kai; Singh, Pawan; Payne, Thomas; Wenzl, Peter; Sharma, Achla; Bains, Navtej Singh; Singh, Gyanendra Pratap; Crossa, José; Singh, Sukhwinder

    2016-01-01

    Climate change and slow yield gains pose a major threat to global wheat production. Underutilized genetic resources including landraces and wild relatives are key elements for developing high-yielding and climate-resilient wheat varieties. Landraces introduced into Mexico from Europe, also known as Creole wheats, are adapted to a wide range of climatic regimes and represent a unique genetic resource. Eight thousand four hundred and sixteen wheat landraces representing all dimensions of Mexico were characterized through genotyping-by-sequencing technology. Results revealed sub-groups adapted to specific environments of Mexico. Broadly, accessions from north and south of Mexico showed considerable genetic differentiation. However, a large percentage of landrace accessions were genetically very close, although belonged to different regions most likely due to the recent (nearly five centuries before) introduction of wheat in Mexico. Some of the groups adapted to extreme environments and accumulated high number of rare alleles. Core reference sets were assembled simultaneously using multiple variables, capturing 89% of the rare alleles present in the complete set. Genetic information about Mexican wheat landraces and core reference set can be effectively utilized in next generation wheat varietal improvement. PMID:26976656

  20. Regional specificity of genetically diverse garlic varieties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Garlic is a profitable crop for small to medium-sized vegetable farmers. Despite the increasing market for specialty garlic, it is remarkable how little is known about the diverse types of garlic available. Farmers need to know which garlic types perform well under their growing conditions, and th...

  1. Utilizing the genetic diversity within rice cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant breeding of rice emphasizes improvement in yield, disease resistance, and milling quality. Numerous other traits (e.g., bran carotenoids) that historically have not been selected for could provide added value in expanding niche markets, as well as be useful tools for understanding the genetic ...

  2. Identification and conservation of apple genetic diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA-ARS National Plant Germplasm System (NPGS) maintains a vast collection of plant genetic resources that includes over 570,000 accessions representing nearly 15,000 species. This collection is dispersed amongst 17 active sites throughout the United States. The NPGS base collection at the Nati...

  3. Genetic Diversity and Genome Complexity of Sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane (Saccharum spp.) as a C4 plant, is one of the most efficient crops in converting solar energy into chemical energy. Sugarcane cultivar improvement programs have not yet systematically utilized the most of the genetic sources of yield potential and resistance to stresses that may exist in t...

  4. Genetic Diversity for Aluminum Tolerance in Sorghum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Significant genetic variation for aluminum (Al) tolerance in many plant species has allowed the development of cultivars that are high yielding on acidic, Al toxic soils. However, knowledge of intraspecific variation for Al tolerance control is needed in order to assess the potential for further Al ...

  5. Global resources of genetic diversity in peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Collecting and preserving genetic resources is critical in order to improve agricultural production around the world. Ensuring enough food to provide adequate nutrition for the global population is going to be a hugh challenge for plant breeders going forward as the human populations increases. Fa...

  6. Polishing the craft of genetic diversity creation in directed evolution.

    PubMed

    Tee, Kang Lan; Wong, Tuck Seng

    2013-12-01

    Genetic diversity creation is a core technology in directed evolution where a high quality mutant library is crucial to its success. Owing to its importance, the technology in genetic diversity creation has seen rapid development over the years and its application has diversified into other fields of scientific research. The advances in molecular cloning and mutagenesis since 2008 were reviewed. Specifically, new cloning techniques were classified based on their principles of complementary overhangs, homologous sequences, overlapping PCR and megaprimers and the advantages, drawbacks and performances of these methods were highlighted. New mutagenesis methods developed for random mutagenesis, focused mutagenesis and DNA recombination were surveyed. The technical requirements of these methods and the mutational spectra were compared and discussed with references to commonly used techniques. The trends of mutant library preparation were summarised. Challenges in genetic diversity creation were discussed with emphases on creating "smart" libraries, controlling the mutagenesis spectrum and specific challenges in each group of mutagenesis methods. An outline of the wider applications of genetic diversity creation includes genome engineering, viral evolution, metagenomics and a study of protein functions. The review ends with an outlook for genetic diversity creation and the prospective developments that can have future impact in this field. PMID:24012599

  7. Genetic and genomic relationships in Leymus Hochst.

    PubMed

    Anamthawat-Jónsson, K

    2001-01-01

    Genetic and genomic relationships among three taxonomically related species of Leymus, northern European L. arenarius (octoploid, 2n = 56), northern American/Pacific L. mollis (tetraploid, 2n = 28) and central Eurasian L. racemosus (tetraploid, 2n = 28), were examined using molecular and cytogenetic methods. The amplified fragment length polymorphism (AFLP) analysis clearly differentiated Icelandic populations of L. arenarius from Alaskan populations of L. mollis. The former group is more genetically homogeneous than the latter. Leymus arenarius in Iceland has a common gene pool and a relatively recent origin. The Alaskan L. mollis, on the other hand, is probably a glacial survival that has accumulated high level of genetic variation and has differentiated into subspecies. Analysis of the 18S-26S ribosomal genes, by restriction fragment length polymorphism (RFLP) and fluorescence in situ hybridization (FISH), revealed a very close relationship between the octoploid northern European L. arenarius and the tetraploid Eurasian L. racemosus, such that the former could have originated from the latter, probably via interspecific hybridization. Leymus-specific DNA sequences were isolated and used for analyzing genetic relatedness among five Leymus species and four Psathyrostachys species. The RFLP analysis of retrotransposon sequence pLm44 and ribosomal clone pTa71 clearly revealed a close relationship between these two genera, i.e. higher variation was found within genera than between them. The results support the previous notion that Leymus is autopolyploid having all genomes being designated Ns as in Psathyrostachys, but a major taxonomic revision of this group would require analysis of more species. PMID:12152343

  8. Examining the Relationships among Coaching Staff Diversity, Perceptions of Diversity, Value Congruence, and Life Satisfaction

    ERIC Educational Resources Information Center

    Cunningham, George B.

    2009-01-01

    The purpose of this study was to examine relationships among coaching staff diversity, perceptions of diversity, value congruence, and life satisfaction. Data were collected from 71 coaching staffs (N = 196 coaches). Observed path analysis was used to examine the study predictions. Results indicate that actual staff diversity was positively…

  9. Genotyping by sequencing reveals the genetic diversity of the USDA pisum diversity collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA expanded Pisum Single Plant (PSP) core collection is a unique resource that represents the breadth of the genetic diversity of the genus in an inbred format that facilitates genetic study. The collection includes inbred accessions from the refined pea core collection, parent lines of USDA r...

  10. Genetic diversity and genetic differentiation in Daphnia metapopulations with subpopulations of known age.

    PubMed

    Haag, Christoph R; Riek, Myriam; Hottinger, Jürgen W; Pajunen, V Ilmari; Ebert, Dieter

    2005-08-01

    If colonization of empty habitat patches causes genetic bottlenecks, freshly founded, young populations should be genetically less diverse than older ones that may have experienced successive rounds of immigration. This can be studied in metapopulations with subpopulations of known age. We studied allozyme variation in metapopulations of two species of water fleas (Daphnia) in the skerry archipelago of southern Finland. These populations have been monitored since 1982. Screening 49 populations of D. longispina and 77 populations of D. magna, separated by distances of 1.5-2180 m, we found that local genetic diversity increased with population age whereas pairwise differentiation among pools decreased with population age. These patterns persisted even after controlling for several potentially confounding ecological variables, indicating that extinction and recolonization dynamics decrease local genetic diversity and increase genetic differentiation in these metapopulations by causing genetic bottlenecks during colonization. We suggest that the effect of these bottlenecks may be twofold, namely decreasing genetic diversity by random sampling and leading to population-wide inbreeding. Subsequent immigration then may not only introduce new genetic material, but also lead to the production of noninbred hybrids, selection for which may cause immigrant alleles to increase in frequency, thus leading to increased genetic diversity in older populations. PMID:15937138

  11. Genetic diversity and population differentiation of Sclerotinia sclerotiorum collected from canola in China and in USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic and phenotypic diversity and population differentiation of Sclerotinia sclerotiorum isolates infecting canola from China and the United States were investigated. Genetic diversity was assessed with eight microsatellite markers and mycelial compatibility groups (MCGs). Phenotypic diversity wa...

  12. Genetic Diversity in the Interference Selection Limit

    PubMed Central

    Good, Benjamin H.; Walczak, Aleksandra M.; Neher, Richard A.; Desai, Michael M.

    2014-01-01

    Pervasive natural selection can strongly influence observed patterns of genetic variation, but these effects remain poorly understood when multiple selected variants segregate in nearby regions of the genome. Classical population genetics fails to account for interference between linked mutations, which grows increasingly severe as the density of selected polymorphisms increases. Here, we describe a simple limit that emerges when interference is common, in which the fitness effects of individual mutations play a relatively minor role. Instead, similar to models of quantitative genetics, molecular evolution is determined by the variance in fitness within the population, defined over an effectively asexual segment of the genome (a “linkage block”). We exploit this insensitivity in a new “coarse-grained” coalescent framework, which approximates the effects of many weakly selected mutations with a smaller number of strongly selected mutations that create the same variance in fitness. This approximation generates accurate and efficient predictions for silent site variability when interference is common. However, these results suggest that there is reduced power to resolve individual selection pressures when interference is sufficiently widespread, since a broad range of parameters possess nearly identical patterns of silent site variability. PMID:24675740

  13. Genetic Diversity and Population Structure of Haemonchus contortus.

    PubMed

    Gilleard, J S; Redman, E

    2016-01-01

    Haemonchus contortus is one of the most successful and problematic livestock parasites worldwide. From its apparent evolutionary origins in sub-Saharan Africa, it is now found in small ruminants in almost all regions of the globe, and can infect a range of different domestic and wildlife artiodactyl hosts. It has a remarkably high propensity to develop resistance to anthelmintic drugs, making control increasingly difficult. The success of this parasite is, at least in part, due to its extremely high levels of genetic diversity that, in turn, provide a high adaptive capacity. Understanding this genetic diversity is important for many areas of research including anthelmintic resistance, epidemiology, control, drug/vaccine development and molecular diagnostics. In this article, we review the current knowledge of H. contortus genetic diversity and population structure for both field isolates and laboratory strains. We highlight the practical relevance of this knowledge with a particular emphasis on anthelmintic resistance research. PMID:27238002

  14. Glacial refugia and modern genetic diversity of 22 western North American tree species.

    PubMed

    Roberts, David R; Hamann, Andreas

    2015-04-01

    North American tree species, subspecies and genetic varieties have primarily evolved in a landscape of extensive continental ice and restricted temperate climate environments. Here, we reconstruct the refugial history of western North American trees since the last glacial maximum using species distribution models, validated against 3571 palaeoecological records. We investigate how modern subspecies structure and genetic diversity corresponds to modelled glacial refugia, based on a meta-analysis of allelic richness and expected heterozygosity for 473 populations of 22 tree species. We find that species with strong genetic differentiation into subspecies had widespread and large glacial refugia, whereas species with restricted refugia show no differentiation among populations and little genetic diversity, despite being common over a wide range of environments today. In addition, a strong relationship between allelic richness and the size of modelled glacial refugia (r(2) = 0.55) suggest that population bottlenecks during glacial periods had a pronounced effect on the presence of rare alleles. PMID:25761711

  15. Glacial refugia and modern genetic diversity of 22 western North American tree species

    PubMed Central

    Roberts, David R.; Hamann, Andreas

    2015-01-01

    North American tree species, subspecies and genetic varieties have primarily evolved in a landscape of extensive continental ice and restricted temperate climate environments. Here, we reconstruct the refugial history of western North American trees since the last glacial maximum using species distribution models, validated against 3571 palaeoecological records. We investigate how modern subspecies structure and genetic diversity corresponds to modelled glacial refugia, based on a meta-analysis of allelic richness and expected heterozygosity for 473 populations of 22 tree species. We find that species with strong genetic differentiation into subspecies had widespread and large glacial refugia, whereas species with restricted refugia show no differentiation among populations and little genetic diversity, despite being common over a wide range of environments today. In addition, a strong relationship between allelic richness and the size of modelled glacial refugia (r2 = 0.55) suggest that population bottlenecks during glacial periods had a pronounced effect on the presence of rare alleles. PMID:25761711

  16. Genetic relationships within and between Capsicum species.

    PubMed

    Ince, Ayşe Gul; Karaca, Mehmet; Onus, A Naci

    2010-02-01

    Genetic relationships were estimated among 24 accessions belonging to 11 species of Capsicum, using 2,760 RAPD markers based on touch-down polymerase chain reactions (Td-RAPD-PCR). These markers were implemented in analyses of principal coordinates, unweighted pair group mean average, and 2,000 bootstrap replications. The accessions were divided into four groups, corresponding to previously described Capsicum complexes: C. annuum complex (CA), C. baccatum complex (CB), C. pubescens complex (CP), and C. chacoense accessions (CA/B). Their overall mean genetic similarity index was 0.487 +/- 0.082, ranging from 0.88 to 0.32, based on Jaccard's coefficient. The highest genetic variation was observed among the accessions in CP; the accessions in CB had a low level of variation as judged from the standard deviations of the genetic similarity indices. Based on the Td-RAPD-PCR markers, the 24 accessions were divided into four major groups, three of which corresponded to the three distinct Capsicum complexes. Accessions of C. chacoense were found to be equally related to complexes CA, CB, and CP. PMID:19916044

  17. Assessing and Broadening Genetic Diversity of Elymus sibiricus Germplasm for the Improvement of Seed Shattering.

    PubMed

    Zhang, Zongyu; Zhang, Junchao; Zhao, Xuhong; Xie, Wengang; Wang, Yanrong

    2016-01-01

    Siberian wild rye (Elymus sibiricus L.) is an important native grass in the Qinghai-Tibet Plateau of China. It is difficult to grow for commercial seed production, since seed shattering causes yield losses during harvest. Assessing the genetic diversity and relationships among germplasm from its primary distribution area contributes to evaluating the potential for its utilization as a gene pool to improve the desired agronomic traits. In the study, 40 EST-SSR primers were used to assess the genetic diversity and population structure of 36 E. sibiricus accessions with variation of seed shattering. A total of 380 bands were generated, with an average of 9.5 bands per primer. The polymorphic information content (PIC) ranged from 0.23 to 0.50. The percentage of polymorphic bands (P) for the species was 87.11%, suggesting a high degree of genetic diversity. Based on population structure analysis, four groups were formed, similar to results of principal coordinate analysis (PCoA). The molecular variance analysis (AMOVA) revealed the majority of genetic variation occurred within geographical regions (83.40%). Two genotypes from Y1005 and ZhN06 were used to generate seven F₁ hybrids. The molecular and morphological diversity analysis of F₁ population revealed rich genetic variation and high level of seed shattering variation in F₁ population, resulting in significant improvement of the genetic base and desired agronomic traits. PMID:27376263

  18. Correlation analysis of genetic diversity and population structure of Houttuynia cordata Thunb with regard to environment.

    PubMed

    Zhong, J; Wu, F-C; Qiu, P; Dai, L-J

    2016-01-01

    To study the levels of genetic diversity, and population structure, of Houttuynia cordata Thunb, the genetic background and relationships of populations were analyzed in terms of environmental factors. The genetic diversity and population structure of H. cordata were investigated using sequence-related amplified polymorphisms and correlation with environmental factors was analyzed using the SPSS software. Two thousand one hundred sixty-three sites were amplified from 41 pairs of primers, 1825 of which were polymorphic, and the percentage of polymorphic loci was 84.37%; the percentage of polymorphic sites was 72.14 and 67.77% at the species and population level, respectively. The observed number of alleles was 1.52 and 1.30 at species and population level, respectively. The effective number of alleles was 1.38 and 1.24 at species and population level, respectively. The Nei's diversity was 0.26 and 0.15 at species and population level, respectively. The Shannon's information index was 0.87 and 0.63 at species and population level, respectively. The genetic differentiation coefficient of populations was 0.51, and 12 populations were divided into three classes based on D = 0.20; the genetic diversities of different populations are correlated at different significance levels (P < 0.05) with environmental factors. Genetic differentiation existed among populations and the populations exhibited heteroplasmy. PMID:27525953

  19. Target region amplification polymorphism (TRAP) for assessing genetic diversity and marker-trait associations in chickpea (Cicer arietinum l.) germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Utilization of crop diversity held in genebanks is dependent on knowledge of useful traits including those identified genotypically. Target region amplification polymorphism (TRAP) markers were used to evaluate the genetic diversity and relationship among a sample of 263 chickpea landrace germplasm ...

  20. Genetic Diversity among Ancient Nordic Populations

    PubMed Central

    Melchior, Linea; Lynnerup, Niels; Siegismund, Hans R.; Kivisild, Toomas; Dissing, Jørgen

    2010-01-01

    Using established criteria for work with fossil DNA we have analysed mitochondrial DNA from 92 individuals from 18 locations in Denmark ranging in time from the Mesolithic to the Medieval Age. Unequivocal assignment of mtDNA haplotypes was possible for 56 of the ancient individuals; however, the success rate varied substantially between sites; the highest rates were obtained with untouched, freshly excavated material, whereas heavy handling, archeological preservation and storage for many years influenced the ability to obtain authentic endogenic DNA. While the nucleotide diversity at two locations was similar to that among extant Danes, the diversity at four sites was considerably higher. This supports previous observations for ancient Britons. The overall occurrence of haplogroups did not deviate from extant Scandinavians, however, haplogroup I was significantly more frequent among the ancient Danes (average 13%) than among extant Danes and Scandinavians (∼2.5%) as well as among other ancient population samples reported. Haplogroup I could therefore have been an ancient Southern Scandinavian type “diluted” by later immigration events. Interestingly, the two Neolithic samples (4,200 YBP, Bell Beaker culture) that were typed were haplogroup U4 and U5a, respectively, and the single Bronze Age sample (3,300–3,500 YBP) was haplogroup U4. These two haplogroups have been associated with the Mesolithic populations of Central and Northern Europe. Therefore, at least for Southern Scandinavia, our findings do not support a possible replacement of a haplogroup U dominated hunter-gatherer population by a more haplogroup diverse Neolithic Culture. PMID:20689597

  1. Assessment of genetic diversity in Brazilian barley using SSR markers

    PubMed Central

    Ferreira, Jéssica Rosset; Pereira, Jorge Fernando; Turchetto, Caroline; Minella, Euclydes; Consoli, Luciano; Delatorre, Carla Andréa

    2016-01-01

    Abstract Barley is a major cereal grown widely and used in several food products, beverage production and animal fodder. Genetic diversity is a key component in breeding programs. We have analyzed the genetic diversity of barley accessions using microsatellite markers. The accessions were composed of wild and domesticated barley representing genotypes from six countries and three breeding programs in Brazil. A total of 280 alleles were detected, 36 unique to Brazilian barley. The marker Bmag120 showed the greatest polymorphism information content (PIC), with the highest mean value found on chromosome three, and the lowest on chromosomes four and six. The wild accessions presented the highest diversity followed by the foreign genotypes. Genetic analysis was performed using Principal Coordinates Analysis, UPGMA clustering, and Bayesian clustering analysis implemented in Structure. All results obtained by the different methods were similar. Loss of genetic diversity has occurred in Brazilian genotypes. The number of alleles detected in genotypes released in 1980s was higher, whereas most of the cultivars released thereafter showed lower PIC and clustered in separate subgroups from the older cultivars. The use of a more diverse panel of genotypes should be considered in order to exploit novel alleles in Brazilian barley breeding programs. PMID:27007902

  2. Castor Bean Organelle Genome Sequencing and Worldwide Genetic Diversity Analysis

    PubMed Central

    Chan, Agnes P.; Williams, Amber L.; Rice, Danny W.; Liu, Xinyue; Melake-Berhan, Admasu; Huot Creasy, Heather; Puiu, Daniela; Rosovitz, M. J.; Khouri, Hoda M.; Beckstrom-Sternberg, Stephen M.; Allan, Gerard J.; Keim, Paul; Ravel, Jacques; Rabinowicz, Pablo D.

    2011-01-01

    Castor bean is an important oil-producing plant in the Euphorbiaceae family. Its high-quality oil contains up to 90% of the unusual fatty acid ricinoleate, which has many industrial and medical applications. Castor bean seeds also contain ricin, a highly toxic Type 2 ribosome-inactivating protein, which has gained relevance in recent years due to biosafety concerns. In order to gain knowledge on global genetic diversity in castor bean and to ultimately help the development of breeding and forensic tools, we carried out an extensive chloroplast sequence diversity analysis. Taking advantage of the recently published genome sequence of castor bean, we assembled the chloroplast and mitochondrion genomes extracting selected reads from the available whole genome shotgun reads. Using the chloroplast reference genome we used the methylation filtration technique to readily obtain draft genome sequences of 7 geographically and genetically diverse castor bean accessions. These sequence data were used to identify single nucleotide polymorphism markers and phylogenetic analysis resulted in the identification of two major clades that were not apparent in previous population genetic studies using genetic markers derived from nuclear DNA. Two distinct sub-clades could be defined within each major clade and large-scale genotyping of castor bean populations worldwide confirmed previously observed low levels of genetic diversity and showed a broad geographic distribution of each sub-clade. PMID:21750729

  3. Roads, interrupted dispersal, and genetic diversity in timber rattlesnakes.

    PubMed

    Clark, Rulon W; Brown, William S; Stechert, Randy; Zamudio, Kelly R

    2010-08-01

    Anthropogenic habitat modification often creates barriers to animal movement, transforming formerly contiguous habitat into a patchwork of habitat islands with low connectivity. Roadways are a feature of most landscapes that can act as barriers or filters to migration among local populations. Even small and recently constructed roads can have a significant impact on population genetic structure of some species, but not others. We developed a research approach that combines fine-scale molecular genetics with behavioral and ecological data to understand the impacts of roads on population structure and connectivity. We used microsatellite markers to characterize genetic variation within and among populations of timber rattlesnakes (Crotalus horridus) occupying communal hibernacula (dens) in regions bisected by roadways. We examined the impact of roads on seasonal migration, genetic diversity, and gene flow among populations. Snakes in hibernacula isolated by roads had significantly lower genetic diversity and higher genetic differentiation than snakes in hibernacula in contiguous habitat. Genetic-assignment analyses revealed that interruption to seasonal migration was the mechanism underlying these patterns. Our results underscore the sizeable impact of roads on this species, despite their relatively recent construction at our study sites (7 to 10 generations of rattlesnakes), the utility of population genetics for studies of road ecology, and the need for mitigating effects of roads. PMID:20151984

  4. Analysis of genetic diversity and differentiation of seven stocks of Litopenaeus vannamei using microsatellite markers

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Wang, Weiji; Li, Weiya; Zhang, Quanqi; Kong, Jie

    2014-08-01

    Seven microsatellite markers were used to evaluate the genetic diversity and differentiation of seven stocks of Litopenaeus vannamei, which were introduced from Central and South America to China. All seven microsatellite loci were polymorphic, with polymorphism information content ( PIC) values ranging from 0.593 to 0.952. Totally 92 alleles were identified, and the number of alleles ( Na) and effective alleles ( Ne) varied between 4 and 21 and 2.7 and 14.6, respectively. Observed heterozygosity ( H o) values were lower than the expected heterozygosity ( H e) values (0.526-0.754), which indicated that the seven stocks possessed a rich genetic diversity. Thirty-seven tests were detected for reasonable significant deviation from Hardy-Weinberg equilibrium. F is values were positive at five loci, suggesting that there was a relatively high degree of inbreeding within stocks. Pairwise F st values ranged from 0.0225 to 0.151, and most of the stock pairs were moderately differentiated. Genetic distance and cluster analysis using UPGMA revealed a close genetic relationship of L. vannamei between Pop2 and Pop3. AMOVA indicated that the genetic variation among stocks (11.3%) was much lower than that within stocks (88.7%). Although the seven stocks had a certain degree of genetic differentiation and a rich genetic diversity, there is an increasing risk of decreased performance due to inbreeding in subsequent generations.

  5. Admixture and the organization of genetic diversity in a butterfly species complex revealed through common and rare genetic variants.

    PubMed

    Gompert, Zachariah; Lucas, Lauren K; Buerkle, C Alex; Forister, Matthew L; Fordyce, James A; Nice, Chris C

    2014-09-01

    Detailed information about the geographic distribution of genetic and genomic variation is necessary to better understand the organization and structure of biological diversity. In particular, spatial isolation within species and hybridization between them can blur species boundaries and create evolutionary relationships that are inconsistent with a strictly bifurcating tree model. Here, we analyse genome-wide DNA sequence and genetic ancestry variation in Lycaeides butterflies to quantify the effects of admixture and spatial isolation on how biological diversity is organized in this group. We document geographically widespread and pervasive historical admixture, with more restricted recent hybridization. This includes evidence supporting previously known and unknown instances of admixture. The genome composition of admixed individuals varies much more among than within populations, and tree- and genetic ancestry-based analyses indicate that multiple distinct admixed lineages or populations exist. We find that most genetic variants in Lycaeides are rare (minor allele frequency <0.5%). Because the spatial and taxonomic distributions of alleles reflect demographic and selective processes since mutation, rare alleles, which are presumably younger than common alleles, were spatially and taxonomically restricted compared with common variants. Thus, we show patterns of genetic variation in this group are multifaceted, and we argue that this complexity challenges simplistic notions concerning the organization of biological diversity into discrete, easily delineated and hierarchically structured entities. PMID:24866941

  6. Elephant behaviour and conservation: social relationships, the effects of poaching, and genetic tools for management.

    PubMed

    Archie, Elizabeth A; Chiyo, Patrick I

    2012-02-01

    Genetic tools are increasingly valuable for understanding the behaviour, evolution, and conservation of social species. In African elephants, for instance, genetic data provide basic information on the population genetic causes and consequences of social behaviour, and how human activities alter elephants' social and genetic structures. As such, African elephants provide a useful case study to understand the relationships between social behaviour and population genetic structure in a conservation framework. Here, we review three areas where genetic methods have made important contributions to elephant behavioural ecology and conservation: (1) understanding kin-based relationships in females and the effects of poaching on the adaptive value of elephant relationships, (2) understanding patterns of paternity in elephants and how poaching can alter these patterns, and (3) conservation genetic tools to census elusive populations, track ivory, and understand the behavioural ecology of crop-raiding. By comparing studies from populations that have experienced a range of poaching intensities, we find that human activities have a large effect on elephant behaviour and genetic structure. Poaching disrupts kin-based association patterns, decreases the quality of elephant social relationships, and increases male reproductive skew, with important consequences for population health and the maintenance of genetic diversity. In addition, we find that genetic tools to census populations or gather forensic information are almost always more accurate than non-genetic alternatives. These results contribute to a growing understanding of poaching on animal behaviour, and how genetic tools can be used to understand and conserve social species. PMID:21880086

  7. Mitochondrial DNA perspective of Serbian genetic diversity.

    PubMed

    Davidovic, Slobodan; Malyarchuk, Boris; Aleksic, Jelena M; Derenko, Miroslava; Topalovic, Vladanka; Litvinov, Andrey; Stevanovic, Milena; Kovacevic-Grujicic, Natasa

    2015-03-01

    Although south-Slavic populations have been studied to date from various aspects, the population of Serbia, occupying the central part of the Balkan Peninsula, is still genetically understudied at least at the level of mitochondrial DNA (mtDNA) variation. We analyzed polymorphisms of the first and the second mtDNA hypervariable segments (HVS-I and HVS-II) and informative coding-region markers in 139 Serbians to shed more light on their mtDNA variability, and used available data on other Slavic and neighboring non-Slavic populations to assess their interrelations in a broader European context. The contemporary Serbian mtDNA profile is consistent with the general European maternal landscape having a substantial proportion of shared haplotypes with eastern, central, and southern European populations. Serbian population was characterized as an important link between easternmost and westernmost south-Slavic populations due to the observed lack of genetic differentiation with all other south-Slavic populations and its geographical positioning within the Balkan Peninsula. An increased heterogeneity of south Slavs, most likely mirroring turbulent demographic events within the Balkan Peninsula over time (i.e., frequent admixture and differential introgression of various gene pools), and a marked geographical stratification of Slavs to south-, east-, and west-Slavic groups, were also found. A phylogeographic analyses of 20 completely sequenced Serbian mitochondrial genomes revealed not only the presence of mtDNA lineages predominantly found within the Slavic gene pool (U4a2a*, U4a2a1, U4a2c, U4a2g, HV10), supporting a common Slavic origin, but also lineages that may have originated within the southern Europe (H5*, H5e1, H5a1v) and the Balkan Peninsula in particular (H6a2b and L2a1k). PMID:25418795

  8. Genetic Diversity and Population Structure of Cowpea (Vigna unguiculata L. Walp)

    PubMed Central

    Xiong, Haizheng; Shi, Ainong; Mou, Beiquan; Qin, Jun; Motes, Dennis; Lu, Weiguo; Ma, Jianbing; Weng, Yuejin; Yang, Wei; Wu, Dianxing

    2016-01-01

    The genetic diversity of cowpea was analyzed, and the population structure was estimated in a diverse set of 768 cultivated cowpea genotypes from the USDA GRIN cowpea collection, originally collected from 56 countries. Genotyping by sequencing was used to discover single nucleotide polymorphism (SNP) in cowpea and the identified SNP alleles were used to estimate the level of genetic diversity, population structure, and phylogenetic relationships. The aim of this study was to detect the gene pool structure of cowpea and to determine its relationship between different regions and countries. Based on the model-based ancestry analysis, the phylogenetic tree, and the principal component analysis, three well-differentiated genetic populations were postulated from 768 worldwide cowpea genotypes. According to the phylogenetic analyses between each individual, region, and country, we may trace the accession from off-original, back to the two candidate original areas (West and East of Africa) to predict the migration and domestication history during the cowpea dispersal and development. To our knowledge, this is the first report of the analysis of the genetic variation and relationship between globally cultivated cowpea genotypes. The results will help curators, researchers, and breeders to understand, utilize, conserve, and manage the collection for more efficient contribution to international cowpea research. PMID:27509049

  9. Genetic Diversity and Population Structure of Cowpea (Vigna unguiculata L. Walp).

    PubMed

    Xiong, Haizheng; Shi, Ainong; Mou, Beiquan; Qin, Jun; Motes, Dennis; Lu, Weiguo; Ma, Jianbing; Weng, Yuejin; Yang, Wei; Wu, Dianxing

    2016-01-01

    The genetic diversity of cowpea was analyzed, and the population structure was estimated in a diverse set of 768 cultivated cowpea genotypes from the USDA GRIN cowpea collection, originally collected from 56 countries. Genotyping by sequencing was used to discover single nucleotide polymorphism (SNP) in cowpea and the identified SNP alleles were used to estimate the level of genetic diversity, population structure, and phylogenetic relationships. The aim of this study was to detect the gene pool structure of cowpea and to determine its relationship between different regions and countries. Based on the model-based ancestry analysis, the phylogenetic tree, and the principal component analysis, three well-differentiated genetic populations were postulated from 768 worldwide cowpea genotypes. According to the phylogenetic analyses between each individual, region, and country, we may trace the accession from off-original, back to the two candidate original areas (West and East of Africa) to predict the migration and domestication history during the cowpea dispersal and development. To our knowledge, this is the first report of the analysis of the genetic variation and relationship between globally cultivated cowpea genotypes. The results will help curators, researchers, and breeders to understand, utilize, conserve, and manage the collection for more efficient contribution to international cowpea research. PMID:27509049

  10. Genetic diversity and conservation in a small endangered horse population.

    PubMed

    Janova, Eva; Futas, Jan; Klumplerova, Marie; Putnova, Lenka; Vrtkova, Irena; Vyskocil, Mirko; Frolkova, Petra; Horin, Petr

    2013-08-01

    The Old Kladruber horses arose in the 17th century as a breed used for ceremonial purposes. Currently, grey and black coat colour varieties exist as two sub-populations with different recent breeding history. As the population underwent historical bottlenecks and intensive inbreeding, loss of genetic variation is considered as the major threat. Therefore, genetic diversity in neutral and non-neutral molecular markers was examined in the current nucleus population. Fifty microsatellites, 13 single nucleotide polymorphisms (SNPs) in immunity-related genes, three mutations in coat colour genes and one major histocompatibility (MHC-DRA) gene were studied for assessing genetic diversity after 15 years of conservation. The results were compared to values obtained in a similar study 13 years ago. The extent of genetic diversity of the current population was comparable to other breeds, despite its small size and isolation. The comparison between 1997 and 2010 did not show differences in the extent of genetic diversity and no loss of allele richness and/or heterozygosity was observed. Genetic differences identified between the black and grey sub-populations observed 13 years ago persisted. Deviations from the Hardy-Weinberg equilibrium found in 19 microsatellite loci and in five SNP loci are probably due to selective breeding. No differences between neutral and immunity-related markers were found. No changes in the frequencies of markers associated with two diseases, melanoma and insect bite hypersensitivity, were observed, due probably to the short interval of time between comparisons. It, thus, seems that, despite its small size, previous bottlenecks and inbreeding, the molecular variation of Old Kladruber horses is comparable to other horse breeds and that the current breeding policy does not compromise genetic variation of this endangered population. PMID:23649723

  11. Assessment of genetic diversity of sweet potato in Puerto Rico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sweet potato (Ipomoea batatas L.) is the seventh most important food crop due to its distinct advantages, such as adaptability to different environmental conditions and high nutritional value. Assessing the genetic diversity of this important crop is necessary due to the constant increase of demand ...

  12. Genetic diversity and differentiation of Pseudophoenix (Arecaceae) in Hispaniola

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technical Abstract Pseudophoenix ekmanii Burret, P. lediniana Read, and P. vinifera (Mart.) Becc. (Arecaceae) are endemic to Hispaniola. The more wide-ranging P. sargentii H.Wendl. ex Sarg. occurs on this island as well. The population genetic diversity and structure of Pseudophoenix was investigate...

  13. Parasites and genetic diversity in an invasive bumblebee

    PubMed Central

    Jones, Catherine M; Brown, Mark J F; Ings, Thomas

    2014-01-01

    Biological invasions are facilitated by the global transportation of species and climate change. Given that invasions may cause ecological and economic damage and pose a major threat to biodiversity, understanding the mechanisms behind invasion success is essential. Both the release of non-native populations from natural enemies, such as parasites, and the genetic diversity of these populations may play key roles in their invasion success. We investigated the roles of parasite communities, through enemy release and parasite acquisition, and genetic diversity in the invasion success of the non-native bumblebee, Bombus hypnorum, in the United Kingdom. The invasive B. hypnorum had higher parasite prevalence than most, or all native congeners for two high-impact parasites, probably due to higher susceptibility and parasite acquisition. Consequently parasites had a higher impact on B. hypnorum queens’ survival and colony-founding success than on native species. Bombus hypnorum also had lower functional genetic diversity at the sex-determining locus than native species. Higher parasite prevalence and lower genetic diversity have not prevented the rapid invasion of the United Kingdom by B. hypnorum. These data may inform our understanding of similar invasions by commercial bumblebees around the world. This study suggests that concerns about parasite impacts on the small founding populations common to re-introduction and translocation programs may be less important than currently believed. PMID:24749545

  14. Genetic diversity within and between natural populations of Rattus norvegicus.

    PubMed

    Cramer, D V; Chakravarti, A; Arenas, O; Humprieres, J; Mowery, P A

    1988-01-01

    The levels of gene diversity for 17 polymorphic loci in natural populations of wild rats were examined for three separate locations in North and South America. The level of gene diversity in the total sample for the RT1.A locus, the dominant class I histocompatibility locus in the major histocompatibility (RT1) complex of the rat, was 0.807. The degree of gene diversity for nonalloantigenic loci scattered throughout the rat genome was 0.215, a level comparable to, if not slightly higher than, that for other mammalian species. The large and consistent levels of diversity for individuals within each population suggest that significant deviations from random mating have occurred within each group. Conclusions from analyzing genetic distance and the index of genetic differentiation between the three populations are consistent with these populations' geographic isolation and small effective population size. Assuming that the separation of the North and South American groups has existed for approximately 300 years, the effective size of these populations is estimated to be approximately 1,500 individuals. Apparent differences in the distribution of the number and frequency of alleles in the major histocompatibility complexes of mice and rats and the level of genetic differentiation among separate rat populations may be due to the effects of genetic drift in small populations. PMID:3183358

  15. Assessing genetic diversity in Valencia peanut germplasm using SSR markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Valencia peanuts (Arachis hypogaea L.ssp. fastigiata var. fastigiata) are well known for their in-shell market value. Assessment of genetic diversity of the available Valencia germplasm is key to the success of developing improved cultivars with desirable agronomic and quality traits. In the pres...

  16. Population genetic structure and genetic diversity of soybean aphids from USA, Korea and Japan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Following its recent invasion of North America, the soybean aphid (Aphis glycines Matsumura) has become the number one insect pest of soybean (Glycine max L. Merr.) in the north central states of USA. Very little is known about the population genetic structure and genetic diversity of the soybean ap...

  17. High-Pitched Notes during Vocal Contests Signal Genetic Diversity in Ocellated Antbirds

    PubMed Central

    Araya-Ajoy, Yi-men; Chaves-Campos, Johel; Kalko, Elisabeth K. V.; DeWoody, J. Andrew

    2009-01-01

    Animals use honest signals to assess the quality of competitors during aggressive interactions. Current theory predicts that honest signals should be costly to produce and thus reveal some aspects of the phenotypic or genetic quality of the sender. In songbirds, research indicates that biomechanical constraints make the production of some acoustic features costly. Furthermore, recent studies have found that vocal features are related to genetic diversity. We linked these two lines of research by evaluating if constrained acoustic features reveal male genetic diversity during aggressive interactions in ocellated antbirds (Phaenostictus mcleannani). We recorded the aggressive vocalizations of radiotagged males at La Selva Biological Station in Costa Rica, and found significant variation in the highest frequency produced among individuals. Moreover, we detected a negative relationship between the frequency of the highest pitched note and vocalization duration, suggesting that high pitched notes might constrain the duration of vocalizations through biomechanical and/or energetic limitations. When we experimentally exposed wild radiotagged males to simulated acoustic challenges, the birds increased the pitch of their vocalization. We also found that individuals with higher genetic diversity (as measured by zygosity across 9 microsatellite loci) produced notes of higher pitch during aggressive interactions. Overall, our results suggest that the ability to produce high pitched notes is an honest indicator of male genetic diversity in male-male aggressive interactions. PMID:19956580

  18. Genetic Diversity and Spatial Genetic Structure of the Grassland Perennial Saxifraga granulata along Two River Systems

    PubMed Central

    van der Meer, Sascha; Jacquemyn, Hans

    2015-01-01

    Due to changes in land use, the natural habitats of an increasing number of plant species have become more and more fragmented. In landscapes that consist of patches of suitable habitat, the frequency and extent of long-distance seed dispersal can be expected to be an important factor determining local genetic diversity and regional population structure of the remaining populations. In plant species that are restricted to riparian habitats, rivers can be expected to have a strong impact on the dynamics and spatial genetic structure of populations as they may enable long-distance seed dispersal and thus maintain gene flow between fragmented populations. In this study, we used polymorphic microsatellite markers to investigate the genetic diversity and the spatial genetic structure of 28 populations of Saxifraga granulata along two rivers in central Belgium. We hypothesized that rivers might be essential for gene flow among increasingly isolated populations of this species. Genetic diversity was high (HS = 0.68), which to a certain extent can be explained by the octoploid nature of S. granulata in the study area. Populations along the Dijle and Demer rivers were also highly differentiated (G”ST = 0.269 and 0.164 and DEST = 0.190 and 0.124, respectively) and showed significant isolation-by-distance, indicating moderate levels of gene flow primarily between populations that are geographically close to each other. Along the river Demer population genetic diversity was higher upstream than downstream, suggesting that seed dispersal via the water was not the primary mode of dispersal. Overall, these results indicate that despite increasing fragmentation populations along both rivers were highly genetically diverse. The high ploidy level and longevity of S. granulata have most likely buffered negative effects of fragmentation on genetic diversity and the spatial genetic structure of populations in riparian grasslands. PMID:26079603

  19. Genetic diversity analysis in Piper species (Piperaceae) using RAPD markers.

    PubMed

    Sen, Sandeep; Skaria, Reby; Abdul Muneer, P M

    2010-09-01

    The genetic diversity of eight species of Piper (Piperaceae) viz., P. nigrum, P. longum, P. betle, P. chaba, P. argyrophyllum, P. trichostachyon, P. galeatum, and P. hymenophyllum from Kerala state, India were analyzed by Random amplified polymorphic DNA (RAPD). Out of 22 10-mer RAPD primers screened, 11 were selected for comparative analysis of different species of Piper. High genetic variations were found among different Piper species studied. Among the total of 149 RAPD fragments amplified, 12 bands (8.05%) were found monomorphic in eight species. The remaining 137 fragments were found polymorphic (91.95%). Species-specific bands were found in all eight species studied. The average gene diversity or heterozygosity (H) was 0.33 across all the species, genetic distances ranged from 0.21 to 0.69. The results of this study will facilitate germplasm identification, management, and conservation. PMID:20383613

  20. Polyphenols in whole rice grain: genetic diversity and health benefits.

    PubMed

    Shao, Yafang; Bao, Jinsong

    2015-08-01

    Polyphenols, such as phenolic acid, anthocyanin and proanthocyanidins, have both nutraceutical properties and functional significance for human health. Identification of polyphenolic compounds and investigation of their genetic basis among diverse rice genotypes provides the basis for the improvement of the nutraceutical properties of whole rice grain. This review focuses on current information on the identification, genetic diversity, formation and distribution patterns of the phenolic acid, anthocyanin, and proanthocyanidins in whole rice grain. The genetic analysis of polyphenol content and antioxidant capacity allows the identification of several candidate genes or quantitative trait loci (QTL) responsible for polyphenol variation, which may be useful in improvement of these phytochemicals by breeding. Future challenges such as how to mitigate the effects of climate change while improving nutraceutical properties in whole grain, and how to use new technology to develop new rice high in nutraceutical properties are also presented. PMID:25766805

  1. Synthetic biology: advancing the design of diverse genetic systems

    PubMed Central

    Wang, Yen-Hsiang; Wei, Kathy Y.; Smolke, Christina D.

    2013-01-01

    A main objective of synthetic biology is to make the process of designing genetically-encoded biological systems more systematic, predictable, robust, scalable, and efficient. The examples of genetic systems in the field vary widely in terms of operating hosts, compositional approaches, and network complexity, ranging from a simple genetic switch to search-and-destroy systems. While significant advances in synthesis capabilities support the potential for the implementation of pathway- and genome-scale programs, several design challenges currently restrict the scale of systems that can be reasonably designed and implemented. Synthetic biology offers much promise in developing systems to address challenges faced in manufacturing, the environment and sustainability, and health and medicine, but the realization of this potential is currently limited by the diversity of available parts and effective design frameworks. As researchers make progress in bridging this design gap, advances in the field hint at ever more diverse applications for biological systems. PMID:23413816

  2. [Screening of peafowl microsatellite primers and analysis of genetic diversity].

    PubMed

    Bao, Wen-Bin; Chen, Guo-Hong; Shu, Jing-Ting; Xu, Qi; Li, Hui-Fang

    2006-10-01

    The applicability of chicken microsatellite primers to peafowl population was analyzed in the present paper, and the results showed 14 of 29 pairs of microsatellite primers from chicken could amplify peafowl DNA and produce specific allele patterns. A mean of 1.71 alleles was found for each locus. Seven pairs were highly polymorphic, and MCW0080 and MCW0098 were ideal markers for peafowl. Genetic diversity analysis within and between the green peafowl and the blue peafowl populations demonstrated that the expected heterozygosity of two peafowl populations were 0.2482 and 0.2744, respectively. The inbreeding index (FST), Reynolds' genetic distance and gene flow between the two populations were 0.078, 0.0603 and 3.896 respectively. These results indicate that the heterozygosity and the genetic diversity of these two peafowl populations were very low, and suggest a tendency towards intermixing. PMID:17035182

  3. Soil properties drive a negative correlation between species diversity and genetic diversity in a tropical seasonal rainforest

    PubMed Central

    Xu, Wumei; Liu, Lu; He, Tianhua; Cao, Min; Sha, Liqing; Hu, Yuehua; Li, Qiaoming; Li, Jie

    2016-01-01

    A negative species-genetic diversity correlation (SGDC) could be predicted by the niche variation hypothesis, whereby an increase in species diversity within community reduces the genetic diversity of the co-occurring species because of the reduction in average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of the species within community. We tested these predictions within a 20 ha tropical forest dynamics plot (FDP) in the Xishuangbanna tropical seasonal rainforest. We established 15 plots within the FDP and investigated the soil properties, tree diversity, and genetic diversity of a common tree species Beilschmiedia roxburghiana within each plot. We observed a significant negative correlation between tree diversity and the genetic diversity of B. roxburghiana within the communities. Using structural equation modeling, we further determined that the inter-plot environmental characteristics (soil pH and phosphorus availability) directly affected tree diversity and that the tree diversity within the community determined the genetic diversity of B. roxburghiana. Increased soil pH and phosphorus availability might promote the coexistence of more tree species within community and reduce genetic diversity of B. roxburghiana for the reduced average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of B. roxburghiana within community. PMID:26860815

  4. Soil properties drive a negative correlation between species diversity and genetic diversity in a tropical seasonal rainforest.

    PubMed

    Xu, Wumei; Liu, Lu; He, Tianhua; Cao, Min; Sha, Liqing; Hu, Yuehua; Li, Qiaoming; Li, Jie

    2016-01-01

    A negative species-genetic diversity correlation (SGDC) could be predicted by the niche variation hypothesis, whereby an increase in species diversity within community reduces the genetic diversity of the co-occurring species because of the reduction in average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of the species within community. We tested these predictions within a 20 ha tropical forest dynamics plot (FDP) in the Xishuangbanna tropical seasonal rainforest. We established 15 plots within the FDP and investigated the soil properties, tree diversity, and genetic diversity of a common tree species Beilschmiedia roxburghiana within each plot. We observed a significant negative correlation between tree diversity and the genetic diversity of B. roxburghiana within the communities. Using structural equation modeling, we further determined that the inter-plot environmental characteristics (soil pH and phosphorus availability) directly affected tree diversity and that the tree diversity within the community determined the genetic diversity of B. roxburghiana. Increased soil pH and phosphorus availability might promote the coexistence of more tree species within community and reduce genetic diversity of B. roxburghiana for the reduced average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of B. roxburghiana within community. PMID:26860815

  5. Negative scaling relationship between molecular diversity and resource abundances

    NASA Astrophysics Data System (ADS)

    Kamimura, Atsushi; Kaneko, Kunihiko

    2016-06-01

    Cell reproduction involves replication of diverse molecule species, in contrast to a simple replication system with fewer components. To address this question of diversity, we study theoretically a cell system with catalytic reaction dynamics that grows by uptake of environmental resources. It is shown that limited resources lead to increased diversity of components within the system, and the number of coexisting species increases with a negative power of the resource uptake. The relationship is explained from the optimum growth speed of the cell, determined by a tradeoff between the utility of diverse resources and the concentration onto fewer components to increase the reaction rate.

  6. Transferability of Cucurbita SSR markers for genetic diversity assessment of Turkish bottle gourd (Lagenaria siceraria) genetic resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genetic diversity present in crop landraces represents a valuable genetic resource for breeding and genetic studies. Bottle gourd (Lagenaria siceraria) landraces in Turkey are highly genetically diverse. However, the limited genomic resources available for this crop hinder the molecular characte...

  7. Isolated populations of a rare alpine plant show high genetic diversity and considerable population differentiation

    PubMed Central

    Ægisdóttir, Hafdís Hanna; Kuss, Patrick; Stöcklin, Jürg

    2009-01-01

    Background and Aims Gene flow and genetic variability within and among alpine plant populations can be greatly influenced by the steep environmental gradients and heterogeneous topography of alpine landscapes. In this study, the effects are examined of natural isolation of alpine habitats on genetic diversity and geographic structure in populations of C. thyrsoides, a rare and isolated European Alpine monocarpic perennial with limited seed dispersal capacity. Methods Molecular diversity was analysed for 736 individuals from 32 populations in the Swiss Alps and adjacent Jura mountains using five polymorphic microsatellite loci. Pollen flow was estimated using pollen grain-sized fluorescent powder. In addition, individual-based Bayesian approaches were applied to examine population structure. Key Results High within-population genetic diversity (HE = 0·76) and a relatively low inbreeding coefficient (FIS = 0·022) were found. Genetic differentiation among populations measured with a standardized measure was considerable (G′ST = 0·53). A significant isolation-by-distance relationship was found (r = 0·62, P < 0·001) and a significant geographic sub-structure, coinciding with proposed postglacial migration patterns. Altitudinal location and size of populations did not influence molecular variation. Direct measures of pollen flow revealed that insect-mediated pollen dispersal was restricted to short distances within a population. Conclusions The natural isolation of suitable habitats for C. thyrsoides restricts gene flow among the populations as expected for a monocarpic species with very limited seed dispersal capacities. The observed high within-population genetic diversity in this rare monocarpic perennial is best explained by its outcrossing behaviour, long-lived individuals and overlapping generations. Despite the high within-population genetic diversity, the considerable genetic differentiation and the clear western–eastern differentiation in this species

  8. Genetic diversity in the germplasm of black pepper determined by EST-SSR markers.

    PubMed

    Wu, B D; Fan, R; Hu, L S; Wu, H S; Hao, C Y

    2016-01-01

    This study aimed to assess genetic diversity in the germplasm of black pepper from around the world using SSR markers from EST. In total, 13 markers were selected and successfully amplified the target loci across the black pepper germplasm. All the EST-SSR markers showed high levels of polymorphisms with an average polymorphism information content of 0.93. The genetic similarity coefficients among all accessions ranged from 0.724 to 1.000, with an average of 0.867. These results indicated that black pepper germplasms possess a complex genetic background and high genetic diversity. Based on a cluster analysis, 148 black pepper germplasms were grouped in two major clades: the Neotropics and the Asian tropics. Peperomia pellucida was grouped separately and distantly from all other accessions. These results generally agreed with the genetic and geographic distances. However, the Asian tropics clade did not cluster according to their geographic origins. In addition, compared with the American accessions, the Asian wild accessions and cultivated accessions grouped together, indicating a close genetic relationship. This verified the origin of black pepper. The newly developed EST-SSRs are highly valuable resources for the conservation of black pepper germplasm diversity and for black pepper breeding. PMID:27050963

  9. Natural Selection and Genetic Diversity in the Butterfly Heliconius melpomene.

    PubMed

    Martin, Simon H; Möst, Markus; Palmer, William J; Salazar, Camilo; McMillan, W Owen; Jiggins, Francis M; Jiggins, Chris D

    2016-05-01

    A combination of selective and neutral evolutionary forces shape patterns of genetic diversity in nature. Among the insects, most previous analyses of the roles of drift and selection in shaping variation across the genome have focused on the genus Drosophila A more complete understanding of these forces will come from analyzing other taxa that differ in population demography and other aspects of biology. We have analyzed diversity and signatures of selection in the neotropical Heliconius butterflies using resequenced genomes from 58 wild-caught individuals of Heliconius melpomene and another 21 resequenced genomes representing 11 related species. By comparing intraspecific diversity and interspecific divergence, we estimate that 31% of amino acid substitutions between Heliconius species are adaptive. Diversity at putatively neutral sites is negatively correlated with the local density of coding sites as well as nonsynonymous substitutions and positively correlated with recombination rate, indicating widespread linked selection. This process also manifests in significantly reduced diversity on longer chromosomes, consistent with lower recombination rates. Although hitchhiking around beneficial nonsynonymous mutations has significantly shaped genetic variation in H. melpomene, evidence for strong selective sweeps is limited overall. We did however identify two regions where distinct haplotypes have swept in different populations, leading to increased population differentiation. On the whole, our study suggests that positive selection is less pervasive in these butterflies as compared to fruit flies, a fact that curiously results in very similar levels of neutral diversity in these very different insects. PMID:27017626

  10. Extraordinary Genetic Diversity in a Wood Decay Mushroom.

    PubMed

    Baranova, Maria A; Logacheva, Maria D; Penin, Aleksey A; Seplyarskiy, Vladimir B; Safonova, Yana Y; Naumenko, Sergey A; Klepikova, Anna V; Gerasimov, Evgeny S; Bazykin, Georgii A; James, Timothy Y; Kondrashov, Alexey S

    2015-10-01

    Populations of different species vary in the amounts of genetic diversity they possess. Nucleotide diversity π, the fraction of nucleotides that are different between two randomly chosen genotypes, has been known to range in eukaryotes between 0.0001 in Lynx lynx and 0.16 in Caenorhabditis brenneri. Here, we report the results of a comparative analysis of 24 haploid genotypes (12 from the United States and 12 from European Russia) of a split-gill fungus Schizophyllum commune. The diversity at synonymous sites is 0.20 in the American population of S. commune and 0.13 in the Russian population. This exceptionally high level of nucleotide diversity also leads to extreme amino acid diversity of protein-coding genes. Using whole-genome resequencing of 2 parental and 17 offspring haploid genotypes, we estimate that the mutation rate in S. commune is high, at 2.0 × 10(-8) (95% CI: 1.1 × 10(-8) to 4.1 × 10(-8)) per nucleotide per generation. Therefore, the high diversity of S. commune is primarily determined by its elevated mutation rate, although high effective population size likely also plays a role. Small genome size, ease of cultivation and completion of the life cycle in the laboratory, free-living haploid life stages and exceptionally high variability of S. commune make it a promising model organism for population, quantitative, and evolutionary genetics. PMID:26163667

  11. Extraordinary Genetic Diversity in a Wood Decay Mushroom

    PubMed Central

    Baranova, Maria A.; Logacheva, Maria D.; Penin, Aleksey A.; Seplyarskiy, Vladimir B.; Safonova, Yana Y.; Naumenko, Sergey A.; Klepikova, Anna V.; Gerasimov, Evgeny S.; Bazykin, Georgii A.; James, Timothy Y.; Kondrashov, Alexey S.

    2015-01-01

    Populations of different species vary in the amounts of genetic diversity they possess. Nucleotide diversity π, the fraction of nucleotides that are different between two randomly chosen genotypes, has been known to range in eukaryotes between 0.0001 in Lynx lynx and 0.16 in Caenorhabditis brenneri. Here, we report the results of a comparative analysis of 24 haploid genotypes (12 from the United States and 12 from European Russia) of a split-gill fungus Schizophyllum commune. The diversity at synonymous sites is 0.20 in the American population of S. commune and 0.13 in the Russian population. This exceptionally high level of nucleotide diversity also leads to extreme amino acid diversity of protein-coding genes. Using whole-genome resequencing of 2 parental and 17 offspring haploid genotypes, we estimate that the mutation rate in S. commune is high, at 2.0 × 10−8 (95% CI: 1.1 × 10−8 to 4.1 × 10−8) per nucleotide per generation. Therefore, the high diversity of S. commune is primarily determined by its elevated mutation rate, although high effective population size likely also plays a role. Small genome size, ease of cultivation and completion of the life cycle in the laboratory, free-living haploid life stages and exceptionally high variability of S. commune make it a promising model organism for population, quantitative, and evolutionary genetics. PMID:26163667

  12. Natural Selection and Genetic Diversity in the Butterfly Heliconius melpomene

    PubMed Central

    Martin, Simon H.; Möst, Markus; Palmer, William J.; Salazar, Camilo; McMillan, W. Owen; Jiggins, Francis M.; Jiggins, Chris D.

    2016-01-01

    A combination of selective and neutral evolutionary forces shape patterns of genetic diversity in nature. Among the insects, most previous analyses of the roles of drift and selection in shaping variation across the genome have focused on the genus Drosophila. A more complete understanding of these forces will come from analyzing other taxa that differ in population demography and other aspects of biology. We have analyzed diversity and signatures of selection in the neotropical Heliconius butterflies using resequenced genomes from 58 wild-caught individuals of Heliconius melpomene and another 21 resequenced genomes representing 11 related species. By comparing intraspecific diversity and interspecific divergence, we estimate that 31% of amino acid substitutions between Heliconius species are adaptive. Diversity at putatively neutral sites is negatively correlated with the local density of coding sites as well as nonsynonymous substitutions and positively correlated with recombination rate, indicating widespread linked selection. This process also manifests in significantly reduced diversity on longer chromosomes, consistent with lower recombination rates. Although hitchhiking around beneficial nonsynonymous mutations has significantly shaped genetic variation in H. melpomene, evidence for strong selective sweeps is limited overall. We did however identify two regions where distinct haplotypes have swept in different populations, leading to increased population differentiation. On the whole, our study suggests that positive selection is less pervasive in these butterflies as compared to fruit flies, a fact that curiously results in very similar levels of neutral diversity in these very different insects. PMID:27017626

  13. High Risks of Losing Genetic Diversity in an Endemic Mauritian Gecko: Implications for Conservation

    PubMed Central

    Buckland, Steeves; Cole, Nik C.; Groombridge, Jim J.; Küpper, Clemens; Burke, Terry; Dawson, Deborah A.; Gallagher, Laura E.; Harris, Stephen

    2014-01-01

    Genetic structure can be a consequence of recent population fragmentation and isolation, or a remnant of historical localised adaptation. This poses a challenge for conservationists since misinterpreting patterns of genetic structure may lead to inappropriate management. Of 17 species of reptile originally found in Mauritius, only five survive on the main island. One of these, Phelsuma guimbeaui (lowland forest day gecko), is now restricted to 30 small isolated subpopulations following severe forest fragmentation and isolation due to human colonisation. We used 20 microsatellites in ten subpopulations and two mitochondrial DNA (mtDNA) markers in 13 subpopulations to: (i) assess genetic diversity, population structure and genetic differentiation of subpopulations; (ii) estimate effective population sizes and migration rates of subpopulations; and (iii) examine the phylogenetic relationships of haplotypes found in different subpopulations. Microsatellite data revealed significant population structure with high levels of genetic diversity and isolation by distance, substantial genetic differentiation and no migration between most subpopulations. MtDNA, however, showed no evidence of population structure, indicating that there was once a genetically panmictic population. Effective population sizes of ten subpopulations, based on microsatellite markers, were small, ranging from 44 to 167. Simulations suggested that the chance of survival and allelic diversity of some subpopulations will decrease dramatically over the next 50 years if no migration occurs. Our DNA-based evidence reveals an urgent need for a management plan for the conservation of P. guimbeaui. We identified 18 threatened and 12 viable subpopulations and discuss a range of management options that include translocation of threatened subpopulations to retain maximum allelic diversity, and habitat restoration and assisted migration to decrease genetic erosion and inbreeding for the viable subpopulations. PMID

  14. Low genetic diversity in a marine nature reserve: re-evaluating diversity criteria in reserve design

    PubMed Central

    Bell, J.J; Okamura, B

    2005-01-01

    Little consideration has been given to the genetic composition of populations associated with marine reserves, as reserve designation is generally to protect specific species, communities or habitats. Nevertheless, it is important to conserve genetic diversity since it provides the raw material for the maintenance of species diversity over longer, evolutionary time-scales and may also confer the basis for adaptation to environmental change. Many current marine reserves are small in size and isolated to some degree (e.g. sea loughs and offshore islands). While such features enable easier management, they may have important implications for the genetic structure of protected populations, the ability of populations to recover from local catastrophes and the potential for marine reserves to act as sources of propagules for surrounding areas. Here, we present a case study demonstrating genetic differentiation, isolation, inbreeding and reduced genetic diversity in populations of the dogwhelk Nucella lapillus in Lough Hyne Marine Nature Reserve (an isolated sea lough in southern Ireland), compared with populations on the local adjacent open coast and populations in England, Wales and France. Our study demonstrates that this sea lough is isolated from open coast populations, and highlights that there may be long-term genetic consequences of selecting reserves on the basis of isolation and ease of protection. PMID:16024366

  15. Individual genetic diversity and probability of infection by avian malaria parasites in blue tits (Cyanistes caeruleus).

    PubMed

    Ferrer, E S; García-Navas, V; Sanz, J J; Ortego, J

    2014-11-01

    Understanding the importance of host genetic diversity for coping with parasites and infectious diseases is a long-standing goal in evolutionary biology. Here, we study the association between probability of infection by avian malaria (Plasmodium relictum) and individual genetic diversity in three blue tit (Cyanistes caeruleus) populations that strongly differ in prevalence of this parasite. For this purpose, we screened avian malaria infections and genotyped 789 blue tits across 26 microsatellite markers. We used two different arrays of markers: 14 loci classified as neutral and 12 loci classified as putatively functional. We found a significant relationship between probability of infection and host genetic diversity estimated at the subset of neutral markers that was not explained by strong local effects and did not differ among the studied populations. This relationship was not linear, and probability of infection increased up to values of homozygosity by locus (HL) around 0.15, reached a plateau at values of HL from 0.15 to 0.40 and finally declined among a small proportion of highly homozygous individuals (HL > 0.4). We did not find evidence for significant identity disequilibrium, which may have resulted from a low variance of inbreeding in the study populations and/or the small power of our set of markers to detect it. A combination of subtle positive and negative local effects and/or a saturation threshold in the association between probability of infection and host genetic diversity in combination with increased resistance to parasites in highly homozygous individuals may explain the observed negative quadratic relationship. Overall, our study highlights that parasites play an important role in shaping host genetic variation and suggests that the use of large sets of neutral markers may be more appropriate for the study of heterozygosity-fitness correlations. PMID:25264126

  16. Diversity and genetic structure analysis of three Amazonian Amerindian populations of Colombia.

    PubMed Central

    Braga, Yamid; Arias B, Leonardo

    2012-01-01

    Introduction: In the departments of the Vaupés and Guaviare, in southeastern Colombia, in a transitional area between Amazonia and the eastern plains, inhabit indigenous groups belonging to the Tukanoan (East) and Guahiban linguistic families. Although some studies have dealt with the culture and the cosmology description of these groups, little research has been done on the biological diversity and genetic relationships of such groups. Objective: To estimate the diversity, the structure, and the genetic relationships of one Guahiban and two Tukanoan groups of the Colombian Amazonian region. Methods: Samples were collected (n = 106) from unrelated individuals belonging to the Vaupés native indigenous communities. The DNA was extracted and nine autosomal microsatellites were typed. Several measures of diversity, FST, pairwise FST, and population differentiation between groups were calculated. Finally, it was estimated the genetic distances of the groups studied in relation with other Amazonian, Andean and Central American indigenous people. Results: 1. The genetic diversity found stands within the range of other Amazonian populations, whereas compared to the mestizo and afro-descendant Colombian populations, such diversity showed to be lower. 2. The structure and population differentiation tests showed two clusters; one consisting of the Vaupés Tukanoan and Guaviare Tukanoan groups, and a second one formed by the Guayabero. 3. Tukanoan groups are found to be closer related to the Brazilian Amazonian populations than to the Guayabero. Conclusion: The results of this study suggest that the Guayabero group from Guaviare, are genetically differentiated from those Tukanoan groups of the Vaupés and Guaviare. PMID:24893054

  17. Increased Extinction Potential of Insular Fish Populations with Reduced Life History Variation and Low Genetic Diversity

    PubMed Central

    Hellmair, Michael; Kinziger, Andrew P.

    2014-01-01

    Theoretical work has shown that reduced phenotypic heterogeneity leads to population instability and can increase extinction potential, yet few examples exist of natural populations that illustrate how varying levels expressed diversity may influence population persistence, particularly during periods of stochastic environmental fluctuation. In this study, we assess levels of expressed variation and genetic diversity among demographically independent populations of tidewater goby (Eucyclogobius newberryi), show that reductions in both factors typically coincide, and describe how low levels of diversity contribute to the extinction risk of these isolated populations. We illustrate that, for this annual species, continuous reproduction is a safeguard against reproductive failure by any one population segment, as natural, stochastically driven salinity increases frequently result in high mortality among juvenile individuals. Several study populations deviated from the natural pattern of year-round reproduction typical for the species, rendering those with severely truncated reproductive periods vulnerable to extinction in the event of environmental fluctuation. In contrast, demographically diverse populations are more likely to persist through such periods through the continuous presence of adults with broader physiological tolerance to abrupt salinity changes. Notably, we found a significant correlation between genetic diversity and demographic variation in the study populations, which could be the result of population stressors that restrict both of these diversity measures simultaneously, or suggestive of a causative relationship between these population characteristics. These findings demonstrate the importance of biocomplexity at the population level, and assert that the maintenance of diversity contributes to population resilience and conservation of this endangered species. PMID:25409501

  18. Increased extinction potential of insular fish populations with reduced life history variation and low genetic diversity.

    PubMed

    Hellmair, Michael; Kinziger, Andrew P

    2014-01-01

    Theoretical work has shown that reduced phenotypic heterogeneity leads to population instability and can increase extinction potential, yet few examples exist of natural populations that illustrate how varying levels expressed diversity may influence population persistence, particularly during periods of stochastic environmental fluctuation. In this study, we assess levels of expressed variation and genetic diversity among demographically independent populations of tidewater goby (Eucyclogobius newberryi), show that reductions in both factors typically coincide, and describe how low levels of diversity contribute to the extinction risk of these isolated populations. We illustrate that, for this annual species, continuous reproduction is a safeguard against reproductive failure by any one population segment, as natural, stochastically driven salinity increases frequently result in high mortality among juvenile individuals. Several study populations deviated from the natural pattern of year-round reproduction typical for the species, rendering those with severely truncated reproductive periods vulnerable to extinction in the event of environmental fluctuation. In contrast, demographically diverse populations are more likely to persist through such periods through the continuous presence of adults with broader physiological tolerance to abrupt salinity changes. Notably, we found a significant correlation between genetic diversity and demographic variation in the study populations, which could be the result of population stressors that restrict both of these diversity measures simultaneously, or suggestive of a causative relationship between these population characteristics. These findings demonstrate the importance of biocomplexity at the population level, and assert that the maintenance of diversity contributes to population resilience and conservation of this endangered species. PMID:25409501

  19. Genetic relationships in the desert watermelon citrullus colocynthis as viewed with high-frequency, oligonucleotide–targeting active gene (HFO–TAG) markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    U.S. Plant Introductions (PIs) of Citrullus colocynthis (L.) Schrad. are a viable source for enhancing disease and pest resistance in watermelon cultivars. However, there is information about their genetic diversity and relationships to watermelon cultivars. Genetic diversity and relationships were ...

  20. Genetic diversity and structure in two species of Leavenworthia with self-incompatible and self-compatible populations.

    PubMed

    Koelling, V A; Hamrick, J L; Mauricio, R

    2011-02-01

    Self-fertilization is a common mating system in plants and is known to reduce genetic diversity, increase genetic structure and potentially put populations at greater risk of extinction. In this study, we measured the genetic diversity and structure of two cedar glade endemic species, Leavenworthia alabamica and L. crassa. These species have self-incompatible (SI) and self-compatible (SC) populations and are therefore ideal for understanding how the mating system affects genetic diversity and structure. We found that L. alabamica and L. crassa had high species-level genetic diversity (H(e)=0.229 and 0.183, respectively) and high genetic structure among their populations (F(ST)=0.45 and 0.36, respectively), but that mean genetic diversity was significantly lower in SC compared with SI populations (SC vs SI, H(e) for L. alabamica was 0.065 vs 0.206 and for L. crassa was 0.084 vs 0.189). We also found significant genetic structure using maximum-likelihood clustering methods. These data indicate that the loss of SI leads to the loss of genetic diversity within populations. In addition, we examined genetic distance relationships between SI and SC populations to analyze possible population history and origins of self-compatibility. We find there may have been multiple origins of self-compatibility in L. alabamica and L. crassa. However, further work is required to test this hypothesis. Finally, given their high genetic structure and that individual populations harbor unique alleles, conservation strategies seeking to maximize species-level genetic diversity for these or similar species should protect multiple populations. PMID:20485327

  1. Genetic Diversity and Population Structure of Theileria annulata in Oman

    PubMed Central

    Al-Hamidhi, Salama; H. Tageldin, Mohammed.; Weir, William; Al-Fahdi, Amira; Johnson, Eugene H.; Bobade, Patrick; Alqamashoui, Badar; Beja-Pereira, Albano; Thompson, Joanne; Kinnaird, Jane; Shiels, Brian; Tait, Andy; Babiker, Hamza

    2015-01-01

    Background Theileriosis, caused by a number of species within the genus Theileria, is a common disease of livestock in Oman. It is a major constraint to the development of the livestock industry due to a high rate of morbidity and mortality in both cattle and sheep. Since little is currently known about the genetic diversity of the parasites causing theileriosis in Oman, the present study was designed to address this issue with specific regard to T. annulata in cattle. Methods Blood samples were collected from cattle from four geographically distinct regions in Oman for genetic analysis of the Theileria annulata population. Ten genetic markers (micro- and mini-satellites) representing all four chromosomes of T. annulata were applied to these samples using a combination of PCR amplification and fragment analysis. The resultant genetic data was analysed to provide a first insight into the structure of the T. annulata population in Oman. Results We applied ten micro- and mini-satellite markers to a total of 310 samples obtained from different regions (174 [56%] from Dhofar, 68 [22%] from Dhira, 44 [14.5%] from Batinah and 24 [8%] from Sharqia). A high degree of allelic diversity was observed among the four parasite populations. Expected heterozygosity for each site ranged from 0.816 to 0.854. A high multiplicity of infection was observed in individual hosts, with an average of 3.3 to 3.4 alleles per locus, in samples derived from Batinah, Dhofar and Sharqia regions. In samples from Dhira region, an average of 2.9 alleles per locus was observed. Mild but statistically significant linkage disequilibrium between pairs of markers was observed in populations from three of the four regions. In contrast, when the analysis was performed at farm level, no significant linkage disequilibrium was observed. Finally, no significant genetic differentiation was seen between the four populations, with most pair-wise FST values being less than 0.03. Slightly higher FST values (GST

  2. Determinants of Genetic Diversity of Spontaneous Drug Resistance in Bacteria.

    PubMed

    Couce, Alejandro; Rodríguez-Rojas, Alexandro; Blázquez, Jesús

    2016-07-01

    Any pathogen population sufficiently large is expected to harbor spontaneous drug-resistant mutants, often responsible for disease relapse after antibiotic therapy. It is seldom appreciated, however, that while larger populations harbor more mutants, the abundance distribution of these mutants is expected to be markedly uneven. This is because a larger population size allows early mutants to expand for longer, exacerbating their predominance in the final mutant subpopulation. Here, we investigate the extent to which this reduction in evenness can constrain the genetic diversity of spontaneous drug resistance in bacteria. Combining theory and experiments, we show that even small variations in growth rate between resistant mutants and the wild type result in orders-of-magnitude differences in genetic diversity. Indeed, only a slight fitness advantage for the mutant is enough to keep diversity low and independent of population size. These results have important clinical implications. Genetic diversity at antibiotic resistance loci can determine a population's capacity to cope with future challenges (i.e., second-line therapy). We thus revealed an unanticipated way in which the fitness effects of antibiotic resistance can affect the evolvability of pathogens surviving a drug-induced bottleneck. This insight will assist in the fight against multidrug-resistant microbes, as well as contribute to theories aimed at predicting cancer evolution. PMID:27182949

  3. Genetic Relationship between Schizophrenia and Nicotine Dependence.

    PubMed

    Chen, Jingchun; Bacanu, Silviu-Alin; Yu, Hui; Zhao, Zhongming; Jia, Peilin; Kendler, Kenneth S; Kranzler, Henry R; Gelernter, Joel; Farrer, Lindsay; Minica, Camelia; Pool, Rene; Milaneschi, Yuri; Boomsma, Dorret I; Penninx, Brenda W J H; Tyndale, Rachel F; Ware, Jennifer J; Vink, Jacqueline M; Kaprio, Jaakko; Munafò, Marcus; Chen, Xiangning

    2016-01-01

    It is well known that most schizophrenia patients smoke cigarettes. There are different hypotheses postulating the underlying mechanisms of this comorbidity. We used summary statistics from large meta-analyses of plasma cotinine concentration (COT), Fagerström test for nicotine dependence (FTND) and schizophrenia to examine the genetic relationship between these traits. We found that schizophrenia risk scores calculated at P-value thresholds of 5 × 10(-3) and larger predicted FTND and cigarettes smoked per day (CPD), suggesting that genes most significantly associated with schizophrenia were not associated with FTND/CPD, consistent with the self-medication hypothesis. The COT risk scores predicted schizophrenia diagnosis at P-values of 5 × 10(-3) and smaller, implying that genes most significantly associated with COT were associated with schizophrenia. These results implicated that schizophrenia and FTND/CPD/COT shared some genetic liability. Based on this shared liability, we identified multiple long non-coding RNAs and RNA binding protein genes (DA376252, BX089737, LOC101927273, LINC01029, LOC101928622, HY157071, DA902558, RBFOX1 and TINCR), protein modification genes (MANBA, UBE2D3, and RANGAP1) and energy production genes (XYLB, MTRF1 and ENOX1) that were associated with both conditions. Further analyses revealed that these shared genes were enriched in calcium signaling, long-term potentiation and neuroactive ligand-receptor interaction pathways that played a critical role in cognitive functions and neuronal plasticity. PMID:27164557

  4. Genetic Relationship between Schizophrenia and Nicotine Dependence

    PubMed Central

    Chen, Jingchun; Bacanu, Silviu-Alin; Yu, Hui; Zhao, Zhongming; Jia, Peilin; Kendler, Kenneth S.; Kranzler, Henry R.; Gelernter, Joel; Farrer, Lindsay; Minica, Camelia; Pool, Rene; Milaneschi, Yuri; Boomsma, Dorret I.; Penninx, Brenda W. J. H.; Tyndale, Rachel F.; Ware, Jennifer J.; Vink, Jacqueline M.; Kaprio, Jaakko; Munafò, Marcus; Chen, Xiangning; Ware, Jennifer J.; Chen, Xiangning; Vink, Jacqueline M.; Loukola, Anu; Minica, Camelia; Pool, Rene; Milaneschi, Yuri; Mangino, Massimo; Menni, Cristina; Chen, Jingchun; Peterson, Roseann; Auro, Kirsi; Lyytikäinen, Leo-Pekka; Wedenoja, Juho; Stiby, Alex I.; Hemani, Gibran; Willemsen, Gonneke; Hottenga, Jouke Jan; Korhonen, Tellervo; Heliövaara, Markku; Perola, Markus; Rose, Richard; Paternoster, Lavinia; Timpson, Nic; Wassenaar, Catherine A.; Zhu, Andy Z. X.; Smith, George Davey; Raitakari, Olli; Lehtimäki, Terho; Kähönen, Mika; Koskinen, Seppo; Spector, Timothy; Penninx, Brenda W. J. H.; Salomaa, Veikko; Boomsma, Dorret I.; Tyndale, Rachel F.; Kaprio, Jaakko; Munafò, Marcus; Ware, Jennifer J.; Chen, Xiangning; Vink, Jacqueline M.; Loukola, Anu; Minica, Camelia; Chen, Jingchun; Peterson, Roseann; Timpson, Nic; Taylor, Michelle; Boomsma, Dorret I.; Kaprio, Jaakko; Munafò, Marcus; Maes, Hermine; Riley, Brien; Kendler, Kenneth S.; Gelernter, Joel; Sherva, Richard; Farrer, Lindsay; Kranzler, Henry R.; Maher, Brion; Vanyukov, Michael

    2016-01-01

    It is well known that most schizophrenia patients smoke cigarettes. There are different hypotheses postulating the underlying mechanisms of this comorbidity. We used summary statistics from large meta-analyses of plasma cotinine concentration (COT), Fagerström test for nicotine dependence (FTND) and schizophrenia to examine the genetic relationship between these traits. We found that schizophrenia risk scores calculated at P-value thresholds of 5 × 10−3 and larger predicted FTND and cigarettes smoked per day (CPD), suggesting that genes most significantly associated with schizophrenia were not associated with FTND/CPD, consistent with the self-medication hypothesis. The COT risk scores predicted schizophrenia diagnosis at P-values of 5 × 10−3 and smaller, implying that genes most significantly associated with COT were associated with schizophrenia. These results implicated that schizophrenia and FTND/CPD/COT shared some genetic liability. Based on this shared liability, we identified multiple long non-coding RNAs and RNA binding protein genes (DA376252, BX089737, LOC101927273, LINC01029, LOC101928622, HY157071, DA902558, RBFOX1 and TINCR), protein modification genes (MANBA, UBE2D3, and RANGAP1) and energy production genes (XYLB, MTRF1 and ENOX1) that were associated with both conditions. Further analyses revealed that these shared genes were enriched in calcium signaling, long-term potentiation and neuroactive ligand-receptor interaction pathways that played a critical role in cognitive functions and neuronal plasticity. PMID:27164557

  5. Genetic diversity of Microcystis cyanophages in two different freshwater environments.

    PubMed

    Nakamura, Ginji; Kimura, Shigeko; Sako, Yoshihiko; Yoshida, Takashi

    2014-06-01

    Bacteriophages rapidly diversify their genes through co-evolution with their hosts. We hypothesize that gene diversification of phages leads to locality in phages genome. To test this hypothesis, we investigated the genetic diversity and composition of Microcystis cyanophages using 104 sequences of Ma-LMM01-type cyanophages from two geographically distant sampling sites. The intergenetic region between the ribonucleotide reductase genes nrdA and nrdB was used as the genetic marker. This region contains the host-derived auxiliary metabolic genes nblA, an unknown function gene g04, and RNA ligase gene g03. The sequences obtained were conserved in the Ma-LMM01 gene order and contents. Although the genetic diversity of the sequences was high, it varied by gene. The genetic diversity of nblA was the lowest, suggesting that nblA is a highly significant gene that does not allow mutation. In contrast, g03 sequences had many point mutations. RNA ligase is involved in the counter-host's phage defense mechanism, suggesting that phage defense also plays an important role for rapid gene diversification. The maximum parsimony network and phylogenic analysis showed the sequences from the two sampling sites were distinct. These findings suggest Ma-LMM01-type phages rapidly diversify their genomes through co-evolution with hosts in each location and eventually provided locality of their genomes. PMID:24671440

  6. The influence of recombination on human genetic diversity.

    PubMed

    Spencer, Chris C A; Deloukas, Panos; Hunt, Sarah; Mullikin, Jim; Myers, Simon; Silverman, Bernard; Donnelly, Peter; Bentley, David; McVean, Gil

    2006-09-22

    In humans, the rate of recombination, as measured on the megabase scale, is positively associated with the level of genetic variation, as measured at the genic scale. Despite considerable debate, it is not clear whether these factors are causally linked or, if they are, whether this is driven by the repeated action of adaptive evolution or molecular processes such as double-strand break formation and mismatch repair. We introduce three innovations to the analysis of recombination and diversity: fine-scale genetic maps estimated from genotype experiments that identify recombination hotspots at the kilobase scale, analysis of an entire human chromosome, and the use of wavelet techniques to identify correlations acting at different scales. We show that recombination influences genetic diversity only at the level of recombination hotspots. Hotspots are also associated with local increases in GC content and the relative frequency of GC-increasing mutations but have no effect on substitution rates. Broad-scale association between recombination and diversity is explained through covariance of both factors with base composition. To our knowledge, these results are the first evidence of a direct and local influence of recombination hotspots on genetic variation and the fate of individual mutations. However, that hotspots have no influence on substitution rates suggests that they are too ephemeral on an evolutionary time scale to have a strong influence on broader scale patterns of base composition and long-term molecular evolution. PMID:17044736

  7. Population genetic diversity and hybrid detection in captive zebras

    PubMed Central

    Ito, Hideyuki; Langenhorst, Tanya; Ogden, Rob; Inoue-Murayama, Miho

    2015-01-01

    Zebras are members of the horse family. There are three species of zebras: the plains zebra Equus quagga, the Grevy’s zebra E. grevyi and the mountain zebra E. zebra. The Grevy’s zebra and the mountain zebra are endangered, and hybridization between the Grevy’s zebra and the plains zebra has been documented, leading to a requirement for conservation genetic management within and between the species. We characterized 28 microsatellite markers in Grevy’s zebra and assessed cross-amplification in plains zebra and two of its subspecies, as well as mountain zebra. A range of standard indices were employed to examine population genetic diversity and hybrid populations between Grevy’s and plains zebra were simulated to investigate subspecies and hybrid detection. Microsatellite marker polymorphism was conserved across species with sufficient variation to enable individual identification in all populations. Comparative diversity estimates indicated greater genetic variation in plains zebra and its subspecies than Grevy’s zebra, despite potential ascertainment bias. Species and subspecies differentiation were clearly demonstrated and F1 and F2 hybrids were correctly identified. These findings provide insights into captive population genetic diversity in zebras and support the use of these markers for identifying hybrids, including the known hybrid issue in the endangered Grevy’s zebra. PMID:26294133

  8. Genetic diversity affects colony survivorship in commercial honey bee colonies

    NASA Astrophysics Data System (ADS)

    Tarpy, David R.; vanEngelsdorp, Dennis; Pettis, Jeffrey S.

    2013-08-01

    Honey bee ( Apis mellifera) queens mate with unusually high numbers of males (average of approximately 12 drones), although there is much variation among queens. One main consequence of such extreme polyandry is an increased diversity of worker genotypes within a colony, which has been shown empirically to confer significant adaptive advantages that result in higher colony productivity and survival. Moreover, honey bees are the primary insect pollinators used in modern commercial production agriculture, and their populations have been in decline worldwide. Here, we compare the mating frequencies of queens, and therefore, intracolony genetic diversity, in three commercial beekeeping operations to determine how they correlate with various measures of colony health and productivity, particularly the likelihood of queen supersedure and colony survival in functional, intensively managed beehives. We found the average effective paternity frequency ( m e ) of this population of honey bee queens to be 13.6 ± 6.76, which was not significantly different between colonies that superseded their queen and those that did not. However, colonies that were less genetically diverse (headed by queens with m e ≤ 7.0) were 2.86 times more likely to die by the end of the study when compared to colonies that were more genetically diverse (headed by queens with m e > 7.0). The stark contrast in colony survival based on increased genetic diversity suggests that there are important tangible benefits of increased queen mating number in managed honey bees, although the exact mechanism(s) that govern these benefits have not been fully elucidated.

  9. Genetic diversity affects colony survivorship in commercial honey bee colonies.

    PubMed

    Tarpy, David R; Vanengelsdorp, Dennis; Pettis, Jeffrey S

    2013-08-01

    Honey bee (Apis mellifera) queens mate with unusually high numbers of males (average of approximately 12 drones), although there is much variation among queens. One main consequence of such extreme polyandry is an increased diversity of worker genotypes within a colony, which has been shown empirically to confer significant adaptive advantages that result in higher colony productivity and survival. Moreover, honey bees are the primary insect pollinators used in modern commercial production agriculture, and their populations have been in decline worldwide. Here, we compare the mating frequencies of queens, and therefore, intracolony genetic diversity, in three commercial beekeeping operations to determine how they correlate with various measures of colony health and productivity, particularly the likelihood of queen supersedure and colony survival in functional, intensively managed beehives. We found the average effective paternity frequency (m e ) of this population of honey bee queens to be 13.6 ± 6.76, which was not significantly different between colonies that superseded their queen and those that did not. However, colonies that were less genetically diverse (headed by queens with m e  ≤ 7.0) were 2.86 times more likely to die by the end of the study when compared to colonies that were more genetically diverse (headed by queens with m e  > 7.0). The stark contrast in colony survival based on increased genetic diversity suggests that there are important tangible benefits of increased queen mating number in managed honey bees, although the exact mechanism(s) that govern these benefits have not been fully elucidated. PMID:23728203

  10. A Reassessment of the Impact of European Contact on the Structure of Native American Genetic Diversity.

    PubMed

    Hunley, Keith; Gwin, Kiela; Liberman, Brendan

    2016-01-01

    Our current understanding of pre-Columbian history in the Americas rests in part on several trends identified in recent genetic studies. The goal of this study is to reexamine these trends in light of the impact of post-Columbian admixture and the methods used to study admixture. The previously-published data consist of 645 autosomal microsatellite genotypes from 1046 individuals in 63 populations. We used STRUCTURE to estimate ancestry proportions and tested the sensitivity of these estimates to the choice of the number of clusters, K. We used partial correlation analyses to examine the relationship between gene diversity and geographic distance from Beringia, controlling for non-Native American ancestry (from Africa, Europe and East Asia), and taking into account alternative paths of migration. Principal component analysis and multidimensional scaling were used to investigate the relationships between Andean and non-Andean populations and to explore gene-language correspondence. We found that 1) European and East Asian ancestry estimates decline as K increases, especially in Native Canadian populations, 2) a north-south decline in gene diversity is driven by low diversity in Amazonian and Paraguayan populations, not serial founder effects from Beringia, 3) controlling for non-Native American ancestry, populations in the Andes and Mesoamerica have higher gene diversity than populations in other regions, and 4) patterns of genetic and linguistic diversity are poorly correlated. We conclude that patterns of diversity previously attributed to pre-Columbian processes may in part reflect post-Columbian admixture and the choice of K in STRUCTURE analyses. Accounting for admixture, the pattern of diversity is inconsistent with a north-south founder effect process, though the genetic similarities between Mesoamerican and Andean populations are consistent with rapid dispersal along the western coast of the Americas. Further, even setting aside the disruptive effects of

  11. Microsatellite polymorphism in the sexually transmitted human pathogen Trichomonas vaginalis indicates a genetically diverse parasite.

    PubMed

    Conrad, Melissa; Zubacova, Zuzana; Dunn, Linda A; Upcroft, Jacqui; Sullivan, Steven A; Tachezy, Jan; Carlton, Jane M

    2011-01-01

    Given the growing appreciation of serious health sequelae from widespread Trichomonas vaginalis infection, new tools are needed to study the parasite's genetic diversity. To this end we have identified and characterized a panel of 21 microsatellites and six single-copy genes from the T. vaginalis genome, using seven laboratory strains of diverse origin. We have (1) adapted our microsatellite typing method to incorporate affordable fluorescent labeling, (2) determined that the microsatellite loci remain stable in parasites continuously cultured for up to 17 months, and (3) evaluated microsatellite marker coverage of the six chromosomes that comprise the T. vaginalis genome, using fluorescent in situ hybridization (FISH). We have used the markers to show that T. vaginalis is a genetically diverse parasite in a population of commonly used laboratory strains. In addition, we have used phylogenetic methods to infer evolutionary relationships from our markers in order to validate their utility in future population analyses. Our panel is the first series of robust polymorphic genetic markers for T. vaginalis that can be used to classify and monitor lab strains, as well as provide a means to measure the genetic diversity and population structure of extant and future T. vaginalis isolates. PMID:20813140

  12. Turtle Carapace Anomalies: The Roles of Genetic Diversity and Environment

    PubMed Central

    Velo-Antón, Guillermo; Becker, C. Guilherme; Cordero-Rivera, Adolfo

    2011-01-01

    Background Phenotypic anomalies are common in wild populations and multiple genetic, biotic and abiotic factors might contribute to their formation. Turtles are excellent models for the study of developmental instability because anomalies are easily detected in the form of malformations, additions, or reductions in the number of scutes or scales. Methodology/Principal Findings In this study, we integrated field observations, manipulative experiments, and climatic and genetic approaches to investigate the origin of carapace scute anomalies across Iberian populations of the European pond turtle, Emys orbicularis. The proportion of anomalous individuals varied from 3% to 69% in local populations, with increasing frequency of anomalies in northern regions. We found no significant effect of climatic and soil moisture, or climatic temperature on the occurrence of anomalies. However, lower genetic diversity and inbreeding were good predictors of the prevalence of scute anomalies among populations. Both decreasing genetic diversity and increasing proportion of anomalous individuals in northern parts of the Iberian distribution may be linked to recolonization events from the Southern Pleistocene refugium. Conclusions/Significance Overall, our results suggest that developmental instability in turtle carapace formation might be caused, at least in part, by genetic factors, although the influence of environmental factors affecting the developmental stability of turtle carapace cannot be ruled out. Further studies of the effects of environmental factors, pollutants and heritability of anomalies would be useful to better understand the complex origin of anomalies in natural populations. PMID:21533278

  13. Use of RAPD markers to determine the genetic diversity of diploid, wheat genotypes.

    PubMed

    Vierling, R A; Nguyen, H T

    1992-09-01

    The genetic diversity of two diploid wheat species, Triticum monococcum and Triticum urartu (2n=2x=14), was assessed using random primers and the polymerase chain reaction (PCR). Electrophoretic analysis of the amplification products revealed a higher incidence of polymorphism in T. urartu than T. monococcum. Pair-wise comparisons of unique and shared polymorphic amplification products, were used to generate Jaccard's similarity coefficients. These were employed to construct phenograms using an unweighted pair-group method with arithmetical averages (UPGMA). The UPGMA analysis indicated a higher similarity among T. monococcum than T. urartu. Analysis of RAPD data appears to be helpful in determining the genetic relationships among genotypes. PMID:24201483

  14. Concordance between vocal and genetic diversity in crested gibbons

    PubMed Central

    2011-01-01

    Background Gibbons or small apes are, next to great apes, our closest living relatives, and form the most diverse group of contemporary hominoids. A characteristic trait of gibbons is their species-specific song structure, which, however, exhibits a certain amount of inter- and intra-individual variation. Although differences in gibbon song structure are routinely applied as taxonomic tool to identify subspecies and species, it remains unclear to which degree acoustic and phylogenetic differences are correlated. To trace this issue, we comparatively analyse song recordings and mitochondrial cytochrome b gene sequence data from 22 gibbon populations representing six of the seven crested gibbon species (genus Nomascus). In addition, we address whether song similarity and geographic distribution can support a recent hypothesis about the biogeographic history of crested gibbons. Results The acoustic analysis of 92 gibbon duets confirms the hypothesised concordance between song structure and phylogeny. Based on features of male and female songs, we can not only distinguish between N. nasutus, N. concolor and the four southern species (N. leucogenys, N. siki, N. annamensis, N. gabriellae), but also between the latter by applying more detailed analysis. In addition to the significant correlation between song structure and genetic similarity, we find a similar high correlation between song similarity and geographic distance. Conclusions The results show that the structure of crested gibbon songs is not only a reliable tool to verify phylogenetic relatedness, but also to unravel geographic origins. As vocal production in other nonhuman primate species appears to be evolutionarily based, it is likely that loud calls produced by other species can serve as characters to elucidate phylogenetic relationships. PMID:21299843

  15. Genetic diversity and population structure in the tomato-like nightshades Solanum lycopersicoides and S. sitiens

    PubMed Central

    Albrecht, Elena; Escobar, Miguel; Chetelat, Roger T.

    2010-01-01

    Background and Aims Two closely related, wild tomato-like nightshade species, Solanum lycopersicoides and Solanum sitiens, inhabit a small area within the Atacama Desert region of Peru and Chile. Each species possesses unique traits, including abiotic and biotic stress tolerances, and can be hybridized with cultivated tomato. Conservation and utilization of these tomato relatives would benefit from an understanding of genetic diversity and relationships within and between populations. Methods Levels of genetic diversity and population genetic structure were investigated by genotyping representative accessions of each species with a set of simple sequence repeat (SSR) and allozyme markers. Key Results As expected for self-incompatible species, populations of S. lycopersicoides and S. sitiens were relatively diverse, but contained less diversity than the wild tomato Solanum chilense, a related allogamous species native to this region. Populations of S. lycopersicoides were slightly more diverse than populations of S. sitiens according to SSRs, but the opposite trend was found with allozymes. A higher coefficient of inbreeding was noted in S. sitiens. A pattern of isolation by distance was evident in both species, consistent with the highly fragmented nature of the populations in situ. The populations of each taxon showed strong geographical structure, with evidence for three major groups, corresponding to the northern, central and southern elements of their respective distributions. Conclusions This information should be useful for optimizing regeneration strategies, for sampling of the populations for genes of interest, and for guiding future in situ conservation efforts. PMID:20154348

  16. Genetic diversity and molecular phylogeography of Chinese domestic goats by large-scale mitochondrial DNA analysis.

    PubMed

    Zhao, Yongju; Zhao, Runze; Zhao, Zhongquan; Xu, Huizhong; Zhao, Erhu; Zhang, Jiahua

    2014-06-01

    Mitochondrial DNA (mtDNA) D-loop sequences of 666 individuals (including 109 new individuals, 557 individuals retrieved from GenBank) from 33 Chinese domestic goat breeds throughout China were used to investigate their mtDNA variability and molecular phylogeography. The results showed that all goat breeds in this study proved to be extremely diverse, and the average haplotype diversity and nucleotide diversity were 0.990 ± 0.001 and 0.032 ± 0.001, respectively. The 666 sequences gave 326 different haplotypes. Phylogenetic analyses revealed that there were 4 mtDNA haplogroups identified in Chinese domestic goats, in which haplogroup A was predominant and widely distributed. Our finding was consistent with archaeological data and other genetic diversity studies. Amova analysis showed there was significant geographical structuring. Almost 84.31% of genetic variation was included in the within-breed variance component and only 4.69% was observed among the geographic distributions. This genetic diversity results further supported the previous view of multiple maternal origins of Chinese domestic goats, and the results on the phylogenetic relationship contributed to a better understanding of the history of goat domestication and modern production of domestic goats. PMID:24532161

  17. Genetic Diversity Analysis of Sugarcane Parents in Chinese Breeding Programmes Using gSSR Markers

    PubMed Central

    You, Qian; Xu, Liping; Zheng, Yifeng; Que, Youxiong

    2013-01-01

    Sugarcane is the most important sugar and bioenergy crop in the world. The selection and combination of parents for crossing rely on an understanding of their genetic structures and molecular diversity. In the present study, 115 sugarcane genotypes used for parental crossing were genotyped based on five genomic simple sequence repeat marker (gSSR) loci and 88 polymorphic alleles of loci (100%) as detected by capillary electrophoresis. The values of genetic diversity parameters across the populations indicate that the genetic variation intrapopulation (90.5%) was much larger than that of interpopulation (9.5%). Cluster analysis revealed that there were three groups termed as groups I, II, and III within the 115 genotypes. The genotypes released by each breeding programme showed closer genetic relationships, except the YC series released by Hainan sugarcane breeding station. Using principle component analysis (PCA), the first and second principal components accounted for a cumulative 76% of the total variances, in which 43% were for common parents and 33% were for new parents, respectively. The knowledge obtained in this study should be useful to future breeding programs for increasing genetic diversity of sugarcane varieties and cultivars to meet the demand of sugarcane cultivation for sugar and bioenergy use. PMID:23990759

  18. Genetic diversity in Malus × domestica (Rosaceae) through time in response to domestication

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Patterns of genetic diversity in domesticated plants are affected by geographic region of origin and cultivation, intentional artificial selection, and unintentional loss of diversity referred to as genetic bottlenecks. While bottlenecks are mainly associated with the initial domestication process, ...

  19. ASSOCIATIONS BETWEEN GENETIC DIVERSITY AND ANTHROPOGENIC DISTURBANCE IN MIDWESTERN STREAM-DWELLING MINNOWS

    EPA Science Inventory

    Anthropogenic disturbances may leave imprints on patterns of intraspecific genetic diversity through their effects on population size, adaptation, migration, and mutation. We examined patterns of genetic diversity for a stream-dwelling minnow (the central stoneroller, Campostoma...

  20. Genetic Diversity of the Two Commercial Tetraploid Cotton Species in the Gossypium Diversity Reference Set.

    PubMed

    Hinze, Lori L; Gazave, Elodie; Gore, Michael A; Fang, David D; Scheffler, Brian E; Yu, John Z; Jones, Don C; Frelichowski, James; Percy, Richard G

    2016-05-01

    A diversity reference set has been constructed for the Gossypium accessions in the US National Cotton Germplasm Collection to facilitate more extensive evaluation and utilization of accessions held in the Collection. A set of 105 mapped simple sequence repeat markers was used to study the allelic diversity of 1933 tetraploid Gossypium accessions representative of the range of diversity of the improved and wild accessions of G. hirsutum and G. barbadense. The reference set contained 410 G. barbadense accessions and 1523 G. hirsutum accessions. Observed numbers of polymorphic and private bands indicated a greater diversity in G. hirsutum as compared to G. barbadense as well as in wild-type accessions as compared to improved accessions in both species. The markers clearly differentiated the 2 species. Patterns of diversity within species were observed but not clearly delineated, with much overlap occurring between races and regions of origin for wild accessions and between historical and geographic breeding pools for cultivated accessions. Although the percentage of accessions showing introgression was higher among wild accessions than cultivars in both species, the average level of introgression within individual accessions, as indicated by species-specific bands, was much higher in wild accessions of G. hirsutum than in wild accessions of G. barbadense. The average level of introgression within individual accessions was higher in improved G. barbadense cultivars than in G. hirsutum cultivars. This molecular characterization reveals the levels and distributions of genetic diversity that will allow for better exploration and utilization of cotton genetic resources. PMID:26774060

  1. Genetic and biological diversity among isolates of Neospora caninum.

    PubMed

    Schock, A; Innes, E A; Yamane, I; Latham, S M; Wastling, J M

    2001-07-01

    Neospora caninum is a protozoan parasite that causes bovine abortion. The epidemiology of N. caninum is poorly understood and little is known about the genetic diversity of the parasite, or whether individual isolates differ in virulence. Such diversity may, among other factors, underlie the range of pathologies seen in cattle. In this study we analysed biological and genetic variation in 6 isolates of N. caninum originating from canine and bovine hosts by measurement of growth rate in vitro, Western blotting and random amplification of polymorphic DNA (RAPD). This comparative analysis of intra-species diversity demonstrated that heterogeneity exists within the species. The relative growth rate in vitro, as assessed by 3[H]uracil uptake, showed significant variation between isolates. However, no significant differences were detected between the antigenic profiles of each isolate by Western blotting. RAPD-PCR was performed on DNA from the 6 Neospora isolates; 3 strains of Toxoplasma gondii, Sarcocystis sp. and Cryptosporidium parvum were also analysed. Twenty-six RAPD primers gave rise to 434 markers of which 222 were conserved between all the Neospora isolates and distinguished them from the other Apicomplexa. An additional 54 markers were unique for Neospora but were polymorphic within the species and able to differentiate between the individual isolates. The RAPD data were subjected to pair-wise similarity and cluster analysis and showed that the Neospora isolates clustered together as a group, with T. gondii as their nearest neighbour. N. caninum isolates showed no clustering with respect either to host or geographical origin. The genetic similarity between Neospora isolates from cattle and dogs suggests that these hosts may be epidemiologically related, although further analysis of bovine and canine field samples are required. The genetic and biological diversity observed in this study may have important implications for our understanding of the pathology and

  2. Genetic diversity of Plasmodium vivax in Kolkata, India

    PubMed Central

    Kim, Jung-Ryong; Imwong, Mallika; Nandy, Amitabha; Chotivanich, Kesinee; Nontprasert, Apichart; Tonomsing, Naowarat; Maji, Ardhendu; Addy, Manjulika; Day, Nick PJ; White, Nicholas J; Pukrittayakamee, Sasithon

    2006-01-01

    Background Plasmodium vivax malaria accounts for approximately 60% of malaria cases in Kolkata, India. There has been limited information on the genotypic polymorphism of P. vivax in this malaria endemic area. Three highly polymorphic and single copy genes were selected for a study of genetic diversity in Kolkata strains. Methods Blood from 151 patients with P. vivax infection diagnosed in Kolkata between April 2003 and September 2004 was genotyped at three polymorphic loci: the P. vivax circumsporozoite protein (pvcs), the merozoite surface protein 1 (pvmsp1) and the merozoite surface protein 3-alpha (pvmsp3-alpha). Results Analysis of these three genetic markers revealed that P. vivax populations in Kolkata are highly diverse. A large number of distinguishable alleles were found from three genetic markers: 11 for pvcs, 35 for pvmsp1 and 37 for pvmsp3-alpha. These were, in general, randomly distributed amongst the isolates. Among the 151 isolates, 142 unique genotypes were detected the commonest genotype at a frequency of less than 2% (3/151). The overall rate of mixed genotype infections was 10.6%. Conclusion These results indicate that the P. vivax parasite population is highly diverse in Kolkata, despite the low level of transmission. The genotyping protocols used in this study may be useful for differentiating re-infection from relapse and recrudescence in studies assessing of malarial drug efficacy in vivax malaria. PMID:16907979

  3. Genetic diversity and recombination analysis of sweepoviruses from Brazil

    PubMed Central

    2012-01-01

    Background Monopartite begomoviruses (genus Begomovirus, family Geminiviridae) that infect sweet potato (Ipomoea batatas) around the world are known as sweepoviruses. Because sweet potato plants are vegetatively propagated, the accumulation of viruses can become a major constraint for root production. Mixed infections of sweepovirus species and strains can lead to recombination, which may contribute to the generation of new recombinant sweepoviruses. Results This study reports the full genome sequence of 34 sweepoviruses sampled from a sweet potato germplasm bank and commercial fields in Brazil. These sequences were compared with others from public nucleotide sequence databases to provide a comprehensive overview of the genetic diversity and patterns of genetic exchange in sweepoviruses isolated from Brazil, as well as to review the classification and nomenclature of sweepoviruses in accordance with the current guidelines proposed by the Geminiviridae Study Group of the International Committee on Taxonomy of Viruses (ICTV). Co-infections and extensive recombination events were identified in Brazilian sweepoviruses. Analysis of the recombination breakpoints detected within the sweepovirus dataset revealed that most recombination events occurred in the intergenic region (IR) and in the middle of the C1 open reading frame (ORF). Conclusions The genetic diversity of sweepoviruses was considerably greater than previously described in Brazil. Moreover, recombination analysis revealed that a genomic exchange is responsible for the emergence of sweepovirus species and strains and provided valuable new information for understanding the diversity and evolution of sweepoviruses. PMID:23082767

  4. Understanding Genetic Diversity and Population Structure of a Poa pratensis Worldwide Collection through Morphological, Nuclear and Chloroplast Diversity Analysis

    PubMed Central

    Russi, Luigi; Marconi, Gianpiero; Sharbel, Timothy F.; Veronesi, Fabio; Albertini, Emidio

    2015-01-01

    Poa pratensis L. is a forage and turf grass species well adapted to a wide range of mesic to moist habitats. Due to its genome complexity little is known regarding evolution, genome composition and intraspecific phylogenetic relationships of this species. In the present study we investigated the morphological and genetic diversity of 33 P. pratensis accessions from 23 different countries using both nuclear and chloroplast molecular markers as well as flow cytometry of somatic tissues. This with the aim of shedding light on the genetic diversity and phylogenetic relationships of the collection that includes both cultivated and wild materials. Morphological characterization showed that the most relevant traits able to distinguish cultivated from wild forms were spring growth habit and leaf colour. The genome size analysis revealed high variability both within and between accessions in both wild and cultivated materials. The sequence analysis of the trnL-F chloroplast region revealed a low polymorphism level that could be the result of the complex mode of reproduction of this species. In addition, a strong reduction of chloroplast SSR variability was detected in cultivated materials, where only two alleles were conserved out of the four present in wild accessions. Contrarily, at nuclear level, high variability exist in the collection where the analysis of 11 SSR loci allowed the detection of a total of 91 different alleles. A Bayesian analysis performed on nuclear SSR data revealed that studied materials belong to two main clusters. While wild materials are equally represented in both clusters, the domesticated forms are mostly belonging to cluster P2 which is characterized by lower genetic diversity compared to the cluster P1. In the Neighbour Joining tree no clear distinction was found between accessions with the exception of those from China and Mongolia that were clearly separated from all the others. PMID:25893249

  5. Understanding Genetic Diversity and Population Structure of a Poa pratensis Worldwide Collection through Morphological, Nuclear and Chloroplast Diversity Analysis.

    PubMed

    Raggi, Lorenzo; Bitocchi, Elena; Russi, Luigi; Marconi, Gianpiero; Sharbel, Timothy F; Veronesi, Fabio; Albertini, Emidio

    2015-01-01

    Poa pratensis L. is a forage and turf grass species well adapted to a wide range of mesic to moist habitats. Due to its genome complexity little is known regarding evolution, genome composition and intraspecific phylogenetic relationships of this species. In the present study we investigated the morphological and genetic diversity of 33 P. pratensis accessions from 23 different countries using both nuclear and chloroplast molecular markers as well as flow cytometry of somatic tissues. This with the aim of shedding light on the genetic diversity and phylogenetic relationships of the collection that includes both cultivated and wild materials. Morphological characterization showed that the most relevant traits able to distinguish cultivated from wild forms were spring growth habit and leaf colour. The genome size analysis revealed high variability both within and between accessions in both wild and cultivated materials. The sequence analysis of the trnL-F chloroplast region revealed a low polymorphism level that could be the result of the complex mode of reproduction of this species. In addition, a strong reduction of chloroplast SSR variability was detected in cultivated materials, where only two alleles were conserved out of the four present in wild accessions. Contrarily, at nuclear level, high variability exist in the collection where the analysis of 11 SSR loci allowed the detection of a total of 91 different alleles. A Bayesian analysis performed on nuclear SSR data revealed that studied materials belong to two main clusters. While wild materials are equally represented in both clusters, the domesticated forms are mostly belonging to cluster P2 which is characterized by lower genetic diversity compared to the cluster P1. In the Neighbour Joining tree no clear distinction was found between accessions with the exception of those from China and Mongolia that were clearly separated from all the others. PMID:25893249

  6. Genetic diversity, population structure and marker trait associations for seed quality traits in cotton (Gossypium hirsutum).

    PubMed

    Badigannavar, Ashok; Myers, Gerald O

    2015-03-01

    Cottonseed contains 16% seed oil and 23% seed protein by weight. High levels of palmitic acid provides a degree of stability to the oil, while the presence of bound gossypol in proteins considerably changes their properties, including their biological value. This study uses genetic principles to identify genomic regions associated with seed oil, protein and fibre content in upland cotton cultivars. Cotton association mapping panel representing the US germplasm were genotyped using amplified fragment length polymorphism markers, yielding 234 polymorphic DNA fragments. Phenotypic analysis showed high genetic variability for the seed traits, seed oil range from 6.47-25.16%, protein from 1.85-28.45% and fibre content from 15.88-37.12%. There were negative correlations between seed oil and protein content.With reference to genetic diversity, the average estimate of FST was 8.852 indicating a low level of genetic differentiation among subpopulations. The AMOVA test revealed that variation was 94% within and 6% among subpopulations. Bayesian population structure identified five subpopulations and was in agreement with their geographical distribution. Among the mixed models analysed, mixed linear model (MLM) identified 21 quantitative trait loci for lint percentage and seed quality traits, such as seed protein and oil. Establishing genetic diversity, population structure and marker trait associations for the seed quality traits could be valuable in understanding the genetic relationships and their utilization in breeding programmes. PMID:25846880

  7. Promoting Utilization of Saccharum spp. Genetic Resources through Genetic Diversity Analysis and Core Collection Construction

    PubMed Central

    Pathak, Bhuvan; Ayala-Silva, Tomas; Yang, Xiping; Todd, James; Glynn, Neil C.; Kuhn, David N.; Glaz, Barry; Gilbert, Robert A.; Comstock, Jack C.; Wang, Jianping

    2014-01-01

    Sugarcane (Saccharum spp.) and other members of Saccharum spp. are attractive biofuel feedstocks. One of the two World Collections of Sugarcane and Related Grasses (WCSRG) is in Miami, FL. This WCSRG has 1002 accessions, presumably with valuable alleles for biomass, other important agronomic traits, and stress resistance. However, the WCSRG has not been fully exploited by breeders due to its lack of characterization and unmanageable population. In order to optimize the use of this genetic resource, we aim to 1) genotypically evaluate all the 1002 accessions to understand its genetic diversity and population structure and 2) form a core collection, which captures most of the genetic diversity in the WCSRG. We screened 36 microsatellite markers on 1002 genotypes and recorded 209 alleles. Genetic diversity of the WCSRG ranged from 0 to 0.5 with an average of 0.304. The population structure analysis and principal coordinate analysis revealed three clusters with all S. spontaneum in one cluster, S. officinarum and S. hybrids in the second cluster and mostly non-Saccharum spp. in the third cluster. A core collection of 300 accessions was identified which captured the maximum genetic diversity of the entire WCSRG which can be further exploited for sugarcane and energy cane breeding. Sugarcane and energy cane breeders can effectively utilize this core collection for cultivar improvement. Further, the core collection can provide resources for forming an association panel to evaluate the traits of agronomic and commercial importance. PMID:25333358

  8. Promoting utilization of Saccharum spp. genetic resources through genetic diversity analysis and core collection construction.

    PubMed

    Nayak, Spurthi N; Song, Jian; Villa, Andrea; Pathak, Bhuvan; Ayala-Silva, Tomas; Yang, Xiping; Todd, James; Glynn, Neil C; Kuhn, David N; Glaz, Barry; Gilbert, Robert A; Comstock, Jack C; Wang, Jianping

    2014-01-01

    Sugarcane (Saccharum spp.) and other members of Saccharum spp. are attractive biofuel feedstocks. One of the two World Collections of Sugarcane and Related Grasses (WCSRG) is in Miami, FL. This WCSRG has 1002 accessions, presumably with valuable alleles for biomass, other important agronomic traits, and stress resistance. However, the WCSRG has not been fully exploited by breeders due to its lack of characterization and unmanageable population. In order to optimize the use of this genetic resource, we aim to 1) genotypically evaluate all the 1002 accessions to understand its genetic diversity and population structure and 2) form a core collection, which captures most of the genetic diversity in the WCSRG. We screened 36 microsatellite markers on 1002 genotypes and recorded 209 alleles. Genetic diversity of the WCSRG ranged from 0 to 0.5 with an average of 0.304. The population structure analysis and principal coordinate analysis revealed three clusters with all S. spontaneum in one cluster, S. officinarum and S. hybrids in the second cluster and mostly non-Saccharum spp. in the third cluster. A core collection of 300 accessions was identified which captured the maximum genetic diversity of the entire WCSRG which can be further exploited for sugarcane and energy cane breeding. Sugarcane and energy cane breeders can effectively utilize this core collection for cultivar improvement. Further, the core collection can provide resources for forming an association panel to evaluate the traits of agronomic and commercial importance. PMID:25333358

  9. Genetic diversity of hydrothermal-vent barnacles in Manus Basin

    NASA Astrophysics Data System (ADS)

    Plouviez, Sophie; Schultz, Thomas F.; McGinnis, Gwendolyn; Minshall, Halle; Rudder, Meghan; Van Dover, Cindy L.

    2013-12-01

    We evaluated mitochondrial cytochrome oxidase I genetic diversity of two barnacle species (Eochionelasmus ohtai manusensis, Vulcanolepas cf. parensis) at three sites in Manus Basin (Solwara 1, South Su, Solwara 8). There was no evidence for within-site or between-site genetic differentiation for either species. While E. ohtai manusensis showed limited genetic variation, V. cf. parensis showed greater variation, with sequences distributed between two divergent groups. Assuming the cytochrome oxidase I gene is not under selection, significantly negative Tajima's D in E. ohtai manusensis is consistent with a recent population expansion due to a bottleneck or founder effect, whereas V. cf. parensis (combined groups) did not depart from a stable effective population size. Considering the groups separately, V. cf. parensis Group 1 (but not Group 2) showed a negative Tajima's D, indicating these groups may have encountered different historical demographic conditions. Data reported here are part of a baseline study against which recovery of genetic diversity following mineral extraction at Solwara 1 can be measured.

  10. Diversity Array Technology Markers: Genetic Diversity Analyses and Linkage Map Construction in Rapeseed (Brassica napus L.)

    PubMed Central

    Raman, Harsh; Raman, Rosy; Nelson, Matthew N.; Aslam, M.N.; Rajasekaran, Ravikesavan; Wratten, Neil; Cowling, Wallace A.; Kilian, A.; Sharpe, Andrew G.; Schondelmaier, Joerg

    2012-01-01

    We developed Diversity Array Technology (DArT) markers for application in genetic studies of Brassica napus and other Brassica species with A or C genomes. Genomic representation from 107 diverse genotypes of B. napus L. var. oleifera (rapeseed, AACC genomes) and B. rapa (AA genome) was used to develop a DArT array comprising 11 520 clones generated using PstI/BanII and PstI/BstN1 complexity reduction methods. In total, 1547 polymorphic DArT markers of high technical quality were identified and used to assess molecular diversity among 89 accessions of B. napus, B. rapa, B. juncea, and B. carinata collected from different parts of the world. Hierarchical cluster and principal component analyses based on genetic distance matrices identified distinct populations clustering mainly according to their origin/pedigrees. DArT markers were also mapped in a new doubled haploid population comprising 131 lines from a cross between spring rapeseed lines ‘Lynx-037DH’ and ‘Monty-028DH’. Linkage groups were assigned on the basis of previously mapped simple sequence repeat (SSRs), intron polymorphism (IP), and gene-based markers. The map consisted of 437 DArT, 135 SSR, 6 IP, and 6 gene-based markers and spanned 2288 cM. Our results demonstrate that DArT markers are suitable for genetic diversity analysis and linkage map construction in rapeseed. PMID:22193366

  11. Diversity array technology markers: genetic diversity analyses and linkage map construction in rapeseed (Brassica napus L.).

    PubMed

    Raman, Harsh; Raman, Rosy; Nelson, Matthew N; Aslam, M N; Rajasekaran, Ravikesavan; Wratten, Neil; Cowling, Wallace A; Kilian, A; Sharpe, Andrew G; Schondelmaier, Joerg

    2012-01-01

    We developed Diversity Array Technology (DArT) markers for application in genetic studies of Brassica napus and other Brassica species with A or C genomes. Genomic representation from 107 diverse genotypes of B. napus L. var. oleifera (rapeseed, AACC genomes) and B. rapa (AA genome) was used to develop a DArT array comprising 11 520 clones generated using PstI/BanII and PstI/BstN1 complexity reduction methods. In total, 1547 polymorphic DArT markers of high technical quality were identified and used to assess molecular diversity among 89 accessions of B. napus, B. rapa, B. juncea, and B. carinata collected from different parts of the world. Hierarchical cluster and principal component analyses based on genetic distance matrices identified distinct populations clustering mainly according to their origin/pedigrees. DArT markers were also mapped in a new doubled haploid population comprising 131 lines from a cross between spring rapeseed lines 'Lynx-037DH' and 'Monty-028DH'. Linkage groups were assigned on the basis of previously mapped simple sequence repeat (SSRs), intron polymorphism (IP), and gene-based markers. The map consisted of 437 DArT, 135 SSR, 6 IP, and 6 gene-based markers and spanned 2288 cM. Our results demonstrate that DArT markers are suitable for genetic diversity analysis and linkage map construction in rapeseed. PMID:22193366

  12. Genetic diversity of locally adapted sheep from Pantanal region of Mato Grosso do Sul.

    PubMed

    Crispim, B A; Grisolia, A B; Seno, L O; Egito, A A; Vargas Junior, F M; Souza, M R

    2013-01-01

    Sheep of the Pantaneiro breed and seven other breeds, raised in the State of Mato Grosso do Sul, Brazil, were genotyped using eight microsatellite loci. The aim of the present study was to determine the genetic variability, phylogenetic relationship, and patterns of gene introgression and miscegenation among the animals surveyed, to obtain information about the genetic structure of locally adapted sheep in Mato Grosso do Sul. A total of 195 animals were used for genetic analysis. The Pantaneiro breed had the largest average number of alleles/locus (9.25), and higher allelic richness (6.95), while the Dorper population had the lowest values for these parameters (4.88 and 3.86, respectively). Analysis of genetic distance values and genetic structure between populations made it possible to characterize these animals with regard to distinct genetic groups. Average expected heterozygosity ranged from 0.72 (Pantaneiro) to 0.55 (Dorper), while average observed heterozygosity ranged from 0.63 (White Dorper) to 0.54 (Dorper). On the basis of the statistical parameters evaluated, it was possible to demonstrate that when compared to other populations, the Pantaneiro breed represented a reservoir of genetic diversity with rare and useful alleles for genetic improvement, emphasizing the importance of preserving the breed. PMID:24301918

  13. Genetic diversity for wheat improvement as a conduit to food security

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic diversity is paramount for any crops genetic improvement and this resides in three gene pools of the Triticeae for wheat. Access to the diversity and its exploitation is based upon genetic distance of the species relatives from the wheat genomes. Apart from the conventional genetic base fo...

  14. A MULTI-LOCUS, MULTI-TAXA PHYLOGEOGRAPHICAL ANALYSIS OF GENETIC DIVERSITY

    EPA Science Inventory

    In addition to measuring spatial patterns of genetic diversity, population genetic measures of biological resources should include temporal data that indicate whether the observed patterns are the result of historical or contemporary processes. In general, genetic measures focus...

  15. Structural Diversity and Close Interracial Relationships in College

    ERIC Educational Resources Information Center

    Bowman, Nicholas A.

    2012-01-01

    Recent legal and political actions have challenged the use of race-conscious college admissions policies. Earlier research offers mixed evidence about the link between an institution's racial/ethnic composition (i.e., structural diversity) and the formation of close interracial relationships, so the present study examines this topic directly for…

  16. Comparative Assessment of Genetic Diversity in Wild and Primitive Cultivated Barley in a Center of Diversity

    PubMed Central

    Jana, S.; Pietrzak, L. N.

    1988-01-01

    Wild barley (Hordeum spontaneum K.) and indigenous primitive varieties of cultivated barley (Hordeum vulgare L.), collected from 43 locations in four eastern Mediterranean countries, Jordan, Syria, Turkey and Greece, were electrophoretically assayed for genetic diversity at 16 isozyme loci. Contrary to a common impression, cultivated barley populations were found to maintain a level of diversity similar to that in its wild progenitor species. Apportionment of overall diversity in the region showed that in cultivated barley within-populations diversity was of higher magnitude than the between-populations component. Neighboring populations of wild and cultivated barleys showed high degree of genetic identity. Groups of 3 or 4 isozyme loci were analyzed to detect associations among loci. Multilocus associations of varying order were detected for all three groups chosen for the analysis. Some of the association terms differed between the two species in the region. Although there was no clear evidence for decrease in diversity attributable to the domestication of barley in the region, there was an indication of different multilocus organizations in the two closely related species. PMID:17246441

  17. Genetic Diversity and Pathogenicity of Cylindrocarpon destructans Isolates Obtained from Korean Panax ginseng

    PubMed Central

    Song, Jeong Young; Seo, Mun Won; Kim, Sun Ick; Nam, Myeong Hyeon; Lim, Hyoun Sub

    2014-01-01

    We analyzed the genetic diversity of Cylindrocarpon destructans isolates obtained from Korean ginseng (i.e., Panax ginseng) roots by performing virulence tests and nuclear ribosomal gene internal transcribed spacer (ITS) and mitochondrial small subunit (mt SSU) rDNA sequence analysis. The phylogenetic relationship analysis performed using ITS DNA sequences and isolates from other hosts helped confirm that all the Korean C. destructans isolates belonged to Nectria/Neonectria radicicola complex. The results of in vivo and ex vivo virulence tests showed that the C. destructans isolates could be divided into two groups according to their distinctive difference in virulence and the genetic diversity. The highly virulent Korean isolates in pathogenicity group II (PG II), together with foreign isolates from P. ginseng and P. quinquefolius, formed a single group. The weakly virulent isolates in pathogenicity group I, together with the foreign isolates from other host plants, formed another group and exhibited a greater genetic diversity than the isolates of PG II, as confirmed by the mt SSU rDNA sequence analysis. In addition, as the weakly virulent Korean isolates were genetically very similar to the foreign isolates from other hosts, they were likely to originate from hosts other than the ginseng plants. PMID:25071387

  18. Genetic Diversity and Pathogenicity of Cylindrocarpon destructans Isolates Obtained from Korean Panax ginseng.

    PubMed

    Song, Jeong Young; Seo, Mun Won; Kim, Sun Ick; Nam, Myeong Hyeon; Lim, Hyoun Sub; Kim, Hong Gi

    2014-06-01

    We analyzed the genetic diversity of Cylindrocarpon destructans isolates obtained from Korean ginseng (i.e., Panax ginseng) roots by performing virulence tests and nuclear ribosomal gene internal transcribed spacer (ITS) and mitochondrial small subunit (mt SSU) rDNA sequence analysis. The phylogenetic relationship analysis performed using ITS DNA sequences and isolates from other hosts helped confirm that all the Korean C. destructans isolates belonged to Nectria/Neonectria radicicola complex. The results of in vivo and ex vivo virulence tests showed that the C. destructans isolates could be divided into two groups according to their distinctive difference in virulence and the genetic diversity. The highly virulent Korean isolates in pathogenicity group II (PG II), together with foreign isolates from P. ginseng and P. quinquefolius, formed a single group. The weakly virulent isolates in pathogenicity group I, together with the foreign isolates from other host plants, formed another group and exhibited a greater genetic diversity than the isolates of PG II, as confirmed by the mt SSU rDNA sequence analysis. In addition, as the weakly virulent Korean isolates were genetically very similar to the foreign isolates from other hosts, they were likely to originate from hosts other than the ginseng plants. PMID:25071387

  19. Information entropy as a measure of genetic diversity and evolvability in colonization.

    PubMed

    Day, Troy

    2015-05-01

    In recent years, several studies have examined the relationship between genetic diversity and establishment success in colonizing species. Many of these studies have shown that genetic diversity enhances establishment success. There are several hypotheses that might explain this pattern, and here I focus on the possibility that greater genetic diversity results in greater evolvability during colonization. Evaluating the importance of this mechanism first requires that we quantify evolvability. Currently, most measures of evolvability have been developed for quantitative traits whereas many studies of colonization success deal with discrete molecular markers or phenotypes. The purpose of this study is to derive a suitable measure of evolvability for such discrete data. I show that under certain assumptions, Shannon's information entropy of the allelic distribution provides a natural measure of evolvability. This helps to alleviate previous concerns about the interpretation of information entropy for genetic data. I also suggest that information entropy provides a natural generalization to previous measures of evolvability for quantitative traits when the trait distributions are not necessarily multivariate normal. PMID:25604806

  20. Genetic basis of transcriptome diversity in Drosophila melanogaster

    PubMed Central

    Huang, Wen; Carbone, Mary Anna; Magwire, Michael M.; Peiffer, Jason A.; Lyman, Richard F.; Stone, Eric A.; Anholt, Robert R. H.; Mackay, Trudy F. C.

    2015-01-01

    Understanding how DNA sequence variation is translated into variation for complex phenotypes has remained elusive but is essential for predicting adaptive evolution, for selecting agriculturally important animals and crops, and for personalized medicine. Gene expression may provide a link between variation in DNA sequence and organismal phenotypes, and its abundance can be measured efficiently and accurately. Here we quantified genome-wide variation in gene expression in the sequenced inbred lines of the Drosophila melanogaster Genetic Reference Panel (DGRP), increasing the annotated Drosophila transcriptome by 11%, including thousands of novel transcribed regions (NTRs). We found that 42% of the Drosophila transcriptome is genetically variable in males and females, including the NTRs, and is organized into modules of genetically correlated transcripts. We found that NTRs often were negatively correlated with the expression of protein-coding genes, which we exploited to annotate NTRs functionally. We identified regulatory variants for the mean and variance of gene expression, which have largely independent genetic control. Expression quantitative trait loci (eQTLs) for the mean, but not for the variance, of gene expression were concentrated near genes. Notably, the variance eQTLs often interacted epistatically with local variants in these genes to regulate gene expression. This comprehensive characterization of population-scale diversity of transcriptomes and its genetic basis in the DGRP is critically important for a systems understanding of quantitative trait variation. PMID:26483487

  1. Genetic basis of transcriptome diversity in Drosophila melanogaster.

    PubMed

    Huang, Wen; Carbone, Mary Anna; Magwire, Michael M; Peiffer, Jason A; Lyman, Richard F; Stone, Eric A; Anholt, Robert R H; Mackay, Trudy F C

    2015-11-01

    Understanding how DNA sequence variation is translated into variation for complex phenotypes has remained elusive but is essential for predicting adaptive evolution, for selecting agriculturally important animals and crops, and for personalized medicine. Gene expression may provide a link between variation in DNA sequence and organismal phenotypes, and its abundance can be measured efficiently and accurately. Here we quantified genome-wide variation in gene expression in the sequenced inbred lines of the Drosophila melanogaster Genetic Reference Panel (DGRP), increasing the annotated Drosophila transcriptome by 11%, including thousands of novel transcribed regions (NTRs). We found that 42% of the Drosophila transcriptome is genetically variable in males and females, including the NTRs, and is organized into modules of genetically correlated transcripts. We found that NTRs often were negatively correlated with the expression of protein-coding genes, which we exploited to annotate NTRs functionally. We identified regulatory variants for the mean and variance of gene expression, which have largely independent genetic control. Expression quantitative trait loci (eQTLs) for the mean, but not for the variance, of gene expression were concentrated near genes. Notably, the variance eQTLs often interacted epistatically with local variants in these genes to regulate gene expression. This comprehensive characterization of population-scale diversity of transcriptomes and its genetic basis in the DGRP is critically important for a systems understanding of quantitative trait variation. PMID:26483487

  2. LYGUS GENETICS: INTER- AND INTRASPECIFIC MITOCHONDRIAL GENETIC DIVERSITY IN NORTH AMERICA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mitochondrial DNA (mtDNA) was employed to investigate inter- and intraspecific genetic diversity within the Lygus genus. The main emphasis was on L. lineolaris because it is a widely dispersed species occurring in many regions of North America. Part of the mtDNA cox1 and cox2 gene regions were used ...

  3. Peach genetic resources: diversity, population structure and linkage disequilibrium

    PubMed Central

    2013-01-01

    Background Peach (Prunus persica (L.) Batsch) is one of the most important model fruits in the Rosaceae family. Native to the west of China, where peach has been domesticated for more than 4,000 years, its cultivation spread from China to Persia, Mediterranean countries and to America. Chinese peach has had a major impact on international peach breeding programs due to its high genetic diversity. In this research, we used 48 highly polymorphic SSRs, distributed over the peach genome, to investigate the difference in genetic diversity, and linkage disequilibrium (LD) among Chinese cultivars, and North American and European cultivars, and the evolution of current peach cultivars. Results In total, 588 alleles were obtained with 48 SSRs on 653 peach accessions, giving an average of 12.25 alleles per locus. In general, the average value of observed heterozygosity (0.47) was lower than the expected heterozygosity (0.60). The separate analysis of groups of accessions according to their origin or reproductive strategies showed greater variability in Oriental cultivars, mainly due to the high level of heterozygosity in Chinese landraces. Genetic distance analysis clustered the cultivars into two main groups: one included four wild related Prunus, and the other included most of the Oriental and Occidental landraces and breeding cultivars. STRUCTURE analysis assigned 469 accessions to three subpopulations: Oriental (234), Occidental (174), and Landraces (61). Nested STRUCTURE analysis divided the Oriental subpopulation into two different subpopulations: ‘Yu Lu’ and ‘Hakuho’. The Occidental breeding subpopulation was also subdivided into nectarine and peach subpopulations. Linkage disequilibrium (LD) analysis in each of these subpopulations showed that the percentage of linked (r2 > 0.1) intra-chromosome comparisons ranged between 14% and 47%. LD decayed faster in Oriental (1,196 Kbp) than in Occidental (2,687 Kbp) samples. In the ‘Yu Lu’ subpopulation there

  4. Development of SSR Markers and Assessment of Genetic Diversity in Medicinal Chrysanthemum morifolium Cultivars

    PubMed Central

    Feng, Shangguo; He, Renfeng; Lu, Jiangjie; Jiang, Mengying; Shen, Xiaoxia; Jiang, Yan; Wang, Zhi'an; Wang, Huizhong

    2016-01-01

    Chrysanthemum morifolium, is a well-known flowering plant worldwide, and has a high commercial, floricultural, and medicinal value. In this study, simple-sequence repeat (SSR) markers were generated from EST datasets and were applied to assess the genetic diversity among 32 cultivars. A total of 218 in silico SSR loci were identified from 7300 C. morifolium ESTs retrieved from GenBank. Of all SSR loci, 61.47% of them (134) were hexa-nucleotide repeats, followed by tri-nucleotide repeats (17.89%), di-nucleotide repeats (12.39%), tetra-nucleotide repeats (4.13%), and penta-nucleotide repeats (4.13%). In this study, 17 novel EST-SSR markers were verified. Along with 38 SSR markers reported previously, 55 C. morifolium SSR markers were selected for further genetic diversity analysis. PCR amplification of these EST-SSRs produced 1319 fragments, 1306 of which showed polymorphism. The average polymorphism information content of the SSR primer pairs was 0.972 (0.938–0.993), which showed high genetic diversity among C. morifolium cultivars. Based on SSR markers, 32 C. morifolium cultivars were separated into two main groups by partitioning of the clusters using the unweighted pair group method with arithmetic mean dendrogram, which was further supported by a principal coordinate analysis plot. Phylogenetic relationship among C. morifolium cultivars as revealed by SSR markers was highly consistent with the classification of medicinal C. morifolium populations according to their origin and ecological distribution. Our results demonstrated that SSR markers were highly reproducible and informative, and could be used to evaluate genetic diversity and relationships among medicinal C. morifolium cultivars. PMID:27379163

  5. Development of SSR Markers and Assessment of Genetic Diversity in Medicinal Chrysanthemum morifolium Cultivars.

    PubMed

    Feng, Shangguo; He, Renfeng; Lu, Jiangjie; Jiang, Mengying; Shen, Xiaoxia; Jiang, Yan; Wang, Zhi'an; Wang, Huizhong

    2016-01-01

    Chrysanthemum morifolium, is a well-known flowering plant worldwide, and has a high commercial, floricultural, and medicinal value. In this study, simple-sequence repeat (SSR) markers were generated from EST datasets and were applied to assess the genetic diversity among 32 cultivars. A total of 218 in silico SSR loci were identified from 7300 C. morifolium ESTs retrieved from GenBank. Of all SSR loci, 61.47% of them (134) were hexa-nucleotide repeats, followed by tri-nucleotide repeats (17.89%), di-nucleotide repeats (12.39%), tetra-nucleotide repeats (4.13%), and penta-nucleotide repeats (4.13%). In this study, 17 novel EST-SSR markers were verified. Along with 38 SSR markers reported previously, 55 C. morifolium SSR markers were selected for further genetic diversity analysis. PCR amplification of these EST-SSRs produced 1319 fragments, 1306 of which showed polymorphism. The average polymorphism information content of the SSR primer pairs was 0.972 (0.938-0.993), which showed high genetic diversity among C. morifolium cultivars. Based on SSR markers, 32 C. morifolium cultivars were separated into two main groups by partitioning of the clusters using the unweighted pair group method with arithmetic mean dendrogram, which was further supported by a principal coordinate analysis plot. Phylogenetic relationship among C. morifolium cultivars as revealed by SSR markers was highly consistent with the classification of medicinal C. morifolium populations according to their origin and ecological distribution. Our results demonstrated that SSR markers were highly reproducible and informative, and could be used to evaluate genetic diversity and relationships among medicinal C. morifolium cultivars. PMID:27379163

  6. Limited genetic diversity preceded extinction of the Tasmanian tiger.

    PubMed

    Menzies, Brandon R; Renfree, Marilyn B; Heider, Thomas; Mayer, Frieder; Hildebrandt, Thomas B; Pask, Andrew J

    2012-01-01

    The Tasmanian tiger or thylacine was the largest carnivorous marsupial when Europeans first reached Australia. Sadly, the last known thylacine died in captivity in 1936. A recent analysis of the genome of the closely related and extant Tasmanian devil demonstrated limited genetic diversity between individuals. While a similar lack of diversity has been reported for the thylacine, this analysis was based on just two individuals. Here we report the sequencing of an additional 12 museum-archived specimens collected between 102 and 159 years ago. We examined a portion of the mitochondrial DNA hyper-variable control region and determined that all sequences were on average 99.5% identical at the nucleotide level. As a measure of accuracy we also sequenced mitochondrial DNA from a mother and two offspring. As expected, these samples were found to be 100% identical, validating our methods. We also used 454 sequencing to reconstruct 2.1 kilobases of the mitochondrial genome, which shared 99.91% identity with the two complete thylacine mitochondrial genomes published previously. Our thylacine genomic data also contained three highly divergent putative nuclear mitochondrial sequences, which grouped phylogenetically with the published thylacine mitochondrial homologs but contained 100-fold more polymorphisms than the conserved fragments. Together, our data suggest that the thylacine population in Tasmania had limited genetic diversity prior to its extinction, possibly as a result of their geographic isolation from mainland Australia approximately 10,000 years ago. PMID:22530022

  7. Limited Genetic Diversity Preceded Extinction of the Tasmanian Tiger

    PubMed Central

    Menzies, Brandon R.; Renfree, Marilyn B.; Heider, Thomas; Mayer, Frieder; Hildebrandt, Thomas B.; Pask, Andrew J.

    2012-01-01

    The Tasmanian tiger or thylacine was the largest carnivorous marsupial when Europeans first reached Australia. Sadly, the last known thylacine died in captivity in 1936. A recent analysis of the genome of the closely related and extant Tasmanian devil demonstrated limited genetic diversity between individuals. While a similar lack of diversity has been reported for the thylacine, this analysis was based on just two individuals. Here we report the sequencing of an additional 12 museum-archived specimens collected between 102 and 159 years ago. We examined a portion of the mitochondrial DNA hyper-variable control region and determined that all sequences were on average 99.5% identical at the nucleotide level. As a measure of accuracy we also sequenced mitochondrial DNA from a mother and two offspring. As expected, these samples were found to be 100% identical, validating our methods. We also used 454 sequencing to reconstruct 2.1 kilobases of the mitochondrial genome, which shared 99.91% identity with the two complete thylacine mitochondrial genomes published previously. Our thylacine genomic data also contained three highly divergent putative nuclear mitochondrial sequences, which grouped phylogenetically with the published thylacine mitochondrial homologs but contained 100-fold more polymorphisms than the conserved fragments. Together, our data suggest that the thylacine population in Tasmania had limited genetic diversity prior to its extinction, possibly as a result of their geographic isolation from mainland Australia approximately 10,000 years ago. PMID:22530022

  8. Genetic Diversity and Molecular Evolution of Chinese Waxy Maize Germplasm

    PubMed Central

    Zheng, Hongjian; Wang, Hui; Yang, Hua; Wu, Jinhong; Shi, Biao; Cai, Run; Xu, Yunbi; Wu, Aizhong; Luo, Lijun

    2013-01-01

    Waxy maize (Zea mays L. var. certaina Kulesh), with many excellent characters in terms of starch composition and economic value, has grown in China for a long history and its production has increased dramatically in recent decades. However, the evolution and origin of waxy maize still remains unclear. We studied the genetic diversity of Chinese waxy maize including typical landraces and inbred lines by SSR analysis and the results showed a wide genetic diversity in the Chinese waxy maize germplasm. We analyzed the origin and evolution of waxy maize by sequencing 108 samples, and downloading 52 sequences from GenBank for the waxy locus in a number of accessions from genus Zea. A sharp reduction of nucleotide diversity and significant neutrality tests (Tajima’s D and Fu and Li’s F*) were observed at the waxy locus in Chinese waxy maize but not in nonglutinous maize. Phylogenetic analysis indicated that Chinese waxy maize originated from the cultivated flint maize and most of the modern waxy maize inbred lines showed a distinct independent origin and evolution process compared with the germplasm from Southwest China. The results indicated that an agronomic trait can be quickly improved to meet production demand by selection. PMID:23818949

  9. Phylogeography, genetic structure, and diversity in the dhole (Cuon alpinus).

    PubMed

    Iyengar, A; Babu, V N; Hedges, S; Venkataraman, A B; Maclean, N; Morin, P A

    2005-07-01

    The Asiatic wild dog or dhole was once very widely distributed across Asia but now has a very fragmented range. In this first genetic study of this little-known species, we obtained information on genetic diversity, phylogeography, and social structure using both mitochondrial control region sequencing and microsatellite genotyping of noninvasive faecal samples from wild populations, as well as from museum and captive samples. A pattern largely consistent with isolation by distance across the Asian mainland was observed, with no clear subspecies distinctions. However, two major phylogeographical groupings were found across the mainland, one extending from South, Central, and North India (south of the Ganges) into Myanmar, and the other extending from India north of the Ganges into northeastern India, Myanmar, Thailand and the Malaysian Peninsula. We propose a scenario involving glaciation events that could explain this pattern. The origin of the dhole populations in Sumatra and Java is enigmatic and requires further study. Very low levels of genetic diversity were observed among wild dholes from Baluran National Park in Java, Indonesia, but in contrast, high levels were observed in Mudumalai Wildlife Sanctuary in South India. PMID:15969714

  10. Genetic variation in biomass traits among 20 diverse rice varieties.

    PubMed

    Jahn, Courtney E; Mckay, John K; Mauleon, Ramil; Stephens, Janice; McNally, Kenneth L; Bush, Daniel R; Leung, Hei; Leach, Jan E

    2011-01-01

    Biofuels provide a promising route of producing energy while reducing reliance on petroleum. Developing sustainable liquid fuel production from cellulosic feedstock is a major challenge and will require significant breeding efforts to maximize plant biomass production. Our approach to elucidating genes and genetic pathways that can be targeted for improving biomass production is to exploit the combination of genomic tools and genetic diversity in rice (Oryza sativa). In this study, we analyzed a diverse set of 20 recently resequenced rice varieties for variation in biomass traits at several different developmental stages. The traits included plant size and architecture, aboveground biomass, and underlying physiological processes. We found significant genetic variation among the 20 lines in all morphological and physiological traits. Although heritability estimates were significant for all traits, heritabilities were higher in traits relating to plant size and architecture than for physiological traits. Trait variation was largely explained by variety and breeding history (advanced versus landrace) but not by varietal groupings (indica, japonica, and aus). In the context of cellulosic biofuels development, cell wall composition varied significantly among varieties. Surprisingly, photosynthetic rates among the varieties were inversely correlated with biomass accumulation. Examining these data in an evolutionary context reveals that rice varieties have achieved high biomass production via independent developmental and physiological pathways, suggesting that there are multiple targets for biomass improvement. Future efforts to identify loci and networks underlying this functional variation will facilitate the improvement of biomass traits in other grasses being developed as energy crops. PMID:21062890

  11. Functional consequences of genetic diversity in Strongyloides ratti infections.

    PubMed Central

    Paterson, S; Viney, M E

    2003-01-01

    Parasitic nematodes show levels of genetic diversity comparable to other taxa, but the functional consequences of this are not understood. Thus, a large body of theoretical work highlights the potential consequences of parasite genetic diversity for the epidemiology of parasite infections and its possible implications for the evolution of host and parasite populations. However, few relevant empirical data are available from parasites in general and none from parasitic nematodes in particular. Here, we test two hypotheses. First, that different parasitic nematode genotypes vary in life-history traits, such as survivorship and fecundity, which may cause variation in infection dynamics. Second, that different parasitic nematode genotypes interact within the host (either directly or via the host immune system) to increase the mean reproductive output of mixed-genotype infections compared with single-genotype infections. We test these hypotheses in laboratory infections using genetically homogeneous lines of Strongyloides ratti. We find that nematode genotypes do vary in their survivorship and fecundity and, consequently, in their dynamics of infection. However, we find little evidence of interactions between genotypes within hosts under a variety of trickle- and single-infected infection regimes. PMID:12803891

  12. Sézary Syndrome: Translating Genetic Diversity into Personalized Medicine.

    PubMed

    Chevret, Edith; Merlio, Jean-Philippe

    2016-07-01

    Sézary syndrome is probably the most studied cutaneous T-cell lymphoma subtype. Beyond the consensus criteria for Sézary syndrome diagnosis, Sézary cells display heterogeneous phenotypes and differentiation profiles. In the face of SS diversity, the great hope is to develop targeted therapies based on next-generation sequencing to define the genetic landscape of Sézary syndrome. Prasad et al. report on the use of exome sequencing and RNA sequencing to study selected CD4(+) blood cells from 15 patients with erythroderma Sézary syndrome, 14 of whom fulfilled the conventional criteria for diagnosis. The most common genetic abnormality, TP53 gene deletion on chromosome arm 17p and/or mutation, was observed in 58% of patients. However, mutations affecting PLCG1, STAT5B, GLI3, and CARD11 each were detected in only one individual. Nevertheless, Prasad et al. report single point mutations or copy number alterations in several new genes and in new fusion genes, with predicted biological relevance. This information underscores the diversity of genetic alterations and of the mechanisms of alterations of single genes. At the individual level, Sézary cells may combine alterations of genes involved in T-cell signaling, NF-kB and JAK-signal transducer and activator of transcription pathways, apoptosis control, chromatin remodeling, and DNA damage response. The therapeutic relevance of these potential targets needs to be evaluated with tests of function. PMID:27342034

  13. Selecting subsets of genotyped experimental populations for phenotyping to maximize genetic diversity.

    PubMed

    Emma Huang, B; Clifford, David; Cavanagh, Colin

    2013-02-01

    Selective phenotyping is a way of capturing the benefits of large population sizes without the need to carry out large-scale phenotyping and hence is a cost-effective means of capturing information about gene-trait relationships within a population. The diversity within the sample gives an indication of the efficiency of this information capture; less diversity implies greater redundancy of the genetic information. Here, we propose a method to maximize genetic diversity within the selected samples. Our method is applicable to general experimental designs and robust to common problems such as missing data and dominant markers. In particular, we discuss its application to multi-parent advanced generation intercross (MAGIC) populations, where, although thousands of lines may be genotyped as a large population resource, only hundreds may need to be phenotyped for individual studies. Through simulation, we compare our method to simple random sampling and the minimum moment aberration method. While the gain in power over simple random sampling for all tested methods is not large, our method results in a much more diverse sample of genotypes. This diversity can be applied to improve fine mapping resolution once a QTL region has been detected. Further, when applied to two wheat datasets from doubled haploid and MAGIC progeny, our method detects known QTL for small sample sizes where other methods fail. PMID:23052022

  14. Genetic Diversity Analysis of South and East Asian Duck Populations Using Highly Polymorphic Microsatellite Markers

    PubMed Central

    Seo, Dongwon; Bhuiyan, Md. Shamsul Alam; Sultana, Hasina; Heo, Jung Min; Lee, Jun Heon

    2016-01-01

    Native duck populations have lower productivity, and have not been developed as much as commercials duck breeds. However, native ducks have more importance in terms of genetic diversity and potentially valuable economic traits. For this reason, population discriminable genetic markers are needed for conservation and development of native ducks. In this study, 24 highly polymorphic microsatellite (MS) markers were investigated using commercial ducks and native East and South Asian ducks. The average polymorphic information content (PIC) value for all MS markers was 0.584, indicating high discrimination power. All populations were discriminated using 14 highly polymorphic MS markers by genetic distance and phylogenetic analysis. The results indicated that there were close genetic relationships among populations. In the structure analysis, East Asian ducks shared more haplotypes with commercial ducks than South Asian ducks, and they had more independent haplotypes than others did. These results will provide useful information for genetic diversity studies in ducks and for the development of duck traceability systems in the market. PMID:26949947

  15. Genetic Diversity Analysis of South and East Asian Duck Populations Using Highly Polymorphic Microsatellite Markers.

    PubMed

    Seo, Dongwon; Bhuiyan, Md Shamsul Alam; Sultana, Hasina; Heo, Jung Min; Lee, Jun Heon

    2016-04-01

    Native duck populations have lower productivity, and have not been developed as much as commercials duck breeds. However, native ducks have more importance in terms of genetic diversity and potentially valuable economic traits. For this reason, population discriminable genetic markers are needed for conservation and development of native ducks. In this study, 24 highly polymorphic microsatellite (MS) markers were investigated using commercial ducks and native East and South Asian ducks. The average polymorphic information content (PIC) value for all MS markers was 0.584, indicating high discrimination power. All populations were discriminated using 14 highly polymorphic MS markers by genetic distance and phylogenetic analysis. The results indicated that there were close genetic relationships among populations. In the structure analysis, East Asian ducks shared more haplotypes with commercial ducks than South Asian ducks, and they had more independent haplotypes than others did. These results will provide useful information for genetic diversity studies in ducks and for the development of duck traceability systems in the market. PMID:26949947

  16. Range-edge genetic diversity: locally poor extant southern patches maintain a regionally diverse hotspot in the seagrass Zostera marina.

    PubMed

    Diekmann, Onno E; Serrão, Ester A

    2012-04-01

    Refugial populations at the rear edge are predicted to contain higher genetic diversity than those resulting from expansion, such as in post-glacial recolonizations. However, peripheral populations are also predicted to have decreased diversity compared to the centre of a species' distribution. We aim to test these predictions by comparing genetic diversity in populations at the limits of distribution of the seagrass Zostera marina, with populations in the species' previously described central diversity 'hotspot'. Zostera marina populations show decreased allelic richness, heterozygosity and genotypic richness in both the 'rear' edge and the 'leading' edge compared to the diversity 'hotspot' in the North Sea/Baltic region. However, when populations are pooled, genetic diversity at the southern range is as high as in the North Sea/Baltic region while the 'leading edge' remains low in genetic diversity. The decreased genetic diversity in these southern Iberian populations compared to more central populations is possibly the effect of drift because of small effective population size, as a result of reduced habitat, low sexual reproduction and low gene flow. However, when considering the whole southern edge of distribution rather than per population, diversity is as high as in the central 'hotspot' in the North Sea/Baltic region. We conclude that diversity patterns assessed per population can mask the real regional richness that is typical of rear edge populations, which have played a key role in the species biogeographical history and as marginal diversity hotspots have very high conservation value. PMID:22369278

  17. Genetic diversity among Lagenaria siceraria accessions containing resistance to root-knot nematodes, whiteflies, ZYMV or powdery mildew

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, there has been an increased interest in Europe and in the U.S. in grafting watermelon onto bottle gourd, Lagenaria siceraria (Mol.) Standl. In this study, genetic diversity and relationships were examined [using 240 sequence related amplified polymorphism (SRAP) markers] among 56 U...

  18. Host range, prevalence, and genetic diversity of adenoviruses in bats.

    PubMed

    Li, Yan; Ge, Xingyi; Zhang, Huajun; Zhou, Peng; Zhu, Yan; Zhang, Yunzhi; Yuan, Junfa; Wang, Lin-Fa; Shi, Zhengli

    2010-04-01

    Bats are the second largest group of mammals on earth and act as reservoirs of many emerging viruses. In this study, a novel bat adenovirus (AdV) (BtAdV-TJM) was isolated from bat fecal samples by using a bat primary kidney cell line. Infection studies indicated that most animal and human cell lines are susceptible to BtAdV-TJM, suggesting a possible wide host range. Genome analysis revealed 30 putative genes encoding proteins homologous to their counterparts in most known AdVs. Phylogenetic analysis placed BtAdV-TJM within the genus Mastadenovirus, most closely related to tree shrew and canine AdVs. PCR analysis of 350 bat fecal samples, collected from 19 species in five Chinese provinces during 2007 and 2008, indicated that 28 (or 8%) samples were positive for AdVs. The samples were from five bat species, Hipposideros armiger, Myotis horsfieldii, M. ricketti, Myotis spp., and Scotophilus kuhlii. The prevalence ranged from 6.25% (H. armiger in 2007) to 40% (M. ricketti in 2007). Comparison studies based on available partial sequences of the pol gene demonstrated a great genetic diversity among bat AdVs infecting different bat species as well as those infecting the same bat species. This is the first report of a genetically diverse group of DNA viruses in bats. Our results support the notion, derived from previous studies based on RNA viruses (especially coronaviruses and astroviruses), that bats seem to have the unusual ability to harbor a large number of genetically diverse viruses within a geographic location and/or within a taxonomic group. PMID:20089640

  19. Origin and Genetic Diversity of Diploid Parthenogenetic Artemia in Eurasia

    PubMed Central

    Maccari, Marta; Amat, Francisco; Gómez, Africa

    2013-01-01

    There is wide interest in understanding how genetic diversity is generated and maintained in parthenogenetic lineages, as it will help clarify the debate of the evolution and maintenance of sexual reproduction. There are three mechanisms that can be responsible for the generation of genetic diversity of parthenogenetic lineages: contagious parthenogenesis, repeated hybridization and microorganism infections (e.g. Wolbachia). Brine shrimps of the genus Artemia (Crustacea, Branchiopoda, Anostraca) are a good model system to investigate evolutionary transitions between reproductive systems as they include sexual species and lineages of obligate parthenogenetic populations of different ploidy level, which often co-occur. Diploid parthenogenetic lineages produce occasional fully functional rare males, interspecific hybridization is known to occur, but the mechanisms of origin of asexual lineages are not completely understood. Here we sequenced and analysed fragments of one mitochondrial and two nuclear genes from an extensive set of populations of diploid parthenogenetic Artemia and sexual species from Central and East Asia to investigate the evolutionary origin of diploid parthenogenetic Artemia, and geographic origin of the parental taxa. Our results indicate that there are at least two, possibly three independent and recent maternal origins of parthenogenetic lineages, related to A. urmiana and Artemia sp. from Kazakhstan, but that the nuclear genes are very closely related in all the sexual species and parthenogegetic lineages except for A. sinica, who presumable took no part on the origin of diploid parthenogenetic strains. Our data cannot rule out either hybridization between any of the very closely related Asiatic sexual species or rare events of contagious parthenogenesis via rare males as the contributing mechanisms to the generation of genetic diversity in diploid parthenogenetic Artemia lineages. PMID:24376692

  20. Genetic diversity analysis of sweet kernel apricot in China based on SSR and ISSR markers.

    PubMed

    Liu, M P; Du, H Y; Zhu, G P; Fu, D L; Tana, W Y

    2015-01-01

    Simple sequence repeat (SSR) and inter-simple sequence repeat (ISSR) markers were used to evaluate genetic diversity among 22 sweet kernel apricot accessions and 12 cultivars in China to provide information on how to improve the utilization of kernel apricot germplasms. The results showed that 10 pairs of SSR primers screened from 40 primer pairs amplified 43 allelic variants, all of which were polymorphic (100%), and 9 ISSR primers selected from 100 primers amplified 67 allelic variants with 50 polymorphic bands (74.63%). There was a relatively distant genetic relationship between the 34 samples, where their genetic similarity coefficient was between 0.62 and 0.99. The UPGMA dendrogram constructed using combined data of the two marker systems separated the genotypes into three main clusters. PMID:26345904

  1. Genetics, Genomics and Evolution of Ergot Alkaloid Diversity

    PubMed Central

    Young, Carolyn A.; Schardl, Christopher L.; Panaccione, Daniel G.; Florea, Simona; Takach, Johanna E.; Charlton, Nikki D.; Moore, Neil; Webb, Jennifer S.; Jaromczyk, Jolanta

    2015-01-01

    The ergot alkaloid biosynthesis system has become an excellent model to study evolutionary diversification of specialized (secondary) metabolites. This is a very diverse class of alkaloids with various neurotropic activities, produced by fungi in several orders of the phylum Ascomycota, including plant pathogens and protective plant symbionts in the family Clavicipitaceae. Results of comparative genomics and phylogenomic analyses reveal multiple examples of three evolutionary processes that have generated ergot-alkaloid diversity: gene gains, gene losses, and gene sequence changes that have led to altered substrates or product specificities of the enzymes that they encode (neofunctionalization). The chromosome ends appear to be particularly effective engines for gene gains, losses and rearrangements, but not necessarily for neofunctionalization. Changes in gene expression could lead to accumulation of various pathway intermediates and affect levels of different ergot alkaloids. Genetic alterations associated with interspecific hybrids of Epichloë species suggest that such variation is also selectively favored. The huge structural diversity of ergot alkaloids probably represents adaptations to a wide variety of ecological situations by affecting the biological spectra and mechanisms of defense against herbivores, as evidenced by the diverse pharmacological effects of ergot alkaloids used in medicine. PMID:25875294

  2. Genetics, genomics and evolution of ergot alkaloid diversity.

    PubMed

    Young, Carolyn A; Schardl, Christopher L; Panaccione, Daniel G; Florea, Simona; Takach, Johanna E; Charlton, Nikki D; Moore, Neil; Webb, Jennifer S; Jaromczyk, Jolanta

    2015-04-01

    The ergot alkaloid biosynthesis system has become an excellent model to study evolutionary diversification of specialized (secondary) metabolites. This is a very diverse class of alkaloids with various neurotropic activities, produced by fungi in several orders of the phylum Ascomycota, including plant pathogens and protective plant symbionts in the family Clavicipitaceae. Results of comparative genomics and phylogenomic analyses reveal multiple examples of three evolutionary processes that have generated ergot-alkaloid diversity: gene gains, gene losses, and gene sequence changes that have led to altered substrates or product specificities of the enzymes that they encode (neofunctionalization). The chromosome ends appear to be particularly effective engines for gene gains, losses and rearrangements, but not necessarily for neofunctionalization. Changes in gene expression could lead to accumulation of various pathway intermediates and affect levels of different ergot alkaloids. Genetic alterations associated with interspecific hybrids of Epichloë species suggest that such variation is also selectively favored. The huge structural diversity of ergot alkaloids probably represents adaptations to a wide variety of ecological situations by affecting the biological spectra and mechanisms of defense against herbivores, as evidenced by the diverse pharmacological effects of ergot alkaloids used in medicine. PMID:25875294

  3. Paternal phylogeography and genetic diversity of East Asian goats.

    PubMed

    Waki, A; Sasazaki, S; Kobayashi, E; Mannen, H

    2015-06-01

    This study was a first analysis of paternal genetic diversity for extensive Asian domestic goats using SRY gene sequences. Sequencing comparison of the SRY 3'-untranslated region among 210 Asian goats revealed four haplotypes (Y1A, Y1B, Y2A and Y2B) derived from four variable sites including a novel substitution detected in this study. In Asian goats, the predominant haplotype was Y1A (62%) and second most common was Y2B (30%). Interestingly, the Y2B was a unique East Asian Y chromosomal variant, which differentiates eastern and western Eurasian goats. The SRY geographic distribution in Myanmar and Cambodia indicated predominant the haplotype Y1A in plains areas and a high frequency of Y2B in mountain areas. The results suggest recent genetic infiltration of modern breeds into South-East Asian goats and an ancestral SRY Y2B haplotype in Asian native goats. PMID:25917305

  4. Genetic Diversity of Eight Domestic Goat Populations Raised in Turkey

    PubMed Central

    Bulut, Zafer; Kurar, Ercan; Ozsensoy, Yusuf; Altunok, Vahdettin; Nizamlioglu, Mehmet

    2016-01-01

    The objective of this study was to determine the intra- and intergenetic diversities of eight different goat populations in Turkey including Hair, Angora, Kilis, Yayladag, Shami, Honamli, Saanen, and Alpine. A total of 244 DNA samples were genotyped using 11 microsatellites loci. The genetic differentiation between breeds was considerable as a result of the statistically significant (P < 0.001) pairwise FST values of each pair of breeds. Exceptionally, FST values calculated for Honamli and Hair breeds were statistically nonsignificant (P > 0.05). Heterozygosity values ranged between 0.62 and 0.73. According to the structure and assignment test, Angora and Yayladag goats were assigned to the breed they belong to, while other breeds were assigned to two or more different groups. Because this study for the first time presented genetic data on the Yayladag goat, results of structure analysis and assigned test suggest that further analyses are needed using additional and different molecular markers. PMID:27092309

  5. The impact of recent events on human genetic diversity

    PubMed Central

    Jobling, Mark A.

    2012-01-01

    The historical record tells us stories of migrations, population expansions and colonization events in the last few thousand years, but what was their demographic impact? Genetics can throw light on this issue, and has mostly done so through the maternally inherited mitochondrial DNA (mtDNA) and the male-specific Y chromosome. However, there are a number of problems, including marker ascertainment bias, possible influences of natural selection, and the obscuring layers of the palimpsest of historical and prehistorical events. Y-chromosomal lineages are particularly affected by genetic drift, which can be accentuated by recent social selection. A diversity of approaches to expansions in Europe is yielding insights into the histories of Phoenicians, Roma, Anglo-Saxons and Vikings, and new methods for producing and analysing genome-wide data hold much promise. The field would benefit from more consensus on appropriate methods, and better communication between geneticists and experts in other disciplines, such as history, archaeology and linguistics. PMID:22312046

  6. The impact of recent events on human genetic diversity.

    PubMed

    Jobling, Mark A

    2012-03-19

    The historical record tells us stories of migrations, population expansions and colonization events in the last few thousand years, but what was their demographic impact? Genetics can throw light on this issue, and has mostly done so through the maternally inherited mitochondrial DNA (mtDNA) and the male-specific Y chromosome. However, there are a number of problems, including marker ascertainment bias, possible influences of natural selection, and the obscuring layers of the palimpsest of historical and prehistorical events. Y-chromosomal lineages are particularly affected by genetic drift, which can be accentuated by recent social selection. A diversity of approaches to expansions in Europe is yielding insights into the histories of Phoenicians, Roma, Anglo-Saxons and Vikings, and new methods for producing and analysing genome-wide data hold much promise. The field would benefit from more consensus on appropriate methods, and better communication between geneticists and experts in other disciplines, such as history, archaeology and linguistics. PMID:22312046

  7. Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape

    PubMed Central

    2013-01-01

    Background The economic importance of grapevine has driven significant efforts in genomics to accelerate the exploitation of Vitis resources for development of new cultivars. However, although a large number of clonally propagated accessions are maintained in grape germplasm collections worldwide, their use for crop improvement is limited by the scarcity of information on genetic diversity, population structure and proper phenotypic assessment. The identification of representative and manageable subset of accessions would facilitate access to the diversity available in large collections. A genome-wide germplasm characterization using molecular markers can offer reliable tools for adjusting the quality and representativeness of such core samples. Results We investigated patterns of molecular diversity at 22 common microsatellite loci and 384 single nucleotide polymorphisms (SNPs) in 2273 accessions of domesticated grapevine V. vinifera ssp. sativa, its wild relative V. vinifera ssp. sylvestris, interspecific hybrid cultivars and rootstocks. Despite the large number of putative duplicates and extensive clonal relationships among the accessions, we observed high level of genetic variation. In the total germplasm collection the average genetic diversity, as quantified by the expected heterozygosity, was higher for SSR loci (0.81) than for SNPs (0.34). The analysis of the genetic structure in the grape germplasm collection revealed several levels of stratification. The primary division was between accessions of V. vinifera and non-vinifera, followed by the distinction between wild and domesticated grapevine. Intra-specific subgroups were detected within cultivated grapevine representing different eco-geographic groups. The comparison of a phenological core collection and genetic core collections showed that the latter retained more genetic diversity, while maintaining a similar phenotypic variability. Conclusions The comprehensive molecular characterization of our grape

  8. Multilocus genotypic data reveal high genetic diversity and low population genetic structure of Iranian indigenous sheep.

    PubMed

    Vahidi, S M F; Faruque, M O; Falahati Anbaran, M; Afraz, F; Mousavi, S M; Boettcher, P; Joost, S; Han, J L; Colli, L; Periasamy, K; Negrini, R; Ajmone-Marsan, P

    2016-08-01

    Iranian livestock diversity is still largely unexplored, in spite of the interest in the populations historically reared in this country located near the Fertile Crescent, a major livestock domestication centre. In this investigation, the genetic diversity and differentiation of 10 Iranian indigenous fat-tailed sheep breeds were investigated using 18 microsatellite markers. Iranian breeds were found to host a high level of diversity. This conclusion is substantiated by the large number of alleles observed across loci (average 13.83, range 7-22) and by the high within-breed expected heterozygosity (average 0.75, range 0.72-0.76). Iranian sheep have a low level of genetic differentiation, as indicated by the analysis of molecular variance, which allocated a very small proportion (1.67%) of total variation to the between-population component, and by the small fixation index (FST  = 0.02). Both Bayesian clustering and principal coordinates analysis revealed the absence of a detectable genetic structure. Also, no isolation by distance was observed through comparison of genetic and geographical distances. In spite of high within-breed variation, signatures of inbreeding were detected by the FIS indices, which were positive in all and statistically significant in three breeds. Possible factors explaining the patterns observed, such as considerable gene flow and inbreeding probably due to anthropogenic activities in the light of population management and conservation programmes, are discussed. PMID:26953226

  9. Theileria lestoquardi displays reduced genetic diversity relative to sympatric Theileria annulata in Oman.

    PubMed

    Al-Hamidhi, Salama; Weir, William; Kinnaird, Jane; Tageledin, Mohemmed; Beja-Pereira, Albano; Morrison, Ivan; Thompson, Joanne; Tait, Andy; Shiels, Brian; Babiker, Hamza A

    2016-09-01

    The Apicomplexan parasites, Theileria lestoquardi and Theileria annulata, the causative agents of theileriosis in small and large ruminants, are widespread in Oman, in areas where cattle, sheep and goats co-graze. Genetic analysis can provide insight into the dynamics of the parasite and the evolutionary relationship between species. Here we identified ten genetic markers (micro- and mini-satellites) spread across the T. lestoquardi genome, and confirmed their species specificity. We then genotyped T. lestoquardi in different regions in Oman. The genetic structures of T. lestoquardi populations were then compared with previously published data, for comparable panels of markers, for sympatric T. annulata isolates. In addition, we examined two antigen genes in T. annulata (Tams1 and Ta9) and their orthologues in T. lestoquardi (Tlms1 and Tl9). The genetic diversity and multiplicity of infection (MOI) were lower in T. lestoquardi (He=0.64-0.77) than T. annulata (He=0.83-0.85) in all populations. Very limited genetic differentiation was found among T. lestoquardi and T. annulata populations. In contrast, limited but significant linkage disequilibrium was observed within regional populations of each species. We identified eight T. annulata isolates in small ruminants; the diversity and MOI were lower among ovine/caprine compared to bovine. Sequence diversity of the antigen genes, Tams1 and Ta9 in T. annulata (π=0.0733 and π=0.155 respectively), was 10-fold and 3-fold higher than the orthologous Tlms1 and Tl9 in T. lestoquardi (π=0.006 and π=0.055, respectively). Despite a comparably high prevalence, T. lestoquardi has lower genetic diversity compared to sympatric T. annulata populations. There was no evidence of differentiation among populations of either species. In comparison to T. lestoquardi, T. annulata has a larger effective population size. While genetic exchange and recombination occur in both parasite species, the extent of diversity, overall, is less for T

  10. Complexity of Infection and Genetic Diversity in Cambodian Plasmodium vivax

    PubMed Central

    Friedrich, Lindsey R.; Popovici, Jean; Kim, Saorin; Dysoley, Lek; Zimmerman, Peter A.; Menard, Didier; Serre, David

    2016-01-01

    Background Plasmodium vivax is the most widely distributed human malaria parasite with 2.9 billion people living in endemic areas. Despite intensive malaria control efforts, the proportion of cases attributed to P. vivax is increasing in many countries. Genetic analyses of the parasite population and its dynamics could provide an assessment of the efficacy of control efforts, but, unfortunately, these studies are limited in P. vivax by the lack of informative markers and high-throughput genotyping methods. Methodology/Principal Findings We developed a sequencing-based assay to simultaneously genotype more than 100 SNPs and applied this approach to ~500 P. vivax-infected individuals recruited across nine locations in Cambodia between 2004 and 2013. Our analyses showed that the vast majority of infections are polyclonal (92%) and that P. vivax displays high genetic diversity in Cambodia without apparent geographic stratification. Interestingly, our analyses also revealed that the proportion of monoclonal infections significantly increased between 2004 and 2013, possibly suggesting that malaria control strategies in Cambodia may be successfully affecting the parasite population. Conclusions/Significance Our findings demonstrate that this high-throughput genotyping assay is efficient in characterizing P. vivax diversity and can provide valuable insights to assess the efficacy of malaria elimination programs or to monitor the spread of specific parasites. PMID:27018585

  11. Analysis of genetic diversity in earthworms using DNA markers.

    PubMed

    Sharma, Anshul; Sonah, Humira; Deshmukh, Rupesh K; Gupta, Navneet K; Singh, Nagendra K; Sharma, Tilak R

    2011-01-01

    Earthworms are one of the most important and beneficial macrofauna, and are used extensively in organic farming. Earthworms mediate soil biological regulation systems, and produce biogenic structures. They help to maintain soil structure, water infiltration, and regulate the availability of nutrients assimilated by plants. The objectives of this study were to perform morphological and molecular characterizations of 24 earthworm individuals collected from geographically diverse locations to assess the level of genetic variation. For molecular analysis, the effectiveness of RAPD, ISSR, and Universal rice primers (URPs) markers was investigated to identify polymorphism among 24 isolates of earthworms. A total of 62 molecular markers were used for amplification of genomic DNA of earthworms. Of these, 10 RAPD, 10 ISSR, and 10 URPs markers were used for characterization, which showed 95.7%, 96.7% and 98.3% polymorphism, respectively. The dendrogram, generated from the DNA markers by the unweighted pair group method using arithmetic averages, grouped all the isolates into two main clusters. All Eisenia fetida isolates were clustered in group A, whereas group B included three isolates belonging to Eudrilus eugeniae. Molecular markers allowed a rapid assessment of genetic variation among these closely related isolates of earthworms. These results suggest that molecular markers are a good choice for diversity analysis of earthworm individuals. PMID:21186943

  12. Ordering microbial diversity into ecologically and genetically cohesive units

    PubMed Central

    Shapiro, B. Jesse; Polz, Martin F.

    2014-01-01

    We propose that microbial diversity must be viewed in light of gene flow and selection, which define units of genetic similarity, and of phenotype and ecological function, respectively. Here, we discuss to what extent ecological and genetic units overlap to form cohesive populations in the wild, based on recent evolutionary modeling and on evidence from some of the first microbial populations studied with genomics. These show that if recombination is frequent and selection moderate, ecologically adaptive mutations or genes can spread within populations independently of their original genomic background (gene-specific sweeps). Alternatively, if the effect of recombination is smaller than selection, genome-wide selective sweeps should occur. In both cases, however, distinct units of overlapping ecological and genotypic similarity will form if microgeographic separation, likely involving ecological tradeoffs, induces barriers to gene flow. These predictions are supported by (meta)genomic data, which suggest that a ‘reverse ecology’ approach, in which genomic and gene flow information is used to make predictions about the nature of ecological units, is a powerful approach to ordering microbial diversity. PMID:24630527

  13. Human KIR repertoires: shaped by genetic diversity and evolution.

    PubMed

    Manser, Angela R; Weinhold, Sandra; Uhrberg, Markus

    2015-09-01

    Killer cell immunoglobulin-like receptors (KIRs) on natural killer (NK) cells are crucially involved in the control of cancer development and virus infection by probing cells for proper expression of HLA class I. The clonally distributed expression of KIRs leads to great combinatorial diversity that develops in the presence of the evolutionary older CD94/NKG2A receptor to create highly stochastic but tolerant repertoires of NK cells. These repertoires are present at birth and are subsequently shaped by an individuals' immunological history toward recognition of self. The single most important factor that shapes functional NK cell repertoires is the genetic diversity of KIR, which is characterized by the presence of group A and B haplotypes with complementary gene content that are present in all human populations. Group A haplotypes constitute the minimal genetic entity that provides high affinity recognition of all major human leukocyte antigen class I-encoded ligands, whereas group B haplotypes contribute to the diversification of NK cell repertoires by providing sets of stimulatory KIR genes that modify NK cell responses. We suggest a cooperative model for the balancing selection of A and B haplotypes, which is driven by the need to provide a suitable corridor of repertoire complexity in which A/A individuals with only 16 different KIR combinations coexist with A/B and B/B donors expressing up to 2048 different clone types. PMID:26284478

  14. Whole mitochondrial genome genetic diversity in an Estonian population sample.

    PubMed

    Stoljarova, Monika; King, Jonathan L; Takahashi, Maiko; Aaspõllu, Anu; Budowle, Bruce

    2016-01-01

    Mitochondrial DNA is a useful marker for population studies, human identification, and forensic analysis. Commonly used hypervariable regions I and II (HVI/HVII) were reported to contain as little as 25% of mitochondrial DNA variants and therefore the majority of power of discrimination of mitochondrial DNA resides in the coding region. Massively parallel sequencing technology enables entire mitochondrial genome sequencing. In this study, buccal swabs were collected from 114 unrelated Estonians and whole mitochondrial genome sequences were generated using the Illumina MiSeq system. The results are concordant with previous mtDNA control region reports of high haplogroup HV and U frequencies (47.4 and 23.7% in this study, respectively) in the Estonian population. One sample with the Northern Asian haplogroup D was detected. The genetic diversity of the Estonian population sample was estimated to be 99.67 and 95.85%, for mtGenome and HVI/HVII data, respectively. The random match probability for mtGenome data was 1.20 versus 4.99% for HVI/HVII. The nucleotide mean pairwise difference was 27 ± 11 for mtGenome and 7 ± 3 for HVI/HVII data. These data describe the genetic diversity of the Estonian population sample and emphasize the power of discrimination of the entire mitochondrial genome over the hypervariable regions. PMID:26289416

  15. Genetic diversity in Spanish donkey breeds using microsatellite DNA markers

    PubMed Central

    Aranguren-Méndez, José; Jordana, Jordi; Gomez, Mariano

    2001-01-01

    Genetic diversity at 13 equine microsatellite loci was compared in five endangered Spanish donkey breeds: Andaluza, Catalana, Mallorquina, Encartaciones and Zamorano-Leonesa. All of the equine microsatellites used in this study were amplified and were polymorphic in the domestic donkey breeds with the exception of HMS1, which was monomorphic, and ASB2, which failed to amplify. Allele number, frequency distributions and mean heterozygosities were very similar among the Spanish donkey breeds. The unbiased expected heterozygosity (HE) over all the populations varied between 0.637 and 0.684 in this study. The low GST value showed that only 3.6% of the diversity was between breeds (P < 0.01). Significant deviations from Hardy-Weinberg equilibrium were shown for a number of locus-population combinations, except HMS5 that showed agreement in all analysed populations. The cumulative exclusion probability (PE) was 0.999 in each breed, suggesting that the loci would be suitable for donkey parentage testing. The constructed dendrogram from the DA distance matrix showed little differentiation between Spanish breeds, but great differentiation between them and the Moroccan ass and also with the horse, used as an outgroup. These results confirm the potential use of equine microsatellite loci as a tool for genetic studies in domestic donkey populations, which could also be useful for conservation plans. PMID:11559485

  16. Prevalence and genetic diversity of klassevirus in wastewater in Japan.

    PubMed

    Haramoto, Eiji; Otagiri, Mikie

    2013-03-01

    Klassevirus is a novel virus belonging to the family Picornaviridae. This study examined the prevalence and genetic diversity of klassevirus in wastewater. Raw sewage (100 ml) and secondary-treated sewage (2 l) were collected monthly for 14 months between January 2011 and February 2012 from a wastewater treatment plant in Japan. Klassevirus in the sample was concentrated by the electronegative membrane-vortex method, followed by qualitative detection by means of three types of reverse transcription (RT)-nested polymerase chain reactions (PCRs). Klassevirus was detected in seven of the 14 raw sewage (50 %) and four of the 14 secondary-treated sewage (29 %) samples by the RT-nested PCRs targeting the 2C and/or 3D regions. In contrast, none of the samples tested positive for the virus by the RT-nested PCR targeting the VP0/VP3 region. Based on direct nucleotide sequence analysis of the klassevirus-positive nested PCR fragments, the tested samples showed high nucleotide sequence similarities of 94.7-100.0 % and 93.2-100.0 % in the 2C and 3D regions, respectively, indicating the presence of a single klassevirus strain. To our knowledge, this is the first study evaluating seasonal prevalence and genetic diversity of klassevirus in environmental waters. PMID:23412720

  17. Genetic diversity in bread wheat (Triticum aestivum L.) genotypes.

    PubMed

    Degewione, A; Alamerew, S

    2013-11-01

    Wheat is one most important cereal crops grown in Ethiopia. Yet, keeping in view insufficient information on exotic bread wheat genotypes is limiting the access to useful traits present among the genotypes in the Somali region of Ethiopia. The aim of the study was to assess the extent of genetic diversity among bread wheat genotypes. Twenty six bread wheat (Triticum aestivum L.) genotypes obtained from ICARDA-CIMMYT were tested at Gode and Kelafo research sites at three cropping seasons (2009/10, 2010/11 and 2011/12) under irrigation. The experiment was conducted in randomized complete block design with three replications. Ten agronomic traits were included in the study. The mean values, ranges and the coefficient of variation of the 10 characters indicated the existence of sufficient variability among genotypes. Multivariate techniques were used to classify 26 bread wheat genotypes. Principal component analysis showed that the first six principal components explained about 91.87% of the total variation. D2 analysis showed the 26 bread wheat genotypes grouped into six clusters. This made to become moderate diversity among the genotypes. The crosses between genotypes selected from cluster-III with cluster-VI and cluster V with cluster VI are expected to produce better genetic recombination and segregation in their progenies. Therefore, these bread wheat genotypes need to be crossed and selected to develop high yielding pure line variety. PMID:24511742

  18. The loss of genetic diversity in Sichuan taimen as revealed by DNA fingerprinting.

    PubMed

    Wu, Xue-Chang

    2006-06-01

    Species endangerment often derives from the "endangerment" of genetic diversity, thus loss of genetic diversity is an important cause of species extinction. Since historical specimens were unavailable, previous studies mainly described the genetic diversity status in the current population rather than the loss of genetic variation over time. In this study, we collected samples during 1998-1999 and obtained historical specimens from 1957 to 1958. Based on the two sets of fish, we determined the changes in genetic diversity of Sichuan taimen using DNA fingerprinting. The differences in genetic parameters between the present samples and historical taimens revealed their loss of genetic variation. As a result, the existing populations have lower viability, and proper management has to be implemented to preserve genetic diversity. PMID:16944294

  19. Genetic diversity within honeybee colonies prevents severe infections and promotes colony growth.

    PubMed Central

    Tarpy, David R

    2003-01-01

    Multiple mating by social insect queens increases the genetic diversity among colony members, thereby reducing intracolony relatedness and lowering the potential inclusive fitness gains of altruistic workers. Increased genetic diversity may be adaptive, however, by reducing the prevalence of disease within a nest. Honeybees, whose queens have the highest levels of multiple mating among social insects, were investigated to determine whether genetic variation helps to prevent chronic infections. I instrumentally inseminated honeybee queens with semen that was either genetically similar (from one male) or genetically diverse (from multiple males), and then inoculated their colonies with spores of Ascosphaera apis, a fungal pathogen that kills developing brood. I show that genetically diverse colonies had a lower variance in disease prevalence than genetically similar colonies, which suggests that genetic diversity may benefit colonies by preventing severe infections. PMID:12596763

  20. Impacts of stocking on the genetic diversity of Colossoma macropomum in central Amazon, Brazil.

    PubMed

    de Queiroz, C A; Sousa, N R; da Silva, G F; Inoue, L A K A

    2016-01-01

    Tambaqui (Colossoma macropomum) is the main fish species farmed on a commercial scale in northern Brazil. In view of the current scenario of Brazilian aquaculture, studies on the genetic improvement and reproductive management of captive tambaqui are crucial in identifying the genetic variability of broodstocks and devising management practices. Genetic diversity of three tambaqui broodstocks in western Amazon was evaluated using molecular markers. Fin samples were collected from 89 fish; 38 from Balbina, 30 from a hatchery in Rio Preto da Eva, and 21 from the experimental farm of the Federal University of Amazonas (UFAM). Ten primers were used for the analysis of diversity and genetic structure. Of the 152 bands produced, 146 were polymorphic. The proportion of polymorphic loci showed little variation among the three stocks. The lowest and highest rates were found in the Rio Preto da Eva (80.92%) and Balbina (85.53%) stocks, respectively. Heterozygosity (H) and Shannon (I) indices were similar among the stocks; the lowest values were found in Balbina (H = 0.279 and I = 0.419), and the highest in UFAM (H = 0.294 and I = 0.439). Following analysis of the genetic structure and relationship, the sample was divided into two groups, with the Balbina stock clearly deviating from the others. The results suggest that, to increase genetic variability, molecular information may be used instead of replacement of wild breeders. The groups characterized here can be used in genetic improvement programs with other tambaqui broodstocks from different areas of South America. PMID:27173205

  1. Genetic diversity in red rice from the southern U.S.A.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red rice (Oryza sativa L.) is a problematic weed in Arkansas rice production, and infestations have increased in the last three decades. We hypothesize that the morphologically diverse Arkansas red rice populations also have high genetic diversity and that this diversity emanates from genetic introg...

  2. Genetic diversity, linkage disequilibrium, and genome evolution in a soft winter wheat population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding genetic diversity within a crop is fundamental to its efficient exploitation. The advent of new high-throughput marker systems offers the opportunity to expand the scope and depth of our investigation of diversity. Our objectives were to analyze the genetic diversity of two populatio...

  3. Genetic characterization of northeastern Italian population isolates in the context of broader European genetic diversity

    PubMed Central

    Esko, Tõnu; Mezzavilla, Massimo; Nelis, Mari; Borel, Christelle; Debniak, Tadeusz; Jakkula, Eveliina; Julia, Antonio; Karachanak, Sena; Khrunin, Andrey; Kisfali, Peter; Krulisova, Veronika; Aušrelé Kučinskiené, Zita; Rehnström, Karola; Traglia, Michela; Nikitina-Zake, Liene; Zimprich, Fritz; Antonarakis, Stylianos E; Estivill, Xavier; Glavač, Damjan; Gut, Ivo; Klovins, Janis; Krawczak, Michael; Kučinskas, Vaidutis; Lathrop, Mark; Macek, Milan; Marsal, Sara; Meitinger, Thomas; Melegh, Béla; Limborska, Svetlana; Lubinski, Jan; Paolotie, Aarno; Schreiber, Stefan; Toncheva, Draga; Toniolo, Daniela; Wichmann, H-Erich; Zimprich, Alexander; Metspalu, Mait; Gasparini, Paolo; Metspalu, Andres; D'Adamo, Pio

    2013-01-01

    Population genetic studies on European populations have highlighted Italy as one of genetically most diverse regions. This is possibly due to the country's complex demographic history and large variability in terrain throughout the territory. This is the reason why Italy is enriched for population isolates, Sardinia being the best-known example. As the population isolates have a great potential in disease-causing genetic variants identification, we aimed to genetically characterize a region from northeastern Italy, which is known for isolated communities. Total of 1310 samples, collected from six geographically isolated villages, were genotyped at >145 000 single-nucleotide polymorphism positions. Newly genotyped data were analyzed jointly with the available genome-wide data sets of individuals of European descent, including several population isolates. Despite the linguistic differences and geographical isolation the village populations still show the greatest genetic similarity to other Italian samples. The genetic isolation and small effective population size of the village populations is manifested by higher levels of genomic homozygosity and elevated linkage disequilibrium. These estimates become even more striking when the detected substructure is taken into account. The observed level of genetic isolation in Friuli-Venezia Giulia region is more extreme according to several measures of isolation compared with Sardinians, French Basques and northern Finns, thus proving the status of an isolate. PMID:23249956

  4. Genetic characterization of northeastern Italian population isolates in the context of broader European genetic diversity.

    PubMed

    Esko, Tõnu; Mezzavilla, Massimo; Nelis, Mari; Borel, Christelle; Debniak, Tadeusz; Jakkula, Eveliina; Julia, Antonio; Karachanak, Sena; Khrunin, Andrey; Kisfali, Peter; Krulisova, Veronika; Aušrelé Kučinskiené, Zita; Rehnström, Karola; Traglia, Michela; Nikitina-Zake, Liene; Zimprich, Fritz; Antonarakis, Stylianos E; Estivill, Xavier; Glavač, Damjan; Gut, Ivo; Klovins, Janis; Krawczak, Michael; Kučinskas, Vaidutis; Lathrop, Mark; Macek, Milan; Marsal, Sara; Meitinger, Thomas; Melegh, Béla; Limborska, Svetlana; Lubinski, Jan; Paolotie, Aarno; Schreiber, Stefan; Toncheva, Draga; Toniolo, Daniela; Wichmann, H-Erich; Zimprich, Alexander; Metspalu, Mait; Gasparini, Paolo; Metspalu, Andres; D'Adamo, Pio

    2013-06-01

    Population genetic studies on European populations have highlighted Italy as one of genetically most diverse regions. This is possibly due to the country's complex demographic history and large variability in terrain throughout the territory. This is the reason why Italy is enriched for population isolates, Sardinia being the best-known example. As the population isolates have a great potential in disease-causing genetic variants identification, we aimed to genetically characterize a region from northeastern Italy, which is known for isolated communities. Total of 1310 samples, collected from six geographically isolated villages, were genotyped at >145000 single-nucleotide polymorphism positions. Newly genotyped data were analyzed jointly with the available genome-wide data sets of individuals of European descent, including several population isolates. Despite the linguistic differences and geographical isolation the village populations still show the greatest genetic similarity to other Italian samples. The genetic isolation and small effective population size of the village populations is manifested by higher levels of genomic homozygosity and elevated linkage disequilibrium. These estimates become even more striking when the detected substructure is taken into account. The observed level of genetic isolation in Friuli-Venezia Giulia region is more extreme according to several measures of isolation compared with Sardinians, French Basques and northern Finns, thus proving the status of an isolate. PMID:23249956

  5. Genetic diversity of water use efficiency in Jerusalem artichoke (Helianthus tuberosus L.) germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic diversity in crop germplasm is an important resource for crop improvement, but information on genetic diversity is rare for Jerusalem artichoke, especially for traits related to water use efficiency. The objectives of this study were to investigate genetic variations for water use and water...

  6. Genetic structure and genetic diversity of single-variety Lonicera macranthoides populations in China, as indicated by SCoT markers.

    PubMed

    Chen, D X; Li, L Y; Zhang, X; Wang, Y

    2015-01-01

    Lonicera macranthoides is an important traditional Chinese herb. The lack of information regarding the genetic structure and genetic relationships among its cultivars has hindered the conservation and utilization of this resource. This study used start codon targeted markers to assess the genetic diversity and other genetic characteristics of five single-variety L. macranthoides populations in China. Using 22 primers produced a total of 266 bands, of which 227 were polymorphic, indicating a high level of polymorphism. At the species level, genetic diversity was high: percentage of polymorphic loci (PPB) = 85.34%, effective number of alleles (NE) = 1.3479, Nei's gene diversity (H) = 0.2075, and Shannon's information index (Hsp, species level) = 0.3198. However, at the varietal population level, genetic diversity was lower, with averages of: PPB = 19.74%, NE = 1.0946, H = 0.0561, Hpop = 0.0850 (population level). Nei's genetic differentiation coefficient was 0.7319, which is consistent with Shannon's population genetic differentiation coefficient (0.7324). This indicates that most of the genetic variation in this species exists among the varietal populations. The differentiation among varieties may have been caused by artificial selection, mode of reproduction, and barriers to gene flow (0.1831). The genetic similarity coefficient ranged from 0.7222 to 0.9419. Phylogenetic analysis showed the five varieties to form two major clades. Results suggest that cultivar breeders should strengthen the exchange of germplasm and increase the mutual penetration of useful genes, which would broaden the hereditary basis of L. macranthoides. PMID:26214488

  7. Genetic diversity in tef [Eragrostis tef (Zucc.) Trotter

    PubMed Central

    Assefa, Kebebew; Cannarozzi, Gina; Girma, Dejene; Kamies, Rizqah; Chanyalew, Solomon; Plaza-Wüthrich, Sonia; Blösch, Regula; Rindisbacher, Abiel; Rafudeen, Suhail; Tadele, Zerihun

    2015-01-01

    Tef [Eragrostis tef (Zucc.) Trotter] is a cereal crop resilient to adverse climatic and soil conditions, and possessing desirable storage properties. Although tef provides high quality food and grows under marginal conditions unsuitable for other cereals, it is considered to be an orphan crop because it has benefited little from genetic improvement. Hence, unlike other cereals such as maize and wheat, the productivity of tef is extremely low. In spite of the low productivity, tef is widely cultivated by over six million small-scale farmers in Ethiopia where it is annually grown on more than three million hectares of land, accounting for over 30% of the total cereal acreage. Tef, a tetraploid with 40 chromosomes (2n = 4x = 40), belongs to the family Poaceae and, together with finger millet (Eleusine coracana Gaerth.), to the subfamily Chloridoideae. It was originated and domesticated in Ethiopia. There are about 350 Eragrostis species of which E. tef is the only species cultivated for human consumption. At the present time, the gene bank in Ethiopia holds over five thousand tef accessions collected from geographical regions diverse in terms of climate and elevation. These germplasm accessions appear to have huge variability with regard to key agronomic and nutritional traits. In order to properly utilize the variability in developing new tef cultivars, various techniques have been implemented to catalog the extent and unravel the patterns of genetic diversity. In this review, we show some recent initiatives investigating the diversity of tef using genomics, transcriptomics and proteomics and discuss the prospect of these efforts in providing molecular resources that can aid modern tef breeding. PMID:25859251

  8. Evaluation of the genetic diversity of avian paramyxovirus type 4

    PubMed Central

    Nayak, Baibaswata; Nayak, Shreeraj; Paldurai, Anandan; Kumar, Sachin; De Nardi, Roberta; Terregino, Calogero; Collins, Peter L; Samal, Siba K

    2012-01-01

    Avian paramyxoviruses (APMVs) belong to the genus Avulavirus in the family Paramyxoviridae and include at least nine serotypes, APMV-1 to -9, as well as two additional provisional serotypes. Newcastle disease virus (NDV), which comprises APMV-1, is the most extensively studied APMV because it is an important poultry pathogen. A moderate level of antigenic and genetic diversity is recognized for APMV-1 isolates, but our knowledge of the antigenic and genetic diversity of the other APMV serotypes is limited. APMV-4 is frequently isolated from waterfowl around the world. To date complete genome sequences of APMV-4 are available for only strains, which were isolated from ducks in Hong Kong, Korea and Belgium over a period of 37 years. We have carried out genome sequencing from the nucleocapsid (N) gene-end signal to the polymerase (L) gene-start signal of five APMV-4 strains recently isolated from Italy. Each of the eight APMV-4 strains has the same F protein cleavage site, DIQPR↓F. They also share a high level of nucleotide and amino acid sequence identity: for example, the F and HN glycoproteins have greater than 97% sequence identity between the various strains. Thus, comparison of these eight strains of APMV-4 did not provide evidence of substantial diversity, in contrast to similar studies with APMV-2, -3, and -6, in which the F and HN glycoproteins exhibited up to 20-30% amino acid sequence variation within a subgroup. Reciprocal cross-HI assay using post infection chicken sera also failed to detect significant antigenic variation among the available APMV-4 strains. PMID:23178589

  9. Genomic and Genetic Diversity within the Pseudomonas fluorescens Complex

    PubMed Central

    Garrido-Sanz, Daniel; Meier-Kolthoff, Jan P.; Göker, Markus; Martín, Marta; Rivilla, Rafael; Redondo-Nieto, Miguel

    2016-01-01

    The Pseudomonas fluorescens complex includes Pseudomonas strains that have been taxonomically assigned to more than fifty different species, many of which have been described as plant growth-promoting rhizobacteria (PGPR) with potential applications in biocontrol and biofertilization. So far the phylogeny of this complex has been analyzed according to phenotypic traits, 16S rDNA, MLSA and inferred by whole-genome analysis. However, since most of the type strains have not been fully sequenced and new species are frequently described, correlation between taxonomy and phylogenomic analysis is missing. In recent years, the genomes of a large number of strains have been sequenced, showing important genomic heterogeneity and providing information suitable for genomic studies that are important to understand the genomic and genetic diversity shown by strains of this complex. Based on MLSA and several whole-genome sequence-based analyses of 93 sequenced strains, we have divided the P. fluorescens complex into eight phylogenomic groups that agree with previous works based on type strains. Digital DDH (dDDH) identified 69 species and 75 subspecies within the 93 genomes. The eight groups corresponded to clustering with a threshold of 31.8% dDDH, in full agreement with our MLSA. The Average Nucleotide Identity (ANI) approach showed inconsistencies regarding the assignment to species and to the eight groups. The small core genome of 1,334 CDSs and the large pan-genome of 30,848 CDSs, show the large diversity and genetic heterogeneity of the P. fluorescens complex. However, a low number of strains were enough to explain most of the CDSs diversity at core and strain-specific genomic fractions. Finally, the identification and analysis of group-specific genome and the screening for distinctive characters revealed a phylogenomic distribution of traits among the groups that provided insights into biocontrol and bioremediation applications as well as their role as PGPR. PMID:26915094

  10. Genetic diversity in tef [Eragrostis tef (Zucc.) Trotter].

    PubMed

    Assefa, Kebebew; Cannarozzi, Gina; Girma, Dejene; Kamies, Rizqah; Chanyalew, Solomon; Plaza-Wüthrich, Sonia; Blösch, Regula; Rindisbacher, Abiel; Rafudeen, Suhail; Tadele, Zerihun

    2015-01-01

    Tef [Eragrostis tef (Zucc.) Trotter] is a cereal crop resilient to adverse climatic and soil conditions, and possessing desirable storage properties. Although tef provides high quality food and grows under marginal conditions unsuitable for other cereals, it is considered to be an orphan crop because it has benefited little from genetic improvement. Hence, unlike other cereals such as maize and wheat, the productivity of tef is extremely low. In spite of the low productivity, tef is widely cultivated by over six million small-scale farmers in Ethiopia where it is annually grown on more than three million hectares of land, accounting for over 30% of the total cereal acreage. Tef, a tetraploid with 40 chromosomes (2n = 4x = 40), belongs to the family Poaceae and, together with finger millet (Eleusine coracana Gaerth.), to the subfamily Chloridoideae. It was originated and domesticated in Ethiopia. There are about 350 Eragrostis species of which E. tef is the only species cultivated for human consumption. At the present time, the gene bank in Ethiopia holds over five thousand tef accessions collected from geographical regions diverse in terms of climate and elevation. These germplasm accessions appear to have huge variability with regard to key agronomic and nutritional traits. In order to properly utilize the variability in developing new tef cultivars, various techniques have been implemented to catalog the extent and unravel the patterns of genetic diversity. In this review, we show some recent initiatives investigating the diversity of tef using genomics, transcriptomics and proteomics and discuss the prospect of these efforts in providing molecular resources that can aid modern tef breeding. PMID:25859251

  11. Genomic and Genetic Diversity within the Pseudomonas fluorescens Complex.

    PubMed

    Garrido-Sanz, Daniel; Meier-Kolthoff, Jan P; Göker, Markus; Martín, Marta; Rivilla, Rafael; Redondo-Nieto, Miguel

    2016-01-01

    The Pseudomonas fluorescens complex includes Pseudomonas strains that have been taxonomically assigned to more than fifty different species, many of which have been described as plant growth-promoting rhizobacteria (PGPR) with potential applications in biocontrol and biofertilization. So far the phylogeny of this complex has been analyzed according to phenotypic traits, 16S rDNA, MLSA and inferred by whole-genome analysis. However, since most of the type strains have not been fully sequenced and new species are frequently described, correlation between taxonomy and phylogenomic analysis is missing. In recent years, the genomes of a large number of strains have been sequenced, showing important genomic heterogeneity and providing information suitable for genomic studies that are important to understand the genomic and genetic diversity shown by strains of this complex. Based on MLSA and several whole-genome sequence-based analyses of 93 sequenced strains, we have divided the P. fluorescens complex into eight phylogenomic groups that agree with previous works based on type strains. Digital DDH (dDDH) identified 69 species and 75 subspecies within the 93 genomes. The eight groups corresponded to clustering with a threshold of 31.8% dDDH, in full agreement with our MLSA. The Average Nucleotide Identity (ANI) approach showed inconsistencies regarding the assignment to species and to the eight groups. The small core genome of 1,334 CDSs and the large pan-genome of 30,848 CDSs, show the large diversity and genetic heterogeneity of the P. fluorescens complex. However, a low number of strains were enough to explain most of the CDSs diversity at core and strain-specific genomic fractions. Finally, the identification and analysis of group-specific genome and the screening for distinctive characters revealed a phylogenomic distribution of traits among the groups that provided insights into biocontrol and bioremediation applications as well as their role as PGPR. PMID:26915094

  12. Genetic diversity and population structure of Butea monosperma (Lam.) Taub.- a potential medicinal legume tree.

    PubMed

    Vashishtha, Amit; Jehan, Tabassum; Lakhanpaul, Suman

    2013-07-01

    Three molecular marker systems, Random Amplified Polymorphic DNA (RAPD), Inter-Simple Sequence Repeats (ISSR) and Sequence-Related Amplified Polymorphism (SRAP) were employed to investigate the genetic structure and diversity among the 14 natural populations of Butea monosperma collected from different geographical regions of India. Detected by 17 RAPD, 15 ISSR and 11 SRAP primer combinations, the proportions of polymorphic bands were 84.2 %, 77.2 % and 91.9 %, respectively, and the mean Nei's genetic distances among the populations were 0.13, 0.10 and 0.13, respectively. Partitioning of genetic variability by Analysis of molecular variance (AMOVA) revealed that the high genetic diversity was distributed within the populations. AMOVA also revealed that the coefficient of gene differentiation among populations based on FST was very high irrespective of markers used. The overall gene flow among populations (Nm) was very low. Cophenetic correlation coefficients of Nei's distance values and clustering pattern by Mental test were statistically significant for all three marker systems used but poor fit for ISSR data than for RAPD, SRAP and combined data set of all three markers. For all markers, a high similarity in dendrogram topologies was obtained, although some differences were observed with ISSR. The dendrogram obtained by RAPD, SRAP and combined data set of all three markers reflect relationship of most of the populations according to their geographic distribution. PMID:24431507

  13. Genetic diversity and population history of the endangered killifish Aphanius baeticus.

    PubMed

    Gonzalez, Elena G; Pedraza-Lara, Carlos; Doadrio, Ignacio

    2014-01-01

    The secondary freshwater fish fauna of the western-Iberian Peninsula basin is primarily restricted to local coastal streams, and man-made salt evaporation ponds, etc., which are susceptible to periodical flood and drought events. Despite its uniqueness in ecological adaptation to high saltwater tolerance, very little is known about this fauna's population dynamics and evolutionary history. The killifish, Aphanius baeticus (Cyprinodontidae) is an endemic species restricted to river basins on Spain's southern Atlantic coastline, considered as "Endangered." In this study, the genetic structure, diversity and historical demography of A. baeticus were analyzed using mitochondrial (cytochrome b, N=131) and nuclear (4 out of 19 microsatellites tested, N=288) markers across its distribution range. The phylogenetic and networking reconstruction revealed subtle phylogeographic structuring. A scattered expansion at the beginning of the interglacial periods, coupled with posterior events of extinction and colonization caused by periodical cycles of flooding, could explain the absence of well-defined phylogenetic relationships among populations. Moreover, very low genetic diversity values and a weak population differentiation were detected. We proposed that dispersals allowed by periodic floods connecting river drainages may have promoted a wide genetic exchange among populations and could have contributed to the current genetic relatedness of these populations. PMID:24939890

  14. Octopus vulgaris (Cuvier, 1797) in the Mediterranean Sea: Genetic Diversity and Population Structure.

    PubMed

    De Luca, Daniele; Catanese, Gaetano; Procaccini, Gabriele; Fiorito, Graziano

    2016-01-01

    The common octopus, Octopus vulgaris Cuvier 1797, is a largely exploited cephalopod species in the Mediterranean Sea and the Atlantic Ocean, as well as along the coasts of Africa, Brazil and Japan, where its taxonomic identity is still debated. The assessment of its genetic structure is a pressing need to correctly manage the resource and to avoid overfishing and collapsing of local stocks. Here we analysed genetic variation and population structure of O. vulgaris using thirteen microsatellite loci in seven sampling localities from the Mediterranean Sea and one from the Atlantic Ocean. We also used a DNA barcoding approach by COI gene fragment to understand the phylogenetic relationships among the specimens here investigated and the ones whose sequences are available in literature. Our results reveal high levels of allelic richness and moderate heterozygosity in all samples investigated, and a pronounced differentiation of the Atlantic and Sicilian specimens. This latter aspect seems to support the isolation of the biota within the Strait of Messina. A certain degree of differentiation was detected among the other geographic samples within the Mediterranean Sea, which is more compatible with an island model than isolation by distance. The occurrence of null alleles affected more genetic diversity indices than population structure estimations. This study provides new insights about the genetic diversity and structure of O. vulgaris in the area of interest, which can be used as guidelines for a fisheries management perspective. PMID:26881847

  15. Genetic diversity of allozymes in turnip (Brassica rapa L. var. rapa) from the Nordic area.

    PubMed

    Persson, K; Fält, A S; von Bothmer, R

    2001-01-01

    Genetic diversity and relationships based on isozymes were studied in 31 accessions of turnip (Brassica rapa L. var. rapa). The material included varieties, elite stocks, landraces and older turnip of slash-and-burn type from the Nordic area. A total of 9 isozyme loci and 26 alleles were studied. The isozyme systems were ACO, DIA, GPI, GOT, PGM, PGD and SKD. The level of heterozygosity was reduced in the landraces, but it was high for the variety group 'Ostersundom'. Turnip has a higher genetic variation than other crops within B. rapa and than in other species with the same breeding system. The genetic diversity showed that 18.7% of the genetic variation was within the accessions, and the total H tau value was 0.358. Gpi-I and Pgd-I showed the lowest variation compared with the other loci. The cluster analysis revealed five clusters, with one main cluster including 25 of the 31 accessions. The dendrogram indicated that the variety group 'Ostersundom' clustered together whereas the variety group 'Bortfelder' was associated with country of origin. The landraces were spread in different clusters. The 'slash-and-burn' type of turnip belonged to two groups. PMID:11525064

  16. Octopus vulgaris (Cuvier, 1797) in the Mediterranean Sea: Genetic Diversity and Population Structure

    PubMed Central

    De Luca, Daniele; Catanese, Gaetano; Procaccini, Gabriele; Fiorito, Graziano

    2016-01-01

    The common octopus, Octopus vulgaris Cuvier 1797, is a largely exploited cephalopod species in the Mediterranean Sea and the Atlantic Ocean, as well as along the coasts of Africa, Brazil and Japan, where its taxonomic identity is still debated. The assessment of its genetic structure is a pressing need to correctly manage the resource and to avoid overfishing and collapsing of local stocks. Here we analysed genetic variation and population structure of O. vulgaris using thirteen microsatellite loci in seven sampling localities from the Mediterranean Sea and one from the Atlantic Ocean. We also used a DNA barcoding approach by COI gene fragment to understand the phylogenetic relationships among the specimens here investigated and the ones whose sequences are available in literature. Our results reveal high levels of allelic richness and moderate heterozygosity in all samples investigated, and a pronounced differentiation of the Atlantic and Sicilian specimens. This latter aspect seems to support the isolation of the biota within the Strait of Messina. A certain degree of differentiation was detected among the other geographic samples within the Mediterranean Sea, which is more compatible with an island model than isolation by distance. The occurrence of null alleles affected more genetic diversity indices than population structure estimations. This study provides new insights about the genetic diversity and structure of O. vulgaris in the area of interest, which can be used as guidelines for a fisheries management perspective. PMID:26881847

  17. Elevated Genetic Diversity in the Emerging Blueberry Pathogen Exobasidium maculosum.

    PubMed

    Stewart, Jane E; Brooks, Kyle; Brannen, Phillip M; Cline, William O; Brewer, Marin T

    2015-01-01

    Emerging diseases caused by fungi are increasing at an alarming rate. Exobasidium leaf and fruit spot of blueberry, caused by the fungus Exobasidium maculosum, is an emerging disease that has rapidly increased in prevalence throughout the southeastern USA, severely reducing fruit quality in some plantings. The objectives of this study were to determine the genetic diversity of E. maculosum in the southeastern USA to elucidate the basis of disease emergence and to investigate if populations of E. maculosum are structured by geography, host species, or tissue type. We sequenced three conserved loci from 82 isolates collected from leaves and fruit of rabbiteye blueberry (Vaccinium virgatum), highbush blueberry (V. corymbosum), and southern highbush blueberry (V. corymbosum hybrids) from commercial fields in Georgia and North Carolina, USA, and 6 isolates from lowbush blueberry (V. angustifolium) from Maine, USA, and Nova Scotia, Canada. Populations of E. maculosum from the southeastern USA and from lowbush blueberry in Maine and Nova Scotia are distinct, but do not represent unique species. No difference in genetic structure was detected between different host tissues or among different host species within the southeastern USA; however, differentiation was detected between populations in Georgia and North Carolina. Overall, E. maculosum showed extreme genetic diversity within the conserved loci with 286 segregating sites among the 1,775 sequenced nucleotides and each isolate representing a unique multilocus haplotype. However, 94% of the nucleotide substitutions were silent, so despite the high number of mutations, selective constraints have limited changes to the amino acid sequences of the housekeeping genes. Overall, these results suggest that the emergence of Exobasidium leaf and fruit spot is not due to a recent introduction or host shift, or the recent evolution of aggressive genotypes of E. maculosum, but more likely as a result of an increasing host population

  18. Elevated Genetic Diversity in the Emerging Blueberry Pathogen Exobasidium maculosum

    PubMed Central

    Stewart, Jane E.; Brooks, Kyle; Brannen, Phillip M.; Cline, William O.; Brewer, Marin T.

    2015-01-01

    Emerging diseases caused by fungi are increasing at an alarming rate. Exobasidium leaf and fruit spot of blueberry, caused by the fungus Exobasidium maculosum, is an emerging disease that has rapidly increased in prevalence throughout the southeastern USA, severely reducing fruit quality in some plantings. The objectives of this study were to determine the genetic diversity of E. maculosum in the southeastern USA to elucidate the basis of disease emergence and to investigate if populations of E. maculosum are structured by geography, host species, or tissue type. We sequenced three conserved loci from 82 isolates collected from leaves and fruit of rabbiteye blueberry (Vaccinium virgatum), highbush blueberry (V. corymbosum), and southern highbush blueberry (V. corymbosum hybrids) from commercial fields in Georgia and North Carolina, USA, and 6 isolates from lowbush blueberry (V. angustifolium) from Maine, USA, and Nova Scotia, Canada. Populations of E. maculosum from the southeastern USA and from lowbush blueberry in Maine and Nova Scotia are distinct, but do not represent unique species. No difference in genetic structure was detected between different host tissues or among different host species within the southeastern USA; however, differentiation was detected between populations in Georgia and North Carolina. Overall, E. maculosum showed extreme genetic diversity within the conserved loci with 286 segregating sites among the 1,775 sequenced nucleotides and each isolate representing a unique multilocus haplotype. However, 94% of the nucleotide substitutions were silent, so despite the high number of mutations, selective constraints have limited changes to the amino acid sequences of the housekeeping genes. Overall, these results suggest that the emergence of Exobasidium leaf and fruit spot is not due to a recent introduction or host shift, or the recent evolution of aggressive genotypes of E. maculosum, but more likely as a result of an increasing host population

  19. Genetic diversity of Ostreopsis ovata (Dinophyceae) from Malaysia.

    PubMed

    Pin, L C; Teen, L P; Ahmad, A; Usup, G

    2001-05-01

    The genus Ostreopsis is an important component of benthic and epiphytic dinoflagellate assemblages in coral reefs and seaweed beds of Malaysia. Members of the species may produce toxins that contribute to ciguatera fish poisoning. In this study, two species have been isolated and cultured, Ostreopsis ovata and Ostreopsis lenticularis. Analyses of the 5.8S subunit and internal transcribed spacer regions ITS1 and ITS2 of the ribosomal RNA gene sequences of these two species showed that they are separate species, consistent with morphological designations. The nucleotide sequences of the 5.8S subunit and ITS1 and ITS2 regions of the rRNA gene were also used to evaluate the interpopulation and intrapopulation genetic diversity of O. ovata found in Malaysian waters. Results showed a low level of sequence divergence within populations. At the interpopulation level, the rRNA gene sequence distinguished two groups of genetically distinct strains, representative of a Malacca Straits group (isolates from Port Dickson) and a South China Sea group (isolates from Pulau Redang and Kota Kinabalu). Part of the sequences in the ITS regions may be useful in the design of oligonucleotide probes specific for each group. Results from this study show that the ITS regions can be used as genetic markers for taxonomic, biogeographic, and fine-scale population studies of this species. PMID:14961362

  20. Genetic diversity of Plasmodium vivax isolates from Azerbaijan

    PubMed Central

    Leclerc, Marie Claude; Menegon, Michela; Cligny, Alexandra; Noyer, Jean Louis; Mammadov, Suleyman; Aliyev, Namig; Gasimov, Elkhan; Majori, Giancarlo; Severini, Carlo

    2004-01-01

    Background Plasmodium vivax, although causing a less serious disease than Plasmodium falciparum, is the most widespread of the four human malarial species. Further to the recent recrudescence of P. vivax cases in the Newly Independent States (NIS) of central Asia, a survey on the genetic diversity and dissemination in Azerbaijan was undertaken. Azerbaijan is at the crossroads of Asia and, as such, could see a rise in the number of cases, although an effective malaria control programme has been established in the country. Methods Thirty-six P. vivax isolates from Central Azerbaijan were characterized by analysing the genetic polymorphism of the circumsporozoite protein (CSP) and the merozoite surface protein 1 (MSP-1) genes, using PCR amplifications and amplicons sequencing. Results Analysis of CSP sequences showed that all the processed isolates belong to the VK 210 type, with variations in the alternation of alanine residue (A) or aspartic acid residue (D) in the repeat motif GDRA(A/D)GQPA along the sequence. As far as MSP-1 genotyping is concerned, it was found that the majority of isolates analysed belong to Belem and Sal I types. Five recombinant isolates were also identified. Combined analysis with the two genetic markers allowed the identification of 19 plasmodial sub-types. Conclusion The results obtained in the present study indicate that there are several P. vivax clones circulating in Azerbaijan and, consequently, a careful malaria surveillance could be of paramount importance to identify, at early stage, the occurrence of possible P. vivax malaria outbreaks. PMID:15535878

  1. The Nuclear DNA Content and Genetic Diversity of Lampetra morii

    PubMed Central

    Yan, Xinyu; Meng, Wenbin; Wu, Fenfang; Xu, Anlong; Chen, Shangwu; Huang, Shengfeng

    2016-01-01

    We investigated the nuclear DNA content and genetic diversity of a river lamprey, the Korean lamprey Lampetra morii, which is distributed in the northeast of China. L. morii spends its whole life cycle in fresh water, and its adult size is relatively small (~160 mm long) compared with that of other lampreys. The haploid nuclear DNA content of L. morii is 1.618 pg (approximately 1.582 Gb) in germline cells, and there is ~15% germline DNA loss in somatic cells. These values are significantly smaller than those of Petromyzon marinus, a lamprey with a published draft genome. The chromosomes of L. morii are small and acrocentric, with a diploid modal number of 2n = 132, lower than some other lampreys. Sequence and AFLP analyses suggest that the allelic polymorphism rate (~0.14% based on examined nuclear and mitochondrial DNA sequences) of L. morii is much lower than that (~2%) of P. marinus. Phylogenetic analysis based on a mitochondrial DNA fragment confirms that L. morii belongs to the genus Lampetra, which, together with the genus Lethenteron, forms a sister group to P. marinus. These genetic background data are valuable for subsequent genetic and genomic research on L. morii. PMID:27388621

  2. Genetic diversity and differentiation of Kermode bear populations.

    PubMed

    Marshall, H D; Ritland, K

    2002-04-01

    The Kermode bear is a white phase of the North American black bear that occurs in low to moderate frequency on British Columbia's mid-coast. To investigate the genetic uniqueness of populations containing the white phase, and to ascertain levels of gene flow among populations, we surveyed 10 highly polymorphic microsatellite loci, assayed from trapped bear hairs. A total of 216 unique bear genotypes, 18 of which were white, was sampled among 12 localities. Island populations, where Kermodes are most frequent, show approximately 4% less diversity than mainland populations, and the island richest in white bears (Gribbell) exhibited substantial genetic isolation, with a mean pairwise FST of 0.14 with other localities. Among all localities, FST for the molecular variant underlying the coat-colour difference (A893G) was 0.223, which falls into the 95th percentile of the distribution of FST values among microsatellite alleles, suggestive of greater differentiation for coat colour than expected under neutrality. Control-region sequences confirm that Kermode bears are part of a coastal or western lineage of black bears whose existence predates the Wisconsin glaciation, but microsatellite variation gave no evidence of past population expansion. We conclude that Kermodism was established and is maintained in populations by a combination of genetic isolation and somewhat reduced population sizes in insular habitat, with the possible contribution of selective pressure and/or nonrandom mating. PMID:11972757

  3. Population structure and genetic diversity of a medicinal plant species Retama raetam in southern Tunisia.

    PubMed

    Abdellaoui, Raoudha; Yahyaoui, Faouzia; Neffati, Mohamed

    2014-01-15

    Retama raetam is a stem-assimilating, C3, evergreen, medicinal plant species, desert legume common to arid ecosystems around the Mediterranean basin. This study addresses the genetic diversity and relationship among and within three populations collected from different habitats in southern Tunisia by Random Amplified Polymorphic DNA (RAPD). Estimates of the percentage of polymorphic bands, Shannon's diversity information index and Nei's gene diversity index were determined. Results showed that population from the Island Djerba has the lowest Nei's gene diversity; this also was for Shannon diversity index. An analysis of molecular variance indicated that the majority of variation existed within populations (68%) and that there was significant differentiation among populations (phiPT = 0.316, p < 0.001). Genetic distance (phiPT based values) between pairwise populations ranged from 0.098 to 0.505 and the differentiation between pair-wise populations was significant when individual pairs of populations were compared. Based on the coefficient of gene differentiation (Gst), gene flow (Nm) was estimated and was found to vary from 0.490 to 4.609 between pair-wise populations and 1.42 among populations. The results of UPGMA cluster analysis and PCoA analysis indicated that most variation occurred within populations and that genetic differentiation had happened between populations. These findings are important for a better understanding of the adaptive strategy of R. raetam in southern Tunisia and will be useful for conservation managers to work out an effective strategy to protect this important species. PMID:24783800

  4. Changes in genetic diversity in the red winter wheat regions of the United States

    PubMed Central

    Cox, T. S.; Murphy, J. P.; Rodgers, D. M.

    1986-01-01

    Pedigree and acreage data were utilized to determine trends in genetic diversity of soft red winter (SRW) and hard red winter (HRW) wheats. Four uniformity estimates were computed: (a) r̄1, the mean relationship among all cultivars grown in a given year; (b) r̄2, the mean relationship among primary cultivars; (c) r̄3, the mean relationship of primary cultivars weighted by acreage; and (d) r̄4, the mean relationship of primary cultivars grown in different years, weighted by acreage. In the SRW region, there has been a slow but steady increase in relationship among cultivars (r̄1 and r̄2). There was a dramatic increase in field uniformity (r̄3) during the 1970s, but r̄3 had sharply decreased by 1984 to its lowest point ever (0.22). All uniformity estimates decreased sharply for HRW wheats from 1919 to 1949 and have decreased gradually since. Uniformity is higher in HRW than in SRW wheats, primarily because of the persistence of a core of HRW germ plasm from cultivar `Turkey,' but the difference is diminishing. Both classes appear to be entering a new era of increasing diversity. PMID:16593738

  5. [Genetic diversity of microsatellite loci in captive Amur tigers].

    PubMed

    Zhang, Yu-Gaung; Li, Di-Qiang; Xiao, Qi-Ming; Rao, Li-Qun; Zhang, Xue-Wen

    2004-09-01

    The tiger is one of the most threatened wildlife species since the abundance and distribution of tiger have decreased dramatically in the last century. The wild Amur tiger (Panthera tigris altaica) only distributed in northeast China, the far east area of Russia and the north Korea and its size of wild population is about 450 in the world and 20 in China. Several hundred captive populations of Amur tigers are the main source to protect gene library of tiger and the source of recovering the wild populations. The Breeding Center for Felidae at Hengdaohezi and Haoerbin Tiger Park in Heilongjiang Province is the biggest captive breeding base in China. How to make clear the genetic pedigree and establish reasonable breeding system is the urgent issues. So we use the microsatellite DNA markers and non-invasive technology to research on the genetic diversity of captive Amur tiger in this study. Ten microsatellite loci (Fca005, Fca075, Fca094, Fca152, Fca161, Fca294, Pti002, Pti003, Pti007 and Pti010), highly variable nuclear markers, were studied their genetic diversity in 113 captive Amur tigers. The PCR amplified products of microsatellite loci were detected by non-denatured polyacrylamide gel electrophoresis. Allele numbers, allelic frequency, gene heterozygosity(H(e)), polymorphism information content(PIC) and effective number of allele(N(e)) were calculated. 41 alleles were found and their size were ranged from 110bp to 250bp in ten microsatellite loci, Fca152 had 6 alleles, Fca075, Fca094 and Fca294 had 5 alleles, Fca005 and Pti002 had 4 alleles and the others had 3 alleles in all tiger samples, respectively. The allelic frequencies were from 0.009 to 0.767; The He ranged from 0.385 to 0.707, and Fca294 and Pti010 locus had the highest and lowest value; the PIC were from 0.353 to 0.658, Fca294 and Pti010 locus had the highest and lowest value; and N(e) were from 1.626 to 3.409, Fca294 and Pti010 locus had the highest and lowest value, which showed the ten

  6. Genetic diversity in the feline leukemia virus gag gene.

    PubMed

    Kawamura, Maki; Watanabe, Shinya; Odahara, Yuka; Nakagawa, So; Endo, Yasuyuki; Tsujimoto, Hajime; Nishigaki, Kazuo

    2015-06-01

    Feline leukemia virus (FeLV) belongs to the Gammaretrovirus genus and is horizontally transmitted among cats. FeLV is known to undergo recombination with endogenous retroviruses already present in the host during FeLV-subgroup A infection. Such recombinant FeLVs, designated FeLV-subgroup B or FeLV-subgroup D, can be generated by transduced endogenous retroviral env sequences encoding the viral envelope. These recombinant viruses have biologically distinct properties and may mediate different disease outcomes. The generation of such recombinant viruses resulted in structural diversity of the FeLV particle and genetic diversity of the virus itself. FeLV env diversity through mutation and recombination has been studied, while gag diversity and its possible effects are less well understood. In this study, we investigated recombination events in the gag genes of FeLVs isolated from naturally infected cats and reference isolates. Recombination and phylogenetic analyses indicated that the gag genes often contain endogenous FeLV sequences and were occasionally replaced by entire endogenous FeLV gag genes. Phylogenetic reconstructions of FeLV gag sequences allowed for classification into three distinct clusters, similar to those previously established for the env gene. Analysis of the recombination junctions in FeLV gag indicated that these variants have similar recombination patterns within the same genotypes, indicating that the recombinant viruses were horizontally transmitted among cats. It remains to be investigated whether the recombinant sequences affect the molecular mechanism of FeLV transmission. These findings extend our understanding of gammaretrovirus evolutionary patterns in the field. PMID:25892717

  7. Cryptic changes in the genetic structure of a highly clonal coral population and the relationship with ecological performance

    NASA Astrophysics Data System (ADS)

    Williams, Dana E.; Miller, M. W.; Baums, I. B.

    2014-09-01

    Elkhorn coral , Acropora palmata, relies heavily on clonal propagation and often displays low genotypic (clonal) diversity. Populations in the Florida Keys experienced rapid declines in tissue cover between 2004 and 2006, largely due to hurricanes and disease, but remained stable from 2006 to 2010. All elkhorn colonies in 150 m2 permanent study plots were genotyped in 2006 ( n = 15 plots) and 2010 ( n = 24 plots), and plots sampled in both years were examined for changes in allelic and genotypic diversity during this period of stable ecological abundance. Overall, genetic diversity of Florida plots was low and declined further over the 4-yr period; seven of the 36 original genets and two of 67 alleles (among five microsatellite loci) were lost completely from the sampled population, and an additional 15 alleles were lost from individual reefs. In 2010, Florida plots (~19 colonies) contained an average of 2.2 ± 1.38 (mean ± SD) genets with a significant negative correlation between colony abundance and genotypic diversity. When scaled to total tissue abundance, genotypic diversity is even lower, with 43 % of genets below the size of sexual maturity. We examined the hypothesized positive relationship of local genotypic diversity with ecological performance measures. In Florida plots ( n = 15), genotypic diversity was not significantly correlated with tissue loss associated with chronic predation, nor with acute disease and storm-fragmentation events, though this relationship may be obscured by the low range of observed diversity and potential confounding with abundance. When more diverse plots in Curaçao ( n = 9) were examined, genotypic diversity was not significantly correlated with resistance during an acute storm disturbance or rate of recovery following disturbance. Cryptic loss of genetic diversity occurred in the apparently stable Florida population and confirms that stable or even increasing abundance does not necessarily indicate genetic stability.

  8. Racially and ethnically diverse schools and adolescent romantic relationships.

    PubMed

    Strully, Kate

    2014-11-01

    Focusing on romantic relationships, which are often seen as a barometer of social distance, this analysis investigates how adolescents from different racial-ethnic and gender groups respond when they attend diverse schools with many opportunities for inter-racial-ethnic dating. Which groups respond by forming inter-racial-ethnic relationships, and which groups appear to "work around" opportunities for inter-racial-ethnic dating by forming more same-race-ethnicity relationships outside of school boundaries? Most prior studies have analyzed only relationships within schools and, therefore, cannot capture a potentially important way that adolescents express preferences for same-race-ethnicity relationships or work around constraints from other groups' preferences. Using the National Longitudinal Study of Adolescent Health, I find that, when adolescents are in schools with many opportunities for inter-racial-ethnic dating, black females and white males are most likely to form same-race-ethnicity relationships outside of the school; whereas Hispanic males and females are most likely to date across racial-ethnic boundaries within the school. PMID:25848670

  9. Racially and Ethnically Diverse Schools and Adolescent Romantic Relationships*

    PubMed Central

    Strully, Kate

    2015-01-01

    Focusing on romantic relationships, which are often seen as a barometer of social distance, this analysis investigates how adolescents from different racial-ethnic and gender groups respond when they attend diverse schools with many opportunities for inter-racial-ethnic dating. Which groups respond by forming inter-racial-ethnic relationships, and which groups appear to “work around” opportunities for inter-racial-ethnic dating by forming more same-race-ethnicity relationships outside of school boundaries? Most prior studies have analyzed only relationships within schools and, therefore, cannot capture a potentially important way that adolescents express preferences for same-race-ethnicity relationships and/or work around constraints from other groups’ preferences. Using the National Longitudinal Study of Adolescent Health, I find that, when adolescents are in schools with many opportunities for inter-racial-ethnic dating, black females and white males are most likely to form same-race-ethnicity relationships outside of the school; whereas Hispanic males and females are most likely to date across racial-ethnic boundaries within the school. PMID:25848670

  10. Molecular genetic diversity in populations of the stingless bee Plebeia remota: A case study.

    PubMed

    de Oliveira Francisco, Flávio; Santiago, Leandro Rodrigues; Arias, Maria Cristina

    2013-03-01

    Genetic diversity is a major component of the biological diversity of an ecosystem. The survival of a population may be seriously threatened if its genetic diversity values are low. In this work, we measured the genetic diversity of the stingless bee Plebeia remota based on molecular data obtained by analyzing 15 microsatellite loci and sequencing two mitochondrial genes. Population structure and genetic diversity differed depending on the molecular marker analyzed: microsatellites showed low population structure and moderate to high genetic diversity, while mitochondrial DNA (mtDNA) showed high population structure and low diversity in three populations. Queen philopatry and male dispersal behavior are discussed as the main reasons for these findings. PMID:23569417

  11. Molecular genetic diversity in populations of the stingless bee Plebeia remota: A case study

    PubMed Central

    de Oliveira Francisco, Flávio; Santiago, Leandro Rodrigues; Arias, Maria Cristina

    2013-01-01

    Genetic diversity is a major component of the biological diversity of an ecosystem. The survival of a population may be seriously threatened if its genetic diversity values are low. In this work, we measured the genetic diversity of the stingless bee Plebeia remota based on molecular data obtained by analyzing 15 microsatellite loci and sequencing two mitochondrial genes. Population structure and genetic diversity differed depending on the molecular marker analyzed: microsatellites showed low population structure and moderate to high genetic diversity, while mitochondrial DNA (mtDNA) showed high population structure and low diversity in three populations. Queen philopatry and male dispersal behavior are discussed as the main reasons for these findings. PMID:23569417

  12. Habitat Loss other than Fragmentation per se Decreased Nuclear and Chloroplast Genetic Diversity in a Monoecious Tree

    PubMed Central

    Shen, Dong-Wei; Chen, Xiao-Yong

    2012-01-01

    Generally, effect of fragmentation per se on biodiversity has not been separated from the effect of habitat loss. In this paper, using nDNA and cpDNA SSRs, we studied genetic diversity of Castanopsis sclerophylla (Lindl. & Paxton) Schotty populations and decoupled the effects of habitat loss and fragmentation per se. We selected seven nuclear and six cpDNA microsatellite loci and genotyped 460 individuals from mainland and island populations, which were located in the impoundment created in 1959. Number of alleles per locus of populations in larger habitats was significantly higher than that in smaller habitats. There was a significant relationship between the number of alleles per locus and habitat size. Based on this relationship, the predicted genetic diversity of an imaginary population of size equaling the total area of the islands was lower than that of the global population on the islands. Re-sampling demonstrated that low genetic diversity of populations in small habitats was caused by unevenness in sample size. Fisher's α index was similar among habitat types. These results indicate that the decreased nuclear and chloroplast genetic diversity of populations in smaller habitats was mainly caused by habitat loss. For nuclear and chloroplast microsatellite loci, values of FST were 0.066 and 0.893, respectively, and the calculated pollen/seed dispersal ratio was 162.2. When separated into pre-and post-fragmentation cohorts, pollen/seed ratios were 121.2 and 189.5, respectively. Our results suggest that habitat loss explains the early decrease in genetic diversity, while fragmentation per se may play a major role in inbreeding and differentiation among fragmented populations and later loss of genetic diversity. PMID:22723951

  13. Habitat loss other than fragmentation per se decreased nuclear and chloroplast genetic diversity in a monoecious tree.

    PubMed

    Zhang, Xin; Shi, Miao-Miao; Shen, Dong-Wei; Chen, Xiao-Yong

    2012-01-01

    Generally, effect of fragmentation per se on biodiversity has not been separated from the effect of habitat loss. In this paper, using nDNA and cpDNA SSRs, we studied genetic diversity of Castanopsis sclerophylla (Lindl. & Paxton) Schotty populations and decoupled the effects of habitat loss and fragmentation per se. We selected seven nuclear and six cpDNA microsatellite loci and genotyped 460 individuals from mainland and island populations, which were located in the impoundment created in 1959. Number of alleles per locus of populations in larger habitats was significantly higher than that in smaller habitats. There was a significant relationship between the number of alleles per locus and habitat size. Based on this relationship, the predicted genetic diversity of an imaginary population of size equaling the total area of the islands was lower than that of the global population on the islands. Re-sampling demonstrated that low genetic diversity of populations in small habitats was caused by unevenness in sample size. Fisher's α index was similar among habitat types. These results indicate that the decreased nuclear and chloroplast genetic diversity of populations in smaller habitats was mainly caused by habitat loss. For nuclear and chloroplast microsatellite loci, values of F(ST) were 0.066 and 0.893, respectively, and the calculated pollen/seed dispersal ratio was 162.2. When separated into pre-and post-fragmentation cohorts, pollen/seed ratios were 121.2 and 189.5, respectively. Our results suggest that habitat loss explains the early decrease in genetic diversity, while fragmentation per se may play a major role in inbreeding and differentiation among fragmented populations and later loss of genetic diversity. PMID:22723951

  14. Genetic breeding and diversity of the genus Passiflora: progress and perspectives in molecular and genetic studies.

    PubMed

    Cerqueira-Silva, Carlos Bernard M; Jesus, Onildo N; Santos, Elisa S L; Corrêa, Ronan X; Souza, Anete P

    2014-01-01

    Despite the ecological and economic importance of passion fruit (Passiflora spp.), molecular markers have only recently been utilized in genetic studies of this genus. In addition, both basic genetic researches related to population studies and pre-breeding programs of passion fruit remain scarce for most Passiflora species. Considering the number of Passiflora species and the increasing use of these species as a resource for ornamental, medicinal, and food purposes, the aims of this review are the following: (i) to present the current condition of the passion fruit crop; (ii) to quantify the applications and effects of using molecular markers in studies of Passiflora; (iii) to present the contributions of genetic engineering for passion fruit culture; and (iv) to discuss the progress and perspectives of this research. Thus, the present review aims to summarize and discuss the relationship between historical and current progress on the culture, breeding, and molecular genetics of passion fruit. PMID:25196515

  15. Genetic Breeding and Diversity of the Genus Passiflora: Progress and Perspectives in Molecular and Genetic Studies

    PubMed Central

    Cerqueira-Silva, Carlos Bernard M.; Jesus, Onildo N.; Santos, Elisa S. L.; Corrêa, Ronan X.; Souza, Anete P.

    2014-01-01

    Despite the ecological and economic importance of passion fruit (Passiflora spp.), molecular markers have only recently been utilized in genetic studies of this genus. In addition, both basic genetic researches related to population studies and pre-breeding programs of passion fruit remain scarce for most Passiflora species. Considering the number of Passiflora species and the increasing use of these species as a resource for ornamental, medicinal, and food purposes, the aims of this review are the following: (i) to present the current condition of the passion fruit crop; (ii) to quantify the applications and effects of using molecular markers in studies of Passiflora; (iii) to present the contributions of genetic engineering for passion fruit culture; and (iv) to discuss the progress and perspectives of this research. Thus, the present review aims to summarize and discuss the relationship between historical and current progress on the culture, breeding, and molecular genetics of passion fruit. PMID:25196515

  16. High Spatial Genetic Structure and Genetic Diversity in Chinese Populations of Sitobion miscanthi (Hemiptera: Aphididae).

    PubMed

    Wang, Yongmo; Hereward, James P; Zhang, Guoan

    2016-02-01

    The wheat aphid, Sitobion miscanthi Takahashi, a serious wheat pest, was previously considered to be highly migratory and anholocyclic in China. We recorded 69 alleles and 346 multilocus genotypes among 708 aphid individuals from 12 populations in China using 5 microsatellite loci. This genotypic diversity indicates that at least some holocyclic lineages exist. Bayesian clustering analysis revealed that there are two differentiated genetic groups of S. misanthi, one northern and one southern, in China. Principal coordinates analysis of population genetic distance, pairwise F(ST)'s, and network analysis of individual minimum spanning distance also supported the division. Low levels of migration were detected between the northern and southern sampling sites, but the high genetic differentiation does not support the hypothesis S. miscanthi overwinters in the south and migrates to the north in the spring annually. PMID:26487744

  17. Genetic relationships among breeds of beef cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective was to estimate genetic distance among 16 populations of beef cattle from within the U.S. Thirty-three microsatellite markers representing 26 autosomes were used. MicroSatellite Analyzer 3.15 (MSA) program was used to quantify number of alleles per marker, and observed and expected het...

  18. Genetic relationships among pathogenic strains of avian Escherichia coli.

    PubMed Central

    Whittam, T S; Wilson, R A

    1988-01-01

    Genetic relationships among 79 strains of Escherichia coli, isolated mostly from diseased chickens, were estimated on the basis of allelic variation at 15 enzyme-encoding loci, determined by multilocus enzyme electrophoresis. All 15 loci were polymorphic, with an average of 4.1 allelic states per locus. Comparisons of the observed combinations of alleles among strains revealed 37 distinct multilocus genotypes that were used to define naturally occurring cell lineages or clones. Two-thirds of the isolates were classified into 10 clones, including a single multilocus genotype that accounted for about a third of all isolates. For isolates of these clones, there was a high concordance (76%) between identity in multilocus genotype, O:K:H serotype, and pattern of resistance to five antibiotics. Cluster analysis disclosed two major complexes of closely related clones, in which more than 50% of the isolates were associated with localized infections (airsacculitis and pericarditis). Both complexes contained isolates with serotype O2:K1, indicating that this serotype can occur on diverse chromosomal backgrounds. The results suggest that colibacillosis within avian populations is caused by a relatively limited number of pathogenic clones representing at least two distinct clone complexes. PMID:3045001

  19. Genetic Variation and Phylogenetic Relationships of Indian Buffaloes of Uttar Pradesh

    PubMed Central

    Joshi, Jyoti; Salar, R. K.; Banerjee, Priyanka; S, Upasna; Tantia, M. S.; Vijh, R. K.

    2013-01-01

    India possesses a total buffalo population of 105 million out of which 26.1% inhabit Uttar Pradesh. The buffalo of Uttar Pradesh are described as nondescript or local buffaloes. Currently, there is no report about the genetic diversity, phylogenetic relationship and matrilineal genetic structure of these buffaloes. To determine the origin and genetic diversity of UP buffaloes, we sequenced and analysed the mitochondrial DNA D-loop sequences in 259 samples from entire Uttar Pradesh. One hundred nine haplotypes were identified in UP buffaloes that were defined by 96 polymorphic sites. We implemented neutrality tests to assess signatures of recent historical demographic events like Tajima’s D test and Fu’s Fs test. The phylogenetic studies revealed that there was no geographic differentiation and UP buffaloes had a single maternal lineage while buffaloes of Eastern UP were distinctive from rest of the UP buffaloes. PMID:25049904

  20. EFFECTS OF CHEMICAL CONTAMINANTS ON GENETIC DIVERSITY IN NATURAL POPULATIONS: IMPLICATIONS FOR BIOMONITORING AND ECOTOXICOLOGY

    EPA Science Inventory

    The conservation of genetic diversity has emerged as one of the central issues in conservation biology. Although researchers in the areas of evolutionary biology, population management, and conservation biology routinely investigate genetic variability in natural populations, onl...

  1. Update on the Comparative Assessment of Genetic Diversity Between Accessible and Remote Potato Populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is limited information on the organization of potato genetic diversity (GD) in natural habitats. Answering questions on that topic has significant implications for germplasm conservation -- for example, targeting habitats and populations with greater genetic richness or distinctiveness for col...

  2. Diversity, Epidemiology, and Genetics of Class D β-Lactamases▿

    PubMed Central

    Poirel, Laurent; Naas, Thierry; Nordmann, Patrice

    2010-01-01

    Class D β-lactamase-mediated resistance to β-lactams has been increasingly reported during the last decade. Those enzymes also known as oxacillinases or OXAs are widely distributed among Gram negatives. Genes encoding class D β-lactamases are known to be intrinsic in many Gram-negative rods, including Acinetobacter baumannii and Pseudomonas aeruginosa, but play a minor role in natural resistance phenotypes. The OXAs (ca. 150 variants reported so far) are characterized by an important genetic diversity and a great heterogeneity in terms of β-lactam hydrolysis spectrum. The acquired OXAs possess either a narrow spectrum or an expanded spectrum of hydrolysis, including carbapenems in several instances. Acquired class D β-lactamase genes are mostly associated to class 1 integron or to insertion sequences. PMID:19721065

  3. Genetic diversity in cyanobacterial symbionts of thalloid bryophytes.

    PubMed

    Rikkinen, Jouko; Virtanen, Viivi

    2008-01-01

    Two species of thalloid liverworts, Blasia pusilla and Cavicularia densa, form stable symbioses with nitrogen-fixing cyanobacteria. Both bryophytes promote the persistence of their cyanobacterial associations by producing specialized gemmae, which facilitate the simultaneous dispersal of the host and its nitrogen-fixing symbionts. Here the genetic diversity of cyanobacterial symbionts of Blasia and Cavicularia is examined. The results indicate that the primary symbionts of both bryophytes are closely related and belong to a specific group of symbiotic Nostoc strains. Related strains have previously been reported from hornworts and cycads, and from many terricolous cyanolichens. The evolutionary origins of all these symbioses may trace back to pre-Permian times. While the laboratory strain Nostoc punctiforme PCC 73102 has been widely used in experimental studies of bryophyte-Nostoc associations, sequence-identical cyanobionts have not yet been identified from thalloid liverworts in the field. PMID:18325923

  4. Genetic diversity of rhizobia nodulating native Vicia spp. in Sweden.

    PubMed

    Ampomah, Osei Yaw; Huss-Danell, Kerstin

    2016-05-01

    Despite the recognition that Rhizobium leguminosarum sv. viciae is the most common symbiont of Vicia species worldwide, there is no available information on rhizobia nodulating native Vicia species in Sweden. We have therefore studied the genetic diversity and phylogeny of root nodule bacteria isolated from V. cracca, V. hirsuta, V. sepium, V. tetrasperma and V. sylvatica growing in different locations in Sweden as well as an isolate each from V. cracca in Tromsø, Norway, and V. multicaulis in Siberia, Russia. Out of 25 isolates sampled from the six Vicia species in 12 different locations, there were 14 different genotypes based on the atpD, recA and nodA gene phylogenies. All isolates were classified into Rhizobium leguminosarum sv. viciae group based on the concatenated atpD and recA phylogeny and the nodA phylogeny. PMID:26924220

  5. Genetic Diversity of Cryptosporidium spp. in Captive Reptiles

    PubMed Central

    Xiao, Lihua; Ryan, Una M.; Graczyk, Thaddeus K.; Limor, Josef; Li, Lixia; Kombert, Mark; Junge, Randy; Sulaiman, Irshad M.; Zhou, Ling; Arrowood, Michael J.; Koudela, Břetislav; Modrý, David; Lal, Altaf A.

    2004-01-01

    The genetic diversity of Cryptosporidium in reptiles was analyzed by PCR-restriction fragment length polymorphism and sequence analysis of the small subunit rRNA gene. A total of 123 samples were analyzed, of which 48 snake samples, 24 lizard samples, and 3 tortoise samples were positive for Cryptosporidium. Nine different types of Cryptosporidium were found, including Cryptosporidium serpentis, Cryptosporidium desert monitor genotype, Cryptosporidium muris, Cryptosporidium parvum bovine and mouse genotypes, one C. serpentis-like parasite in a lizard, two new Cryptosporidium spp. in snakes, and one new Cryptosporidium sp. in tortoises. C. serpentis and the desert monitor genotype were the most common parasites and were found in both snakes and lizards, whereas the C. muris and C. parvum parasites detected were probably the result of ingestion of infected rodents. Sequence and biologic characterizations indicated that the desert monitor genotype was Cryptosporidium saurophilum. Two host-adapted C. serpentis genotypes were found in snakes and lizards. PMID:14766569

  6. AFRICAN GENETIC DIVERSITY: Implications for Human Demographic History, Modern Human Origins, and Complex Disease Mapping

    PubMed Central

    Campbell, Michael C.; Tishkoff, Sarah A.

    2010-01-01

    Comparative studies of ethnically diverse human populations, particularly in Africa, are important for reconstructing human evolutionary history and for understanding the genetic basis of phenotypic adaptation and complex disease. African populations are characterized by greater levels of genetic diversity, extensive population substructure, and less linkage disequilibrium (LD) among loci compared to non-African populations. Africans also possess a number of genetic adaptations that have evolved in response to diverse climates and diets, as well as exposure to infectious disease. This review summarizes patterns and the evolutionary origins of genetic diversity present in African populations, as well as their implications for the mapping of complex traits, including disease susceptibility. PMID:18593304

  7. Genetic Diversity and Population Genetics of Mosquitoes (Diptera: Culicidae: Culex spp.) from the Sonoran Desert of North America

    PubMed Central

    Pfeiler, Edward; Flores-López, Carlos A.; Mada-Vélez, Jesús Gerardo; Escalante-Verdugo, Juan; Markow, Therese A.

    2013-01-01

    The population genetics and phylogenetic relationships of Culex mosquitoes inhabiting the Sonoran Desert region of North America were studied using mitochondrial DNA and microsatellite molecular markers. Phylogenetic analyses of mitochondrial cytochrome c oxidase subunit I (COI) from mosquitoes collected over a wide geographic area, including the Baja California peninsula, and mainland localities in southern Arizona, USA and Sonora, Mexico, showed several well-supported partitions corresponding to Cx. quinquefasciatus, Cx. tarsalis, and two unidentified species, Culex sp. 1 and sp. 2. Culex quinquefasciatus was found at all localities and was the most abundant species collected. Culex tarsalis was collected only at Tucson, Arizona and Guaymas, Sonora. The two unidentified species of Culex were most abundant at Navojoa in southern Sonora. Haplotype and nucleotide diversities in the COI gene segment were substantially lower in Cx. quinquefasciatus compared with the other three species. Analysis of molecular variance revealed little structure among seven populations of Cx. quinquefasciatus, whereas significant structure was found between the two populations of Cx. tarsalis. Evidence for an historical population expansion beginning in the Pleistocene was found for Cx. tarsalis. Possible explanations for the large differences in genetic diversity between Cx. quinquefasciatus and the other species of Culex are presented. PMID:24302868

  8. [Genetic Diversity of Vitis vinifera L. in Azerbaijan].

    PubMed

    Salayeva, S J; Ojaghi, J M; Pashayeva, A N; Izzatullayeva, V I; Akhundova, E M; Akperov, Z I

    2016-04-01

    To examine the genetic diversity of Vitis vinifera L., growing in the Republic of Azerbaijan in the region near the Caspian Sea, nuclear genomes of 31 cultivated and 34 wild grapevine accessions were studied at population and individual levels using five ISSR primers. In total, 51 fragments were amplified, of which 45 were found to be polymorphic. A high level of polymorphism was revealed (the mean PPF and PIC values constituted 87.69% and 0.94, respectively). High values of the EMR, MI, and RP indices showed the effectiveness of the application of ISSR primers and the possibility of their use in further investigations in this direction. Cluster analysis based on Nei's genetic distance values showed that all genotypes could be grouped into seven main clusters. Furthermore, no differences between the wild and cultivated grape wine accessions were revealed. For instance, there was no distinct distribution of the accessions according to their geographical localization. On the basis of the PIC values, the group of cultivars from Absheron Peninsula--was distinguished by the highest polymorphism level (PIC = 0.36). Natural populations from the Guba and Shabran regions were characterized by a relatively low polymorphism level (PIC = 0.31 and PIC = 0.28, respectively); and a wild population from Nabran demonstrated the lowest polymorphism level (PIC = 0.25). The data obtained confirmed paleontological and historical data of different periods, provide the supposition that Azerbaijan is the center of diversity of V. vinifera L. In addition, our data indicate that Azerbaijan grape landraces originated from local wild forms. PMID:27529978

  9. Epidemiology and genetic diversity of Taenia asiatica: a systematic review.

    PubMed

    Ale, Anita; Victor, Bjorn; Praet, Nicolas; Gabriël, Sarah; Speybroeck, Niko; Dorny, Pierre; Devleesschauwer, Brecht

    2014-01-01

    Taenia asiatica has made a remarkable journey through the scientific literature of the past 50 years, starting with the paradoxical observation of high prevalences of T. saginata-like tapeworms in non-beef consuming populations, to the full description of its mitochondrial genome. Experimental studies conducted in the 1980s and 1990s have made it clear that the life cycle of T. asiatica is comparable to that of T. saginata, except for pigs being the preferential intermediate host and liver the preferential location of the cysts. Whether or not T. asiatica can cause human cysticercosis, as is the case for Taenia solium, remains unclear. Given the specific conditions needed to complete its life cycle, in particular the consumption of raw or poorly cooked pig liver, the transmission of T. asiatica shows an important ethno-geographical association. So far, T. asiatica has been identified in Taiwan, South Korea, Indonesia, the Philippines, Thailand, south-central China, Vietnam, Japan and Nepal. Especially this last observation indicates that its distribution is not restricted to South-East-Asia, as was thought so far. Indeed, the molecular tools developed over the last 20 years have made it increasingly possible to differentiate T. asiatica from other taeniids. Such tools also indicated that T. asiatica is related more closely to T. saginata than to T. solium, feeding the debate on its taxonomic status as a separate species versus a subspecies of T. saginata. Furthermore, the genetic diversity within T. asiatica appears to be very minimal, indicating that this parasite may be on the verge of extinction. However, recent studies have identified potential hybrids between T. asiatica and T. saginata, reopening the debate on the genetic diversity of T. asiatica and its status as a separate species. PMID:24450957

  10. Epidemiology and genetic diversity of Taenia asiatica: a systematic review

    PubMed Central

    2014-01-01

    Taenia asiatica has made a remarkable journey through the scientific literature of the past 50 years, starting with the paradoxical observation of high prevalences of T. saginata-like tapeworms in non-beef consuming populations, to the full description of its mitochondrial genome. Experimental studies conducted in the 1980s and 1990s have made it clear that the life cycle of T. asiatica is comparable to that of T. saginata, except for pigs being the preferential intermediate host and liver the preferential location of the cysts. Whether or not T. asiatica can cause human cysticercosis, as is the case for Taenia solium, remains unclear. Given the specific conditions needed to complete its life cycle, in particular the consumption of raw or poorly cooked pig liver, the transmission of T. asiatica shows an important ethno-geographical association. So far, T. asiatica has been identified in Taiwan, South Korea, Indonesia, the Philippines, Thailand, south-central China, Vietnam, Japan and Nepal. Especially this last observation indicates that its distribution is not restricted to South-East-Asia, as was thought so far. Indeed, the molecular tools developed over the last 20 years have made it increasingly possible to differentiate T. asiatica from other taeniids. Such tools also indicated that T. asiatica is related more closely to T. saginata than to T. solium, feeding the debate on its taxonomic status as a separate species versus a subspecies of T. saginata. Furthermore, the genetic diversity within T. asiatica appears to be very minimal, indicating that this parasite may be on the verge of extinction. However, recent studies have identified potential hybrids between T. asiatica and T. saginata, reopening the debate on the genetic diversity of T. asiatica and its status as a separate species. PMID:24450957

  11. tRNALeu intron (UAA) of Ficus carica L.: genetic diversity and evolutionary patterns.

    PubMed

    Baraket, G; Abdelkrim, A B; Salhi-Hannachi, A

    2015-01-01

    Cytoplasmic chloroplast DNA was explored to establish genetic relationships among Ficus carica cultivars and elucidate the molecular evolution of the species. The results suggest the occurrence of haplotype and nucleotide diversity. Conserved group I intron sequence motifs were detected and showed a common secondary structure, despite the presence of some mutations on their sequences. The neighbor-joining dendrogram showed a continuous diversity that characterizes local resources. The maximum parsimony tree, with an RI index of 0.507, indicated minimal homoplasy within the data set. Furthermore, our results demonstrate that the trnL intron is the seat of numerous substitutions. Herein, new insight on the mechanism involved in the evolution of the trnL intron in the fig is presented. From the study, it appears that there is an explicit rejection of the null hypothesis in F. carica. A scenario of positive selection and recent expansion of F. carica genotypes across Tunisia seems to be retained. PMID:25966152

  12. Genetic diversity and chemical polymorphism of some Thymus species.

    PubMed

    Rustaiee, Ali Reza; Yavari, Alireza; Nazeri, Vahideh; Shokrpour, Majid; Sefidkon, Fatemeh; Rasouli, Musa

    2013-06-01

    To ascertain whether there are chemical and genetic relationships among some Thymus species and also to determine correlation between these two sets of data, the essential-oil composition and genetic variability of six populations of Thymus including: T. daenensis ČELAK. (two populations), T. fallax FISCH. & C.A.MEY., T. fedtschenkoi RONNIGER, T. migricus KLOKOV & DES.-SHOST., and T. vulgaris L. were analyzed by GC and GC/MS, and also by randomly amplified polymorphic DNA (RAPD). Thus, 27 individuals were analyzed using 16 RAPD primers, which generated 264 polymorphic scorable bands and volatiles isolated by distillation extraction were subjected to GC and GC/MS analyses. The yields of oils ranged from 2.1 to 3.8% (v/w), and 34 components were identified, amounting to a total percentage of 97.8-99.9%. RAPD Markers allowed a perfect distinction between the different species based on their distinctive genetic background. However, they did not show identical clustering with the volatile-oil profiles. PMID:23776024

  13. Genetic diversity, structure and differentiation in cultivated walnut (juglans regia l.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An analysis of genetic structure and differentiation in cultivated walnut (Juglans regia) using 15 microsatellite loci revealed a considerable amount of genetic variation with a mild genetic structure indicating five genetic groups corresponding to the centers of diversity within the home range of w...

  14. Genetic diversity in relation to heterosis and combining ability in spring wheat.

    PubMed

    Shamsuddin, A K

    1985-06-01

    Genetic diversity among ten varieties of spring wheat used as parents in a diallel cross was assessed through multivariate analysis (D(2)-statistics) and then related to heterosis and SCA effects of their hybrids. The parents fell into three groups. Group I contained the varieties, 'Nobre', 'Girua' and 'Carazinho'; group II contained 'Sonalika', 'Lyallpur' and 'Pitic 62' and group III contained 'Indus 66', 'Balaka', 'Sonora 64rs and 'MSl'. The varieties of group I were good general combiners, while the varieties of group III were poor combiners. Significant heterotic and SCA effects for yield and yield components were observed in the hybrids of the parents belonging to different groups but not in the same group. Genetic divergence between the parents had a positive relationship with heterosis and SCA effects of the hybrids. PMID:24252926

  15. Genome-wide assessment of worldwide chicken SNP genetic diversity indicates significant absence of rare alleles in commercial breeds

    PubMed Central

    Muir, William M.; Wong, Gane Ka-Shu; Zhang, Yong; Wang, Jun; Groenen, Martien A. M.; Crooijmans, Richard P. M. A.; Megens, Hendrik-Jan; Zhang, Huanmin; Okimoto, Ron; Vereijken, Addie; Jungerius, Annemieke; Albers, Gerard A. A.; Lawley, Cindy Taylor; Delany, Mary E.; MacEachern, Sean; Cheng, Hans H.

    2008-01-01

    Breed utilization, genetic improvement, and industry consolidation are predicted to have major impacts on the genetic composition of commercial chickens. Consequently, the question arises as to whether sufficient genetic diversity remains within industry stocks to address future needs. With the chicken genome sequence and more than 2.8 million single-nucleotide polymorphisms (SNPs), it is now possible to address biodiversity using a previously unattainable metric: missing alleles. To achieve this assessment, 2551 informative SNPs were genotyped on 2580 individuals, including 1440 commercial birds. The proportion of alleles lacking in commercial populations was assessed by (1) estimating the global SNP allele frequency distribution from a hypothetical ancestral population as a reference, then determining the portion of the distribution lost, and then (2) determining the relationship between allele loss and the inbreeding coefficient. The results indicate that 50% or more of the genetic diversity in ancestral breeds is absent in commercial pure lines. The missing genetic diversity resulted from the limited number of incorporated breeds. As such, hypothetically combining stocks within a company could recover only preexisting within-breed variability, but not more rare ancestral alleles. We establish that SNP weights act as sentinels of biodiversity and provide an objective assessment of the strains that are most valuable for preserving genetic diversity. This is the first experimental analysis investigating the extant genetic diversity of virtually an entire agricultural commodity. The methods presented are the first to characterize biodiversity in terms of allelic diversity and to objectively link rate of allele loss with the inbreeding coefficient. PMID:18981413

  16. Clan, language, and migration history has shaped genetic diversity in Haida and Tlingit populations from Southeast Alaska.

    PubMed

    Schurr, Theodore G; Dulik, Matthew C; Owings, Amanda C; Zhadanov, Sergey I; Gaieski, Jill B; Vilar, Miguel G; Ramos, Judy; Moss, Mary Beth; Natkong, Francis

    2012-07-01

    The linguistically distinctive Haida and Tlingit tribes of Southeast Alaska are known for their rich material culture, complex social organization, and elaborate ritual practices. However, much less is known about these tribes from a population genetic perspective. For this reason, we analyzed mtDNA and Y-chromosome variation in Haida and Tlingit populations to elucidate several key issues pertaining to the history of this region. These included the genetic relationships of Haida and Tlingit to other indigenous groups in Alaska and Canada; the relationship between linguistic and genetic data for populations assigned to the Na-Dene linguistic family, specifically, the inclusion of Haida with Athapaskan, Eyak, and Tlingit in the language family; the possible influence of matrilineal clan structure on patterns of genetic variation in Haida and Tlingit populations; and the impact of European entry into the region on the genetic diversity of these indigenous communities. Our analysis indicates that, while sharing a "northern" genetic profile, the Haida and the Tlingit are genetically distinctive from each other. In addition, Tlingit groups themselves differ across their geographic range, in part due to interactions of Tlingit tribes with Athapaskan and Eyak groups to the north. The data also reveal a strong influence of maternal clan identity on mtDNA variation in these groups, as well as the significant influence of non-native males on Y-chromosome diversity. These results yield new details about the histories of the Haida and Tlingit tribes in this region. PMID:22549307

  17. Clan, Language, and Migration History Has Shaped Genetic Diversity in Haida and Tlingit Populations From Southeast Alaska

    PubMed Central

    Schurr, Theodore G.; Dulik, Matthew C.; Owings, Amanda C.; Zhadanov, Sergey I.; Gaieski, Jill B.; Vilar, Miguel G.; Ramos, Judy; Moss, Mary Beth; Natkong, Francis

    2013-01-01

    The linguistically distinctive Haida and Tlingit tribes of Southeast Alaska are known for their rich material culture, complex social organization, and elaborate ritual practices. However, much less is known about these tribes from a population genetic perspective. For this reason, we analyzed mtDNA and Y-chromosome variation in Haida and Tlingit populations to elucidate several key issues pertaining to the history of this region. These included the genetic relationships of Haida and Tlingit to other indigenous groups in Alaska and Canada; the relationship between linguistic and genetic data for populations assigned to the Na-Dene linguistic family, specifically, the inclusion of Haida with Athapaskan, Eyak, and Tlingit in the language family; the possible influence of matrilineal clan structure on patterns of genetic variation in Haida and Tlingit populations; and the impact of European entry into the region on the genetic diversity of these indigenous communities. Our analysis indicates that, while sharing a “northern” genetic profile, the Haida and the Tlingit are genetically distinctive from each other. In addition, Tlingit groups themselves differ across their geographic range, in part due to interactions of Tlingit tribes with Athapaskan and Eyak groups to the north. The data also reveal a strong influence of maternal clan identity on mtDNA variation in these groups, as well as the significant influence of non-native males on Y-chromosome diversity. These results yield new details about the histories of the Haida and Tlingit tribes in this region. PMID:22549307

  18. Genetic diversity of ITS sequences of Bursaphelenchus xylophilus.

    PubMed

    Cardoso, J M S; Fonseca, L; Abrantes, I

    2012-01-01

    The sequence variation of internal transcribed spacer (ITS) regions of ribosomal DNA has been routinely used for species identification and species-level phylogeny of the pinewood nematode, Bursaphelenchus xylophilus. In this study, the intraspecies ITS genetic diversity of B. xylophilus was evaluated. Three pinewood nematode isolates from the United States, Japan, and Portugal were used for polymerase chain reaction (PCR) ITS region amplification and sequencing. Multiple peaks were observed in sequencing chromatograms from ITS regions of American and Japanese isolates, suggesting the presence of more than one ribosomal sequence for each isolate. PCR products were further cloned and 10 clones of each isolate were subsequently sequenced. Additionally, the ITS regions of individual nematodes from each isolate were amplified, cloned and sequenced. Among the 3 B. xylophilus isolates analyzed, an intraspecific and intra-isolate molecular variability was found. The intra-isolate ITS molecular diversity in the American isolate was higher than that in the Japanese and Portuguese isolates. However, the level of sequence variation observed within isolates was about the same as that described among ITS repeats within individuals. PMID:23096915

  19. Genetic diversity of Toxoplasma gondii in animals and humans

    PubMed Central

    Sibley, L. David; Khan, Asis; Ajioka, James W.; Rosenthal, Benjamin M.

    2009-01-01

    Toxoplasma gondii is one of the most widespread parasites of domestic, wild, and companion animals, and it also commonly infects humans. Toxoplasma gondii has a complex life cycle. Sexual development occurs only in the cat gut, while asexual replication occurs in many vertebrate hosts. These features combine to create an unusual population structure. The vast majority of strains in North America and Europe fall into three recently derived, clonal lineages known as types I, II and III. Recent studies have revealed that South American strains are more genetically diverse and comprise distinct genotypes. These differences have been shaped by infrequent sexual recombination, population sweeps and biogeography. The majority of human infections that have been studied in North America and Europe are caused by type II strains, which are also common in agricultural animals from these regions. In contrast, several diverse genotypes of T. gondii are associated with severe infections in humans in South America. Defining the population structure of T. gondii from new regions has important implications for transmission, immunogenicity and pathogenesis. PMID:19687043

  20. Extensive Genetic Diversity within the Dutch Clinical Cryptococcus neoformans Population

    PubMed Central

    Hagen, Ferry; Illnait-Zaragozí, María-Teresa; Meis, Jacques F.; Chew, William H. M.; Curfs-Breuker, Ilse; Mouton, Johan W.; Hoepelman, Andy I. M.; Spanjaard, Lodewijk; Verweij, Paul E.; Kampinga, Greetje A.; Kuijper, Ed J.; Klaassen, Corné H. W.

    2012-01-01

    A set of 300 Dutch Cryptococcus neoformans isolates, obtained from 237 patients during 1977 to 2007, was investigated by determining the mating type, serotype, and AFLP and microsatellite genotype and susceptibility to seven antifungal compounds. Almost half of the studied cases were from HIV-infected patients, followed by a patient group of individuals with other underlying diseases and immunocompetent individuals. The majority of the isolates were mating type α and serotype A, followed by αD isolates and other minor categories. The most frequently observed genotype was AFLP1, distantly followed by AFLP2 and AFLP3. Microsatellite typing revealed a high genetic diversity among serotype A isolates but a lower diversity within the serotype D set of isolates. One patient was infected by multiple AFLP genotypes. Fluconazole and flucytosine had the highest geometric mean MICs of 2.9 and 3.5 μg/ml, respectively, while amphotericin B (0.24 μg/ml), itraconazole (0.08 μg/ml), voriconazole (0.07 μg/ml), posaconazole (0.06 μg/ml), and isavuconazole (0.03 μg/ml) had much lower geometric mean MICs. One isolate had a high flucytosine MIC (>64 μg/ml), while decreased susceptibility (≥16 μg/ml) for flucytosine and fluconazole was found in 9 and 10 C. neoformans isolates, respectively. PMID:22442325

  1. Genetic diversity among sea otter isolates of Toxoplasma gondii

    USGS Publications Warehouse

    Sundar, N.; Cole, R.A.; Thomas, N.J.; Majumdar, D.; Dubey, J.P.; Su, C.

    2008-01-01

    Sea otters (Enhydra lutris) have been reported to become infected with Toxoplasma gondii and at times succumb to clinical disease. Here, we determined genotypes of 39 T. gondii isolates from 37 sea otters in two geographically distant locations (25 from California and 12 from Washington). Six genotypes were identified using 10 PCR-RFLP genetic markers including SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico, and by DNA sequencing of loci SAG1 and GRA6 in 13 isolates. Of these 39 isolates, 13 (33%) were clonal Type II which can be further divided into two groups at the locus Apico. Two of the 39 isolates had Type II alleles at all loci except a Type I allele at locus L358. One isolate had Type II alleles at all loci except the Type I alleles at loci L358 and Apico. One isolate had Type III alleles at all loci except Type II alleles at SAG2 and Apico. Two sea otter isolates had a mixed infection. Twenty-one (54%) isolates had an unique allele at SAG1 locus. Further genotyping or DNA sequence analysis for 18 of these 21 isolates at loci SAG1 and GRA6 revealed that there were two different genotypes, including the previously identified Type X (four isolates) and a new genotype named Type A (14 isolates). The results from this study suggest that the sea otter isolates are genetically diverse.

  2. Internal Lattice Reconfiguration for Diversity Tuning in Cellular Genetic Algorithms

    PubMed Central

    Morales-Reyes, Alicia; Erdogan, Ahmet T.

    2012-01-01

    Cellular Genetic Algorithms (cGAs) have attracted the attention of researchers due to their high performance, ease of implementation and massive parallelism. Maintaining an adequate balance between exploitative and explorative search is essential when studying evolutionary optimization techniques. In this respect, cGAs inherently possess a number of structural configuration parameters that are able to sustain diversity during evolution. In this study, the internal reconfiguration of the lattice is proposed to constantly or adaptively control the exploration-exploitation trade-off. Genetic operators are characterized in their simplest form since algorithmic performance is assessed on implemented reconfiguration mechanisms. Moreover, internal reconfiguration allows the adjacency of individuals to be maintained. Hence, any improvement in performance is only a consequence of topological changes. Two local selection methods presenting opposite selection pressures are used in order to evaluate the influence of the proposed techniques. Problems ranging from continuous to real world and combinatorial are tackled. Empirical results are supported statistically in terms of efficiency and efficacy. PMID:22859973

  3. Adapting populations in space: clonal interference and genetic diversity

    NASA Astrophysics Data System (ADS)

    Weissman, Daniel; Barton, Nick

    Most species inhabit ranges much larger than the scales over which individuals interact. How does this spatial structure interact with adaptive evolution? We consider a simple model of a spatially-extended, adapting population and show that, while clonal interference severely limits the adaptation of purely asexual populations, even rare recombination is enough to allow adaptation at rates approaching those of well-mixed populations. We also find that the genetic hitchhiking produced by the adaptive alleles sweeping through the population has strange effects on the patterns of genetic diversity. In large spatial ranges, even low rates of adaptation cause all individuals in the population to rapidly trace their ancestry back to individuals living in a small region in the center of the range. The probability of fixation of an allele is thus strongly dependent on the allele's spatial location, with alleles from the center favored. Surprisingly, these effects are seen genome-wide (instead of being localized to the regions of the genome undergoing the sweeps). The spatial concentration of ancestry produces a power-law dependence of relatedness on distance, so that even individuals sampled far apart are likely to be fairly closely related, masking the underlying spatial structure.

  4. Genetic diversity of pestivirus isolates in cattle from Western Austria.

    PubMed

    Hornberg, Andrea; Fernández, Sandra Revilla; Vogl, Claus; Vilcek, Stefan; Matt, Monika; Fink, Maria; Köfer, Josef; Schöpf, Karl

    2009-03-30

    The genetic diversity of bovine viral diarrhoea virus (BVDV) isolates in infected cattle from Tyrol and Vorarlberg (Austria) was investigated. Blood samples were collected within the compulsory Austrian BVDV control programme during 2005 and 2006. The 5'-untranslated region (5'-UTR) and partially the N-terminal autoprotease (N(pro)) were amplified by one-step reverse transcriptase-polymerase chain reaction (RT-PCR) and the PCR products were subsequently sequenced. Phylogenetic analysis based on 5'-UTR and N(pro) sequences demonstrated that almost all isolates (307/310) were of the BVDV-1 genotype. They were clustered into eight different subtypes, here listed by their frequency of occurrence: BVDV-1h (143), BVDV-1f (79), BVDV-1b (41), BVDV-1d (28), BVDV-1e (6), BVDV-1a (4), BVDV-1g (3) and BVDV1-k (3). Two pestivirus isolates were typed as BVDV-2 and one isolate as BDV closely related to Gifhorn strain (BDV-3). Correlation among isolates could only be observed at the farm level, i.e., within a herd. However, no correlation between the genetic and geographical distances could be observed above the farm level. Because of the wide distribution of certain BVDV-1 subtypes and the low prevalence of herd-specific strains, a determination of tracing routes of infection was not possible. Furthermore, recombination events were not detected. PMID:19019571

  5. Genetic and Physiological Diversity in the Diatom Nitzschia inconspicua.

    PubMed

    Rovira, Laia; Trobajo, Rosa; Sato, Shinya; Ibáñez, Carles; Mann, David G

    2015-01-01

    Nitzschia inconspicua is an ecologically important diatom species, which is believed to have a widespread distribution and to be tolerant to salinity and to organic or nutrient pollution. However, its identification is not straightforward and there is no information on genetic and ecophysiological diversity within the species. We used morphological, molecular (rbcL and LSU D1-D3), ecophysiological and reproductive data to investigate whether N. inconspicua constitutes a single species with a broad ecological tolerance or two or more cryptic species with shared or different ecological preferences. Molecular genetic data for clones from upstream and deltaic sites in the Ebro River basin (Catalonia, Spain) revealed seven N. inconspicua rbcL + LSU genotypes grouped into three major clades. Two of the clades were related to other Nitzschia and Denticula species, making N. inconspicua paraphyletic and suggesting the need for taxonomic revision. Most clones were observed to be automictic, exhibiting paedogamy, and so the biological species concept cannot be used to establish species boundaries. Although there were morphological differences among clones, we found no consistent differences among genotypes belonging to different clades, which are definable only through sequence data. Nevertheless, separating the genotypes could be important for ecological purposes because two different ecophysiological responses were encountered among them. PMID:26046925

  6. Population structure and genetic diversity of moose in Alaska.

    PubMed

    Schmidt, Jennifer I; Hundertmark, Kris J; Bowyer, R Terry; McCracken, Kevin G

    2009-01-01

    Moose (Alces alces) are highly mobile mammals that occur across arboreal regions of North America, Europe, and Asia. Alaskan moose (Alces alces gigas) range across much of Alaska and are primary herbivore consumers, exerting a prominent influence on ecosystem structure and functioning. Increased knowledge gained from population genetics provides insights into their population dynamics, history, and dispersal of these unique large herbivores and can aid in conservation efforts. We examined the genetic diversity and population structure of moose (n = 141) with 8 polymorphic microsatellites from 6 regions spanning much of Alaska. Expected heterozygosity was moderate (H(E) = 0.483-0.612), and private alleles ranged from 0 to 6. Both F(ST) and R(ST) indicated significant population structure (P < 0.001) with F(ST) < 0.109 and R(ST) < 0.125. Results of analyses from STRUCTURE indicated 2 prominent population groups, a mix of moose from the Yakutat and Tetlin regions versus all other moose, with slight substructure observed among the second population. Estimates of dispersal differed between analytical approaches, indicating a high level of historical or current gene flow. Mantel tests indicated that isolation-by-distance partially explained observed structure among moose populations (R(2) = 0.45, P < 0.01). Finally, there was no evidence of bottlenecks either at the population level or overall. We conclude that weak population structure occurs among moose in Alaska with population expansion from interior Alaska westward toward the coast. PMID:18836148

  7. SSR Marker Analysis of Genetic Relationships within Hydrangea paniculata

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic diversity studies using 26 simple-sequence repeat (SSR) markers were conducted with 36 taxa of Hydrangea paniculata Sieb. The SSR loci were highly variable among the taxa, producing a mean of 5.8 alleles per locus. Three cultivars (Boskoop, Compact Grandiflora and Webb) were either identic...

  8. SSR Marker Analysis of Genetic Relationships within Hydrangea Macrophylla

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic diversity studies using 39 SSR markers were carried out with 114 taxa of H. macrophylla. The SSR loci were highly variable among the taxa, producing a mean of 8.26 alleles per locus. Overall allelic richness was relatively high at 5.12 alleles per locus. Subspecies serrata contained nearly t...

  9. Comparison of statistical methods for assessment of population genetic diversity by DNA fingerprinting

    SciTech Connect

    Leonard, T.; Roth, A.; Gordon, D.; Wessendarp, T.; Smith, M.K.; Silbiger, R.; Torsella, J.

    1995-12-31

    The advent of newer techniques for genomic characterization, e.g., Random Amplified Polymorphic DNA (RAPD) fingerprinting, has motivated development of a number of statistical approaches for creating hypothesis tests using this genetic information. The authors specific interest is methods for deriving relative genetic diversity measures of feral populations subjected to varying degrees of environmental impacts. Decreased polymorphism and loss of alleles have been documented in stressed populations of some species as assayed by allozyme analysis and, more recently, by DNA fingerprinting. Multilocus fingerprinting techniques (such as RAPDS) differ from allozyme analysis in that they do not explicitly yield information of allelism and heterozygosity. Therefore, in order to infer these parameters, assumptions must be made concerning the relationship of observed data to the underlying DNA architecture. In particular, assessments of population genetic diversity from DNA fingerprint data have employed at least three approaches based on different assumptions about the data. The authors compare different statistics, using a previously presented set of RAPD fingerprints of three populations of brown bullhead catfish. Furthermore, the behavior of these statistics is examined--as the sample sizes of fish/population and polymorphisms/fish are varied. Sample sizes are reduced either randomly or, in the case of polymorphisms (which are electrophoretic bands), systematically pruned using the criteria of high reproducibility between duplicate samples for inclusion of data. Implications for sampling individuals and loci in assessments of population genetic diversities are discussed. Concern about population N value and statistical power is very relevant to field situations where individuals available for sampling may be limited in number.

  10. Testing heterogeneity-diversity relationships in tropical forest restoration.

    PubMed

    Holl, Karen D; Stout, Victoria M; Reid, J Leighton; Zahawi, Rakan A

    2013-10-01

    Restoring small-scale habitat heterogeneity in highly diverse systems, like tropical forests, is a conservation challenge and offers an excellent opportunity to test factors affecting community assembly. We investigated whether (1) the applied nucleation restoration strategy (planting tree islands) resulted in higher habitat heterogeneity than more homogeneous forest restoration approaches, (2) increased heterogeneity resulted in more diverse tree recruitment, and (3) the mean or coefficient of variation of habitat variables best explained tree recruitment. We measured soil nutrients, overstory and understory vegetation structure, and tree recruitment at six sites with three 5- to 7-year-old restoration treatments: control (no planting), planted tree islands, and conventional, mixed-species tree plantations. Canopy openness and soil base saturation were more variable in island treatments than in controls and plantations, whereas most soil nutrients had similar coefficients of variation across treatments, and bare ground was more variable in control plots. Seedling and sapling species density were equivalent in plantations and islands, and were substantially higher than in controls. Species spatial turnover, diversity, and richness were similar in island and plantation treatments. Mean canopy openness, rather than heterogeneity, explained the largest proportion of variance in species density. Our results show that, whereas canopy openness and soil base saturation are more heterogeneous with the applied nucleation restoration strategy, this pattern does not translate into greater tree diversity. The lack of a heterogeneity-diversity relationship is likely due to the fact that recruits respond more strongly to mean resource gradients than variability at this early stage in succession, and that seed dispersal limitation likely reduces the available species pool. Results show that planting tree islands facilitates tree recruitment to a similar degree as intensive

  11. Genetic diversity of Echinococcus multilocularis on a local scale.

    PubMed

    Knapp, J; Guislain, M-H; Bart, J M; Raoul, F; Gottstein, B; Giraudoux, P; Piarroux, R

    2008-05-01

    Echinococcusmultilocularis is the causative agent of human Alveolar Echinococcosis (AE), and it is one of the most lethal zoonotic infections in the Northern Hemisphere. In France, the eastern and central regions are endemic areas; Franche-Comté, Lorraine and Auvergne are particularly contaminated. Recently, several human cases were recorded in the French Ardennes area, a region adjacent to the western border of the E. multilocularis range in France. A previous study in this focus described a prevalence of over 50% of the parasite in red foxes. The present study investigated the genetic diversity of adult worms collected from foxes in a 900km(2) area in the Ardennes. Instead of a conventional mitochondrial target (ATP6), two microsatellite targets (EmsB and NAK1) were used. A total of 140 adult worms isolated from 25 red foxes were genotyped. After hierarchical clustering analyses, the EmsB target enabled us to distinguish two main assemblages, each divided into sub-groups, yielding the differentiation of six clusters or assemblage profiles. Thirteen foxes (52% of the foxes) each harbored worms from at least two different assemblage profiles, suggesting they had become infected by several sources. Using the NAK1 target, we identified 3 alleles, two found in association with the two EmsB assemblages. With the NAK1 target, we investigated the parasite breeding system and the possible causes of genetic diversification. Only one fox harbored hybrid worms, indicative of a possible (and rare) occurrence of recombination, although multiple infections have been observed in foxes. These results confirm the usefulness of microsatellite targets for assessing genetic polymorphism in a geographically restricted local range. PMID:18406214

  12. SSRs transferability and genetic diversity of three allogamous ryegrass species.

    PubMed

    Guo, Zhi-Hui; Fu, Kai-Xin; Zhang, Xin-Quan; Zhang, Cheng-Lin; Sun, Ming; Huang, Ting; Peng, Yan; Huang, Lin-Kai; Yan, Yan-Hong; Ma, Xiao

    2016-02-01

    Simple sequence repeat (SSR) markers are widely applied in studies of plant molecular genetics due to their abundance in the genome, codominant nature, and high repeatability. However, microsatellites are not always available for the species to be studied and their isolation could be time- and cost-consuming. To investigate transferability in cross-species applications, 102 primer pairs previously developed in ryegrass and tall fescue were amplified across three allogamous ryegrass species including Lolium rigidum, Lolium perenne and Lolium multiflorum. Their highly transferability (100%) were evidenced. While, most of these markers were multiple loci, only 17 loci were selected for a robust, single-locus pattern, which may be due to the recentness of the genome duplication or duplicated genomic regions, as well as speciation. A total of 87 alleles were generated with an average of 5.1 per locus. The mean polymorphism information content (PIC) and observed heterozygosity (Ho) values at genus was 0.5532 and 0.5423, respectively. Besides, analysis of molecular variance (AMOVA) revealed that all three levels contributed significantly to the overall genetic variation, with the species level contributing the least (P<0.001). Also, the unweighted pair group method with arithmetic averaging dendrogram (UPGMA), Bayesian model-based STRUCTURE analysis and the principal coordinate analysis (PCoA) showed that accessions within species always tended to the same cluster firstly and then to related species. The results showed that these markers developed in related species are transferable efficiently across species, and likely to be useful in analyzing genetic diversity. PMID:26874459

  13. Genetic diversity of the Plasmodium vivax merozoite surface protein-5 locus from diverse geographic origins.

    PubMed

    Putaporntip, Chaturong; Udomsangpetch, Rachanee; Pattanawong, Urassaya; Cui, Liwang; Jongwutiwes, Somchai

    2010-05-15

    Plasmodium vivax merozoite surface protein-5 (PvMsp-5), a potential vaccine candidate, is encoded by a two-exon single copy gene. We have conducted a comprehensive analysis of PvMsp-5 by sequencing the entire gene of four parasite populations from northwestern Thailand (n=73), southern Thailand (n=53), Indonesia (n=25) and Brazil (n=24), and five isolates from other endemic areas. Results reveal that exon I exhibits a significantly higher level of nucleotide diversity at both synonymous and nonsynonymous sites than exon II (p<0.01). Neutrality tests based on both intraspecific and interspecific nucleotide polymorphism have detected a signature of positive selection in exon I of all populations while substitutions in exon II mainly followed neutral expectation except that three residues in exon II of northwestern Thailand population appear to be positively selected using the Bayes Empirical Bayes method. Short imperfect repeats were identified in exon I at an equivalent region to its orthologue in P. knowlesi, supporting their close genetic relatedness. Significant levels of population subdivision were detected among most populations including those between northwestern and southern Thailand (p<10(-5)), implying absent or minimal gene flow between these populations. Importantly, evidences for intragenic recombination in PvMsp-5 were found in most populations except that from southern Thailand in which haplotype diversity and nucleotide diversity were exceptionally low. Results from Fu and Li's D*, F* and D and F tests suggested that PvMsp-5 of most P. vivax populations have been maintained by balancing selection whereas southern Thailand population could have gone through recent bottleneck events. These findings are concordant with a substantial reduction in the number of P. vivax cases in southern Thailand during the past decade, followed by a very recent population expansion. Therefore, spatio-temporal monitoring of parasite population genetics provides important

  14. Sequence analysis and genetic diversity of five new Indian isolates of cucumber mosaic virus.

    PubMed

    Kumar, S; Gautam, K K; Raj, S K

    2015-12-01

    Cucumber mosaic virus (CMV) is an important virus since it causes severe losses to many economically important crops worldwide. Five new isolates of CMV were isolated from naturally infected Hippeastrum hybridum, Dahlia pinnata, Hemerocallis fulva, Acorus calamus and Typhonium trilobatum plants, all exhibiting severe leaf mosaic symptoms. For molecular identification and sequence analyses, the complete coat protein (CP) gene of these isolates was amplified by RT-PCR. The resulting amplicons were cloned and sequenced and isolates were designated as HH (KP698590), DP (JF682239), HF (KP698589), AC (KP698588) and TT (JX570732). For study of genetic diversity among these isolates, the sequence data were analysed by BLASTn, multiple alignment and generating phylogenetic trees along with the respective sequences of other CMV isolates available in GenBank Database were done. The isolates under study showed 82-99% sequence diversity among them at nucleotide and amino acid levels; however they showed close relationships with CMV isolates of subgroup IB. In alignment analysis of amino acid sequences of HH and AC isolates, we have found fifteen and twelve unique substitutions, compared to HF, DP and TT isolates, suggesting the cause of high genetic diversity. PMID:26666188

  15. Genetic diversity comparison of the DQA gene in European rabbit (Oryctolagus cuniculus) populations.

    PubMed

    Magalhães, Vanessa; Abrantes, Joana; Munõz-Pajares, Antonio Jesús; Esteves, Pedro J

    2015-10-01

    The European rabbit (Oryctolagus cuniculus) natural populations within the species native region, the Iberian Peninsula, are considered a reservoir of genetic diversity. Indeed, the Iberia was a Pleistocene refuge to the species and currently two subspecies are found in the peninsula (Oryctolagus cuniculus cuniculus and Oryctolagus cuniculus algirus). The genes of the major histocompatibility complex (MHC) have been substantially studied in wild populations due to their exceptional variability, believed to be pathogen driven. They play an important function as part of the adaptive immune system affecting the individual fitness and population viability. In this study, the MHC variability was assessed by analysing the exon 2 of the DQA gene in several European rabbit populations from Portugal, Spain and France and in domestic breeds. Twenty-eight DQA alleles were detected, among which 18 are described for the first time. The Iberian rabbit populations are well differentiated from the French population and domestic breeds. The Iberian populations retained the higher allelic diversity with the domestic breeds harbouring the lowest; in contrast, the DQA nucleotide diversity was higher in the French population. Signatures of positive selection were detected in four codons which are putative peptide-binding sites and have been previously detected in other mammals. The evolutionary relationships showed instances of trans-species polymorphism. Overall, our results suggest that the DQA in European rabbits is evolving under selection and genetic drift. PMID:26307416

  16. Characterization and genetic diversity of pepper (Capsicum spp) parents and interspecific hybrids.

    PubMed

    Costa, M P S D; do Rêgo, M M; da Silva, A P G; do Rêgo, E R; Barroso, P A

    2016-01-01

    Pepper species exhibit broad genetic diversity, which enables their use in breeding programs. The objective of this study was to characterize the diversity between the parents of different species and their interspecific hybrids using morphological and molecular markers. The parents of Capsicum annuum (UFPB-01 and -137), C. baccatum (UFPB-72), and C. chinense (UFPB-128) and their interspecific hybrids (01x128, 72x128, and 137x128) were used for morphological and molecular characterization. Fruit length and seed yield per fruit (SYF) traits showed the highest variability, and three groups were formed based on these data. CVg/CVe ratio values (>1.0) were calculated for leaf length (1.67) and SYF (5.34). The trait that most contributed to divergence was the largest fruit diameter (26.42%), and the trait that least contributed was pericarp thickness (0.33%), which was subject to being discarded. The 17 primers produced 58 polymorphic bands that enabled the estimation of genetic diversity between parents and hybrids, and these results confirmed the results of the morphological data analyses. The principal component analysis results also corroborated the morphological and random-amplified polymorphic DNA data, and three groups that contained the same individuals were identified. These results confirmed reports in the literature regarding the phylogenetic relationships of the species used as parents, which demonstrated that C. annuum was closer to C. chinense as compared to C. baccatum. PMID:27173311

  17. Genetic Diversity and Geographical Distribution of Indigenous Soybean-Nodulating Bradyrhizobia in the United States

    PubMed Central

    Shiro, Sokichi; Matsuura, Syota; Saiki, Rina; Sigua, Gilbert C.; Yamamoto, Akihiro; Umehara, Yosuke; Hayashi, Masaki

    2013-01-01

    We investigated the relationship between the genetic diversity of indigenous soybean-nodulating bradyrhizobia and their geographical distribution in the United States using nine soil isolates from eight states. The bradyrhizobia were inoculated on three soybean Rj genotypes (non-Rj, Rj2Rj3, and Rj4). We analyzed their genetic diversity and community structure by means of restriction fragment length polymorphisms of PCR amplicons to target the 16S-23S rRNA gene internal transcribed spacer region, using 11 USDA Bradyrhizobium strains as reference strains. We also performed diversity analysis, multidimensional scaling analysis based on the Bray-Curtis index, and polar ordination analysis to describe the structure and geographical distribution of the soybean-nodulating bradyrhizobial community. The major clusters were Bradyrhizobium japonicum Bj123, in the northern United States, and Bradyrhizobium elkanii, in the middle to southern regions. Dominance of bradyrhizobia in a community was generally larger for the cluster belonging to B. elkanii than for the cluster belonging to B. japonicum. The indigenous American soybean-nodulating bradyrhizobial community structure was strongly correlated with latitude. Our results suggest that this community varies geographically. PMID:23563944

  18. Antimicrobial resistance and genetic diversity of Escherichia coli isolated from humans and foods

    PubMed Central

    Melo, Daniela Benevides; Menezes, Ana Paula de Oliveira; Reis, Joice Neves; Guimarães, Alaíse Gil

    2015-01-01

    Antibiotic resistance has increased in recent years, raising the concern of public health authorities. We conducted a study of Escherichia coli isolates obtained from human and food samples to assess the prevalence of antimicrobial resistance and to determine the genotype and clonal relationship of 84 E. coli isolates (48 from humans and 36 from foods). An antimicrobial susceptibility test was performed using the disk diffusion method. Virulence factors were evaluated by multiplex PCR, and the clonal relationship among the resistant isolates was studied by Pulsed Field Gel Electrophoresis (PFGE). All isolates were susceptible to ceftriaxone. Overall, 26%, 20.2%, 15.4% and 6% of the isolates were resistant to tetracycline, ampicillin, sulfamethoxazole/trimethoprim and cephalotin, respectively. Twenty two percent of the isolates exhibited resistance to more than one antimicrobial agent. Multiple-drug resistance was mostly observed in the human isolates and involved the antibiotics ampicillin and tetracycline. None of the six virulence genes were identified among the isolates. Analysis of genetic diversity by PFGE of 31 resistant isolates, revealed 29 distinct restriction patterns. In conclusion, E. coli from humans and foods are resistant to commonly used antibiotics and are highly genetically diverse. In this setting, inappropriate use of antibiotics may be a cause of high resistance rate instead of clonal spread. PMID:26691477

  19. Genetic diversity analysis of mitochondrial DNA control region in artificially propagated Chinese sucker Myxocyprinus asiaticus.

    PubMed

    Wan, Yuan; Zhou, Chun-Hua; Ouyang, Shan; Huang, Xiao-Chen; Zhan, Yang; Zhou, Ping; Rong, Jun; Wu, Xiao-Ping

    2015-08-01

    The genetic diversity of the three major artificially propagated populations of Chinese sucker, an endangered freshwater fish species, was investigated using the sequences of mitochondrial DNA (mtDNA) control regions. Among the 89 individuals tested, 66 variable sites (7.26%) and 10 haplotypes were detected (Haplotype diversity Hd = 0.805, Nucleotide diversity π = 0.0287). In general, genetic diversity was lower in artificially propagated populations than in wild populations. This reduction in genetic diversity may be due to population bottlenecks, genetic drift and human selection. A stepping-stone pattern of gene flow was detected in the populations studied, showing much higher gene flow between neighbouring populations. To increase the genetic diversity, wild lineages should be introduced, and more lineages should be shared among artificially propagated populations. PMID:24409897

  20. Genetic relationships of ethnic minorities in Southwest China revealed by microsatellite markers.

    PubMed

    Lin, Hongbin; Fan, Hao; Zhang, Feng; Huang, Xiaoqin; Lin, Keqin; Shi, Lei; Hu, Songnian; Chu, Jiayou; Wang, Duen-Mei

    2010-01-01

    Population migrations in Southwest and South China have played an important role in the formation of East Asian populations and led to a high degree of cultural diversity among ethnic minorities living in these areas. To explore the genetic relationships of these ethnic minorities, we systematically surveyed the variation of 10 autosomal STR markers of 1,538 individuals from 30 populations of 25 ethnic minorities, of which the majority were chosen from Southwest China, especially Yunnan Province. With genotyped data of the markers, we constructed phylogenies of these populations with both D(A) and D(C) measures and performed a principal component analysis, as well as a clustering analysis by structure. Results showed that we successfully recovered the genetic structure of analyzed populations formed by historical migrations. Aggregation patterns of these populations accord well with their linguistic affiliations, suggesting that deciphering of genetic relationships does in fact offer clues for study of ethnic differentiation. PMID:20360948

  1. How Much Diversity Is Enough? The Curvilinear Relationship between College Diversity Interactions and First-Year Student Outcomes

    ERIC Educational Resources Information Center

    Bowman, Nicholas A.

    2013-01-01

    Recent legal challenges to race-conscious college admissions processes have called into question what constitutes a sufficient level of diversity on college campuses. Previous research on the educational benefits of diversity has examined the linear relationship between diversity interactions and student outcomes, but multiple theoretical…

  2. Low genetic diversity and strong but shallow population differentiation suggests genetic homogenization by metapopulation dynamics in a social spider.

    PubMed

    Settepani, V; Bechsgaard, J; Bilde, T

    2014-12-01

    Mating systems and population dynamics influence genetic diversity and structure. Species that experience inbreeding and limited gene flow are expected to evolve isolated, divergent genetic lineages. Metapopulation dynamics with frequent extinctions and colonizations may, on the other hand, deplete and homogenize genetic variation, if extinction rate is sufficiently high compared to the effect of drift in local demes. We investigated these theoretical predictions empirically in social spiders that are highly inbred. Social spiders show intranest mating, female-biased sex ratio, and frequent extinction and colonization events, factors that deplete genetic diversity within nests and populations and limit gene flow. We characterized population genetic structure in Stegodyphus sarasinorum, a social spider distributed across the Indian subcontinent. Species-wide genetic diversity was estimated over approximately 2800 km from Sri Lanka to Himalayas, by sequencing 16 protein-coding nuclear loci. We found 13 SNPs in 6592 bp (π = 0.00045) indicating low species-wide nucleotide diversity. Three genetic lineages were strongly differentiated; however, only one fixed difference among them suggests recent divergence. This is consistent with a scenario of metapopulation dynamics that homogenizes genetic diversity across the species' range. Ultimately, low standing genetic variation may hamper a species' ability to track environmental change and render social inbreeding spiders 'evolutionary dead-ends'. PMID:25348843

  3. Genetic diversity in the mitochondrial DNA D-loop region of global swine (Sus scrofa) populations.

    PubMed

    Zhang, Junxia; Jiao, Ting; Zhao, Shengguo

    2016-05-13

    Increased global use of highly productive commercial breeds has reduced genetic diversity in indigenous breeds. It is necessary to protect local porcine breeds. We therefore assessed the level of genetic diversity in global swine populations. In this study, the mitochondrial DNA D-loop region was examined in 1010 sequences from indigenous pigs and commercial swine as well as 3424 publicly available sequences We identified 334 haplotypes and 136 polymorphic sites. Genetic diversity was analyzed based on basic parameters, including haplotype diversity, nucleotide diversity and the average number of nucleotide differences, and also assessed by principal component analysis. A comparison of nucleotide diversity and the average number of nucleotide differences between indigenous breeds and commercial breeds showed that indigenous pigs had a lower level of diversity than commercial breeds. The principle component analysis result also showed the genetic diversity of the indigenous breeds was lower than that of commercial breeds. Collectively, our results reveal the Southeast Asian porcine population exhibited the higher nucleotide diversity, whereas Chinese population appeared consistently lower level in Asia. European, American and Oceanian pigs had a relatively higher degree of genetic diversity compared with that of Asian pigs. In conclusion, our findings indicated that the introgression of commercial into indigenous breeds decreased indigenous breeds' genetic diversity. PMID:27060545

  4. Parallel responses of species and genetic diversity to El Niño Southern Oscillation-induced environmental destruction.

    PubMed

    Cleary, Daniel F R; Fauvelot, Cécile; Genner, Martin J; Menken, Steph B J; Mooers, Arne Ø

    2006-03-01

    Species diversity within communities and genetic diversity within species are two fundamental levels of biodiversity. Positive relationships between species richness and within-species genetic diversity have recently been documented across natural and semi-natural habitat islands, leading Vellend to suggest a novel macro-ecological pattern termed the species-genetic diversity correlation. We tested whether this prediction holds for areas affected by recent habitat disturbance using butterfly communities in east Kalimantan, Indonesia. Here, we show that both strong spatial and temporal correlations exist between species and allelic richness across rainforest habitats affected by El Niño Southern Oscillation-induced disturbance. Coupled with evidence that changes in species richness are a direct result of local extirpation and lower recruitment, these data suggest that forces governing variation at the two levels operate over parallel and short timescales, with implications for biodiversity recovery following disturbance. Remnant communities may be doubly affected, with reductions in species richness being associated with reductions in genetic diversity within remnant species. PMID:16958896

  5. Genetic Diversity Revealed by Single Nucleotide Polymorphism Markers in a Worldwide Germplasm Collection of Durum Wheat

    PubMed Central

    Ren, Jing; Sun, Daokun; Chen, Liang; You, Frank M.; Wang, Jirui; Peng, Yunliang; Nevo, Eviatar; Sun, Dongfa; Luo, Ming-Cheng; Peng, Junhua

    2013-01-01

    Evaluation of genetic diversity and genetic structure in crops has important implications for plant breeding programs and the conservation of genetic resources. Newly developed single nucleotide polymorphism (SNP) markers are effective in detecting genetic diversity. In the present study, a worldwide durum wheat collection consisting of 150 accessions was used. Genetic diversity and genetic structure were investigated using 946 polymorphic SNP markers covering the whole genome of tetraploid wheat. Genetic structure was greatly impacted by multiple factors, such as environmental conditions, breeding methods reflected by release periods of varieties, and gene flows via human activities. A loss of genetic diversity was observed from landraces and old cultivars to the modern cultivars released during periods of the Early Green Revolution, but an increase in cultivars released during the Post Green Revolution. Furthermore, a comparative analysis of genetic diversity among the 10 mega ecogeographical regions indicated that South America, North America, and Europe possessed the richest genetic variability, while the Middle East showed moderate levels of genetic diversity. PMID:23538839

  6. Whole genome analysis of diverse Chlamydia trachomatis strains identifies phylogenetic relationships masked by current clinical typing

    PubMed Central

    Harris, Simon R.; Clarke, Ian N.; Seth-Smith, Helena M. B.; Solomon, Anthony W.; Cutcliffe, Lesley T.; Marsh, Peter; Skilton, Rachel J.; Holland, Martin J.; Mabey, David; Peeling, Rosanna W.; Lewis, David A.; Spratt, Brian G.; Unemo, Magnus; Persson, Kenneth; Bjartling, Carina; Brunham, Robert; de Vries, Henry J.C.; Morré, Servaas A.; Speksnijder, Arjen; Bébéar, Cécile M.; Clerc, Maïté; de Barbeyrac, Bertille; Parkhill, Julian; Thomson, Nicholas R.

    2012-01-01

    Chlamydia trachomatis is responsible for both trachoma and sexually transmitted infections causing substantial morbidity and economic cost globally. Despite this, our knowledge of its population and evolutionary genetics is limited. Here we present a detailed whole genome phylogeny from representative strains of both trachoma and lymphogranuloma venereum (LGV) biovars from temporally and geographically diverse sources. Our analysis demonstrates that predicting phylogenetic structure using the ompA gene, traditionally used to classify Chlamydia, is misleading because extensive recombination in this region masks true relationships. We show that in many instances ompA is a chimera that can be exchanged in part or whole, both within and between biovars. We also provide evidence for exchange of, and recombination within, the cryptic plasmid, another important diagnostic target. We have used our phylogenetic framework to show how genetic exchange has manifested itself in ocular, urogenital and LGV C. trachomatis strains, including the epidemic LGV serotype L2b. PMID:22406642

  7. Unexpected cryptic species diversity in the widespread coral Seriatopora hystrix masks spatial-genetic patterns of connectivity.

    PubMed

    Warner, Patricia A; van Oppen, Madeleine J H; Willis, Bette L

    2015-06-01

    Mounting evidence of cryptic species in a wide range of taxa highlights the need for careful analyses of population genetic data sets to unravel within-species diversity from potential interspecies relationships. Here, we use microsatellite loci and hierarchical clustering analysis to investigate cryptic diversity in sympatric and allopatric (separated by 450 km) populations of the widespread coral Seriatopora hystrix on the Great Barrier Reef. Structure analyses delimited unique genetic clusters that were confirmed by phylogenetic and extensive population-level analyses. Each of four sympatric yet distinct genetic clusters detected within S. hystrix demonstrated greater genetic cohesion across regional scales than between genetic clusters within regions (<10 km). Moreover, the magnitude of genetic differentiation between different clusters (>0.620 G"ST ) was similar to the difference between S. hystrix clusters and the congener S. caliendrum (mean G"ST 0.720). Multiple lines of evidence, including differences in habitat specificity, mitochondrial identity, Symbiodinium associations and morphology, corroborate the nuclear genetic evidence that these distinct clusters constitute different species. Hierarchical clustering analysis combined with more traditional population genetic methods provides a powerful approach for delimiting species and should be regularly applied to ensure that ecological and evolutionary patterns interpreted for single species are not confounded by the presence of cryptic species. PMID:25943487

  8. Mammalian phylogenetic diversity-area relationships at a continental scale

    PubMed Central

    Mazel, Florent; Renaud, Julien; Guilhaumon, François; Mouillot, David; Gravel, Dominique; Thuiller, Wilfried

    2015-01-01

    In analogy to the species-area relationship (SAR), one of the few laws in Ecology, the phylogenetic diversity-area relationship (PDAR) describes the tendency of phylogenetic diversity (PD) to increase with area. Although investigating PDAR has the potential to unravel the underlying processes shaping assemblages across spatial scales and to predict PD loss through habitat reduction, it has been little investigated so far. Focusing on PD has noticeable advantages compared to species richness (SR) since PD also gives insights on processes such as speciation/extinction, assembly rules and ecosystem functioning. Here we investigate the universality and pervasiveness of the PDAR at continental scale using terrestrial mammals as study case. We define the relative robustness of PD (compared to SR) to habitat loss as the area between the standardized PDAR and standardized SAR (i.e. standardized by the diversity of the largest spatial window) divided by the area under the standardized SAR only. This metric quantifies the relative increase of PD robustness compared to SR robustness. We show that PD robustness is higher than SR robustness but that it varies among continents. We further use a null model approach to disentangle the relative effect of phylogenetic tree shape and non random spatial distribution of evolutionary history on the PDAR. We find that for most spatial scales and for all continents except Eurasia, PDARs are not different from expected by a model using only the observed SAR and the shape of the phylogenetic tree at continental scale. Interestingly, we detect a strong phylogenetic structure of the Eurasian PDAR that can be predicted by a model that specifically account for a finer biogeographical delineation of this continent. In conclusion, the relative robustness of PD to habitat loss compared to species richness is determined by the phylogenetic tree shape but also depends on the spatial structure of PD. PMID:26649401

  9. Mammalian phylogenetic diversity-area relationships at a continental scale.

    PubMed

    Mazel, Florent; Renaud, Julien; Guilhaumon, François; Mouillot, David; Gravel, Dominique; Thuiller, Wilfried

    2015-10-01

    In analogy to the species-area relationship (SAR), one of the few laws in ecology, the phylogenetic diversity-area relationship (PDAR) describes the tendency of phylogenetic diversity (PD) to increase with area. Although investigating PDAR has the potential to unravel the underlying processes shaping assemblages across spatial scales and to predict PD loss through habitat reduction, it has been little investigated so far. Focusing on PD has noticeable advantages compared to species richness (SR), since PD also gives insights on processes such as speciation/extinction, assembly rules and ecosystem functioning. Here we investigate the universality and pervasiveness of the PDAR at continental scale using terrestrial mammals as study case. We define the relative robustness of PD (compared to SR) to habitat loss as the area between the standardized PDAR and standardized SAR (i.e., standardized by the diversity of the largest spatial window) divided by the area under the standardized SAR only. This metric quantifies the relative increase of PD robustness compared to SR robustness. We show that PD robustness is higher than SR robustness but that it varies among continents. We further use a null model approach to disentangle the relative effect of phylogenetic tree shape and nonrandom spatial distribution of evolutionary history on the PDAR. We find that, for most spatial scales and for all continents except Eurasia, PDARs are not different from expected by a model using only the observed SAR and the shape of the phylogenetic tree at continental scale. Interestingly, we detect a strong phylogenetic structure of the Eurasian PDAR that can be predicted by a model that specifically account for a finer biogeographical delineation of this continent. In conclusion, the relative robustness of PD to habitat loss compared to species richness is determined by the phylogenetic tree shape but also depends on the spatial structure of PD. PMID:26649401

  10. Assessment of Genetic Diversity of Bermudagrass (Cynodon dactylon) Using ISSR Markers

    PubMed Central

    Farsani, Tayebeh Mohammadi; Etemadi, Nematollah; Sayed-Tabatabaei, Badraldin Ebrahim; Talebi, Majid

    2012-01-01

    Bermudagrass (Cynodon spp.) is a major turfgrass for home lawns, public parks, golf courses and sport fields and is known to have originated in the Middle East. Morphological and physiological characteristics are not sufficient to differentiate some bermudagrass genotypes because the differences between them are often subtle and subjected to environmental influences. In this study, twenty seven bermudagrass accessions and introductions, mostly from different parts of Iran, were assayed by inter-simple sequence repeat (ISSR) markers to differentiate and explore their genetic relationships. Fourteen ISSR primers amplified 389 fragments of which 313 (80.5%) were polymorphic. The average polymorphism information content (PIC) was 0.328, which shows that the majority of primers are informative. Cluster analysis using the un-weighted paired group method with arithmetic average (UPGMA) method and Jaccard’s similarity coefficient (r = 0.828) grouped the accessions into six main clusters according to some degree to geographical origin, their chromosome number and some morphological characteristics. It can be concluded that there exists a wide genetic base of bermudograss in Iran and that ISSR markers are effective in determining genetic diversity and relationships among them. PMID:22312259

  11. Noninvasive genetics provides insights into the population size and genetic diversity of an Amur tiger population in China.

    PubMed

    Wang, Dan; Hu, Yibo; Ma, Tianxiao; Nie, Yonggang; Xie, Yan; Wei, Fuwen

    2016-01-01

    Understanding population size and genetic diversity is critical for effective conservation of endangered species. The Amur tiger (Panthera tigris altaica) is the largest felid and a flagship species for wildlife conservation. Due to habitat loss and human activities, available habitat and population size are continuously shrinking. However, little is known about the true population size and genetic diversity of wild tiger populations in China. In this study, we collected 55 fecal samples and 1 hair sample to investigate the population size and genetic diversity of wild Amur tigers in Hunchun National Nature Reserve, Jilin Province, China. From the samples, we determined that 23 fecal samples and 1 hair sample were from 7 Amur tigers: 2 males, 4 females and 1 individual of unknown sex. Interestingly, 2 fecal samples that were presumed to be from tigers were from Amur leopards, highlighting the significant advantages of noninvasive genetics over traditional methods in studying rare and elusive animals. Analyses from this sample suggested that the genetic diversity of wild Amur tigers is much lower than that of Bengal tigers, consistent with previous findings. Furthermore, the genetic diversity of this Hunchun population in China was lower than that of the adjoining subpopulation in southwest Primorye Russia, likely due to sampling bias. Considering the small population size and relatively low genetic diversity, it is urgent to protect this endangered local subpopulation in China. PMID:26663614

  12. Genetic Diversity of Oilseed Rape Fields and Feral Populations in the Context of Coexistence with GM Crops.

    PubMed

    Bailleul, Diane; Ollier, Sébastien; Lecomte, Jane

    2016-01-01

    Despite growing concern about transgenes escaping from fields, few studies have analysed the genetic diversity of crops in an agroecosystem over several years. Accurate information about the dynamics and relationship of the genetic diversity of crops in an agroecosystem is essential for risk assessment and policies concerning the containment of genetically modified crops and their coexistence with crops grown by conventional practices. Here, we analysed the genetic diversity of oilseed rape plants from fields and feral populations over 4 years in an agricultural landscape of 41 km2. We used exact compatibility and maximum likelihood assignment methods to assign these plants to cultivars. Even pure lines and hybrid cultivar seed lots contained several genotypes. The cultivar diversity in fields reflected the conventional view of agroecosystems quite well: that is, there was a succession of cultivars, some grown for longer than others because of their good performance, some used for one year and then abandoned, and others gradually adopted. Three types of field emerged: fields sown with a single cultivar, fields sown with two cultivars, and unassigned fields (too many cultivars or unassigned plants to reliably assign the field). Field plant diversity was higher than expected, indicating the persistence of cultivars that were grown for only one year. The cultivar composition of feral populations was similar to that of field plants, with an increasing number of cultivars each year. By using genetic tools, we found a link between the cultivars of field plants in a particular year and the cultivars of feral population plants in the following year. Feral populations on road verges were more diverse than those on path verges. All of these findings are discussed in terms of their consequences in the context of coexistence with genetically modified crops. PMID:27359342

  13. Genetic Diversity of Oilseed Rape Fields and Feral Populations in the Context of Coexistence with GM Crops

    PubMed Central

    Bailleul, Diane; Ollier, Sébastien; Lecomte, Jane

    2016-01-01

    Despite growing concern about transgenes escaping from fields, few studies have analysed the genetic diversity of crops in an agroecosystem over several years. Accurate information about the dynamics and relationship of the genetic diversity of crops in an agroecosystem is essential for risk assessment and policies concerning the containment of genetically modified crops and their coexistence with crops grown by conventional practices. Here, we analysed the genetic diversity of oilseed rape plants from fields and feral populations over 4 years in an agricultural landscape of 41 km2. We used exact compatibility and maximum likelihood assignment methods to assign these plants to cultivars. Even pure lines and hybrid cultivar seed lots contained several genotypes. The cultivar diversity in fields reflected the conventional view of agroecosystems quite well: that is, there was a succession of cultivars, some grown for longer than others because of their good performance, some used for one year and then abandoned, and others gradually adopted. Three types of field emerged: fields sown with a single cultivar, fields sown with two cultivars, and unassigned fields (too many cultivars or unassigned plants to reliably assign the field). Field plant diversity was higher than expected, indicating the persistence of cultivars that were grown for only one year. The cultivar composition of feral populations was similar to that of field plants, with an increasing number of cultivars each year. By using genetic tools, we found a link between the cultivars of field plants in a particular year and the cultivars of feral population plants in the following year. Feral populations on road verges were more diverse than those on path verges. All of these findings are discussed in terms of their consequences in the context of coexistence with genetically modified crops. PMID:27359342

  14. Genetic relationships among four minorities in Guangxi revealed by analysis of 15 STRs.

    PubMed

    Deng, Qiongying; Xu, Lin; Gong, Jichun; Zhou, Lining; Li, Songfeng; Deng, Xiangfa; Luo, Guorong; Xie, Xiaoxun

    2007-12-01

    The aim of this study is to investigate the genetic diversity in 15 STRs (short tandem repeats) loci of four minorities in Guangxi Province and to probe into the genetic variation and relationships among these ethnic groups. Allele frequencies of 15 STR loci were collected from 766 unrelated Mulao, Maonan, Miao, and Yao ethnic individuals by PCR-STR and sequencing, and their allele-frequency distribution were compared with each other. The genetic parameters and genetic distances were calculated, and the phylogenetic tree was constructed. Based on the results from this study, 135, 134, 148, and 145 alleles and 424, 432, 445, and 436 genotypes for 15 STR loci were observed in the Mulao, Maonan, Miao, and Yao minorities, respectively. The average heterozygosity of all ethnic groups analyzed was above 0.7; the cumulative power of discrimination (DP), the probabilities of paternity exclusion (EPP), and the polymorphic information content (PIC) were greater than 0.99999. Comparison of the allele-frequency distribution indicated that there were significant differences at most loci between Maonan vs. Miao, Yao vs. other groups, but no distinct differences between Mulao vs. Maonan, and Mulao vs. Miao minorities. The NJ tree based on the genetic distance showed that the four minorities were separated into two groups. Mulao and Maonan were clustered into one group, whereas Miao and Yao into the other. Our results revealed that 15 STR loci of the four minorities possessed high genetic diversities. Therefore, the combination of these 15 STRs is a powerful tool for forensic individual identification and paternity investigation, as well as anthropologic and genetic researches. The genetic variation and relationships among the 4 populations revealed by 15 STRs are basically consistent with their linguistic culture and ethical history. PMID:18155619

  15. Genetic Diversity in a Collection of Chinese Sorghum Landraces Assessed by Microsattelites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic diversity was characterized in a collection of 171 sorghum landraces originally gathered from the colder region (primarily the northwestern provinces) of China. Genetic diversity was analyzed using 41 microsattelite or simple sequence repeat (SSR) markers distributed throughout the 10 chromo...

  16. Cryptosporidium within-host genetic diversity: systematic bibliographical search and narrative overview.

    PubMed

    Grinberg, Alex; Widmer, Giovanni

    2016-07-01

    Knowledge of the within-host genetic diversity of a pathogen often has broad implications for disease management. Cryptosporidium protozoan parasites are among the most common causative agents of infectious diarrhoea. Current limitations of in vitro culture impose the use of uncultured isolates obtained directly from the hosts as operational units of Cryptosporidium genotyping. The validity of this practice is centred on the assumption of genetic homogeneity of the parasite within the host, and genetic studies often take little account of the within-host genetic diversity of Cryptosporidium. Yet, theory and experimental evidence contemplate genetic diversity of Cryptosporidium at the within-host scale, but this diversity is not easily identified by genotyping methods ill-suited for the resolution of DNA mixtures. We performed a systematic bibliographical search of the occurrence of within-host genetic diversity of Cryptosporidium parasites in epidemiological samples, between 2005 and 2015. Our results indicate that genetic diversity at the within-host scale, in the form of mixed species or intra-species diversity, has been identified in a large number (n=55) of epidemiological surveys of cryptosporidiosis in variable proportions, but has often been treated as a secondary finding and not analysed. As in malaria, there are indications that the scale of this diversity varies between geographical regions, perhaps depending on the prevailing transmission pathways. These results provide a significant knowledge base from which to draw alternative population genetic structure models, some of which are discussed in this paper. PMID:27021167

  17. Preliminary assessment of genetic diversity of Italian honey bees in the USA and Italy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Declining numbers of breeder queens and the concomitant loss of genetic diversity potentially could result in inbreeding and increased susceptibility to pests and disease in honey bees. Genetic diversity of commercial Italian bee colonies in the United States and Italy was assessed using microsatell...

  18. Impact of marker ascertainment bias on genomic selection accuracy and estimates of genetic diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome-wide molecular markers are readily being applied to evaluate genetic diversity in germplasm collections and for making genomic selections in breeding programs. To accurately predict phenotypes and assay genetic diversity, molecular markers should assay a representative sample of the polymorp...

  19. Genetic diversity of siderophore-producing bacteria of tobacco rhizosphere

    PubMed Central

    Tian, Fang; Ding, Yanqin; Zhu, Hui; Yao, Liangtong; Du, Binghai

    2009-01-01

    The genetic diversity of siderophore-producing bacteria of tobacco rhizosphere was studied by amplified ribosomal DNA restriction analysis (ARDRA), 16S rRNA sequence homology and phylogenetics analysis methods. Studies demonstrated that 85% of the total 354 isolates produced siderophores in iron limited liquid medium. A total of 28 ARDRA patterns were identified among the 299 siderophore-producing bacterial isolates. The 28 ARDRA patterns represented bacteria of 14 different genera belonging to six bacterial divisions, namely β-, γ-, α-Proteobacteria, Sphingobacteria, Bacilli, and Actinobacteria. Especially, γ-Proteobacteria consisting of Pseudomonas, Enterobacter, Serratia, Pantoea, Erwinia and Stenotrophomonas genus encountered 18 different ARDRA groups. Results also showed a greater siderophore-producing bacterial diversity than previous researches. For example, Sphingobacterium (isolates G-2-21-1 and G-2-27-2), Pseudomonas poae (isolate G-2-1-1), Enterobacter endosymbiont (isolates G-2-10-2 and N-5-10), Delftia acidovorans (isolate G-1-15), and Achromobacter xylosoxidans (isolates N-46-11HH and N-5-20) were reported to be able to produce siderophores under low-iron conditions for the first time. Gram-negative isolates were more frequently encountered, with more than 95% total frequency. For Gram-positive bacteria, the Bacillus and Rhodococcus were the only two genera, with 1.7% total frequency. Furthermore, the Pseudomonas and Enterobacter were dominant in this environment, with 44.5% and 24.7% total frequency, respectively. It was also found that 75 percent of the isolates that had the high percentages of siderophore units (% between 40 and 60) belonged to Pseudomonas. Pseudomonas sp. G-229-21 screened out in this study may have potential to apply to low-iron soil to prevent plant soil-borne fungal pathogen diseases. PMID:24031358

  20. Genetic Diversity Among Botulinum Neurotoxin Producing Clostridial Strains

    SciTech Connect

    Hill, K K; Smith, T J; Helma, C H; Ticknor, L O; Foley, B T; Svennson, R T; Brown, J L; Johnson, E A; Smith, L A; Okinaka, R T; Jackson, P J; Marks, J D

    2006-07-06

    Clostridium botulinum is a taxonomic designation for many diverse anaerobic spore forming rod-shaped bacteria which have the common property of producing botulinum neurotoxins (BoNTs). The BoNTs are exoneurotoxins that can cause severe paralysis and even death in humans and various other animal species. A collection of 174 C. botulinum strains were examined by amplified fragment length polymorphism (AFLP) analysis and by sequencing of the 16S rRNA gene and BoNT genes to examine genetic diversity within this species. This collection contained representatives of each of the seven different serotypes of botulinum neurotoxins (BoNT A-G). Analysis of the16S rRNA sequences confirmed earlier reports of at least four distinct genomic backgrounds (Groups I-IV) each of which has independently acquired one or more BoNT serotypes through horizontal gene transfer. AFLP analysis provided higher resolution, and can be used to further subdivide the four groups into sub-groups. Sequencing of the BoNT genes from serotypes A, B and E in multiple strains confirmed significant sequence variation within each serotype. Four distinct lineages within each of the BoNT A and B serotypes, and five distinct lineages of serotype E strains were identified. The nucleotide sequences of the seven serotypes of BoNT were compared and show varying degrees of interrelatedness and recombination as has been previously noted for the NTNH gene which is linked to BoNT. These analyses contribute to the understanding of the evolution and phylogeny within this species and assist in the development of improved diagnostics and therapeutics for treatment of botulism.

  1. Genetic Diversity as Consequence of a Microaerobic and Neutrophilic Lifestyle

    PubMed Central

    Krüger, Nora-Johanna; Knüver, Marie-Theres; Zawilak-Pawlik, Anna; Appel, Bernd; Stingl, Kerstin

    2016-01-01

    As a neutrophilic bacterium, Helicobacter pylori is growth deficient under extreme acidic conditions. The gastric pathogen is equipped with an acid survival kit, regulating urease activity by a pH-gated urea channel, opening below pH 6.5. After overcoming acid stress, the bacterium’s multiplication site is situated at the gastric mucosa with near neutral pH. The pathogen exhibits exceptional genetic variability, mainly due to its capability of natural transformation, termed competence. Using single cell analysis, we show here that competence is highly regulated in H. pylori. DNA uptake complex activity was reversibly shut down below pH 6.5. pH values above 6.5 opened a competence window, in which competence development was triggered by the combination of pH increase and oxidative stress. In contrast, addition of sublethal concentrations of the DNA-damaging agents ciprofloxacin or mitomycin C did not trigger competence development under our conditions. An oxygen-sensitive mutant lacking superoxide dismutase (sodB) displayed a higher competent fraction of cells than the wild type under comparable conditions. In addition, the sodB mutant was dependent on adenine for growth in broth and turned into non-cultivable coccoid forms in its absence, indicating that adenine had radical quenching capacity. Quantification of periplasmically located DNA in competent wild type cells revealed outstanding median imported DNA amounts of around 350 kb per cell within 10 min of import, with maximally a chromosomal equivalent (1.6 Mb) in individual cells, far exceeding previous amounts detected in other Gram-negative bacteria. We conclude that the pathogen’s high genetic diversity is a consequence of its enormous DNA uptake capacity, triggered by intrinsic and extrinsic oxidative stress once a neutral pH at the site of chronic host colonization allows competence development. PMID:27166672

  2. Estimating microsatellite based genetic diversity in Rhode Island Red chicken.

    PubMed

    Das, A K; Kumar, S; Rahim, A

    2015-01-01

    This study aimed to estimate microsatellite based genetic diversity in two lines (the selected RIR(S) and control line RIR(C)) of Rhode Island Red (RIR) chicken. Genomic DNA of 24 randomly selected birds maintained at Central Avian Research Institute (India) and 24 microsatellite markers were used. Microsatellite alleles were determined on 6% urea-PAGE, recorded using GelDoc system and the samples were genotyped. Nei's heterozygosity and Botstein's polymorphic information content (PIC) at each microsatellite locus were estimated. Wright's fixation indices and gene flow were estimated using POPGENE software. All the microsatellite loci were polymorphic and the estimated PIC ranged from 0.3648 (MCW0059) to 0.7819 (ADL0267) in RIR(S) and from 0.2392 (MCW0059) to 0.8620 (ADL0136) in RIR(C). Most of the loci were highly informative (PIC>0.50) in the both lines, except for five loci in RIR(S) and six loci in RIR(C) line. Nei's heterozygosity per locus ranged from 0.4800 (MCW0059) to 0.8056 (ADL0267) in RIR(S) and from 0.2778 (MCW0059) to 0.875 (ADL0136) in RIR(C). Out of 24 loci, 15 (62.5%) in RIR(S) and 14 loci (58.33%) in RIR(C) revealed moderate to high negative FIS index indicating heterozygote excess for these loci in corresponding lines, but the rest revealed positive FIS indicating heterozygosity deficiency. A mean FIS across the both lines indicated overall 10.77% heterozygosity deficit and a mean FIT indicated 17.19% inbreeding co-efficient favoring homozygosity over the two lines. The mean FST indicated that 10.18% of the microsatellite variation between the two lines was due to their genetic difference. PMID:27175188

  3. Exploring Genetic Diversity in Plants Using High-Throughput Sequencing Techniques.

    PubMed

    Onda, Yoshihiko; Mochida, Keiichi

    2016-08-01

    Food security has emerged as an urgent concern because of the rising world population. To meet the food demands of the near future, it is required to improve the productivity of various crops, not just of staple food crops. The genetic diversity among plant populations in a given species allows the plants to adapt to various environmental conditions. Such diversity could therefore yield valuable traits that could overcome the food-security challenges. To explore genetic diversity comprehensively and to rapidly identify useful genes and/or allele, advanced high-throughput sequencing techniques, also called next-generation sequencing (NGS) technologies, have been developed. These provide practical solutions to the challenges in crop genomics. Here, we review various sources of genetic diversity in plants, newly developed genetic diversity-mining tools synergized with NGS techniques, and related genetic approaches such as quantitative trait locus analysis and genome-wide association study. PMID:27499684

  4. New thoughts on an old riddle: What determines genetic diversity within and between species?

    PubMed

    Huang, Shi

    2016-07-01

    The question of what determines genetic diversity has long remained unsolved by the modern evolutionary theory (MET). However, it has not deterred researchers from producing interpretations of genetic diversity by using MET. We examine the two observations of genetic diversity made in the 1960s that contributed to the development of MET. The interpretations of these observations by MET are widely known to be inadequate. We review the recent progress of an alternative framework, the maximum genetic diversity (MGD) hypothesis, that uses axioms and natural selection to explain the vast majority of genetic diversity as being at equilibrium that is largely determined by organismal complexity. The MGD hypothesis absorbs the proven virtues of MET and considers its assumptions relevant only to a much more limited scope. This new synthesis has accounted for the overlooked phenomenon of progression towards higher complexity, and more importantly, been instrumental in directing productive research. PMID:26835965

  5. Assessment of genetic diversity by simple sequence repeat markers among forty elite varieties in the germplasm for malting barley breeding*

    PubMed Central

    Wang, Jun-mei; Yang, Jian-ming; Zhu, Jing-huan; Jia, Qiao-jun; Tao, Yue-zhi

    2010-01-01

    The genetic diversity and relationship among 40 elite barley varieties were analyzed based on simple sequence repeat (SSR) genotyping data. The amplified fragments from SSR primers were highly polymorphic in the barley accessions investigated. A total of 85 alleles were detected at 35 SSR loci, and allelic variations existed at 29 SSR loci. The allele number per locus ranged from 1 to 5 with an average of 2.4 alleles per locus detected from the 40 barley accessions. A cluster analysis based on the genetic similarity coefficients was conducted and the 40 varieties were classified into two groups. Seven malting barley varieties from China fell into the same subgroup. It was found that the genetic diversity within the Chinese malting barley varieties was narrower than that in other barley germplasm sources, suggesting the importance and feasibility of introducing elite genotypes from different origins for malting barley breeding in China. PMID:20872987

  6. Multifaceted diversity-area relationships reveal global hotspots of mammalian species, trait and lineage diversity

    PubMed Central

    Mazel, Florent; Guilhaumon, François; Mouquet, Nicolas; Devictor, Vincent; Gravel, Dominique; Renaud, Julien; Cianciaruso, Marcus Vinicius; Loyola, Rafael Dias; Diniz-Filho, José Alexandre Felizola; Mouillot, David; Thuiller, Wilfried

    2014-01-01

    Aim To define biome-scale hotspots of phylogenetic and functional mammalian biodiversity (PD and FD, respectively) and compare them to ‘classical’ hotspots based on species richness (SR) only. Location Global Methods SR, PD & FD were computed for 782 terrestrial ecoregions using distribution ranges of 4616 mammalian species. We used a set of comprehensive diversity indices unified by a recent framework that incorporates the species relative coverage in each ecoregion. We build large-scale multifaceted diversity-area relationships to rank ecoregions according to their levels of biodiversity while accounting for the effect of area on each diversity facet. Finally we defined hotspots as the top-ranked ecoregions. Results While ignoring species relative coverage led to a relative good congruence between biome top ranked SR, PD and FD hotspots, ecoregions harboring a rich and abundantly represented evolutionary history and functional diversity did not match with top ranked ecoregions defined by species richness. More importantly PD and FD hotspots showed important spatial mismatches. We also found that FD and PD generally reached their maximum values faster than species richness as a function of area. Main conclusions The fact that PD/FD reach faster their maximal value than SR may suggest that the two former facets might be less vulnerable to habitat loss than the latter. While this point is expected, it is the first time that it is quantified at global scale and should have important consequences in conservation. Incorporating species relative coverage into the delineation of multifaceted hotspots of diversity lead to weak congruence between SR, PD and FD hotspots. This means that maximizing species number may fail at preserving those nodes (in the phylogenetic or functional tree) that are relatively abundant in the ecoregion. As a consequence it may be of prime importance to adopt a multifaceted biodiversity perspective to inform conservation strategies at global

  7. Genetic diversity for grain nutrients in wild emmer wheat: potential for wheat improvement

    PubMed Central

    Chatzav, Merav; Peleg, Zvi; Ozturk, Levent; Yazici, Atilla; Fahima, Tzion; Cakmak, Ismail; Saranga, Yehoshua

    2010-01-01

    Background and Aims Micronutrient malnutrition, particularly zinc and iron deficiency, afflicts over three billion people worldwide due to low dietary intake. In the current study, wild emmer wheat (Triticum turgidum ssp. dicoccoides), the progenitor of domesticated wheat, was tested for (1) genetic diversity in grain nutrient concentrations, (2) associations among grain nutrients and their relationships with plant productivity, and (3) the association of grain nutrients with the eco-geographical origin of wild emmer accessions. Methods A total of 154 genotypes, including wild emmer accessions from across the Near Eastern Fertile Crescent and diverse wheat cultivars, were characterized in this 2-year field study for grain protein, micronutrient (zinc, iron, copper and manganese) and macronutrient (calcium, magnesium, potassium, phosphorus and sulphur) concentrations. Key Results Wide genetic diversity was found among the wild emmer accessions for all grain nutrients. The concentrations of grain zinc, iron and protein in wild accessions were about two-fold greater than in the domesticated genotypes. Concentrations of these compounds were positively correlated with one another, with no clear association with plant productivity, suggesting that all three nutrients can be improved concurrently with no yield penalty. A subset of 12 populations revealed significant genetic variation between and within populations for all minerals. Association between soil characteristics at the site of collection and grain nutrient concentrations showed negative associations between soil clay content and grain protein and between soil-extractable zinc and grain zinc, the latter suggesting that the greatest potential for grain nutrient minerals lies in populations from micronutrient-deficient soils. Conclusions Wild emmer wheat germplasm offers unique opportunities to exploit favourable alleles for grain nutrient properties that were excluded from the domesticated wheat gene pool. PMID

  8. Landscape models for nuclear genetic diversity and genetic structure in white-footed mice (Peromyscus leucopus)

    PubMed Central

    Taylor, Z S; Hoffman, S M G

    2014-01-01

    Dramatic changes in the North American landscape over the last 12 000 years have shaped the genomes of the small mammals, such as the white-footed mouse (Peromyscus leucopus), which currently inhabit the region. However, very recent interactions of populations with each other and the environment are expected to leave the most pronounced signature on rapidly evolving nuclear microsatellite loci. We analyzed landscape characteristics and microsatellite markers of P. leucopus populations along a transect from southern Ohio to northern Michigan, in order to evaluate hypotheses about the spatial distribution of genetic heterogeneity. Genetic diversity increased to the north and was best approximated by a single-variable model based on habitat availability within a 0.5-km radius of trapping sites. Interpopulation differentiation measured by clustering analysis was highly variable and not significantly related to latitude or habitat availability. Interpopulation differentiation measured as FST values and chord distance was correlated with the proportion of habitat intervening, but was best explained by agricultural distance and by latitude. The observed gradients in diversity and interpopulation differentiation were consistent with recent habitat availability being the major constraint on effective population size in this system, and contradicted the predictions of both the postglacial expansion and core-periphery hypotheses. PMID:24448564

  9. Genetic diversity of bovine Neospora caninum determined by microsatellite markers.

    PubMed

    Salehi, N; Gottstein, B; Haddadzadeh, H R

    2015-10-01

    Neospora caninum is one of the most significant parasitic organisms causing bovine abortion worldwide. Despite the economic impact of this infection, relatively little is known about the genetic diversity of this parasite. In this study, using Nc5 and ITS1 nested PCR, N. caninum has been detected in 12 brain samples of aborted fetuses from 298 seropositive dairy cattle collected from four different regions in Tehran, Iran. These specimen (Nc-Iran) were genotyped in multilocus using 9 different microsatellite markers previously described (MS4, MS5, MS6A, MS6B, MS7, MS8, MS10, MS12 and MS21). Microsatellite amplification was completely feasible in 2 samples, semi-completely in 8 samples, and failed in 2 samples. Within the two completely performed allelic profiles of Nc-Iran strains, unique multilocus profiles were obtained for both and novel allelic patterns were found in the MS8 and MS10 microsatellite markers. The Jaccard's similarity index showed significant difference between these two strains and from other standard isolates derived from GenBank such as Nc-Liv, Nc-SweB1, Nc-GER1, KBA1, and KBA2. All samples originating from the same area showed identical allelic numbers and a correlation between the number of repeats and geographic districts was observed. PMID:25988829

  10. Restricted genetic diversity in the ubiquitous cattle parasite, Sarcocystis cruzi.

    PubMed

    Rosenthal, Benjamin M; Dunams, Detiger B; Pritt, Bobbi

    2008-09-01

    Although parasites of the genus Sarcocystis have likely cycled between bovine herbivores and canine carnivores for tens of millions of years, humans may have profoundly influenced the ecology and evolution of those prevalent in domesticated dogs and cattle. To preliminarily assess the possibility of such anthropogenic effects, we surveyed genetic variation in conserved (18S small subunit) and variable (ITS-1) portions of ribosomal DNA from a large sample of Sarcocystis cruzi occurring in taurine beef cattle raised in the United States and Uruguay, and compared these data to available homologues, including those reported from zebu cattle, water buffalo, and bison. For additional context, we compared the apparent diversity of cattle parasites to that reported from congeneric parasites in other hosts. We find that the S. cruzi of taurine cattle, whether derived from the Americas or Asia, are devoid of variability in the sequenced portion (80%) of the small subunit rDNA. By contrast, geographically limited samples of related parasites in other hosts, including those of wildlife, are more variable. At the adjacent ITS-1 locus, allelic distribution patterns did not indicate any regional barriers to gene flow, suggesting that the parasite may have been introduced to the Americas via a common source such as domesticated dogs or cattle. Thus, human impact on this parasite's distribution and diversification would seem to have been great. PMID:18501682

  11. Genotyping of ancient Mycobacterium tuberculosis strains reveals historic genetic diversity

    PubMed Central

    Müller, Romy; Roberts, Charlotte A.; Brown, Terence A.

    2014-01-01

    The evolutionary history of the Mycobacterium tuberculosis complex (MTBC) has previously been studied by analysis of sequence diversity in extant strains, but not addressed by direct examination of strain genotypes in archaeological remains. Here, we use ancient DNA sequencing to type 11 single nucleotide polymorphisms and two large sequence polymorphisms in the MTBC strains present in 10 archaeological samples from skeletons from Britain and Europe dating to the second–nineteenth centuries AD. The results enable us to assign the strains to groupings and lineages recognized in the extant MTBC. We show that at least during the eighteenth–nineteenth centuries AD, strains of M. tuberculosis belonging to different genetic groups were present in Britain at the same time, possibly even at a single location, and we present evidence for a mixed infection in at least one individual. Our study shows that ancient DNA typing applied to multiple samples can provide sufficiently detailed information to contribute to both archaeological and evolutionary knowledge of the history of tuberculosis. PMID:24573854

  12. Genetic Diversity of Japanese Strains of Ralstonia solanacearum.

    PubMed

    Horita, M; Tsuchiya, K

    2001-04-01

    ABSTRACT The genetic diversity of 74 Japanese strains of Ralstonia solanacearum was assessed by pathogenicity tests and the repetitive sequencebased polymerase chain reaction (rep-PCR) fingerprint method. Based on their genomic fingerprints, biovar N2 strains were divided into two distinct groups, one consisting of potato isolates belonging to race 3, and the other consisting of tomato, eggplant, pepper, and tobacco isolates belonging to race 1. Biovar 3 strains had low average similarity and were divided into five groups that differed in original host or pathogenicity. Biovar 4 strains consisted of only one group at the 80% similarity level. Comparative analysis of the rep-PCR fingerprints of 78 strains, including six biovars from Japan and various countries, revealed two main clusters. Cluster 1 comprised all biovar 3, 4, and 5 strains, biovar 1 strains from Reunion, and some biovar N2 strains from Japan. Cluster 2 included most of the biovar 1, 2, and N2 strains. The fingerprints showed low average similarity with biovar N2 strains from Japan and Brazil. PMID:18943853

  13. Genetic Diversity in Gorkhas: an Autosomal STR Study.

    PubMed

    Preet, Kiran; Malhotra, Seema; Shrivastava, Pankaj; Jain, Toshi; Rawat, Shweta; Varte, L Robert; Singh, Sayar; Singh, Inderjeet; Sarkar, Soma

    2016-01-01

    Genotyping of highly polymorphic autosomal short tandem repeat (STR) markers is a potent tool for elucidating genetic diversity. In the present study, fifteen autosomal STR markers were analyzed in unrelated healthy male Gorkha individuals (n = 98) serving in the Indian Army by using AmpFlSTR Identifiler Plus PCR Amplification Kit. In total, 138 alleles were observed with corresponding allele frequencies ranging from 0.005 to 0.469. The studied loci were in Hardy-Weinberg Equilibrium (HWE). Heterozygosity ranged from 0.602 to 0.867. The most polymorphic locus was Fibrinogen Alpha (FGA) chain which was also the most discriminating locus as expected. Neighbor Joining (NJ) tree and principal component analysis (PCA) plot clustered the Gorkhas with those of Nepal and other Tibeto-Burman population while lowlander Indian population formed separate cluster substantiating the closeness of the Gorkhas with the Tibeto-Burman linguistic phyla. Furthermore, the dataset of STR markers obtained in the study presents a valuable information source of STR DNA profiles from personnel for usage in disaster victim identification in military exigencies and adds to the Indian database of military soldiers and military hospital repository. PMID:27580933

  14. Exhaustive search for conservation networks of populations representing genetic diversity.

    PubMed

    Diniz-Filho, J A F; Diniz, J V B P L; Telles, M P C

    2016-01-01

    Conservation strategies routinely use optimization methods to identify the smallest number of units required to represent a set of features that need to be conserved, including biomes, species, and populations. In this study, we provide R scripts to facilitate exhaustive search for solutions that represent all of the alleles in networks with the smallest possible number of populations. The script also allows other variables to be added to describe the populations, thereby providing the basis for multi-objective optimization and the construction of Pareto curves by averaging the values in the solutions. We applied this algorithm to an empirical dataset that comprised 23 populations of Eugenia dysenterica, which is a tree species with a widespread distribution in the Cerrado biome. We observed that 15 populations would be necessary to represent all 249 alleles based on 11 microsatellite loci, and that the likelihood of representing all of the alleles with random networks is less than 0.0001. We selected the solution (from two with the smallest number of populations) obtained for the populations with a higher level of climatic stability as the best strategy for in situ conservation of genetic diversity of E. dysenterica. The scripts provided in this study are a simple and efficient alternative to more complex optimization methods, especially when the number of populations is relatively small (i.e., <25 populations). PMID:26909939

  15. Genetic Diversity in Gorkhas: an Autosomal STR Study

    PubMed Central

    Preet, Kiran; Malhotra, Seema; Shrivastava, Pankaj; Jain, Toshi; Rawat, Shweta; Varte, L. Robert; Singh, Sayar; Singh, Inderjeet; Sarkar, Soma

    2016-01-01

    Genotyping of highly polymorphic autosomal short tandem repeat (STR) markers is a potent tool for elucidating genetic diversity. In the present study, fifteen autosomal STR markers were analyzed in unrelated healthy male Gorkha individuals (n = 98) serving in the Indian Army by using AmpFlSTR Identifiler Plus PCR Amplification Kit. In total, 138 alleles were observed with corresponding allele frequencies ranging from 0.005 to 0.469. The studied loci were in Hardy-Weinberg Equilibrium (HWE). Heterozygosity ranged from 0.602 to 0.867. The most polymorphic locus was Fibrinogen Alpha (FGA) chain which was also the most discriminating locus as expected. Neighbor Joining (NJ) tree and principal component analysis (PCA) plot clustered the Gorkhas with those of Nepal and other Tibeto-Burman population while lowlander Indian population formed separate cluster substantiating the closeness of the Gorkhas with the Tibeto-Burman linguistic phyla. Furthermore, the dataset of STR markers obtained in the study presents a valuable information source of STR DNA profiles from personnel for usage in disaster victim identification in military exigencies and adds to the Indian database of military soldiers and military hospital repository. PMID:27580933

  16. Intracolonial genetic diversity in honey bee (Apis mellifera) colonies increases pollen foraging efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multiple mating by honey bee queens results in colonies of genotypically diverse workers. Recent studies have demonstrated that increased genetic diversity within a honey bee colony increases the variation in the frequency of tasks performed by workers. We show that genotypically diverse colonies, ...

  17. Genetic Diversity and the Reproductive System in Related Species of Antirrhinum

    PubMed Central

    MATEU-ANDRÉS, I.; DE PACO, L.

    2006-01-01

    • Background and Aims Seven related species of Antirrhinum (A. siculum, A. majus, A. latifolium, A. linkianum, A. litigiosum, A. cirrhigherum and A. tortuosum) were studied in order to compare levels of genetic variation and its partitioning in them, and to check relationships between genetic patterns and the reproductive system. • Methods Eight hundred and fifty-one plants were screened for variability at 13 allozyme loci by means of horizontal starch gel electrophoresis. Parameters of genetic diversity and its partitioning, the inbreeding coefficient as well as an indirect estimate of gene flow based on the equation: Nm = (1 − GST)/4GST, were calculated. • Key Results Genetic variability in A. siculum was found to be the lowest known in the genus. Mean values of FIT and FIS were mostly positive and not significantly different from zero. Population differentiation (FST) ranged between 6·1 in A. tortuosum and 17·6 in A. linkianum. The inbreeding coefficient within populations ranged between FIS = −0·5 in A. tortuosum and FIS = 1 in A. siculum. Estimates of gene flow ranged between Nm = 15 in A. majus (considered as very high) to Nm = 0·42 in A. siculum (considered as low). • Conclusions Correlation was found between levels of diversity and differentiation on one hand, and the reproductive system of the studied taxa on the other. Striking differences among species in the inbreeding coefficient (FIS) show different reproductive systems, which mostly support previous reports. Strategies for the conservation of A. siculum are recommended, such as preservation of natural populations as well as ex situ preservation of seeds from different populations. PMID:17008348

  18. Genetic Diversity and Hybridisation between Native and Introduced Salmonidae Fishes in a Swedish Alpine Lake.

    PubMed

    Faulks, Leanne; Östman, Örjan

    2016-01-01

    Understanding the processes underlying diversification can aid in formulating appropriate conservation management plans that help maintain the evolutionary potential of taxa, particularly under human-induced activities and climate change. Here we assessed the microsatellite genetic diversity and structure of three salmonid species, two native (Arctic charr, Salvelinus alpinus and brown trout, Salmo trutta) and one introduced (brook charr, Salvelinus fontinalis), from an alpine lake in sub-arctic Sweden, Lake Ånn. The genetic diversity of the three species was similar and sufficiently high from a conservation genetics perspective: corrected total heterozygosity, H'T = 0.54, 0.66, 0.60 and allelic richness, AR = 4.93, 5.53 and 5.26 for Arctic charr, brown trout and brook charr, respectively. There were indications of elevated inbreeding coefficients in brown trout (GIS = 0.144) and brook charr (GIS = 0.129) although sibling relationships were likely a confounding factor, as a high proportion of siblings were observed in all species within and among sampling locations. Overall genetic structure differed between species, Fst = 0.01, 0.02 and 0.04 in Arctic charr, brown trout and brook charr respectively, and there was differentiation at only a few specific locations. There was clear evidence of hybridisation between the native Arctic charr and the introduced brook charr, with 6% of individuals being hybrids, all of which were sampled in tributary streams. The ecological and evolutionary consequences of the observed hybridisation are priorities for further research and the conservation of the evolutionary potential of native salmonid species. PMID:27032100

  19. Genetic Diversity and Hybridisation between Native and Introduced Salmonidae Fishes in a Swedish Alpine Lake

    PubMed Central

    Faulks, Leanne; Östman, Örjan

    2016-01-01

    Understanding the processes underlying diversification can aid in formulating appropriate conservation management plans that help maintain the evolutionary potential of taxa, particularly under human-induced activities and climate change. Here we assessed the microsatellite genetic diversity and structure of three salmonid species, two native (Arctic charr, Salvelinus alpinus and brown trout, Salmo trutta) and one introduced (brook charr, Salvelinus fontinalis), from an alpine lake in sub-arctic Sweden, Lake Ånn. The genetic diversity of the three species was similar and sufficiently high from a conservation genetics perspective: corrected total heterozygosity, H’T = 0.54, 0.66, 0.60 and allelic richness, AR = 4.93, 5.53 and 5.26 for Arctic charr, brown trout and brook charr, respectively. There were indications of elevated inbreeding coefficients in brown trout (GIS = 0.144) and brook charr (GIS = 0.129) although sibling relationships were likely a confounding factor, as a high proportion of siblings were observed in all species within and among sampling locations. Overall genetic structure differed between species, Fst = 0.01, 0.02 and 0.04 in Arctic charr, brown trout and brook charr respectively, and there was differentiation at only a few specific locations. There was clear evidence of hybridisation between the native Arctic charr and the introduced brook charr, with 6% of individuals being hybrids, all of which were sampled in tributary streams. The ecological and evolutionary consequences of the observed hybridisation are priorities for further research and the conservation of the evolutionary potential of native salmonid species. PMID:27032100

  20. Genetic Relationships Between Schizophrenia, Bipolar Disorder, and Schizoaffective Disorder

    PubMed Central

    Cardno, Alastair G.

    2014-01-01

    There is substantial evidence for partial overlap of genetic influences on schizophrenia and bipolar disorder, with family, twin, and adoption studies showing a genetic correlation between the disorders of around 0.6. Results of genome-wide association studies are consistent with commonly occurring genetic risk variants, contributing to both the shared and nonshared aspects, while studies of large, rare chromosomal structural variants, particularly copy number variants, show a stronger influence on schizophrenia than bipolar disorder to date. Schizoaffective disorder has been less investigated but shows substantial familial overlap with both schizophrenia and bipolar disorder. A twin analysis is consistent with genetic influences on schizoaffective episodes being entirely shared with genetic influences on schizophrenic and manic episodes, while association studies suggest the possibility of some relatively specific genetic influences on broadly defined schizoaffective disorder, bipolar subtype. Further insights into genetic relationships between these disorders are expected as studies continue to increase in sample size and in technical and analytical sophistication, information on phenotypes beyond clinical diagnoses are increasingly incorporated, and approaches such as next-generation sequencing identify additional types of genetic risk variant. PMID:24567502

  1. Genetic Drift, Purifying Selection and Vector Genotype Shape Dengue Virus Intra-host Genetic Diversity in Mosquitoes

    PubMed Central

    Fontaine, Albin; Ar Gouilh, Meriadeg; Moltini-Conclois, Isabelle

    2016-01-01

    Due to their error-prone replication, RNA viruses typically exist as a diverse population of closely related genomes, which is considered critical for their fitness and adaptive potential. Intra-host demographic fluctuations that stochastically reduce the effective size of viral populations are a challenge to maintaining genetic diversity during systemic host infection. Arthropod-borne viruses (arboviruses) traverse several anatomical barriers during infection of their arthropod vectors that are believed to impose population bottlenecks. These anatomical barriers have been associated with both maintenance of arboviral genetic diversity and alteration of the variant repertoire. Whether these patterns result from stochastic sampling (genetic drift) rather than natural selection, and/or from the influence of vector genetic heterogeneity has not been elucidated. Here, we used deep sequencing of full-length viral genomes to monitor the intra-host evolution of a wild-type dengue virus isolate during infection of several mosquito genetic backgrounds. We estimated a bottleneck size ranging from 5 to 42 founding viral genomes at initial midgut infection, irrespective of mosquito genotype, resulting in stochastic reshuffling of the variant repertoire. The observed level of genetic diversity increased following initial midgut infection but significantly differed between mosquito genetic backgrounds despite a similar initial bottleneck size. Natural selection was predominantly negative (purifying) during viral population expansion. Taken together, our results indicate that dengue virus intra-host genetic diversity in the mosquito vector is shaped by genetic drift and purifying selection, and point to a novel role for vector genetic factors in the genetic breadth of virus populations during infection. Identifying the evolutionary forces acting on arboviral populations within their arthropod vector provides novel insights into arbovirus evolution. PMID:27304978

  2. Genetic Drift, Purifying Selection and Vector Genotype Shape Dengue Virus Intra-host Genetic Diversity in Mosquitoes.

    PubMed

    Lequime, Sebastian; Fontaine, Albin; Ar Gouilh, Meriadeg; Moltini-Conclois, Isabelle; Lambrechts, Louis

    2016-06-01

    Due to their error-prone replication, RNA viruses typically exist as a diverse population of closely related genomes, which is considered critical for their fitness and adaptive potential. Intra-host demographic fluctuations that stochastically reduce the effective size of viral populations are a challenge to maintaining genetic diversity during systemic host infection. Arthropod-borne viruses (arboviruses) traverse several anatomical barriers during infection of their arthropod vectors that are believed to impose population bottlenecks. These anatomical barriers have been associated with both maintenance of arboviral genetic diversity and alteration of the variant repertoire. Whether these patterns result from stochastic sampling (genetic drift) rather than natural selection, and/or from the influence of vector genetic heterogeneity has not been elucidated. Here, we used deep sequencing of full-length viral genomes to monitor the intra-host evolution of a wild-type dengue virus isolate during infection of several mosquito genetic backgrounds. We estimated a bottleneck size ranging from 5 to 42 founding viral genomes at initial midgut infection, irrespective of mosquito genotype, resulting in stochastic reshuffling of the variant repertoire. The observed level of genetic diversity increased following initial midgut infection but significantly differed between mosquito genetic backgrounds despite a similar initial bottleneck size. Natural selection was predominantly negative (purifying) during viral population expansion. Taken together, our results indicate that dengue virus intra-host genetic diversity in the mosquito vector is shaped by genetic drift and purifying selection, and point to a novel role for vector genetic factors in the genetic breadth of virus populations during infection. Identifying the evolutionary forces acting on arboviral populations within their arthropod vector provides novel insights into arbovirus evolution. PMID:27304978

  3. Global relationship between phytoplankton diversity and productivity in the ocean.

    PubMed

    Vallina, S M; Follows, M J; Dutkiewicz, S; Montoya, J M; Cermeno, P; Loreau, M

    2014-01-01

    The shape of the productivity-diversity relationship (PDR) for marine phytoplankton has been suggested to be unimodal, that is, diversity peaking at intermediate levels of productivity. However, there are few observations and there has been little attempt to understand the mechanisms that would lead to such a shape for planktonic organisms. Here we use a marine ecosystem model together with the community assembly theory to explain the shape of the unimodal PDR we obtain at the global scale. The positive slope from low to intermediate productivity is due to grazer control with selective feeding, which leads to the predator-mediated coexistence of prey. The negative slope at high productivity is due to seasonal blooms of opportunist species that occur before they are regulated by grazers. The negative side is only unveiled when the temporal scale of the observation captures the transient dynamics, which are especially relevant at highly seasonal latitudes. Thus selective predation explains the positive side while transient competitive exclusion explains the negative side of the unimodal PDR curve. The phytoplankton community composition of the positive and negative sides is mostly dominated by slow-growing nutrient specialists and fast-growing nutrient opportunist species, respectively. PMID:24980772

  4. Genetic diversity in native and commercial breeds of pigs in Portugal assessed by microsatellites.

    PubMed

    Vicente, A A; Carolino, M I; Sousa, M C O; Ginja, C; Silva, F S; Martinez, A M; Vega-Pla, J L; Carolino, N; Gama, L T

    2008-10-01

    Population structure and genetic diversity in the Portuguese native breeds of pigs Alentejano (AL), Bísaro (BI), and Malhado de Alcobaça (MA) and the exotic breeds Duroc (DU), Landrace (LR), Large White (LW), and Pietrain were analyzed by typing 22 microsatellite markers in 249 individuals. In general, the markers used were greatly polymorphic, with mean total and effective number of alleles per locus of 10.68 and 4.33, respectively, and an expected heterozygosity of 0.667 across loci. The effective number of alleles per locus and expected heterozygosity were greatest in BI, LR, and AL, and least in DU. Private alleles were found in 9 of the 22 markers analyzed, mostly in AL, but also in the other breeds, with the exception of LW. The proportion of loci not in Hardy-Weinberg equilibrium in each breed analyzed ranged between 0.23 (AL) and 0.41 (BI, LW, and Pietrain), mostly because of a less than expected number of heterozygotes in those loci. With the exception of MA, all breeds showed a significant deficit in heterozygosity (F(IS); P < 0.05), which was more pronounced in BI (F(IS) = 0.175) and AL (F(IS) = 0.139), suggesting that inbreeding is a major concern, especially in these breeds that have gone through a genetic bottleneck in the recent past. The analysis of relationships among breeds, assessed by different methods, indicates that DU and AL are the more distanced breeds relative to the others, with the closest relationship being observed between LR and MA. The degree of differentiation between subpopulations (F(ST)) indicates that 0.184 of the total genetic variability can be attributed to differences among breeds. The analysis of individual distances based on allele sharing indicates that animals of the same breed generally cluster together, but subdivision is observed in the BI and LR breeds. Furthermore, the analysis of population structure indicates there is very little admixture among breeds, with each one being identified with a single ancestral

  5. GENETIC RELATIONSHIPS AMONG FERTILITY TRAITS OF HOLSTEINS AND JERSEYS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairy Herd Improvement data with service dates from 2,195,643 Holstein and 171,981 Jersey sire-identified lactations from 1995 through 2000 were used to assess genetic variation in and relationships among fertility traits: days to first service (D1), days to last reported service (DL), nonreturn rat...

  6. Effects of inter and intraspecific diversity and genetic divergence of aquatic fungal communities on leaf litter decomposition-a microcosm experiment.

    PubMed

    Andrade, Ricardo; Pascoal, Cláudia; Cássio, Fernanda

    2016-07-01

    Freshwater fungi play a key role in plant litter decomposition and have been used to investigate the relationships between biodiversity and ecosystem functioning in streams. Although there is evidence of positive effects of biodiversity on ecosystem processes, particularly on biomass produced, some studies have shown that neutral or negative effects may occur. We manipulated the composition and the number of species and genotypes in aquatic fungal assemblages creating different levels of genetic divergence to assess effects of fungal diversity on biomass produced and leaf decomposition. Generally, diversity effects on fungal biomass produced were positive, suggesting complementarity between species, but in assemblages with more species positive diversity effects were reduced. Genotype diversity and genetic divergence had net positive effects on leaf mass loss, but in assemblages with higher diversity leaf decomposition decreased. Our results highlight the importance of considering multiple biodiversity measures when investigating the relationship between biodiversity and ecosystem functioning. PMID:27183974

  7. Genetic diversity of Iranian honey bee (Apis mellifera meda Skorikow, 1829) populations based on ISSR markers.

    PubMed

    Rahimi, A; Mirmoayedi, A; Kahrizi, D; Zarei, L; Jamali, S

    2016-01-01

    Honey bee is one of the most important insects considering its role in agriculture,ecology and economy as a whole. In this study, the genetic diversity of different Iranian honey bee populations was evaluated using inter simple sequence repeat (ISSR) markers. During May to September 2014, 108 young worker honey bees were collected from six different populations in 30 different geoclimatic locations from Golestan, Mazendaran, Guilan, West Azerbaijan, East Azerbaijan, Ardebil provinces of Iran. DNA was extracted from the worker honey bees. The quality and quantity of extracted DNA were measured. A set of ten primers were screened with the laboratory populations of honey bees. The number of fragments produced in the different honey bee populations varied from 3 to 10, varying within 150 to 1500 bp. The used ten ISSR primers generated 40 polymorphic fragments, and the average heterozygosity for each primer was 0.266. Maximum numbers of bands were recorded for primer A1. A dendrogram based on the Unweighted Pair Group Method with Arithmetic mean (UPGMA) method generated two sub-clusters. Honey bee populations of Golestan, Mazendaran, Guilan provinces were located in the first group. The second group included honey bee populations of Ardebil, West Azerbaijan, East Azerbaijan provinces, but this group showed a close relationship with other populations. The results showed obviously the ability of the ISSR marker technique to detect the genetic diversity among the honey bee populations. PMID:27188735

  8. Analysis of genetic diversity of Laeliinae (Orchidaceae) in the State of Sergipe using ISSR markers.

    PubMed

    Arrigoni-Blank, M F; Santos, M S; Blank, A F; Rabbani, A R C; Silva-Mann, R; Santos, J B; Costa, A S; Menezes, T S A

    2016-01-01

    The Orchidaceae represent one of the largest and most diverse families on the planet. However, this family is constantly threatened by predators and by the advancement of urban centers over its natural habitats. The objective of this study was to use inter-simple sequence repeat markers to evaluate the genetic diversity between orchid accessions of the Laeliinae subtribe, which comprise part of the Orchidaceae study collection at the Department of Agronomic Engineering of the Federal University of Sergipe. DNA was extracted from each specimen by using an adapted 2% cetyltrimethyl ammonium bromide protocol. Similarity between individuals was calculated using the Jaccard method. Clustering was carried out by the unweighted pair group method with arithmetic mean method, with resampling and 10,000 bootstraps. Eighty-seven fragments were obtained, all of which were polymorphic, revealing high variability between accessions. The mean similarity was 35.77% between Encyclia sp individuals, and 35.90% between specimens of Cattleya tigrina. For Epidendrum secundum, a relationship between geographic and genetic distances was observed, and the accession collected in the southern part of the State of Sergipe (Serra de Itabaiana National Park) was more divergent than that of the other parts of the state. The data generated in this study will guide further research aimed at the ex situ conservation of these materials. PMID:27323130

  9. Analysis of genetic diversity identified by amplified fragment length polymorphism marker in hybrid wheat.

    PubMed

    Ejaz, M; Qidi, Z; Gaisheng, Z; Na, N; Huiyan, Z; Qunzhu, W

    2015-01-01

    Amplified fragment length polymorphism markers were used to assess genetic diversity in 10 male sterile wheat crop lines (hetero-cytoplasm with the same nucleus) in relation to a restorer wheat line. These male sterile lines were evaluated using 64 amplified fragment length polymorphism primer combinations, and 13 primers produced polymorphic bands, generating a total 682 fragments. Of the 682 fragments, 113 were polymorphic. The polymorphic information content and marker index values demonstrated the utility of the primer combinations used in the present study. Unweighted pair group method with arithmetic mean and principal coordinate analysis of the genotypic data revealed clustering of accessions based on genetic relationships, and accessions were separated into 2 groups with their restorer line. Jaccard's similarity coefficient values suggested good variability among the male sterile lines, indicating their utility in breeding programs. The fallouts of analysis of molecular variance showed large within-group population variation, accounting for 77% of variation, while among-group comparison accounted for 23% of the total molecular variation, which was statistically significant. The molecular diversity observed in this study will be useful for selecting appropriate accessions for plant improvement and hybridization through molecular-breeding approaches and for developing suitable conservation strategies. PMID:26345825

  10. Genetic diversity in Capsicum germplasm based on microsatellite and random amplified microsatellite polymorphism markers.

    PubMed

    Rai, Ved Prakash; Kumar, Rajesh; Kumar, Sanjay; Rai, Ashutosh; Kumar, Sanjeet; Singh, Major; Singh, Sheo Pratap; Rai, Awadesh Bahadur; Paliwal, Rajneesh

    2013-10-01

    A sound knowledge of the genetic diversity among germplasm is vital for strategic germplasm collection, maintenance, conservation and utilisation. Genomic simple sequence repeats (SSRs) and random amplified microsatellite polymorphism (RAMPO) markers were used to analyse diversity and relationships among 48 pepper (Capsicum spp.) genotypes originating from nine countries. These genotypes covered 4 species including 13 germplasm accessions, 30 improved lines of 4 domesticated species and 5 landraces derived from natural interspecific crosses. Out of 106 SSR markers, 25 polymorphic SSR markers (24 %) detected a total of 76 alleles (average, 3.04; range, 2-5). The average polymorphic information content (PIC) was 0.69 (range, 0.29-0.92). Seventeen RAMPO markers produced 87 polymorphic fragments with average PIC of 0.63 (range, 0.44-0.81). Dendrograms based on SSRs and RAMPOs generated two clusters. All 38 Capsicum annuum genotypes and an interspecific landrace clustered together, whereas nine non-annuum (three Capsicum frutescens, one Capsicum chinense, one Capsicum baccatum and four interspecific landraces) genotypes clustered separately. Genetic variation within non-annuum genotypes was greater than the C. annuum genotypes. Distinctness of interspecific derivative landraces grown in northeast India was validated; natural crossing between sympatric Capsicum species has been proposed as the mechanism of their origin. PMID:24431527

  11. Factors affecting levels of genetic diversity in natural populations.

    PubMed Central

    Amos, W; Harwood, J

    1998-01-01

    Genetic variability is the clay of evolution, providing the base material on which adaptation and speciation depend. It is often assumed that most interspecific differences in variability are due primarily to population size effects, with bottlenecked populations carrying less variability than those of stable size. However, we show that population bottlenecks are unlikely to be the only factor, even in classic case studies such as the northern elephant seal and the cheetah, where genetic polymorphism is virtually absent. Instead, we suggest that the low levels of variability observed in endangered populations are more likely to result from a combination of publication biases, which tend to inflate the level of variability which is considered 'normal', and inbreeding effects, which may hasten loss of variability due to drift. To account for species with large population sizes but low variability we advance three hypotheses. First, it is known that certain metapopulation structures can result in effective population sizes far below the census size. Second, there is increasing evidence that heterozygous sites mutate more frequently than equivalent homozygous sites, plausibly because mismatch repair between homologous chromosomes during meiosis provides extra opportunities to mutate. Such a mechanism would undermine the simple relationship between heterozygosity and effective population size. Third, the fact that related species that differ greatly in variability implies that large amounts of variability can be gained or lost rapidly. We argue that such cases are best explained by rapid loss through a genome-wide selective sweep, and suggest a mechanism by which this could come about, based on forced changes to a control gene inducing coevolution in the genes it controls. Our model, based on meiotic drive in mammals, but easily extended to other systems, would tend to facilitate population isolation by generating molecular incompatabilities. Circumstances can even be

  12. Opposites attract or attack? The moderating role of diversity climate in the team diversity-interpersonal aggression relationship.

    PubMed

    Drach-Zahavy, Anat; Trogan, Revital

    2013-10-01

    This study embraced a unit-level diversity perspective to examine interpersonal aggression, as experienced or witnessed by individual team members. Specifically, our aim was to explore the moderating role of a unit's diversity climate in the link between unit-level surface diversity in terms of ethnicity, sex, age, and tenure, and individual-level perceptions of interpersonal aggression. We tested our hypotheses with 30 nursing units using the Mixed-Linear Model procedure appropriate for nested samples. Results demonstrated that diversity climate moderated the relationships between tenure and ethnic unit diversity and interpersonal aggression, experienced or witnessed among individual team members. Moreover, regardless of the level of diversity climate, age diversity was positively linked to interpersonal aggression, whereas sex diversity was negatively linked to it. These findings imply that the unit's context affects interpersonal aggression and provides important theoretical and practical implications to proactively prevent interpersonal aggression. PMID:24099164

  13. Assessment of genetic diversity in Mucuna species of India using randomly amplified polymorphic DNA and inter simple sequence repeat markers.

    PubMed

    Patil, Ravishankar R; Pawar, Kiran D; Rane, Manali R; Yadav, Shrirang R; Bapat, Vishwas A; Jadhav, Jyoti P

    2016-04-01

    Genus Mucuna which is native to China and Eastern India comprises of perennial climbing legume with long slender branches, trifoliate leaves and bear green or brown pod covered with soft or rigid hairs that cause intense irritation. The plants of this genus are agronomically and economically important and commercially cultivated in India, China and other regions of the world. The high degrees of taxonomical confusions exist in Mucuna species that make authentic identification and classification difficult. In the present study, the genetic diversity among the 59 accessions of six species and three varieties of M. pruriens has been assessed using DNA fingerprinting based molecular markers techniques namely randomly amplified polymorphic DNA (RAPD), inter simple sequence repeats (ISSR) and combined dataset of RAPD and ISSR. Also, genetic relationship among two endemic species of Mucuna namely M. imbricata and M. macrocarpa and two varieties namely IIHR hybrid (MHR) and Dhanwantari (MD) with other species under study was investigated by using cluster analysis and principal coordinate analysis. The cluster analysis of RAPD, ISSR and combined dataset of RAPD and ISSR clearly demonstrated the existence of high interspecific variation than intra-specific variation in genus Mucuna. The utility and efficacy of RAPD and ISSR for the study of intra species and interspecies genetic diversity was evident from AMOVA and PCoA analysis. This study demonstrates the genetic diversity in Mucuna species and indicates that these markers could be successfully used to assess genetic variation among the accessions of Mucuna species. PMID:27436912

  14. Analysis of the genetic diversity of Chinese native Cannabis sativa cultivars by using ISSR and chromosome markers.

    PubMed

    Zhang, L G; Chang, Y; Zhang, X F; Guan, F Z; Yuan, H M; Yu, Y; Zhao, L J

    2014-01-01

    Hemp (Cannabis sativa) is an important fiber crop, and native cultivars exist widely throughout China. In the present study, we analyzed the genetic diversity of 27 important Chinese native hemp cultivars, by using inter-simple sequence repeats (ISSR) and chromosome markers. We determined the following chromosome formulas: 2n = 20 = 14m + 6sm; 2n = 20 = 20m; 2n = 20 = 18m + 2sm; 2n = 20 = 16m + 4sm; and 2n = 20 = 12m + 8sm. The results of our ISSR analysis revealed the genetic relationships among the 27 cultivars; these relationships were analyzed by using the unweighted pair-group method based on DNA polymorphism. Our results revealed that all of the native cultivars showed considerable genetic diversity. At a genetic distance of 0.324, the 27 varieties could be classified into five categories; this grouping corresponded well with the chromosome formulas. All of the investigated hemp cultivars represent relatively primitive types; moreover, the genetic distances show a geographical distribution, with a small amount of regional hybridity. PMID:25511032

  15. Genetic diversity of the bacterial wilt pathogen Ralstonia solanacearum using a RAPD marker.

    PubMed

    Nishat, Sayeda; Hamim, Islam; Khalil, M Ibrahim; Ali, Md Ayub; Hossain, Muhammed Ali; Meah, M Bahadur; Islam, Md Rashidul

    2015-11-01

    Bacterial wilt caused by Ralstonia solanacearum is a destructive disease of many economically important crop species. A significant variation in wilt incidence and severity in eggplant and potato was observed among the growing areas surveyed. R. solanacearum isolates obtained both from eggplant and potato belong to biovar III, while isolates from eggplant belong to race 1 and isolates obtained from potato belong to race 3. Random amplified polymorphic DNA (RAPD) technique was used as a tool for assessing genetic variation and relationship among seven isolate groups of R. solanacearum viz., RsB-1, RsB-2, RsB-3, RsP-1, RsP-2, RsP-3 and RsP-4, consisting in a total of 28 isolates. Out of the RAPD markers used, amplification with four decamer primers produced 70 bands with sizes ranging from 100 to 1400 bp. Out of 70 bands, 68 bands (97.06%) were polymorphic and two bands (2.94%) were monomorphic amongst the seven R. solanacearum isolates group. The Unweighted Pair Group Method of Arithmetic Means (UPGMA) dendrogram constructed from Nei's genetic distance produced two main clusters of the seven isolates of R. solanacearum. The isolates RsB-1, RsB-2, RsB-3 and R-4 grouped in cluster І, while RsP-2, RsP-3 and RsP-4 grouped in cluster ІІ. The highest intra-variety similarity index (Si) was found in RsB-1 isolate (86.35%) and the lowest one in RsP-2 (56.59%). The results indicated that relatively higher and lower levels of genetic variation were found in RsP-3 and RsB-3, respectively. The coefficient of gene differentiation (G(st)) was 0.5487, reflecting the existence of a high level of genetic variations among seven isolates of R. solanacearum. Comparatively higher genetic distance (0.4293) and lower genetic identity (0.6510) were observed between RsB-2 and RsP-4 combinations. The lowest genetic distance (0.0357) and highest genetic identity (0.9650) were found in RsB-1 vs. RsB-2 pair. Thus, RAPD offers a potentially simple, rapid and reliable method to evaluate

  16. Genetic diversity of cultivated lentil (Lens culinaris Medik.) and its relation to the world’s agro-ecological zones

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Assessment of genetic diversity and population structure of germplasm collections plays a critical role in supporting conservation and crop genetic enhancement strategies. We used a cultivated lentil (Lens culinaris Medik.) collection consisting of 352 accessions originating from 54 diverse countrie...

  17. Genetic relationships of introduced Colorado potato beetle Leptinotarsa decemlineata populations in Xinjiang, China.

    PubMed

    Zhang, Jing-Jie; Yang, Juan; Li, Ying-Chao; Liu, Ning; Zhang, Run-Zhi

    2013-10-01

    The Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say), is an infamous invasive species worldwide that aggressively attacks potato and other Solanaceae crops. CPB was first found in China in 1993 and has since spread across 2.77 × 10(5) km(2) in Xinjiang Uygur Autonomous Region. To better understand genetic variation and migration patterns, we used seven polymorphic microsatellite loci to elucidate the genetic relationships and gene flow among 10 CPB populations across Xinjiang. (i) Overall low levels of genetic diversity were detected on the entire population in Xinjiang but most of the diversity was retained among populations during invasion. (ii) The mean pairwise FST was low (0.071 ± 0.043) among populations. The genetic differentiation was little (pairwise FST 0.038 ± 0.016) between the five interior populations (Wusu, Urumqi, Jimsar, Qitai and Mulei) and Tacheng population. The six populations might come from the same genetic group via Bayesian clustering and were closely related on a neighbor-joining tree. Combining the history data, the five interior populations may have originated from Tacheng. (iii) Gene flow was frequent, especially among the five interior populations. Individuals from the interior populations could be assigned to Tacheng at higher probabilities (means 0.518 ± 0.127) than vice versa (means 0.328 ± 0.074), suggesting that the beetle population has spread from the border to the interior in Xinjiang. PMID:23955877

  18. Genetic Diversity of Five Local Swedish Chicken Breeds Detected by Microsatellite Markers

    PubMed Central

    Abebe, Abiye Shenkut; Mikko, Sofia; Johansson, Anna M.

    2015-01-01

    This study aimed at investigating the genetic diversity, relationship and population structure of 110 local Swedish chickens derived from five breeds (Gotlandshöna, Hedemorahöna, Öländsk dvärghöna, Skånsk blommehöna, and Bohuslän- Dals svarthöna, in the rest of the paper the shorter name Svarthöna is used) using 24 microsatellite markers. In total, one hundred thirteen alleles were detected in all populations, with a mean of 4.7 alleles per locus. For the five chicken breeds, the observed and expected heterozygosity ranged from 0.225 to 0.408 and from 0.231 to 0.515, with the lowest scores for the Svarthöna and the highest scores for the Skånsk blommehöna breeds, respectively. Similarly, the average within breed molecular kinship varied from 0.496 to 0.745, showing high coancestry, with Skånsk blommehöna having the lowest and Svarthöna the highest coancestry. Furthermore, all breeds showed significant deviations from Hardy-Weinberg expectations. Across the five breeds, the global heterozygosity deficit (FIT) was 0.545, population differentiation index (FST) was 0.440, and the global inbreeding of individuals within breed (FIS) was 0.187. The phylogenetic relationships of chickens were examined using neighbor-joining trees constructed at the level of breeds and individual samples. The neighbor-joining tree constructed at breed level revealed two main clusters, with Hedemorahöna and Öländsk dvärghöna breeds in one cluster, and Gotlandshöna and Svarthöna breeds in the second cluster leaving the Skånsk blommehöna in the middle. Based on the results of the STRUCTURE analysis, the most likely number of clustering of the five breeds was at K = 4, with Hedemorahöna, Gotlandshöna and Svarthöna breeds forming their own distinct clusters, while Öländsk dvärghöna and Skånsk blommehöna breeds clustered together. Losses in the overall genetic diversity of local Swedish chickens due to breeds extinction varied from -1.46% to -6.723%. The results

  19. Genetic diversity in cultivated carioca common beans based on molecular marker analysis

    PubMed Central

    Küpper Cardoso Perseguini, Juliana Morini; Chioratto, Alisson Fernando; Zucchi, Maria Imaculada; Colombo, Carlos Augusto; Carbonell, Sérgio Augusto Moraes; Costa Mondego, Jorge Mauricio; Gazaffi, Rodrigo; Franco Garcia, Antonio Augusto; de Campos, Tatiana; de Souza, Anete Pereira; Rubiano, Luciana Benchimol

    2011-01-01

    A wide array of molecular markers has been used to investigate the genetic diversity among common bean species. However, the best combination of markers for studying such diversity among common bean cultivars has yet to be determined. Few reports have examined the genetic diversity of the carioca bean, commercially one of the most important common beans in Brazil. In this study, we examined the usefulness of two molecular marker systems (simple sequence repeats – SSRs and amplified fragment length polymorphisms – AFLPs) for assessing the genetic diversity of carioca beans. The amount of information provided by Roger’s modified genetic distance was used to analyze SSR data and Jaccards similarity coefficient was used for AFLP data. Seventy SSRs were polymorphic and 20 AFLP primer combinations produced 635 polymorphic bands. Molecular analysis showed that carioca genotypes were quite diverse. AFLPs revealed greater genetic differentiation and variation within the carioca genotypes (Gst = 98% and Fst = 0.83, respectively) than SSRs and provided better resolution for clustering the carioca genotypes. SSRs and AFLPs were both suitable for assessing the genetic diversity of Brazilian carioca genotypes since the number of markers used in each system provided a low coefficient of variation. However, fingerprint profiles were generated faster with AFLPs, making them a better choice for assessing genetic diversity in the carioca germplasm. PMID:21637550

  20. Complex spatial dynamics maintain northern leopard frog (Lithobates pipiens) genetic diversity in a temporally varying landscape

    USGS Publications Warehouse

    Mushet, David M.; Euliss, Ned H.; Chen, Yongjiu; Stockwell, Craig A.

    2013-01-01

    In contrast to most local amphibian populations, northeastern populations of the Northern Leopard Frog (Lithobates pipiens) have displayed uncharacteristically high levels of genetic diversity that have been attributed to large, stable populations. However, this widely distributed species also occurs in areas known for great climatic fluctuations that should be reflected in corresponding fluctuations in population sizes and reduced genetic diversity. To test our hypothesis that Northern Leopard Frog genetic diversity would be reduced in areas subjected to significant climate variability, we examined the genetic diversity of L. pipiens collected from 12 sites within the Prairie Pothole Region of North Dakota. Despite the region's fluctuating climate that includes periods of recurring drought and deluge, we found unexpectedly high levels of genetic diversity approaching that of northeastern populations. Further, genetic structure at a landscape scale was strikingly homogeneous; genetic differentiation estimates (Dest) averaged 0.10 (SD = 0.036) across the six microsatellite loci we studied, and two Bayesian assignment tests (STRUCTURE and BAPS) failed to reveal the development of significant population structure across the 68 km breadth of our study area. These results suggest that L. pipiens in the Prairie Pothole Region consists of a large, panmictic population capable of maintaining high genetic diversity in the face of marked climate variability.

  1. Whole-Genome Genetic Diversity in a Sample of Australians with Deep Aboriginal Ancestry

    PubMed Central

    McEvoy, Brian P.; Lind, Joanne M.; Wang, Eric T.; Moyzis, Robert K.; Visscher, Peter M.; van Holst Pellekaan, Sheila M.; Wilton, Alan N.

    2010-01-01

    Australia was probably settled soon after modern humans left Africa, but details of this ancient migration are not well understood. Debate centers on whether the Pleistocene Sahul continent (composed of New Guinea, Australia, and Tasmania) was first settled by a single wave followed by regional divergence into Aboriginal Australian and New Guinean populations (common origin) or whether different parts of the continent were initially populated independently. Australia has been the subject of relatively few DNA studies even though understanding regional variation in genomic structure and diversity will be important if disease-association mapping methods are to be successfully evaluated and applied across populations. We report on a genome-wide investigation of Australian Aboriginal SNP diversity in a sample of participants from the Riverine region. The phylogenetic relationship of these Aboriginal Australians to a range of other global populations demonstrates a deep common origin with Papuan New Guineans and Melanesians, with little evidence of substantial later migration until the very recent arrival of European colonists. The study provides valuable and robust insights into an early and important phase of human colonization of the globe. A broader survey of Australia, including diverse geographic sample populations, will be required to fully appreciate the continent's unique population history and consequent genetic heritage, as well as the importance of both to the understanding of health issues. PMID:20691402

  2. Genetic relationship among Labisia pumila (Myrsinaceae) species based on ISSR-PCR.

    PubMed

    Karimi, E; Jaafar, H Z E; Aziz, M A; Taheri, S; AzadiGonbad, R

    2014-01-01

    The genus Labisia (Myrsinaceae) is a popular medicinal plant in Malaysia. We examined the genetic relationship among three varieties of L. pumila var. pumila, L. pumila var. alata, L. pumila var. lanceolata and Labisia paucifolia using an ISSR assay. Fifty-eight primers were tested, among which 18 gave reliable polymorphic banding patterns; these yielded 264 polymorphic markers. A similarity matrix was used to construct a dendrogram, and a principal component plot was developed to examine genetic relationships among varieties. Jaccard's similarity coefficient among species ranged from 0.09 to 0.14. At a similarity of 0.117%, species were divided into two main clusters. The mean value of the observed number of alleles, the effective number of alleles, mean Nei's gene diversity, and Shannon's information index were 1.98, 1.64, 0.38, and 0.57, respectively. PMID:24841662

  3. Metabolism of sugars by genetically diverse species of oral Leptotrichia

    PubMed Central

    Thompson, John; Pikis, Andreas

    2011-01-01

    SUMMARY Leptotrichia buccalis ATCC 14201 is a Gram-negative, anaerobic rod-shaped bacterium resident in oral biofilm at the tooth surface. The sequenced genome of this organism reveals three contiguous genes at loci: Lebu_1525,1526 and 1527. The translation products of these genes exhibit significant homology with phospho-α-glucosidase (Pagl), a regulatory protein (GntR) and a phosphoenol pyruvate-dependent sugar transport protein (EIICB), respectively. In non-oral bacterial species, these genes comprise the sim operon that facilitates sucrose isomer metabolism. Growth studies showed that L. buccalis fermented a wide variety of carbohydrates, including four of the five isomers of sucrose. Growth on the isomeric disaccharides elicited expression of a 50kDa polypeptide comparable in size to that encoded by Lebu_1525. The latter gene was cloned, and the expressed protein was purified to homogeneity from Escherichia coli TOP 10 cells. In the presence of two cofactors, NAD+ and Mn2+ ion, the enzyme readily hydrolyzed p-nitrophenyl-α-glucopyranoside 6-phosphate (pNPαG6P), a chromogenic analog of the phosphorylated isomers of sucrose. By comparative sequence alignment, immuno-reactivity and signature motifs, the enzyme can be assigned to the phospho-α-glucosidase (Pagl) clade of Family 4 of the glycosyl hydrolase super family. We suggest that the products of Lebu_1527 and 1525, catalyze the phosphorylative translocation and hydrolysis of sucrose isomers in L. buccalis, respectively. Four genetically diverse, but 16S rDNA related species of Leptotrichia have recently been described: L. goodfellowii, L. hofstadii, L. shahii and L. wadei. The phenotypic traits of these new species, with respect to carbohydrate utilization, have also been determined. PMID:22230464

  4. The diverse genetic switch of enterobacterial and marine telomere phages.

    PubMed

    Hammerl, Jens A; Jäckel, Claudia; Funk, Eugenia; Pinnau, Sabrina; Mache, Christin; Hertwig, Stefan

    2016-01-01

    Temperate bacteriophages possess a genetic switch which regulates the lytic and lysogenic cycle. The genomes of the enterobacterial telomere phages N15, PY54 and ϕKO2 harbor a primary immunity region (immB) comprising genes for the prophage repressor, the lytic repressor and a putative antiterminator, similar to CI, Cro and Q of lambda, respectively. Moreover, N15 and ϕKO2 contain 3 related operator (OR) sites between cI and cro, while only one site (OR3) has been detected in PY54. Marine telomere phages possess a putative cI gene but not a cro-like gene. Instead, a gene is located at the position of cro, whose product shows some similarity to the PY54 ORF42 product, the function of which is unknown. We have determined the transcription start sites of the predicted repressor genes of N15, PY54, ϕKO2 and of the marine telomere phage VP58.5. The influence of the genes on phage propagation was analyzed in E. coli, Y. enterocolitica and V.parahaemolyticus. We show that the repressors and antiterminators of N15, ϕKO2 and PY54 exerted their predicted activities. However, while the proteins of both N15 and ϕKO2 affected lysis and lysogeny by N15, they did not affect PY54 propagation. On the other hand, the respective PY54 proteins exclusively influenced the propagation of this phage. The immB region of VP58.5 contains 2 genes that revealed prophage repressor activity, while a lytic repressor gene could not be identified. The results indicate an unexpected diversity of the growth regulation mechanisms in these temperate phages. PMID:27607141

  5. Molecular biology and genetic diversity of Rift Valley fever virus

    PubMed Central

    Ikegami, Tetsuro

    2013-01-01

    of invited papers in Antiviral Research on the genetic diversity of emerging viruses. PMID:22710362

  6. Mapping genetic and phylogenetic diversity of a temperate forest using remote sensing based upscaling methods

    NASA Astrophysics Data System (ADS)

    Escriba, C. G.; Yamasaki, E.; Leiterer, R.; Tedder, A.; Shimizu, K.; Morsdorf, F.; Schaepman, M. E.

    2015-12-01

    Functioning and resilience of forest ecosystems under environmental pressures increases when biodiversity at genetic, species, canopy and ecosystem level is higher. Therefore mapping and monitoring diversity becomes a necessity to assess changes in ecosystems and understanding their consequences. Diversity can be assessed by using different metrics, such as diversity of functional traits or genetic diversity amongst others. In-situ approaches have provided useful, but usually spatially constrained information, often dependent on expert knowledge. We propose using remote sensing in combination with in-situ sampling at different spatial scales. We map phylogenetic and genetic diversity using airborne imaging spectroscopy in combination with terrestrial and airborne laser scanning, as well as exhaustive in-situ sampling schemes. To this end, we propose to link leaf optical properties using a taxonomic approach (spectranomics) to genetic and phylogenetic diversity. The test site is a managed mixed temperate forest on the south-facing slope of Laegern Mountain, Switzerland (47°28'42.0" N, 8°21'51.8" E, 682 m.a.s.l.). The intensive sampling area is roughly 300m x 300m and dominant species are European beech (Fagus sylvatica) and Ash (Fraxinus excelsior). We perform phylogenetic and intraspecific genetic variation analyses for the five most dominant tree species at the test site. For these species, information on functional biochemical and architectural plant traits diversity is retrieved from imaging spectroscopy and laser scanning data and validated with laboratory and in-situ measurements. To assess regional-scale genetic diversity, the phylogenetic and genetic signals are quantified using the remote sensing data, resulting in spatially distributed intra-specific genetic variation. We discuss the usefulness of combined remote sensing and in-situ sampling, to bridge diversity scales from genetic to canopy level.

  7. Analysis of genetic diversity in crocuses with Carpathian Basin origin using AFLP-markers.

    PubMed

    Surányi, G; Máthé, C; Mosolygó, Agnes; Borbély, G; Vasas, G

    2010-01-01

    Crocus taxonomy has until now been based primarily on morphology, taking chromosome numbers into consideration. The genetics and genome structure of the genus, the relationships and diversity within the genus are not well known. Amplified fragment length polymorphism (AFLP) is a whole genome approach to study genetic variation that is gaining in popularity for lower-level systematics. The present study employed the AFLP technique for analyzing relationships among taxa of the Crocus genus (particularly the Crocus vernus aggregate) with Carpathian Basin origin. The molecular variance obtained was based on amplification, separation and detection of EcoRI and Tru1I double-digested Crocus spp. genomic DNAs. Our results confirm the relatedness of C. tommasinianus, C. vittatus and C. heuffelianus at the Verni series of the Crocus genus. C. banaticus is taxonomically isolated as the sole member of the subgenus Crociris based on unique morphological features, but the difference is not convincing from AFLP data. The second interesting AFLP analysis result is the position of C. scepusiensis which separated it from the Crocus vernus aggregate. PMID:21565773

  8. Genetic Diversity in Passiflora Species Assessed by Morphological and ITS Sequence Analysis

    PubMed Central

    Ramaiya, Shiamala Devi; Bujang, Japar Sidik; Zakaria, Muta Harah

    2014-01-01

    This study used morphological characterization and phylogenetic analysis of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA to investigate the phylogeny of Passiflora species. The samples were collected from various regions of East Malaysia, and discriminant function analysis based on linear combinations of morphological variables was used to classify the Passiflora species. The biplots generated five distinct groups discriminated by morphological variables. The group consisted of cultivars of P. edulis with high levels of genetic similarity; in contrast, P. foetida was highly divergent from other species in the morphological biplots. The final dataset of aligned sequences from nine studied Passiflora accessions and 30 other individuals obtained from GenBank database (NCBI) yielded one most parsimonious tree with two strongly supported clades. Maximum parsimony (MP) tree showed the phylogenetic relationships within this subgenus Passiflora support the classification at the series level. The constructed phylogenic tree also confirmed the divergence of P. foetida from all other species and the closeness of wild and cultivated species. The phylogenetic relationships were consistent with results of morphological assessments. The results of this study indicate that ITS region analysis represents a useful tool for evaluating genetic diversity in Passiflora at the species level. PMID:25050402

  9. Genetic diversity analysis of tree peony germplasm using iPBS markers.

    PubMed

    Duan, Y B; Guo, D L; Guo, L L; Wei, D F; Hou, X G

    2015-01-01

    We examined the genetic diversity of 10 wild species (populations) and 55 varieties of tree peony using inter-primer binding site (iPBS) markers. From a total of 36 iPBS primers, 16 were selected based on polymorphic amplification. The number of bands amplified by each primer ranged from 9 to 19, with an average of 12.88 bands per primer. The length of bands ranged from 100 to 2000 bp, concentrated at 200 to 1800 bp. Sixteen primers amplified 206 bands in total, of which 173 bands were polymorphic with a polymorphism ratio of 83.98%. Each primer amplified 10.81 polymorphic bands on average. The data were then used to construct a phylogenetic tree using unweighted pair group method with arithmetic mean methods. Clustering analysis showed that the genetic relationships among the varieties were not only related to the genetic background or geographic origin, but also to the flowering phase, flower color, and flower type. Our data also indicated that iPBS markers were useful tools for classifying tree peony germplasms and for tree peony breeding, and the specific bands were helpful for molecular identification of tree peony varieties. PMID:26214434

  10. Determination of Genetic Diversity among Korean Hanwoo Cattle Based on Physical Characteristics

    PubMed Central

    Choi, T. J.; Lee, S. S.; Yoon, D. H.; Kang, H. S.; Kim, C. D.; Hwang, I. H.; Kim, C. Y.; Jin, X.; Yang, C. G.; Seo, K. S.

    2012-01-01

    This study was conducted to establish genetic criteria for phenotypic characteristics of Hanwoo cattle based on allele frequencies and genetic variance analysis using microsatellite markers. Analysis of the genetic diversity among 399 Hanwoo cattle classified according to nose pigmentation and coat color was carried out using 22 microsatellite markers. The results revealed that the INRA035 locus was associated with the highest Fis (0.536). Given that the Fis value for the Hanwoo INRA035 population ranged from 0.533 (white) to 1.000 (white spotted), this finding was consistent with the loci being fixed in Hanwoo cattle. Expected heterozygosities of the Hanwoo groups classified by coat colors and degree of nose pigmentation ranged from 0.689±0.023 (Holstein) to 0.743±0.021 (nose pigmentation level of d). Normal Hanwoo and animals with a mixed white coat showed the closest relationship because the lowest DA value was observed between these groups. However, a pair-wise differentiation test of Fst showed no significant difference among the Hanwoo groups classified by coat color and degree of nose pigmentation (p<0.01). Moreover, results of the neighbor-joining tree based on a DA genetic distance matrix within 399 Hanwoo individuals and principal component analyses confirmed that different groups of cattle with mixed coat color and nose pigmentation formed other specific groups representing Hanwoo genetic and phenotypic characteristics. The results of this study support a relaxation of policies regulating bull selection or animal registration in an effort to minimize financial loss, and could provide basic information that can be used for establishing criteria to classify Hanwoo phenotypes. PMID:25049682

  11. Genetic Variability and Geographic Diversity of the Common Bed Bug (Hemiptera: Cimicidae) Populations from the Midwest Using Microsatellite Markers.

    PubMed

    Narain, Ralph B; Lalithambika, Sreedevi; Kamble, Shripat T

    2015-07-01

    With the recent global resurgence of the bed bugs (Cimex lectularius L.), there is a need to better understand its biology, ecology, and ability to establish populations. Bed bugs are domestic pests that feed mainly on mammalian blood. Although bed bugs have not been implicated as vectors of pathogens, their biting activity inflicts severe insomnia and allergic reactions. Moreover, they have recently developed resistance to various insecticides, which requires further molecular research to determine genetic variation and appropriate interventions. Population dynamics, including genetic differentiation and genetic distance of 10 populations from the Midwest were analyzed in this study. The bed bug samples collected by pest control companies were genotyped using eight species-specific microsatellite markers. Results showed all eight markers were polymorphic, with 8-16 alleles per locus, suggesting high genetic diversity. The FST values were >0.25, signifying pronounced genetic differentiation. The G-test results also indicated high genetic differentiation among populations. The frequency of the most common allele across all eight loci was 0.42. The coefficient of relatedness between each of the populations was >0.5, indicative of sibling or parent-offspring relationships, while the FIS and its confidence interval values were statistically insignificant within the populations tested. The populations departed from Hardy-Weinberg equilibrium, possibly because of high heterozygosity. The genetic distance analysis using a neighbor-joining tree showed that the populations from Kansas City, MO, were genetically separate from most of those from Nebraska, indicating a geographic pattern of genetic structure. Our study demonstrated the effectiveness of using microsatellite markers to study bed bugs population structure, thereby improving our understanding of bed bug population dynamics in the Midwest. Overall, this study showed a high genetic diversity and identified several

  12. Levels of genetic diversity and taxonomic status of Epinephelus species in United Arab Emirates fish markets.

    PubMed

    Ketchum, Remi N; Dieng, Mame M; Vaughan, Grace O; Burt, John A; Idaghdour, Youssef

    2016-04-30

    Understanding the patterns of genetic diversity of fish species is essential for marine conservation and management. This is particularly important in the Arabian Gulf where marine life is subject to extreme environmental conditions that could impact genetic diversity. Here we assess genetic diversity of the most commercially important fish in the United Arab Emirates; groupers (Epinephelus spp.). Sequencing of 973 bp mitochondrial DNA from 140 tissue samples collected in four main fish markets revealed 58 haplotypes clustered within three groups. Data analysis revealed the presence of three distinct Epinephelus species being marketed as one species (hammour): Epinephelus coioides, Epinephelus areolatus and Epinephelus bleekeri. We report species-specific genetic markers and demonstrate that all three species exhibit relatively low levels of genetic variation, reflecting the effect of overfishing and environmental pressures. In light of the genetic evidence presented here, conservation and management of groupers in the UAE warrant the implementation of species-specific measures. PMID:26656801

  13. Hybrid origin of a cichlid population in Lake Malawi: implications for genetic variation and species diversity.

    PubMed

    Smith, Peter F; Konings, Ad; Kornfield, Irv

    2003-09-01

    The importance of species recognition to taxonomic diversity among Lake Malawi cichlids has been frequently discussed. Hybridization - the apparent breakdown of species recognition - has been observed sporadically among cichlids and has been viewed as both a constructive and a destructive force with respect to species diversity. Here we provide genetic evidence of a natural hybrid cichlid population with a unique colour phenotype and elevated levels of genetic variation. We discuss the potential evolutionary consequences of interspecific hybridization in Lake Malawi cichlids and propose that the role of hybridization in generating both genetic variability and species diversity of Lake Malawi cichlids warrants further consideration. PMID:12919487

  14. Historical data refute recent range contraction as cause of low genetic diversity in isolated frog populations.

    PubMed

    Hoffman, Eric A; Blouin, Michael S

    2004-02-01

    This study tested whether low genetic diversity in remnant populations of a declining amphibian is best explained by recent bottlenecks or by a history of being peripheral. We compared diversity from eight microsatellite loci in historical and extant populations from the interior and former periphery of the species' range. We found that historic peripheral populations already had reduced levels of genetic variation before the range contraction. Therefore, low diversity in remnants could not be ascribed to recent range contractions. This study shows that a common conservation strategy for rescuing genetically depauperate populations, artificial gene flow, may often be unwarranted and detrimental to evolutionarily important peripheral populations. PMID:14717886

  15. Genetic diversity among toxigenic and nontoxigenic Vibrio cholerae O1 isolated from the Western Hemisphere.

    PubMed Central

    Chen, F.; Evins, G. M.; Cook, W. L.; Almeida, R.; Hargrett-Bean, N.; Wachsmuth, K.

    1991-01-01

    Multilocus enzyme electrophoresis was used to examine genetic relationships among and between toxigenic and non-toxigenic isolates of Vibrio cholerae O1 obtained from patients and the environment in the US Gulf Coast and surrounding areas. A total of 23 toxigenic and 23 non-toxigenic strains were examined. All the toxigenic and 7 of the non-toxigenic strains had the same alleles at 16 enzyme loci, whereas the balance of the nontoxigenic strains had 9 distinct combinations of alleles. This study suggests that all of the toxigenic strains belong to a single clone, and that while some of the non-toxigenic isolates were related, most were of diverse origin. PMID:1879486

  16. The Relationship Between Burnout and Occupational Stress in Genetic Counselors.

    PubMed

    Johnstone, Brittney; Kaiser, Amy; Injeyan, Marie C; Sappleton, Karen; Chitayat, David; Stephens, Derek; Shuman, Cheryl

    2016-08-01

    Burnout represents a critical disruption in an individual's relationship with work, resulting in a state of exhaustion in which one's occupational value and capacity to perform are questioned. Burnout can negatively affect an individual's personal life, as well as employers in terms of decreased work quality, patient/client satisfaction, and employee retention. Occupational stress is a known contributor to burnout and occurs as a result of employment requirements and factors intrinsic to the work environment. Empirical research examining genetic counselor-specific burnout is limited; however, existing data suggests that genetic counselors are at increased risk for burnout. To investigate the relationship between occupational stress and burnout in genetic counselors, we administered an online survey to members of three genetic counselor professional organizations. Validated measures included the Maslach Burnout Inventory-General Survey (an instrument measuring burnout on three subscales: exhaustion, cynicism, and professional efficacy) and the Occupational Stress Inventory-Revised (an instrument measuring occupational stress on 14 subscales). Of the 353 respondents, more than 40 % had either considered leaving or left their job role due to burnout. Multiple regression analysis yielded significant predictors for burnout risk. The identified sets of predictors account for approximately 59 % of the variance in exhaustion, 58 % of the variance in cynicism, and 43 % of the variance in professional efficacy. Our data confirm that a significant number of genetic counselors experience burnout and that burnout is correlated with specific aspects of occupational stress. Based on these findings, practice and research recommendations are presented. PMID:27228983

  17. Reduction of Genetic Diversity of the Harpy Eagle in Brazilian Tropical Forests.

    PubMed

    Banhos, Aureo; Hrbek, Tomas; Sanaiotti, Tânia M; Farias, Izeni Pires

    2016-01-01

    Habitat loss and fragmentation intensify the effects of genetic drift and endogamy, reducing genetic variability of populations with serious consequences for wildlife conservation. The Harpy Eagle (Harpia harpyja) is a forest dwelling species that is considered near threatened and suffers from habitat loss in the forests of the Neotropical region. In this study, 72 historical and current samples were assessed using eight autosomal microsatellite markers to investigate the distribution of genetic diversity of the Harpy Eagle of the Amazonian and Atlantic forests in Brazil. The results showed that the genetic diversity of Harpy Eagle decreased in the regions where deforestation is intense in the southern Amazon and Atlantic Forest. PMID:26871719

  18. Reduction of Genetic Diversity of the Harpy Eagle in Brazilian Tropical Forests

    PubMed Central

    2016-01-01

    Habitat loss and fragmentation intensify the effects of genetic drift and endogamy, reducing genetic variability of populations with serious consequences for wildlife conservation. The Harpy Eagle (Harpia harpyja) is a forest dwelling species that is considered near threatened and suffers from habitat loss in the forests of the Neotropical region. In this study, 72 historical and current samples were assessed using eight autosomal microsatellite markers to investigate the distribution of genetic diversity of the Harpy Eagle of the Amazonian and Atlantic forests in Brazil. The results showed that the genetic diversity of Harpy Eagle decreased in the regions where deforestation is intense in the southern Amazon and Atlantic Forest. PMID:26871719

  19. Population Genetic Diversity in the Australian ‘Seascape’: A Bioregion Approach

    PubMed Central

    Pope, Lisa C.; Riginos, Cynthia; Ovenden, Jennifer; Keyse, Jude; Blomberg, Simon P.

    2015-01-01

    Genetic diversity within species may promote resilience to environmental change, yet little is known about how such variation is distributed at broad geographic scales. Here we develop a novel Bayesian methodology to analyse multi-species genetic diversity data in order to identify regions of high or low genetic diversity. We apply this method to co-distributed taxa from Australian marine waters. We extracted published summary statistics of population genetic diversity from 118 studies of 101 species and > 1000 populations from the Australian marine economic zone. We analysed these data using two approaches: a linear mixed model for standardised data, and a mixed beta-regression for unstandardised data, within a Bayesian framework. Our beta-regression approach performed better than models using standardised data, based on posterior predictive tests. The best model included region (Integrated Marine and Coastal Regionalisation of Australia (IMCRA) bioregions), latitude and latitude squared. Removing region as an explanatory variable greatly reduced model performance (delta DIC 23.4). Several bioregions were identified as possessing notably high genetic diversity. Genetic diversity increased towards the equator with a ‘hump’ in diversity across the range studied (−9.4 to −43.7°S). Our results suggest that factors correlated with both region and latitude play a role in shaping intra-specific genetic diversity, and that bioregion can be a useful management unit for intra-specific as well as species biodiversity. Our novel statistical model should prove useful for future analyses of within species genetic diversity at broad taxonomic and geographic scales. PMID:26375711

  20. Prevalence and genetic diversity of clinical Vibrio parahaemolyticus isolates from China, revealed by multilocus sequence typing scheme.

    PubMed

    Han, Dongsheng; Tang, Hui; Ren, Chuanli; Wang, Guangzhou; Zhou, Lin; Han, Chongxu

    2015-01-01

    The population structure of clinical Vibrio parahaemolyticus isolates spreading in China remains undefined. We brought 218 clinical isolates from the pubMLST database originating from different regions of China collected since the year of 1990, analyzed by multilocus sequence typing (MLST), to elucidate the prevalence and genetic diversity of V. parahaemolyticus circulating in Chinese population. The MLST scheme produced 137 sequence types (STs). These STs were clustered into six clonal complexes (CCs), six doublets, and 91 singletons, exhibiting a high level of genetic diversity. However, less diversity was displayed on the peptide level: only 46 different peptide sequence type (pST) were generated, with pST2 (44.0%, 96/218) and pST1 (15.1%, 33/218) the predominant. Further analysis confirmed all the pSTs belong to a single complex founded by pST1, pST2, pST3, and pST4. recA presented the highest degree of nucleotide diversity (0.026) and the largest number of variable sites (176) on the nucleotide level. pyrC was the most diverse locus on the peptide level, possessing the highest percentage of variable sites (9.2%, 15/163). Significant linkage disequilibrium with the alleles was detected when the Standardized Index of Association (I(S) A ) was calculated both for the entire isolates collection (0.7169, P < 0.01) and for the 137 STs (I(S) A = 0.2648, P < 0.01). In conclusion, we provide an overview of prevalence and genetic diversity of clinical V. parahaemolyticus spreading in Chinese population using MLST analysis. The results would offer genetic evidences for uncovering the microevolution relationship of V. parahaemolyticus populations. PMID:25914691

  1. Life history influences how fire affects genetic diversity in two lizard species.

    PubMed

    Smith, Annabel L; Bull, C Michael; Gardner, Michael G; Driscoll, Don A

    2014-05-01

    'Fire mosaics' are often maintained in landscapes to promote successional diversity in vegetation with little understanding of how this will affect ecological processes in animal populations such as dispersal, social organization and re-establishment. To investigate these processes, we conducted a replicated, spatiotemporal landscape genetics study of two Australian woodland lizard species [Amphibolurus norrisi (Agamidae) and Ctenotus atlas (Scincidae)]. Agamids have a more complex social and territory structure than skinks, so fire might have a greater impact on their population structure and thus genetic diversity. Genetic diversity increased with time since fire in C. atlas and decreased with time since fire in A. norrisi. For C. atlas, this might reflect its increasing population size after fire, but we could not detect increased gene flow that would reduce the loss of genetic diversity through genetic drift. Using landscape resistance analyses, we found no evidence that postfire habitat succession or topography affected gene flow in either species and we were unable to distinguish between survival and immigration as modes of postfire re-establishment. In A. norrisi, we detected female-biased dispersal, likely reflecting its territorial social structure and polygynous mating system. The increased genetic diversity in A. norrisi in recently burnt habitat might reflect a temporary disruption of its territoriality and increased male dispersal, a hypothesis that was supported with a simulation experiment. Our results suggest that the effects of disturbance on genetic diversity will be stronger for species with territorial social organization. PMID:24750427

  2. Analyses of genetic diversity in five Canadian dairy breeds using pedigree data.

    PubMed

    Melka, M G; Stachowicz, K; Miglior, F; Schenkel, F S

    2013-12-01

    The issue of loss of animal genetic diversity, worldwide in general and in Canada in particular, has become noteworthy. The objective of this study was to analyze the trend in within-breed genetic diversity and identify the major causes of loss of genetic diversity in five Canadian dairy breeds. Pedigrees were analyzed using the software EVA (evolutionary algorithm) and CFC (contribution, inbreeding, coancestry), and a FORTRAN package for pedigree analysis suited for large populations (PEDIG). The average rate of inbreeding in the last generation analyzed (2003 to 2007) was 0.93, 1.07, 1.26, 1.09 and 0.80% for Ayrshire, Brown Swiss, Canadienne, Guernsey and Milking Shorthorn, respectively, and the corresponding estimated effective population sizes were 54, 47, 40, 46 and 66, respectively. Based on coancestry coefficients, the estimated effective population sizes in the last generation were 62, 76, 43, 61 and 76, respectively. The estimated percentage of genetic diversity lost within each breed over the last four decades was 6, 7, 11, 8 and 5%, respectively. The relative proportion of genetic diversity lost due to random genetic drift in the five breeds ranged between 59.3% and 89.7%. The results indicate that each breed has lost genetic diversity over time and that the loss is gaining momentum due to increasing rates of inbreeding and reduced effective population sizes. Therefore, strategies to decrease rate of inbreeding and increase the effective population size are advised. PMID:24079800

  3. Elucidating the temporal and spatial dynamics of Biomphalaria glabrata genetic diversity in three Brazilian villages

    PubMed Central

    Thiele, Elizabeth A.; Corrêa-Oliveira, Guilherme; Gazzinelli, Andrea; Minchella, Dennis J.

    2013-01-01

    Objective The freshwater snail Biomphalaria glabrata is the principal intermediate host for the parasite Schistosoma mansoni within Brazil. We assessed the potential effects of snail population dynamics on parasite transmission dynamics via population genetics. Methods We sampled snail populations located within the confines of three schistosome-endemic villages in the state of Minas Gerais, Brazil. Snails were collected from individual microhabitats following seasonal periods of flood and drought over the span of one year. Snail spatio-temporal genetic diversity and population differentiation of 598 snails from 12 sites were assessed at 7 microsatellite loci. Results Average genetic diversity was relatively low, ranging from 4.29 to 9.43 alleles per locus and, overall, subpopulations tended to exhibit heterozygote deficits. Genetic diversity was highly spatially partitioned among subpopulations, while virtually no partitioning was observed across temporal sampling. Comparison with previously published parasite genetic diversity data indicated that S. mansoni populations are significantly more variable and less subdivided than those of the B. glabrata intermediate hosts. Discussion Within individual Brazilian villages, observed distributions of snail genetic diversity indicate temporal stability and very restricted gene flow. This is contrary to observations of schistosome genetic diversity over the same spatial scale, corroborating the expectation that parasite gene flow at the level of individual villages is likely driven by vertebrate host movement. PMID:23911082

  4. Local contamination in relation to population genetic diversity and resilience of an arctic marine amphipod.

    PubMed

    Bach, Lis; Dahllöf, Ingela

    2012-06-15

    The objective of this study was to investigate whether populations inhabiting a contaminated environment are affected in terms of decreased genetic diversity due to selection of tolerant genotypes and if such effect carries a cost. Marine arctic amphipod populations (Orchomenella pinguis) were collected from sites within a contaminated fjord, as well as from sites outside the fjord on the west-coast of Greenland over three years (2006-2008). Impacts on genetic diversity, effects on resilience such as development of tolerance and cost were determined. AFLP-analysis was used to explore within and between population genetic diversity, and exposure studies were performed where the populations were subjected to known and unknown stressors to assess resilience. Populations collected at three contaminated sites all had reduced genetic diversity in 2007 compared to populations outside the fjord. This pattern was different in 2008 as all contaminated site populations increased in diversity, whereas a decrease in diversity occurred at the outer sites. However, tolerance, but even more so, cost, was related to contamination exposure in 2008, in spite of the shift in genetic diversity. We suggest that contamination rapidly induces effects that can be captured as tolerance and associated cost, whereas effects on genetic diversity can be difficult to separate from recent migration events that dilute eventual decreases in diversity due to contamination pressure. As long as impacted populations can be influenced by migration events that increase the genetic diversity and add health to an affected population, populations in contaminated areas may have enhanced probability of survival. PMID:22421731

  5. Genetic strategies for probing conscientiousness and its relationship to aging.

    PubMed

    South, Susan C; Krueger, Robert F

    2014-05-01

    Conscientiousness is an important trait for understanding healthy aging. The present article addresses how behavioral and molecular genetics methodologies can aid in furthering explicating the link between conscientiousness and aspects of health and well-being in later life. We review the etiology of conscientiousness documented by both quantitative and molecular genetics methods. We also discuss the ways behavior genetics can be used to continue to help refine the concept of conscientiousness and to help identify points of etiological overlap between conscientiousness and healthy aging outcomes. Phenotypic research has established nontrivial associations between conscientiousness and important outcomes, but behavior genetic methods can determine what the causal (genetic and environmental) mechanisms are behind these relationships. An empirical example of one of these techniques is provided using twin data from the Midlife in the United States (MIDUS) study. We demonstrate that conscientiousness moderates genetic and environmental influences on problem alcohol use, such that greater levels of conscientiousness buffer against the random effects of the environment. Finally, suggestions for future work in this area are discussed. PMID:23181432

  6. Genetic diversity in Capsicum baccatum is significantly influenced by its ecogeographical distribution

    PubMed Central

    2012-01-01

    Background The exotic pepper species Capsicum baccatum,