Science.gov

Sample records for genetic network controlling

  1. Optimizing the controllability of arbitrary networks with genetic algorithm

    NASA Astrophysics Data System (ADS)

    Li, Xin-Feng; Lu, Zhe-Ming

    2016-04-01

    Recently, as the controllability of complex networks attracts much attention, how to optimize networks' controllability has become a common and urgent problem. In this paper, we develop an efficient genetic algorithm oriented optimization tool to optimize the controllability of arbitrary networks consisting of both state nodes and control nodes under Popov-Belevitch-Hautus rank condition. The experimental results on a number of benchmark networks show the effectiveness of this method and the evolution of network topology is captured. Furthermore, we explore how network structure affects its controllability and find that the sparser a network is, the more control nodes are needed to control it and the larger the differences between node degrees, the more control nodes are needed to achieve the full control. Our framework provides an alternative to controllability optimization and can be applied to arbitrary networks without any limitations.

  2. Identification of genetic networks.

    PubMed Central

    Xiong, Momiao; Li, Jun; Fang, Xiangzhong

    2004-01-01

    In this report, we propose the use of structural equations as a tool for identifying and modeling genetic networks and genetic algorithms for searching the most likely genetic networks that best fit the data. After genetic networks are identified, it is fundamental to identify those networks influencing cell phenotypes. To accomplish this task we extend the concept of differential expression of the genes, widely used in gene expression data analysis, to genetic networks. We propose a definition for the differential expression of a genetic network and use the generalized T2 statistic to measure the ability of genetic networks to distinguish different phenotypes. However, describing the differential expression of genetic networks is not enough for understanding biological systems because differences in the expression of genetic networks do not directly reflect regulatory strength between gene activities. Therefore, in this report we also introduce the concept of differentially regulated genetic networks, which has the potential to assess changes of gene regulation in response to perturbation in the environment and may provide new insights into the mechanism of diseases and biological processes. We propose five novel statistics to measure the differences in regulation of genetic networks. To illustrate the concepts and methods for reconstruction of genetic networks and identification of association of genetic networks with function, we applied the proposed models and algorithms to three data sets. PMID:15020486

  3. Buying and Selling Stocks of Multi Brands Using Genetic Network Programming with Control Nodes

    NASA Astrophysics Data System (ADS)

    Ohkawa, Etsushi; Chen, Yan; Bao, Zhiguo; Mabu, Shingo; Shimada, Kaoru; Hirasawa, Kotaro

    A new evolutionary method named “Genetic Network Programming with control nodes, GNPcn” has been applied to determine the timing of buying or selling stocks. GNPcn represents its solutions as directed graph structures which has some useful features inherently. For example, GNPcn has an implicit memory function which memorizes the past action sequences of agents and GNPcn can re-use nodes repeatedly in the network flow, so very compact graph structures can be made. GNPcn can determine the strategy of buying and selling stocks of multi issues. The effectiveness of the proposed method is confirmed by simulations.

  4. Intricate environment-modulated genetic networks control isoflavone accumulation in soybean seeds

    PubMed Central

    2010-01-01

    Background Soybean (Glycine max [L] Merr.) seed isoflavones have long been considered a desirable trait to target in selection programs for their contribution to human health and plant defense systems. However, attempts to modify seed isoflavone contents have not always produced the expected results because their genetic basis is polygenic and complex. Undoubtedly, the extreme variability that seed isoflavones display over environments has obscured our understanding of the genetics involved. Results In this study, a mapping population of RILs with three replicates was analyzed in four different environments (two locations over two years). We found a total of thirty-five main-effect genomic regions and many epistatic interactions controlling genistein, daidzein, glycitein and total isoflavone accumulation in seeds. The use of distinct environments permitted detection of a great number of environment-modulated and minor-effect QTL. Our findings suggest that isoflavone seed concentration is controlled by a complex network of multiple minor-effect loci interconnected by a dense epistatic map of interactions. The magnitude and significance of the effects of many of the nodes and connections in the network varied depending on the environmental conditions. In an attempt to unravel the genetic architecture underlying the traits studied, we searched on a genome-wide scale for genomic regions homologous to the most important identified isoflavone biosynthetic genes. We identified putative candidate genes for several of the main-effect and epistatic QTL and for QTL reported by other groups. Conclusions To better understand the underlying genetics of isoflavone accumulation, we performed a large scale analysis to identify genomic regions associated with isoflavone concentrations. We not only identified a number of such regions, but also found that they can interact with one another and with the environment to form a complex adaptable network controlling seed isoflavone levels

  5. Robust control of uncertain nonlinear switched genetic regulatory networks with time delays: A redesign approach.

    PubMed

    Moradi, Hojjatullah; Majd, Vahid Johari

    2016-05-01

    In this paper, the problem of robust stability of nonlinear genetic regulatory networks (GRNs) is investigated. The developed method is an integral sliding mode control based redesign for a class of perturbed dissipative switched GRNs with time delays. The control law is redesigned by modifying the dissipativity-based control law that was designed for the unperturbed GRNs with time delays. The switched GRNs are switched from one mode to another based on time, state, etc. Although, the active subsystem is known in any instance, but the switching law and the transition probabilities are not known. The model for each mode is considered affine with matched and unmatched perturbations. The redesigned control law forces the GRN to always remain on the sliding surface and the dissipativity is maintained from the initial time in the presence of the norm-bounded perturbations. The global stability of the perturbed GRNs is maintained if the unperturbed model is globally dissipative. The designed control law for the perturbed GRNs guarantees robust exponential or asymptotic stability of the closed-loop network depending on the type of stability of the unperturbed model. The results are applied to a nonlinear switched GRN, and its convergence to the origin is verified by simulation. PMID:26924600

  6. Understanding genetic regulatory networks

    NASA Astrophysics Data System (ADS)

    Kauffman, Stuart

    2003-04-01

    Random Boolean networks (RBM) were introduced about 35 years ago as first crude models of genetic regulatory networks. RBNs are comprised of N on-off genes, connected by a randomly assigned regulatory wiring diagram where each gene has K inputs, and each gene is controlled by a randomly assigned Boolean function. This procedure samples at random from the ensemble of all possible NK Boolean networks. The central ideas are to study the typical, or generic properties of this ensemble, and see 1) whether characteristic differences appear as K and biases in Boolean functions are introducted, and 2) whether a subclass of this ensemble has properties matching real cells. Such networks behave in an ordered or a chaotic regime, with a phase transition, "the edge of chaos" between the two regimes. Networks with continuous variables exhibit the same two regimes. Substantial evidence suggests that real cells are in the ordered regime. A key concept is that of an attractor. This is a reentrant trajectory of states of the network, called a state cycle. The central biological interpretation is that cell types are attractors. A number of properties differentiate the ordered and chaotic regimes. These include the size and number of attractors, the existence in the ordered regime of a percolating "sea" of genes frozen in the on or off state, with a remainder of isolated twinkling islands of genes, a power law distribution of avalanches of gene activity changes following perturbation to a single gene in the ordered regime versus a similar power law distribution plus a spike of enormous avalanches of gene changes in the chaotic regime, and the existence of branching pathway of "differentiation" between attractors induced by perturbations in the ordered regime. Noise is serious issue, since noise disrupts attractors. But numerical evidence suggests that attractors can be made very stable to noise, and meanwhile, metaplasias may be a biological manifestation of noise. As we learn more

  7. Elevator Group Supervisory Control System Using Genetic Network Programming with Macro Nodes and Reinforcement Learning

    NASA Astrophysics Data System (ADS)

    Zhou, Jin; Yu, Lu; Mabu, Shingo; Hirasawa, Kotaro; Hu, Jinglu; Markon, Sandor

    Elevator Group Supervisory Control System (EGSCS) is a very large scale stochastic dynamic optimization problem. Due to its vast state space, significant uncertainty and numerous resource constraints such as finite car capacities and registered hall/car calls, it is hard to manage EGSCS using conventional control methods. Recently, many solutions for EGSCS using Artificial Intelligence (AI) technologies have been reported. Genetic Network Programming (GNP), which is proposed as a new evolutionary computation method several years ago, is also proved to be efficient when applied to EGSCS problem. In this paper, we propose an extended algorithm for EGSCS by introducing Reinforcement Learning (RL) into GNP framework, and an improvement of the EGSCS' performances is expected since the efficiency of GNP with RL has been clarified in some other studies like tile-world problem. Simulation tests using traffic flows in a typical office building have been made, and the results show an actual improvement of the EGSCS' performances comparing to the algorithms using original GNP and conventional control methods. Furthermore, as a further study, an importance weight optimization algorithm is employed based on GNP with RL and its efficiency is also verified with the better performances.

  8. Genetic Networks in Osseointegration

    PubMed Central

    Nishimura, I.

    2013-01-01

    Osseointegration-based dental implants have become a well-accepted treatment modality for complete and partial edentulism. The success of this treatment largely depends on the stable integration and maintenance of implant fixtures in alveolar bone; however, the molecular and cellular mechanisms regulating this unique tissue reaction have not yet been fully uncovered. Radiographic and histologic observations suggest the sustained retention of peri-implant bone without an apparent susceptibility to catabolic bone remodeling; therefore, implant-induced bone formation continues to be intensively investigated. Increasing numbers of whole-genome transcriptome studies suggest complex molecular pathways that may play putative roles in osseointegration. This review highlights genetic networks related to bone quality, the transient chondrogenic phase, the vitamin D axis, and the peripheral circadian rhythm to elute the regulatory mechanisms underlying the establishment and maintenance of osseointegration. PMID:24158334

  9. Control of Stochastic Master Equation Models of Genetic Regulatory Networks by Approximating Their Average Behavior

    NASA Astrophysics Data System (ADS)

    Umut Caglar, Mehmet; Pal, Ranadip

    2010-10-01

    The central dogma of molecular biology states that ``information cannot be transferred back from protein to either protein or nucleic acid.'' However, this assumption is not exactly correct in most of the cases. There are a lot of feedback loops and interactions between different levels of systems. These types of interactions are hard to analyze due to the lack of data in the cellular level and probabilistic nature of interactions. Probabilistic models like Stochastic Master Equation (SME) or deterministic models like differential equations (DE) can be used to analyze these types of interactions. SME models based on chemical master equation (CME) can provide detailed representation of genetic regulatory system, but their use is restricted by the large data requirements and computational costs of calculations. The differential equations models on the other hand, have low calculation costs and much more adequate to generate control procedures on the system; but they are not adequate to investigate the probabilistic nature of interactions. In this work the success of the mapping between SME and DE is analyzed, and the success of a control policy generated by DE model with respect to SME model is examined. Index Terms--- Stochastic Master Equation models, Differential Equation Models, Control Policy Design, Systems biology

  10. Peer Network Drinking Predicts Increased Alcohol Use From Adolescence to Early Adulthood After Controlling for Genetic and Shared Environmental Selection

    PubMed Central

    Cruz, Jennifer E.; Emery, Robert E.; Turkheimer, Eric

    2013-01-01

    Research consistently links adolescents' and young adults' drinking with their peers' alcohol intake. In interpreting this correlation, 2 essential questions are often overlooked. First, which peers are more important, best friends or broader social networks? Second, do peers cause increased drinking, or do young people select friends whose drinking habits match their own? The present study combines social network analyses with family (twin and sibling) designs to answer these questions via data from the National Longitudinal Study of Adolescent Health. Analysis of peer nomination data from 134 schools (n = 82,629) and 1,846 twin and sibling pairs shows that peer network substance use predicts changes in drinking from adolescence into young adult life even after controlling for genetic and shared environmental selection, as well as best friend substance use. This effect was particularly strong for high-intensity friendships. Although the peer-adolescent drinking correlation is partially explained by selection, the present finding offers powerful evidence that peers also cause increased drinking. PMID:22390657

  11. Synchronization of electronic genetic networks.

    PubMed

    Wagemakers, Alexandre; Buldú, Javier M; García-Ojalvo, Jordi; Sanjuán, Miguel A F

    2006-03-01

    We describe a simple analog electronic circuit that mimics the behavior of a well-known synthetic gene oscillator, the repressilator, which represents a set of three genes repressing one another. Synchronization of a population of such units is thoroughly studied, with the aim to compare the role of global coupling with that of global forcing on the population. Our results show that coupling is much more efficient than forcing in leading the gene population to synchronized oscillations. Furthermore, a modification of the proposed analog circuit leads to a simple electronic version of a genetic toggle switch, which is a simple network of two mutual repressor genes, where control by external forcing is also analyzed. PMID:16599758

  12. Variable Size Genetic Network Programming

    NASA Astrophysics Data System (ADS)

    Katagiri, Hironobu; Hirasawa, Kotaro; Hu, Jinglu; Murata, Junichi

    Genetic Network Programming (GNP) is a kind of volutionary methods, which evolves arbitrary directed graph programs. Previously, the program size of GNP was fixed. In the paper, a new method is proposed, where the program size is adaptively changed depending on the frequency of the use of nodes. To control and to decide a program size are important and difficult problems in Evolutionary Computation, especially, a well-known crossover operator tends to cause bloat. We introduce two additional operators, add operator and delete operator, that can change the number of each kind of nodes based on whether a node function is important in the environment or not. Simulation results shows that the proposed method brings about extremely better results compared with ordinary fixed size GNP.

  13. A Double-Deck Elevator Group Supervisory Control System with Destination Floor Guidance System Using Genetic Network Programming

    NASA Astrophysics Data System (ADS)

    Yu, Lu; Zhou, Jin; Mabu, Shingo; Hirasawa, Kotaro; Hu, Jinglu; Markon, Sandor

    The Elevator Group Supervisory Control Systems (EGSCS) are the control systems that systematically manage three or more elevators in order to efficiently transport the passengers in buildings. Double-deck elevators, where two elevators are connected with each other, serve passengers at two consecutive floors simultaneously. Double-deck Elevator systems (DDES) become more complex in their behavior than conventional single-deck elevator systems (SDES). Recently, Artificial Intelligence (AI) technology has been used in such complex systems. Genetic Network Programming (GNP), a graph-based evolutionary method, has been applied to EGSCS and its advantages are shown in some papers. GNP can obtain the strategy of a new hall call assignment to the optimal elevator when it performs crossover and mutation operations to judgment nodes and processing nodes. Meanwhile, Destination Floor Guidance System (DFGS) is installed in DDES, so that passengers can also input their destinations at elevator halls. In this paper, we have applied GNP to DDES and compared DFGS with normal systems. The waiting time and traveling time of DFGS are all improved because of getting more information from DFGS. The simulations showed the effectiveness of the double-deck elevators with DFGS in different building traffics.

  14. Comparison of Control Approaches in Genetic Regulatory Networks by Using Stochastic Master Equation Models, Probabilistic Boolean Network Models and Differential Equation Models and Estimated Error Analyzes

    NASA Astrophysics Data System (ADS)

    Caglar, Mehmet Umut; Pal, Ranadip

    2011-03-01

    Central dogma of molecular biology states that ``information cannot be transferred back from protein to either protein or nucleic acid''. However, this assumption is not exactly correct in most of the cases. There are a lot of feedback loops and interactions between different levels of systems. These types of interactions are hard to analyze due to the lack of cell level data and probabilistic - nonlinear nature of interactions. Several models widely used to analyze and simulate these types of nonlinear interactions. Stochastic Master Equation (SME) models give probabilistic nature of the interactions in a detailed manner, with a high calculation cost. On the other hand Probabilistic Boolean Network (PBN) models give a coarse scale picture of the stochastic processes, with a less calculation cost. Differential Equation (DE) models give the time evolution of mean values of processes in a highly cost effective way. The understanding of the relations between the predictions of these models is important to understand the reliability of the simulations of genetic regulatory networks. In this work the success of the mapping between SME, PBN and DE models is analyzed and the accuracy and affectivity of the control policies generated by using PBN and DE models is compared.

  15. Genetic control of mosquitoes.

    PubMed

    Alphey, Luke

    2014-01-01

    Genetics can potentially provide new, species-specific, environmentally friendly methods for mosquito control. Genetic control strategies aim either to suppress target populations or to introduce a harm-reducing novel trait. Different approaches differ considerably in their properties, especially between self-limiting strategies, where the modification has limited persistence, and self-sustaining strategies, which are intended to persist indefinitely in the target population and may invade other populations. Several methods with different molecular biology are under development and the first field trials have been completed successfully. PMID:24160434

  16. Control of Multilayer Networks

    PubMed Central

    Menichetti, Giulia; Dall’Asta, Luca; Bianconi, Ginestra

    2016-01-01

    The controllability of a network is a theoretical problem of relevance in a variety of contexts ranging from financial markets to the brain. Until now, network controllability has been characterized only on isolated networks, while the vast majority of complex systems are formed by multilayer networks. Here we build a theoretical framework for the linear controllability of multilayer networks by mapping the problem into a combinatorial matching problem. We found that correlating the external signals in the different layers can significantly reduce the multiplex network robustness to node removal, as it can be seen in conjunction with a hybrid phase transition occurring in interacting Poisson networks. Moreover we observe that multilayer networks can stabilize the fully controllable multiplex network configuration that can be stable also when the full controllability of the single network is not stable. PMID:26869210

  17. Adaptation by Plasticity of Genetic Regulatory Networks

    NASA Astrophysics Data System (ADS)

    Brenner, Naama

    2007-03-01

    Genetic regulatory networks have an essential role in adaptation and evolution of cell populations. This role is strongly related to their dynamic properties over intermediate-to-long time scales. We have used the budding yeast as a model Eukaryote to study the long-term dynamics of the genetic regulatory system and its significance in evolution. A continuous cell growth technique (chemostat) allows us to monitor these systems over long times under controlled condition, enabling a quantitative characterization of dynamics: steady states and their stability, transients and relaxation. First, we have demonstrated adaptive dynamics in the GAL system, a classic model for a Eukaryotic genetic switch, induced and repressed by different carbon sources in the environment. We found that both induction and repression are only transient responses; over several generations, the system converges to a single robust steady state, independent of external conditions. Second, we explored the functional significance of such plasticity of the genetic regulatory network in evolution. We used genetic engineering to mimic the natural process of gene recruitment, placing the gene HIS3 under the regulation of the GAL system. Such genetic rewiring events are important in the evolution of gene regulation, but little is known about the physiological processes supporting them and the dynamics of their assimilation in a cell population. We have shown that cells carrying the rewired genome adapted to a demanding change of environment and stabilized a population, maintaining the adaptive state for hundreds of generations. Using genome-wide expression arrays we showed that underlying the observed adaptation is a global transcriptional programming that allowed tuning expression of the recruited gene to demands. Our results suggest that non-specific properties reflecting the natural plasticity of the regulatory network support adaptation of cells to novel challenges and enhance their evolvability.

  18. Temporal Genetic Modifications after Controlled Cortical Impact--Understanding Traumatic Brain Injury through a Systematic Network Approach.

    PubMed

    Wong, Yung-Hao; Wu, Chia-Chou; Wu, John Chung-Che; Lai, Hsien-Yong; Chen, Kai-Yun; Jheng, Bo-Ren; Chen, Mien-Cheng; Chang, Tzu-Hao; Chen, Bor-Sen

    2016-01-01

    Traumatic brain injury (TBI) is a primary injury caused by external physical force and also a secondary injury caused by biological processes such as metabolic, cellular, and other molecular events that eventually lead to brain cell death, tissue and nerve damage, and atrophy. It is a common disease process (as opposed to an event) that causes disabilities and high death rates. In order to treat all the repercussions of this injury, treatment becomes increasingly complex and difficult throughout the evolution of a TBI. Using high-throughput microarray data, we developed a systems biology approach to explore potential molecular mechanisms at four time points post-TBI (4, 8, 24, and 72 h), using a controlled cortical impact (CCI) model. We identified 27, 50, 48, and 59 significant proteins as network biomarkers at these four time points, respectively. We present their network structures to illustrate the protein-protein interactions (PPIs). We also identified UBC (Ubiquitin C), SUMO1, CDKN1A (cyclindependent kinase inhibitor 1A), and MYC as the core network biomarkers at the four time points, respectively. Using the functional analytical tool MetaCore™, we explored regulatory mechanisms and biological processes and conducted a statistical analysis of the four networks. The analytical results support some recent findings regarding TBI and provide additional guidance and directions for future research. PMID:26861311

  19. Temporal Genetic Modifications after Controlled Cortical Impact—Understanding Traumatic Brain Injury through a Systematic Network Approach

    PubMed Central

    Wong, Yung-Hao; Wu, Chia-Chou; Wu, John Chung-Che; Lai, Hsien-Yong; Chen, Kai-Yun; Jheng, Bo-Ren; Chen, Mien-Cheng; Chang, Tzu-Hao; Chen, Bor-Sen

    2016-01-01

    Traumatic brain injury (TBI) is a primary injury caused by external physical force and also a secondary injury caused by biological processes such as metabolic, cellular, and other molecular events that eventually lead to brain cell death, tissue and nerve damage, and atrophy. It is a common disease process (as opposed to an event) that causes disabilities and high death rates. In order to treat all the repercussions of this injury, treatment becomes increasingly complex and difficult throughout the evolution of a TBI. Using high-throughput microarray data, we developed a systems biology approach to explore potential molecular mechanisms at four time points post-TBI (4, 8, 24, and 72 h), using a controlled cortical impact (CCI) model. We identified 27, 50, 48, and 59 significant proteins as network biomarkers at these four time points, respectively. We present their network structures to illustrate the protein–protein interactions (PPIs). We also identified UBC (Ubiquitin C), SUMO1, CDKN1A (cyclindependent kinase inhibitor 1A), and MYC as the core network biomarkers at the four time points, respectively. Using the functional analytical tool MetaCore™, we explored regulatory mechanisms and biological processes and conducted a statistical analysis of the four networks. The analytical results support some recent findings regarding TBI and provide additional guidance and directions for future research. PMID:26861311

  20. Optimized intelligent control of a 2-degree of freedom robot for rehabilitation of lower limbs using neural network and genetic algorithm

    PubMed Central

    2013-01-01

    Background There is an increasing trend in using robots for medical purposes. One specific area is rehabilitation. Rehabilitation is one of the non-drug treatments in community health which means the restoration of the abilities to maximize independence. It is a prolonged work and costly labor. On the other hand, by using the flexible and efficient robots in rehabilitation area, this process will be more useful for handicapped patients. Methods In this study, a rule-based intelligent control methodology is proposed to mimic the behavior of a healthy limb in a satisfactory way by a 2-DOF planar robot. Inverse kinematic of the planar robot will be solved by neural networks and control parameters will be optimized by genetic algorithm, as rehabilitation progress. Results The results of simulations are presented by defining a physiotherapy simple mode on desired trajectory. MATLAB/Simulink is used for simulations. The system is capable of learning the action of the physiotherapist for each patient and imitating this behaviour in the absence of a physiotherapist that can be called robotherapy. Conclusions In this study, a therapeutic exercise planar 2-DOF robot is designed and controlled for lower-limb rehabilitation. The robot manipulator is controlled by combination of hybrid and adaptive controls. Some safety factors and stability constraints are defined and obtained. The robot is stopped when the safety factors are not satisfied. Kinematics of robot is estimated by an MLP neural network and proper control parameters are achieved using GA optimization. PMID:23945420

  1. Introduction to Focus Issue: Quantitative Approaches to Genetic Networks

    NASA Astrophysics Data System (ADS)

    Albert, Réka; Collins, James J.; Glass, Leon

    2013-06-01

    All cells of living organisms contain similar genetic instructions encoded in the organism's DNA. In any particular cell, the control of the expression of each different gene is regulated, in part, by binding of molecular complexes to specific regions of the DNA. The molecular complexes are composed of protein molecules, called transcription factors, combined with various other molecules such as hormones and drugs. Since transcription factors are coded by genes, cellular function is partially determined by genetic networks. Recent research is making large strides to understand both the structure and the function of these networks. Further, the emerging discipline of synthetic biology is engineering novel gene circuits with specific dynamic properties to advance both basic science and potential practical applications. Although there is not yet a universally accepted mathematical framework for studying the properties of genetic networks, the strong analogies between the activation and inhibition of gene expression and electric circuits suggest frameworks based on logical switching circuits. This focus issue provides a selection of papers reflecting current research directions in the quantitative analysis of genetic networks. The work extends from molecular models for the binding of proteins, to realistic detailed models of cellular metabolism. Between these extremes are simplified models in which genetic dynamics are modeled using classical methods of systems engineering, Boolean switching networks, differential equations that are continuous analogues of Boolean switching networks, and differential equations in which control is based on power law functions. The mathematical techniques are applied to study: (i) naturally occurring gene networks in living organisms including: cyanobacteria, Mycoplasma genitalium, fruit flies, immune cells in mammals; (ii) synthetic gene circuits in Escherichia coli and yeast; and (iii) electronic circuits modeling genetic networks

  2. Optimization of controlled release nanoparticle formulation of verapamil hydrochloride using artificial neural networks with genetic algorithm and response surface methodology.

    PubMed

    Li, Yongqiang; Abbaspour, Mohammadreza R; Grootendorst, Paul V; Rauth, Andrew M; Wu, Xiao Yu

    2015-08-01

    This study was performed to optimize the formulation of polymer-lipid hybrid nanoparticles (PLN) for the delivery of an ionic water-soluble drug, verapamil hydrochloride (VRP) and to investigate the roles of formulation factors. Modeling and optimization were conducted based on a spherical central composite design. Three formulation factors, i.e., weight ratio of drug to lipid (X1), and concentrations of Tween 80 (X2) and Pluronic F68 (X3), were chosen as independent variables. Drug loading efficiency (Y1) and mean particle size (Y2) of PLN were selected as dependent variables. The predictive performance of artificial neural networks (ANN) and the response surface methodology (RSM) were compared. As ANN was found to exhibit better recognition and generalization capability over RSM, multi-objective optimization of PLN was then conducted based upon the validated ANN models and continuous genetic algorithms (GA). The optimal PLN possess a high drug loading efficiency (92.4%, w/w) and a small mean particle size (∼100nm). The predicted response variables matched well with the observed results. The three formulation factors exhibited different effects on the properties of PLN. ANN in coordination with continuous GA represent an effective and efficient approach to optimize the PLN formulation of VRP with desired properties. PMID:25986587

  3. Genetic Network Inference Using Hierarchical Structure.

    PubMed

    Kimura, Shuhei; Tokuhisa, Masato; Okada-Hatakeyama, Mariko

    2016-01-01

    Many methods for inferring genetic networks have been proposed, but the regulations they infer often include false-positives. Several researchers have attempted to reduce these erroneous regulations by proposing the use of a priori knowledge about the properties of genetic networks such as their sparseness, scale-free structure, and so on. This study focuses on another piece of a priori knowledge, namely, that biochemical networks exhibit hierarchical structures. Based on this idea, we propose an inference approach that uses the hierarchical structure in a target genetic network. To obtain a reasonable hierarchical structure, the first step of the proposed approach is to infer multiple genetic networks from the observed gene expression data. We take this step using an existing method that combines a genetic network inference method with a bootstrap method. The next step is to extract a hierarchical structure from the inferred networks that is consistent with most of the networks. Third, we use the hierarchical structure obtained to assign confidence values to all candidate regulations. Numerical experiments are also performed to demonstrate the effectiveness of using the hierarchical structure in the genetic network inference. The improvement accomplished by the use of the hierarchical structure is small. However, the hierarchical structure could be used to improve the performances of many existing inference methods. PMID:26941653

  4. Network structure controls noise

    NASA Astrophysics Data System (ADS)

    Das, Jayajit; Raychaudhuri, Subhadip

    2004-03-01

    Biochemical reactions often involve low copy number of reactant molecules. Bio-networks, however, control the intrinsic noise arising from the fluctuations of low copy number of reactant molecules quite efficiently to perform their job in a robust manner. Network structures may be very crucial in the effective modulation of fluctuation effects. We investigate the interplay between the network structure and the noise behavior in signal transduction networks using Stochastic simulations. Some of the recurrent modules in biological networks seem to be vital in noise control. We correlate the effect of those modules to the function of the global topology of the network. This may explain why certain class of modules are so ubiquitous in Bio-networks.

  5. Virtualized Network Control (VNC)

    SciTech Connect

    Lehman, Thomas; Guok, Chin; Ghani, Nasir

    2013-01-31

    The focus of this project was on the development of a "Network Service Plane" as an abstraction model for the control and provisioning of multi-layer networks. The primary motivation for this work were the requirements of next generation networked applications which will need to access advanced networking as a first class resource at the same level as compute and storage resources. A new class of "Intelligent Network Services" were defined in order to facilitate the integration of advanced network services into application specific workflows. This new class of network services are intended to enable real-time interaction between the application co-scheduling algorithms and the network for the purposes of workflow planning, real-time resource availability identification, scheduling, and provisioning actions.

  6. Controllability of Complex Networks

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Slotine, Jean-Jacques; Barabasi, Albert-Laszlo

    2011-03-01

    The ultimate proof of our understanding of natural or technological systems is reflected in our ability to control them. While control theory offers mathematical tools to steer engineered systems towards a desired state, we lack a general framework to control complex self-organized systems, like the regulatory network of a cell or the Internet. Here we develop analytical tools to study the controllability of an arbitrary complex directed network, identifying the set of driver nodes whose time-dependent control can guide the system's dynamics. We apply these tools to real and model networks, finding that sparse inhomogeneous networks, which emerge in many real complex systems, are the most difficult to control. In contrast, dense and homogeneous networks can be controlled via a few driver nodes. Counterintuitively, we find that in both model and real systems the driver nodes tend to avoid the hubs. We show that the robustness of control to link failure is determined by a core percolation problem, helping us understand why many complex systems are relatively insensitive to link deletion. The developed approach offers a framework to address the controllability of an arbitrary network, representing a key step towards the eventual control of complex systems.

  7. Inferring genetic networks from microarray data.

    SciTech Connect

    May, Elebeoba Eni; Davidson, George S.; Martin, Shawn Bryan; Werner-Washburne, Margaret C.; Faulon, Jean-Loup Michel

    2004-06-01

    In theory, it should be possible to infer realistic genetic networks from time series microarray data. In practice, however, network discovery has proved problematic. The three major challenges are: (1) inferring the network; (2) estimating the stability of the inferred network; and (3) making the network visually accessible to the user. Here we describe a method, tested on publicly available time series microarray data, which addresses these concerns. The inference of genetic networks from genome-wide experimental data is an important biological problem which has received much attention. Approaches to this problem have typically included application of clustering algorithms [6]; the use of Boolean networks [12, 1, 10]; the use of Bayesian networks [8, 11]; and the use of continuous models [21, 14, 19]. Overviews of the problem and general approaches to network inference can be found in [4, 3]. Our approach to network inference is similar to earlier methods in that we use both clustering and Boolean network inference. However, we have attempted to extend the process to better serve the end-user, the biologist. In particular, we have incorporated a system to assess the reliability of our network, and we have developed tools which allow interactive visualization of the proposed network.

  8. Networks of spatial genetic variation across species

    PubMed Central

    Fortuna, Miguel A.; Albaladejo, Rafael G.; Fernández, Laura; Aparicio, Abelardo; Bascompte, Jordi

    2009-01-01

    Spatial patterns of genetic variation provide information central to many ecological, evolutionary, and conservation questions. This spatial variability has traditionally been analyzed through summary statistics between pairs of populations, therefore missing the simultaneous influence of all populations. More recently, a network approach has been advocated to overcome these limitations. This network approach has been applied to a few cases limited to a single species at a time. The question remains whether similar patterns of spatial genetic variation and similar functional roles for specific patches are obtained for different species. Here we study the networks of genetic variation of four Mediterranean woody plant species inhabiting the same habitat patches in a highly fragmented forest mosaic in Southern Spain. Three of the four species show a similar pattern of genetic variation with well-defined modules or groups of patches holding genetically similar populations. These modules can be thought of as the long-sought-after, evolutionarily significant units or management units. The importance of each patch for the cohesion of the entire network, though, is quite different across species. This variation creates a tremendous challenge for the prioritization of patches to conserve the genetic variation of multispecies assemblages. PMID:19861546

  9. Splitting strategy for simulating genetic regulatory networks.

    PubMed

    You, Xiong; Liu, Xueping; Musa, Ibrahim Hussein

    2014-01-01

    The splitting approach is developed for the numerical simulation of genetic regulatory networks with a stable steady-state structure. The numerical results of the simulation of a one-gene network, a two-gene network, and a p53-mdm2 network show that the new splitting methods constructed in this paper are remarkably more effective and more suitable for long-term computation with large steps than the traditional general-purpose Runge-Kutta methods. The new methods have no restriction on the choice of stepsize due to their infinitely large stability regions. PMID:24624223

  10. ACTS TDMA network control

    NASA Astrophysics Data System (ADS)

    Inukai, T.; Campanella, S. J.

    This paper presents basic network control concepts for the Advanced Communications Technology Satellite (ACTS) System. Two experimental systems, called the low-burst-rate and high-burst-rate systems, along with ACTS ground system features, are described. The network control issues addressed include frame structures, acquisition and synchronization procedures, coordinated station burst-time plan and satellite-time plan changes, on-board clock control based on ground drift measurements, rain fade control by means of adaptive forward-error-correction (FEC) coding and transmit power augmentation, and reassignment of channel capacities on demand. The NASA ground system, which includes a primary station, diversity station, and master control station, is also described.

  11. A Gene-Phenotype Network Based on Genetic Variability for Drought Responses Reveals Key Physiological Processes in Controlled and Natural Environments

    PubMed Central

    Rengel, David; Arribat, Sandrine; Maury, Pierre; Martin-Magniette, Marie-Laure; Hourlier, Thibaut; Laporte, Marion; Varès, Didier; Carrère, Sébastien; Grieu, Philippe; Balzergue, Sandrine; Gouzy, Jérôme

    2012-01-01

    Identifying the connections between molecular and physiological processes underlying the diversity of drought stress responses in plants is key for basic and applied science. Drought stress response involves a large number of molecular pathways and subsequent physiological processes. Therefore, it constitutes an archetypical systems biology model. We first inferred a gene-phenotype network exploiting differences in drought responses of eight sunflower (Helianthus annuus) genotypes to two drought stress scenarios. Large transcriptomic data were obtained with the sunflower Affymetrix microarray, comprising 32423 probesets, and were associated to nine morpho-physiological traits (integrated transpired water, leaf transpiration rate, osmotic potential, relative water content, leaf mass per area, carbon isotope discrimination, plant height, number of leaves and collar diameter) using sPLS regression. Overall, we could associate the expression patterns of 1263 probesets to six phenotypic traits and identify if correlations were due to treatment, genotype and/or their interaction. We also identified genes whose expression is affected at moderate and/or intense drought stress together with genes whose expression variation could explain phenotypic and drought tolerance variability among our genetic material. We then used the network model to study phenotypic changes in less tractable agronomical conditions, i.e. sunflower hybrids subjected to different watering regimes in field trials. Mapping this new dataset in the gene-phenotype network allowed us to identify genes whose expression was robustly affected by water deprivation in both controlled and field conditions. The enrichment in genes correlated to relative water content and osmotic potential provides evidence of the importance of these traits in agronomical conditions. PMID:23056196

  12. Characterization of Genetic Networks Associated with Alzheimer's Disease.

    PubMed

    Zhang, Bin; Tran, Linh; Emilsson, Valur; Zhu, Jun

    2016-01-01

    At the molecular level, the genetics of complex disease such as Alzheimer's disease (AD) manifests itself as series of alterations in the molecular interactions in pathways and networks that define biological processes underlying the pathophysiological states of disease. While large-scale genome-wide association (GWA) studies of late-onset alzheimer's disease (LOAD) have uncovered prominent genomic regions linked to the disease, the cause for the vast majority of LOAD cases still remains unknown. Increasingly available large-scale genomic and genetic data related to LOAD has made it possible to comprehensively uncover the mechanisms causally lined to LOAD in a completely data-driven manner. Here we review the various aspects of systems/network biology approaches and methodology in constructing genetic networks associated with AD from large sampling of postmortem brain tissues. We describe in detail a multiscale network modeling approach (MNMA) that integrates interaction and causal gene networks to analyze large-scale DNA, gene expression and pathophysiological data from multiple post-mortem brain regions of LOAD patients as well non-demented normal controls. MNMA first employs weighted gene co-expression network analysis (WGCNA) to construct multi-tissue networks that simultaneously capture intra-tissue and inter-tissue gene-gene interactions and then quantifies the change in connectivity among highly co-expressed genes in LOAD with respect to the normal state. Co-expressed gene modules are then rank ordered by relevance to pathophysiological traits and enrichment of genes differentially expressed in LOAD. Causal regulatory relationships among the genes in each module are then determined by a Bayesian network inference framework that is used to formally integrate genetic and gene expression information. MNMA has uncovered a massive remodeling of network structures in LOAD and identified novel subnetworks and key regulators that are causally linked to LOAD. In the

  13. Neural networks for aircraft control

    NASA Technical Reports Server (NTRS)

    Linse, Dennis

    1990-01-01

    Current research in Artificial Neural Networks indicates that networks offer some potential advantages in adaptation and fault tolerance. This research is directed at determining the possible applicability of neural networks to aircraft control. The first application will be to aircraft trim. Neural network node characteristics, network topology and operation, neural network learning and example histories using neighboring optimal control with a neural net are discussed.

  14. chaoptin, prominin, eyes shut and crumbs form a genetic network controlling the apical compartment of Drosophila photoreceptor cells

    PubMed Central

    Gurudev, Nagananda; Yuan, Michaela; Knust, Elisabeth

    2014-01-01

    ABSTRACT The apical surface of epithelial cells is often highly specialised to fulfil cell type-specific functions. Many epithelial cells expand their apical surface by forming microvilli, actin-based, finger-like membrane protrusions. The apical surface of Drosophila photoreceptor cells (PRCs) forms tightly packed microvilli, which are organised into the photosensitive rhabdomeres. As previously shown, the GPI-anchored adhesion protein Chaoptin is required for the stability of the microvilli, whereas the transmembrane protein Crumbs is essential for proper rhabdomere morphogenesis. Here we show that chaoptin synergises with crumbs to ensure optimal rhabdomere width. In addition, reduction of crumbs ameliorates morphogenetic defects observed in PRCs mutant for prominin and eyes shut, known antagonists of chaoptin. These results suggest that these four genes provide a balance of adhesion and anti-adhesion to maintain microvilli development and maintenance. Similar to crumbs mutant PRCs, PRCs devoid of prominin or eyes shut undergo light-dependent retinal degeneration. Given the observation that human orthologues of crumbs, prominin and eyes shut result in progressive retinal degeneration and blindness, the Drosophila eye is ideally suited to unravel the genetic and cellular mechanisms that ensure morphogenesis of PRCs and their maintenance under light-mediated stress. PMID:24705015

  15. Genetic networks influencing fruit ripening

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato is a model for ripening control and the basis of many characterized genes underlying this process. Cloning of the CNR, RIN and NOR genes defined the first ripening-specific transcription factors and provided insight into a ripening control system upstream of ethylene. RIN is a central player ...

  16. Genetic control of bone mass.

    PubMed

    Boudin, Eveline; Fijalkowski, Igor; Hendrickx, Gretl; Van Hul, Wim

    2016-09-01

    Bone mineral density (BMD) is a quantitative traits used as a surrogate phenotype for the diagnosis of osteoporosis, a common metabolic disorder characterized by increased fracture risk as a result of a decreased bone mass and deterioration of the microarchitecture of the bone. Normal variation in BMD is determined by both environmental and genetic factors. According to heritability studies, 50-85% of the variance in BMD is controlled by genetic factors which are mostly polygenic. In contrast to the complex etiology of osteoporosis, there are disorders with deviating BMD values caused by one mutation with a large impact. These mutations can result in monogenic bone disorders with either an extreme high (sclerosteosis, Van Buchem disease, osteopetrosis, high bone mass phenotype) or low BMD (osteogenesis imperfecta, juvenile osteoporosis, primary osteoporosis). Identification of the disease causing genes, increased the knowledge on the regulation of BMD and highlighted important signaling pathways and novel therapeutic targets such as sclerostin, RANKL and cathepsin K. Genetic variation in genes involved in these pathways are often also involved in the regulation of normal variation in BMD and osteoporosis susceptibility. In the last decades, identification of genetic factors regulating BMD has proven to be a challenge. Several approaches have been tested such as linkage studies and candidate and genome wide association studies. Although, throughout the years, technological developments made it possible to study increasing numbers of genetic variants in populations with increasing sample sizes at the same time, only a small fraction of the genetic impact can yet be explained. In order to elucidate the missing heritability, the focus shifted to studying the role of rare variants, copy number variations and epigenetic influences. This review summarizes the genetic cause of different monogenic bone disorders with deviating BMD and the knowledge on genetic factors

  17. Bridging genetic networks and queueing theory

    NASA Astrophysics Data System (ADS)

    Arazi, Arnon; Ben-Jacob, Eshel; Yechiali, Uri

    2004-02-01

    One of the main challenges facing biology today is the understanding of the joint action of genes, proteins and RNA molecules, interwoven in intricate interdependencies commonly known as genetic networks. To this end, several mathematical approaches have been introduced to date. In addition to developing the analytical tools required for this task anew, one can utilize knowledge found in existing disciplines, specializing in the representation and analysis of systems featuring similar aspects. We suggest queueing theory as a possible source of such knowledge. This discipline, which focuses on the study of workloads forming in a variety of scenarios, offers an assortment of tools allowing for the derivation of the statistical properties of the inspected systems. We argue that a proper adaptation of modeling techniques and analytical methods used in queueing theory can contribute to the study of genetic regulatory networks. This is demonstrated by presenting a queueing-inspired model of a genetic network of arbitrary size and structure, for which the probability distribution function is derived. This model is further applied to the description of the lac operon regulation mechanism. In addition, we discuss the possible benefits stemming for queueing theory from the interdisciplinary dialogue with molecular biology-in particular, the incorporation of various dynamical behaviours into queueing networks.

  18. Genetic control of Aedes mosquitoes.

    PubMed

    Alphey, Luke; McKemey, Andrew; Nimmo, Derric; Neira Oviedo, Marco; Lacroix, Renaud; Matzen, Kelly; Beech, Camilla

    2013-06-01

    Aedes mosquitoes include important vector species such as Aedes aegypti, the major vector of dengue. Genetic control methods are being developed for several of these species, stimulated by an urgent need owing to the poor effectiveness of current methods combined with an increase in chemical pesticide resistance. In this review we discuss the various genetic strategies that have been proposed, their present status, and future prospects. We focus particularly on those methods that are already being tested in the field, including RIDL and Wolbachia-based approaches. PMID:23816508

  19. Genetic control of Aedes mosquitoes

    PubMed Central

    Alphey, Luke; McKemey, Andrew; Nimmo, Derric; Neira Oviedo, Marco; Lacroix, Renaud; Matzen, Kelly; Beech, Camilla

    2013-01-01

    Aedes mosquitoes include important vector species such as Aedes aegypti, the major vector of dengue. Genetic control methods are being developed for several of these species, stimulated by an urgent need owing to the poor effectiveness of current methods combined with an increase in chemical pesticide resistance. In this review we discuss the various genetic strategies that have been proposed, their present status, and future prospects. We focus particularly on those methods that are already being tested in the field, including RIDL and Wolbachia-based approaches. PMID:23816508

  20. Fluctuations and Slow Variables in Genetic Networks

    PubMed Central

    Bundschuh, R.; Hayot, F.; Jayaprakash, C.

    2003-01-01

    Computer simulations of large genetic networks are often extremely time consuming because, in addition to the biologically interesting translation and transcription reactions, many less interesting reactions like DNA binding and dimerizations have to be simulated. It is desirable to use the fact that the latter occur on much faster timescales than the former to eliminate the fast and uninteresting reactions and to obtain effective models of the slow reactions only. We use three examples of self-regulatory networks to show that the usual reduction methods where one obtains a system of equations of the Hill type fail to capture the fluctuations that these networks exhibit due to the small number of molecules; moreover, they may even miss describing the behavior of the average number of proteins. We identify the inclusion of fast-varying variables in the effective description as the cause for the failure of the traditional schemes. We suggest a different effective description, which entails the introduction of an additional species, not present in the original networks, that is slowly varying. We show that this description allows for a very efficient simulation of the reduced system while retaining the correct fluctuations and behavior of the full system. This approach ought to be applicable to a wide range of genetic networks. PMID:12609864

  1. Exploring drug combinations in genetic interaction network

    PubMed Central

    2012-01-01

    Background Drug combination that consists of distinctive agents is an attractive strategy to combat complex diseases and has been widely used clinically with improved therapeutic effects. However, the identification of efficacious drug combinations remains a non-trivial and challenging task due to the huge number of possible combinations among the candidate drugs. As an important factor, the molecular context in which drugs exert their functions can provide crucial insights into the mechanism underlying drug combinations. Results In this work, we present a network biology approach to investigate drug combinations and their target proteins in the context of genetic interaction networks and the related human pathways, in order to better understand the underlying rules of effective drug combinations. Our results indicate that combinatorial drugs tend to have a smaller effect radius in the genetic interaction networks, which is an important parameter to describe the therapeutic effect of a drug combination from the network perspective. We also find that drug combinations are more likely to modulate functionally related pathways. Conclusions This study confirms that the molecular networks where drug combinations exert their functions can indeed provide important insights into the underlying rules of effective drug combinations. We hope that our findings can help shortcut the expedition of the future discovery of novel drug combinations. PMID:22595004

  2. From gene expressions to genetic networks

    NASA Astrophysics Data System (ADS)

    Cieplak, Marek

    2009-03-01

    A method based on the principle of entropy maximization is used to identify the gene interaction network with the highest probability of giving rise to experimentally observed transcript profiles [1]. In its simplest form, the method yields the pairwise gene interaction network, but it can also be extended to deduce higher order correlations. Analysis of microarray data from genes in Saccharomyces cerevisiae chemostat cultures exhibiting energy metabollic oscillations identifies a gene interaction network that reflects the intracellular communication pathways. These pathways adjust cellular metabolic activity and cell division to the limiting nutrient conditions that trigger metabolic oscillations. The success of the present approach in extracting meaningful genetic connections suggests that the maximum entropy principle is a useful concept for understanding living systems, as it is for other complex, nonequilibrium systems. The time-dependent behavior of the genetic network is found to involve only a few fundamental modes [2,3]. [4pt] REFERENCES:[0pt] [1] T. R. Lezon, J. R. Banavar, M. Cieplak, A. Maritan, and N. Fedoroff, Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns, Proc. Natl. Acad. Sci. (USA) 103, 19033-19038 (2006) [0pt] [2] N. S. Holter, M. Mitra, A. Maritan, M. Cieplak, J. R. Banavar, and N. V. Fedoroff, Fundamental patterns underlying gene expression profiles: simplicity from complexity, Proc. Natl. Acad. Sci. USA 97, 8409-8414 (2000) [0pt] [3] N. S. Holter, A. Maritan, M. Cieplak, N. V. Fedoroff, and J. R. Banavar, Dynamic modeling of gene expression data, Proc. Natl. Acad. Sci. USA 98, 1693-1698 (2001)

  3. Controlling allosteric networks in proteins

    NASA Astrophysics Data System (ADS)

    Dokholyan, Nikolay

    2013-03-01

    We present a novel methodology based on graph theory and discrete molecular dynamics simulations for delineating allosteric pathways in proteins. We use this methodology to uncover the structural mechanisms responsible for coupling of distal sites on proteins and utilize it for allosteric modulation of proteins. We will present examples where inference of allosteric networks and its rewiring allows us to ``rescue'' cystic fibrosis transmembrane conductance regulator (CFTR), a protein associated with fatal genetic disease cystic fibrosis. We also use our methodology to control protein function allosterically. We design a novel protein domain that can be inserted into identified allosteric site of target protein. Using a drug that binds to our domain, we alter the function of the target protein. We successfully tested this methodology in vitro, in living cells and in zebrafish. We further demonstrate transferability of our allosteric modulation methodology to other systems and extend it to become ligh-activatable.

  4. Broadband accelerator control network

    SciTech Connect

    Skelly, J.; Clifford, T.; Frankel, R.

    1983-01-01

    A broadband data communications network has been implemented at BNL for control of the Alternating Gradient Synchrotron (AG) proton accelerator, using commercial CATV hardware, dual coaxial cables as the communications medium, and spanning 2.0 km. A 4 MHz bandwidth Digital Control channel using CSMA-CA protocol is provided for digital data transmission, with 8 access nodes available over the length of the RELWAY. Each node consists of an rf modem and a microprocessor-based store-and-forward message handler which interfaces the RELWAY to a branch line implemented in GPIB. A gateway to the RELWAY control channel for the (preexisting) AGS Computerized Accelerator Operating system has been constructed using an LSI-11/23 microprocessor as a device in a GPIB branch line. A multilayer communications protocol has been defined for the Digital Control Channel, based on the ISO Open Systems Interconnect layered model, and a RELWAY Device Language defined as the required universal language for device control on this channel.

  5. Robust Multiobjective Controllability of Complex Neuronal Networks.

    PubMed

    Tang, Yang; Gao, Huijun; Du, Wei; Lu, Jianquan; Vasilakos, Athanasios V; Kurths, Jurgen

    2016-01-01

    This paper addresses robust multiobjective identification of driver nodes in the neuronal network of a cat's brain, in which uncertainties in determination of driver nodes and control gains are considered. A framework for robust multiobjective controllability is proposed by introducing interval uncertainties and optimization algorithms. By appropriate definitions of robust multiobjective controllability, a robust nondominated sorting adaptive differential evolution (NSJaDE) is presented by means of the nondominated sorting mechanism and the adaptive differential evolution (JaDE). The simulation experimental results illustrate the satisfactory performance of NSJaDE for robust multiobjective controllability, in comparison with six statistical methods and two multiobjective evolutionary algorithms (MOEAs): nondominated sorting genetic algorithms II (NSGA-II) and nondominated sorting composite differential evolution. It is revealed that the existence of uncertainties in choosing driver nodes and designing control gains heavily affects the controllability of neuronal networks. We also unveil that driver nodes play a more drastic role than control gains in robust controllability. The developed NSJaDE and obtained results will shed light on the understanding of robustness in controlling realistic complex networks such as transportation networks, power grid networks, biological networks, etc. PMID:26441452

  6. Effects of macromolecular crowding on genetic networks.

    PubMed

    Morelli, Marco J; Allen, Rosalind J; Wolde, Pieter Rein ten

    2011-12-21

    The intracellular environment is crowded with proteins, DNA, and other macromolecules. Under physiological conditions, macromolecular crowding can alter both molecular diffusion and the equilibria of bimolecular reactions and therefore is likely to have a significant effect on the function of biochemical networks. We propose a simple way to model the effects of macromolecular crowding on biochemical networks via an appropriate scaling of bimolecular association and dissociation rates. We use this approach, in combination with kinetic Monte Carlo simulations, to analyze the effects of crowding on a constitutively expressed gene, a repressed gene, and a model for the bacteriophage λ genetic switch, in the presence and absence of nonspecific binding of transcription factors to genomic DNA. Our results show that the effects of crowding are mainly caused by the shift of association-dissociation equilibria rather than the slowing down of protein diffusion, and that macromolecular crowding can have relevant and counterintuitive effects on biochemical network performance. PMID:22208186

  7. Effects of Macromolecular Crowding on Genetic Networks

    PubMed Central

    Morelli, Marco J.; Allen, Rosalind J.; Rein ten Wolde, Pieter

    2011-01-01

    The intracellular environment is crowded with proteins, DNA, and other macromolecules. Under physiological conditions, macromolecular crowding can alter both molecular diffusion and the equilibria of bimolecular reactions and therefore is likely to have a significant effect on the function of biochemical networks. We propose a simple way to model the effects of macromolecular crowding on biochemical networks via an appropriate scaling of bimolecular association and dissociation rates. We use this approach, in combination with kinetic Monte Carlo simulations, to analyze the effects of crowding on a constitutively expressed gene, a repressed gene, and a model for the bacteriophage λ genetic switch, in the presence and absence of nonspecific binding of transcription factors to genomic DNA. Our results show that the effects of crowding are mainly caused by the shift of association-dissociation equilibria rather than the slowing down of protein diffusion, and that macromolecular crowding can have relevant and counterintuitive effects on biochemical network performance. PMID:22208186

  8. Enhanced energy transport in genetically engineered excitonic networks.

    PubMed

    Park, Heechul; Heldman, Nimrod; Rebentrost, Patrick; Abbondanza, Luigi; Iagatti, Alessandro; Alessi, Andrea; Patrizi, Barbara; Salvalaggio, Mario; Bussotti, Laura; Mohseni, Masoud; Caruso, Filippo; Johnsen, Hannah C; Fusco, Roberto; Foggi, Paolo; Scudo, Petra F; Lloyd, Seth; Belcher, Angela M

    2016-02-01

    One of the challenges for achieving efficient exciton transport in solar energy conversion systems is precise structural control of the light-harvesting building blocks. Here, we create a tunable material consisting of a connected chromophore network on an ordered biological virus template. Using genetic engineering, we establish a link between the inter-chromophoric distances and emerging transport properties. The combination of spectroscopy measurements and dynamic modelling enables us to elucidate quantum coherent and classical incoherent energy transport at room temperature. Through genetic modifications, we obtain a significant enhancement of exciton diffusion length of about 68% in an intermediate quantum-classical regime. PMID:26461447

  9. Enhanced energy transport in genetically engineered excitonic networks

    NASA Astrophysics Data System (ADS)

    Park, Heechul; Heldman, Nimrod; Rebentrost, Patrick; Abbondanza, Luigi; Iagatti, Alessandro; Alessi, Andrea; Patrizi, Barbara; Salvalaggio, Mario; Bussotti, Laura; Mohseni, Masoud; Caruso, Filippo; Johnsen, Hannah C.; Fusco, Roberto; Foggi, Paolo; Scudo, Petra F.; Lloyd, Seth; Belcher, Angela M.

    2016-02-01

    One of the challenges for achieving efficient exciton transport in solar energy conversion systems is precise structural control of the light-harvesting building blocks. Here, we create a tunable material consisting of a connected chromophore network on an ordered biological virus template. Using genetic engineering, we establish a link between the inter-chromophoric distances and emerging transport properties. The combination of spectroscopy measurements and dynamic modelling enables us to elucidate quantum coherent and classical incoherent energy transport at room temperature. Through genetic modifications, we obtain a significant enhancement of exciton diffusion length of about 68% in an intermediate quantum-classical regime.

  10. Control efficacy of complex networks

    NASA Astrophysics Data System (ADS)

    Gao, Xin-Dong; Wang, Wen-Xu; Lai, Ying-Cheng

    2016-06-01

    Controlling complex networks has become a forefront research area in network science and engineering. Recent efforts have led to theoretical frameworks of controllability to fully control a network through steering a minimum set of driver nodes. However, in realistic situations not every node is accessible or can be externally driven, raising the fundamental issue of control efficacy: if driving signals are applied to an arbitrary subset of nodes, how many other nodes can be controlled? We develop a framework to determine the control efficacy for undirected networks of arbitrary topology. Mathematically, based on non-singular transformation, we prove a theorem to determine rigorously the control efficacy of the network and to identify the nodes that can be controlled for any given driver nodes. Physically, we develop the picture of diffusion that views the control process as a signal diffused from input signals to the set of controllable nodes. The combination of mathematical theory and physical reasoning allows us not only to determine the control efficacy for model complex networks and a large number of empirical networks, but also to uncover phenomena in network control, e.g., hub nodes in general possess lower control centrality than an average node in undirected networks.

  11. Control efficacy of complex networks.

    PubMed

    Gao, Xin-Dong; Wang, Wen-Xu; Lai, Ying-Cheng

    2016-01-01

    Controlling complex networks has become a forefront research area in network science and engineering. Recent efforts have led to theoretical frameworks of controllability to fully control a network through steering a minimum set of driver nodes. However, in realistic situations not every node is accessible or can be externally driven, raising the fundamental issue of control efficacy: if driving signals are applied to an arbitrary subset of nodes, how many other nodes can be controlled? We develop a framework to determine the control efficacy for undirected networks of arbitrary topology. Mathematically, based on non-singular transformation, we prove a theorem to determine rigorously the control efficacy of the network and to identify the nodes that can be controlled for any given driver nodes. Physically, we develop the picture of diffusion that views the control process as a signal diffused from input signals to the set of controllable nodes. The combination of mathematical theory and physical reasoning allows us not only to determine the control efficacy for model complex networks and a large number of empirical networks, but also to uncover phenomena in network control, e.g., hub nodes in general possess lower control centrality than an average node in undirected networks. PMID:27324438

  12. Control efficacy of complex networks

    PubMed Central

    Gao, Xin-Dong; Wang, Wen-Xu; Lai, Ying-Cheng

    2016-01-01

    Controlling complex networks has become a forefront research area in network science and engineering. Recent efforts have led to theoretical frameworks of controllability to fully control a network through steering a minimum set of driver nodes. However, in realistic situations not every node is accessible or can be externally driven, raising the fundamental issue of control efficacy: if driving signals are applied to an arbitrary subset of nodes, how many other nodes can be controlled? We develop a framework to determine the control efficacy for undirected networks of arbitrary topology. Mathematically, based on non-singular transformation, we prove a theorem to determine rigorously the control efficacy of the network and to identify the nodes that can be controlled for any given driver nodes. Physically, we develop the picture of diffusion that views the control process as a signal diffused from input signals to the set of controllable nodes. The combination of mathematical theory and physical reasoning allows us not only to determine the control efficacy for model complex networks and a large number of empirical networks, but also to uncover phenomena in network control, e.g., hub nodes in general possess lower control centrality than an average node in undirected networks. PMID:27324438

  13. Population Dynamics of Genetic Regulatory Networks

    NASA Astrophysics Data System (ADS)

    Braun, Erez

    2005-03-01

    Unlike common objects in physics, a biological cell processes information. The cell interprets its genome and transforms the genomic information content, through the action of genetic regulatory networks, into proteins which in turn dictate its metabolism, functionality and morphology. Understanding the dynamics of a population of biological cells presents a unique challenge. It requires to link the intracellular dynamics of gene regulation, through the mechanism of cell division, to the level of the population. We present experiments studying adaptive dynamics of populations of genetically homogeneous microorganisms (yeast), grown for long durations under steady conditions. We focus on population dynamics that do not involve random genetic mutations. Our experiments follow the long-term dynamics of the population distributions and allow to quantify the correlations among generations. We focus on three interconnected issues: adaptation of genetically homogeneous populations following environmental changes, selection processes on the population and population variability and expression distributions. We show that while the population exhibits specific short-term responses to environmental inputs, it eventually adapts to a robust steady-state, largely independent of external conditions. Cycles of medium-switch show that the adapted state is imprinted in the population and that this memory is maintained for many generations. To further study population adaptation, we utilize the process of gene recruitment whereby a gene naturally regulated by a specific promoter is placed under a different regulatory system. This naturally occurring process has been recognized as a major driving force in evolution. We have recruited an essential gene to a foreign regulatory network and followed the population long-term dynamics. Rewiring of the regulatory network allows us to expose their complex dynamics and phase space structure.

  14. Character Recognition Using Genetically Trained Neural Networks

    SciTech Connect

    Diniz, C.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1998-10-01

    Computationally intelligent recognition of characters and symbols addresses a wide range of applications including foreign language translation and chemical formula identification. The combination of intelligent learning and optimization algorithms with layered neural structures offers powerful techniques for character recognition. These techniques were originally developed by Sandia National Laboratories for pattern and spectral analysis; however, their ability to optimize vast amounts of data make them ideal for character recognition. An adaptation of the Neural Network Designer soflsvare allows the user to create a neural network (NN_) trained by a genetic algorithm (GA) that correctly identifies multiple distinct characters. The initial successfid recognition of standard capital letters can be expanded to include chemical and mathematical symbols and alphabets of foreign languages, especially Arabic and Chinese. The FIN model constructed for this project uses a three layer feed-forward architecture. To facilitate the input of characters and symbols, a graphic user interface (GUI) has been developed to convert the traditional representation of each character or symbol to a bitmap. The 8 x 8 bitmap representations used for these tests are mapped onto the input nodes of the feed-forward neural network (FFNN) in a one-to-one correspondence. The input nodes feed forward into a hidden layer, and the hidden layer feeds into five output nodes correlated to possible character outcomes. During the training period the GA optimizes the weights of the NN until it can successfully recognize distinct characters. Systematic deviations from the base design test the network's range of applicability. Increasing capacity, the number of letters to be recognized, requires a nonlinear increase in the number of hidden layer neurodes. Optimal character recognition performance necessitates a minimum threshold for the number of cases when genetically training the net. And, the amount of

  15. Controllability of structural brain networks

    NASA Astrophysics Data System (ADS)

    Gu, Shi; Pasqualetti, Fabio; Cieslak, Matthew; Telesford, Qawi K.; Yu, Alfred B.; Kahn, Ari E.; Medaglia, John D.; Vettel, Jean M.; Miller, Michael B.; Grafton, Scott T.; Bassett, Danielle S.

    2015-10-01

    Cognitive function is driven by dynamic interactions between large-scale neural circuits or networks, enabling behaviour. However, fundamental principles constraining these dynamic network processes have remained elusive. Here we use tools from control and network theories to offer a mechanistic explanation for how the brain moves between cognitive states drawn from the network organization of white matter microstructure. Our results suggest that densely connected areas, particularly in the default mode system, facilitate the movement of the brain to many easily reachable states. Weakly connected areas, particularly in cognitive control systems, facilitate the movement of the brain to difficult-to-reach states. Areas located on the boundary between network communities, particularly in attentional control systems, facilitate the integration or segregation of diverse cognitive systems. Our results suggest that structural network differences between cognitive circuits dictate their distinct roles in controlling trajectories of brain network function.

  16. Controllability of structural brain networks

    PubMed Central

    Gu, Shi; Pasqualetti, Fabio; Cieslak, Matthew; Telesford, Qawi K.; Yu, Alfred B.; Kahn, Ari E.; Medaglia, John D.; Vettel, Jean M.; Miller, Michael B.; Grafton, Scott T.; Bassett, Danielle S.

    2015-01-01

    Cognitive function is driven by dynamic interactions between large-scale neural circuits or networks, enabling behaviour. However, fundamental principles constraining these dynamic network processes have remained elusive. Here we use tools from control and network theories to offer a mechanistic explanation for how the brain moves between cognitive states drawn from the network organization of white matter microstructure. Our results suggest that densely connected areas, particularly in the default mode system, facilitate the movement of the brain to many easily reachable states. Weakly connected areas, particularly in cognitive control systems, facilitate the movement of the brain to difficult-to-reach states. Areas located on the boundary between network communities, particularly in attentional control systems, facilitate the integration or segregation of diverse cognitive systems. Our results suggest that structural network differences between cognitive circuits dictate their distinct roles in controlling trajectories of brain network function. PMID:26423222

  17. Attack Vulnerability of Network Controllability.

    PubMed

    Lu, Zhe-Ming; Li, Xin-Feng

    2016-01-01

    Controllability of complex networks has attracted much attention, and understanding the robustness of network controllability against potential attacks and failures is of practical significance. In this paper, we systematically investigate the attack vulnerability of network controllability for the canonical model networks as well as the real-world networks subject to attacks on nodes and edges. The attack strategies are selected based on degree and betweenness centralities calculated for either the initial network or the current network during the removal, among which random failure is as a comparison. It is found that the node-based strategies are often more harmful to the network controllability than the edge-based ones, and so are the recalculated strategies than their counterparts. The Barabási-Albert scale-free model, which has a highly biased structure, proves to be the most vulnerable of the tested model networks. In contrast, the Erdős-Rényi random model, which lacks structural bias, exhibits much better robustness to both node-based and edge-based attacks. We also survey the control robustness of 25 real-world networks, and the numerical results show that most real networks are control robust to random node failures, which has not been observed in the model networks. And the recalculated betweenness-based strategy is the most efficient way to harm the controllability of real-world networks. Besides, we find that the edge degree is not a good quantity to measure the importance of an edge in terms of network controllability. PMID:27588941

  18. Genetic Regulatory Networks in Embryogenesis and Evolution

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The article introduces a series of papers that were originally presented at a workshop titled Genetic Regulatory Network in Embryogenesis and Evaluation. Contents include the following: evolution of cleavage programs in relationship to axial specification and body plan evolution, changes in cell lineage specification elucidate evolutionary relations in spiralia, axial patterning in the leech: developmental mechanisms and evolutionary implications, hox genes in arthropod development and evolution, heterochronic genes in development and evolution, a common theme for LIM homeobox gene function across phylogeny, and mechanisms of specification in ascidian embryos.

  19. Functional Localization of Genetic Network Programming

    NASA Astrophysics Data System (ADS)

    Eto, Shinji; Hirasawa, Kotaro; Hu, Jinglu

    According to the knowledge of brain science, it is suggested that there exists cerebral functional localization, which means that a specific part of the cerebrum is activated depending on various kinds of information human receives. The aim of this paper is to build an artificial model to realize functional localization based on Genetic Network Programming (GNP), a new evolutionary computation method recently developed. GNP has a directed graph structure suitable for realizing functional localization. We studied the basic characteristics of the proposed system by making GNP work in a functionally localized way.

  20. MAC Protocol for Ad Hoc Networks Using a Genetic Algorithm

    PubMed Central

    Elizarraras, Omar; Panduro, Marco; Méndez, Aldo L.

    2014-01-01

    The problem of obtaining the transmission rate in an ad hoc network consists in adjusting the power of each node to ensure the signal to interference ratio (SIR) and the energy required to transmit from one node to another is obtained at the same time. Therefore, an optimal transmission rate for each node in a medium access control (MAC) protocol based on CSMA-CDMA (carrier sense multiple access-code division multiple access) for ad hoc networks can be obtained using evolutionary optimization. This work proposes a genetic algorithm for the transmission rate election considering a perfect power control, and our proposition achieves improvement of 10% compared with the scheme that handles the handshaking phase to adjust the transmission rate. Furthermore, this paper proposes a genetic algorithm that solves the problem of power combining, interference, data rate, and energy ensuring the signal to interference ratio in an ad hoc network. The result of the proposed genetic algorithm has a better performance (15%) compared to the CSMA-CDMA protocol without optimizing. Therefore, we show by simulation the effectiveness of the proposed protocol in terms of the throughput. PMID:25140339

  1. MAC protocol for ad hoc networks using a genetic algorithm.

    PubMed

    Elizarraras, Omar; Panduro, Marco; Méndez, Aldo L; Reyna, Alberto

    2014-01-01

    The problem of obtaining the transmission rate in an ad hoc network consists in adjusting the power of each node to ensure the signal to interference ratio (SIR) and the energy required to transmit from one node to another is obtained at the same time. Therefore, an optimal transmission rate for each node in a medium access control (MAC) protocol based on CSMA-CDMA (carrier sense multiple access-code division multiple access) for ad hoc networks can be obtained using evolutionary optimization. This work proposes a genetic algorithm for the transmission rate election considering a perfect power control, and our proposition achieves improvement of 10% compared with the scheme that handles the handshaking phase to adjust the transmission rate. Furthermore, this paper proposes a genetic algorithm that solves the problem of power combining, interference, data rate, and energy ensuring the signal to interference ratio in an ad hoc network. The result of the proposed genetic algorithm has a better performance (15%) compared to the CSMA-CDMA protocol without optimizing. Therefore, we show by simulation the effectiveness of the proposed protocol in terms of the throughput. PMID:25140339

  2. Control of Neuronal Network in Caenorhabditis elegans

    PubMed Central

    Badhwar, Rahul; Bagler, Ganesh

    2015-01-01

    Caenorhabditis elegans, a soil dwelling nematode, is evolutionarily rudimentary and contains only ∼ 300 neurons which are connected to each other via chemical synapses and gap junctions. This structural connectivity can be perceived as nodes and edges of a graph. Controlling complex networked systems (such as nervous system) has been an area of excitement for mankind. Various methods have been developed to identify specific brain regions, which when controlled by external input can lead to achievement of control over the state of the system. But in case of neuronal connectivity network the properties of neurons identified as driver nodes is of much importance because nervous system can produce a variety of states (behaviour of the animal). Hence to gain insight on the type of control achieved in nervous system we implemented the notion of structural control from graph theory to C. elegans neuronal network. We identified ‘driver neurons’ which can provide full control over the network. We studied phenotypic properties of these neurons which are referred to as ‘phenoframe’ as well as the ‘genoframe’ which represents their genetic correlates. We find that the driver neurons are primarily motor neurons located in the ventral nerve cord and contribute to biological reproduction of the animal. Identification of driver neurons and its characterization adds a new dimension in controllability of C. elegans neuronal network. This study suggests the importance of driver neurons and their utility to control the behaviour of the organism. PMID:26413834

  3. Stability analysis of genetic regulatory networks with multiple time delays.

    PubMed

    Wu, Fang-Xiang

    2007-01-01

    A genetic regulatory network is a dynamic system to describe interactions among genes (mRNA) and its products (proteins). From the statistic thermodynamics and biochemical reaction principle, a genetic regulatory network can be described by a group of nonlinear differential equations with time delays. Stability is one of interesting properties for genetic regulatory network. Previous studies have investigated stability of genetic regulatory networks with a single time delay. In this paper, we investigate properties of genetic regulatory networks with multiple time delays in the notion of delay-independent stability. We present necessary and sufficient condition for the local delay-independent stability of genetic regulatory network with multiple time delays which are independent or commensurate. PMID:18002223

  4. Genetic control of bacterial biofilms.

    PubMed

    Wolska, Krystyna I; Grudniak, Anna M; Rudnicka, Zofia; Markowska, Katarzyna

    2016-05-01

    Nearly all bacterial species, including pathogens, have the ability to form biofilms. Biofilms are defined as structured ecosystems in which microbes are attached to surfaces and embedded in a matrix composed of polysaccharides, eDNA, and proteins, and their development is a multistep process. Bacterial biofilms constitute a large medical problem due to their extremely high resistance to various types of therapeutics, including conventional antibiotics. Several environmental and genetic signals control every step of biofilm development and dispersal. From among the latter, quorum sensing, cyclic diguanosine-5'-monophosphate, and small RNAs are considered as the main regulators. The present review describes the control role of these three regulators in the life cycles of biofilms built by Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella enterica serovar Typhimurium, and Vibrio cholerae. The interconnections between their activities are shown. Compounds and strategies which target the activity of these regulators, mainly quorum sensing inhibitors, and their potential role in therapy are also assessed. PMID:26294280

  5. Training product unit neural networks with genetic algorithms

    NASA Technical Reports Server (NTRS)

    Janson, D. J.; Frenzel, J. F.; Thelen, D. C.

    1991-01-01

    The training of product neural networks using genetic algorithms is discussed. Two unusual neural network techniques are combined; product units are employed instead of the traditional summing units and genetic algorithms train the network rather than backpropagation. As an example, a neural netork is trained to calculate the optimum width of transistors in a CMOS switch. It is shown how local minima affect the performance of a genetic algorithm, and one method of overcoming this is presented.

  6. How social and genetic factors predict friendship networks

    PubMed Central

    Boardman, Jason D.; Domingue, Benjamin W.; Fletcher, Jason M.

    2012-01-01

    Recent research suggests that the genotype of one individual in a friendship pair is predictive of the genotype of his/her friend. These results provide tentative support for the genetic homophily perspective, which has important implications for social and genetic epidemiology because it substantiates a particular form of gene–environment correlation. This process may also have important implications for social scientists who study the social factors related to health and health-related behaviors. We extend this work by considering the ways in which school context shapes genetically similar friendships. Using the network, school, and genetic information from the National Longitudinal Study of Adolescent Health, we show that genetic homophily for the TaqI A polymorphism within the DRD2 gene is stronger in schools with greater levels of inequality. Our results suggest that individuals with similar genotypes may not actively select into friendships; rather, they may be placed into these contexts by institutional mechanisms outside of their control. Our work highlights the fundamental role played by broad social structures in the extent to which genetic factors explain complex behaviors, such as friendships. PMID:23045663

  7. Weight-Control Information Network

    MedlinePlus

    ... Research Training & Career Development Grant programs for students, postdocs, and faculty Research at NIDDK Labs, faculty, and ... full list of resources . Alternate Language URL Weight-control Information Network (WIN) Page Content The Weight-control ...

  8. Genetic control over the resting brain

    PubMed Central

    Glahn, D. C.; Winkler, A. M.; Kochunov, P.; Almasy, L.; Duggirala, R.; Carless, M. A.; Curran, J. C.; Olvera, R. L.; Laird, A. R.; Smith, S. M.; Beckmann, C. F.; Fox, P. T.; Blangero, J.

    2010-01-01

    The default-mode network, a coherent resting-state brain network, is thought to characterize basal neural activity. Aberrant default-mode connectivity has been reported in a host of neurological and psychiatric illnesses and in persons at genetic risk for such illnesses. Whereas the neurophysiologic mechanisms that regulate default-mode connectivity are unclear, there is growing evidence that genetic factors play a role. In this report, we estimate the importance of genetic effects on the default-mode network by examining covariation patterns in functional connectivity among 333 individuals from 29 randomly selected extended pedigrees. Heritability for default-mode functional connectivity was 0.424 ± 0.17 (P = 0.0046). Although neuroanatomic variation in this network was also heritable, the genetic factors that influence default-mode functional connectivity and gray-matter density seem to be distinct, suggesting that unique genes influence the structure and function of the network. In contrast, significant genetic correlations between regions within the network provide evidence that the same genetic factors contribute to variation in functional connectivity throughout the default mode. Specifically, the left parahippocampal region was genetically correlated with all other network regions. In addition, the posterior cingulate/precuneus region, medial prefrontal cortex, and right cerebellum seem to form a subnetwork. Default-mode functional connectivity is influenced by genetic factors that cannot be attributed to anatomic variation or a single region within the network. By establishing the heritability of default-mode functional connectivity, this experiment provides the obligatory evidence required before these measures can be considered as endophenotypes for psychiatric or neurological illnesses or to identify genes influencing intrinsic brain function. PMID:20133824

  9. Optimal Design of Geodetic Network Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Vajedian, Sanaz; Bagheri, Hosein

    2010-05-01

    A geodetic network is a network which is measured exactly by techniques of terrestrial surveying based on measurement of angles and distances and can control stability of dams, towers and their around lands and can monitor deformation of surfaces. The main goals of an optimal geodetic network design process include finding proper location of control station (First order Design) as well as proper weight of observations (second order observation) in a way that satisfy all the criteria considered for quality of the network with itself is evaluated by the network's accuracy, reliability (internal and external), sensitivity and cost. The first-order design problem, can be dealt with as a numeric optimization problem. In this designing finding unknown coordinates of network stations is an important issue. For finding these unknown values, network geodetic observations that are angle and distance measurements must be entered in an adjustment method. In this regard, using inverse problem algorithms is needed. Inverse problem algorithms are methods to find optimal solutions for given problems and include classical and evolutionary computations. The classical approaches are analytical methods and are useful in finding the optimum solution of a continuous and differentiable function. Least squares (LS) method is one of the classical techniques that derive estimates for stochastic variables and their distribution parameters from observed samples. The evolutionary algorithms are adaptive procedures of optimization and search that find solutions to problems inspired by the mechanisms of natural evolution. These methods generate new points in the search space by applying operators to current points and statistically moving toward more optimal places in the search space. Genetic algorithm (GA) is an evolutionary algorithm considered in this paper. This algorithm starts with definition of initial population, and then the operators of selection, replication and variation are applied

  10. Realistic Control of Network Dynamics

    PubMed Central

    Cornelius, Sean P.; Kath, William L.; Motter, Adilson E.

    2014-01-01

    The control of complex networks is of paramount importance in areas as diverse as ecosystem management, emergency response, and cell reprogramming. A fundamental property of networks is that perturbations to one node can affect other nodes, potentially causing the entire system to change behavior or fail. Here, we show that it is possible to exploit the same principle to control network behavior. Our approach accounts for the nonlinear dynamics inherent to real systems, and allows bringing the system to a desired target state even when this state is not directly accessible due to constraints that limit the allowed interventions. Applications show that this framework permits reprogramming a network to a desired task as well as rescuing networks from the brink of failure—which we illustrate through the mitigation of cascading failures in a power-grid network and the identification of potential drug targets in a signaling network of human cancer. PMID:23803966

  11. The APS control system network

    SciTech Connect

    Sidorowicz, K.V.; McDowell, W.P.

    1995-12-31

    The APS accelerator control system is a distributed system consisting of operator interfaces, a network, and computer-controlled interfaces to hardware. This implementation of a control system has come to be called the {open_quotes}Standard Model.{close_quotes} The operator interface is a UNDC-based workstation with an X-windows graphical user interface. The workstation may be located at any point on the facility network and maintain full functionality. The function of the network is to provide a generalized communication path between the host computers, operator workstations, input/output crates, and other hardware that comprise the control system. The crate or input/output controller (IOC) provides direct control and input/output interfaces for each accelerator subsystem. The network is an integral part of all modem control systems and network performance will determine many characteristics of a control system. This paper will describe the overall APS network and examine the APS control system network in detail. Metrics are provided on the performance of the system under various conditions.

  12. Identification of Interventions to Control Network Crises

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Sahasrabudhe, Sagar; Motter, Adilson

    2012-02-01

    Large-scale crises in financial, social, infrastructure, genetic and ecological networks often result from the spread of disturbances that in isolation would only cause limited damage. Here we present a method to identify and schedule interventions that can mitigate cascading failures in general complex networks. When applied to competition networks, our method shows that the system can often be rescued from global failures through actions that satisfy restrictive constraints typical of real-world conditions. However, under such constraints, interventions that can rescue the system from a propagating cascade exist over specific periods of time that do not always include the early postperturbation period, suggesting that scheduling is critical in the control of network cascades.

  13. Control of collective network chaos

    SciTech Connect

    Wagemakers, Alexandre Sanjuán, Miguel A. F.

    2014-06-01

    Under certain conditions, the collective behavior of a large globally-coupled heterogeneous network of coupled oscillators, as quantified by the macroscopic mean field or order parameter, can exhibit low-dimensional chaotic behavior. Recent advances describe how a small set of “reduced” ordinary differential equations can be derived that captures this mean field behavior. Here, we show that chaos control algorithms designed using the reduced equations can be successfully applied to imperfect realizations of the full network. To systematically study the effectiveness of this technique, we measure the quality of control as we relax conditions that are required for the strict accuracy of the reduced equations, and hence, the controller. Although the effects are network-dependent, we show that the method is effective for surprisingly small networks, for modest departures from global coupling, and even with mild inaccuracy in the estimate of network heterogeneity.

  14. Discovering Alzheimer Genetic Biomarkers Using Bayesian Networks.

    PubMed

    Sherif, Fayroz F; Zayed, Nourhan; Fakhr, Mahmoud

    2015-01-01

    Single nucleotide polymorphisms (SNPs) contribute most of the genetic variation to the human genome. SNPs associate with many complex and common diseases like Alzheimer's disease (AD). Discovering SNP biomarkers at different loci can improve early diagnosis and treatment of these diseases. Bayesian network provides a comprehensible and modular framework for representing interactions between genes or single SNPs. Here, different Bayesian network structure learning algorithms have been applied in whole genome sequencing (WGS) data for detecting the causal AD SNPs and gene-SNP interactions. We focused on polymorphisms in the top ten genes associated with AD and identified by genome-wide association (GWA) studies. New SNP biomarkers were observed to be significantly associated with Alzheimer's disease. These SNPs are rs7530069, rs113464261, rs114506298, rs73504429, rs7929589, rs76306710, and rs668134. The obtained results demonstrated the effectiveness of using BN for identifying AD causal SNPs with acceptable accuracy. The results guarantee that the SNP set detected by Markov blanket based methods has a strong association with AD disease and achieves better performance than both naïve Bayes and tree augmented naïve Bayes. Minimal augmented Markov blanket reaches accuracy of 66.13% and sensitivity of 88.87% versus 61.58% and 59.43% in naïve Bayes, respectively. PMID:26366461

  15. Discovering Alzheimer Genetic Biomarkers Using Bayesian Networks

    PubMed Central

    Sherif, Fayroz F.; Zayed, Nourhan; Fakhr, Mahmoud

    2015-01-01

    Single nucleotide polymorphisms (SNPs) contribute most of the genetic variation to the human genome. SNPs associate with many complex and common diseases like Alzheimer's disease (AD). Discovering SNP biomarkers at different loci can improve early diagnosis and treatment of these diseases. Bayesian network provides a comprehensible and modular framework for representing interactions between genes or single SNPs. Here, different Bayesian network structure learning algorithms have been applied in whole genome sequencing (WGS) data for detecting the causal AD SNPs and gene-SNP interactions. We focused on polymorphisms in the top ten genes associated with AD and identified by genome-wide association (GWA) studies. New SNP biomarkers were observed to be significantly associated with Alzheimer's disease. These SNPs are rs7530069, rs113464261, rs114506298, rs73504429, rs7929589, rs76306710, and rs668134. The obtained results demonstrated the effectiveness of using BN for identifying AD causal SNPs with acceptable accuracy. The results guarantee that the SNP set detected by Markov blanket based methods has a strong association with AD disease and achieves better performance than both naïve Bayes and tree augmented naïve Bayes. Minimal augmented Markov blanket reaches accuracy of 66.13% and sensitivity of 88.87% versus 61.58% and 59.43% in naïve Bayes, respectively. PMID:26366461

  16. Convergence behaviour and Control in Non-Linear Biological Networks

    PubMed Central

    Karl, Stefan; Dandekar, Thomas

    2015-01-01

    Control of genetic regulatory networks is challenging to define and quantify. Previous control centrality metrics, which aim to capture the ability of individual nodes to control the system, have been found to suffer from plausibility and applicability problems. Here we present a new approach to control centrality based on network convergence behaviour, implemented as an extension of our genetic regulatory network simulation framework Jimena ( http://stefan-karl.de/jimena). We distinguish three types of network control, and show how these mathematical concepts correspond to experimentally verified node functions and signalling pathways in immunity and cell differentiation: Total control centrality quantifies the impact of node mutations and identifies potential pharmacological targets such as genes involved in oncogenesis (e.g. zinc finger protein GLI2 or bone morphogenetic proteins in chondrocytes). Dynamic control centrality describes relaying functions as observed in signalling cascades (e.g. src kinase or Jak/Stat pathways). Value control centrality measures the direct influence of the value of the node on the network (e.g. Indian hedgehog as an essential regulator of proliferation in chondrocytes). Surveying random scale-free networks and biological networks, we find that control of the network resides in few high degree driver nodes and networks can be controlled best if they are sparsely connected. PMID:26068060

  17. A Neuro-genetic Control Scheme Application for Industrial R 3 Workspaces

    NASA Astrophysics Data System (ADS)

    Irigoyen, E.; Larrea, M.; Valera, J.; Gómez, V.; Artaza, F.

    This work presents a neuro-genetic control scheme for a R 3 workspace application. The solution is based on a Multi Objective Genetic Algorithm reference generator and an Adaptive Predictive Neural Network Controller. Crane position control is presented as an application of the proposed control scheme.

  18. Controllability of asynchronous Boolean multiplex control networks

    NASA Astrophysics Data System (ADS)

    Luo, Chao; Wang, Xingyuan; Liu, Hong

    2014-09-01

    In this article, the controllability of asynchronous Boolean multiplex control networks (ABMCNs) is studied. First, the model of Boolean multiplex control networks under Harvey' asynchronous update is presented. By means of semi-tensor product approach, the logical dynamics is converted into linear representation, and a generalized formula of control-depending network transition matrices is achieved. Second, a necessary and sufficient condition is proposed to verify that only control-depending fixed points of ABMCNs can be controlled with probability one. Third, using two types of controls, the controllability of system is studied and formulae are given to show: (a) when an initial state is given, the reachable set at time s under a group of specified controls; (b) the reachable set at time s under arbitrary controls; (c) the specific probability values from a given initial state to destination states. Based on the above formulae, an algorithm to calculate overall reachable states from a specified initial state is presented. Moreover, we also discuss an approach to find the particular control sequence which steers the system between two states with maximum probability. Examples are shown to illustrate the feasibility of the proposed scheme.

  19. Genetic-algorithm-based tri-state neural networks

    NASA Astrophysics Data System (ADS)

    Uang, Chii-Maw; Chen, Wen-Gong; Horng, Ji-Bin

    2002-09-01

    A new method, using genetic algorithms, for constructing a tri-state neural network is presented. The global searching features of the genetic algorithms are adopted to help us easily find the interconnection weight matrix of a bipolar neural network. The construction method is based on the biological nervous systems, which evolve the parameters encoded in genes. Taking the advantages of conventional (binary) genetic algorithms, a two-level chromosome structure is proposed for training the tri-state neural network. A Matlab program is developed for simulating the network performances. The results show that the proposed genetic algorithms method not only has the features of accurate of constructing the interconnection weight matrix, but also has better network performance.

  20. Genetic control of glycolipid expression.

    PubMed

    Yamakawa, T; Suzuki, A; Hashimoto, Y

    1986-12-15

    A polymorphic variation of sialic acid species of sialosyllactosylceramide was found in dog erythrocytes. The analysis of the glycolipids in the erythrocytes of the individual dogs in a family of a Japanese breed of dog, Shiba-Inu, showed that the expression of sialosyllactosylceramide containing N-glycolylneuraminic acid was an autosomal dominant trait over the expression of that containing N-acetylneuraminic acid. Polymorphic variations of major liver gangliosides were also found in various strains of inbred mice. The strains were classified into three groups; the first group possessed only II3 NeuGc-LacCer, the second group possessed II3NeuGc-GgOse3Cer in addition to II3NeuGc-LacCer and the third group possessed II3NeuGc-GgOse4Cer and II3NeuGc,IV3NeuGc-GgOse4Cer as well as the above two gangliosides. By subjecting mice of these three groups to genetic analysis, the strain of the first group (WHT/Ht mice) was demonstrated to be a recessive homozygote which had a single autosomal defective gene making it unable to express N-acetylgalactosaminyltransferase activity to produce II3NeuGc-GgOse3Cer. The strains of the second group (BALB/c and C57BL/10 mice) were also demonstrated to be recessive homozygotes which had a single autosomal defective gene making them unable to express high enough level of galactosyltransferase activity to produce II3NeuGc-GgOse4Cer. By the analysis of gangliosides and the enzyme activity of H-2 congenic mice and mice produced by a mating, this defective gene controlling the expression of II3NeuGc-GgOse4-Cer through the regulation of the transferase activity was demonstrated to be linked to H-2 complex on chromosome 17. PMID:3103940

  1. Genetic Algorithm Based Neural Networks for Nonlinear Optimization

    Energy Science and Technology Software Center (ESTSC)

    1994-09-28

    This software develops a novel approach to nonlinear optimization using genetic algorithm based neural networks. To our best knowledge, this approach represents the first attempt at applying both neural network and genetic algorithm techniques to solve a nonlinear optimization problem. The approach constructs a neural network structure and an appropriately shaped energy surface whose minima correspond to optimal solutions of the problem. A genetic algorithm is employed to perform a parallel and powerful search ofmore » the energy surface.« less

  2. Controlling centrality in complex networks

    PubMed Central

    Nicosia, V.; Criado, R.; Romance, M.; Russo, G.; Latora, V.

    2012-01-01

    Spectral centrality measures allow to identify influential individuals in social groups, to rank Web pages by popularity, and even to determine the impact of scientific researches. The centrality score of a node within a network crucially depends on the entire pattern of connections, so that the usual approach is to compute node centralities once the network structure is assigned. We face here with the inverse problem, that is, we study how to modify the centrality scores of the nodes by acting on the structure of a given network. We show that there exist particular subsets of nodes, called controlling sets, which can assign any prescribed set of centrality values to all the nodes of a graph, by cooperatively tuning the weights of their out-going links. We found that many large networks from the real world have surprisingly small controlling sets, containing even less than 5 – 10% of the nodes. PMID:22355732

  3. A control network of Triton

    NASA Technical Reports Server (NTRS)

    Davies, Merton E.; Rogers, Patricia G.; Colvin, Tim R.

    1991-01-01

    A control network for Triton has been computed using a bundle-type analytical triangulation program. The network contains 105 points that were measured on 57 Voyager-2 pictures. The adjustment contained 1010 observation equations and 382 normal equations and resulted in a standard measurement error of 13.36 microns. The coordinates of the control points, the camera orientation angles at the times when the pictures were taken, and Triton's mean radius were determined. A separate statistical analysis confirmed Triton's radius to be 1352.6 + or - 2.4 km. Attempts to tie the control network around the satellite were unsuccessful because discontinuities exist in high-resolution coverage between 66 deg and 289 deg longitude, north of 38 deg latitude, and south of 78 deg latitude.

  4. A control network of Triton

    NASA Astrophysics Data System (ADS)

    Davies, Merton E.; Rogers, Patricia G.; Colvin, Tim R.

    1991-08-01

    A control network for Triton has been computed using a bundle-type analytical triangulation program. The network contains 105 points that were measured on 57 Voyager-2 pictures. The adjustment contained 1010 observation equations and 382 normal equations and resulted in a standard measurement error of 13.36 microns. The coordinates of the control points, the camera orientation angles at the times when the pictures were taken, and Triton's mean radius were determined. A separate statistical analysis confirmed Triton's radius to be 1352.6 + or - 2.4 km. Attempts to tie the control network around the satellite were unsuccessful because discontinuities exist in high-resolution coverage between 66 deg and 289 deg longitude, north of 38 deg latitude, and south of 78 deg latitude.

  5. Neural Networks for Flight Control

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles C.

    1996-01-01

    Neural networks are being developed at NASA Ames Research Center to permit real-time adaptive control of time varying nonlinear systems, enhance the fault-tolerance of mission hardware, and permit online system reconfiguration. In general, the problem of controlling time varying nonlinear systems with unknown structures has not been solved. Adaptive neural control techniques show considerable promise and are being applied to technical challenges including automated docking of spacecraft, dynamic balancing of the space station centrifuge, online reconfiguration of damaged aircraft, and reducing cost of new air and spacecraft designs. Our experiences have shown that neural network algorithms solved certain problems that conventional control methods have been unable to effectively address. These include damage mitigation in nonlinear reconfiguration flight control, early performance estimation of new aircraft designs, compensation for damaged planetary mission hardware by using redundant manipulator capability, and space sensor platform stabilization. This presentation explored these developments in the context of neural network control theory. The discussion began with an overview of why neural control has proven attractive for NASA application domains. The more important issues in control system development were then discussed with references to significant technical advances in the literature. Examples of how these methods have been applied were given, followed by projections of emerging application needs and directions.

  6. Propagation of genetic variation in gene regulatory networks

    NASA Astrophysics Data System (ADS)

    Plahte, Erik; Gjuvsland, Arne B.; Omholt, Stig W.

    2013-08-01

    A future quantitative genetics theory should link genetic variation to phenotypic variation in a causally cohesive way based on how genes actually work and interact. We provide a theoretical framework for predicting and understanding the manifestation of genetic variation in haploid and diploid regulatory networks with arbitrary feedback structures and intra-locus and inter-locus functional dependencies. Using results from network and graph theory, we define propagation functions describing how genetic variation in a locus is propagated through the network, and show how their derivatives are related to the network’s feedback structure. Similarly, feedback functions describe the effect of genotypic variation of a locus on itself, either directly or mediated by the network. A simple sign rule relates the sign of the derivative of the feedback function of any locus to the feedback loops involving that particular locus. We show that the sign of the phenotypically manifested interaction between alleles at a diploid locus is equal to the sign of the dominant feedback loop involving that particular locus, in accordance with recent results for a single locus system. Our results provide tools by which one can use observable equilibrium concentrations of gene products to disclose structural properties of the network architecture. Our work is a step towards a theory capable of explaining the pleiotropy and epistasis features of genetic variation in complex regulatory networks as functions of regulatory anatomy and functional location of the genetic variation.

  7. Gene networks controlling petal organogenesis.

    PubMed

    Huang, Tengbo; Irish, Vivian F

    2016-01-01

    One of the biggest unanswered questions in developmental biology is how growth is controlled. Petals are an excellent organ system for investigating growth control in plants: petals are dispensable, have a simple structure, and are largely refractory to environmental perturbations that can alter their size and shape. In recent studies, a number of genes controlling petal growth have been identified. The overall picture of how such genes function in petal organogenesis is beginning to be elucidated. This review will focus on studies using petals as a model system to explore the underlying gene networks that control organ initiation, growth, and final organ morphology. PMID:26428062

  8. Genetic noise control via protein oligomerization

    SciTech Connect

    Ghim, C; Almaas, E

    2008-06-12

    Gene expression in a cell entails random reaction events occurring over disparate time scales. Thus, molecular noise that often results in phenotypic and population-dynamic consequences sets a fundamental limit to biochemical signaling. While there have been numerous studies correlating the architecture of cellular reaction networks with noise tolerance, only a limited effort has been made to understand the dynamical role of protein-protein associations. We have developed a fully stochastic model for the positive feedback control of a single gene, as well as a pair of genes (toggle switch), integrating quantitative results from previous in vivo and in vitro studies. In particular, we explicitly account for the fast protein binding-unbinding kinetics, RNA polymerases, and the promoter/operator sequences of DNA. We find that the overall noise-level is reduced and the frequency content of the noise is dramatically shifted to the physiologically irrelevant high-frequency regime in the presence of protein dimerization. This is independent of the choice of monomer or dimer as transcription factor and persists throughout the multiple model topologies considered. For the toggle switch, we additionally find that the presence of a protein dimer, either homodimer or heterodimer, may significantly reduce its intrinsic switching rate. Hence, the dimer promotes the robust function of bistable switches by preventing the uninduced (induced) state from randomly being induced (uninduced). The specific binding between regulatory proteins provides a buffer that may prevent the propagation of fluctuations in genetic activity. The capacity of the buffer is a non-monotonic function of association-dissociation rates. Since the protein oligomerization per se does not require extra protein components to be expressed, it provides a basis for the rapid control of intrinsic or extrinsic noise. The stabilization of phenotypically important toggle switches, and nested positive feedback loops in

  9. Virtualized Network Control. Final Report

    SciTech Connect

    Ghani, Nasir

    2013-02-01

    This document is the final report for the Virtualized Network Control (VNC) project, which was funded by the United States Department of Energy (DOE) Office of Science. This project was also informally referred to as Advanced Resource Computation for Hybrid Service and TOpology NEtworks (ARCHSTONE). This report provides a summary of the project's activities, tasks, deliverable, and accomplishments. It also provides a summary of the documents, software, and presentations generated as part of this projects activities. Namely, the Appendix contains an archive of the deliverables, documents, and presentations generated a part of this project.

  10. The AMSC network control system

    NASA Technical Reports Server (NTRS)

    Garner, William B.

    1990-01-01

    The American Mobile Satellite Corporation (AMSC) is going to construct, launch, and operate a satellite system in order to provide mobile satellite services to the United States. AMSC is going to build, own, and operate a Network Control System (NCS) for managing the communications usage of the satellites, and to control circuit switched access between mobile earth terminals and feeder-link earth stations. An overview of the major NCS functional and performance requirements, the control system physical architecture, and the logical architecture is provided.

  11. Controllability of the better chosen partial networks

    NASA Astrophysics Data System (ADS)

    Liu, Xueming; Pan, Linqiang

    2016-08-01

    How to control large complex networks is a great challenge. Recent studies have proved that the whole network can be sufficiently steered by injecting control signals into a minimum set of driver nodes, and the minimum numbers of driver nodes for many real networks are high, indicating that it is difficult to control them. For some large natural and technological networks, it is impossible and not feasible to control the full network. For example, in biological networks like large-scale gene regulatory networks it is impossible to control all the genes. This prompts us to explore the question how to choose partial networks that are easy for controlling and important in networked systems. In this work, we propose a method to achieve this goal. By computing the minimum driver nodes densities of the partial networks of Erdös-Rényi (ER) networks, scale-free (SF) networks and 23 real networks, we find that our method performs better than random method that chooses nodes randomly. Moreover, we find that the nodes chosen by our method tend to be the essential elements of the whole systems, via studying the nodes chosen by our method of a real human signaling network and a human protein interaction network and discovering that the chosen nodes from these networks tend to be cancer-associated genes. The implementation of our method shows some interesting connections between the structure and the controllability of networks, improving our understanding of the control principles of complex systems.

  12. Question 9: Minority Control and Genetic Takeover

    NASA Astrophysics Data System (ADS)

    Kaneko, Kunihiko

    2007-10-01

    As an issue of constructive biology, we study how molecules carrying heredity appear in a reproduction system that consists of mutually catalytic reactions. Molecules that are minority in number are shown to be preserved over generations, and control the behavior of the system. Life-critical information is then expected to be packed into such molecules and transferred over generations, leading to kinetic origin of genetic information. Relevance of this minority control to genetic takeover from loose reproduction is discussed, as a general consequence of any reproducing system with evolvability. Appropriate cell size to achieve both for reproduction and evolvability is also estimated based on this minority control mechanism.

  13. Environmental and genetic perturbations reveal different networks of metabolic regulation

    PubMed Central

    Greenberg, Anthony J; Hackett, Sean R; Harshman, Lawrence G; Clark, Andrew G

    2011-01-01

    Progress in systems biology depends on accurate descriptions of biological networks. Connections in a regulatory network are identified as correlations of gene expression across a set of environmental or genetic perturbations. To use this information to predict system behavior, we must test how the nature of perturbations affects topologies of networks they reveal. To probe this question, we focused on metabolism of Drosophila melanogaster. Our source of perturbations is a set of crosses among 92 wild-derived lines from five populations, replicated in a manner permitting separate assessment of the effects of genetic variation and environmental fluctuation. We directly assayed activities of enzymes and levels of metabolites. Using a multivariate Bayesian model, we estimated covariance among metabolic parameters and built fine-grained probabilistic models of network topology. The environmental and genetic co-regulation networks are substantially the same among five populations. However, genetic and environmental perturbations reveal qualitative differences in metabolic regulation, suggesting that environmental shifts, such as diet modifications, produce different systemic effects than genetic changes, even if the primary targets are the same. PMID:22186737

  14. Molecular and genetic inflammation networks in major human diseases.

    PubMed

    Zhao, Yongzhong; Forst, Christian V; Sayegh, Camil E; Wang, I-Ming; Yang, Xia; Zhang, Bin

    2016-07-19

    It has been well-recognized that inflammation alongside tissue repair and damage maintaining tissue homeostasis determines the initiation and progression of complex diseases. Albeit with the accomplishment of having captured the most critical inflammation-involved molecules, genetic susceptibilities, epigenetic factors, and environmental factors, our schemata on the role of inflammation in complex diseases remain largely patchy, in part due to the success of reductionism in terms of research methodology per se. Omics data alongside the advances in data integration technologies have enabled reconstruction of molecular and genetic inflammation networks which shed light on the underlying pathophysiology of complex diseases or clinical conditions. Given the proven beneficial role of anti-inflammation in coronary heart disease as well as other complex diseases and immunotherapy as a revolutionary transition in oncology, it becomes timely to review our current understanding of the molecular and genetic inflammation networks underlying major human diseases. In this review, we first briefly discuss the complexity of infectious diseases and then highlight recently uncovered molecular and genetic inflammation networks in other major human diseases including obesity, type II diabetes, coronary heart disease, late onset Alzheimer's disease, Parkinson's disease, and sporadic cancer. The commonality and specificity of these molecular networks are addressed in the context of genetics based on genome-wide association study (GWAS). The double-sword role of inflammation, such as how the aberrant type 1 and/or type 2 immunity leads to chronic and severe clinical conditions, remains open in terms of the inflammasome and the core inflammatome network features. Increasingly available large Omics and clinical data in tandem with systems biology approaches have offered an exciting yet challenging opportunity toward reconstruction of more comprehensive and dynamic molecular and genetic

  15. Combination of uniform design with artificial neural network coupling genetic algorithm: an effective way to obtain high yield of biomass and algicidal compound of a novel HABs control actinomycete

    PubMed Central

    2014-01-01

    Controlling harmful algae blooms (HABs) using microbial algicides is cheap, efficient and environmental-friendly. However, obtaining high yield of algicidal microbes to meet the need of field test is still a big challenge since qualitative and quantitative analysis of algicidal compounds is difficult. In this study, we developed a protocol to increase the yield of both biomass and algicidal compound present in a novel algicidal actinomycete Streptomyces alboflavus RPS, which kills Phaeocystis globosa. To overcome the problem in algicidal compound quantification, we chose algicidal ratio as the index and used artificial neural network to fit the data, which was appropriate for this nonlinear situation. In this protocol, we firstly determined five main influencing factors through single factor experiments and generated the multifactorial experimental groups with a U15(155) uniform-design-table. Then, we used the traditional quadratic polynomial stepwise regression model and an accurate, fully optimized BP-neural network to simulate the fermentation. Optimized with genetic algorithm and verified using experiments, we successfully increased the algicidal ratio of the fermentation broth by 16.90% and the dry mycelial weight by 69.27%. These results suggested that this newly developed approach is a viable and easy way to optimize the fermentation conditions for algicidal microorganisms. PMID:24886410

  16. Genetic variants in Alzheimer disease - molecular and brain network approaches.

    PubMed

    Gaiteri, Chris; Mostafavi, Sara; Honey, Christopher J; De Jager, Philip L; Bennett, David A

    2016-07-01

    Genetic studies in late-onset Alzheimer disease (LOAD) are aimed at identifying core disease mechanisms and providing potential biomarkers and drug candidates to improve clinical care of AD. However, owing to the complexity of LOAD, including pathological heterogeneity and disease polygenicity, extraction of actionable guidance from LOAD genetics has been challenging. Past attempts to summarize the effects of LOAD-associated genetic variants have used pathway analysis and collections of small-scale experiments to hypothesize functional convergence across several variants. In this Review, we discuss how the study of molecular, cellular and brain networks provides additional information on the effects of LOAD-associated genetic variants. We then discuss emerging combinations of these omic data sets into multiscale models, which provide a more comprehensive representation of the effects of LOAD-associated genetic variants at multiple biophysical scales. Furthermore, we highlight the clinical potential of mechanistically coupling genetic variants and disease phenotypes with multiscale brain models. PMID:27282653

  17. Weight-Control Information Network (WIN)

    MedlinePlus

    ... Feature: Reducing Childhood Obesity The Weight-control Information Network (WIN) Past Issues / Spring - Summer 2010 Table of ... here are tips from the Weight-control Information Network (WIN), an information service of the National Institute ...

  18. Genetic algorithms in adaptive fuzzy control

    NASA Technical Reports Server (NTRS)

    Karr, C. Lucas; Harper, Tony R.

    1992-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust fuzzy membership functions in response to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific computer-simulated chemical system is used to demonstrate the ideas presented.

  19. Opinion control in complex networks

    NASA Astrophysics Data System (ADS)

    Masuda, Naoki

    2015-03-01

    In many political elections, the electorate appears to be a composite of partisan and independent voters. Given that partisans are not likely to convert to a different party, an important goal for a political party could be to mobilize independent voters toward the party with the help of strong leadership, mass media, partisans, and the effects of peer-to-peer influence. Based on the exact solution of classical voter model dynamics in the presence of perfectly partisan voters (i.e., zealots), we propose a computational method that uses pinning control strategy to maximize the share of a party in a social network of independent voters. The party, corresponding to the controller or zealots, optimizes the nodes to be controlled given the information about the connectivity of independent voters and the set of nodes that the opposing party controls. We show that controlling hubs is generally a good strategy, but the optimized strategy is even better. The superiority of the optimized strategy is particularly eminent when the independent voters are connected as directed (rather than undirected) networks.

  20. Accurate measurements of dynamics and reproducibility in small genetic networks

    PubMed Central

    Dubuis, Julien O; Samanta, Reba; Gregor, Thomas

    2013-01-01

    Quantification of gene expression has become a central tool for understanding genetic networks. In many systems, the only viable way to measure protein levels is by immunofluorescence, which is notorious for its limited accuracy. Using the early Drosophila embryo as an example, we show that careful identification and control of experimental error allows for highly accurate gene expression measurements. We generated antibodies in different host species, allowing for simultaneous staining of four Drosophila gap genes in individual embryos. Careful error analysis of hundreds of expression profiles reveals that less than ∼20% of the observed embryo-to-embryo fluctuations stem from experimental error. These measurements make it possible to extract not only very accurate mean gene expression profiles but also their naturally occurring fluctuations of biological origin and corresponding cross-correlations. We use this analysis to extract gap gene profile dynamics with ∼1 min accuracy. The combination of these new measurements and analysis techniques reveals a twofold increase in profile reproducibility owing to a collective network dynamics that relays positional accuracy from the maternal gradients to the pair-rule genes. PMID:23340845

  1. Controlling synchronous patterns in complex networks

    NASA Astrophysics Data System (ADS)

    Lin, Weijie; Fan, Huawei; Wang, Ying; Ying, Heping; Wang, Xingang

    2016-04-01

    Although the set of permutation symmetries of a complex network could be very large, few of them give rise to stable synchronous patterns. Here we present a general framework and develop techniques for controlling synchronization patterns in complex network of coupled chaotic oscillators. Specifically, according to the network permutation symmetry, we design a small-size and weighted network, namely the control network, and use it to control the large-size complex network by means of pinning coupling. We argue mathematically that for any of the network symmetries, there always exists a critical pinning strength beyond which the unstable synchronous pattern associated to this symmetry can be stabilized. The feasibility of the control method is verified by numerical simulations of both artificial and real-world networks and demonstrated experimentally in systems of coupled chaotic circuits. Our studies show the controllability of synchronous patterns in complex networks of coupled chaotic oscillators.

  2. Topological constraints on network control profiles

    PubMed Central

    Campbell, Colin; Ruths, Justin; Ruths, Derek; Shea, Katriona; Albert, Réka

    2015-01-01

    Network models are designed to capture properties of empirical networks and thereby provide insight into the processes that underlie the formation of complex systems. As new information concerning network structure becomes available, it becomes possible to design models that more fully capture the properties of empirical networks. A recent advance in our understanding of network structure is the control profile, which summarizes the structural controllability of a network in terms of source nodes, external dilations, and internal dilations. Here, we consider the topological properties–and their formation mechanisms—that constrain the control profile. We consider five representative empirical categories of internal-dilation dominated networks, and show that the number of source and sink nodes, the form of the in- and out-degree distributions, and local complexity (e.g., cycles) shape the control profile. We evaluate network models that are sufficient to produce realistic control profiles, and conclude that holistic network models should similarly consider these properties. PMID:26691951

  3. MicroRNA-dependent Genetic Networks During Neural Development

    PubMed Central

    Abernathy, Daniel G.; Yoo, Andrew S.

    2014-01-01

    The development of the structurally and functionally diverse mammalian nervous system requires the integration of numerous levels of gene regulation. Accumulating evidence suggests that microRNAs are key mediators of genetic networks during neural development. Importantly, microRNAs are found to regulate both feedback and feedforward loops during neural development leading to large changes in gene expression. These repressive interactions provide an additional mechanism that facilitates the establishment of complexity within the nervous system. Here, we review studies that have enabled the identification of brain-enriched microRNAs and discuss how genetic networks in neural development depend on microRNAs. PMID:24865244

  4. Network Adaptive Deadband: NCS Data Flow Control for Shared Networks

    PubMed Central

    Díaz-Cacho, Miguel; Delgado, Emma; Prieto, José A. G.; López, Joaquín

    2012-01-01

    This paper proposes a new middleware solution called Network Adaptive Deadband (NAD) for long time operation of Networked Control Systems (NCS) through the Internet or any shared network based on IP technology. The proposed middleware takes into account the network status and the NCS status, to improve the global system performance and to share more effectively the network by several NCS and sensor/actuator data flows. Relationship between network status and NCS status is solved with a TCP-friendly transport flow control protocol and the deadband concept, relating deadband value and transmission throughput. This creates a deadband-based flow control solution. Simulation and experiments in shared networks show that the implemented network adaptive deadband has better performance than an optimal constant deadband solution in the same circumstances. PMID:23208556

  5. GENETIC CONTROL OF PLANT DEVELOPMENT GENETIC CONTROL OF PLANT DEVELOPMENT GENETIC CONTROL OF PLANT DEVELOPMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, several genes have been cloned that affect plant architecture: CLAVATA1, which controls the balance between maintenance and organogenesis in the meristem; CUC2, which separates organ primordia in the meristem; and teosinte branched 1 and cycloidea, which use growth suppression to cause mor...

  6. Minimum structural controllability problems of complex networks

    NASA Astrophysics Data System (ADS)

    Yin, Hongli; Zhang, Siying

    2016-02-01

    Controllability of complex networks has been one of the attractive research areas for both network and control community, and has yielded many promising and significant results in minimum inputs and minimum driver vertices. However, few studies have been devoted to studying the minimum controlled vertex set through which control over the network with arbitrary structure can be achieved. In this paper, we prove that the minimum driver vertices driven by different inputs are not sufficient to ensure the full control of the network when the associated graph contains the inaccessible strongly connected component which has perfect matching and propose an algorithm to identify a minimum controlled vertex set for network with arbitrary structure using convenient graph and mathematical tools. And the simulation results show that the controllability of network is correlated to the number of inaccessible strongly connected components which have perfect matching and these results promote us to better understand the relationship between the network's structural characteristics and its control.

  7. Networked Dynamic Systems: Identification, Controllability, and Randomness

    NASA Astrophysics Data System (ADS)

    Nabi-Abdolyousefi, Marzieh

    The presented dissertation aims to develop a graph-centric framework for the analysis and synthesis of networked dynamic systems (NDS) consisting of multiple dynamic units that interact via an interconnection topology. We examined three categories of network problems, namely, identification, controllability, and randomness. In network identification, as a subclass of inverse problems, we made an explicit relation between the input-output behavior of an NDS and the underlying interacting network. In network controllability, we provided structural and algebraic insights into features of the network that enable external signal(s) to control the state of the nodes in the network for certain classes of interconnections, namely, path, circulant, and Cartesian networks. We also examined the relation between network controllability and the symmetry structure of the graph. Motivated by the analysis results for the controllability and observability of deterministic networks, a natural question is whether randomness in the network layer or in the layer of inputs and outputs generically leads to favorable system theoretic properties. In this direction, we examined system theoretic properties of random networks including controllability, observability, and performance of optimal feedback controllers and estimators. We explored some of the ramifications of such an analysis framework in opinion dynamics over social networks and sensor networks in estimating the real-time position of a Seaglider from experimental data.

  8. Genetic Network Programming with Intron-Like Nodes

    NASA Astrophysics Data System (ADS)

    Mabu, Shingo; Chen, Yan; Eto, Shinji; Shimada, Kaoru; Hirasawa, Kotaro

    Recently, Genetic Network Programming (GNP) has been proposed, which is an extension of Genetic Algorithm(GA) and Genetic Programming(GP). GNP can make compact programs and can memorize the past history in it implicitly, because it expresses the solution by directed graphs and therefore, it can reuse the nodes. In this research, intron-like nodes are introduced for improving the performance of GNP. The aim of introducing intron-like nodes is to use every node as much as possible. It is found from simulations that the intron-like nodes are useful for improving the training speed and generalization ability.

  9. Genetic Adaptive Control for PZT Actuators

    NASA Technical Reports Server (NTRS)

    Kim, Jeongwook; Stover, Shelley K.; Madisetti, Vijay K.

    1995-01-01

    A piezoelectric transducer (PZT) is capable of providing linear motion if controlled correctly and could provide a replacement for traditional heavy and large servo systems using motors. This paper focuses on a genetic model reference adaptive control technique (GMRAC) for a PZT which is moving a mirror where the goal is to keep the mirror velocity constant. Genetic Algorithms (GAs) are an integral part of the GMRAC technique acting as the search engine for an optimal PID controller. Two methods are suggested to control the actuator in this research. The first one is to change the PID parameters and the other is to add an additional reference input in the system. The simulation results of these two methods are compared. Simulated Annealing (SA) is also used to solve the problem. Simulation results of GAs and SA are compared after simulation. GAs show the best result according to the simulation results. The entire model is designed using the Mathworks' Simulink tool.

  10. Genetic Influences on Resting-state Functional Networks: A Twin Study

    PubMed Central

    Fu, Yixiao; Ma, Zhiwei; Hamilton, Christina; Liang, Zhifeng; Hou, Xiao; Ma, Xingshun; Hu, Xiaomei; He, Qian; Deng, Wei; Wang, Yingcheng; Zhao, Liansheng; Meng, Huaqing; Li, Tao; Zhang, Nanyin

    2015-01-01

    Alterations in resting-state networks (RSNs) are often associated with psychiatric and neurologic disorders. Given this critical linkage, it has been hypothesized that RSNs can potentially be used as endophenotypes for brain diseases. To validate this notion, a critical step is to show that RSNs exhibit heritability. However, the investigation of the genetic basis of RSNs has only been attempted in the default-mode network at the region-of-interest level, while the genetic control on other RSNs has not been determined yet. Here we examined the genetic and environmental influences on eight well-characterized RSNs by using a twin design. Resting-state functional magnetic resonance imaging data in 56 pairs of twins were collected. The genetic and environmental effects on each RSN were estimated by fitting the functional connectivity covariance of each voxel in the RSN to the classic ACE twin model. The data showed that although environmental effects accounted for the majority of variance in widespread areas, there were specific brain sites that showed significant genetic control for individual RSNs. These results suggest that part of the human brain functional connectome is shaped by genomic constraints. Importantly, this information can be useful for bridging genetic analysis and network-level assessment of brain disorders. PMID:26147340

  11. Adaptive optimization and control using neural networks

    SciTech Connect

    Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.

    1993-10-22

    Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.

  12. Network Access Control List Situation Awareness

    ERIC Educational Resources Information Center

    Reifers, Andrew

    2010-01-01

    Network security is a large and complex problem being addressed by multiple communities. Nevertheless, current theories in networking security appear to overestimate network administrators' ability to understand network access control lists (NACLs), providing few context specific user analyses. Consequently, the current research generally seems to…

  13. The control network of Iapetus

    NASA Technical Reports Server (NTRS)

    Davies, M. E.; Katayama, F. Y.

    1984-01-01

    A control network of the Saturnian satellite Iapetus has been established photogrammetrically from pictures taken by the two Voyager spacecraft. Coordinates of 62 control points have been computed and listed; pixel measurements of these points were made on 14 Voyager 1 and 66 Voyager 2 pictures. Some of these points are identified on the preliminary U.S. Geological Survey map of Iapetus and many are identified by name. The Voyager 1 and Voyager 2 pictures covered limited regions of the satellite's surface and contained no overlapping areas. The longitude system on Iapetus is defined by the crater Almeric; the 276 deg meridian passes through the center of this crater. The obliquity of Iapetus has been measured as 0.4 deg + or - 1.6 deg. The mean radius of Iapetus has been determined at 718 + or - 8 km.

  14. Genetics and early disturbances of breathing control.

    PubMed

    Gaultier, Claude; Amiel, Jeanne; Dauger, Stéphane; Trang, Ha; Lyonnet, Stanislas; Gallego, Jorge; Simonneau, Michel

    2004-05-01

    Early disturbances in breathing control, including apneas of prematurity and apparently life-threatening events, account for some cases of sudden infant death syndrome and for a rare disorder called congenital central hypoventilation syndrome (CCHS). Data suggesting a genetic basis for CCHS have been obtained. Recently, we found heterozygous de novo mutations of the PHOX2B gene in 18 of 29 individuals with CCHS. Most mutations consisted of five to nine alanine expansions within a 20-residue polyalanine tract, probably resulting from nonhomologous recombination. Other mutations, generally inherited from one of the parents, in the coding regions of genes involved in the endothelin and RET signaling pathways and in the brain-derived-neurotrophic factor (BDNF) gene have been found in a few CCHS patients. Interestingly, all these genes are involved in the development of neural crest cells. Targeted disruption of these genes in mice has provided information on the pathophysiological mechanisms underlying CCHS. Despite the identification of these genes involved in breathing control, none of the genetically engineered mice developed to date replicate the full human CCHS respiratory phenotype. Recent insights into the genetic basis for CCHS may shed light on the genetics of other early disturbances in breathing control, such as apnea of prematurity and sudden infant death syndrome. PMID:14739359

  15. Genetic control of inflorescence in common bean.

    PubMed

    Guilherme, S R; Ramalho, M A P; de F B Abreu, A; Pereira, L A

    2014-01-01

    The number of pods per common bean plant is a primary component of grain yield, which depends on the number of flowers produced and on the flower set. Thus, a larger number of flowers per plant would increase yield. Lines with inflorescences that had a large number of flowers compared to common bean plants now under cultivation were identified. We analyzed the genetic control of this trait and its association with grain yield. The cultivar BRSMG Talismã was crossed with 2 lines, L.59583 and L.59692, which have a large number of flowers. The F1, F2, and F3 generations were obtained. These generations were assessed together with the parents in a randomized block experimental design with 2 replications. The traits assessed included length of inflorescence, number of pods per inflorescence, number of pods per plant, number of grains per plant, 100-grain weight, and grain yield per plant. Mean genetic components and variance were estimated. The traits length of inflorescence and number of pods per inflorescence exhibited genetic control with predominance that showed an additive effect. In the 2 crosses, genetic control of grain yield and of its primary components showed that the allelic interaction of dominance was high. The wide variability in the traits assessed may be used to increase yield of the common bean plant by increasing the number of flowers on the plant. PMID:25501247

  16. Neural Networks in Nonlinear Aircraft Control

    NASA Technical Reports Server (NTRS)

    Linse, Dennis J.

    1990-01-01

    Recent research indicates that artificial neural networks offer interesting learning or adaptive capabilities. The current research focuses on the potential for application of neural networks in a nonlinear aircraft control law. The current work has been to determine which networks are suitable for such an application and how they will fit into a nonlinear control law.

  17. Genetic architecture and regulatory networks in oilseed development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic analysis of global gene expression level variation provides evidence for transcriptional regulators and gene network relationships. Plant seeds are an important source of oil and protein, and a genome-wide assessment of transcriptional regulation during seed development offers insight into t...

  18. Pinning impulsive control algorithms for complex network

    SciTech Connect

    Sun, Wen; Lü, Jinhu; Chen, Shihua; Yu, Xinghuo

    2014-03-15

    In this paper, we further investigate the synchronization of complex dynamical network via pinning control in which a selection of nodes are controlled at discrete times. Different from most existing work, the pinning control algorithms utilize only the impulsive signals at discrete time instants, which may greatly improve the communication channel efficiency and reduce control cost. Two classes of algorithms are designed, one for strongly connected complex network and another for non-strongly connected complex network. It is suggested that in the strongly connected network with suitable coupling strength, a single controller at any one of the network's nodes can always pin the network to its homogeneous solution. In the non-strongly connected case, the location and minimum number of nodes needed to pin the network are determined by the Frobenius normal form of the coupling matrix. In addition, the coupling matrix is not necessarily symmetric or irreducible. Illustrative examples are then given to validate the proposed pinning impulsive control algorithms.

  19. Controlling complex networks with conformity behavior

    NASA Astrophysics Data System (ADS)

    Wang, Xu-Wen; Nie, Sen; Wang, Wen-Xu; Wang, Bing-Hong

    2015-09-01

    Controlling complex networks accompanied by common conformity behavior is a fundamental problem in social and physical science. Conformity behavior that individuals tend to follow the majority in their neighborhood is common in human society and animal communities. Despite recent progress in understanding controllability of complex networks, the existent controllability theories cannot be directly applied to networks associated with conformity. Here we propose a simple model to incorporate conformity-based decision making into the evolution of a network system, which allows us to employ the exact controllability theory to explore the controllability of such systems. We offer rigorous theoretical results of controllability for representative regular networks. We also explore real networks in different fields and some typical model networks, finding some interesting results that are different from the predictions of structural and exact controllability theory in the absence of conformity. We finally present an example of steering a real social network to some target states to further validate our controllability theory and tools. Our work offers a more realistic understanding of network controllability with conformity behavior and can have potential applications in networked evolutionary games, opinion dynamics and many other complex networked systems.

  20. Using genetic algorithms to construct a network for financial prediction

    NASA Astrophysics Data System (ADS)

    Patel, Devesh

    1996-03-01

    Traditional forecasting models such as the Box-Jenkins ARIMA model are almost all based on models that assume a linear relationship amongst variables and cannot approximate the non- linear relationship that exists amongst variables in real-world data such as stock-price data. Artificial neural networks, on the other hand, consist of two or more levels of nonlinearity that have been successfully used to approximate the underlying relationships of time series data. Neural networks however, pose a design problem: their optimum topology and training rule parameters including learning rate and momentum, for the problem at hand need to be determined. In this paper, we use genetic algorithms to determine these design parameters. In general genetic algorithms are an optimization method that find solutions to a problem by an evolutionary process based on natural selection. The genetic algorithm searches through the network parameter space and the neural network learning algorithm evaluates the selected parameters. We then use the optimally configured network to predict the stock market price of a blue-chip company on the UK market.

  1. Genetic algorithm application in optimization of wireless sensor networks.

    PubMed

    Norouzi, Ali; Zaim, A Halim

    2014-01-01

    There are several applications known for wireless sensor networks (WSN), and such variety demands improvement of the currently available protocols and the specific parameters. Some notable parameters are lifetime of network and energy consumption for routing which play key role in every application. Genetic algorithm is one of the nonlinear optimization methods and relatively better option thanks to its efficiency for large scale applications and that the final formula can be modified by operators. The present survey tries to exert a comprehensive improvement in all operational stages of a WSN including node placement, network coverage, clustering, and data aggregation and achieve an ideal set of parameters of routing and application based WSN. Using genetic algorithm and based on the results of simulations in NS, a specific fitness function was achieved, optimized, and customized for all the operational stages of WSNs. PMID:24693235

  2. Genetic Algorithm Application in Optimization of Wireless Sensor Networks

    PubMed Central

    Norouzi, Ali; Zaim, A. Halim

    2014-01-01

    There are several applications known for wireless sensor networks (WSN), and such variety demands improvement of the currently available protocols and the specific parameters. Some notable parameters are lifetime of network and energy consumption for routing which play key role in every application. Genetic algorithm is one of the nonlinear optimization methods and relatively better option thanks to its efficiency for large scale applications and that the final formula can be modified by operators. The present survey tries to exert a comprehensive improvement in all operational stages of a WSN including node placement, network coverage, clustering, and data aggregation and achieve an ideal set of parameters of routing and application based WSN. Using genetic algorithm and based on the results of simulations in NS, a specific fitness function was achieved, optimized, and customized for all the operational stages of WSNs. PMID:24693235

  3. Information theory and the ethylene genetic network.

    PubMed

    González-García, José S; Díaz, José

    2011-10-01

    The original aim of the Information Theory (IT) was to solve a purely technical problem: to increase the performance of communication systems, which are constantly affected by interferences that diminish the quality of the transmitted information. That is, the theory deals only with the problem of transmitting with the maximal precision the symbols constituting a message. In Shannon's theory messages are characterized only by their probabilities, regardless of their value or meaning. As for its present day status, it is generally acknowledged that Information Theory has solid mathematical foundations and has fruitful strong links with Physics in both theoretical and experimental areas. However, many applications of Information Theory to Biology are limited to using it as a technical tool to analyze biopolymers, such as DNA, RNA or protein sequences. The main point of discussion about the applicability of IT to explain the information flow in biological systems is that in a classic communication channel, the symbols that conform the coded message are transmitted one by one in an independent form through a noisy communication channel, and noise can alter each of the symbols, distorting the message; in contrast, in a genetic communication channel the coded messages are not transmitted in the form of symbols but signaling cascades transmit them. Consequently, the information flow from the emitter to the effector is due to a series of coupled physicochemical processes that must ensure the accurate transmission of the message. In this review we discussed a novel proposal to overcome this difficulty, which consists of the modeling of gene expression with a stochastic approach that allows Shannon entropy (H) to be directly used to measure the amount of uncertainty that the genetic machinery has in relation to the correct decoding of a message transmitted into the nucleus by a signaling pathway. From the value of H we can define a function I that measures the amount of

  4. [The international network and Italian modernization. Ruggero Ceppellini, genetics, and HLA].

    PubMed

    Capocci, Mauro

    2014-01-01

    The paper reconstructs the scientific career of Ruggero Ceppellini, focusing especially on his role in the discovery of the genetic system underlying the Human Leucocyte Antigen. From his earliest investigations in blood group genetics, Ceppellini quickly became an internationally acknowledged authority in the field of immunogenetics--the study of genetics by means of immunological tools--and participated to the endeavor that ultimately yelded a new meaning for the word: thanks to the pioneering research in the HLA field, immunogenetics became the study of the genetic control of immune system. The paper will also place Ceppellini's scientific work against the backdrop of the modernization of Italian genetics after WWII, resulting from the efforts of a handful of scientists to connect to international networks and adopting new methodologies in life sciences. PMID:26292523

  5. Structural controllability of unidirectional bipartite networks

    NASA Astrophysics Data System (ADS)

    Nacher, Jose C.; Akutsu, Tatsuya

    2013-04-01

    The interactions between fundamental life molecules, people and social organisations build complex architectures that often result in undesired behaviours. Despite all of the advances made in our understanding of network structures over the past decade, similar progress has not been achieved in the controllability of real-world networks. In particular, an analytical framework to address the controllability of bipartite networks is still absent. Here, we present a dominating set (DS)-based approach to bipartite network controllability that identifies the topologies that are relatively easy to control with the minimum number of driver nodes. Our theoretical calculations, assisted by computer simulations and an evaluation of real-world networks offer a promising framework to control unidirectional bipartite networks. Our analysis should open a new approach to reverting the undesired behaviours in unidirectional bipartite networks at will.

  6. Network Monitor and Control of Disruption-Tolerant Networks

    NASA Technical Reports Server (NTRS)

    Torgerson, J. Leigh

    2014-01-01

    For nearly a decade, NASA and many researchers in the international community have been developing Internet-like protocols that allow for automated network operations in networks where the individual links between nodes are only sporadically connected. A family of Disruption-Tolerant Networking (DTN) protocols has been developed, and many are reaching CCSDS Blue Book status. A NASA version of DTN known as the Interplanetary Overlay Network (ION) has been flight-tested on the EPOXI spacecraft and ION is currently being tested on the International Space Station. Experience has shown that in order for a DTN service-provider to set up a large scale multi-node network, a number of network monitor and control technologies need to be fielded as well as the basic DTN protocols. The NASA DTN program is developing a standardized means of querying a DTN node to ascertain its operational status, known as the DTN Management Protocol (DTNMP), and the program has developed some prototypes of DTNMP software. While DTNMP is a necessary component, it is not sufficient to accomplish Network Monitor and Control of a DTN network. JPL is developing a suite of tools that provide for network visualization, performance monitoring and ION node control software. This suite of network monitor and control tools complements the GSFC and APL-developed DTN MP software, and the combined package can form the basis for flight operations using DTN.

  7. Neural network and genetic algorithm technology in data mining of manufacturing quality information

    NASA Astrophysics Data System (ADS)

    Song, Limei; Qu, Xing-Hua; Ye, Shenghua

    2002-03-01

    Data Mining of Manufacturing Quality Information (MQI) is the key technology in Quality Lead Control. Of all the data mining methods, Neural Network and Genetic Algorithm is widely used for their strong advantages, such as non-linear, collateral, veracity etc. But if you singly use them, there will be some limitations preventing your research, such as convergence slowly, searching blindness etc. This paper combines their merits and use Genetic BP Algorithm in Data Mining of MQI. It has been successfully used in the key project of Natural Science Foundation of China (NSFC) - Quality Control and Zero-defect Engineering (Project No. 59735120).

  8. Predicting genetic interactions from Boolean models of biological networks.

    PubMed

    Calzone, Laurence; Barillot, Emmanuel; Zinovyev, Andrei

    2015-08-01

    Genetic interaction can be defined as a deviation of the phenotypic quantitative effect of a double gene mutation from the effect predicted from single mutations using a simple (e.g., multiplicative or linear additive) statistical model. Experimentally characterized genetic interaction networks in model organisms provide important insights into relationships between different biological functions. We describe a computational methodology allowing us to systematically and quantitatively characterize a Boolean mathematical model of a biological network in terms of genetic interactions between all loss of function and gain of function mutations with respect to all model phenotypes or outputs. We use the probabilistic framework defined in MaBoSS software, based on continuous time Markov chains and stochastic simulations. In addition, we suggest several computational tools for studying the distribution of double mutants in the space of model phenotype probabilities. We demonstrate this methodology on three published models for each of which we derive the genetic interaction networks and analyze their properties. We classify the obtained interactions according to their class of epistasis, dependence on the chosen initial conditions and the phenotype. The use of this methodology for validating mathematical models from experimental data and designing new experiments is discussed. PMID:25958956

  9. Minimum-cost control of complex networks

    NASA Astrophysics Data System (ADS)

    Li, Guoqi; Hu, Wuhua; Xiao, Gaoxi; Deng, Lei; Tang, Pei; Pei, Jing; Shi, Luping

    2016-01-01

    Finding the solution for driving a complex network at the minimum energy cost with a given number of controllers, known as the minimum-cost control problem, is critically important but remains largely open. We propose a projected gradient method to tackle this problem, which works efficiently in both synthetic and real-life networks. The study is then extended to the case where each controller can only be connected to a single network node to have the lowest connection complexity. We obtain the interesting insight that such connections basically avoid high-degree nodes of the network, which is in resonance with recent observations on controllability of complex networks. Our results provide the first technical path to enabling minimum-cost control of complex networks, and contribute new insights to locating the key nodes from a minimum-cost control perspective.

  10. Node-based measures of connectivity in genetic networks.

    PubMed

    Koen, Erin L; Bowman, Jeff; Wilson, Paul J

    2016-01-01

    At-site environmental conditions can have strong influences on genetic connectivity, and in particular on the immigration and settlement phases of dispersal. However, at-site processes are rarely explored in landscape genetic analyses. Networks can facilitate the study of at-site processes, where network nodes are used to model site-level effects. We used simulated genetic networks to compare and contrast the performance of 7 node-based (as opposed to edge-based) genetic connectivity metrics. We simulated increasing node connectivity by varying migration in two ways: we increased the number of migrants moving between a focal node and a set number of recipient nodes, and we increased the number of recipient nodes receiving a set number of migrants. We found that two metrics in particular, the average edge weight and the average inverse edge weight, varied linearly with simulated connectivity. Conversely, node degree was not a good measure of connectivity. We demonstrated the use of average inverse edge weight to describe the influence of at-site habitat characteristics on genetic connectivity of 653 American martens (Martes americana) in Ontario, Canada. We found that highly connected nodes had high habitat quality for marten (deep snow and high proportions of coniferous and mature forest) and were farther from the range edge. We recommend the use of node-based genetic connectivity metrics, in particular, average edge weight or average inverse edge weight, to model the influences of at-site habitat conditions on the immigration and settlement phases of dispersal. PMID:25917123

  11. A Review of Modeling Techniques for Genetic Regulatory Networks

    PubMed Central

    Yaghoobi, Hanif; Haghipour, Siyamak; Hamzeiy, Hossein; Asadi-Khiavi, Masoud

    2012-01-01

    Understanding the genetic regulatory networks, the discovery of interactions between genes and understanding regulatory processes in a cell at the gene level are the major goals of system biology and computational biology. Modeling gene regulatory networks and describing the actions of the cells at the molecular level are used in medicine and molecular biology applications such as metabolic pathways and drug discovery. Modeling these networks is also one of the important issues in genomic signal processing. After the advent of microarray technology, it is possible to model these networks using time–series data. In this paper, we provide an extensive review of methods that have been used on time–series data and represent the features, advantages and disadvantages of each. Also, we classify these methods according to their nature. A parallel study of these methods can lead to the discovery of new synthetic methods or improve previous methods. PMID:23493097

  12. Immune allied genetic algorithm for Bayesian network structure learning

    NASA Astrophysics Data System (ADS)

    Song, Qin; Lin, Feng; Sun, Wei; Chang, KC

    2012-06-01

    Bayesian network (BN) structure learning is a NP-hard problem. In this paper, we present an improved approach to enhance efficiency of BN structure learning. To avoid premature convergence in traditional single-group genetic algorithm (GA), we propose an immune allied genetic algorithm (IAGA) in which the multiple-population and allied strategy are introduced. Moreover, in the algorithm, we apply prior knowledge by injecting immune operator to individuals which can effectively prevent degeneration. To illustrate the effectiveness of the proposed technique, we present some experimental results.

  13. Realizing actual feedback control of complex network

    NASA Astrophysics Data System (ADS)

    Tu, Chengyi; Cheng, Yuhua

    2014-06-01

    In this paper, we present the concept of feedbackability and how to identify the Minimum Feedbackability Set of an arbitrary complex directed network. Furthermore, we design an estimator and a feedback controller accessing one MFS to realize actual feedback control, i.e. control the system to our desired state according to the estimated system internal state from the output of estimator. Last but not least, we perform numerical simulations of a small linear time-invariant dynamics network and a real simple food network to verify the theoretical results. The framework presented here could make an arbitrary complex directed network realize actual feedback control and deepen our understanding of complex systems.

  14. Control of State Transitions in Complex and Biophysical Networks

    NASA Astrophysics Data System (ADS)

    Motter, Adilson; Wells, Daniel; Kath, William

    Noise is a fundamental part of intracellular processes. While the response of biological systems to noise has been studied extensively, there has been limited understanding of how to exploit it to induce a desired cell state. Here I will present a scalable, quantitative method based on the Freidlin-Wentzell action to predict and control noise-induced switching between different states in genetic networks that, conveniently, can also control transitions between stable states in the absence of noise. I will discuss applications of this methodology to predict control interventions that can induce lineage changes and to identify new candidate strategies for cancer therapy. This framework offers a systems approach to identifying the key factors for rationally manipulating network dynamics, and should also find use in controlling other classes of complex networks exhibiting multi-stability. Reference: D. K. Wells, W. L. Kath, and A. E. Motter, Phys. Rev. X 5, 031036 (2015). Work funded by CBC, NCI, NIGMS, and NSF.

  15. Multivariate analysis of noise in genetic regulatory networks.

    PubMed

    Tomioka, Ryota; Kimura, Hidenori; J Kobayashi, Tetsuya; Aihara, Kazuyuki

    2004-08-21

    Stochasticity is an intrinsic property of genetic regulatory networks due to the low copy numbers of the major molecular species, such as, DNA, mRNA, and regulatory proteins. Therefore, investigation of the mechanisms that reduce the stochastic noise is essential in understanding the reproducible behaviors of real organisms and is also a key to design synthetic genetic regulatory networks that can reliably work. We use an analytical and systematic method, the linear noise approximation of the chemical master equation along with the decoupling of a stoichiometric matrix. In the analysis of fluctuations of multiple molecular species, the covariance is an important measure of noise. However, usually the representation of a covariance matrix in the natural coordinate system, i.e. the copy numbers of the molecular species, is intractably complicated because reactions change copy numbers of more than one molecular species simultaneously. Decoupling of a stoichiometric matrix, which is a transformation of variables, significantly simplifies the representation of a covariance matrix and elucidates the mechanisms behind the observed fluctuations in the copy numbers. We apply our method to three types of fundamental genetic regulatory networks, that is, a single-gene autoregulatory network, a two-gene autoregulatory network, and a mutually repressive network. We have found that there are multiple noise components differently originating. Each noise component produces fluctuation in the characteristic direction. The resulting fluctuations in the copy numbers of the molecular species are the sum of these fluctuations. In the examples, the limitation of the negative feedback in noise reduction and the trade-off of fluctuations in multiple molecular species are clearly explained. The analytical representations show the full parameter dependence. Additionally, the validity of our method is tested by stochastic simulations. PMID:15246787

  16. Genetic networks with canalyzing Boolean rules are always stable

    PubMed Central

    Kauffman, Stuart; Peterson, Carsten; Samuelsson, Björn; Troein, Carl

    2004-01-01

    We determine stability and attractor properties of random Boolean genetic network models with canalyzing rules for a variety of architectures. For all power law, exponential, and flat in-degree distributions, we find that the networks are dynamically stable. Furthermore, for architectures with few inputs per node, the dynamics of the networks is close to critical. In addition, the fraction of genes that are active decreases with the number of inputs per node. These results are based upon investigating ensembles of networks using analytical methods. Also, for different in-degree distributions, the numbers of fixed points and cycles are calculated, with results intuitively consistent with stability analysis; fewer inputs per node implies more cycles, and vice versa. There are hints that genetic networks acquire broader degree distributions with evolution, and hence our results indicate that for single cells, the dynamics should become more stable with evolution. However, such an effect is very likely compensated for by multicellular dynamics, because one expects less stability when interactions among cells are included. We verify this by simulations of a simple model for interactions among cells. PMID:15572453

  17. Magnetoencephalography Reveals a Widespread Increase in Network Connectivity in Idiopathic/Genetic Generalized Epilepsy.

    PubMed

    Elshahabi, Adham; Klamer, Silke; Sahib, Ashish Kaul; Lerche, Holger; Braun, Christoph; Focke, Niels K

    2015-01-01

    Idiopathic/genetic generalized epilepsy (IGE/GGE) is characterized by seizures, which start and rapidly engage widely distributed networks, and result in symptoms such as absences, generalized myoclonic and primary generalized tonic-clonic seizures. Although routine magnetic resonance imaging is apparently normal, many studies have reported structural alterations in IGE/GGE patients using diffusion tensor imaging and voxel-based morphometry. Changes have also been reported in functional networks during generalized spike wave discharges. However, network function in the resting-state without epileptiforme discharges has been less well studied. We hypothesize that resting-state networks are more representative of the underlying pathophysiology and abnormal network synchrony. We studied functional network connectivity derived from whole-brain magnetoencephalography recordings in thirteen IGE/GGE and nineteen healthy controls. Using graph theoretical network analysis, we found a widespread increase in connectivity in patients compared to controls. These changes were most pronounced in the motor network, the mesio-frontal and temporal cortex. We did not, however, find any significant difference between the normalized clustering coefficients, indicating preserved gross network architecture. Our findings suggest that increased resting state connectivity could be an important factor for seizure spread and/or generation in IGE/GGE, and could serve as a biomarker for the disease. PMID:26368933

  18. Magnetoencephalography Reveals a Widespread Increase in Network Connectivity in Idiopathic/Genetic Generalized Epilepsy

    PubMed Central

    Elshahabi, Adham; Klamer, Silke; Sahib, Ashish Kaul; Lerche, Holger; Braun, Christoph; Focke, Niels K.

    2015-01-01

    Idiopathic/genetic generalized epilepsy (IGE/GGE) is characterized by seizures, which start and rapidly engage widely distributed networks, and result in symptoms such as absences, generalized myoclonic and primary generalized tonic-clonic seizures. Although routine magnetic resonance imaging is apparently normal, many studies have reported structural alterations in IGE/GGE patients using diffusion tensor imaging and voxel-based morphometry. Changes have also been reported in functional networks during generalized spike wave discharges. However, network function in the resting-state without epileptiforme discharges has been less well studied. We hypothesize that resting-state networks are more representative of the underlying pathophysiology and abnormal network synchrony. We studied functional network connectivity derived from whole-brain magnetoencephalography recordings in thirteen IGE/GGE and nineteen healthy controls. Using graph theoretical network analysis, we found a widespread increase in connectivity in patients compared to controls. These changes were most pronounced in the motor network, the mesio-frontal and temporal cortex. We did not, however, find any significant difference between the normalized clustering coefficients, indicating preserved gross network architecture. Our findings suggest that increased resting state connectivity could be an important factor for seizure spread and/or generation in IGE/GGE, and could serve as a biomarker for the disease. PMID:26368933

  19. Simulating and Synthesizing Substructures Using Neural Network and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Liu, Youhua; Kapania, Rakesh K.; VanLandingham, Hugh F.

    1997-01-01

    The feasibility of simulating and synthesizing substructures by computational neural network models is illustrated by investigating a statically indeterminate beam, using both a 1-D and a 2-D plane stress modelling. The beam can be decomposed into two cantilevers with free-end loads. By training neural networks to simulate the cantilever responses to different loads, the original beam problem can be solved as a match-up between two subsystems under compatible interface conditions. The genetic algorithms are successfully used to solve the match-up problem. Simulated results are found in good agreement with the analytical or FEM solutions.

  20. Congestion control of high-speed networks

    NASA Astrophysics Data System (ADS)

    1993-06-01

    We report on four areas of activity in the past six months. These areas include the following: (1) work on the control of integrated video and image traffic, both at the access to a network and within a high-speed network; (2) more general/game theoretic models for flow control in networks; (3) work on fault management for high-speed heterogeneous networks to improve survivability; and (4) work on all-optical (lightwave) networks of the future, designed to take advantage of the enormous bandwidth capability available at optical frequencies.

  1. Genetic control of invasive plants species using selfish genetic elements

    PubMed Central

    Hodgins, Kathryn A; Rieseberg, Loren; Otto, Sarah P

    2009-01-01

    Invasive plants cause substantial environmental damage and economic loss. Here, we explore the possibility that a selfish genetic element found in plants called cytoplasmic male sterility (CMS) could be exploited for weed control. CMS is caused by mutations in the mitochondrial genome that sterilize male reproductive organs. We developed an analytical model and a spatial simulation to assess the use of CMS alleles to manage weed populations. Specifically, we examined how fertility, selfing, pollen limitation and dispersal influenced extinction rate and time until extinction in populations where CMS arises. We found that the introduction of a CMS allele can cause rapid population extinction, but only under a restricted set of conditions. Both models suggest that the CMS strategy will be appropriate for species where pollen limitation is negligible, inbreeding depression is high and the fertility advantage of females over hermaphrodites is substantial. In general, spatial structure did not have a strong influence on the simulation outcome, although low pollen dispersal and intermediate levels of seed dispersal tended to reduce population extinction rates. Given these results, the introduction of CMS alleles into a population of invasive plants probably represents an effective control method for only a select number of species. PMID:25567898

  2. Bicriteria Network Optimization Problem using Priority-based Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Gen, Mitsuo; Lin, Lin; Cheng, Runwei

    Network optimization is being an increasingly important and fundamental issue in the fields such as engineering, computer science, operations research, transportation, telecommunication, decision support systems, manufacturing, and airline scheduling. In many applications, however, there are several criteria associated with traversing each edge of a network. For example, cost and flow measures are both important in the networks. As a result, there has been recent interest in solving Bicriteria Network Optimization Problem. The Bicriteria Network Optimization Problem is known a NP-hard. The efficient set of paths may be very large, possibly exponential in size. Thus the computational effort required to solve it can increase exponentially with the problem size in the worst case. In this paper, we propose a genetic algorithm (GA) approach used a priority-based chromosome for solving the bicriteria network optimization problem including maximum flow (MXF) model and minimum cost flow (MCF) model. The objective is to find the set of Pareto optimal solutions that give possible maximum flow with minimum cost. This paper also combines Adaptive Weight Approach (AWA) that utilizes some useful information from the current population to readjust weights for obtaining a search pressure toward a positive ideal point. Computer simulations show the several numerical experiments by using some difficult-to-solve network design problems, and show the effectiveness of the proposed method.

  3. GENETIC CONTROL OF CANDIDA ALBICANS BIOFILM DEVELOPMENT

    PubMed Central

    Finkel, Jonathan S.; Mitchell, Aaron P.

    2014-01-01

    Preface Candida species cause frequent infections due to their ability to form biofilms – surface-associated microbial communities – primarily on implanted medical devices. Increasingly, mechanistic studies have identified the gene products that participate directly in Candida albicans biofilm formation, as well as the regulatory circuitry and networks that control their expression and activity. These studies have revealed new mechanisms and signals that govern C. albicans biofilm formation and associated drug resistance, thus providing biological insight and therapeutic foresight. PMID:21189476

  4. Genetic Algorithm based Decentralized PI Type Controller: Load Frequency Control

    NASA Astrophysics Data System (ADS)

    Dwivedi, Atul; Ray, Goshaidas; Sharma, Arun Kumar

    2016-05-01

    This work presents a design of decentralized PI type Linear Quadratic (LQ) controller based on genetic algorithm (GA). The proposed design technique allows considerable flexibility in defining the control objectives and it does not consider any knowledge of the system matrices and moreover it avoids the solution of algebraic Riccati equation. To illustrate the results of this work, a load-frequency control problem is considered. Simulation results reveal that the proposed scheme based on GA is an alternative and attractive approach to solve load-frequency control problem from both performance and design point of views.

  5. Controlling Contagion Processes in Activity Driven Networks

    NASA Astrophysics Data System (ADS)

    Liu, Suyu; Perra, Nicola; Karsai, Márton; Vespignani, Alessandro

    2014-03-01

    The vast majority of strategies aimed at controlling contagion processes on networks consider the connectivity pattern of the system either quenched or annealed. However, in the real world, many networks are highly dynamical and evolve, in time, concurrently with the contagion process. Here, we derive an analytical framework for the study of control strategies specifically devised for a class of time-varying networks, namely activity-driven networks. We develop a block variable mean-field approach that allows the derivation of the equations describing the coevolution of the contagion process and the network dynamic. We derive the critical immunization threshold and assess the effectiveness of three different control strategies. Finally, we validate the theoretical picture by simulating numerically the spreading process and control strategies in both synthetic networks and a large-scale, real-world, mobile telephone call data set.

  6. Interdependent networks: the fragility of control

    PubMed Central

    Morris, Richard G.; Barthelemy, Marc

    2013-01-01

    Recent work in the area of interdependent networks has focused on interactions between two systems of the same type. However, an important and ubiquitous class of systems are those involving monitoring and control, an example of interdependence between processes that are very different. In this Article, we introduce a framework for modelling ‘distributed supervisory control' in the guise of an electrical network supervised by a distributed system of control devices. The system is characterised by degrees of freedom salient to real-world systems— namely, the number of control devices, their inherent reliability, and the topology of the control network. Surprisingly, the behavior of the system depends crucially on the reliability of control devices. When devices are completely reliable, cascade sizes are percolation controlled; the number of devices being the relevant parameter. For unreliable devices, the topology of the control network is important and can dramatically reduce the resilience of the system. PMID:24067404

  7. Interdependent networks: the fragility of control.

    PubMed

    Morris, Richard G; Barthelemy, Marc

    2013-01-01

    Recent work in the area of interdependent networks has focused on interactions between two systems of the same type. However, an important and ubiquitous class of systems are those involving monitoring and control, an example of interdependence between processes that are very different. In this Article, we introduce a framework for modelling 'distributed supervisory control' in the guise of an electrical network supervised by a distributed system of control devices. The system is characterised by degrees of freedom salient to real-world systems- namely, the number of control devices, their inherent reliability, and the topology of the control network. Surprisingly, the behavior of the system depends crucially on the reliability of control devices. When devices are completely reliable, cascade sizes are percolation controlled; the number of devices being the relevant parameter. For unreliable devices, the topology of the control network is important and can dramatically reduce the resilience of the system. PMID:24067404

  8. Fuzzy controller design by parallel genetic algorithms

    NASA Astrophysics Data System (ADS)

    Mondelli, G.; Castellano, G.; Attolico, Giovanni; Distante, Arcangelo

    1998-03-01

    Designing a fuzzy system involves defining membership functions and constructing rules. Carrying out these two steps manually often results in a poorly performing system. Genetic Algorithms (GAs) has proved to be a useful tool for designing optimal fuzzy controller. In order to increase the efficiency and effectiveness of their application, parallel GAs (PAGs), evolving synchronously several populations with different balances between exploration and exploitation, have been implemented using a SIMD machine (APE100/Quadrics). The parameters to be identified are coded in such a way that the algorithm implicitly provides a compact fuzzy controller, by finding only necessary rules and removing useless inputs from them. Early results, working on a fuzzy controller implementing the wall-following task for a real vehicle as a test case, provided better fitness values in less generations with respect to previous experiments made using a sequential implementation of GAs.

  9. Towards a predictive theory for genetic regulatory networks

    NASA Astrophysics Data System (ADS)

    Tkacik, Gasper

    When cells respond to changes in the environment by regulating the expression levels of their genes, we often draw parallels between these biological processes and engineered information processing systems. One can go beyond this qualitative analogy, however, by analyzing information transmission in biochemical ``hardware'' using Shannon's information theory. Here, gene regulation is viewed as a transmission channel operating under restrictive constraints set by the resource costs and intracellular noise. We present a series of results demonstrating that a theory of information transmission in genetic regulatory circuits feasibly yields non-trivial, testable predictions. These predictions concern strategies by which individual gene regulatory elements, e.g., promoters or enhancers, read out their signals; as well as strategies by which small networks of genes, independently or in spatially coupled settings, respond to their inputs. These predictions can be quantitatively compared to the known regulatory networks and their function, and can elucidate how reproducible biological processes, such as embryonic development, can be orchestrated by networks built out of noisy components. Preliminary successes in the gap gene network of the fruit fly Drosophila indicate that a full ab initio theoretical prediction of a regulatory network is possible, a feat that has not yet been achieved for any real regulatory network. We end by describing open challenges on the path towards such a prediction.

  10. Stress controls the mechanics of collagen networks

    PubMed Central

    Licup, Albert James; Münster, Stefan; Sharma, Abhinav; Sheinman, Michael; Jawerth, Louise M.; Fabry, Ben; Weitz, David A.; MacKintosh, Fred C.

    2015-01-01

    Collagen is the main structural and load-bearing element of various connective tissues, where it forms the extracellular matrix that supports cells. It has long been known that collagenous tissues exhibit a highly nonlinear stress–strain relationship, although the origins of this nonlinearity remain unknown. Here, we show that the nonlinear stiffening of reconstituted type I collagen networks is controlled by the applied stress and that the network stiffness becomes surprisingly insensitive to network concentration. We demonstrate how a simple model for networks of elastic fibers can quantitatively account for the mechanics of reconstituted collagen networks. Our model points to the important role of normal stresses in determining the nonlinear shear elastic response, which can explain the approximate exponential relationship between stress and strain reported for collagenous tissues. This further suggests principles for the design of synthetic fiber networks with collagen-like properties, as well as a mechanism for the control of the mechanics of such networks. PMID:26195769

  11. Controlling statistical moments of stochastic dynamical networks

    NASA Astrophysics Data System (ADS)

    Bielievtsov, Dmytro; Ladenbauer, Josef; Obermayer, Klaus

    2016-07-01

    We consider a general class of stochastic networks and ask which network nodes need to be controlled, and how, to stabilize and switch between desired metastable (target) states in terms of the first and second statistical moments of the system. We first show that it is sufficient to directly interfere with a subset of nodes which can be identified using information about the graph of the network only. Then we develop a suitable method for feedback control which acts on that subset of nodes and preserves the covariance structure of the desired target state. Finally, we demonstrate our theoretical results using a stochastic Hopfield network and a global brain model. Our results are applicable to a variety of (model) networks and further our understanding of the relationship between network structure and collective dynamics for the benefit of effective control.

  12. Controlling statistical moments of stochastic dynamical networks.

    PubMed

    Bielievtsov, Dmytro; Ladenbauer, Josef; Obermayer, Klaus

    2016-07-01

    We consider a general class of stochastic networks and ask which network nodes need to be controlled, and how, to stabilize and switch between desired metastable (target) states in terms of the first and second statistical moments of the system. We first show that it is sufficient to directly interfere with a subset of nodes which can be identified using information about the graph of the network only. Then we develop a suitable method for feedback control which acts on that subset of nodes and preserves the covariance structure of the desired target state. Finally, we demonstrate our theoretical results using a stochastic Hopfield network and a global brain model. Our results are applicable to a variety of (model) networks and further our understanding of the relationship between network structure and collective dynamics for the benefit of effective control. PMID:27575147

  13. Distributed intelligent control and status networking

    NASA Technical Reports Server (NTRS)

    Fortin, Andre; Patel, Manoj

    1993-01-01

    Over the past two years, the Network Control Systems Branch (Code 532) has been investigating control and status networking technologies. These emerging technologies use distributed processing over a network to accomplish a particular custom task. These networks consist of small intelligent 'nodes' that perform simple tasks. Containing simple, inexpensive hardware and software, these nodes can be easily developed and maintained. Once networked, the nodes can perform a complex operation without a central host. This type of system provides an alternative to more complex control and status systems which require a central computer. This paper will provide some background and discuss some applications of this technology. It will also demonstrate the suitability of one particular technology for the Space Network (SN) and discuss the prototyping activities of Code 532 utilizing this technology.

  14. Optimal Parameter for the Training of Multilayer Perceptron Neural Networks by Using Hierarchical Genetic Algorithm

    SciTech Connect

    Orozco-Monteagudo, Maykel; Taboada-Crispi, Alberto; Gutierrez-Hernandez, Liliana

    2008-11-06

    This paper deals with the controversial topic of the selection of the parameters of a genetic algorithm, in this case hierarchical, used for training of multilayer perceptron neural networks for the binary classification. The parameters to select are the crossover and mutation probabilities of the control and parametric genes and the permanency percent. The results can be considered as a guide for using this kind of algorithm.

  15. Molecular, metabolic, and genetic control: An introduction.

    PubMed

    Tyson, John J.; Mackey, Michael C.

    2001-03-01

    The living cell is a miniature, self-reproducing, biochemical machine. Like all machines, it has a power supply, a set of working components that carry out its necessary tasks, and control systems that ensure the proper coordination of these tasks. In this Special Issue, we focus on the molecular regulatory systems that control cell metabolism, gene expression, environmental responses, development, and reproduction. As for the control systems in human-engineered machines, these regulatory networks can be described by nonlinear dynamical equations, for example, ordinary differential equations, reaction-diffusion equations, stochastic differential equations, or cellular automata. The articles collected here illustrate (i) a range of theoretical problems presented by modern concepts of cellular regulation, (ii) some strategies for converting molecular mechanisms into dynamical systems, (iii) some useful mathematical tools for analyzing and simulating these systems, and (iv) the sort of results that derive from serious interplay between theory and experiment. (c) 2001 American Institute of Physics. PMID:12779443

  16. Genetic network properties of the human cortex based on regional thickness and surface area measures

    PubMed Central

    Docherty, Anna R.; Sawyers, Chelsea K.; Panizzon, Matthew S.; Neale, Michael C.; Eyler, Lisa T.; Fennema-Notestine, Christine; Franz, Carol E.; Chen, Chi-Hua; McEvoy, Linda K.; Verhulst, Brad; Tsuang, Ming T.; Kremen, William S.

    2015-01-01

    We examined network properties of genetic covariance between average cortical thickness (CT) and surface area (SA) within genetically-identified cortical parcellations that we previously derived from human cortical genetic maps using vertex-wise fuzzy clustering analysis with high spatial resolution. There were 24 hierarchical parcellations based on vertex-wise CT and 24 based on vertex-wise SA expansion/contraction; in both cases the 12 parcellations per hemisphere were largely symmetrical. We utilized three techniques—biometrical genetic modeling, cluster analysis, and graph theory—to examine genetic relationships and network properties within and between the 48 parcellation measures. Biometrical modeling indicated significant shared genetic covariance between size of several of the genetic parcellations. Cluster analysis suggested small distinct groupings of genetic covariance; networks highlighted several significant negative and positive genetic correlations between bilateral parcellations. Graph theoretical analysis suggested that small world, but not rich club, network properties may characterize the genetic relationships between these regional size measures. These findings suggest that cortical genetic parcellations exhibit short characteristic path lengths across a broad network of connections. This property may be protective against network failure. In contrast, previous research with structural data has observed strong rich club properties with tightly interconnected hub networks. Future studies of these genetic networks might provide powerful phenotypes for genetic studies of normal and pathological brain development, aging, and function. PMID:26347632

  17. Selection Shapes Transcriptional Logic and Regulatory Specialization in Genetic Networks

    PubMed Central

    Fogelmark, Karl; Peterson, Carsten; Troein, Carl

    2016-01-01

    Background Living organisms need to regulate their gene expression in response to environmental signals and internal cues. This is a computational task where genes act as logic gates that connect to form transcriptional networks, which are shaped at all scales by evolution. Large-scale mutations such as gene duplications and deletions add and remove network components, whereas smaller mutations alter the connections between them. Selection determines what mutations are accepted, but its importance for shaping the resulting networks has been debated. Methodology To investigate the effects of selection in the shaping of transcriptional networks, we derive transcriptional logic from a combinatorially powerful yet tractable model of the binding between DNA and transcription factors. By evolving the resulting networks based on their ability to function as either a simple decision system or a circadian clock, we obtain information on the regulation and logic rules encoded in functional transcriptional networks. Comparisons are made between networks evolved for different functions, as well as with structurally equivalent but non-functional (neutrally evolved) networks, and predictions are validated against the transcriptional network of E. coli. Principal Findings We find that the logic rules governing gene expression depend on the function performed by the network. Unlike the decision systems, the circadian clocks show strong cooperative binding and negative regulation, which achieves tight temporal control of gene expression. Furthermore, we find that transcription factors act preferentially as either activators or repressors, both when binding multiple sites for a single target gene and globally in the transcriptional networks. This separation into positive and negative regulators requires gene duplications, which highlights the interplay between mutation and selection in shaping the transcriptional networks. PMID:26927540

  18. Modular genetic control of sexually dimorphic behaviors

    PubMed Central

    Xu, Xiaohong; Coats, Jennifer K.; Yang, Cindy F.; Wang, Amy; Ahmed, Osama M.; Alvarado, Maricruz; Izumi, Tetsuro; Shah, Nirao M.

    2012-01-01

    SUMMARY Sex hormones such as estrogen and testosterone are essential for sexually dimorphic behaviors in vertebrates. However, the hormone-activated molecular mechanisms that control the development and function of the underlying neural circuits remain poorly defined. We have identified numerous sexually dimorphic gene expression patterns in the adult mouse hypothalamus and amygdala. We find that adult sex hormones regulate these expression patterns in a sex-specific, regionally-restricted manner, suggesting that these genes regulate sex typical behaviors. Indeed, we find that mice with targeted disruptions of each of four of these genes (Brs3, Cckar, Irs4, Sytl4) exhibit extremely specific deficits in sex specific behaviors, with single genes controlling the pattern or extent of male sexual behavior, male aggression, maternal behavior, or female sexual behavior. Taken together, our findings demonstrate that various components of sexually dimorphic behaviors are governed by separable genetic programs. PMID:22304924

  19. Genome-wide expression analysis of genetic networks in Neurospora crassa

    PubMed Central

    Logan, David A; Koch, Allison L; Dong, Wubei; Griffith, James; Nilsen, Roger; Case, Mary E; Schüttler, Heinz-Bernd; Arnold, Jonathan

    2007-01-01

    The products of five structural genes and two regulatory genes of the qa gene cluster of Neurospora crassa control the metabolism of quinic acid (QA) as a carbon source. A detailed genetic network model of this metabolic process has been reported. This investigation is designed to expand the current model of the QA reaction network. The ensemble method of network identification was used to model RNA profiling data on the qa gene cluster. Through microarray and cluster analysis, genome-wide identification of RNA transcripts associated with quinic acid metabolism in N. crassa is described and suggests a connection to other metabolic circuits. More than 100 genes whose products include carbon metabolism, protein degradation and modification, amino acid metabolism and ribosome synthesis appear to be connected to quinic acid metabolism. The core of the qa gene cluster network is validated with respect to RNA profiling data obtained from microarrays. PMID:17597928

  20. A candidate multimodal functional genetic network for thermal adaptation.

    PubMed

    Wollenberg Valero, Katharina C; Pathak, Rachana; Prajapati, Indira; Bankston, Shannon; Thompson, Aprylle; Usher, Jaytriece; Isokpehi, Raphael D

    2014-01-01

    Vertebrate ectotherms such as reptiles provide ideal organisms for the study of adaptation to environmental thermal change. Comparative genomic and exomic studies can recover markers that diverge between warm and cold adapted lineages, but the genes that are functionally related to thermal adaptation may be difficult to identify. We here used a bioinformatics genome-mining approach to predict and identify functions for suitable candidate markers for thermal adaptation in the chicken. We first established a framework of candidate functions for such markers, and then compiled the literature on genes known to adapt to the thermal environment in different lineages of vertebrates. We then identified them in the genomes of human, chicken, and the lizard Anolis carolinensis, and established a functional genetic interaction network in the chicken. Surprisingly, markers initially identified from diverse lineages of vertebrates such as human and fish were all in close functional relationship with each other and more associated than expected by chance. This indicates that the general genetic functional network for thermoregulation and/or thermal adaptation to the environment might be regulated via similar evolutionarily conserved pathways in different vertebrate lineages. We were able to identify seven functions that were statistically overrepresented in this network, corresponding to four of our originally predicted functions plus three unpredicted functions. We describe this network as multimodal: central regulator genes with the function of relaying thermal signal (1), affect genes with different cellular functions, namely (2) lipoprotein metabolism, (3) membrane channels, (4) stress response, (5) response to oxidative stress, (6) muscle contraction and relaxation, and (7) vasodilation, vasoconstriction and regulation of blood pressure. This network constitutes a novel resource for the study of thermal adaptation in the closely related nonavian reptiles and other

  1. A candidate multimodal functional genetic network for thermal adaptation

    PubMed Central

    Pathak, Rachana; Prajapati, Indira; Bankston, Shannon; Thompson, Aprylle; Usher, Jaytriece; Isokpehi, Raphael D.

    2014-01-01

    Vertebrate ectotherms such as reptiles provide ideal organisms for the study of adaptation to environmental thermal change. Comparative genomic and exomic studies can recover markers that diverge between warm and cold adapted lineages, but the genes that are functionally related to thermal adaptation may be difficult to identify. We here used a bioinformatics genome-mining approach to predict and identify functions for suitable candidate markers for thermal adaptation in the chicken. We first established a framework of candidate functions for such markers, and then compiled the literature on genes known to adapt to the thermal environment in different lineages of vertebrates. We then identified them in the genomes of human, chicken, and the lizard Anolis carolinensis, and established a functional genetic interaction network in the chicken. Surprisingly, markers initially identified from diverse lineages of vertebrates such as human and fish were all in close functional relationship with each other and more associated than expected by chance. This indicates that the general genetic functional network for thermoregulation and/or thermal adaptation to the environment might be regulated via similar evolutionarily conserved pathways in different vertebrate lineages. We were able to identify seven functions that were statistically overrepresented in this network, corresponding to four of our originally predicted functions plus three unpredicted functions. We describe this network as multimodal: central regulator genes with the function of relaying thermal signal (1), affect genes with different cellular functions, namely (2) lipoprotein metabolism, (3) membrane channels, (4) stress response, (5) response to oxidative stress, (6) muscle contraction and relaxation, and (7) vasodilation, vasoconstriction and regulation of blood pressure. This network constitutes a novel resource for the study of thermal adaptation in the closely related nonavian reptiles and other

  2. Effect of correlations on controllability transition in network control

    NASA Astrophysics Data System (ADS)

    Nie, Sen; Wang, Xu-Wen; Wang, Bing-Hong; Jiang, Luo-Luo

    2016-04-01

    The network control problem has recently attracted an increasing amount of attention, owing to concerns including the avoidance of cascading failures of power-grids and the management of ecological networks. It has been proven that numerical control can be achieved if the number of control inputs exceeds a certain transition point. In the present study, we investigate the effect of degree correlation on the numerical controllability in networks whose topological structures are reconstructed from both real and modeling systems, and we find that the transition point of the number of control inputs depends strongly on the degree correlation in both undirected and directed networks with moderately sparse links. More interestingly, the effect of the degree correlation on the transition point cannot be observed in dense networks for numerical controllability, which contrasts with the corresponding result for structural controllability. In particular, for directed random networks and scale-free networks, the influence of the degree correlation is determined by the types of correlations. Our approach provides an understanding of control problems in complex sparse networks.

  3. Effect of correlations on controllability transition in network control

    PubMed Central

    Nie, Sen; Wang, Xu-Wen; Wang, Bing-Hong; Jiang, Luo-Luo

    2016-01-01

    The network control problem has recently attracted an increasing amount of attention, owing to concerns including the avoidance of cascading failures of power-grids and the management of ecological networks. It has been proven that numerical control can be achieved if the number of control inputs exceeds a certain transition point. In the present study, we investigate the effect of degree correlation on the numerical controllability in networks whose topological structures are reconstructed from both real and modeling systems, and we find that the transition point of the number of control inputs depends strongly on the degree correlation in both undirected and directed networks with moderately sparse links. More interestingly, the effect of the degree correlation on the transition point cannot be observed in dense networks for numerical controllability, which contrasts with the corresponding result for structural controllability. In particular, for directed random networks and scale-free networks, the influence of the degree correlation is determined by the types of correlations. Our approach provides an understanding of control problems in complex sparse networks. PMID:27063294

  4. Non-coding RNAs and complex distributed genetic networks

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.

    2011-08-01

    In eukaryotic cells, the mRNA-protein interplay can be dramatically influenced by non-coding RNAs (ncRNAs). Although this new paradigm is now widely accepted, an understanding of the effect of ncRNAs on complex genetic networks is lacking. To clarify what may happen in this case, we propose a mean-field kinetic model describing the influence of ncRNA on a complex genetic network with a distributed architecture including mutual protein-mediated regulation of many genes transcribed into mRNAs. ncRNA is considered to associate with mRNAs and inhibit their translation and/or facilitate degradation. Our results are indicative of the richness of the kinetics under consideration. The main complex features are found to be bistability and oscillations. One could expect to find kinetic chaos as well. The latter feature has however not been observed in our calculations. In addition, we illustrate the difference in the regulation of distributed networks by mRNA and ncRNA.

  5. Advanced mobile networking, sensing, and controls.

    SciTech Connect

    Feddema, John Todd; Kilman, Dominique Marie; Byrne, Raymond Harry; Young, Joseph G.; Lewis, Christopher L.; Van Leeuwen, Brian P.; Robinett, Rush D. III; Harrington, John J.

    2005-03-01

    This report describes an integrated approach for designing communication, sensing, and control systems for mobile distributed systems. Graph theoretic methods are used to analyze the input/output reachability and structural controllability and observability of a decentralized system. Embedded in each network node, this analysis will automatically reconfigure an ad hoc communication network for the sensing and control task at hand. The graph analysis can also be used to create the optimal communication flow control based upon the spatial distribution of the network nodes. Edge coloring algorithms tell us that the minimum number of time slots in a planar network is equal to either the maximum number of adjacent nodes (or degree) of the undirected graph plus some small number. Therefore, the more spread out that the nodes are, the fewer number of time slots are needed for communication, and the smaller the latency between nodes. In a coupled system, this results in a more responsive sensor network and control system. Network protocols are developed to propagate this information, and distributed algorithms are developed to automatically adjust the number of time slots available for communication. These protocols and algorithms must be extremely efficient and only updated as network nodes move. In addition, queuing theory is used to analyze the delay characteristics of Carrier Sense Multiple Access (CSMA) networks. This report documents the analysis, simulation, and implementation of these algorithms performed under this Laboratory Directed Research and Development (LDRD) effort.

  6. Discovering Main Genetic Interactions with LABNet LAsso-Based Network Inference

    PubMed Central

    Gadaleta, Francesco; Van Steen, Kristel

    2014-01-01

    Genome-wide association studies can potentially unravel the mechanisms behind complex traits and common genetic diseases. Despite the valuable results produced thus far, many questions remain unanswered. For instance, which specific genetic compounds are linked to the risk of the disease under investigation; what biological mechanism do they act through; or how do they interact with environmental and other external factors? The driving force of computational biology is the constantly growing amount of big data generated by high-throughput technologies. A practical framework that can deal with this abundance of information and that consent to discovering genetic associations and interactions is provided by means of networks. Unfortunately, high dimensionality, the presence of noise and the geometry of data can make the aforementioned problem extremely challenging. We propose a penalised linear regression approach that can deal with the aforementioned issues that affect genetic data. We analyse the gene expression profiles of individuals with a common trait to infer the network structure of interactions among genes. The permutation-based approach leads to more stable and reliable networks inferred from synthetic microarray data. We show that a higher number of permutations determines the number of predicted edges, improves the overall sensitivity and controls the number of false positives. PMID:25369052

  7. Secure quantum network coding for controlled repeater networks

    NASA Astrophysics Data System (ADS)

    Shang, Tao; Li, Jiao; Liu, Jian-wei

    2016-04-01

    To realize efficient quantum communication based on quantum repeater, we propose a secure quantum network coding scheme for controlled repeater networks, which adds a controller as a trusted party and is able to control the process of EPR-pair distribution. As the key operations of quantum repeater, local operations and quantum communication are designed to adopt quantum one-time pad to enhance the function of identity authentication instead of local operations and classical communication. Scheme analysis shows that the proposed scheme can defend against active attacks for quantum communication and realize long-distance quantum communication with minimal resource consumption.

  8. Secure quantum network coding for controlled repeater networks

    NASA Astrophysics Data System (ADS)

    Shang, Tao; Li, Jiao; Liu, Jian-wei

    2016-07-01

    To realize efficient quantum communication based on quantum repeater, we propose a secure quantum network coding scheme for controlled repeater networks, which adds a controller as a trusted party and is able to control the process of EPR-pair distribution. As the key operations of quantum repeater, local operations and quantum communication are designed to adopt quantum one-time pad to enhance the function of identity authentication instead of local operations and classical communication. Scheme analysis shows that the proposed scheme can defend against active attacks for quantum communication and realize long-distance quantum communication with minimal resource consumption.

  9. Modern control centers and computer networking

    SciTech Connect

    Dy-Liacco, T.E.

    1994-10-01

    The automation of power system operation is generally achieved with the implementation of two control centers, one for the operation of the generation-transmission system and the other for the operation of the distribution system. These control centers are referred to, respectively, as the energy management system (EMS) and the distribution management system (DMS). The EMS may consist of several control centers in a hierarchy. The DMS may be made up of several independent distribution control centers. This article features the fundamental design aspects of modern EMS and DMS control centers (computer networks, distributed processing, and distributed databases), the linking of computer networks, and the communications that support such internetworking. The extension of such networking beyond the confines of system operation to other corporate networks is now made practical by the maturing concepts of client-server architectures and by the availability of modern communication technologies.

  10. Predictive Control of Large Complex Networks

    NASA Astrophysics Data System (ADS)

    Haber, Aleksandar; Motter, Adilson E.

    Networks of coupled dynamical subsystems are increasingly used to represent complex natural and engineered systems. While recent technological developments give us improved means to actively control the dynamics of individual subsystems in various domains, network control remains a challenging problem due to difficulties imposed by intrinsic nonlinearities, control constraints, and the large-scale nature of the systems. In this talk, we will present a model predictive control approach that is effective while accounting for these realistic properties of complex networks. Our method can systematically identify control interventions that steer the trajectory to a desired state, even in the presence of strong nonlinearities and constraints. Numerical tests show that the method is applicable to a variety of networks, ranging from power grids to chemical reaction systems.

  11. Neural networks and orbit control in accelerators

    SciTech Connect

    Bozoki, E.; Friedman, A.

    1994-07-01

    An overview of the architecture, workings and training of Neural Networks is given. We stress the aspects which are important for the use of Neural Networks for orbit control in accelerators and storage rings, especially its ability to cope with the nonlinear behavior of the orbit response to `kicks` and the slow drift in the orbit response during long-term operation. Results obtained for the two NSLS storage rings with several network architectures and various training methods for each architecture are given.

  12. Congestion control and routing over satellite networks

    NASA Astrophysics Data System (ADS)

    Cao, Jinhua

    Satellite networks and transmissions find their application in fields of computer communications, telephone communications, television broadcasting, transportation, space situational awareness systems and so on. This thesis mainly focuses on two networking issues affecting satellite networking: network congestion control and network routing optimization. Congestion, which leads to long queueing delays, packet losses or both, is a networking problem that has drawn the attention of many researchers. The goal of congestion control mechanisms is to ensure high bandwidth utilization while avoiding network congestion by regulating the rate at which traffic sources inject packets into a network. In this thesis, we propose a stable congestion controller using data-driven, safe switching control theory to improve the dynamic performance of satellite Transmission Control Protocol/Active Queue Management (TCP/AQM) networks. First, the stable region of the Proportional-Integral (PI) parameters for a nominal model is explored. Then, a PI controller, whose parameters are adaptively tuned by switching among members of a given candidate set, using observed plant data, is presented and compared with some classical AQM policy examples, such as Random Early Detection (RED) and fixed PI control. A new cost detectable switching law with an interval cost function switching algorithm, which improves the performance and also saves the computational cost, is developed and compared with a law commonly used in the switching control literature. Finite-gain stability of the system is proved. A fuzzy logic PI controller is incorporated as a special candidate to achieve good performance at all nominal points with the available set of candidate controllers. Simulations are presented to validate the theory. An effocient routing algorithm plays a key role in optimizing network resources. In this thesis, we briefly analyze Low Earth Orbit (LEO) satellite networks, review the Cross Entropy (CE

  13. Superiority of artificial neural networks for a genetic classification procedure.

    PubMed

    Sant'Anna, I C; Tomaz, R S; Silva, G N; Nascimento, M; Bhering, L L; Cruz, C D

    2015-01-01

    The correct classification of individuals is extremely important for the preservation of genetic variability and for maximization of yield in breeding programs using phenotypic traits and genetic markers. The Fisher and Anderson discriminant functions are commonly used multivariate statistical techniques for these situations, which allow for the allocation of an initially unknown individual to predefined groups. However, for higher levels of similarity, such as those found in backcrossed populations, these methods have proven to be inefficient. Recently, much research has been devoted to developing a new paradigm of computing known as artificial neural networks (ANNs), which can be used to solve many statistical problems, including classification problems. The aim of this study was to evaluate the feasibility of ANNs as an evaluation technique of genetic diversity by comparing their performance with that of traditional methods. The discriminant functions were equally ineffective in discriminating the populations, with error rates of 23-82%, thereby preventing the correct discrimination of individuals between populations. The ANN was effective in classifying populations with low and high differentiation, such as those derived from a genetic design established from backcrosses, even in cases of low differentiation of the data sets. The ANN appears to be a promising technique to solve classification problems, since the number of individuals classified incorrectly by the ANN was always lower than that of the discriminant functions. We envisage the potential relevant application of this improved procedure in the genomic classification of markers to distinguish between breeds and accessions. PMID:26345924

  14. Controlling Contagion Processes in Time Varying Networks

    NASA Astrophysics Data System (ADS)

    Liu, Suyu; Perra, Nicola; Karsai, Marton; Vespignani, Alessandro

    2013-03-01

    The vast majority of strategies aimed at controlling contagion and spreading processes on networks consider the connectivity pattern of the system as quenched. In this paper, we consider the class of activity driven networks to analytically evaluate how different control strategies perform in time-varying networks. We consider the limit in which the evolution of the structure of the network and the spreading process are simultaneous yet independent. We analyze three control strategies based on node's activity patterns to decide the removal/immunization of nodes. We find that targeted strategies aimed at the removal of active nodes outperform by orders of magnitude the widely used random strategies. In time-varying networks however any finite time observation of the network dynamics provides only incomplete information on the nodes' activity and does not allow the precise ranking of the most active nodes as needed to implement targeted strategies. Here we develop a control strategy that focuses on targeting the egocentric time-aggregated network of a small control group of nodes.The presented strategy allows the control of spreading processes by removing a fraction of nodes much smaller than the random strategy while at the same time limiting the observation time on the system.

  15. Modifier Genes and the Plasticity of Genetic Networks in Mice

    PubMed Central

    Hamilton, Bruce A.; Yu, Benjamin D.

    2012-01-01

    Modifier genes are an integral part of the genetic landscape in both humans and experimental organisms, but have been less well explored in mammals than other systems. A growing number of modifier genes in mouse models of disease nonetheless illustrate the potential for novel findings, while new technical advances promise many more to come. Modifier genes in mouse models include induced mutations and spontaneous or wild-derived variations captured in inbred strains. Identification of modifiers among wild-derived variants in particular should detect disease modifiers that have been shaped by selection and might therefore be compatible with high fitness and function. Here we review selected examples and argue that modifier genes derived from natural variation may provide a bias for nodes in genetic networks that have greater intrinsic plasticity and whose therapeutic manipulation may therefore be more resilient to side effects than conventional targets. PMID:22511884

  16. Advanced telerobotic control using neural networks

    NASA Technical Reports Server (NTRS)

    Pap, Robert M.; Atkins, Mark; Cox, Chadwick; Glover, Charles; Kissel, Ralph; Saeks, Richard

    1993-01-01

    Accurate Automation is designing and developing adaptive decentralized joint controllers using neural networks. We are then implementing these in hardware for the Marshall Space Flight Center PFMA as well as to be usable for the Remote Manipulator System (RMS) robot arm. Our design is being realized in hardware after completion of the software simulation. This is implemented using a Functional-Link neural network.

  17. Self-Control in Sparsely Coded Networks

    NASA Astrophysics Data System (ADS)

    Dominguez, D. R. C.; Bollé, D.

    1998-03-01

    A complete self-control mechanism is proposed in the dynamics of neural networks through the introduction of a time-dependent threshold, determined in function of both the noise and the pattern activity in the network. Especially for sparsely coded models this mechanism is shown to considerably improve the storage capacity, the basins of attraction, and the mutual information content.

  18. Control Networks and Neuromodulators of Early Development

    ERIC Educational Resources Information Center

    Posner, Michael I.; Rothbart, Mary K.; Sheese, Brad E.; Voelker, Pascale

    2012-01-01

    In adults, most cognitive and emotional self-regulation is carried out by a network of brain regions, including the anterior cingulate, insula, and areas of the basal ganglia, related to executive attention. We propose that during infancy, control systems depend primarily upon a brain network involved in orienting to sensory events that includes…

  19. Combining neural networks and genetic algorithms for hydrological flow forecasting

    NASA Astrophysics Data System (ADS)

    Neruda, Roman; Srejber, Jan; Neruda, Martin; Pascenko, Petr

    2010-05-01

    We present a neural network approach to rainfall-runoff modeling for small size river basins based on several time series of hourly measured data. Different neural networks are considered for short time runoff predictions (from one to six hours lead time) based on runoff and rainfall data observed in previous time steps. Correlation analysis shows that runoff data, short time rainfall history, and aggregated API values are the most significant data for the prediction. Neural models of multilayer perceptron and radial basis function networks with different numbers of units are used and compared with more traditional linear time series predictors. Out of possible 48 hours of relevant history of all the input variables, the most important ones are selected by means of input filters created by a genetic algorithm. The genetic algorithm works with population of binary encoded vectors defining input selection patterns. Standard genetic operators of two-point crossover, random bit-flipping mutation, and tournament selection were used. The evaluation of objective function of each individual consists of several rounds of building and testing a particular neural network model. The whole procedure is rather computational exacting (taking hours to days on a desktop PC), thus a high-performance mainframe computer has been used for our experiments. Results based on two years worth data from the Ploucnice river in Northern Bohemia suggest that main problems connected with this approach to modeling are ovetraining that can lead to poor generalization, and relatively small number of extreme events which makes it difficult for a model to predict the amplitude of the event. Thus, experiments with both absolute and relative runoff predictions were carried out. In general it can be concluded that the neural models show about 5 per cent improvement in terms of efficiency coefficient over liner models. Multilayer perceptrons with one hidden layer trained by back propagation algorithm and

  20. Applications of genetic algorithms and neural networks to interatomic potentials

    NASA Astrophysics Data System (ADS)

    Hobday, Steven; Smith, Roger; BelBruno, Joe

    1999-06-01

    Applications of two modern artificial intelligence (AI) techniques, genetic algorithms (GA) and neural networks (NN) to computer simulations are reported. It is shown that the GA are very useful tools for determining the minimum energy structures of clusters of atoms described by interatomic potential functions and generally outperform other optimisation methods for this task. A number of applications are given including covalent, and close packed structures of single or multi-component atomic species. It is also shown that (many body) interatomic potential functions for multi-component systems can be derived by training a specially constructed NN on a variety of structural data.

  1. Genetic control of Drosophila nerve cord development

    NASA Technical Reports Server (NTRS)

    Skeath, James B.; Thor, Stefan

    2003-01-01

    The Drosophila ventral nerve cord has been a central model system for studying the molecular genetic mechanisms that control CNS development. Studies show that the generation of neural diversity is a multistep process initiated by the patterning and segmentation of the neuroectoderm. These events act together with the process of lateral inhibition to generate precursor cells (neuroblasts) with specific identities, distinguished by the expression of unique combinations of regulatory genes. The expression of these genes in a given neuroblast restricts the fate of its progeny, by activating specific combinations of downstream genes. These genes in turn specify the identity of any given postmitotic cell, which is evident by its cellular morphology and choice of neurotransmitter.

  2. Structurally robust control of complex networks

    NASA Astrophysics Data System (ADS)

    Nacher, Jose C.; Akutsu, Tatsuya

    2015-01-01

    Robust control theory has been successfully applied to numerous real-world problems using a small set of devices called controllers. However, the real systems represented by networks contain unreliable components and modern robust control engineering has not addressed the problem of structural changes on complex networks including scale-free topologies. Here, we introduce the concept of structurally robust control of complex networks and provide a concrete example using an algorithmic framework that is widely applied in engineering. The developed analytical tools, computer simulations, and real network analyses lead herein to the discovery that robust control can be achieved in scale-free networks with exactly the same order of controllers required in a standard nonrobust configuration by adjusting only the minimum degree. The presented methodology also addresses the probabilistic failure of links in real systems, such as neural synaptic unreliability in Caenorhabditis elegans, and suggests a new direction to pursue in studies of complex networks in which control theory has a role.

  3. Structurally robust control of complex networks.

    PubMed

    Nacher, Jose C; Akutsu, Tatsuya

    2015-01-01

    Robust control theory has been successfully applied to numerous real-world problems using a small set of devices called controllers. However, the real systems represented by networks contain unreliable components and modern robust control engineering has not addressed the problem of structural changes on complex networks including scale-free topologies. Here, we introduce the concept of structurally robust control of complex networks and provide a concrete example using an algorithmic framework that is widely applied in engineering. The developed analytical tools, computer simulations, and real network analyses lead herein to the discovery that robust control can be achieved in scale-free networks with exactly the same order of controllers required in a standard nonrobust configuration by adjusting only the minimum degree. The presented methodology also addresses the probabilistic failure of links in real systems, such as neural synaptic unreliability in Caenorhabditis elegans, and suggests a new direction to pursue in studies of complex networks in which control theory has a role. PMID:25679675

  4. Multiobjective Genetic Algorithm applied to dengue control.

    PubMed

    Florentino, Helenice O; Cantane, Daniela R; Santos, Fernando L P; Bannwart, Bettina F

    2014-12-01

    Dengue fever is an infectious disease caused by a virus of the Flaviridae family and transmitted to the person by a mosquito of the genus Aedes aegypti. This disease has been a global public health problem because a single mosquito can infect up to 300 people and between 50 and 100 million people are infected annually on all continents. Thus, dengue fever is currently a subject of research, whether in the search for vaccines and treatments for the disease or efficient and economical forms of mosquito control. The current study aims to study techniques of multiobjective optimization to assist in solving problems involving the control of the mosquito that transmits dengue fever. The population dynamics of the mosquito is studied in order to understand the epidemic phenomenon and suggest strategies of multiobjective programming for mosquito control. A Multiobjective Genetic Algorithm (MGA_DENGUE) is proposed to solve the optimization model treated here and we discuss the computational results obtained from the application of this technique. PMID:25230238

  5. Wireless Sensor Networks: Monitoring and Control

    SciTech Connect

    Hastbacka, Mildred; Ponoum, Ratcharit; Bouza, Antonio

    2013-05-31

    The article discusses wireless sensor technologies for building energy monitoring and control. This article, also, addresses wireless sensor networks as well as benefits and challenges of using wireless sensors. The energy savings and market potential of wireless sensors are reviewed.

  6. Portable control device for networked mobile robots

    DOEpatents

    Feddema, John T.; Byrne, Raymond H.; Bryan, Jon R.; Harrington, John J.; Gladwell, T. Scott

    2002-01-01

    A handheld control device provides a way for controlling one or multiple mobile robotic vehicles by incorporating a handheld computer with a radio board. The device and software use a personal data organizer as the handheld computer with an additional microprocessor and communication device on a radio board for use in controlling one robot or multiple networked robots.

  7. Genetic control of mosquitoes: population suppression strategies.

    PubMed

    Wilke, André Barretto Bruno; Marrelli, Mauro Toledo

    2012-01-01

    Over the last two decades, morbidity and mortality from malaria and dengue fever among other pathogens are an increasing Public Health problem. The increase in the geographic distribution of vectors is accompanied by the emergence of viruses and diseases in new areas. There are insufficient specific therapeutic drugs available and there are no reliable vaccines for malaria or dengue, although some progress has been achieved, there is still a long way between its development and actual field use. Most mosquito control measures have failed to achieve their goals, mostly because of the mosquito's great reproductive capacity and genomic flexibility. Chemical control is increasingly restricted due to potential human toxicity, mortality in no target organisms, insecticide resistance, and other environmental impacts. Other strategies for mosquito control are desperately needed. The Sterile Insect Technique (SIT) is a species-specific and environmentally benign method for insect population suppression, it is based on mass rearing, radiation mediated sterilization, and release of a large number of male insects. Releasing of Insects carrying a dominant lethal gene (RIDL) offers a solution to many of the drawbacks of traditional SIT that have limited its application in mosquitoes while maintaining its environmentally friendly and species-specific utility. The self-limiting nature of sterile mosquitoes tends to make the issues related to field use of these somewhat less challenging than for self-spreading systems characteristic of population replacement strategies. They also are closer to field use, so might be appropriate to consider first. The prospect of genetic control methods against mosquito vectored human diseases is rapidly becoming a reality, many decisions will need to be made on a national, regional and international level regarding the biosafety, social, cultural and ethical aspects of the use and deployment of these vector control methods. PMID:22983293

  8. Neural-Network Controller For Vibration Suppression

    NASA Technical Reports Server (NTRS)

    Boussalis, Dhemetrios; Wang, Shyh Jong

    1995-01-01

    Neural-network-based adaptive-control system proposed for vibration suppression of flexible space structures. Controller features three-layer neural network and utilizes output feedback. Measurements generated by various sensors on structure. Feed forward path also included to speed up response in case plant exhibits predominantly linear dynamic behavior. System applicable to single-input single-output systems. Work extended to multiple-input multiple-output systems as well.

  9. Optimal Feedback Control of Thermal Networks

    NASA Technical Reports Server (NTRS)

    Papalexandris, Miltiadis

    2003-01-01

    An improved approach to the mathematical modeling of feedback control of thermal networks has been devised. Heretofore software for feedback control of thermal networks has been developed by time-consuming trial-and-error methods that depend on engineers expertise. In contrast, the present approach is a systematic means of developing algorithms for feedback control that is optimal in the sense that it combines performance with low cost of implementation. An additional advantage of the present approach is that a thermal engineer need not be expert in control theory. Thermal networks are lumped-parameter approximations used to represent complex thermal systems. Thermal networks are closely related to electrical networks commonly represented by lumped-parameter circuit diagrams. Like such electrical circuits, thermal networks are mathematically modeled by systems of differential-algebraic equations (DAEs) that is, ordinary differential equations subject to a set of algebraic constraints. In the present approach, emphasis is placed on applications in which thermal networks are subject to constant disturbances and, therefore, integral control action is necessary to obtain steady-state responses. The mathematical development of the present approach begins with the derivation of optimal integral-control laws via minimization of an appropriate cost functional that involves augmented state vectors. Subsequently, classical variational arguments provide optimality conditions in the form of the Hamiltonian equations for the standard linear-quadratic-regulator (LQR) problem. These equations are reduced to an algebraic Riccati equation (ARE) with respect to the augmented state vector. The solution of the ARE leads to the direct computation of the optimal proportional- and integral-feedback control gains. In cases of very complex networks, large numbers of state variables make it difficult to implement optimal controllers in the manner described in the preceding paragraph.

  10. Stochastic gene expression in single cells: exploring the importance of noise in genetic networks

    NASA Astrophysics Data System (ADS)

    van Oudenaarden, Alexander

    2003-03-01

    Cells are intrinsically noisy biochemical reactors. This leads to random cell to cell variation (noise) in gene expression levels. First, I will address the source of this noise at the level of transcription and translation of a single gene. Our experimental results demonstrate that the intrinsic noise of a single gene is predominantly controlled at the translational level, and that increased translational efficiency leads to increased noise strength. This observation is consistent with a theoretical model in which proteins are randomly produced in sharp bursts followed by periods of slow decay. Second, I will explore the importance of genetic noise for a naturally occuring network: the lac operon. The classic lactose utilization network of E. coli has been under investigation for several decades and, in its simplest form the network may be modeled as a single positive feedback module. However, this simplicity is deceptive, as even this basic network is capable of complex metabolic behavior, including adaptation, amplification, and graded-to-binary response conversion. I will present single cell measurements on the expression of key genes in lactose uptake network and explore the importance of genetic noise on the regulation of these genes.

  11. The control networks of Mimas and Enceladus

    NASA Technical Reports Server (NTRS)

    Davies, M. E.; Katayama, F. Y.

    1983-01-01

    A bundle-type analytical triangulation program is employed to compute control networks for Mimas, whose network encircles the satellite with 110 points measured on 32 Voyager 1 pictures, and Enceladus, whose network does not completely encircle the satellite and contains 71 points measured on 22 Voyager 2 pictures. Many of the control points are identified on illustrations and by name, and their coordinates are presented in tabular form. The analytical triangulation program was used to solve for the mean radii and three principal axes of best-fit ellipsoids. The mean radius of Mimas is 197 + or - 3 km, while that of Enceladus is 251 + or - 5 km.

  12. Controlling extreme events on complex networks

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Zhong; Huang, Zi-Gang; Lai, Ying-Cheng

    2014-08-01

    Extreme events, a type of collective behavior in complex networked dynamical systems, often can have catastrophic consequences. To develop effective strategies to control extreme events is of fundamental importance and practical interest. Utilizing transportation dynamics on complex networks as a prototypical setting, we find that making the network ``mobile'' can effectively suppress extreme events. A striking, resonance-like phenomenon is uncovered, where an optimal degree of mobility exists for which the probability of extreme events is minimized. We derive an analytic theory to understand the mechanism of control at a detailed and quantitative level, and validate the theory numerically. Implications of our finding to current areas such as cybersecurity are discussed.

  13. Control of Stochastic and Induced Switching in Biophysical Networks

    NASA Astrophysics Data System (ADS)

    Wells, Daniel K.; Kath, William L.; Motter, Adilson E.

    2015-07-01

    Noise caused by fluctuations at the molecular level is a fundamental part of intracellular processes. While the response of biological systems to noise has been studied extensively, there has been limited understanding of how to exploit it to induce a desired cell state. Here we present a scalable, quantitative method based on the Freidlin-Wentzell action to predict and control noise-induced switching between different states in genetic networks that, conveniently, can also control transitions between stable states in the absence of noise. We apply this methodology to models of cell differentiation and show how predicted manipulations of tunable factors can induce lineage changes, and further utilize it to identify new candidate strategies for cancer therapy in a cell death pathway model. This framework offers a systems approach to identifying the key factors for rationally manipulating biophysical dynamics, and should also find use in controlling other classes of noisy complex networks.

  14. Control of Stochastic and Induced Switching in Biophysical Networks

    PubMed Central

    Wells, Daniel K.; Kath, William L.; Motter, Adilson E.

    2015-01-01

    Noise caused by fluctuations at the molecular level is a fundamental part of intracellular processes. While the response of biological systems to noise has been studied extensively, there has been limited understanding of how to exploit it to induce a desired cell state. Here we present a scalable, quantitative method based on the Freidlin-Wentzell action to predict and control noise-induced switching between different states in genetic networks that, conveniently, can also control transitions between stable states in the absence of noise. We apply this methodology to models of cell differentiation and show how predicted manipulations of tunable factors can induce lineage changes, and further utilize it to identify new candidate strategies for cancer therapy in a cell death pathway model. This framework offers a systems approach to identifying the key factors for rationally manipulating biophysical dynamics, and should also find use in controlling other classes of noisy complex networks. PMID:26451275

  15. The network of global corporate control.

    PubMed

    Vitali, Stefania; Glattfelder, James B; Battiston, Stefano

    2011-01-01

    The structure of the control network of transnational corporations affects global market competition and financial stability. So far, only small national samples were studied and there was no appropriate methodology to assess control globally. We present the first investigation of the architecture of the international ownership network, along with the computation of the control held by each global player. We find that transnational corporations form a giant bow-tie structure and that a large portion of control flows to a small tightly-knit core of financial institutions. This core can be seen as an economic "super-entity" that raises new important issues both for researchers and policy makers. PMID:22046252

  16. Scaling up: human genetics as a Cold War network.

    PubMed

    Lindee, Susan

    2014-09-01

    In this commentary I explore how the papers here illuminate the processes of collection that have been so central to the history of human genetics since 1945. The development of human population genetics in the Cold War period produced databases and biobanks that have endured into the present, and that continue to be used and debated. In the decades after the bomb, scientists collected and transferred human biological materials and information from populations of interest, and as they moved these biological resources or biosocial resources acquired new meanings and uses. The papers here collate these practices and map their desires and ironies. They explore how a large international network of geneticists, biological anthropologists, virologists and other physicians and scientists interacted with local informants, research subjects and public officials. They also track the networks and standards that mobilized the transfer of information, genealogies, tissue and blood samples. As Joanna Radin suggests here, the massive collections of human biological materials and data were often understood to be resources for an "as-yet-unknown" future. The stories told here contain elements of surveillance, extraction, salvage and eschatology. PMID:24954362

  17. Genetic specificity of a plant-insect food web: Implications for linking genetic variation to network complexity.

    PubMed

    Barbour, Matthew A; Fortuna, Miguel A; Bascompte, Jordi; Nicholson, Joshua R; Julkunen-Tiitto, Riitta; Jules, Erik S; Crutsinger, Gregory M

    2016-02-23

    Theory predicts that intraspecific genetic variation can increase the complexity of an ecological network. To date, however, we are lacking empirical knowledge of the extent to which genetic variation determines the assembly of ecological networks, as well as how the gain or loss of genetic variation will affect network structure. To address this knowledge gap, we used a common garden experiment to quantify the extent to which heritable trait variation in a host plant determines the assembly of its associated insect food web (network of trophic interactions). We then used a resampling procedure to simulate the additive effects of genetic variation on overall food-web complexity. We found that trait variation among host-plant genotypes was associated with resistance to insect herbivores, which indirectly affected interactions between herbivores and their insect parasitoids. Direct and indirect genetic effects resulted in distinct compositions of trophic interactions associated with each host-plant genotype. Moreover, our simulations suggest that food-web complexity would increase by 20% over the range of genetic variation in the experimental population of host plants. Taken together, our results indicate that intraspecific genetic variation can play a key role in structuring ecological networks, which may in turn affect network persistence. PMID:26858398

  18. Genetic control of fruit vitamin C contents.

    PubMed

    Davey, Mark W; Kenis, Katrien; Keulemans, Johan

    2006-09-01

    An F(1) progeny derived from a cross between the apple (Malus x domestica) cultivars Telamon and Braeburn was used to identify quantitative trait loci (QTL) linked to the vitamin C (l-ascorbate [l-AA]) contents of fruit skin and flesh (cortex) tissues. We identified up to three highly significant QTLs for both the mean l-AA and the mean total l-AA contents of fruit flesh on both parental genetic linkage maps, confirming the quantitative nature of these traits. These QTLs account for up to a maximum of 60% of the total population variation observed in the progeny, and with a maximal individual contribution of 31% per QTL. QTLs common to both parents were identified on linkage groups (LGs) 6, 10, and 11 of the Malus reference map, while each parent also had additional unique QTLs on other LGs. Interestingly, one strong QTL on LG-17 of the Telamon linkage map colocalized with a highly significant QTL associated with flesh browning, and a minor QTL for dehydroascorbate content, supporting earlier work that links fruit l-AA contents with the susceptibility of hardfruit to postharvest browning. We also found significant minor QTLs for skin l-AA and total l-AA (l-AA + dehydroascorbate) contents in Telamon. Currently, little is known about the genetic determinants underlying tissue l-AA homeostasis, but the presence of major, highly significant QTL in both these apple genotypes under field conditions suggests the existence of common control mechanisms, allelic heterozygosity, and helps outline strategies and the potential for the molecular breeding of these traits. PMID:16844833

  19. Genetic control of epithelial tube fusion during Drosophila tracheal development.

    PubMed

    Samakovlis, C; Manning, G; Steneberg, P; Hacohen, N; Cantera, R; Krasnow, M A

    1996-11-01

    During development of tubular networks such as the mammalian vascular system, the kidney and the Drosophila tracheal system, epithelial tubes must fuse to each other to form a continuous network. Little is known of the cellular mechanisms or molecular control of epithelial tube fusion. We describe the cellular dynamics of a tracheal fusion event in Drosophila and identify a gene regulatory hierarchy that controls this extraordinary process. A tracheal cell located at the developing fusion point expresses a sequence of specific markers as it grows out and contacts a similar cell from another tube; the two cells adhere and form an intercellular junction, and they become doughnut-shaped cells with the lumen passing through them. The early fusion marker Fusion-1 is identified as the escargot gene. It lies near the top of the regulatory hierarchy, activating the expression of later fusion markers and repressing genes that promote branching. Ectopic expression of escargot activates the fusion process and suppresses branching throughout the tracheal system, leading to ectopic tracheal connections that resemble certain arteriovenous malformations in humans. This establishes a simple genetic system to study fusion of epithelial tubes. PMID:8951068

  20. Neural-network-biased genetic algorithms for materials design

    NASA Astrophysics Data System (ADS)

    Patra, Tarak; Meenakshisundaram, Venkatesh; Simmons, David

    Machine learning tools have been progressively adopted by the materials science community to accelerate design of materials with targeted properties. However, in the search for new materials exhibiting properties and performance beyond that previously achieved, machine learning approaches are frequently limited by two major shortcomings. First, they are intrinsically interpolative. They are therefore better suited to the optimization of properties within the known range of accessible behavior than to the discovery of new materials with extremal behavior. Second, they require the availability of large datasets, which in some fields are not available and would be prohibitively expensive to produce. Here we describe a new strategy for combining genetic algorithms, neural networks and other machine learning tools, and molecular simulation to discover materials with extremal properties in the absence of pre-existing data. Predictions from progressively constructed machine learning tools are employed to bias the evolution of a genetic algorithm, with fitness evaluations performed via direct molecular dynamics simulation. We survey several initial materials design problems we have addressed with this framework and compare its performance to that of standard genetic algorithm approaches. We acknowledge the W. M. Keck Foundation for support of this work.

  1. Engineering modular and tunable genetic amplifiers for scaling transcriptional signals in cascaded gene networks.

    PubMed

    Wang, Baojun; Barahona, Mauricio; Buck, Martin

    2014-08-01

    Synthetic biology aims to control and reprogram signal processing pathways within living cells so as to realize repurposed, beneficial applications. Here we report the design and construction of a set of modular and gain-tunable genetic amplifiers in Escherichia coli capable of amplifying a transcriptional signal with wide tunable-gain control in cascaded gene networks. The devices are engineered using orthogonal genetic components (hrpRS, hrpV and PhrpL) from the hrp (hypersensitive response and pathogenicity) gene regulatory network in Pseudomonas syringae. The amplifiers can linearly scale up to 21-fold the transcriptional input with a large output dynamic range, yet not introducing significant time delay or significant noise during signal amplification. The set of genetic amplifiers achieves different gains and input dynamic ranges by varying the expression levels of the underlying ligand-free activator proteins in the device. As their electronic counterparts, these engineered transcriptional amplifiers can act as fundamental building blocks in the design of biological systems by predictably and dynamically modulating transcriptional signal flows to implement advanced intra- and extra-cellular control functions. PMID:25030903

  2. General asymmetric neutral networks and structure design by genetic algorithms: A learning rule for temporal patterns

    SciTech Connect

    Bornholdt, S.; Graudenz, D.

    1993-07-01

    A learning algorithm based on genetic algorithms for asymmetric neural networks with an arbitrary structure is presented. It is suited for the learning of temporal patterns and leads to stable neural networks with feedback.

  3. NOVANET: communications network for a control system

    SciTech Connect

    Hill, J.R.; Severyn, J.R.; VanArsdall, P.J.

    1983-05-23

    NOVANET is a control system oriented fiber optic local area network that was designed to meet the unique and often conflicting requirements of the Nova laser control system which will begin operation in 1984. The computers and data acquisition devices that form the distributed control system for a large laser fusion research facility need reliable, high speed communications. Both control/status messages and experimental data must be handled. A subset of NOVANET is currently operating on the two beam Novette laser system.

  4. Cuba's Salgen: a provincial informatics network for genetic services to pregnant women and newborns.

    PubMed

    Rodríguez-Vázquez, Miguel; Pérez, Rubén; Valero, Damicel; Santiago, Darío G

    2014-01-01

    The Sancti Spíritus Provincial Medical Genetics Network has been using the Salgen IT platform since 2009 for health care, administrative and research activities concerning pregnant mothers and newborns. The network uses the national Infomed backbone to provide real-time connection between community-based polyclinics in primary health care and the Provincial Medical Genetics Reference Center. The platform has records for 23,025 pregnant women and sequential clinical data on genetic risk assessment in early pregnancy, first trimester ultrasound, sickle cell anemia screening, alpha-fetoprotein levels, cytogenetic antenatal diagnosis, second trimester ultrasound, delivery and newborn characteristics, neonatal metabolic screening, and infant clinical assessment. The system makes health care results immediately available and provides health alerts to enable timely preventive care for pregnant women. It also provides guidelines for processes and practices, and streamlines administrative and monitoring activities through statistical reports. The database generates indicators for assessing fetal growth and applies international standards for antenatal ultrasound quality control. Salgen provides a new source of information for medical research and knowledge management, and its use in this case fulfills Cuba's criteria for an integrated health services network. PMID:25208122

  5. Markov Logic Networks in the Analysis of Genetic Data

    PubMed Central

    Sakhanenko, Nikita A.

    2010-01-01

    Abstract Complex, non-additive genetic interactions are common and can be critical in determining phenotypes. Genome-wide association studies (GWAS) and similar statistical studies of linkage data, however, assume additive models of gene interactions in looking for genotype-phenotype associations. These statistical methods view the compound effects of multiple genes on a phenotype as a sum of influences of each gene and often miss a substantial part of the heritable effect. Such methods do not use any biological knowledge about underlying mechanisms. Modeling approaches from the artificial intelligence (AI) field that incorporate deterministic knowledge into models to perform statistical analysis can be applied to include prior knowledge in genetic analysis. We chose to use the most general such approach, Markov Logic Networks (MLNs), for combining deterministic knowledge with statistical analysis. Using simple, logistic regression-type MLNs we can replicate the results of traditional statistical methods, but we also show that we are able to go beyond finding independent markers linked to a phenotype by using joint inference without an independence assumption. The method is applied to genetic data on yeast sporulation, a complex phenotype with gene interactions. In addition to detecting all of the previously identified loci associated with sporulation, our method identifies four loci with smaller effects. Since their effect on sporulation is small, these four loci were not detected with methods that do not account for dependence between markers due to gene interactions. We show how gene interactions can be detected using more complex models, which can be used as a general framework for incorporating systems biology with genetics. PMID:20958249

  6. Control of fluxes in metabolic networks.

    PubMed

    Basler, Georg; Nikoloski, Zoran; Larhlimi, Abdelhalim; Barabási, Albert-László; Liu, Yang-Yu

    2016-07-01

    Understanding the control of large-scale metabolic networks is central to biology and medicine. However, existing approaches either require specifying a cellular objective or can only be used for small networks. We introduce new coupling types describing the relations between reaction activities, and develop an efficient computational framework, which does not require any cellular objective for systematic studies of large-scale metabolism. We identify the driver reactions facilitating control of 23 metabolic networks from all kingdoms of life. We find that unicellular organisms require a smaller degree of control than multicellular organisms. Driver reactions are under complex cellular regulation in Escherichia coli, indicating their preeminent role in facilitating cellular control. In human cancer cells, driver reactions play pivotal roles in malignancy and represent potential therapeutic targets. The developed framework helps us gain insights into regulatory principles of diseases and facilitates design of engineering strategies at the interface of gene regulation, signaling, and metabolism. PMID:27197218

  7. Controlling neural network responsiveness: tradeoffs and constraints

    PubMed Central

    Keren, Hanna; Marom, Shimon

    2014-01-01

    In recent years much effort is invested in means to control neural population responses at the whole brain level, within the context of developing advanced medical applications. The tradeoffs and constraints involved, however, remain elusive due to obvious complications entailed by studying whole brain dynamics. Here, we present effective control of response features (probability and latency) of cortical networks in vitro over many hours, and offer this approach as an experimental toy for studying controllability of neural networks in the wider context. Exercising this approach we show that enforcement of stable high activity rates by means of closed loop control may enhance alteration of underlying global input–output relations and activity dependent dispersion of neuronal pair-wise correlations across the network. PMID:24808860

  8. Genetic control of seed proteins in wheat.

    PubMed

    Dhaliwal, H S

    1977-09-01

    Electrophoretic profiles of crude protein extracts from seed of F1 hybrids and reciprocal crosses among diploid, tetraploid and hexaploid wheats were compared with those of their respective parental species. The electrophoretic patterns within each of three pairs of reciprocal crosses, T.boeoticum X T.urartu, T.monococcun X T. urartu and T.dicoccum X T. araraticum, were different from one another but were identical with those of their respective maternal parents. Protein bands characteristic of the paternal parents were missing in F1 hybrid seed suggesting that the major seed proteins in wheat were presumably regulated by genotype of the maternal parent rather than by the seed genotype. However, in another three pairs of reciprocal crosses, T.boeoticum X T. durum, T.dicoccum X T.aestivum and T. zhukovskyi x T. aestivum, protein bands attributable to the paternal parents were present in the F1 hybrid seeds indicating that the seed proteins were not always exclusively regulated by the maternal genotype. The expression of paternal genomes is presumably determined by dosage and genetic affinity of the maternal and paternal genomes in the hybrid endosperm. The maternal regulation of seed protein content is probably accomplished through the maternal control over seed size. The seed protein quality may, however, depend upon the extent of expression of the paternal genome. PMID:24407840

  9. Genetic control of biennial bearing in apple

    PubMed Central

    Guitton, Baptiste; Kelner, Jean-Jacques; Velasco, Riccardo; Gardiner, Susan E.; Chagné, David; Costes, Evelyne

    2012-01-01

    Although flowering in mature fruit trees is recurrent, floral induction can be strongly inhibited by concurrent fruiting, leading to a pattern of irregular fruiting across consecutive years referred to as biennial bearing. The genetic determinants of biennial bearing in apple were investigated using the 114 flowering individuals from an F1 population of 122 genotypes, from a ‘Starkrimson’ (strong biennial bearer)בGranny Smith’ (regular bearer) cross. The number of inflorescences, and the number and the mass of harvested fruit were recorded over 6 years and used to calculate 26 variables and indices quantifying yield, precocity of production, and biennial bearing. Inflorescence traits exhibited the highest genotypic effect, and three quantitative trait loci (QTLs) on linkage group (LG) 4, LG8, and LG10 explained 50% of the phenotypic variability for biennial bearing. Apple orthologues of flowering and hormone-related genes were retrieved from the whole-genome assembly of ‘Golden Delicious’ and their position was compared with QTLs. Four main genomic regions that contain floral integrator genes, meristem identity genes, and gibberellin oxidase genes co-located with QTLs. The results indicated that flowering genes are less likely to be responsible for biennial bearing than hormone-related genes. New hypotheses for the control of biennial bearing emerged from QTL and candidate gene co-locations and suggest the involvement of different physiological processes such as the regulation of flowering genes by hormones. The correlation between tree architecture and biennial bearing is also discussed. PMID:21963613

  10. Molecular and genetic control of plant thermomorphogenesis.

    PubMed

    Quint, Marcel; Delker, Carolin; Franklin, Keara A; Wigge, Philip A; Halliday, Karen J; van Zanten, Martijn

    2016-01-01

    Temperature is a major factor governing the distribution and seasonal behaviour of plants. Being sessile, plants are highly responsive to small differences in temperature and adjust their growth and development accordingly. The suite of morphological and architectural changes induced by high ambient temperatures, below the heat-stress range, is collectively called thermomorphogenesis. Understanding the molecular genetic circuitries underlying thermomorphogenesis is particularly relevant in the context of climate change, as this knowledge will be key to rational breeding for thermo-tolerant crop varieties. Until recently, the fundamental mechanisms of temperature perception and signalling remained unknown. Our understanding of temperature signalling is now progressing, mainly by exploiting the model plant Arabidopsis thaliana. The transcription factor PHYTOCHROME INTERACTING FACTOR 4 (PIF4) has emerged as a critical player in regulating phytohormone levels and their activity. To control thermomorphogenesis, multiple regulatory circuits are in place to modulate PIF4 levels, activity and downstream mechanisms. Thermomorphogenesis is integrally governed by various light signalling pathways, the circadian clock, epigenetic mechanisms and chromatin-level regulation. In this Review, we summarize recent progress in the field and discuss how the emerging knowledge in Arabidopsis may be transferred to relevant crop systems. PMID:27250752

  11. Epidemic Extinction and Control in Heterogeneous Networks

    NASA Astrophysics Data System (ADS)

    Hindes, Jason; Schwartz, Ira B.

    2016-07-01

    We consider epidemic extinction in finite networks with a broad variation in local connectivity. Generalizing the theory of large fluctuations to random networks with a given degree distribution, we are able to predict the most probable, or optimal, paths to extinction in various configurations, including truncated power laws. We find that paths for heterogeneous networks follow a limiting form in which infection first decreases in low-degree nodes, which triggers a rapid extinction in high-degree nodes, and finishes with a residual low-degree extinction. The usefulness of our approach is further demonstrated through optimal control strategies that leverage the dependence of finite-size fluctuations on network topology. Interestingly, we find that the optimal control is a mix of treating both high- and low-degree nodes based on theoretical predictions, in contrast to methods that ignore dynamical fluctuations.

  12. Color control of printers by neural networks

    NASA Astrophysics Data System (ADS)

    Tominaga, Shoji

    1998-07-01

    A method is proposed for solving the mapping problem from the 3D color space to the 4D CMYK space of printer ink signals by means of a neural network. The CIE-L*a*b* color system is used as the device-independent color space. The color reproduction problem is considered as the problem of controlling an unknown static system with four inputs and three outputs. A controller determines the CMYK signals necessary to produce the desired L*a*b* values with a given printer. Our solution method for this control problem is based on a two-phase procedure which eliminates the need for UCR and GCR. The first phase determines a neural network as a model of the given printer, and the second phase determines the combined neural network system by combining the printer model and the controller in such a way that it represents an identity mapping in the L*a*b* color space. Then the network of the controller part realizes the mapping from the L*a*b* space to the CMYK space. Practical algorithms are presented in the form of multilayer feedforward networks. The feasibility of the proposed method is shown in experiments using a dye sublimation printer and an ink jet printer.

  13. Flexible brain network reconfiguration supporting inhibitory control.

    PubMed

    Spielberg, Jeffrey M; Miller, Gregory A; Heller, Wendy; Banich, Marie T

    2015-08-11

    The ability to inhibit distracting stimuli from interfering with goal-directed behavior is crucial for success in most spheres of life. Despite an abundance of studies examining regional brain activation, knowledge of the brain networks involved in inhibitory control remains quite limited. To address this critical gap, we applied graph theory tools to functional magnetic resonance imaging data collected while a large sample of adults (n = 101) performed a color-word Stroop task. Higher demand for inhibitory control was associated with restructuring of the global network into a configuration that was more optimized for specialized processing (functional segregation), more efficient at communicating the output of such processing across the network (functional integration), and more resilient to potential interruption (resilience). In addition, there were regional changes with right inferior frontal sulcus and right anterior insula occupying more central positions as network hubs, and dorsal anterior cingulate cortex becoming more tightly coupled with its regional subnetwork. Given the crucial role of inhibitory control in goal-directed behavior, present findings identifying functional network organization supporting inhibitory control have the potential to provide additional insights into how inhibitory control may break down in a wide variety of individuals with neurological or psychiatric difficulties. PMID:26216985

  14. Estimating the minimum control count of random network models

    PubMed Central

    Ruths, Derek; Ruths, Justin

    2016-01-01

    The study of controllability of complex networks has introduced the minimum number of controls required for full controllability as a new network measure of interest. This network measure, like many others, is non-trivial to compute. As a result, establishing the significance of minimum control counts (MCCs) in real networks using random network null models is expensive. Here we derive analytic estimates for the expected MCCs of networks drawn from three commonly-used random network models. Our estimates show good agreement with exact control counts. Furthermore, the analytic expressions we derive offer insights into the structures within each random network model that induce the need for controls. PMID:26817434

  15. The APS control system network upgrade.

    SciTech Connect

    Sidorowicz, K. v.; Leibfritz, D.; McDowell, W. P.

    1999-10-22

    When it was installed,the Advanced Photon Source (APS) control system network was at the state-of-the-art. Different aspects of the system have been reported at previous meetings [1,2]. As loads on the controls network have increased due to newer and faster workstations and front-end computers, we have found performance of the system declining and have implemented an upgraded network. There have been dramatic advances in networking hardware in the last several years. The upgraded APS controls network replaces the original FDDI backbone and shared Ethernet hubs with redundant gigabit uplinks and fully switched 10/100 Ethernet switches with backplane fabrics in excess of 20 Gbits/s (Gbps). The central collapsed backbone FDDI concentrator has been replaced with a Gigabit Ethernet switch with greater than 30 Gbps backplane fabric. Full redundancy of the system has been maintained. This paper will discuss this upgrade and include performance data and performance comparisons with the original network.

  16. Strawberry Maturity Neural Network Detectng System Based on Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Xu, Liming

    The quick and non-detective detection of agriculture product is one of the measures to increase the precision and productivity of harvesting and grading. Having analyzed H frequency of different maturities in different light intensities, the results show that H frequency for the same maturity has little influence in different light intensities; Under the same light intensity, three strawberry maturities are changing in order. After having confirmed the H frequency section to distinguish the different strawberry maturity, the triplelayer feed-forward neural network system to detect strawberry maturity was designed by using genetic algorithm. The test results show that the detecting precision ratio is 91.7%, it takes 160ms to distinguish one strawberry. Therefore, the online non-detective detecting the strawberry maturity could be realized.

  17. Prediction of Aerodynamic Coefficient using Genetic Algorithm Optimized Neural Network for Sparse Data

    NASA Technical Reports Server (NTRS)

    Rajkumar, T.; Bardina, Jorge; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Wind tunnels use scale models to characterize aerodynamic coefficients, Wind tunnel testing can be slow and costly due to high personnel overhead and intensive power utilization. Although manual curve fitting can be done, it is highly efficient to use a neural network to define the complex relationship between variables. Numerical simulation of complex vehicles on the wide range of conditions required for flight simulation requires static and dynamic data. Static data at low Mach numbers and angles of attack may be obtained with simpler Euler codes. Static data of stalled vehicles where zones of flow separation are usually present at higher angles of attack require Navier-Stokes simulations which are costly due to the large processing time required to attain convergence. Preliminary dynamic data may be obtained with simpler methods based on correlations and vortex methods; however, accurate prediction of the dynamic coefficients requires complex and costly numerical simulations. A reliable and fast method of predicting complex aerodynamic coefficients for flight simulation I'S presented using a neural network. The training data for the neural network are derived from numerical simulations and wind-tunnel experiments. The aerodynamic coefficients are modeled as functions of the flow characteristics and the control surfaces of the vehicle. The basic coefficients of lift, drag and pitching moment are expressed as functions of angles of attack and Mach number. The modeled and training aerodynamic coefficients show good agreement. This method shows excellent potential for rapid development of aerodynamic models for flight simulation. Genetic Algorithms (GA) are used to optimize a previously built Artificial Neural Network (ANN) that reliably predicts aerodynamic coefficients. Results indicate that the GA provided an efficient method of optimizing the ANN model to predict aerodynamic coefficients. The reliability of the ANN using the GA includes prediction of aerodynamic

  18. Cortical Control of Affective Networks

    PubMed Central

    Kumar, Sunil; Black, Sherilynn J.; Hultman, Rainbo; Szabo, Steven T.; DeMaio, Kristine D.; Du, Jeanette; Katz, Brittany M.; Feng, Guoping; Covington, Herbert E.; Dzirasa, Kafui

    2013-01-01

    Transcranial magnetic stimulation and deep brain stimulation have emerged as therapeutic modalities for treatment refractory depression; however, little remains known regarding the circuitry that mediates the therapeutic effect of these approaches. Here we show that direct optogenetic stimulation of prefrontal cortex (PFC) descending projection neurons in mice engineered to express Chr2 in layer V pyramidal neurons (Thy1–Chr2 mice) models an antidepressant-like effect in mice subjected to a forced-swim test. Furthermore, we show that this PFC stimulation induces a long-lasting suppression of anxiety-like behavior (but not conditioned social avoidance) in socially stressed Thy1–Chr2 mice: an effect that is observed >10 d after the last stimulation. Finally, we use optogenetic stimulation and multicircuit recording techniques concurrently in Thy1–Chr2 mice to demonstrate that activation of cortical projection neurons entrains neural oscillatory activity and drives synchrony across limbic brain areas that regulate affect. Importantly, these neural oscillatory changes directly correlate with the temporally precise activation and suppression of limbic unit activity. Together, our findings show that the direct activation of cortical projection systems is sufficient to modulate activity across networks underlying affective regulation. They also suggest that optogenetic stimulation of cortical projection systems may serve as a viable therapeutic strategy for treating affective disorders. PMID:23325249

  19. Network dysfunction of emotional and cognitive processes in those at genetic risk of bipolar disorder.

    PubMed

    Breakspear, Michael; Roberts, Gloria; Green, Melissa J; Nguyen, Vinh T; Frankland, Andrew; Levy, Florence; Lenroot, Rhoshel; Mitchell, Philip B

    2015-11-01

    The emotional and cognitive vulnerabilities that precede the development of bipolar disorder are poorly understood. The inferior frontal gyrus-a key cortical hub for the integration of cognitive and emotional processes-exhibits both structural and functional changes in bipolar disorder, and is also functionally impaired in unaffected first-degree relatives, showing diminished engagement during inhibition of threat-related emotional stimuli. We hypothesized that this functional impairment of the inferior frontal gyrus in those at genetic risk of bipolar disorder reflects the dysfunction of broader network dynamics underlying the coordination of emotion perception and cognitive control. To test this, we studied effective connectivity in functional magnetic resonance imaging data acquired from 41 first-degree relatives of patients with bipolar disorder, 45 matched healthy controls and 55 participants with established bipolar disorder. Dynamic causal modelling was used to model the neuronal interaction between key regions associated with fear perception (the anterior cingulate), inhibition (the left dorsolateral prefrontal cortex) and the region upon which these influences converge, namely the inferior frontal gyrus. Network models that embodied non-linear, hierarchical relationships were the most strongly supported by data from our healthy control and bipolar participants. We observed a marked difference in the hierarchical influence of the anterior cingulate on the effective connectivity from the dorsolateral prefrontal cortex to the inferior frontal gyrus that is unique to the at-risk cohort. Non-specific, non-hierarchical mechanisms appear to compensate for this network disturbance. We thus establish a specific network disturbance suggesting dysfunction in the processes that support hierarchical relationships between emotion and cognitive control in those at high genetic risk for bipolar disorder. PMID:26373604

  20. Echoed time series predictions, neural networks and genetic algorithms

    NASA Astrophysics Data System (ADS)

    Conway, A.

    This work aims to illustrate a potentially serious and previously unrecognised problem in using Neural Networks (NNs), and possibly other techniques, to predict Time Series (TS). It also demonstrates how a new training scheme using a genetic algorithm can alleviate this problem. Although it is already established that NNs can predict TS such as Sunspot Number (SSN) with reasonable success, the accuracy of these predictions is often judged solely by an RMS or related error. The use of this type of error overlooks the presence of what we have termed echoing, where the NN outputs its most recent input as its prediction. Therefore, a method of detecting echoed predictions is introduced, called time-shifting. Reasons for the presence of echo are discussed and then related to the choice of TS sampling. Finally, a new specially designed training scheme is described, which is a hybrid of a genetic algorithm search and back propagation. With this method we have successfully trained NNs to predict without any echo.

  1. Cellular and network mechanisms of genetically-determined absence seizures.

    PubMed

    Pinault, Didier; O'Brien, Terence J

    2005-01-01

    network mechanisms responsible for the switch from physiological, wake-related, natural oscillations into pathological spike-and-wave discharges? We speculate on possible answers to this, building particularly on recent findings from genetic models in rats. PMID:21909233

  2. [The network of official medicines control laboratories].

    PubMed

    Buchheit, K-H; Wanko, R

    2014-10-01

    Licensing, control and surveillance by competent authorities is the basis for ensuring efficacy, safety and quality of medicines in Europe. The control of the quality of medicines by national control laboratories, known as Official Medicines Control Laboratories (OMCLs) is an essential step in this process; it encompasses controls before and after granting a marketing authorisation. For certain groups of biomedical medicines (vaccines for human and veterinary use, medicines derived from human plasma) even each batch is controlled before it can be placed on the market. As single OMCLs would not be able to cope with their task, given the large number and diversity of medicines, in 1994 the OMCL network was founded upon initiative of the European Directorate for the Quality of Medicines & HealthCare, in close collaboration with the Commission of the European Union. Currently 68 OMCLs from 39 countries are part of the network. Prerequisite for the smooth operation of the OMCL network is the harmonisation of the quality management system of the individual OMCLs, based on the ISO 17025 standard, internal guidelines and the European Pharmacopoeia. Compliance with these standards is checked through regular audits, thus creating the basis for mutual recognition of test results. The collaboration in the OMCL network for the surveillance of the medicines market, the official control authority batch release and the fight against counterfeiting and illegal medicines enables OMCLs to keep pace with the developments in the field of medicines and to control the broad spectrum of medicines. In the 20 years since its start, the OMCL network has become a European success story. PMID:25192832

  3. Exhaustive search for conservation networks of populations representing genetic diversity.

    PubMed

    Diniz-Filho, J A F; Diniz, J V B P L; Telles, M P C

    2016-01-01

    Conservation strategies routinely use optimization methods to identify the smallest number of units required to represent a set of features that need to be conserved, including biomes, species, and populations. In this study, we provide R scripts to facilitate exhaustive search for solutions that represent all of the alleles in networks with the smallest possible number of populations. The script also allows other variables to be added to describe the populations, thereby providing the basis for multi-objective optimization and the construction of Pareto curves by averaging the values in the solutions. We applied this algorithm to an empirical dataset that comprised 23 populations of Eugenia dysenterica, which is a tree species with a widespread distribution in the Cerrado biome. We observed that 15 populations would be necessary to represent all 249 alleles based on 11 microsatellite loci, and that the likelihood of representing all of the alleles with random networks is less than 0.0001. We selected the solution (from two with the smallest number of populations) obtained for the populations with a higher level of climatic stability as the best strategy for in situ conservation of genetic diversity of E. dysenterica. The scripts provided in this study are a simple and efficient alternative to more complex optimization methods, especially when the number of populations is relatively small (i.e., <25 populations). PMID:26909939

  4. Controlling extreme events on complex networks

    PubMed Central

    Chen, Yu-Zhong; Huang, Zi-Gang; Lai, Ying-Cheng

    2014-01-01

    Extreme events, a type of collective behavior in complex networked dynamical systems, often can have catastrophic consequences. To develop effective strategies to control extreme events is of fundamental importance and practical interest. Utilizing transportation dynamics on complex networks as a prototypical setting, we find that making the network “mobile” can effectively suppress extreme events. A striking, resonance-like phenomenon is uncovered, where an optimal degree of mobility exists for which the probability of extreme events is minimized. We derive an analytic theory to understand the mechanism of control at a detailed and quantitative level, and validate the theory numerically. Implications of our finding to current areas such as cybersecurity are discussed. PMID:25131344

  5. Controlling extreme events on complex networks.

    PubMed

    Chen, Yu-Zhong; Huang, Zi-Gang; Lai, Ying-Cheng

    2014-01-01

    Extreme events, a type of collective behavior in complex networked dynamical systems, often can have catastrophic consequences. To develop effective strategies to control extreme events is of fundamental importance and practical interest. Utilizing transportation dynamics on complex networks as a prototypical setting, we find that making the network "mobile" can effectively suppress extreme events. A striking, resonance-like phenomenon is uncovered, where an optimal degree of mobility exists for which the probability of extreme events is minimized. We derive an analytic theory to understand the mechanism of control at a detailed and quantitative level, and validate the theory numerically. Implications of our finding to current areas such as cybersecurity are discussed. PMID:25131344

  6. The Network of Global Corporate Control

    PubMed Central

    Vitali, Stefania; Glattfelder, James B.; Battiston, Stefano

    2011-01-01

    The structure of the control network of transnational corporations affects global market competition and financial stability. So far, only small national samples were studied and there was no appropriate methodology to assess control globally. We present the first investigation of the architecture of the international ownership network, along with the computation of the control held by each global player. We find that transnational corporations form a giant bow-tie structure and that a large portion of control flows to a small tightly-knit core of financial institutions. This core can be seen as an economic “super-entity” that raises new important issues both for researchers and policy makers. PMID:22046252

  7. Wireless Networking for Control: Technologies and Models

    NASA Astrophysics Data System (ADS)

    Johansson, Mikael; Jäntti, Riku

    This chapter discusses technologies and models for low power wireless industrial communication. The aim of the text is to narrow the gap between the models used in the theoretical control literature with models that arise when tools from communication theory are used to model emerging standards for industrial wireless. The chapter provides a tutorial overview covering basic concepts and models for wireless propagation, medium access control, multi-hop networking, routing and transport protocols. Throughout, an effort is made to describe both key technologies and associated models of control-relevant characteristics such as latency and loss. Some existing and emerging specifications and standards, including Zigbee, WirelessHART and ISA100, are described in some detail, and links are made between the developed models and useful network abstractions for control design.

  8. Genomic and Network Patterns of Schizophrenia Genetic Variation in Human Evolutionary Accelerated Regions

    PubMed Central

    Xu, Ke; Schadt, Eric E.; Pollard, Katherine S.; Roussos, Panos; Dudley, Joel T.

    2015-01-01

    The population persistence of schizophrenia despite associated reductions in fitness and fecundity suggests that the genetic basis of schizophrenia has a complex evolutionary history. A recent meta-analysis of schizophrenia genome-wide association studies offers novel opportunities for assessment of the evolutionary trajectories of schizophrenia-associated loci. In this study, we hypothesize that components of the genetic architecture of schizophrenia are attributable to human lineage-specific evolution. Our results suggest that schizophrenia-associated loci enrich in genes near previously identified human accelerated regions (HARs). Specifically, we find that genes near HARs conserved in nonhuman primates (pHARs) are enriched for schizophrenia-associated loci, and that pHAR-associated schizophrenia genes are under stronger selective pressure than other schizophrenia genes and other pHAR-associated genes. We further evaluate pHAR-associated schizophrenia genes in regulatory network contexts to investigate associated molecular functions and mechanisms. We find that pHAR-associated schizophrenia genes significantly enrich in a GABA-related coexpression module that was previously found to be differentially regulated in schizophrenia affected individuals versus healthy controls. In another two independent networks constructed from gene expression profiles from prefrontal cortex samples, we find that pHAR-associated schizophrenia genes are located in more central positions and their average path lengths to the other nodes are significantly shorter than those of other schizophrenia genes. Together, our results suggest that HARs are associated with potentially important functional roles in the genetic architecture of schizophrenia. PMID:25681384

  9. Temperature drift modeling of MEMS gyroscope based on genetic-Elman neural network

    NASA Astrophysics Data System (ADS)

    Chong, Shen; Rui, Song; Jie, Li; Xiaoming, Zhang; Jun, Tang; Yunbo, Shi; Jun, Liu; Huiliang, Cao

    2016-05-01

    In order to improve the temperature drift modeling precision of a tuning fork micro-electromechanical system (MEMS) gyroscope, a novel multiple inputs/single output model based on genetic algorithm (GA) and Elman neural network (Elman NN) is proposed. First, the temperature experiment of MEMS gyroscope is carried out and the outputs of MEMS gyroscope and temperature sensors are collected; then the temperature drift model based on temperature, temperature variation rate and the coupling term is proposed, and the Elman NN is employed to guarantee the generalization ability of the model; at last the genetic algorithm is used to tune the parameters of Elman NN in order to improve the modeling precision. The Allan analysis results validate that, compared to traditional single input/single output model, the novel multiple inputs/single output model can guarantee high accurate fitting ability because the proposed model can provide more plentiful controllable information. By the way, the generalization ability of the Elman neural network can be improved significantly due to the parameters are optimized by genetic algorithm.

  10. Inner structure of capital control networks

    NASA Astrophysics Data System (ADS)

    Battiston, Stefano

    2004-07-01

    We study the topological structure of the network of shareholding relationships in the Italian stock market (MIB) and in two US stock markets (NYSE and NASDAQ). The portfolio diversification and the wealth invested on the market by economical agents have been shown in our previous work to have all a power law behavior. However, a further investigation shows that the inner structure of the capital control network are not at all the same across markets. The shareholding network is a weighted graph, therefore we introduce two quantities analogous to in-degree and out-degree for weighted graphs which measure, respectively: the number of effective shareholders of a stock and the number of companies effectively controlled by a single holder. Combining the information carried by the distributions of these two quantities we are able to extract the backbone of each market and we find that while the MIB splits into several separated groups of interest, the US markets is characterized by very large holders sharing control on overlapping subsets of stocks. This method seems promising for the analysis of the topology of capital control networks in general and not only in the stock market.

  11. Optimizing Dynamical Network Structure for Pinning Control

    PubMed Central

    Orouskhani, Yasin; Jalili, Mahdi; Yu, Xinghuo

    2016-01-01

    Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model scale-free and small-world networks. Extensive simulation results show that the optimal placement of driver nodes significantly outperforms heuristic methods including placing drivers based on various centrality measures (degree, betweenness, closeness and clustering coefficient). The pinning controllability is further improved by optimizing the feedback gains. We also show that one can significantly improve the controllability by optimizing the connection weights. PMID:27067020

  12. Optimizing Dynamical Network Structure for Pinning Control.

    PubMed

    Orouskhani, Yasin; Jalili, Mahdi; Yu, Xinghuo

    2016-01-01

    Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model scale-free and small-world networks. Extensive simulation results show that the optimal placement of driver nodes significantly outperforms heuristic methods including placing drivers based on various centrality measures (degree, betweenness, closeness and clustering coefficient). The pinning controllability is further improved by optimizing the feedback gains. We also show that one can significantly improve the controllability by optimizing the connection weights. PMID:27067020

  13. Optimizing Dynamical Network Structure for Pinning Control

    NASA Astrophysics Data System (ADS)

    Orouskhani, Yasin; Jalili, Mahdi; Yu, Xinghuo

    2016-04-01

    Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model scale-free and small-world networks. Extensive simulation results show that the optimal placement of driver nodes significantly outperforms heuristic methods including placing drivers based on various centrality measures (degree, betweenness, closeness and clustering coefficient). The pinning controllability is further improved by optimizing the feedback gains. We also show that one can significantly improve the controllability by optimizing the connection weights.

  14. Deep networks for motor control functions.

    PubMed

    Berniker, Max; Kording, Konrad P

    2015-01-01

    The motor system generates time-varying commands to move our limbs and body. Conventional descriptions of motor control and learning rely on dynamical representations of our body's state (forward and inverse models), and control policies that must be integrated forward to generate feedforward time-varying commands; thus these are representations across space, but not time. Here we examine a new approach that directly represents both time-varying commands and the resulting state trajectories with a function; a representation across space and time. Since the output of this function includes time, it necessarily requires more parameters than a typical dynamical model. To avoid the problems of local minima these extra parameters introduce, we exploit recent advances in machine learning to build our function using a stacked autoencoder, or deep network. With initial and target states as inputs, this deep network can be trained to output an accurate temporal profile of the optimal command and state trajectory for a point-to-point reach of a non-linear limb model, even when influenced by varying force fields. In a manner that mirrors motor babble, the network can also teach itself to learn through trial and error. Lastly, we demonstrate how this network can learn to optimize a cost objective. This functional approach to motor control is a sharp departure from the standard dynamical approach, and may offer new insights into the neural implementation of motor control. PMID:25852530

  15. Distributed control network for optogenetic experiments

    NASA Astrophysics Data System (ADS)

    Kasprowicz, G.; Juszczyk, B.; Mankiewicz, L.

    2014-11-01

    Nowadays optogenetic experiments are constructed to examine social behavioural relations in groups of animals. A novel concept of implantable device with distributed control network and advanced positioning capabilities is proposed. It is based on wireless energy transfer technology, micro-power radio interface and advanced signal processing.

  16. REAL TIME CONTROL OF URBAN DRAINAGE NETWORKS

    EPA Science Inventory

    Real-time control (RTC) is a custom-designed, computer-assisted management technology for a specific sewerage network to meet the operational objectives of its collection/conveyance system. RTC can operate in several modes, including a mode that is activated during a wet weather ...

  17. Deep networks for motor control functions

    PubMed Central

    Berniker, Max; Kording, Konrad P.

    2015-01-01

    The motor system generates time-varying commands to move our limbs and body. Conventional descriptions of motor control and learning rely on dynamical representations of our body's state (forward and inverse models), and control policies that must be integrated forward to generate feedforward time-varying commands; thus these are representations across space, but not time. Here we examine a new approach that directly represents both time-varying commands and the resulting state trajectories with a function; a representation across space and time. Since the output of this function includes time, it necessarily requires more parameters than a typical dynamical model. To avoid the problems of local minima these extra parameters introduce, we exploit recent advances in machine learning to build our function using a stacked autoencoder, or deep network. With initial and target states as inputs, this deep network can be trained to output an accurate temporal profile of the optimal command and state trajectory for a point-to-point reach of a non-linear limb model, even when influenced by varying force fields. In a manner that mirrors motor babble, the network can also teach itself to learn through trial and error. Lastly, we demonstrate how this network can learn to optimize a cost objective. This functional approach to motor control is a sharp departure from the standard dynamical approach, and may offer new insights into the neural implementation of motor control. PMID:25852530

  18. Genetic algorithm-based neural fuzzy decision tree for mixed scheduling in ATM networks.

    PubMed

    Lin, Chin-Teng; Chung, I-Fang; Pu, Her-Chang; Lee', Tsern-Huei; Chang, Jyh-Yeong

    2002-01-01

    Future broadband integrated services networks based on asynchronous transfer mode (ATM) technology are expected to support multiple types of multimedia information with diverse statistical characteristics and quality of service (QoS) requirements. To meet these requirements, efficient scheduling methods are important for traffic control in ATM networks. Among general scheduling schemes, the rate monotonic algorithm is simple enough to be used in high-speed networks, but does not attain the high system utilization of the deadline driven algorithm. However, the deadline driven scheme is computationally complex and hard to implement in hardware. The mixed scheduling algorithm is a combination of the rate monotonic algorithm and the deadline driven algorithm; thus it can provide most of the benefits of these two algorithms. In this paper, we use the mixed scheduling algorithm to achieve high system utilization under the hardware constraint. Because there is no analytic method for schedulability testing of mixed scheduling, we propose a genetic algorithm-based neural fuzzy decision tree (GANFDT) to realize it in a real-time environment. The GANFDT combines a GA and a neural fuzzy network into a binary classification tree. This approach also exploits the power of the classification tree. Simulation results show that the GANFDT provides an efficient way of carrying out mixed scheduling in ATM networks. PMID:18244889

  19. Genome-level analysis of genetic regulation of liver gene expression networks

    SciTech Connect

    Gatti, Daniel; Maki, Akira; Chesler, Elissa J; Kirova, Roumyana; Kosyk, Oksana; Lu, Lu; Manly, Kenneth; Matthews, Douglas B.; Qu, Yanhua; Williams, Robert; Perkins, Andy; Langston, Michael A; Threadgill, David; Rusyn, Ivan

    2007-01-01

    Liver is the primary site for metabolism of nutrients, drugs and chemical agents. While metabolic pathways are complex and tightly regulated, genetic variation among individuals, reflected in variation in gene expression levels, introduces complexity into research on liver disease. This study aimed to dissect genetic networks that control liver gene expression by combining largescale quantitative mRNA expression analysis with genetic mapping in a reference population of BXD recombinant inbred mouse strains for which extensive SNP, haplotype and phenotypic data is publicly available. We profiled gene expression in livers of naive mice of both sexes from C57BL/6J, DBA/2J, B6D2F1, and 37 BXD strains using Agilent oligonucleotide microarrays. This data was used to map quantitative trait loci (QTLs) responsible for variation in expression of about 19,000 transcripts. We identified polymorphic cis- and trans-acting loci, including several loci that control expression of large numbers of genes in liver, by comparing the physical transcript position with the location of the controlling QTL. The data is available through a public web-based resource (www.genenetwork.org) that allows custom data mining, identification of co-regulated transcripts and correlated phenotypes, cross-tissue and -species comparisons, as well as testing of a broad array of hypotheses.

  20. Controlled drug release from hydrogel nanoparticle networks.

    PubMed

    Huang, Gang; Gao, Jun; Hu, Zhibing; St John, John V; Ponder, Bill C; Moro, Dan

    2004-02-10

    Monodisperse nanoparticles of poly-N-isopropylacrylamide-co-allylamine (PNIPAM-co-allylamine) and PNIPAM-co-acrylic acid (PNIPAM-co-AA) were synthesized. The close-packed PNIPAM-co-allylamine and PNIPAM-co-AA nanoparticles were converted to three-dimensional gel networks by covalently crosslinking neighboring particles at room temperature and neutral pH using glutaric dialdehyde and adipic acid dihydrazide, respectively. Controlled release studies were conducted using dextran markers of various molecular weights as model macromolecular drugs. Release was quantified under various physical conditions, including a range of temperatures and dextran molecular weights. Dextran, entrapped in cavities in the nanoparticle network, was released with a rate regulated by their molecular weights and cavity size. No release from a conventional bulk PNIPAM gel, with high crosslinking density, was observed. The rate of release from the PNIPAM-co-allylamine network was temperature-dependent, being much faster at room temperature than that at human body temperature. In contrast, release of low molecular weight dextrans from the PNIPAM-co-AA network showed a temperature-independent release profile. These nanoparticle networks have several advantages over conventional bulk gels for controlling the release of high molecular weight biomolecules. PMID:14744482

  1. Genetic "code": representations and dynamical models of genetic components and networks.

    PubMed

    Gilman, Alex; Arkin, Adam P

    2002-01-01

    Dynamical modeling of biological systems is becoming increasingly widespread as people attempt to grasp biological phenomena in their full complexity and make sense of an accelerating stream of experimental data. We review a number of recent modeling studies that focus on systems specifically involving gene expression and regulation. These systems include bacterial metabolic operons and phase-variable piliation, bacteriophages T7 and lambda, and interacting networks of eukaryotic developmental genes. A wide range of conceptual and mathematical representations of genetic components and phenomena appears in these works. We discuss these representations in depth and give an overview of the tools currently available for creating and exploring dynamical models. We argue that for modeling to realize its full potential as a mainstream biological research technique the tools must become more general and flexible, and formal, standardized representations of biological knowledge and data must be developed. PMID:12142360

  2. Flexible body control using neural networks

    NASA Technical Reports Server (NTRS)

    Mccullough, Claire L.

    1992-01-01

    Progress is reported on the control of Control Structures Interaction suitcase demonstrator (a flexible structure) using neural networks and fuzzy logic. It is concluded that while control by neural nets alone (i.e., allowing the net to design a controller with no human intervention) has yielded less than optimal results, the neural net trained to emulate the existing fuzzy logic controller does produce acceptible system responses for the initial conditions examined. Also, a neural net was found to be very successful in performing the emulation step necessary for the anticipatory fuzzy controller for the CSI suitcase demonstrator. The fuzzy neural hybrid, which exhibits good robustness and noise rejection properties, shows promise as a controller for practical flexible systems, and should be further evaluated.

  3. Structural and Functional Characterization of a Caenorhabditis elegans Genetic Interaction Network within Pathways

    PubMed Central

    Boucher, Benjamin; Lee, Anna Y.; Hallett, Michael; Jenna, Sarah

    2016-01-01

    A genetic interaction (GI) is defined when the mutation of one gene modifies the phenotypic expression associated with the mutation of a second gene. Genome-wide efforts to map GIs in yeast revealed structural and functional properties of a GI network. This provided insights into the mechanisms underlying the robustness of yeast to genetic and environmental insults, and also into the link existing between genotype and phenotype. While a significant conservation of GIs and GI network structure has been reported between distant yeast species, such a conservation is not clear between unicellular and multicellular organisms. Structural and functional characterization of a GI network in these latter organisms is consequently of high interest. In this study, we present an in-depth characterization of ~1.5K GIs in the nematode Caenorhabditis elegans. We identify and characterize six distinct classes of GIs by examining a wide-range of structural and functional properties of genes and network, including co-expression, phenotypical manifestations, relationship with protein-protein interaction dense subnetworks (PDS) and pathways, molecular and biological functions, gene essentiality and pleiotropy. Our study shows that GI classes link genes within pathways and display distinctive properties, specifically towards PDS. It suggests a model in which pathways are composed of PDS-centric and PDS-independent GIs coordinating molecular machines through two specific classes of GIs involving pleiotropic and non-pleiotropic connectors. Our study provides the first in-depth characterization of a GI network within pathways of a multicellular organism. It also suggests a model to understand better how GIs control system robustness and evolution. PMID:26871911

  4. Studies on controllability of directed networks with extremal optimization

    NASA Astrophysics Data System (ADS)

    Ding, Jin; Lu, Yong-Zai; Chu, Jian

    2013-12-01

    Almost all natural, social and man-made-engineered systems can be represented by a complex network to describe their dynamic behaviors. To make a real-world complex network controllable with its desired topology, the study on network controllability has been one of the most critical and attractive subjects for both network and control communities. In this paper, based on a given directed-weighted network with both state and control nodes, a novel optimization tool with extremal dynamics to generate an optimal network topology with minimum control nodes and complete controllability under Kalman’s rank condition has been developed. The experimental results on a number of popular benchmark networks show the proposed tool is effective to identify the minimum control nodes which are sufficient to guide the whole network’s dynamics and provide the evolution of network topology during the optimization process. We also find the conclusion: “the sparse networks need more control nodes than the dense, and the homogeneous networks need fewer control nodes compared to the heterogeneous” (Liu et al., 2011 [18]), is also applicable to network complete controllability. These findings help us to understand the network dynamics and make a real-world network under the desired control. Moreover, compared with the relevant research results on structural controllability with minimum driver nodes, the proposed solution methodology may also be applied to other constrained network optimization problems beyond complete controllability with minimum control nodes.

  5. Mathematical inference and control of molecular networks from perturbation experiments

    NASA Astrophysics Data System (ADS)

    Mohammed-Rasheed, Mohammed

    in order to affect the time evolution of molecular activity in a desirable manner. In this proposal, we address both the inference and control problems of GRNs. In the first part of the thesis, we consider the control problem. We assume that we are given a general topology network structure, whose dynamics follow a discrete-time Markov chain model. We subsequently develop a comprehensive framework for optimal perturbation control of the network. The aim of the perturbation is to drive the network away from undesirable steady-states and to force it to converge to a unique desirable steady-state. The proposed framework does not make any assumptions about the topology of the initial network (e.g., ergodicity, weak and strong connectivity), and is thus applicable to general topology networks. We define the optimal perturbation as the minimum-energy perturbation measured in terms of the Frobenius norm between the initial and perturbed networks. We subsequently demonstrate that there exists at most one optimal perturbation that forces the network into the desirable steady-state. In the event where the optimal perturbation does not exist, we construct a family of sub-optimal perturbations that approximate the optimal solution arbitrarily closely. In the second part of the thesis, we address the inference problem of GRNs from time series data. We model the dynamics of the molecules using a system of ordinary differential equations corrupted by additive white noise. For large-scale networks, we formulate the inference problem as a constrained maximum likelihood estimation problem. We derive the molecular interactions that maximize the likelihood function while constraining the network to be sparse. We further propose a procedure to recover weak interactions based on the Bayesian information criterion. For small-size networks, we investigated the inference of a globally stable 7-gene melanoma genetic regulatory network from genetic perturbation experiments. We considered five

  6. Actor-network theory: a tool to support ethical analysis of commercial genetic testing.

    PubMed

    Williams-Jones, Bryn; Graham, Janice E

    2003-12-01

    Social, ethical and policy analysis of the issues arising from gene patenting and commercial genetic testing is enhanced by the application of science and technology studies, and Actor-Network Theory (ANT) in particular. We suggest the potential for transferring ANT's flexible nature to an applied heuristic methodology for gathering empirical information and for analysing the complex networks involved in the development of genetic technologies. Three concepts are explored in this paper--actor-networks, translation, and drift--and applied to the case of Myriad Genetics and their commercial BRACAnalysis genetic susceptibility test for hereditary breast cancer. Treating this test as an active participant in socio-technical networks clarifies the extent to which it interacts with, shapes and is shaped by people, other technologies, and institutions. Such an understanding enables more sophisticated and nuanced technology assessment, academic analysis, as well as public debate about the social, ethical and policy implications of the commercialization of new genetic technologies. PMID:15115034

  7. Seismic active control by neural networks.

    SciTech Connect

    Tang, Y.

    1998-01-01

    A study on the application of artificial neural networks (ANNs) to activate structural control under seismic loads is carried out. The structure considered is a single-degree-of-freedom (SDF) system with an active bracing device. The control force is computed by a trained neural network. The feed-forward neural network architecture and an adaptive back-propagation training algorithm is used in the study. The neural net is trained to reproduce the function that represents the response-excitation relationship of the SDF system under seismic loads. The input-output training patterns are generated randomly. In the back-propagation training algorithm, the learning rate is determined by ensuring the decrease of the error function at each epoch. The computer program implemented is validated by solving the classification of the XOR problem. Then, the trained ANN is used to compute the control force according to the control strategy. If the control force exceeds the actuator's capacity limit, it is set equal to that limit. The concept of the control strategy employed herein is to apply the control force at every time step to cancel the system velocity induced at the preceding time step so that the gradual rhythmic buildup of the response is destroyed. The ground motions considered in the numerical example are the 1940 El Centro earthquake and the 1979 Imperial Valley earthquake in California. The system responses with and without the control are calculated and compared. The feasibility and potential of applying ANNs to seismic active control is asserted by the promising results obtained from the numerical examples studied.

  8. Seismic active control by neutral networks

    SciTech Connect

    Tang, Yu

    1995-12-31

    A study on the application of artificial neural networks (ANNs) to active structural control under seismic loads is carried out. The structure considered is a single-degree-of-freedom (SDF) system with an active bracing device. The control force is computed by a trained neural network. The feedforward neural network architecture and an adaptive backpropagation training algorithm is used in the study. The neural net is trained to reproduce the function that represents the response-excitation relationship of the SDF system under seismic loads. The input-output training patterns are generated randomly. In the backpropagation training algorithm, the learning rate is determined by ensuring the decrease of the error function at each epoch. The computer program implemented is validated by solving the classification of the XOR problem. Then, the trained ANN is used to compute the control force according to the control strategy. If the control force exceeds the actuator`s capacity limit, it is set equal to that limit. The concept of the control strategy employed herein is to apply the control force at every time step to cancel the system velocity induced at the preceding time step so that the gradual rhythmic buildup of the response is destroyed. The ground motions considered in the numerical example are the 1940 El Centro earthquake and the 1979 Imperial Valley earthquake in California. The system responses with and without the control are calculated and compared. The feasibility and potential of applying ANNs to seismic active control is asserted by the promising results obtained from the numerical examples studied.

  9. Networked control of microgrid system of systems

    NASA Astrophysics Data System (ADS)

    Mahmoud, Magdi S.; Rahman, Mohamed Saif Ur; AL-Sunni, Fouad M.

    2016-08-01

    The microgrid has made its mark in distributed generation and has attracted widespread research. However, microgrid is a complex system which needs to be viewed from an intelligent system of systems perspective. In this paper, a network control system of systems is designed for the islanded microgrid system consisting of three distributed generation units as three subsystems supplying a load. The controller stabilises the microgrid system in the presence of communication infractions such as packet dropouts and delays. Simulation results are included to elucidate the effectiveness of the proposed control strategy.

  10. Genetic control of insects of public health importance

    PubMed Central

    Knipling, E. F.; Laven, H.; Craig, G. B.; Pal, R.; Kitzmiller, J. B.; Smith, C. N.; Brown, A. W. A.

    1968-01-01

    During recent years many advances have been made in the development of insect control by genetic manipulation. These methods include the sterile-male technique, now well known, which depends on ionizing radiation or chemosterilization. The recent field experiment carried out by WHO in Rangoon, Burma, on Culex fatigans has demonstrated that naturally occurring cytogenetic mechanisms such as cytoplasmic incompatibility can be used successfully without the use of radiations or chemosterilants. The paper not only describes the experiment on Culex fatigans but also discusses basic concepts and theoretical considerations involved in genetic control of insects of public health importance. The possibility of using genetic mechanisms for the control of other vector species is also discussed. There are a number of problems which require study before genetic control can be used on an operational scale. These problems and suggestions for future research in this field are also outlined. PMID:5302334