Science.gov

Sample records for genetically define human

  1. Rapid Reprogramming of Primary Human Astrocytes into Potent Tumor-Initiating Cells with Defined Genetic Factors.

    PubMed

    Li, Fang; Liu, Xinjian; Sampson, John H; Bigner, Darell D; Li, Chuan-Yuan

    2016-09-01

    Cancer stem-like cells (CSC) are thought to drive brain cancer, but their cellular and molecular origins remain uncertain. Here, we report the successful generation of induced CSC (iCSC) from primary human astrocytes through the expression of defined genetic factors. Combined transduction of four factors, Myc, Oct-4, p53DD, and Ras, induced efficient transformation of primary human astrocytes into malignant cells with powerful tumor-initiating capabilities. Notably, transplantation of 100 transduced cells into nude mice was sufficient for tumor formation. The cells showed unlimited self-renewal ability with robust telomerase activities. In addition, they expressed typical glioma stem-like cell markers, such as CD133, CD15, and CD90. Moreover, these cells could form spheres in culture and differentiate into neuron-like, astrocyte-like, and oligodendrocyte-like cells. Finally, they also displayed resistance to the widely used brain cancer drug temozolomide. These iCSCs could provide important tools for studies of glioma biology and therapeutics development. Cancer Res; 76(17); 5143-50. ©2016 AACR. PMID:27364552

  2. The chemical interactome space between the human host and the genetically defined gut metabotypes

    PubMed Central

    Jacobsen, Ulrik Plesner; Nielsen, Henrik Bjørn; Hildebrand, Falk; Raes, Jeroen; Sicheritz-Ponten, Thomas; Kouskoumvekaki, Irene; Panagiotou, Gianni

    2013-01-01

    The bacteria that colonize the gastrointestinal tracts of mammals represent a highly selected microbiome that has a profound influence on human physiology by shaping the host's metabolic and immune system activity. Despite the recent advances on the biological principles that underlie microbial symbiosis in the gut of mammals, mechanistic understanding of the contributions of the gut microbiome and how variations in the metabotypes are linked to the host health are obscure. Here, we mapped the entire metabolic potential of the gut microbiome based solely on metagenomics sequencing data derived from fecal samples of 124 Europeans (healthy, obese and with inflammatory bowel disease). Interestingly, three distinct clusters of individuals with high, medium and low metabolic potential were observed. By illustrating these results in the context of bacterial population, we concluded that the abundance of the Prevotella genera is a key factor indicating a low metabolic potential. These metagenome-based metabolic signatures were used to study the interaction networks between bacteria-specific metabolites and human proteins. We found that thirty-three such metabolites interact with disease-relevant protein complexes several of which are highly expressed in cells and tissues involved in the signaling and shaping of the adaptive immune system and associated with squamous cell carcinoma and bladder cancer. From this set of metabolites, eighteen are present in DrugBank providing evidence that we carry a natural pharmacy in our guts. Furthermore, we established connections between the systemic effects of non-antibiotic drugs and the gut microbiome of relevance to drug side effects and health-care solutions. PMID:23178670

  3. Human genetics

    SciTech Connect

    Carlson, E.A.

    1984-01-01

    This text provides full and balanced coverage of the concepts requisite for a thorough understanding of human genetics. Applications to both the individual and society are integrated throughout the lively and personal narrative, and the essential principles of heredity are clearly presented to prepare students for informed participation in public controversies. High-interest, controversial topics, including recombinant DNA technology, oncogenes, embryo transfer, environmental mutagens and carcinogens, IQ testing, and eugenics encourage understanding of important social issues.

  4. The episode of genetic drift defining the migration of humans out of Africa is derived from a large east African population size.

    PubMed

    Elhassan, Nuha; Gebremeskel, Eyoab Iyasu; Elnour, Mohamed Ali; Isabirye, Dan; Okello, John; Hussien, Ayman; Kwiatksowski, Dominic; Hirbo, Jibril; Tishkoff, Sara; Ibrahim, Muntaser E

    2014-01-01

    Human genetic variation particularly in Africa is still poorly understood. This is despite a consensus on the large African effective population size compared to populations from other continents. Based on sequencing of the mitochondrial Cytochrome C Oxidase subunit II (MT-CO2), and genome wide microsatellite data we observe evidence suggesting the effective size (Ne) of humans to be larger than the current estimates, with a foci of increased genetic diversity in east Africa, and a population size of east Africans being at least 2-6 fold larger than other populations. Both phylogenetic and network analysis indicate that east Africans possess more ancestral lineages in comparison to various continental populations placing them at the root of the human evolutionary tree. Our results also affirm east Africa as the likely spot from which migration towards Asia has taken place. The study reflects the spectacular level of sequence variation within east Africans in comparison to the global sample, and appeals for further studies that may contribute towards filling the existing gaps in the database. The implication of these data to current genomic research, as well as the need to carry out defined studies of human genetic variation that includes more African populations; particularly east Africans is paramount. PMID:24845801

  5. Defining a genetic ideotype for crop improvement.

    PubMed

    Trethowan, Richard M

    2014-01-01

    While plant breeders traditionally base selection on phenotype, the development of genetic ideotypes can help focus the selection process. This chapter provides a road map for the establishment of a refined genetic ideotype. The first step is an accurate definition of the target environment including the underlying constraints, their probability of occurrence, and impact on phenotype. Once the environmental constraints are established, the wealth of information on plant physiological responses to stresses, known gene information, and knowledge of genotype ×environment and gene × environment interaction help refine the target ideotype and form a basis for cross prediction.Once a genetic ideotype is defined the challenge remains to build the ideotype in a plant breeding program. A number of strategies including marker-assisted recurrent selection and genomic selection can be used that also provide valuable information for the optimization of genetic ideotype. However, the informatics required to underpin the realization of the genetic ideotype then becomes crucial. The reduced cost of genotyping and the need to combine pedigree, phenotypic, and genetic data in a structured way for analysis and interpretation often become the rate-limiting steps, thus reducing genetic gain. Systems for managing these data and an example of ideotype construction for a defined environment type are discussed. PMID:24816655

  6. Genetically-Defined Deficiency of Mannose-Binding Lectin Is Associated with Protection after Experimental Stroke in Mice and Outcome in Human Stroke

    PubMed Central

    Cervera, Alvaro; Planas, Anna M.; Justicia, Carles; Urra, Xabier; Jensenius, Jens C.; Torres, Ferran; Lozano, Francisco; Chamorro, Angel

    2010-01-01

    Background The complement system is a major effector of innate immunity that has been involved in stroke brain damage. Complement activation occurs through the classical, alternative and lectin pathways. The latter is initiated by mannose-binding lectin (MBL) and MBL-associated serine proteases (MASPs). Here we investigated whether the lectin pathway contributes to stroke outcome in mice and humans. Methodology/Principal Findings Focal cerebral ischemia/reperfusion in MBL-null mice induced smaller infarctions, better functional outcome, and diminished C3 deposition and neutrophil infiltration than in wild-type mice. Accordingly, reconstitution of MBL-null mice with recombinant human MBL (rhMBL) enhanced brain damage. In order to investigate the clinical relevance of these experimental observations, a study of MBL2 and MASP-2 gene polymorphism rendering the lectin pathway dysfunctional was performed in 135 stroke patients. In logistic regression adjusted for age, gender and initial stroke severity, unfavourable outcome at 3 months was associated with MBL-sufficient genotype (OR 10.85, p = 0.008) and circulating MBL levels (OR 1.29, p = 0.04). Individuals carrying MBL-low genotypes (17.8%) had lower C3, C4, and CRP levels, and the proinflammatory cytokine profile was attenuated versus MBL-sufficient genotypes. Conclusions/Significance In conclusion, genetically defined MBL-deficiency is associated with a better outcome after acute stroke in mice and humans. PMID:20140243

  7. Defining the genetic blueprint of kidney development.

    PubMed

    Potter, S Steven; Brunskill, Eric W; Patterson, Larry T

    2011-09-01

    Thousands of genes show differential expression patterns during kidney development, suggesting that the genetic program driving this process is complex. While great progress has been made in defining the outline of the genetic basis of nephrogenesis, it is clear that much remains to be learned. A global atlas of the gene expression profiles of the multiple elements of the developing kidney would allow the identification of novel growth factor-receptor interactions, identify additional molecular markers of distinct components, facilitate the generation of compartment specific GFP-CRE transgenic mouse tools, lend insights into the genetic regulatory circuits governing nephron formation, and fully characterize the waves of gene expression that impel nephrogenesis. Both microarrays and next generation deep sequencing of cDNA libraries can be used to define comprehensive, sensitive, and quantitative gene expression profiles. In addition, laser capture microdissection and transgenic GFP mice can be used to isolate specific compartments and pure cell types from the developing kidney. Advancing technologies are even allowing robust gene expression profiling of single cells. The final goal is the production of an exquisitely detailed atlas of the gene expression program that drives kidney development. PMID:21336810

  8. Defining the genetics of thrombotic microangiopathies.

    PubMed

    Vieira-Martins, Paula; El Sissy, Carine; Bordereau, Pauline; Gruber, Aurelia; Rosain, Jeremie; Fremeaux-Bacchi, Veronique

    2016-04-01

    The spectrum of the thrombotic microangiopathies (TMA) encompasses a heterogeneous group of disorders with hereditary and acquired forms. Endothelial cell injury in the microvasculature is common to all TMAs, whatever the pathophysiological process. In this review we describe genetic mutations characteristic of certain TMAs and review their contributions to disease. Recent identification of novel pathologic mutations has been enabled by exome studies. The monogenic forms of TMA are more frequently caused by recessive alterations in von Willebrand factor cleaving protease ADAMST13, leading to congenital thrombotic thrombocytopenic purpura, or cobalamine C and DGKE genes, leading to an atypical hemolytic-uremic syndrome (aHUS)-like TMA. aHUS, whether idiopathic or linked to a known complement amplifying condition, is a TMA that primarily affects kidney function. It often results from a combination of an underlying genetic susceptibility with environmental factors activating the alternative complement pathway. Pathogenic variants in at least five complement genes coding for complement factor H (CFH) complement factor I (CFI), MCP (CD46), C3 and complement factor B (CFB) have been demonstrated to increase the risk of developing aHUS, but several more genes have been implicated. A new challenge is to separate disease-associated genetic variants from the broader background of variants or polymorphisms present in all human genomes that are rare, potentially functional, but may or may not be pathogenic. PMID:27177491

  9. Inducing cellular senescence using defined genetic elements.

    PubMed

    Nakagawa, Hiroshi; Opitz, Oliver G

    2007-01-01

    Cellular senescence is generally defined as an irreversible state of G1 cell cycle arrest in which cells are refractory to growth factor stimulation. Cellular senescence can be induced through several different mechanisms. Primary mammalian cells display a finite life span, suggesting a mechanism that counts cell divisions. Those cells initially proliferate but eventually enter a state of permanent growth arrest, called replicative senescence. Erosion of telomeric DNA has emerged as a key factor in replicative senescence, which is antagonized during cell immortalization. Nevertheless, besides telomere shortening, there are other mechanisms inducing a growth arrest similar to the replicative senescencent phenotype. Oncogenic or mitogenic signals as well as DNA damage can induce such a phenotype of cellular senescence. All forms of cellular senescence share common signaling pathways and morphological features. Thereby, p53 seems to be essential for the senescence response. Many of these senescence inducing mechanisms can be experimentally recapitulated by the introduction of defined genetic elements. Replicative senescence due to telomere shortening can, for example, be induced by a dominant negative version of telomerase, premature senescence by the overexpression of oncogenic ras, or p16. PMID:17634581

  10. [Human genetics and ethics].

    PubMed

    Zergollern, L

    1990-01-01

    Many new problems and dilemmas have occurred in the practice of medical geneticists with the development of human genetics and its subdisciplines--molecular genetics, ethic genetics and juridical genetics. Devoid of the possibility to get adequate education, genetic informer or better to say, counsellor, although a scientist and a professional who has already formed his ethic attitudes, often finds himself in a dilemma when he has to decide whether a procedure made possible by progress of science is ethical or not. Thus, due to different attitudes, same decision is ethical for some, while for the others it is not. Ethic committees are groups of moral and good people trying to find an objective approach to certain genetic and ethic problems. There are more and more ethically unanswered questions in modern human genetics, and particularly in medical genetics. Medical geneticist-ethicist still encounters numerous problems in his work. These are, for example, experiments with human gametes and embryos, possibilities of hybridization of human gametes with animal gametes, in vitro fertilization, detection of heterozygotes and homozygotes for monogene diseases. early detection of chromosomopathies, substitute mothers, homo and hetero insemination, transplantation of fetal and cadeveric organs, uncontrolled consumption of alcohol and drugs, environmental pollution, etc. It is almost impossible to create a single attitude which shall be shared by all those engaged in human health protection. Therefore, it is best to have a neutral eugenetic attitude which allows free ethical choice of each individual, in any case, for the well-being of man. PMID:2366624

  11. In vivo genetic mutations define predominant functions of the human T-cell leukemia/lymphoma virus p12I protein

    PubMed Central

    Fukumoto, Risaku; Andresen, Vibeke; Bialuk, Izabela; Cecchinato, Valentina; Walser, Jean-Claude; Valeri, Valerio W.; Nauroth, Julie M.; Gessain, Antoine; Nicot, Christophe

    2009-01-01

    The human T-cell leukemia/lymphoma virus type 1 (HTLV-1) ORF-I encodes a 99–amino acid hydrophobic membrane protein, p12I, that affects receptors in different cellular compartments. We report here that proteolytic cleavage dictates different cellular localization and functions of p12I. The removal of a noncanonical endoplasmic reticulum (ER) retention/retrieval signal within the amino terminus of p12I is necessary for trafficking to the Golgi apparatus and generation of a completely cleaved 8-kDa protein. The 8-kDa protein in turn traffics to the cell surface, is recruited to the immunologic synapse following T-cell receptor (TCR) ligation, and down-regulates TCR proximal signaling. The uncleaved 12-kDa form of p12I resides in the ER and interacts with the β and γc chains of the interleukin-2 receptor (IL-2R), the heavy chain of the major histocompatibility complex (MHC) class I, as well as calreticulin and calnexin. Genetic analysis of ORF-I from ex vivo samples of HTLV-1–infected patients reveals predominant amino acid substitutions within ORF-I that affect proteolytic cleavage, suggesting that ER-associated functions of p12I may contribute to the survival and proliferation of the infected T cells in the host. PMID:18791162

  12. Genetically Defined Strains in Drug Development and Toxicity Testing.

    PubMed

    Festing, Michael F W

    2016-01-01

    There is growing concern about the poor quality and lack of repeatability of many pre-clinical experiments involving laboratory animals. According to one estimate as much as $28 billion is wasted annually in the USA alone in such studies. A decade ago the FDA's "Critical path" white paper noted that "The traditional tools used to assess product safety-animal toxicology and outcomes from human studies-have changed little over many decades and have largely not benefited from recent gains in scientific knowledge. The inability to better assess and predict product safety leads to failures during clinical development and, occasionally, after marketing." Repeat-dose 28-days and 90-days toxicity tests in rodents have been widely used as part of a strategy to assess the safety of drugs and chemicals but their repeatability and power to detect adverse effects have not been formally evaluated.The guidelines (OECD TG 407 and 408) for these tests specify the dose levels and number of animals per dose but do not specify the strain of animals which should be used. In practice, almost all the tests are done using genetically undefined "albino" rats or mice in which the genetic variation, a major cause of inter-individual and strain variability, is unknown and uncontrolled. This chapter suggests that a better strategy would be to use small numbers of animals of several genetically defined strains of mice or rats instead of the undefined animals used at present. Inbred strains are more stable providing more repeatable data than outbred stocks. Importantly their greater phenotypic uniformity should lead to more powerful and repeatable tests. Any observed strain differences would indicate genetic variation in response to the test substance, providing key data. We suggest that the FDA and other regulators and funding organizations should support research to evaluate this alternative. PMID:27150081

  13. Wnt addiction of genetically defined cancers reversed by PORCN inhibition

    PubMed Central

    Madan, B; Ke, Z; Harmston, N; Ho, S Y; Frois, A O; Alam, J; Jeyaraj, D A; Pendharkar, V; Ghosh, K; Virshup, I H; Manoharan, V; Ong, E H Q; Sangthongpitag, K; Hill, J; Petretto, E; Keller, T H; Lee, M A; Matter, A; Virshup, D M

    2016-01-01

    Enhanced sensitivity to Wnts is an emerging hallmark of a subset of cancers, defined in part by mutations regulating the abundance of their receptors. Whether these mutations identify a clinical opportunity is an important question. Inhibition of Wnt secretion by blocking an essential post-translational modification, palmitoleation, provides a useful therapeutic intervention. We developed a novel potent, orally available PORCN inhibitor, ETC-1922159 (henceforth called ETC-159) that blocks the secretion and activity of all Wnts. ETC-159 is remarkably effective in treating RSPO-translocation bearing colorectal cancer (CRC) patient-derived xenografts. This is the first example of effective targeted therapy for this subset of CRC. Consistent with a central role of Wnt signaling in regulation of gene expression, inhibition of PORCN in RSPO3-translocated cancers causes a marked remodeling of the transcriptome, with loss of cell cycle, stem cell and proliferation genes, and an increase in differentiation markers. Inhibition of Wnt signaling by PORCN inhibition holds promise as differentiation therapy in genetically defined human cancers. PMID:26257057

  14. Defining International Human Resource Development: A Proposal

    ERIC Educational Resources Information Center

    McLean, Gary N.; Wang, Xiaohui

    2007-01-01

    From the beginning of the use of the term, there have been struggles over the meaning of human resource development (HRD). In recent years, there has been increased attention to the field's definition. This paper moves this exploration one more step to an exploration of the dilemma of defining international and cross-national HRD. A beginning…

  15. High Points of Human Genetics

    ERIC Educational Resources Information Center

    Stern, Curt

    1975-01-01

    Discusses such high points of human genetics as the study of chromosomes, somatic cell hybrids, the population formula: the Hardy-Weinberg Law, biochemical genetics, the single-active X Theory, behavioral genetics and finally how genetics can serve humanity. (BR)

  16. American Society of Human Genetics

    MedlinePlus

    ... Research Awards August 9, 2016 Media Advisory: American Society of Human Genetics 2016 Annual Meeting July 26, ... McKusick Leadership Award June 30, 2016 The American Society of Human Genetics, Incorporated 9650 Rockville Pike • Bethesda, ...

  17. Genetics in geographically structured populations: defining, estimating and interpreting FST

    PubMed Central

    Holsinger, Kent E.; Weir, Bruce S.

    2015-01-01

    Wright’s F-statistics, and especially FST, provide important insights into the evolutionary processes that influence the structure of genetic variation within and among populations, and they are among the most widely used descriptive statistics in population and evolutionary genetics. Estimates of FST can identify regions of the genome that have been the target of selection, and comparisons of FST from different parts of the genome can provide insights into the demographic history of populations. For these reasons and others, FST has a central role in population and evolutionary genetics and has wide applications in fields that range from disease association mapping to forensic science. This Review clarifies how FST is defined, how it should be estimated, how it is related to similar statistics and how estimates of FST should be interpreted. PMID:19687804

  18. Advances in human genetics

    SciTech Connect

    Harris, H.; Hirschhorn, K.

    1993-01-01

    This book has five chapters covering peroxisomal diseases, X-linked immunodeficiencies, genetic mutations affecting human lipoproteins and their receptors and enzymes, genetic aspects of cancer, and Gaucher disease. The chapter on peroxisomes covers their discovery, structure, functions, disorders, etc. The chapter on X-linked immunodeficiencies discusses such diseases as agammaglobulinemia, severe combined immunodeficiency, Wiskott-Aldrich syndrome, animal models, linkage analysis, etc. Apolipoprotein formation, synthesis, gene regulation, proteins, etc. are the main focus of chapter 3. The chapter on cancer covers such topics as oncogene mapping and the molecular characterization of some recessive oncogenes. Gaucher disease is covered from its diagnosis, classification, and prevention, to its organ system involvement and molecular biology.

  19. Further Defining the Role of the Laboratory Genetic Counselor.

    PubMed

    Waltman, Lindsey; Runke, Cassandra; Balcom, Jessica; Riley, Jacquelyn D; Lilley, Margaret; Christian, Susan; Zetzsche, Lindsay; Goodenberger, McKinsey L

    2016-08-01

    Laboratory genetic counseling is becoming increasingly common as a result of increased laboratory services and genetic testing menus, as well as growing job responsibilities. Christian et al. (2012) provided the first quantitative data regarding the roles of the laboratory-based genetic counselor (LBGC) finding that two of the most prevalent roles are as customer liaisons and communicators of test results. The goal of the present study was to further delineate the role of the LBGC by addressing specific tasks that LBGCs are involved with on a day-to-day basis. A survey was designed to expand upon themes identified in the Christian et al. (2012) study by querying specific tasks performed in several categories of potential LBGC job duties. An invitation for LBGCs to participate was distributed via email to the membership of the National Society of Genetic Counselors (NSGC) and the Canadian Association of Genetic Counsellors (CAGC). We identified 121 genetic counselors who primarily work in the laboratory setting or whose job role includes a laboratory component. Almost all respondents performed customer liaison/case coordination (95 %), and interpretation and result reporting (88 %). The most frequently performed tasks within these categories involved addressing questions from clients, making phone calls with genetic testing results, obtaining clinical or family history information for results interpretation, and composing case-specific interpretations for unique results and/or obtaining literature references to support interpretations. The study results also point to trends of expanding roles in sales and marketing, variant interpretation and management responsibilities. Results of this study may be useful to further define the full scope of practice of LBGCs, aid in the development of new LBGC positions and expand current positions to include roles related to test development, research, and student supervision. It may also aid in curriculum updates for training

  20. Human Heredity: Genetic Mechanisms in Humans.

    ERIC Educational Resources Information Center

    Blank, C. E.

    1988-01-01

    Discussed are some of the uncertainties in human genetic mechanisms that are often presented as dogma in Biology textbooks. Presented is a brief historical background and illustrations involving chromosome abnormality in humans and linkage studies in humans. (CW)

  1. Defining death for persons and human organisms.

    PubMed

    Lizza, J P

    1999-09-01

    This paper discusses how alternative concepts of personhood affect the definition of death. I argue that parties in the debate over the definition of death have employed different concepts of personhood, and thus have been talking past each other by proposing definitions of death for different kinds of things. In particular, I show how critics of the consciousness-related, neurological formation of death have relied on concepts of personhood that would be rejected by proponents of that formulation. These critics rest on treating persons as qualitative specifications of human organisms (Bernat, Culver, and Gert) or as identical to human organisms (Capron, Seifert, and Shewmon). Since advocates of the consciousness-related, neurological formulation of death are not committed to either of these views of personhood, these critics commit the fallacy of attacking a straw man. I then clarify the "substantive" concept of personhood (Boethius, Strawson, and Wiggins) that may be invoked in the consciousness-related, neurological formulation of death, and argue that, on this view and contra Bernat, Culver, and Gert, persons have always been the kind of thing that can literally die. I conclude by suggesting that the discussion of defining death needs to focus on which approach to personhood makes the most sense metaphysically and morally. PMID:10616321

  2. Thoughts on Human Genetics Education.

    ERIC Educational Resources Information Center

    Epstein, Charles J.

    1980-01-01

    The director of the Birth Defects Center at the University of California at San Francisco addresses the reasons for developing good ways of teaching human genetics. Genetic counseling is discussed within the context of several case histories. (SA)

  3. Role of the gut microbiota in defining human health

    PubMed Central

    Fujimura, Kei E; Slusher, Nicole A; Cabana, Michael D; Lynch, Susan V

    2010-01-01

    The human superorganism is a conglomerate of mammalian and microbial cells, with the latter estimated to outnumber the former by ten to one and the microbial genetic repertoire (microbiome) to be approximately 100-times greater than that of the human host. Given the ability of the immune response to rapidly counter infectious agents, it is striking that such a large density of microbes can exist in a state of synergy within the human host. This is particularly true of the distal gastrointestinal (GI) tract, which houses up to 1000 distinct bacterial species and an estimated excess of 1 × 1014 microorganisms. An ever-increasing body of evidence implicates the GI microbiota in defining states of health and disease. Here, we review the literature in adult and pediatric GI microbiome studies, the emerging links between microbial community structure, function, infection and disease, and the approaches to manipulate this crucial ecosystem to improve host health. PMID:20377338

  4. Functional heterogeneity of genetically defined subclones in acute myeloid leukemia

    PubMed Central

    Klco, Jeffery M.; Spencer, David H.; Miller, Christopher A.; Griffith, Malachi; Lamprecht, Tamara L.; O’Laughlin, Michelle; Fronick, Catrina; Magrini, Vincent; Demeter, Ryan T.; Fulton, Robert S.; Eades, William C.; Link, Daniel C.; Graubert, Timothy A.; Walter, Matthew J.; Mardis, Elaine R.; Dipersio, John F.; Wilson, Richard K.; Ley, Timothy J.

    2014-01-01

    Summary The relationships between clonal architecture and functional heterogeneity in acute myeloid leukemia (AML) samples are not yet clear. We used targeted sequencing to track AML subclones identified by whole genome sequencing using a variety of experimental approaches. We found that virtually all AML subclones trafficked from the marrow to the peripheral blood, but some were enriched in specific cell populations. Subclones showed variable engraftment potential in immunodeficient mice. Xenografts were predominantly comprised of a single genetically-defined subclone, but there was no predictable relationship between the engrafting subclone and the evolutionary hierarchy of the leukemia. These data demonstrate the importance of integrating genetic and functional data in studies of primary cancer samples, both in xenograft models and in patients. PMID:24613412

  5. Pharmacogenetics and human genetic polymorphisms.

    PubMed

    Daly, Ann K

    2010-08-01

    The term pharmacogenetics was first used in the late 1950s and can be defined as the study of genetic factors affecting drug response. Prior to formal use of this term, there was already clinical data available in relation to variable patient responses to the drugs isoniazid, primaquine and succinylcholine. The subject area developed rapidly, particularly with regard to genetic factors affecting drug disposition. There is now comprehensive understanding of the molecular basis for variable drug metabolism by the cytochromes P450 and also for variable glucuronidation, acetylation and methylation of certain drugs. Some of this knowledge has already been translated to the clinic. The molecular basis of variation in drug targets, such as receptors and enzymes, is generally less well understood, although there is consistent evidence that polymorphisms in the genes encoding the beta-adrenergic receptors and the enzyme vitamin K epoxide reductase is of clinical importance. The genetic basis of rare idiosyncratic adverse drug reactions had also been examined. Susceptibility to reactions affecting skin and liver appears to be determined in part by the HLA (human leucocyte antigen) genotype, whereas reactions affecting the heart and muscle may be determined by polymorphisms in genes encoding ion channels and transporters respectively. Genome-wide association studies are increasingly being used to study drug response and susceptibility to adverse drug reactions, resulting in identification of some novel pharmacogenetic associations. PMID:20626352

  6. Defining functional DNA elements in the human genome

    PubMed Central

    Kellis, Manolis; Wold, Barbara; Snyder, Michael P.; Bernstein, Bradley E.; Kundaje, Anshul; Marinov, Georgi K.; Ward, Lucas D.; Birney, Ewan; Crawford, Gregory E.; Dekker, Job; Dunham, Ian; Elnitski, Laura L.; Farnham, Peggy J.; Feingold, Elise A.; Gerstein, Mark; Giddings, Morgan C.; Gilbert, David M.; Gingeras, Thomas R.; Green, Eric D.; Guigo, Roderic; Hubbard, Tim; Kent, Jim; Lieb, Jason D.; Myers, Richard M.; Pazin, Michael J.; Ren, Bing; Stamatoyannopoulos, John A.; Weng, Zhiping; White, Kevin P.; Hardison, Ross C.

    2014-01-01

    With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease. PMID:24753594

  7. Genetic Mapping in Human Disease

    PubMed Central

    Altshuler, David; Daly, Mark J.; Lander, Eric S.

    2009-01-01

    Genetic mapping provides a powerful approach to identify genes and biological processes underlying any trait influenced by inheritance, including human diseases. We discuss the intellectual foundations of genetic mapping of Mendelian and complex traits in humans, examine lessons emerging from linkage analysis of Mendelian diseases and genome-wide association studies of common diseases, and discuss questions and challenges that lie ahead. PMID:18988837

  8. Mixture distributions in human genetics research.

    PubMed

    Schork, N J; Allison, D B; Thiel, B

    1996-06-01

    The use of mixture distributions in genetics research dates back to at least the late 1800s when Karl Pearson applied them in an analysis of crab morphometry. Pearson's use of normal mixture distributions to model the mixing of different species of crab (or 'families' of crab as he referred to them) within a defined geographic area motivated further use of mixture distributions in genetics research settings, and ultimately led to their development and recognition as intuitive modelling devices for the effects of underlying genes on quantitative phenotypic (i.e. trait) expression. In addition, mixture distributions are now used routinely to model or accommodate the genetic heterogeneity thought to underlie many human diseases. Specific applications of mixture distribution models in contemporary human genetics research are, in fact, too numerous to count. Despite this long, consistent and arguably illustrious history of use, little mention of mixture distributions in genetics research is made in many recent reviews on mixture models. This review attempts to rectify this by providing insight into the role that mixture distributions play in contemporary human genetics research. Tables providing examples from the literature that describe applications of mixture models in human genetics research are offered as a way of acquainting the interested reader with relevant studies. In addition, some of the more problematic aspects of the use of mixture models in genetics research are outlined and addressed. PMID:8817796

  9. Defining and analyzing geoepidemiology and human autoimmunity.

    PubMed

    Shapira, Yinon; Agmon-Levin, Nancy; Shoenfeld, Yehuda

    2010-05-01

    Autoimmune diseases cumulatively affect 5-10% of the industrial world population and are a significant cause of morbidity and mortality. In recent decades rates are rising worldwide, and autoimmunity can no longer be associated solely with the more developed "Western" countries. Geoepidemiology of autoimmune diseases portrays the burden of these illnesses across various regions and ethnic populations. Furthermore, Geoepidemiology may yield important clues to the genetic and triggering environmental mechanisms of autoimmunity. In this review we compiled and discuss in depth abundant geoepidemiological data pertaining to four major autoimmune conditions, namely type-1 diabetes mellitus, multiple sclerosis, autoimmune thyroid disease, and inflammatory bowel disease. The following key results manifested in this review: 1) Ethno-geographic gradients in autoimmune disease risk are attributable to a complex interplay of genetic and environmental pressures. 2) Industrial regions, particularly Northern Europe and North America, still exhibit the highest rates for most autoimmune diseases. 3) Methods particularly useful in demonstrating the significant influence of genetic and environmental factors include comparative ethnic differences studies, migration studies, and recognition of 'hotspots'. 4) Key environmental determinants of geographical differences include diminished ultraviolet radiation exposure, Western or affluence-related lifestyle, infection exposure, environmental pollutants, nutritional factors and disease-specific precipitants (e.g., iodine exposure). PMID:20034761

  10. Monoclonal Antibody That Defines Human Myoepithelium

    NASA Astrophysics Data System (ADS)

    Dairkee, Shahnaz Hashmi; Blayney, Carlene; Smith, Helene S.; Hackett, Adeline J.

    1985-11-01

    We have isolated a mouse monoclonal antibody that, upon immunohistochemical localization in frozen sections, displays specificity for human myoepithelial cells in the resting mammary gland, sweat glands, and salivary glands. Furthermore, this antibody was strongly and homogeneously reactive with frozen sections of 3 of 60 breast carcinoma specimens. Using immunolocalization techniques in conjunction with polyacrylamide gel electrophoresis, we have determined that the reactivity of this monoclonal antibody is directed toward a 51,000-dalton keratin polypeptide. The potential uses of this antibody in the prognosis of human mammary carcinoma and in understanding the role of the myoepithelium in development and differentiation are discussed.

  11. Basic Genetics: A Human Approach.

    ERIC Educational Resources Information Center

    Biological Sciences Curriculum Study, Colorado Springs, CO. Center for Education in Human and Medical Genetics.

    This document (which has the form of a magazine) provides a variety of articles, stories, editorials, letters, interviews, and other types of magazine features (such as book reviews) which focus on human genetics. In addition to providing information about the principles of genetics, nearly all of the sections in the "magazine" address moral,…

  12. Psychosocial and ethical implications of defining genetic risk for cancers.

    PubMed

    Kash, K M

    1995-09-30

    In summary, we need to provide fully informed consent regarding the hazards and the benefits of genetic testing and defining risk. This reflects the first ethical principle of autonomy. It is the responsibility of the counseling team to make sure that the individual is psychologically equipped to deal with the emotional distress that may result from testing. An undue burden must not be placed on someone and harm must not be inflicted. This is the second ethical principle of beneficence. Third, awareness of the potential problems of testing is extremely important. These issues are those of disclosure, insurance problems, and employment problems--the third ethical principle of confidentiality. Recommendations for screening guidelines, regardless of testing results, should be provided. It is important for women who are not gene carriers to know that they still need to go for screening. Lastly, we need to find ways to help individuals cope with their risk status, whether it is actual high risk or perceived high risk. Helping women to develop positive coping strategies and to adhere to screening is extremely important. As the Huntington's data indicated, over time, regardless of their risk levels, individuals do learn how to cope and adapt with the outcome of testing. Women and men need to learn how to live with their risk status so that the negative psychological sequelae will be minimized. PMID:8526383

  13. Drawing the line on genetic intervention in humans.

    PubMed

    Kaura, D R

    1996-03-15

    Because the science of genetics can have such profound effects on medicine and mankind, society must define the characteristics of a moral framework within which to make decisions about genetic issues. University of Manitoba medical student Deepak Kaura, who claimed third prize in CMAJ's 1995 Logie Medical Ethics Essay Contest, examines the ethics of genetic intervention in humans. PMID:8634976

  14. Drawing the line on genetic intervention in humans.

    PubMed Central

    Kaura, D R

    1996-01-01

    Because the science of genetics can have such profound effects on medicine and mankind, society must define the characteristics of a moral framework within which to make decisions about genetic issues. University of Manitoba medical student Deepak Kaura, who claimed third prize in CMAJ's 1995 Logie Medical Ethics Essay Contest, examines the ethics of genetic intervention in humans. Images p928-a PMID:8634976

  15. DNA diagnosis of human genetic individuality.

    PubMed

    Pena, S D; Prado, V F; Epplen, J T

    1995-11-01

    DNA studies of the human genome have shown polymorphic variation at thousands of sites, defining an absolute genetic uniqueness for each individual. There are many circumstances in which it may be desirable to diagnose this molecular individuality, as for instance, in criminal investigations or paternity testing. Several techniques can be used for this DNA diagnosis and we can choose among them the one that best suits the specific problem at hand. In this review we describe the main methodologies in current use to investigate human DNA polymorphisms, discussing the best application of each option, as well as their advantages and disadvantages. PMID:8751139

  16. Multilayered genetic safeguards limit growth of microorganisms to defined environments.

    PubMed

    Gallagher, Ryan R; Patel, Jaymin R; Interiano, Alexander L; Rovner, Alexis J; Isaacs, Farren J

    2015-02-18

    Genetically modified organisms (GMOs) are commonly used to produce valuable compounds in closed industrial systems. However, their emerging applications in open clinical or environmental settings require enhanced safety and security measures. Intrinsic biocontainment, the creation of bacterial hosts unable to survive in natural environments, remains a major unsolved biosafety problem. We developed a new biocontainment strategy containing overlapping 'safeguards'-engineered riboregulators that tightly control expression of essential genes, and an engineered addiction module based on nucleases that cleaves the host genome-to restrict viability of Escherichia coli cells to media containing exogenously supplied synthetic small molecules. These multilayered safeguards maintain robust growth in permissive conditions, eliminate persistence and limit escape frequencies to <1.3 × 10(-12). The staged approach to safeguard implementation revealed mechanisms of escape and enabled strategies to overcome them. Our safeguarding strategy is modular and employs conserved mechanisms that could be extended to clinically or industrially relevant organisms and undomesticated species. PMID:25567985

  17. Multilayered genetic safeguards limit growth of microorganisms to defined environments

    PubMed Central

    Gallagher, Ryan R.; Patel, Jaymin R.; Interiano, Alexander L.; Rovner, Alexis J.; Isaacs, Farren J.

    2015-01-01

    Genetically modified organisms (GMOs) are commonly used to produce valuable compounds in closed industrial systems. However, their emerging applications in open clinical or environmental settings require enhanced safety and security measures. Intrinsic biocontainment, the creation of bacterial hosts unable to survive in natural environments, remains a major unsolved biosafety problem. We developed a new biocontainment strategy containing overlapping ‘safeguards’—engineered riboregulators that tightly control expression of essential genes, and an engineered addiction module based on nucleases that cleaves the host genome—to restrict viability of Escherichia coli cells to media containing exogenously supplied synthetic small molecules. These multilayered safeguards maintain robust growth in permissive conditions, eliminate persistence and limit escape frequencies to <1.3 × 10−12. The staged approach to safeguard implementation revealed mechanisms of escape and enabled strategies to overcome them. Our safeguarding strategy is modular and employs conserved mechanisms that could be extended to clinically or industrially relevant organisms and undomesticated species. PMID:25567985

  18. Genetics for the Human Race

    SciTech Connect

    Myles Axton; Francis Collins; Charles Rotimi; Charmaine Royal; David Goldstein, Daniel Drell; Georgia Dunston; Rick Kittles; Lynn Jorde; Mildred Cho; Joanna Mountain; Ari Patrinos; Neil Risch; Shomarka Keita; Kenneth Kidd; Mark Shriver; Sarah Tishkoff

    2004-11-01

    This supplement has its origins on May 15, 2003, when the National Human Genome Center at Howard University held a small but important workshop in Washington DC. The workshop, Human Genome Variation and 'Race', and this special issue of Nature Genetics were proposed by scientists at Howard University and financially supported by the Genome Programs of the US Department of Energy, through its Office of Science; the Irving Harris Foundation; the National Institutes of Health, through the National Human Genome Research Institute; and Howard University. As summarized by Francis Collins, director of the National Human Genome Research Institute, the workshop focused on several key questions: ''What does the current body of scientific information say about the connections among race, ethnicity, genetics and health? What remains unknown? What additional research is needed? How can this information be applied to benefit human health? How might this information be applied in nonmedical settings? How can we adopt policies that will achieve beneficial societal outcomes?'' This supplement, supported by the Department of Energy through a grant to Howard University, contains articles based on the presentations at this workshop.

  19. Can we define maternal age as a genetic disease?

    PubMed Central

    Wilding, M.

    2014-01-01

    >Maternal age is strongly associated with a decrease in the probability of achieving pregnancy and the birth of a healthy child. Among current theories of the mechanism of this decrease is the hypothesis that a progressive degeneration of the respiratory capacity of mitochondria in eggs of women of advanced age leads to an energy deficit and consequent secondary effects on the oocyte and developing embryo. Mitochondria are uniquely inherited through the female germ line and these organelles contain DNA sequences that are independent from the genome. It is therefore possible that offspring born to females of advanced age inherit suboptimal mitochondria and that these persist throughout the life of the new being. This could in turn lead to long-term consequences for the offspring of females of advanced age such as a reduced potential lifespan in relation to the age of the mother at conception. In this review and hypothesis, we discuss the evidence relating to this theory and suggest that on this basis the maternal age effect could be classified as an inheritable genetic disease. PMID:25009733

  20. Genetic variation and human longevity.

    PubMed

    Soerensen, Mette

    2012-05-01

    The overall aim of the PhD project was to elucidate the association of human longevity with genetic variation in major candidate genes and pathways of longevity. Based on a thorough literature and database search we chose to apply a pathway approach; to explore variation in genes composing the DNA damage signaling, DNA repair, GH/IGF-1/insulin signaling and pro-/antioxidant pathways. In addition, 16 genes which did not belong to the core of either pathway, however recurrently regarded as candidate genes of longevity (e.g. APOE), were included. In this way a total of 168 genes were selected for investigation. We decided to explore the genetic variation in the form of single nucleotide polymorphisms (SNPs), a highly investigated type of genetic variation. SNPs having potential functional impact (e.g. affecting binding of transcription factors) were identified, so were specific SNPs in the candidate genes previously published to be associated with human longevity. To cover the majority of the common genetic variation in the 168 gene regions (encoding regions plus 5,000 bp upstream and 1,000 downstream) we applied the tagging SNP approach via the HapMap Consortium. Consequently 1,536 SNPs were selected. The majority of the previous publications on genetic variation and human longevity had employed a case-control study design, e.g. comparing centenarians to middle-aged controls. This type of study design is somehow prone to bias introduced by for instance cohort effects, i.e. differences in characteristics of cases and controls, a kind of bias which is avoided when a prospective cohort is under study. Therefore, we chose to investigate 1,200 individuals of the Danish 1905 birth cohort, which have been followed since 1998 when the members were 92-93 years old. The genetic contribution to human longevity has been estimated to be most profound during the late part of life, thus these oldest-old individuals are excellent for investigating such effect. The follow-up survival

  1. Defining the Influence of Germline Variation on Metastasis Using Systems Genetics Approaches.

    PubMed

    Lee, M; Crawford, N P S

    2016-01-01

    Cancer is estimated to be responsible for 8 million deaths worldwide and over half a million deaths every year in the United States. The majority of cancer-related deaths in solid tumors is directly associated with the effects of metastasis. While the influence of germline factors on cancer risk and development has long been recognized, the contribution of hereditary variation to tumor progression and metastasis has only gained acceptance more recently. A variety of approaches have been used to define how hereditary variation influences tumor progression and metastasis. One approach that garnered much early attention was epidemiological studies of cohorts of cancer patients, which demonstrated that specific loci within the human genome are associated with a differential propensity for aggressive tumor development. However, a powerful, and somewhat underutilized approach has been the use of systems genetics approaches in transgenic mouse models of human cancer. Such approaches are typically multifaceted, and involve integration of multiple lines of evidence derived, for example, from genetic and transcriptomic screens of genetically diverse mouse models of cancer, coupled with bioinformatics analysis of human cancer datasets, and functional analysis of candidate genes. These methodologies have allowed for the identification of multiple hereditary metastasis susceptibility genes, with wide-ranging cellular functions including regulation of gene transcription, cell proliferation, and cell-cell adhesion. In this chapter, we review how each of these approaches have facilitated the identification of these hereditary metastasis modifiers, the molecular functions of these metastasis-associated genes, and the implications of these findings upon patient survival. PMID:27613130

  2. Defining Human Failure Events for Petroleum Risk Analysis

    SciTech Connect

    Ronald L. Boring; Knut Øien

    2014-06-01

    In this paper, an identification and description of barriers and human failure events (HFEs) for human reliability analysis (HRA) is performed. The barriers, called target systems, are identified from risk significant accident scenarios represented as defined situations of hazard and accident (DSHAs). This report serves as the foundation for further work to develop petroleum HFEs compatible with the SPAR-H method and intended for reuse in future HRAs.

  3. A Cellular GWAS Approach to Define Human Variation in Cellular Pathways Important to Inflammation.

    PubMed

    Miller, Samuel I; Chaudhary, Anu

    2016-01-01

    An understanding of common human diversity in innate immune pathways should be beneficial in understanding autoimmune diseases, susceptibility to infection, and choices of anti-inflammatory treatment. Such understanding could also result in definition of currently unknown components of human inflammation pathways. A cellular genome-wide association studies (GWAS) platform, termed Hi-HOST (High-throughput human in vitro susceptibility testing), was developed to assay in vitro cellular phenotypes of infection in genotyped lymphoblastoid cells from genetically diverse human populations. Hi-HOST allows for measurement of multiple host and pathogen parameters of infection/inflammation including: bacterial invasion and intracellular replication, host cell death, and cytokine production. Hi-HOST has been used to successfully define a significant portion of the heritable human diversity in inflammatory cell death in response to Salmonella typhimurium. It also led to the discovery of genetic variants important to protection against systemic inflammatory response syndrome (SIRS) and protection against death and bacteremia in individuals with SIRS. Our laboratory is currently using this platform to define human diversity in autophagy and the NLPR3 inflammasome pathways, and to define new components that can impact the expression of phenotypes related to these pathways. PMID:27128945

  4. A Cellular GWAS Approach to Define Human Variation in Cellular Pathways Important to Inflammation

    PubMed Central

    Miller, Samuel I.; Chaudhary, Anu

    2016-01-01

    An understanding of common human diversity in innate immune pathways should be beneficial in understanding autoimmune diseases, susceptibility to infection, and choices of anti-inflammatory treatment. Such understanding could also result in definition of currently unknown components of human inflammation pathways. A cellular genome-wide association studies (GWAS) platform, termed Hi-HOST (High-throughput human in vitro susceptibility testing), was developed to assay in vitro cellular phenotypes of infection in genotyped lymphoblastoid cells from genetically diverse human populations. Hi-HOST allows for measurement of multiple host and pathogen parameters of infection/inflammation including: bacterial invasion and intracellular replication, host cell death, and cytokine production. Hi-HOST has been used to successfully define a significant portion of the heritable human diversity in inflammatory cell death in response to Salmonella typhimurium. It also led to the discovery of genetic variants important to protection against systemic inflammatory response syndrome (SIRS) and protection against death and bacteremia in individuals with SIRS. Our laboratory is currently using this platform to define human diversity in autophagy and the NLPR3 inflammasome pathways, and to define new components that can impact the expression of phenotypes related to these pathways. PMID:27128945

  5. Human vascular model with defined stimulation medium - a characterization study.

    PubMed

    Huttala, Outi; Vuorenpää, Hanna; Toimela, Tarja; Uotila, Jukka; Kuokkanen, Hannu; Ylikomi, Timo; Sarkanen, Jertta-Riina; Heinonen, Tuula

    2015-01-01

    The formation of blood vessels is a vital process in embryonic development and in normal physiology. Current vascular modelling is mainly based on animal biology leading to species-to-species variation when extrapolating the results to humans. Although there are a few human cell based vascular models available these assays are insufficiently characterized in terms of culture conditions and developmental stage of vascular structures. Therefore, well characterized vascular models with human relevance are needed for basic research, embryotoxicity testing, development of therapeutic strategies and for tissue engineering. We have previously shown that the in vitro vascular model based on co-culture of human adipose stromal cells (hASC) and human umbilical vein endothelial cells (HUVEC) is able to induce an extensive vascular-like network with high reproducibility. In this work we developed a defined serum-free vascular stimulation medium (VSM) and performed further characterization in terms of cell identity, maturation and structure to obtain a thoroughly characterized in vitro vascular model to replace or reduce corresponding animal experiments. The results showed that the novel vascular stimulation medium induced intact and evenly distributed vascular-like network with morphology of mature vessels. Electron microscopic analysis assured the three-dimensional microstructure of the network containing lumen. Additionally, elevated expressions of the main human angiogenesis-related genes were detected. In conclusion, with the new defined medium the vascular model can be utilized as a characterized test system for chemical testing as well as in creating vascularized tissue models. PMID:25742497

  6. [HIV infection and human genetics].

    PubMed

    Bobkova, M R

    2009-01-01

    The review summarizes data of recent studies on the impact of human gene polymorphisms on the possibility of HIV infection, as well as the specific features of its pathogenesis, the efficiency of HIV infection treatment and the likelihood of its complication. Main information on the mechanisms responsible for viral penetration into the sensitive cells, for immune response development and involvement of HLA and KIR molecules in this process are briefly outlined. Idea on major cell proteins affecting drug metabolism and excretion and encoding for their genes are generalized. There are many examples that show how different human gene alleles and their combinations affect the nature of the pathogenetic process and the occurrence and degree of adverse reactions. The first example of successfully using the prognostic genetic analysis (HLA-B*5701) registered in 2008 to upgrade the quality of HIV infection treatment is described in detail. Basic requirements for further genetic tests to use the optimal antiretroviral therapy schemes and to reduce its hazardous effects are formulated. PMID:20481056

  7. Data defining markers of human neural stem cell lineage potential.

    PubMed

    Oikari, Lotta E; Okolicsanyi, Rachel K; Griffiths, Lyn R; Haupt, Larisa M

    2016-06-01

    Neural stem cells (NSCs) and neural progenitor cells (NPCs) are self-renewing and multipotent cells, however, NPCs are considered to be more lineage-restricted with a reduced self-renewing capacity. We present data comparing the expression of 21 markers encompassing pluripotency, self-renewal (NSC) as well as neuronal and glial (astrocyte and oligodendrocyte) lineage specification and 28 extracellular proteoglycan (PG) genes and their regulatory enzymes between embryonic stem cell (ESC)-derived human NSCs (hNSC H9 cells, Thermo Fisher) and human cortex-derived normal human NPCs (nhNPCs, Lonza). The data demonstrates expression differences of multiple lineage and proteoglycan-associated genes between hNSC H9 cells and nhNPCs. Data interpretation of markers and proteoglycans defining NSC and neural cell lineage characterisation can be found in "Cell surface heparan sulfate proteoglycans as novel markers of human neural stem cell fate determination" (Oikari et al. 2015) [1]. PMID:26958640

  8. Data defining markers of human neural stem cell lineage potential

    PubMed Central

    Oikari, Lotta E.; Okolicsanyi, Rachel K.; Griffiths, Lyn R.; Haupt, Larisa M.

    2016-01-01

    Neural stem cells (NSCs) and neural progenitor cells (NPCs) are self-renewing and multipotent cells, however, NPCs are considered to be more lineage-restricted with a reduced self-renewing capacity. We present data comparing the expression of 21 markers encompassing pluripotency, self-renewal (NSC) as well as neuronal and glial (astrocyte and oligodendrocyte) lineage specification and 28 extracellular proteoglycan (PG) genes and their regulatory enzymes between embryonic stem cell (ESC)-derived human NSCs (hNSC H9 cells, Thermo Fisher) and human cortex-derived normal human NPCs (nhNPCs, Lonza). The data demonstrates expression differences of multiple lineage and proteoglycan-associated genes between hNSC H9 cells and nhNPCs. Data interpretation of markers and proteoglycans defining NSC and neural cell lineage characterisation can be found in “Cell surface heparan sulfate proteoglycans as novel markers of human neural stem cell fate determination” (Oikari et al. 2015) [1]. PMID:26958640

  9. Defining genes using "blueprint" versus "instruction" metaphors: effects for genetic determinism, response efficacy, and perceived control.

    PubMed

    Parrott, Roxanne; Smith, Rachel A

    2014-01-01

    Evidence supports mixed attributions aligned with personal and/or clinical control and gene expression for health in this era of genomic science and health care. We consider variance in these attributions and possible relationships to individual mind sets associated with essentialist beliefs that genes determine health versus threat beliefs that genes increase susceptibility for disease and severity linked to gene-environment interactions. Further, we contribute to theory and empirical research to evaluate the use of metaphors to define genes. Participants (N = 324) read a message that varied the introduction by providing a definition of genes that used either an "instruction" metaphor or a "blueprint" metaphor. The "instruction" metaphor compared to the "blueprint" metaphor promoted stronger threat perceptions, which aligned with both belief in the response efficacy of genetic research for health and perceived behavioral control linked to genes and health. The "blueprint" metaphor compared to the "instruction" metaphor promoted stronger essentialist beliefs, which aligned with more intense positive regard for the efficacy of genetic research and human health. Implications for health communicators include societal effects aligned with stigma and discrimination that such findings portend. PMID:23448621

  10. Defining human death: an intersection of bioethics and metaphysics.

    PubMed

    Manninen, Bertha Alvarez

    2009-01-01

    For many years now, bioethicists, physicians, and others in the medical field have disagreed concerning how to best define human death. Different theories range from the Harvard Criteria of Brain Death, which defines death as the cessation of all brain activity, to the Cognitive Criteria, which is based on the loss of almost all core mental properties, e.g., memory, self-consciousness, moral agency, and the capacity for reason. A middle ground is the Irreversibility Standard, which defines death as occurring when the capacity for consciousness is forever lost. Given all these different theories, how can we begin to approach solving the issue of how to define death? I propose that a necessary starting point is discussing an even more fundamental question that properly belongs in the philosophical field of metaphysics: we must first address the issue of diachronic identity over time, and the persistence conditions of personal identity. In this paper, I illustrate the interdependent relationship between this metaphysical question and questions concerning the definition of death. I also illustrate how it is necessary to antecedently attend to the metaphysical issue of defining death before addressing certain issues in medical ethics, e.g., whether it is morally permissible to euthanize patients in persistent vegetative states or procure organs from anencephalic infants. PMID:20157998

  11. Human genetic databases and liberty.

    PubMed

    Adalsteinsson, Ragnar

    2004-01-01

    This paper examines an act of the Icelandic Parliament on health-sector databases. Both the legislation itself and the manner in which it was presented by the Government to the Parliament and the general public raise various questions about democratic parliamentary procedures, community consultation, autonomy, privacy, professional confidence, control of health data in hospitals and business relationships between medical doctors and biotechnology corporations. A major question to be asked is: In whose interest is it that such sensitive data are handed over to for-profit corporations? Furthermore, is it within the authority of the legislature to authorize politically appointed boards of health institutes to transfer such data without the direct informed consent of the patient and without the relevant physicians' having a say? Does experience teach us to entrust private companies with sensitive personal data? Should the Government be involved in the research policy-making of the biotechnology companies that have been given access to the genetic data of a population, or should the profit motive be the sole deciding influence? That is, should the interest of the shareholders of the companies prevail over the interest of underprivileged groups who are most in need of new methods or medicine to alleviate their situation due to incurable diseases? Or is the invisible hand of the market the only competent decision-maker? Finally, will the proliferation of databases containing sensitive personal data, such as human genetic data, limit our personal liberty? PMID:16755701

  12. Genetics of Human and Canine Dilated Cardiomyopathy

    PubMed Central

    Simpson, Siobhan; Edwards, Jennifer; Ferguson-Mignan, Thomas F. N.; Cobb, Malcolm; Mongan, Nigel P.; Rutland, Catrin S.

    2015-01-01

    Cardiovascular disease is a leading cause of death in both humans and dogs. Dilated cardiomyopathy (DCM) accounts for a large number of these cases, reported to be the third most common form of cardiac disease in humans and the second most common in dogs. In human studies of DCM there are more than 50 genetic loci associated with the disease. Despite canine DCM having similar disease progression to human DCM studies into the genetic basis of canine DCM lag far behind those of human DCM. In this review the aetiology, epidemiology, and clinical characteristics of canine DCM are examined, along with highlighting possible different subtypes of canine DCM and their potential relevance to human DCM. Finally the current position of genetic research into canine and human DCM, including the genetic loci, is identified and the reasons many studies may have failed to find a genetic association with canine DCM are reviewed. PMID:26266250

  13. Personalized medicine and human genetic diversity.

    PubMed

    Lu, Yi-Fan; Goldstein, David B; Angrist, Misha; Cavalleri, Gianpiero

    2014-09-01

    Human genetic diversity has long been studied both to understand how genetic variation influences risk of disease and infer aspects of human evolutionary history. In this article, we review historical and contemporary views of human genetic diversity, the rare and common mutations implicated in human disease susceptibility, and the relevance of genetic diversity to personalized medicine. First, we describe the development of thought about diversity through the 20th century and through more modern studies including genome-wide association studies (GWAS) and next-generation sequencing. We introduce several examples, such as sickle cell anemia and Tay-Sachs disease that are caused by rare mutations and are more frequent in certain geographical populations, and common treatment responses that are caused by common variants, such as hepatitis C infection. We conclude with comments about the continued relevance of human genetic diversity in medical genetics and personalized medicine more generally. PMID:25059740

  14. Personalized Medicine and Human Genetic Diversity

    PubMed Central

    Lu, Yi-Fan; Goldstein, David B.; Angrist, Misha; Cavalleri, Gianpiero

    2014-01-01

    Human genetic diversity has long been studied both to understand how genetic variation influences risk of disease and infer aspects of human evolutionary history. In this article, we review historical and contemporary views of human genetic diversity, the rare and common mutations implicated in human disease susceptibility, and the relevance of genetic diversity to personalized medicine. First, we describe the development of thought about diversity through the 20th century and through more modern studies including genome-wide association studies (GWAS) and next-generation sequencing. We introduce several examples, such as sickle cell anemia and Tay–Sachs disease that are caused by rare mutations and are more frequent in certain geographical populations, and common treatment responses that are caused by common variants, such as hepatitis C infection. We conclude with comments about the continued relevance of human genetic diversity in medical genetics and personalized medicine more generally. PMID:25059740

  15. Genetics of human sensitivity to ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Cleaver, James E.

    1994-07-01

    the major human health effects of solar and artificial UV light occur from the UVB and UVC wavelength ranges and involve a variety of short-term and long-term deleterious changes to the skin and eyes. the more important initial damage to cellular macromolecules involves dimerization of adjacent pyrimidines in DNA to produce cyclobutane pyrimidine dimes, (6-4) pyrimidine- pyrimidone, and (6-4) dewar photoproducts. these photoproducts can be repaired by a genetically regulated enzyme system (nucleotide excision repair) which removes oligonucleotides 29-30 nucleotides long that contain the photoproducts, and synthesizes replacement patches. At least a dozen gene products are involved in the process of recognizing photoproducts in DNA, altering local DNA helicity and cleaving the polynucleotide chain at defined positions either side of a photoproduct. Hereditary mutations in many of these genes are recognized in the human genetic disorders xeroderma pigmentosum (XP), Cockayne syndrome (CS), and trichothiodystrophy (TTD). Several of the gene products have other functions involving the regulation of gene transcription which accounts for the complex clinical presentation of repair deficient diseases that involve sensitivity of the skin and eyes to UV light, increased solar carcinogenesis (in XP), demyelination, and ganglial calcification (in CS), hair abnormalities (in TTD), and developmental and neurological abnormalities

  16. [Bioethical principles concerning human genetic data].

    PubMed

    Cruz-Coke, Ricardo

    2003-01-01

    UNESCO'S Universal declaration on the human genome and human rights (1997) has been accepted by the international scientific community. To apply these laws, it is necessary to get more specific rules about data regulation, human genetic samples and its derived information in biomedic research. Indeed, genetic material recollection, processing, use and storing, has potential risks over human rights' protection and exercise. The author, member of UNESCO'S intergovernmental Bioethics Committee which approved the final draft in June 2003, has taken part in the writing of the final text of an international declaration about human genetic data, whose abbreviate text is described and commented in this communication. PMID:15032097

  17. The manned transportation system study - Defining human pathways into space

    NASA Technical Reports Server (NTRS)

    Lance, Nick; Geyer, Mark S.; Gaunce, Michael T.; Anson, H. W.; Bienhoff, D. G.; Carey, D. A.; Emmett, B. R.; Mccandless, B.; Wetzel, E. D.

    1992-01-01

    Substantiating data developed by a NASA-industry team (NIT) for subsequent NASA decisions on the 'right' set of manned transportation elements needed for human access to space are discussed. Attention is given to the framework for detailed definition of these manned transportation elements. Identifying and defining architecture evaluation criteria, i.e., attributes, specified the amount and type of data needed for each concept under consideration. Several architectures, each beginning with today's transportation systems, were defined using representative systems to explore future options and address specific questions currently being debated. The present solutions emphasize affordability, safety, routineness, and reliability. Key issues associated with current business practices were challenged and the impact associated with these practices quantified.

  18. Elevation and connectivity define genetic refugia for mountain sheep as climate warms.

    PubMed

    Epps, Clinton W; Palsbøll, Per J; Wehausen, John D; Roderick, George K; McCullough, Dale R

    2006-12-01

    Global warming is predicted to affect the evolutionary potential of natural populations. We assessed genetic diversity of 25 populations of desert bighorn sheep (Ovis canadensis nelsoni) in southeastern California, where temperatures have increased and precipitation has decreased during the 20th century. Populations in low-elevation habitats had lower genetic diversity, presumably reflecting more fluctuations in population sizes and founder effects. Higher-elevation habitats acted as reservoirs of genetic diversity. However, genetic diversity was also affected by population connectivity, which has been disrupted by human development. Restoring population connectivity may be necessary to buffer the effects of climate change on this desert-adapted ungulate. PMID:17107466

  19. Malignant transformation in a defined genetic background: proteome changes displayed by 2D-PAGE

    PubMed Central

    2010-01-01

    Background Cancer arises from normal cells through the stepwise accumulation of genetic alterations. Cancer development can be studied by direct genetic manipulation within experimental models of tumorigenesis. Thereby, confusion by the genetic heterogeneity of patients can be circumvented. Moreover, identification of the critical changes that convert a pre-malignant cell into a metastatic, therapy resistant tumor cell, however, is one necessary step to develop effective and selective anti-cancer drugs. Thus, for the current study a cell culture model for malignant transformation was used: Primary human fibroblasts of the BJ strain were sequentially transduced with retroviral vectors encoding the genes for hTERT (cell line BJ-T), simian virus 40 early region (SV40 ER, cell line BJ-TE) and H-Ras V12 (cell line BJ-TER). Results The stepwise malignant transformation of human fibroblasts was analyzed on the protein level by differential proteome analysis. We observed 39 regulated protein spots and therein identified 67 different proteins. The strongest change of spot patterns was detected due to integration of SV40 ER. Among the proteins being significantly regulated during the malignant transformation process well known proliferating cell nuclear antigen (PCNA) as well as the chaperones mitochondrial heat shock protein 75 kDa (TRAP-1) and heat shock protein HSP90 were identified. Moreover, we find out, that TRAP-1 is already up-regulated by means of SV40 ER expression instead of H-Ras V12. Furthermore Peroxiredoxin-6 (PRDX6), Annexin A2 (p36), Plasminogen activator inhibitor 2 (PAI-2) and Keratin type II cytoskeletal 7 (CK-7) were identified to be regulated. For some protein candidates we confirmed our 2D-PAGE results by Western Blot. Conclusion These findings give further hints for intriguing interactions between the p16-RB pathway, the mitochondrial chaperone network and the cytoskeleton. In summary, using a cell culture model for malignant transformation analyzed

  20. Mouse genetic and phenotypic resources for human genetics

    PubMed Central

    Schofield, Paul N.; Hoehndorf, Robert; Gkoutos, Georgios V.

    2012-01-01

    The use of model organisms to provide information on gene function has proved to be a powerful approach to our understanding of both human disease and fundamental mammalian biology. Large-scale community projects using mice, based on forward and reverse genetics, and now the pan-genomic phenotyping efforts of the International Mouse Phenotyping Consortium (IMPC), are generating resources on an unprecedented scale which will be extremely valuable to human genetics and medicine. We discuss the nature and availability of data, mice and ES cells from these large-scale programmes, the use of these resources to help prioritise and validate candidate genes in human genetic association studies, and how they can improve our understanding of the underlying pathobiology of human disease. PMID:22422677

  1. Development of Genetically-defined Yellow Perch (Perca flavescens) Broodstocks for Selective Breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have initiated development of genetically defined yellow perch (Perca flavescens) broodstocks. For this, sixteen wild perch populations throughout the U.S. were sampled and analyzed using published (Leclerc et al. Molecular Ecology 2000, 9: 993-1011) and newly developed microsatellite loci. Gen...

  2. Genetic delineation of local provenance defines seed collection zones along a climate gradient

    PubMed Central

    Hufford, Kristina M.; Veneklaas, Erik J.; Lambers, Hans; Krauss, Siegfried L.

    2016-01-01

    Efforts to re-establish native plant species should consider intraspecific variation if we are to restore genetic diversity and evolutionary potential. Data describing spatial genetic structure and the scale of adaptive differentiation are needed for restoration seed sourcing. Genetically defined provenance zones provide species-specific guidelines for the distance within which seed transfer likely maintains levels of genetic diversity and conserves locally adapted traits. While a growing number of studies incorporate genetic marker data in delineation of local provenance, they often fail to distinguish the impacts of neutral and non-neutral variation. We analysed population genetic structure for 134 amplified fragment length polymorphism (AFLP) markers in Stylidium hispidum (Stylidiaceae) along a north–south transect of the species' range with the goal to estimate the distance at which significant genetic differences occur among source and recipient populations in restoration. In addition, we tested AFLP markers for signatures of selection, and examined the relationship of neutral and putatively selected markers with climate variables. Estimates of population genetic structure revealed significant levels of differentiation (ΦPT = 0.23) and suggested a global provenance distance of 45 km for pairwise comparisons of 16 populations. Of the 134 markers, 13 exhibited evidence of diversifying selection (ΦPT = 0.52). Using data for precipitation and thermal gradients, we compared genetic, geographic and environmental distance for subsets of neutral and selected markers. Strong isolation by distance was detected in all cases, but positive correlations with climate variables were present only for markers with signatures of selection. We address findings in light of defining local provenance in ecological restoration. PMID:26755503

  3. Genetic delineation of local provenance defines seed collection zones along a climate gradient.

    PubMed

    Hufford, Kristina M; Veneklaas, Erik J; Lambers, Hans; Krauss, Siegfried L

    2016-01-01

    Efforts to re-establish native plant species should consider intraspecific variation if we are to restore genetic diversity and evolutionary potential. Data describing spatial genetic structure and the scale of adaptive differentiation are needed for restoration seed sourcing. Genetically defined provenance zones provide species-specific guidelines for the distance within which seed transfer likely maintains levels of genetic diversity and conserves locally adapted traits. While a growing number of studies incorporate genetic marker data in delineation of local provenance, they often fail to distinguish the impacts of neutral and non-neutral variation. We analysed population genetic structure for 134 amplified fragment length polymorphism (AFLP) markers in Stylidium hispidum (Stylidiaceae) along a north-south transect of the species' range with the goal to estimate the distance at which significant genetic differences occur among source and recipient populations in restoration. In addition, we tested AFLP markers for signatures of selection, and examined the relationship of neutral and putatively selected markers with climate variables. Estimates of population genetic structure revealed significant levels of differentiation (ΦPT = 0.23) and suggested a global provenance distance of 45 km for pairwise comparisons of 16 populations. Of the 134 markers, 13 exhibited evidence of diversifying selection (ΦPT = 0.52). Using data for precipitation and thermal gradients, we compared genetic, geographic and environmental distance for subsets of neutral and selected markers. Strong isolation by distance was detected in all cases, but positive correlations with climate variables were present only for markers with signatures of selection. We address findings in light of defining local provenance in ecological restoration. PMID:26755503

  4. Genetic fine-mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci

    PubMed Central

    Mahajan, Anubha; Locke, Adam; Rayner, N William; Robertson, Neil; Scott, Robert A; Prokopenko, Inga; Scott, Laura J; Green, Todd; Sparso, Thomas; Thuillier, Dorothee; Yengo, Loic; Grallert, Harald; Wahl, Simone; Frånberg, Mattias; Strawbridge, Rona J; Kestler, Hans; Chheda, Himanshu; Eisele, Lewin; Gustafsson, Stefan; Steinthorsdottir, Valgerdur; Thorleifsson, Gudmar; Qi, Lu; Karssen, Lennart C; van Leeuwen, Elisabeth M; Willems, Sara M; Li, Man; Chen, Han; Fuchsberger, Christian; Kwan, Phoenix; Ma, Clement; Linderman, Michael; Lu, Yingchang; Thomsen, Soren K; Rundle, Jana K; Beer, Nicola L; van de Bunt, Martijn; Chalisey, Anil; Kang, Hyun Min; Voight, Benjamin F; Abecasis, Goncalo R; Almgren, Peter; Baldassarre, Damiano; Balkau, Beverley; Benediktsson, Rafn; Blüher, Matthias; Boeing, Heiner; Bonnycastle, Lori L; Borringer, Erwin P; Burtt, Noël P; Carey, Jason; Charpentier, Guillaume; Chines, Peter S; Cornelis, Marilyn C; Couper, David J; Crenshaw, Andrew T; van Dam, Rob M; Doney, Alex SF; Dorkhan, Mozhgan; Edkins, Sarah; Eriksson, Johan G; Esko, Tonu; Eury, Elodie; Fadista, João; Flannick, Jason; Fontanillas, Pierre; Fox, Caroline; Franks, Paul W; Gertow, Karl; Gieger, Christian; Gigante, Bruna; Gottesman, Omri; Grant, George B; Grarup, Niels; Groves, Christopher J; Hassinen, Maija; Have, Christian T; Herder, Christian; Holmen, Oddgeir L; Hreidarsson, Astradur B; Humphries, Steve E; Hunter, David J; Jackson, Anne U; Jonsson, Anna; Jørgensen, Marit E; Jørgensen, Torben; Kerrison, Nicola D; Kinnunen, Leena; Klopp, Norman; Kong, Augustine; Kovacs, Peter; Kraft, Peter; Kravic, Jasmina; Langford, Cordelia; Leander, Karin; Liang, Liming; Lichtner, Peter; Lindgren, Cecilia M; Lindholm, Eero; Linneberg, Allan; Liu, Ching-Ti; Lobbens, Stéphane; Luan, Jian’an; Lyssenko, Valeriya; Männistö, Satu; McLeod, Olga; Meyer, Julia; Mihailov, Evelin; Mirza, Ghazala; Mühleisen, Thomas W; Müller-Nurasyid, Martina; Navarro, Carmen; Nöthen, Markus M; Oskolkov, Nikolay N; Owen, Katharine R; Palli, Domenico; Pechlivanis, Sonali; Perry, John RB; Platou, Carl GP; Roden, Michael; Ruderfer, Douglas; Rybin, Denis; van der Schouw, Yvonne T; Sennblad, Bengt; Sigurðsson, Gunnar; Stančáková, Alena; Steinbach, Gerald; Storm, Petter; Strauch, Konstantin; Stringham, Heather M; Sun, Qi; Thorand, Barbara; Tikkanen, Emmi; Tonjes, Anke; Trakalo, Joseph; Tremoli, Elena; Tuomi, Tiinamaija; Wennauer, Roman; Wood, Andrew R; Zeggini, Eleftheria; Dunham, Ian; Birney, Ewan; Pasquali, Lorenzo; Ferrer, Jorge; Loos, Ruth JF; Dupuis, Josée; Florez, Jose C; Boerwinkle, Eric; Pankow, James S; van Duijn, Cornelia; Sijbrands, Eric; Meigs, James B; Hu, Frank B; Thorsteinsdottir, Unnur; Stefansson, Kari; Lakka, Timo A; Rauramaa, Rainer; Stumvoll, Michael; Pedersen, Nancy L; Lind, Lars; Keinanen-Kiukaanniemi, Sirkka M; Korpi-Hyövälti, Eeva; Saaristo, Timo E; Saltevo, Juha; Kuusisto, Johanna; Laakso, Markku; Metspalu, Andres; Erbel, Raimund; Jöckel, Karl-Heinz; Moebus, Susanne; Ripatti, Samuli; Salomaa, Veikko; Ingelsson, Erik; Boehm, Bernhard O; Bergman, Richard N; Collins, Francis S; Mohlke, Karen L; Koistinen, Heikki; Tuomilehto, Jaakko; Hveem, Kristian; Njølstad, Inger; Deloukas, Panagiotis; Donnelly, Peter J; Frayling, Timothy M; Hattersley, Andrew T; de Faire, Ulf; Hamsten, Anders; Illig, Thomas; Peters, Annette; Cauchi, Stephane; Sladek, Rob; Froguel, Philippe; Hansen, Torben; Pedersen, Oluf; Morris, Andrew D; Palmer, Collin NA; Kathiresan, Sekar; Melander, Olle; Nilsson, Peter M; Groop, Leif C; Barroso, Inês; Langenberg, Claudia; Wareham, Nicholas J; O’Callaghan, Christopher A; Gloyn, Anna L; Altshuler, David; Boehnke, Michael; Teslovich, Tanya M; McCarthy, Mark I; Morris, Andrew P

    2015-01-01

    We performed fine-mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in/near KCNQ1. “Credible sets” of variants most likely to drive each distinct signal mapped predominantly to non-coding sequence, implying that T2D association is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine-mapping implicated rs10830963 as driving T2D association. We confirmed that this T2D-risk allele increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D-risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease. PMID:26551672

  5. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci.

    PubMed

    Gaulton, Kyle J; Ferreira, Teresa; Lee, Yeji; Raimondo, Anne; Mägi, Reedik; Reschen, Michael E; Mahajan, Anubha; Locke, Adam; Rayner, N William; Robertson, Neil; Scott, Robert A; Prokopenko, Inga; Scott, Laura J; Green, Todd; Sparso, Thomas; Thuillier, Dorothee; Yengo, Loic; Grallert, Harald; Wahl, Simone; Frånberg, Mattias; Strawbridge, Rona J; Kestler, Hans; Chheda, Himanshu; Eisele, Lewin; Gustafsson, Stefan; Steinthorsdottir, Valgerdur; Thorleifsson, Gudmar; Qi, Lu; Karssen, Lennart C; van Leeuwen, Elisabeth M; Willems, Sara M; Li, Man; Chen, Han; Fuchsberger, Christian; Kwan, Phoenix; Ma, Clement; Linderman, Michael; Lu, Yingchang; Thomsen, Soren K; Rundle, Jana K; Beer, Nicola L; van de Bunt, Martijn; Chalisey, Anil; Kang, Hyun Min; Voight, Benjamin F; Abecasis, Gonçalo R; Almgren, Peter; Baldassarre, Damiano; Balkau, Beverley; Benediktsson, Rafn; Blüher, Matthias; Boeing, Heiner; Bonnycastle, Lori L; Bottinger, Erwin P; Burtt, Noël P; Carey, Jason; Charpentier, Guillaume; Chines, Peter S; Cornelis, Marilyn C; Couper, David J; Crenshaw, Andrew T; van Dam, Rob M; Doney, Alex S F; Dorkhan, Mozhgan; Edkins, Sarah; Eriksson, Johan G; Esko, Tonu; Eury, Elodie; Fadista, João; Flannick, Jason; Fontanillas, Pierre; Fox, Caroline; Franks, Paul W; Gertow, Karl; Gieger, Christian; Gigante, Bruna; Gottesman, Omri; Grant, George B; Grarup, Niels; Groves, Christopher J; Hassinen, Maija; Have, Christian T; Herder, Christian; Holmen, Oddgeir L; Hreidarsson, Astradur B; Humphries, Steve E; Hunter, David J; Jackson, Anne U; Jonsson, Anna; Jørgensen, Marit E; Jørgensen, Torben; Kao, Wen-Hong L; Kerrison, Nicola D; Kinnunen, Leena; Klopp, Norman; Kong, Augustine; Kovacs, Peter; Kraft, Peter; Kravic, Jasmina; Langford, Cordelia; Leander, Karin; Liang, Liming; Lichtner, Peter; Lindgren, Cecilia M; Lindholm, Eero; Linneberg, Allan; Liu, Ching-Ti; Lobbens, Stéphane; Luan, Jian'an; Lyssenko, Valeriya; Männistö, Satu; McLeod, Olga; Meyer, Julia; Mihailov, Evelin; Mirza, Ghazala; Mühleisen, Thomas W; Müller-Nurasyid, Martina; Navarro, Carmen; Nöthen, Markus M; Oskolkov, Nikolay N; Owen, Katharine R; Palli, Domenico; Pechlivanis, Sonali; Peltonen, Leena; Perry, John R B; Platou, Carl G P; Roden, Michael; Ruderfer, Douglas; Rybin, Denis; van der Schouw, Yvonne T; Sennblad, Bengt; Sigurðsson, Gunnar; Stančáková, Alena; Steinbach, Gerald; Storm, Petter; Strauch, Konstantin; Stringham, Heather M; Sun, Qi; Thorand, Barbara; Tikkanen, Emmi; Tonjes, Anke; Trakalo, Joseph; Tremoli, Elena; Tuomi, Tiinamaija; Wennauer, Roman; Wiltshire, Steven; Wood, Andrew R; Zeggini, Eleftheria; Dunham, Ian; Birney, Ewan; Pasquali, Lorenzo; Ferrer, Jorge; Loos, Ruth J F; Dupuis, Josée; Florez, Jose C; Boerwinkle, Eric; Pankow, James S; van Duijn, Cornelia; Sijbrands, Eric; Meigs, James B; Hu, Frank B; Thorsteinsdottir, Unnur; Stefansson, Kari; Lakka, Timo A; Rauramaa, Rainer; Stumvoll, Michael; Pedersen, Nancy L; Lind, Lars; Keinanen-Kiukaanniemi, Sirkka M; Korpi-Hyövälti, Eeva; Saaristo, Timo E; Saltevo, Juha; Kuusisto, Johanna; Laakso, Markku; Metspalu, Andres; Erbel, Raimund; Jöcke, Karl-Heinz; Moebus, Susanne; Ripatti, Samuli; Salomaa, Veikko; Ingelsson, Erik; Boehm, Bernhard O; Bergman, Richard N; Collins, Francis S; Mohlke, Karen L; Koistinen, Heikki; Tuomilehto, Jaakko; Hveem, Kristian; Njølstad, Inger; Deloukas, Panagiotis; Donnelly, Peter J; Frayling, Timothy M; Hattersley, Andrew T; de Faire, Ulf; Hamsten, Anders; Illig, Thomas; Peters, Annette; Cauchi, Stephane; Sladek, Rob; Froguel, Philippe; Hansen, Torben; Pedersen, Oluf; Morris, Andrew D; Palmer, Collin N A; Kathiresan, Sekar; Melander, Olle; Nilsson, Peter M; Groop, Leif C; Barroso, Inês; Langenberg, Claudia; Wareham, Nicholas J; O'Callaghan, Christopher A; Gloyn, Anna L; Altshuler, David; Boehnke, Michael; Teslovich, Tanya M; McCarthy, Mark I; Morris, Andrew P

    2015-12-01

    We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease. PMID:26551672

  6. Cryopreservation of human pluripotent stem cells in defined medium.

    PubMed

    Liu, Weiwei; Chen, Guokai

    2014-01-01

    This unit describes a cryopreservation procedure using an enzyme-free dissociation method to harvest cells and preserve cells in albumin-free chemically defined E8 medium for human pluripotent stem cells (hPSCs). The dissociation by EDTA/PBS produces small cell aggregates that allow high survival efficiency in passaging and cryopreservation. Cryopreservation in E8 medium eliminates serum and other animal products, and is suitable for dealing with the increasing demand for high-quality hPSCs in translational research. In combination with the special feature of EDTA/PBS dissociation, the protocols in this unit allow for efficient cryopreservation in a more time-saving manner. PMID:25366897

  7. Mapping genetic influences on human brain structure.

    PubMed

    Thompson, Paul; Cannon, Tyrone D; Toga, Arthur W

    2002-01-01

    Recent advances in brain imaging and genetics have empowered the mapping of genetic and environmental influences on the human brain. These techniques shed light on the 'nature/nurture' debate, revealing how genes determine individual differences in intelligence quotient (IQ) or risk for disease. They visualize which aspects of brain structure and function are heritable, and to what degree, linking these features with behavioral or cognitive traits or disease phenotypes. In genetically transmitted disorders such as schizophrenia, patterns of brain structure can be associated with increased disease liability, and sites can be mapped where non-genetic triggers may initiate disease. We recently developed a large-scale computational brain atlas, including data components from the Finnish Twin registry, to store information on individual variations in brain structure and their heritability. Algorithms from random field theory, anatomical modeling, and population genetics were combined to detect a genetic continuum in which brain structure is heavily genetically determined in some areas but not others. These algorithmic advances motivate studies of disease in which the normative atlas acts as a quantitative reference for the heritability of structural differences and deficits in patient populations. The resulting genetic brain maps isolate biological markers for inherited traits and disease susceptibility, which may serve as targets for genetic linkage and association studies. Computational methods from brain imaging and genetics can be fruitfully merged, to shed light on the inheritance of personality differences and behavioral traits, and the genetic transmission of diseases that affect the human brain. PMID:12553492

  8. Human immunoglobulin allotypes: previously unrecognized determinants and alleles defined with monoclonal antibodies.

    PubMed Central

    Zelaschi, D; Newby, C; Parsons, M; van West, B; Cavalli-Sforza, L L; Herzenberg, L A; Herzenberg, L A

    1983-01-01

    The highly polymorphic system of serologically defined genetic markers on human IgG heavy chains (Gm allotypes) is second only to the HLA complex in terms of the large number of determinants, alleles, and haplotypes that can be used for analyses of disease associations and other genetic studies. However, present typing methods are based on the use of anti-Gm antisera that are derived mainly from fortuitously immunized human donors, often requiring processing before use, and must be used in a hemagglutination-inhibition assay that cannot be used in typing for isoallotypic determinants (currently termed "non-markers"). In studies presented here, we describe an allotyping system that utilizes monoclonal antibodies in a "sandwich" modification of the solid-phase radioimmunoassay, which is capable of reliable quantitative typing of allotypic, isoallotypic, and isotypic immunoglobulin determinants. We show that these highly reproducible, easily disseminated, and essentially inexhaustible reagents can be used for rapid, sensitive, and quantitative Gm typing. Using this system we define two previously unrecognized Gm determinants, one of which, found to date only in Caucasians, is different from all known Gm markers and thus defines previously unrecognized alleles and haplotypes. The other determinant co-segregates with the conventional G3m(b1) marker but is distinct from that marker on serological grounds. The successful preparation of mouse monoclonal antibodies that detect human Gm allotypic differences and the development of an assay system capable of typing isoallotypic as well as allotypic determinants opens the way to further dissection and application of this rich genetic system. PMID:6190180

  9. Defining human dendritic cell progenitors by multiparametric flow cytometry

    PubMed Central

    Breton, Gaëlle; Lee, Jaeyop; Liu, Kang; Nussenzweig, Michel C

    2015-01-01

    Human dendritic cells (DCs) develop from progressively restricted bone marrow (BM) progenitors: these progenitor cells include granulocyte, monocyte and DC progenitor (GMDP) cells; monocyte and DC progenitor (MDP) cells; and common DC progenitor (CDP) and DC precursor (pre-DC) cells. These four DC progenitors can be defined on the basis of the expression of surface markers such as CD34 and hematopoietin receptors. In this protocol, we describe five multiparametric flow cytometry panels that can be used as a tool (i) to simultaneously detect or phenotype the four DC progenitors, (ii) to isolate DC progenitors to enable in vitro differentiation or (iii) to assess the in vitro differentiation and proliferation of DC progenitors. The entire procedure from isolation of cells to flow cytometry can be completed in 3–7 h. This protocol provides optimized antibody panels, as well as gating strategies, for immunostaining of BM and cord blood specimens to study human DC hematopoiesis in health, disease and vaccine settings. PMID:26292072

  10. Defining human dendritic cell progenitors by multiparametric flow cytometry.

    PubMed

    Breton, Gaëlle; Lee, Jaeyop; Liu, Kang; Nussenzweig, Michel C

    2015-09-01

    Human dendritic cells (DCs) develop from progressively restricted bone marrow (BM) progenitors: these progenitor cells include granulocyte, monocyte and DC progenitor (GMDP) cells; monocyte and DC progenitor (MDP) cells; and common DC progenitor (CDP) and DC precursor (pre-DC) cells. These four DC progenitors can be defined on the basis of the expression of surface markers such as CD34 and hematopoietin receptors. In this protocol, we describe five multiparametric flow cytometry panels that can be used as a tool (i) to simultaneously detect or phenotype the four DC progenitors, (ii) to isolate DC progenitors to enable in vitro differentiation or (iii) to assess the in vitro differentiation and proliferation of DC progenitors. The entire procedure from isolation of cells to flow cytometry can be completed in 3-7 h. This protocol provides optimized antibody panels, as well as gating strategies, for immunostaining of BM and cord blood specimens to study human DC hematopoiesis in health, disease and vaccine settings. PMID:26292072

  11. Regulatory networks define phenotypic classes of human stem cell lines

    PubMed Central

    Müller, Franz-Josef; Laurent, Louise C.; Kostka, Dennis; Ulitsky, Igor; Williams, Roy; Lu, Christina; Park, In-Hyun; Rao, Mahendra S.; Shamir, Ron; Schwartz, Philip H.; Schmidt, Nils O.; Loring, Jeanne F.

    2008-01-01

    Stem cells are defined as self-renewing cell populations that can differentiate into multiple distinct cell types. However, hundreds of different human cell lines from embryonic, fetal, and adult sources have been called stem cells, even though they range from pluripotent cells, typified by embryonic stem cells, which are capable of virtually unlimited proliferation and differentiation, to adult stem cell lines, which can generate a far more limited repertory of differentiated cell types. The rapid increase in reports of new sources of stem cells and their anticipated value to regenerative medicine1, 2 have highlighted the need for a general, reproducible method for classification of these cells3. We report here the creation and analysis of a database of global gene expression profiles (“Stem Cell Matrix”) that enables the classification of cultured human stem cells in the context of a wide variety of pluripotent, multipotent, and differentiated cell types. Using an unsupervised clustering method4, 5 to categorize a collection of ~150 cell samples, we discovered that pluripotent stem cell lines group together, while other cell types, including brain-derived neural stem cell lines, are very diverse. Using further bioinformatic analysis6 we uncovered a protein-protein network (“PluriNet”) that is shared by the pluripotent cells (embryonic stem cells, embryonal carcinomas, and induced pluripotent cells). Analysis of published data showed that the PluriNet appears to be a common characteristic of pluripotent cells, including mouse ES and iPS cells and human oocytes. Our results offer a new strategy for classifying stem cells and support the idea that pluripotence and self-renewal are under tight control by specific molecular networks. PMID:18724358

  12. Research strategies in human behaviour genetics.

    PubMed Central

    Vogel, F

    1987-01-01

    Genetic variation influencing normal and abnormal human behaviour has been studied since Francis Galton's work in the second half of the 19th century. However, most of these studies have consisted of biometric analysis of complex phenotypes; the genotype has been treated as a 'black box'. The concepts and analytical tools of modern genetics have rarely been used. In this lecture, some examples are given of approaches combining tools from genetics, cytogenetics, and various fields of neurobiology which might help in the analysis of genetic mechanisms leading, in interaction with the environment, to individual differences in behaviour, mental performance, and susceptibility to mental diseases. PMID:2883319

  13. Caries: Review of Human Genetics Research

    PubMed Central

    Vieira, Alexandre R.; Modesto, Adriana; Marazita, Mary L.

    2014-01-01

    The NIH Consensus Development Program released a statement in 2001 (NIH Consensus Statement, 2001) and listed six major clinical caries research directions. One of these directions was the need for genetic studies to identify genes and genetic markers of diagnostic, prognostic, and therapeutic value. This last decade has seen a steep increase in studies investigating the presence of genetic factors influencing individual susceptibility to caries. This review revisits recent caries human genetic studies and provides a perspective for future studies in order to fulfill their promise of revolutionizing our understanding of and the standard of care for the most prevalent bacteria-mediated non-contagious disease in the world. PMID:24853115

  14. Serologically defined V region subgroups of human lambda light chains.

    PubMed

    Solomon, A; Weiss, D T

    1987-08-01

    The availability of numerous antisera prepared against lambda-type Bence Jones proteins and lambda chains of known amino acid sequence has led to the differentiation and classification of human lambda light chains into one of five V lambda subgroups. The five serologically defined subgroups, V lambda I, V lambda II, V lambda III, V lambda IV, and V lambda VI, correspond to the chemical classification that is based on sequence homologies in the first framework region (FR1). Proteins designated by sequence as lambda V react with specific anti-lambda II antisera and are thus included in the V lambda II subgroup classification. The isotypic nature of the five V lambda subgroups was evidenced through analyses of lambda-type light chains that were isolated from the IgG of normal individuals. Based on analyses of 116 Bence Jones proteins, the frequency of distribution of the lambda I, lambda II/V, lambda III, lambda IV, and lambda VI proteins in the normal lambda chain population is estimated to be 27%, 37%, 23%, 3%, and 10%, respectively. This distribution of V lambda subgroups was comparable to that found among 82 monoclonal Ig lambda proteins. Considerable V lambda intragroup antigenic heterogeneity was also apparent. At least two sub-subgroups were identified among each of the five major V lambda subgroups, implying the existence of multiple genes in the human V lambda genome. The V lambda classification of 54 Ig lambda proteins obtained from patients with primary or multiple myeloma-associated amyloidosis substantiated the preferential association of lambda VI light chains with amyloidosis AL and the predominance of the normally rare V lambda VI subgroup in this disease. PMID:3110284

  15. Defining human mesenchymal stem cell efficacy in vivo.

    PubMed

    Bonfield, Tracey L; Nolan Koloze, Mary T; Lennon, Donald P; Caplan, Arnold I

    2010-01-01

    Allogeneic human mesenchymal stem cells (hMSCs) can suppress graft versus host disease (GvHD) and have profound anti-inflammatory and regenerative capacity in stroke, infarct, spinal cord injury, meniscus regeneration, tendinitis, acute renal failure, and heart disease in human and animal models of disease. There is significant clinical hMSC variability in efficacy and the ultimate response in vivo. The challenge in hMSC based therapy is defining the efficacy of hMSC in vivo. Models which may provide insight into hMSC bioactivity in vivo would provide a means to distinguish hMSCs for clinical utility. hMSC function has been described as both regenerative and trophic through the production of bioactive factors. The regenerative component involves the multi-potentiality of hMSC progenitor differentiation. The secreted factors generated by the hMSCs are milieu and injury specific providing unique niches for responses in vivo. These bioactive factors are anti-scarring, angiogenic, anti-apoptotic as well as regenerative. Further, from an immunological standpoint, hMSC's can avoid host immune response, providing xenographic applications. To study the in vivo immuno-regulatory effectiveness of hMSCs, we used the ovalbumin challenge model of acute asthma. This is a quick 3 week in vivo pulmonary inflammation model with readily accessible ways of measuring effectiveness of hMSCs. Our data show that there is a direct correlation between the traditional ceramic cube score to hMSCs attenuation of cellular recruitment due to ovalbumin challenge. The results from these studies verify the in vivo immuno-modulator effectiveness of hMSCs and support the potential use of the ovalbumin model as an in vivo model of hMSC potency and efficacy. Our data also support future directions toward exploring hMSCs as an alternative therapeutic for the treatment of airway inflammation associated with asthma. PMID:20974000

  16. Non-Standard Genetic Codes Define New Concepts for Protein Engineering.

    PubMed

    Bezerra, Ana R; Guimarães, Ana R; Santos, Manuel A S

    2015-01-01

    The essential feature of the genetic code is the strict one-to-one correspondence between codons and amino acids. The canonical code consists of three stop codons and 61 sense codons that encode 20% of the amino acid repertoire observed in nature. It was originally designated as immutable and universal due to its conservation in most organisms, but sequencing of genes from the human mitochondrial genomes revealed deviations in codon assignments. Since then, alternative codes have been reported in both nuclear and mitochondrial genomes and genetic code engineering has become an important research field. Here, we review the most recent concepts arising from the study of natural non-standard genetic codes with special emphasis on codon re-assignment strategies that are relevant to engineering genetic code in the laboratory. Recent tools for synthetic biology and current attempts to engineer new codes for incorporation of non-standard amino acids are also reviewed in this article. PMID:26569314

  17. Non-Standard Genetic Codes Define New Concepts for Protein Engineering

    PubMed Central

    Bezerra, Ana R.; Guimarães, Ana R.; Santos, Manuel A. S.

    2015-01-01

    The essential feature of the genetic code is the strict one-to-one correspondence between codons and amino acids. The canonical code consists of three stop codons and 61 sense codons that encode 20% of the amino acid repertoire observed in nature. It was originally designated as immutable and universal due to its conservation in most organisms, but sequencing of genes from the human mitochondrial genomes revealed deviations in codon assignments. Since then, alternative codes have been reported in both nuclear and mitochondrial genomes and genetic code engineering has become an important research field. Here, we review the most recent concepts arising from the study of natural non-standard genetic codes with special emphasis on codon re-assignment strategies that are relevant to engineering genetic code in the laboratory. Recent tools for synthetic biology and current attempts to engineer new codes for incorporation of non-standard amino acids are also reviewed in this article. PMID:26569314

  18. The genetics of neuroticism and human values

    PubMed Central

    Lancaster, Thomas M.; Maio, Gregory R.; Linden, David E. J.

    2016-01-01

    Human values and personality have been shown to share genetic variance in twin studies. However, there is a lack of evidence about the genetic components of this association. This study examined the interplay between genes, values and personality in the case of neuroticism, because polygenic scores were available for this personality trait. First, we replicated prior evidence of a positive association between the polygenic neuroticism score (PNS) and neuroticism. Second, we found that the PNS was significantly associated with the whole human value space in a sinusoidal waveform that was consistent with Schwartz's circular model of human values. These results suggest that it is useful to consider human values in the analyses of genetic contributions to personality traits. They also pave the way for an investigation of the biological mechanisms contributing to human value orientations. PMID:26915771

  19. A Constrained Genetic Algorithm with Adaptively Defined Fitness Function in MRS Quantification

    NASA Astrophysics Data System (ADS)

    Papakostas, G. A.; Karras, D. A.; Mertzios, B. G.; Graveron-Demilly, D.; van Ormondt, D.

    MRS Signal quantification is a rather involved procedure and has attracted the interest of the medical engineering community, regarding the development of computationally efficient methodologies. Significant contributions based on Computational Intelligence tools, such as Neural Networks (NNs), demonstrated a good performance but not without drawbacks already discussed by the authors. On the other hand preliminary application of Genetic Algorithms (GA) has already been reported in the literature by the authors regarding the peak detection problem encountered in MRS quantification using the Voigt line shape model. This paper investigates a novel constrained genetic algorithm involving a generic and adaptively defined fitness function which extends the simple genetic algorithm methodology in case of noisy signals. The applicability of this new algorithm is scrutinized through experimentation in artificial MRS signals interleaved with noise, regarding its signal fitting capabilities. Although extensive experiments with real world MRS signals are necessary, the herein shown performance illustrates the method's potential to be established as a generic MRS metabolites quantification procedure.

  20. Genetically Engineered Pig Models for Human Diseases

    PubMed Central

    Prather, Randall S.; Lorson, Monique; Ross, Jason W.; Whyte, Jeffrey J.; Walters, Eric

    2015-01-01

    Although pigs are used widely as models of human disease, their utility as models has been enhanced by genetic engineering. Initially, transgenes were added randomly to the genome, but with the application of homologous recombination, zinc finger nucleases, and transcription activator-like effector nuclease (TALEN) technologies, now most any genetic change that can be envisioned can be completed. To date these genetic modifications have resulted in animals that have the potential to provide new insights into human diseases for which a good animal model did not exist previously. These new animal models should provide the preclinical data for treatments that are developed for diseases such as Alzheimer's disease, cystic fibrosis, retinitis pigmentosa, spinal muscular atrophy, diabetes, and organ failure. These new models will help to uncover aspects and treatments of these diseases that were otherwise unattainable. The focus of this review is to describe genetically engineered pigs that have resulted in models of human diseases. PMID:25387017

  1. BAC transgenesis in human embryonic stem cells as a novel tool to define the human neural lineage.

    PubMed

    Placantonakis, Dimitris G; Tomishima, Mark J; Lafaille, Fabien; Desbordes, Sabrina C; Jia, Fan; Socci, Nicholas D; Viale, Agnes; Lee, Hyojin; Harrison, Neil; Tabar, Viviane; Studer, Lorenz

    2009-03-01

    Human embryonic stem cells (hESCs) have enormous potential for applications in basic biology and regenerative medicine. However, harnessing the potential of hESCs toward generating homogeneous populations of specialized cells remains challenging. Here we describe a novel technology for the genetic identification of defined hESC-derived neural cell types using bacterial artificial chromosome (BAC) transgenesis. We generated hESC lines stably expressing Hes5::GFP, Dll1::GFP, and HB9::GFP BACs that yield green fluorescent protein (GFP)(+) neural stem cells, neuroblasts, and motor neurons, respectively. Faithful reporter expression was confirmed by cell fate analysis and appropriate transgene regulation. Prospective isolation of HB9::GFP(+) cells yielded purified human motor neurons with proper marker expression and electrophysiological activity. Global mRNA and microRNA analyses of Hes5::GFP(+) and HB9::GFP(+) populations revealed highly specific expression signatures, suggesting that BAC transgenesis will be a powerful tool for establishing expression libraries that define the human neural lineage and for accessing defined cell types in applications of human disease. PMID:19074416

  2. Genetic Diversity and Human Equality.

    ERIC Educational Resources Information Center

    Dobzhansky, Theodosius

    The idea of equality often, if not frequently, bogs down in confusion and apparent contradictions; equality is confused with identity, and diversity with inequality. It would seem that the easiest way to discredit the idea of equality is to show that people are innately, genetically, and, therefore, irremediably diverse and unlike. The snare is,…

  3. A current genetic and epigenetic view on human aging mechanisms.

    PubMed

    Ostojić, Sala; Pereza, Nina; Kapović, Miljenko

    2009-06-01

    The process of aging is one of the most complex and intriguing biological phenomenons. Aging is a genetically regulated process in which the organism's maximum lifespan potential is pre-determined, while the rate of aging is influenced by environmental factors and lifestyle. Considering the complexity of mechanisms involved in the regulation of aging process, up to this date there isn't a major, unifying theory which could explain them. As genetic/epigenetic and environmental factors both inevitably influence the aging process, here we present a review on the genetic and epigenetic regulation of the most important molecular and cellular mechanisms involved in the process of aging. Based on the studies on oxidative stress, metabolism, genome stability, epigenetic modifications and cellular senescence in animal models and humans, we give an overview of key genetic and molecular pathways related to aging. As most of genetic manipulations which influence the aging process also affect reproduction, we discuss aging in humans as a post-reproductive genetically determined process. After the age of reproductive success, aging continously progresses which clinically coincides with the onset of most chronic diseases, cancers and dementions. As evolution shapes the genomes for reproductive success and not for post-reproductive survival, aging could be defined as a protective mechanism which ensures the preservation and progress of species through the modification, trasmission and improvement of genetic material. PMID:19662799

  4. Genetic and demographic criteria for defining population units for conservation: The value of clear messages

    USGS Publications Warehouse

    Esler, Daniel; Iverson, S.A.; Rizzolo, D.J.

    2006-01-01

    In a recent paper on Harlequin Duck (Histrionicus histrionicus) interannual site fidelity (Iverson et al. 2004), we concluded that wintering populations were demographically structured at a finer geographic scale than that at which genetic differentiation was observed and that conservation efforts should recognize this degree of demographic independence. In a critique of our study, Pearce and Talbot (2006) contend that our measures of fidelity were not robust and imply that in the face of "mixed messages" we failed to appreciate the role of genetic data in defining population units. We recognize, as we did in our original paper, that our methods for quantifying site fidelity have some limitations; however, the patterns in our data are consistent with a considerable body of literature indicating high winter site fidelity in Harlequin Ducks. Moreover, we do not consider differences in the scales at which genetic and demographic structure are expressed to be "mixed messages," given the different spatial and temporal scales at which genetic and contemporary demographic processes operate. We emphasize that a lack of genetic differentiation does not necessarily preclude the existence of contemporary demographic structure with relevance for conservation. ?? The Cooper Ornithological Society 2006.

  5. Isolation and properties of genetically defined strains of the methylotrophic yeast Hansenula polymorpha CBS4732.

    PubMed

    Lahtchev, Kantcho L; Semenova, Vika D; Tolstorukov, Ilia I; van der Klei, Ida; Veenhuis, Marten

    2002-02-01

    Genetically defined strains of the yeast Hansenula polymorpha were constructed from a clone of H. polymorpha CBS4732 with very low mating and sporulation abilities. Mating, spore viability, and the percentage of four-spore-containing asci were increased to a level at which tetrad analysis was possible. Auxotrophic mutations in 30 genes were isolated and used to construct strains with multiple markers for mapping studies, transformation with plasmid DNA, and mutant screening. Various other types of mutants were isolated and characterized, among them mutants that displayed an altered morphology, methanol-utilization deficient mutants and strains impaired in the biosynthesis of alcohol oxidase and catalase. Also, the mutability of H. polymorpha CBS4732 vs H. polymorpha NCYC495 was compared. The data revealed clear differences in frequencies of appearance and mutational spectra of some mutants isolated. Many of the mutants isolated had good mating abilities, and diploids resulting from their crossing displayed high sporulation frequencies and high spore viability. Most of the markers used revealed normal Mendelian segregation during meiosis. The frequency of tetratype spore formation was lower than in Saccharomyces cerevisiae suggesting a lower frequency of recombination during the second meiotic division. The properties of genetically defined strains of H. polymorpha CBS4732 as well as their advantages for genetics and molecular studies are discussed. PMID:11807564

  6. Human genetic variability and HIV treatment response.

    PubMed

    Haas, David W

    2006-07-01

    Access to potent antiretroviral medications greatly reduces morbidity and mortality due to HIV/AIDS, but drug toxicity limits treatment success in many individuals. The field of pharmacogenomics strives to understand the influence of human genetic variants in response to medications. Investigators have begun to identify associations among human genetic variants, predisposition to HIV drug toxicities, and likelihood of virologic response. These include associations among abacavir hypersensitivity reactions, HLA type, and hsp70-hom genotypes, and among CYP2B6 polymorphisms, efavirenz pharmacokinetics, and central nervous system symptoms. Pharmacogenomics also holds great promise to suggest novel targets for drug development. The discovery that a naturally occurring, nonfunctional variant of the HIV receptor gene CCR5 protected against HIV infection encouraged the development of CCR5 antagonists. Through continued translational and applied research, pharmacogenomics will ultimately benefit persons living with HIV worldwide by identifying new therapeutic targets and through individualized drug prescribing that is informed by human genetic testing. PMID:16608660

  7. Wild gazelles of the southern Levant: genetic profiling defines new conservation priorities.

    PubMed

    Hadas, Lia; Hermon, Dalia; Boldo, Amizor; Arieli, Gal; Gafny, Ron; King, Roni; Bar-Gal, Gila Kahila

    2015-01-01

    The mountain gazelle (Gazella gazelle), Dorcas gazelle (Gazella Dorcas) and acacia gazelle (Gazella arabica acacia) were historically abundant in the southern Levant, and more specifically in Israel. Anthropogenic and natural changes have caused a rapid decline in gazelle populations, raising concerns about their conservation status and future survival. The genetic profile of 111 wild gazelles from Israel was determined based on three regions of mitochondrial DNA (control region, Cytochrome b and 12S ribosomal RNA) and nine nuclear microsatellite markers. Genetic analysis of the mountain gazelle population, the largest known population of this rare species, revealed adequate diversity levels and gene flow between subpopulations. Nevertheless, ongoing habitat degradation and other human effects, such as poaching, suggest the need for drastic measures to prevent species extinction. Dorcas gazelles in Israel displayed inbreeding within subpopulations while still maintaining considerable genetic diversity overall. This stable population, represented by a distinctive genetic profile, is fragmented and isolated from its relatives in neighboring localities. Based on the genetic profile of a newly sampled subpopulation in Israel, we provide an alternative hypothesis for the historic dispersal of Dorcas gazelle, from the Southern Levant to northern Africa. The small acacia gazelle population was closest to gazelles from the Farasan Islands of Saudi Arabia, based on mitochondrial markers. The two populations did not share haplotypes, suggesting that these two populations may be the last remnant wild gazelles of this species worldwide. Only a dozen acacia gazelles survive in Israel, and urgent steps are needed to ensure the survival of this genetically distinctive lineage. The genetic assessments of our study recognize new conservation priorities for each gazelle species in the Southern Levant. PMID:25760948

  8. Wild Gazelles of the Southern Levant: Genetic Profiling Defines New Conservation Priorities

    PubMed Central

    Hadas, Lia; Hermon, Dalia; Boldo, Amizor; Arieli, Gal; Gafny, Ron; King, Roni; Bar-Gal, Gila Kahila

    2015-01-01

    The mountain gazelle (Gazella gazelle), Dorcas gazelle (Gazella Dorcas) and acacia gazelle (Gazella arabica acacia) were historically abundant in the southern Levant, and more specifically in Israel. Anthropogenic and natural changes have caused a rapid decline in gazelle populations, raising concerns about their conservation status and future survival. The genetic profile of 111 wild gazelles from Israel was determined based on three regions of mitochondrial DNA (control region, Cytochrome b and 12S ribosomal RNA) and nine nuclear microsatellite markers. Genetic analysis of the mountain gazelle population, the largest known population of this rare species, revealed adequate diversity levels and gene flow between subpopulations. Nevertheless, ongoing habitat degradation and other human effects, such as poaching, suggest the need for drastic measures to prevent species extinction. Dorcas gazelles in Israel displayed inbreeding within subpopulations while still maintaining considerable genetic diversity overall. This stable population, represented by a distinctive genetic profile, is fragmented and isolated from its relatives in neighboring localities. Based on the genetic profile of a newly sampled subpopulation in Israel, we provide an alternative hypothesis for the historic dispersal of Dorcas gazelle, from the Southern Levant to northern Africa. The small acacia gazelle population was closest to gazelles from the Farasan Islands of Saudi Arabia, based on mitochondrial markers. The two populations did not share haplotypes, suggesting that these two populations may be the last remnant wild gazelles of this species worldwide. Only a dozen acacia gazelles survive in Israel, and urgent steps are needed to ensure the survival of this genetically distinctive lineage. The genetic assessments of our study recognize new conservation priorities for each gazelle species in the Southern Levant. PMID:25760948

  9. Pharmacogenetics: implications of race and ethnicity on defining genetic profiles for personalized medicine.

    PubMed

    Ortega, Victor E; Meyers, Deborah A

    2014-01-01

    Pharmacogenetics is being used to develop personalized therapies specific to subjects from different ethnic or racial groups. To date, pharmacogenetic studies have been primarily performed in trial cohorts consisting of non-Hispanic white subjects of European descent. A "bottleneck" or collapse of genetic diversity associated with the first human colonization of Europe during the Upper Paleolithic period, followed by the recent mixing of African, European, and Native American ancestries, has resulted in different ethnic groups with varying degrees of genetic diversity. Differences in genetic ancestry might introduce genetic variation, which has the potential to alter the therapeutic efficacy of commonly used asthma therapies, such as β2-adrenergic receptor agonists (β-agonists). Pharmacogenetic studies of admixed ethnic groups have been limited to small candidate gene association studies, of which the best example is the gene coding for the receptor target of β-agonist therapy, the β2-adrenergic receptor (ADRB2). Large consortium-based sequencing studies are using next-generation whole-genome sequencing to provide a diverse genome map of different admixed populations, which can be used for future pharmacogenetic studies. These studies will include candidate gene studies, genome-wide association studies, and whole-genome admixture-based approaches that account for ancestral genetic structure, complex haplotypes, gene-gene interactions, and rare variants to detect and replicate novel pharmacogenetic loci. PMID:24369795

  10. Pharmacogenetics: Implications of Race and Ethnicity on Defining Genetic Profiles for Personalized Medicine

    PubMed Central

    Ortega, Victor E.; Meyers, Deborah A.

    2014-01-01

    Pharmacogenetics is being used to develop personalized therapies specific to individuals from different ethnic or racial groups. Pharmacogenetic studies to date have been primarily performed in trial cohorts consisting of non-Hispanic whites of European descent. A “bottleneck” or collapse of genetic diversity associated with the first human colonization of Europe during the Upper Paleolithic period, followed by the recent mixing of African, European, and Native American ancestries has resulted in different ethnic groups with varying degrees of genetic diversity. Differences in genetic ancestry may introduce genetic variation which has the potential to alter the therapeutic efficacy of commonly used asthma therapies, for example β2-adrenergic receptor agonists (beta agonists). Pharmacogenetic studies of admixed ethnic groups have been limited to small candidate gene association studies of which the best example is the gene coding for the receptor target of beta agonist therapy, ADRB2. Large consortium-based sequencing studies are using next-generation whole-genome sequencing to provide a diverse genome map of different admixed populations which can be used for future pharmacogenetic studies. These studies will include candidate gene studies, genome-wide association studies, and whole-genome admixture-based approaches which account for ancestral genetic structure, complex haplotypes, gene-gene interactions, and rare variants to detect and replicate novel pharmacogenetic loci. PMID:24369795

  11. Emerging Technologies to Create Inducible and Genetically Defined Porcine Cancer Models

    PubMed Central

    Schook, Lawrence B.; Rund, Laurie; Begnini, Karine R.; Remião, Mariana H.; Seixas, Fabiana K.; Collares, Tiago

    2016-01-01

    There is an emerging need for new animal models that address unmet translational cancer research requirements. Transgenic porcine models provide an exceptional opportunity due to their genetic, anatomic, and physiological similarities with humans. Due to recent advances in the sequencing of domestic animal genomes and the development of new organism cloning technologies, it is now very feasible to utilize pigs as a malleable species, with similar anatomic and physiological features with humans, in which to develop cancer models. In this review, we discuss genetic modification technologies successfully used to produce porcine biomedical models, in particular the Cre-loxP System as well as major advances and perspectives the CRISPR/Cas9 System. Recent advancements in porcine tumor modeling and genome editing will bring porcine models to the forefront of translational cancer research. PMID:26973698

  12. Genetic aspects of human congenital diaphragmatic hernia

    PubMed Central

    Pober, BR

    2010-01-01

    Congenital diaphragmatic hernia (CDH) is a common major malformation affecting 1/3000–1/4000 births, which continues to be associated with significant perinatal mortality. Much current research is focused on elucidating the genetics and pathophysiology contributing to CDH to develop more effective therapies. The latest data suggest that many cases of CDH are genetically determined and also indicate that CDH is etiologically heterogeneous. The present review will provide a brief summary of diaphragm development and model organism work most relevant to human CDH and will primarily describe important human phenotypes associated with CDH and also provide recommendations for diagnostic evaluation of a fetus or infant with CDH. PMID:18510546

  13. Human genetics of tuberculosis: a long and winding road

    PubMed Central

    Abel, Laurent; El-Baghdadi, Jamila; Bousfiha, Ahmed Aziz; Casanova, Jean-Laurent; Schurr, Erwin

    2014-01-01

    Only a small fraction of individuals exposed to Mycobacterium tuberculosis develop clinical tuberculosis (TB). Over the past century, epidemiological studies have shown that human genetic factors contribute significantly to this interindividual variability, and molecular progress has been made over the past decade for at least two of the three key TB-related phenotypes: (i) a major locus controlling resistance to infection with M. tuberculosis has been identified, and (ii) proof of principle that severe TB of childhood can result from single-gene inborn errors of interferon-γ immunity has been provided; genetic association studies with pulmonary TB in adulthood have met with more limited success. Future genetic studies of these three phenotypes could consider subgroups of subjects defined on the basis of individual (e.g. age at TB onset) or environmental (e.g. pathogen strain) factors. Progress may also be facilitated by further methodological advances in human genetics. Identification of the human genetic variants controlling the various stages and forms of TB is critical for understanding TB pathogenesis. These findings should have major implications for TB control, in the definition of improved prevention strategies, the optimization of vaccines and clinical trials and the development of novel treatments aiming to restore deficient immune responses. PMID:24821915

  14. [Human genetic data from a data protection law perspective].

    PubMed

    Schulte In den Bäumen, Tobias

    2007-02-01

    The collection and use of genetic data have caused much concern in the German population. Data protection is widely seen as the tool to address these fears. The term genetic data is not self-explanatory, as it depends on the different types of genetic diseases. The protection of genetic data as defined with regard to the different sets of diseases needs to fit into the preexisting data protection legislation. Still, the particularities of genetic data such as the multipersonal impact need to be considered. A balance between the information needs of society and the right to privacy requires a medically driven criteria. The medical term of indication which corresponds with the data protection term of purpose should serve as a tool in order to balance the rights of the patients and their relatives or between clients and third persons involved. Some countries have set up new legislative acts to address the challenges of human genetics. The current state of German data protection law leaves citizen rather unprotected as long as the data are used for medical purposes in a wider sense. A special law on the collection of genetic data has been discussed for several years, but it should be questioned whether the scope of a sector-specific law would serve citizens better. It seems to be preferable to adjust the existing Data Protection Act rather than drafting a specific law which covers the field of human genetics. This adaptation should reflect upon the different technical ways in which genetic data are collected and used. PMID:17238055

  15. Transgenic FingRs for Live Mapping of Synaptic Dynamics in Genetically-Defined Neurons

    PubMed Central

    Son, Jong-Hyun; Keefe, Matthew D.; Stevenson, Tamara J.; Barrios, Joshua P.; Anjewierden, Scott; Newton, James B.; Douglass, Adam D.; Bonkowsky, Joshua L.

    2016-01-01

    Tools for genetically-determined visualization of synaptic circuits and interactions are necessary to build connectomics of the vertebrate brain and to screen synaptic properties in neurological disease models. Here we develop a transgenic FingR (fibronectin intrabodies generated by mRNA display) technology for monitoring synapses in live zebrafish. We demonstrate FingR labeling of defined excitatory and inhibitory synapses, and show FingR applicability for dissecting synapse dynamics in normal and disease states. Using our system we show that chronic hypoxia, associated with neurological defects in preterm birth, affects dopaminergic neuron synapse number depending on the developmental timing of hypoxia. PMID:26728131

  16. Population genetics of malaria resistance in humans.

    PubMed

    Hedrick, P W

    2011-10-01

    The high mortality and widespread impact of malaria have resulted in this disease being the strongest evolutionary selective force in recent human history, and genes that confer resistance to malaria provide some of the best-known case studies of strong positive selection in modern humans. I begin by reviewing JBS Haldane's initial contribution to the potential of malaria genetic resistance in humans. Further, I discuss the population genetics aspects of many of the variants, including globin, G6PD deficiency, Duffy, ovalocytosis, ABO and human leukocyte antigen variants. Many of the variants conferring resistance to malaria are 'loss-of-function' mutants and appear to be recent polymorphisms from the last 5000-10 000 years or less. I discuss estimation of selection coefficients from case-control data and make predictions about the change for S, C and G6PD-deficiency variants. In addition, I consider the predicted joint changes when the two β-globin alleles S and C are both variable in the same population and when there is a variation for α-thalassemia and S, two unlinked, but epistatic variants. As more becomes known about genes conferring genetic resistance to malaria in humans, population genetics approaches can contribute both to investigating past selection and predicting the consequences in future generations for these variants. PMID:21427751

  17. Population genetics of malaria resistance in humans

    PubMed Central

    Hedrick, P W

    2011-01-01

    The high mortality and widespread impact of malaria have resulted in this disease being the strongest evolutionary selective force in recent human history, and genes that confer resistance to malaria provide some of the best-known case studies of strong positive selection in modern humans. I begin by reviewing JBS Haldane's initial contribution to the potential of malaria genetic resistance in humans. Further, I discuss the population genetics aspects of many of the variants, including globin, G6PD deficiency, Duffy, ovalocytosis, ABO and human leukocyte antigen variants. Many of the variants conferring resistance to malaria are ‘loss-of-function' mutants and appear to be recent polymorphisms from the last 5000–10 000 years or less. I discuss estimation of selection coefficients from case–control data and make predictions about the change for S, C and G6PD-deficiency variants. In addition, I consider the predicted joint changes when the two β-globin alleles S and C are both variable in the same population and when there is a variation for α-thalassemia and S, two unlinked, but epistatic variants. As more becomes known about genes conferring genetic resistance to malaria in humans, population genetics approaches can contribute both to investigating past selection and predicting the consequences in future generations for these variants. PMID:21427751

  18. Genetical genomic determinants of alcohol consumption in rats and humans

    PubMed Central

    Tabakoff, Boris; Saba, Laura; Printz, Morton; Flodman, Pam; Hodgkinson, Colin; Goldman, David; Koob, George; Richardson, Heather N; Kechris, Katerina; Bell, Richard L; Hübner, Norbert; Heinig, Matthias; Pravenec, Michal; Mangion, Jonathan; Legault, Lucie; Dongier, Maurice; Conigrave, Katherine M; Whitfield, John B; Saunders, John; Grant, Bridget; Hoffman, Paula L

    2009-01-01

    Background We have used a genetical genomic approach, in conjunction with phenotypic analysis of alcohol consumption, to identify candidate genes that predispose to varying levels of alcohol intake by HXB/BXH recombinant inbred rat strains. In addition, in two populations of humans, we assessed genetic polymorphisms associated with alcohol consumption using a custom genotyping array for 1,350 single nucleotide polymorphisms (SNPs). Our goal was to ascertain whether our approach, which relies on statistical and informatics techniques, and non-human animal models of alcohol drinking behavior, could inform interpretation of genetic association studies with human populations. Results In the HXB/BXH recombinant inbred (RI) rats, correlation analysis of brain gene expression levels with alcohol consumption in a two-bottle choice paradigm, and filtering based on behavioral and gene expression quantitative trait locus (QTL) analyses, generated a list of candidate genes. A literature-based, functional analysis of the interactions of the products of these candidate genes defined pathways linked to presynaptic GABA release, activation of dopamine neurons, and postsynaptic GABA receptor trafficking, in brain regions including the hypothalamus, ventral tegmentum and amygdala. The analysis also implicated energy metabolism and caloric intake control as potential influences on alcohol consumption by the recombinant inbred rats. In the human populations, polymorphisms in genes associated with GABA synthesis and GABA receptors, as well as genes related to dopaminergic transmission, were associated with alcohol consumption. Conclusion Our results emphasize the importance of the signaling pathways identified using the non-human animal models, rather than single gene products, in identifying factors responsible for complex traits such as alcohol consumption. The results suggest cross-species similarities in pathways that influence predisposition to consume alcohol by rats and humans

  19. Murine Gut Microbiota Is Defined by Host Genetics and Modulates Variation of Metabolic Traits

    PubMed Central

    Lu, Lu; Williams, Evan G.; Brewer, Simon; Andreux, Pénélope A.; Bastiaansen, John W. M.; Wang, Xusheng; Kachman, Stephen D.; Auwerx, Johan; Williams, Robert W.; Benson, Andrew K.; Peterson, Daniel A.; Ciobanu, Daniel C.

    2012-01-01

    The gastrointestinal tract harbors a complex and diverse microbiota that has an important role in host metabolism. Microbial diversity is influenced by a combination of environmental and host genetic factors and is associated with several polygenic diseases. In this study we combined next-generation sequencing, genetic mapping, and a set of physiological traits of the BXD mouse population to explore genetic factors that explain differences in gut microbiota and its impact on metabolic traits. Molecular profiling of the gut microbiota revealed important quantitative differences in microbial composition among BXD strains. These differences in gut microbial composition are influenced by host-genetics, which is complex and involves many loci. Linkage analysis defined Quantitative Trait Loci (QTLs) restricted to a particular taxon, branch or that influenced the variation of taxa across phyla. Gene expression within the gastrointestinal tract and sequence analysis of the parental genomes in the QTL regions uncovered candidate genes with potential to alter gut immunological profiles and impact the balance between gut microbial communities. A QTL region on Chr 4 that overlaps several interferon genes modulates the population of Bacteroides, and potentially Bacteroidetes and Firmicutes–the predominant BXD gut phyla. Irak4, a signaling molecule in the Toll-like receptor pathways is a candidate for the QTL on Chr15 that modulates Rikenellaceae, whereas Tgfb3, a cytokine modulating the barrier function of the intestine and tolerance to commensal bacteria, overlaps a QTL on Chr 12 that influence Prevotellaceae. Relationships between gut microflora, morphological and metabolic traits were uncovered, some potentially a result of common genetic sources of variation. PMID:22723961

  20. A New Approach to Defining Human Touch Temperature Standards

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene; Stroud, Kenneth

    2010-01-01

    Defining touch temperature limits for skin contact with both hot and cold objects is important to prevent pain and skin damage, which may affect task performance or become a safety concern. Pain and skin damage depend on the skin temperature during contact, which depends on the contact thermal conductance, the object's initial temperature, and its material properties. However, previous spacecraft standards have incorrectly defined touch temperature limits in terms of a single object temperature value for all materials, or have provided limited material-specific values which do not cover the gamut of likely designs. A new approach has been developed for updated NASA standards, which defines touch temperature limits in terms of skin temperature at pain onset for bare skin contact with hot and cold objects. The authors have developed an analytical verification method for safe hot and cold object temperatures for contact times from 1 second to infinity.

  1. Human genetics shape the gut microbiome

    PubMed Central

    Goodrich, Julia K.; Waters, Jillian L.; Poole, Angela C.; Sutter, Jessica L.; Koren, Omry; Blekhman, Ran; Beaumont, Michelle; Van Treuren, William; Knight, Rob; Bell, Jordana T.; Spector, Timothy D.; Clark, Andrew G.; Ley, Ruth E.

    2014-01-01

    Summary Host genetics and the gut microbiome can both influence metabolic phenotypes. However, whether host genetic variation shapes the gut microbiome and interacts with it to affect host phenotype is unclear. Here, we compared microbiotas across > 1,000 fecal samples obtained from the TwinsUK population, including 416 twin-pairs. We identified many microbial taxa whose abundances were influenced by host genetics. The most heritable taxon, the family Christensenellaceae, formed a cooccurrence network with other heritable Bacteria and with methanogenic Archaea. Furthermore, Christensenellaceae and its partners were enriched in individuals with low body mass index (BMI). An obese-associated microbiome was amended with Christensenella minuta, a cultured member of the Christensenellaceae, and transplanted to germfree mice. C. minuta amendment reduced weight gain and altered the microbiome of recipient mice. Our findings indicate that host genetics influence the composition of the human gut microbiome and can do so in ways that impact host metabolism. PMID:25417156

  2. The genetics of human skin disease.

    PubMed

    DeStefano, Gina M; Christiano, Angela M

    2014-10-01

    The skin is composed of a variety of cell types expressing specific molecules and possessing different properties that facilitate the complex interactions and intercellular communication essential for maintaining the structural integrity of the skin. Importantly, a single mutation in one of these molecules can disrupt the entire organization and function of these essential networks, leading to cell separation, blistering, and other striking phenotypes observed in inherited skin diseases. Over the past several decades, the genetic basis of many monogenic skin diseases has been elucidated using classical genetic techniques. Importantly, the findings from these studies has shed light onto the many classes of molecules and essential genetic as well as molecular interactions that lend the skin its rigid, yet flexible properties. With the advent of the human genome project, next-generation sequencing techniques, as well as several other recently developed methods, tremendous progress has been made in dissecting the genetic architecture of complex, non-Mendelian skin diseases. PMID:25274756

  3. Human genetics: international projects and personalized medicine.

    PubMed

    Apellaniz-Ruiz, Maria; Gallego, Cristina; Ruiz-Pinto, Sara; Carracedo, Angel; Rodríguez-Antona, Cristina

    2016-03-01

    In this article, we present the progress driven by the recent technological advances and new revolutionary massive sequencing technologies in the field of human genetics. We discuss this knowledge in relation with drug response prediction, from the germline genetic variation compiled in the 1000 Genomes Project or in the Genotype-Tissue Expression project, to the phenome-genome archives, the international cancer projects, such as The Cancer Genome Atlas or the International Cancer Genome Consortium, and the epigenetic variation and its influence in gene expression, including the regulation of drug metabolism. This review is based on the lectures presented by the speakers of the Symposium "Human Genetics: International Projects & New Technologies" from the VII Conference of the Spanish Pharmacogenetics and Pharmacogenomics Society, held on the 20th and 21st of April 2015. PMID:26581075

  4. HGDBMS: a human genetics database management system.

    PubMed

    Seuchter, S A; Skolnick, M H

    1988-10-01

    Human genetics research involves a large number of complex data sets naturally organized in hierarchical structures. Data collection is performed on different levels, e.g., the project level, pedigree level, individual level, and sample level. Different aspects of a study utilize different views of the data, requiring a flexible database management system (DBMS) which satisfies these different needs for data collection and retrieval. We describe HGDBMS, a comprehensive relational DBMS, implemented as an application of the GENISYS I DBMS, which allows embedding the hierarchical structure of pedigrees in a relational structure. The system's file structure is described in detail. Currently our Melanoma and Chromosome 17 map studies are managed with HGDBMS. Our initial experience demonstrates the value of a flexible system which supports the needs for data entry, update, storage, reporting, and analysis required during different phases of genetic research. Further developments will focus on the integration of HGDBMS with a human genetics expert system shell and analysis programs. PMID:3180747

  5. Defining Information Needs of Computer Users: A Human Communication Problem.

    ERIC Educational Resources Information Center

    Kimbrough, Kenneth L.

    This exploratory investigation of the process of defining the information needs of computer users and the impact of that process on information retrieval focuses on communication problems. Six sites were visited that used computers to process data or to provide information, including the California Department of Transportation, the California…

  6. Immunity to Visceral Leishmaniasis Using Genetically Defined Live-Attenuated Parasites

    PubMed Central

    Selvapandiyan, Angamuthu; Dey, Ranadhir; Gannavaram, Sreenivas; Lakhal-Naouar, Ines; Duncan, Robert; Salotra, Poonam; Nakhasi, Hira L.

    2012-01-01

    Leishmaniasis is a protozoan parasitic disease endemic to the tropical and subtropical regions of the world, with three major clinical forms, self-healing cutaneous leishmaniasis (CL), mucocutaneous leishmaniasis (MCL), and visceral leishmaniasis (VL). Drug treatments are expensive and often result in the development of drug resistance. No vaccine is available against leishmaniasis. Subunit Leishmania vaccine immunization in animal models has shown some efficacy but little or none in humans. However, individuals who recover from natural infection are protected from reinfection and develop life-long protection, suggesting that infection may be a prerequisite for immunological memory. Thus, genetically altered live-attenuated parasites with controlled infectivity could achieve such memory. In this paper, we discuss development and characteristics of genetically altered, live-attenuated Leishmania donovani parasites and their possible use as vaccine candidates against VL. In addition, we discuss the challenges and other considerations in the use of live-attenuated parasites. PMID:21912560

  7. BLVRB redox mutation defines heme degradation in a metabolic pathway of enhanced thrombopoiesis in humans.

    PubMed

    Wu, Song; Li, Zongdong; Gnatenko, Dmitri V; Zhang, Beibei; Zhao, Lu; Malone, Lisa E; Markova, Nedialka; Mantle, Timothy J; Nesbitt, Natasha M; Bahou, Wadie F

    2016-08-01

    Human blood cell counts are tightly maintained within narrow physiologic ranges, largely controlled by cytokine-integrated signaling and transcriptional circuits that regulate multilineage hematopoietic specification. Known genetic loci influencing blood cell production account for <10% of platelet and red blood cell variability, and thrombopoietin/cellular myeloproliferative leukemia virus liganding is dispensable for definitive thrombopoiesis, establishing that fundamentally important modifier loci remain unelucidated. In this study, platelet transcriptome sequencing and extended thrombocytosis cohort analyses identified a single loss-of-function mutation (BLVRB(S111L)) causally associated with clonal and nonclonal disorders of enhanced platelet production. BLVRB(S111L) encompassed within the substrate/cofactor [α/β dinucleotide NAD(P)H] binding fold is a functionally defective redox coupler using flavin and biliverdin (BV) IXβ tetrapyrrole(s) and results in exaggerated reactive oxygen species accumulation as a putative metabolic signal leading to differential hematopoietic lineage commitment and enhanced thrombopoiesis. These data define the first physiologically relevant function of BLVRB and implicate its activity and/or heme-regulated BV tetrapyrrole(s) in a unique redox-regulated bioenergetic pathway governing terminal megakaryocytopoiesis; these observations also define a mechanistically restricted drug target retaining potential for enhancing human platelet counts. PMID:27207795

  8. Genetic Manipulation of Human Embryonic Stem Cells.

    PubMed

    Eiges, Rachel

    2016-01-01

    One of the great advantages of embryonic stem (ES) cells over other cell types is their accessibility to genetic manipulation. They can easily undergo genetic modifications while remaining pluripotent, and can be selectively propagated, allowing the clonal expansion of genetically altered cells in culture. Since the first isolation of ES cells in mice, many effective techniques have been developed for gene delivery and manipulation of ES cells. These include transfection, electroporation, and infection protocols, as well as different approaches for inserting, deleting, or changing the expression of genes. These methods proved to be extremely useful in mouse ES cells, for monitoring and directing differentiation, discovering unknown genes, and studying their function, and are now being extensively implemented in human ES cells (HESCs). This chapter describes the different approaches and methodologies that have been applied for the genetic manipulation of HESCs and their applications. Detailed protocols for generating clones of genetically modified HESCs by transfection, electroporation, and infection will be described, with special emphasis on the important technical details that are required for this purpose. All protocols are equally effective in human-induced pluripotent stem (iPS) cells. PMID:25520283

  9. Defining the cellular precursors to human breast cancer

    PubMed Central

    Keller, Patricia J.; Arendt, Lisa M.; Skibinski, Adam; Logvinenko, Tanya; Klebba, Ina; Dong, Shumin; Smith, Avi E.; Prat, Aleix; Perou, Charles M.; Gilmore, Hannah; Schnitt, Stuart; Naber, Stephen P.; Garlick, Jonathan A.; Kuperwasser, Charlotte

    2012-01-01

    Human breast cancers are broadly classified based on their gene-expression profiles into luminal- and basal-type tumors. These two major tumor subtypes express markers corresponding to the major differentiation states of epithelial cells in the breast: luminal (EpCAM+) and basal/myoepithelial (CD10+). However, there are also rare types of breast cancers, such as metaplastic carcinomas, where tumor cells exhibit features of alternate cell types that no longer resemble breast epithelium. Until now, it has been difficult to identify the cell type(s) in the human breast that gives rise to these various forms of breast cancer. Here we report that transformation of EpCAM+ epithelial cells results in the formation of common forms of human breast cancer, including estrogen receptor-positive and estrogen receptor-negative tumors with luminal and basal-like characteristics, respectively, whereas transformation of CD10+ cells results in the development of rare metaplastic tumors reminiscent of the claudin-low subtype. We also demonstrate the existence of CD10+ breast cells with metaplastic traits that can give rise to skin and epidermal tissues. Furthermore, we show that the development of metaplastic breast cancer is attributable, in part, to the transformation of these metaplastic breast epithelial cells. These findings identify normal cellular precursors to human breast cancers and reveal the existence of a population of cells with epidermal progenitor activity within adult human breast tissues. PMID:21940501

  10. Defining the human gallbladder proteome by transcriptomics and affinity proteomics.

    PubMed

    Kampf, Caroline; Mardinoglu, Adil; Fagerberg, Linn; Hallström, Björn M; Danielsson, Angelika; Nielsen, Jens; Pontén, Fredrik; Uhlen, Mathias

    2014-11-01

    Global protein analysis of human gallbladder tissue is vital for identification of molecular regulators and effectors of its physiological activity. Here, we employed a genome-wide deep RNA sequencing analysis in 28 human tissues to identify the genes overrepresented in the gallbladder and complemented it with antibody-based immunohistochemistry in 48 human tissues. We characterized human gallbladder proteins and identified 140 gallbladder-specific proteins with an elevated expression in the gallbladder as compared to the other analyzed tissues. Five genes were categorized as enriched, with at least fivefold higher levels in gallbladder, 60 genes were categorized as group enriched with elevated transcript levels in gallbladder shared with at least one other tissue and 75 genes were categorized as enhanced with higher expression than the average expression in other tissues. We explored the localization of the genes within the gallbladder through cell-type specific antibody-based protein profiling and the subcellular localization of the genes through immunofluorescent-based profiling. Finally, we revealed the biological processes and metabolic functions carried out by these genes through the use of GO, KEGG Pathway, and HMR2.0 that is compilation of the human metabolic reactions. We demonstrated the results of the combined analysis of the transcriptomics and affinity proteomics. PMID:25175928

  11. Human Genetic Disorders of Axon Guidance

    PubMed Central

    Engle, Elizabeth C.

    2010-01-01

    This article reviews symptoms and signs of aberrant axon connectivity in humans, and summarizes major human genetic disorders that result, or have been proposed to result, from defective axon guidance. These include corpus callosum agenesis, L1 syndrome, Joubert syndrome and related disorders, horizontal gaze palsy with progressive scoliosis, Kallmann syndrome, albinism, congenital fibrosis of the extraocular muscles type 1, Duane retraction syndrome, and pontine tegmental cap dysplasia. Genes mutated in these disorders can encode axon growth cone ligands and receptors, downstream signaling molecules, and axon transport motors, as well as proteins without currently recognized roles in axon guidance. Advances in neuroimaging and genetic techniques have the potential to rapidly expand this field, and it is feasible that axon guidance disorders will soon be recognized as a new and significant category of human neurodevelopmental disorders. PMID:20300212

  12. Genetic Heterogeneity in Algerian Human Populations

    PubMed Central

    Deba, Tahria; Calafell, Francesc; Benhamamouch, Soraya; Comas, David

    2015-01-01

    The demographic history of human populations in North Africa has been characterized by complex processes of admixture and isolation that have modeled its current gene pool. Diverse genetic ancestral components with different origins (autochthonous, European, Middle Eastern, and sub-Saharan) and genetic heterogeneity in the region have been described. In this complex genetic landscape, Algeria, the largest country in Africa, has been poorly covered, with most of the studies using a single Algerian sample. In order to evaluate the genetic heterogeneity of Algeria, Y-chromosome, mtDNA and autosomal genome-wide makers have been analyzed in several Berber- and Arab-speaking groups. Our results show that the genetic heterogeneity found in Algeria is not correlated with geography or linguistics, challenging the idea of Berber groups being genetically isolated and Arab groups open to gene flow. In addition, we have found that external sources of gene flow into North Africa have been carried more often by females than males, while the North African autochthonous component is more frequent in paternally transmitted genome regions. Our results highlight the different demographic history revealed by different markers and urge to be cautious when deriving general conclusions from partial genomic information or from single samples as representatives of the total population of a region. PMID:26402429

  13. Protecting Human Research Subjects: The Past Defines the Future

    PubMed Central

    Breault, Joseph L.

    2006-01-01

    The creation of Institutional Review Boards to assure the protection of research subjects came out of terrible research abuses that resulted in the Belmont Report and federal regulations establishing rules for federally funded research and its independent review. The Common Rule became widely accepted as the way to oversee human research that is funded by federal agencies, or used in FDA submissions. The Office of Human Research Protections, now under the Secretary of DHHS, created Federalwide Assurances with groups that receive federal funding and others, the vast majority of which have agreed to apply the same ethical rules to all research regardless of funding source. There are controversies over the best methods to protect human research subjects, confusion about how to handle some of the gray areas, increased regulatory burdens, and debates about the adequacy of the IRB system. New exciting directions have evolved and overall, research subjects appear better protected than ever. PMID:21765779

  14. Defining dignity and its place in human rights.

    PubMed

    Michael, Lucy

    2014-01-01

    The concept of dignity is widely used in society, particularly in reference to human rights law and bioethics. Several conceptions of dignity are identified, falling broadly within two categories: full inherent dignity (FID) and non-inherent dignity (NID). FID is a quality belonging equally to every being with full moral status, including all members of the human natural kind; it is permanent, unconditional, indivisible and inviolable. Those beings with FID ought to be treated deferentially by others by virtue of their belonging to a noble caste. FID grounds fundamental human rights, such as the rights to freedom and equality. The concept of dignity forms a network of interconnected ideas related to worth and value particularly within legal and ethical discourse; it is a rich and meaningful concept, irreducible to one or two quasi-legal principles. Fundamentally, dignity matters because it forms the foundation of civilized society; without it, serious abuse of people is more likely to occur. PMID:24979874

  15. Defining human insulin-like growth factor I gene regulation.

    PubMed

    Mukherjee, Aditi; Alzhanov, Damir; Rotwein, Peter

    2016-08-01

    Growth hormone (GH) plays an essential role in controlling somatic growth and in regulating multiple physiological processes in humans and other species. Insulin-like growth factor I (IGF-I), a conserved, secreted 70-amino acid peptide, is a critical mediator of many of the biological effects of GH. Previous studies have demonstrated that GH rapidly and potently promotes IGF-I gene expression in rodents and in some other mammals through the transcription factor STAT5b, leading to accumulation of IGF-I mRNAs and production of IGF-I. Despite this progress, very little is known about how GH or other trophic factors control human IGF1 gene expression, in large part because of the absence of any cellular model systems that robustly express IGF-I. Here, we have addressed mechanisms of regulation of human IGF-I by GH after generating cells in which the IGF1 chromosomal locus has been incorporated into a mouse cell line. Using this model, we found that physiological levels of GH rapidly stimulate human IGF1 gene transcription and identify several potential transcriptional enhancers in chromatin that bind STAT5b in a GH-regulated way. Each of the putative enhancers also activates a human IGF1 gene promoter in reconstitution experiments in the presence of the GH receptor, STAT5b, and GH. Thus we have developed a novel experimental platform that now may be used to determine how human IGF1 gene expression is controlled under different physiological and pathological conditions. PMID:27406741

  16. Development of Genetically Defined Yellow Perch (Perca flavescens) Broodstocks: Results of Performance Trial on F1 Generations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have begun a selection program for the improvement of yellow perch (Perca flavescens) aquaculture involving the development of genetically defined broodstocks. To initiate the program, 16 wild North American populations were analyzed using published and newly developed microsatellites (Grzybowski...

  17. Eravacycline Pharmacokinetics and Challenges in Defining Humanized Exposure In Vivo.

    PubMed

    Thabit, Abrar K; Monogue, Marguerite L; Nicolau, David P

    2016-08-01

    We assessed the pharmacokinetic profile of eravacycline, a novel antibiotic of the tetracycline class, and determined the dose in an immunocompetent murine thigh infection model that would provide free-drug exposure similar to that observed in humans after the administration of 1 mg/kg intravenously (i.v.) every 12 h (q12h). Eravacycline demonstrated a nonlinear protein-binding profile. The 2.5-mg/kg i.v. q12h dose in mice resulted in an area under the concentration-time curve for the free, unbound fraction of the drug of 1.64 mg · h/liter, which closely resembles the human exposure level. PMID:27353264

  18. Defining cell culture conditions to improve human norovirus infectivity assays.

    PubMed

    Straub, T M; Hutchison, J R; Bartholomew, R A; Valdez, C O; Valentine, N B; Dohnalkova, A; Ozanich, R M; Bruckner-Lea, C J

    2013-01-01

    Significant difficulties remain for determining whether human noroviruses (hNoV) recovered from water, food, and environmental samples are infectious. Three-dimensional (3-D) tissue culture of human intestinal cells has shown promise in developing an infectivity assay, but reproducibility, even within a single laboratory, remains problematic. From the literature and our observations, we hypothesized that the common factors that lead to more reproducible hNoV infectivity in vitro requires that the cell line be (1) of human gastrointestinal origin, (2) expresses apical microvilli, and (3) be a positive secretor cell line. The C2BBe1 cell line, which is a brush-border producing clone of Caco-2, meets these three criteria. When challenged with Genogroup II viruses, we observed a 2 Log(10) increase in viral RNA titer. A passage experiment with GII viruses showed evidence of the ability to propagate hNoV by both quantitative reverse transcription polymerase chain reaction (qRT-PCR) and microscopy. In our hands, using 3-D C2BBe1 cells improves reproducibility of the infectivity assay for hNoV, but the assay can still be variable. Two sources of variability include the cells themselves (mixed phenotypes of small and large intestine) and initial titer measurements using qRT-PCR that measures all RNA vs. plaque assays that measure infectious virus. PMID:23306266

  19. Defining cell culture conditions to improve human norovirus infectivity assays

    SciTech Connect

    Straub, Tim M.; Hutchison, Janine R.; Bartholomew, Rachel A.; Valdez, Catherine O.; Valentine, Nancy B.; Dohnalkova, Alice; Ozanich, Richard M.; Bruckner-Lea, Cindy J.

    2013-01-10

    Significant difficulties remain for determining whether human noroviruses (hNoV) recovered from water, food, and environmental samples are infectious. Three-dimensional tissue culture of human intestinal cells has shown promise in developing an infectivity assay, but reproducibility, even within a single laboratory, remains problematic. From the literature and our observations, we hypothesized that the common factors that leads to more reproducible hNoV infectivity in vitro requires that the cell line be 1) of human gastrointestinal origin, 2) expresses apical microvilli, and 3) be a positive secretor cell line. The C2BBe1 cell line, which is a brush-border producing clone of Caco-2, meets these three criteria. When challenged with Genogroup II viruses, we observed a 2 Log10 increase in viral RNA titer. A passage experiment with GII viruses showed evidence of the ability to propagate hNoV by both reverse transcription quantitative PCR (qRT-PCR) and microscopy. Using 3-D C2BBe1 cells improves reproducibility of the infectivity assay for hNoV, but the assay can still be variable. Two sources of variability include the cells themselves (mixed phenotypes of small and large intestine) and initial titer measurements using quantitative reverse transcription PCR (qRT-PCR) that measures all RNA vs. plaque assays that measure infectious virus.

  20. A global reference for human genetic variation.

    PubMed

    Auton, Adam; Brooks, Lisa D; Durbin, Richard M; Garrison, Erik P; Kang, Hyun Min; Korbel, Jan O; Marchini, Jonathan L; McCarthy, Shane; McVean, Gil A; Abecasis, Gonçalo R

    2015-10-01

    The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies. PMID:26432245

  1. A global reference for human genetic variation

    PubMed Central

    2016-01-01

    The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies. PMID:26432245

  2. New Directions in Science Teaching: Human Genetics Education.

    ERIC Educational Resources Information Center

    Mertens, Thomas R.

    1983-01-01

    The range, complexity, and rapid increase of controversial knowledge about human genetics require that students be taught the biomedical facts and ethical dilemmas. Human genetics education thus provides an excellent opportunity for increasing scientific literacy generally. (PB)

  3. Human Genetic Engineering: A Survey of Student Value Stances

    ERIC Educational Resources Information Center

    Wilson, Sara McCormack; And Others

    1975-01-01

    Assesses the values of high school and college students relative to human genetic engineering and recommends that biology educators explore instructional strategies merging human genetic information with value clarification techniques. (LS)

  4. Correlated genetic effects on reproduction define a domestication syndrome in a forest tree

    PubMed Central

    Santos-del-Blanco, Luis; Alía, Ricardo; González-Martínez, Santiago C; Sampedro, Luis; Lario, Francisco; Climent, José

    2015-01-01

    Compared to natural selection, domestication implies a dramatic change in traits linked to fitness. A number of traits conferring fitness in the wild might be detrimental under domestication, and domesticated species typically differ from their ancestors in a set of traits known as the domestication syndrome. Specifically, trade-offs between growth and reproduction are well established across the tree of life. According to allocation theory, selection for growth rate is expected to indirectly alter life-history reproductive traits, diverting resources from reproduction to growth. Here we tested this hypothesis by examining the genetic change and correlated responses of reproductive traits as a result of selection for timber yield in the tree Pinus pinaster. Phenotypic selection was carried out in a natural population, and progenies from selected trees were compared with those of control trees in a common garden experiment. According to expectations, we detected a genetic change in important life-history traits due to selection. Specifically, threshold sizes for reproduction were much higher and reproductive investment relative to size significantly lower in the selected progenies just after a single artificial selection event. Our study helps to define the domestication syndrome in exploited forest trees and shows that changes affecting developmental pathways are relevant in domestication processes of long-lived plants. PMID:25926884

  5. Genetic Basis of Human Circadian Rhythm Disorders

    PubMed Central

    Jones, Christopher R.; Huang, Angela L.; Ptáček, Louis J.; Fu, Ying-Hui

    2012-01-01

    Circadian rhythm disorders constitute a group of phenotypes that usually present as altered sleep-wake schedules. Until a human genetics approach was applied to investigate these traits, the genetic components regulating human circadian rhythm and sleep behaviors remained mysterious. Steady advances in the last decade have dramatically improved our understanding of the genes involved in circadian rhythmicity and sleep regulation. Finding these genes presents new opportunities to use a wide range of approaches, including in vitro molecular studies and in vivo animal modeling, to elevate our understanding of how sleep and circadian rhythms are regulated and maintained. Ultimately, this knowledge will reveal how circadian and sleep disruption contribute to various ailments and shed light on how best to maintain and recover good health. PMID:22849821

  6. Gene Conversion in Human Genetic Disease

    PubMed Central

    Chen, Jian-Min; Férec, Claude; Cooper, David N.

    2010-01-01

    Gene conversion is a specific type of homologous recombination that involves the unidirectional transfer of genetic material from a ‘donor’ sequence to a highly homologous ‘acceptor’. We have recently reviewed the molecular mechanisms underlying gene conversion, explored the key part that this process has played in fashioning extant human genes, and performed a meta-analysis of gene-conversion events known to have caused human genetic disease. Here we shall briefly summarize some of the latest developments in the study of pathogenic gene conversion events, including (i) the emerging idea of minimal efficient sequence homology (MESH) for homologous recombination, (ii) the local DNA sequence features that appear to predispose to gene conversion, (iii) a mechanistic comparison of gene conversion and transient hypermutability, and (iv) recently reported examples of pathogenic gene conversion events. PMID:24710102

  7. Comprehensive genomic characterization defines human glioblastoma genes and core pathways.

    PubMed

    2008-10-23

    Human cancer cells typically harbour multiple chromosomal aberrations, nucleotide substitutions and epigenetic modifications that drive malignant transformation. The Cancer Genome Atlas (TCGA) pilot project aims to assess the value of large-scale multi-dimensional analysis of these molecular characteristics in human cancer and to provide the data rapidly to the research community. Here we report the interim integrative analysis of DNA copy number, gene expression and DNA methylation aberrations in 206 glioblastomas--the most common type of adult brain cancer--and nucleotide sequence aberrations in 91 of the 206 glioblastomas. This analysis provides new insights into the roles of ERBB2, NF1 and TP53, uncovers frequent mutations of the phosphatidylinositol-3-OH kinase regulatory subunit gene PIK3R1, and provides a network view of the pathways altered in the development of glioblastoma. Furthermore, integration of mutation, DNA methylation and clinical treatment data reveals a link between MGMT promoter methylation and a hypermutator phenotype consequent to mismatch repair deficiency in treated glioblastomas, an observation with potential clinical implications. Together, these findings establish the feasibility and power of TCGA, demonstrating that it can rapidly expand knowledge of the molecular basis of cancer. PMID:18772890

  8. Advances in gene technology: Human genetic disorders

    SciTech Connect

    Scott, W.A.; Ahmad, F.; Black, S.; Schultz, J.; Whelan, W.J.

    1984-01-01

    This book discusses the papers presented at the conference on the subject of ''advances in Gene technology: Human genetic disorders''. Molecular biology of various carcinomas and inheritance of metabolic diseases is discussed and technology advancement in diagnosis of hereditary diseases is described. Some of the titles discussed are-Immunoglobulin genes translocation and diagnosis; hemophilia; oncogenes; oncogenic transformations; experimental data on mice, hamsters, birds carcinomas and sarcomas.

  9. Patenting human genetic material: refocusing the debate

    PubMed Central

    Caulfield, Timothy; Gold, E. Richard; Cho, Mildred K.

    2008-01-01

    The biotechnology industry has become firmly established over the past twenty years and gene patents have played an important part in this phenomenon. However, concerns have been raised over the patentability of human genetic material, through public protests and international statements, but to little effect. Here we discuss some of these concerns, the patent authorities’ response to them, and ways in which to address these issues and to move the debate forward using current legal structures. PMID:11252752

  10. Linking genetically-defined neurons to behavior through a broadly applicable silencing allele

    PubMed Central

    Kim, Jun Chul.; Cook, Melloni N.; Carey, Megan R.; Shen, Chung; Regehr, Wade G.; Dymecki, Susan M.

    2009-01-01

    Summary Tools for suppressing synaptic transmission gain power when able to target highly selective neuron subtypes, thereby sharpening attainable links between neuron type, behavior, and disease; and when able to silence most any neuron subtype, thereby offering broad applicability. Here we present such a tool, RC::PFtox, that harnesses breadth in scope along with high cell-type selection via combinatorial gene expression to deliver tetanus toxin light chain (tox), an inhibitor of vesicular neurotransmission. When applied in mice, we observed cell-type specific disruption of vesicle exocytosis accompanied by loss of excitatory postsynaptic currents and commensurately perturbed behaviors. Among various test populations, we applied RC::PFtox to silence serotonergic neurons, en masse or a subset defined combinatorially. Of the behavioral phenotypes observed upon en masse serotonergic silencing, only one mapped to the combinatorially defined subset. These findings provide evidence for separability by genetic lineage of serotonin-modulated behaviors; collectively, these findings demonstrate broad utility of RC::PFtox for dissecting neuron functions. PMID:19679071

  11. The human liver-specific proteome defined by transcriptomics and antibody-based profiling.

    PubMed

    Kampf, Caroline; Mardinoglu, Adil; Fagerberg, Linn; Hallström, Björn M; Edlund, Karolina; Lundberg, Emma; Pontén, Fredrik; Nielsen, Jens; Uhlen, Mathias

    2014-07-01

    Human liver physiology and the genetic etiology of the liver diseases can potentially be elucidated through the identification of proteins with enriched expression in the liver. Here, we combined data from RNA sequencing (RNA-Seq) and antibody-based immunohistochemistry across all major human tissues to explore the human liver proteome with enriched expression, as well as the cell type-enriched expression in hepatocyte and bile duct cells. We identified in total 477 protein-coding genes with elevated expression in the liver: 179 genes have higher expression as compared to all the other analyzed tissues; 164 genes have elevated transcript levels in the liver shared with at least one other tissue type; and an additional 134 genes have a mild level of increased expression in the liver. We identified the precise localization of these proteins through antibody-based protein profiling and the subcellular localization of these proteins through immunofluorescent-based profiling. We also identified the biological processes and metabolic functions associated with these proteins, investigated their contribution in the occurrence of liver diseases, and identified potential targets for their treatment. Our study demonstrates the use of RNA-Seq and antibody-based immunohistochemistry for characterizing the human liver proteome, as well as the use of tissue-specific proteins in identification of novel drug targets and discovery of biomarkers.-Kampf, C., Mardinoglu, A., Fagerberg, L., Hallström, B. M., Edlund, K., Lundberg, E., Pontén, F., Nielsen, J., Uhlen, M. The human liver-specific proteome defined by transcriptomics and antibody-based profiling. PMID:24648543

  12. Models to explore genetics of human aging.

    PubMed

    Karasik, David; Newman, Anne

    2015-01-01

    Genetic studies have bestowed insight into the biological mechanisms underlying inter-individual differences in susceptibility to (or resistance to) organisms’ aging. Recent advances in molecular and genetic epidemiology provide tools to explore the genetic sources of the variability in biological aging in humans. To be successful, the genetic study of a complex condition such as aging requires the clear definition of essential traits that can characterize the aging process phenotypically. Phenotypes of human aging have long relied on mortality rate or exceptional longevity. Genome-wide association studies (GWAS) have been shown to present an unbiased approach to the identification of new candidate genes for human diseases. The GWAS approach can also be used for positive health phenotypes such as longevity or a delay in age-related chronic disease, as well as for other age related changes such as loss of telomere length or lens transparency. Sequencing, either in targeted regions or across the whole genome can further identify rare variation that may contribute to the biological aging mechanisms. To date, the results of the GWAS for longevity are rather disappointing, possibly in part due to the small number of individuals with GWAS data who have reached advanced old age.Human aging phenotypes are needed that can be assessed prior to death, and should be both heritable and validated as predictors of longevity. Potentially, phenotypes that focus on “successful” or “healthy” aging will be more powerful as they can be measured in large numbers of people and also are clinically relevant.We postulate that construction of an integrated phenotype of aging can be achieved capitalizing on multiple traits that may have weak correlations, but a shared underlying genetic architecture. This is based on a hypothesis that convergent results from multiple individual aging-related traits will point out the pleiotropic signals responsible for the overall rate of aging of

  13. Defining Genetic Factors That Modulate Intergenerational CAG Repeat Instability in Drosophila melanogaster

    PubMed Central

    Jung, Joonil; van Jaarsveld, Marijn T. M.; Shieh, Shin-Yi; Xu, Kexiang; Bonini, Nancy M.

    2011-01-01

    Trinucleotide repeat instability underlies >20 human hereditary disorders. These diseases include many neurological and neurodegenerative situations, such as those caused by pathogenic polyglutamine (polyQ) domains encoded by expanded CAG repeats. Although mechanisms of instability have been intensely studied, our knowledge remains limited in part due to the lack of unbiased genome-wide screens in multicellular eukaryotes. Drosophila melanogaster displays triplet repeat instability with features that recapitulate repeat instability seen in patients with disease. Here we report an enhanced fly model with substantial instability based on a noncoding 270 CAG (UAS–CAG270) repeat construct under control of a germline-specific promoter. We find that expression of pathogenic polyQ protein modulates repeat instability of CAG270 in trans, indicating that pathogenic-length polyQ proteins may globally modulate repeat instability in the genome in vivo. We further performed an unbiased genetic screen for novel modifiers of instability. These studies indicate that different aspects of repeat instability are under independent genetic control, and identify CG15262, a protein with a NOT2/3/5 conserved domain, as a modifier of CAG repeat instability in vivo. PMID:21041558

  14. Genetic Analysis of Human Preimplantation Embryos.

    PubMed

    Garcia-Herrero, S; Cervero, A; Mateu, E; Mir, P; Póo, M E; Rodrigo, L; Vera, M; Rubio, C

    2016-01-01

    Preimplantation development comprises the initial stages of mammalian development, before the embryo implants into the mother's uterus. In normal conditions, after fertilization the embryo grows until reaching blastocyst stage. The blastocyst grows as the cells divide and the cavity expands, until it arrives at the uterus, where it "hatches" from the zona pellucida to implant into the uterine wall. Nevertheless, embryo quality and viability can be affected by chromosomal abnormalities, most of which occur during gametogenesis and early embryo development; human embryos produced in vitro are especially vulnerable. Therefore, the selection of chromosomally normal embryos for transfer in assisted reproduction can improve outcomes in poor-prognosis patients. Additionally, in couples with an inherited disorder, early diagnosis could prevent pregnancy with an affected child and would, thereby, avoid the therapeutic interruption of pregnancy. These concerns have prompted advancements in the use of preimplantation genetic diagnosis (PGD). Genetic testing is applied in two different scenarios: in couples with an inherited genetic disorder or carriers of a structural chromosomal abnormality, it is termed PGD; in infertile couples with increased risk of generating embryos with de novo chromosome abnormalities, it is termed preimplantation genetic screening, or PGS. PMID:27475859

  15. Genetic & epigenetic approach to human obesity.

    PubMed

    Rao, K Rajender; Lal, Nirupama; Giridharan, N V

    2014-11-01

    Obesity is an important clinical and public health challenge, epitomized by excess adipose tissue accumulation resulting from an imbalance in energy intake and energy expenditure. It is a forerunner for a variety of other diseases such as type-2-diabetes (T2D), cardiovascular diseases, some types of cancer, stroke, hyperlipidaemia and can be fatal leading to premature death. Obesity is highly heritable and arises from the interplay of multiple genes and environmental factors. Recent advancements in Genome-wide association studies (GWAS) have shown important steps towards identifying genetic risks and identification of genetic markers for lifestyle diseases, especially for a metabolic disorder like obesity. According to the 12th Update of Human Obesity Gene Map there are 253 quantity trait loci (QTL) for obesity related phenotypes from 61 genome wide scan studies. Contribution of genetic propensity of individual ethnic and racial variations in obesity is an active area of research. Further, understanding its complexity as to how these variations could influence ones susceptibility to become or remain obese will lead us to a greater understanding of how obesity occurs and hopefully, how to prevent and treat this condition. In this review, various strategies adapted for such an analysis based on the recent advances in genome wide and functional variations in human obesity are discussed. PMID:25579139

  16. Genetic & epigenetic approach to human obesity

    PubMed Central

    Rao, K. Rajender; Lal, Nirupama; Giridharan, N.V.

    2014-01-01

    Obesity is an important clinical and public health challenge, epitomized by excess adipose tissue accumulation resulting from an imbalance in energy intake and energy expenditure. It is a forerunner for a variety of other diseases such as type-2-diabetes (T2D), cardiovascular diseases, some types of cancer, stroke, hyperlipidaemia and can be fatal leading to premature death. Obesity is highly heritable and arises from the interplay of multiple genes and environmental factors. Recent advancements in Genome-wide association studies (GWAS) have shown important steps towards identifying genetic risks and identification of genetic markers for lifestyle diseases, especially for a metabolic disorder like obesity. According to the 12th Update of Human Obesity Gene Map there are 253 quantity trait loci (QTL) for obesity related phenotypes from 61 genome wide scan studies. Contribution of genetic propensity of individual ethnic and racial variations in obesity is an active area of research. Further, understanding its complexity as to how these variations could influence ones susceptibility to become or remain obese will lead us to a greater understanding of how obesity occurs and hopefully, how to prevent and treat this condition. In this review, various strategies adapted for such an analysis based on the recent advances in genome wide and functional variations in human obesity are discussed. PMID:25579139

  17. Human genetic disorders of sphingolipid biosynthesis.

    PubMed

    Astudillo, Leonardo; Sabourdy, Frédérique; Therville, Nicole; Bode, Heiko; Ségui, Bruno; Andrieu-Abadie, Nathalie; Hornemann, Thorsten; Levade, Thierry

    2015-01-01

    Monogenic defects of sphingolipid biosynthesis have been recently identified in human patients. These enzyme deficiencies affect the synthesis of sphingolipid precursors, ceramides or complex glycosphingolipids. They are transmitted as autosomal recessive or dominant traits, and their resulting phenotypes often replicate the abnormalities seen in murine models deficient for the corresponding enzymes. In quite good agreement with the known critical roles of sphingolipids in cells from the nervous system and the epidermis, these genetic defects clinically manifest as neurological disorders, including paraplegia, epilepsy or peripheral neuropathies, or present with ichthyosis. The present review summarizes the genetic alterations, biochemical changes and clinical symptoms of this new group of inherited metabolic disorders. Hypotheses regarding the molecular pathophysiology and potential treatments of these diseases are also discussed. PMID:25141825

  18. PATENTS IN GENOMICS AND HUMAN GENETICS

    PubMed Central

    Cook-Deegan, Robert; Heaney, Christopher

    2010-01-01

    Genomics and human genetics are scientifically fundamental and commercially valuable. These fields grew to prominence in an era of growth in government and nonprofit research funding, and of even greater growth of privately funded research and development in biotechnology and pharmaceuticals. Patents on DNA technologies are a central feature of this story, illustrating how patent law adapts---and sometimes fails to adapt---to emerging genomic technologies. In instrumentation and for therapeutic proteins, patents have largely played their traditional role of inducing investment in engineering and product development, including expensive postdiscovery clinical research to prove safety and efficacy. Patents on methods and DNA sequences relevant to clinical genetic testing show less evidence of benefits and more evidence of problems and impediments, largely attributable to university exclusive licensing practices. Whole-genome sequencing will confront uncertainty about infringing granted patents but jurisprudence trends away from upholding the broadest and potentially most troublesome patent claims. PMID:20590431

  19. Stream hierarchy defines riverscape genetics of a North American desert fish.

    PubMed

    Hopken, Matthew W; Douglas, Marlis R; Douglas, Michael E

    2013-02-01

    Global climate change is apparent within the Arctic and the south-western deserts of North America, with record drought in the latter reflected within 640,000 km(2) of the Colorado River Basin. To discern the manner by which natural and anthropogenic drivers have compressed Basin-wide fish biodiversity, and to establish a baseline for future climate effects, the Stream Hierarchy Model (SHM) was employed to juxtapose fluvial topography against molecular diversities of 1092 Bluehead Sucker (Catostomus discobolus). MtDNA revealed three geomorphically defined evolutionarily significant units (ESUs): Bonneville Basin, upper Little Colorado River and the remaining Colorado River Basin. Microsatellite analyses (16 loci) reinforced distinctiveness of the Bonneville Basin and upper Little Colorado River, but subdivided the Colorado River Basin into seven management units (MUs). One represents a cline of three admixed gene pools comprising the mainstem and its lower-gradient tributaries. Six others are not only distinct genetically but also demographically (i.e. migrants/generation <9.7%). Two of these (i.e. Grand Canyon and Canyon de Chelly) are defined by geomorphology, two others (i.e. Fremont-Muddy and San Raphael rivers) are isolated by sharp declivities as they drop precipitously from the west slope into the mainstem Colorado/Green rivers, another represents an isolated impoundment (i.e. Ringdahl Reservoir), while the last corresponds to a recognized subspecies (i.e. Zuni River, NM). Historical legacies of endemic fishes (ESUs) and their evolutionary potential (MUs) are clearly represented in our data, yet their arbiter will be the unrelenting natural and anthropogenic water depletions that will precipitate yet another conservation conflict within this unique but arid region. PMID:23279045

  20. Genetics of human iris colour and patterns.

    PubMed

    Sturm, Richard A; Larsson, Mats

    2009-10-01

    The presence of melanin pigment within the iris is responsible for the visual impression of human eye colouration with complex patterns also evident in this tissue, including Fuchs' crypts, nevi, Wolfflin nodules and contraction furrows. The genetic basis underlying the determination and inheritance of these traits has been the subject of debate and research from the very beginning of quantitative trait studies in humans. Although segregation of blue-brown eye colour has been described using a simple Mendelian dominant-recessive gene model this is too simplistic, and a new molecular genetic perspective is needed to fully understand the biological complexities of this process as a polygenic trait. Nevertheless, it has been estimated that 74% of the variance in human eye colour can be explained by one interval on chromosome 15 that contains the OCA2 gene. Fine mapping of this region has identified a single base change rs12913832 T/C within intron 86 of the upstream HERC2 locus that explains almost all of this association with blue-brown eye colour. A model is presented whereby this SNP, serving as a target site for the SWI/SNF family member HLTF, acts as part of a highly evolutionary conserved regulatory element required for OCA2 gene activation through chromatin remodelling. Major candidate genes possibly effecting iris patterns are also discussed, including MITF and PAX6. PMID:19619260

  1. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets

    PubMed Central

    Witkiewicz, Agnieszka K.; McMillan, Elizabeth A.; Balaji, Uthra; Baek, GuemHee; Lin, Wan-Chi; Mansour, John; Mollaee, Mehri; Wagner, Kay-Uwe; Koduru, Prasad; Yopp, Adam; Choti, Michael A.; Yeo, Charles J.; McCue, Peter; White, Michael A.; Knudsen, Erik S.

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDA) has a dismal prognosis and insights into both disease etiology and targeted intervention are needed. A total of 109 micro-dissected PDA cases were subjected to whole-exome sequencing. Microdissection enriches tumour cellularity and enhances mutation calling. Here we show that environmental stress and alterations in DNA repair genes associate with distinct mutation spectra. Copy number alterations target multiple tumour suppressive/oncogenic loci; however, amplification of MYC is uniquely associated with poor outcome and adenosquamous subtype. We identify multiple novel mutated genes in PDA, with select genes harbouring prognostic significance. RBM10 mutations associate with longer survival in spite of histological features of aggressive disease. KRAS mutations are observed in >90% of cases, but codon Q61 alleles are selectively associated with improved survival. Oncogenic BRAF mutations are mutually exclusive with KRAS and define sensitivity to vemurafenib in PDA models. High-frequency alterations in Wnt signalling, chromatin remodelling, Hedgehog signalling, DNA repair and cell cycle processes are observed. Together, these data delineate new genetic diversity of PDA and provide insights into prognostic determinants and therapeutic targets. PMID:25855536

  2. A New BSCS Project: Human Genetics Education for High School.

    ERIC Educational Resources Information Center

    Biological Sciences Curriculum Study Journal, 1980

    1980-01-01

    Described is the BSCS Center for Education in Human and Medical Genetics, established to design, develop, and evaluate an instructional module in human genetics for high school students. This module will be a self-contained curricular program and will provide individualized open-ended experiences which present basic genetics content in the context…

  3. Genetic Testing and Its Implications: Human Genetics Researchers Grapple with Ethical Issues.

    ERIC Educational Resources Information Center

    Rabino, Isaac

    2003-01-01

    Contributes systematic data on the attitudes of scientific experts who engage in human genetics research about the pros, cons, and ethical implications of genetic testing. Finds that they are highly supportive of voluntary testing and the right to know one's genetic heritage. Calls for greater genetic literacy. (Contains 87 references.) (Author/NB)

  4. Human genetic mapping studies using single sperm typing

    SciTech Connect

    Hubert, R.S.

    1993-01-01

    Sperm typing is a powerful technique that uses the polymerase chain reaction (PCR) to analyze DNA sequences within single sperm cells in order to construct genetic maps. This methodology was used to estimate the recombination fraction between D3S2 and D3S2 which was found to be 0.28 (95% CI = 0.20-0.36). Pedigree analysis was unable to determine genetic distance between these two markers due to their low informativeness. We also showed that dinucleotide and tetranucleotide repeat polymorphisms can be analyzed in single cells without using radioactivity or denaturing gels. This provides a rich new source of DANA polymorphisms for genetic mapping by sperm typing. In addition, an approach that uses the sperm typing methodology is described that can define the physical boundaries of meiotic recombination hotspots. The hotspot at 4p16.3 near the Huntington disease gene was localized to an interval between D4S10 and D4S126. These studies demonstrated the usefulness of sperm typing as a tool for the study of human genetic.

  5. [The genetics and the dignity of the human being].

    PubMed

    Jouve de Barreda, Nicolás

    2013-01-01

    The biological elements of man are not sufficient to confront the bioethical questions around the person concept, but are necessary to accurately define the properties of the human beings and the theological, philosophical and legal aspects that are attributable to each person. The human being is a singular being. Indeed, the coexistence of two dimensions of different nature, material and spiritual, is the most important difference between the man and the rest of living beings. Moreover, in man appears a new characteristic, unique between the living beings, the ethical component. The values and guidelines of the moral and ethical behavior of the human being must be considered of natural origin since they have contributed to the success and survival of the species. The man is not only Homo sapiens but also Homo moralis. The recognition of fault, self-control, solidarity, love, generosity, altruism and honesty, among others, are innate qualities in the human beings. The unit of the human species demands the respect and the consideration of the same dignity for all its members, but only for its members. The philosophical anthropology emphasizes the singularity of each human being, each person. This agrees totally with the data of the science, which emphasize the individual and singular genetic identity of each human being. PMID:23745822

  6. Mutations in the human GlyT2 gene define a presynaptic component of human startle disease

    PubMed Central

    Rees, Mark I.; Harvey, Kirsten; Pearce, Brian R.; Chung, Seo-Kyung; Duguid, Ian C.; Thomas, Philip; Beatty, Sarah; Graham, Gail E.; Armstrong, Linlea; Shiang, Rita; Abbott, Kim J.; Zuberi, Sameer M.; Stephenson, John B.P.; Owen, Michael J.; Tijssen, Marina A.J.; van den Maagdenberg, Arn M.J.M.; Smart, Trevor G.; Supplisson, Stéphane; Harvey, Robert J.

    2011-01-01

    Hyperekplexia is a human neurological disorder characterized by an excessive startle response and is typically caused by missense and nonsense mutations in the gene encoding the inhibitory glycine receptor (GlyR) α1 subunit (GLRA1)1-3. Genetic heterogeneity has been confirmed in isolated sporadic cases with mutations in other postsynaptic glycinergic proteins including the GlyR β subunit (GLRB)4, gephyrin (GPHN)5 and RhoGEF collybistin (ARHGEF9)6. However, many sporadic patients diagnosed with hyperekplexia do not carry mutations in these genes2-7. Here we reveal that missense, nonsense and frameshift mutations in the presynaptic glycine transporter 2 (GlyT2) gene (SLC6A5)8 also cause hyperekplexia. Patients harbouring mutations in SLC6A5 presented with hypertonia, an exaggerated startle response to tactile or acoustic stimuli, and life-threatening neonatal apnoea episodes. GlyT2 mutations result in defective subcellular localisation and/or decreased glycine uptake, with selected mutations affecting predicted glycine and Na+ binding sites. Our results demonstrate that SLC6A5 is a major gene for hyperekplexia and define the first neurological disorder linked to mutations in a Na+/Cl−-dependent transporter for a classical fast neurotransmitter. By analogy, we suggest that in other human disorders where defects in postsynaptic receptors have been identified, similar symptoms could result from defects in the cognate presynaptic neurotransmitter transporter. PMID:16751771

  7. GENETICS OF HUMAN AGE RELATED DISORDERS.

    PubMed

    Srivastava, I; Thukral, N; Hasija, Y

    2015-01-01

    Aging is an inevitable biological phenomenon. The incidence of age related disorders (ARDs) such as cardiovascular diseases, cancer, arthritis, dementia, osteoporosis, diabetes, neurodegenerative diseases increase rapidly with aging. ARDs are becoming a key social and economic trouble for the world's elderly population (above 60 years), which is expected to reach 2 billion by 2050. Advancement in understanding of genetic associations, particularly through genome wide association studies (GWAS), has revealed a substantial contribution of genes to human aging and ARDs. In this review, we have focused on the recent understanding of the extent to which genetic predisposition may influence the aging process. Further analysis of the genetic association studies through pathway analysis several genes associated with multiple ARDs have been highlighted such as apolipoprotein E (APOE), brain-derived neurotrophic factor (BDNF), cadherin 13 (CDH13), CDK5 regulatory subunit associated protein 1 (CDKAL-1), methylenetetrahydrofolate reductase (MTHFR), disrupted in schizophrenia 1 (DISC1), nitric oxide synthase 3 (NOS3), paraoxonase 1 (PON1), indicating that these genes could play a pivotal role in ARD causation. These genes were found to be significantly enriched in Jak-STAT signalling pathway, asthma and allograft rejection. Further, interleukin-6 (IL-6), insulin (INS), vascular endothelial growth factor A (VEGFA), estrogen receptor1 (ESR1), transforming growth factor, beta 1(TGFB1) and calmodulin 1 (CALM1) were found to be highly interconnected in network analysis. We believe that extensive research on the presence of common genetic variants among various ARDs may facilitate scientists to understand the biology behind ARDs causation. PMID:26856084

  8. Animal models of physiologic markers of male reproduction: genetically defined infertile mice.

    PubMed Central

    Chubb, C

    1987-01-01

    The present report focuses on novel animal models of male infertility: genetically defined mice bearing single-gene mutations that induce infertility. The primary goal of our investigations was to identify the reproductive defects in these mutant mice. The phenotypic effects of the gene mutations were deciphered by comparing the mutant mice to their normal siblings. Initially testicular steroidogenesis and spermatogenesis were investigated. The physiologic markers for testicular steroidogenesis were steroid secretion by testes perifused in vitro, seminal vesicle weight, and Leydig cell histology. Spermatogenesis was evaluated by the enumeration of homogenization-resistant sperm/spermatids in testes and by morphometric analyses of germ cells in the seminiferous epithelium. If testicular function appeared normal, we investigated the sexual behavior of the mice. The parameters of male sexual behavior that were quantified included mount patency, mount frequency, intromission latency, thrusts per intromission, ejaculation latency, and ejaculation duration. Females of pairs breeding under normal circumstances were monitored for the presence of vaginal plugs and pregnancies. The patency of the ejaculatory process was determined by quantifying sperm in the female reproductive tract after sexual behavior tests. Sperm function was studied by quantitatively determining sperm motility during videomicroscopic observation. Also, the ability of epididymal sperm to function within the uterine environment was analyzed by determining sperm capacity to initiate pregnancy after artificial insemination. Together, the experimental results permitted the grouping of the gene mutations into three general categories. We propose that the same biological markers used in the reported studies can be implemented in the assessment of the impact that environmental toxins may have on male reproduction. PMID:3319549

  9. Animal models of physiologic markers of male reproduction: genetically defined infertile mice

    SciTech Connect

    Chubb, C.

    1987-10-01

    The present report focuses on novel animal models of male infertility: genetically defined mice bearing single-gene mutations that induce infertility. The primary goal of the investigations was to identify the reproductive defects in these mutant mice. The phenotypic effects of the gene mutations were deciphered by comparing the mutant mice to their normal siblings. Initially testicular steroidogenesis and spermatogenesis were investigated. The physiologic markers for testicular steroidogenesis were steroid secretion by testes perifused in vitro, seminal vesicle weight, and Leydig cell histology. Spermatogenesis was evaluated by the enumeration of homogenization-resistant sperm/spermatids in testes and by morphometric analyses of germ cells in the seminiferous epithelium. If testicular function appeared normal, the authors investigated the sexual behavior of the mice. The parameters of male sexual behavior that were quantified included mount patency, mount frequency, intromission latency, thrusts per intromission, ejaculation latency, and ejaculation duration. Females of pairs breeding under normal circumstances were monitored for the presence of vaginal plugs and pregnancies. The patency of the ejaculatory process was determined by quantifying sperm in the female reproductive tract after sexual behavior tests. Sperm function was studied by quantitatively determining sperm motility during videomicroscopic observation. Also, the ability of epididymal sperm to function within the uterine environment was analyzed by determining sperm capacity to initiate pregnancy after artificial insemination. Together, the experimental results permitted the grouping of the gene mutations into three general categories. They propose that the same biological markers used in the reported studies can be implemented in the assessment of the impact that environmental toxins may have on male reproduction.

  10. Involuntary Euthanasia and Current Attempts to Define Persons with Mental Retardation as Less Than Human.

    ERIC Educational Resources Information Center

    Lusthaus, Evelyn W.

    1985-01-01

    The author examines current attempts to define mentally retarded persons as less than human and suggests that these ideologies are being used to justify euthanasia practices and to formulate euthanasia policies. (CL)

  11. Genetic variability in human immunodeficiency viruses.

    PubMed

    Alizon, M; Montagnier, L

    1987-01-01

    The genetic polymorphism of the human immunodeficiency virus (HIV) has been established. In addition to the nucleic acid variations responsible for the restriction map polymorphism, isolates of HIV differ significantly at the protein level, especially in the envelope, in terms of amino acid substitutions and reciprocal insertions-deletions. In this investigation, molecular cloning and nucleotide sequencing of the genomes of 2 HIV isolates obtained from patients in Zaire were carried out. The 1st isolate was recovered in 1983 from a 24-year-old woman with acquired immunodeficiency syndrome (AIDS); the 2nd was isolated in 1985 from a 7-year-old boy with AIDS-related complex (ARC). The genetic organization of these isolates was identical to that found in other HIV isolates from the US and Europe, particularly in terms of the conservation of the central region located between the pol and env genes composed of a series of overlapping open reading frames. There were, however, substantial differences in the primary structure of the viral proteins, with env being more variable than the gag and pol genes. Alignment of the envelopes revealed hypervariable domains with a great number of mutations and reciprocal insertions and deletions. Overall, this analysis suggests that the African and American HIV infections have a common origin given their identical genetic organization. The sequence variability reflects a divergent evolutionary process, and the fact that the 2 Zairian isolates were more divergent than American isolates studied by others indicates a longer evolution of HIV in Africa. An essential research goal is to identify the HIV envelope domains responsible for the virus-cellular surface antigen interaction since an immune response against these epitopes could elicit neutralizing antibodies for use in a vaccine. PMID:3439717

  12. Mouse Genetic Models of Human Brain Disorders.

    PubMed

    Leung, Celeste; Jia, Zhengping

    2016-01-01

    Over the past three decades, genetic manipulations in mice have been used in neuroscience as a major approach to investigate the in vivo function of genes and their alterations. In particular, gene targeting techniques using embryonic stem cells have revolutionized the field of mammalian genetics and have been at the forefront in the generation of numerous mouse models of human brain disorders. In this review, we will first examine childhood developmental disorders such as autism, intellectual disability, Fragile X syndrome, and Williams-Beuren syndrome. We will then explore psychiatric disorders such as schizophrenia and lastly, neurodegenerative disorders including Alzheimer's disease and Parkinson's disease. We will outline the creation of these mouse models that range from single gene deletions, subtle point mutations to multi-gene manipulations, and discuss the key behavioral phenotypes of these mice. Ultimately, the analysis of the models outlined in this review will enhance our understanding of the in vivo role and underlying mechanisms of disease-related genes in both normal brain function and brain disorders, and provide potential therapeutic targets and strategies to prevent and treat these diseases. PMID:27047540

  13. Mouse Genetic Models of Human Brain Disorders

    PubMed Central

    Leung, Celeste; Jia, Zhengping

    2016-01-01

    Over the past three decades, genetic manipulations in mice have been used in neuroscience as a major approach to investigate the in vivo function of genes and their alterations. In particular, gene targeting techniques using embryonic stem cells have revolutionized the field of mammalian genetics and have been at the forefront in the generation of numerous mouse models of human brain disorders. In this review, we will first examine childhood developmental disorders such as autism, intellectual disability, Fragile X syndrome, and Williams-Beuren syndrome. We will then explore psychiatric disorders such as schizophrenia and lastly, neurodegenerative disorders including Alzheimer’s disease and Parkinson’s disease. We will outline the creation of these mouse models that range from single gene deletions, subtle point mutations to multi-gene manipulations, and discuss the key behavioral phenotypes of these mice. Ultimately, the analysis of the models outlined in this review will enhance our understanding of the in vivo role and underlying mechanisms of disease-related genes in both normal brain function and brain disorders, and provide potential therapeutic targets and strategies to prevent and treat these diseases. PMID:27047540

  14. Molecular genetics of human myopia: an update.

    PubMed

    Young, Terri L

    2009-01-01

    Myopia, or nearsightedness, is the most common human eye disorder in the world, and is a significant global public health concern. Along with cataract, macular degeneration, infectious disease, and vitamin A deficiency, myopia is one of the most important causes of visual impairment worldwide. Severe or high-grade myopia is a leading cause of blindness because of its associated ocular morbidities of retinal detachment, macular choroidal degeneration, premature cataract, and glaucoma. Ample evidence documents the heritability of the non-syndromic forms of this condition, especially for high-grade myopia, commonly referred to as myopic spherical refractive power of 5 to 6 diopters or higher. Multiple high-grade myopia genetic loci have been identified, and confirmatory studies identifying high-grade and moderate myopia loci have also occurred. In general, myopia susceptibility genes are unknown with few association studies performed, and without confirmation in other research laboratories or testing of separate patient cohorts. PMID:19104467

  15. Does epilepsy in multiplex autism pedigrees define a different subgroup in terms of clinical characteristics and genetic risk?

    PubMed Central

    2013-01-01

    Background Autism spectrum disorders (ASD) and epilepsy frequently occur together. Prevalence rates are variable, and have been attributed to age, gender, comorbidity, subtype of pervasive developmental disorder (PDD) and risk factors. Recent studies have suggested disparate clinical and genetic settings depending on simplex or multiplex autism. The aim of this study was to assess: 1) the prevalence of epilepsy in multiplex autism and its association with genetic and non-genetic risk factors of major effect, intellectual disability and gender; and 2) whether autism and epilepsy cosegregate within multiplex autism families. Methods We extracted from the Autism Genetic Resource Exchange (AGRE) database (n = 3,818 children from 1,264 families) all families with relevant medical data (n = 664 children from 290 families). The sample included 478 children with ASD and 186 siblings without ASD. We analyzed the following variables: seizures, genetic and non-genetic risk factors, gender, and cognitive functioning as assessed by Raven’s Colored Progressive Matrices (RCPM) and Vineland Adaptive Behavior Scales (VABS). Results The prevalence of epilepsy was 12.8% in cases with ASD and 2.2% in siblings without ASD (P <10-5). With each RCPM or VABS measure, the risk of epilepsy in multiplex autism was significantly associated with intellectual disability, but not with gender. Identified risk factors (genetic or non-genetic) of autism tended to be significantly associated with epilepsy (P = 0.052). When children with prematurity, pre- or perinatal insult, or cerebral palsy were excluded, a genetic risk factor was reported for 6/59 (10.2%) of children with epilepsy and 12/395 (3.0%) of children without epilepsy (P = 0.002). Finally, using a permutation test, there was significant evidence that the epilepsy phenotype co-segregated within families (P <10-4). Conclusions Epilepsy in multiplex autism may define a different subgroup in terms of clinical

  16. Defining the genetic connection linking amyotrophic lateral sclerosis (ALS) with frontotemporal dementia (FTD).

    PubMed

    Lattante, Serena; Ciura, Sorana; Rouleau, Guy A; Kabashi, Edor

    2015-05-01

    Several genetic causes have been recently described for neurological diseases, increasing our knowledge of the common pathological mechanisms involved in these disorders. Mutation analysis has shown common causative factors for two major neurodegenerative disorders, ALS and FTD. Shared pathological and genetic markers as well as common neurological signs between these diseases have given rise to the notion of an ALS/FTD spectrum. This overlap among genetic factors causing ALS/FTD and the coincidence of mutated alleles (including causative, risk and modifier variants) have given rise to the notion of an oligogenic model of disease. In this review we summarize major advances in the elucidation of novel genetic factors in these diseases which have led to a better understanding of the common pathogenic factors leading to neurodegeneration. PMID:25869998

  17. Genetically modified plants and human health

    PubMed Central

    Key, Suzie; Ma, Julian K-C; Drake, Pascal MW

    2008-01-01

    Summary Genetically modified (or GM) plants have attracted a large amount of media attention in recent years and continue to do so. Despite this, the general public remains largely unaware of what a GM plant actually is or what advantages and disadvantages the technology has to offer, particularly with regard to the range of applications for which they can be used. From the first generation of GM crops, two main areas of concern have emerged, namely risk to the environment and risk to human health. As GM plants are gradually being introduced into the European Union there is likely to be increasing public concern regarding potential health issues. Although it is now commonplace for the press to adopt ‘health campaigns’, the information they publish is often unreliable and unrepresentative of the available scientific evidence. We consider it important that the medical profession should be aware of the state of the art, and, as they are often the first port of call for a concerned patient, be in a position to provide an informed opinion. This review will examine how GM plants may impact on human health both directly – through applications targeted at nutrition and enhancement of recombinant medicine production – but also indirectly, through potential effects on the environment. Finally, it will examine the most important opposition currently facing the worldwide adoption of this technology: public opinion. PMID:18515776

  18. Genetic and Fossil Evidence for the Origin of Modern Humans.

    ERIC Educational Resources Information Center

    Stringer, C. B.; Andrews, P.

    1988-01-01

    Discusses how genetic data on present human population relationships and data from the Pleistocene fossil hominid record are being used to compare two contrasting models for the origin of modern humans. (TW)

  19. Population Genetics of an Ecosystem-Defining Reef Coral Pocillopora damicornis in the Tropical Eastern Pacific

    PubMed Central

    Combosch, David J.; Vollmer, Steven V.

    2011-01-01

    Background Coral reefs in the Tropical Eastern Pacific (TEP) are amongst the most peripheral and geographically isolated in the world. This isolation has shaped the biology of TEP organisms and lead to the formation of numerous endemic species. For example, the coral Pocillopora damicornis is a minor reef-builder elsewhere in the Indo-West Pacific, but is the dominant reef-building coral in the TEP, where it forms large, mono-specific stands, covering many hectares of reef. Moreover, TEP P. damicornis reproduces by broadcast spawning, while it broods mostly parthenogenetic larvae throughout the rest of the Indo-West Pacific. Population genetic surveys for P. damicornis from across its Indo-Pacific range indicate that gene flow (i.e. larval dispersal) is generally limited over hundreds of kilometers or less. Little is known about the population genetic structure and the dispersal potential of P. damicornis in the TEP. Methodology Using multilocus microsatellite data, we analyzed the population structure of TEP P. damicornis among and within nine reefs and test for significant genetic structure across three geographically and ecologically distinct regions in Panama. Principal Findings/Conclusions We detected significant levels of population genetic structure (global RST = 0.162), indicating restricted gene flow (i.e. larvae dispersal), both among the three regions (RRT = 0.081) as well as within regions (RSR = 0.089). Limited gene flow across a distinct environmental cline, like the regional upwelling gradient in Panama, indicates a significant potential for differential adaptation and population differentiation. Individual reefs were characterized by unexpectedly high genet diversity (avg. 94%), relatively high inbreeding coefficients (global FIS = 0.183), and localized spatial genetic structure among individuals (i.e. unique genets) over 10 m intervals. These findings suggest that gene flow is limited in TEP P. damicornis populations, particularly

  20. Defining the consequences of genetic variation on a proteome-wide scale.

    PubMed

    Chick, Joel M; Munger, Steven C; Simecek, Petr; Huttlin, Edward L; Choi, Kwangbom; Gatti, Daniel M; Raghupathy, Narayanan; Svenson, Karen L; Churchill, Gary A; Gygi, Steven P

    2016-06-23

    Genetic variation modulates protein expression through both transcriptional and post-transcriptional mechanisms. To characterize the consequences of natural genetic diversity on the proteome, here we combine a multiplexed, mass spectrometry-based method for protein quantification with an emerging outbred mouse model containing extensive genetic variation from eight inbred founder strains. By measuring genome-wide transcript and protein expression in livers from 192 Diversity outbred mice, we identify 2,866 protein quantitative trait loci (pQTL) with twice as many local as distant genetic variants. These data support distinct transcriptional and post-transcriptional models underlying the observed pQTL effects. Using a sensitive approach to mediation analysis, we often identified a second protein or transcript as the causal mediator of distant pQTL. Our analysis reveals an extensive network of direct protein-protein interactions. Finally, we show that local genotype can provide accurate predictions of protein abundance in an independent cohort of collaborative cross mice. PMID:27309819

  1. Production of genetically defined perch broodstocks and their selection for fast growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The restrictions and closures of commercial freshwater fisheries in North America, coupled with continued high consumer demand, have fueled interest in yellow perch aquaculture. However, the general slow growth of this species and the lack of commercially available genetically improved broodstocks h...

  2. Inferences of Recent and Ancient Human Population History Using Genetic and Non-Genetic Data

    ERIC Educational Resources Information Center

    Kitchen, Andrew

    2008-01-01

    I have adopted complementary approaches to inferring human demographic history utilizing human and non-human genetic data as well as cultural data. These complementary approaches form an interdisciplinary perspective that allows one to make inferences of human history at varying timescales, from the events that occurred tens of thousands of years…

  3. Genetic architecture for human aggression: A study of gene-phenotype relationship in OMIM.

    PubMed

    Zhang-James, Yanli; Faraone, Stephen V

    2016-07-01

    Genetic studies of human aggression have mainly focused on known candidate genes and pathways regulating serotonin and dopamine signaling and hormonal functions. These studies have taught us much about the genetics of human aggression, but no genetic locus has yet achieved genome-significance. We here present a review based on a paradoxical hypothesis that studies of rare, functional genetic variations can lead to a better understanding of the molecular mechanisms underlying complex multifactorial disorders such as aggression. We examined all aggression phenotypes catalogued in Online Mendelian Inheritance in Man (OMIM), an Online Catalog of Human Genes and Genetic Disorders. We identified 95 human disorders that have documented aggressive symptoms in at least one individual with a well-defined genetic variant. Altogether, we retrieved 86 causal genes. Although most of these genes had not been implicated in human aggression by previous studies, the most significantly enriched canonical pathways had been previously implicated in aggression (e.g., serotonin and dopamine signaling). Our findings provide strong evidence to support the causal role of these pathways in the pathogenesis of aggression. In addition, the novel genes and pathways we identified suggest additional mechanisms underlying the origins of human aggression. Genome-wide association studies with very large samples will be needed to determine if common variants in these genes are risk factors for aggression. © 2015 Wiley Periodicals, Inc. PMID:26288127

  4. Genetic diversity of Toxoplasma gondii in animals and humans

    PubMed Central

    Sibley, L. David; Khan, Asis; Ajioka, James W.; Rosenthal, Benjamin M.

    2009-01-01

    Toxoplasma gondii is one of the most widespread parasites of domestic, wild, and companion animals, and it also commonly infects humans. Toxoplasma gondii has a complex life cycle. Sexual development occurs only in the cat gut, while asexual replication occurs in many vertebrate hosts. These features combine to create an unusual population structure. The vast majority of strains in North America and Europe fall into three recently derived, clonal lineages known as types I, II and III. Recent studies have revealed that South American strains are more genetically diverse and comprise distinct genotypes. These differences have been shaped by infrequent sexual recombination, population sweeps and biogeography. The majority of human infections that have been studied in North America and Europe are caused by type II strains, which are also common in agricultural animals from these regions. In contrast, several diverse genotypes of T. gondii are associated with severe infections in humans in South America. Defining the population structure of T. gondii from new regions has important implications for transmission, immunogenicity and pathogenesis. PMID:19687043

  5. Molecular Mechanisms in Genetically Defined Autoinflammatory Diseases: Disorders of Amplified Danger Signaling*

    PubMed Central

    de Jesus, Adriana Almeida; Canna, Scott W.; Liu, Yin; Goldbach-Mansky, Raphaela

    2015-01-01

    Patients with autoinflammatory diseases present with noninfectious fever flares and systemic and/or disease-specific organ inflammation. Their excessive proinflammatory cytokine and chemokine responses can be life threatening and lead to organ damage over time. Studying such patients has revealed genetic defects that have helped unravel key innate immune pathways, including excessive IL-1 signaling, constitutive NF-κB activation, and, more recently, chronic type I IFN signaling. Discoveries of monogenic defects that lead to activation of proinflammatory cytokines have inspired the use of anticytokine-directed treatment approaches that have been life changing for many patients and have led to the approval of IL-1-blocking agents for a number of autoinflammatory conditions. In this review, we describe the genetically characterized autoinflammatory diseases, we summarize our understanding of the molecular pathways that drive clinical phenotypes and that continue to inspire the search for novel treatment targets, and we provide a conceptual framework for classification. PMID:25706096

  6. Genetic Changes Shaping the Human Brain

    PubMed Central

    Bae, Byoung-il; Jayaraman, Divya; Walsh, Christopher A.

    2015-01-01

    Summary The development and function of our brain are governed by a genetic blueprint, which reflects dynamic changes over the history of evolution. Recent progress in genetics and genomics, facilitated by next-generation sequencing and single-cell sorting, has identified numerous genomic loci that are associated with a neuroanatomical or neurobehavioral phenotype. Here, we review some of the genetic changes in both protein-coding and noncoding regions that affect brain development and evolution, as well as recent progress in brain transcriptomics. Understanding these genetic changes may provide novel insights into neurological and neuropsychiatric disorders, such as autism and schizophrenia. PMID:25710529

  7. Seeking perfection: a Kantian look at human genetic engineering.

    PubMed

    Gunderson, Martin

    2007-01-01

    It is tempting to argue that Kantian moral philosophy justifies prohibiting both human germ-line genetic engineering and non-therapeutic genetic engineering because they fail to respect human dignity. There are, however, good reasons for resisting this temptation. In fact, Kant's moral philosophy provides reasons that support genetic engineering-even germ-line and non-therapeutic. This is true of Kant's imperfect duties to seek one's own perfection and the happiness of others. It is also true of the categorical imperative. Kant's moral philosophy does, however, provide limits to justifiable genetic engineering. PMID:17516148

  8. Crop genetic improvement for enhanced human nutrition.

    PubMed

    Toenniessen, Gary H

    2002-09-01

    In the past decade, micronutrient malnutrition has been identified as a major underlying cause of numerous human health problems in developing countries. The international agricultural research system has been highly successful in producing crop varieties with traits desired by farmers, such as higher yield and greater tolerance of poor growing conditions. These improved varieties have spread widely throughout developing countries and now provide the staple foods eaten daily by billions of people, including the poor in many difficult to reach rural areas. Modern plant breeding and biotechnology offer new opportunities to use this same international system to increase the micronutrient content and enhance the nutritional value of these staple foods. Over time, this could be an important complement to the progress that is being made in providing micronutrient supplements and fortified foods and in encouraging people to eat more diversified diets. Nutritionists and agriculturists will need to work together to define the deficiencies, target the right populations and deliver the right products. PMID:12221274

  9. Human genetics in Johannesburg, South Africa: past, present and future.

    PubMed

    Kromberg, Jennifer G R; Krause, Amanda

    2013-12-01

    Genetic services were set up in Johannesburg, South Africa, in the late 1960s, but only became widespread and formalised after the first Professor of Human Genetics, Trefor Jenkins, was installed at the University of the Witwatersrand in 1974. The first services involved chromosome studies, and these developed into genetic counselling services. Prenatal diagnosis began to be offered, particularly for older women at risk for chromosome abnormalities in the fetus, and those at risk for neural tube defects. Genetic screening was then initiated for the Jewish community because of their high carrier rate for Tay-Sachs disease. Educational courses in human genetics were offered at Wits Medical School, and medical as well as other health professionals began to be trained. Research, supported by national and international bodies, was integral in the activities of the Department (now Division) of Human Genetics and focused on genetic conditions affecting the generally understudied black community. In the late 1980s the first training programme for genetic counsellors was started at MSc level, and postgraduate scientists at MSc and PhD levels studied in and qualified through the Department. At the same time molecular genetic laboratories were set up. In the late 1990s training for medical geneticists was initiated. Extensive high-quality genetic services developed over the four decades were comparable to those of most other departments in developed countries.  PMID:24300637

  10. Reflections on the Field of Human Genetics: A Call for Increased Disease Genetics Theory

    PubMed Central

    Schrodi, Steven J.

    2016-01-01

    Development of human genetics theoretical models and the integration of those models with experiment and statistical evaluation are critical for scientific progress. This perspective argues that increased effort in disease genetics theory, complementing experimental, and statistical efforts, will escalate the unraveling of molecular etiologies of complex diseases. In particular, the development of new, realistic disease genetics models will help elucidate complex disease pathogenesis, and the predicted patterns in genetic data made by these models will enable the concurrent, more comprehensive statistical testing of multiple aspects of disease genetics predictions, thereby better identifying disease loci. By theoretical human genetics, I intend to encompass all investigations devoted to modeling the heritable architecture underlying disease traits and studies of the resulting principles and dynamics of such models. Hence, the scope of theoretical disease genetics work includes construction and analysis of models describing how disease-predisposing alleles (1) arise, (2) are transmitted across families and populations, and (3) interact with other risk and protective alleles across both the genome and environmental factors to produce disease states. Theoretical work improves insight into viable genetic models of diseases consistent with empirical results from linkage, transmission, and association studies as well as population genetics. Furthermore, understanding the patterns of genetic data expected under realistic disease models will enable more powerful approaches to discover disease-predisposing alleles and additional heritable factors important in common diseases. In spite of the pivotal role of disease genetics theory, such investigation is not particularly vibrant. PMID:27375680

  11. Reflections on the Field of Human Genetics: A Call for Increased Disease Genetics Theory.

    PubMed

    Schrodi, Steven J

    2016-01-01

    Development of human genetics theoretical models and the integration of those models with experiment and statistical evaluation are critical for scientific progress. This perspective argues that increased effort in disease genetics theory, complementing experimental, and statistical efforts, will escalate the unraveling of molecular etiologies of complex diseases. In particular, the development of new, realistic disease genetics models will help elucidate complex disease pathogenesis, and the predicted patterns in genetic data made by these models will enable the concurrent, more comprehensive statistical testing of multiple aspects of disease genetics predictions, thereby better identifying disease loci. By theoretical human genetics, I intend to encompass all investigations devoted to modeling the heritable architecture underlying disease traits and studies of the resulting principles and dynamics of such models. Hence, the scope of theoretical disease genetics work includes construction and analysis of models describing how disease-predisposing alleles (1) arise, (2) are transmitted across families and populations, and (3) interact with other risk and protective alleles across both the genome and environmental factors to produce disease states. Theoretical work improves insight into viable genetic models of diseases consistent with empirical results from linkage, transmission, and association studies as well as population genetics. Furthermore, understanding the patterns of genetic data expected under realistic disease models will enable more powerful approaches to discover disease-predisposing alleles and additional heritable factors important in common diseases. In spite of the pivotal role of disease genetics theory, such investigation is not particularly vibrant. PMID:27375680

  12. A drosophila genetic resource of mutants to study mechanisms underlying human genetic diseases.

    PubMed

    Yamamoto, Shinya; Jaiswal, Manish; Charng, Wu-Lin; Gambin, Tomasz; Karaca, Ender; Mirzaa, Ghayda; Wiszniewski, Wojciech; Sandoval, Hector; Haelterman, Nele A; Xiong, Bo; Zhang, Ke; Bayat, Vafa; David, Gabriela; Li, Tongchao; Chen, Kuchuan; Gala, Upasana; Harel, Tamar; Pehlivan, Davut; Penney, Samantha; Vissers, Lisenka E L M; de Ligt, Joep; Jhangiani, Shalini N; Xie, Yajing; Tsang, Stephen H; Parman, Yesim; Sivaci, Merve; Battaloglu, Esra; Muzny, Donna; Wan, Ying-Wooi; Liu, Zhandong; Lin-Moore, Alexander T; Clark, Robin D; Curry, Cynthia J; Link, Nichole; Schulze, Karen L; Boerwinkle, Eric; Dobyns, William B; Allikmets, Rando; Gibbs, Richard A; Chen, Rui; Lupski, James R; Wangler, Michael F; Bellen, Hugo J

    2014-09-25

    Invertebrate model systems are powerful tools for studying human disease owing to their genetic tractability and ease of screening. We conducted a mosaic genetic screen of lethal mutations on the Drosophila X chromosome to identify genes required for the development, function, and maintenance of the nervous system. We identified 165 genes, most of whose function has not been studied in vivo. In parallel, we investigated rare variant alleles in 1,929 human exomes from families with unsolved Mendelian disease. Genes that are essential in flies and have multiple human homologs were found to be likely to be associated with human diseases. Merging the human data sets with the fly genes allowed us to identify disease-associated mutations in six families and to provide insights into microcephaly associated with brain dysgenesis. This bidirectional synergism between fly genetics and human genomics facilitates the functional annotation of evolutionarily conserved genes involved in human health. PMID:25259927

  13. A Drosophila genetic resource of mutants to study mechanisms underlying human genetic diseases

    PubMed Central

    Yamamoto, Shinya; Jaiswal, Manish; Charng, Wu-Lin; Gambin, Tomasz; Karaca, Ender; Mirzaa, Ghayda; Wiszniewski, Wojciech; Sandoval, Hector; Haelterman, Nele A.; Xiong, Bo; Zhang, Ke; Bayat, Vafa; David, Gabriela; Li, Tongchao; Chen, Kuchuan; Gala, Upasana; Harel, Tamar; Pehlivan, Davut; Penney, Samantha; Vissers, Lisenka E. L. M.; de Ligt, Joep; Jhangiani, Shalini; Xie, Yajing; Tsang, Stephen H.; Parman, Yesim; Sivaci, Merve; Battaloglu, Esra; Muzny, Donna; Wan, Ying-Wooi; Liu, Zhandong; Lin-Moore, Alexander T.; Clark, Robin D.; Curry, Cynthia J.; Link, Nichole; Schulze, Karen L.; Boerwinkle, Eric; Dobyns, William B.; Allikmets, Rando; Gibbs, Richard A.; Chen, Rui; Lupski, James R.; Wangler, Michael F.; Bellen, Hugo J.

    2014-01-01

    Summary Invertebrate model systems are powerful tools for studying human disease owing to their genetic tractability and ease of screening. We conducted a mosaic genetic screen of lethal mutations on the Drosophila X-chromosome to identify genes required for the development, function, and maintenance of the nervous system. We identified 165 genes, most of whose function has not been studied in vivo. In parallel, we investigated rare variant alleles in 1,929 human exomes from families with unsolved Mendelian disease. Genes that are essential in flies and have multiple human homologs were found to be likely to be associated with human diseases. Merging the human datasets with the fly genes allowed us to identify disease-associated mutations in six families and to provide insights into microcephaly associated with brain dysgenesis. This bidirectional synergism between fly genetics and human genomics facilitates the functional annotation of evolutionarily conserved genes involved in human health. PMID:25259927

  14. Chemically defined conditions for human iPS cell derivation and culture

    PubMed Central

    Chen, Guokai; Gulbranson, Daniel R.; Hou, Zhonggang; Bolin, Jennifer M.; Ruotti, Victor; Probasco, Mitchell D.; Smuga-Otto, Kimberly; Howden, Sara E.; Diol, Nicole R.; Propson, Nicholas E.; Wagner, Ryan; Lee, Garrett O.; Antosiewicz-Bourget, Jessica; Teng, Joyce M. C.; Thomson, James A.

    2011-01-01

    We reexamine the individual components for human ES and iPS cell culture, and formulate a cell culture system in which all protein reagents for liquid media, attachment surfaces, and splitting are chemically defined. A major improvement is the lack of a serum albumin component, as variations in either animal or human sourced albumin batches have previously plagued human ES and iPS cell culture with inconsistencies. Using this new medium (E8) and vitronectin-coated surfaces, we demonstrate improved derivation efficiencies of vector-free human iPS cells with an episomal approach. This simplified E8 medium should facilitate both the research use and clinical applications of human ES and iPS cells and their derivatives, and should be applicable to other reprogramming methods. PMID:21478862

  15. Improving toxicity screening and drug development by using genetically defined strains.

    PubMed

    Festing, Michael F W

    2010-01-01

    According to the US Food and Drugs Administration (Food and Drug Administration (2004) Challenge and opportunity on the critical path to new medical products.) "The inability to better assess and predict product safety leads to failures during clinical development and, occasionally, after marketing". This increases the cost of new drugs as clinical trials are even more expensive than pre-clinical testing.One relatively easy way of improving toxicity testing is to improve the design of animal experiments. A fundamental principle when designing an experiment is to control all variables except the one of interest: the treatment. Toxicologist and pharmacologists have widely ignored this principle by using genetically heterogeneous "outbred" rats and mice, increasing the chance of false-negative results. By using isogenic (inbred or F1 hybrid, see Note 1) rats and mice instead of outbred stocks the signal/noise ratio and the power of the experiments can be increased at little extra cost whilst using no more animals. Moreover, the power of the experiment can be further increased by using more than one strain, as this reduces the chance of selecting one which is resistant to the test chemical. This can also be done without increasing the total number of animals by using a factorial experimental design, e.g. if the ten outbred animals per treatment group in a 28-day toxicity test were replaced by two animals of each of five strains (still ten animals per treatment group) selected to be as genetically diverse as possible, this would increase the signal/noise ratio and power of the experiment. This would allow safety to be assessed using the most sensitive strain.Toxicologists should also consider making more use of the mouse instead of the rat. They are less costly to maintain, use less test substance, there are many inbred and genetically modified strains, and it is easier to identify gene loci controlling variation in response to xenobiotics in this species.We demonstrate

  16. Whole genome sequencing defines the genetic heterogeneity of familial pancreatic cancer

    PubMed Central

    Roberts, Nicholas J.; Norris, Alexis L.; Petersen, Gloria M.; Bondy, Melissa L.; Brand, Randall; Gallinger, Steven; Kurtz, Robert C.; Olson, Sara H.; Rustgi, Anil K.; Schwartz, Ann G.; Stoffel, Elena; Syngal, Sapna; Zogopoulos, George; Ali, Syed Z.; Axilbund, Jennifer; Chaffee, Kari G.; Chen, Yun-Ching; Cote, Michele L.; Childs, Erica J.; Douville, Christopher; Goes, Fernando S.; Herman, Joseph M.; Iacobuzio-Donahue, Christine; Kramer, Melissa; Makohon-Moore, Alvin; McCombie, Richard W.; McMahon, K. Wyatt; Niknafs, Noushin; Parla, Jennifer; Pirooznia, Mehdi; Potash, James B.; Rhim, Andrew D.; Smith, Alyssa L.; Wang, Yuxuan; Wolfgang, Christopher L.; Wood, Laura D.; Zandi, Peter P.; Goggins, Michael; Karchin, Rachel; Eshleman, James R.; Papadopoulos, Nickolas; Kinzler, Kenneth W.; Vogelstein, Bert; Hruban, Ralph H.; Klein, Alison P.

    2015-01-01

    Pancreatic cancer is projected to become the second leading cause of cancer-related death in the United States by 2020. A familial aggregation of pancreatic cancer has been established, but the cause of this aggregation in most families is unknown. To determine the genetic basis of susceptibility in these families, we sequenced the germline genome of 638 familial pancreatic cancer patients. We also sequenced the exomes of 39 familial pancreatic adenocarcinomas. Our analyses support the role of previously identified familial pancreatic cancer susceptibility genes such as BRCA2, CDKN2A and ATM, and identify novel candidate genes harboring rare, deleterious germline variants for further characterization. We also show how somatic point mutations that occur during hematopoiesis can affect the interpretation of genome-wide studies of hereditary traits. Our observations have important implications for the etiology of pancreatic cancer and for the identification of susceptibility genes in other common cancer types. PMID:26658419

  17. Genetic Analysis of Diffuse High-Grade Astrocytomas in Infancy Defines a Novel Molecular Entity.

    PubMed

    Gielen, Gerrit H; Gessi, Marco; Buttarelli, Francesca R; Baldi, Caterina; Hammes, Jennifer; zur Muehlen, Anja; Doerner, Evelyn; Denkhaus, Dorota; Warmuth-Metz, Monika; Giangaspero, Felice; Lauriola, Libero; von Bueren, André O; Kramm, Christof M; Waha, Andreas; Pietsch, Torsten

    2015-07-01

    Pediatric high-grade gliomas are considered to be different when compared to adult high-grade gliomas in their pathogenesis and biological behavior. Recently, common genetic alterations, including mutations in the H3F3A/ATRX/DAXX pathway, have been described in approximately 30% of the pediatric cases. However, only few cases of infant high-grade gliomas have been analyzed so far. We investigated the molecular features of 35 infants with diffuse high-grade astrocytomas, including 8 anaplastic astrocytomas [World Health Organization (WHO) grade III] and 27 glioblastomas (WHO grade IV) by immunohistochemistry, multiplex ligation probe-dependent amplification (MLPA), pyrosequencing of glioma-associated genes and molecular inversion probe (MIP) assay. MIP and MLPA analyses showed that chromosomal alterations are significantly less frequent in infants compared with high-grade gliomas in older children and adults. We only identified H3F3A K27M in 2 of 34 cases (5.9%), with both tumors located in the posterior fossa. PDGFRA amplifications were absent, and CDKN2A loss could be observed only in two cases. Conversely, 1q gain (22.7%) and 6q loss (18.2%) were identified in a subgroup of tumors. Loss of SNORD located on chromosome 14q32 was observed in 27.3% of the infant tumors, a focal copy number change not previously described in gliomas. Our findings indicate that infant high-grade gliomas appear to represent a distinct genetic entity suggesting a different pathogenesis and biological behavior. PMID:25231549

  18. Panmixia defines the genetic diversity of a unique arthropod-dispersed fungus specific to Protea flowers

    PubMed Central

    Aylward, Janneke; Dreyer, Léanne L; Steenkamp, Emma T; Wingfield, Michael J; Roets, Francois

    2014-01-01

    Knoxdaviesia proteae, a fungus specific to the floral structures of the iconic Cape Floral Kingdom plant, Protea repens, is dispersed by mites phoretic on beetles that pollinate these flowers. Although the vectors of K. proteae have been identified, little is known regarding its patterns of distribution. Seed bearing infructescences of P. repens were sampled from current and previous flowering seasons, from which K. proteae individuals were isolated and cultured. The genotypes of K. proteae isolates were determined using 12 microsatellite markers specific to this species. Genetic diversity indices showed a high level of similarity between K. proteae isolates from the two different infructescence age classes. The heterozygosity of the population was high (0.74 ± 0.04), and exceptional genotypic diversity was encountered (Ĝ = 97.87%). Population differentiation was negligible, owing to the numerous migrants between the infructescence age classes (Nm = 47.83) and between P. repens trees (Nm = 2.96). Parsimony analysis revealed interconnected genotypes, indicative of recombination and homoplasies, and the index of linkage disequilibrium confirmed that outcrossing is prevalent in K. proteae ( = 0.0067; P = 0.132). The high diversity and panmixia in this population is likely a result of regular gene flow and an outcrossing reproductive strategy. The lack of genetic cohesion between individuals from a single P. repens tree suggests that K. proteae dispersal does not primarily occur over short distances via mites as hypothesized, but rather that long-distance dispersal by beetles plays an important part in the biology of these intriguing fungi. PMID:25535560

  19. The Human as an Experimental System in Molecular Genetics.

    ERIC Educational Resources Information Center

    White, Ray; Caskey, C. Thomas

    1988-01-01

    Discusses insights discovered from research into human biology that are raising possibilities for therapy, prevention of disease, and challenges to society in the form of ethical decisions about the appropriate application of genetic information. (Author/RT)

  20. Multiple genetic loci within 11p15 defined by Beckwith-Wiedemann syndrome rearrangement breakpoints and subchromosomal transferable fragments.

    PubMed Central

    Hoovers, J M; Kalikin, L M; Johnson, L A; Alders, M; Redeker, B; Law, D J; Bliek, J; Steenman, M; Benedict, M; Wiegant, J

    1995-01-01

    Beckwith-Wiedemann syndrome (BWS) involves fetal overgrowth and predisposition to a wide variety of embryonal tumors of childhood. We have previously found that BWS is genetically linked to 11p15 and that this same band shows loss of heterozygosity in the types of tumors to which children with BWS are susceptible. However, 11p15 contains > 20 megabases, and therefore, the BWS and tumor suppressor genes could be distinct. To determine the precise physical relationship between these loci, we isolated yeast artificial chromosomes, and cosmid libraries from them, within the region of loss of heterozygosity in embryonal tumors. Five germ-line balanced chromosomal rearrangement breakpoint sites from BWS patients, as well as a balanced chromosomal translocation breakpoint from a rhabdoid tumor, were isolated within a 295- to 320-kb cluster defined by a complete cosmid contig crossing these breakpoints. This breakpoint cluster terminated approximately 100 kb centromeric to the imprinted gene IGF2 and 100 kb telomeric to p57KIP2, an inhibitor of cyclin-dependent kinases, and was located within subchromosomal transferable fragments that suppressed the growth of embryonal tumor cells in genetic complementation experiments. We have identified 11 transcribed sequences in this BWS/tumor suppressor coincident region, one of which corresponded to p57KIP2. However, three additional BWS breakpoints were > 4 megabases centromeric to the other five breakpoints and were excluded from the tumor suppressor region defined by subchromosomal transferable fragments. Thus, multiple genetic loci define BWS and tumor suppression on 11p15. Images Fig. 1 Fig. 3 PMID:8618920

  1. Ethical issues arising from human genetics.

    PubMed

    Arnold, A; Moseley, R

    1976-03-01

    Advances in understanding genetic disorders have been rapid in the last few years and with them the need and desire for genetic counselling have grown. Almost simultaneously, particularly in the USA, several large screening programmes have been initiated to screen large numbers of people who may be carriers of such deleterious genes as those of Tay-Sachs disease and sickle cell anaemia. The authors of this paper, clinical medical students at University College Hospital, London, spent some time studying the ethical issues raised. The first part of their study, which is not published here, relates to the biochemistry of certain genetic disorders, so leading up to the aspect of the subject which must concern readers of this journal, genetic counselling. At present genetic counselling is generally the province of the medical practitioner working with clinical biochemists, and in this paper their function is described and how programmes of screening for carriers are designed. Whether the subjects of the screening tests are found to be 'innocent' or 'guilty' psychological problems confront them, and of these the genetic counsellor must be aware. In fact the range of ethical problems raised by such counselling is wide and can only be sketched in this article. PMID:957367

  2. Development of a chemically defined serum- and protein-free medium for growth of human peripheral lymphocytes.

    PubMed

    Shive, W; Pinkerton, F; Humphreys, J; Johnson, M M; Hamilton, W G; Matthews, K S

    1986-01-01

    A chemically defined, protein-free medium (designated CFBI 1000, where CFBI = Clayton Foundation Biochemical Institute) that supports human peripheral lymphocyte proliferation has been developed. This medium allows exploration of individual metabolic differences by varying the medium composition as well as providing a base to explore further the mechanisms of lymphocyte activation in a system initially free of added macromolecular species other than mitogen. The peripheral blood lymphocyte is an ideal system for metabolic studies because it is easily obtained, is a primary resting cell that can be activated to proliferate, and presumably reflects both the genetic makeup and biochemical environmental history of the individual at the time the cells were formed. Examination of the role of various factors in lymphocyte activation and subsequent events may be simplified by the utilization of a medium that is protein-free and chemically defined. The CFBI 1000 medium supports the growth response of human peripheral lymphocytes to mitogen as measured by [3H]thymidine incorporation to an extent comparable to other media used widely in assessment of lymphocyte proliferation. PMID:3079905

  3. Genetic lineage tracing defines myofibroblast origin and function in the injured heart.

    PubMed

    Kanisicak, Onur; Khalil, Hadi; Ivey, Malina J; Karch, Jason; Maliken, Bryan D; Correll, Robert N; Brody, Matthew J; J Lin, Suh-Chin; Aronow, Bruce J; Tallquist, Michelle D; Molkentin, Jeffery D

    2016-01-01

    Cardiac fibroblasts convert to myofibroblasts with injury to mediate healing after acute myocardial infarction (MI) and to mediate long-standing fibrosis with chronic disease. Myofibroblasts remain a poorly defined cell type in terms of their origins and functional effects in vivo. Here we generate Postn (periostin) gene-targeted mice containing a tamoxifen-inducible Cre for cellular lineage-tracing analysis. This Postn allele identifies essentially all myofibroblasts within the heart and multiple other tissues. Lineage tracing with four additional Cre-expressing mouse lines shows that periostin-expressing myofibroblasts in the heart derive from tissue-resident fibroblasts of the Tcf21 lineage, but not endothelial, immune/myeloid or smooth muscle cells. Deletion of periostin(+) myofibroblasts reduces collagen production and scar formation after MI. Periostin-traced myofibroblasts also revert back to a less-activated state upon injury resolution. Our results define the myofibroblast as a periostin-expressing cell type necessary for adaptive healing and fibrosis in the heart, which arises from Tcf21(+) tissue-resident fibroblasts. PMID:27447449

  4. Plasmodium falciparum genetic crosses in a humanized mouse model

    PubMed Central

    Vaughan, Ashley M.; Pinapati, Richard S.; Cheeseman, Ian H.; Camargo, Nelly; Fishbaugher, Matthew; Checkley, Lisa A.; Nair, Shalini; Hutyra, Carolyn A.; Nosten, François H.; Anderson, Timothy J. C.; Ferdig, Michael T.; Kappe, Stefan H. I.

    2015-01-01

    Genetic crosses of phenotypically distinct strains of the human malaria parasite Plasmodium falciparum are a powerful tool for identifying genes controlling drug resistance and other key phenotypes. Previous studies relied on the isolation of recombinant parasites from splenectomized chimpanzees, a research avenue that is no longer available. Here, we demonstrate that human-liver chimeric mice support recovery of recombinant progeny for the identification of genetic determinants of parasite traits and adaptations. PMID:26030447

  5. Defining conservation units in a stocking-induced genetic melting pot: unraveling native and multiple exotic genetic imprints of recent and historical secondary contact in Adriatic grayling

    PubMed Central

    Meraner, Andreas; Cornetti, Luca; Gandolfi, Andrea

    2014-01-01

    The definition of conservation units is crucial for the sustainable management of endangered species, though particularly challenging when recent and past anthropogenic and natural gene flow might have played a role. The conservation of the European grayling, Thymallus thymallus, is particularly complex in its southern distribution area, where the Adriatic evolutionary lineage is endangered by a long history of anthropogenic disturbance, intensive stocking and potentially widespread genetic introgression. We provide mtDNA sequence and microsatellite data of 683 grayling from 30 sites of Adriatic as well as Danubian and Atlantic origin. We apply Bayesian clustering and Approximate Bayesian Computation (ABC) to detect microgeographic population structure and to infer the demographic history of the Adriatic populations, to define appropriate conservation units. Varying frequencies of indigenous genetic signatures of the Adriatic grayling were revealed, spanning from marginal genetic introgression to the collapse of native gene pools. Genetic introgression involved multiple exotic source populations of Danubian and Atlantic origin, thus evidencing the negative impact of few decades of stocking. Within the Adige River system, a contact zone of western Adriatic and eastern Danubian populations was detected, with ABC analyses suggesting a historical anthropogenic origin of eastern Adige populations, most likely founded by medieval translocations. Substantial river-specific population substructure within the Adriatic grayling Evolutionary Significant Unit points to the definition of different conservation units. We finally propose a catalog of management measures, including the legal prohibition of stocking exotic grayling and the use of molecular markers in supportive- and captive-breeding programs. PMID:24834328

  6. Genetic Signatures of Exceptional Longevity in Humans

    PubMed Central

    Sebastiani, Paola; Solovieff, Nadia; DeWan, Andrew T.; Walsh, Kyle M.; Puca, Annibale; Hartley, Stephen W.; Melista, Efthymia; Andersen, Stacy; Dworkis, Daniel A.; Wilk, Jemma B.; Myers, Richard H.; Steinberg, Martin H.; Montano, Monty; Baldwin, Clinton T.; Hoh, Josephine; Perls, Thomas T.

    2012-01-01

    Like most complex phenotypes, exceptional longevity is thought to reflect a combined influence of environmental (e.g., lifestyle choices, where we live) and genetic factors. To explore the genetic contribution, we undertook a genome-wide association study of exceptional longevity in 801 centenarians (median age at death 104 years) and 914 genetically matched healthy controls. Using these data, we built a genetic model that includes 281 single nucleotide polymorphisms (SNPs) and discriminated between cases and controls of the discovery set with 89% sensitivity and specificity, and with 58% specificity and 60% sensitivity in an independent cohort of 341 controls and 253 genetically matched nonagenarians and centenarians (median age 100 years). Consistent with the hypothesis that the genetic contribution is largest with the oldest ages, the sensitivity of the model increased in the independent cohort with older and older ages (71% to classify subjects with an age at death>102 and 85% to classify subjects with an age at death>105). For further validation, we applied the model to an additional, unmatched 60 centenarians (median age 107 years) resulting in 78% sensitivity, and 2863 unmatched controls with 61% specificity. The 281 SNPs include the SNP rs2075650 in TOMM40/APOE that reached irrefutable genome wide significance (posterior probability of association = 1) and replicated in the independent cohort. Removal of this SNP from the model reduced the accuracy by only 1%. Further in-silico analysis suggests that 90% of centenarians can be grouped into clusters characterized by different “genetic signatures” of varying predictive values for exceptional longevity. The correlation between 3 signatures and 3 different life spans was replicated in the combined replication sets. The different signatures may help dissect this complex phenotype into sub-phenotypes of exceptional longevity. PMID:22279548

  7. Metabolic thrift and the genetic basis of human obesity

    PubMed Central

    O’Rourke, Robert W.

    2014-01-01

    Evolution has molded metabolic thrift within humans, a genetic heritage that, when thrust into our modern “obesogenic” environment, creates the current obesity crisis. Modern genetic analysis has identified genetic and epigenetic contributors to obesity, an understanding of which will guide the development of environmental, pharmacologic, and genetic therapeutic interventions. “The voyage was so long, food and water ran out. One hundred of the paddlers died; forty men remained. The voyagers finally reached Fitinui, then Aotona.”-From “The Story of Aka”, in The Native Culture in the Marquesas by E. S. Craighill Handy PMID:24368636

  8. Integrated genetic and epigenetic analysis defines novel molecular subgroups in rhabdomyosarcoma

    PubMed Central

    Seki, Masafumi; Nishimura, Riki; Yoshida, Kenichi; Shimamura, Teppei; Shiraishi, Yuichi; Sato, Yusuke; Kato, Motohiro; Chiba, Kenichi; Tanaka, Hiroko; Hoshino, Noriko; Nagae, Genta; Shiozawa, Yusuke; Okuno, Yusuke; Hosoi, Hajime; Tanaka, Yukichi; Okita, Hajime; Miyachi, Mitsuru; Souzaki, Ryota; Taguchi, Tomoaki; Koh, Katsuyoshi; Hanada, Ryoji; Kato, Keisuke; Nomura, Yuko; Akiyama, Masaharu; Oka, Akira; Igarashi, Takashi; Miyano, Satoru; Aburatani, Hiroyuki; Hayashi, Yasuhide; Ogawa, Seishi; Takita, Junko

    2015-01-01

    Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma in childhood. Here we studied 60 RMSs using whole-exome/-transcriptome sequencing, copy number (CN) and DNA methylome analyses to unravel the genetic/epigenetic basis of RMS. On the basis of methylation patterns, RMS is clustered into four distinct subtypes, which exhibits remarkable correlation with mutation/CN profiles, histological phenotypes and clinical behaviours. A1 and A2 subtypes, especially A1, largely correspond to alveolar histology with frequent PAX3/7 fusions and alterations in cell cycle regulators. In contrast, mostly showing embryonal histology, both E1 and E2 subtypes are characterized by high frequency of CN alterations and/or allelic imbalances, FGFR4/RAS/AKT pathway mutations and PTEN mutations/methylation and in E2, also by p53 inactivation. Despite the better prognosis of embryonal RMS, patients in the E2 are likely to have a poor prognosis. Our results highlight the close relationships of the methylation status and gene mutations with the biological behaviour in RMS. PMID:26138366

  9. Integrated genetic and epigenetic analysis defines novel molecular subgroups in rhabdomyosarcoma.

    PubMed

    Seki, Masafumi; Nishimura, Riki; Yoshida, Kenichi; Shimamura, Teppei; Shiraishi, Yuichi; Sato, Yusuke; Kato, Motohiro; Chiba, Kenichi; Tanaka, Hiroko; Hoshino, Noriko; Nagae, Genta; Shiozawa, Yusuke; Okuno, Yusuke; Hosoi, Hajime; Tanaka, Yukichi; Okita, Hajime; Miyachi, Mitsuru; Souzaki, Ryota; Taguchi, Tomoaki; Koh, Katsuyoshi; Hanada, Ryoji; Kato, Keisuke; Nomura, Yuko; Akiyama, Masaharu; Oka, Akira; Igarashi, Takashi; Miyano, Satoru; Aburatani, Hiroyuki; Hayashi, Yasuhide; Ogawa, Seishi; Takita, Junko

    2015-01-01

    Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma in childhood. Here we studied 60 RMSs using whole-exome/-transcriptome sequencing, copy number (CN) and DNA methylome analyses to unravel the genetic/epigenetic basis of RMS. On the basis of methylation patterns, RMS is clustered into four distinct subtypes, which exhibits remarkable correlation with mutation/CN profiles, histological phenotypes and clinical behaviours. A1 and A2 subtypes, especially A1, largely correspond to alveolar histology with frequent PAX3/7 fusions and alterations in cell cycle regulators. In contrast, mostly showing embryonal histology, both E1 and E2 subtypes are characterized by high frequency of CN alterations and/or allelic imbalances, FGFR4/RAS/AKT pathway mutations and PTEN mutations/methylation and in E2, also by p53 inactivation. Despite the better prognosis of embryonal RMS, patients in the E2 are likely to have a poor prognosis. Our results highlight the close relationships of the methylation status and gene mutations with the biological behaviour in RMS. PMID:26138366

  10. Distinct Muscle Biopsy Findings in Genetically Defined Adult-Onset Motor Neuron Disorders

    PubMed Central

    Jokela, Manu; Huovinen, Sanna; Raheem, Olayinka; Lindfors, Mikaela; Palmio, Johanna; Penttilä, Sini; Udd, Bjarne

    2016-01-01

    The objective of this study was to characterize and compare muscle histopathological findings in 3 different genetic motor neuron disorders. We retrospectively re-assessed muscle biopsy findings in 23 patients with autosomal dominant lower motor neuron disease caused by p.G66V mutation in CHCHD10 (SMAJ), 10 X-linked spinal and bulbar muscular atrophy (SBMA) and 11 autosomal dominant c9orf72-mutated amyotrophic lateral sclerosis (c9ALS) patients. Distinct large fiber type grouping consisting of non-atrophic type IIA muscle fibers were 100% specific for the late-onset spinal muscular atrophies (SMAJ and SBMA) and were never observed in c9ALS. Common, but less specific findings included small groups of highly atrophic rounded type IIA fibers in SMAJ/SBMA, whereas in c9ALS, small group atrophies consisting of small-caliber angular fibers involving both fiber types were more characteristic. We also show that in the 2 slowly progressive motor neuron disorders (SMAJ and SBMA) the initial neurogenic features are often confused with considerable secondary “myopathic” changes at later disease stages, such as rimmed vacuoles, myofibrillar aggregates and numerous fibers reactive for fetal myosin heavy chain (dMyHC) antibodies. Based on our findings, muscle biopsy may be valuable in the diagnostic work-up of suspected motor neuron disorders in order to avoid a false ALS diagnosis in patients without clear findings of upper motor neuron lesions. PMID:26999347

  11. Sweating the Small Stuff: MicroRNAs and Genetic Changes Define Pancreatic Cancer

    PubMed Central

    Tang, Siuwah; Bonaroti, Jillian; Unlu, Sebnem; Liang, Xiaoyan; Tang, Daolin; Zeh, Herbert J.; Lotze, Michael T.

    2014-01-01

    MicroRNAs (miRNAs) are 18- to 22-nucleotide-long, single-stranded, noncoding RNAs that regulate important biological processes including differentiation, proliferation, and response to cellular stressors such as hypoxia, nutrient depletion, and traversion of the cell cycle by controlling protein expression within the cell. Many investigators have profiled cancer tissue and serum miRNAs to identify potential therapeutic targets, understand the pathways involved in tumorigenesis, and identify diagnostic tumor signatures. In the setting of pancreatic cancer, obtaining pancreatic tissue is invasive and impractical for early diagnosis. Several groups have profiled miRNAs that are present in the blood as a means to diagnose tumor progression and predict prognosis/survival or drug resistance. Several miRNA signatures found in pancreatic tissue and the peripheral blood, as well as the pathways that are associated with pancreatic cancer, are reviewed here in detail. Three miRNA biomarkers (miR-21, miR-155, and miR-200) have been repetitively identified in both pancreatic cancer tissue and patients’ blood. Those miRNAs regulate and are regulated by the central genetic and epigenetic changes observed in pancreatic cancer including p53, transforming growth factor [beta], p16INK4A, BRCA1/2, and Kras. These miRNAs are involved in DNA repair, cell cycle, and cell invasion and also play important roles in promoting metastases. PMID:23774697

  12. A genetically defined asymmetry underlies the inhibitory control of flexor–extensor locomotor movements

    PubMed Central

    Britz, Olivier; Zhang, Jingming; Grossmann, Katja S; Dyck, Jason; Kim, Jun C; Dymecki, Susan; Gosgnach, Simon; Goulding, Martyn

    2015-01-01

    V1 and V2b interneurons (INs) are essential for the production of an alternating flexor–extensor motor output. Using a tripartite genetic system to selectively ablate either V1 or V2b INs in the caudal spinal cord and assess their specific functions in awake behaving animals, we find that V1 and V2b INs function in an opposing manner to control flexor–extensor-driven movements. Ablation of V1 INs results in limb hyperflexion, suggesting that V1 IN-derived inhibition is needed for proper extension movements of the limb. The loss of V2b INs results in hindlimb hyperextension and a delay in the transition from stance phase to swing phase, demonstrating V2b INs are required for the timely initiation and execution of limb flexion movements. Our findings also reveal a bias in the innervation of flexor- and extensor-related motor neurons by V1 and V2b INs that likely contributes to their differential actions on flexion–extension movements. DOI: http://dx.doi.org/10.7554/eLife.04718.001 PMID:26465208

  13. Ex Vivo Expansion of Human Mesenchymal Stem Cells in Defined Serum-Free Media

    PubMed Central

    Jung, Sunghoon; Panchalingam, Krishna M.; Rosenberg, Lawrence; Behie, Leo A.

    2012-01-01

    Human mesenchymal stem cells (hMSCs) are presently being evaluated for their therapeutic potential in clinical studies to treat various diseases, disorders, and injuries. To date, early-phase studies have indicated that the use of both autologous and allogeneic hMSCs appear to be safe; however, efficacy has not been demonstrated in recent late-stage clinical trials. Optimized cell bioprocessing protocols may enhance the efficacy as well as safety of hMSC therapeutics. Classical media used for generating hMSCs are typically supplemented with ill-defined supplements such as fetal bovine serum (FBS) or human-sourced alternatives. Ideally, culture media are desired to have well-defined serum-free formulations that support the efficient production of hMSCs while maintaining their therapeutic and differentiation capacity. Towards this objective, we review here current cell culture media for hMSCs and discuss medium development strategies. PMID:22645619

  14. The support of human genetic evidence for approved drug indications.

    PubMed

    Nelson, Matthew R; Tipney, Hannah; Painter, Jeffery L; Shen, Judong; Nicoletti, Paola; Shen, Yufeng; Floratos, Aris; Sham, Pak Chung; Li, Mulin Jun; Wang, Junwen; Cardon, Lon R; Whittaker, John C; Sanseau, Philippe

    2015-08-01

    Over a quarter of drugs that enter clinical development fail because they are ineffective. Growing insight into genes that influence human disease may affect how drug targets and indications are selected. However, there is little guidance about how much weight should be given to genetic evidence in making these key decisions. To answer this question, we investigated how well the current archive of genetic evidence predicts drug mechanisms. We found that, among well-studied indications, the proportion of drug mechanisms with direct genetic support increases significantly across the drug development pipeline, from 2.0% at the preclinical stage to 8.2% among mechanisms for approved drugs, and varies dramatically among disease areas. We estimate that selecting genetically supported targets could double the success rate in clinical development. Therefore, using the growing wealth of human genetic data to select the best targets and indications should have a measurable impact on the successful development of new drugs. PMID:26121088

  15. Genetic and environmental influences on human behavioral differences.

    PubMed

    McGue, M; Bouchard, T J

    1998-01-01

    Human behavioral genetic research aimed at characterizing the existence and nature of genetic and environmental influences on individual differences in cognitive ability, personality and interests, and psychopathology is reviewed. Twin and adoption studies indicate that most behavioral characteristics are heritable. Nonetheless, efforts to identify the genes influencing behavior have produced a limited number of confirmed linkages or associations. Behavioral genetic research also documents the importance of environmental factors, but contrary to the expectations of many behavioral scientists, the relevant environmental factors appear to be those that are not shared by reared together relatives. The observation of genotype-environment correlational processes and the hypothesized existence of genotype-environment interaction effects serve to distinguish behavioral traits from the medical and physiological phenotypes studied by human geneticists. Behavioral genetic research supports the heritability, not the genetic determination, of behavior. PMID:9530489

  16. Massively parallel high-order combinatorial genetics in human cells

    PubMed Central

    Wong, Alan S L; Choi, Gigi C G; Cheng, Allen A; Purcell, Oliver; Lu, Timothy K

    2016-01-01

    The systematic functional analysis of combinatorial genetics has been limited by the throughput that can be achieved and the order of complexity that can be studied. To enable massively parallel characterization of genetic combinations in human cells, we developed a technology for rapid, scalable assembly of high-order barcoded combinatorial genetic libraries that can be quantified with high-throughput sequencing. We applied this technology, combinatorial genetics en masse (CombiGEM), to create high-coverage libraries of 1,521 two-wise and 51,770 three-wise barcoded combinations of 39 human microRNA (miRNA) precursors. We identified miRNA combinations that synergistically sensitize drug-resistant cancer cells to chemotherapy and/or inhibit cancer cell proliferation, providing insights into complex miRNA networks. More broadly, our method will enable high-throughput profiling of multifactorial genetic combinations that regulate phenotypes of relevance to biomedicine, biotechnology and basic science. PMID:26280411

  17. A thermoresponsive and chemically defined hydrogel for long-term culture of human embryonic stem cells

    PubMed Central

    Zhang, Rong; Mjoseng, Heidi K.; Hoeve, Marieke A.; Bauer, Nina G.; Pells, Steve; Besseling, Rut; Velugotla, Srinivas; Tourniaire, Guilhem; Kishen, Ria E. B.; Tsenkina, Yanina; Armit, Chris; Duffy, Cairnan R. E.; Helfen, Martina; Edenhofer, Frank; de Sousa, Paul A.; Bradley, Mark

    2013-01-01

    Cultures of human embryonic stem cell typically rely on protein matrices or feeder cells to support attachment and growth, while mechanical, enzymatic or chemical cell dissociation methods are used for cellular passaging. However, these methods are ill defined, thus introducing variability into the system, and may damage cells. They also exert selective pressures favouring cell aneuploidy and loss of differentiation potential. Here we report the identification of a family of chemically defined thermoresponsive synthetic hydrogels based on 2-(diethylamino)ethyl acrylate, which support long-term human embryonic stem cell growth and pluripotency over a period of 2–6 months. The hydrogels permitted gentle, reagent-free cell passaging by virtue of transient modulation of the ambient temperature from 37 to 15 °C for 30 min. These chemically defined alternatives to currently used, undefined biological substrates represent a flexible and scalable approach for improving the definition, efficacy and safety of human embryonic stem cell culture systems for research, industrial and clinical applications. PMID:23299885

  18. Genetically-defined novel oral squamous cell carcinoma cell lines for the development of molecular therapies.

    PubMed

    Fadlullah, Muhammad Zaki Hidayatullah; Chiang, Ivy Kim-Ni; Dionne, Kalen R; Yee, Pei San; Gan, Chai Phei; Sam, Kin Kit; Tiong, Kai Hung; Wen Ng, Adrian Kwok; Martin, Daniel; Lim, Kue Peng; Kallarakkal, Thomas George; Wan Mustafa, Wan Mahadzir; Lau, Shin Hin; Abraham, Mannil Thomas; Zain, Rosnah Binti; Abdul Rahman, Zainal Ariff; Molinolo, Alfredo; Patel, Vyomesh; Gutkind, J Silvio; Tan, Aik Choon; Cheong, Sok Ching

    2016-04-01

    Emerging biological and translational insights from large sequencing efforts underscore the need for genetically-relevant cell lines to study the relationships between genomic alterations of tumors, and therapeutic dependencies. Here, we report a detailed characterization of a novel panel of clinically annotated oral squamous cell carcinoma (OSCC) cell lines, derived from patients with diverse ethnicity and risk habits. Molecular analysis by RNAseq and copy number alterations (CNA) identified that the cell lines harbour CNA that have been previously reported in OSCC, for example focal amplications in 3q, 7p, 8q, 11q, 20q and deletions in 3p, 5q, 8p, 18q. Similarly, our analysis identified the same cohort of frequently mutated genes previously reported in OSCC including TP53, CDKN2A, EPHA2, FAT1, NOTCH1, CASP8 and PIK3CA. Notably, we identified mutations (MLL4, USP9X, ARID2) in cell lines derived from betel quid users that may be associated with this specific risk factor. Gene expression profiles of the ORL lines also aligned with those reported for OSCC. By focusing on those gene expression signatures that are predictive of chemotherapeutic response, we observed that the ORL lines broadly clustered into three groups (cell cycle, xenobiotic metabolism, others). The ORL lines noted to be enriched in cell cycle genes responded preferentially to the CDK1 inhibitor RO3306, by MTT cell viability assay. Overall, our in-depth characterization of clinically annotated ORL lines provides new insight into the molecular alterations synonymous with OSCC, which can facilitate in the identification of biomarkers that can be used to guide diagnosis, prognosis, and treatment of OSCC. PMID:27050151

  19. Behavioral genetics '97: ASHG statement. Recent developments in human behavioral genetics: past accomplishments and future directions.

    PubMed Central

    Sherman, S L; DeFries, J C; Gottesman, I I; Loehlin, J C; Meyer, J M; Pelias, M Z; Rice, J; Waldman, I

    1997-01-01

    The field of behavioral genetics has enormous potential to uncover both genetic and environmental influences on normal and deviant behavior. Behavioral-genetic methods are based on a solid foundation of theories and methods that successfully have delineated components of complex traits in plants and animals. New resources are now available to dissect the genetic component of these complex traits. As specific genes are identified, we can begin to explore how these interact with environmental factors in development. How we interpret such findings, how we ask new questions, how we celebrate the knowledge, and how we use or misuse this knowledge are all important considerations. These issues are pervasive in all areas of human research, and they are especially salient in human behavioral genetics. PMID:9199545

  20. Human embryonic stem cells carrying mutations for severe genetic disorders.

    PubMed

    Frumkin, Tsvia; Malcov, Mira; Telias, Michael; Gold, Veronica; Schwartz, Tamar; Azem, Foad; Amit, Ami; Yaron, Yuval; Ben-Yosef, Dalit

    2010-04-01

    Human embryonic stem cells (HESCs) carrying specific mutations potentially provide a valuable tool for studying genetic disorders in humans. One preferable approach for obtaining these cell lines is by deriving them from affected preimplantation genetically diagnosed embryos. These unique cells are especially important for modeling human genetic disorders for which there are no adequate research models. They can be further used to gain new insights into developmentally regulated events that occur during human embryo development and that are responsible for the manifestation of genetically inherited disorders. They also have great value for the exploration of new therapeutic protocols, including gene-therapy-based treatments and disease-oriented drug screening and discovery. Here, we report the establishment of 15 different mutant human embryonic stem cell lines derived from genetically affected embryos, all donated by couples undergoing preimplantation genetic diagnosis in our in vitro fertilization unit. For further information regarding access to HESC lines from our repository, for research purposes, please email dalitb@tasmc.health.gov.il. PMID:20186514

  1. Genetic Characterization of Human Populations: From ABO to a Genetic Map of the British People

    PubMed Central

    Bodmer, Walter

    2015-01-01

    From 1900, when Landsteiner first described the ABO blood groups, to the present, the methods used to characterize the genetics of human populations have undergone a remarkable development. Concomitantly, our understanding of the history and spread of human populations across the earth has become much more detailed. As has often been said, a better understanding of the genetic relationships among the peoples of the world is one of the best antidotes to racial prejudices. Such an understanding provides us with a fascinating, improved insight into our origins as well as with valuable information about population differences that are of medical relevance. The study of genetic polymorphisms has been essential to the analysis of the relationships between human populations. The evolution of methods used to study human polymorphisms and the resulting contributions to our understanding of human health and history is the subject of this Perspectives. PMID:25657345

  2. Human Handedness: More Evidence for Genetic Involvement.

    ERIC Educational Resources Information Center

    Longstreth, Langdon E.

    1980-01-01

    A series of environmental-genetical analyses of the left-handedness of 1,950 college students indicates that left-handedness is familial: it is more frequent in families in which at least one parent is left-handed. (Author/CM)

  3. MOLECULAR GENETIC AND BIOCHEMICAL APPROACHES FOR DEFINING LIPID-DEPENDENT MEMBRANE PROTEIN FOLDING

    PubMed Central

    Dowhan, William; Bogdanov, Mikhail

    2011-01-01

    We provide an overview of lipid-dependent polytopic membrane protein folding and topogenesis. Lipid dependence of this process was determined by employing Escherichia coli cells in which specific lipids can be eliminated, substituted, tightly titrated or controlled temporally during membrane protein synthesis and assembly. The secondary transport protein lactose permease (LacY) was used to establish general principles underlying the molecular basis of lipid-dependent effects on protein domain folding, protein transmembrane domain (TM) orientation, and function. These principles were then extended to several other secondary transport proteins of E. coli. The methods used to follow proper conformational organization of protein domains and the topological organization of protein TMs in whole cells and membranes are described. The proper folding of an extramembrane domain of LacY that is crucial for energy dependent uphill transport function depends on specific lipids acting as non-protein molecular chaperones. Correct TM topogenesis is dependent on charge interactions between the cytoplasmic surface of membrane proteins and a proper balance of the membrane surface net charge defined by the lipid head groups. Short-range interactions between the nascent protein chain and the translocon are necessary but not sufficient for establishment of final topology. After release from the translocon short-range interactions between lipid head groups and the nascent protein chain, partitioning of protein hydrophobic domains into the membrane bilayer, and long–range interactions within the protein thermodynamically drive final membrane protein organization. Given the diversity of membrane lipid compositions throughout nature, it is tempting to speculate that during the course of evolution the physical and chemical properties of proteins and lipids have co-evolved in the context of the lipid environment of membrane systems in which both are mutually depend on each other for

  4. Endothelial Interleukin-6 defines the tumorigenic potential of primary human cancer stem cells

    PubMed Central

    Krishnamurthy, Sudha; Warner, Kristy A.; Dong, Zhihong; Imai, Atsushi; Nör, Carolina; Ward, Brent B.; Helman, Joseph I.; Taichman, Russell S.; Bellile, Emily L.; McCauley, Laurie K.; Polverini, Peter J.; Prince, Mark E.; Wicha, Max S.; Nör, Jacques E.

    2014-01-01

    Head and neck squamous cell carcinomas (HNSCC) contain a small sub-population of stem cells endowed with unique capacity to generate tumors. These cancer stem cells (CSC) are localized in perivascular niches and rely on crosstalk with endothelial cells for survival and self-renewal, but the mechanisms involved are unknown. Here, we report that stromal interleukin (IL)-6 defines the tumorigenic capacity of CSC sorted from primary human HNSCC and transplanted into mice. In search for the cellular source of IL-6, we observed a direct correlation between IL-6 levels in tumor-associated endothelial cells and the tumorigenicity of CSC. In vitro, endothelial cell-IL-6 enhanced orosphere formation, p-STAT3 activation, survival and self-renewal of human CSC. Notably, a humanized anti-IL-6R antibody (tocilizumab) inhibited primary human CSC-mediated tumor initiation. Collectively, these data demonstrate that endothelial cell-secreted IL-6 defines the tumorigenic potential of CSC, and suggest that HNSCC patients might benefit from therapeutic inhibition of IL-6/IL-6R signaling. PMID:25078284

  5. Endothelial interleukin-6 defines the tumorigenic potential of primary human cancer stem cells.

    PubMed

    Krishnamurthy, Sudha; Warner, Kristy A; Dong, Zhihong; Imai, Atsushi; Nör, Carolina; Ward, Brent B; Helman, Joseph I; Taichman, Russell S; Bellile, Emily L; McCauley, Laurie K; Polverini, Peter J; Prince, Mark E; Wicha, Max S; Nör, Jacques E

    2014-11-01

    Head and neck squamous cell carcinomas (HNSCC) contain a small subpopulation of stem cells endowed with unique capacity to generate tumors. These cancer stem cells (CSC) are localized in perivascular niches and rely on crosstalk with endothelial cells for survival and self-renewal, but the mechanisms involved are unknown. Here, we report that stromal interleukin (IL)-6 defines the tumorigenic capacity of CSC sorted from primary human HNSCC and transplanted into mice. In search for the cellular source of Interleukin-6 (IL-6), we observed a direct correlation between IL-6 levels in tumor-associated endothelial cells and the tumorigenicity of CSC. In vitro, endothelial cell-IL-6 enhanced orosphere formation, p-STAT3 activation, survival, and self-renewal of human CSC. Notably, a humanized anti-IL-6R antibody (tocilizumab) inhibited primary human CSC-mediated tumor initiation. Collectively, these data demonstrate that endothelial cell-secreted IL-6 defines the tumorigenic potential of CSC, and suggest that HNSCC patients might benefit from therapeutic inhibition of IL-6/IL-6R signaling. PMID:25078284

  6. Defining the genomic signature of totipotency and pluripotency during early human development.

    PubMed

    Galan, Amparo; Diaz-Gimeno, Patricia; Poo, Maria Eugenia; Valbuena, Diana; Sanchez, Eva; Ruiz, Veronica; Dopazo, Joaquin; Montaner, David; Conesa, Ana; Simon, Carlos

    2013-01-01

    The genetic mechanisms governing human pre-implantation embryo development and the in vitro counterparts, human embryonic stem cells (hESCs), still remain incomplete. Previous global genome studies demonstrated that totipotent blastomeres from day-3 human embryos and pluripotent inner cell masses (ICMs) from blastocysts, display unique and differing transcriptomes. Nevertheless, comparative gene expression analysis has revealed that no significant differences exist between hESCs derived from blastomeres versus those obtained from ICMs, suggesting that pluripotent hESCs involve a new developmental progression. To understand early human stages evolution, we developed an undifferentiation network signature (UNS) and applied it to a differential gene expression profile between single blastomeres from day-3 embryos, ICMs and hESCs. This allowed us to establish a unique signature composed of highly interconnected genes characteristic of totipotency (61 genes), in vivo pluripotency (20 genes), and in vitro pluripotency (107 genes), and which are also proprietary according to functional analysis. This systems biology approach has led to an improved understanding of the molecular and signaling processes governing human pre-implantation embryo development, as well as enabling us to comprehend how hESCs might adapt to in vitro culture conditions. PMID:23614026

  7. A new region of conservation is defined between human and mouse X chromosomes

    SciTech Connect

    Dinulos, M.B.; Disteche, C.M.; Bassi, M.T.

    1996-07-01

    Comparative mapping of the X chromosome in eutherian mammals have revealed distinct regions of conservation as well as evolutionary rearrangements between human and mouse. Recently, we and others mapped the murine homologue of CLCN4 (Chloride channel 4) to band F4 of the X chromosome in Mus spretus but to chromosome 7 in laboratory strains. We now report the mapping of the murine homologues of APXL (Apical protein Xenopus laevis-like) and OA1 (Ocular albinism type I), two genes that are located on the human X chromosome at band p22.3 and in close proximity to CLCN4. Interestingly, Oa1 and Apxl map to bands F2-F3 in both M. spretus and the laboratory strain C57BL/6J, defining a new rearrangement between human and mouse X chromosomes. 17 refs., 2 figs., 1 tab.

  8. Genetic Effects on Human Behavior: Recent Family Studies.

    ERIC Educational Resources Information Center

    Scarr, Sandra

    Although there continues to be controversy about the magnitude of genetic and environmental effects on human behavior, it is generally agreed by various scientific fields that individual differences in brain function and behavior must follow the same laws of variability as other human characteristics. Whether or not racial and ethnic group…

  9. Human longevity: Genetics or Lifestyle? It takes two to tango.

    PubMed

    Passarino, Giuseppe; De Rango, Francesco; Montesanto, Alberto

    2016-01-01

    Healthy aging and longevity in humans are modulated by a lucky combination of genetic and non-genetic factors. Family studies demonstrated that about 25 % of the variation in human longevity is due to genetic factors. The search for genetic and molecular basis of aging has led to the identification of genes correlated with the maintenance of the cell and of its basic metabolism as the main genetic factors affecting the individual variation of the aging phenotype. In addition, studies on calorie restriction and on the variability of genes associated with nutrient-sensing signaling, have shown that ipocaloric diet and/or a genetically efficient metabolism of nutrients, can modulate lifespan by promoting an efficient maintenance of the cell and of the organism. Recently, epigenetic studies have shown that epigenetic modifications, modulated by both genetic background and lifestyle, are very sensitive to the aging process and can either be a biomarker of the quality of aging or influence the rate and the quality of aging. On the whole, current studies are showing that interventions modulating the interaction between genetic background and environment is essential to determine the individual chance to attain longevity. PMID:27053941

  10. Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions.

    PubMed

    Saha, Krishanu; Mei, Ying; Reisterer, Colin M; Pyzocha, Neena Kenton; Yang, Jing; Muffat, Julien; Davies, Martyn C; Alexander, Morgan R; Langer, Robert; Anderson, Daniel G; Jaenisch, Rudolf

    2011-11-15

    The current gold standard for the culture of human pluripotent stem cells requires the use of a feeder layer of cells. Here, we develop a spatially defined culture system based on UV/ozone radiation modification of typical cell culture plastics to define a favorable surface environment for human pluripotent stem cell culture. Chemical and geometrical optimization of the surfaces enables control of early cell aggregation from fully dissociated cells, as predicted from a numerical model of cell migration, and results in significant increases in cell growth of undifferentiated cells. These chemically defined xeno-free substrates generate more than three times the number of cells than feeder-containing substrates per surface area. Further, reprogramming and typical gene-targeting protocols can be readily performed on these engineered surfaces. These substrates provide an attractive cell culture platform for the production of clinically relevant factor-free reprogrammed cells from patient tissue samples and facilitate the definition of standardized scale-up friendly methods for disease modeling and cell therapeutic applications. PMID:22065768

  11. Chemically Defined and Small Molecule-Based Generation of Human Cardiomyocytes

    PubMed Central

    Burridge, Paul W.; Matsa, Elena; Shukla, Praveen; Lin, Ziliang C.; Churko, Jared M.; Ebert, Antje D.; Lan, Feng; Diecke, Sebastian; Huber, Bruno; Mordwinkin, Nicholas M.; Plews, Jordan R.; Abilez, Oscar J.; Cui, Bianxiao; Gold, Joseph D.; Wu, Joseph C.

    2014-01-01

    Existing methodologies for human induced pluripotent stem cell (hiPSC) cardiac differentiation are efficient but require the use of complex, undefined medium constituents that hinder further elucidation of the molecular mechanisms of cardiomyogenesis. Using hiPSCs derived under chemically defined conditions on synthetic matrices, we systematically developed a highly optimized cardiac differentiation strategy, employing a chemically defined medium consisting of just three components: the basal medium RPMI 1640, L-ascorbic acid 2-phosphate, and rice-derived recombinant human albumin. Along with small molecule-based differentiation induction, this protocol produced contractile sheets of up to 95% TNNT2+ cardiomyocytes at a yield of up to 100 cardiomyocytes for every input pluripotent cell, and was effective in 11 hiPSC lines tested. This is the first fully chemically defined platform for cardiac specification of hiPSCs, and allows the elucidation of cardiomyocyte macromolecular and metabolic requirements whilst providing a minimally complex system for the study of maturation and subtype specification. PMID:24930130

  12. The Evolution of Human Intelligence and the Coefficient of Additive Genetic Variance in Human Brain Size

    ERIC Educational Resources Information Center

    Miller, Geoffrey F.; Penke, Lars

    2007-01-01

    Most theories of human mental evolution assume that selection favored higher intelligence and larger brains, which should have reduced genetic variance in both. However, adult human intelligence remains highly heritable, and is genetically correlated with brain size. This conflict might be resolved by estimating the coefficient of additive genetic…

  13. Maintenance of Hepatic Functions in Primary Human Hepatocytes Cultured on Xeno-Free and Chemical Defined Human Recombinant Laminins.

    PubMed

    Watanabe, Masaaki; Zemack, Helen; Johansson, Helene; Hagbard, Louise; Jorns, Carl; Li, Meng; Ellis, Ewa

    2016-01-01

    Refined methods for maintaining specific functions of isolated hepatocytes under xeno-free and chemical defined conditions is of great importance for the development of hepatocyte research and regenerative therapy. Laminins, a large family of heterotrimeric basement membrane adhesion proteins, are highly cell and tissue type specific components of the extracellular matrix and strongly influence the behavior and function of associated cells and/or tissues. However, detailed biological functions of many laminin isoforms are still to be evaluated. In this study, we determined the distribution of laminin isoforms in human liver tissue and isolated primary human hepatocytes by western blot analysis, and investigated the efficacy of different human recombinant laminin isoforms on hepatic functions during culture. Protein expressions of laminin-chain α2, α3, α4, β1, β3, γ1, and γ2 were detected in both isolated human hepatocytes and liver tissue. No α1 and α5 expression could be detected in liver tissue or hepatocytes. Hepatocytes were isolated from five different individual livers, and cultured on human recombinant laminin isoforms -111, -211, -221, -332, -411, -421, -511, and -521 (Biolamina AB), matrigel (extracted from Engelbreth-Holm-Swarm sarcoma), or collagen type IV (Collagen). Hepatocytes cultured on laminin showed characteristic hexagonal shape in a flat cell monolayer. Viability, double stranded DNA concentration, and Ki67 expression for hepatocytes cultured for six days on laminin were comparable to those cultured on EHS and Collagen. Hepatocytes cultured on laminin also displayed production of human albumin, alpha-1-antitrypsin, bile acids, and gene expression of liver-enriched factors, such as hepatocyte nuclear factor 4 alpha, glucose-6-phosphate, cytochrome P450 3A4, and multidrug resistance-associated protein 2. We conclude that all forms of human recombinant laminin tested maintain cell viability and liver-specific functions of primary human

  14. Analysis of Dengue Virus Genetic Diversity during Human and Mosquito Infection Reveals Genetic Constraints

    PubMed Central

    Sessions, October M.; Wilm, Andreas; Kamaraj, Uma Sangumathi; Choy, Milly M.; Chow, Angelia; Chong, Yuwen; Ong, Xin Mei; Nagarajan, Niranjan; Cook, Alex R.; Ooi, Eng Eong

    2015-01-01

    Dengue viruses (DENV) cause debilitating and potentially life-threatening acute disease throughout the tropical world. While drug development efforts are underway, there are concerns that resistant strains will emerge rapidly. Indeed, antiviral drugs that target even conserved regions in other RNA viruses lose efficacy over time as the virus mutates. Here, we sought to determine if there are regions in the DENV genome that are not only evolutionarily conserved but genetically constrained in their ability to mutate and could hence serve as better antiviral targets. High-throughput sequencing of DENV-1 genome directly from twelve, paired dengue patients’ sera and then passaging these sera into the two primary mosquito vectors showed consistent and distinct sequence changes during infection. In particular, two residues in the NS5 protein coding sequence appear to be specifically acquired during infection in Ae. aegypti but not Ae. albopictus. Importantly, we identified a region within the NS3 protein coding sequence that is refractory to mutation during human and mosquito infection. Collectively, these findings provide fresh insights into antiviral targets and could serve as an approach to defining evolutionarily constrained regions for therapeutic targeting in other RNA viruses. PMID:26327586

  15. What Is Trophoblast? A Combination of Criteria Define Human First-Trimester Trophoblast

    PubMed Central

    Lee, Cheryl Q.E.; Gardner, Lucy; Turco, Margherita; Zhao, Nancy; Murray, Matthew J.; Coleman, Nicholas; Rossant, Janet; Hemberger, Myriam; Moffett, Ashley

    2016-01-01

    Summary Controversy surrounds reports describing the derivation of human trophoblast cells from placentas and embryonic stem cells (ESC), partly due to the difficulty in identifying markers that define cells as belonging to the trophoblast lineage. We have selected criteria that are characteristic of primary first-trimester trophoblast: a set of protein markers, HLA class I profile, methylation of ELF5, and expression of microRNAs (miRNAs) from the chromosome 19 miRNA cluster (C19MC). We tested these criteria on cells previously reported to show some phenotypic characteristics of trophoblast: bone morphogenetic protein (BMP)-treated human ESC and 2102Ep, an embryonal carcinoma cell line. Both cell types only show some, but not all, of the four trophoblast criteria. Thus, BMP-treated human ESC have not fully differentiated to trophoblast. Our study identifies a robust panel, including both protein and non-protein-coding markers that, in combination, can be used to reliably define cells as characteristic of early trophoblast. PMID:26862703

  16. Defining the HLA class I-associated viral antigen repertoire from HIV-1-infected human cells.

    PubMed

    Ternette, Nicola; Yang, Hongbing; Partridge, Thomas; Llano, Anuska; Cedeño, Samandhy; Fischer, Roman; Charles, Philip D; Dudek, Nadine L; Mothe, Beatriz; Crespo, Manuel; Fischer, William M; Korber, Bette T M; Nielsen, Morten; Borrow, Persephone; Purcell, Anthony W; Brander, Christian; Dorrell, Lucy; Kessler, Benedikt M; Hanke, Tomáš

    2016-01-01

    Recognition and eradication of infected cells by cytotoxic T lymphocytes is a key defense mechanism against intracellular pathogens. High-throughput definition of HLA class I-associated immunopeptidomes by mass spectrometry is an increasingly important analytical tool to advance our understanding of the induction of T-cell responses against pathogens such as HIV-1. We utilized a liquid chromatography tandem mass spectrometry workflow including de novo-assisted database searching to define the HLA class I-associated immunopeptidome of HIV-1-infected human cells. We here report for the first time the identification of 75 HIV-1-derived peptides bound to HLA class I complexes that were purified directly from HIV-1-infected human primary CD4(+) T cells and the C8166 human T-cell line. Importantly, one-third of eluted HIV-1 peptides had not been previously known to be presented by HLA class I. Over 82% of the identified sequences originated from viral protein regions for which T-cell responses have previously been reported but for which the precise HLA class I-binding sequences have not yet been defined. These results validate and expand the current knowledge of virus-specific antigenic peptide presentation during HIV-1 infection and provide novel targets for T-cell vaccine development. PMID:26467324

  17. What Is Trophoblast? A Combination of Criteria Define Human First-Trimester Trophoblast.

    PubMed

    Lee, Cheryl Q E; Gardner, Lucy; Turco, Margherita; Zhao, Nancy; Murray, Matthew J; Coleman, Nicholas; Rossant, Janet; Hemberger, Myriam; Moffett, Ashley

    2016-02-01

    Controversy surrounds reports describing the derivation of human trophoblast cells from placentas and embryonic stem cells (ESC), partly due to the difficulty in identifying markers that define cells as belonging to the trophoblast lineage. We have selected criteria that are characteristic of primary first-trimester trophoblast: a set of protein markers, HLA class I profile, methylation of ELF5, and expression of microRNAs (miRNAs) from the chromosome 19 miRNA cluster (C19MC). We tested these criteria on cells previously reported to show some phenotypic characteristics of trophoblast: bone morphogenetic protein (BMP)-treated human ESC and 2102Ep, an embryonal carcinoma cell line. Both cell types only show some, but not all, of the four trophoblast criteria. Thus, BMP-treated human ESC have not fully differentiated to trophoblast. Our study identifies a robust panel, including both protein and non-protein-coding markers that, in combination, can be used to reliably define cells as characteristic of early trophoblast. PMID:26862703

  18. Utility of cheiloscopy, rugoscopy, and dactyloscopy for human identification in a defined cohort

    PubMed Central

    Mutalik, Vimi S.; Menon, Aparna; Jayalakshmi, N.; Kamath, Asha; Raghu, A. R.

    2013-01-01

    Background: Identification is of paramount importance in any forensic investigation. Positive identification of living or deceased using distinctive traits is a cornerstone of forensic science. The uniqueness of these patterns and subtle distinction between traits has offered worthy supplemental tools in establishing the true nature of facts. Aim: The first aim of our study was to determine the most common pattern of lip prints, palatal rugae, and finger prints in the study subjects. Secondly, to determine if any specific pattern of lip print, palatal rugae, or the finger print concurs in individuals, and thereby establish a database of these prototypes for human identification from a defined cohort. Materials and Methods: The sample size comprised 100 female students of a dental college staying together in the hostel. Lip prints were recorded on a white bond sheet using lipstick, palatal rugae on dental casts, and finger prints using printer's blue ink. Results: Our observation suggested that the reticular pattern of lip print, the wavy pattern of palatal rugae, and the loop pattern of finger prints were the predominant patterns. Correlation of the three parameters did not reveal significant differences. Conclusions: This approach of human identification utilizing conventional techniques and relevant parameters is pertinent in defined groups. However, larger representative sample with robust analytical tools may provide a necessary blueprint of human identification. PMID:23960407

  19. Reduced DNA methylation patterning and transcriptional connectivity define human skin aging.

    PubMed

    Bormann, Felix; Rodríguez-Paredes, Manuel; Hagemann, Sabine; Manchanda, Himanshu; Kristof, Boris; Gutekunst, Julian; Raddatz, Günter; Haas, Rainer; Terstegen, Lara; Wenck, Horst; Kaderali, Lars; Winnefeld, Marc; Lyko, Frank

    2016-06-01

    Epigenetic changes represent an attractive mechanism for understanding the phenotypic changes associated with human aging. Age-related changes in DNA methylation at the genome scale have been termed 'epigenetic drift', but the defining features of this phenomenon remain to be established. Human epidermis represents an excellent model for understanding age-related epigenetic changes because of its substantial cell-type homogeneity and its well-known age-related phenotype. We have now generated and analyzed the currently largest set of human epidermis methylomes (N = 108) using array-based profiling of 450 000 methylation marks in various age groups. Data analysis confirmed that age-related methylation differences are locally restricted and characterized by relatively small effect sizes. Nevertheless, methylation data could be used to predict the chronological age of sample donors with high accuracy. We also identified discontinuous methylation changes as a novel feature of the aging methylome. Finally, our analysis uncovered an age-related erosion of DNA methylation patterns that is characterized by a reduced dynamic range and increased heterogeneity of global methylation patterns. These changes in methylation variability were accompanied by a reduced connectivity of transcriptional networks. Our findings thus define the loss of epigenetic regulatory fidelity as a key feature of the aging epigenome. PMID:27004597

  20. The genetics of human cancer: implications for ecotoxicology.

    PubMed Central

    McMahon, G

    1994-01-01

    The study of human cancers has provided evidence that malignant progression is associated with genetic change. It has been suggested that some genetic alterations in tumors may be the result of direct or indirect processes related to environmental chemical exposure. This hypothesis has been supported by genetic evidence in liver tumors which has associated aflatoxin B1 exposure with the detection of inactivating DNA mutations within the human p53 tumor suppressor gene. The detection of activating ras oncogene mutations at high frequency in liver tumors of feral fish suggest that the survey of mutations in genes, such as p53 or other genes, might provide a genetic signature for specific chemical exposure in tissues of aquatic animals derived from environmentally damaged sites. PMID:7713039

  1. Human genetics of infectious diseases: a unified theory.

    PubMed

    Casanova, Jean-Laurent; Abel, Laurent

    2007-02-21

    Since the early 1950s, the dominant paradigm in the human genetics of infectious diseases postulates that rare monogenic immunodeficiencies confer vulnerability to multiple infectious diseases (one gene, multiple infections), whereas common infections are associated with the polygenic inheritance of multiple susceptibility genes (one infection, multiple genes). Recent studies, since 1996 in particular, have challenged this view. A newly recognised group of primary immunodeficiencies predisposing the individual to a principal or single type of infection is emerging. In parallel, several common infections have been shown to reflect the inheritance of one major susceptibility gene, at least in some populations. This novel causal relationship (one gene, one infection) blurs the distinction between patient-based Mendelian genetics and population-based complex genetics, and provides a unified conceptual frame for exploring the molecular genetic basis of infectious diseases in humans. PMID:17255931

  2. Defining the Relationship Between Human Error Classes and Technology Intervention Strategies

    NASA Technical Reports Server (NTRS)

    Wiegmann, Douglas A.; Rantanen, Eas M.

    2003-01-01

    The modus operandi in addressing human error in aviation systems is predominantly that of technological interventions or fixes. Such interventions exhibit considerable variability both in terms of sophistication and application. Some technological interventions address human error directly while others do so only indirectly. Some attempt to eliminate the occurrence of errors altogether whereas others look to reduce the negative consequences of these errors. In any case, technological interventions add to the complexity of the systems and may interact with other system components in unforeseeable ways and often create opportunities for novel human errors. Consequently, there is a need to develop standards for evaluating the potential safety benefit of each of these intervention products so that resources can be effectively invested to produce the biggest benefit to flight safety as well as to mitigate any adverse ramifications. The purpose of this project was to help define the relationship between human error and technological interventions, with the ultimate goal of developing a set of standards for evaluating or measuring the potential benefits of new human error fixes.

  3. Selective Depletion of Molecularly Defined Cortical Interneurons in Human Holoprosencephaly with Severe Striatal Hypoplasia

    PubMed Central

    Fertuzinhos, Sofia; Krsnik, Željka; Kawasawa, Yuka Imamura; Rašin, Mladen-Roko; Kwan, Kenneth Y.; Chen, Jie-Guang; Judaš, Miloš; Hayashi, Masaharu; Šestan, Nenad

    2009-01-01

    Cortical excitatory glutamatergic projection neurons and inhibitory GABAergic interneurons follow substantially different developmental programs. In rodents, projection neurons originate from progenitors within the dorsal forebrain, whereas interneurons arise from progenitors in the ventral forebrain. In contrast, it has been proposed that in humans, the majority of cortical interneurons arise from progenitors within the dorsal forebrain, suggesting that their origin and migration is complex and evolutionarily divergent. However, whether molecularly defined human cortical interneuron subtypes originate from distinct progenitors, including those in the ventral forebrain, remains unknown. Furthermore, abnormalities in cortical interneurons have been linked to human disorders, yet no distinct cell population selective loss has been reported. Here we show that cortical interneurons expressing nitric oxide synthase 1, neuropeptide Y, and somatostatin, are either absent or substantially reduced in fetal and infant cases of human holoprosencephaly (HPE) with severe ventral forebrain hypoplasia. Notably, another interneuron subtype normally abundant from the early fetal period, marked by calretinin expression, and different subtypes of projection neuron were present in the cortex of control and HPE brains. These findings have important implications for the understanding of neuronal pathogenesis underlying the clinical manifestations associated with HPE and the developmental origins of human cortical interneuron diversity. PMID:19234067

  4. Human genetics: lessons from Quebec populations.

    PubMed

    Scriver, C R

    2001-01-01

    The population of Quebec, Canada (7.3 million) contains approximately 6 million French Canadians; they are the descendants of approximately 8500 permanent French settlers who colonized Nouvelle France between 1608 and 1759. Their well-documented settlements, internal migrations, and natural increase over four centuries in relative isolation (geographic, linguistic, etc.) contain important evidence of social transmission of demographic behavior that contributed to effective family size and population structure. This history is reflected in at least 22 Mendelian diseases, occurring at unusually high prevalence in its subpopulations. Immigration of non-French persons during the past 250 years has given the Quebec population further inhomogeneity, which is apparent in allelic diversity at various loci. The histories of Quebec's subpopulations are, to a great extent, the histories of their alleles. Rare pathogenic alleles with high penetrance and associated haplotypes at 10 loci (CFTR, FAH, HBB, HEXA, LDLR, LPL, PAH, PABP2, PDDR, and SACS) are expressed in probands with cystic fibrosis, tyrosinemia, beta-thalassemia, Tay-Sachs, familial hypercholesterolemia, hyperchylomicronemia, PKU, oculopharyngeal muscular dystrophy, pseudo vitamin D deficiency rickets, and spastic ataxia of Charlevoix-Saguenay, respectively) reveal the interpopulation and intrapopulation genetic diversity of Quebec. Inbreeding does not explain the clustering and prevalence of these genetic diseases; genealogical reconstructions buttressed by molecular evidence point to founder effects and genetic drift in multiple instances. Genealogical estimates of historical meioses and analysis of linkage disequilibrium show that sectors of this young population are suitable for linkage disequilibrium mapping of rare alleles. How the population benefits from what is being learned about its structure and how its uniqueness could facilitate construction of a genomic map of linkage disequilibrium are discussed

  5. Primer on Molecular Genetics; DOE Human Genome Program

    DOE R&D Accomplishments Database

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  6. Primer on molecular genetics. DOE Human Genome Program

    SciTech Connect

    Not Available

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  7. Genetic Effects on Fine-Grained Human Cortical Regionalization.

    PubMed

    Cui, Yue; Liu, Bing; Zhou, Yuan; Fan, Lingzhong; Li, Jin; Zhang, Yun; Wu, Huawang; Hou, Bing; Wang, Chao; Zheng, Fanfan; Qiu, Chengxiang; Rao, Li-Lin; Ning, Yuping; Li, Shu; Jiang, Tianzi

    2016-09-01

    Various brain structural and functional features such as cytoarchitecture, topographic mapping, gyral/sulcal anatomy, and anatomical and functional connectivity have been used in human brain parcellation. However, the fine-grained intrinsic genetic architecture of the cortex remains unknown. In the present study, we parcellated specific regions of the cortex into subregions based on genetic correlations (i.e., shared genetic influences) between the surface area of each pair of cortical locations within the seed region. The genetic correlations were estimated by comparing the correlations of the surface area between monozygotic and dizygotic twins using bivariate twin models. Our genetic subdivisions of diverse brain regions were reproducible across 2 independent datasets and corresponded closely to fine-grained functional specializations. Furthermore, subregional genetic correlation profiles were generally consistent with functional connectivity patterns. Our findings indicate that the magnitude of the genetic covariance in brain anatomy could be used to delineate the boundaries of functional subregions of the brain and may be of value in the next generation human brain atlas. PMID:26250778

  8. Inauguration of the cameroonian society of human genetics.

    PubMed

    Wonkam, Ambroise; Kenfack, Marcel Azabji; Bigoga, Jude; Nkegoum, Blaise; Muna, Wali

    2009-01-01

    The conjunction of "hard genetics" research centers, with well established biomedical and bioethics research groups, and the exceptional possibility to hold the 6th annual meeting of the African Society of Human Genetics (AfSHG, 13th-15th March 2009) was an excellent opportunity to get together in synergy the entire Cameroonian "DNA/RNA scientists" . This laid to the foundation of the Cameroonian Society of Human Genetics (CSHG) that was privilege to hold its inaugural meeting in conjunction to the 6th annual meeting of the AfSHG. The theme was "Human Origin, Genetic Diversity and Health". The AfSHG and CSHG invited leading African and international scientists in genomics and population genetics to review recent data and provide an understanding of the state-of-knowledge of Human Origin and Genetic Diversity. Overall one opening ceremony eight session, five keynote and guest speakers, 18 invited oral communications, 13 free oral communications, 43 posters and two social events could summarize the meeting. This year's conference was graced by the presence of one Nobel Prize winner Dr Richard Roberts (Physiology and Medicine 1993). The meeting registered up to ten contributions of Cameroonian scientists from the Diaspora (currently in USA, Belgium, Gambia, Sudan and Zimbabwe). Such Diaspora participation is an opportunity to generate collaborations with home country scientists and ultimately turn the "brain drain" to "brain circulation" that could reduce the impact of the migration of health professional from Africa. Interestingly, the personal implication of the Cameroonian Ministry of Public Heath who opened the meeting in the presence of the Secretary General of the Ministry of Higher Education and a representative of the Ministry of Scientific Research and Innovation was a wonderful opportunity for advocacy of genetic issues at the decision-makers level. Beyond our expectation, a major promise of the Cameroonian government was the creation of the National Human

  9. Novel genetic markers define a subgroup of pathogenic Escherichia coli strains belonging to the B2 phylogenetic group.

    PubMed

    Deshpande, Nandan P; Wilkins, Marc R; Mitchell, Hazel M; Kaakoush, Nadeem O

    2015-11-01

    The B2 phylogenetic group of Escherichia coli contains important pathogens such as extraintestinal pathogenic, adherent-invasive, and uropathogenic strains. In this study, we used comparative genomics and statistical methods to identify genetic variations that define a subset of pathogenic strains belonging to the B2 phylogenetic group. An initial proof of concept analysis indicated that five of the 62 E. coli strains available in the Kyoto Encyclopedia of Genes and Genomes database showed close association with B2 adherent-invasive E. coli, forming a subgroup within the B2 phylogenetic group. The tool, kSNP which uses a k-mer approach, and the statistical phenotype prediction tool PPFS2 were then employed to identify 29 high-resolution SNPs, which reaffirmed this grouping. PPFS2 analysis also provided indications that the clustering of this subgroup was highly consistent, and thus, could have a strong phenotypic basis rather than being only evolutionary. Protein homology analyses identified three proteins to be conserved across this subgrouping, two CRISPR-Cas proteins and a hypothetical protein. Functional analyses of these genetic and protein variations may provide insights into the phenotype of these strains. PMID:26459886

  10. Directed Endothelial Progenitor Differentiation from Human Pluripotent Stem Cells Via Wnt Activation Under Defined Conditions.

    PubMed

    Bao, Xiaoping; Lian, Xiaojun; Palecek, Sean P

    2016-01-01

    Efficient derivation of endothelial cells and their progenitors from human pluripotent stem cells (hPSCs) can facilitate studies of human vascular development, disease modeling, drug discovery, and cell-based therapy. Here we provide a detailed protocol for directing hPSCs to functional endothelial cells and their progenitors in a completely defined, growth factor- and serum-free system by temporal modulation of Wnt/β-catenin signaling via small molecules. We demonstrate a 10-day, two-stage process that recapitulates endothelial cell development, in which hPSCs first differentiate to endothelial progenitors that then generate functional endothelial cells and smooth muscle cells. Methods to characterize endothelial cell identity and function are also described. PMID:27590162

  11. Fast by Nature - How Stress Patterns Define Human Experience and Performance in Dexterous Tasks

    PubMed Central

    Pavlidis, I.; Tsiamyrtzis, P.; Shastri, D.; Wesley, A.; Zhou, Y.; Lindner, P.; Buddharaju, P.; Joseph, R.; Mandapati, A.; Dunkin, B.; Bass, B.

    2012-01-01

    In the present study we quantify stress by measuring transient perspiratory responses on the perinasal area through thermal imaging. These responses prove to be sympathetically driven and hence, a likely indicator of stress processes in the brain. Armed with the unobtrusive measurement methodology we developed, we were able to monitor stress responses in the context of surgical training, the quintessence of human dexterity. We show that in dexterous tasking under critical conditions, novices attempt to perform a task's step equally fast with experienced individuals. We further show that while fast behavior in experienced individuals is afforded by skill, fast behavior in novices is likely instigated by high stress levels, at the expense of accuracy. Humans avoid adjusting speed to skill and rather grow their skill to a predetermined speed level, likely defined by neurophysiological latency. PMID:22396852

  12. Epidemiology of human brucellosis in a defined area of Northwestern Greece.

    PubMed

    Avdikou, I; Maipa, V; Alamanos, Y

    2005-10-01

    Despite a European co-financial programme for control and eradication of brucellosis in Southern Europe, there is evidence that foci of brucellosis still exists in Greece and other Southern European countries. Human brucellosis cases are probably underreported in these countries. A local surveillance system was implemented in a defined region of Northwestern Greece, in order to record and study all human brucellosis cases, using several sources of retrieval. A total of 152 newly diagnosed cases were recorded during a 2-year study period (from 1 April 2002 to 31 March 2004). The age- and sex-adjusted mean annual incidence rate for the population of the study area was 17.3 cases/10(5) inhabitants. Incomplete application of the control and eradication programme in livestock, and the possible illegal trafficking of animals and their products across the Greek-Albanian border could be responsible for the persistence of foci of brucellosis in the area. PMID:16181512

  13. Epidemiology of human brucellosis in a defined area of Northwestern Greece.

    PubMed Central

    Avdikou, I.; Maipa, V.; Alamanos, Y.

    2005-01-01

    Despite a European co-financial programme for control and eradication of brucellosis in Southern Europe, there is evidence that foci of brucellosis still exists in Greece and other Southern European countries. Human brucellosis cases are probably underreported in these countries. A local surveillance system was implemented in a defined region of Northwestern Greece, in order to record and study all human brucellosis cases, using several sources of retrieval. A total of 152 newly diagnosed cases were recorded during a 2-year study period (from 1 April 2002 to 31 March 2004). The age- and sex-adjusted mean annual incidence rate for the population of the study area was 17.3 cases/10(5) inhabitants. Incomplete application of the control and eradication programme in livestock, and the possible illegal trafficking of animals and their products across the Greek-Albanian border could be responsible for the persistence of foci of brucellosis in the area. PMID:16181512

  14. Gene Expression and Genetic Variation in Human Atria

    PubMed Central

    Lin, Honghuang; Dolmatova, Elena V.; Morley, Michael P.; Lunetta, Kathryn L.; McManus, David D.; Magnani, Jared W.; Margulies, Kenneth B.; Hakonarson, Hakon; del Monte, Federica; Benjamin, Emelia J.; Cappola, Thomas P.; Ellinor, Patrick T.

    2013-01-01

    Background The human left and right atria have different susceptibilities to develop atrial fibrillation (AF). However, the molecular events related to structural and functional changes that enhance AF susceptibility are still poorly understood. Objective To characterize gene expression and genetic variation in human atria. Methods We studied the gene expression profiles and genetic variations in 53 left atrial and 52 right atrial tissue samples collected from the Myocardial Applied Genomics Network (MAGNet) repository. The tissues were collected from heart failure patients undergoing transplantation and from unused organ donor hearts with normal ventricular function. Gene expression was profiled using the Affymetrix GeneChip Human Genome U133A Array. Genetic variation was profiled using the Affymetrix Genome-Wide Human SNP Array 6.0. Results We found that 109 genes were differentially expressed between left and right atrial tissues. A total of 187 and 259 significant cis-associations between transcript levels and genetic variants were identified in left and right atrial tissues, respectively. We also found that a SNP at a known AF locus, rs3740293, was associated with the expression of MYOZ1 in both left and right atrial tissues. Conclusion We found a distinct transcriptional profile between the right and left atrium, and extensive cis-associations between atrial transcripts and common genetic variants. Our results implicate MYOZ1 as the causative gene at the chromosome 10q22 locus for AF. PMID:24177373

  15. Human Aggression Across the Lifespan: Genetic Propensities and Environmental Moderators

    PubMed Central

    Tuvblad, Catherine; Baker, Laura A.

    2013-01-01

    This chapter reviews the recent evidence of genetic and environmental influences on human aggression. Findings from a large selection of the twin and adoption studies that have investigated the genetic and environmental architecture of aggressive behavior are summarized. These studies together show that about half (50%) of the variance in aggressive behavior is explained by genetic influences in both males and females, with the remaining 50% of the variance being explained by environmental factors not shared by family members. Form of aggression (reactive, proactive, direct/physical, indirect/relational), method of assessment (laboratory observation, self-report, ratings by parents and teachers), and age of the subjects—all seem to be significant moderators of the magnitude of genetic and environmental influences on aggressive behavior. Neither study design (twin vs. sibling adoption design) nor sex (male vs. female) seems to impact the magnitude of the genetic and environmental influences on aggression. There is also some evidence of gene-environment interaction (G × E) from both twin/adoption studies and molecular genetic studies. Various measures of family adversity and social disadvantage have been found to moderate genetic influences on aggressive behavior. Findings from these G × E studies suggest that not all individuals will be affected to the same degree by experiences and exposures, and that genetic predispositions may have different effects depending on the environment. PMID:22078481

  16. Genetic modeling of ovarian phenotypes in mice for the study of human polycystic ovary syndrome.

    PubMed

    Feng, Yi; Li, Xin; Shao, Ruijin

    2013-01-01

    Polycystic ovary syndrome (PCOS) presents with a range of clinical complications including hyperandrogenism, polycystic ovaries, chronic oligo/anovulation, infertility, and metabolic alterations related to insulin resistance. Because the mechanism by which this disorder develops is poorly understood, information from experimental models of human disease phenotypes may help to define the mechanisms for the initiation and development of PCOS-related pathological events. The establishment of animal models compatible with human PCOS is challenging, and applying the lessons learned from these models to human PCOS is often complicated. In this mini-review we provide examples of currently available genetic mouse models, their ovarian phenotypes, and their possible relationship to different aspects of human PCOS. Because of the practical and ethical limitations of studying PCOS-related events in humans, our understanding of the mechanisms that contribute to the etiology of human PCOS may be enhanced through further study of these transgenic and knockout mouse models. PMID:23390562

  17. Derivation of iPSCs after Culture of Human Dental Pulp Cells under Defined Conditions

    PubMed Central

    Takeda-Kawaguchi, Tomoko; Sugiyama, Ken; Chikusa, Shunji; Iida, Kazuki; Aoki, Hitomi; Tamaoki, Naritaka; Hatakeyama, Daijiro; Kunisada, Takahiro; Shibata, Toshiyuki; Fusaki, Noemi; Tezuka, Ken-ichi

    2014-01-01

    Human dental pulp cells (hDPCs) are a promising resource for regenerative medicine and tissue engineering and can be used for derivation of induced pluripotent stem cells (iPSCs). However, current protocols use reagents of animal origin (mainly fetal bovine serum, FBS) that carry the potential risk of infectious diseases and unwanted immunogenicity. Here, we report a chemically defined protocol to isolate and maintain the growth and differentiation potential of hDPCs. hDPCs cultured under these conditions showed significantly less primary colony formation than those with FBS. Cell culture under stringently defined conditions revealed a donor-dependent growth capacity; however, once established, the differentiation capabilities of the hDPCs were comparable to those observed with FBS. DNA array analyses indicated that the culture conditions robustly altered hDPC gene expression patterns but, more importantly, had little effect on neither pluripotent gene expression nor the efficiency of iPSC induction. The chemically defined culture conditions described herein are not perfect serum replacements, but can be used for the safe establishment of iPSCs and will find utility in applications for cell-based regenerative medicine. PMID:25521610

  18. Chromosomal Aberrations in Canine Gliomas Define Candidate Genes and Common Pathways in Dogs and Humans.

    PubMed

    Dickinson, Peter J; York, Dan; Higgins, Robert J; LeCouteur, Richard A; Joshi, Nikhil; Bannasch, Danika

    2016-07-01

    Spontaneous gliomas in dogs occur at a frequency similar to that in humans and may provide a translational model for therapeutic development and comparative biological investigations. Copy number alterations in 38 canine gliomas, including diffuse astrocytomas, glioblastomas, oligodendrogliomas, and mixed oligoastrocytomas, were defined using an Illumina 170K single nucleotide polymorphism array. Highly recurrent alterations were seen in up to 85% of some tumor types, most notably involving chromosomes 13, 22, and 38, and gliomas clustered into 2 major groups consisting of high-grade IV astrocytomas, or oligodendrogliomas and other tumors. Tumor types were characterized by specific broad and focal chromosomal events including focal loss of the INK4A/B locus in glioblastoma and loss of the RB1 gene and amplification of the PDGFRA gene in oligodendrogliomas. Genes associated with the 3 critical pathways in human high-grade gliomas (TP53, RB1, and RTK/RAS/PI3K) were frequently associated with canine aberrations. Analysis of oligodendrogliomas revealed regions of chromosomal losses syntenic to human 1p involving tumor suppressor genes, such as CDKN2C, as well as genes associated with apoptosis, autophagy, and response to chemotherapy and radiation. Analysis of high frequency chromosomal aberrations with respect to human orthologues may provide insight into both novel and common pathways in gliomagenesis and response to therapy. PMID:27251041

  19. Unique glycoprotein antigen defined by monoclonal antibody on human neurobiastoma cells

    SciTech Connect

    Mujoo, K.; Spiro, R.C.; Reisfeld, R.A.

    1986-05-01

    The authors have characterized a new target antigen on the surface of human neuroblastoma cells and defined it with a monoclonal antibody (Mab) 5G3. This antibody is of IgG2a type and has an association constant of 8 x 10/sup 9/ M/sup -1/. In ELISA assays, Mab 5G3 reacted with human neuroblastoma as well as melanoma, squamous lung, skin carcinoma, and osteogenic sarcoma. Immunocytochemical analysis of frozen tissue sections revealed strong reactivity with all neuroblastoma tissues and marginal reactivity with melanoma and glioma tissues. There was no reactivity with fetal or normal tissues with the exception of cerebellum. The antigen recognized by Mab 5G3 is a glycoprotein of 200 and 215 kDa expressed on the SK-N-AS neuroblastoma cells. The antigen appears to contain N-linked carbohydrates based on treatment of human neuroblastoma cells with tunicamycin before and after intrinsic radiolabeling followed by indirect immunoprecipitation. The pulse-chase biosynthetic studies followed by indirect immunoprecipitation and SDS-PAGE indicated the precursor/product relationship between 200 and 215 kDa molecules. The 200 kDa component is endoglycosidase H-sensitive, whereas 215 kDa molecule is Endo-H resistant. The 215 kDa component is also sulfated, sialylated, and phosphorylated at serine residues. Preliminary data suggests that Mab, aside from identifying a unique target antigen on human neuroblastoma cells, may be suited as a targeting device for chemotherapeutic drugs.

  20. Production of Human Pluripotent Stem Cell Therapeutics Under Defined Xeno-free Conditions: Progress and Challenges

    PubMed Central

    Fan, Yongjia; Wu, Jincheng; Ashok, Preeti; Hsiung, Michael; Tzanakakis, Emmanuel S.

    2014-01-01

    Recent advances on human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) have brought us closer to the realization of their clinical potential. Nonetheless, tissue engineering and regenerative medicine applications will require the generation of hPSC products well beyond the laboratory scale. This also mandates the production of hPSC therapeutics in fully-defined, xeno-free systems and in a reproducible manner. Toward this goal, we summarize current developments in defined media free of animal-derived components for hPSC culture. Bioinspired and synthetic extracellular matrices for the attachment growth and differentiation of hPSCs are also reviewed. Given that most progress in xeno-free medium and substrate development has been demonstrated in two-dimensional rather than three dimensional culture systems, translation from the former to the latter poses unique difficulties. These challenges are discussed in the context of cultivation platforms of hPSCs as aggregates, on microcarriers or after encapsulation in biocompatible scaffolds. PMID:25077810

  1. Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes Under Defined Conditions.

    PubMed

    van den Berg, Cathelijne W; Elliott, David A; Braam, Stefan R; Mummery, Christine L; Davis, Richard P

    2016-01-01

    Human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) can differentiate to cardiomyocytes in vitro, offering unique opportunities to investigate cardiac development and disease as well as providing a platform to perform drug and toxicity tests. Initial cardiac differentiation methods were based on either inductive co-culture or aggregation as embryoid bodies, often in the presence of fetal calf serum. More recently, monolayer differentiation protocols have evolved as feasible alternatives and are often performed in completely defined culture medium and substrates. Thus, our ability to efficiently and reproducibly generate cardiomyocytes from multiple different hESC and hiPSC lines has improved significantly.We have developed a directed differentiation monolayer protocol that can be used to generate cultures comprising ~50% cardiomyocytes, in which both the culture of the undifferentiated human pluripotent stem cells (hPSCs) and the differentiation procedure itself are defined and serum-free. The differentiation method is also effective for hPSCs maintained in other culture systems. In this chapter, we outline the differentiation protocol and describe methods to assess cardiac differentiation efficiency as well as to identify and quantify the yield of cardiomyocytes. PMID:25626427

  2. Human fertility, molecular genetics, and natural selection in modern societies.

    PubMed

    Tropf, Felix C; Stulp, Gert; Barban, Nicola; Visscher, Peter M; Yang, Jian; Snieder, Harold; Mills, Melinda C

    2015-01-01

    Research on genetic influences on human fertility outcomes such as number of children ever born (NEB) or the age at first childbirth (AFB) has been solely based on twin and family-designs that suffer from problematic assumptions and practical limitations. The current study exploits recent advances in the field of molecular genetics by applying the genomic-relationship-matrix based restricted maximum likelihood (GREML) methods to quantify for the first time the extent to which common genetic variants influence the NEB and the AFB of women. Using data from the UK and the Netherlands (N = 6,758), results show significant additive genetic effects on both traits explaining 10% (SE = 5) of the variance in the NEB and 15% (SE = 4) in the AFB. We further find a significant negative genetic correlation between AFB and NEB in the pooled sample of -0.62 (SE = 0.27, p-value = 0.02). This finding implies that individuals with genetic predispositions for an earlier AFB had a reproductive advantage and that natural selection operated not only in historical, but also in contemporary populations. The observed postponement in the AFB across the past century in Europe contrasts with these findings, suggesting an evolutionary override by environmental effects and underscoring that evolutionary predictions in modern human societies are not straight forward. It emphasizes the necessity for an integrative research design from the fields of genetics and social sciences in order to understand and predict fertility outcomes. Finally, our results suggest that we may be able to find genetic variants associated with human fertility when conducting GWAS-meta analyses with sufficient sample size. PMID:26039877

  3. Human Fertility, Molecular Genetics, and Natural Selection in Modern Societies

    PubMed Central

    Tropf, Felix C.; Stulp, Gert; Barban, Nicola; Visscher, Peter M.; Yang, Jian; Snieder, Harold; Mills, Melinda C.

    2015-01-01

    Research on genetic influences on human fertility outcomes such as number of children ever born (NEB) or the age at first childbirth (AFB) has been solely based on twin and family-designs that suffer from problematic assumptions and practical limitations. The current study exploits recent advances in the field of molecular genetics by applying the genomic-relationship-matrix based restricted maximum likelihood (GREML) methods to quantify for the first time the extent to which common genetic variants influence the NEB and the AFB of women. Using data from the UK and the Netherlands (N = 6,758), results show significant additive genetic effects on both traits explaining 10% (SE = 5) of the variance in the NEB and 15% (SE = 4) in the AFB. We further find a significant negative genetic correlation between AFB and NEB in the pooled sample of –0.62 (SE = 0.27, p-value = 0.02). This finding implies that individuals with genetic predispositions for an earlier AFB had a reproductive advantage and that natural selection operated not only in historical, but also in contemporary populations. The observed postponement in the AFB across the past century in Europe contrasts with these findings, suggesting an evolutionary override by environmental effects and underscoring that evolutionary predictions in modern human societies are not straight forward. It emphasizes the necessity for an integrative research design from the fields of genetics and social sciences in order to understand and predict fertility outcomes. Finally, our results suggest that we may be able to find genetic variants associated with human fertility when conducting GWAS-meta analyses with sufficient sample size. PMID:26039877

  4. The Genetics of Sun Sensitivity in Humans

    PubMed Central

    Rees, Jonathan L.

    2004-01-01

    Humans vary >100-fold in their sensitivity to the harmful effects of ultraviolet radiation. The main determinants of sensitivity are melanin pigmentation and less-well-characterized differences in skin inflammation and repair processes. Pigmentation has a high heritability, but susceptibility to cancers of the skin, a key marker of sun sensitivity, is less heritable. Despite a large number of murine coat-color mutations, only one gene in humans, the melanocortin 1 receptor (MC1R), is known to account for substantial variation in skin and hair color and in skin cancer incidence. MC1R encodes a 317–amino acid G-coupled receptor that controls the relative amounts of the two major melanin classes, eumelanin and pheomelanin. Most persons with red hair are homozygous for alleles of the MC1R gene that show varying degrees of diminished function. More than 65 human MC1R alleles with nonsynonymous changes have been identified, and current evidence suggests that many of them vary in their physiological activity, such that a graded series of responses can be achieved on the basis of (i) dosage effects (of one or two alleles) and (ii) individual differences in the pharmacological profile in response to ligand. Thus, a single locus, identified within a Mendelian framework, can contribute significantly to human pigmentary variation. PMID:15372380

  5. Molecular genetic determinants of human brain size.

    PubMed

    Tang, Bor Luen

    2006-07-01

    Cognitive skills such as tool use, syntactical languages, and self-awareness differentiate humans from other primates. The underlying basis for this cognitive difference has been widely associated with a high encephalization quotient and an anatomically distinct, exceptionally large cerebral cortex. Investigations on congenital microcephaly had revealed several genes that affect mammalian brain size when mutated. At least four of these, microcephalin (MCPH1), abnormal spindle-like microcephaly-associated (ASPM), cyclin-dependent kinase 5 regulatory associated protein 2 (CDK5RAP2), and centromere-associated protein J (CENPJ) are known to have undergone significant positive selection in the great apes and human lineages during primate evolution. MCPH1 and ASPM both have very young single nucleotide polymorphism haplotypes associated with modern humans, and these genes are presumably still evolving in Homo sapiens. Microcephalin has a role in DNA damage response and regulation of cell cycle checkpoints. The other known microcephaly-associated genes encode microtubule-associated centrosomal proteins that might regulate neural progenitor cell division and cell number. Recent reports have also unveiled a previously unknown function of ephrins and Eph in the regulation of neural progenitor cell death with a consequential effect on brain size. Understanding the mechanism for developmental control of brain organogenesis by these genes, and others such as FOXP2, shall provide fresh perspectives on the evolution of human intelligence. PMID:16716254

  6. AFRICAN GENETIC DIVERSITY: Implications for Human Demographic History, Modern Human Origins, and Complex Disease Mapping

    PubMed Central

    Campbell, Michael C.; Tishkoff, Sarah A.

    2010-01-01

    Comparative studies of ethnically diverse human populations, particularly in Africa, are important for reconstructing human evolutionary history and for understanding the genetic basis of phenotypic adaptation and complex disease. African populations are characterized by greater levels of genetic diversity, extensive population substructure, and less linkage disequilibrium (LD) among loci compared to non-African populations. Africans also possess a number of genetic adaptations that have evolved in response to diverse climates and diets, as well as exposure to infectious disease. This review summarizes patterns and the evolutionary origins of genetic diversity present in African populations, as well as their implications for the mapping of complex traits, including disease susceptibility. PMID:18593304

  7. Large animal models of rare genetic disorders: sheep as phenotypically relevant models of human genetic disease.

    PubMed

    Pinnapureddy, Ashish R; Stayner, Cherie; McEwan, John; Baddeley, Olivia; Forman, John; Eccles, Michael R

    2015-01-01

    Animals that accurately model human disease are invaluable in medical research, allowing a critical understanding of disease mechanisms, and the opportunity to evaluate the effect of therapeutic compounds in pre-clinical studies. Many types of animal models are used world-wide, with the most common being small laboratory animals, such as mice. However, rodents often do not faithfully replicate human disease, despite their predominant use in research. This discordancy is due in part to physiological differences, such as body size and longevity. In contrast, large animal models, including sheep, provide an alternative to mice for biomedical research due to their greater physiological parallels with humans. Completion of the full genome sequences of many species, and the advent of Next Generation Sequencing (NGS) technologies, means it is now feasible to screen large populations of domesticated animals for genetic variants that resemble human genetic diseases, and generate models that more accurately model rare human pathologies. In this review, we discuss the notion of using sheep as large animal models, and their advantages in modelling human genetic disease. We exemplify several existing naturally occurring ovine variants in genes that are orthologous to human disease genes, such as the Cln6 sheep model for Batten disease. These, and other sheep models, have contributed significantly to our understanding of the relevant human disease process, in addition to providing opportunities to trial new therapies in animals with similar body and organ size to humans. Therefore sheep are a significant species with respect to the modelling of rare genetic human disease, which we summarize in this review. PMID:26329332

  8. Different differences: The use of ‘genetic ancestry’ versus race in biomedical human genetic research

    PubMed Central

    Fujimura, Joan H.; Rajagopalan, Ramya

    2011-01-01

    This article presents findings from our ethnographic research on biomedical scientists’ studies of human genetic variation and common complex disease. We examine the socio-material work involved in genome-wide association studies (GWAS) and discuss whether, how, and when notions of race and ethnicity are or are not used. We analyze how researchers produce simultaneously different kinds of populations and population differences. Although many geneticists use race in their analyses, we find some who have invented a statistical genetics method and associated software that they use specifically to avoid using categories of race in their genetics analysis. Their method allows them to operationalize their concept of ‘genetic ancestry’ without resorting to notions of race and ethnicity. We focus on the construction and implementation of the software’s algorithms, and discuss the consequences and implications of the software technology for debates and policies around the use of race in genetics research. We also demonstrate that the production and use of their method involves a dynamic and fluid assemblage of actors in various disciplines responding to disciplinary and sociopolitical contexts and concerns. This assemblage also includes particular discourses on human history and geography as they become entangled with research on genetic markers and disease. We introduce the concept of ‘genome geography’, to analyze how some researchers studying human genetic variation ‘locate’ stretches of DNA in different places and times. The concept of genetic ancestry and the practice of genome geography rely on old discourses, but they also incorporate new technologies, infrastructures, and political and scientific commitments. Some of these new technologies provide opportunities to change some of our institutional and cultural forms and frames around notions of difference and similarity. Neverthless, we also highlight the slipperiness of genome geography and the

  9. Autosomal ring chromosomes in human genetic disorders

    PubMed Central

    2015-01-01

    Ring chromosomes arise following breakage and rejoining in both chromosome arms. They are heterogeneous with variable size and genetic content and can originate from any chromosome. Phenotypes associated with ring chromosomes are highly variable as apart from any deletion caused by ring formation, imbalances from ring instability can also occur. Of interest is ring chromosome 20 which has a significant association with epilepsy with seizure onset in early childhood. Severe growth deficiency without major malformations is a common finding in the ring chromosome carrier. This phenotype associated with ring behaviour and mitotic instability and independent of the chromosome involved has been termed the “ring syndrome”. Precise genotype-phenotype correlations for ring chromosomes may not be possible as influencing factors vary depending on the extent of deletion in ring formation, ring instability and the level of mosaicism. Although ring chromosomes usually arise as de novo events, familial transmission of rings from carrier to offspring has been described and prenatal diagnosis for any pregnancies should always be considered. PMID:26835370

  10. Relaxed genetic control of cortical organization in human brains compared with chimpanzees.

    PubMed

    Gómez-Robles, Aida; Hopkins, William D; Schapiro, Steven J; Sherwood, Chet C

    2015-12-01

    The study of hominin brain evolution has focused largely on the neocortical expansion and reorganization undergone by humans as inferred from the endocranial fossil record. Comparisons of modern human brains with those of chimpanzees provide an additional line of evidence to define key neural traits that have emerged in human evolution and that underlie our unique behavioral specializations. In an attempt to identify fundamental developmental differences, we have estimated the genetic bases of brain size and cortical organization in chimpanzees and humans by studying phenotypic similarities between individuals with known kinship relationships. We show that, although heritability for brain size and cortical organization is high in chimpanzees, cerebral cortical anatomy is substantially less genetically heritable than brain size in humans, indicating greater plasticity and increased environmental influence on neurodevelopment in our species. This relaxed genetic control on cortical organization is especially marked in association areas and likely is related to underlying microstructural changes in neural circuitry. A major result of increased plasticity is that the development of neural circuits that underlie behavior is shaped by the environmental, social, and cultural context more intensively in humans than in other primate species, thus providing an anatomical basis for behavioral and cognitive evolution. PMID:26627234