Science.gov

Sample records for genetically manipulated mice

  1. Visualization and genetic manipulation of adult neurogenesis using transgenic mice.

    PubMed

    Dhaliwal, Jagroop; Lagace, Diane C

    2011-03-01

    Many laboratories have focused efforts on the creation of transgenic mouse models to study adult neurogenesis. In the last decade several constitutive reporter, as well as inducible transgenic lines have been published that allowed for visualization, tracking and alteration of specific neurogenic cell populations in the adult brain. Given the popularity of this approach, multiple mouse lines are available, and this review summarizes the differences in the basic techniques that have been used to create these mice, highlighting the different constructs and reporter proteins used, as well as the strengths and limitations of each of these models. Representative examples from the literature demonstrate some of the diverse and seminal findings that have come to fruition through the laborious, yet highly rewarding work of creating transgenic mouse lines for adult neurogenesis research. PMID:21395845

  2. Generation of mice with longer and better preserved telomeres in the absence of genetic manipulations

    PubMed Central

    Varela, Elisa; Muñoz-Lorente, Miguel A.; Tejera, Agueda M.; Ortega, Sagrario; Blasco, Maria A.

    2016-01-01

    Although telomere length is genetically determined, mouse embryonic stem (ES) cells with telomeres of twice the normal size have been generated. Here, we use such ES cells with ‘hyper-long' telomeres, which also express green fluorescent protein (GFP), to generate chimaeric mice containing cells with both hyper-long and normal telomeres. We show that chimaeric mice contain GFP-positive cells in all mouse tissues, display normal tissue histology and normal survival. Both hyper-long and normal telomeres shorten with age, but GFP-positive cells retain longer telomeres as mice age. Chimaeric mice with hyper-long telomeres also accumulate fewer cells with short telomeres and less DNA damage with age, and express lower levels of p53. In highly renewing compartments, such as the blood, cells with hyper-long telomeres are longitudinally maintained or enriched with age. We further show that wound-healing rates in the skin are increased in chimaeric mice. Our work demonstrates that mice with functional, longer and better preserved telomeres can be generated without the need for genetic manipulations, such as TERT overexpression. PMID:27252083

  3. Generation of mice with longer and better preserved telomeres in the absence of genetic manipulations.

    PubMed

    Varela, Elisa; Muñoz-Lorente, Miguel A; Tejera, Agueda M; Ortega, Sagrario; Blasco, Maria A

    2016-01-01

    Although telomere length is genetically determined, mouse embryonic stem (ES) cells with telomeres of twice the normal size have been generated. Here, we use such ES cells with 'hyper-long' telomeres, which also express green fluorescent protein (GFP), to generate chimaeric mice containing cells with both hyper-long and normal telomeres. We show that chimaeric mice contain GFP-positive cells in all mouse tissues, display normal tissue histology and normal survival. Both hyper-long and normal telomeres shorten with age, but GFP-positive cells retain longer telomeres as mice age. Chimaeric mice with hyper-long telomeres also accumulate fewer cells with short telomeres and less DNA damage with age, and express lower levels of p53. In highly renewing compartments, such as the blood, cells with hyper-long telomeres are longitudinally maintained or enriched with age. We further show that wound-healing rates in the skin are increased in chimaeric mice. Our work demonstrates that mice with functional, longer and better preserved telomeres can be generated without the need for genetic manipulations, such as TERT overexpression. PMID:27252083

  4. Update: Biochemistry of Genetic Manipulation.

    ERIC Educational Resources Information Center

    Barker, G. R.

    1983-01-01

    Various topics on the biochemistry of genetic manipulation are discussed. These include genetic transformation and DNA; genetic expression; DNA replication, repair, and mutation; technology of genetic manipulation; and applications of genetic manipulation. Other techniques employed are also considered. (JN)

  5. Genetic manipulation of francisella tularensis.

    PubMed

    Zogaj, Xhavit; Klose, Karl E

    2010-01-01

    Francisella tularensis is a facultative intracellular pathogen that causes the disease tularemia. F. tularensis subsp. tularensis causes the most severe disease in humans and has been classified as a Category A select agent and potential bioweapon. There is currently no vaccine approved for human use, making genetic manipulation of this organism critical to unraveling the genetic basis of pathogenesis and developing countermeasures against tularemia. The development of genetic techniques applicable to F. tularensis have lagged behind those routinely used for other bacteria, primarily due to lack of research and the restricted nature of the biocontainment required for studying this pathogen. However, in recent years, genetic techniques, such as transposon mutagenesis and targeted gene disruption, have been developed, that have had a dramatic impact on our understanding of the genetic basis of F. tularensis virulence. In this review, we describe some of the methods developed for genetic manipulation of F. tularensis. PMID:21607086

  6. Genetic Manipulation of Francisella Tularensis

    PubMed Central

    Zogaj, Xhavit; Klose, Karl E.

    2011-01-01

    Francisella tularensis is a facultative intracellular pathogen that causes the disease tularemia. F. tularensis subsp. tularensis causes the most severe disease in humans and has been classified as a Category A select agent and potential bioweapon. There is currently no vaccine approved for human use, making genetic manipulation of this organism critical to unraveling the genetic basis of pathogenesis and developing countermeasures against tularemia. The development of genetic techniques applicable to F. tularensis have lagged behind those routinely used for other bacteria, primarily due to lack of research and the restricted nature of the biocontainment required for studying this pathogen. However, in recent years, genetic techniques, such as transposon mutagenesis and targeted gene disruption, have been developed, that have had a dramatic impact on our understanding of the genetic basis of F. tularensis virulence. In this review, we describe some of the methods developed for genetic manipulation of F. tularensis. PMID:21607086

  7. Genetic Manipulation in Pigs

    PubMed Central

    Sachs, David H.; Galli, Cesare

    2009-01-01

    Purpose of Review Recent developments in the field of genetic engineering have made it possible to add, delete or exchange genes from one species to another. This technology has special relevance to the field of xenotransplantation, in which the elimination of a species-specific disparity could make the difference between success or failure of an organ transplant. This review focuses on developments in both the techniques and applications of genetically modified animals. Recent Findings Advances have been made using existing techniques for genetic modifications of swine and in the development of new, emerging technologies, including enzymatic engineering and the use of siRNA. Applications of the modified animals have provided evidence that genetically modified swine have the potential to overcome both physiologic and immunologic barriers that have previously impeded this field. Use of GalT-KO animals as donors have shown marked improvements in xenograft survivals. Summary Techniques for genetic engineering of swine have been directed toward avoiding naturally existing cellular and antibody responses to species-specific antigens. Organs from genetically engineered animals have enjoyed markedly improved survivals in non-human primates, especially in protocols directed toward the induction of tolerance, presumably by avoiding immunization to new antigens. PMID:19469029

  8. Manipulating Genetic Material in Bacteria

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Lisa Crawford, a graduate research assistant from the University of Toledo, works with Laurel Karr of Marshall Space Flight Center (MSFC) in the molecular biology laboratory. They are donducting genetic manipulation of bacteria and yeast for the production of large amount of desired protein. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  9. Genetic Manipulation of Human Embryonic Stem Cells.

    PubMed

    Eiges, Rachel

    2016-01-01

    One of the great advantages of embryonic stem (ES) cells over other cell types is their accessibility to genetic manipulation. They can easily undergo genetic modifications while remaining pluripotent, and can be selectively propagated, allowing the clonal expansion of genetically altered cells in culture. Since the first isolation of ES cells in mice, many effective techniques have been developed for gene delivery and manipulation of ES cells. These include transfection, electroporation, and infection protocols, as well as different approaches for inserting, deleting, or changing the expression of genes. These methods proved to be extremely useful in mouse ES cells, for monitoring and directing differentiation, discovering unknown genes, and studying their function, and are now being extensively implemented in human ES cells (HESCs). This chapter describes the different approaches and methodologies that have been applied for the genetic manipulation of HESCs and their applications. Detailed protocols for generating clones of genetically modified HESCs by transfection, electroporation, and infection will be described, with special emphasis on the important technical details that are required for this purpose. All protocols are equally effective in human-induced pluripotent stem (iPS) cells. PMID:25520283

  10. Genetic manipulation of Porphyromonas gingivalis.

    PubMed

    Bélanger, Myriam; Rodrigues, Paulo; Progulske-Fox, Ann

    2007-06-01

    Porphyromonas gingivalis, an oral anaerobic bacterium, is an important etiological agent of periodontal disease and may contribute to cardiovascular disease, preterm birth, and diabetes as well. Therefore, genetic studies are of crucial importance in investigating molecular mechanisms of P. gingivalis virulence. Although molecular genetic tools have been available for many bacterial species for some time, genetic manipulations of Porphyromonas species were not developed until more recently and remain limited. In this unit, current molecular genetic approaches for mutant construction in P. gingivalis using the suicide vector pPR-UF1 and the transposon Tn4351 are described, as are protocols for performing electroporation and conjugation. Furthermore, a technique to restore the wild-type phenotype of the mutant by complementation using vector pT-COW is provided. Finally, a description of a noninvasive reporter system allowing the study of gene expression and regulation in P. gingivalis completes this unit. PMID:18770611

  11. Genetic Manipulation of Stenotrophomonas maltophilia

    PubMed Central

    Welker, Elliott; Domfeh, Yayra; Tyagi, Deepti; Sinha, Sanjivni; Fisher, Nathan

    2015-01-01

    Stenotrophomonas maltophilia is a Gram-negative, aerobic, motile, environmental bacterium that is emerging as an important nosocomial pathogen (Brooke, 2012; Looney, Narita, & Mühlemann, 2009) with high rates of attributable mortality in severely ill patients (Falagas et al., 2009; Paez & Costa, 2008; Sattler, Mason, & Kaplan, 2000; Senol, DesJardin, Stark, Barefoot, & Snydman, 2002; Weber et al., 2007). S. maltophilia is of particular concern to patients suffering from cystic fibrosis (CF) as it has been shown to colonize airway epithelial and establish a chronic infection (Goncalves-Vidigal et al., 2011). Here we describe several molecular techniques for the genetic manipulation of this bacterium, including DNA extraction, RNA extraction, conjugation of plasmids from E. coli and allelic exchange. PMID:26344220

  12. Genetic Manipulation of Nocardia Species.

    PubMed

    Dhakal, Dipesh; Kumar Jha, Amit; Pokhrel, Anaya; Shrestha, Anil; Sohng, Jae Kyung

    2016-01-01

    Nocardia spp. are aerobic, Gram-positive, catalase positive, and non-motile actinomycetes. They are associated with human infections. However, some species produce important natural products, degrade toxic chemicals, and are involved in biotransformation of valuable products. The lack of robust genetic tools has hindered detailed studies and advanced research. This unit describes the major genetic engineering approaches using Nocardia sp. CS682 as a prototype. These methods will certainly help in understanding the basis of their pathogenicity as well as biosynthetic and biotransforming abilities. It can be expected that knowledge of the biochemistry behind their pathogenicity will be crucial in developing effective treatment strategies. These genetic tools can be utilized to develop rational metabolic engineering approaches for crafting host strains with higher production or biotransformation ability. © 2016 by John Wiley & Sons, Inc. PMID:26855280

  13. Genetic manipulation: watchdog to bark less often.

    PubMed

    1983-04-01

    A consultative document issued by the British government on 5 April includes a proposal that the Genetic Manipulation Advisory Group (GMAG) should take a less active regulatory role, but that investigators should continue to report experiments in genetic manipulation. Also under consideration is a reorganization of GMAG, in which it would be transferred from the Department of Education and Science to the Health and Safety Executive. In addition, the four lay members of the present GMAG would be dropped from the committee. PMID:11643975

  14. Molecular Genetic Manipulation of Vector Mosquitoes

    PubMed Central

    Terenius, Olle; Marinotti, Osvaldo; Sieglaff, Douglas; James, Anthony A.

    2008-01-01

    Genetic strategies for reducing populations of vector mosquitoes or replacing them with those that are not able to transmit pathogens benefit greatly from molecular tools that allow gene manipulation and transgenesis. Mosquito genome sequences and associated EST (Expressed Sequence Tags) databases enable large-scale investigations to provide new insights into evolutionary, biochemical, genetic, metabolic and physiological pathways. Additionally, comparative genomics reveals the bases for evolutionary mechanisms with particular focus on specific interactions between vectors and pathogens. We discuss how this information may be exploited for the optimization of transgenes that interfere with the propagation and development of pathogens in their mosquito hosts. PMID:18996342

  15. Pharmacological and Genetic Manipulation of p53 in Brown Fat at Adult But Not Embryonic Stages Regulates Thermogenesis and Body Weight in Male Mice.

    PubMed

    Al-Massadi, Omar; Porteiro, Begoña; Kuhlow, Doreen; Köhler, Markus; Gonzalez-Rellan, María J; Garcia-Lavandeira, Montserrat; Díaz-Rodríguez, Esther; Quiñones, Mar; Senra, Ana; Alvarez, Clara V; López, Miguel; Diéguez, Carlos; Schulz, Tim J; Nogueiras, Rubén

    2016-07-01

    p53 is a well-known tumor suppressor that plays multiple biological roles, including the capacity to modulate metabolism at different levels. However, its metabolic role in brown adipose tissue (BAT) remains largely unknown. Herein we sought to investigate the physiological role of endogenous p53 in BAT and its implication on BAT thermogenic activity and energy balance. To this end, we generated and characterized global p53-null mice and mice lacking p53 specifically in BAT. Additionally we performed gain-and-loss-of-function experiments in the BAT of adult mice using virogenetic and pharmacological approaches. BAT was collected and analyzed by immunohistochemistry, thermography, real-time PCR, and Western blot. p53-deficient mice were resistant to diet-induced obesity due to increased energy expenditure and BAT activity. However, the deletion of p53 in BAT using a Myf5-Cre driven p53 knockout did not show any changes in body weight or the expression of thermogenic markers. The acute inhibition of p53 in the BAT of adult mice slightly increased body weight and inhibited BAT thermogenesis, whereas its overexpression in the BAT of diet-induced obese mice reduced body weight and increased thermogenesis. On the other hand, pharmacological activation of p53 improves body weight gain due to increased BAT thermogenesis by sympathetic nervous system in obese adult wild-type mice but not in p53(-/-) animals. These results reveal that p53 regulates BAT metabolism by coordinating body weight and thermogenesis, but these metabolic actions are tissue specific and also dependent on the developmental stage. PMID:27183316

  16. Genetic Manipulation of Homologous Recombination In Vivo Attenuates Intestinal Tumorigenesis.

    PubMed

    McIlhatton, Michael A; Murnan, Kevin; Carson, Daniel; Boivin, Gregory P; Croce, Carlo M; Groden, Joanna

    2015-07-01

    Although disruption of DNA repair capacity is unquestionably associated with cancer susceptibility in humans and model organisms, it remains unclear if the inherent tumor phenotypes of DNA repair deficiency syndromes can be regulated by manipulating DNA repair pathways. Loss-of-function mutations in BLM, a member of the RecQ helicase family, cause Bloom's syndrome (BS), a rare, recessive genetic disorder that predisposes to many types of cancer. BLM functions in many aspects of DNA homeostasis, including the suppression of homologous recombination (HR) in somatic cells. We investigated whether BLM overexpression, in contrast with loss-of-function mutations, attenuated the intestinal tumor phenotypes of Apc(Min/+) and Apc(Min/+);Msh2(-/-) mice, animal models of familial adenomatous polyposis coli (FAP). We constructed a transgenic mouse line expressing human BLM (BLM-Tg) and crossed it onto both backgrounds. BLM-Tg decreased adenoma incidence in a dose-dependent manner in our Apc(Min/) (+) model of FAP, although levels of GIN were unaffected and concomitantly increased animal survival over 50%. It did not reduce intestinal tumorigenesis in Apc(Min/) (+);Msh2(-/-) mice. We used the pink-eyed unstable (p(un)) mouse model to demonstrate that increasing BLM dosage in vivo lowered endogenous levels of HR by 2-fold. Our data suggest that attenuation of the Min phenotype is achieved through a direct effect of BLM-Tg on the HR repair pathway. These findings demonstrate that HR can be manipulated in vivo to modulate tumor formation at the organismal level. Our data suggest that lowering HR frequencies may have positive therapeutic outcomes in the context of specific hereditary cancer predisposition syndromes, exemplified by FAP. PMID:25908507

  17. Manipulation of behavioral disorders in autoimmune mice via prolactin.

    PubMed

    Waters, N S; Badura, L L; Ahmed, S A; Gogal, R M; Denenberg, V H

    1997-11-01

    Autoimmune mice perform poorly in two-way active avoidance tasks, and the extent of this performance deficit appears to be related to the extent of autoimmunity following developmental manipulations. In the current study, the pituitary hormone prolactin, which has immune-enhancing effects, was used to manipulate this behavioral disorder in adulthood. Prolatinergic manipulation may be achieved by the use of dopaminergic drugs. In two experiments, autoimmune NZB X NZW F1 (BW) mice received either pimozide (PIM; a D2 antagonist) or bromocriptine (CB154; a dopamine agonist) in their drinking water. Control subjects received plain water. Following treatment, subjects were tested in an activity monitor, and active avoidance learning. Circulating PRL levels, as measured by RIA, were significantly increased by PIM and significantly decreased by CB154. Neither drug affected circulating levels of autoantibodies to DNA or cardiolipin, a phospholipid. In Experiment 1, in which mice were tested at 12 weeks of age, after 6 weeks of drug treatment, PIM treated animals of both sexes showed significantly more failures to escape the shock in avoidance conditioning, while CB154 did not have significant effects. In Experiment 2, in which mice were tested at 16 weeks of age, after 12 weeks of drug treatment, CB154 treated females (males were not tested) showed significantly fewer failures to escape, while PIM did not have significant effects. The effects of PRL on behavior, and its relation to immune system function, are discussed. PMID:9333190

  18. Effect of Enrichment Devices on Aggression in Manipulated Nude Mice

    PubMed Central

    Lockworth, Cynthia R; Kim, Sun-Jin; Liu, Jun; Palla, Shana L; Craig, Suzanne L

    2015-01-01

    Agonistic behavior in group-housed male mice is a recurring problem in many animal research facilities. Common management procedures, such as the removal of aggressors, are moderately successful but often fail, owing to recurrence of aggressive behavior among cagemates. Studies have incorporated enrichment devices to attenuate aggression, but such devices have had mixed results. However, these studies did not include research manipulations when assessing the benefits of various enrichment devices. We obtained 100 male athymic nude mice and studied the efficacy of various enrichment devices, including cotton squares, paper rolls, shredded paper, nylon bones, and a mouse house and wheel combination in the reduction of fighting during an ongoing study that involved randomization followed by prostate and intratibial injections. Groups were evaluated according to a numerical grading system for wound assessment. Examination of the data revealed that the enrichment devices had no effect on the presence of wounds, thus none of the devices tested affected fighting in nude mice. However, when mice began experimental use, fight wounds increased significantly at cage change and after randomization, reflecting a disruption of existing social hierarchies. Therefore, in the context of an actual research study that involves common manipulations, the specific enrichment device had less effect on aggression in male nude mice than did the destruction and reconstruction of social structures within each group. PMID:26632782

  19. Effect of Enrichment Devices on Aggression in Manipulated Nude Mice.

    PubMed

    Lockworth, Cynthia R; Kim, Sun-Jin; Liu, Jun; Palla, Shana L; Craig, Suzanne L

    2015-11-01

    Agonistic behavior in group-housed male mice is a recurring problem in many animal research facilities. Common management procedures, such as the removal of aggressors, are moderately successful but often fail, owing to recurrence of aggressive behavior among cagemates. Studies have incorporated enrichment devices to attenuate aggression, but such devices have had mixed results. However, these studies did not include research manipulations when assessing the benefits of various enrichment devices. We obtained 100 male athymic nude mice and studied the efficacy of various enrichment devices, including cotton squares, paper rolls, shredded paper, nylon bones, and a mouse house and wheel combination in the reduction of fighting during an ongoing study that involved randomization followed by prostate and intratibial injections. Groups were evaluated according to a numerical grading system for wound assessment. Examination of the data revealed that the enrichment devices had no effect on the presence of wounds, thus none of the devices tested affected fighting in nude mice. However, when mice began experimental use, fight wounds increased significantly at cage change and after randomization, reflecting a disruption of existing social hierarchies. Therefore, in the context of an actual research study that involves common manipulations, the specific enrichment device had less effect on aggression in male nude mice than did the destruction and reconstruction of social structures within each group. PMID:26632782

  20. Improved Wood Properties Through Genetic Manipulation

    SciTech Connect

    2006-10-01

    This factsheet describes a research project to replacing the more chemically resistant guaiacyl (G) lignin with the less resistant hardwood guaiacyl (G)-syringyl (S) lignin genes. Achieving this genetic change would reduce the energy, chemical, and bleaching required in Kraft pulp production of softwoods.

  1. Genetic Manipulation of Streptococcus pyogenes (The Group A Streptococcus, GAS)

    PubMed Central

    Le Breton, Yoann; McIver, Kevin S.

    2013-01-01

    Streptococcus pyogenes (the group A streptococcus, GAS) is a Gram-positive bacterium responsible for a wide spectrum of diseases ranging from mild superficial infections (pharyngitis, impetigo) to severe often life-threatening invasive diseases (necrotizing fasciitis, streptococcal toxic shock syndrome) in humans. This unit describes molecular techniques for the genetic manipulation of S. pyogenes with detailed protocols for transformation, gene disruption, allelic exchange, transposon mutagenesis, and genetic complementation. PMID:24510894

  2. Genetic manipulation of Streptococcus pyogenes (the Group A Streptococcus, GAS).

    PubMed

    Le Breton, Yoann; McIver, Kevin S

    2013-01-01

    Streptococcus pyogenes (the Group A Streptococcus, GAS) is a Gram-positive bacterium responsible for a wide spectrum of diseases ranging from mild superficial infections (pharyngitis, impetigo) to severe, often life-threatening invasive diseases (necrotizing fasciitis, streptococcal toxic shock syndrome) in humans. This unit describes molecular techniques for the genetic manipulation of S. pyogenes with detailed protocols for transformation, gene disruption, allelic exchange, transposon mutagenesis, and genetic complementation. PMID:24510894

  3. Public Attitudes toward Human Genetic Manipulation: A Revitalization of Eugenics?

    ERIC Educational Resources Information Center

    Veglia, Geremia; And Others

    The purpose of this investigation was to measure the attitudes of college students across the United States concerning the possible use of genetic manipulation, especially in terms of enhancing human physical and intellectual characteristics. The instrument used was divided into three general areas of inquiry: the first, designed to measure the…

  4. Murine Norovirus: Propagation, Quantification and Genetic Manipulation

    PubMed Central

    Hwang, Seungmin; Alhatlani, Bader; Arias, Armando; Caddy, Sarah L; Christodoulou, Constantina; Cunha, Juliana; Emmott, Ed; Gonzalez-Hernandez, Marta; Kolawole, Abimbola; Lu, Jia; Rippinger, Christine; Sorgeloos, Frédéric; Thorne, Lucy; Vashist, Surender; Goodfellow, Ian

    2014-01-01

    Murine norovirus (MNV) is a positive-sense, plus-stranded RNA virus in the Caliciviridae family. It is the most common pathogen in biomedical research colonies. MNV is also related to the human noroviruses, which cause the majority of non-bacterial gastroenteritis worldwide. Like the human noroviruses, MNV is an enteric virus that replicates in the intestine and is transmitted by the fecal-oral route. MNV replicates in murine macrophages and dendritic cells in cells in culture and in the murine host. This virus is often used to study mechanisms in norovirus biology, because the human noroviruses are refractory to growth in cell culture. MNV combines the availability of a cell culture and reverse genetics system with the ability to study infection in the native host. Herein, we describe a panel of techniques that are commonly used to study MNV biology. PMID:24789596

  5. Impact of genetic manipulation on society and medicine.

    PubMed

    Motulsky, A G

    1983-01-14

    Human beings have been manipulating the genetic characteristics plants and animals since the introduction of agriculture indirect manipulation of human genes occurred with widespread use of public health and medical measures that preserve genes causing disease. The production of biologicals by DNA technology raises few ethical problems. Predictive medicine in which genetic markers (including DNA variants) are used for antenatal and preclinical diagnosis of genetic diseases and susceptibilities poses new questions of confidentiality, private versus societal goals, and self-determination. When normal DNA is used to treat the somatic cells of patients with hemoglobinopathies and other genetic diseases, no new ethical problems arise beyond those presented by an novel theory. In contrast, manipulation of DNA in human fertilized eggs would constitute a qualitative departure from previous therapies since this would affect future generations. In order to be able to make wise decisions on these matters the public must be well informed. Thus, formal and informal education in human biology and genetics must be improved at all levels. PMID:6336852

  6. Genetic manipulation of poxviruses using bacterial artificial chromosome recombineering.

    PubMed

    Cottingham, Matthew G

    2012-01-01

    Traditional methods for genetic manipulation of poxviruses rely on low-frequency natural recombination in virus-infected cells. Although these powerful systems represent the technical foundation of current knowledge and applications of poxviruses, they require long (≥ 500 bp) flanking sequences for homologous recombination, an efficient viral selection method, and burdensome, time-consuming plaque purification. The beginning of the twenty-first century has seen the application of bacterial artificial chromosome (BAC) technology to poxviruses as an alternative method for their genetic manipulation, following the invention of a long-sought-after method for deriving a BAC clone of vaccinia virus (VAC-BAC) by Arban Domi and Bernard Moss. The key advantages of the BAC system are the ease and versatility of performing genetic manipulation using bacteriophage λ Red recombination (recombineering), which requires only ∼50 bp homology arms that can be easily created by PCR, and which allows seamless mutations lacking any marker gene without having to perform transient-dominant selection. On the other hand, there are disadvantages, including the significant setup time, the risk of contamination of the cloned genome with bacterial insertion sequences, and the nontrivial issue of removal of the BAC cassette from derived viruses. These must be carefully weighed to decide whether the use of BACs will be advantageous for a particular application, making pox-BAC systems likely to complement, rather than supplant, traditional methods in most laboratories. PMID:22688760

  7. Kanamycin Resistance Cassette for Genetic Manipulation of Treponema denticola

    PubMed Central

    Li, Yuebin; Ruby, John

    2015-01-01

    Treponema denticola has been recognized as an important oral pathogen of the “red complex” bacterial consortium that is associated with the pathogenesis of endodontal and periodontal diseases. However, little is known about the virulence of T. denticola due to its recalcitrant genetic system. The difficulty in genetically manipulating oral spirochetes is partially due to the lack of antibiotic resistance cassettes that are useful for gene complementation following allelic replacement mutagenesis. In this study, a kanamycin resistance cassette was identified and developed for the genetic manipulation of T. denticola ATCC 35405. Compared to the widely used ermF-ermAM cassette, the kanamycin cassette used in the transformation experiments gave rise to additional antibiotic-resistant T. denticola colonies. The kanamycin cassette is effective for allelic replacement mutagenesis as demonstrated by inactivation of two open reading frames of T. denticola, TDE1430 and TDE0911. In addition, the cassette is also functional in trans-chromosomal complementation. This was determined by functional rescue of a periplasmic flagellum (PF)-deficient mutant that had the flgE gene coding for PF hook protein inactivated. The integration of the full-length flgE gene into the genome of the flgE mutant rescued all of the defects associated with the flgE mutant that included the lack of PF filament and spirochetal motility. Taken together, we demonstrate that the kanamycin resistance gene is a suitable cassette for the genetic manipulation of T. denticola that will facilitate the characterization of virulence factors attributed to this important oral pathogen. PMID:25888173

  8. Development of Genetic Tools for the Manipulation of the Planctomycetes.

    PubMed

    Rivas-Marín, Elena; Canosa, Inés; Santero, Eduardo; Devos, Damien P

    2016-01-01

    Bacteria belonging to the Planctomycetes, Verrucomicrobia, Chlamydiae (PVC) superphylum are of interest for biotechnology, evolutionary cell biology, ecology, and human health. Some PVC species lack a number of typical bacterial features while others possess characteristics that are usually more associated to eukaryotes or archaea. For example, the Planctomycetes phylum is atypical for the absence of the FtsZ protein and for the presence of a developed endomembrane system. Studies of the cellular and molecular biology of these infrequent characteristics are currently limited due to the lack of genetic tools for most of the species. So far, genetic manipulation in Planctomycetes has been described in Planctopirus limnophila only. Here, we show a simple approach that allows mutagenesis by homologous recombination in three different planctomycetes species (i.e., Gemmata obscuriglobus, Gimesia maris, and Blastopirellula marina), in addition to P. limnophila, thus extending the repertoire of genetically modifiable organisms in this superphylum. Although the Planctomycetes show high resistance to most antibiotics, we have used kanamycin resistance genes in G. obscuriglobus, P. limnophila, and G. maris, and tetracycline resistance genes in B. marina, as markers for mutant selection. In all cases, plasmids were introduced in the strains by mating or electroporation, and the genetic modification was verified by Southern Blotting analysis. In addition, we show that the green fluorescent protein (gfp) is expressed in all four backgrounds from an Escherichia coli promoter. The genetic manipulation achievement in four phylogenetically diverse planctomycetes will enable molecular studies in these strains, and opens the door to developing genetic approaches not only in other planctomycetes but also other species of the superphylum, such as the Lentisphaerae. PMID:27379046

  9. Development of Genetic Tools for the Manipulation of the Planctomycetes

    PubMed Central

    Rivas-Marín, Elena; Canosa, Inés; Santero, Eduardo; Devos, Damien P.

    2016-01-01

    Bacteria belonging to the Planctomycetes, Verrucomicrobia, Chlamydiae (PVC) superphylum are of interest for biotechnology, evolutionary cell biology, ecology, and human health. Some PVC species lack a number of typical bacterial features while others possess characteristics that are usually more associated to eukaryotes or archaea. For example, the Planctomycetes phylum is atypical for the absence of the FtsZ protein and for the presence of a developed endomembrane system. Studies of the cellular and molecular biology of these infrequent characteristics are currently limited due to the lack of genetic tools for most of the species. So far, genetic manipulation in Planctomycetes has been described in Planctopirus limnophila only. Here, we show a simple approach that allows mutagenesis by homologous recombination in three different planctomycetes species (i.e., Gemmata obscuriglobus, Gimesia maris, and Blastopirellula marina), in addition to P. limnophila, thus extending the repertoire of genetically modifiable organisms in this superphylum. Although the Planctomycetes show high resistance to most antibiotics, we have used kanamycin resistance genes in G. obscuriglobus, P. limnophila, and G. maris, and tetracycline resistance genes in B. marina, as markers for mutant selection. In all cases, plasmids were introduced in the strains by mating or electroporation, and the genetic modification was verified by Southern Blotting analysis. In addition, we show that the green fluorescent protein (gfp) is expressed in all four backgrounds from an Escherichia coli promoter. The genetic manipulation achievement in four phylogenetically diverse planctomycetes will enable molecular studies in these strains, and opens the door to developing genetic approaches not only in other planctomycetes but also other species of the superphylum, such as the Lentisphaerae. PMID:27379046

  10. An efficient genetic manipulation protocol for Ustilago esculenta.

    PubMed

    Yu, Jiajia; Zhang, Yafen; Cui, Haifeng; Hu, Peng; Yu, Xiaoping; Ye, Zihong

    2015-06-01

    Ustilago esculenta grows within the flowering stem of the aquatic grass Zizania latifolia, resembling a fungal endophyte. The fungus colonizes Z. latifolia and induces swelling which results in the formation of galls near the base of the plant. Due to their unique flavor and textures these galls are considered as a delicacy in southern China. Efficient genetic manipulation is required to determine the relationship between U. esculenta and Z. latifolia. In this study, we report a protoplast-based transformation system for this unique fungal species. We have explored various factors (enzyme digesting conditions, osmotic pressure stabilizers, vectors and selection agents) that might impact protoplast yield and high frequencies of transformation. A haploid strain (UeT55) of U. esculenta was found to produce higher yields of protoplasts when treating with 15 mg mL(-1) lywallzyme in a sucrose-containing solution at 30°C for 3 h. The transformation frequencies were higher when fungal strain was transformed with a linear plasmid harboring hygromycin or carboxin resistance gene and regenerated on a sucrose-containing medium. A UeICL gene (coding isocitrate lyase) was disrupted and an EGFP (coding enhanced green fluorescent protein) gene was overexpressed successfully in the UeT55 strain using the developed conditions. The genetic manipulation system reported in this study will open up new opportunities for forward and reverse genetics in U. esculenta. PMID:26038251

  11. Effects of ooplasm manipulation on DNA methylation and growth of progeny in mice.

    PubMed

    Cheng, Yong; Wang, Kai; Kellam, Lori D; Lee, Young S; Liang, Cheng-Guang; Han, Zhiming; Mtango, Namdori R; Latham, Keith E

    2009-03-01

    New techniques to boost male and female fertility are being pioneered at a rapid pace in fertility clinics to increase the efficiency of assisted reproduction methods in couples in which natural conception has not been achieved. This study investigates the possible epigenetic effects of ooplasm manipulation methods on postnatal growth and development using a mouse genetic model, with particular emphasis on the possible effects of intergenotype manipulations. We performed interstrain and control intrastrain maternal pronuclear transfers, metaphase-II spindle transfers, and ooplasm transfer between C57BL/6 and DBA/2 mice, and found no major, long-term growth defects or epigenetic abnormalities, in either males or females, associated with intergenotype transfers. Ooplasm transfer itself was associated with reduced viability, and additional subtle effects of ooplasm strain of origin were observed. Both inter- and intrastrain ooplasm transfer were associated with subtle, transient effects on growth early in life. We also performed inter- and intrastrain germinal vesicle transfers (GVTs). Interstrain GVT females, but not males, had significantly lower body weights at birth and thereafter compared with the intrastrain GVT and non-GVT controls. No GVT-associated changes were observed in DNA methylation of the Mup1, Rasgrf1, H19, Snrpn, or Peg3 genes, nor any difference in expression of the imprinted Rasgrf1, Igf2r, or Mest genes. These results indicate that some ooplasm manipulation procedures may exert subtle effects on growth early in life, while intergenotype GVT can result in significant growth deficiencies after birth. PMID:19073997

  12. Zinc metabolism in genetically obese mice

    SciTech Connect

    Kennedy, M.L.; Failla, M.L.

    1986-03-05

    Recent reports indicate that the concentrations and total amounts of several essential trace metals in various tissues of genetically obese rodents differ markedly from lean controls. In the present studies the absorption, retention and tissue distribution of zinc was compared in obese (ob/ob) and lean (+/.) C57BL/6J mice. When administered 0.1 and 1 umole /sup 65/Zn by stomach tube and killed after 4 h, fasted 10 week old obese mice had 2.7 and 2.2 times more radioactivity in their carcasses, respectively, than age-matched lean mice. Higher levels of /sup 65/Zn were also present in the intestinal mucosa of obese mice. To eliminate possible differences in the effects of fasting and gastric emptying rates between the phenotypes, zinc absorption and retention were determined according to the method of Heth and Hoekstra. Analysis of data revealed that obese and lean mice absorbed 43 and 18% of the oral dose, respectively. Also, the rate of /sup 65/Zn excretion between 2 and 6 days post-treatment was similar for obese and lean mice. After 6 days obese mice had significantly lower levels of radioisotope in skin, muscle plus bone, spleen and testes and higher levels of /sup 65/Zn in liver, small intestine and adipose tissue compared to tissues from lean mice. These results demonstrate increased absorption, altered tissue distribution and similar excretion of zinc in ob/ob mice.

  13. Analyzing the metabolic capabilities of Desulfovibrio speciesthrough genetic manipulation.

    SciTech Connect

    Bender, K.; Yen, H.-C.; Wall, J.D.

    2005-12-31

    Sulfate-reducing bacteria (SRB) are an environmentallysignificant group belonging to the anaerobic delta-Proteobacteria thatrespire sulfate for growth. From an industrial stand point, SRB pose athreat through corrosion of ferrous metals and production of toxicsulfides. The more positive aspects of the metabolism of the SRB includea robust but poorly understood hydrogen metabolism that is of interest toalternative energy studies. SRB also immobilize a number of heavy metalsthrough sulfide precipitation or through changing the redox state of themetal and thus its solubility. When metals are made less soluble, as isthe case with chromium (Cr(VI) to Cr(III)) or uranium (U(VI) to U(IV)),toxicity is reduced by limiting biological availability. Despite theeconomic and environmental impacts associated with SRB activities, ourcurrent knowledge of their metabolism is inadequate. Among the SRB,members of the Desulfovibrio genus have received most attention becausethese strains are most readily grown in pure culture. Therefore,Desulfovibrio strains have been the focus of biochemical and biophysicalanalyses, however, genetic studies have been more difficult. Over thelast 15 years, progress has been made in developing techniques for DNAtransformation, gene mutagenesis and over expression, and proteintagging. Since the last genetics of SRB review by van Dongen, 10 yearshave passed (van Dongen, 1995) and the complete genome sequences of a fewstrains are now available (Heidelberg, et al., 2004). This reviewhighlights the current advances in the genetic manipulation ofDesulfovibrio species and the potential use of these tools inunderstanding the metabolism of sulfate reducers for biotechnologicalpurposes.

  14. Tools for the genetic manipulation of Zygosaccharomyces rouxii.

    PubMed

    Pribylova, Lenka; de Montigny, Jacky; Sychrova, Hana

    2007-12-01

    A set of tools for the genetic manipulation of the osmotolerant yeast Zygosaccharomyces rouxii was developed. Auxotrophic mutants (ura3 leu2, ura3 ade2, ura3 leu2 ade2) derived from the CBS 732 type strain were prepared. Centromeric and episomal Z. rouxii/Escherichia coli shuttle plasmids with different marker genes (ScURA3, ZrLEU2, ZrADE2) and with multiple cloning sites were constructed, together with a plasmid enabling green fluorescent protein-tagging. A system for repeatable targeted gene deletion in Z. rouxii was established, involving first the integration of a PCR-generated loxP-kanMX-loxP cassette and second the removal of kanMX from the genome using a Z. rouxii plasmid harbouring cre recombinase. PMID:17887999

  15. Carotenoids in Staple Cereals: Metabolism, Regulation, and Genetic Manipulation.

    PubMed

    Zhai, Shengnan; Xia, Xianchun; He, Zhonghu

    2016-01-01

    Carotenoids play a critical role in animal and human health. Animals and humans are unable to synthesize carotenoids de novo, and therefore rely upon diet as sources of these compounds. However, major staple cereals often contain only small amounts of carotenoids in their grains. Consequently, there is considerable interest in genetic manipulation of carotenoid content in cereal grain. In this review, we focus on carotenoid metabolism and regulation in non-green plant tissues, as well as genetic manipulation in staple cereals such as rice, maize, and wheat. Significant progress has been made in three aspects: (1) seven carotenogenes play vital roles in carotenoid regulation in non-green plant tissues, including 1-deoxyxylulose-5-phosphate synthase influencing isoprenoid precursor supply, phytoene synthase, β-cyclase, and ε-cyclase controlling biosynthesis, 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase and carotenoid cleavage dioxygenases responsible for degradation, and orange gene conditioning sequestration sink; (2) provitamin A-biofortified crops, such as rice and maize, were developed by either metabolic engineering or marker-assisted breeding; (3) quantitative trait loci for carotenoid content on chromosomes 3B, 7A, and 7B were consistently identified, eight carotenogenes including 23 loci were detected, and 10 gene-specific markers for carotenoid accumulation were developed and applied in wheat improvement. A comprehensive and deeper understanding of the regulatory mechanisms of carotenoid metabolism in crops will be beneficial in improving our precision in improving carotenoid contents. Genomic selection and gene editing are emerging as transformative technologies for provitamin A biofortification. PMID:27559339

  16. Electroporation-Based Genetic Manipulation in Type I Methanotrophs.

    PubMed

    Yan, Xin; Chu, Frances; Puri, Aaron W; Fu, Yanfen; Lidstrom, Mary E

    2016-04-01

    Methane is becoming a major candidate for a prominent carbon feedstock in the future, and the bioconversion of methane into valuable products has drawn increasing attention. To facilitate the use of methanotrophic organisms as industrial strains and accelerate our ability to metabolically engineer methanotrophs, simple and rapid genetic tools are needed. Electroporation is one such enabling tool, but to date it has not been successful in a group of methanotrophs of interest for the production of chemicals and fuels, the gammaproteobacterial (type I) methanotrophs. In this study, we developed electroporation techniques with a high transformation efficiency for three different type I methanotrophs: Methylomicrobium buryatense 5GB1C, Methylomonas sp. strain LW13, and Methylobacter tundripaludum 21/22. We further developed this technique in M. buryatense, a haloalkaliphilic aerobic methanotroph that demonstrates robust growth with a high carbon conversion efficiency and is well suited for industrial use for the bioconversion of methane. On the basis of the high transformation efficiency of M. buryatense, gene knockouts or integration of a foreign fragment into the chromosome can be easily achieved by direct electroporation of PCR-generated deletion or integration constructs. Moreover, site-specific recombination (FLP-FRT [FLP recombination target] recombination) and sacB counterselection systems were employed to perform marker-free manipulation, and two new antibiotics, zeocin and hygromycin, were validated to be antibiotic markers in this strain. Together, these tools facilitate the rapid genetic manipulation of M. buryatense and other type I methanotrophs, promoting the ability to perform fundamental research and industrial process development with these strains. PMID:26801578

  17. Carotenoids in Staple Cereals: Metabolism, Regulation, and Genetic Manipulation

    PubMed Central

    Zhai, Shengnan; Xia, Xianchun; He, Zhonghu

    2016-01-01

    Carotenoids play a critical role in animal and human health. Animals and humans are unable to synthesize carotenoids de novo, and therefore rely upon diet as sources of these compounds. However, major staple cereals often contain only small amounts of carotenoids in their grains. Consequently, there is considerable interest in genetic manipulation of carotenoid content in cereal grain. In this review, we focus on carotenoid metabolism and regulation in non-green plant tissues, as well as genetic manipulation in staple cereals such as rice, maize, and wheat. Significant progress has been made in three aspects: (1) seven carotenogenes play vital roles in carotenoid regulation in non-green plant tissues, including 1-deoxyxylulose-5-phosphate synthase influencing isoprenoid precursor supply, phytoene synthase, β-cyclase, and ε-cyclase controlling biosynthesis, 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase and carotenoid cleavage dioxygenases responsible for degradation, and orange gene conditioning sequestration sink; (2) provitamin A-biofortified crops, such as rice and maize, were developed by either metabolic engineering or marker-assisted breeding; (3) quantitative trait loci for carotenoid content on chromosomes 3B, 7A, and 7B were consistently identified, eight carotenogenes including 23 loci were detected, and 10 gene-specific markers for carotenoid accumulation were developed and applied in wheat improvement. A comprehensive and deeper understanding of the regulatory mechanisms of carotenoid metabolism in crops will be beneficial in improving our precision in improving carotenoid contents. Genomic selection and gene editing are emerging as transformative technologies for provitamin A biofortification. PMID:27559339

  18. Isolation, culture and genetic manipulation of mouse pancreatic ductal cells.

    PubMed

    Reichert, Maximilian; Takano, Shigetsugu; Heeg, Steffen; Bakir, Basil; Botta, Gregory P; Rustgi, Anil K

    2013-01-01

    The most common subtype of pancreatic cancer is pancreatic ductal adenocarcinoma (PDAC). PDAC resembles duct cells morphologically and, to some extent, at a molecular level. Recently, genetic-lineage labeling has become popular in the field of tumor biology in order to study cell-fate decisions or to trace cancer cells in the mouse. However, certain biological questions require a nongenetic labeling approach to purify a distinct cell population in the pancreas. Here we describe a protocol for isolating mouse pancreatic ductal epithelial cells and ductlike cells directly in vivo using ductal-specific Dolichos biflorus agglutinin (DBA) lectin labeling followed by magnetic bead separation. Isolated cells can be cultured (in two or three dimensions), manipulated by lentiviral transduction to modulate gene expression and directly used for molecular studies. This approach is fast (~4 h), affordable, results in cells with high viability, can be performed on the bench and is applicable to virtually all genetic and nongenetic disease models of the pancreas. PMID:23787893

  19. Translational genetic approaches to substance use disorders: bridging the gap between mice and humans

    PubMed Central

    Palmer, Abraham A.; de Wit, Harriet

    2012-01-01

    While substance abuse disorders only occur in humans, mice and other model organisms can make valuable contributions to genetic studies of these disorders. In this review, we consider a few specific examples of how model organisms have been used in conjunction with studies in humans to study the role of genetic factors in substance use disorders. In some examples genes that were first discovered in mice were subsequently studied in humans. In other examples genes or specific polymorphisms in genes were first studied in humans and then modeled in mice. Using anatomically and temporally specific genetic, pharmacological and other environmental manipulations in conjunction with histological analyses, mechanistic insights that would be difficult to obtain in humans have been obtained in mice. We hope these examples illustrate how novel biological insights about the effect of genes on substance use disorders can be obtained when mouse and human genetic studies are successfully integrated. PMID:22170288

  20. Human satellite cells have regenerative capacity and are genetically manipulable

    PubMed Central

    Marg, Andreas; Escobar, Helena; Gloy, Sina; Kufeld, Markus; Zacher, Joseph; Spuler, Andreas; Birchmeier, Carmen; Izsvák, Zsuzsanna; Spuler, Simone

    2014-01-01

    Muscle satellite cells promote regeneration and could potentially improve gene delivery for treating muscular dystrophies. Human satellite cells are scarce; therefore, clinical investigation has been limited. We obtained muscle fiber fragments from skeletal muscle biopsy specimens from adult donors aged 20 to 80 years. Fiber fragments were manually dissected, cultured, and evaluated for expression of myogenesis regulator PAX7. PAX7+ satellite cells were activated and proliferated efficiently in culture. Independent of donor age, as few as 2 to 4 PAX7+ satellite cells gave rise to several thousand myoblasts. Transplantation of human muscle fiber fragments into irradiated muscle of immunodeficient mice resulted in robust engraftment, muscle regeneration, and proper homing of human PAX7+ satellite cells to the stem cell niche. Further, we determined that subjecting the human muscle fiber fragments to hypothermic treatment successfully enriches the cultures for PAX7+ cells and improves the efficacy of the transplantation and muscle regeneration. Finally, we successfully altered gene expression in cultured human PAX7+ satellite cells with Sleeping Beauty transposon–mediated nonviral gene transfer, highlighting the potential of this system for use in gene therapy. Together, these results demonstrate the ability to culture and manipulate a rare population of human tissue-specific stem cells and suggest that these PAX7+ satellite cells have potential to restore gene function in muscular dystrophies. PMID:25157816

  1. 512-Channel and 13-Region Simultaneous Recordings Coupled with Optogenetic Manipulation in Freely Behaving Mice

    PubMed Central

    Xie, Kun; Fox, Grace E.; Liu, Jun; Tsien, Joe Z.

    2016-01-01

    The development of technologies capable of recording both single-unit activity and local field potentials (LFPs) over a wide range of brain circuits in freely behaving animals is the key to constructing brain activity maps. Although mice are the most popular mammalian genetic model, in vivo neural recording has been traditionally limited to smaller channel count and fewer brain structures because of the mouse’s small size and thin skull. Here, we describe a 512-channel tetrode system that allows us to record simultaneously over a dozen cortical and subcortical structures in behaving mice. This new technique offers two major advantages – namely, the ultra-low cost and the do-it-yourself flexibility for targeting any combination of many brain areas. We show the successful recordings of both single units and LFPs from 13 distinct neural circuits of the mouse brain, including subregions of the anterior cingulate cortices, retrosplenial cortices, somatosensory cortices, secondary auditory cortex, hippocampal CA1, dentate gyrus, subiculum, lateral entorhinal cortex, perirhinal cortex, and prelimbic cortex. This 512-channel system can also be combined with Cre-lox neurogenetics and optogenetics to further examine interactions between genes, cell types, and circuit dynamics across a wide range of brain structures. Finally, we demonstrate that complex stimuli – such as an earthquake and fear-inducing foot-shock – trigger firing changes in all of the 13 brain regions recorded, supporting the notion that neural code is highly distributed. In addition, we show that localized optogenetic manipulation in any given brain region could disrupt network oscillations and caused changes in single-unit firing patterns in a brain-wide manner, thereby raising the cautionary note of the interpretation of optogenetically manipulated behaviors. PMID:27378865

  2. 512-Channel and 13-Region Simultaneous Recordings Coupled with Optogenetic Manipulation in Freely Behaving Mice.

    PubMed

    Xie, Kun; Fox, Grace E; Liu, Jun; Tsien, Joe Z

    2016-01-01

    The development of technologies capable of recording both single-unit activity and local field potentials (LFPs) over a wide range of brain circuits in freely behaving animals is the key to constructing brain activity maps. Although mice are the most popular mammalian genetic model, in vivo neural recording has been traditionally limited to smaller channel count and fewer brain structures because of the mouse's small size and thin skull. Here, we describe a 512-channel tetrode system that allows us to record simultaneously over a dozen cortical and subcortical structures in behaving mice. This new technique offers two major advantages - namely, the ultra-low cost and the do-it-yourself flexibility for targeting any combination of many brain areas. We show the successful recordings of both single units and LFPs from 13 distinct neural circuits of the mouse brain, including subregions of the anterior cingulate cortices, retrosplenial cortices, somatosensory cortices, secondary auditory cortex, hippocampal CA1, dentate gyrus, subiculum, lateral entorhinal cortex, perirhinal cortex, and prelimbic cortex. This 512-channel system can also be combined with Cre-lox neurogenetics and optogenetics to further examine interactions between genes, cell types, and circuit dynamics across a wide range of brain structures. Finally, we demonstrate that complex stimuli - such as an earthquake and fear-inducing foot-shock - trigger firing changes in all of the 13 brain regions recorded, supporting the notion that neural code is highly distributed. In addition, we show that localized optogenetic manipulation in any given brain region could disrupt network oscillations and caused changes in single-unit firing patterns in a brain-wide manner, thereby raising the cautionary note of the interpretation of optogenetically manipulated behaviors. PMID:27378865

  3. Manipulation of adenosine kinase affects sleep regulation in mice

    PubMed Central

    Palchykova, Svitlana; Winsky-Sommerer, Raphaelle; Shen, Hai-Ying; Boison, Detlev; Gerling, Andrea; Tobler, Irene

    2010-01-01

    Sleep and sleep intensity are enhanced by adenosine and its receptor agonists, while adenosine receptor antagonists induce wakefulness. Adenosine kinase (ADK) is the primary enzyme metabolizing adenosine in adult brain. To investigate whether adenosine metabolism or clearance affects sleep we recorded sleep in mice with engineered mutations in Adk. Adk-tg mice over-express a transgene encoding the cytoplasmic isoform of ADK in the brain, but lack the nuclear isoform of the enzyme. Wild-type mice and Adk+/− mice that have a 50% reduction of the cytoplasmic and the nuclear isoforms of ADK served as controls. Adk-tg mice showed a remarkable reduction of EEG power in low frequencies in all vigilance states and in theta activity (6.25–11 Hz) in REM sleep and waking. Adk-tg mice were awake 58 min more per day than wild-type mice and spent significantly less time in REM sleep (102±3 vs 128±3 min in wild-type). After sleep deprivation slow-wave activity (0.75–4 Hz), the intensity component of NREM sleep, increased significantly less in Adk-tg mice and their slow-wave energy was reduced. In contrast, the vigilance states and EEG spectra of Adk+/− and wild-type mice did not differ. Our data suggest that over-expression of the cytoplasmic isoform of ADK is sufficient to alter sleep physiology. ADK might orchestrate neurotransmitter pathways involved in the generation of EEG oscillations and regulation of sleep. PMID:20881134

  4. Demodex musculi Infestation in Genetically Immunomodulated Mice.

    PubMed

    Smith, Peter C; Zeiss, Caroline J; Beck, Amanda P; Scholz, Jodi A

    2016-01-01

    Demodex musculi, a prostigmatid mite that has been reported infrequently in laboratory mice, has been identified with increasing frequency in contemporary colonies of immunodeficient mice. Here we describe 2 episodes of D. musculi infestation with associated clinical signs in various genetically engineered mouse strains, as well as treatment strategies and an investigation into transmissibility and host susceptibility. The first case involved D. musculi associated with clinical signs and pathologic lesions in BALB/c-Tg(DO11.10)Il13(tm) mice, which have a defect in type 2 helper T cell (Th2) immunity. Subsequent investigation revealed mite transmission to both parental strains (BALB/c-Tg[DO11.10] and BALB/c-Il13(tm)), BALB/c-Il13/Il4(tm), and wild-type BALB/c. All Tg(DO11.10)Il13(tm) mice remained infested throughout the investigation, and D. musculi were recovered from all strains when they were cohoused with BALB/c-Tg(DO11.10)Il13(tm) index mice. However, only Il13(tm) and Il13/Il4(tm) mice demonstrated persistent infestation after index mice were removed. Only BALB/c-Tg(DO11.10)Il13(tm) showed clinical signs, suggesting that the phenotypic dysfunction of Th2 immunity is sufficient for persistent infestation, whereas clinical disease associated with D. musculi appears to be genotype-specific. This pattern was further exemplified in the second case, which involved NOD.Cg-Prkdc(scid)Il2r(tm1Wjl)/SzJ (NSG) and C;129S4 Rag2(tm1.1Flv) Il2rg(tm1.1Flv)/J mice with varying degrees of blepharitis, conjunctivitis, and facial pruritis. Topical amitraz decreased mite burden but did not eliminate infestation or markedly ameliorate clinical signs. Furthermore, mite burden began to increase by 1 mo posttreatment, suggesting that topical amitraz is an ineffective treatment for D. musculi. These experiences illustrate the need for vigilance regarding opportunistic and uncommon pathogens in rodent colonies, especially among mice with immunologic deficits. PMID:27538858

  5. Dre - Cre Sequential Recombination Provides New Tools for Retinal Ganglion Cell Labeling and Manipulation in Mice

    PubMed Central

    Shi, Melody; Liu, Pinghu; Dong, Lijin; Parmhans, Nadia; Popescu, Octavian; Badea, Tudor Constantin

    2014-01-01

    Background Genetic targeting methods have greatly advanced our understanding of many of the 20 Retinal Ganglion Cell (RGC) types conveying visual information from the eyes to the brain. However, the complexity and partial overlap of gene expression patterns in RGCs call for genetic intersectional or sparse labeling strategies. Loci carrying the Cre recombinase in conjunction with conditional knock-out, reporter or other genetic tools can be used for targeted cell type ablation and functional manipulation of specific cell populations. The three members of the Pou4f family of transcription factors, Brn3a, Brn3b and Brn3c, expressed early during RGC development and in combinatorial pattern amongst RGC types are excellent candidates for such gene manipulations. Methods and Findings We generated conditional Cre knock-in alleles at the Brn3a and Brn3b loci, Brn3aCKOCre and Brn3bCKOCre. When crossed to mice expressing the Dre recombinase, the endogenous Brn3 gene expressed by Brn3aCKOCre or Brn3bCKOCre is removed and replaced with a Cre recombinase, generating Brn3aCre and Brn3bCre knock-in alleles. Surprisingly both Brn3aCre and Brn3bCre knock-in alleles induce early ubiquitous recombination, consistent with germline expression. However in later stages of development, their expression is limited to the expected endogenous pattern of the Brn3a and Brn3b genes. We use the Brn3aCre and Brn3bCre alleles to target a Cre dependent Adeno Associated Virus (AAV) reporter to RGCs and demonstrate its use in morphological characterization, early postnatal gene delivery and tracing the expression of Brn3 genes in RGCs. Conclusions Dre recombinase effectively recombines the Brn3aCKOCre and Brn3bCKOCre alleles containing its roxP target sites. Sequential Dre to Cre recombination reveals Brn3a and Brn3b expression in early mouse development. The generated Brn3aCre and Brn3bCre alleles are useful tools that can target exogenously delivered Cre dependent reagents to RGCs in early

  6. Wildland Collection, Population Development, and Genetic Manipulation of Native Rangeland Grasses in the Intermountain West USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the Intermountain West USA, a high demand for native plant materials exists, but customer expectations for native plant materials may be contradictory (Jones, 2003). Some customers spurn genetically manipulated or non-local plant materials, while others accept manipulation or non-local origin wh...

  7. Molecular genetic techniques for gene manipulation in Candida albicans

    PubMed Central

    Xu, Qiu-Rong; Yan, Lan; Lv, Quan-Zhen; Zhou, Mi; Sui, Xue; Cao, Yong-Bing; Jiang, Yuan-Ying

    2014-01-01

    Candida albicans is one of the most common fungal pathogen in humans due to its high frequency as an opportunistic and pathogenic fungus causing superficial as well as invasive infections in immunocompromised patients. An understanding of gene function in C. albicans is necessary to study the molecular basis of its pathogenesis, virulence and drug resistance. Several manipulation techniques have been used for investigation of gene function in C. albicans, including gene disruption, controlled gene expression, protein tagging, gene reintegration, and overexpression. In this review, the main cassettes containing selectable markers used for gene manipulation in C. albicans are summarized; the advantages and limitations of these cassettes are discussed concerning the influences on the target gene expression and the virulence of the mutant strains. PMID:24759671

  8. [Ethical challenges of genetic manipulation and research with animals].

    PubMed

    Rodríguez Yunta, Eduardo

    2012-01-01

    Research with animals presents ethical questions both for being used as models of human diseases and for being a prerequisite for trials in humans, as in the introduction of genetic modifications. Some of these questions refer to the fact that, as models, they do not fully represent the human condition; that conducting toxicity tests causes great harm to animals; that their nature is altered by genetic modifications and that introducing genetically modified organisms is a risk. The use of animals in research for the benefit of humans imposes the moral responsibility to respect them, not making them suffer unnecessarily, since they are living beings capable of feeling. PMID:23338641

  9. Improved and expanded Q-system reagents for genetic manipulations

    PubMed Central

    Riabinina, Olena; Luginbuhl, David; Marr, Elizabeth; Liu, Sha; Wu, Mark N.; Luo, Liqun; Potter, Christopher J.

    2014-01-01

    The Q-system is a repressible binary expression system for transgenic manipulations in living organisms. Through protein engineering and in vivo functional tests, we report here new variants of the Q-system transcriptional activator, including QF2, that allows the Q-system to drive strong and ubiquitous expression for the first time in all tissues. Our new QF2, GAL4QF and LexAQF chimeric transcriptional activators substantially enrich the toolkit available for transgenic regulation in Drosophila. PMID:25581800

  10. Plasmid Vectors and Molecular Building Blocks for the Development of Genetic Manipulation Tools for Trypanosoma cruzi

    PubMed Central

    Bouvier, León A.; Cámara, María de los Milagros; Canepa, Gaspar E.; Miranda, Mariana R.; Pereira, Claudio A.

    2013-01-01

    The post genomic era revealed the need for developing better performing, easier to use and more sophisticated genetic manipulation tools for the study of Trypanosoma cruzi, the etiological agent of Chagas disease. In this work a series of plasmids that allow genetic manipulation of this protozoan parasite were developed. First of all we focused on useful tools to establish selection strategies for different strains and which can be employed as expression vectors. On the other hand molecular building blocks in the form of diverse selectable markers, modifiable fluorescent protein and epitope-tag coding sequences were produced. Both types of modules were harboured in backbone molecules conceived to offer multiple construction and sub-cloning strategies. These can be used to confer new properties to already available genetic manipulation tools or as starting points for whole novel designs. The performance of each plasmid and building block was determined independently. For illustration purposes, some simple direct practical applications were conducted. PMID:24205392

  11. Plasmid vectors and molecular building blocks for the development of genetic manipulation tools for Trypanosoma cruzi.

    PubMed

    Bouvier, León A; Cámara, María de los Milagros; Canepa, Gaspar E; Miranda, Mariana R; Pereira, Claudio A

    2013-01-01

    The post genomic era revealed the need for developing better performing, easier to use and more sophisticated genetic manipulation tools for the study of Trypanosoma cruzi, the etiological agent of Chagas disease. In this work a series of plasmids that allow genetic manipulation of this protozoan parasite were developed. First of all we focused on useful tools to establish selection strategies for different strains and which can be employed as expression vectors. On the other hand molecular building blocks in the form of diverse selectable markers, modifiable fluorescent protein and epitope-tag coding sequences were produced. Both types of modules were harboured in backbone molecules conceived to offer multiple construction and sub-cloning strategies. These can be used to confer new properties to already available genetic manipulation tools or as starting points for whole novel designs. The performance of each plasmid and building block was determined independently. For illustration purposes, some simple direct practical applications were conducted. PMID:24205392

  12. Genetic manipulation: NIH concede part of Rifkin suit.

    PubMed

    Budiansky, S

    Officials at the National Institutes of Health (NIH) have acceded to a major claim in a lawsuit brought by anti-genetic engineering activist Jeremy Rifkin to halt field trials involving the release of recombinant organisms into the environment. In an appeal filed with the U.S. Circuit Court of Appeals in Washington, NIH agreed to produce an environmental assessment of individual experiments as demanded by U.S. District Court Judge John Sirica in May, while continuing to appeal Sirica's ruling that an impact statement on the full environmental release program is required. The appeals court is scheduled to hear the case in December. Meanwhile, on another front, the NIH Recombinant DNA Advisory Committee has rejected another Rifkin proposal to ban all transfers of genetic materials from one mammalian species to the germline of another. PMID:6594575

  13. [Direct genetic manipulation and criminal code in Venezuela: absolute criminal law void?].

    PubMed

    Cermeño Zambrano, Fernando G De J

    2002-01-01

    The judicial regulation of genetic biotechnology applied to the human genome is of big relevance currently in Venezuela due to the drafting of an innovative bioethical law in the country's parliament. This article will highlight the constitutional normative of Venezuela's 1999 Constitution regarding this subject, as it establishes the framework from which this matter will be legally regulated. The approach this article makes towards the genetic biotechnology applied to the human genome is made taking into account the Venezuelan penal law and by highlighting the violent genetic manipulations that have criminal relevance. The genetic biotechnology applied to the human genome has another important relevance as a consequence of the reformulation of the Venezuelan Penal Code discussed by the country's National Assembly. Therefore, a concise study of the country's penal code will be made in this article to better understand what judicial-penal properties have been protected by the Venezuelan penal legislation. This last step will enable us to identify the penal tools Venezuela counts on to face direct genetic manipulations. We will equally indicate the existing punitive loophole and that should be covered by the penal legislator. In conclusion, this essay concerns criminal policy, referred to the direct genetic manipulations on the human genome that haven't been typified in Venezuelan law, thus discovering a genetic biotechnology paradise. PMID:12379984

  14. Software for analysis and manipulation of genetic linkage data.

    PubMed

    Weaver, R; Helms, C; Mishra, S K; Donis-Keller, H

    1992-06-01

    We present eight computer programs written in the C programming language that are designed to analyze genotypic data and to support existing software used to construct genetic linkage maps. Although each program has a unique purpose, they all share the common goals of affording a greater understanding of genetic linkage data and of automating tasks to make computers more effective tools for map building. The PIC/HET and FAMINFO programs automate calculation of relevant quantities such as heterozygosity, PIC, allele frequencies, and informativeness of markers and pedigrees. PREINPUT simplifies data submissions to the Centre d'Etude du Polymorphisme Humain (CEPH) data base by creating a file with genotype assignments that CEPH's INPUT program would otherwise require to be input manually. INHERIT is a program written specifically for mapping the X chromosome: by assigning a dummy allele to males, in the nonpseudoautosomal region, it eliminates falsely perceived noninheritances in the data set. The remaining four programs complement the previously published genetic linkage mapping software CRI-MAP and LINKAGE. TWOTABLE produces a more readable format for the output of CRI-MAP two-point calculations; UNMERGE is the converse to CRI-MAP's merge option; and GENLINK and LINKGEN automatically convert between the genotypic data file formats required by these packages. All eight applications read input from the same types of data files that are used by CRI-MAP and LINKAGE. Their use has simplified the management of data, has increased knowledge of the content of information in pedigrees, and has reduced the amount of time needed to construct genetic linkage maps of chromosomes. PMID:1598906

  15. The Cre/loxP system in Giardia lamblia: genetic manipulations in a binucleate tetraploid protozoan.

    PubMed

    Wampfler, Petra B; Faso, Carmen; Hehl, Adrian B

    2014-07-01

    The bacteriophage-derived Cre/loxP system is a valuable tool that has revolutionised genetic and cell biological research in many organisms. We implemented this system in the intestinal parasite Giardia lamblia, an evolutionarily diverged protozoan whose binucleate and tetraploid genome organisation severely limits the application of reverse genetic approaches. We show that Cre-recombinase is functionally expressed in G. lamblia and demonstrate "recycling" of selectable markers. Providing the means for more complex and versatile genetic modifications, this technique massively increases the scope of functional investigations in G. lamblia and other protozoa with similar limitations with respect to genetic manipulation. PMID:24747534

  16. Toward altering milk composition by genetic manipulation: current status and challenges.

    PubMed

    Karatzas, C N; Turner, J D

    1997-09-01

    The implementation of large-scale genome mapping and sequencing has improved the understanding of animal genetics. A large number of gene sequences are now available to serve as regulatory elements or genes of interest. Although the central thrust of this work is focused on understanding disease states, the manipulation of normal metabolic processes is feasible. To date, the genetic manipulation of livestock has been limited to the permanent addition of genes of clinical interest. This study explores the utility of genetically engineered cattle as a means of altering milk composition to improve the functional properties of milk, increasing marketability. Improvements would include increasing the concentration of valuable components in milk (e.g., casein), removing undesirable components (e.g., lactose), or altering composition to resemble that of human milk as a means of improving human neonatal nutrition. The protracted time lines of genetically modifying dairy cattle has prompted the development of animal models. A model for dwarf goats is discussed in terms of circumventing the lengthy time lines involved in generating transgenic cattle and allowing for an accelerated expansion of research in molecular genetics of dairy animals. Thus, the genetic manipulation of dairy cattle is feasible and could have significant impacts on milk quality, attributes of novel dairy products, and human health. PMID:9313168

  17. Attitudes of Prairie Bible College Students toward Human Genetic Manipulation. A Survey and Comparative Study.

    ERIC Educational Resources Information Center

    Jordahl, Ron, Ed.

    This document reports a survey instituted to compare the attitudes of students at a Christian college (Prairie Bible College) in Alberta, Canada with those of college students in general concerning the possible use of genetic manipulation. Comparison was made with the findings of a 1990 study by Geremia Veglia, et al., "Public Attitudes toward…

  18. Abortion and genetic manipulation: breaking with reasoning founded on disrespect for life and human dignity.

    PubMed

    Dijon, X

    1993-01-01

    Scientists often base their claim to the right to carry out experiments with embryos on the freedom of women to have abortions. In this article the attempts made by two French jurists to counter this claim are studied. In my view, their juridical line of reasoning needs to be extended from the ban on genetic manipulation to a ban on abortion. PMID:8377625

  19. Notice of release of Charleston Peak Germplasm: selected class, genetically manipulated track pre-variety germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA-Agricultural Research Service (ARS) announces the release of Charleston Peak Germplasm slender wheatgrass [Elymus trachycaulus (Link) Gould ex Shinners] as a selected class, genetically manipulated track pre-variety germplasm selected directly from collection D-3269. This collection is uni...

  20. Genetic manipulation of a cyanobacterium for heavy metal detoxivication

    SciTech Connect

    McCormick, P.; Cannon, G.; Heinhorst, S.

    1995-12-31

    Increasing heavy metal contamination of soil and water has produced a need for economical and effective methods to reduce toxic buildup of these materials. Biological systems use metallothionein proteins to sequester such metals as Cu, Cd, and Zn. Studies are underway to genetically engineer a cyanobacteria strain with increased ability for metallothionein production and increased sequestration capacity. Cyanobacteria require only sunlight and CO{sub 2}. Vector constructs are being developed in a naturally competent, unicellular cyanobacterium Anacystis nidulans R2. Closed copies of a yeast copper metallothionein gene have been inserted into a cyanobacterial shuttle vector as well as a vector designed for genomic integration. Transformation studies have produced recombinant cyanobacteria from both of these systems, and work is currently underway to assess the organism`s ability to withstand increasing Cu, Cd, and Zn concentrations.

  1. Genetic manipulation of the obligate chemolithoautotrophic bacterium Thiobacillus denitrificans

    SciTech Connect

    Beller, H.R.; Legler, T.C.; Kane, S.R.

    2011-07-15

    Chemolithoautotrophic bacteria can be of industrial and environmental importance, but they present a challenge for systems biology studies, as their central metabolism deviates from that of model organisms and there is a much less extensive experimental basis for their gene annotation than for typical organoheterotrophs. For microbes with sequenced genomes but unconventional metabolism, the ability to create knockout mutations can be a powerful tool for functional genomics and thereby render an organism more amenable to systems biology approaches. In this chapter, we describe a genetic system for Thiobacillus denitrificans, with which insertion mutations can be introduced by homologous recombination and complemented in trans. Insertion mutations are generated by in vitro transposition, the mutated genes are amplified by the PCR, and the amplicons are introduced into T. denitrificans by electroporation. Use of a complementation vector, pTL2, based on the IncP plasmid pRR10 is also addressed.

  2. Idiotypic manipulation in mice: BALB/c mice can express the crossreactive idiotype of A/J mice.

    PubMed Central

    Moser, M; Leo, O; Hiernaux, J; Urbain, J

    1983-01-01

    The response of A/J mice to arsonate-coupled keyhole limpet hemocyanin is characterized by a crossreactive idiotype (CRIA). CRIA+ antibodies are restricted to the Igh-Ic haplotype and are never expressed in BALB/c mice after immunization with antigen. Studies at the DNA level suggest that the gene encoding the CRIA heavy chain in A/J mice is probably absent in the genome of BALB/c mice. Despite this, using the immunization cascade tool, we have been able to induce the expression of CRIA+ antibodies in BALB/c mice. These studies led to an apparent paradox, whose understanding will provide new insights into the regulatory mechanisms of the immune system. We suggest that clones secreting CRIA-like Igs in BALB/c mice are "somatic variants" that could arise from gene conversion events. PMID:6576348

  3. Automating data manipulation for genetic analysis using a data base management system.

    PubMed

    Farrer, L A; Haines, J L; Yount, E A

    1985-01-01

    Inefficient coding and manipulation of pedigree data have often hindered the progress of genetic studies. In this paper we present the methodology for interfacing a data base management system (DBMS) called MEGADATS with a linkage analysis program called LIPED. Two families that segregate a dominant trait and one test marker were used in a simulated exercise to demonstrate how a DBMS can be used to automate tedious clerical steps and improve the efficiency of a genetic analysis. The merits of this approach to data management are discussed. We conclude that a standardized format for genetic analysis programs would greatly facilitate data analysis. PMID:3840122

  4. Genetic manipulations in aquaculture: a review of stock improvement by classical and modern technologies.

    PubMed

    Hulata, G

    2001-01-01

    The aim of this review was to highlight the extent to which the genetic technologies are implemented by the aquaculture industry. The review shows that some of the modern genetic technologies are already extensively applied by the diverse aquaculture industries, though not to the same extent for all important aquacultured species (according to FAO 1998 figures). Some species (common carp, Atlantic salmon, rainbow trout, channel catfish, Nile tilapia, and the Pacific oyster) received concentrated breeding efforts, while other major cultured species (Chinese and Indian carps and the giant tiger shrimp) received, so far, relatively limited attention, and a few species (Yesso scallop, blue mussel, white Amur bream, and milkfish) have, apparently, not been genetically improved at all. Most of the genetically improved strains reaching the aquaculture industry were developed through traditional selective breeding (selection, crossbreeding, and hybridization). Emerging, more modern technologies for genetic manipulation seem to take 10-20 years from being established experimentally until applications affect the industry. Thus, chromosome-set and sex manipulations started to affect the industry during the 1980's and 1990's. DNA marker technology and gene manipulations have yet hardly affected the industry. The former have not matured yet, but hold much promise. The latter could have affected the industry already had it not been restricted by public concern. PMID:11841164

  5. The Past, Present, and Future of Genetic Manipulation in Toxoplasma gondii.

    PubMed

    Wang, Jin-Lei; Huang, Si-Yang; Behnke, Michael S; Chen, Kai; Shen, Bang; Zhu, Xing-Quan

    2016-07-01

    Toxoplasma gondii is a classic model for studying obligate intracellular microorganisms as various genetic manipulation tools have been developed in T. gondii over the past 20 years. Here we summarize the major strategies for T. gondii genetic manipulation including genetic crosses, insertional mutagenesis, chemical mutagenesis, homologous gene replacement, conditional knockdown techniques, and the recently developed clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system. We evaluate the advantages and limitations of each of these tools in a historical perspective. We also discuss additional applications of modified CRISPR-Cas9 systems for use in T. gondii, such as regulation of gene expression, labeling of specific genomic loci, and epigenetic modifications. These approaches have the potential to revolutionize the analysis of T. gondii biology and help us to better develop new drugs and vaccines. PMID:27184069

  6. Alterations of social interaction through genetic and environmental manipulation of the 22q11.2 gene Sept5 in the mouse brain.

    PubMed

    Harper, Kathryn M; Hiramoto, Takeshi; Tanigaki, Kenji; Kang, Gina; Suzuki, Go; Trimble, William; Hiroi, Noboru

    2012-08-01

    Social behavior dysfunction is a symptomatic element of schizophrenia and autism spectrum disorder (ASD). Although altered activities in numerous brain regions are associated with defective social cognition and perception, the causative relationship between these altered activities and social cognition and perception-and their genetic underpinnings-are not known in humans. To address these issues, we took advantage of the link between hemizygous deletion of human chromosome 22q11.2 and high rates of social behavior dysfunction, schizophrenia and ASD. We genetically manipulated Sept5, a 22q11.2 gene, and evaluated its role in social interaction in mice. Sept5 deficiency, against a high degree of homogeneity in a congenic genetic background, selectively impaired active affiliative social interaction in mice. Conversely, virally guided overexpression of Sept5 in the hippocampus or, to a lesser extent, the amygdala elevated levels of active affiliative social interaction in C57BL/6J mice. Congenic knockout mice and mice overexpressing Sept5 in the hippocampus or amygdala were indistinguishable from control mice in novelty and olfactory responses, anxiety or motor activity. Moreover, post-weaning individual housing, an environmental condition designed to reduce stress in male mice, selectively raised levels of Sept5 protein in the amygdala and increased active affiliative social interaction in C57BL/6J mice. These findings identify this 22q11.2 gene in the hippocampus and amygdala as a determinant of social interaction and suggest that defective social interaction seen in 22q11.2-associated schizophrenia and ASD can be genetically and environmentally modified by altering this 22q11.2 gene. PMID:22589251

  7. Genetic Manipulation in Δku80 Strains for Functional Genomic Analysis of Toxoplasma gondii

    PubMed Central

    Rommereim, Leah M.; Hortua Triana, Miryam A.; Falla, Alejandra; Sanders, Kiah L.; Guevara, Rebekah B.; Bzik, David J.; Fox, Barbara A.

    2013-01-01

    Targeted genetic manipulation using homologous recombination is the method of choice for functional genomic analysis to obtain a detailed view of gene function and phenotype(s). The development of mutant strains with targeted gene deletions, targeted mutations, complemented gene function, and/or tagged genes provides powerful strategies to address gene function, particularly if these genetic manipulations can be efficiently targeted to the gene locus of interest using integration mediated by double cross over homologous recombination. Due to very high rates of nonhomologous recombination, functional genomic analysis of Toxoplasma gondii has been previously limited by the absence of efficient methods for targeting gene deletions and gene replacements to specific genetic loci. Recently, we abolished the major pathway of nonhomologous recombination in type I and type II strains of T. gondii by deleting the gene encoding the KU80 protein1,2. The Δku80 strains behave normally during tachyzoite (acute) and bradyzoite (chronic) stages in vitro and in vivo and exhibit essentially a 100% frequency of homologous recombination. The Δku80 strains make functional genomic studies feasible on the single gene as well as on the genome scale1-4. Here, we report methods for using type I and type II Δku80Δhxgprt strains to advance gene targeting approaches in T. gondii. We outline efficient methods for generating gene deletions, gene replacements, and tagged genes by targeted insertion or deletion of the hypoxanthine-xanthine-guanine phosphoribosyltransferase (HXGPRT) selectable marker. The described gene targeting protocol can be used in a variety of ways in Δku80 strains to advance functional analysis of the parasite genome and to develop single strains that carry multiple targeted genetic manipulations. The application of this genetic method and subsequent phenotypic assays will reveal fundamental and unique aspects of the biology of T. gondii and related significant human

  8. Genetic manipulation in Δku80 strains for functional genomic analysis of Toxoplasma gondii.

    PubMed

    Rommereim, Leah M; Hortua Triana, Miryam A; Falla, Alejandra; Sanders, Kiah L; Guevara, Rebekah B; Bzik, David J; Fox, Barbara A

    2013-01-01

    Targeted genetic manipulation using homologous recombination is the method of choice for functional genomic analysis to obtain a detailed view of gene function and phenotype(s). The development of mutant strains with targeted gene deletions, targeted mutations, complemented gene function, and/or tagged genes provides powerful strategies to address gene function, particularly if these genetic manipulations can be efficiently targeted to the gene locus of interest using integration mediated by double cross over homologous recombination. Due to very high rates of nonhomologous recombination, functional genomic analysis of Toxoplasma gondii has been previously limited by the absence of efficient methods for targeting gene deletions and gene replacements to specific genetic loci. Recently, we abolished the major pathway of nonhomologous recombination in type I and type II strains of T. gondii by deleting the gene encoding the KU80 protein(1,2). The Δku80 strains behave normally during tachyzoite (acute) and bradyzoite (chronic) stages in vitro and in vivo and exhibit essentially a 100% frequency of homologous recombination. The Δku80 strains make functional genomic studies feasible on the single gene as well as on the genome scale(1-4). Here, we report methods for using type I and type II Δku80Δhxgprt strains to advance gene targeting approaches in T. gondii. We outline efficient methods for generating gene deletions, gene replacements, and tagged genes by targeted insertion or deletion of the hypoxanthine-xanthine-guanine phosphoribosyltransferase (HXGPRT) selectable marker. The described gene targeting protocol can be used in a variety of ways in Δku80 strains to advance functional analysis of the parasite genome and to develop single strains that carry multiple targeted genetic manipulations. The application of this genetic method and subsequent phenotypic assays will reveal fundamental and unique aspects of the biology of T. gondii and related significant human

  9. Zinc metabolism in genetically obese (ob/ob) mice

    SciTech Connect

    Kennedy, M.L.; Failla, M.L.

    1987-05-01

    Recent reports indicate that the concentrations and total amounts of several essential trace metals in various tissues of genetically obese rodents differ markedly from those in lean controls. In the present studies the absorption, retention and tissue distribution of zinc and constitutive levels of zinc-metallothionein (Zn-MT) in selected tissues were compared in obese (ob/ob) and lean (+/.) C57BL/6J mice. When 5-, 10- and 22-wk-old mice were administered 1.2 mumol /sup 65/Zn by stomach tube the apparent absorption of /sup 65/Zn by obese mice was 1.5, 2.2 and 3.9 times higher, respectively, than that in age-matched lean mice. Retention of orally administered /sup 65/Zn after 96 h was also substantially higher in obese mice than in lean mice. To assess the possible influences of hyperphagia and intestinal hypertrophy on the enhanced apparent absorption of /sup 65/Zn by obese mice food intake by an additional group of obese mice was restricted to that of age-matched lean controls. When actual absorption of zinc was determined according to the method of Heth and Hoekstra, groups of ad libitum--fed obese, pair-fed obese and lean mice absorbed 38, 32 and 18% of administered /sup 65/Zn, respectively. In contrast, the rate of /sup 65/Zn excretion 2-6 d after oral or subcutaneous administration of the metal was similar for obese and lean mice. Unrestricted and pair-fed obese mice had significantly lower percentages of carcass /sup 65/Zn present in skin, muscle plus bone, spleen and testes and higher percentages present in liver, small intestine and adipose tissue than lean mice.

  10. Effects of neonatal oxytocin manipulation on development of social behaviors in mice.

    PubMed

    Mogi, Kazutaka; Ooyama, Rumi; Nagasawa, Miho; Kikusui, Takefumi

    2014-06-22

    The oxytocin (OT) neural system is thought to be involved in the underlying mechanisms that guide the development of social behaviors. In the present study, we examined the effects of neonatal oxytocin manipulation in mice. Within 24 hours after birth, pups in the treatment group randomly received an intraperitoneal injection of OT or OT antagonist (OTA), and those in the control group received a saline injection or handling only. Some of these mice underwent a test that counted the number of isolation-induced ultrasound vocalizations they made on postnatal day 6, and they were further tested for sociability at 8-9 weeks of age and for neuroendocrine stress response to novel environments at 19-20 weeks of age. Another group of mice was tested for alloparental responsiveness at 13-15 weeks of age. The OT injection affected sociability and alloparental responsiveness. In an approach/avoidance test, most of the mice made a social approach to an unfamiliar conspecific of the same sex, but females that had received a neonatal injection of 3 μg of OTA did not show this response. The neonatal OTA treatment appeared to inhibit females' sociability in a dose-dependent fashion. In a retrieving test, females that had received a neonatal injection of 3 μg of OT retrieved significantly more pups than did those that had received 3 μg of OTA, although neither of the treatments caused the females to behave significantly differently from control group females. Meanwhile, a neonatal injection of 3 μg of OTA increased the latency to retrieve pups in males. These results suggested that neonatal OT action may positively regulate alloparental responsiveness in adulthood. Considering that the organizational effects of OT have also been shown in voles and rats, the mechanism by which neonatal OT modifies the development of social behaviors appears to be common to all rodents. PMID:24857720

  11. Genetically engineered mice in understanding the basis of neonatal lung disease.

    PubMed

    Glasser, Stephan W; Nogee, Lawrence M

    2006-12-01

    Advances in genetic engineering have allowed the creation of animals with additional or deleted genes. New genes may be inserted in mice, specific genes inactivated or "knocked out," and more complex animals created in which genes can be turned on or off at different times in development or in different tissues. These animal models allow for more detailed studies of the proteins encoded by the manipulated gene, an improved understanding of the pathophysiology of diseases resulting from the genetic alterations, and model organisms in which to study potential new therapies. Multiple mouse models involving genes important in surfactant production and regulation relevant to lung disease observed in human newborns have been created. This review will discuss the creation of such animals and illustrate their utility in understanding human disease. PMID:17142160

  12. Genetic manipulation of genes and cells in the nervous system of the fruit fly

    PubMed Central

    Venken, Koen J.T.; Simpson, Julie H.; Bellen, Hugo J.

    2011-01-01

    Research in the fruit fly Drosophila melanogaster has lead to insights in neural development, axon guidance, ion channel function, synaptic transmission, learning and memory, diurnal rythmicity, and neural disease that have had broad implications for neuroscience. Drosophila is currently the eukaryotic model organism that permits the most sophisticated in vivo manipulations to address the function of neurons and neuronally expressed genes. Here, we summarize many of the techniques that help assess the role of specific neurons by labeling, removing, or altering their activity. We also survey genetic manipulations to identify and characterize neural genes by mutation, over-expression, and protein labeling. Here, we attempt to acquaint the reader with available options and contexts to apply these methods. PMID:22017985

  13. Genetics of dark skin in mice

    PubMed Central

    Fitch, Karen R.; McGowan, Kelly A.; van Raamsdonk, Catherine D.; Fuchs, Helmut; Lee, Daekee; Puech, Anne; Hérault, Yann; Threadgill, David W.; de Angelis, Martin Hrabé; Barsh, Gregory S.

    2003-01-01

    Chemical mutagenesis in the mouse is a powerful approach for phenotype-driven genetics, but questions remain about the efficiency with which new mutations ascertained by their phenotype can be localized and identified, and that knowledge applied to a specific biological problem. During a global screen for dominant phenotypes in about 30,000 animals, a novel class of pigmentation mutants were identified by dark skin (Dsk). We determined the genetic map location, homozygous phenotype, and histology of 10 new Dsk and 2 new dark coat (Dcc) mutations, and identified mutations in Agouti (Met1Leu, Dcc4), Sox18 (Leu220ter, Dcc1), Keratin 2e (Thr500Pro, Dsk2), and Egfr (Leu863Gln, Dsk5). Cutaneous effects of most Dsk mutations are limited to melanocytes, except for the Keratin 2e and Egfr mutations, in which hyperkeratosis and epidermal thickening precede epidermal melanocytosis by 3–6 wk. The Dsk2 mutation is likely to impair intermediate filament assembly, leading to cytolysis of suprabasal keratinocytes and secondary hyperkeratosis and melanocytosis. The Dsk5 mutation causes increased tyrosine kinase activity and a decrease in steady-state receptor levels in vivo. The Dsk mutations represent genes or map locations not implicated previously in pigmentation, and delineate a developmental pathway in which mutations can be classified on the basis of body region, microscopic site, and timing of pigment accumulation. PMID:12533510

  14. Advanced technologies for genetically manipulating the silkworm Bombyx mori, a model Lepidopteran insect

    PubMed Central

    Xu, Hanfu; O'Brochta, David A.

    2015-01-01

    Genetic technologies based on transposon-mediated transgenesis along with several recently developed genome-editing technologies have become the preferred methods of choice for genetically manipulating many organisms. The silkworm, Bombyx mori, is a Lepidopteran insect of great economic importance because of its use in silk production and because it is a valuable model insect that has greatly enhanced our understanding of the biology of insects, including many agricultural pests. In the past 10 years, great advances have been achieved in the development of genetic technologies in B. mori, including transposon-based technologies that rely on piggyBac-mediated transgenesis and genome-editing technologies that rely on protein- or RNA-guided modification of chromosomes. The successful development and application of these technologies has not only facilitated a better understanding of B. mori and its use as a silk production system, but also provided valuable experiences that have contributed to the development of similar technologies in non-model insects. This review summarizes the technologies currently available for use in B. mori, their application to the study of gene function and their use in genetically modifying B. mori for biotechnology applications. The challenges, solutions and future prospects associated with the development and application of genetic technologies in B. mori are also discussed. PMID:26108630

  15. Antigen binding and capping by lymphocytes of genetic nonresponder mice.

    PubMed

    Dunham, E K; Unanue, E R; Benacerraf, B

    1972-08-01

    Radioautographic study of the binding of GAT-(125)I to spleen cells of genetic responder and nonresponder mice demonstrates that among mice not injected with antigen all strains have approximately the same number of antigen-binding cells; after injection with antigen the number of antigen-binding cells increases in responders but not in nonresponders. Nonresponders are shown to make antibody after injection with GAT complexed with an immunogenic carrier, demonstrating the presence of potentially functional B cells in responders and nonresponders alike. When incubated in the warm, antigen-binding cells of both responders and nonresponders concentrate antigen at one pole of the cell, forming caps. PMID:5043419

  16. Of mice and men: molecular genetics of congenital heart disease.

    PubMed

    Andersen, Troels Askhøj; Troelsen, Karin de Linde Lind; Larsen, Lars Allan

    2014-04-01

    Congenital heart disease (CHD) affects nearly 1 % of the population. It is a complex disease, which may be caused by multiple genetic and environmental factors. Studies in human genetics have led to the identification of more than 50 human genes, involved in isolated CHD or genetic syndromes, where CHD is part of the phenotype. Furthermore, mapping of genomic copy number variants and exome sequencing of CHD patients have led to the identification of a large number of candidate disease genes. Experiments in animal models, particularly in mice, have been used to verify human disease genes and to gain further insight into the molecular pathology behind CHD. The picture emerging from these studies suggest that genetic lesions associated with CHD affect a broad range of cellular signaling components, from ligands and receptors, across down-stream effector molecules to transcription factors and co-factors, including chromatin modifiers. PMID:23934094

  17. Genetic Manipulations Reveal Dynamic Cell and Gene Functions: Cre-ating a New View of Myogenesis

    PubMed Central

    Hutcheson, David A.; Kardon, Gabrielle

    2010-01-01

    Development of multicellular organisms is temporally and spatially complex. The Cre/loxP and Flp/FRT systems for genetic manipulation in mammals now enable researchers to explicitly examine in vivo the temporal and spatial role of cells and genes during development via cell lineage and ablation studies and conditional gene inactivation and activation. Recently we have used these methods to genetically dissect the role of Pax3+ and Pax7+ progenitor populations and the function of β-catenin, an important regulator of myogenesis, in vertebrate limb myogenesis. Our lineage and ablation studies of Pax3+ and Pax7+ progenitors revealed surprising insights into myogenesis not apparent from Pax3 and Pax7 expression and functional studies. In addition, conditional inactivation and activation of β-catenin in different progenitor populations and their progeny demonstrated that β-catenin plays several cell-autonomous roles in myogenesis. Our studies highlight the hierarchical (i.e. genes versus cells), temporal, and spatial complexity of development and demonstrate that manipulations of both cells and genes will be required to obtain a full understanding of the development of multicellular organisms. PMID:19844163

  18. Genetic effects of testicular incorporation of 137Cs in mice.

    PubMed

    Ramaiya, L K; Pomerantseva, M D; Chekhovich, A V; Lyaginskaya, A M; Kuznetsov, A S

    1994-08-01

    A comparative estimation of the frequencies of genetic disorders induced in germ cells of male mice by a single or long-term exposure to incorporated 137Cs or to external gamma-radiation has been carried out. The frequencies of dominant lethal mutations induced by a single exposure were similar with both types of radiation. In stem cell spermatogonia the frequency of reciprocal translocations was significantly lower in the case of single 137Cs administration than upon external gamma-radiation. Upon long-term administration the genetic efficiencies of both types of radiation were similar. PMID:7519738

  19. Human Genetic Disorders and Knockout Mice Deficient in Glycosaminoglycan

    PubMed Central

    2014-01-01

    Glycosaminoglycans (GAGs) are constructed through the stepwise addition of respective monosaccharides by various glycosyltransferases and maturated by epimerases and sulfotransferases. The structural diversity of GAG polysaccharides, including their sulfation patterns and sequential arrangements, is essential for a wide range of biological activities such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Studies using knockout mice of enzymes responsible for the biosynthesis of the GAG side chains of proteoglycans have revealed their physiological functions. Furthermore, mutations in the human genes encoding glycosyltransferases, sulfotransferases, and related enzymes responsible for the biosynthesis of GAGs cause a number of genetic disorders including chondrodysplasia, spondyloepiphyseal dysplasia, and Ehlers-Danlos syndromes. This review focused on the increasing number of glycobiological studies on knockout mice and genetic diseases caused by disturbances in the biosynthetic enzymes for GAGs. PMID:25126564

  20. Hypothalamic CRF immunoreactivity in genetically hypothyroid (hyt/hyt) mice.

    PubMed

    Meserve, L A

    1987-07-01

    The induction of hypothyroidism in young rats by feeding thiouracil to their mothers during pregnancy has been shown to depress hypothalamic content of bioactive and immunoactive corticotropin-releasing factor (CRF). The present study was done to determine whether genetically hypothyroid young mice (hyt/hyt) born to euthyroid mothers (+/hyt) exhibited a similar depression in hypothalamic CRF immunoreactivity. Young euthyroid and hypothyroid littermate mice were examined by radioimmunoassay for hypothalamic CRF content at 15, 20, 25, or 30 days of age. Mean CRF content was depressed insignificantly (to about 80% of normal) by hypothyroidism, at 15-25 days of age. However, after weaning by the mother, 30-day-old hypothyroid pups demonstrated significantly depressed hypothalamic CRF levels (71%). It is suggested that maternal factors may be assisting in the maintenance of hypothalamic CRF until after weaning. Furthermore, genetic hypothyroidism does not appear to have nearly as marked an influence as thiouracil feeding on hypothalamic CRF levels. PMID:3496606

  1. A Binary Genetic Approach to Characterize TRPM5 Cells in Mice.

    PubMed

    Kusumakshi, Soumya; Voigt, Anja; Hübner, Sandra; Hermans-Borgmeyer, Irm; Ortalli, Ana; Pyrski, Martina; Dörr, Janka; Zufall, Frank; Flockerzi, Veit; Meyerhof, Wolfgang; Montmayeur, Jean-Pierre; Boehm, Ulrich

    2015-07-01

    Transient receptor potential channel subfamily M member 5 (TRPM5) is an important downstream signaling component in a subset of taste receptor cells making it a potential target for taste modulation. Interestingly, TRPM5 has been detected in extra-oral tissues; however, the function of extra-gustatory TRPM5-expressing cells is less well understood. To facilitate visualization and manipulation of TRPM5-expressing cells in mice, we generated a Cre knock-in TRPM5 allele by homologous recombination. We then used the novel TRPM5-IRES-Cre mouse strain to report TRPM5 expression by activating a τGFP transgene. To confirm faithful coexpression of τGFP and TRPM5 we generated and validated a new anti-TRPM5 antiserum enabling us to analyze acute TRPM5 protein expression. τGFP cells were found in taste bud cells of the vallate, foliate, and fungiform papillae as well as in the palate. We also detected TRPM5 expression in several other tissues such as in the septal organ of Masera. Interestingly, in the olfactory epithelium of adult mice acute TRPM5 expression was detected in only one (short microvillar cells) of two cell populations previously reported to express TRPM5. The TRPM5-IC mouse strain described here represents a novel genetic tool and will facilitate the study and tissue-specific manipulation of TRPM5-expressing cells in vivo. PMID:25940069

  2. Alleles that modulate late life hearing in genetically heterogeneous mice

    PubMed Central

    Schacht, Jochen; Altschuler, Richard; Burke, David T.; Chen, Shu; Dolan, David; Galecki, Andrzej T.; Kohrman, David; Miller, Richard A.

    2012-01-01

    A genetically heterogeneous population of mice was tested for hearing at 8, 18 and 22 months by auditory brainstem response (ABR), and genotyped at 128 markers to identify loci that modulate late life hearing loss. Half of the test mice were exposed to noise for 2 hr at age 20 months. Polymorphisms affecting hearing at 18 months were noted on chromosomes 2, 3, 7, 10, and 15. Most of these loci had effects only on responses to 48 kHz stimuli, but a subset also influenced the ABR at lower frequencies. Loci on chromosomes 4, 10, 12, and 14 had significant effects on hearing at 22 months in noise-exposed mice, and loci on chromosomes 10 and 11 had effects on mice not exposed to noise. Outer hair cell loss was modulated by polymorphisms on chromosomes 10, 11, 12, 17, and 19. Resistance to age-related hearing loss is thus modulated by a set of genetic effects, some age-specific, some frequency specific, some dependent on prior exposure to noise, and some of which compromise survival of cochlear hair cells. PMID:22305187

  3. A Novel DC Therapy with Manipulation of MKK6 Gene on Nickel Allergy in Mice

    PubMed Central

    Watanabe, Megumi; Ishimaru, Naozumi; Ashrin, Meinar Nur; Arakaki, Rieko; Yamada, Akiko; Ichikawa, Tetsuo; Hayashi, Yoshio

    2011-01-01

    Background Although the activation of dermal dendritic cells (DCs) or Langerhans cells (LCs) via p38 mitogen-activated protein kinase (MAPK) plays a crucial role in the pathogenesis of metal allergy, the in vivo molecular mechanisms have not been identified and a possible therapeutic strategy using the control of dermal DCs or LCs has not been established. In this study, we focused on dermal DCs to define the in vivo mechanisms of metal allergy pathogenesis in a mouse nickel (Ni) allergy model. The effects of DC therapy on Ni allergic responses were also investigated. Methods and Finding The activation of dermal DCs via p38 MAPK triggered a T cell-mediated allergic immune response in this model. In the MAPK signaling cascade in DCs, Ni potently phosphorylated MAP kinase kinase 6 (MKK6) following increased DC activation. Ni-stimulated DCs could prime T cell activation to induce Ni allergy. Interestingly, when MKK6 gene-transfected DCs were transferred into the model mice, a more pronounced allergic reaction was observed. In addition, injection of short interfering (si) RNA targeting the MKK6 gene protected against a hypersensitivity reaction after Ni immunization. The cooperative action between T cell activation and MKK6-mediated DC activation by Ni played an important role in the development of Ni allergy. Conclusions DC activation by Ni played an important role in the development of Ni allergy. Manipulating the MKK6 gene in DCs may be a good therapeutic strategy for dermal Ni allergy. PMID:21544193

  4. Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling.

    PubMed

    Oka, Toru; Xu, Jian; Kaiser, Robert A; Melendez, Jaime; Hambleton, Michael; Sargent, Michelle A; Lorts, Angela; Brunskill, Eric W; Dorn, Gerald W; Conway, Simon J; Aronow, Bruce J; Robbins, Jeffrey; Molkentin, Jeffery D

    2007-08-01

    The cardiac extracellular matrix is a dynamic structural support network that is both influenced by, and a regulator of, pathological remodeling and hypertrophic growth. In response to pathologic insults, the adult heart reexpresses the secreted extracellular matrix protein periostin (Pn). Here we show that Pn is critically involved in regulating the cardiac hypertrophic response, interstitial fibrosis, and ventricular remodeling following long-term pressure overload stimulation and myocardial infarction. Mice lacking the gene encoding Pn (Postn) were more prone to ventricular rupture in the first 10 days after a myocardial infarction, but surviving mice showed less fibrosis and better ventricular performance. Pn(-/-) mice also showed less fibrosis and hypertrophy following long-term pressure overload, suggesting an intimate relationship between Pn and the regulation of cardiac remodeling. In contrast, inducible overexpression of Pn in the heart protected mice from rupture following myocardial infarction and induced spontaneous hypertrophy with aging. With respect to a mechanism underlying these alterations, Pn(-/-) hearts showed an altered molecular program in fibroblast function. Indeed, fibroblasts isolated from Pn(-/-) hearts were less effective in adherence to cardiac myocytes and were characterized by a dramatic alteration in global gene expression (7% of all genes). These are the first genetic data detailing the function of Pn in the adult heart as a regulator of cardiac remodeling and hypertrophy. PMID:17569887

  5. Genetic Manipulation of Brown Fat Via Oral Administration of an Engineered Recombinant Adeno-associated Viral Serotype Vector.

    PubMed

    Huang, Wei; McMurphy, Travis; Liu, Xianglan; Wang, Chuansong; Cao, Lei

    2016-06-01

    Recombinant adeno-associated virus (rAAV) vectors are attractive vehicles for gene therapy. Gene delivery to the adipose tissue using naturally occurring AAV serotypes is less successful compared to liver and muscle. Here, we demonstrate that oral administration of an engineered serotype Rec2 led to preferential transduction of brown fat with absence of transduction in the gastrointestinal track. Among the six natural and engineered serotypes being compared, Rec2 was the most efficient serotype achieving high level transduction at a dose 1~2 orders lower than reported doses for systemic administration. Overexpressing vascular endothelial growth factor (VEGF) in brown fat via oral administration of Rec2-VEGF vector increased the brown fat mass and enhanced thermogenesis. In contrast, knockdown VEGF in brown fat of VEGF (loxP) mice via Rec2-Cre vector hampered cold response and decreased brown fat mass. Oral administration of Rec2 vector provides a novel tool to genetically manipulate brown fat for research and therapeutic applications. PMID:26857843

  6. Genetic background strongly influences the severity of glomerulosclerosis in mice.

    PubMed

    Nishino, Tomohiro; Sasaki, Nobuya; Nagasaki, Ken-Ichi; Ahmad, Zulkifli; Agui, Takashi

    2010-10-01

    The ICGN mouse strain is a glomerulosclerosis (GS) model that shows characteristic proteinuria, podocyte morphological abnormalities and increased extracellular matrix accumulation in the glomeruli, which are the final common pathology associated with a variety of kidney diseases leading to end-stage renal failure. Previously, we performed a quantitative trait locus (QTL) analysis to identify the causative genes for GS in ICGN mice and found the deletion mutation of the tensin2 (Tns2) gene that creates both a premature stop codon and dramatically decreases mRNA expression levels within the region of the major QTL (this mutation was designated Tns2(nep)). The severity of GS varies considerably in humans and other animals, indicating the influence of several genes controlling the disease phenotype. In this study, to identify the modifier/resistant gene(s) for GS, we produced congenic strains carrying the Tns2(nep) mutation on the C57BL/6J (B6) genetic background and analyzed GS severity. Interestingly, the B6 congenic mice exhibited milder phenotypes than the ICGN strain mice. The results suggest that B6 mice have a modifier(s) of GS resistance. Therefore, identification of the modifier loci in B6 mice will provide important new information regarding gene interactions controlling GS. PMID:20484839

  7. Multiple loci affect genetic predisposition to hepatocarcinogenesis in mice

    SciTech Connect

    Manenti, G.; Gariboldi, M.; Canzian, F.

    1994-09-01

    The C3H/He mouse represents a good experimental model of genetic predispositoin to hepatocellular tumor development. We analyzed an interspecific test-cross population of 106 urethane-treated male (C3H/He x Mus spretus) x C57BL/6J mice, typed with 222 genetic markers to locate precisely the hepatocellular tumor susceptibility (Hcs) loci. Three regions, on chromosomes 2, 5, and 19, showed a significant linkage with hepatocellular tumor development, as indicated by different quantitative indexes estimating liver tumor size. Liver tumor frequency was not genetically controlled. These loci are different from three other Hcs loci that we have previously mapped in an F2 progeny of the C3H/He mouse crossed with the resistant laboratory strain A/J. The present result indicates a multigenic model of inheritance for hepatocellular tumor susceptibility.

  8. Modifier Genes and the Plasticity of Genetic Networks in Mice

    PubMed Central

    Hamilton, Bruce A.; Yu, Benjamin D.

    2012-01-01

    Modifier genes are an integral part of the genetic landscape in both humans and experimental organisms, but have been less well explored in mammals than other systems. A growing number of modifier genes in mouse models of disease nonetheless illustrate the potential for novel findings, while new technical advances promise many more to come. Modifier genes in mouse models include induced mutations and spontaneous or wild-derived variations captured in inbred strains. Identification of modifiers among wild-derived variants in particular should detect disease modifiers that have been shaped by selection and might therefore be compatible with high fitness and function. Here we review selected examples and argue that modifier genes derived from natural variation may provide a bias for nodes in genetic networks that have greater intrinsic plasticity and whose therapeutic manipulation may therefore be more resilient to side effects than conventional targets. PMID:22511884

  9. Empathy is moderated by genetic background in mice.

    PubMed

    Chen, QiLiang; Panksepp, Jules B; Lahvis, Garet P

    2009-01-01

    Empathy, as originally defined, refers to an emotional experience that is shared among individuals. When discomfort or alarm is detected in another, a variety of behavioral responses can follow, including greater levels of nurturing, consolation or increased vigilance towards a threat. Moreover, changes in systemic physiology often accompany the recognition of distressed states in others. Employing a mouse model of cue-conditioned fear, we asked whether exposure to conspecific distress influences how a mouse subsequently responds to environmental cues that predict this distress. We found that mice are responsive to environmental cues that predict social distress, that their heart rate changes when distress vocalizations are emitted from conspecifics, and that genetic background substantially influences the magnitude of these responses. Specifically, during a series of pre-exposure sessions, repeated experiences of object mice that were exposed to a tone-shock (CS-UCS) contingency resulted in heart rate deceleration in subjects from the gregarious C57BL/6J (B6) strain, but not in subjects from the less social BALB/cJ (BALB) strain. Following the pre-exposure sessions, subjects were individually presented with the CS-only for 5 consecutive trials followed by 5 consecutive pairings of the CS with the UCS. Pre-exposure to object distress increased the freezing responses of B6 mice, but not BALB mice, on both the CS-only and the CS-UCS trials. These physiological and behavioral responses of B6 mice to social distress parallel features of human empathy. Our paradigm thus has construct and face validity with contemporary views of empathy, and provides unequivocal evidence for a genetic contribution to the expression of empathic behavior. PMID:19209221

  10. Screening and genetic manipulation of green organisms for establishment of biological life support systems in space

    PubMed Central

    Saei, Amir Ata; Omidi, Amir Ali; Barzegari, Abolfazl

    2013-01-01

    Curiosity has driven humankind to explore and conquer space. However, today, space research is not a means to relieve this curiosity anymore, but instead has turned into a need. To support the crew in distant expeditions, supplies should either be delivered from the Earth, or prepared for short durations through physiochemical methods aboard the space station. Thus, research continues to devise reliable regenerative systems. Biological life support systems may be the only answer to human autonomy in outposts beyond Earth. For construction of an artificial extraterrestrial ecosystem, it is necessary to search for highly adaptable super-organisms capable of growth in harsh space environments. Indeed, a number of organisms have been proposed for cultivation in space. Meanwhile, some manipulations can be done to increase their photosynthetic potential and stress tolerance. Genetic manipulation and screening of plants, microalgae and cyanobacteria is currently a fascinating topic in space bioengineering. In this commentary, we will provide a viewpoint on the realities, limitations and promises in designing biological life support system based on engineered and/or selected green organism. Special focus will be devoted to the engineering of key photosynthetic enzymes in pioneer green organisms and their potential use in establishment of transgenic photobioreactors in space. PMID:22992434

  11. Increasing water-use efficiency directly through genetic manipulation of stomatal density.

    PubMed

    Franks, Peter J; W Doheny-Adams, Timothy; Britton-Harper, Zoe J; Gray, Julie E

    2015-07-01

    Improvement in crop water-use efficiency (WUE) is a critical priority for regions facing increased drought or diminished groundwater resources. Despite new tools for the manipulation of stomatal development, the engineering of plants with high WUE remains a challenge. We used Arabidopsis epidermal patterning factor (EPF) mutants exhibiting altered stomatal density to test whether WUE could be improved directly by manipulation of the genes controlling stomatal density. Specifically, we tested whether constitutive overexpression of EPF2 reduced stomatal density and maximum stomatal conductance (gw(max) ) sufficiently to increase WUE. We found that a reduction in gw(max) via reduced stomatal density in EPF2-overexpressing plants (EPF2OE) increased both instantaneous and long-term WUE without altering significantly the photosynthetic capacity. Conversely, plants lacking both EPF1 and EPF2 expression (epf1epf2) exhibited higher stomatal density, higher gw(max) and lower instantaneous WUE, as well as lower (but not significantly so) long-term WUE. Targeted genetic modification of stomatal conductance, such as in EPF2OE, is a viable approach for the engineering of higher WUE in crops, particularly in future high-carbon-dioxide (CO2 ) atmospheres. PMID:25754246

  12. Femtosecond optical transfection as a tool for genetic manipulation of human embryonic stem cells

    NASA Astrophysics Data System (ADS)

    Torres-Mapa, M. L.; Gardner, J.; Bradburn, H.; King, J.; Dholakia, K.; Gunn-Moore, F.

    2013-03-01

    We demonstrate the use of femtosecond optical transfection for the genetic manipulation of human embryonic stem cells. Using a system with an SLM combined with a scanning mirror allows poration of both single-cell and colony-formed human embryonic stem cells in a rapid and targeted manner. In this work, we show successful transfection of plasmid DNA tagged with fluorescent reporters into human embryonic stem cells using three doses of focused femtosecond laser. A significant number of transfected cells retained their undifferentiated morphological feature of large nucleus with high nucleus to cytoplasmic ratio, 48h after photoporation. Furthermore, DNA constructs driven by different types of promoters were also successfully transfected into human embryonic stem cells using this technique.

  13. Trehalase activity in genetically diabetic mice (serum, kidney, and liver).

    PubMed Central

    Baumann, F C; Boizard-Callais, F; Labat-Robert, J

    1981-01-01

    Trehalase activity was determined in serum, liver, and kidney in alloxan treated Swiss mice and in homozygous (Ob/Ob, Db/Db) and heterozygous (Ob/+, Db/m+) diabetic mice. Both alloxan and genetic diabetic mice exhibited a large increase in serum and liver trehalase activity with no change in kidney trehalase activity. The heterozygotes (Ob/+, Db/m+) showed only a slight increase of enzyme activity. Further quantitative differences were noticed between the genetic and alloxan diabetic animals. The liver enzyme activity increased from 10- to more than 20-fold in the liver of the homozygous Ob/Ob and Db/Db strains and only 3-fold (not significant compared to controls) in the alloxan treated animals. The above results suggest a regulatory relationship between the genes coding for trehalase and the enzymes of glucose metabolism activity involved in the development of the metabolic anomalies of diabetes. The structural gene for trehalase may well have survived elimination of selective pressure during phylogenesis and remained part of a co-regulated group of glucose metabolising enzymes. This could explain its sensitivity to mutations affecting glucose metabolism and its sensitivity to insulin directed regulatory mechanisms. PMID:7334500

  14. Altered nociception in mice with genetically induced hypoglutamatergic tone.

    PubMed

    Kayser, V; Viguier, F; Melfort, M; Bourgoin, S; Hamon, M; Masson, J

    2015-05-01

    Extensive pharmacological evidence supports the idea that glutamate plays a key role in both acute and chronic pain. In the present study, we investigated the implication of the excitatory amino acid in physiological nociception by using mutant mice deficient in phosphate-activated glutaminase type 1 (GLS1), the enzyme that synthesizes glutamate in central glutamatergic neurons. Because homozygous GLS1-/- mutants die shortly after birth, assays for assessing mechanical, thermal and chemical (formalin) nociception were performed on heterozygous GLS1+/- mutants, which present a clear-cut decrease in glutamate synthesis in central neurons. As compared to paired wild-type mice, adult male GLS1+/- mutants showed decreased responsiveness to mechanical (von Frey filament and tail-pressure, but not tail-clip, tests) and thermal (Hargreaves' plantar, tail-immersion and hot-plate tests) nociceptive stimuli. Genotype-related differences were also found in the formalin test for which GLS1+/- mice exhibited marked decreases in the nociceptive responses (hindlimb lift, lick and flinch) during both phase 1 (0-5 min) and phase 2 (16-45 min) after formalin injection. On the other hand, acute treatment with memantine (1mg/kg i.p.), an uncompetitive antagonist at NMDA glutamate receptors, reduced nociception responses in wild-type but not GLS1+/- mice. Conversely, antinociceptive response to acute administration of a low dose (1mg/kg s.c.) of morphine was significantly larger in GLS1+/- mutants versus wild-type mice. Our findings indicate that genetically driven hypoactivity of central glutamatergic neurotransmission renders mice hyposensitive to nociceptive stimulations, and promotes morphine antinociception, further emphasizing the critical role of glutamate in physiological nociception and its opioid-mediated control. PMID:25743253

  15. Genetic Analysis of Mice Skin Exposed by Hyper-Gravity

    NASA Astrophysics Data System (ADS)

    Takahashi, Rika; Terada, Masahiro; Seki, Masaya; Higashibata, Akira; Majima, Hideyuki J.; Ohira, Yoshinobu; Mukai, Chiaki; Ishioka, Noriaki

    2013-02-01

    In the space environment, physiological alterations, such as low bone density, muscle weakness and decreased immunity, are caused by microgravity and cosmic radiation. On the other hand, it is known that the leg muscles are hypertrophy by 2G-gravity. An understanding of the effects on human body from microgravity to hyper-gravity is very important. Recently, the Japan Aerospace Exploration Agency (JAXA) has started a project to detect the changes on gene expression and mineral metabolism caused by microgravity by analyzing the hair of astronauts who stay in the international Space Station (ISS) for a long time. From these results of human hair’s research, the genetic effects of human hair roots by microgravity will become clear. However, it is unclear how the gene expression of hair roots was effected by hypergravity. Therefore, in this experiment, we analyzed the effect on mice skin contained hair roots by comparing microgravity or hypergravity exposed mice. The purpose of this experiment is to evaluate the genetic effects on mice skin by microgravity or 2G-gravity. The samples were taken from mice exposed to space flight (FL) or hypergravity environment (2G) for 3-months, respectively. The extracted and amplified RNA from these mice skin was used to DNA microarray analysis. in this experiment, we analyzed the effect of gravity by using mice skin contained hair roots, which exposed space (FL) and hyper-gravity (2G) for 3 months and each control. By DNA microarray analysis, we found the common 98 genes changed in both FL and 2G. Among these 98 genes, the functions and pathways were identified by Gene Ontology (GO) analysis and Ingenuity Pathways Analysis (IPA) software. Next, we focused the one of the identified pathways and compared the effects on each molecules in this pathways by the different environments, such as FL and 2G. As the results, we could detect some interesting molecules, which might be depended on the gravity levels. In addition, to investigate

  16. Leishmania tropica major in mice: vaccination against cutaneous leishmaniasis in mice of high genetic susceptibility.

    PubMed

    Mitchell, G F; Handman, E

    1983-02-01

    BALB/c and BALB/c.H-2b mice are genetically susceptible to development of persistent and severe disease following cutaneous injection of promastigotes of the protozoan parasite, Leishmania tropica major, whereas C57BL/6 are relatively resistant. Resistance in C57BL/6 can be further increased by intraperitoneal injection of living, but not killed, promastigotes prior to cutaneous challenge. Severely diseased BALB/c mice can show resistance to development of a second cutaneous lesion but apparently only in the advanced stages of systemic life-threatening disease. A striking level of resistance to persistent disease has been demonstrated in BALB/c.H-2b mice pre-injected with frozen and thawed L. t. major-infected macrophages of the continuous macrophage cell line IC-21 (H-2b) together with Corynebacterium parvum. No resistance is seen in recipients of either C. parvum or the crude antigen mixture alone. Protection is afforded by intraperitoneal and not subcutaneous injection of crude antigen plus adjuvant. In these vaccination studies all evidence points to the infected macrophage as most appropriate source of 'host-protective' antigens as well as being the most likely target of host-protective immunity. Resistance is expressed in vaccinated mice as minimal signs of cutaneous disease and rapid resolution of any small lesions which do develop. Frozen and thawed promastigotes plus C. parvum will not induce resistance to persistent disease in BALB/c.H-2b mice and preincubation of promastigotes with sera from resistant vaccinated mice does not influence their capacity to cause cutaneous disease. The results provide baseline data for vaccination attempts in genetically susceptible hosts using isolated L. t. major antigens (and, in particular, infected macrophage antigens) and highlight the utility of the intraperitoneal route of injection and the use of the therapeutic biological, C. parvum, as an adjuvant in such studies. PMID:6870673

  17. Methods to Study Metastasis in Genetically Modified Mice.

    PubMed

    Kabeer, Farhia; Beverly, Levi J; Darrasse-Jèze, Guillaume; Podsypanina, Katrina

    2016-02-01

    Metastasis is often modeled by xenotransplantation of cell lines in immunodeficient mice. A wealth of information about tumor cell behavior in the new environment is obtained from these efforts. Yet by design, this approach is "tumor-centric," as it focuses on cell-autonomous determinants of human tumor dissemination in mouse tissues, in effect using the animal body as a sophisticated "Petri dish" providing nutrients and support for tumor growth. Transgenic or gene knockout mouse models of cancer allow the study of tumor spread as a systemic disease and offer a complimentary approach for studying the natural history of cancer. This introduction is aimed at describing the overall methodological approach to studying metastasis in genetically modified mice, with a particular focus on using animals with regulated expression of potent human oncogenes in the breast. PMID:26832689

  18. Genetic Dissection of Learning and Memory in Mice

    PubMed Central

    Mineur, Yann S.; Crusio, Wim E.; Sluyter, Frans

    2004-01-01

    In this minireview, we discuss different strategies to dissect genetically the keystones of learning and memory. First, we broadly sketch the neurogenetic analysis of complex traits in mice. We then discuss two general strategies to find genes affecting learning and memory: candidate gene studies and whole genome searches. Next, we briefly review more recently developed techniques, such as microarrays and RNA interference. In addition, we focus on gene-environment interactions and endophenotypes. All sections are illustrated with examples from the learning and memory field, including a table summarizing the latest information about genes that have been shown to have effects on learning and memory. PMID:15656270

  19. Cell-Specific Cre Strains For Genetic Manipulation in Salivary Glands

    PubMed Central

    Maruyama, Eri O.; Aure, Marit H.; Xie, Xiaoling; Myal, Yvonne; Gan, Lin; Ovitt, Catherine E.

    2016-01-01

    The secretory acinar cells of the salivary gland are essential for saliva secretion, but are also the cell type preferentially lost following radiation treatment for head and neck cancer. The source of replacement acinar cells is currently a matter of debate. There is evidence for the presence of adult stem cells located within specific ductal regions of the salivary glands, but our laboratory recently demonstrated that differentiated acinar cells are maintained without significant stem cell contribution. To enable further investigation of salivary gland cell lineages and their origins, we generated three cell-specific Cre driver mouse strains. For genetic manipulation in acinar cells, an inducible Cre recombinase (Cre-ER) was targeted to the prolactin-induced protein (Pip) gene locus. Targeting of the Dcpp1 gene, encoding demilune cell and parotid protein, labels intercalated duct cells, a putative site of salivary gland stem cells, and serous demilune cells of the sublingual gland. Duct cell-specific Cre expression was attempted by targeting the inducible Cre to the Tcfcp2l1 gene locus. Using the R26Tomato Red reporter mouse, we demonstrate that these strains direct inducible, cell-specific expression. Genetic tracing of acinar cells using PipGCE supports the recent finding that differentiated acinar cells clonally expand. Moreover, tracing of intercalated duct cells expressing DcppGCE confirms evidence of duct cell proliferation, but further analysis is required to establish that renewal of secretory acinar cells is dependent on stem cells within these ducts. PMID:26751783

  20. Tower of Babel: variation in ethical approaches, concepts of welfare and attitudes to genetic manipulation.

    PubMed

    Appleby, M C

    1999-01-01

    Attitudes to animal biotechnology are diverse, partly because people have different viewpoints and often do not recognize or acknowledge this to be so. First, people adopt different ethical approaches. If an opponent of genetic manipulation says 'I don't like the idea of altering animals' biology' and a proponent replies '...but it is useful', they are failing to communicate, because one is asking whether the action is right or wrong, whereas the other emphasizes the consequences. Another approach focuses on the person carrying out the action. Many people have hybrid views combining elements of these different approaches. Second, people's concepts of welfare vary, emphasizing animal minds, bodies or natures--or a combination of these. A proponent who argues that a particular genetic change will not cause suffering is unlikely to reassure an opponent who puts more emphasis on naturalness than on feelings or health. An improved dialogue, in which people attempt to understand one another's viewpoints, may enable common principles to be established and practical measures to be taken that enable more cooperation in attempts to improve both human and animal welfare. PMID:11933932

  1. Hippocampal place cell responses to distal and proximal cue manipulations in dopamine D2 receptor-knockout mice.

    PubMed

    Nguyen, Chien Le; Tran, Anh Hai; Matsumoto, Jumpei; Hori, Etsuro; Uwano, Teruko; Ono, Taketoshi; Nishijo, Hisao

    2014-06-01

    The human hippocampus is critical for learning and memory. In rodents, hippocampal pyramidal neurons fire in a location-specific manner and form relational representations of environmental cues. The important roles of dopaminergic D1 receptors in learning and in hippocampal neural synaptic plasticity in novel environments have been previously shown. However, the roles of D2 receptors in hippocampal neural plasticity in response to novel and familiar spatial stimuli remain unclear. In order to clarify this issue, we recorded from hippocampal neurons in dopamine D2 receptor-knockout (D2R-KO) mice and their wild-type (WT) littermates during manipulations of distinct spatial cues in familiar and novel environments. Here, we report that D2R-KO mice showed substantial deficits in place-cell properties (number of place cells, intra-field firing rates, spatial tuning, and spatial coherence). Furthermore, although place cells in D2R-KO mice responded to manipulations of distal and proximal cues in both familiar and novel environments in a manner that was similar to place cells in WT mice, place fields were less stable in the D . The axes represent the differences between the peak and the valley of each waveform of EL2 and EL3.2R-KO mice in the familiar environment, but not in the novel environment. The present results suggested that D2 receptors in the hippocampus are important for place response stability. The place-cell properties of D2R-KO mice were similar to aged animals, suggesting that the alterations of place-cell properties in aged animals might be ascribed partly to alterations in the D2R in the HF of aged animals. PMID:24747614

  2. The Genetic Basis of Baculum Size and Shape Variation in Mice.

    PubMed

    Schultz, Nicholas G; Ingels, Jesse; Hillhouse, Andrew; Wardwell, Keegan; Chang, Peter L; Cheverud, James M; Lutz, Cathleen; Lu, Lu; Williams, Robert W; Dean, Matthew D

    2016-01-01

    The rapid divergence of male genitalia is a preeminent evolutionary pattern. This rapid divergence is especially striking in the baculum, a bone that occurs in the penis of many mammalian species. Closely related species often display diverse baculum morphology where no other morphological differences can be discerned. While this fundamental pattern of evolution has been appreciated at the level of gross morphology, nearly nothing is known about the genetic basis of size and shape divergence. Quantifying the genetic basis of baculum size and shape variation has been difficult because these structures generally lack obvious landmarks, so comparing them in three dimensions is not straightforward. Here, we develop a novel morphometric approach to quantify size and shape variation from three-dimensional micro-CT scans taken from 369 bacula, representing 75 distinct strains of the BXD family of mice. We identify two quantitative trait loci (QTL) that explain ∼50% of the variance in baculum size, and a third QTL that explains more than 20% of the variance in shape. Together, our study demonstrates that baculum morphology may diverge relatively easily, with mutations at a few loci of large effect that independently modulate size and shape. Based on a combination of bioinformatic investigations and new data on RNA expression, we prioritized these QTL to 16 candidate genes, which have hypothesized roles in bone morphogenesis and may enable future genetic manipulation of baculum morphology. PMID:26935419

  3. The Genetic Basis of Baculum Size and Shape Variation in Mice

    PubMed Central

    Schultz, Nicholas G.; Ingels, Jesse; Hillhouse, Andrew; Wardwell, Keegan; Chang, Peter L.; Cheverud, James M.; Lutz, Cathleen; Lu, Lu; Williams, Robert W.; Dean, Matthew D.

    2016-01-01

    The rapid divergence of male genitalia is a preeminent evolutionary pattern. This rapid divergence is especially striking in the baculum, a bone that occurs in the penis of many mammalian species. Closely related species often display diverse baculum morphology where no other morphological differences can be discerned. While this fundamental pattern of evolution has been appreciated at the level of gross morphology, nearly nothing is known about the genetic basis of size and shape divergence. Quantifying the genetic basis of baculum size and shape variation has been difficult because these structures generally lack obvious landmarks, so comparing them in three dimensions is not straightforward. Here, we develop a novel morphometric approach to quantify size and shape variation from three-dimensional micro-CT scans taken from 369 bacula, representing 75 distinct strains of the BXD family of mice. We identify two quantitative trait loci (QTL) that explain ∼50% of the variance in baculum size, and a third QTL that explains more than 20% of the variance in shape. Together, our study demonstrates that baculum morphology may diverge relatively easily, with mutations at a few loci of large effect that independently modulate size and shape. Based on a combination of bioinformatic investigations and new data on RNA expression, we prioritized these QTL to 16 candidate genes, which have hypothesized roles in bone morphogenesis and may enable future genetic manipulation of baculum morphology. PMID:26935419

  4. Genetic Dissection of Behavioral Flexibility: Reversal Learning in Mice

    PubMed Central

    Laughlin, Rick E.; Grant, Tara L.; Williams, Robert W.; Jentsch, J. David

    2011-01-01

    Background Behavioral inflexibility is a feature of schizophrenia, attention deficit-hyperactivity disorder, and behavior addictions that likely results from heritable deficits in the inhibitory control over behavior. Here, we investigate the genetic basis of individual differences in flexibility, measured using an operant reversal learning task. Methods We quantified discrimination acquisition and subsequent reversal learning in a cohort of 51 BXD strains of mice (2–5 mice/strain, N = 176) for which we have matched data on sequence, gene expression in key CNS regions, and neuroreceptor levels. Results Strain variation in trials to criterion on acquisition and reversal was high, with moderate heritability (~0.3). Acquisition and reversal learning phenotypes did not covary at the strain level, suggesting that these traits are effectively under independent genetic control. Reversal performance did covary with dopamine D2 receptor levels in the ventral midbrain, consistent with a similar observed relationship between impulsivity and D2 receptors in humans. Reversal, but not acquisition, is linked to a locus on mouse chromosome 10 with a peak LRS at 86.2Mb (p <.05 genome-wide). Variance in mRNA levels of select transcripts expressed in neocortex, hippocampus, and striatum correlated with the reversal learning phenotype, including Syn3, Nt5dc3 and Hcfc2. Conclusions This work demonstrates the clear trait independence between, and genetic control of, discrimination acquisition and reversal and illustrates how globally coherent data sets for a single panel of highly-related strains can be interrogated and integrated to uncover genetic sources and molecular and neuropharmacological candidates of complex behavioral traits relevant to human psychopathology. PMID:21392734

  5. How Different Genetically Manipulated Brassica Genotypes Affect Life Table Parameters of Plutella xylostella (Lepidoptera: Plutellidae).

    PubMed

    Nikooei, Mehrnoosh; Fathipour, Yaghoub; Jalali Javaran, Mokhtar; Soufbaf, Mahmoud

    2015-04-01

    The fitness of Plutella xylostella L. on different genetically manipulated Brassica plants, including canola's progenitor (Brassica rapa L.), two cultivated canola cultivars (Opera and RGS003), one hybrid (Hyula401), one gamma-ray mutant-RGS003, and one transgenic (PF) genotype was compared using two-sex and female-based life table parameters. All experiments were conducted in a growth chamber at 25±1°C, 65±5% relative humidity, and a photoperiod of 16:8 (L:D) h. There were significant differences in duration of different life stages of P. xylostella on different plant genotypes. The shortest (13.92 d) and longest (24.61 d) total developmental time were on Opera and PF, respectively. The intrinsic rate of increase of P. xylostella ranged between 0.236 (Opera) and 0.071 day(-1) (PF). The highest (60.79 offspring) and lowest (7.88 offspring) net reproductive rates were observed on Opera and PF, respectively. Comparison of intrinsic rate of increase, net reproductive rates, finite rate of increase, mean generation time, fecundity, and survivorship of P. xylostella on the plant genotypes suggested that this pest performed well on cultivars (RGS003 and Opera) and performed poorly on the other manipulated genotypes especially on mutant-RGS003 and PF. Glucosinolate levels were significantly higher in damaged plants than undamaged ones and the lowest and highest concentrations of glucosinolates were found in transgenic genotype and canola's progenitor, respectively. Interestingly, our results showed that performance and fitness of this pest was better on canola's progenitor and cultivated plants, which had high levels of glucosinolate. PMID:26470162

  6. Genetic Signature of Histiocytic Sarcoma Revealed by a Sleeping Beauty Transposon Genetic Screen in Mice

    PubMed Central

    Been, Raha A.; Linden, Michael A.; Hager, Courtney J.; DeCoursin, Krista J.; Abrahante, Juan E.; Landman, Sean R.; Steinbach, Michael; Sarver, Aaron L.; Largaespada, David A.; Starr, Timothy K.

    2014-01-01

    Histiocytic sarcoma is a rare, aggressive neoplasm that responds poorly to therapy. Histiocytic sarcoma is thought to arise from macrophage precursor cells via genetic changes that are largely undefined. To improve our understanding of the etiology of histiocytic sarcoma we conducted a forward genetic screen in mice using the Sleeping Beauty transposon as a mutagen to identify genetic drivers of histiocytic sarcoma. Sleeping Beauty mutagenesis was targeted to myeloid lineage cells using the Lysozyme2 promoter. Mice with activated Sleeping Beauty mutagenesis had significantly shortened lifespan and the majority of these mice developed tumors resembling human histiocytic sarcoma. Analysis of transposon insertions identified 27 common insertion sites containing 28 candidate cancer genes. Several of these genes are known drivers of hematological neoplasms, like Raf1, Fli1, and Mitf, while others are well-known cancer genes, including Nf1, Myc, Jak2, and Pten. Importantly, several new potential drivers of histiocytic sarcoma were identified and could serve as targets for therapy for histiocytic sarcoma patients. PMID:24827933

  7. Targeted genetic manipulations of neuronal subtypes using promoter-specific combinatorial AAVs in wild-type animals

    PubMed Central

    Gompf, Heinrich S.; Budygin, Evgeny A.; Fuller, Patrick M.; Bass, Caroline E.

    2015-01-01

    Techniques to genetically manipulate the activity of defined neuronal subpopulations have been useful in elucidating function, however applicability to translational research beyond transgenic mice is limited. Subtype targeted transgene expression can be achieved using specific promoters, but often currently available promoters are either too large to package into many vectors, in particular adeno-associated virus (AAV), or do not drive expression at levels sufficient to alter behavior. To permit neuron subtype specific gene expression in wildtype animals, we developed a combinatorial AAV targeting system that drives, in combination, subtype specific Cre-recombinase expression with a strong but non-specific Cre-conditional transgene. Using this system we demonstrate that the tyrosine hydroxylase promoter (TH-Cre-AAV) restricted expression of channelrhodopsin-2 (EF1α-DIO-ChR2-EYFP-AAV) to the rat ventral tegmental area (VTA), or an activating DREADD (hSyn-DIO-hM3Dq-mCherry-AAV) to  the  rat  locus  coeruleus  (LC). High expression levels were achieved in both regions. Immunohistochemistry (IHC) showed the majority of ChR2+ neurons (>93%) colocalized with TH in the VTA, and optical stimulation evoked striatal dopamine release. Activation of TH neurons in the LC produced sustained EEG and behavioral arousal. TH-specific hM3Dq expression in the LC was further compared with: (1) a Cre construct driven by a strong but non-specific promoter (non-targeting); and (2) a retrogradely-transported WGA-Cre delivery mechanism (targeting a specific projection). IHC revealed that the area of c-fos activation after CNO treatment in the LC and peri-LC neurons appeared proportional to the resulting increase in wakefulness (non-targeted > targeted > ACC to LC projection restricted). Our dual AAV targeting system effectively overcomes the large size and weak activity barrier prevalent with many subtype specific promoters by functionally separating subtype specificity from

  8. Genetic determinants of dengue type 4 virus neurovirulence for mice.

    PubMed Central

    Kawano, H; Rostapshov, V; Rosen, L; Lai, C J

    1993-01-01

    Mouse-adapted dengue type 4 virus (DEN4) strain H241 is highly neurovirulent for mice, whereas its non-mouse-adapted parent is rarely neurovirulent. The genetic basis for the neurovirulence of the mouse-adapted mutant was studied by comparing intratypic chimeric viruses that contained the three structural protein genes from the parental virus or the neurovirulent mutant in the background sequence of nonneurovirulent DEN4 strain 814669. The chimera that contained the three structural protein genes from mouse neurovirulent DEN4 strain H241 proved to be highly neurovirulent in mice, whereas the chimera that contained the corresponding genes from its non-mouse-adapted parent was not neurovirulent. This finding indicates that most of the genetic loci for the neurovirulence of the DEN4 mutant lie within the structural protein genes. A comparison of the amino acid sequences of the parent and its mouse neurovirulent mutant proteins revealed that there were only five amino acid differences in the structural protein region, and three of these were located in the envelope (E) glycoprotein. Analysis of chimeras which contained one or two of the variant amino acids of the mutant E sequence substituting for the corresponding sequence of the parental virus identified two of these amino acid changes as important determinants of mouse neurovirulence. First, the single substitution of Ile for Thr-155 which ablated one of the two conserved glycosylation sites in parental E yielded a virus that was almost as neurovirulent as the mouse-adapted mutant. Thus, the loss of an E glycosylation site appears to play a role in DEN4 neurovirulence. Second, the substitution of Leu for Phe-401 also yielded a neurovirulent virus, but it was less neurovirulent than the glycosylation mutant. These findings indicate that at least two of the genetic loci responsible for DEN4 mouse neurovirulence map within the structural protein genes. Images PMID:8411360

  9. pyrF as a Counterselectable Marker for Unmarked Genetic Manipulations in Treponema denticola

    PubMed Central

    Kurniyati, Kurni

    2015-01-01

    The pathophysiology of Treponema denticola, an oral pathogen associated with both periodontal and endodontic infections, is poorly understood due to its fastidious growth and recalcitrance to genetic manipulations. Counterselectable markers are instrumental in constructing clean and unmarked mutations in bacteria. Here, we demonstrate that pyrF, a gene encoding orotidine-5′-monophosphate decarboxylase, can be used as a counterselectable marker in T. denticola to construct marker-free mutants. T. denticola is susceptible to 5-fluoroorotic acid (5-FOA). To establish a pyrF-based counterselectable knockout system in T. denticola, the pyrF gene was deleted. The deletion conferred resistance to 5-FOA in T. denticola. Next, a single-crossover mutant was constructed by reintroducing pyrF along with a gentamicin resistance gene (aacC1) back into the chromosome of the pyrF mutant at the locus of choice. In this study, we chose flgE, a flagellar hook gene that is located within a large polycistronic motility gene operon, as our target gene. The obtained single-crossover mutant (named FlgEin) regained the susceptibility to 5-FOA. Finally, FlgEin was plated on solid agar containing 5-FOA. Numerous colonies of the 5-FOA-resistant mutant (named FlgEout) were obtained and characterized by PCR and Southern blotting analyses. The results showed that the flgE gene was deleted and FlgEout was free of selection markers (i.e., pyrF and aacC1). Compared to previously constructed flgE mutants that contain an antibiotic selection marker, the deletion of flgE in FlgEout has no polar effect on its downstream gene expression. The system developed here will provide us with a new tool for investigating the genetics and pathogenicity of T. denticola. PMID:26682856

  10. COMPETITIVE ABILITY IN MALE HOUSE MICE (Mus musculus): GENETIC INFLUENCES

    PubMed Central

    Cunningham, Christopher B.; Ruff, James S.; Chase, Kevin; Potts, Wayne K.; Carrier, David R.

    2013-01-01

    Conspecifics of many animal species physically compete to gain reproductive resources and thus fitness. Despite the importance of competitive ability across the animal kingdom, specific traits that influence or underpin competitive ability are poorly characterized. Here, we investigate whether there are genetic influences on competitive ability within male house mice. Additionally, we examined if litter demographics (litter size and litter sex ratio) influence competitive ability. We phenotyped two generations for a male s ability to possess a reproductive resource--a prime nesting site--using semi-natural enclosures with mixed sex groupings. We used the animal model coupled with an extensive pedigree to estimate several genetic parameters. Competitive ability was found to be highly heritable, but only displayed a moderate genetic correlation to body mass. Interestingly, litter sex ratio had a weak negative influence on competitive ability. Litter size had no significant influence on competitive ability. Our study also highlights how much remians unknown about the proximal causes of competitive ability. PMID:23291957

  11. Resistance to Tellurite as a Selection Marker for Genetic Manipulations of Pseudomonas Strains

    PubMed Central

    Sanchez-Romero, Juan M.; Diaz-Orejas, Ramon; De Lorenzo, Victor

    1998-01-01

    Resistance to the toxic compound potassium tellurite (Telr) has been employed as a selection marker built into a set of transposon vectors and broad-host-range plasmids tailored for genetic manipulations of Pseudomonas strains potentially destined for environmental release. In this study, the activated Telr determinants encoded by the cryptic telAB genes of plasmid RK2 were produced, along with the associated kilA gene, as DNA cassettes compatible with cognate vectors. In one case, the Telr determinants were assembled between the I and O ends of a suicide delivery vector for mini-Tn5 transposons. In another case, the kilA and telAB genes were combined with a minimal replicon derived from a variant of Pseudomonas plasmid pPS10, which is able to replicate in a variety of gram-negative hosts and is endowed with a modular collection of cloning and expression assets. Either in the plasmid or in the transposon vector, the Telr marker was combined with a 12-kb DNA segment of plasmid pWW0 of Pseudomonas putida mt-2 encoding the upper TOL pathway enzymes. This allowed construction of antibiotic resistance-free but selectable P. putida strains with the ability to grow on toluene as the sole carbon source through an ortho-cleavage catabolic pathway. PMID:9758838

  12. OptForce: An Optimization Procedure for Identifying All Genetic Manipulations Leading to Targeted Overproductions

    PubMed Central

    Ranganathan, Sridhar; Suthers, Patrick F.; Maranas, Costas D.

    2010-01-01

    Computational procedures for predicting metabolic interventions leading to the overproduction of biochemicals in microbial strains are widely in use. However, these methods rely on surrogate biological objectives (e.g., maximize growth rate or minimize metabolic adjustments) and do not make use of flux measurements often available for the wild-type strain. In this work, we introduce the OptForce procedure that identifies all possible engineering interventions by classifying reactions in the metabolic model depending upon whether their flux values must increase, decrease or become equal to zero to meet a pre-specified overproduction target. We hierarchically apply this classification rule for pairs, triples, quadruples, etc. of reactions. This leads to the identification of a sufficient and non-redundant set of fluxes that must change (i.e., MUST set) to meet a pre-specified overproduction target. Starting with this set we subsequently extract a minimal set of fluxes that must actively be forced through genetic manipulations (i.e., FORCE set) to ensure that all fluxes in the network are consistent with the overproduction objective. We demonstrate our OptForce framework for succinate production in Escherichia coli using the most recent in silico E. coli model, iAF1260. The method not only recapitulates existing engineering strategies but also reveals non-intuitive ones that boost succinate production by performing coordinated changes on pathways distant from the last steps of succinate synthesis. PMID:20419153

  13. Genetic manipulation of cardiac Hsp72 levels does not alter substrate metabolism but reveals insights into high-fat feeding-induced cardiac insulin resistance.

    PubMed

    Henstridge, Darren C; Estevez, E; Allen, T L; Heywood, S E; Gardner, T; Yang, C; Mellett, N A; Kingwell, B A; Meikle, P J; Febbraio, M A

    2015-05-01

    Heat shock protein 72 (Hsp72) protects cells against a variety of stressors, and multiple studies have suggested that Hsp72 plays a cardioprotective role. As skeletal muscle Hsp72 overexpression can protect against high-fat diet (HFD)-induced insulin resistance, alterations in substrate metabolism may be a mechanism by which Hsp72 is cardioprotective. We investigated the impact of transgenically overexpressing (Hsp72 Tg) or deleting Hsp72 (Hsp72 KO) on various aspects of cardiac metabolism. Mice were fed a normal chow (NC) or HFD for 12 weeks from 8 weeks of age to examine the impact of diet-induced obesity on metabolic parameters in the heart. The HFD resulted in an increase in cardiac fatty acid oxidation and a decrease in cardiac glucose oxidation and insulin-stimulated cardiac glucose clearance; however, there was no difference in Hsp72 Tg or Hsp72 KO mice in these rates compared with their respective wild-type control mice. Although HFD-induced cardiac insulin resistance was not rescued in the Hsp72 Tg mice, it was preserved in the skeletal muscle, suggesting tissue-specific effects of Hsp72 overexpression on substrate metabolism. Comparison of two different strains of mice (BALB/c vs. C57BL/6J) also identified strain-specific differences in regard to HFD-induced cardiac lipid accumulation and insulin resistance. These strain differences suggest that cardiac lipid accumulation can be dissociated from cardiac insulin resistance. Our study finds that genetic manipulation of Hsp72 does not lead to alterations in metabolic processes in cardiac tissue under resting conditions, but identifies mouse strain-specific differences in cardiac lipid accumulation and insulin-stimulated glucose clearance. PMID:25618331

  14. Genetically altered mice for evaluation of mode-of-action (MOA)

    EPA Science Inventory

    Genetically altered mice for evaluation of mode-of-action (MOA). Barbara D. Abbott, Cynthia J. Wolf, Kaberi P. Das, Christopher S. Lau. (Presented by B. Abbott). This presentation provides an example of the use of genetically modified mice to determine the mode-of-action of r...

  15. 3-Dimensional Imaging Modalities for Phenotyping Genetically Engineered Mice

    PubMed Central

    Powell, K. A.; Wilson, D.

    2013-01-01

    A variety of 3-dimensional (3D) digital imaging modalities are available for whole-body assessment of genetically engineered mice: magnetic resonance microscopy (MRM), X-ray microcomputed tomography (microCT), optical projection tomography (OPT), episcopic and cryoimaging, and ultrasound biomicroscopy (UBM). Embryo and adult mouse phenotyping can be accomplished at microscopy or near microscopy spatial resolutions using these modalities. MRM and microCT are particularly well-suited for evaluating structural information at the organ level, whereas episcopic and OPT imaging provide structural and functional information from molecular fluorescence imaging at the cellular level. UBM can be used to monitor embryonic development longitudinally in utero. Specimens are not significantly altered during preparation, and structures can be viewed in their native orientations. Technologies for rapid automated data acquisition and high-throughput phenotyping have been developed and continually improve as this exciting field evolves. PMID:22146851

  16. Fetal radiation exposure induces testicular cancer in genetically susceptible mice.

    PubMed

    Shetty, Gunapala; Comish, Paul B; Weng, Connie C Y; Matin, Angabin; Meistrich, Marvin L

    2012-01-01

    The prevalence of testicular germ cell tumors (TGCT), a common solid tissue malignancy in young men, has been annually increasing at an alarming rate of 3%. Since the majority of testicular cancers are derived from germ cells at the stage of transformation of primordial germ cell (PGC) into gonocytes, the increase has been attributed to maternal/fetal exposures to environmental factors. We examined the effects of an estrogen (diethylstilbestrol, DES), an antiandrogen (flutamide), or radiation on the incidence of testicular germ cell tumors in genetically predisposed 129.MOLF-L1 (L1) congenic mice by exposing them to these agents on days 10.5 and 11.5 of pregnancy. Neither flutamide nor DES produced noticeable increases in testis cancer incidence at 4 weeks of age. In contrast, two doses of 0.8-Gy radiation increased the incidence of TGCT from 45% to 100% in the offspring. The percentage of mice with bilateral tumors, weights of testes with TGCT, and the percentage of tumors that were clearly teratomas were higher in the irradiated mice than in controls, indicating that irradiation induced more aggressive tumors and/or more foci of initiation sites in each testis. This radiation dose did not disrupt spermatogenesis, which was qualitatively normal in tumor-free testes although they were reduced in size. This is the first proof of induction of testicular cancer by an environmental agent and suggests that the male fetus of women exposed to radiation at about 5-6 weeks of pregnancy might have an increased risk of developing testicular cancer. Furthermore, it provides a novel tool for studying the molecular and cellular events of testicular cancer pathogenesis. PMID:22348147

  17. Fetal Radiation Exposure Induces Testicular Cancer in Genetically Susceptible Mice

    PubMed Central

    Shetty, Gunapala; Comish, Paul B.; Weng, Connie C. Y.; Matin, Angabin; Meistrich, Marvin L.

    2012-01-01

    The prevalence of testicular germ cell tumors (TGCT), a common solid tissue malignancy in young men, has been annually increasing at an alarming rate of 3%. Since the majority of testicular cancers are derived from germ cells at the stage of transformation of primordial germ cell (PGC) into gonocytes, the increase has been attributed to maternal/fetal exposures to environmental factors. We examined the effects of an estrogen (diethylstilbestrol, DES), an antiandrogen (flutamide), or radiation on the incidence of testicular germ cell tumors in genetically predisposed 129.MOLF-L1 (L1) congenic mice by exposing them to these agents on days 10.5 and 11.5 of pregnancy. Neither flutamide nor DES produced noticeable increases in testis cancer incidence at 4 weeks of age. In contrast, two doses of 0.8-Gy radiation increased the incidence of TGCT from 45% to 100% in the offspring. The percentage of mice with bilateral tumors, weights of testes with TGCT, and the percentage of tumors that were clearly teratomas were higher in the irradiated mice than in controls, indicating that irradiation induced more aggressive tumors and/or more foci of initiation sites in each testis. This radiation dose did not disrupt spermatogenesis, which was qualitatively normal in tumor-free testes although they were reduced in size. This is the first proof of induction of testicular cancer by an environmental agent and suggests that the male fetus of women exposed to radiation at about 5–6 weeks of pregnancy might have an increased risk of developing testicular cancer. Furthermore, it provides a novel tool for studying the molecular and cellular events of testicular cancer pathogenesis. PMID:22348147

  18. Reversible suppression of glutamatergic neurotransmission of cerebellar granule cells in vivo by genetically manipulated expression of tetanus neurotoxin light chain.

    PubMed

    Yamamoto, Mutsuya; Wada, Norio; Kitabatake, Yasuji; Watanabe, Dai; Anzai, Masayuki; Yokoyama, Minesuke; Teranishi, Yutaka; Nakanishi, Shigetada

    2003-07-30

    We developed a novel technique that allowed reversible suppression of glutamatergic neurotransmission in the cerebellar network. We generated two lines of transgenic mice termed Tet and TeNT mice and crossed the two transgenic lines to produce the Tet/TeNT double transgenic mice. In the Tet mice, the tetracycline-controlled reverse activator (rtTA) was expressed selectively in cerebellar granule cells by the promoter function of the GABA(A) receptor alpha6 subunit gene. In the TeNT mice, the fusion gene of tetanus neurotoxin light chain (TeNT) and enhanced green fluorescent protein (EGFP) was designed to be induced by the interaction of doxycycline (DOX)-activated rtTA with the tetracycline-responsive promoter. The Tet/TeNT mice grew normally even after DOX treatment and exhibited a restricted DOX-dependent expression of TeNT in cerebellar granule cells. Along with this expression, TeNT proteolytically cleaved the synaptic vesicle protein VAMP2 (also termed synaptobrevin2) and reduced glutamate release from granule cells. Both cleavage of VAMP2/synaptobrevin2 and reduction of glutamate release were reversed by removal of DOX. Among the four genotypes generated by heterozygous crossing of Tet and TeNT mice, only Tet/TeNT mice showed DOX-dependent reversible motor impairments as analyzed with fixed bar and rota-rod tests. Reversible suppression of glutamatergic neurotransmission thus can be manipulated with spatiotemporal accuracy by DOX treatment and removal. These transgenic mice will serve as an animal model to study the cerebellar function in motor coordination and learning. PMID:12890769

  19. Behavioural and physiological responses of wood mice (Apodemus sylvaticus) to experimental manipulations of predation and starvation risk.

    PubMed

    Monarca, Rita I; Mathias, Maria da Luz; Speakman, John R

    2015-10-01

    Body weight and the levels of stored body fat have fitness consequences. Greater levels of fat may provide protection against catastrophic failures in the food supply, but they may also increase the risk of predation. Animals may therefore regulate their fatness according to their perceived risks of predation and starvation: the starvation-predation trade-off model. We tested the predictions of this model in wood mice (Apodemus sylvaticus) by experimentally manipulating predation risk and starvation risk. We predicted that under increased predation risk individuals would lose weight and under increased starvation risk they would gain it. We simulated increased predation risk by playing the calls made by predatory birds (owls: Tyto alba and Bubo bubo) to the mice. Control groups included exposure to calls of a non-predatory bird (blackbird: Turdus merula) or silence. Mice exposed to owl calls at night lost weight relative to the silence group, mediated via reduced food intake, but exposure to owl calls in the day had no significant effect. Exposure to blackbird calls at night also resulted in weight loss, but blackbird calls in the day had no effect. Mice seemed to have a generalised response to bird calls at night irrespective of their actual source. This could be because in the wild any bird calling at night will be a predation risk, and any bird calling in the day would not be, because at that time the mice would normally be resting, and hence not exposed to avian predators. Consequently, mice have not evolved to distinguish different types of call but only to respond to the time of day that they occur. Mice exposed to stochastic 24h starvation events altered their behaviour (reduced activity) during the refeeding days that followed the deprivation periods to regain the lost mass. However, they only marginally elevated their food intake and consequently had reduced body weight/fat storage compared to that of the control unstarved group. This response may have

  20. Genetic Manipulation of Cerebellar Granule Neurons In Vitro and In Vivo to Study Neuronal Morphology and Migration

    PubMed Central

    Holubowska, Anna; Mukherjee, Chaitali; Vadhvani, Mayur; Stegmüller, Judith

    2014-01-01

    Developmental events in the brain including neuronal morphogenesis and migration are highly orchestrated processes. In vitro and in vivo analyses allow for an in-depth characterization to identify pathways involved in these events. Cerebellar granule neurons (CGNs) that are derived from the developing cerebellum are an ideal model system that allows for morphological analyses. Here, we describe a method of how to genetically manipulate CGNs and how to study axono- and dendritogenesis of individual neurons. With this method the effects of RNA interference, overexpression or small molecules can be compared to control neurons. In addition, the rodent cerebellar cortex is an easily accessible in vivo system owing to its predominant postnatal development. We also present an in vivo electroporation technique to genetically manipulate the developing cerebella and describe subsequent cerebellar analyses to assess neuronal morphology and migration. PMID:24686379

  1. Automated, Quantitative Cognitive/Behavioral Screening of Mice: For Genetics, Pharmacology, Animal Cognition and Undergraduate Instruction

    PubMed Central

    Gallistel, C. R.; Balci, Fuat; Freestone, David; Kheifets, Aaron; King, Adam

    2014-01-01

    We describe a high-throughput, high-volume, fully automated, live-in 24/7 behavioral testing system for assessing the effects of genetic and pharmacological manipulations on basic mechanisms of cognition and learning in mice. A standard polypropylene mouse housing tub is connected through an acrylic tube to a standard commercial mouse test box. The test box has 3 hoppers, 2 of which are connected to pellet feeders. All are internally illuminable with an LED and monitored for head entries by infrared (IR) beams. Mice live in the environment, which eliminates handling during screening. They obtain their food during two or more daily feeding periods by performing in operant (instrumental) and Pavlovian (classical) protocols, for which we have written protocol-control software and quasi-real-time data analysis and graphing software. The data analysis and graphing routines are written in a MATLAB-based language created to simplify greatly the analysis of large time-stamped behavioral and physiological event records and to preserve a full data trail from raw data through all intermediate analyses to the published graphs and statistics within a single data structure. The data-analysis code harvests the data several times a day and subjects it to statistical and graphical analyses, which are automatically stored in the "cloud" and on in-lab computers. Thus, the progress of individual mice is visualized and quantified daily. The data-analysis code talks to the protocol-control code, permitting the automated advance from protocol to protocol of individual subjects. The behavioral protocols implemented are matching, autoshaping, timed hopper-switching, risk assessment in timed hopper-switching, impulsivity measurement, and the circadian anticipation of food availability. Open-source protocol-control and data-analysis code makes the addition of new protocols simple. Eight test environments fit in a 48 in x 24 in x 78 in cabinet; two such cabinets (16 environments) may be

  2. Automated, quantitative cognitive/behavioral screening of mice: for genetics, pharmacology, animal cognition and undergraduate instruction.

    PubMed

    Gallistel, C R; Balci, Fuat; Freestone, David; Kheifets, Aaron; King, Adam

    2014-01-01

    We describe a high-throughput, high-volume, fully automated, live-in 24/7 behavioral testing system for assessing the effects of genetic and pharmacological manipulations on basic mechanisms of cognition and learning in mice. A standard polypropylene mouse housing tub is connected through an acrylic tube to a standard commercial mouse test box. The test box has 3 hoppers, 2 of which are connected to pellet feeders. All are internally illuminable with an LED and monitored for head entries by infrared (IR) beams. Mice live in the environment, which eliminates handling during screening. They obtain their food during two or more daily feeding periods by performing in operant (instrumental) and Pavlovian (classical) protocols, for which we have written protocol-control software and quasi-real-time data analysis and graphing software. The data analysis and graphing routines are written in a MATLAB-based language created to simplify greatly the analysis of large time-stamped behavioral and physiological event records and to preserve a full data trail from raw data through all intermediate analyses to the published graphs and statistics within a single data structure. The data-analysis code harvests the data several times a day and subjects it to statistical and graphical analyses, which are automatically stored in the "cloud" and on in-lab computers. Thus, the progress of individual mice is visualized and quantified daily. The data-analysis code talks to the protocol-control code, permitting the automated advance from protocol to protocol of individual subjects. The behavioral protocols implemented are matching, autoshaping, timed hopper-switching, risk assessment in timed hopper-switching, impulsivity measurement, and the circadian anticipation of food availability. Open-source protocol-control and data-analysis code makes the addition of new protocols simple. Eight test environments fit in a 48 in x 24 in x 78 in cabinet; two such cabinets (16 environments) may be

  3. Development of an electrotransformation protocol for genetic manipulation of Clostridium pasteurianum

    PubMed Central

    2013-01-01

    . Systematic investigation of various parameters involved in the cell growth, washing and pulse delivery, and outgrowth phases of the electrotransformation procedure significantly elevated the electrotransformation efficiency, up to 7.5 × 104 transformants μg-1 DNA, an increase of approximately three order of magnitude. Key factors affecting the electrotransformation efficiency include cell-wall-weakening using glycine, ethanol-mediated membrane solubilization, field strength of the electric pulse, and sucrose osmoprotection. Conclusions C. pasteurianum ATCC 6013 can be electrotransformed at a high efficiency using appropriately methylated plasmid DNA. The electrotransformation method and tools reported here should promote extensive genetic manipulation and metabolic engineering of this biotechnologically important bacterium. PMID:23570573

  4. Genetic manipulation of competition for nitrate between heterotrophic bacteria and diatoms

    DOE PAGESBeta

    Diner, Rachel E.; Schwenck, Sarah M.; McCrow, John P.; Zheng, Hong; Allen, Andrew E.

    2016-06-09

    from nitrogen starvation, and RNA-seq transcriptomic evidence supports nitrogen-based interactions between diatoms and bacteria at the molecular level. As a result, this study provides key insights into the roles of carbon and nitrogen in phytoplankton-bacteria dynamics and lays the foundation for developing a mechanistic understanding of these interactions using co-culturing and genetic manipulation.« less

  5. Genetic Manipulation of Competition for Nitrate between Heterotrophic Bacteria and Diatoms

    PubMed Central

    Diner, Rachel E.; Schwenck, Sarah M.; McCrow, John P.; Zheng, Hong; Allen, Andrew E.

    2016-01-01

    nitrogen starvation, and RNA-seq transcriptomic evidence supports nitrogen-based interactions between diatoms and bacteria at the molecular level. This study provides key insights into the roles of carbon and nitrogen in phytoplankton-bacteria dynamics and lays the foundation for developing a mechanistic understanding of these interactions using co-culturing and genetic manipulation. PMID:27375600

  6. Genetic Manipulation of Competition for Nitrate between Heterotrophic Bacteria and Diatoms.

    PubMed

    Diner, Rachel E; Schwenck, Sarah M; McCrow, John P; Zheng, Hong; Allen, Andrew E

    2016-01-01

    nitrogen starvation, and RNA-seq transcriptomic evidence supports nitrogen-based interactions between diatoms and bacteria at the molecular level. This study provides key insights into the roles of carbon and nitrogen in phytoplankton-bacteria dynamics and lays the foundation for developing a mechanistic understanding of these interactions using co-culturing and genetic manipulation. PMID:27375600

  7. Genetic Architecture of Atherosclerosis in Mice: A Systems Genetics Analysis of Common Inbred Strains.

    PubMed

    Bennett, Brian J; Davis, Richard C; Civelek, Mete; Orozco, Luz; Wu, Judy; Qi, Hannah; Pan, Calvin; Packard, René R Sevag; Eskin, Eleazar; Yan, Mujing; Kirchgessner, Todd; Wang, Zeneng; Li, Xinmin; Gregory, Jill C; Hazen, Stanley L; Gargalovic, Peter S; Lusis, Aldons J

    2015-12-01

    Common forms of atherosclerosis involve multiple genetic and environmental factors. While human genome-wide association studies have identified numerous loci contributing to coronary artery disease and its risk factors, these studies are unable to control environmental factors or examine detailed molecular traits in relevant tissues. We now report a study of natural variations contributing to atherosclerosis and related traits in over 100 inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP). The mice were made hyperlipidemic by transgenic expression of human apolipoprotein E-Leiden (APOE-Leiden) and human cholesteryl ester transfer protein (CETP). The mice were examined for lesion size and morphology as well as plasma lipid, insulin and glucose levels, and blood cell profiles. A subset of mice was studied for plasma levels of metabolites and cytokines. We also measured global transcript levels in aorta and liver. Finally, the uptake of acetylated LDL by macrophages from HMDP mice was quantitatively examined. Loci contributing to the traits were mapped using association analysis, and relationships among traits were examined using correlation and statistical modeling. A number of conclusions emerged. First, relationships among atherosclerosis and the risk factors in mice resemble those found in humans. Second, a number of trait-loci were identified, including some overlapping with previous human and mouse studies. Third, gene expression data enabled enrichment analysis of pathways contributing to atherosclerosis and prioritization of candidate genes at associated loci in both mice and humans. Fourth, the data provided a number of mechanistic inferences; for example, we detected no association between macrophage uptake of acetylated LDL and atherosclerosis. Fifth, broad sense heritability for atherosclerosis was much larger than narrow sense heritability, indicating an important role for gene-by-gene interactions. Sixth, stepwise linear regression

  8. Genetic Architecture of Atherosclerosis in Mice: A Systems Genetics Analysis of Common Inbred Strains

    PubMed Central

    Bennett, Brian J.; Davis, Richard C.; Civelek, Mete; Orozco, Luz; Wu, Judy; Qi, Hannah; Pan, Calvin; Packard, René R. Sevag; Eskin, Eleazar; Yan, Mujing; Kirchgessner, Todd; Wang, Zeneng; Li, Xinmin; Gregory, Jill C.; Hazen, Stanley L.; Gargalovic, Peter S.; Lusis, Aldons J.

    2015-01-01

    Common forms of atherosclerosis involve multiple genetic and environmental factors. While human genome-wide association studies have identified numerous loci contributing to coronary artery disease and its risk factors, these studies are unable to control environmental factors or examine detailed molecular traits in relevant tissues. We now report a study of natural variations contributing to atherosclerosis and related traits in over 100 inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP). The mice were made hyperlipidemic by transgenic expression of human apolipoprotein E-Leiden (APOE-Leiden) and human cholesteryl ester transfer protein (CETP). The mice were examined for lesion size and morphology as well as plasma lipid, insulin and glucose levels, and blood cell profiles. A subset of mice was studied for plasma levels of metabolites and cytokines. We also measured global transcript levels in aorta and liver. Finally, the uptake of acetylated LDL by macrophages from HMDP mice was quantitatively examined. Loci contributing to the traits were mapped using association analysis, and relationships among traits were examined using correlation and statistical modeling. A number of conclusions emerged. First, relationships among atherosclerosis and the risk factors in mice resemble those found in humans. Second, a number of trait-loci were identified, including some overlapping with previous human and mouse studies. Third, gene expression data enabled enrichment analysis of pathways contributing to atherosclerosis and prioritization of candidate genes at associated loci in both mice and humans. Fourth, the data provided a number of mechanistic inferences; for example, we detected no association between macrophage uptake of acetylated LDL and atherosclerosis. Fifth, broad sense heritability for atherosclerosis was much larger than narrow sense heritability, indicating an important role for gene-by-gene interactions. Sixth, stepwise linear regression

  9. Genetic Background Modulates Gene Expression Profile Induced by Skin Irradiation in Ptch1 Mice

    SciTech Connect

    Galvan, Antonella; Noci, Sara; Mancuso, Mariateresa; Pazzaglia, Simonetta; Saran, Anna; Dragani, Tommaso A.

    2008-12-01

    Purpose: Ptch1 germ-line mutations in mice predispose to radiation-induced basal cell carcinoma of the skin, with tumor incidence modulated by the genetic background. Here, we examined the possible mechanisms underlying skin response to radiation in F1 progeny of Ptch1{sup neo67/+} mice crossed with either skin tumor-susceptible (Car-S) or -resistant (Car-R) mice and X-irradiated (3 Gy) at 2 days of age or left untreated. Methods and Materials: We conducted a gene expression profile analysis in mRNA samples extracted from the skin of irradiated or control mice, using Affymetrix whole mouse genome expression array. Confirmation of the results was done using real-time reverse-transcriptase polymerase chain reaction. Results: Analysis of the gene expression profile of normal skin of F1 mice at 4 weeks of age revealed a similar basal profile in the nonirradiated mice, but alterations in levels of 71 transcripts in irradiated Ptch1{sup neo67/+} mice of the Car-R cross and modulation of only eight genes in irradiated Ptch1{sup neo67/+} mice of the Car-S cross. Conclusions: These results indicate that neonatal irradiation causes a persistent change in the gene expression profile of the skin. The tendency of mice genetically resistant to skin tumorigenesis to show a more complex pattern of transcriptional response to radiation than do genetically susceptible mice suggests a role for this response in genetic resistance to basal cell tumorigenesis.

  10. Genetic contributions of nonautoimmune SWR mice toward lupus nephritis.

    PubMed

    Xie, S; Chang, S; Yang, P; Jacob, C; Kaliyaperumal, A; Datta, S K; Mohan, C

    2001-12-15

    (SWR x New Zealand Black (NZB))F(1) (or SNF(1)) mice succumb to lupus nephritis. Although several NZB lupus susceptibility loci have been identified in other crosses, the potential genetic contributions of SWR to lupus remain unknown. To ascertain this, a panel of 86 NZB x F(1) backcross mice was immunophenotyped and genome scanned. Linkage analysis revealed four dominant SWR susceptibility loci (H2, Swrl-1, Swrl-2, and Swrl-3) and a recessive NZB locus, Nba1. Early mortality was most strongly linked to the H2 locus on chromosome (Chr) 17 (log likelihood of the odds (LOD) = 4.59 - 5.38). Susceptibility to glomerulonephritis was linked to H2 (Chr 17, LOD = 2.37 - 2.70), Swrl-2 (Chr 14, 36 cM, LOD = 2.48 - 2.71), and Nba1 (Chr 4, 75 cM, LOD = 2.15 - 2.23). IgG antinuclear autoantibody development was linked to H2 (Chr 17, LOD = 4.92 - 5.48), Swrl-1 (Chr 1, 86 cM, colocalizing with Sle1 and Nba2, LOD = 2.89 - 2.91), and Swrl-3 (Chr 18, 14 cM, LOD = 2.07 - 2.13). For each phenotype, epistatic interaction of two to three susceptibility loci was required to attain the high penetrance levels seen in the SNF(1) strain. Although the SWR contributions H2, Swrl-1, and Swrl-2 map to loci previously mapped in other strains, often linked to very similar phenotypes, Swrl-3 appears to be a novel locus. In conclusion, lupus in the SNF(1) strain is truly polygenic, with at least four dominant contributions from the SWR strain. The immunological functions and molecular identities of these loci await elucidation. PMID:11739537

  11. Genetic disruption of the copulatory plug in mice leads to severely reduced fertility.

    PubMed

    Dean, Matthew D

    2013-01-01

    Seminal fluid proteins affect fertility at multiple stages in reproduction. In many species, a male's ejaculate coagulates to form a copulatory plug. Although taxonomically widespread, the molecular details of plug formation remain poorly understood, limiting our ability to manipulate the structure and understand its role in reproduction. Here I show that male mice knockouts for transglutaminase IV (Tgm4) fail to form a copulatory plug, demonstrating that this gene is necessary for plug formation and lending a powerful new genetic tool to begin characterizing plug function. Tgm4 knockout males show normal sperm count, sperm motility, and reproductive morphology. However, very little of their ejaculate migrates into the female's reproductive tract, suggesting the plug prevents ejaculate leakage. Poor ejaculate migration leads to a reduction in the proportion of oocytes fertilized. However, Tgm4 knockout males fertilized between 3-11 oocytes, which should be adequate for a normal litter. Nevertheless, females mated to Tgm4 knockout males for approximately 14 days were significantly less likely to give birth to a litter compared to females mated to wild-type males. Therefore, it appears that the plug also affects post-fertilization events such as implantation and/or gestation. This study shows that a gene influencing the viscosity of seminal fluid has a major influence on male fertility. PMID:23341775

  12. Genetic Disruption of the Copulatory Plug in Mice Leads to Severely Reduced Fertility

    PubMed Central

    Dean, Matthew D.

    2013-01-01

    Seminal fluid proteins affect fertility at multiple stages in reproduction. In many species, a male's ejaculate coagulates to form a copulatory plug. Although taxonomically widespread, the molecular details of plug formation remain poorly understood, limiting our ability to manipulate the structure and understand its role in reproduction. Here I show that male mice knockouts for transglutaminase IV (Tgm4) fail to form a copulatory plug, demonstrating that this gene is necessary for plug formation and lending a powerful new genetic tool to begin characterizing plug function. Tgm4 knockout males show normal sperm count, sperm motility, and reproductive morphology. However, very little of their ejaculate migrates into the female's reproductive tract, suggesting the plug prevents ejaculate leakage. Poor ejaculate migration leads to a reduction in the proportion of oocytes fertilized. However, Tgm4 knockout males fertilized between 3–11 oocytes, which should be adequate for a normal litter. Nevertheless, females mated to Tgm4 knockout males for approximately 14 days were significantly less likely to give birth to a litter compared to females mated to wild-type males. Therefore, it appears that the plug also affects post-fertilization events such as implantation and/or gestation. This study shows that a gene influencing the viscosity of seminal fluid has a major influence on male fertility. PMID:23341775

  13. Appropriate use of genetic manipulation for the development of restoration plant materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diversity of restoration plant material development approaches reflect a variety of philosophies that represent what should and can be accomplished by restoration. The "natural" approach emphasizes emulation of putative naturally occurring patterns of genetic variation. The "genetically manipu...

  14. Generation of Genetically Modified Mice Using the CRISPR-Cas9 Genome-Editing System.

    PubMed

    Henao-Mejia, Jorge; Williams, Adam; Rongvaux, Anthony; Stein, Judith; Hughes, Cynthia; Flavell, Richard A

    2016-02-01

    Genetically modified mice are extremely valuable tools for studying gene function and human diseases. Although the generation of mice with specific genetic modifications through traditional methods using homologous recombination in embryonic stem cells has been invaluable in the last two decades, it is an extremely costly, time-consuming, and, in some cases, uncertain technology. The recently described CRISPR-Cas9 genome-editing technology significantly reduces the time and the cost that are required to generate genetically engineered mice, allowing scientists to test more precise and bold hypotheses in vivo. Using this revolutionary methodology we have generated more than 100 novel genetically engineered mouse strains. In the current protocol, we describe in detail the optimal conditions to generate mice carrying point mutations, chromosomal deletions, conditional alleles, fusion tags, or endogenous reporters. PMID:26832688

  15. Viral transduction of the neonatal brain delivers controllable genetic mosaicism for visualizing and manipulating neuronal circuits in vivo

    PubMed Central

    Kim, Ji-Yoen; Ash, Ryan T.; Ceballos-Diaz, Carolina; Levites, Yona; Golde, Todd E.; Smirnakis, Stelios M.; Jankowsky, Joanna L.

    2012-01-01

    Neonatal intraventricular injection of adeno-associated virus has been shown to transduce neurons widely throughout the brain, but its full potential for experimental neuroscience has not been adequately explored. We report a detailed analysis of the method’s versatility with an emphasis on experimental applications where tools for genetic manipulation are currently lacking. Viral injection into the neonatal mouse brain is fast, easy, and accesses regions of the brain including cerebellum and brain stem that have been difficult to target with other techniques such as electroporation. We show that viral transduction produces an inherently mosaic expression pattern that can be exploited by varying the titer to transduce isolated neurons or densely-packed populations. We demonstrate that expression of virally-encoded proteins is active much sooner than previously believed, allowing genetic perturbation during critical periods of neuronal plasticity, but is also long-lasting and stable, allowing chronic studies of aging. We harness these features to visualize and manipulate neurons in the hindbrain that have been recalcitrant to approaches commonly applied in the cortex. We show that viral labeling aids the analysis of postnatal dendritic maturation in cerebellar Purkinje neurons by allowing individual cells to be readily distinguished, and then demonstrate that the same sparse labeling allows live in vivo imaging of mature Purkinje neurons at resolution sufficient for complete analytical reconstruction. Given the rising availability of viral constructs, packaging services, and genetically modified animals, these techniques should facilitate a wide range of experiments into brain development, function, and degeneration. PMID:23347239

  16. Robo1/2 regulate follicle atresia through manipulating granulosa cell apoptosis in mice

    PubMed Central

    Li, Jiangchao; Ye, Yuxiang; Zhang, Renli; Zhang, Lili; Hu, Xiwen; Han, Dong; Chen, Jiayuan; He, Xiaodong; Wang, Guang; Yang, Xuesong; Wang, Lijing

    2015-01-01

    Secreted Slit proteins and their Roundabout (Robo) receptors act as a repulsive cue to preventaxons from migrating to inappropriate locations during the development of the nervous system. Slit/Robo has also been implicated in reproductive system development, but the molecular mechanism of the Slit/Robo pathway in the reproductive system remains poorly understood. Using a transgenic mouse model, we investigated the function of the Slit/Robo pathway on ovarian follicle development and atresia. We first demonstrated that more offspring were born to mice with a partial knockout of the Robo1/2 genes in mice. We next showed that Robo1 and Robo2 are strongly expressed in ovarian granulosacells. Apoptosis in granulosa cells was reduced when Robo1/2 were partially knocked out, and this observation was further verified by in vitro Robo1/2 knockout experiments in mouse and human granulosa cells. We also found that ovarian angiogenesis wasenhanced by a partial lack of Robo1/2 genes. In summary, our data suggest that the Slit/Robo pathway can impact follicle development and atresia by influencinggranulosa cell apoptosis. PMID:25988316

  17. Robo1/2 regulate follicle atresia through manipulating granulosa cell apoptosis in mice.

    PubMed

    Li, Jiangchao; Ye, Yuxiang; Zhang, Renli; Zhang, Lili; Hu, Xiwen; Han, Dong; Chen, Jiayuan; He, Xiaodong; Wang, Guang; Yang, Xuesong; Wang, Lijing

    2015-01-01

    Secreted Slit proteins and their Roundabout (Robo) receptors act as a repulsive cue to prevent axons from migrating to inappropriate locations during the development of the nervous system. Slit/Robo has also been implicated in reproductive system development, but the molecular mechanism of the Slit/Robo pathway in the reproductive system remains poorly understood. Using a transgenic mouse model, we investigated the function of the Slit/Robo pathway on ovarian follicle development and atresia. We first demonstrated that more offspring were born to mice with a partial knockout of the Robo1/2 genes in mice. We next showed that Robo1 and Robo2 are strongly expressed in ovarian granulosa cells. Apoptosis in granulosa cells was reduced when Robo1/2 were partially knocked out, and this observation was further verified by in vitro Robo1/2 knockout experiments in mouse and human granulosa cells. We also found that ovarian angiogenesis was enhanced by a partial lack of Robo1/2 genes. In summary, our data suggest that the Slit/Robo pathway can impact follicle development and atresia by influencing granulosa cell apoptosis. PMID:25988316

  18. Genetic manipulation of Aedes aegypti: incorporation and maintenance of a genetic marker and a chromosomal translocation in natural populations*

    PubMed Central

    Rai, K. S.; Grover, K. K.; Suguna, S. G.

    1973-01-01

    Studies with Aedes aegypti were undertaken to determine if an alien genotype can be (1) incorporated into a natural population and (2) maintained for several generations on its own without any subsequent introductions. Such information is an essential prerequisite for successful application of any genetic control method. Data from a walk-in, field population cage and from field releases of a genetic marker and a chromosomal translocation have demonstrated both genetic incorporation and persistence for at least three successive generations. This is the first demonstration of its type with any vector species. PMID:4541148

  19. Manipulating the genetic identity and biochemical surface properties of individual cells with electric-field-induced fusion

    PubMed Central

    Strömberg, Anette; Ryttsén, Frida; Chiu, Daniel T.; Davidson, Max; Eriksson, Peter S.; Wilson, Clyde F.; Orwar, Owe; Zare, Richard N.

    2000-01-01

    A method for cell–cell and cell–liposome fusion at the single-cell level is described. Individual cells or liposomes were first selected and manipulated either by optical trapping or by adhesion to a micromanipulator-controlled ultramicroelectrode. Spatially selective fusion of the cell–cell or cell–liposome pair was achieved by the application of a highly focused electric field through a pair of 5-μm o.d. carbon-fiber ultramicroelectrodes. The ability to fuse together single cells opens new possibilities in the manipulation of the genetic and cellular makeup of individual cells in a controlled manner. In the study of cellular networks, for example, the alteration of the biochemical identity of a selected cell can have a profound effect on the behavior of the entire network. Fusion of a single liposome with a target cell allows the introduction of the liposomal content into the cell interior as well as the addition of lipids and membrane proteins onto the cell surface. This cell–liposome fusion represents an approach to the manipulation of the cytoplasmic contents and surface properties of single cells. As an example, we have introduced a membrane protein (γ-glutamyltransferase) reconstituted in liposomes into the cell plasma membrane. PMID:10618361

  20. Genetic background but not metallothionein phenotype dictates sensitivity to cadmium-induced testicular injury in mice.

    PubMed

    Liu, J; Corton, C; Dix, D J; Liu, Y; Waalkes, M P; Klaassen, C D

    2001-10-01

    Sensitivity to cadmium (Cd)-induced testicular injury varies greatly among mouse strains. For instance, 129/SvJ (129) mice are highly sensitive while C57BL/6J (C57) mice are refractory to Cd-induced testicular injury. Metallothionein (MT), a Cd-binding protein, is thought to be responsible for the strain susceptibility to Cd toxicity. In this study, MT-I/II knockout (MT-null) and wild-type 129 mice were used to determine the role of MT in Cd-induced testicular injury. Two additional strains of mice (C57 and the C57 x 129 F1cross) were also used to help define the role of genetic background in Cd toxicity. Mice were given 5-20 micromol/kg ip CdCl(2) and testicular injury was examined 24 h later by histopathology and testicular hemoglobin concentration. Cd produced dose-dependent testicular injury in all strains of mice, except for C57 mice, in which testicular injury could not be produced. MT-null mice were more sensitive than C57 x 129 mice but were equally sensitive as 129 mice to Cd-induced testicular injury. Fourteen days after 15 micromol/kg ip Cd administration, testicular atrophy was evident in MT-null, 129, and C57 x 129 mice but was absent in C57 mice. The resistance of C57 mice to Cd-induced testicular injury could not be attributed solely to a decreased uptake of (109)Cd nor to a greater amount of testicular MT. Microarray analysis revealed a higher expression of glutathione peroxidase in the testes of C57 mice, as well as genes encoding antioxidant components and DNA damage/repair, but their significance to Cd-induced injury is not immediately clear. Thus, this study demonstrates that it is genetic strain, not MT genotype, that is mechanistically important in determining susceptibility to Cd-induced testicular injury. PMID:11578143

  1. Antibody-mediated glomerulonephritis in mice: the role of endotoxin, complement and genetic background

    PubMed Central

    ROBSON, M G; COOK, H T; PUSEY, C D; WALPORT, M J; DAVIES, K A

    2003-01-01

    Antibody-mediated glomerulonephritis in man may be exacerbated by infection and this effect may be mediated by bacterial endotoxin. There is evidence supporting a role for endotoxin in heterologous nephrotoxic nephritis in rats, but the role of endotoxin in this model in mice has not previously been explored. Previous data in mice on the role of complement in this model are conflicting and this may be due to the mixed genetic background of mice used in these studies. We used the model of heterologous nephrotoxic nephritis in mice and explored the role of endotoxin, complement and genetic background. In this study we show a synergy between antibody and endotoxin in causing a neutrophil influx. We also show that C1q-deficient mice have an increased susceptibility to glomerular inflammation but this is seen only on a mixed 129/Sv × C57BL/6 genetic background. On a C57BL/6 background we did not find any differences in disease susceptibility when wildtype, C1q, factor B or factor B/C2 deficient mice were compared. We also demonstrate that C57BL/6 mice are more susceptible to glomerular inflammation than 129/Sv mice. These results show that endotoxin is required in this model in mice, and that complement does not play a major role in glomerular inflammation in C57BL/6 mice. C1q may play a protective role in mixed-strain 129/Sv × C57BL/6 mice, but the data may also be explained by systematic bias in background genes, as there is a large difference in disease susceptibility between C57BL/6 and 129/Sv mice. PMID:12930357

  2. Genetic manipulation of reptilian embryos: toward an understanding of cortical development and evolution

    PubMed Central

    Nomura, Tadashi; Yamashita, Wataru; Gotoh, Hitoshi; Ono, Katsuhiko

    2015-01-01

    The mammalian neocortex is a remarkable structure that is characterized by tangential surface expansion and six-layered lamination. However, how the mammalian neocortex emerged during evolution remains elusive. Because all modern reptiles have a homolog of the neocortex at the dorsal pallium, developmental analyses of the reptilian cortex are valuable to explore the origin of the neocortex. However, reptilian cortical development and the underlying molecular mechanisms remain unclear, mainly due to technical difficulties with sample collection and embryonic manipulation. Here, we introduce a method of embryonic manipulations for the Madagascar ground gecko and Chinese softshell turtle. We established in ovo electroporation and an ex ovo culture system to address neural stem cell dynamics, neuronal differentiation and migration. Applications of these techniques illuminate the developmental mechanisms underlying reptilian corticogenesis, which provides significant insight into the evolutionary steps of different types of cortex and the origin of the mammalian neocortex. PMID:25759636

  3. Genetic Analysis of Intracapillary Glomerular Lipoprotein Deposits in Aging Mice

    PubMed Central

    Noordmans, Gerda A.; Huang, Yuan; Savage, Holly; van Dijk, Marcory C. R. F.; Schaart, Gert; van den Bergh Weerman, Marius A.; Heeringa, Peter; Hillebrands, Jan-Luuk; Korstanje, Ron; van Goor, Harry

    2014-01-01

    Background Renal aging is characterized by functional and structural changes like decreased glomerular filtration rate, and glomerular, tubular and interstitial damage. To gain insight in pathways involved in renal aging, we studied aged mouse strains and used genetic analysis to identify genes associated with aging phenotypes. Methods Upon morphological screening in kidneys from 20-month-old mice from 26 inbred strains we noted intracapillary PAS-positive deposits. The severity of these deposits was quantified by scoring of a total of 50 glomeruli per section (grade 0–4). Electron microscopy and immunohistochemical staining for apoE, apoB, apoA-IV and perilipin-2 was performed to further characterize the lesions. To identify loci associated with these PAS-positive intracapillary glomerular deposits, we performed haplotype association mapping. Results Six out of 26 mouse strains showed glomerular PAS-positive deposits. The severity of these deposits varied: NOD(0.97), NZW(0.41), NON(0.30), B10(0.21), C3 H(0.9) and C57BR(0.7). The intracapillary deposits were strongly positive for apoE and weakly positive for apoB and apoA-IV. Haplotype association mapping showed a strong association with a 30-Kb haplotype block on Chr 1 within the Esrrg gene. We investigated 1 Mb on each site of this region, which includes the genes Spata17, Gpatch2, Esrrg, Ush2a and Kctd3. Conclusions By analyzing 26 aged mouse strains we found that some strains developed an intracapillary PAS and apoE-positive lesion and identified a small haplotype block on Chr 1 within the Esrrg gene to be associated with these lipoprotein deposits. The region spanning this haplotype block contains the genes Spata17, Gpatch2, Esrrg, Ush2a and Kctd3, which are all highly expressed in the kidney. Esrrg might be involved in the evolvement of these glomerular deposits by influencing lipid metabolism and possibly immune reponses. PMID:25353171

  4. Genetic basis and biotechnological manipulation of sexual dimorphism and sex determination in fish.

    PubMed

    Mei, Jie; Gui, Jian-Fang

    2015-02-01

    Aquaculture has made an enormous contribution to the world food production, especially to the sustainable supply of animal proteins. The utility of diverse reproduction strategies in fish, such as the exploiting use of unisexual gynogenesis, has created a typical case of fish genetic breeding. A number of fish species show substantial sexual dimorphism that is closely linked to multiple economic traits including growth rate and body size, and the efficient development of sex-linked genetic markers and sex control biotechnologies has provided significant approaches to increase the production and value for commercial purposes. Along with the rapid development of genomics and molecular genetic techniques, the genetic basis of sexual dimorphism has been gradually deciphered, and great progress has been made in the mechanisms of fish sex determination and identification of sex-determining genes. This review summarizes the progress to provide some directive and objective thinking for further research in this field. PMID:25563981

  5. Discrete genetic modules are responsible for complex burrow evolution in Peromyscus mice.

    PubMed

    Weber, Jesse N; Peterson, Brant K; Hoekstra, Hopi E

    2013-01-17

    Relative to morphological traits, we know little about how genetics influence the evolution of complex behavioural differences in nature. It is unclear how the environment influences natural variation in heritable behaviour, and whether complex behavioural differences evolve through few genetic changes, each affecting many aspects of behaviour, or through the accumulation of several genetic changes that, when combined, give rise to behavioural complexity. Here we show that in nature, oldfield mice (Peromyscus polionotus) build complex burrows with long entrance and escape tunnels, and that burrow length is consistent across populations, although burrow depth varies with soil composition. This burrow architecture is in contrast with the small, simple burrows of its sister species, deer mice (P. maniculatus). When investigated under laboratory conditions, both species recapitulate their natural burrowing behaviour. Genetic crosses between the two species reveal that the derived burrows of oldfield mice are dominant and evolved through the addition of multiple genetic changes. In burrows built by first-generation backcross mice, entrance-tunnel length and the presence of an escape tunnel can be uncoupled, suggesting that these traits are modular. Quantitative trait locus analysis also indicates that tunnel length segregates as a complex trait, affected by at least three independent genetic regions, whereas the presence of an escape tunnel is associated with only a single locus. Together, these results suggest that complex behaviours--in this case, a classic 'extended phenotype'--can evolve through multiple genetic changes each affecting distinct behaviour modules. PMID:23325221

  6. Manipulation of host factors optimizes the pathogenesis of western equine encephalitis virus infections in mice for antiviral drug development.

    PubMed

    Blakely, Pennelope K; Delekta, Phillip C; Miller, David J; Irani, David N

    2015-02-01

    While alphaviruses spread naturally via mosquito vectors, some can also be transmitted as aerosols making them potential bioterrorism agents. One such pathogen, western equine encephalitis virus (WEEV), causes fatal human encephalitis via multiple routes of infection and thus presumably via multiple mechanisms. Although WEEV also produces acute encephalitis in non-human primates, a small animal model that recapitulates features of human disease would be useful for both pathogenesis studies and to evaluate candidate antiviral therapies. We have optimized conditions to infect mice with a low passage isolate of WEEV, thereby allowing detailed investigation of virus tropism, replication, neuroinvasion, and neurovirulence. We find that host factors strongly influence disease outcome, and in particular, that age, gender, and genetic background all have significant effects on disease susceptibility independent of virus tropism or replication within the central nervous system. Our data show that experimental variables can be adjusted in mice to recapitulate disease features known to occur in both non-human primates and humans, thus aiding further study of WEEV pathogenesis and providing a realistic therapeutic window for antiviral drug delivery. PMID:25361697

  7. Manipulation of host factors optimizes the pathogenesis of western equine encephalitis virus infections in mice for antiviral drug development

    PubMed Central

    Blakely, Pennelope K.; Delekta, Phillip C.; Miller, David J.; Irani, David N.

    2014-01-01

    While alphaviruses spread naturally via mosquito vectors, some can also be transmitted as aerosols making them potential bioterrorism agents. One such pathogen, western equine encephalitis virus (WEEV), causes fatal human encephalitis via multiple routes of infection and thus presumably via multiple mechanisms. Although WEEV also produces acute encephalitis in non-human primates, a small animal model that recapitulates features of human disease would be useful for both pathogenesis studies and to evaluate candidate antiviral therapies. We have optimized conditions to infect mice with a low passage isolate of WEEV, thereby allowing detailed investigation of virus tropism, replication, neuroinvasion, and neurovirulence. We find that host factors strongly influence disease outcome, and in particular that age, gender and genetic background all have significant effects on disease susceptibility independent of virus tropism or replication within the central nervous system. Our data show that experimental variables can be adjusted in mice to recapitulate disease features known to occur in both non-human primates and humans, thus aiding further study of WEEV pathogenesis and providing a realistic therapeutic window for antiviral drug delivery. PMID:25361697

  8. Genetic Manipulation of NK Cells for Cancer Immunotherapy: Techniques and Clinical Implications

    PubMed Central

    Carlsten, Mattias; Childs, Richard W.

    2015-01-01

    Given their rapid and efficient capacity to recognize and kill tumor cells, natural killer (NK) cells represent a unique immune cell to genetically reprogram in an effort to improve the outcome of cell-based cancer immunotherapy. However, technical and biological challenges associated with gene delivery into NK cells have significantly tempered this approach. Recent advances in viral transduction and electroporation have now allowed detailed characterization of genetically modified NK cells and provided a better understanding for how these cells can be utilized in the clinic to optimize their capacity to induce tumor regression in vivo. Improving NK cell persistence in vivo via autocrine IL-2 and IL-15 stimulation, enhancing tumor targeting by silencing inhibitory NK cell receptors such as NKG2A, and redirecting tumor killing via chimeric antigen receptors, all represent approaches that hold promise in preclinical studies. This review focuses on available methods for genetic reprograming of NK cells and the advantages and challenges associated with each method. It also gives an overview of strategies for genetic reprograming of NK cells that have been evaluated to date and an outlook on how these strategies may be best utilized in clinical protocols. With the recent advances in our understanding of the complex biological networks that regulate the ability of NK cells to target and kill tumors in vivo, we foresee genetic engineering as an obligatory pathway required to exploit the full potential of NK-cell based immunotherapy in the clinic. PMID:26113846

  9. Genetic Manipulation of NK Cells for Cancer Immunotherapy: Techniques and Clinical Implications.

    PubMed

    Carlsten, Mattias; Childs, Richard W

    2015-01-01

    Given their rapid and efficient capacity to recognize and kill tumor cells, natural killer (NK) cells represent a unique immune cell to genetically reprogram in an effort to improve the outcome of cell-based cancer immunotherapy. However, technical and biological challenges associated with gene delivery into NK cells have significantly tempered this approach. Recent advances in viral transduction and electroporation have now allowed detailed characterization of genetically modified NK cells and provided a better understanding for how these cells can be utilized in the clinic to optimize their capacity to induce tumor regression in vivo. Improving NK cell persistence in vivo via autocrine IL-2 and IL-15 stimulation, enhancing tumor targeting by silencing inhibitory NK cell receptors such as NKG2A, and redirecting tumor killing via chimeric antigen receptors, all represent approaches that hold promise in preclinical studies. This review focuses on available methods for genetic reprograming of NK cells and the advantages and challenges associated with each method. It also gives an overview of strategies for genetic reprograming of NK cells that have been evaluated to date and an outlook on how these strategies may be best utilized in clinical protocols. With the recent advances in our understanding of the complex biological networks that regulate the ability of NK cells to target and kill tumors in vivo, we foresee genetic engineering as an obligatory pathway required to exploit the full potential of NK-cell based immunotherapy in the clinic. PMID:26113846

  10. Tools for genetic manipulation of the plant growth-promoting bacterium Azospirillum amazonense

    PubMed Central

    2011-01-01

    Background Azospirillum amazonense has potential to be used as agricultural inoculant since it promotes plant growth without causing pollution, unlike industrial fertilizers. Owing to this fact, the study of this species has gained interest. However, a detailed understanding of its genetics and physiology is limited by the absence of appropriate genetic tools for the study of this species. Results Conjugation and electrotransformation methods were established utilizing vectors with broad host-replication origins (pVS1 and pBBR1). Two genes of interest - glnK and glnB, encoding PII regulatory proteins - were isolated. Furthermore, glnK-specific A. amazonense mutants were generated utilizing the pK19MOBSACB vector system. Finally, a promoter analysis protocol based on fluorescent protein expression was optimized to aid genetic regulation studies on this bacterium. Conclusion In this work, genetic tools that can support the study of A. amazonense were described. These methods could provide a better understanding of the genetic mechanisms of this species that underlie its plant growth promotion. PMID:21575234

  11. Genetic Methods to Identify and Manipulate Newly Born Neurons in the Adult Brain

    PubMed Central

    Imayoshi, Itaru; Sakamoto, Masayuki; Kageyama, Ryoichiro

    2011-01-01

    Although mammalian neurogenesis is mostly completed by the perinatal period, new neurons are continuously generated in the subventricular zone of the lateral ventricle and the subgranular zone of the hippocampal dentate gyrus. Since the discovery of adult neurogenesis, many extensive studies have been performed on various aspects of adult neurogenesis, including proliferation and fate-specification of adult neural stem cells, and the migration, maturation and synaptic integration of newly born neurons. Furthermore, recent research has shed light on the intensive contribution of adult neurogenesis to olfactory-related and hippocampus-mediated brain functions. The field of adult neurogenesis progressed tremendously thanks to technical advances that facilitate the identification and selective manipulation of newly born neurons among billions of pre-existing neurons in the adult central nervous system. In this review, we introduce recent advances in the methodologies for visualizing newly generated neurons and manipulating neurogenesis in the adult brain. Particularly, the application of site-specific recombinases and Tet inducible system in combination with transgenic or gene targeting strategy is discussed in further detail. PMID:21562606

  12. Genetic manipulation of adult-born hippocampal neurons rescues memory in a mouse model of Alzheimer's disease.

    PubMed

    Richetin, Kevin; Leclerc, Clémence; Toni, Nicolas; Gallopin, Thierry; Pech, Stéphane; Roybon, Laurent; Rampon, Claire

    2015-02-01

    In adult mammals, neural progenitors located in the dentate gyrus retain their ability to generate neurons and glia throughout lifetime. In rodents, increased production of new granule neurons is associated with improved memory capacities, while decreased hippocampal neurogenesis results in impaired memory performance in several memory tasks. In mouse models of Alzheimer's disease, neurogenesis is impaired and the granule neurons that are generated fail to integrate existing networks. Thus, enhancing neurogenesis should improve functional plasticity in the hippocampus and restore cognitive deficits in these mice. Here, we performed a screen of transcription factors that could potentially enhance adult hippocampal neurogenesis. We identified Neurod1 as a robust neuronal determinant with the capability to direct hippocampal progenitors towards an exclusive granule neuron fate. Importantly, Neurod1 also accelerated neuronal maturation and functional integration of new neurons during the period of their maturation when they contribute to memory processes. When tested in an APPxPS1 mouse model of Alzheimer's disease, directed expression of Neurod1 in cycling hippocampal progenitors conspicuously reduced dendritic spine density deficits on new hippocampal neurons, to the same level as that observed in healthy age-matched control animals. Remarkably, this population of highly connected new neurons was sufficient to restore spatial memory in these diseased mice. Collectively our findings demonstrate that endogenous neural stem cells of the diseased brain can be manipulated to become new neurons that could allow cognitive improvement. PMID:25518958

  13. IMPROVING PLANT GENETIC ENGINEERING BY MANIPULATING THE HOST. (R829479C001)

    EPA Science Inventory

    Agrobacterium-mediated transformation is a major technique for the genetic engineering of plants. However, there are many economically important crop and tree species that remain highly recalcitrant to Agrobacterium infection. Although attempts have been made to ...

  14. Diversity, regulation, and genetic manipulation of plant mono- and sesquiterpenoid biosynthesis.

    PubMed

    Yu, Fengnian; Utsumi, Ryutaro

    2009-09-01

    Among plant secondary metabolites, terpenoids are the most abundant and structurally diverse group. In addition to their important roles in pollinator attraction and direct and indirect plant defense, terpenoids are also commercially valuable due to their broad applications in the cosmetic, food, and pharmaceutical industries. Because of their functional versatility and wide distribution, great efforts have been made to decipher terpenoid biosynthetic pathways, to investigate the molecular mechanism determining their structural diversity, and to understand their biosynthetic regulation. Recent progress on the manipulation of terpenoid production in transgenic plants not only holds considerable promise for improving various plant traits and crop protection but also increases our understanding of the significance of terpenoid metabolites in mediating plant-environment interactions. PMID:19547916

  15. Genetic manipulation to analyze pheromone responses: knockouts of multiple receptor genes.

    PubMed

    Ishii, Tomohiro

    2013-01-01

    Gene targeting in the mouse is an essential technique to study gene function in vivo. Multigene families encoding vomeronasal receptor (VR) type 1 and type 2 consist of ~300 intact genes, which are clustered at multiple loci in the mouse genome. To understand the function of VRs and neurons expressing a particular VR in vivo, individual endogenous receptor genes can be manipulated by conventional gene targeting to create loss-of-function mutations or to visualize neurons and their axons expressing the VR. Multiple receptor genes in a cluster can also be deleted simultaneously by chromosome engineering, allowing analysis of function of a particular VR subfamily. Here, we describe protocols for conventional gene targeting and chromosome engineering for deleting a large genomic region in mouse embryonic stem (ES) cells. PMID:24014359

  16. CRISPRi-Manipulation of Genetic Code Expansion via RF1 for Reassignment of Amber Codon in Bacteria

    PubMed Central

    Zhang, Bo; Yang, Qi; Chen, Jingxian; Wu, Ling; Yao, Tianzhuo; Wu, Yiming; Xu, Huan; Zhang, Lihe; Xia, Qing; Zhou, Demin

    2016-01-01

    The precise engineering of proteins in bacteria via the amber codon has been hampered by the poor incorporation of unnatural amino acid (UAA). Here we explored the amber assignment as a sense codon for UAA by CRISPRi targeting release factor 1 (RF1). Scanning of RF1 gene with sgRNAs identified target loci that differentiate RF1 repressions. Quantitation of RF1 repressions versus UAA incorporation indicated an increasing interrelation with the amber reassignment maximized upon RF1 knockdown to ~30%, disclosing the beneficial role of RF1 in amber assignment. However, further RF1 repression reversed this trend resulting from the detrimental effects on host cell growth, disclosing the harmful aspect of RF1 in reassignment of the amber codon. Our data indicate RF1 as a switch manipulating genetic code expansion and pave a direction via CRISPRi for precise engineering and efficient production of proteins in bacteria. PMID:26818534

  17. [Assisted reproduction and artificial insemination and genetic manipulation in the Criminal Code of the Federal District, Mexico].

    PubMed

    Brena Sesma, Ingrid

    2004-01-01

    The article that one presents has for purpose outline and comment on the recent modifications to the Penal Code for the Federal District of México which establish, for the first time, crimes related to the artificial procreation and to the genetic manipulation. Also one refers to the interaction of the new legal texts with the sanitary legislation of the country. Since it will be stated in some cases they present confrontations between the penal and the sanitary reglamentation and some points related to the legality or unlawfulness of a conduct that stayed without the enough development. These lacks will complicate the application of the new rules of the Penal Code of the Federal District. PMID:15544144

  18. Systems genetics of susceptibility to obesity-induced diabetes in mice

    PubMed Central

    van Nas, Atila; Castellani, Lawrence W.; Zhao, Yi; Zhou, Zhiqiang; Wen, Pingzi; Yu, Suzanne; Qi, Hongxiu; Rosales, Melenie; Schadt, Eric E.; Broman, Karl W.; Péterfy, Miklós; Lusis, Aldons J.

    2012-01-01

    Inbred strains of mice are strikingly different in susceptibility to obesity-driven diabetes. For instance, deficiency in leptin receptor (db/db) leads to hyperphagia and obesity in both C57BL/6 and DBA/2 mice, but only on the DBA/2 background do the mice develop beta-cell loss leading to severe diabetes, while C57BL/6 mice are relatively resistant. To further investigate the genetic factors predisposing to diabetes, we have studied leptin receptor-deficient offspring of an F2 cross between C57BL/6J (db/+) males and DBA/2J females. The results show that the genetics of diabetes susceptibility are enormously complex and a number of quantitative trait loci (QTL) contributing to diabetes-related traits were identified, notably on chromosomes 4, 6, 7, 9, 10, 11, 12, and 19. The Chr. 4 locus is likely due to a disruption of the Zfp69 gene in C57BL/6J mice. To identify candidate genes and to model coexpression networks, we performed global expression array analysis in livers of the F2 mice. Expression QTL (eQTL) were identified and used to prioritize candidate genes at clinical trait QTL. In several cases, clusters of eQTLs colocalized with clinical trait QTLs, suggesting a common genetic basis. We constructed coexpression networks for both 5 and 12 wk old mice and identified several modules significantly associated with clinical traits. One module in 12 wk old mice was associated with several measures of hepatic fat content as well as with other lipid- and diabetes-related traits. These results add to the understanding of the complex genetic interactions contributing to obesity-induced diabetes. PMID:22010005

  19. Characterization and genetic manipulation of human umbilical cord vein mesenchymal stem cells: potential application in cell-based gene therapy.

    PubMed

    Kermani, Abbas Jafari; Fathi, Fardin; Mowla, Seyed Javad

    2008-04-01

    Stem cells are defined by two main characteristics: self-renewal capacity and commitment to multi-lineage differentiation. The cells have a great therapeutic potential in repopulating damaged tissues as well as being genetically manipulated and used in cell-based gene therapy. Umbilical cord vein is a readily available and inexpensive source of stem cells that are capable of generating various cell types. Despite the recent isolation of human umbilical cord vein mesenchymal stem cells (UVMSC), the self-renewal capacity and the potential clinical application of the cells are not well known. In the present study, we have successfully isolated and cultured human UVMSCs. Our data further revealed that the isolated cells express the self-renewal genes Oct-4, Nanog, ZFX, Bmi-1, and Nucleostemin; but not Zic-3, Hoxb-4, TCL-1, Tbx-3 and Esrrb. In addition, our immunocytochemistry results revealed the expression of SSEA-4, but not SSEA-3, TRA-1-60, and TRA-1-81 embryonic stem cell surface markers in the cells. Also, we were able to transfect the cells with a reporter, enhanced green fluorescent protein (EGFP), and a therapeutic human brain-derived neurotrophic factor (hBDNF) gene by means of electroporation and obtained a stable cell line, which could constantly express both transgenes. The latter data provide further evidence on the usefulness of umbilical cord vein mesenchymal stem cells as a readily available source of stem cells, which could be genetically manipulated and used in cell-based gene therapy applications. PMID:18399786

  20. Protective efficacy of a high-growth reassortant swine H3N2 inactivated vaccine constructed by reverse genetic manipulation.

    PubMed

    Wen, Feng; Ma, Ji-Hong; Yu, Hai; Yang, Fu-Ru; Huang, Meng; Zhou, Yan-Jun; Li, Ze-Jun; Tong, Guang-Zhi

    2014-01-01

    Novel reassortant H3N2 swine influenza viruses (SwIV) with the matrix gene from the 2009 H1N1 pandemic virus have been isolated in many countries as well as during outbreaks in multiple states in the United States, indicating that H3N2 SwIV might be a potential threat to public health. Since southern China is the world's largest producer of pigs, efficient vaccines should be developed to prevent pigs from acquiring H3N2 subtype SwIV infections, and thus limit the possibility of SwIV infection at agricultural fairs. In this study, a high-growth reassortant virus (GD/PR8) was generated by plasmid-based reverse genetics and tested as a candidate inactivated vaccine. The protective efficacy of this vaccine was evaluated in mice by challenging them with another H3N2 SwIV isolate [A/Swine/Heilongjiang/1/05 (H3N2) (HLJ/05)]. Prime and booster inoculation with GD/PR8 vaccine yielded high-titer serum hemagglutination inhibiting antibodies and IgG antibodies. Complete protection of mice against H3N2 SwIV was observed, with significantly reduced lung lesion and viral loads in vaccine-inoculated mice relative to mock-vaccinated controls. These results suggest that the GD/PR8 vaccine may serve as a promising candidate for rapid intervention of H3N2 SwIV outbreaks in China. PMID:24675833

  1. Generation of genetically modified mice using CRISPR/Cas9 and haploid embryonic stem cell systems.

    PubMed

    Jin, Li-Fang; Li, Jin-Song

    2016-07-18

    With the development of high-throughput sequencing technology in the post-genomic era, researchers have concentrated their efforts on elucidating the relationships between genes and their corresponding functions. Recently, important progress has been achieved in the generation of genetically modified mice based on CRISPR/Cas9 and haploid embryonic stem cell (haESC) approaches, which provide new platforms for gene function analysis, human disease modeling, and gene therapy. Here, we review the CRISPR/Cas9 and haESC technology for the generation of genetically modified mice and discuss the key challenges in the application of these approaches. PMID:27469251

  2. Generation of genetically modified mice using CRISPR/Cas9 and haploid embryonic stem cell systems

    PubMed Central

    JIN, Li-Fang; LI, Jin-Song

    2016-01-01

    With the development of high-throughput sequencing technology in the post-genomic era, researchers have concentrated their efforts on elucidating the relationships between genes and their corresponding functions. Recently, important progress has been achieved in the generation of genetically modified mice based on CRISPR/Cas9 and haploid embryonic stem cell (haESC) approaches, which provide new platforms for gene function analysis, human disease modeling, and gene therapy. Here, we review the CRISPR/Cas9 and haESC technology for the generation of genetically modified mice and discuss the key challenges in the application of these approaches. PMID:27469251

  3. Enhancement in Motor Learning through Genetic Manipulation of the Lynx1 Gene

    PubMed Central

    Miwa, Julie M.; Walz, Andreas

    2012-01-01

    The cholinergic system is a neuromodulatory neurotransmitter system involved in a variety of brain processes, including learning and memory, attention, and motor processes, among others. The influence of nicotinic acetylcholine receptors of the cholinergic system are moderated by lynx proteins, which are GPI-anchored membrane proteins forming tight associations with nicotinic receptors. Previous studies indicate lynx1 inhibits nicotinic receptor function and limits neuronal plasticity. We sought to investigate the mechanism of action of lynx1 on nicotinic receptor function, through the generation of lynx mouse models, expressing a soluble version of lynx and comparing results to the full length overexpression. Using rotarod as a test for motor learning, we found that expressing a secreted variant of lynx leads to motor learning enhancements whereas overexpression of full-length lynx had no effect. Further, adult lynx1KO mice demonstrated comparable motor learning enhancements as the soluble transgenic lines, whereas previously, aged lynx1KO mice showed performance augmentation only with nicotine treatment. From this we conclude the motor learning is more sensitive to loss of lynx function, and that the GPI anchor plays a role in the normal function of the lynx protein. In addition, our data suggests that the lynx gene plays a modulatory role in the brain during aging, and that a soluble version of lynx has potential as a tool for adjusting cholinergic-dependent plasticity and learning mechanisms in the brain. PMID:23139735

  4. Association of elevated mutagenesis in the spleen with genetic susceptibility to induced plasmacytoma development in mice.

    PubMed

    Felix, K; Kelliher, K; Bornkamm, G W; Janz, S

    1998-04-15

    Using the phage lambdaLIZ-based transgenic in vivo mutagenesis assay, mean mutant rates were determined in the spleen of mice exposed to sustained oxidative stress and were found to be increased approximately 3-fold in plasmacytoma-susceptible BALB/c and C.D2-Idh1-Pep3 mice, but not in plasmacytoma-resistant DBA/2N mice. This finding suggests a correlation between the genetic susceptibility to inflammation-induced peritoneal plasmacytomagenesis and the phenotype of increased mutagenesis in lymphoid tissues, raising the possibility that plasmacytoma resistance genes may inhibit tumor development by minimizing oxidative mutagenesis in B cells. PMID:9563470

  5. Genetic and Proteomics Analyses of Space Flown Mice Skin

    NASA Astrophysics Data System (ADS)

    Terada, Masahiro; Takahashi, Rika; Yamada, Shin; Masaya, Seki; Higashibata, Akira; Majima, Hideyuki J.; Ohira, Yoshinobu; Mukai, Chiaki; Ishioka, Noriaki

    2013-02-01

    Many astronauts stay in the International Space Station (ISS) for a long period of time. Therefore, the development of astronaut health care technologies is very important. Especially, an understanding of the effects of the space environment, such as microgravity and radiation, on protein, gene, and mineral metabolism is important for developing countermeasures against the adverse effects experienced by astronauts who are in space for long periods of time. Since December 2009, the Japan Aerospace Exploration Agency (JAXA) has initiated a human research study to investigate the effects of long-term space flight on gene expression and mineral metabolism by analyzing hair samples from ISS crew members who have been in space (experiment nicknamed “HAIR”). As animal control experiments, we could have an opportunity to analyze rodents samples by participating the tissue sharing program of space-flown mice organized by Italian Space Agency (AGI) and National Aeronautics and Space Administration (NASA). It will reasonably complement human hair experiment because we able to conduct more detailed skin analysis which is enable in human experiment. The purpose of this flown-mice experiment is to study the effects of long-term exposure to space environment. In this experiment, we analyzed mice skin contained hair roots. The samples were taken from space-flown (3-month and 2-week) and 3-month hindlimb suspensioned and 3-month 2G exposed mice, and ground-control mice. For the skin contained hair roots, the extracted and amplified RNA was used to DNA microarray analysis, and was further analyzed with expression on the interesting genes by real time Reverse Transcription Polymerase Chain Reaction (RT-PCR) method. And the extracted protein was used to Mass Spectrometer analysis. Data analysis on the specimen are in progress.

  6. Chronic treatment with bark infusion from Croton cajucara lowers plasma triglyceride levels in genetic hyperlipidemic mice.

    PubMed

    Bighetti, Eliete J B; Souza-Brito, Alba R M; de Faria, Eliana C; Oliveira, Helena C F

    2004-06-01

    Aqueous infusion and preparations containing dehydrocrotonin (DHC) and essential oil from Croton cajucara bark were tested for plasma lipid-lowering effects in genetically modified hyperlipidemic mice. Two mouse models were tested: 1) primary hypercholesterolemia resulting from the LDL-receptor gene knockout, and 2) combined hyperlipidemia resulting from crosses of LDL-receptor knockout mice with transgenic mice overexpressing apolipo protein (apo) CIII and cholesteryl ester-transfer protein. Mice treated with bark infusion, DHC, essential oil, or placebos for 25 days showed no signals of toxicity as judged by biochemical tests for liver and kidney functions. The bark infusion reduced triglyceride plasma levels by 40%, while essential oil and DHC had no significant effects on plasma lipid levels. The bark infusion treatment promoted a redistribution of cholesterol among the lipoprotein fractions in combined hyperlipidemic mice. There was a marked reduction in the VLDL fraction and an increase in the HDL fraction, in such a way that the (VLDL + LDL)/HDL ratio was reduced by half. The bark infusion treatment did not modify cholesterol distribution in hypercholesterolemic mice. In conclusion, C. cajucara bark infusion reduced plasma triglycerides levels and promoted a redistribution of cholesterol among lipoproteins in genetically combined hyperlipidemic mice. These changes modify risk factors for the development of atherosclerotic diseases. PMID:15381962

  7. Genetic Manipulation of Glycogen Allocation Affects Replicative Lifespan in E. coli

    PubMed Central

    Röösli, Thomas; Bigosch, Colette; Ackermann, Martin

    2016-01-01

    In bacteria, replicative aging manifests as a difference in growth or survival between the two cells emerging from division. One cell can be regarded as an aging mother with a decreased potential for future survival and division, the other as a rejuvenated daughter. Here, we aimed at investigating some of the processes involved in aging in the bacterium Escherichia coli, where the two types of cells can be distinguished by the age of their cell poles. We found that certain changes in the regulation of the carbohydrate metabolism can affect aging. A mutation in the carbon storage regulator gene, csrA, leads to a dramatically shorter replicative lifespan; csrA mutants stop dividing once their pole exceeds an age of about five divisions. These old-pole cells accumulate glycogen at their old cell poles; after their last division, they do not contain a chromosome, presumably because of spatial exclusion by the glycogen aggregates. The new-pole daughters produced by these aging mothers are born young; they only express the deleterious phenotype once their pole is old. These results demonstrate how manipulations of nutrient allocation can lead to the exclusion of the chromosome and limit replicative lifespan in E. coli, and illustrate how mutations can have phenotypic effects that are specific for cells with old poles. This raises the question how bacteria can avoid the accumulation of such mutations in their genomes over evolutionary times, and how they can achieve the long replicative lifespans that have recently been reported. PMID:27093302

  8. Genetic Manipulation of Glycogen Allocation Affects Replicative Lifespan in E. coli.

    PubMed

    Boehm, Alex; Arnoldini, Markus; Bergmiller, Tobias; Röösli, Thomas; Bigosch, Colette; Ackermann, Martin

    2016-04-01

    In bacteria, replicative aging manifests as a difference in growth or survival between the two cells emerging from division. One cell can be regarded as an aging mother with a decreased potential for future survival and division, the other as a rejuvenated daughter. Here, we aimed at investigating some of the processes involved in aging in the bacterium Escherichia coli, where the two types of cells can be distinguished by the age of their cell poles. We found that certain changes in the regulation of the carbohydrate metabolism can affect aging. A mutation in the carbon storage regulator gene, csrA, leads to a dramatically shorter replicative lifespan; csrA mutants stop dividing once their pole exceeds an age of about five divisions. These old-pole cells accumulate glycogen at their old cell poles; after their last division, they do not contain a chromosome, presumably because of spatial exclusion by the glycogen aggregates. The new-pole daughters produced by these aging mothers are born young; they only express the deleterious phenotype once their pole is old. These results demonstrate how manipulations of nutrient allocation can lead to the exclusion of the chromosome and limit replicative lifespan in E. coli, and illustrate how mutations can have phenotypic effects that are specific for cells with old poles. This raises the question how bacteria can avoid the accumulation of such mutations in their genomes over evolutionary times, and how they can achieve the long replicative lifespans that have recently been reported. PMID:27093302

  9. A modified recombineering protocol for the genetic manipulation of gene clusters in Aspergillus fumigatus.

    PubMed

    Alcazar-Fuoli, Laura; Cairns, Timothy; Lopez, Jordi F; Zonja, Bozo; Pérez, Sandra; Barceló, Damià; Igarashi, Yasuhiro; Bowyer, Paul; Bignell, Elaine

    2014-01-01

    Genomic analyses of fungal genome structure have revealed the presence of physically-linked groups of genes, termed gene clusters, where collective functionality of encoded gene products serves a common biosynthetic purpose. In multiple fungal pathogens of humans and plants gene clusters have been shown to encode pathways for biosynthesis of secondary metabolites including metabolites required for pathogenicity. In the major mould pathogen of humans Aspergillus fumigatus, multiple clusters of co-ordinately upregulated genes were identified as having heightened transcript abundances, relative to laboratory cultured equivalents, during the early stages of murine infection. The aim of this study was to develop and optimise a methodology for manipulation of gene cluster architecture, thereby providing the means to assess their relevance to fungal pathogenicity. To this end we adapted a recombineering methodology which exploits lambda phage-mediated recombination of DNA in bacteria, for the generation of gene cluster deletion cassettes. By exploiting a pre-existing bacterial artificial chromosome (BAC) library of A. fumigatus genomic clones we were able to implement single or multiple intra-cluster gene replacement events at both subtelomeric and telomere distal chromosomal locations, in both wild type and highly recombinogenic A. fumigatus isolates. We then applied the methodology to address the boundaries of a gene cluster producing a nematocidal secondary metabolite, pseurotin A, and to address the role of this secondary metabolite in insect and mammalian responses to A. fumigatus challenge. PMID:25372385

  10. “Real time” genetic manipulation: a new tool for ecological field studies

    PubMed Central

    Schäfer, Martin; Brütting, Christoph; Gase, Klaus; Reichelt, Michael; Baldwin, Ian; Meldau, Stefan

    2014-01-01

    Summary Field experiments with transgenic plants often reveal the functional significance of genetic traits important for plant performance in their natural environments. Until now, only constitutive overexpression, ectopic expression and gene silencing methods have been used to analyze gene-related phenotypes in natural habitats. These methods do not allow sufficient control over gene expression to study ecological interactions in real-time, genetic traits playing essential roles in development, or dose-dependent effects. We applied the sensitive dexamethasone (DEX)-inducible pOp6/LhGR expression system to the ecological model plant Nicotiana attenuata and established a lanolin-based DEX application method to facilitate ectopic gene expression and RNAi mediated gene silencing in the field and under challenging conditions (e.g. high temperature, wind and UV radiation). Fully established field-grown plants were used to silence phytoene desaturase and thereby cause photobleaching only in specific plant sectors, and to activate expression of the cytokinin (CK) biosynthesis gene isopentenyl transferase (ipt). We used ipt expression to analyze the role of CK’s in both the glasshouse and field to understand resistance to the native herbivore Tupiocoris notatus, which attack plants at small spatial scales. By spatially restricting ipt expression and elevating CK levels in single leaves, T. notatus damage increased, demonstrating CK’s role in this plant-herbivore interaction at a small scale. As the arena of most ecological interactions is highly constrained in time and space, these tools will advance the genetic analysis of dynamic traits that matter for plant performance in nature. PMID:23906159

  11. 'Real time' genetic manipulation: a new tool for ecological field studies.

    PubMed

    Schäfer, Martin; Brütting, Christoph; Gase, Klaus; Reichelt, Michael; Baldwin, Ian; Meldau, Stefan

    2013-11-01

    Field experiments with transgenic plants often reveal the functional significance of genetic traits that are important for the performance of the plants in their natural environments. Until now, only constitutive overexpression, ectopic expression and gene silencing methods have been used to analyze gene-related phenotypes in natural habitats. These methods do not allow sufficient control over gene expression for the study of ecological interactions in real time, of genetic traits that play essential roles in development, or of dose-dependent effects. We applied the sensitive dexamethasone (DEX)-inducible pOp6/LhGR expression system to the ecological model plant Nicotiana attenuata and established a lanolin-based DEX application method to facilitate ectopic gene expression and RNA interference-mediated gene silencing in the field and under challenging conditions (e.g. high temperature, wind and UV radiation). Fully established field-grown plants were used to silence phytoene desaturase and thereby cause photobleaching only in specific plant sectors, and to activate expression of the cytokinin (CK) biosynthesis gene isopentenyl transferase (ipt). We used ipt expression to analyze the role of CKs in both the glasshouse and the field to understand resistance to the native herbivore Tupiocoris notatus, which attacks plants at small spatial scales. By spatially restricting ipt expression and elevating CK levels in single leaves, damage by T. notatus increased, demonstrating the role of CKs in this plant-herbivore interaction at a small scale. As the arena of most ecological interactions is highly constrained in time and space, these tools will advance the genetic analysis of dynamic traits that matter for plant performance in nature. PMID:23906159

  12. Characterization of organophosphorus hydrolases and the genetic manipulation of the phosphotriesterase from pseudomonas diminuta

    SciTech Connect

    Dave, K.I.; Miller, C.E.; Wild, J.R.

    1993-12-31

    There are a variety of enzymes which are specifically capable of hydrolyzing organophosphorus esters with different phosphoryl bonds from the typical phosphotriester bonds of common insecticidal neurotoxins (e.g. paraoxon or coumaphos) to the phosphonate-fluoride bonds of chemical warfare agents (e.g. soman or sarin). These enzymes comprise a diverse set of enzymes whose basic architecture and substrate specificities vary dramatically, yet they appear to be ubiquitous throughout nature. The most thoroughly studied of these enzymes is the organophosphate hydrolase (opd gene product) of Pseudomonas diminuta and Ftavobacterium sp. ATCC 27551, and the heterologous expression, post-translational modification, and genetic engineering studies undertaken with this enzyme are described.

  13. Genetic, hormonal, and metabolomic influences on social behavior and sex preference of XXY mice

    PubMed Central

    Erkkila, Krista; Lue, YanHe; Jentsch, J. David; Schwarcz, Monica Dorin; Abuyounes, Deena; Hikim, Amiya Sinha; Wang, Christina; Lee, Paul W.-N.; Swerdloff, Ronald S.

    2010-01-01

    XXY men (Klinefelter syndrome) are testosterone deficient, socially isolated, exhibit impaired gender identity, and may experience more homosexual behaviors. Here, we characterize social behaviors in a validated XXY mouse model to understand mechanisms. Sociability and gender preference were assessed by three-chambered choice tasks before and after castration and after testosterone replacement. Metabolomic activities of brain and blood were quantified through fractional synthesis rates of palmitate and ribose (GC-MS). XXY mice exhibit greater sociability than XY littermates, particularly for male mice. The differences in sociability disappear after matching androgen exposure. Intact XXY, compared with XY, mice prefer male mice odors when the alternatives are ovariectomized female mice odors, but they prefer estrous over male mice odors, suggesting that preference for male mice may be due to social, not sexual, cues. Castration followed by testosterone treatment essentially remove these preferences. Fractional synthesis rates of palmitate are higher in the hypothalamus, amygdala, and hippocampus of XXY compared with XY mice but not with ribose in these brain regions or palmitate in blood. Androgen ablation in XY mice increases fractional synthesis rates of fatty acids in the brain to levels indistinguishable from those in XXY mice. We conclude that intact XXY mice exhibit increased sociability, differences in gender preference for mice and their odors are due to social rather than sexual cues and, these differences are mostly related to androgen deficiency rather than genetics. Specific metabolic changes in brain lipids, which are also regulated by androgens, are observed in brain regions that are involved in these behaviors. PMID:20570823

  14. Mosquitocidal toxins of bacilli and their genetic manipulation for effective biological control of mosquitoes.

    PubMed Central

    Porter, A G; Davidson, E W; Liu, J W

    1993-01-01

    The identification, cloning, and characterization of protein toxins from various species of bacilli have demonstrated the existence of mosquitocidal toxins with different structures, mechanisms of action, and host ranges. A start has been made in understanding the polypeptide determinants of toxicity and insecticidal activity, and the purification of toxins from recombinant organisms may lead to the elucidation of their X-ray crystal structures and the cloning of brush border membrane receptors. The results of cloning mosquitocidal toxins in heterologous microorganisms show the potential of expanding the range of susceptible mosquito species by combining several toxins of different host specificity in one cell. Toxins have been expressed in new microorganisms with the potential for increasing potency by persisting at the larval feeding zone. The powerful tools of bacterial genetics are being applied to engineer genetically stable, persistent toxin expression and expand the insecticidal host ranges of Bacillus sphaericus and Bacillus thuringiensis strains. These techniques, together with modern formulation technology, should eventually lead to the construction of mosquitocidal microorganisms which are effective enough to have a real impact on mosquito-borne diseases. Images PMID:7905597

  15. Energy crops for biofuel feedstocks: facts and recent patents on genetic manipulation to improve biofuel crops.

    PubMed

    Kumar, Suresh

    2013-12-01

    Burning fossil-fuels to meet the global energy requirements by human being has intensified the concerns of increasing concentrations of greenhouse gases. Therefore, serious efforts are required to develop nonfossil-based renewable energy sources. Plants are more efficient in utilizing solar energy to convert it into biomass which can be used as feedstocks for biofuel production. Hence with the increasing demands of energy and the needs of cost-effective, sustainable production of fuels, it has become necessary to switch over to plant biomass as a renewable source of energy. Biofuels derived from more sustainable biological materials such as lignocellulosic plant residues, considered as second generation biofuels, are more dependable. However, there are technical challenges such as pretreatment and hydrolysis of lignocellulosic biomass to convert it into fermentable sugars. Plant genetic engineering has already proven its potential in modifying cell wall composition of plants for enhancing the efficiency of biofuel production. Interest and potential in the area are very much evident from the growing number of patents in the recent years on the subject. In this review, recent trends in genetic engineering of energy crops for biofuel production have been introduced, and strategies for the future developments have been discussed. PMID:24456235

  16. Genetic and biochemical manipulation of a broad-spectrum organophosphate degrading system. Final report

    SciTech Connect

    Wild, J.R.

    1994-08-01

    Recent studies on the plasmid-borne organophosphorus-degrading gene of Pseudomonas diminuta and its enzyme have sought to define both the genetic organization and the protein chemistry involved in this system. The bacterial gene encodes a single, unique enzyme, a phosphotriesterase (organophosphorus anhydrase), which is capable of hydrolyzing a wide spectrum of organophosphorus neurotoxins ranging from insecticides such a parathion, orthene, coumaphos and diazinon to mammalian neurotoxins such as diisopropylfluorophosphate (DFP), sarin, soman and mipafox. The organophosphorus degrading genes (opd) from two different plasmids in the soil bacteria P. diminuta and Flavobacterium have been sequenced andtheir structural organizations are being characterized. The cloned geneshave been expressed in a number of biological systems from bacteria to insect tissue culture, and the enzyme has been purified and characterized from several different sources. The catalytic reaction hasbeen determined to involve a stereospecific mechanism which proceeds by the direct nucleophilic attack of an activated water at the reaction center. The reaction rate approaches a diffusion limited catalysis at 2100/M/s and the enzyme is actively adsorbed to various column and particular matrices. This proposal will define the structure of the active site of the phosphotriesterase, evaluate its membrane signal sequence, and develop new genetic constructions to evaluate the heterologous expression/processing of the apoprotein.

  17. Genetic analysis of experimental allergic encephalomyelitis in mice

    SciTech Connect

    Baker, D.; Rosenwasser, O.A.; O`Neill, J.K.; Turk, J.L.

    1995-10-15

    Experimental allergic encephalomyelitis (EAE) is an autoimmune disease of the central nervous system that exhibits many pathologic similarities with multiple sclerosis. While products of the MHC are known to control the development of EAE, it is clear that non-MHC products also influence susceptibility. The chromosomal locations of these were investigated in selective crosses between MHC class II-compatible, EAE-susceptible Biozzi ABH, and low responder nonobese diabetic (NOD) mice. The disease was dominant and highly influenced by gender in the backcross one (BC{sub 1}) generation. Female mice were significantly more susceptible than male mice. Segregation of disease frequency of female animals in this cross suggested that EAE was controlled by a major locus. Although microsatellite-based exclusion mapping indicated that a number of regions on chromosomes 5, 6, 7, 8, 9, 10, 11, 12, 13, and 18 showed evidence of linkage (p<0.05) compared with expected random distributions of alleles, disease susceptibility was most strongly linked (p<0.05) to chromosome 7. However, by selectively analyzing animals that were either severely affected or almost normal, additional susceptibility loci were mapped on chromosomes 18 and 11 that were linked (p<0.001) to resistance and the development of severe disease, respectively. The data indicate a major locus on chromosome 7, affecting initiation and severity of EAE that is probably modified by several other unlinked loci. These localizations may provide candidate loci for the analysis of human autoimmune-demyelinating disease. 30 refs., 5 tabs.

  18. Genetic manipulation of lignin reduces recalcitrance and improves biomass ethanol production from switchgrass

    SciTech Connect

    Hamilton, Choo Yieng; Fu, Chunxiang; Xiao, Xirong; Ge, Yaxin; Chen, Fang; Bouton, Joseph; Foston, Marcus; Dixon, Richard A; Wang, Zeng-Yu; Mielenz, Jonathan R

    2011-01-01

    Switchgrass is a leading dedicated bioenergy feedstock because it is a native, high yielding, perennial prairie grass with broad cultivation range and low agronomic input requirements. Biomass conversion research has developed pilot scale processes for production of ethanol and other alcohols but they remain costly primarily due to the intrinsic recalcitrance of biomass. We show here that switchgrass genetic modification can produce normal plants that have reduced thermochemical and enzymatic recalcitrance. Downregulation of the switchgrass caffeic O-methyltransferase gene decreases lignin content modestly, reduces the syringyl to guaiacyl lignin monomer ratio and increases the ethanol yield by up to a third using conventional biomass fermentation processes. The downregulated lines have wild-type biomass yields but require reduced pretreatment severity and 300-400% lower cellulase dosages for equivalent product yields significantly lowering processing costs. Alternately, our modified transgenic switchgrass lines should yield significantly more fermentation chemicals per hectare under identical process conditions.

  19. Subchronic exposure to ethyl tertiary butyl ether resulting in genetic damage in Aldh2 knockout mice.

    PubMed

    Weng, Zuquan; Suda, Megumi; Ohtani, Katsumi; Mei, Nan; Kawamoto, Toshihiro; Nakajima, Tamie; Wang, Rui-Sheng

    2013-09-15

    Ethyl tertiary butyl ether (ETBE) is biofuel additive recently used in Japan and some other countries. Limited evidence shows that ETBE has low toxicity. Acetaldehyde (AA), however, as one primary metabolite of ETBE, is clearly genotoxic and has been considered to be a potential carcinogen. The aim of this study was to evaluate the effects of ALDH2 gene on ETBE-induced genotoxicity and metabolism of its metabolites after inhalation exposure to ETBE. A group of wild-type (WT) and Aldh2 knockout (KO) C57BL/6 mice were exposed to 500ppm ETBE for 1-6h, and the blood concentrations of ETBE metabolites, including AA, tert-butyl alcohol and 2-methyl-1,2-propanediol, were measured. Another group of mice of WT and KO were exposed to 0, 500, 1750, or 5000ppm ETBE for 6h/day with 5 days per weeks for 13 weeks. Genotoxic effects of ETBE in these mice were measured by the alkaline comet assay, 8-hydroxyguanine DNA-glycosylase modified comet assay and micronucleus test. With short-term exposure to ETBE, the blood concentrations of all the three metabolites in KO mice were significantly higher than the corresponding concentrations of those in WT mice of both sexes. After subchronic exposure to ETBE, there was significant increase in DNA damage in a dose-dependent manner in KO male mice, while only 5000ppm exposure significantly increased DNA damage in male WT mice. Overall, there was a significant sex difference in genetic damage in both genetic types of mice. These results showed that ALDH2 is involved in the detoxification of ETBE and lack of enzyme activity may greatly increase the sensitivity to the genotoxic effects of ETBE, and male mice were more sensitive than females. PMID:23810710

  20. GENETIC BACKGROUND BUT NOT METALLOTHIONEIN PHENOTYPE DICTATES SENSITIVITY TO CADMIUM-INDUCED TESTICULAR INJURY IN MICE

    EPA Science Inventory

    Genetic Background but not Metallothionein Phenotype Dictates Sensitivity to
    Cadmium-Induced Testicular Injury in Mice

    Jie Liu1,2, Chris Corton3, David J. Dix4, Yaping Liu1, Michael P. Waalkes2
    and Curtis D. Klaassen1

    ABSTRACT

    Parenteral administrati...

  1. Murine cytomegalovirus stimulates natural killer cell function but kills genetically resistant mice treated with radioactive strontium.

    PubMed Central

    Masuda, A; Bennett, M

    1981-01-01

    Treatment of C3H/St mice with 100 microCi of 89Sr weakened their genetic resistance to murine cytomegalovirus (MCMV) infection. The criteria utilized to detect increased susceptibility were: (i) survival of mice; (ii) numbers of MCMV-infected cells in the spleens and liver; and (iii) serum glutamic pyruvic transaminase levels. The natural killer (NK) cell activity of spleen cells from mice treated with 89Sr is very low. However, the NK activities of spleen cells of both normal and 89Sr-treated mice were greatly augmented 3 days after infection with MCMV. These NK cells lysed a variety of tumor cells and shared several features with conventional NK cells, but were not lysed by anti-Nk-1.2 serum (specific for NK cells) plus complement. Splenic adherent cells did not lyse tumor cells themselves but were necessary for the stimulation of NK cells by MCMV. The paradox of high NK cell function and poor survival in 89Sr-treated mice infected with MCMV was a surprise. We conclude that these augmented NK cells, of themselves, cannot account for the genetic resistance of C3H/St mice to infection with MCMV. Images PMID:6277794

  2. The role of osteopontin in D-galactosamine-induced liver injury in genetically obese mice

    SciTech Connect

    Kwon, Hyo-Jung; Won, Young-Suk; Yoon, Won-Kee; Nam, Ki-Hoan; Kim, Dae-Yong; Kim, Hyoung-Chin

    2010-02-01

    Various epidemiological studies have shown that obesity increases the risk of liver disease, but the precise mechanisms through which this occurs are poorly understood. In the present study, we hypothesized that osteopontin (OPN), an extracellular matrix and proinflammatory cytokine, has an important role in making obese mice more susceptible to inflammatory liver injury. After exposure of genetically obese ob/ob and db/db mice to a single dose of D-galactosamine (GalN), the plasma liver enzyme levels, histology and expression levels of cytokines and OPN were evaluated. The ob/ob and db/db mice, which were more sensitive to GalN-induced inflammatory liver injury compared with wild-type mice, had significantly higher plasma and hepatic OPN expression levels. Increased OPN expression was mainly found in hepatocytes and inflammatory cells and was correlated with markedly up-regulated interleukin (IL)-12 and IL-18 levels. Furthermore, pretreatment with a neutralizing OPN (nOPN) antibody attenuated the GalN-induced inflammatory liver injury in ob/ob and db/db mice, which was accompanied by significantly reduced macrophages recruitment and IL-12 and IL-18 productions. Taken together, these results suggest that up-regulated OPN expression is a contributing factor to increased susceptibility of genetically obese mice to GalN-induced liver injury by promoting inflammation and modulating immune response.

  3. Genetic Manipulation of Leishmania donovani to Explore the Involvement of Argininosuccinate Synthase in Oxidative Stress Management

    PubMed Central

    Sardar, Abul Hasan; Jardim, Armando; Ghosh, Ayan Kumar; Mandal, Abhishek; Das, Sushmita; Saini, Savita; Abhishek, Kumar; Singh, Ruby; Verma, Sudha; Kumar, Ajay; Das, Pradeep

    2016-01-01

    Reactive oxygen and nitrogen species (ROS and RNS) produced by the phagocytic cells are the most common arsenals used to kill the intracellular pathogens. However, Leishmania, an intracellular pathogen, has evolved mechanisms to survive by counterbalancing the toxic oxygen metabolites produced during infection. Polyamines, the major contributor in this anti-oxidant machinery, are largely dependent on the availability of L-arginine in the intracellular milieu. Argininosuccinate synthase (ASS) plays an important role as the rate-limiting step required for converting L-citrulline to argininosuccinate to provide arginine for an assortment of metabolic processes. Leishmania produce an active ASS enzyme, yet it has an incomplete urea cycle as it lacks an argininosuccinate lyase (ASL). There is no evidence for endogenous synthesis of L-arginine in Leishmania, which suggests that these parasites salvage L-arginine from extracellular milieu and makes the biological function of ASS and the production of argininosuccinate in Leishmania unclear. Our previous quantitative proteomic analysis of Leishmania promastigotes treated with sub-lethal doses of ROS, RNS, or a combination of both, led to the identification of several differentially expressed proteins which included ASS. To assess the involvement of ASS in stress management, a mutant cell line with greatly reduced ASS activity was created by a double-targeted gene replacement strategy in L. donovani promastigote. Interestingly, LdASS is encoded by three copies of allele, but Western blot analysis showed the third allele did not appear to express ASS. The free thiol levels in the mutant LdASS-/-/+ cell line were decreased. Furthermore, the cell viability in L-arginine depleted medium was greatly attenuated on exposure to different stress environments and was adversely impacted in its ability to infect mice. These findings suggest that ASS is important for Leishmania donovani to counterbalance the stressed environments

  4. Genetic Manipulation of Leishmania donovani to Explore the Involvement of Argininosuccinate Synthase in Oxidative Stress Management.

    PubMed

    Sardar, Abul Hasan; Jardim, Armando; Ghosh, Ayan Kumar; Mandal, Abhishek; Das, Sushmita; Saini, Savita; Abhishek, Kumar; Singh, Ruby; Verma, Sudha; Kumar, Ajay; Das, Pradeep

    2016-03-01

    Reactive oxygen and nitrogen species (ROS and RNS) produced by the phagocytic cells are the most common arsenals used to kill the intracellular pathogens. However, Leishmania, an intracellular pathogen, has evolved mechanisms to survive by counterbalancing the toxic oxygen metabolites produced during infection. Polyamines, the major contributor in this anti-oxidant machinery, are largely dependent on the availability of L-arginine in the intracellular milieu. Argininosuccinate synthase (ASS) plays an important role as the rate-limiting step required for converting L-citrulline to argininosuccinate to provide arginine for an assortment of metabolic processes. Leishmania produce an active ASS enzyme, yet it has an incomplete urea cycle as it lacks an argininosuccinate lyase (ASL). There is no evidence for endogenous synthesis of L-arginine in Leishmania, which suggests that these parasites salvage L-arginine from extracellular milieu and makes the biological function of ASS and the production of argininosuccinate in Leishmania unclear. Our previous quantitative proteomic analysis of Leishmania promastigotes treated with sub-lethal doses of ROS, RNS, or a combination of both, led to the identification of several differentially expressed proteins which included ASS. To assess the involvement of ASS in stress management, a mutant cell line with greatly reduced ASS activity was created by a double-targeted gene replacement strategy in L. donovani promastigote. Interestingly, LdASS is encoded by three copies of allele, but Western blot analysis showed the third allele did not appear to express ASS. The free thiol levels in the mutant LdASS-/-/+ cell line were decreased. Furthermore, the cell viability in L-arginine depleted medium was greatly attenuated on exposure to different stress environments and was adversely impacted in its ability to infect mice. These findings suggest that ASS is important for Leishmania donovani to counterbalance the stressed environments

  5. Identification of genetic factors that modify motor performance and body weight using Collaborative Cross mice

    SciTech Connect

    Mao, Jian -Hua; Langley, Sasha A.; Huang, Yurong; Hang, Michael; Bouchard, Kristofer E.; Celniker, Susan E.; Brown, James B.; Jansson, Janet K.; Karpen, Gary H.; Snijders, Antoine M.

    2015-11-09

    Evidence has emerged that suggests a link between motor deficits, obesity and many neurological disorders. However, the contributing genetic risk factors are poorly understood. Here we used the Collaborative Cross (CC), a large panel of newly inbred mice that captures 90% of the known variation among laboratory mice, to identify the genetic loci controlling rotarod performance and its relationship with body weight in a cohort of 365 mice across 16 CC strains. Body weight and rotarod performance varied widely across CC strains and were significantly negatively correlated. Genetic linkage analysis identified 14 loci that were associated with body weight. However, 45 loci affected rotarod performance, seven of which were also associated with body weight, suggesting a strong link at the genetic level. As a result, we show that genes identified in this study overlap significantly with those related to neurological disorders and obesity found in human GWA studies. In conclusion, our results provide a genetic framework for studies of the connection between body weight, the central nervous system and behavior.

  6. Identification of genetic factors that modify motor performance and body weight using Collaborative Cross mice

    DOE PAGESBeta

    Mao, Jian -Hua; Langley, Sasha A.; Huang, Yurong; Hang, Michael; Bouchard, Kristofer E.; Celniker, Susan E.; Brown, James B.; Jansson, Janet K.; Karpen, Gary H.; Snijders, Antoine M.

    2015-11-09

    Evidence has emerged that suggests a link between motor deficits, obesity and many neurological disorders. However, the contributing genetic risk factors are poorly understood. Here we used the Collaborative Cross (CC), a large panel of newly inbred mice that captures 90% of the known variation among laboratory mice, to identify the genetic loci controlling rotarod performance and its relationship with body weight in a cohort of 365 mice across 16 CC strains. Body weight and rotarod performance varied widely across CC strains and were significantly negatively correlated. Genetic linkage analysis identified 14 loci that were associated with body weight. However,more » 45 loci affected rotarod performance, seven of which were also associated with body weight, suggesting a strong link at the genetic level. As a result, we show that genes identified in this study overlap significantly with those related to neurological disorders and obesity found in human GWA studies. In conclusion, our results provide a genetic framework for studies of the connection between body weight, the central nervous system and behavior.« less

  7. Identification of genetic factors that modify motor performance and body weight using Collaborative Cross mice

    PubMed Central

    Mao, Jian-Hua; Langley, Sasha A.; Huang, Yurong; Hang, Michael; Bouchard, Kristofer E.; Celniker, Susan E.; Brown, James B.; Jansson, Janet K.; Karpen, Gary H.; Snijders, Antoine M.

    2015-01-01

    Evidence has emerged that suggests a link between motor deficits, obesity and many neurological disorders. However, the contributing genetic risk factors are poorly understood. Here we used the Collaborative Cross (CC), a large panel of newly inbred mice that captures 90% of the known variation among laboratory mice, to identify the genetic loci controlling rotarod performance and its relationship with body weight in a cohort of 365 mice across 16 CC strains. Body weight and rotarod performance varied widely across CC strains and were significantly negatively correlated. Genetic linkage analysis identified 14 loci that were associated with body weight. However, 45 loci affected rotarod performance, seven of which were also associated with body weight, suggesting a strong link at the genetic level. Lastly, we show that genes identified in this study overlap significantly with those related to neurological disorders and obesity found in human GWA studies. In conclusion, our results provide a genetic framework for studies of the connection between body weight, the central nervous system and behavior. PMID:26548763

  8. Indirect genetic effects for growth rate in domestic pigs alter aggressive and manipulative biting behaviour.

    PubMed

    Camerlink, Irene; Ursinus, Winanda W; Bijma, Piter; Kemp, Bas; Bolhuis, J Elizabeth

    2015-01-01

    Indirect genetic effects (IGEs) are heritable effects of an individual on phenotypic values of others, and may result from social interactions. We determined the behavioural consequences of selection for IGEs for growth (IGEg) in pigs in a G × E treatment design. Pigs (n = 480) were selected for high versus low IGEg with a contrast of 14 g average daily gain and were housed in either barren or straw-enriched pens (n = 80). High IGEg pigs showed from 8 to 23 weeks age 40% less aggressive biting (P = 0.006), 27% less ear biting (P = 0.03), and 40% less biting on enrichment material (P = 0.005). High IGEg pigs had a lower tail damage score (high 2.0; low 2.2; P = 0.004), and consumed 30 % less jute sacks (P = 0.002). Selection on high IGEg reduced biting behaviours additive to the, generally much larger, effects of straw-bedding (P < 0.01), with no G × E interactions. These results show opportunities to reduce harmful biting behaviours in pigs. PMID:25227986

  9. Molecular toolbox for genetic manipulation of the stalked budding bacterium Hyphomonas neptunium.

    PubMed

    Jung, Alexandra; Eisheuer, Sabrina; Cserti, Emöke; Leicht, Oliver; Strobel, Wolfgang; Möll, Andrea; Schlimpert, Susan; Kühn, Juliane; Thanbichler, Martin

    2015-01-01

    The alphaproteobacterium Hyphomonas neptunium proliferates by a unique budding mechanism in which daughter cells emerge from the end of a stalk-like extension emanating from the mother cell body. Studies of this species so far have been hampered by the lack of a genetic system and of molecular tools allowing the regulated expression of target genes. Based on microarray analyses, this work identifies two H. neptunium promoters that are activated specifically by copper and zinc. Functional analyses show that they have low basal activity and a high dynamic range, meeting the requirements for use as a multipurpose expression system. To facilitate their application, the two promoters were incorporated into a set of integrative plasmids, featuring a choice of two different selection markers and various fluorescent protein genes. These constructs enable the straightforward generation and heavy metal-inducible synthesis of fluorescent protein fusions in H. neptunium, thereby opening the door to an in-depth analysis of polar growth and development in this species. PMID:25398860

  10. Molecular Toolbox for Genetic Manipulation of the Stalked Budding Bacterium Hyphomonas neptunium

    PubMed Central

    Jung, Alexandra; Eisheuer, Sabrina; Cserti, Emöke; Leicht, Oliver; Strobel, Wolfgang; Möll, Andrea; Schlimpert, Susan; Kühn, Juliane

    2014-01-01

    The alphaproteobacterium Hyphomonas neptunium proliferates by a unique budding mechanism in which daughter cells emerge from the end of a stalk-like extension emanating from the mother cell body. Studies of this species so far have been hampered by the lack of a genetic system and of molecular tools allowing the regulated expression of target genes. Based on microarray analyses, this work identifies two H. neptunium promoters that are activated specifically by copper and zinc. Functional analyses show that they have low basal activity and a high dynamic range, meeting the requirements for use as a multipurpose expression system. To facilitate their application, the two promoters were incorporated into a set of integrative plasmids, featuring a choice of two different selection markers and various fluorescent protein genes. These constructs enable the straightforward generation and heavy metal-inducible synthesis of fluorescent protein fusions in H. neptunium, thereby opening the door to an in-depth analysis of polar growth and development in this species. PMID:25398860

  11. CRISPR-Cas: New Tools for Genetic Manipulations from Bacterial Immunity Systems.

    PubMed

    Jiang, Wenyan; Marraffini, Luciano A

    2015-01-01

    Prokaryotic CRISPR-Cas loci encode proteins that function as an adaptive immune system against infectious viruses and plasmids. Immunity is mediated by Cas nucleases and small RNA guides, which specify a cleavage site within the genome of the invader. In type II CRISPR-Cas systems, the RNA-guided Cas9 nuclease cleaves the DNA. Cas9 can be reprogrammed to create double-strand DNA breaks in the genomes of a variety of organisms, from bacteria to human cells. Repair of Cas9 lesions by homologous recombination or nonhomologous end joining mechanisms can lead to the introduction of specific nucleotide substitutions or indel mutations, respectively. Furthermore, a nuclease-null Cas9 has been developed to regulate endogenous gene expression and to label genomic loci in living cells. Targeted genome editing and gene regulation mediated by Cas9 are easy to program, scale, and multiplex, allowing researchers to decipher the causal link between genetic and phenotypic variation. In this review, we describe the most notable applications of Cas9 in basic biology, translational medicine, synthetic biology, biotechnology, and other fields. PMID:26209264

  12. Mouse Sperm Cryopreservation and Recovery of Genetically Modified Mice.

    PubMed

    Low, Benjamin E; Taft, Rob A; Wiles, Michael V

    2016-01-01

    Highly definable genetically, the humble mouse is the "reagent" mammal of choice with which to probe and begin to understand the human condition in all its complexities. With the recent advance in direct genome editing via targeted nucleases, e.g., TALEN and CRISPR/Cas9, the possibilities in using these sophisticated tools have increased substantially leading to a massive increase in the variety of strain numbers of genetically modified lines. With this increase comes a greater need to economically and creatively manage their numbers. Further, once characterized, lines may be of limited use but still need to be archived in a format allowing their rapid resurrection. Further, maintaining colonies on "the shelf" is financially draining and carries potential risks including natural disaster loss, disease, and strain contamination. Here we outline a simple and economic protocol to cryopreserve mouse sperm from many different genetic backgrounds, and outline its recovery via in vitro fertilization (IVF). The combined use of sperm cryopreservation and IVF now allows a freedom and versatility in mouse management facilitating rapid line close down with the option to later recover and rapidly expand as needed. PMID:27150083

  13. [Genetic differentiation of Caucasian wood mice: comparison of isozymic, chromosomal and molecular divergence].

    PubMed

    Chelomina, G N; Pavlenko, M V; Kartavtseva, I V; Boeskorov, G G; Liapunova, E A; Vorontsov, N N

    1998-02-01

    Data on the complex genetic analysis of three sympatric species of Caucasian wood mice, Apodemus ponticus, A. fulvipectus, and A. uralensis are presented. A high degree of genetic differentiation at the isozymic, karyological and molecular (nuclear DNA) levels was revealed. The genetic distances between each pair of species varied significantly within a wide range depending on the analyzed level of the organization of genetic material. Mean values of genetic divergence from one species to another were also variable. These findings indicated that evolution of chromosomes was slower than that of isozymes, and the degree of species divergence was similar on cytogenetic and molecular levels. They also suggested that the rates of species evolution could vary in different phyletic lineages and on different levels of organization. Some phyletic lineages of Apodemus could be distinguished by different directions of evolution. PMID:9589852

  14. Validated Liquid Culture Monitoring System for Lifespan Extension of Caenorhabditis elegans through Genetic and Dietary Manipulations.

    PubMed

    Win, Myat Thu Thu; Yamamoto, Yasuhiko; Munesue, Seiichi; Han, Dong; Harada, Shin-Ichi; Yamamoto, Hiroshi

    2013-08-01

    Nutritional and genetic factors influence aging and life expectancy. The reduction of food intake without malnutrition, referred to caloric restriction (CR), has been shown to increase lifespan in a wide variety of species. The nematode Caenorhabditis elegans (C. elegans) is one of the principle models with which to study the biology of aging and search for anti-aging compounds. In this study, we validated and optimized a high-throughput liquid culture system to monitor C. elegans lifespan with minimized mechanical stress. We used alive and ultraviolet (UV)-killed Escherichia coli (E. coli) OP50 at 10(8) or 10(9) colony-forming units (cfu)/ml to feed Bristol N2 wild-type (WT) and mutant worms of a well-characterized insulin/insulin-like growth factor signaling (ILS) pathway: the insulin receptor homolog daf-2 (e1370), phosphatidylinositol 3-kinase age-1 (hx546), and transcriptional factor FOXO homolog daf-16 (mu86 and mgDf50). Compared with alive E. coli at 10(9) cfu/ml, supplementations of alive E. coli at 10(8) cfu/ml or UV-killed E. coli at 10(9) cfu/ml dramatically prolonged lifespan in WT and age-1 mutants, and to a lesser extent, in daf-2 and daf-16 mutants, suggesting that signaling pathways in CR and ILS do not overlap fully. Feeding 10(8) cfu/ml UV-killed E. coli, which led to maximally saturated longevity in WT and daf-2 mutant, can prolonged lifespan in age-1, but not daf-16, mutants. This approach will be useful for investigating the biology of aging, physiological responses and gene functions under CR conditions and also for screening pharmacologic compounds to extend lifespan or affect other biologic processes. PMID:23936742

  15. Changes in Gene Expression Foreshadow Diet-Induced Obesity in Genetically Identical Mice

    PubMed Central

    Koza, Robert A; Nikonova, Larissa; Hogan, Jessica; Rim, Jong-Seop; Mendoza, Tamra; Faulk, Christopher; Skaf, Jihad; Kozak, Leslie P

    2006-01-01

    High phenotypic variation in diet-induced obesity in male C57BL/6J inbred mice suggests a molecular model to investigate non-genetic mechanisms of obesity. Feeding mice a high-fat diet beginning at 8 wk of age resulted in a 4-fold difference in adiposity. The phenotypes of mice characteristic of high or low gainers were evident by 6 wk of age, when mice were still on a low-fat diet; they were amplified after being switched to the high-fat diet and persisted even after the obesogenic protocol was interrupted with a calorically restricted, low-fat chow diet. Accordingly, susceptibility to diet-induced obesity in genetically identical mice is a stable phenotype that can be detected in mice shortly after weaning. Chronologically, differences in adiposity preceded those of feeding efficiency and food intake, suggesting that observed difference in leptin secretion is a factor in determining phenotypes related to food intake. Gene expression analyses of adipose tissue and hypothalamus from mice with low and high weight gain, by microarray and qRT-PCR, showed major changes in the expression of genes of Wnt signaling and tissue re-modeling in adipose tissue. In particular, elevated expression of SFRP5, an inhibitor of Wnt signaling, the imprinted gene MEST and BMP3 may be causally linked to fat mass expansion, since differences in gene expression observed in biopsies of epididymal fat at 7 wk of age (before the high-fat diet) correlated with adiposity after 8 wk on a high-fat diet. We propose that C57BL/6J mice have the phenotypic characteristics suitable for a model to investigate epigenetic mechanisms within adipose tissue that underlie diet-induced obesity. PMID:16733553

  16. Genetic deletion of chemokine receptor Ccr7 exacerbates atherogenesis in ApoE-deficient mice

    PubMed Central

    Wan, Wuzhou; Lionakis, Michail S.; Liu, Qian; Roffê, Ester; Murphy, Philip M.

    2013-01-01

    Aims Recent evidence suggests that both Ccr7 and its ligands, Ccl19 and Ccl21, are present in mouse and human atherosclerotic plaques; however, the role of Ccr7 in atherogenesis is still controversial. Here, we addressed this question by using the classic apolipoprotein E-deficient (ApoE−/−) mouse model of atherosclerosis. Methods and results Ccr7−/−ApoE−/− double knockout mice and Ccr7+/+ApoE−/− littermates were generated and maintained on a high-fat Western diet for 8 weeks to induce atherosclerosis. Ccr7−/−ApoE−/− mice showed an ∼80% increase in atherosclerotic lesion size in the whole aorta and a two-fold increase in the aortic root compared with Ccr7+/+ApoE−/− mice. Ccr7−/−ApoE−/− mice had increased T cells in the blood, bone marrow, and spleen, as well as in atherosclerotic lesions. Competitive repopulation experiments revealed that T cells from Ccr7−/−ApoE−/− mice migrated poorly into lymph nodes but better into mouse aortas compared with T cells from Ccr7+/+ApoE−/− mice. Transplantation of the bone marrow from Ccr7−/−ApoE−/− mice into lethally irradiated Ccr7+/+ApoE−/− mice resulted in ∼60% more atherosclerotic lesions compared with Ccr7+/+ApoE−/− donor bone marrow, suggesting that exacerbation was mediated by a Ccr7+ bone marrow-derived cell(s). Furthermore, in Ccr7−/−ApoE−/− mice the serum level of IL-12 was markedly increased, whereas the level of transforming growth factor beta (TGF-β) was significantly decreased, suggesting an imbalance of T cell responses in these mice. Conclusion Our data suggest that genetic deletion of Ccr7 exacerbates atherosclerosis by increasing T cell accumulation in atherosclerotic lesions. PMID:23180724

  17. Induction of plasmacytomas in genetically susceptible mice with silicone gels.

    PubMed

    Potter, M; Morrison, S; Miller, F

    1995-01-01

    Silicone gels injected intraperitoneally into strains of mice related to BALB/c develop plasmacytomas in approximately the same numbers and with similar phenotypes as previously obtained with pristane. Silicone gels produce few side effects and are well tolerated for long periods. Silicone gels contain several components that are potentially biologically active: residual vinyl groups and platinum. Microscopic and histological evidence suggests the silicone gel is degraded over a long period of time. Preliminary studies with long chain liquid dimethylpolysiloxanes with viscosities of 1000 cSt and 12,500 cSt have not produced plasmacytomas as yet. The plasmacytomagenic action of the gel appears to be due to the release of liquids from the gel matrix. PMID:7895524

  18. The genetic architecture of NAFLD among inbred strains of mice

    PubMed Central

    Hui, Simon T; Parks, Brian W; Org, Elin; Norheim, Frode; Che, Nam; Pan, Calvin; Castellani, Lawrence W; Charugundla, Sarada; Dirks, Darwin L; Psychogios, Nikolaos; Neuhaus, Isaac; Gerszten, Robert E; Kirchgessner, Todd; Gargalovic, Peter S; Lusis, Aldons J

    2015-01-01

    To identify genetic and environmental factors contributing to the pathogenesis of non-alcoholic fatty liver disease, we examined liver steatosis and related clinical and molecular traits in more than 100 unique inbred mouse strains, which were fed a diet rich in fat and carbohydrates. A >30-fold variation in hepatic TG accumulation was observed among the strains. Genome-wide association studies revealed three loci associated with hepatic TG accumulation. Utilizing transcriptomic data from the liver and adipose tissue, we identified several high-confidence candidate genes for hepatic steatosis, including Gde1, a glycerophosphodiester phosphodiesterase not previously implicated in triglyceride metabolism. We confirmed the role of Gde1 by in vivo hepatic over-expression and shRNA knockdown studies. We hypothesize that Gde1 expression increases TG production by contributing to the production of glycerol-3-phosphate. Our multi-level data, including transcript levels, metabolite levels, and gut microbiota composition, provide a framework for understanding genetic and environmental interactions underlying hepatic steatosis. DOI: http://dx.doi.org/10.7554/eLife.05607.001 PMID:26067236

  19. Gene Overexpression and RNA Silencing Tools for the Genetic Manipulation of the S-(+)-Abscisic Acid Producing Ascomycete Botrytis cinerea

    PubMed Central

    Ding, Zhong-Tao; Zhang, Zhi; Luo, Di; Zhou, Jin-Yan; Zhong, Juan; Yang, Jie; Xiao, Liang; Shu, Dan; Tan, Hong

    2015-01-01

    The phytopathogenic ascomycete Botrytis cinerea produces several secondary metabolites that have biotechnical significance and has been particularly used for S-(+)-abscisic acid production at the industrial scale. To manipulate the expression levels of specific secondary metabolite biosynthetic genes of B. cinerea with Agrobacterium tumefaciens-mediated transformation system, two expression vectors (pCBh1 and pCBg1 with different selection markers) and one RNA silencing vector, pCBSilent1, were developed with the In-Fusion assembly method. Both expression vectors were highly effective in constitutively expressing eGFP, and pCBSilent1 effectively silenced the eGFP gene in B. cinerea. Bcaba4, a gene suggested to participate in ABA biosynthesis in B. cinerea, was then targeted for gene overexpression and RNA silencing with these reverse genetic tools. The overexpression of bcaba4 dramatically induced ABA formation in the B. cinerea wild type strain Bc-6, and the gene silencing of bcaba4 significantly reduced ABA-production in an ABA-producing B. cinerea strain. PMID:25955649

  20. Gene Overexpression and RNA Silencing Tools for the Genetic Manipulation of the S-(+)-Abscisic Acid Producing Ascomycete Botrytis cinerea.

    PubMed

    Ding, Zhong-Tao; Zhang, Zhi; Luo, Di; Zhou, Jin-Yan; Zhong, Juan; Yang, Jie; Xiao, Liang; Shu, Dan; Tan, Hong

    2015-01-01

    The phytopathogenic ascomycete Botrytis cinerea produces several secondary metabolites that have biotechnical significance and has been particularly used for S-(+)-abscisic acid production at the industrial scale. To manipulate the expression levels of specific secondary metabolite biosynthetic genes of B. cinerea with Agrobacterium tumefaciens-mediated transformation system, two expression vectors (pCBh1 and pCBg1 with different selection markers) and one RNA silencing vector, pCBSilent1, were developed with the In-Fusion assembly method. Both expression vectors were highly effective in constitutively expressing eGFP, and pCBSilent1 effectively silenced the eGFP gene in B. cinerea. Bcaba4, a gene suggested to participate in ABA biosynthesis in B. cinerea, was then targeted for gene overexpression and RNA silencing with these reverse genetic tools. The overexpression of bcaba4 dramatically induced ABA formation in the B. cinerea wild type strain Bc-6, and the gene silencing of bcaba4 significantly reduced ABA-production in an ABA-producing B. cinerea strain. PMID:25955649

  1. Generating double knockout mice to model genetic intervention for diabetic cardiomyopathy in humans.

    PubMed

    Chavali, Vishalakshi; Nandi, Shyam Sundar; Singh, Shree Ram; Mishra, Paras Kumar

    2014-01-01

    Diabetes is a rapidly increasing disease that enhances the chances of heart failure twofold to fourfold (as compared to age and sex matched nondiabetics) and becomes a leading cause of morbidity and mortality. There are two broad classifications of diabetes: type1 diabetes (T1D) and type2 diabetes (T2D). Several mice models mimic both T1D and T2D in humans. However, the genetic intervention to ameliorate diabetic cardiomyopathy in these mice often requires creating double knockout (DKO). In order to assess the therapeutic potential of a gene, that specific gene is either overexpressed (transgenic expression) or abrogated (knockout) in the diabetic mice. If the genetic mice model for diabetes is used, it is necessary to create DKO with transgenic/knockout of the target gene to investigate the specific role of that gene in pathological cardiac remodeling in diabetics. One of the important genes involved in extracellular matrix (ECM) remodeling in diabetes is matrix metalloproteinase-9 (Mmp9). Mmp9 is a collagenase that remains latent in healthy hearts but induced in diabetic hearts. Activated Mmp9 degrades extracellular matrix (ECM) and increases matrix turnover causing cardiac fibrosis that leads to heart failure. Insulin2 mutant (Ins2+/-) Akita is a genetic model for T1D that becomes diabetic spontaneously at the age of 3-4 weeks and show robust hyperglycemia at the age of 10-12 weeks. It is a chronic model of T1D. In Ins2+/- Akita, Mmp9 is induced. To investigate the specific role of Mmp9 in diabetic hearts, it is necessary to create diabetic mice where Mmp9 gene is deleted. Here, we describe the method to generate Ins2+/-/Mmp9-/- (DKO) mice to determine whether the abrogation of Mmp9 ameliorates diabetic cardiomyopathy. PMID:25064116

  2. Modifying Behavioral Phenotypes in Fmr1 KO Mice: Genetic Background Differences Reveal Autistic-Like Responses

    PubMed Central

    Spencer, Corinne M.; Alekseyenko, Olga; Hamilton, Shannon M.; Thomas, Alexia M.; Serysheva, Ekaterina; Yuva-Paylor, Lisa A.; Paylor, Richard

    2010-01-01

    Scientific Abstract Fragile X syndrome (FXS) is the most common inherited form of intellectual disability in humans. In addition to cognitive impairment, patients may exhibit hyperactivity, attention deficits, social difficulties and anxiety, and autistic-like behaviors. The degree to which patients display these behaviors varies considerably and is influenced by family history, suggesting that genetic modifiers play a role in the expression of behaviors in FXS. Several studies have examined behavior in a mouse model of FXS in which the Fmr1 gene has been ablated. Most of those studies were done in Fmr1 knockout mice on a pure C57BL/6 or FVB strain background. To gain a better understanding of the effects of genetic background on behaviors resulting from the loss of Fmr1 gene expression, we generated F1 hybrid lines from female Fmr1 heterozygous mice on a pure C57BL/6J background bred with male Fmr1 wild-type mice of various background strains (A/J, DBA/2J, FVB/NJ, 129S1/SvImJ and CD-1). Male Fmr1 knockout and wild-type littermates from each line were examined in an extensive behavioral test battery. Results clearly indicate that multiple behavioral responses are dependent on genetic background, including autistic-like traits that are present on limited genetic backgrounds. This approach has allowed us to identify improved models for different behavioral symptoms present in FXS including autistic-like traits. PMID:21268289

  3. Effects of voluntary activity and genetic selection on muscle metabolic capacities in house mice Mus domesticus.

    PubMed

    Houle-Leroy, P; Garland, T; Swallow, J G; Guderley, H

    2000-10-01

    Selective breeding is an important tool in behavioral genetics and evolutionary physiology, but it has rarely been applied to the study of exercise physiology. We are using artificial selection for increased wheel-running behavior to study the correlated evolution of locomotor activity and physiological determinants of exercise capacity in house mice. We studied enzyme activities and their response to voluntary wheel running in mixed hindlimb muscles of mice from generation 14, at which time individuals from selected lines ran more than twice as many revolutions per day as those from control (unselected) lines. Beginning at weaning and for 8 wk, we housed mice from each of four replicate selected lines and four replicate control lines with access to wheels that were free to rotate (wheel-access group) or locked (sedentary group). Among sedentary animals, mice from selected lines did not exhibit a general increase in aerobic capacities: no mitochondrial [except pyruvate dehydrogenase (PDH)] or glycolytic enzyme activity was significantly (P < 0.05) higher than in control mice. Sedentary mice from the selected lines exhibited a trend for higher muscle aerobic capacities, as indicated by higher levels of mitochondrial (cytochrome-c oxidase, carnitine palmitoyltransferase, citrate synthase, and PDH) and glycolytic (hexokinase and phosphofructokinase) enzymes, with concomitant lower anaerobic capacities, as indicated by lactate dehydrogenase (especially in male mice). Consistent with previous studies of endurance training in rats via voluntary wheel running or forced treadmill exercise, cytochrome-c oxidase, citrate synthase, and carnitine palmitoyltransferase activity increased in the wheel-access groups for both genders; hexokinase also increased in both genders. Some enzymes showed gender-specific responses: PDH and lactate dehydrogenase increased in wheel-access male but not female mice, and glycogen phosphorylase decreased in female but not in male mice. Two

  4. Accentuated response to phenylhydrazine and erythropoietin in mice genetically impaired for their GATA-1 expression (GATA-1(low) mice).

    PubMed

    Vannucchi, A M; Bianchi, L; Cellai, C; Paoletti, F; Carrai, V; Calzolari, A; Centurione, L; Lorenzini, R; Carta, C; Alfani, E; Sanchez, M; Migliaccio, G; Migliaccio, A R

    2001-05-15

    The response of mice genetically unable to up-regulate GATA-1 expression (GATA-1(low) mice) to acute (phenylhydrazine [PHZ]-induced anemia) and chronic (in vivo treatment for 5 days with 10 U erythropoietin [EPO] per mouse) erythroid stimuli was investigated. Adult GATA-1(low) mice are profoundly thrombocytopenic (platelet counts [x 10(9)/L] 82.0 +/- 28.0 vs 840 +/- 170.0 of their control littermates, P <.001) but have a normal hematocrit (Hct) (approximately.47 proportion of 1.0 [47%]). The spleens of these mutants are 2.5-fold larger than normal and contain 5-fold more megakaryocytic (4A5(+)), erythroid (TER-119(+)), and bipotent (erythroid/megakaryocytic, TER-119(+)/4A5(+)) precursor cells. Both the marrow and the spleen of these animals contain higher frequencies of burst-forming units-erythroid (BFU-E)- and colony-forming units-erythroid (CFU-E)-derived colonies (2-fold and 6-fold, respectively) than their normal littermates. The GATA-1(low) mice recover 2 days faster from the PHZ-induced anemia than their normal littermates (P <.01). In response to EPO, the Hct of the GATA-1(low) mice raised to.68 proportion of 1.0 (68%) vs the.55 proportion of 1.0 (55%) reached by the controls (P <.01). Both the GATA-1(low) and the normal mice respond to PHZ and EPO with similar (2- to 3-fold) increases in size and cellularity of the spleen (increases are limited mostly to cells, both progenitor and precursor, of the erythroid lineage). However, in spite of the similar relative cellular increases, the increases of all these cell populations are significantly higher, in absolute cell numbers, in the mutant than in the wild-type mice. In conclusion, the GATA-1(low) mutation increases the magnitude of the response to erythroid stimuli as a consequence of the expansion of the erythroid progenitor cells in their spleen. PMID:11342429

  5. Cadmium-induced genetic instability in mice testis.

    PubMed

    Oliveira, Helena; Lopes, Tina; Almeida, Tânia; Pereira, Maria de Lourdes; Santos, Conceição

    2012-12-01

    Cadmium is a well recognized carcinogenic, cytotoxic and mutagenic transition metal. Recent evidence suggests that the proteins participating in the DNA repair systems, especially in excision and mismatch repair (MMR), are sensitive targets of cadmium toxicity. Microsatellite instability (MSI) is regarded as one of the phenotypes of defective DNA MMR and, consequently, as a marker of high risk for cancer. The purpose of this work is to determine whether cadmium, in the form of cadmium chloride (CdCl(2)), may induce microsatellite mutations in murine testes. For this study, 2-month-old male ICR-CD1 mice were treated by a single subcutaneous injection of 1, 2 and 3 mg CdCl(2)/kg body weight and killed after 35 days. A panel of six microsatellite markers, previously reported as being the most sensitive in detecting MSI in murine tumours, was used in this study. The results show that CdCl(2) in the doses of 2 and 3 mg/kg induced a decrease in the testis weight and severe histopathologic changes with complete disorganization of testicular structure and evidences of severe necrosis. In addition, the animals exposed to the lowest CdCl(2) dose presented MSI in the testis. The results indicate the existence of MSI in at least two nuclear loci suggesting putative genotoxic effects induced by cadmium. PMID:22699117

  6. 70 years of radiation genetics: Fruit flies, mice and humans

    SciTech Connect

    Abrahamson, S.

    1997-03-01

    Radiation protection`s function is to protect society from the potential hazards that might occur through the human use of radiation, whether it be from energy production, medical uses or other sources of exposure. To do so, various scientific bodies are called upon to develop risk estimates which will provide society with adequate protection to the adverse effects of radiation, as best we can understand those adverse affects. Geneticists have the added burden, in that they must attempt to provide protection not only to the offspring of the present generation but also for all subsequent generations. While most of us have difficulty in thinking of effects that might be manifest only one or two generations into the future, some have projected potential risks for 50 to 100 generations. Here the author reviews work on fruit flies and mice, and studies of human exposures, which has provided much of the foundational information upon which geneticists can derive conclusions with regard to radiation protection questions.

  7. Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation.

    PubMed

    Broutier, Laura; Andersson-Rolf, Amanda; Hindley, Christopher J; Boj, Sylvia F; Clevers, Hans; Koo, Bon-Kyoung; Huch, Meritxell

    2016-09-01

    Adult somatic tissues have proven difficult to expand in vitro, largely because of the complexity of recreating appropriate environmental signals in culture. We have overcome this problem recently and developed culture conditions for adult stem cells that allow the long-term expansion of adult primary tissues from small intestine, stomach, liver and pancreas into self-assembling 3D structures that we have termed 'organoids'. We provide a detailed protocol that describes how to grow adult mouse and human liver and pancreas organoids, from cell isolation and long-term expansion to genetic manipulation in vitro. Liver and pancreas cells grow in a gel-based extracellular matrix (ECM) and a defined medium. The cells can self-organize into organoids that self-renew in vitro while retaining their tissue-of-origin commitment, genetic stability and potential to differentiate into functional cells in vitro (hepatocytes) and in vivo (hepatocytes and endocrine cells). Genetic modification of these organoids opens up avenues for the manipulation of adult stem cells in vitro, which could facilitate the study of human biology and allow gene correction for regenerative medicine purposes. The complete protocol takes 1-4 weeks to generate self-renewing 3D organoids and to perform genetic manipulation experiments. Personnel with basic scientific training can conduct this protocol. PMID:27560176

  8. Genetic basis of resistance to trauma in inbred strains of mice

    SciTech Connect

    Radojicic, C.; Andric, B.; Simovic, M.; Dujic, A.; Marinkovic, D. )

    1990-02-01

    In this study the resistance to mechanical, thermal, and radiation trauma in four inbred strains of mice (AKR, BALB/c, CBA, and C57Bl/6) was compared with the degree of genetic resemblance, by analyzing the allozyme variabilities of these strains. It was shown that the highest degree of genetic resemblance was among CBA and AKR strains, which correlated with a similar degree of resistance to trauma. On the other hand, BALB/c and C57Bl/6 strains expressed significant differences, both genetically and with respect to the responses to trauma. The hypothesis is introduced that the genetic determination of the resistance to trauma is based on: (a) a polygenic control of general physiological homeostasis, with the possibility that (b) some specific genes or single loci may contribute more than others to such adaptations of the strains tested.

  9. Effects of Vendor and Genetic Background on the Composition of the Fecal Microbiota of Inbred Mice

    PubMed Central

    Ericsson, Aaron C.; Davis, J. Wade; Spollen, William; Bivens, Nathan; Givan, Scott; Hagan, Catherine E.; McIntosh, Mark; Franklin, Craig L.

    2015-01-01

    The commensal gut microbiota has been implicated as a determinant in several human diseases and conditions. There is mounting evidence that the gut microbiota of laboratory mice (Mus musculus) similarly modulates the phenotype of mouse models used to study human disease and development. While differing model phenotypes have been reported using mice purchased from different vendors, the composition and uniformity of the fecal microbiota in mice of various genetic backgrounds from different vendors is unclear. Using culture-independent methods and robust statistical analysis, we demonstrate significant differences in the richness and diversity of fecal microbial populations in mice purchased from two large commercial vendors. Moreover, the abundance of many operational taxonomic units, often identified to the species level, as well as several higher taxa, differed in vendor- and strain-dependent manners. Such differences were evident in the fecal microbiota of weanling mice and persisted throughout the study, to twenty-four weeks of age. These data provide the first in-depth analysis of the developmental trajectory of the fecal microbiota in mice from different vendors, and a starting point from which researchers may be able to refine animal models affected by differences in the gut microbiota and thus possibly reduce the number of animals required to perform studies with sufficient statistical power. PMID:25675094

  10. Diet-induced and mono-genetic obesity alter volatile organic compound signature in mice.

    PubMed

    Kistler, Martin; Muntean, Andreea; Szymczak, Wilfried; Rink, Nadine; Fuchs, Helmut; Gailus-Durner, Valerie; Wurst, Wolfgang; Hoeschen, Christoph; Klingenspor, Martin; Hrabě de Angelis, Martin; Rozman, Jan

    2016-03-01

    The prevalence of obesity is still rising in many countries, resulting in an increased risk of associated metabolic diseases. In this study we aimed to describe the volatile organic compound (VOC) patterns symptomatic for obesity. We analyzed high fat diet (HFD) induced obese and mono-genetic obese mice (global knock-in mutation in melanocortin-4 receptor MC4R-ki). The source strengths of 208 VOCs were analyzed in ad libitum fed mice and after overnight food restriction. Volatiles relevant for a random forest-based separation of obese mice were detected (26 in MC4R-ki, 22 in HFD mice). Eight volatiles were found to be important in both obesity models. Interestingly, by creating a partial correlation network of the volatile metabolites, the chemical and metabolic origins of several volatiles were identified. HFD-induced obese mice showed an elevation in the ketone body acetone and acrolein, a marker of lipid peroxidation, and several unidentified volatiles. In MC4R-ki mice, several yet-unidentified VOCs were found to be altered. Remarkably, the pheromone (methylthio)methanethiol was found to be reduced, linking metabolic dysfunction and reproduction. The signature of volatile metabolites can be instrumental in identifying and monitoring metabolic disease states, as shown in the screening of the two obese mouse models in this study. Our findings show the potential of breath gas analysis to non-invasively assess metabolic alterations for personalized diagnosis. PMID:26860833

  11. Effects of vendor and genetic background on the composition of the fecal microbiota of inbred mice.

    PubMed

    Ericsson, Aaron C; Davis, J Wade; Spollen, William; Bivens, Nathan; Givan, Scott; Hagan, Catherine E; McIntosh, Mark; Franklin, Craig L

    2015-01-01

    The commensal gut microbiota has been implicated as a determinant in several human diseases and conditions. There is mounting evidence that the gut microbiota of laboratory mice (Mus musculus) similarly modulates the phenotype of mouse models used to study human disease and development. While differing model phenotypes have been reported using mice purchased from different vendors, the composition and uniformity of the fecal microbiota in mice of various genetic backgrounds from different vendors is unclear. Using culture-independent methods and robust statistical analysis, we demonstrate significant differences in the richness and diversity of fecal microbial populations in mice purchased from two large commercial vendors. Moreover, the abundance of many operational taxonomic units, often identified to the species level, as well as several higher taxa, differed in vendor- and strain-dependent manners. Such differences were evident in the fecal microbiota of weanling mice and persisted throughout the study, to twenty-four weeks of age. These data provide the first in-depth analysis of the developmental trajectory of the fecal microbiota in mice from different vendors, and a starting point from which researchers may be able to refine animal models affected by differences in the gut microbiota and thus possibly reduce the number of animals required to perform studies with sufficient statistical power. PMID:25675094

  12. Pigmentation, pleiotropy, and genetic pathways in humans and mice

    SciTech Connect

    Barsh, G.S.

    1995-10-01

    Some of the most striking polymorphisms in human populations affect the color of our eyes, hair, or skin. Despite some simple lessons from high school biology (blue eyes are recessive; brown are dominant), the genetic basis of such phenotypic variability has, for the most part, eluded Mendelian description. A logical place to search for the keys to understanding common variation in human pigmentation are genes in which defects cause uncommon conditions such as albinism or piebaldism. The area under this lamppost has recently gotten larger, with two articles, one in this issue of the Journal, that describe the map position for Hermansky-Pudlak syndrome (HPS) and with the recent cloning of a gene that causes X-linked ocular albinism (OA1). In addition, a series of three recent articles in Cell demonstrate (1) that defects in the gene encoding the endothelin B (ET{sub B}) receptor cause hypopigmentation and Hirschsprung disease in a Mennonite population and the mouse mutation piebald(s) and (2) that a defect in the edn3 gene, which encodes one of the ligands for the ET{sub B} receptor, causes the lethal spotting (ls) mouse mutation. 47 refs., 1 fig.

  13. The genetic immunodeficiency disease, leukocyte adhesion deficiency, in humans, dogs, cattle, and mice.

    PubMed

    Gu, Yu-Chen; Bauer, Thomas R; Ackermann, Mark R; Smith, C Wayne; Kehrli, Marcus E; Starost, Matthew F; Hickstein, Dennis D

    2004-08-01

    This review highlights the genotype-phenotype relationship of the genetic immunodeficiency disease leukocyte adhesion deficiency (LAD) in humans, dogs, cattle, and mice, and provides assessment of the opportunities that each animal species provides in the understanding of leukocyte biology and in developing new therapeutic approaches to LAD in humans. This comparison is important since animal models of genetic diseases in humans provide the opportunity to test new therapeutic approaches in an appropriate, disease-specific model. The success of this approach is dependent on the relationship of the phenotype in the animal to the phenotype of the disease in humans. PMID:15357315

  14. Genetic disruption of both Fancc and Fancg in mice recapitulates the hematopoietic manifestations of Fanconi anemia

    PubMed Central

    Pulliam-Leath, Anna C.; Ciccone, Samantha L.; Nalepa, Grzegorz; Li, Xiaxin; Si, Yue; Miravalle, Leticia; Smith, Danielle; Yuan, Jin; Li, Jingling; Anur, Praveen; Orazi, Attilio; Vance, Gail H.; Yang, Feng-Chun; Hanenberg, Helmut; Bagby, Grover C.

    2010-01-01

    Fanconi anemia (FA) is an inherited chromosomal instability syndrome characterized by bone marrow failure, myelodysplasia (MDS), and acute myeloid leukemia (AML). Eight FA proteins associate in a nuclear core complex to monoubiquitinate FANCD2/FANCI in response to DNA damage. Additional functions have been described for some of the core complex proteins; however, in vivo genetic proof has been lacking. Here we show that double-mutant Fancc−/−;Fancg−/− mice develop spontaneous hematologic sequelae including bone marrow failure, AML, MDS and complex random chromosomal abnormalities that the single-mutant mice do not. This genetic model provides evidence for unique core complex protein function independent of their ability to monoubiquitinate FANCD2/FANCI. Importantly, this model closely recapitulates the phenotypes found in FA patients and may be useful as a preclinical platform to evaluate the molecular pathogenesis of spontaneous bone marrow failure, MDS and AML in FA. PMID:20606166

  15. Genetic susceptibility to interstitial pulmonary fibrosis in mice induced by vanadium pentoxide (V2O5)

    PubMed Central

    Walters, Dianne M.; White, Kevin M.; Patel, Ushma; Davis, Martin J.; Veluci-Marlow, Roberta M.; Bhupanapadu Sunkesula, Solomon Raju; Bonner, James C.; Martin, Jessica R.; Gladwell, Wes; Kleeberger, Steven R.

    2014-01-01

    Interstitial lung diseases (ILDs) are characterized by injury, inflammation, and scarring of alveoli, leading to impaired function. The etiology of idiopathic forms of ILD is not understood, making them particularly difficult to study due to the lack of appropriate animal models. Consequently, few effective therapies have emerged. We developed an inbred mouse model of ILD using vanadium pentoxide (V2O5), the most common form of a transition metal found in cigarette smoke, fuel ash, mineral ores, and steel alloys. Pulmonary responses to V2O5, including dose-dependent increases in lung permeability, inflammation, collagen content, and dysfunction, were significantly greater in DBA/2J mice compared to C57BL/6J mice. Inflammatory and fibrotic responses persisted for 4 mo in DBA/2J mice, while limited responses in C57BL/6J mice resolved. We investigated the genetic basis for differential responses through genetic mapping of V2O5-induced lung collagen content in BXD recombinant inbred (RI) strains and identified significant linkage on chromosome 4 with candidate genes that associate with V2O5-induced collagen content across the RI strains. Results suggest that V2O5 may induce pulmonary fibrosis through mechanisms distinct from those in other models of pulmonary fibrosis. These findings should further advance our understanding of mechanisms involved in ILD and thereby aid in identification of new therapeutic targets.—Walters, D. M., White, K. M., Patel, U., Davis, M. J., Veluci-Marlow, R. M., Bhupanapadu Sunkesula, S. R., Bonner, J. C., Martin, J. R., Gladwell, W., Kleeberger, S. R. Genetic susceptibility to interstitial pulmonary fibrosis in mice induced by vanadium pentoxide (V2O5). PMID:24285090

  16. Genetic Variation and Population Substructure in Outbred CD-1 Mice: Implications for Genome-Wide Association Studies

    PubMed Central

    Aldinger, Kimberly A.; Sokoloff, Greta; Rosenberg, David M.; Palmer, Abraham A.; Millen, Kathleen J.

    2009-01-01

    Outbred laboratory mouse populations are widely used in biomedical research. Since little is known about the degree of genetic variation present in these populations, they are not widely used for genetic studies. Commercially available outbred CD-1 mice are drawn from an extremely large breeding population that has accumulated many recombination events, which is desirable for genome-wide association studies. We therefore examined the degree of genome-wide variation within CD-1 mice to investigate their suitability for genetic studies. The CD-1 mouse genome displays patterns of linkage disequilibrium and heterogeneity similar to wild-caught mice. Population substructure and phenotypic differences were observed among CD-1 mice obtained from different breeding facilities. Differences in genetic variation among CD-1 mice from distinct facilities were similar to genetic differences detected between closely related human populations, consistent with a founder effect. This first large-scale genetic analysis of the outbred CD-1 mouse strain provides important considerations for the design and analysis of genetic studies in CD-1 mice. PMID:19266100

  17. Ultrastructural analysis of testes from mice fed on genetically modified soybean.

    PubMed

    Vecchio, L; Cisterna, B; Malatesta, M; Martin, T E; Biggiogera, M

    2004-01-01

    We have considered the possible effects of a diet containing genetically modified (GM) soybean on mouse testis. This organ, in fact, is a well known bioindicator and it has already been utilized, for instance, to monitor pollution by heavy metals. In this preliminary study, we have focussed our attention on Sertoli cells, spermatogonia and spermatocytes by means of immunoelectron microscopy. Our results point out that the immunolabelling for Sm antigen, hnRNPs, SC35 and RNA Polymerase II is decreased in 2 and 5 month-old GM-fed mice, and is restored to normal at 8 months. In GM-fed mice of all ages considered, the number of perichromatin granules is higher and the nuclear pore density lower. Moreover, we found enlargements in the smooth endoplasmic reticulum in GM-fed mice Sertoli cells. A possible role played by traces of the herbicide to which the soybean is resistant is discussed. PMID:15718213

  18. Severe ocular phenotypes in Rbp4-deficient mice in the C57BL/6 genetic background.

    PubMed

    Shen, Jingling; Shi, Dan; Suzuki, Tomohiro; Xia, Zunping; Zhang, Hanli; Araki, Kimi; Wakana, Shigeharu; Takeda, Naoki; Yamamura, Ken-Ichi; Jin, Shoude; Li, Zhenghua

    2016-06-01

    Retinol-binding protein 4 (RBP4) is a specific carrier for retinol in the blood. In hepatocytes, newly synthesized RBP4 associates with retinol and transthyretin and is secreted into the blood. The ternary transthyretin-RBP4-retinol complex transports retinol in the circulation and delivers it to target tissues. Rbp4-deficient mice in a mixed genetic background (129xC57BL/6J) have decreased sensitivity to light in the b-wave amplitude on electroretinogram. Sensitivity progressively improves and approaches that of wild-type mice at 24 weeks of age. In the present study, we produced Rbp4-deficient mice in the C57BL/6 genetic background. These mice displayed more severe phenotypes. They had decreased a- and b-wave amplitudes on electroretinograms. In accordance with these abnormalities, we found structural changes in these mice, such as loss of the peripheral choroid and photoreceptor layer in the peripheral retinas. In the central retinas, the distance between the inner limiting membrane and the outer plexiform layer was much shorter with fewer ganglion cells and fewer synapses in the inner plexiform layer. Furthermore, ocular developmental defects of retinal depigmentation, optic disc abnormality, and persistent hyaloid artery were also observed. All these abnormalities had not recovered even at 40 weeks of age. Our Rbp4-deficient mice accumulated retinol in the liver but it was undetectable in the serum, indicating an inverse relation between serum and liver retinol levels. Our results suggest that RBP4 is critical for the mobilization of retinol from hepatic storage pools, and that such mobilization is necessary for ocular development and visual function. PMID:26974396

  19. Extracellular enzyme activities during lignocellulose degradation by Streptomyces spp. : a comparative study of wild-type and genetically manipulated strains

    SciTech Connect

    Ramachandra, M.; Crawford, D.L.; Pometto, A.L. III

    1987-12-01

    The wild-type ligninolytic actinomycete Streptomyces viridosporus T7A and two genetically manipulated strains with enhanced abilities to produce a water-soluble lignin degradation intermediate, an acid-precipitable polymeric lignin (APPL), were grown on lignocellulose in solid-state fermentation cultures. Culture filtrates were periodically collected, analyzed for APPL, and assayed for extracellular lignocellulose-catabolizing enzyme activities. Two APPL-overproducing strains, UV irradiation mutant T7A-81 and protoplast fusion recombinant SR-10, had higher and longer persisting peroxidase, esterase, and endoglucanase activities than did the wild-type strain T7A. Results implicated one or more of these enzymes in lignin solubilization. Only mutant T7A-81 had higher xylanase activity than the wild type. The peroxidase was induced by both lignocellulose and APPL. This extracellular enzyme has some similarities to previously described ligninases in fungi. This is the first report of such an enzyme in Streptomyces spp. Four peroxidase isozymes were present, and all catalyzed the oxidation of 3,4-dihydroxyphenylalanine, while one also catalyzed hydrogen peroxide-dependent oxidation of homoprotocatechuic acid and caffeic acid. Three constitutive esterase isozymes were produced which differed in substrate specificity toward ..cap alpha..-naphthyl acetate and ..cap alpha..-naphthyl butyrate. Three endoglucanase bands, which also exhibited a low level of xylanase activity, were identified on polyacrylamide gels as was one xylanase-specific band. There were no major differences in the isoenzymes produced by the different strains. The probable role of each enzyme in lignocellulose degradation is discussed.

  20. Cure of metastatic growth of EMT6 tumor cells in mice following manipulation of CD200:CD200R signaling.

    PubMed

    Gorczynski, Reginald M; Chen, Zhiqi; Khatri, Ismat; Podnos, Anna; Yu, Kai

    2013-11-01

    In previous studies, we observed that regulation of expression of CD200, both on cells of a transplantable breast cancer, EMT6, and of the host, as well as of the receptor, CD200R in host mice, regulated local tumor growth and metastasis in immunocompetent animals. This in turn led to an improved ability to document immunity to EMT6 in CD200R1KO mice. In the current study, we have explored the ability to cure BALB/c CD200KO or CD200R1KO mice of tumors ≤1 cm(3) in size by surgical resection of localized tumor, followed by immunization with irradiated EMT6 cells along with CpG as adjuvant. While control animals treated in this fashion developed significant pulmonary and liver metastases within 30 days of surgery, significant protection was seen in both CD200KO or CD200R1KO mice, with no macroscopic lung/liver metastases observed in CD200R1KO mice on sacrifice at day 300. Following surgical resection and immunization, draining lymph nodes from control mice contained tumor cells cloned at limiting dilution in vitro even before pulmonary and hepatic metastasis was seen. In contrast, within the limits of detection of the assay used (sensitivity ~1 in 10(7) cells), no tumor cells were detected at limiting dilution in similarly treated CD200R1KO mice, and significant reductions were seen in CD200KO mice. Infusion of anti-CD4, but less so anti-CD8, mAb into surgically treated and immunized CD200R1KO mice attenuated protection from both macroscopic (liver/lung) and microscopic (assayed by limiting dilution of DLN) metastasis. Adoptive transfer of lymphocytes from treated CD200R1KO mice to surgically treated control mice also attenuated metastatic growth of tumor, which was abolished by pretreatment of transferred cells with anti-CD4 mAb. Our data suggest that CD200:CD200R attenuates a potentially tumor-protective CD4 host response to breast cancer. PMID:24166280

  1. Genetic functions of the NAIP family of inflammasome receptors for bacterial ligands in mice.

    PubMed

    Zhao, Yue; Shi, Jianjin; Shi, Xuyan; Wang, Yupeng; Wang, Fengchao; Shao, Feng

    2016-05-01

    Biochemical studies suggest that the NAIP family of NLR proteins are cytosolic innate receptors that directly recognize bacterial ligands and trigger NLRC4 inflammasome activation. In this study, we generated Naip5(-/-), Naip1(-/-), and Naip2(-/-) mice and showed that bone marrow macrophages derived from these knockout mice are specifically deficient in detecting bacterial flagellin, the type III secretion system needle, and the rod protein, respectively. Naip1(-/-), Naip2(-/-), and Naip5(-/-) mice also resist lethal inflammasome activation by the corresponding ligand. Furthermore, infections performed in the Naip-deficient macrophages have helped to define the major signal in Legionella pneumophila, Salmonella Typhimurium and Shigella flexneri that is detected by the NAIP/NLRC4 inflammasome. Using an engineered S. Typhimurium infection model, we demonstrate the critical role of NAIPs in clearing bacterial infection and protecting mice from bacterial virulence-induced lethality. These results provide definitive genetic evidence for the important physiological function of NAIPs in antibacterial defense and inflammatory damage-induced lethality in mice. PMID:27114610

  2. An Efficient and Versatile System for Visualization and Genetic Modification of Dopaminergic Neurons in Transgenic Mice

    PubMed Central

    Kramer, Edgar R.

    2015-01-01

    Background & Aims The brain dopaminergic (DA) system is involved in fine tuning many behaviors and several human diseases are associated with pathological alterations of the DA system such as Parkinson’s disease (PD) and drug addiction. Because of its complex network integration, detailed analyses of physiological and pathophysiological conditions are only possible in a whole organism with a sophisticated tool box for visualization and functional modification. Methods & Results Here, we have generated transgenic mice expressing the tetracycline-regulated transactivator (tTA) or the reverse tetracycline-regulated transactivator (rtTA) under control of the tyrosine hydroxylase (TH) promoter, TH-tTA (tet-OFF) and TH-rtTA (tet-ON) mice, to visualize and genetically modify DA neurons. We show their tight regulation and efficient use to overexpress proteins under the control of tet-responsive elements or to delete genes of interest with tet-responsive Cre. In combination with mice encoding tet-responsive luciferase, we visualized the DA system in living mice progressively over time. Conclusion These experiments establish TH-tTA and TH-rtTA mice as a powerful tool to generate and monitor mouse models for DA system diseases. PMID:26291828

  3. Proteomics of Secretory-Stage and Maturation-Stage Enamel of Genetically Distinct Mice.

    PubMed

    Charone, Senda; De Lima Leite, Aline; Peres-Buzalaf, Camila; Silva Fernandes, Mileni; Ferreira de Almeida, Lucas; Zardin Graeff, Marcia Sirlene; Cardoso de Oliveira, Rodrigo; Campanelli, Ana Paula; Groisman, Sonia; Whitford, Gary Milton; Everett, Eric T; Buzalaf, Marília Afonso Rabelo

    2016-01-01

    The mechanisms by which excessive ingestion of fluoride (F) during amelogenesis leads to dental fluorosis (DF) are still not precisely known. Inbred strains of mice vary in their susceptibility to develop DF, and therefore permit the investigation of underlying molecular events influencing DF severity. We employed a proteomic approach to characterize and evaluate changes in protein expression from secretory-stage and maturation-stage enamel in 2 strains of mice with different susceptibilities to DF (A/J, i.e. 'susceptible' and 129P3/J, i.e. 'resistant'). Weanling male and female susceptible and resistant mice fed a low-F diet were divided into 2 F-water treatment groups. They received water containing 0 (control) or 50 mg F/l for 6 weeks. Plasma and incisor enamel was analyzed for F content. For proteomic analysis, the enamel proteins extracted for each group were separated by 2-dimensional electrophoresis and subsequently characterized by liquid-chromatography electrospray-ionization quadrupole time-of-flight mass spectrometry. F data were analyzed by 2-way ANOVA and Bonferroni's test (p < 0.05). Resistant mice had significantly higher plasma and enamel F concentrations when compared with susceptible mice in the F-treated groups. The proteomic results for mice treated with 0 mg F/l revealed that during the secretory stage, resistant mice had a higher abundance of proteins than their susceptible counterparts, but this was reversed during the maturation stage. Treatment with F greatly increased the number of protein spots detected in both stages. Many proteins not previously described in enamel (e.g. type 1 collagen) as well as some uncharacterized proteins were identified. Our findings reveal new insights regarding amelogenesis and how genetic background and F affect this process. PMID:26820156

  4. Genetics of complex neurological disease: challenges and opportunities for modeling epilepsy in mice and rats.

    PubMed

    Frankel, Wayne N

    2009-08-01

    Currently, approximately 20 genetic variants are known to cause Mendelian forms of human epilepsy, leaving a vast heritability undefined. Rodent models for genetically complex epilepsy have been studied for many years, but only recently have strong candidate genes emerged, including Cacna1 g in the GAERS rat model of absence epilepsy and Kcnj10 in the low seizure threshold of DBA/2 mice. In parallel, a growing number of mouse mutations studied on multiple strain backgrounds reveal the impact of genetic modifiers on seizure severity, incidence or form--perhaps mimicking the complexity seen in humans. The field of experimental genetics in rodents is poised to study discrete epilepsy mutations on a diverse choice of strain backgrounds to develop better models and identify modifiers. But, it must find the right balance between embracing the strain diversity available, with the ability to detect and characterize genetic effects. Using alternative strain backgrounds when studying epilepsy mutations will enhance the modeling of epilepsy as a complex genetic disease. PMID:19665252

  5. Genetic or Pharmacologic Amplification of Nrf2 Signaling Inhibits Acute Inflammatory Liver Injury in Mice

    PubMed Central

    Osburn, William O.; Yates, Melinda S.; Dolan, Patrick D.; Liby, Karen T.; Sporn, Michael B.; Taguchi, Keiko; Yamamoto, Masayuki; Kensler, Thomas W.

    2008-01-01

    Oxidative stress-mediated destruction of normal parenchymal cells during hepatic inflammatory responses contributes to the pathogenesis of immune-mediated hepatitis and is implicated in the progression of acute inflammatory liver injury to chronic inflammatory liver disease. The transcription factor NF-E2-related factor 2 (Nrf2) regulates the expression of a battery of antioxidative enzymes and Nrf2 signaling can be activated by small-molecule drugs that disrupt Keap1-mediated repression of Nrf2 signaling. Therefore, genetic and pharmacologic approaches were used to activate Nrf2 signaling to assess protection against inflammatory liver injury. Profound increases in ind of cell death were observed in both Nrf2 wild-type (Nrf2-WT) mice and Nrf2-disrupted (Nrf2-KO) mice 24-hr following intravenous injection of concanavalin A (12.5 mg/kg, ConA), a model for T cell-mediated acute inflammatory liver injury. However, hepatocyte-specific conditional Keap1 null (Alb-Cre:Keap1flox/−, cKeap1-KO) mice with constitutively enhanced expression of Nrf2-regulated antioxidative genes as well as Nrf2-WT mice but not Nrf2-KO mice pretreated with three daily doses of a triterpenoid that potently activates Nrf2 (30 µmole/kg, CDDO-Im) were highly resistant to ConA-mediated inflammatory liver injury. CDDO-Im pretreatment of both Nrf2-WT and Nrf2-KO mice resulted in equivalent suppression of serum pro-inflammatory soluble proteins suggesting that the hepatoprotection afforded by CDDO-Im pretreatment of Nrf2-WT mice but not Nrf2-KO mice was not due to suppression of systemic pro-inflammatory signaling, but instead was due to activation of Nrf2 signaling in the liver. Enhanced hepatic expression of Nrf2-regulated antioxidative genes inhibited inflammation-mediated oxidative stress, thereby preventing hepatocyte necrosis. Attenuation of hepatocyte death in cKeap1-KO mice and CDDO-Im pretreated Nrf2-WT mice resulted in decreased late-phase pro-inflammatory gene expression in the liver

  6. Genetic diminution of circulating prothrombin ameliorates multiorgan pathologies in sickle cell disease mice.

    PubMed

    Arumugam, Paritha I; Mullins, Eric S; Shanmukhappa, Shiva Kumar; Monia, Brett P; Loberg, Anastacia; Shaw, Maureen A; Rizvi, Tilat; Wansapura, Janaka; Degen, Jay L; Malik, Punam

    2015-10-01

    Sickle cell disease (SCD) results in vascular occlusions, chronic hemolytic anemia, and cumulative organ damage. A conspicuous feature of SCD is chronic inflammation and coagulation system activation. Thrombin (factor IIa [FIIa]) is both a central protease in hemostasis and a key modifier of inflammatory processes. To explore the hypothesis that reduced prothrombin (factor II [FII]) levels in SCD will limit vaso-occlusion, vasculopathy, and inflammation, we used 2 strategies to suppress FII in SCD mice. Weekly administration of FII antisense oligonucleotide "gapmer" to Berkeley SCD mice to selectively reduce circulating FII levels to ∼10% of normal for 15 weeks significantly diminished early mortality. More comprehensive, long-term comparative studies were done using mice with genetic diminution of circulating FII. Here, cohorts of FII(lox/-) mice (constitutively carrying ∼10% normal FII) and FII(WT) mice were tracked in parallel for a year following the imposition of SCD via hematopoietic stem cell transplantation. This genetically imposed suppression of FII levels resulted in an impressive reduction in inflammation (reduction in leukocytosis, thrombocytosis, and circulating interleukin-6 levels), reduced endothelial cell dysfunction (reduced endothelial activation and circulating soluble vascular cell adhesion molecule), and a significant improvement in SCD-associated end-organ damage (nephropathy, pulmonary hypertension, pulmonary inflammation, liver function, inflammatory infiltration, and microinfarctions). Notably, all of these benefits were achieved with a relatively modest 1.25-fold increase in prothrombin times, and in the absence of hemorrhagic complications. Taken together, these data establish that prothrombin is a powerful modifier of SCD-induced end-organ damage, and present a novel therapeutic target to ameliorate SCD pathologies. PMID:26286849

  7. Genetic Biomarkers for ALS Disease in Transgenic SOD1G93A Mice

    PubMed Central

    Calvo, Ana C.; Manzano, Raquel; Atencia-Cibreiro, Gabriela; Oliván, Sara; Muñoz, María J.; Zaragoza, Pilar; Cordero-Vázquez, Pilar; Esteban-Pérez, Jesús; García-Redondo, Alberto; Osta, Rosario

    2012-01-01

    The pathophysiological mechanisms of both familial and sporadic Amyotrophic Lateral Sclerosis (ALS) are unknown, although growing evidence suggests that skeletal muscle tissue is a primary target of ALS toxicity. Skeletal muscle biopsies were performed on transgenic SOD1G93A mice, a mouse model of ALS, to determine genetic biomarkers of disease longevity. Mice were anesthetized with isoflurane, and three biopsy samples were obtained per animal at the three main stages of the disease. Transcriptional expression levels of seventeen genes, Ankrd1, Calm1, Col19a1, Fbxo32, Gsr, Impa1, Mef2c, Mt2, Myf5, Myod1, Myog, Nnt, Nogo A, Pax7, Rrad, Sln and Snx10, were tested in each muscle biopsy sample. Total RNA was extracted using TRIzol Reagent according to the manufacturer's protocol, and variations in gene expression were assayed by real-time PCR for all of the samples. The Pearson correlation coefficient was used to determine the linear correlation between transcriptional expression levels throughout disease progression and longevity. Consistent with the results obtained from total skeletal muscle of transgenic SOD1G93A mice and 74-day-old denervated mice, five genes (Mef2c, Gsr, Col19a1, Calm1 and Snx10) could be considered potential genetic biomarkers of longevity in transgenic SOD1G93A mice. These results are important because they may lead to the exploration of previously unexamined tissues in the search for new disease biomarkers and even to the application of these findings in human studies. PMID:22412900

  8. Genetic diminution of circulating prothrombin ameliorates multiorgan pathologies in sickle cell disease mice

    PubMed Central

    Arumugam, Paritha I.; Mullins, Eric S.; Shanmukhappa, Shiva Kumar; Monia, Brett P.; Loberg, Anastacia; Shaw, Maureen A.; Rizvi, Tilat; Wansapura, Janaka; Degen, Jay L.

    2015-01-01

    Sickle cell disease (SCD) results in vascular occlusions, chronic hemolytic anemia, and cumulative organ damage. A conspicuous feature of SCD is chronic inflammation and coagulation system activation. Thrombin (factor IIa [FIIa]) is both a central protease in hemostasis and a key modifier of inflammatory processes. To explore the hypothesis that reduced prothrombin (factor II [FII]) levels in SCD will limit vaso-occlusion, vasculopathy, and inflammation, we used 2 strategies to suppress FII in SCD mice. Weekly administration of FII antisense oligonucleotide “gapmer” to Berkeley SCD mice to selectively reduce circulating FII levels to ∼10% of normal for 15 weeks significantly diminished early mortality. More comprehensive, long-term comparative studies were done using mice with genetic diminution of circulating FII. Here, cohorts of FIIlox/− mice (constitutively carrying ∼10% normal FII) and FIIWT mice were tracked in parallel for a year following the imposition of SCD via hematopoietic stem cell transplantation. This genetically imposed suppression of FII levels resulted in an impressive reduction in inflammation (reduction in leukocytosis, thrombocytosis, and circulating interleukin-6 levels), reduced endothelial cell dysfunction (reduced endothelial activation and circulating soluble vascular cell adhesion molecule), and a significant improvement in SCD-associated end-organ damage (nephropathy, pulmonary hypertension, pulmonary inflammation, liver function, inflammatory infiltration, and microinfarctions). Notably, all of these benefits were achieved with a relatively modest 1.25-fold increase in prothrombin times, and in the absence of hemorrhagic complications. Taken together, these data establish that prothrombin is a powerful modifier of SCD-induced end-organ damage, and present a novel therapeutic target to ameliorate SCD pathologies. PMID:26286849

  9. Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity

    NASA Technical Reports Server (NTRS)

    Anterola, Aldwin M.; Lewis, Norman G.

    2002-01-01

    A comprehensive assessment of lignin configuration in transgenic and mutant plants is long overdue. This review thus undertook the systematic analysis of trends manifested through genetic and mutational manipulations of the various steps associated with monolignol biosynthesis; this included consideration of the downstream effects on organized lignin assembly in the various cell types, on vascular function/integrity, and on plant growth and development. As previously noted for dirigent protein (homologs), distinct and sophisticated monolignol forming metabolic networks were operative in various cell types, tissues and organs, and form the cell-specific guaiacyl (G) and guaiacyl-syringyl (G-S) enriched lignin biopolymers, respectively. Regardless of cell type undergoing lignification, carbon allocation to the different monolignol pools is apparently determined by a combination of phenylalanine availability and cinnamate-4-hydroxylase/"p-coumarate-3-hydroxylase" (C4H/C3H) activities, as revealed by transcriptional and metabolic profiling. Downregulation of either phenylalanine ammonia lyase or cinnamate-4-hydroxylase thus predictably results in reduced lignin levels and impaired vascular integrity, as well as affecting related (phenylpropanoid-dependent) metabolism. Depletion of C3H activity also results in reduced lignin deposition, albeit with the latter being derived only from hydroxyphenyl (H) units, due to both the guaiacyl (G) and syringyl (S) pathways being blocked. Apparently the cells affected are unable to compensate for reduced G/S levels by increasing the amounts of H-components. The downstream metabolic networks for G-lignin enriched formation in both angiosperms and gymnosperms utilize specific cinnamoyl CoA O-methyltransferase (CCOMT), 4-coumarate:CoA ligase (4CL), cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) isoforms: however, these steps neither affect carbon allocation nor H/G designations, this being determined by C4H/C3H

  10. Genetic variances and covariances of aerobic metabolic rates in laboratory mice

    PubMed Central

    Wone, Bernard; Sears, Michael W.; Labocha, Marta K.; Donovan, Edward R.; Hayes, Jack P.

    2009-01-01

    The genetic variances and covariances of traits must be known to predict how they may respond to selection and how covariances among them might affect their evolutionary trajectories. We used the animal model to estimate the genetic variances and covariances of basal metabolic rate (BMR) and maximal metabolic rate (MMR) in a genetically heterogeneous stock of laboratory mice. Narrow-sense heritability (h2) was approximately 0.38 ± 0.08 for body mass, 0.26 ± 0.08 for whole-animal BMR, 0.24 ± 0.07 for whole-animal MMR, 0.19 ± 0.07 for mass-independent BMR, and 0.16 ± 0.06 for mass-independent MMR. All h2 estimates were significantly different from zero. The phenotypic correlation of whole animal BMR and MMR was 0.56 ± 0.02, and the corresponding genetic correlation was 0.79 ± 0.12. The phenotypic correlation of mass-independent BMR and MMR was 0.13 ± 0.03, and the corresponding genetic correlation was 0.72 ± 0.03. The genetic correlations of metabolic rates were significantly different from zero, but not significantly different from one. A key assumption of the aerobic capacity model for the evolution of endothermy is that BMR and MMR are linked. The estimated genetic correlation between BMR and MMR is consistent with that assumption, but the genetic correlation is not so high as to preclude independent evolution of BMR and MMR. PMID:19656796

  11. Diverse roles of K(ATP) channels learned from Kir6.2 genetically engineered mice.

    PubMed

    Seino, S; Iwanaga, T; Nagashima, K; Miki, T

    2000-03-01

    The regulation of insulin secretion from pancreatic beta-cells depends critically on the activities of their plasma membrane ion channels. ATP-sensitive K+ channels (K(ATP) channels) are present in many cells and regulate a variety of cellular functions by coupling cell metabolism with membrane potential. The activity of the K(ATP) channels in pancreatic beta-cells is regulated by changes in the ATP and ADP concentrations (ATP/ADP ratio) caused by glucose metabolism. Thus, the K(ATP) channels are the ATP and ADP sensors in the regulation of glucose-induced insulin secretion. K(ATP) channels are also the target of sulfonylureas, which are widely used in the treatment of type 2 diabetes. Molecular cloning of the two subunits of the pancreatic beta-cell K(ATP) channel, Kir6.2 (an inward rectifier K+ channel member) and SUR1 (a receptor for sulfonylureas), has provided great insight into its structure and function. Kir6.2 subunits form the K+ ion-permeable pore and primarily confer inhibition of the channels by ATP, while SUR1 subunits confer activation of the channels by MgADP and K+ channel openers, such as diazoxide, as well as inhibition by sulfonylureas. The SUR1 subunits also enhance the sensitivity of the channels to ATP. To determine the physiological roles of K(ATP) channels directly, we have generated two kinds of genetically engineered mice: mice expressing a dominant-negative form of Kir6.2 specifically in the pancreatic beta-cells (Kir6.2G132S Tg mice) and mice lacking Kir6.2 (Kir6.2 knockout mice). Studies of these mice elucidated various roles of the K(ATP) channels in endocrine pancreatic function: 1) the K(ATP) channels are the major determinant of the resting membrane potential of pancreatic beta-cells, 2) both glucose- and sulfonylurea-induced membrane depolarization of beta-cells require closure of the K(ATP) channels, 3) both glucose- and sulfonylurea-induced rises in intracellular calcium concentration in beta-cells require closure of the K

  12. Inhibition of inflammasome activation improves the impaired pattern of healing in genetically diabetic mice

    PubMed Central

    Bitto, Alessandra; Altavilla, Domenica; Pizzino, Gabriele; Irrera, Natasha; Pallio, Giovanni; Colonna, Michele R; Squadrito, Francesco

    2014-01-01

    Background and Purpose Type 2 diabetes impairs the healing process because of an exaggerated and persistent inflammatory response, and an altered expression pattern of angiogenic molecules. We investigated the effects of inflammasome blockade in diabetes-related wound-healings defects, in genetically diabetic mice. Experimental Approach An incisional skin wound model was produced on the back of female diabetic C57BL/KsJ-m +/+ Leptdb mice (db+/db+) and their normal littermates (db+/m+). Animals were treated daily with two inflammasome blocking agents, BAY 11-7082 (20 mg·kg−1 i.p.), or Brilliant Blue G (BBG, 45.5 mg·kg−1 i.p.), or vehicle. Mice were killed on 3, 6 and 12 days after skin injury to measure expression of the NOD-like receptor NLRP3, caspase-1, VEGF, the inflammasome adapter protein apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and the chemokine CXCL12. Wound levels of IL-1β and IL-18 were also measured, along with histological assessments of wound tissue and the time to complete wound closure. Key Results During healing, the diabetic mice exhibited increased activation of NLRP3, caspase-1, ASC, IL-1β and IL-18. They also showed a reduced expression of VEGF and CXCL12.Treatment with BAY 11-7082 or BBG, to block activation of the inflammasome, decreased the levels of pro-inflammatory molecules. Histological evaluation indicated that inflammasome blockade improved the impaired healing pattern, at day 12 in diabetic mice, along with a decreased time to complete skin healing. Conclusions and Implications These data strongly suggest that activation of the NLRP3 inflammasome is one of the key contributors to the delayed healing of wounds in diabetic mice. PMID:24329484

  13. Genetic interactions between planar cell polarity genes cause diverse neural tube defects in mice.

    PubMed

    Murdoch, Jennifer N; Damrau, Christine; Paudyal, Anju; Bogani, Debora; Wells, Sara; Greene, Nicholas D E; Stanier, Philip; Copp, Andrew J

    2014-10-01

    Neural tube defects (NTDs) are among the commonest and most severe forms of developmental defect, characterized by disruption of the early embryonic events of central nervous system formation. NTDs have long been known to exhibit a strong genetic dependence, yet the identity of the genetic determinants remains largely undiscovered. Initiation of neural tube closure is disrupted in mice homozygous for mutations in planar cell polarity (PCP) pathway genes, providing a strong link between NTDs and PCP signaling. Recently, missense gene variants have been identified in PCP genes in humans with NTDs, although the range of phenotypes is greater than in the mouse mutants. In addition, the sequence variants detected in affected humans are heterozygous, and can often be detected in unaffected individuals. It has been suggested that interactions between multiple heterozygous gene mutations cause the NTDs in humans. To determine the phenotypes produced in double heterozygotes, we bred mice with all three pairwise combinations of Vangl2(Lp), Scrib(Crc) and Celsr1(Crsh) mutations, the most intensively studied PCP mutants. The majority of double-mutant embryos had open NTDs, with the range of phenotypes including anencephaly and spina bifida, therefore reflecting the defects observed in humans. Strikingly, even on a uniform genetic background, variability in the penetrance and severity of the mutant phenotypes was observed between the different double-heterozygote combinations. Phenotypically, Celsr1(Crsh);Vangl2(Lp);Scrib(Crc) triply heterozygous mutants were no more severe than doubly heterozygous or singly homozygous mutants. We propose that some of the variation between double-mutant phenotypes could be attributed to the nature of the protein disruption in each allele: whereas Scrib(Crc) is a null mutant and produces no Scrib protein, Celsr1(Crsh) and Vangl2(Lp) homozygotes both express mutant proteins, consistent with dominant effects. The variable outcomes of these genetic

  14. Genetic interactions between planar cell polarity genes cause diverse neural tube defects in mice

    PubMed Central

    Murdoch, Jennifer N.; Damrau, Christine; Paudyal, Anju; Bogani, Debora; Wells, Sara; Greene, Nicholas D. E.; Stanier, Philip; Copp, Andrew J.

    2014-01-01

    Neural tube defects (NTDs) are among the commonest and most severe forms of developmental defect, characterized by disruption of the early embryonic events of central nervous system formation. NTDs have long been known to exhibit a strong genetic dependence, yet the identity of the genetic determinants remains largely undiscovered. Initiation of neural tube closure is disrupted in mice homozygous for mutations in planar cell polarity (PCP) pathway genes, providing a strong link between NTDs and PCP signaling. Recently, missense gene variants have been identified in PCP genes in humans with NTDs, although the range of phenotypes is greater than in the mouse mutants. In addition, the sequence variants detected in affected humans are heterozygous, and can often be detected in unaffected individuals. It has been suggested that interactions between multiple heterozygous gene mutations cause the NTDs in humans. To determine the phenotypes produced in double heterozygotes, we bred mice with all three pairwise combinations of Vangl2Lp, ScribCrc and Celsr1Crsh mutations, the most intensively studied PCP mutants. The majority of double-mutant embryos had open NTDs, with the range of phenotypes including anencephaly and spina bifida, therefore reflecting the defects observed in humans. Strikingly, even on a uniform genetic background, variability in the penetrance and severity of the mutant phenotypes was observed between the different double-heterozygote combinations. Phenotypically, Celsr1Crsh;Vangl2Lp;ScribCrc triply heterozygous mutants were no more severe than doubly heterozygous or singly homozygous mutants. We propose that some of the variation between double-mutant phenotypes could be attributed to the nature of the protein disruption in each allele: whereas ScribCrc is a null mutant and produces no Scrib protein, Celsr1Crsh and Vangl2Lp homozygotes both express mutant proteins, consistent with dominant effects. The variable outcomes of these genetic interactions are

  15. Quantitative Genetics of Transgenic Mice: Components of Phenotypic Variation in Body Weights and Weight Gains

    PubMed Central

    Clutter, A. C.; Pomp, D.; Murray, J. D.

    1996-01-01

    Transgenic mice possessing an ovine growth hormone gene were used to study the effects of elevated growth hormone on quantitative genetic variation. Males hemizygous for the transgene were mated to wild-type females to produce half- and full-sib families in which approximately half the progeny were transgenic and half were wild type. Analyses of body weights at 3-10 weeks, and weight gains from 3 to 6, and 6 to 10 weeks produced estimates of the proportion of total variance due to additive genetic effects (h(2)) and common litter effects (c(2)), and the genetic correlation between transgenic and wild-type expression of each trait. At 10 weeks, body weight of transgenics exceeded that of wild types by 26 and 49% in males and females, respectively. Estimated genetic variances in the transgenic group were significantly greater than zero for body weights at most ages and for both measurements of gain. Common litter effects accounted for a similar proportion of variation in the wild-type and transgenic groups. Additive genetic correlations between wild-type and transgenic expression of body weights tended to decline with age, indicating that a partially different array of genes may have begun to affect body weight in the transgenic group. PMID:8844161

  16. Detrimental effects of an autosomal selfish genetic element on sperm competitiveness in house mice

    PubMed Central

    Sutter, Andreas; Lindholm, Anna K.

    2015-01-01

    Female multiple mating (polyandry) is widespread across many animal taxa and indirect genetic benefits are a major evolutionary force favouring polyandry. An incentive for polyandry arises when multiple mating leads to sperm competition that disadvantages sperm from genetically inferior mates. A reduction in genetic quality is associated with costly selfish genetic elements (SGEs), and studies in invertebrates have shown that males bearing sex ratio distorting SGEs are worse sperm competitors than wild-type males. We used a vertebrate model species to test whether females can avoid an autosomal SGE, the t haplotype, through polyandry. The t haplotype in house mice exhibits strong drive in t heterozygous males by affecting spermatogenesis and is associated with homozygous in utero lethality. We used controlled matings to test the effect of the t haplotype on sperm competitiveness. Regardless of mating order, t heterozygous males sired only 11% of zygotes when competing against wild-type males, suggesting a very strong effect of the t haplotype on sperm quality. We provide, to our knowledge, the first substantial evidence that polyandry ameliorates the harmful effects of an autosomal SGE arising through genetic incompatibility. We discuss potential mechanisms in our study species and the broader implications for the benefits of polyandry. PMID:26136452

  17. Genetically variable taste sensitivity to D-amino acids in mice.

    PubMed

    Ninomiya, Y; Nomura, T; Katsukawa, H

    1992-11-20

    Behavioral and neural responses to D-amino acids were compared between two inbred strains, C57BL and BALB mice. In both strains, an aversion conditioned to D-valine, D-leucine, D-methionine, D-histidine or D-tryptophan generalized to sucrose, whereas an aversion to D-alanine or D-serine did not generalize to sucrose. Generalization patterns across various test stimuli for each of these 7 D-amino acids were significantly correlated between two strains. However, an aversion conditioned to D-phenylalanine generalized to sucrose in C57BL mice, but not in BALB mice. Application of a proteolytic enzyme, Pronase E, to the tongue reduced chorda tympani responses to sucrose and D-amino acids to which a conditioned aversion generalized to sucrose. Again, only in C57BL mice, Pronase inhibited D-phenylalanine responses. These comparable results indicate that sweet taste response is genetically highly variable only to D-phenylalanine among 8 D-amino acids tested. PMID:1467999

  18. Selective chemical genetic inhibition of protein kinase C epsilon reduces ethanol consumption in mice.

    PubMed

    Maiya, Rajani; McMahon, Thomas; Wang, Dan; Kanter, Benjamin; Gandhi, Dev; Chapman, Holly L; Miller, Jacklyn; Messing, Robert O

    2016-08-01

    Reducing expression or inhibiting translocation of protein kinase C epsilon (PKCε) prolongs ethanol intoxication and decreases ethanol consumption in mice. However, we do not know if this phenotype is due to reduced PKCε kinase activity or to impairment of kinase-independent functions. In this study, we used a chemical-genetic strategy to determine whether a potent and highly selective inhibitor of PKCε catalytic activity reduces ethanol consumption. We generated ATP analog-specific PKCε (AS-PKCε) knock-in mice harboring a point mutation in the ATP binding site of PKCε that renders the mutant kinase highly sensitive to inhibition by 1-tert-butyl-3-naphthalen-1-ylpyrazolo[3,4-d]pyrimidin-4-amine (1-NA-PP1). Systemically administered 1-NA-PP1 readily crossed the blood brain barrier and inhibited PKCε-mediated phosphorylation. 1-NA-PP1 reversibly reduced ethanol consumption by AS-PKCε mice but not by wild type mice lacking the AS-PKCε mutation. These results support the development of inhibitors of PKCε catalytic activity as a strategy to reduce ethanol consumption, and they demonstrate that the AS- PKCε mouse is a useful tool to study the role of PKCε in behavior. PMID:26947945

  19. Genetically Modified α-Amylase Inhibitor Peas Are Not Specifically Allergenic in Mice

    PubMed Central

    Dekan, Gerhard; Moore, Andrew E.; Higgins, T. J. V.; Epstein, Michelle M.

    2013-01-01

    Weevils can devastate food legumes in developing countries, but genetically modified peas (Pisum sativum), chickpeas and cowpeas expressing the gene for alpha-amylase inhibitor-1 (αAI) from the common bean (Phaseolus vulgaris) are completely protected from weevil destruction. αAI is seed-specific, accumulated at high levels and undergoes post-translational modification as it traverses the seed endomembrane system. This modification was thought to be responsible for the reported allergenicity in mice of the transgenic pea but not the bean. Here, we observed that transgenic αAI peas, chickpeas and cowpeas as well as non-transgenic beans were all allergenic in BALB/c mice. Even consuming non-transgenic peas lacking αAI led to an anti-αAI response due to a cross-reactive response to pea lectin. Our data demonstrate that αAI transgenic peas are not more allergenic than beans or non-transgenic peas in mice. This study illustrates the importance of repeat experiments in independent laboratories and the potential for unexpected cross-reactive allergic responses upon consumption of plant products in mice. PMID:23326368

  20. Genetically modified α-amylase inhibitor peas are not specifically allergenic in mice.

    PubMed

    Lee, Rui-Yun; Reiner, Daniela; Dekan, Gerhard; Moore, Andrew E; Higgins, T J V; Epstein, Michelle M

    2013-01-01

    Weevils can devastate food legumes in developing countries, but genetically modified peas (Pisum sativum), chickpeas and cowpeas expressing the gene for alpha-amylase inhibitor-1 (αAI) from the common bean (Phaseolus vulgaris) are completely protected from weevil destruction. αAI is seed-specific, accumulated at high levels and undergoes post-translational modification as it traverses the seed endomembrane system. This modification was thought to be responsible for the reported allergenicity in mice of the transgenic pea but not the bean. Here, we observed that transgenic αAI peas, chickpeas and cowpeas as well as non-transgenic beans were all allergenic in BALB/c mice. Even consuming non-transgenic peas lacking αAI led to an anti-αAI response due to a cross-reactive response to pea lectin. Our data demonstrate that αAI transgenic peas are not more allergenic than beans or non-transgenic peas in mice. This study illustrates the importance of repeat experiments in independent laboratories and the potential for unexpected cross-reactive allergic responses upon consumption of plant products in mice. PMID:23326368

  1. Landscape models for nuclear genetic diversity and genetic structure in white-footed mice (Peromyscus leucopus)

    PubMed Central

    Taylor, Z S; Hoffman, S M G

    2014-01-01

    Dramatic changes in the North American landscape over the last 12 000 years have shaped the genomes of the small mammals, such as the white-footed mouse (Peromyscus leucopus), which currently inhabit the region. However, very recent interactions of populations with each other and the environment are expected to leave the most pronounced signature on rapidly evolving nuclear microsatellite loci. We analyzed landscape characteristics and microsatellite markers of P. leucopus populations along a transect from southern Ohio to northern Michigan, in order to evaluate hypotheses about the spatial distribution of genetic heterogeneity. Genetic diversity increased to the north and was best approximated by a single-variable model based on habitat availability within a 0.5-km radius of trapping sites. Interpopulation differentiation measured by clustering analysis was highly variable and not significantly related to latitude or habitat availability. Interpopulation differentiation measured as FST values and chord distance was correlated with the proportion of habitat intervening, but was best explained by agricultural distance and by latitude. The observed gradients in diversity and interpopulation differentiation were consistent with recent habitat availability being the major constraint on effective population size in this system, and contradicted the predictions of both the postglacial expansion and core-periphery hypotheses. PMID:24448564

  2. [Genetic effects in mice exposed to the 10-km area around the Chernobyl Atomic Energy Station].

    PubMed

    Pomerantseva, M D; Chekhovich, A V; Ramaiĭa, L K; Shevchenko, V A; Shaks, A I; Lobaneva, N V

    1990-10-01

    Mice (CBAxC57BL) F of both sexes were exposed within the 10 km zone of Chernobyl nuclear power station. Genetic damage of phone chronic effect of increased radiation in exposed adult mice and in the course of embryogenesis was studied. The total absorbed radiation doses in testes varied from 1.85 to 0.42 Gy in embryos and from 3.4 to 2.7 Gy in adult males. Increase of dominant lethal mutations (DLM) and abnormal sperm heads (ASH) was only observed right after the end of exposure of adult males. The yield of reciprocal translocations (RT) in these males was relatively low. Among the males exposed at the stage of early embryogenesis, 4 heterozygotes for RT were revealed. In other males of this group the RT yield was low. PMID:2283055

  3. Genetic susceptibility to systemic lupus erythematosus protects against cerebral malaria in mice.

    PubMed

    Waisberg, Michael; Tarasenko, Tatyana; Vickers, Brandi K; Scott, Bethany L; Willcocks, Lisa C; Molina-Cruz, Alvaro; Pierce, Matthew A; Huang, Chiung-yu; Torres-Velez, Fernando J; Smith, Kenneth G C; Barillas-Mury, Carolina; Miller, Louis H; Pierce, Susan K; Bolland, Silvia

    2011-01-18

    Plasmodium falciparum has exerted tremendous selective pressure on genes that improve survival in severe malarial infections. Systemic lupus erythematosus (SLE) is an autoimmune disease that is six to eight times more prevalent in women of African descent than in women of European descent. Here we provide evidence that a genetic susceptibility to SLE protects against cerebral malaria. Mice that are prone to SLE because of a deficiency in FcγRIIB or overexpression of Toll-like receptor 7 are protected from death caused by cerebral malaria. Protection appears to be by immune mechanisms that allow SLE-prone mice better to control their overall inflammatory responses to parasite infections. These findings suggest that the high prevalence of SLE in women of African descent living outside of Africa may result from the inheritance of genes that are beneficial in the immune control of cerebral malaria but that, in the absence of malaria, contribute to autoimmune disease. PMID:21187399

  4. Genetic susceptibility to systemic lupus erythematosus protects against cerebral malaria in mice

    PubMed Central

    Waisberg, Michael; Tarasenko, Tatyana; Vickers, Brandi K.; Scott, Bethany L.; Willcocks, Lisa C.; Molina-Cruz, Alvaro; Pierce, Matthew A.; Huang, Chiung-yu; Torres-Velez, Fernando J.; Smith, Kenneth G. C.; Barillas-Mury, Carolina; Miller, Louis H.; Pierce, Susan K.; Bolland, Silvia

    2011-01-01

    Plasmodium falciparum has exerted tremendous selective pressure on genes that improve survival in severe malarial infections. Systemic lupus erythematosus (SLE) is an autoimmune disease that is six to eight times more prevalent in women of African descent than in women of European descent. Here we provide evidence that a genetic susceptibility to SLE protects against cerebral malaria. Mice that are prone to SLE because of a deficiency in FcγRIIB or overexpression of Toll-like receptor 7 are protected from death caused by cerebral malaria. Protection appears to be by immune mechanisms that allow SLE-prone mice better to control their overall inflammatory responses to parasite infections. These findings suggest that the high prevalence of SLE in women of African descent living outside of Africa may result from the inheritance of genes that are beneficial in the immune control of cerebral malaria but that, in the absence of malaria, contribute to autoimmune disease. PMID:21187399

  5. Genetic Dependence of Central Corneal Thickness among Inbred Strains of Mice

    PubMed Central

    Lively, Geoffrey D.; Jiang, Bing; Hedberg-Buenz, Adam; Chang, Bo; Petersen, Greg E.; Wang, Kai; Kuehn, Markus H.

    2010-01-01

    Purpose. Central corneal thickness (CCT) exhibits broad variability. For unknown reasons, CCT also associates with diseases not typically considered corneal, particularly glaucoma. The purpose of this study was to test the strain dependence of CCT variability among inbred mice and identify cellular and molecular factors associated with differing CCT. Methods. Methodology for measuring murine CCT with ultrasound pachymetry was developed and used to measure CCT among 17 strains of mice. Corneas from three strains with nonoverlapping differences in CCT (C57BLKS/J, C57BL/6J, and SJL/J) were compared by histology, transmission electron microscopy, and expression profiling with gene microarrays. Results. CCT in mice was highly strain dependent. CCT exhibited continuous variation from 89.2 μm in C57BLKS/J to 123.8 μm in SJL/J. Stromal thickness was the major determinant of the varying murine CCT, with epithelial thickness also contributing. Corneal expression levels of many genes differed between strains with differing CCT, but most of these changes did not correlate with the changes observed in previously studied corneal diseases nor did they correlate with genes encoding major structural proteins of the cornea. Conclusions. Murine CCT has been measured with a variety of different techniques, but only among a limited number of different strains. Here, pachymetry was established as an additional tool and used to conduct a broad survey of different strains of inbred mice. These results demonstrated that murine CCT was highly influenced by genetic background and established a baseline for future genetic approaches to further elucidate mechanisms regulating CCT and its disease associations. PMID:19710407

  6. Optochemogenetics (OCG) allows more precise control of genetic engineering in mice with CreER regulators.

    PubMed

    Lu, Xin; Agasti, Sarit S; Vinegoni, Claudio; Waterman, Peter; DePinho, Ronald A; Weissleder, Ralph

    2012-09-19

    New approaches that allow precise spatiotemporal control of gene expression in model organisms at the single cell level are necessary to better dissect the role of specific genes and cell populations in development, disease, and therapy. Here, we describe a new optochemogenetic switch (OCG switch) to control CreER/loxP-mediated recombination via photoactivatable ("caged") tamoxifen analogues in individual cells in cell culture, organoid culture, and in vivo in adult mice. This approach opens opportunities to more fully exploit existing CreER transgenic mouse strains to achieve more precise temporal- and location-specific regulation of genetic events and gene expression. PMID:22917215

  7. Optochemogenetics (OCG) allows more precise control of genetic engineering in mice with CreER regulators

    PubMed Central

    Lu, Xin; Agasti, Sarit S.; Vinegoni, Claudio; Waterman, Peter; DePinho, Ronald A.; Weissleder, Ralph

    2013-01-01

    New approaches that allow precise spatiotemporal control of gene expression in model organisms at the single cell level are necessary to better dissect the role of specific genes and cell populations in development, disease and therapy. Here, we describe a new optochemogenetic switch (OCG switch) to control CreER/loxP-mediated recombination via photoactivatable (“caged”) tamoxifen analogues in individual cells in cell culture, organoid culture and in vivo in adult mice. This approach opens opportunities to more fully exploit existing CreER transgenic mouse strains to achieve more precise temporal- and location-specific regulation of genetic events and gene expression. PMID:22917215

  8. Manipulation of Ovarian Function Significantly Influenced Trabecular and Cortical Bone Volume, Architecture and Density in Mice at Death

    PubMed Central

    Mason, Jeffrey B.; Terry, Boston C.; Merchant, Samer S.; Mason, Holly M.; Nazokkarmaher, Mahdi

    2015-01-01

    Previously, transplantation of ovaries from young, cycling mice into old, postreproductive-age mice increased life span and decreased cardiomyopathy at death. We anticipated that the same factors that increased life span and decreased cardiomyopathy could also influence the progression of orthopedic disease. At 11 months of age, prepubertally ovariectomized and ovary-intact mice (including reproductively cycling and acyclic mice) received new 60-day-old ovaries. At death, epiphyseal bone in the proximal tibia and the distal femur and mid-shaft tibial and femoral diaphyseal bone was analyzed with micro-computed tomography. For qualitative analysis of osteophytosis, we also included mineralized connective tissue within the stifle joint. Prepubertal ovariectomy had the greatest influence on bone volume, ovarian transplantation had the greatest influence on bone architecture and both treatments influenced bone density. Ovarian transplantation increased cortical, but not trabecular bone density and tended to increase osteophytosis and heterotopic mineralization, except in acyclic recipients. These effects may have been dictated by the timing of the treatments, with ovariectomy appearing to influence early development and ovarian transplantation limited to influencing only the postreproductive period. However, major differences observed between cycling, acyclic and ovariectomized recipients of new ovaries may have been, in part due to differences in the levels of hormone receptors present and the responsiveness of specific bone processes to hormone signaling. Changes that resulted from these treatments may represent a compensatory response to normal age-associated, negative, orthopedic changes. Alternatively, differences between treatments may simply be the 'preservation' of unblemished orthopedic conditions, prior to the influence of negative, age-associated effects. These findings may suggest that in women, tailoring hormone replacement therapy to the patient's current

  9. Adrenalectomy in genetically obese ob/ob and db/db mice increases the proton conductance pathway.

    PubMed

    Shargill, N S; Lupien, J R; Bray, G A

    1989-09-01

    Adrenalectomy (ADX) prevents the excessive weight gain in the genetically obese ob/ob and db/db mice. To test the possibility that this results from increased energy expenditure due to increased thermogenesis in brown adipose tissue (BAT), we measured GDP binding to mitochondria from interscapular brown adipose tissue (BAT) in db/db and ob/ob mice and their lean controls after adrenalectomy, with and without corticosterone replacement. Both the vehicle treated and corticosterone treated db/db and ob/ob mice had lower body weights than the sham-operated mice GDP binding to mitochondria from IBAT was significantly lower in both the db/db and ob/ob mice than in their lean controls. Adrenalectomy significantly increased GDP binding in all mice compared to the respective sham-operated mice, but, the percentage increase was always greater in the db/db and ob/ob mice. Corticosterone treatment of adrenalectomized db/db, ob/ob or lean mice lowered GDP binding to sham levels. Our data confirm previous findings that adrenalectomy results in increased GDP binding to mitochondria from IBAT. Injections of corticosterone into adrenalectomized mice results in a decrease in GDP binding to values which are similar to values in sham-operated mice. Thus adrenalectomy may inhibit the development of obesity by increasing the thermic activity in IBAT. PMID:2583669

  10. [Transfer of genetic constructions through the transplacental barrier into mice embryos].

    PubMed

    Efremov, A M; Buglaeva, A O; Orlov, S V; Burov, S V; Ignatovich, I A; Dizhe, E B; Shavva, V S; Perevozchikov, A P

    2010-01-01

    Genetic modification of mammalian embryos is an important way to model various changes in human development; also, it is an instrument for studying the functions of certain genes in mammals. Using our own experience in developing modes of delivery of genetic constructions to mammals in a nonviral way, we present here data on the delivery of a eukaryotic expression vector to mice embryos through the transplacental barrier with the use of hydrodynamic intravenous injections of DNA-hybrid peptide complexes to pregnant females. The peptide has a cationic part for interaction with DNA and includes a ligand structure towards receptors of the releasing factor of luteinizing hormone (RFLH, luliberin). Advantages of the suggested method are simplicity, economy, nonimmunogenicity for females, and the ability to multiply repeat the procedure. On the basis of the method, systemic gene delivery into tissues of mammalian embryos may be developed. PMID:20429369

  11. Genetically Determined Susceptibility to Tuberculosis in Mice Causally Involves Accelerated and Enhanced Recruitment of Granulocytes

    PubMed Central

    Keller, Christine; Hoffmann, Reinhard; Lang, Roland; Brandau, Sven; Hermann, Corinna; Ehlers, Stefan

    2006-01-01

    Classical twin studies and recent linkage analyses of African populations have revealed a potential involvement of host genetic factors in susceptibility or resistance to Mycobacterium tuberculosis infection. In order to identify the candidate genes involved and test their causal implication, we capitalized on the mouse model of tuberculosis, since inbred mouse strains also differ substantially in their susceptibility to infection. Two susceptible and two resistant mouse strains were aerogenically infected with 1,000 CFU of M. tuberculosis, and the regulation of gene expression was examined by Affymetrix GeneChip U74A array with total lung RNA 2 and 4 weeks postinfection. Four weeks after infection, 96 genes, many of which are involved in inflammatory cell recruitment and activation, were regulated in common. One hundred seven genes were differentially regulated in susceptible mouse strains, whereas 43 genes were differentially expressed only in resistant mice. Data mining revealed a bias towards the expression of genes involved in granulocyte pathophysiology in susceptible mice, such as an upregulation of those for the neutrophil chemoattractant LIX (CXCL5), interleukin 17 receptor, phosphoinositide kinase 3 delta, or gamma interferon-inducible protein 10. Following M. tuberculosis challenge in both airways or peritoneum, granulocytes were recruited significantly faster and at higher numbers in susceptible than in resistant mice. When granulocytes were efficiently depleted by either of two regimens at the onset of infection, only susceptible mice survived aerosol challenge with M. tuberculosis significantly longer than control mice. We conclude that initially enhanced recruitment of granulocytes contributes to susceptibility to tuberculosis. PMID:16790804

  12. The effect of multigenerational diet containing genetically modified triticale on immune system in mice.

    PubMed

    Krzyżowska, M; Wincenciak, M; Winnicka, A; Baranowski, A; Jaszczak, K; Zimny, J; Niemiałtowski, M

    2010-01-01

    The safety assessment of genetically modified (GM) food and feed is performed to identify the possible effects upon animal and human health, also the long-term, multigenerational influence upon functioning of different organs and systems, such as the immune system. In this study C57BL/6J mice were fed for five consecutive generations with pellets containing 20% of conventional triticale grain (control) vs. pellets containing 20% of the transgenic triticale grain resistant to BASTA herbicide (experimental). The F5 experimental animals showed enlarged inguinal and axillary lymph nodes, but not spleens, and increased WBC counts in blood (but within the norm for Mus musculus). Immunophenotyped cell suspensions derived from spleens, inguinal and axillaris lymph nodes and PBMCs from blood showed the significant decrease in the percentage of T cells in spleen and lymph nodes and the B cells in lymph nodes and blood of the F5 experimental mice in comparison to the control F5 mice. Immunoblotting analysis of IL-2, IL-4, IL-10, IL-12, IL- 6, IFN-gamma levels in serum showed significantly increased IL-2 levels and decreased IL-6 levels in the F5-experimental mice sera. No significant changes in the levels of IgE in sera in both mice groups were observed. The obtained results indicate that multigenerational use of feeds for rodents containing the GM-triticale leads to expansion of the B cell compartment in the secondary lymphoid organs, but it is not caused by malignant processes or the allergic response. PMID:21033555

  13. Nordihydroguaiaretic acid and aspirin increase lifespan of genetically heterogeneous male mice.

    PubMed

    Strong, Randy; Miller, Richard A; Astle, Clinton M; Floyd, Robert A; Flurkey, Kevin; Hensley, Kenneth L; Javors, Martin A; Leeuwenburgh, Christiaan; Nelson, James F; Ongini, Ennio; Nadon, Nancy L; Warner, Huber R; Harrison, David E

    2008-10-01

    The National Institute on Aging's Interventions Testing Program was established to evaluate agents that are purported to increase lifespan and delay the appearance of age-related disease in genetically heterogeneous mice. Up to five compounds are added to the study each year and each compound is tested at three test sites (The Jackson Laboratory, University of Michigan, and University of Texas Health Science Center at San Antonio). Mice in the first cohort were exposed to one of four agents: aspirin, nitroflurbiprofen, 4-OH-alpha-phenyl-N-tert-butyl nitrone, or nordihydroguaiaretic acid (NDGA). Sample size was sufficient to detect a 10% difference in lifespan in either sex,with 80% power, using data from two of the three sites. Pooling data from all three sites, a log-rank test showed that both NDGA (p=0.0006) and aspirin (p=0.01) led to increased lifespan of male mice. Comparison of the proportion of live mice at the age of 90% mortality was used as a surrogate for measurement of maximum lifespan;neither NDGA (p=0.12) nor aspirin (p=0.16) had a significant effect in this test. Measures of blood levels of NDGA or aspirin and its salicylic acid metabolite suggest that the observed lack of effects of NDGA or aspirin on life span in females could be related to gender differences in drug disposition or metabolism. Further studies are warranted to find whether NDGA or aspirin, over a range of doses,might prove to postpone death and various age-related outcomes reproducibly in mice. PMID:18631321

  14. Genome-wide association and fine mapping of genetic loci predisposing to colon carcinogenesis in mice.

    PubMed

    Liu, Pengyuan; Lu, Yan; Liu, Hongbo; Wen, Weidong; Jia, Dongmei; Wang, Yian; You, Ming

    2012-01-01

    To identify the genetic determinants of colon tumorigenesis, 268 male mice from 33 inbred strains derived from different genealogies were treated with azoxymethane (AOM; 10 mg/kg) once a week for six weeks to induce colon tumors. Tumors were localized exclusively within the distal colon in each of the strains examined. Inbred mouse strains exhibit a large variability in genetic susceptibility to AOM-induced colon tumorigenesis. The mean colon tumor multiplicity ranged from 0 to 38.6 (mean = 6.5 ± 8.6) and tumor volume ranged from 0 to 706.5 mm(3) (mean = 87.4 ± 181.9) at 24 weeks after the first dose of AOM. AOM-induced colon tumor phenotypes are highly heritable in inbred mice, and 68.8% and 71.3% of total phenotypic variation in colon tumor multiplicity and tumor volume, respectively, are attributable to strain-dependent genetic background. Using 97,854 single-nucleotide polymorphisms, we carried out a genome-wide association study (GWAS) of AOM-induced colon tumorigenesis and identified a novel susceptibility locus on chromosome 15 (rs32359607, P = 6.31 × 10(-6)). Subsequent fine mapping confirmed five (Scc3, Scc2, Scc12, Scc8, and Ccs1) of 16 linkage regions previously found to be associated with colon tumor susceptibility. These five loci were refined to less than 1 Mb genomic regions of interest. Major candidates in these loci are Sema5a, Fmn2, Grem2, Fap, Gsg1l, Xpo6, Rabep2, Eif3c, Unc5d, and Gpr65. In particular, the refined Scc3 locus shows high concordance with the human GWAS locus that underlies hereditary mixed polyposis syndrome. These findings increase our understanding of the complex genetics of colon tumorigenesis, and provide important insights into the pathways of colorectal cancer development and might ultimately lead to more effective individually targeted cancer prevention strategies. PMID:22127497

  15. Genetic evidence that synaptonemal complex axial elements govern recombination pathway choice in mice.

    PubMed

    Li, Xin Chenglin; Bolcun-Filas, Ewelina; Schimenti, John C

    2011-09-01

    Chiasmata resulting from interhomolog recombination are critical for proper chromosome segregation at meiotic metaphase I, thus preventing aneuploidy and consequent deleterious effects. Recombination in meiosis is driven by programmed induction of double strand breaks (DSBs), and the repair of these breaks occurs primarily by recombination between homologous chromosomes, not sister chromatids. Almost nothing is known about the basis for recombination partner choice in mammals. We addressed this problem using a genetic approach. Since meiotic recombination is coupled with synaptonemal complex (SC) morphogenesis, we explored the role of axial elements--precursors to the lateral element in the mature SC--in recombination partner choice, DSB repair pathways, and checkpoint control. Female mice lacking the SC axial element protein SYCP3 produce viable, but often aneuploid, oocytes. We describe genetic studies indicating that while DSB-containing Sycp3-/- oocytes can be eliminated efficiently, those that survive have completed repair before the execution of an intact DNA damage checkpoint. We find that the requirement for DMC1 and TRIP13, proteins normally essential for recombination repair of meiotic DSBs, is substantially bypassed in Sycp3 and Sycp2 mutants. This bypass requires RAD54, a functionally conserved protein that promotes intersister recombination in yeast meiosis and mammalian mitotic cells. Immunocytological and genetic studies indicated that the bypass in Sycp3-/- Dmc1-/- oocytes was linked to increased DSB repair. These experiments lead us to hypothesize that axial elements mediate the activities of recombination proteins to favor interhomolog, rather than intersister recombinational repair of genetically programmed DSBs in mice. The elimination of this activity in SYCP3- or SYCP2-deficient oocytes may underlie the aneuploidy in derivative mouse embryos and spontaneous abortions in women. PMID:21750255

  16. Global genetic analysis in mice unveils central role for cilia in congenital heart disease.

    PubMed

    Li, You; Klena, Nikolai T; Gabriel, George C; Liu, Xiaoqin; Kim, Andrew J; Lemke, Kristi; Chen, Yu; Chatterjee, Bishwanath; Devine, William; Damerla, Rama Rao; Chang, Chienfu; Yagi, Hisato; San Agustin, Jovenal T; Thahir, Mohamed; Anderton, Shane; Lawhead, Caroline; Vescovi, Anita; Pratt, Herbert; Morgan, Judy; Haynes, Leslie; Smith, Cynthia L; Eppig, Janan T; Reinholdt, Laura; Francis, Richard; Leatherbury, Linda; Ganapathiraju, Madhavi K; Tobita, Kimimasa; Pazour, Gregory J; Lo, Cecilia W

    2015-05-28

    Congenital heart disease (CHD) is the most prevalent birth defect, affecting nearly 1% of live births; the incidence of CHD is up to tenfold higher in human fetuses. A genetic contribution is strongly suggested by the association of CHD with chromosome abnormalities and high recurrence risk. Here we report findings from a recessive forward genetic screen in fetal mice, showing that cilia and cilia-transduced cell signalling have important roles in the pathogenesis of CHD. The cilium is an evolutionarily conserved organelle projecting from the cell surface with essential roles in diverse cellular processes. Using echocardiography, we ultrasound scanned 87,355 chemically mutagenized C57BL/6J fetal mice and recovered 218 CHD mouse models. Whole-exome sequencing identified 91 recessive CHD mutations in 61 genes. This included 34 cilia-related genes, 16 genes involved in cilia-transduced cell signalling, and 10 genes regulating vesicular trafficking, a pathway important for ciliogenesis and cell signalling. Surprisingly, many CHD genes encoded interacting proteins, suggesting that an interactome protein network may provide a larger genomic context for CHD pathogenesis. These findings provide novel insights into the potential Mendelian genetic contribution to CHD in the fetal population, a segment of the human population not well studied. We note that the pathways identified show overlap with CHD candidate genes recovered in CHD patients, suggesting that they may have relevance to the more complex genetics of CHD overall. These CHD mouse models and >8,000 incidental mutations have been sperm archived, creating a rich public resource for human disease modelling. PMID:25807483

  17. Global genetic analysis in mice unveils central role for cilia in congenital heart disease

    PubMed Central

    Li, You; Klena, Nikolai T.; Gabriel, George C; Liu, Xiaoqin; Kim, Andrew J.; Lemke, Kristi; Chen, Yu; Chatterjee, Bishwanath; Devine, William; Damerla, Rama Rao; Chang, Chien-fu; Yagi, Hisato; San Agustin, Jovenal T.; Thahir, Mohamed; Anderton, Shane; Lawhead, Caroline; Vescovi, Anita; Pratt, Herbert; Morgan, Judy; Haynes, Leslie; Smith, Cynthia L.; Eppig, Janan T.; Reinholdt, Laura; Francis, Richard; Leatherbury, Linda; Ganapathiraju, Madhavi K.; Tobita, Kimimasa; Pazour, Gregory J.; Lo, Cecilia W.

    2015-01-01

    Congenital heart disease (CHD) is the most prevalent birth defect, affecting nearly 1% of live births1, but the incidence of CHD is up to ten fold higher in human fetuses2,3. A genetic contribution is strongly suggested by the association of CHD with chromosome abnormalities and high recurrence risk4. Here we report findings from a recessive forward genetic screen in fetal mice, showing the cilium and cilia transduced cell signaling play important roles in the pathogenesis of CHD. The cilium is an evolutionarily conserved organelle projecting from the cell surface with essential roles in diverse cellular processes. Using echocardiography, we ultrasound scanned 87,355 chemically mutagenized C57BL/6J fetal mice and recovered 218 CHD mouse models. Whole exome sequencing identified 91 recessive CHD mutations in 61 genes. This included 34 cilia-related genes, 16 genes involved in cilia transduced cell signaling, and 10 genes regulating vesicular trafficking, a pathway important for ciliogenesis and cell signaling. Surprisingly, many CHD genes encoded interacting proteins, suggesting an interactome protein network may provide a larger genomic context for CHD pathogenesis. These findings provide novel insights into the potential Mendelian genetic contribution to CHD in the fetal population, a segment of the human population not well studied. We note pathways identified show overlap with CHD candidate genes recovered in CHD patients5, suggesting they may have relevance to the more complex genetics of CHD overall. These CHD mouse models and >8,000 incidental mutations are sperm archived, creating a rich public resource for human disease modeling. PMID:25807483

  18. The Genetic Architecture of Hearing Impairment in Mice: Evidence for Frequency-Specific Genetic Determinants

    PubMed Central

    Crow, Amanda L.; Ohmen, Jeffrey; Wang, Juemei; Lavinsky, Joel; Hartiala, Jaana; Li, Qingzhong; Li, Xin; Salehide, Pezhman; Eskin, Eleazar; Pan, Calvin; Lusis, Aldons J.; Allayee, Hooman; Friedman, Rick A.

    2015-01-01

    Genome-wide association studies (GWAS) have been successfully applied in humans for the study of many complex phenotypes. However, identification of the genetic determinants of hearing in adults has been hampered, in part, by the relative inability to control for environmental factors that might affect hearing throughout the lifetime, as well as a large degree of phenotypic heterogeneity. These and other factors have limited the number of large-scale studies performed in humans that have identified candidate genes that contribute to the etiology of this complex trait. To address these limitations, we performed a GWAS analysis using a set of inbred mouse strains from the Hybrid Mouse Diversity Panel. Among 99 strains characterized, we observed approximately two-fold to five-fold variation in hearing at six different frequencies, which are differentiated biologically from each other by the location in the cochlea where each frequency is registered. Among all frequencies tested, we identified a total of nine significant loci, several of which contained promising candidate genes for follow-up study. Taken together, our results indicate the existence of both genes that affect global cochlear function, as well as anatomical- and frequency-specific genes, and further demonstrate the complex nature of mammalian hearing variation. PMID:26342000

  19. The Genetic Architecture of Hearing Impairment in Mice: Evidence for Frequency-Specific Genetic Determinants.

    PubMed

    Crow, Amanda L; Ohmen, Jeffrey; Wang, Juemei; Lavinsky, Joel; Hartiala, Jaana; Li, Qingzhong; Li, Xin; Salehide, Pezhman; Eskin, Eleazar; Pan, Calvin; Lusis, Aldons J; Allayee, Hooman; Friedman, Rick A

    2015-11-01

    Genome-wide association studies (GWAS) have been successfully applied in humans for the study of many complex phenotypes. However, identification of the genetic determinants of hearing in adults has been hampered, in part, by the relative inability to control for environmental factors that might affect hearing throughout the lifetime, as well as a large degree of phenotypic heterogeneity. These and other factors have limited the number of large-scale studies performed in humans that have identified candidate genes that contribute to the etiology of this complex trait. To address these limitations, we performed a GWAS analysis using a set of inbred mouse strains from the Hybrid Mouse Diversity Panel. Among 99 strains characterized, we observed approximately two-fold to five-fold variation in hearing at six different frequencies, which are differentiated biologically from each other by the location in the cochlea where each frequency is registered. Among all frequencies tested, we identified a total of nine significant loci, several of which contained promising candidate genes for follow-up study. Taken together, our results indicate the existence of both genes that affect global cochlear function, as well as anatomical- and frequency-specific genes, and further demonstrate the complex nature of mammalian hearing variation. PMID:26342000

  20. Genetic variation in offspring indirectly influences the quality of maternal behaviour in mice

    PubMed Central

    Ashbrook, David George; Gini, Beatrice; Hager, Reinmar

    2015-01-01

    Conflict over parental investment between parent and offspring is predicted to lead to selection on genes expressed in offspring for traits influencing maternal investment, and on parentally expressed genes affecting offspring behaviour. However, the specific genetic variants that indirectly modify maternal or offspring behaviour remain largely unknown. Using a cross-fostered population of mice, we map maternal behaviour in genetically uniform mothers as a function of genetic variation in offspring and identify loci on offspring chromosomes 5 and 7 that modify maternal behaviour. Conversely, we found that genetic variation among mothers influences offspring development, independent of offspring genotype. Offspring solicitation and maternal behaviour show signs of coadaptation as they are negatively correlated between mothers and their biological offspring, which may be linked to costs of increased solicitation on growth found in our study. Overall, our results show levels of parental provisioning and offspring solicitation are unique to specific genotypes. DOI: http://dx.doi.org/10.7554/eLife.11814.001 PMID:26701914

  1. Measuring aging rates of mice subjected to caloric restriction and genetic disruption of growth hormone signaling

    PubMed Central

    Koopman, Jacob J.E.; van Heemst, Diana; van Bodegom, David; Bonkowski, Michael S.; Sun, Liou Y.; Bartke, Andrzej

    2016-01-01

    Caloric restriction and genetic disruption of growth hormone signaling have been shown to counteract aging in mice. The effects of these interventions on aging are examined through age-dependent survival or through the increase in age-dependent mortality rates on a logarithmic scale fitted to the Gompertz model. However, these methods have limitations that impede a fully comprehensive disclosure of these effects. Here we examine the effects of these interventions on murine aging through the increase in age-dependent mortality rates on a linear scale without fitting them to a model like the Gompertz model. Whereas these interventions negligibly and non-consistently affected the aging rates when examined through the age-dependent mortality rates on a logarithmic scale, they caused the aging rates to increase at higher ages and to higher levels when examined through the age-dependent mortality rates on a linear scale. These results add to the debate whether these interventions postpone or slow aging and to the understanding of the mechanisms by which they affect aging. Since different methods yield different results, it is worthwhile to compare their results in future research to obtain further insights into the effects of dietary, genetic, and other interventions on the aging of mice and other species. PMID:26959761

  2. A genetically adjuvanted influenza B virus vector increases immunogenicity and protective efficacy in mice.

    PubMed

    Kittel, Christian; Wressnigg, Nina; Shurygina, Anna Polina; Wolschek, Markus; Stukova, Marina; Romanovskaya-Romanko, Ekatherina; Romanova, Julia; Kiselev, Oleg; Muster, Thomas; Egorov, Andrej

    2015-10-01

    The existence of multiple antigenically distinct types and subtypes of influenza viruses allows the construction of a multivalent vector system for the mucosal delivery of foreign sequences. Influenza A viruses have been exploited successfully for the expression of extraneous antigens as well as immunostimulatory molecules. In this study, we describe the development of an influenza B virus vector whose functional part of the interferon antagonist NS1 was replaced by human interleukin 2 (IL2) as a genetic adjuvant. We demonstrate that IL2 expressed by this viral vector displays immune adjuvant activity in immunized mice. Animals vaccinated with the IL2 viral vector showed an increased hemagglutination inhibition antibody response and higher protective efficacy after challenge with a wild-type influenza B virus when compared to mice vaccinated with a control virus. Our results demonstrate that it is feasible to construct influenza B vaccine strains expressing immune-potentiating foreign sequences from the NS genomic segment. Based on these data, it is now hypothetically possible to create a trivalent (or quadrivalent) live attenuated influenza vaccine in which each component expresses a selected genetic adjuvant with tailored expression levels. PMID:26215439

  3. Genetic ablation of lymphocytes and cytokine signaling in nonobese diabetic mice prevents diet-induced obesity and insulin resistance.

    PubMed

    Friedline, Randall H; Ko, Hwi Jin; Jung, Dae Young; Lee, Yongjin; Bortell, Rita; Dagdeviren, Sezin; Patel, Payal R; Hu, Xiaodi; Inashima, Kunikazu; Kearns, Caitlyn; Tsitsilianos, Nicholas; Shafiq, Umber; Shultz, Leonard D; Lee, Ki Won; Greiner, Dale L; Kim, Jason K

    2016-03-01

    Obesity is characterized by a dysregulated immune system, which may causally associate with insulin resistance and type 2 diabetes. Despite widespread use of nonobese diabetic (NOD) mice, NOD with severe combined immunodeficiency (scid) mutation (SCID) mice, and SCID bearing a null mutation in the IL-2 common γ chain receptor (NSG) mice as animal models of human diseases including type 1 diabetes, the underlying metabolic effects of a genetically altered immune system are poorly understood. For this, we performed a comprehensive metabolic characterization of these mice fed chow or after 6 wk of a high-fat diet. We found that NOD mice had ∼50% less fat mass and were 2-fold more insulin sensitive, as measured by hyperinsulinemic-euglycemic clamp, than C57BL/6 wild-type mice. SCID mice were also more insulin sensitive with increased muscle glucose metabolism and resistant to diet-induced obesity due to increased energy expenditure (∼10%) and physical activity (∼40%) as measured by metabolic cages. NSG mice were completely protected from diet-induced obesity and insulin resistance with significant increases in glucose metabolism in peripheral organs. Our findings demonstrate an important role of genetic background, lymphocytes, and cytokine signaling in diet-induced obesity and insulin resistance. PMID:26644351

  4. Cardiac Physiologic and Genetic Predictors of Hyperoxia-Induced Acute Lung Injury in Mice

    PubMed Central

    Cho, Hye-Youn; Miller-DeGraff, Laura; Walker, Christopher; Clark, James A.; Myers, Page H.; Rouse, D. Clay; Kleeberger, Steven R.

    2012-01-01

    Exposure of mice to hyperoxia produces pulmonary toxicity similar to acute lung injury/acute respiratory distress syndrome, but little is known about the interactions within the cardiopulmonary system. This study was designed to characterize the cardiopulmonary response to hyperoxia, and to identify candidate susceptibility genes in mice. Electrocardiogram and ventilatory data were recorded continuously from 4 inbred and 29 recombinant inbred strains during 96 hours of hyperoxia (100% oxygen). Genome-wide linkage analysis was performed in 27 recombinant inbred strains against response time indices (TIs) calculated from each cardiac phenotype. Reductions in minute ventilation, heart rate (HR), low-frequency (LF) HR variability (HRV), high-frequency HRV, and total power HRV were found in all mice during hyperoxia exposure, but the lag time before these changes began was strain dependent. Significant (chromosome 9) or suggestive (chromosomes 3 and 5) quantitative trait loci were identified for the HRTI and LFTI. Functional polymorphisms in several candidate susceptibility genes were identified within the quantitative trait loci and were associated with hyperoxia susceptibility. This is the first study to report highly significant interstrain variation in hyperoxia-induced changes in minute ventilation, HR, and HRV, and to identify polymorphisms in candidate susceptibility genes that associate with cardiac responses. Results indicate that changes in HR and LF HRV could be important predictors of subsequent adverse outcome during hyperoxia exposure, specifically the pathogenesis of acute lung injury. Understanding the genetic mechanisms of these responses may have significant diagnostic clinical value. PMID:22052878

  5. Impact of Genetic Background on Neonatal Lethality of Gga2 Gene-Trap Mice

    PubMed Central

    Doray, Balraj; Govero, Jennifer; Kornfeld, Stuart

    2014-01-01

    The functional redundancy of the three mammalian Golgi-localized, γ-ear–containing, ADP-ribosylation factor-binding proteins (GGAs) was addressed in a previous study. Using insertional mutagenesis, we found that Gga1 or Gga3 homozygous knockout mice were for the most part normal, whereas mice homozygous for two different Gga2 gene-trap alleles exhibited either embryonic or neonatal lethality in the C57BL/6 background, depending on the source of the vector utilized (Byg vs. Tigm, respectively). We now show that the Byg strain harbors a disrupted Gga2 allele that is hypomorphic, indicating that the Byg lethality is attributable to a mechanism independent of GGA2. This is in contrast to the Tigm Gga2 allele, which is a true knockout and establishes a role for GGA2 during the neonatal period. Placement of the Tigm Gga2 allele into the C57BL6/Ola129Sv mixed background results in a lower incidence of neonatal lethality, showing the importance of genetic background in determining the requirement for GGA2 during this period. The Gga2−/− mice that survive have reduced body weight at birth and this runted phenotype is maintained through adulthood. PMID:24637350

  6. Novel Tools for Genetic Manipulation of Follicle Stem Cells in the Drosophila Ovary Reveal an Integrin-Dependent Transition from Quiescence to Proliferation

    PubMed Central

    Hartman, Tiffiney R.; Ventresca, Erin M.; Hopkins, Anthony; Zinshteyn, Daniel; Singh, Tanu; O’Brien, Jenny A.; Neubert, Benjamin C.; Hartman, Matthew G.; Schofield, Heather K.; Stavrides, Kevin P.; Talbot, Danielle E.; Riggs, Devon J.; Pritchard, Caroline; O’Reilly, Alana M.

    2015-01-01

    In many tissues, the presence of stem cells is inferred by the capacity of the tissue to maintain homeostasis and undergo repair after injury. Isolation of self-renewing cells with the ability to generate the full array of cells within a given tissue strongly supports this idea, but the identification and genetic manipulation of individual stem cells within their niche remain a challenge. Here we present novel methods for marking and genetically altering epithelial follicle stem cells (FSCs) within the Drosophila ovary. Using these new tools, we define a sequential multistep process that comprises transitioning of FSCs from quiescence to proliferation. We further demonstrate that integrins are cell-autonomously required within FSCs to provide directional signals that are necessary at each step of this process. These methods may be used to define precise roles for specific genes in the sequential events that occur during FSC division after a period of quiescence. PMID:25680813

  7. Interactive effects between trichloroethylene and pesticides at metabolic and genetic level in mice.

    PubMed

    Hrelia, P; Maffei, F; Vigagni, F; Fimognari, C; Flori, P; Stanzani, R; Cantelli Forti, G

    1994-11-01

    A combined cytogeneticurine metabolite analysis approach was used to assess potential interactive effects between Fenarimol (FN), a fungicide, and trichloroethylene (TRI), a halogenated solvent. FN was demonstrated to selectively induce P450-2B1 isoforms in different organs of treated mice. Since the rate of metabolism and the stereospecificity of metabolism are dependent on the types and amount of P450s available, FN might drastically alter the metabolic activation of a precarcinogen, such as TRI, and its toxicological consequences. Male CD1 mice were divided into untreated, vehicle control, and experimental groups. Animals of the latter groups were treated ip with 150 mg/kg bw FN in corn oil, 457 mg/kg bw TRI in corn oil, TRI plus FN separated by different time intervals. Bone marrow cells were harvested for determination of micronuclei (MN) frequencies in polychromatic erythrocytes (PCE). The presence of the known metabolite of TRI, trichloroethanol (TCE), was quantitated in collected urine by gas chromatography using an electron-capture detector. Linear regression analysis shows that MN frequency by TRI is correlated with TCE concentration in urine. Observed potentiation of genotoxicity of TRI by FN pretreatment (1 hr before TRI treatment) apparently reflects changes in the spectra of enzymes involved in TRI metabolism, and altered toxicokinetic, as witnessed by the 20% difference in TCE excretion from combined treated mice. However, no increased genetic or metabolic effects were observed when FN was administered 3 hr before TRI. No significant interactive effects were observed at a genetic level when FN was administered 1 hr and 3 hr after TRI whereas a 33 to 47% loss in TCE excretion was recorded.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7698080

  8. The use of genetically modified mice in cancer risk assessment: Challenges and limitations*

    PubMed Central

    Eastmond, David A.; Vulimiri, Suryanarayana V.; French, John E.; Sonawane, Babasaheb

    2015-01-01

    The use of genetically modified (GM) mice to assess carcinogenicity is playing an increasingly important role in the safety evaluation of chemicals. While progress has been made in developing and evaluating mouse models such as the Trp53+/−, Tg.AC and the rasH2, the suitability of these models as replacements for the conventional rodent cancer bioassay and for assessing human health risks remains uncertain. The objective of this research was to evaluate the use of accelerated cancer bioassays with GM mice for assessing the potential health risks associated with exposure to carcinogenic agents. We compared the published results from the GM bioassays to those obtained in the National Toxicology Program’s conventional chronic mouse bioassay for their potential use in risk assessment. Our analysis indicates that the GM models are less efficient in detecting carcinogenic agents but more consistent in identifying non-carcinogenic agents. We identified several issues of concern related to the design of the accelerated bioassays (e.g., sample size, study duration, genetic stability and reproducibility) as well as pathway-dependency of effects, and different carcinogenic mechanisms operable in GM and non-GM mice. The use of the GM models for dose-response assessment is particularly problematic as these models are, at times, much more or less sensitive than the conventional rodent cancer bioassays. Thus, the existing GM mouse models may be useful for hazard identification, but will be of limited use for dose-response assessment. Hence, caution should be exercised when using GM mouse models to assess the carcinogenic risks of chemicals. PMID:23985072

  9. Lifespan and lesions in genetically heterogeneous (four-way cross) mice: a new model for aging research.

    PubMed

    Chrisp, C E; Turke, P; Luciano, A; Swalwell, S; Peterson, J; Miller, R A

    1996-11-01

    Genetically heterogeneous animal models provide many advantages for research on aging but have been used infrequently. We present here lifespan and lesion data from a study of mice bred as a cross between (AKR/J x DBA/2J)F1 females and (C57BL/6J x SJL/J)F1 males. In such a four-way cross population, each mouse is genetically unique, but replicate populations of essentially similar genetic structure can be generated quickly, at low cost, and of arbitrary size from commercially available, genetically stable hybrid parents. We employed a protocol in which mice judged to be severely ill were euthanatized to obtain tissue in optimal condition for necropsy, and we were able to infer a likely cause of illness in 42 of 44 animals. Malignant lymphoma, including at least four histopathologically distinct subtypes, was the most common cause and was also a frequent incidental finding in mice dying of other causes. Neoplastic disease, benign or malignant, was the sole or a contributing cause of illness in 90% of the mice for which a cause could plausibly be assigned. A wide range of lethal and nonlethal degenerative lesions was also noted. The coefficient of variation for lifespan in these genetically heterogeneous mice was 26%, similar to that seen in analyses of recombinant inbred mouse lines. Baseline lifespan and pathology data on four-way cross mice is a useful prelude to the exploitation of this rodent model in tests of genetic and mechanistic hypotheses about aging. PMID:8952040

  10. Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity

    NASA Technical Reports Server (NTRS)

    Anterola, Aldwin M.; Lewis, Norman G.

    2002-01-01

    A comprehensive assessment of lignin configuration in transgenic and mutant plants is long overdue. This review thus undertook the systematic analysis of trends manifested through genetic and mutational manipulations of the various steps associated with monolignol biosynthesis; this included consideration of the downstream effects on organized lignin assembly in the various cell types, on vascular function/integrity, and on plant growth and development. As previously noted for dirigent protein (homologs), distinct and sophisticated monolignol forming metabolic networks were operative in various cell types, tissues and organs, and form the cell-specific guaiacyl (G) and guaiacyl-syringyl (G-S) enriched lignin biopolymers, respectively. Regardless of cell type undergoing lignification, carbon allocation to the different monolignol pools is apparently determined by a combination of phenylalanine availability and cinnamate-4-hydroxylase/"p-coumarate-3-hydroxylase" (C4H/C3H) activities, as revealed by transcriptional and metabolic profiling. Downregulation of either phenylalanine ammonia lyase or cinnamate-4-hydroxylase thus predictably results in reduced lignin levels and impaired vascular integrity, as well as affecting related (phenylpropanoid-dependent) metabolism. Depletion of C3H activity also results in reduced lignin deposition, albeit with the latter being derived only from hydroxyphenyl (H) units, due to both the guaiacyl (G) and syringyl (S) pathways being blocked. Apparently the cells affected are unable to compensate for reduced G/S levels by increasing the amounts of H-components. The downstream metabolic networks for G-lignin enriched formation in both angiosperms and gymnosperms utilize specific cinnamoyl CoA O-methyltransferase (CCOMT), 4-coumarate:CoA ligase (4CL), cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) isoforms: however, these steps neither affect carbon allocation nor H/G designations, this being determined by C4H/C3H

  11. Animal models of physiologic markers of male reproduction: genetically defined infertile mice

    SciTech Connect

    Chubb, C.

    1987-10-01

    The present report focuses on novel animal models of male infertility: genetically defined mice bearing single-gene mutations that induce infertility. The primary goal of the investigations was to identify the reproductive defects in these mutant mice. The phenotypic effects of the gene mutations were deciphered by comparing the mutant mice to their normal siblings. Initially testicular steroidogenesis and spermatogenesis were investigated. The physiologic markers for testicular steroidogenesis were steroid secretion by testes perifused in vitro, seminal vesicle weight, and Leydig cell histology. Spermatogenesis was evaluated by the enumeration of homogenization-resistant sperm/spermatids in testes and by morphometric analyses of germ cells in the seminiferous epithelium. If testicular function appeared normal, the authors investigated the sexual behavior of the mice. The parameters of male sexual behavior that were quantified included mount patency, mount frequency, intromission latency, thrusts per intromission, ejaculation latency, and ejaculation duration. Females of pairs breeding under normal circumstances were monitored for the presence of vaginal plugs and pregnancies. The patency of the ejaculatory process was determined by quantifying sperm in the female reproductive tract after sexual behavior tests. Sperm function was studied by quantitatively determining sperm motility during videomicroscopic observation. Also, the ability of epididymal sperm to function within the uterine environment was analyzed by determining sperm capacity to initiate pregnancy after artificial insemination. Together, the experimental results permitted the grouping of the gene mutations into three general categories. They propose that the same biological markers used in the reported studies can be implemented in the assessment of the impact that environmental toxins may have on male reproduction.

  12. Animal models of physiologic markers of male reproduction: genetically defined infertile mice.

    PubMed Central

    Chubb, C

    1987-01-01

    The present report focuses on novel animal models of male infertility: genetically defined mice bearing single-gene mutations that induce infertility. The primary goal of our investigations was to identify the reproductive defects in these mutant mice. The phenotypic effects of the gene mutations were deciphered by comparing the mutant mice to their normal siblings. Initially testicular steroidogenesis and spermatogenesis were investigated. The physiologic markers for testicular steroidogenesis were steroid secretion by testes perifused in vitro, seminal vesicle weight, and Leydig cell histology. Spermatogenesis was evaluated by the enumeration of homogenization-resistant sperm/spermatids in testes and by morphometric analyses of germ cells in the seminiferous epithelium. If testicular function appeared normal, we investigated the sexual behavior of the mice. The parameters of male sexual behavior that were quantified included mount patency, mount frequency, intromission latency, thrusts per intromission, ejaculation latency, and ejaculation duration. Females of pairs breeding under normal circumstances were monitored for the presence of vaginal plugs and pregnancies. The patency of the ejaculatory process was determined by quantifying sperm in the female reproductive tract after sexual behavior tests. Sperm function was studied by quantitatively determining sperm motility during videomicroscopic observation. Also, the ability of epididymal sperm to function within the uterine environment was analyzed by determining sperm capacity to initiate pregnancy after artificial insemination. Together, the experimental results permitted the grouping of the gene mutations into three general categories. We propose that the same biological markers used in the reported studies can be implemented in the assessment of the impact that environmental toxins may have on male reproduction. PMID:3319549

  13. RMI1 deficiency in mice protects from diet and genetic-induced obesity.

    PubMed

    Suwa, Akira; Yoshino, Masayasu; Yamazaki, Chihiro; Naitou, Masanori; Fujikawa, Rie; Matsumoto, Shun-Ichiro; Kurama, Takeshi; Shimokawa, Teruhiko; Aramori, Ichiro

    2010-02-01

    The aim of this study is to discover and characterize novel energy homeostasis-related molecules. We screened stock mouse embryonic stem cells established using the exchangeable gene trap method, and examined the effects of deficiency of the target gene on diet and genetic-induced obesity. The mutant strain 0283, which has an insertion at the recQ-mediated genome instability 1 (RMI1) locus, possesses a number of striking features that allow it to resist metabolic abnormalities. Reduced RMI1 expression, lower fasting-blood glucose and a reduced body weight (normal diet) were observed in the mutant mice. When fed a high-fat diet, the mutant mice were resistant to obesity, and also showed improved glucose intolerance and reduced abdominal fat tissue mass and food intake. In addition, the mutants were also resistant to obesity induced by the lethal yellow agouti (A(y)) gene. Endogenous RMI1 genes were found to be up-regulated in the liver and adipose tissue of KK-A(y) mice. RMI1 is a component of the Bloom's syndrome gene helicase complex that maintains genome integrity and activates cell-cycle checkpoint machinery. Interestingly, diet-induced expression of E2F8 mRNA, which is an important cell cycle-related molecule, was suppressed in the mutant mice. These results suggest that the regulation of energy balance by RMI1 is attributable to the regulation of food intake and E2F8 expression in adipose tissue. Taken together, these findings demonstrate that RMI1 is a novel molecule that regulates energy homeostasis. PMID:20050919

  14. Repeated Ozone Exposure Exacerbates Insulin Resistance And Activates Innate Immune Response In Genetically Susceptible Mice

    PubMed Central

    Zhong, Jixin; Allen, Katryn; Rao, Xiaoquan; Ying, Zhekang; Braunstein, Zachary; Kankanala, Saumya R.; Xia, Chang; Wang, Xiaoke; Bramble, Lori A.; Wagner, James G.; Lewandowski, Ryan; Sun, Qinghua; Harkema, Jack R.; Rajagopalan, Sanjay

    2016-01-01

    Background Inhaled ozone (O3) has been demonstrated as a harmful pollutant and associated with chronic inflammatory diseases such as diabetes and vascular disorders. However, the underlying mechanisms by which O3 mediates harmful effects are poorly understood. Objectives To investigate the effect of O3 exposure on glucose intolerance, immune activation and underlying mechanisms in a genetically susceptible mouse model. Methods Diabetes-prone KK mice were exposed to filtered air (FA), or O3 (0.5 ppm) for 13 consecutive weekdays (4 h/day). Insulin tolerance test (ITT) was performed following the last exposure. Plasma insulin, adiponectin, and leptin were measured by ELISA. Pathologic changes were examined by H&E and oil-red-o staining. Inflammatory responses were detected using flow cytometry and real-time PCR. Results KK mice exposed to O3 displayed an impaired insulin response. Plasma insulin and leptin levels were reduced in O3-exposed mice. Three-week exposure to O3 induced lung inflammation and increased monocytes/macrophages in both blood and visceral adipose tissue. Inflammatory monocytes/macrophages increased both systemically and locally. CD4+ T cell activation was also enhanced by the exposure of O3 although the relative percentage of CD4+ T cell decreased in blood and adipose tissue. Multiple inflammatory genes including CXCL-11, IFN-γ, TNFα, IL-12, and iNOS were up-regulated in visceral adipose tissue. Furthermore, the expression of oxidative stress-related genes such as Cox4, Cox5a, Scd1, Nrf1, and Nrf2, increased in visceral adipose tissue of O3-exposed mice. Conclusions Repeated O3 inhalation induces oxidative stress, adipose inflammation and insulin resistance. PMID:27240593

  15. Genetic deletion or TWEAK blocking antibody administration reduce atherosclerosis and enhance plaque stability in mice

    PubMed Central

    Sastre, Cristina; Fernández-Laso, Valvanera; Madrigal-Matute, Julio; Muñoz-García, Begoña; Moreno, Juan A; Pastor-Vargas, Carlos; Llamas-Granda, Patricia; Burkly, Linda C; Egido, Jesús; Martín-Ventura, Jose L; Blanco-Colio, Luis M

    2014-01-01

    Clinical complications associated with atherosclerotic plaques arise from luminal obstruction due to plaque growth or destabilization leading to rupture. Tumour necrosis factor ligand superfamily member 12 (TNFSF12) also known as TNF-related weak inducer of apoptosis (TWEAK) is a proinflammatory cytokine that participates in atherosclerotic plaque development, but its role in plaque stability remains unclear. Using two different approaches, genetic deletion of TNFSF12 and treatment with a TWEAK blocking mAb in atherosclerosis-prone mice, we have analysed the effect of TWEAK inhibition on atherosclerotic plaques progression and stability. Mice lacking both TNFSF12 and Apolipoprotein E (TNFSF12−/−ApoE−/−) exhibited a diminished atherosclerotic burden and lesion size in their aorta. Advanced atherosclerotic plaques of TNFSF12−/−ApoE−/− or anti-TWEAK treated mice exhibited an increase collagen/lipid and vascular smooth muscle cell/macrophage ratios compared with TNFSF12+/+ApoE−/− control mice, reflecting a more stable plaque phenotype. These changes are related with two different mechanisms, reduction of the inflammatory response (chemokines expression and secretion and nuclear factor kappa B activation) and decrease of metalloproteinase activity in atherosclerotic plaques of TNFSF12−/−ApoE−/−. A similar phenotype was observed with anti-TWEAK mAb treatment in TNFSF12+/+ApoE−/− mice. Brachiocephalic arteries were also examined since they exhibit additional features akin to human atherosclerotic plaques associated with instability and rupture. Features of greater plaque stability including augmented collagen/lipid ratio, reduced macrophage content, and less presence of lateral xanthomas, buried caps, medial erosion, intraplaque haemorrhage and calcium content were present in TNFSF12−/−ApoE−/− or anti-TWEAK treatment in TNFSF12+/+ApoE−/− mice. Overall, our data indicate that anti-TWEAK treatment has the capacity to diminish

  16. Blood pressure, heart rate, and tubuloglomerular feedback in A1AR-deficient mice with different genetic backgrounds

    PubMed Central

    Kim, Soo Mi; Mizel, Diane; Qin, Yan; Huang, Yuning; Schnermann, Jurgen

    2014-01-01

    Aim Differences in genetic background between control mice and mice with targeted gene mutations have been recognized as a potential cause for phenotypic differences. In the present study we have used A1AR-deficient mice in a C57Bl/6 and SWR/J congenic background to assess the influence of background on the effect of A1AR-deficiency on cardiovascular and renal functional parameters. Methods In A1AR+/+ and A1AR−/− mice in C57Bl/6 and SWR/J congenic backgrounds we assessed blood pressure and heart rate using radio-telemetry, plasma renin concentrations, and tubuloglomerular feedback. Results We did not detect significant differences in arterial blood pressure (MAP) and heart rates (HR) between A1AR+/+ and A1AR−/− mice in either C57Bl/6, SWR/J, or mixed backgrounds. MAP and HR were significantly higher in SWR/J than in C57Bl/6 mice. A high NaCl intake increased MAP in A1AR−/− mice on C57Bl/6 background while there was less or no salt sensitivity in the SWR/J background. No significant differences in plasma renin concentration were detected between A1AR−/− and A1AR+/+ mice in any of the strains. Tubuloglomerular feedback was found to be absent in A1AR−/− mice with SWR/J genetic background. Conclusions While this study confirmed important differences between inbred mouse strains, we did not identify phenotypic modifications of A1AR-related effects on blood pressure, heart rate, and plasma renin by differences in genetic background. PMID:25182861

  17. Comparison of tissue concentrations in male and female C57BL/6 mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The tissue-specific response to dietary vitamin K (VK) manipulation has not been well studied in mice. This limits the use of genetically modified mouse models in VK studies. The objective of this study was to determine the sex-specific effects of dietary VK manipulation on serum, liver and extra-he...

  18. Concomitant manipulation of murine NMDA- and AMPA-receptors to produce pro-cognitive drug effects in mice.

    PubMed

    Vignisse, Julie; Steinbusch, Harry W M; Grigoriev, Vladimir; Bolkunov, Alexei; Proshin, Alexey; Bettendorff, Lucien; Bachurin, Sergey; Strekalova, Tatyana

    2014-02-01

    Bifunctional drug therapy targeting distinct receptor signalling systems can generate increased efficacy at lower concentrations compared to monofunctional therapy. Non-competitive blockade of the NMDA receptors or the potentiation of AMPA receptors is well documented to result in memory enhancement. Here, we compared the efficacy of the low-affinity NMDA receptor blocker memantine or the positive modulator of AMPA receptor QXX (in C57BL/6J at 1 or 5mg/kg, ip) with new derivatives of isothiourea (0.5-1 mg/kg, ip) that have bifunctional efficacy. Low-affinity NMDA blockade by these derivatives was achieved by introducing greater flexibility into the molecule, and AMPA receptor stimulation was produced by a sulfamide-containing derivative of isothiourea. Contextual learning was examined in a step-down avoidance task and extinction of contextual memory was studied in a fear-conditioning paradigm. Memantine enhanced contextual learning while QXX facilitated memory extinction; both drugs were effective at 5 mg/kg. The new derivative IPAC-5 elevated memory scores in both tasks at the dose 0.5 mg/kg and exhibited the lowest IC₅₀ values of NMDA receptor blockade and highest potency of AMPA receptor stimulation. Thus, among the new drugs tested, IPAC-5 replicated the properties of memantine and QXX in one administration with increased potency. Our data suggest that a concomitant manipulation of NMDA- and AMPA-receptors results in pro-cognitive effects and supports the concept bifunctional drug therapy as a promising strategy to replace monofunctional therapies with greater efficacy and improved compliance. PMID:23993168

  19. Populations at risk: conservation genetics of kangaroo mice (Microdipodops) of the Great Basin Desert

    PubMed Central

    Andersen, John J; Portnoy, David S; Hafner, John C; Light, Jessica E

    2013-01-01

    Abstract The Great Basin Desert of western North America has experienced frequent habitat alterations due to a complex biogeographic history and recent anthropogenic impacts, with the more recent alterations likely resulting in the decline of native fauna and flora. Dark (Microdipodops megacephalus) and pallid (M. pallidus) kangaroo mice are ecological specialists found within the Great Basin Desert and are potentially ideal organisms for assessing ecosystem health and inferring the biogeographic history of this vulnerable region. Herein, newly acquired nuclear-encoded microsatellite loci were utilized to assess patterns of variation within and among spatially discrete groups of kangaroo mice and to evaluate gene flow, demographic trends, and genetic integrity. Results confirm that there are at least three genetically distinct units within M. megacephalus and two such units within M. pallidus. The three units of M. megacephalus appear to have different demographic histories, with effectively no gene flow among them since their divergence. Similarly, the two units of M. pallidus also appear to have experienced different demographic histories, with effectively no gene exchange. Contemporary effective population sizes of all groups within Microdipodops appear to be low (<500), suggesting that each genetic lineage may have difficulty coping with changing environmental pressures and hence may be at risk of extirpation. Results of this study indicate that each Microdipodops group should be recognized, and therefore managed, as a separate unit in an effort to conserve these highly specialized taxa that contribute to the diversity of the Great Basin Desert ecosystem. The Great Basin Desert of western North America has experienced frequent habitat alterations due to a complex biogeographic history and recent anthropogenic impacts, with the more recent alterations likely resulting in the decline of native fauna and flora. Herein, newly acquired nuclear

  20. Populations at risk: conservation genetics of kangaroo mice (Microdipodops) of the Great Basin Desert.

    PubMed

    Andersen, John J; Portnoy, David S; Hafner, John C; Light, Jessica E

    2013-08-01

    The Great Basin Desert of western North America has experienced frequent habitat alterations due to a complex biogeographic history and recent anthropogenic impacts, with the more recent alterations likely resulting in the decline of native fauna and flora. Dark (Microdipodops megacephalus) and pallid (M. pallidus) kangaroo mice are ecological specialists found within the Great Basin Desert and are potentially ideal organisms for assessing ecosystem health and inferring the biogeographic history of this vulnerable region. Herein, newly acquired nuclear-encoded microsatellite loci were utilized to assess patterns of variation within and among spatially discrete groups of kangaroo mice and to evaluate gene flow, demographic trends, and genetic integrity. Results confirm that there are at least three genetically distinct units within M. megacephalus and two such units within M. pallidus. The three units of M. megacephalus appear to have different demographic histories, with effectively no gene flow among them since their divergence. Similarly, the two units of M. pallidus also appear to have experienced different demographic histories, with effectively no gene exchange. Contemporary effective population sizes of all groups within Microdipodops appear to be low (<500), suggesting that each genetic lineage may have difficulty coping with changing environmental pressures and hence may be at risk of extirpation. Results of this study indicate that each Microdipodops group should be recognized, and therefore managed, as a separate unit in an effort to conserve these highly specialized taxa that contribute to the diversity of the Great Basin Desert ecosystem. The Great Basin Desert of western North America has experienced frequent habitat alterations due to a complex biogeographic history and recent anthropogenic impacts, with the more recent alterations likely resulting in the decline of native fauna and flora. Herein, newly acquired nuclear-encoded microsatellite

  1. New insights into the ontogeny of breathing from genetically engineered mice.

    PubMed

    Katz, D M; Balkowiec, A

    1997-11-01

    Development of breathing behavior depends on the coordinated maturation of central and peripheral neural pathways, respiratory muscles, airways, and lung tissues. Each of these components contains cellular elements in which derangements of gene expression may perturb development of normal respiratory function. Application in recent years of genetic engineering techniques has led to detailed analyses of gene structure and function. In particular, targeted gene deletions provide the opportunity to relate gene function to physiologic mechanisms in intact animals. This review summarizes recent studies in mice designed to alter, by targeted disruption of specific genes, development of individual components of the respiratory control system. We also discuss an example of the human therapeutic potential of transgenic methods. PMID:9391764

  2. Anti-diabetic activity of a mineraloid isolate, in vitro and in genetically diabetic mice.

    PubMed

    Deneau, Joel; Ahmed, Taufeeq; Blotsky, Roger; Bojanowski, Krzysztof

    2011-01-01

    Type II diabetes is a metabolic disease mediated through multiple molecular pathways. Here, we report anti-diabetic effect of a standardized isolate from a fossil material - a mineraloid leonardite - in in vitro tests and in genetically diabetic mice. The mineraloid isolate stimulated mitochondrial metabolism in human fibroblasts and this stimulation correlated with enhanced expression of genes coding for mitochondrial proteins such as ATP synthases and ribosomal protein precursors, as measured by DNA microarrays. In the diabetic animal model, consumption of the Totala isolate resulted in decreased weight gain, blood glucose, and glycated hemoglobin. To our best knowledge, this is the first description ever of a fossil material having anti-diabetic activity in pre-clinical models. PMID:22002216

  3. Modeling resilience to schizophrenia in genetically modified mice: a novel approach to drug discovery

    PubMed Central

    Mihali, Andra; Subramani, Shreya; Kaunitz, Genevieve; Rayport, Stephen; Gaisler-Salomon, Inna

    2012-01-01

    Complex psychiatric disorders, such as schizophrenia, arise from a combination of genetic, developmental, environmental and social factors. These vulnerabilities can be mitigated by adaptive factors in each of these domains engendering resilience. Modeling resilience in mice using transgenic approaches offers a direct path to intervention, as resilience mutations point directly to therapeutic targets. As prototypes for this approach, we discuss the three mouse models of schizophrenia resilience, all based on modulating glutamatergic synaptic transmission. This motivates the broader development of schizophrenia resilience mouse models independent of specific pathophysiological hypotheses as a strategy for drug discovery. Three guiding validation criteria are presented. A resilience-oriented approach should identify pharmacologically tractable targets and in turn offer new insights into pathophysiological mechanisms. PMID:22853787

  4. Effect of Antidepressants on Immunological Reactivity in ASC Mice with Genetically Determined Depression-Like State.

    PubMed

    Gevorgyan, M M; Idova, G V; Al'perina, E L; Tikhonova, M A; Kulikov, A V

    2016-06-01

    The effect of chronic treatment with antidepressant drugs fluoxetine (20 mg/kg) and imipramine (25 mg/kg) on the number of antibody-producing cells and the main T cell subpopulations in ASC mice characterized by genetic predisposition to depression-like states was studied at the peak of the SE-induced immune response (5×10(8)). Fluoxetine produced an immunostimulatory effect manifested in an increase in the relative and absolute number of IgM antibody-producing cells in the spleen and index of immunoreactivity (CD4/CD8). Administration of fl uoxetine to parental mouse strains without depression (CBA and AKR) had no effect (CBA) or reduced the immune response. The CD4/CD8 ratio did not increase under these conditions. Imipramine was ineffective in the correction of immune reactions in a depression-like state. PMID:27383160

  5. Major Effects on Teratogen-Induced Facial Clefting in Mice Determined by a Single Genetic Region

    PubMed Central

    Karolyi, J.; Erickson, R. P.; Liu, S.; Killewald, L.

    1990-01-01

    A major correlation has been found between the incidence of glucocorticoid-induced cleft palate and the chromosome 8 segment identified by N-acetyl transferase in mice. The resistant strain became fully susceptible while the susceptible strain became resistant when this chromosomal region, representing <0.7% of the genome, was transferred from one strain to the other by the construction of congenic strains. 6-Aminonicotinamide-induced cleft palate and phenytoin-induced cleft lip with or without cleft palate are also influenced by this genetic region but not as strongly. In both cases the susceptible strain became quite resistant to the teratogen-induced clefting when the N-acetyl transferase region of chromosome 8 was transferred. However, this chromosomal region does not make the resistant strain susceptible to these two teratogens. PMID:2227380

  6. Mini-review: toward understanding mechanisms of genetic neural tube defects in mice.

    PubMed

    Harris, M J; Juriloff, D M

    1999-11-01

    We review the data from studies of mouse mutants that lend insight to the mechanisms that lead to neural tube defects (NTDs). Most of the 50 single-gene mutations that cause neural tube defects (NTDs) in mice also cause severe embryonic-lethal syndromes, in which exencephaly is a nonspecific feature. In a few mutants (e.g., Trp53, Macs, Mlp or Sp), other defects may be present, but affected fetuses can survive to birth. Multifactorial genetic causes, as are present in the curly tail stock (15-20% spina bifida), or the SELH/Bc strain (15-20% exencephaly), lead to nonsyndromic NTDs. The mutations indicate that "spina bifida occulta," a dorsal gap in the vertebral arches over an intact neural tube, is usually genetically and developmentally unrelated to exencephaly or "spina bifida" (aperta). Almost all exencephaly or spina bifida aperta of genetic origin is caused by failure of neural fold elevation. The developmental mechanisms in genetic NTDs are considered in terms of distinct rostro-caudal zones along the neural folds that likely differ in mechanism of elevation. Failure of elevation leads to: split face (zone A), exencephaly (zone B), rachischisis (all of zone D), or spina bifida (caudal zone D). The developmental mechanisms leading to these genetic NTDs are heterogeneous, even within one zone. At the tissue level, the mutants show that the mechanism of failure of elevation can involve, e.g., (1) slow growth of adjacent tethered tissue (curly tail), (2) defective forebrain mesenchyme (Cart1 or twist), (3) defective basal lamina in surface ectoderm (Lama5), (4) excessive breadth of floorplate and notochord (Lp), (5) abnormal neuroepithelium (Apob, Sp, Tcfap2a), (6) morphological deformation of neural folds (jmj), (7) abnormal neuroepithelial and neural crest cell gap-junction communication (Gja1), or (8) incomplete compensation for a defective step in the elevation sequence (SELH/Bc). At the biochemical level, mutants suggest involvement of: (1) faulty regulation

  7. Half of the T-cell repertoire combinatorial diversity is genetically determined in humans and humanized mice.

    PubMed

    Pham, Hang-Phuong; Manuel, Manuarii; Petit, Nicolas; Klatzmann, David; Cohen-Kaminsky, Sylvia; Six, Adrien; Marodon, Gilles

    2012-03-01

    In humanized mice, the T-cell repertoire is derived from genetically identical human progenitors in distinct animals. Thus, careful comparison of the T-cell repertoires of humanized mice with those of humans may reveal the contribution of genetic determinism on T-cell repertoire formation. Here, we performed a comprehensive assessment of the distribution of V-J combinations of the human β chain of the T-cell receptor (hTRBV) in NOD.SCID.γc(-/-) (NSG) humanized mice. We observed that numerous V-J combinations were equally distributed in the thymus and in the periphery of humanized mice compared with human references. A global analysis of the data, comparing repertoire perturbation indices in humanized NSG mice and unrelated human PBMCs, reveals that 50% of the hTRBV families significantly overlapped. Using multivariate ranking and bootstrap analyses, we found that 18% of all possible V-J combinations contributed close to 50% of the expressed diversity, with significant over-representation of BV5-J1.1+1.2 and BV6-J1.1+1.2 rearrangements. Finally, comparison of CD3(-) and CD3(+) thymocyte repertoires indicated that the observed V-J combination overlap was already present before TCR-MHC selection in the thymus. Altogether, our results show that half of the T-cell repertoire combinatorial diversity in humans is genetically determined. PMID:22105329

  8. Effects of Genetically Modified Milk Containing Human Beta-Defensin-3 on Gastrointestinal Health of Mice.

    PubMed

    Chen, Xin; Yang, Yange; Shi, Zhaopeng; Gao, Ming-Qing; Zhang, Yong

    2016-01-01

    This study was performed to investigate the effects of genetically modified (GM) milk containing human beta-defensin-3 (HBD3) on mice by a 90-day feeding study. The examined parameters included the digestibility of GM milk, general physical examination, gastric emptying function, intestinal permeability, intestinal microflora composition of mice, and the possibility of horizontal gene transfer (HGT). The emphasis was placed on the effects on gastrointestinal (GI) tract due to the fact that GI tract was the first site contacting with food and played crucial roles in metabolic reactions, nutrition absorption and immunity regulation in the host. However, the traditional methods for analyzing the potential toxicological risk of GM product pay little attention on GI health. In this study, the results showed GM milk was easy to be digested in simulated gastric fluid, and it did not have adverse effects on general and GI health compared to conventional milk. And there is little possibility of HGT. This study may enrich the safety assessment of GM product on GI health. PMID:27438026

  9. Genetic modifiers of hypertension in soluble guanylate cyclase α1–deficient mice

    PubMed Central

    Buys, Emmanuel S.; Raher, Michael J.; Kirby, Andrew; Mohd, Shahid; Baron, David M.; Hayton, Sarah R.; Tainsh, Laurel T.; Sips, Patrick Y.; Rauwerdink, Kristen M.; Yan, Qingshang; Tainsh, Robert E.T.; Shakartzi, Hannah R.; Stevens, Christine; Decaluwé, Kelly; Rodrigues-Machado, Maria da Gloria; Malhotra, Rajeev; Van de Voorde, Johan; Wang, Tong; Brouckaert, Peter; Daly, Mark J.; Bloch, Kenneth D.

    2012-01-01

    Nitric oxide (NO) plays an essential role in regulating hypertension and blood flow by inducing relaxation of vascular smooth muscle. Male mice deficient in a NO receptor component, the α1 subunit of soluble guanylate cyclase (sGCα1), are prone to hypertension in some, but not all, mouse strains, suggesting that additional genetic factors contribute to the onset of hypertension. Using linkage analyses, we discovered a quantitative trait locus (QTL) on chromosome 1 that was linked to mean arterial pressure (MAP) in the context of sGCα1 deficiency. This region is syntenic with previously identified blood pressure–related QTLs in the human and rat genome and contains the genes coding for renin. Hypertension was associated with increased activity of the renin-angiotensin-aldosterone system (RAAS). Further, we found that RAAS inhibition normalized MAP and improved endothelium-dependent vasorelaxation in sGCα1-deficient mice. These data identify the RAAS as a blood pressure–modifying mechanism in a setting of impaired NO/cGMP signaling. PMID:22565307

  10. Comparative pathogenicity of three genetically distinct Trypanosoma congolense-types in inbred Balb/c mice.

    PubMed

    Bengaly, Z; Sidibe, I; Boly, H; Sawadogo, L; Desquesnes, M

    2002-04-30

    Inbred Balb/c mice were infected with three clones of Trypanosoma congolense (Sam.28.1, Dind.3.1 and K60.1A) corresponding, respectively, to the three genetically distinct types (savannah, forest and kilifi) defined within this species, for the purpose of comparing their pathogenicity for a better understanding of the epidemiology of African trypanosomosis. Another clone of savannah type, IL 3000, was also tested simultaneously to study a probable strain variation. Both the clones of savannah type were found of extreme virulence with loss of appetite, rough hair, rapid respiration, lethargy, and all mice died within a week. Parasitaemias evolved rapidly to the first peak by day 3-5 post-inoculation without any remission and the course of disease was correlated positively with the prepatent period. The clones of the forest type and the kilifi type were of low virulence with chronic infection and symptoms progressively less patent throughout the infection; only one mouse died in each experimental group. PMID:11900925

  11. Effects of Genetically Modified Milk Containing Human Beta-Defensin-3 on Gastrointestinal Health of Mice

    PubMed Central

    Yang, Yange; Shi, Zhaopeng; Gao, Ming-Qing; Zhang, Yong

    2016-01-01

    This study was performed to investigate the effects of genetically modified (GM) milk containing human beta-defensin-3 (HBD3) on mice by a 90-day feeding study. The examined parameters included the digestibility of GM milk, general physical examination, gastric emptying function, intestinal permeability, intestinal microflora composition of mice, and the possibility of horizontal gene transfer (HGT). The emphasis was placed on the effects on gastrointestinal (GI) tract due to the fact that GI tract was the first site contacting with food and played crucial roles in metabolic reactions, nutrition absorption and immunity regulation in the host. However, the traditional methods for analyzing the potential toxicological risk of GM product pay little attention on GI health. In this study, the results showed GM milk was easy to be digested in simulated gastric fluid, and it did not have adverse effects on general and GI health compared to conventional milk. And there is little possibility of HGT. This study may enrich the safety assessment of GM product on GI health. PMID:27438026

  12. Mice Genetically Depleted of Brain Serotonin do not Display a Depression-like Behavioral Phenotype

    PubMed Central

    Angoa-Pérez, Mariana; Kane, Michael J.; Briggs, Denise I.; Herrera-Mundo, Nieves; Sykes, Catherine E.; Francescutti, Dina M.; Kuhn, Donald M.

    2016-01-01

    Reductions in function within the serotonin (5HT) neuronal system have long been proposed as etiological factors in depression. Serotonin selective reuptake inhibitors (SSRIs) are the most common treatment for depression and their therapeutic effect is generally attributed to their ability to increase the synaptic levels of 5HT. Tryptophan hydroxylase 2 (TPH2) is the initial and rate-limiting enzyme in the biosynthetic pathway of 5HT in the CNS and losses in its catalytic activity lead to reductions in 5HT production and release. The time differential between the onset of 5HT reuptake inhibition by SSRIs (minutes) and onset of their anti-depressant efficacy (weeks to months), when considered with their overall poor therapeutic effectiveness, has cast some doubt on the role of 5HT in depression. Mice lacking the gene for TPH2 are genetically depleted of brain 5HT and were tested for a depression-like behavioral phenotype using a battery of valid tests for affective-like disorders in animals. The behavior of TPH2−/− mice on the sucrose preference test, tail suspension test and forced swim test and their responses in the unpredictable chronic mild stress and learned helplessness paradigms was the same as wild-type controls. While TPH2−/− mice as a group were not responsive to SSRIs, a subset responded to treatment with SSRIs in the same manner as wild-type controls with significant reductions in immobility time on the tail suspension test, indicative of antidepressant drug effects. The behavioral phenotype of the TPH2−/− mouse questions the role of 5HT in depression. Furthermore, the TPH2−/− mouse may serve as a useful model in the search for new medications that have therapeutic targets for depression that are outside of the 5HT neuronal system. PMID:25089765

  13. Ontogenic and morphological study of gonadal formation in genetically-modified sex reversal XYPOS mice

    PubMed Central

    UMEMURA, Yuria; MIYAMOTO, Ryosuke; HASHIMOTO, Rie; KINOSHITA, Kyoko; OMOTEHARA, Takuya; NAGAHARA, Daichi; HIRANO, Tetsushi; KUBOTA, Naoto; MINAMI, Kiichi; YANAI, Shogo; MASUDA, Natsumi; YUASA, Hideto; MANTANI, Youhei; MATSUO, Eiko; YOKOYAMA, Toshifumi; KITAGAWA, Hiroshi; HOSHI, Nobuhiko

    2015-01-01

    Mammalian sexual fate is determined by the presence or absence of sex determining region of the Y chromosome (Sry) in the “bipotential” gonads. Recent studies have demonstrated that both male and female sexual development are induced by distinct and active genetic pathways. Breeding the Y chromosome from Mus m. domesticus poschiavinus (POS) strains into C57BL/6J (B6J) mice (B6J-XYPOS) has been shown to induce sex reversal (75%: bilateral ovary, 25%: true hermaphrodites). However, our B6N-XYPOS mice, which were generated by backcrossing of B6J-XYPOS on an inbred B6N-XX, develop as males (36%: bilateral testis with fertility as well as bilateral ovary (34%), and the remainder develop as true hermaphrodites. Here, we investigated in detail the expressions of essential sex-related genes and histological features in B6N-XYPOS mice from the fetal period to adulthood. The onsets of both Sry and SRY-box 9 (Sox9) expressions as determined spatiotemporally by whole-mount immunohistochemistry in the B6N-XYPOS gonads occurred 2–3 tail somites later than those in B6N-XYB6 gonads, but earlier than those in B6J-XYPOS, respectively. It is possible that such a small difference in timing of the Sry expression underlies testicular development in our B6N-XYPOS. Our study is the first to histologically show the expression and ectopic localization of a female-related gene in the XYPOS testes and a male-related gene in the XYPOS ovaries. The results from these and previous experiments indicate that the interplay between genome variants, epigenetics and developmental gene regulation is crucial for testis development. PMID:26194606

  14. Establishment of a tamoxifen-inducible Cre-driver mouse strain for widespread and temporal genetic modification in adult mice.

    PubMed

    Ichise, Hirotake; Hori, Akiko; Shiozawa, Seiji; Kondo, Saki; Kanegae, Yumi; Saito, Izumu; Ichise, Taeko; Yoshida, Nobuaki

    2016-07-29

    Temporal genetic modification of mice using the ligand-inducible Cre/loxP system is an important technique that allows the bypass of embryonic lethal phenotypes and access to adult phenotypes. In this study, we generated a tamoxifen-inducible Cre-driver mouse strain for the purpose of widespread and temporal Cre recombination. The new line, named CM32, expresses the GFPneo-fusion gene in a wide variety of tissues before FLP recombination and tamoxifen-inducible Cre after FLP recombination. Using FLP-recombined CM32 mice (CM32Δ mice) and Cre reporter mouse lines, we evaluated the efficiency of Cre recombination with and without tamoxifen administration to adult mice, and found tamoxifen-dependent induction of Cre recombination in a variety of adult tissues. In addition, we demonstrated that conditional activation of an oncogene could be achieved in adults using CM32Δ mice. CM32Δ;T26 mice, which harbored a Cre recombination-driven, SV40 large T antigen-expressing transgene, were viable and fertile. No overt phenotype was found in the mice up to 3 months after birth. Although they displayed pineoblastomas (pinealoblastomas) and/or thymic enlargement due to background Cre recombination by 6 months after birth, they developed epidermal hyperplasia when administered tamoxifen. Collectively, our results suggest that the CM32Δ transgenic mouse line can be applied to the assessment of adult phenotypes in mice with loxP-flanked transgenes. PMID:26923756

  15. Litter size manipulation in laboratory mice: an example of how proteomic analysis can uncover new mechanisms underlying the cost of reproduction

    PubMed Central

    2014-01-01

    Background Life history theories predict that investment in current reproduction comes at a cost for future reproduction and survival. Oxidative stress is one of the best documented mechanisms underlying costs of reproduction to date. However, other, yet to be described molecular mechanisms that play a short term role during reproduction may explain the negative relationships underlying the cost of reproduction. To identify such new mechanisms, we used a global proteomic determination of liver protein profiles in laboratory adult female mice whose litter size had been either reduced or enlarged after birth. This litter size manipulation was expected to affect females by either raising or decreasing their current reproductive effort. At the same time, global parameters and levels of oxidative stress were also measured in all females. Results Based on plasma analyses, females with enlarged litters exhibited increased levels of oxidative stress at the date of weaning compared to females with reduced litters, while no significant difference was found between both the latter groups and control females. None of the liver proteins related to oxidative balance were significantly affected by the experimental treatment. In contrast, the liver protein profiles of females with enlarged and reduced litters suggested that calcium metabolism and cell growth regulation were negatively affected by changes in the number of pup reared. Conclusions Plasma oxidative stress levels in reproductive mice revealed that the degree of investment in reproduction can actually incur a cost in terms of plasmatic oxidative stress, their initial investment in reproduction being close to maximum and remaining at a same level when the energy demand of lactation is reduced. Liver proteomic profiles in reproductive females show that hepatic oxidative stress is unlikely to be involved in the cost of reproduction. Reproductive females rather exhibited liver protein profiles similar to those previously

  16. Detection and validation of a small broad-host-range plasmid pBBR1MCS-2 for use in genetic manipulation of the extremely acidophilic Acidithiobacillus sp.

    PubMed

    Hao, Likai; Liu, Xiangmei; Wang, Huiyan; Lin, Jianqun; Pang, Xin; Lin, Jianqiang

    2012-09-01

    An efficient genetic system for introducing genes into biomining microorganisms is essential not only to experimentally determine the functions of genes predicted based on bioinformatic analysis, but also for their genetic breeding. In this study, a small broad-host-range vector named pBBR1MCS-2, which does not belong to the IncQ, IncW, or IncP groups, was studied for the feasibility of its use in conjugative gene transfer into extremely acidophilic strains of Acidithiobacillus. To do this, a recombinant plasmid pBBR-tac-Sm, a derivative of pBBR1MCS-2, was constructed and the streptomycin resistant gene (Sm(r)) was used as the reporter gene. Using conjugation, pBBR-tac-Sm was successfully transferred into three tested strains of Acidithiobacillus. Then we measured its transfer frequency, its stability in Acidithiobacillus cells, and the level of resistance to streptomycin of the transconjugants and compared this with the IncQ plasmid pJRD215 control. Our results indicate that pBBR1MCS-2 provides a new and useful tool in the genetic manipulation of Acidithiobacillus strains. PMID:22705922

  17. Correction of lysosomal storage in the liver and spleen of MPS VII mice by implantation of genetically modified skin fibroblasts.

    PubMed

    Moullier, P; Bohl, D; Heard, J M; Danos, O

    1993-06-01

    Genetic defects of lysosomal hydrolases result in severe storage diseases and treatments based on enzyme replacement have been proposed. In mice lacking beta-glucuronidase, which develop a disease homologous to human mucopolysaccharidosis type VII (Sly syndrome), we have used autologous implants of genetically-modified skin fibroblasts for the continuous in vivo production of the enzyme. The human beta-glucuronidase cDNA was introduced with a retroviral vector into mutant mice skin fibroblasts grown in primary culture. Fourteen mutant mice were implanted intraperitoneally with these modified cells embedded into collagen lattices. All animals expressed beta-glucuronidase from the vascularized neo-organs that developed after implantation and accumulated the enzyme in their tissues. A complete disappearance of the lysosomal storage lesions was observed in their liver and spleen. PMID:8348154

  18. Forward genetic screens in mice uncover mediators and suppressors of metastatic reactivation

    PubMed Central

    Gao, Hua; Chakraborty, Goutam; Lee-Lim, Ai Ping; Mavrakis, Konstantinos J.; Wendel, Hans-Guido; Giancotti, Filippo G.

    2014-01-01

    We have developed a screening platform for the isolation of genetic entities involved in metastatic reactivation. Retroviral libraries of cDNAs from fully metastatic breast-cancer cells or pooled microRNAs were transduced into breast-cancer cells that become dormant upon infiltrating the lung. Upon inoculation in the tail vein of mice, the cells that had acquired the ability to undergo reactivation generated metastatic lesions. Integrated retroviral vectors were recovered from these lesions, sequenced, and subjected to a second round of validation. By using this strategy, we isolated canonical genes and microRNAs that mediate metastatic reactivation in the lung. To identify genes that oppose reactivation, we screened an expression library encoding shRNAs, and we identified target genes that encode potential enforcers of dormancy. Our screening strategy enables the identification and rapid biological validation of single genetic entities that are necessary to maintain dormancy or to induce reactivation. This technology should facilitate the elucidation of the molecular underpinnings of these processes. PMID:25378704

  19. Implantation of Genetically Engineered Fibroblasts into Mice: Implications for Gene Therapy

    NASA Astrophysics Data System (ADS)

    Selden, Richard F.; Skoskiewicz, Marek J.; Burke Howie, Kathleen; Russell, Paul S.; Goodman, Howard M.

    1987-05-01

    In a variety of human genetic diseases, replacement of the absent or defective protein provides significant therapeutic benefits. As a model for a somatic cell gene therapy system, cultured murine fibroblasts were transfected with a human growth hormone (hGH) fusion gene and cells from one of the resulting clonal lines were subsequently implanted into various locations in mice. Such implants synthesized and secreted hGH, which was detectable in the serum. The function of the implants depended on their location and size, and on the histocompatibility of the donor cells with their recipients. The expression of hGH could be modified by addition of regulatory effectors, and, with appropriate immunosuppression, the implants survived for more than 3 months. This approach to gene therapy, here termed ``transkaryotic implantation,'' is potentially applicable to many genetic diseases in that (i) the transfected cell line can be extensively characterized prior to implantation, (ii) several anatomical sites are suitable for implantation, and (iii) regulated expression of the gene of therapeutic interest can be obtained.

  20. Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles.

    PubMed

    Stanley, Sarah A; Sauer, Jeremy; Kane, Ravi S; Dordick, Jonathan S; Friedman, Jeffrey M

    2015-01-01

    Means for temporally regulating gene expression and cellular activity are invaluable for elucidating underlying physiological processes and would have therapeutic implications. Here we report the development of a genetically encoded system for remote regulation of gene expression by low-frequency radio waves (RFs) or a magnetic field. Iron oxide nanoparticles are synthesized intracellularly as a GFP-tagged ferritin heavy and light chain fusion. The ferritin nanoparticles associate with a camelid anti-GFP-transient receptor potential vanilloid 1 fusion protein, αGFP-TRPV1, and can transduce noninvasive RF or magnetic fields into channel activation, also showing that TRPV1 can transduce a mechanical stimulus. This, in turn, initiates calcium-dependent transgene expression. In mice with stem cell or viral expression of these genetically encoded components, remote stimulation of insulin transgene expression with RF or a magnet lowers blood glucose. This robust, repeatable method for remote regulation in vivo may ultimately have applications in basic science, technology and therapeutics. PMID:25501906

  1. Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles

    PubMed Central

    Kane, Ravi S; Dordick, Jonathan S; Friedman, Jeffrey M

    2016-01-01

    Means for temporally regulating gene expression and cellular activity are invaluable for elucidating underlying physiological processes and would have therapeutic implications. Here we report the development of a genetically encoded system for remote regulation of gene expression by low-frequency radio waves (RFs) or a magnetic field. Iron oxide nanoparticles are synthesized intracellularly as a GFP-tagged ferritin heavy and light chain fusion. The ferritin nanoparticles associate with a camelid anti-GFP–transient receptor potential vanilloid 1 fusion protein, αGFP-TRPV1, and can transduce noninvasive RF or magnetic fields into channel activation, also showing that TRPV1 can transduce a mechanical stimulus. This, in turn, initiates calcium-dependent transgene expression. In mice with stem cell or viral expression of these genetically encoded components, remote stimulation of insulin transgene expression with RF or a magnet lowers blood glucose. This robust, repeatable method for remote regulation in vivo may ultimately have applications in basic science, technology and therapeutics. PMID:25501906

  2. Genetic tracking of mice and other bioproxies to infer human history.

    PubMed

    Jones, Eleanor P; Eager, Heidi M; Gabriel, Sofia I; Jóhannesdóttir, Fríða; Searle, Jeremy B

    2013-05-01

    The long-distance movements made by humans through history are quickly erased by time but can be reconstructed by studying the genetic make-up of organisms that travelled with them. The phylogeography of the western house mouse (Mus musculus domesticus), whose current widespread distribution around the world has been caused directly by the movements of (primarily) European people, has proved particularly informative in a series of recent studies. The geographic distributions of genetic lineages in this commensal have been linked to the Iron Age movements within the Mediterranean region and Western Europe, the extensive maritime activities of the Vikings in the 9th to 11th centuries, and the colonisation of distant landmasses and islands by the Western European nations starting in the 15th century. We review here recent insights into human history based on phylogeographic studies of mice and other species that have travelled with humans, and discuss how emerging genomic methodologies will increase the precision of these inferences. PMID:23290437

  3. Genetic Analysis of Brown Adipose Tissue, Obesity and Growth in Mice

    PubMed Central

    Saxton, A. M.; Eisen, E. J.

    1984-01-01

    The hypothesis developed from single-gene mutant obese rodents that brown adipose tissue (BAT), through its thermogenic ability, is an important factor in the development of obesity, was tested in a randombred population of mice in which degree of adiposity is polygenically determined. Additive direct genetic parameters for measures of body size, lean, fatness and BAT at 6 wk of age were estimated under control and high-fat postweaning dietary regimens. Heritabilities were generally similar for the two diets. However, the lipid-free dry (LFD) component of BAT had a heritability estimate of 0.70 ± 0.26 on the control diet, but only 0.09 ± 0.20 on the high-fat diet. For all traits, genotype by diet interactions indicated that additive direct genetic rankings were not significantly different for the two diets. Based on estimates of genetic parameters in the control diet, selection for 6-wk body weight or 3- to 6-wk gain is expected to increase body size and adiposity. Selection for BAT weight is predicted to result in large, lean individuals. However, selection for the LFD content of BAT, generally believed to be a better indicator of thermogenic ability, is predicted to increase fatness as well as body size. Selection for LFD as a proportion of 6-wk body weight reduced the expected correlated response in fatness. It was concluded that BAT does not play a major role in determining the correlated response in obesity that is often found in populations selected for large body size. PMID:6714662

  4. Cause and effect considerations in diagnostic pathology and pathology phenotyping of genetically engineered mice (GEM).

    PubMed

    McKerlie, Colin

    2006-01-01

    Over the next several decades, biology is embarking on its most ambitious project yet: to annotate the human genome functionally, prioritizing and focusing on those genes relevant to development and disease. Model systems are fundamental prerequisites for this task, and genetically engineered mice (GEM) are by far the most accessible mammalian system because of their anatomical, physiological, and genetic similarity to humans. The scientific utility of GEM has become commonplace since the technology to produce them was established in the early 1980s. Conceptually, however, an efficiently coordinated high-throughput approach that permits correlation between newly discovered genes, functional properties of their protein products, and biological relevance of these products as drug targets has yet to be established. The discipline of veterinary anatomical pathology (hereafter referred to as pathology) is not immune to this requirement for evolution and adaptation, and to address relationships and tissue consequences between tens of thousands of genes and their cognate proteins, novel interdisciplinary technologies and approaches must emerge. Although many of the techniques of pathology are well established, in the context of pathology's contribution to functional annotation of the genome, several conceptually important and unresolved issues remain to be addressed. While an ever-increasing arsenal of genetic and molecular tool-sets are available to evaluate and understand the function of genes and their pathophysiological mechanisms, pathology will continue to play an essential role in confirming cause and effect relationships of gene function in development and disease. This role will continue to be dependent on keen observation, a systematic but disciplined approach, expert knowledge of strain-dependent anatomical differences and incidental lesions, and relevant tissue-based evidence. Miniaturization and high-throughput adaptation of these methods must also continue

  5. Combined Pharmacological and Genetic Manipulations Unlock Unprecedented Temporal Elasticity and Reveal Phase-Specific Modulation of the Molecular Circadian Clock of the Mouse Suprachiasmatic Nucleus

    PubMed Central

    Patton, Andrew P.; Chesham, Johanna E.

    2016-01-01

    The suprachiasmatic nucleus (SCN) is the master circadian oscillator encoding time-of-day information. SCN timekeeping is sustained by a cell-autonomous transcriptional–translational feedback loop, whereby expression of the Period and Cryptochrome genes is negatively regulated by their protein products. This loop in turn drives circadian oscillations in gene expression that direct SCN electrical activity and thence behavior. The robustness of SCN timekeeping is further enhanced by interneuronal, circuit-level coupling. The aim of this study was to combine pharmacological and genetic manipulations to push the SCN clockwork toward its limits and, by doing so, probe cell-autonomous and emergent, circuit-level properties. Circadian oscillation of mouse SCN organotypic slice cultures was monitored as PER2::LUC bioluminescence. SCN of three genetic backgrounds—wild-type, short-period CK1εTau/Tau mutant, and long-period Fbxl3Afh/Afh mutant—all responded reversibly to pharmacological manipulation with period-altering compounds: picrotoxin, PF-670462 (4-[1-Cyclohexyl-4-(4-fluorophenyl)-1H-imidazol-5-yl]-2-pyrimidinamine dihydrochloride), and KNK437 (N-Formyl-3,4-methylenedioxy-benzylidine-gamma-butyrolactam). This revealed a remarkably wide operating range of sustained periods extending across 25 h, from ≤17 h to >42 h. Moreover, this range was maintained at network and single-cell levels. Development of a new technique for formal analysis of circadian waveform, first derivative analysis (FDA), revealed internal phase patterning to the circadian oscillation at these extreme periods and differential phase sensitivity of the SCN to genetic and pharmacological manipulations. For example, FDA of the CK1εTau/Tau mutant SCN treated with the CK1ε-specific inhibitor PF-4800567 (3-[(3-Chlorophenoxy)methyl]-1-(tetrahydro-2H-pyran-4-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine hydrochloride) revealed that period acceleration in the mutant is due to inappropriately phased

  6. Genetic Pharmacotherapy as an Early CNS Drug Development Strategy: Testing Glutaminase Inhibition for Schizophrenia Treatment in Adult Mice

    PubMed Central

    Mingote, Susana; Masson, Justine; Gellman, Celia; Thomsen, Gretchen M.; Lin, Chyuan-Sheng; Merker, Robert J.; Gaisler-Salomon, Inna; Wang, Yvonne; Ernst, Rachel; Hen, René; Rayport, Stephen

    2016-01-01

    Genetic pharmacotherapy is an early drug development strategy for the identification of novel CNS targets in mouse models prior to the development of specific ligands. Here for the first time, we have implemented this strategy to address the potential therapeutic value of a glutamate-based pharmacotherapy for schizophrenia involving inhibition of the glutamate recycling enzyme phosphate-activated glutaminase. Mice constitutively heterozygous for GLS1, the gene encoding glutaminase, manifest a schizophrenia resilience phenotype, a key dimension of which is an attenuated locomotor response to propsychotic amphetamine challenge. If resilience is due to glutaminase deficiency in adulthood, then glutaminase inhibitors should have therapeutic potential. However, this has been difficult to test given the dearth of neuroactive glutaminase inhibitors. So, we used genetic pharmacotherapy to ask whether adult induction of GLS1 heterozygosity would attenuate amphetamine responsiveness. We generated conditional floxGLS1 mice and crossed them with global CAGERT2cre∕+ mice to produce GLS1 iHET mice, susceptible to tamoxifen induction of GLS1 heterozygosity. One month after tamoxifen treatment of adult GLS1 iHET mice, we found a 50% reduction in GLS1 allelic abundance and glutaminase mRNA levels in the brain. While GLS1 iHET mice showed some recombination prior to tamoxifen, there was no impact on mRNA levels. We then asked whether induction of GLS heterozygosity would attenuate the locomotor response to propsychotic amphetamine challenge. Before tamoxifen, control and GLS1 iHET mice did not differ in their response to amphetamine. One month after tamoxifen treatment, amphetamine-induced hyperlocomotion was blocked in GLS1 iHET mice. The block was largely maintained after 5 months. Thus, a genetically induced glutaminase reduction—mimicking pharmacological inhibition—strongly attenuated the response to a propsychotic challenge, suggesting that glutaminase may be a novel

  7. Immunoregulation of genetically controlled acquired responses to Leishmania donovani infection in mice: demonstration and characterization of suppressor T cells in noncure mice.

    PubMed Central

    Blackwell, J M; Ulczak, O M

    1984-01-01

    On a B10 genetic background, genes in the I region of H-2 influence the development of acquired T-cell mediated immunity to Leishmania donovani infection in mice. In previous studies, noncure in H-2d mice could be abrogated by pretreatments with cyclophosphamide or sublethal irradiation. The prophylactic effect of these pretreatments was consistent with deletion of the precursors of suppressor T cells suppressing T-cell-mediated immune responses. In this study, cell transfer experiments provide direct evidence for the role of suppressor T cells in the noncure response. T-cell-enriched populations isolated from the spleens of B10.D2/n mice infected 30, 61, or 85 days previously reversed the prophylactic effect of sublethal irradiation when injected before infection into B10.D2/n mice that had received 550 rads. B-cell-enriched populations failed to transfer suppression in this manner, and T-cell-enriched populations from the spleens of normal B10.D2/n mice had only a transient effect on liver parasite loads. Transfer of suppression with the T-cell-enriched populations from infected donors was abrogated by pretreatment with anti-Thy-1.2 and anti-Lyt-1.2 antisera plus complement but not by pretreatment with anti-Lyt-2.2 plus complement, indicating that the suppressor T cell involved has an Lyt-1+2- surface phenotype. Results are discussed in relation to the possible mechanism of H-2-linked control. PMID:6231248

  8. Development of a transplantable glioma tumour model from genetically engineered mice: MRI/MRS/MRSI characterisation.

    PubMed

    Ciezka, Magdalena; Acosta, Milena; Herranz, Cristina; Canals, Josep M; Pumarola, Martí; Candiota, Ana Paula; Arús, Carles

    2016-08-01

    The initial aim of this study was to generate a transplantable glial tumour model of low-intermediate grade by disaggregation of a spontaneous tumour mass from genetically engineered models (GEM). This should result in an increased tumour incidence in comparison to GEM animals. An anaplastic oligoastrocytoma (OA) tumour of World Health Organization (WHO) grade III was obtained from a female GEM mouse with the S100β-v-erbB/inK4a-Arf (+/-) genotype maintained in the C57BL/6 background. The tumour tissue was disaggregated; tumour cells from it were grown in aggregates and stereotactically injected into C57BL/6 mice. Tumour development was followed using Magnetic Resonance Imaging (MRI), while changes in the metabolomics pattern of the masses were evaluated by Magnetic Resonance Spectroscopy/Spectroscopic Imaging (MRS/MRSI). Final tumour grade was evaluated by histopathological analysis. The total number of tumours generated from GEM cells from disaggregated tumour (CDT) was 67 with up to 100 % penetrance, as compared to 16 % in the local GEM model, with an average survival time of 66 ± 55 days, up to 4.3-fold significantly higher than the standard GL261 glioblastoma (GBM) tumour model. Tumours produced by transplantation of cells freshly obtained from disaggregated GEM tumour were diagnosed as WHO grade III anaplastic oligodendroglioma (ODG) and OA, while tumours produced from a previously frozen sample were diagnosed as WHO grade IV GBM. We successfully grew CDT and generated tumours from a grade III GEM glial tumour. Freezing and cell culture protocols produced progression to grade IV GBM, which makes the developed transplantable model qualify as potential secondary GBM model in mice. PMID:27324642

  9. Genetic overexpression of Serpina3n attenuates muscular dystrophy in mice.

    PubMed

    Tjondrokoesoemo, Andoria; Schips, Tobias; Kanisicak, Onur; Sargent, Michelle A; Molkentin, Jeffery D

    2016-03-15

    Muscular dystrophy (MD) is associated with mutations in genes that stabilize the myofiber plasma membrane, such as through the dystrophin-glycoprotein complex (DGC). Instability of this complex or defects in membrane repair/integrity leads to calcium influx and myofiber necrosis leading to progressive dystrophic disease. MD pathogenesis is also associated with increased skeletal muscle protease levels and activity that could augment weakening of the sarcolemma through greater degradation of cellular attachment complexes. Here, we observed a compensatory increase in the serine protease inhibitor Serpina3n in mouse models of MD and after acute muscle tissue injury. Serpina3n muscle-specific transgenic mice were generated to model this increase in expression, which reduced the activity of select proteases in dystrophic skeletal muscle and protected muscle from both acute injury with cardiotoxin and from chronic muscle disease in the mdx or Sgcd(-/-) MD genetic backgrounds. The Serpina3n transgene mitigated muscle degeneration and fibrosis, reduced creatine kinase serum levels, restored running capacity on a treadmill and reduced muscle membrane leakiness in vivo that is characteristic of mdx and Sgcd(-/-) mice. Mechanistically, we show that increased Serpina3n promotes greater sarcolemma membrane integrity and stability in dystrophic mouse models in association with increased membrane residence of the integrins, the DGC/utrophin-glycoprotein complex of proteins and annexin A1. Hence, Serpina3n blocks endogenous increases in the activity of select skeletal muscle resident proteases during injury or dystrophic disease, which stabilizes the sarcolemma leading to less myofiber degeneration and increased regeneration. These results suggest the use of select protease inhibitors as a strategy for treating MD. PMID:26744329

  10. Genetic variation associates with susceptibility for cigarette smoke-induced neutrophilia in mice.

    PubMed

    Pouwels, Simon D; Heijink, Irene H; Brouwer, Uilke; Gras, Renee; den Boef, Lisette E; Boezen, H Marike; Korstanje, Ron; van Oosterhout, Antoon J M; Nawijn, Martijn C

    2015-04-01

    Neutrophilic airway inflammation is one of the major hallmarks of chronic obstructive pulmonary disease and is also seen in steroid resistant asthma. Neutrophilic airway inflammation can be induced by different stimuli including cigarette smoke (CS). Short-term exposure to CS induces neutrophilic airway inflammation in both mice and humans. Since not all individuals develop extensive neutrophilic airway inflammation upon smoking, we hypothesized that this CS-induced innate inflammation has a genetic component. This hypothesis was addressed by exposing 30 different inbred mouse strains to CS or control air for 5 consecutive days, followed by analysis of neutrophilic lung inflammation. By genomewide haplotype association mapping, we identified four susceptibility genes with a significant association to lung tissue levels of the neutrophil marker myeloperoxidase under basal conditions and an additional five genes specifically associated with CS-induced tissue MPO levels. Analysis of the expression levels of the susceptibility genes by quantitative RT-PCR revealed that three of the four genes associated with CS-induced tissue MPO levels had CS-induced changes in gene expression levels that correlate with CS-induced airway inflammation. Most notably, CS exposure induces an increased expression of the coiled-coil domain containing gene, Ccdc93, in mouse strains susceptible for CS-induced airway inflammation whereas Ccdc93 expression was decreased upon CS exposure in nonsusceptible mouse strains. In conclusion, this study shows that CS-induced neutrophilic airway inflammation has a genetic component and that several genes contribute to the susceptibility for this response. PMID:25637605

  11. Isolation and Molecular Identification of Auxotrophic Mutants to Develop a Genetic Manipulation System for the Haloarchaeon Natrinema sp. J7-2

    PubMed Central

    Lv, Jie; Wang, Shuai; Wang, Yuchen; Huang, Yuping; Chen, Xiangdong

    2015-01-01

    Our understanding of the genus Natrinema is presently limited due to the lack of available genetic tools. Auxotrophic markers have been widely used to construct genetic systems in bacteria and eukaryotes and in some archaeal species. Here, we isolated four auxotrophic mutants of Natrinema sp. J7-2, via 1-methyl-3-nitro-1-nitroso-guanidin mutagenesis, and designated them as J7-2-1, J7-2-22, J7-2-26, and J7-2-52, respectively. The mutant phenotypes were determined to be auxotrophic for leucine (J7-2-1), arginine (J7-2-22 and J7-2-52), and lysine (J7-2-26). The complete genome and the biosynthetic pathways of amino acids in J7-2 identified that the auxotrophic phenotype of three mutants was due to gene mutations in leuB (J7-2-1), dapD (J7-2-26), and argC (J7-2-52). These auxotrophic phenotypes were employed as selectable makers to establish a transformation method. The transformation efficiencies were determined to be approximately 103 transformants per µg DNA. And strains J7-2-1 and J7-2-26 were transformed into prototrophic strains with the wild type genomic DNA, amplified fragments of the corresponding genes, or the integrative plasmids carrying the corresponding genes. Additionally, exogenous genes, bgaH or amyH gene, were expressed successfully in J7-2-1. Thus, we have developed a genetic manipulation system for the Natrinema genus based on the isolated auxotrophic mutants of Natrinema sp. J7-2. PMID:26089742

  12. Young and old genetically heterogeneous HET3 mice on a rapamycin diet are glucose intolerant but insulin sensitive.

    PubMed

    Lamming, Dudley W; Ye, Lan; Astle, Clinton M; Baur, Joseph A; Sabatini, David M; Harrison, David E

    2013-08-01

    Rapamycin, an inhibitor of the mechanistic target of rapamycin (mTOR) signaling pathway, extends the life span of yeast, worms, flies, and mice. Interventions that promote longevity are often correlated with increased insulin sensitivity, and it therefore is surprising that chronic rapamycin treatment of mice, rats, and humans is associated with insulin resistance (J Am Soc Nephrol., 19, 2008, 1411; Diabetes, 00, 2010, 00; Science, 335, 2012, 1638). We examined the effect of dietary rapamycin treatment on glucose homeostasis and insulin resistance in the genetically heterogeneous HET3 mouse strain, a strain in which dietary rapamycin robustly extends mean and maximum life span. We find that rapamycin treatment leads to glucose intolerance in both young and old HET3 mice, but in contrast to the previously reported effect of injected rapamycin in C57BL/6 mice, HET3 mice treated with dietary rapamycin responded normally in an insulin tolerance test. To gauge the overall consequences of rapamycin treatment on average blood glucose levels, we measured HBA1c. Dietary rapamycin increased HBA1c over the first 3 weeks of treatment in young animals, but the effect was lost by 3 months, and no effect was detected in older animals. Our results demonstrate that the extended life span of HET3 mice on a rapamycin diet occurs in the absence of major changes in insulin sensitivity and highlight the importance of strain background and delivery method in testing effects of longevity interventions. PMID:23648089

  13. Improved Alkane Production in Nitrogen-Fixing and Halotolerant Cyanobacteria via Abiotic Stresses and Genetic Manipulation of Alkane Synthetic Genes.

    PubMed

    Kageyama, Hakuto; Waditee-Sirisattha, Rungaroon; Sirisattha, Sophon; Tanaka, Yoshito; Mahakhant, Aparat; Takabe, Teruhiro

    2015-07-01

    Cyanobacteria possess the unique capacity to produce alkane. In this study, effects of nitrogen deficiency and salt stress on biosynthesis of alkanes were investigated in three kinds of cyanobacteria. Intracellular alkane accumulation was increased in nitrogen-fixing cyanobacterium Anabaena sp. PCC7120, but decreased in non-diazotrophic cyanobacterium Synechococcus elongatus PCC7942 and constant in a halotolerant cyanobacterium Aphanothece halophytica under nitrogen-deficient condition. We also found that salt stress increased alkane accumulation in Anabaena sp. PCC7120 and A. halophytica. The expression levels of two alkane synthetic genes were not upregulated significantly under nitrogen deficiency or salt stress in Anabaena sp. PCC7120. The transformant Anabaena sp. PCC7120 cells with additional alkane synthetic gene set from A. halophytica increased intracellular alkane accumulation level compared to control cells. These results provide a prospect to improve bioproduction of alkanes in nitrogen-fixing halotolerant cyanobacteria via abiotic stresses and genetic engineering. PMID:25971893

  14. Mice lacking the β2 adrenergic receptor have a unique genetic profile before and after focal brain ischaemia

    PubMed Central

    White, Robin E; Palm, Curtis; Xu, Lijun; Ling, Evelyn; Ginsburg, Mitchell; Daigle, Bernie J; Han, Ruquan; Patterson, Andrew; Altman, Russ B; Giffard, Rona G

    2012-01-01

    The role of the β2AR (β2 adrenergic receptor) after stroke is unclear as pharmacological manipulations of the β2AR have produced contradictory results. We previously showed that mice deficient in the β2AR (β2KO) had smaller infarcts compared with WT (wild-type) mice (FVB) after MCAO (middle cerebral artery occlusion), a model of stroke. To elucidate mechanisms of this neuroprotection, we evaluated changes in gene expression using microarrays comparing differences before and after MCAO, and differences between genotypes. Genes associated with inflammation and cell deaths were enriched after MCAO in both genotypes, and we identified several genes not previously shown to increase following ischaemia (Ccl9, Gem and Prg4). In addition to networks that were similar between genotypes, one network with a central core of GPCR (G-protein-coupled receptor) and including biological functions such as carbohydrate metabolism, small molecule biochemistry and inflammation was identified in FVB mice but not in β2KO mice. Analysis of differences between genotypes revealed 11 genes differentially expressed by genotype both before and after ischaemia. We demonstrate greater Glo1 protein levels and lower Pmaip/Noxa mRNA levels in β2KO mice in both sham and MCAO conditions. As both genes are implicated in NF-κB (nuclear factor κB) signalling, we measured p65 activity and TNFα (tumour necrosis factor α) levels 24 h after MCAO. MCAO-induced p65 activation and post-ischaemic TNFα production were both greater in FVB compared with β2KO mice. These results suggest that loss of β2AR signalling results in a neuroprotective phenotype in part due to decreased NF-κB signalling, decreased inflammation and decreased apoptotic signalling in the brain. PMID:22867428

  15. Genetic architecture of mandible shape in mice: effects of quantitative trait loci analyzed by geometric morphometrics.

    PubMed Central

    Klingenberg, C P; Leamy, L J; Routman, E J; Cheverud, J M

    2001-01-01

    This study introduces a new multivariate approach for analyzing the effects of quantitative trait loci (QTL) on shape and demonstrates this method for the mouse mandible. We quantified size and shape with the methods of geometric morphometrics, based on Procrustes superimposition of five morphological landmarks recorded on each mandible. Interval mapping for F(2) mice originating from an intercross of the LG/J and SM/J inbred strains revealed 12 QTL for size, 25 QTL for shape, and 5 QTL for left-right asymmetry. Multivariate ordination of QTL effects by principal component analysis identified two recurrent features of shape variation, which involved the positions of the coronoid and angular processes relative to each other and to the rest of the mandible. These patterns are reminiscent of the knockout phenotypes of a number of genes involved in mandible development, although only a few of these are possible candidates for QTL in our study. The variation of shape effects among the QTL showed no evidence of clustering into distinct groups, as would be expected from theories of morphological integration. Further, for most QTL, additive and dominance effects on shape were markedly different, implying overdominance for specific features of shape. We conclude that geometric morphometrics offers a promising new approach to address problems at the interface of evolutionary and developmental genetics. PMID:11156997

  16. An interview study of phenotypic characterization of genetically-modified mice.

    PubMed

    Thon, R; Vondeling, H; Lassen, J; Hansen, A K; Ritskes-Hoitinga, M

    2009-07-01

    An interview study was carried out with the aim of clarifying the reasons for the limited use of phenotypic characterization of genetically-modified mice (GMM) and identifying issues hindering its implementation. A total of 15 users of GMM participated in semi-structured face-to-face interviews, which were audio-taped and transcribed. The results were extracted using content analysis by theme. The investigation confirmed that few animals were systematically phenotyped and an observational approach was found to be widespread. The primary interest of the interviewees was phenotyping for impaired animal welfare. The concept of phenotyping was widely understood and perceived as a scientific advantage. The comprehensiveness of the protocols and the resources required for phenotyping were seen as problematic. All participants addressed this issue, be it regarding lack of time, money or expertise. Also, among the negative statements were worries about the capability of the available protocols to produce the information needed by the individual scientist. Phenotyping was predicted to become much more widespread in the future and its success was expected to depend on the development of reliable, fast and inexpensive methods. The study identified different aims of phenotyping and the suitability of the published protocols for these purposes was discussed. The contradiction between the limited use of characterization and its advantages was also discussed and proposals for the improvement of future phenotyping strategies are formulated. PMID:19237456

  17. Effects of genetic deletion of endogenous opioid system components on the reinstatement of cocaine-seeking behavior in mice.

    PubMed

    Gutiérrez-Cuesta, Javier; Burokas, Aurelijus; Mancino, Samantha; Kummer, Sami; Martín-García, Elena; Maldonado, Rafael

    2014-12-01

    The repeated cycles of cessation of consumption and relapse remain the major clinical concern in treating drug addiction. The endogenous opioid system is a crucial component of the reward circuit that participates in the adaptive changes leading to relapse in the addictive processes. We have used genetically modified mice to evaluate the involvement of μ-opioid receptor (MOR) and δ-opioid receptor (DOR) and their main endogenous ligands, the enkephalins derived from proenkephalin (PENK) and prodynorphin (PDYN), in the reinstatement of cocaine-seeking behavior. Constitutive knockout mice of MOR, DOR, PENK, and PDYN, and their wild-type littermates were trained to self-administer cocaine or to seek for palatable food, followed by a period of extinction and finally tested on a cue-induced reinstatement of seeking behavior. The four lines of knockout mice acquired operant cocaine self-administration behavior, although DOR and PENK knockout mice showed less motivation for cocaine than wild-type littermates. Moreover, cue-induced relapse was significantly decreased in MOR and DOR knockout mice. In contrast, PDYN knockout mice showed a slower extinction and increased relapse than wild-type littermates. C-Fos expression analysis revealed differential activation in brain areas related with memory and reward in these knockout mice. No differences were found in any of the four genotypes in operant responding to obtain palatable food, indicating that the changes revealed in knockout mice were not due to unspecific deficit in operant performance. Our results indicate that MOR, DOR, and PDYN have a differential role in cue-induced reinstatement of cocaine-seeking behavior. PMID:24943644

  18. CHEMICALLY AND GENETICALLY IMMUNOCOMPROMISED MICE ARE NOT MORE SUSCEPTIBLE THAN IMMUNOCOMPETENT MICE TO INFECTION WITH CRYPTOSPORIDIUM MURIS

    EPA Science Inventory

    The prevailing paradigm is that immunosuppressed individuals are more susceptible to infection and are at higher risk of infection from Cryptosporidium oocysts if present in drinking water. To test this hypothesis, three immune conditions were examined: genetically immunocomprom...

  19. Diet- and Genetically-Induced Obesity Differentially Affect the Fecal Microbiome and Metabolome in Apc1638N Mice

    PubMed Central

    Parnell, Laurence D.; Iyer, Lakshmanan K.; Liu, Zhenhua; Kane, Anne V.; Chen, C-Y. Oliver; Tai, Albert K.; Bowman, Thomas A.; Obin, Martin S.; Mason, Joel B.; Greenberg, Andrew S.; Choi, Sang-Woon; Selhub, Jacob; Paul, Ligi; Crott, Jimmy W.

    2015-01-01

    Obesity is a risk factor for colorectal cancer (CRC), and alterations in the colonic microbiome and metabolome may be mechanistically involved in this relationship. The relative contribution of diet and obesity per se are unclear. We compared the effect of diet- and genetically-induced obesity on the intestinal microbiome and metabolome in a mouse model of CRC. Apc1638N mice were made obese by either high fat (HF) feeding or the presence of the Leprdb/db (DbDb) mutation. Intestinal tumors were quantified and stool microbiome and metabolome were profiled. Genetic obesity, and to a lesser extent HF feeding, promoted intestinal tumorigenesis. Each induced distinct microbial patterns: taxa enriched in HF were mostly Firmicutes (6 of 8) while those enriched in DbDb were split between Firmicutes (7 of 12) and Proteobacteria (5 of 12). Parabecteroides distasonis was lower in tumor-bearing mice and its abundance was inversely associated with colonic Il1b production (p<0.05). HF and genetic obesity altered the abundance of 49 and 40 fecal metabolites respectively, with 5 in common. Of these 5, adenosine was also lower in obese and in tumor-bearing mice (p<0.05) and its concentration was inversely associated with colonic Il1b and Tnf production (p<0.05). HF and genetic obesity differentially alter the intestinal microbiome and metabolome. A depletion of adenosine and P.distasonis in tumor-bearing mice could play a mechanistic role in tumor formation. Adenosine and P. distasonis have previously been shown to be anti-inflammatory in the colon and we postulate their reduction could promote tumorigenesis by de-repressing inflammation. PMID:26284788

  20. A systems genetic analysis of alcohol drinking by mice, rats and men: influence of brain GABAergic transmission.

    PubMed

    Saba, Laura M; Bennett, Beth; Hoffman, Paula L; Barcomb, Kelsey; Ishii, Takao; Kechris, Katerina; Tabakoff, Boris

    2011-06-01

    Genetic influences on the predisposition to complex behavioral or physiological traits can reflect genetic polymorphisms that lead to altered gene product function, and/or variations in gene expression levels. We have explored quantitative variations in an animal's alcohol consumption, using a genetical genomic/phenomic approach. In our studies, gene expression is correlated with amount of alcohol consumed, and genomic regions that regulate the alcohol consumption behavior and the quantitative levels of gene expression (behavioral and expression quantitative trait loci [QTL]) are determined and used as a filter to identify candidate genes predisposing the behavior. We determined QTLs for alcohol consumption using the LXS panel of recombinant inbred mice. We then identified genes that were: 1) differentially expressed between five high and five low alcohol-consuming lines or strains of mice; and 2) were physically located in, or had an expression QTL (eQTL) within the alcohol consumption QTLs. Comparison of mRNA and protein levels in brains of high and low alcohol consuming mice led us to a bioinformatic examination of potential regulation by microRNAs of an identified candidate transcript, Gnb1 (G protein beta subunit 1). We combined our current analysis with our earlier work identifying candidate genes for the alcohol consumption trait in mice, rats and humans. Our overall analysis leads us to postulate that the activity of the GABAergic system, and in particular GABA release and GABA receptor trafficking and signaling, which involves G protein function, contributes significantly to genetic variation in the predisposition to varying levels of alcohol consumption. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'. PMID:21185315

  1. COMT Genetic Reduction Produces Sexually Divergent Effects on Cortical Anatomy and Working Memory in Mice and Humans.

    PubMed

    Sannino, Sara; Gozzi, Alessandro; Cerasa, Antonio; Piras, Fabrizio; Scheggia, Diego; Managò, Francesca; Damiano, Mario; Galbusera, Alberto; Erickson, Lucy C; De Pietri Tonelli, Davide; Bifone, Angelo; Tsaftaris, Sotirios A; Caltagirone, Carlo; Weinberger, Daniel R; Spalletta, Gianfranco; Papaleo, Francesco

    2015-09-01

    Genetic variations in catechol-O-methyltransferase (COMT) that modulate cortical dopamine have been associated with pleiotropic behavioral effects in humans and mice. Recent data suggest that some of these effects may vary among sexes. However, the specific brain substrates underlying COMT sexual dimorphisms remain unknown. Here, we report that genetically driven reduction in COMT enzyme activity increased cortical thickness in the prefrontal cortex (PFC) and postero-parieto-temporal cortex of male, but not female adult mice and humans. Dichotomous changes in PFC cytoarchitecture were also observed: reduced COMT increased a measure of neuronal density in males, while reducing it in female mice. Consistent with the neuroanatomical findings, COMT-dependent sex-specific morphological brain changes were paralleled by divergent effects on PFC-dependent working memory in both mice and humans. These findings emphasize a specific sex-gene interaction that can modulate brain morphological substrates with influence on behavioral outcomes in healthy subjects and, potentially, in neuropsychiatric populations. PMID:24658585

  2. Long-term consequences of conditional genetic deletion of PTEN in the sensorimotor cortex of neonatal mice.

    PubMed

    Gutilla, Erin A; Buyukozturk, Melda M; Steward, Oswald

    2016-05-01

    Targeted deletion of the phosphatase and tensin homolog on chromosome ten (PTEN) gene in the sensorimotor cortex of neonatal mice enables robust regeneration of corticospinal tract (CST) axons following spinal cord injury as adults. Here, we assess the consequences of long-term conditional genetic PTEN deletion on cortical structure and neuronal morphology and screen for neuropathology. Mice with a LoxP-flanked exon 5 of the PTEN gene (PTENf/f mice) received AAV-Cre injections into the sensorimotor cortex at postnatal day 1 (P1) and were allowed to survive for up to 18months. As adults, mice were assessed for exploratory activity (open field), and motor coordination using the Rotarod®. Some mice received injections of Fluorogold into the spinal cord to retrogradely label the cells of origin of the CST. Brains were prepared for neurohistology and immunostained for PTEN and phospho-S6, which is a downstream marker of mammalian target of rapamycin (mTOR) activation. Immunostaining revealed a focal area of PTEN deletion affecting neurons in all cortical layers, although in some cases PTEN expression was maintained in many small-medium sized neurons in layers III-IV. Neurons lacking PTEN were robustly stained for pS6. Cortical thickness was significantly increased and cortical lamination was disrupted in the area of PTEN deletion. PTEN-negative layer V neurons that give rise to the CST, identified by retrograde labeling, were larger than neurons with maintained PTEN expression, and the relative area occupied by neuropil vs. cell bodies was increased. There was no evidence of tumor formation or other neuropathology. Mice with PTEN deletion exhibited open field activity comparable to controls and there was a trend for impaired Rotarod performance (not statistically significant). Our findings indicate that early postnatal genetic deletion of PTEN that is sufficient to enable axon regeneration by adult neurons causes neuronal hypertrophy but no other detectable

  3. Generation of In-vitro Spermatogonial Stem Cells following Genetic Manipulation of Primordial Germ-like Cells

    PubMed Central

    Mazaheri, Zohreh; Movahedin, Mansoureh; Rahbarizadeh, Fatemeh; Amanpour, Saied

    2012-01-01

    Research about potential use of stem cells for the development of germ line cells in vitro had been challenged. In the present study, we reported a novel protocol consisting of cocktail growth factor addition for germ cell differentiation followed by transfection. The cells were purificated based on the expression on the cell surface of a protein. This protein is not present in normal cells of mice and does not interfere with cellular function. This cell surface marker is efficiently recognized by monoclonal antibodies. Bone marrow mesenchymal stem cells derived primordial germ like cells were differentiated to spermatogonial stem like cells by inducer cocktail including Retinoic acid (RA)+Leukemia inhibitory factor (LIF)+Basic fibroblast growth factor (bFgF). Co-culture system was used as a feeder under differentiated cells. A 400 bp fragment of spermatogonia-specific Stra-8 locus was enough to direct gene expression to the germ line stem cells. Stra8-CD4HAglo construct was used for purification of premeiotic differentiated cells. Expression of pluripotency (Pou5F1, Nanog, c-Myc) and specific germ cell (Mvh, Piwil2, Stra-8) genes in each stage were analyzed. The purified cells expressed the known molecular markers of PGC-like cells such as Mvh, Piwil2 & Stra-8. The outcomes of qPCR showed that ratio pluripotency of genes expression in selective group significantly decreased (p≤0.05) in the initial differentiation process. This results showed that ratio of Pou5F1, Nanog, c-Myc, Mvh, Piwil2 & Stra-8 expression to purified PGC-like cells were 0.41, 0.204, 1.1, 0.003, 0.184 and 2.276, respectively. Treatment of cells with RA affected up regulation of Stra-8. Although, c-Myc gene as an oncogenic gene had significantly increased (p≤0.05) at the end of differentiation stage compared to initial phase of study, this level of expression could not be tumorgenic. qPCR results of the differentiation stage showed higher expression of Stra-8 in co-culture+ cocktail and co

  4. Genetic Deletion or Pharmacological Inhibition of Dipeptidyl Peptidase-4 Improves Cardiovascular Outcomes After Myocardial Infarction in Mice

    PubMed Central

    Sauvé, Meghan; Ban, Kiwon; Momen, M. Abdul; Zhou, Yu-Qing; Henkelman, R. Mark; Husain, Mansoor; Drucker, Daniel J.

    2010-01-01

    OBJECTIVE Glucagon-like peptide-1 (7-36)amide (GLP-1) is cleaved by dipeptidyl peptidase-4 (DPP-4) to GLP-1 (9-36)amide. We examined whether chemical inhibition or genetic elimination of DPP-4 activity affects cardiovascular function in normoglycemic and diabetic mice after experimental myocardial infarction. RESEARCH DESIGN AND METHODS Cardiac structure and function was assessed by hemodynamic monitoring and echocardiography in DPP-4 knockout (Dpp4−/−) mice versus wild-type (Dpp4+/+) littermate controls and after left anterior descending (LAD) coronary artery ligation–induced myocardial infarction (MI). Effects of sustained DPP-4 inhibition with sitagliptin versus treatment with metformin were ascertained after experimental MI in a high-fat diet–streptozotocin model of murine diabetes. Functional recovery from ischemia-reperfusion (I/R) injury was measured in isolated hearts from Dpp4−/− versus Dpp4+/+ littermates and from normoglycemic wild-type (WT) mice treated with sitagliptin or metformin. Cardioprotective signaling in the murine heart was examined by RT-PCR and Western blot analyses. RESULTS Dpp4−/− mice exhibited normal indexes of cardiac structure and function. Survival post-MI was modestly improved in normoglycemic Dpp4−/− mice. Increased cardiac expression of phosphorylated AKT (pAKT), pGSK3β, and atrial natriuretic peptide (ANP) was detected in the nonischemic Dpp4−/− heart, and HO-1, ANP, and pGSK3β proteins were induced in nonischemic hearts from diabetic mice treated with sitagliptin or metformin. Sitagliptin and metformin treatment of wild-type diabetic mice reduced mortality after myocardial infarction. Sitagliptin improved functional recovery after I/R injury ex vivo in WT mice with similar protection from I/R injury also manifest in hearts from Dpp4−/− versus Dpp4+/+ mice. CONCLUSIONS Genetic disruption or chemical inhibition of DPP-4 does not impair cardiovascular function in the normoglycemic or diabetic mouse

  5. Genetic and pharmacological manipulations of the serotonergic system in early life: neurodevelopmental underpinnings of autism-related behavior

    PubMed Central

    Kinast, Karsten; Peeters, Deborah; Kolk, Sharon M.; Schubert, Dirk; Homberg, Judith R.

    2013-01-01

    Serotonin, in its function as neurotransmitter, is well-known for its role in depression, autism and other neuropsychiatric disorders, however, less known as a neurodevelopmental factor. The serotonergic system is one of the earliest to develop during embryogenesis and early changes in serotonin levels can have large consequences for the correct development of specific brain areas. The regulation and functioning of serotonin is influenced by genetic risk factors, such as the serotonin transporter polymorphism in humans. This polymorphism is associated with anxiety-related symptoms, changes in social behavior, and cortical gray and white matter changes also seen in patients suffering from autism spectrum disorders (ASD). The human polymorphism can be mimicked by the knockout of the serotonin transporter in rodents, which are as a model system therefore vital to explore the precise neurobiological mechanisms. Moreover, there are pharmacological challenges influencing serotonin in early life, like prenatal/neonatal exposure to selective serotonin reuptake inhibitors (SSRI) in depressed pregnant women. There is accumulating evidence that this dysregulation of serotonin during critical phases of brain development can lead to ASD-related symptoms in children, and reduced social behavior and increased anxiety in rodents. Furthermore, prenatal valproic acid (VPA) exposure, a mood stabilizing drug which is also thought to interfere with serotonin levels, has the potency to induce ASD-like symptoms and to affect the development of the serotonergic system. Here, we review and compare the neurodevelopmental and behavioral consequences of serotonin transporter gene variation, and prenatal SSRI and VPA exposure in the context of ASD. PMID:23781172

  6. Genetic control of immune responses in mice to synthetic peptides of a Streptococcus mutans surface protein antigen.

    PubMed Central

    Takahashi, I; Matsushita, K; Nisizawa, T; Okahashi, N; Russell, M W; Suzuki, Y; Munekata, E; Koga, T

    1992-01-01

    The immune responses to a cell surface protein antigen (PAc) of Streptococcus mutans and a peptide corresponding to residues 301 to 319 of the protein antigen [PAc(301-319)] in various strains of mice were studied, with attention being given to the haplotype of major histocompatibility complex (MHC) class II genes. Subcutaneous immunization of mice carrying the MHC class II I-Ad gene [BALB/c, B10.D2, B10.GD, and (B10.D2 x B10.G)F1 mice] with the peptide induced strong serum immunoglobulin G (IgG) responses to recombinant PAc (rPAc) and the peptide. Subcutaneous immunization of mice carrying the haplotype k or b of the H-2 I-A gene (C3H/HeN, C57BL/6, B10.BR, B10.A, or B10 mice) with the peptide induced intermediate serum IgG responses to rPAc and the peptide, and subcutaneous immunization of mice carrying the haplotype s or q of the H-2 I-A gene (DBA/1, B10.S, or B10.G mice) induced weak serum IgG responses to rPAc and the peptide compared with the responses of mice carrying the I-Ad gene. PAc(301-319) strongly induced PAc(301-319)-specific T-cell proliferation in B10.D2 mice but not in B10.G mice. The T-cell proliferation in B10.D2 mice was inhibited by treatment of antigen-presenting cells with anti-I-Ad monoclonal antibody but not with anti-I-Ab monoclonal antibody. These results indicate that the immune responses to the peptide in mice are genetically restricted or dominated by the MHC class II gene (I-Ad). To map antigenic epitopes in PAc(301-319) and PAc in mice bearing different H-2 haplotypes, 10 overlapping decapeptides covering PAc(301-319) and 153 decapeptides covering the entire mature PAc were synthesized. Of 10 decapeptides covering PAc(301-319), 6, 7, 1, and 1 decapeptides showed strong reactions with anti-PAc(301-319) sera from B10.D2 (H-2d), B10.GD (H-2g2), B10.BR (H-2k), and B10.A (H-2a) mice, respectively. None of these overlapping decapeptides reacted with anti-PAc(301-319) sera from B10.S (H-2s) and B10.G (H-2q) mice. Epitope-scanning analyses

  7. “Glowing Head” Mice: A Genetic Tool Enabling Reliable Preclinical Image-Based Evaluation of Cancers in Immunocompetent Allografts

    PubMed Central

    Day, Chi-Ping; Carter, John; Ohler, Zoe Weaver; Bonomi, Carrie; El Meskini, Rajaa; Martin, Philip; Graff-Cherry, Cari; Feigenbaum, Lionel; Tüting, Thomas; Van Dyke, Terry; Hollingshead, Melinda; Merlino, Glenn

    2014-01-01

    Preclinical therapeutic assessment currently relies on the growth response of established human cell lines xenografted into immunocompromised mice, a strategy that is generally not predictive of clinical outcomes. Immunocompetent genetically engineered mouse (GEM)-derived tumor allograft models offer highly tractable preclinical alternatives and facilitate analysis of clinically promising immunomodulatory agents. Imageable reporters are essential for accurately tracking tumor growth and response, particularly for metastases. Unfortunately, reporters such as luciferase and GFP are foreign antigens in immunocompetent mice, potentially hindering tumor growth and confounding therapeutic responses. Here we assessed the value of reporter-tolerized GEMs as allograft recipients by targeting minimal expression of a luciferase-GFP fusion reporter to the anterior pituitary gland (dubbed the “Glowing Head” or GH mouse). The luciferase-GFP reporter expressed in tumor cells induced adverse immune responses in wildtype mouse, but not in GH mouse, as transplantation hosts. The antigenicity of optical reporters resulted in a decrease in both the growth and metastatic potential of the labeled tumor in wildtype mice as compared to the GH mice. Moreover, reporter expression can also alter the tumor response to chemotherapy or targeted therapy in a context-dependent manner. Thus the GH mice and experimental approaches vetted herein provide concept validation and a strategy for effective, reproducible preclinical evaluation of growth and response kinetics for traceable tumors. PMID:25369133

  8. A Complex Genetic Basis to X-Linked Hybrid Male Sterility Between Two Species of House Mice

    PubMed Central

    Good, Jeffrey M.; Dean, Matthew D.; Nachman, Michael W.

    2008-01-01

    The X chromosome plays a central role in the evolution of reproductive isolation, but few studies have examined the genetic basis of X-linked incompatibilities during the early stages of speciation. We report the results of a large experiment focused on the reciprocal introgression of the X chromosome between two species of house mice, Mus musculus and M. domesticus. Introgression of the M. musculus X chromosome into a wild-derived M. domesticus genetic background produced male-limited sterility, qualitatively consistent with previous experiments using classic inbred strains to represent M. domesticus. The genetic basis of sterility involved a minimum of four X-linked factors. The phenotypic effects of major sterility QTL were largely additive and resulted in complete sterility when combined. No sterility factors were uncovered on the M. domesticus X chromosome. Overall, these results revealed a complex and asymmetric genetic basis to X-linked hybrid male sterility during the early stages of speciation in mice. Combined with data from previous studies, we identify one relatively narrow interval on the M. musculus X chromosome involved in hybrid male sterility. Only a handful of spermatogenic genes are within this region, including one of the most rapidly evolving genes on the mouse X chromosome. PMID:18689897

  9. Robot Manipulators

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Space Shuttle's Remote Manipulator System (Canadarm) is a 50 foot robot arm used to deploy, retrieve or repair satellites in orbit. Initial spinoff version is designed to remove, inspect and replace large components of Ontario Hydro's CANDU nuclear reactors, which supply 50 percent of Ontario Hydro's total power reduction. CANDU robot is the first of SPAR's Remote Manipulator Systems intended for remote materials handling operations in nuclear servicing, chemical processing, smelting and manufacturing. Inco Limited used remote manipulator for remote control mining equipment to enhance safety and productivity of Inco's hardrock mining operations. System not only improves safety in a hazardous operation that costs more than a score of lives annually, it also increases productivity fourfold. Remote Manipulator System Division is also manufacturing a line of industrial robots and developing additional system for nuclear servicing, mining, defense and space operations.

  10. Genetically induced moderate inhibition of 20S proteasomes in cardiomyocytes facilitates heart failure in mice during systolic overload

    PubMed Central

    Ranek, Mark J.; Zheng, Hanqiao; Huang, Wei; Kumarapeli, Asangi R.; Li, Jie; Liu, Jinbao; Wang, Xuejun

    2015-01-01

    The in vivo function status of the ubiquitin-proteasome system (UPS) in pressure overloaded hearts remains undefined. Cardiotoxicity was observed during proteasome inhibitor chemotherapy, especially in those with preexisting cardiovascular conditions; however, proteasome inhibition (PsmI) was also suggested by some experimental studies as a potential therapeutic strategy to curtail cardiac hypertrophy. Here we used genetic approaches to probe cardiac UPS performance and determine the impact of cardiomyocyte-restricted PsmI (CR-PsmI) on cardiac responses to systolic overload. Transgenic mice expressing an inverse reporter of the UPS (GFPdgn) were subject to transverse aortic constriction (TAC) to probe myocardial UPS performance during systolic overload. Mice with or without moderate CR-PsmI were subject to TAC and temporally characterized for cardiac responses to moderate and severe systolic overload. After moderate TAC (pressure gradient: ~40mmHg), cardiac UPS function was upregulated during the first two weeks but turned to functional insufficiency between 6 and 12 weeks as evidenced by the dynamic changes in GFPdgn protein levels, proteasome peptidase activities, and total ubiquitin conjugates. Severe TAC (pressure gradients >60mmHg) led to UPS functional insufficiency within a week. Moderate TAC elicited comparable hypertrophic responses between mice with and without genetic CR-PsmI but caused cardiac malfunction in CR-PsmI mice significantly earlier than those without CR-PsmI. In mice subject to severe TAC, CR-PsmI inhibited cardiac hypertrophy but led to rapidly progressed heart failure and premature death, associated with a pronounced increase in cardiomyocyte death. It is concluded that cardiac UPS function is dynamically altered, with the initial brief upregulation of proteasome function being adaptive; and CR-PsmI facilitates cardiac malfunction during systolic overload. PMID:26116868

  11. Beneficial bacteria stimulate host immune cells to counteract dietary and genetic predisposition to mammary cancer in mice.

    PubMed

    Lakritz, Jessica R; Poutahidis, Theofilos; Levkovich, Tatiana; Varian, Bernard J; Ibrahim, Yassin M; Chatzigiagkos, Antonis; Mirabal, Sheyla; Alm, Eric J; Erdman, Susan E

    2014-08-01

    Recent studies suggest health benefits including protection from cancer after eating fermented foods such as probiotic yogurt, though the mechanisms are not well understood. Here we tested mechanistic hypotheses using two different animal models: the first model studied development of mammary cancer when eating a Westernized diet, and the second studied animals with a genetic predilection to breast cancer. For the first model, outbred Swiss mice were fed a Westernized chow putting them at increased risk for development of mammary tumors. In this Westernized diet model, mammary carcinogenesis was inhibited by routine exposure to Lactobacillus reuteri ATCC-PTA-6475 in drinking water. The second model was FVB strain erbB2 (HER2) mutant mice, genetically susceptible to mammary tumors mimicking breast cancers in humans, being fed a regular (non-Westernized) chow diet. We found that oral supplement with these purified lactic acid bacteria alone was sufficient to inhibit features of mammary neoplasia in both models. The protective mechanism was determined to be microbially-triggered CD4+CD25+ lymphocytes. When isolated and transplanted into other subjects, these L. reuteri-stimulated lymphocytes were sufficient to convey transplantable anti-cancer protection in the cell recipient animals. These data demonstrate that host immune responses to environmental microbes significantly impact and inhibit cancer progression in distal tissues such as mammary glands, even in genetically susceptible mice. This leads us to conclude that consuming fermentative microbes such as L. reuteri may offer a tractable public health approach to help counteract the accumulated dietary and genetic carcinogenic events integral in the Westernized diet and lifestyle. PMID:24382758

  12. Genetic identification of thiosulfate sulfurtransferase as an adipocyte-expressed antidiabetic target in mice selected for leanness.

    PubMed

    Morton, Nicholas M; Beltram, Jasmina; Carter, Roderick N; Michailidou, Zoi; Gorjanc, Gregor; McFadden, Clare; Barrios-Llerena, Martin E; Rodriguez-Cuenca, Sergio; Gibbins, Matthew T G; Aird, Rhona E; Moreno-Navarrete, José Maria; Munger, Steven C; Svenson, Karen L; Gastaldello, Annalisa; Ramage, Lynne; Naredo, Gregorio; Zeyda, Maximilian; Wang, Zhao V; Howie, Alexander F; Saari, Aila; Sipilä, Petra; Stulnig, Thomas M; Gudnason, Vilmundur; Kenyon, Christopher J; Seckl, Jonathan R; Walker, Brian R; Webster, Scott P; Dunbar, Donald R; Churchill, Gary A; Vidal-Puig, Antonio; Fernandez-Real, José Manuel; Emilsson, Valur; Horvat, Simon

    2016-07-01

    The discovery of genetic mechanisms for resistance to obesity and diabetes may illuminate new therapeutic strategies for the treatment of this global health challenge. We used the polygenic 'lean' mouse model, which has been selected for low adiposity over 60 generations, to identify mitochondrial thiosulfate sulfurtransferase (Tst; also known as rhodanese) as a candidate obesity-resistance gene with selectively increased expression in adipocytes. Elevated adipose Tst expression correlated with indices of metabolic health across diverse mouse strains. Transgenic overexpression of Tst in adipocytes protected mice from diet-induced obesity and insulin-resistant diabetes. Tst-deficient mice showed markedly exacerbated diabetes, whereas pharmacological activation of TST ameliorated diabetes in mice. Mechanistically, TST selectively augmented mitochondrial function combined with degradation of reactive oxygen species and sulfide. In humans, TST mRNA expression in adipose tissue correlated positively with insulin sensitivity in adipose tissue and negatively with fat mass. Thus, the genetic identification of Tst as a beneficial regulator of adipocyte mitochondrial function may have therapeutic significance for individuals with type 2 diabetes. PMID:27270587

  13. Detailed Phenotypic and Molecular Analyses of Genetically Modified Mice Generated by CRISPR-Cas9-Mediated Editing

    PubMed Central

    Parikh, Bijal A.; Beckman, Diana L.; Patel, Swapneel J.; White, J. Michael; Yokoyama, Wayne M.

    2015-01-01

    The bacterial CRISPR-Cas9 system has been adapted for use as a genome editing tool. While several recent reports have indicated that successful genome editing of mice can be achieved, detailed phenotypic and molecular analyses of the mutant animals are limited. Following pronuclear micro-injection of fertilized eggs with either wild-type Cas9 or the nickase mutant (D10A) and single or paired guide RNA (sgRNA) for targeting of the tyrosinase (Tyr) gene, we assessed genome editing in mice using rapid phenotypic readouts (eye and coat color). Mutant mice with insertions or deletions (indels) in Tyr were efficiently generated without detectable off-target cleavage events. Gene correction of a single nucleotide by homologous recombination (HR) could only occur when the sgRNA recognition sites in the donor DNA were modified. Gene repair did not occur if the donor DNA was not modified because Cas9 catalytic activity was completely inhibited. Our results indicate that allelic mosaicism can occur following -Cas9-mediated editing in mice and appears to correlate with sgRNA cleavage efficiency at the single-cell stage. We also show that larger than expected deletions may be overlooked based on the screening strategy employed. An unbiased analysis of all the deleted nucleotides in our experiments revealed that the highest frequencies of nucleotide deletions were clustered around the predicted Cas9 cleavage sites, with slightly broader distributions than expected. Finally, additional analysis of founder mice and their offspring indicate that their general health, fertility, and the transmission of genetic changes were not compromised. These results provide the foundation to interpret and predict the diverse outcomes following CRISPR-Cas9-mediated genome editing experiments in mice. PMID:25587897

  14. Underwater manipulator

    SciTech Connect

    Schrum, P.B.; Cohen, G.H.

    1993-04-20

    Self-contained, waterproof, water-submersible, remote-controlled apparatus is described for manipulating a device, such as an ultrasonic transducer for measuring crack propagation on an underwater specimen undergoing shock testing. The subject manipulator includes metal bellows for transmittal of angular motions without the use of rotating shaft seals or O-rings. Inside the manipulator, a first stepper motor controls angular movement. In the preferred embodiment, the bellows permit the first stepper motor to move an ultrasonic transducer [plus minus]45 degrees in a first plane and a second bellows permit a second stepper motor to move the transducer [plus minus]10 degrees in a second plane orthogonal to the first. In addition, an XY motor-driven table provides XY motion.

  15. Underwater manipulator

    SciTech Connect

    Schrum, P.B.; Cohen, G.H.

    1992-12-31

    This invention is comprised of a self-contained, waterproof, water-submersible, remote-controlled apparatus provided for manipulating a device, such as an ultrasonic transducer for measuring crack propagation on an underwater specimen undergoing shock testing. The subject manipulator includes metal bellows for transmittal of angular motions without the use of rotating shaft seals or O-rings. Inside the manipulator, a first stepper motor controls angular movement. In the preferred embodiment, the bellows permit the first stepper motor to move an ultrasonic transducer {plus_minus} 45 degrees in a first plane and a second bellows permit a second stepper motor to move the transducer {plus_minus} 10 degrees in a second plane orthogonal to the first. In addition, an XY motor-driven table provides XY motion.

  16. Underwater manipulator

    DOEpatents

    Schrum, Phillip B.; Cohen, George H.

    1993-01-01

    Self-contained, waterproof, water-submersible, remote-controlled apparatus is provided for manipulating a device, such as an ultrasonic transducer for measuring crack propagation on an underwater specimen undergoing shock testing. The subject manipulator includes metal bellows for transmittal of angular motions without the use of rotating shaft seals or O-rings. Inside the manipulator, a first stepper motor controls angular movement. In the preferred embodiment, the bellows permit the first stepper motor to move an ultrasonic transducer .+-.45 degrees in a first plane and a second bellows permit a second stepper motor to move the transducer .+-.10 degrees in a second plane orthogonal to the first. In addition, an XY motor-driven table provides XY motion.

  17. Genetic Deletion of MT1 Melatonin Receptors Alters Spontaneous Behavioral Rhythms in Male and Female C57BL/6 Mice

    PubMed Central

    Adamah-Biassi, E.B.; Hudson, R.L.; Dubocovich, M.L.

    2015-01-01

    Behaviors vary over the 24 hr. light/dark cycle and these temporal patterns reflect in part modulation by circadian neural circuits and hormones, such as melatonin. The goal of this study was to investigate if MT1 melatonin receptors are involved in behavioral regulation by comparing male and female C57 wild type (WT) mice with C57 mice that had a genetic deletion of the MT1 receptor (MT1KO). A comprehensive array of fifteen distinct spontaneous behaviors was recorded continuously in the homecage over multiple days using the HomeCageScan system. Behaviors assessed were activity-like (i.e. come down, hang, jump, walk), exploration-like (i.e. dig, groom, rear up, sniff, stretch), resting-like (i.e. awake, remain low, rest, twitch) and ingestion-like (i.e. drink, eat). Phenotypic array and temporal distribution analysis revealed distinct behavioral rhythms that differed between WT and MT1KO mice. The rhythms were consistent from day to day in males and varied with the estrous cycle in females. We also studied the role of MT1 receptors on depressive and anxiety-like behaviors. Genetic deletion of MT1 receptors increased immobility time in the forced swim test and decreased the number of marbles buried in the marble burying test in both male and female C57 mice. We conclude that MT1 melatonin receptors are involved in neural pathways modulating diurnal rhythms of spontaneous behavior in the homecage as well as pathways regulating depressive and anxiolytic-like behaviors. PMID:25200199

  18. Genetic deletion of MT1 melatonin receptors alters spontaneous behavioral rhythms in male and female C57BL/6 mice.

    PubMed

    Adamah-Biassi, E B; Hudson, R L; Dubocovich, M L

    2014-09-01

    Behaviors vary over the 24h light/dark cycle and these temporal patterns reflect in part modulation by circadian neural circuits and hormones, such as melatonin. The goal of this study was to investigate the involvement of MT1 melatonin receptors in behavioral regulation by comparing male and female C57 wild type (WT) mice with C57 mice with genetic deletion of the MT1 receptor (MT1KO). A comprehensive array of fifteen distinct spontaneous behaviors was recorded continuously in the homecage over multiple days using the HomeCageScan system. Behaviors assessed were activity-like (i.e. come down, hang, jump, walk), exploration-like (i.e. dig, groom, rear up, sniff, stretch), resting-like (i.e. awake, remain low, rest, twitch) and ingestion-like (i.e. drink, eat). Phenotypic array and temporal distribution analysis revealed distinct behavioral rhythms that differed between WT and MT1KO mice. The rhythms were consistent from day to day in males and varied with the estrous cycle in females. We also studied the role of MT1 receptors on depressive and anxiety-like behaviors. Genetic deletion of MT1 receptors increased immobility time in the forced swim test and decreased the number of marbles buried in the marble burying test in both male and female C57 mice. We conclude that MT1 melatonin receptors are involved in neural pathways modulating diurnal rhythms of spontaneous behavior in the homecage as well as pathways regulating depressive and anxiolytic-like behaviors. PMID:25200199

  19. Genetic manipulation of RPS5 gene expression modulates the initiation of commitment of MEL cells to erythroid maturation: Implications in understanding ribosomopathies.

    PubMed

    Vizirianakis, Ioannis S; Papachristou, Eleni T; Andreadis, Panagiotis; Zopounidou, Elena; Matragkou, Christina N; Tsiftsoglou, Asterios S

    2015-07-01

    Impairment of ribosome biogenesis contributes to the molecular pathophysiology of ribosomopathies by deregulating cell-lineage specific proliferation, differentiation and apoptosis decisions of haematopoietic progenitor cells. Here, using pro-erythroblast-like murine erythroleukemia (MEL) cells, a model system of erythroid maturation, we aimed to investigate whether genetic manipulation of RPS5 expression affects the capacity of cells to grow and differentiate in culture. Parental MEL cells stably transfected with full length RPS5 cDNA in sense (MEL-C14 culture) or antisense (MEL-antisenseRPS5 culture) orientation, as well as MEL cells transiently transfected with siRNAs specific for RPS5 gene silencing (MEL-RPS5siRNA culture) were assessed for their ability to fully execute their erythroid maturation program in culture. The data obtained thus far indicate that: a) MEL-antisenseRPS5 exhibit a pronounced delay in the initiation of differentiation, as well as an impairment of commitment, since the continuous presence of the inducer in culture is required for the cells to fully execute their erythroid maturation program. b) RNAi-mediating silencing of RPS5 gene expression resulted in the inability of MEL cells to differentiate; however, when these cells were allowed to recapitulate normal RPS5 gene expression levels they regained their differentiation capacity by accumulating high proportion of erythroid mature cells. c) Interestingly the latter, is accompanied by morphological changes of cells and an impairment of their proliferation and apoptosis potential. Such data for the first time correlate the RPS5 gene expression levels with the differentiation capacity of MEL cells in vitro, a fact that might also have implications in understanding ribosomopathies. PMID:25998414

  20. Effects of insulin on lipolysis and lipogenesis in adipocytes from genetically obese (ob/ob) mice.

    PubMed Central

    Carnie, J A; Smith, D G; Mavris-Vavayannis, M

    1979-01-01

    A method for the preparation of isolated adipocytes from obese mice is described. Similar yields of adipocytes (50--60%), as judged by several criteria, are obtained from obese mice and lean controls. Few fat-globules and no free nuclei were observed in cell preparations, which are metabolically active, respond to hormonal control and appear to be representative of intact adipose tissue. Noradrenaline-stimulated lipolysis was inhibited by insulin, equally in adipocytes from lean and obese mice. Inhibition in obese cells required exogenous glucose, and the insulin dose--response curve was shifted to the right. Basal lipogenesis from glucose was higher in adipocytes from obese mice, and the stimulatory effect of insulin was greater in cells from obese mice compared with lean controls. A rightward shift in the insulin dose--response curve was again observed with cells from obese animals. This suggests that adipose tissue from obese mice is insulin-sensitive at the high blood insulin concentrations found in vivo. The resistance of obese mice to the hypoglycaemic effect of exogenous insulin and their impaired tolerance to glucose loading appear to be associated with an impaired insulin response by muscle rather than by adipose tissue. PMID:534511

  1. Sensitivity to Escherichia coli Nissle 1917 in mice is dependent on environment and genetic background

    PubMed Central

    Bleich, Andre; Sundberg, John P; Smoczek, Anna; von Wasielewski, Reinhard; de Buhr, Maike F; Janus, Lydia M; Julga, Gwen; Ukena, Sya N; Hedrich, Hans-J; Gunzer, Florian

    2008-01-01

    Escherichia coli Nissle 1917 (EcN) is a well-characterized probiotic bacterium. Although genomic comparisons of EcN with the uropathogenic E. coli strain CFT073 revealed high degrees of similarity, EcN is generally considered a non-pathogenic organism. However, as recent evidence suggests that EcN is capable of inducing inflammatory responses in host intestinal epithelial cells, we aimed to investigate potential pathogenic properties of EcN in an in vivo model using various germ-free (GF) mouse strains. With the exception of C3H/HeJZtm mice, which carry a defective toll-like receptor (TLR)4-allele, no lesions were obvious in mice of different strains orally inoculated with EcN for 1 week, although organ cultures (blood, lung, mesenteric lymph node, pancreas, spleen, liver and kidney) tested positive to various degrees. C3H/HeJZtm mice inoculated with EcN became clinically ill and the majority died or had to be euthanized. Organs of all gnotobiotic C3H/HeJZtm mice were positive for EcN by culture; major histological findings were moderate to severe pyogranulomatous serositis, typhlitis and pancreatitis. Histological findings were corroborated by highly elevated tumour necrosis factor (TNF) serum levels. Lesions were not detected in specified pathogen free maintained C3H/HeJZtm mice, GF C3H/HeJ mice lacking the interleukin-10 gene, or GF C3H/HeJZtm mice that were inoculated with E. coli K12 strain MG1655 as a control. In addition, mild histological lesions were detected in Ztm:NMRI mice 3 months after oral inoculation with EcN. This study shows that EcN is capable of displaying a virulent phenotype in GF C3H/HeJZtm mice. Whether this phenotype is linked to the bacterium’s probiotic nature should be the focus of further studies. PMID:18005134

  2. Early-life nutrition modulates the epigenetic state of specific rDNA genetic variants in mice.

    PubMed

    Holland, Michelle L; Lowe, Robert; Caton, Paul W; Gemma, Carolina; Carbajosa, Guillermo; Danson, Amy F; Carpenter, Asha A M; Loche, Elena; Ozanne, Susan E; Rakyan, Vardhman K

    2016-07-29

    A suboptimal early-life environment, due to poor nutrition or stress during pregnancy, can influence lifelong phenotypes in the progeny. Epigenetic factors are thought to be key mediators of these effects. We show that protein restriction in mice from conception until weaning induces a linear correlation between growth restriction and DNA methylation at ribosomal DNA (rDNA). This epigenetic response remains into adulthood and is restricted to rDNA copies associated with a specific genetic variant within the promoter. Related effects are also found in models of maternal high-fat or obesogenic diets. Our work identifies environmentally induced epigenetic dynamics that are dependent on underlying genetic variation and establishes rDNA as a genomic target of nutritional insults. PMID:27386920

  3. Relaxin improves multiple markers of wound healing and ameliorates the disturbed healing pattern of genetically diabetic mice

    PubMed Central

    Bitto, Alessandra; Irrera, Natasha; Minutoli, Letteria; Calò, Margherita; Lo Cascio, Patrizia; Caccia, Paolo; Pizzino, Gabriele; Pallio, Giovanni; Micali, Antonio; Vaccaro, Mario; Saitta, Antonino; Squadrito, Francesco; Altavilla, Domenica

    2013-01-01

    Diabetic mice are characterized by a disrupted expression pattern of VEGF (vascular endothelial growth factor), and impaired vasculogenesis during healing. Experimental evidence suggests that RLX (relaxin) can improve several parameters associated with wound healing. Therefore we investigated the effects of porcine-derived RLX in diabetes-related wound-healing defects in genetically diabetic mice. An incisional wound model was produced on the back of female diabetic C57BL/KsJ-m+/+Leptdb (db+/db+) mice and their normal littermates (db+/+m). Animals were treated daily with porcine RLX (25 μg/mouse per day, subcutaneously) or its vehicle. Mice were killed on 3, 6 and 12 days after skin injury for measurements of VEGF mRNA and protein synthesis, SDF-1α (stromal cell-derived factor-1α) mRNA and eNOS (endothelial NO synthase) expression. Furthermore, we evaluated wound-breaking strength, histological changes, angiogenesis and vasculogenesis at day 12. Diabetic animals showed a reduced expression of VEGF, eNOS and SDF-1α compared with non-diabetic animals. At day 6, RLX administration resulted in an increase in VEGF mRNA expression and protein wound content, in eNOS expression and in SDF-1α mRNA. Furthermore, the histological evaluation indicated that RLX improved the impaired wound healing, enhanced the staining of MMP-11 (matrix metalloproteinase-11) and increased wound-breaking strength at day 12 in diabetic mice. Immunohistochemistry showed that RLX in diabetic animals augmented new vessel formation by stimulating both angiogenesis and vasculogenesis. RLX significantly reduced the time to complete skin normalization and this effect was abrogated by a concomitant treatment with antibodies against VEGF and CXCR4 (CXC chemokine receptor 4), the SDF-1α receptor. These data strongly suggest that RLX may have a potential application in diabetes-related wound disorders. PMID:23742173

  4. Association between exploratory activity and social individuality in genetically identical mice living in the same enriched environment.

    PubMed

    Freund, J; Brandmaier, A M; Lewejohann, L; Kirste, I; Kritzler, M; Krüger, A; Sachser, N; Lindenberger, U; Kempermann, G

    2015-11-19

    We previously reported that inbred, genetically identical mice living in one enriched environment develop individual behavioral trajectories, indicating increasingly different levels of spatial exploratory behavior as quantified by roaming entropy. Cumulative roaming entropy (cRE) correlated positively with adult hippocampal neurogenesis, a type of plasticity involved in the flexible integration of new information into existing contexts (Freund et al., 2013). The study on which we report here was done in parallel to that first experiment, but here we acquired detailed observational data on the behavior of individual mice. Roaming entropy (RE) was again assessed in real-time with an antenna-based system over the entire experimental period of 3months. Compared to the least active mice in the enclosure (low number of antenna contacts), the most active animals showed tendencies of increased socially interactive behavior in the final observation block whereas least active mice displayed more self-related behavior (non-social local exploration and play). When looking at roaming behavior, we discovered that RE correlated negatively with latent factors representing social exploratory and non-social exploratory and play behavior. Adult neurogenesis could not be studied in the present cohort but we do know that under identical conditions, cumulative RE correlated positively with adult hippocampal neurogenesis. We can thus hypothesize that the mice with more exploratory experience in terms of areal coverage (as quantified by RE) and related greater levels of adult hippocampal plasticity, might also be the ones that were less involved in interactions within the group and, hence, more individualistic. While this remains to be confirmed experimentally, the present data suggest that the described mechanism of individualization, which has previously been shown to be hippocampus-dependent, has a social component. PMID:25987202

  5. Hemangiosarcoma in mice administered pregabalin: analysis of genotoxicity, tumor incidence, and tumor genetics.

    PubMed

    Pegg, David; Bleavins, Michael; Herman, James; Wojcinski, Zbigniew; Graziano, Michael; Henck, Judith; Criswell, Kay A; Anderson, Timothy; Duddy, Steven

    2012-07-01

    Pregabalin, (S)-3-(aminomethyl)-5-methylhexanoic acid, binds with high affinity to the α(2)δ subunit of voltage-gated calcium channels and exerts analgesic, anxiolytic, and antiseizure activities. Two-year carcinogenicity studies were completed in B6C3F1 and CD-1 mice and two separate studies in Wistar rats. Doses in mice were 200, 1000, and 5000 mg/kg/day, with systemic exposures (AUC(0-24 h)) up to 31 times the mean exposure in humans, given the maximum recommended clinical dose. In rats, doses were 50, 150, and 450 mg/kg/day in males and 100, 300, and 900 mg/kg/day in females; systemic exposures up to 24 times were achieved in clinical trials. In both strains of mice, pregabalin treatment was associated with an increased incidence of hemangiosarcoma primarily in liver, spleen, and bone marrow. The incidence of hemangiosarcoma was higher in B6C3F1 mice than in CD-1 mice, consistent with its spontaneous incidence. Pregabalin did not increase the incidence of any other tumor type in rats and was not genotoxic, based on an extensive battery of in vivo and in vitro tests in bacterial and mammalian systems. Thus, pregabalin is a single-species, single tumor-type, nongenotoxic mouse carcinogen. Hemangiosarcomas occurring in mice treated with pregabalin were genotypically distinct from hemangiosarcomas induced by genotoxic carcinogens in humans with respect to ras and p53 mutation patterns and were similar to spontaneous tumors. Furthermore, there was a strong association between pregabalin treatment and bone marrow changes in these studies in mice, suggesting a possible link between the effects observed in bone marrow and the increase in tumor incidence in pregabalin-treated mice. PMID:22539615

  6. Multiple paternity in wild house mice (Mus musculus musculus): effects on offspring genetic diversity and body mass

    PubMed Central

    Thonhauser, Kerstin E; Thoß, Michaela; Musolf, Kerstin; Klaus, Teresa; Penn, Dustin J

    2014-01-01

    Multiple mating is common in many species, but it is unclear whether multiple paternity enhances offspring genetic diversity or fitness. We conducted a survey on wild house mice (Mus musculus musculus), and we found that in 73 pregnant females, 29% of litters had multiple sires, which is remarkably similar to the 23–26% found in feral populations of Mus musculus domesticus in the USA and Australia, respectively. The question is: How has selection maintained multiple mating in these subspecies since the evolutionary divergence, ca. 2800–6000 years ago? We found no evidence that multiple paternity enhanced females’ litter size, contrary to the fertility assurance or genetic benefits hypotheses. Multiple paternity was associated with reduced mean and variance in offspring body mass, which suggests that females allocate fewer resources or that there is increased intrauterine conflict in multiple-versus single-sired litters. We found increased allelic diversity (though not heterozygosity) in multiple-sired litters, as predicted by the genetic diversity hypothesis. Finally, we found that the dams’ heterozygosity was correlated with the mean heterozygosity of their offspring in single-and multiple-sired litters, suggesting that outbred, heterozygous females were more likely to avoid inbreeding than inbred, homozygous females. Future studies are needed to examine how increased genetic diversity of litters and smaller mean (and variance) offspring body mass associated with multiple paternity affect offspring fitness. PMID:24558575

  7. Genetic control of the environmental variance for birth weight in seven generations of a divergent selection experiment in mice.

    PubMed

    Formoso-Rafferty, N; Cervantes, I; Ibáñez-Escriche, N; Gutiérrez, J P

    2016-06-01

    Data from seven generations of a divergent selection experiment designed for environmental variability of birth weight were analysed to estimate genetic parameters and to explore signs of selection response. A total of 10 783 birth weight records from 638 females and 1127 litters in combination with 10 007 pedigree records were used. Each record of birth weight was assigned to the mother of the pup in a heteroscedastic model, and after seven generations of selection, evidence of success in the selection process was shown. A Bayesian analysis showed that success of the selection process started from the first generation for birth weight and from the second generation for its environmental variability. Genetic parameters were estimated across generations. However, only from the third generation onwards were the records useful to consider the results to be reliable. The results showed a consistent positive and low genetic correlation between the birth weight trait and its environmental variability, which could allow an independent selection process. This study has demonstrated that the genetic control of the birth weight environmental variability is possible in mice. Nevertheless, before the results are applied directly in farm animals, it would be worth confirming any other implications on other important traits, such as robustness, longevity and welfare. PMID:26150168

  8. Quantification of alcohol drinking patterns in mice.

    PubMed

    Eisenhardt, Manuela; Leixner, Sarah; Spanagel, Rainer; Bilbao, Ainhoa

    2015-11-01

    The use of mice in alcohol research provides an excellent model system for a better understanding of the genetics and neurobiology of alcohol addiction. Almost 60 years ago, alcohol researchers began to test strains of mice for alcohol preference and intake. In particular, various voluntary alcohol drinking paradigms in the home cage were developed. In mouse models of voluntary oral alcohol consumption, animals have concurrent access to water and either one or several concentrated alcohol solutions in their home cages. Although these models have high face validity, many experimental conditions require a more precise monitoring of alcohol consumption in mice in order to capture the role of specific strains or genes, or any other manipulation on alcohol drinking behavior. Therefore, we have developed a fully automated, highly precise monitoring system for alcohol drinking in mice in the home cage. This system is now commercially available. We show that this drinkometer system allows for detecting differences in drinking behavior (i) in transgenic mice, (ii) following alcohol deprivation, and (iii) following stress applications that are usually not detected by classical home-cage drinking paradigms. In conclusion, our drinkometer system allows disturbance-free and high resolution monitoring of alcohol drinking behavior. In particular, micro-drinking and circadian drinking patterns can be monitored in genetically modified and inbred strains of mice after environmental and pharmacological manipulation, and therefore this system represents an improvement in measuring behavioral features that are of relevance for the development of alcohol use disorders. PMID:26515884

  9. Liver proteome of mice with different genetic susceptibilities to the effects of fluoride

    PubMed Central

    KHAN, Zohaib Nisar; LEITE, Aline de Lima; CHARONE, Senda; SABINO, Isabela Tomazini; MARTINI, Tatiana; PEREIRA, Heloísa Aparecida Barbosa da Silva; OLIVEIRA, Rodrigo Cardoso; BUZALAF, Marília Afonso Rabelo

    2016-01-01

    ABSTRACT A/J and 129P3/J mice strains have been widely studied over the last few years because they respond quite differently to fluoride (F) exposure. 129P3/J mice are remarkably resistant to the development of dental fluorosis, despite excreting less F in urine and having higher circulating F levels. These two strains also present different characteristics regardless of F exposure. Objective In this study, we investigated the differential pattern of protein expression in the liver of these mice to provide insights on why they have different responses to F. Material and Methods Weanling male A/J and 129P3/J mice (n=10 from each strain) were pared and housed in metabolic cages with ad libitum access to low-F food and deionized water for 42 days. Liver proteome profiles were examined using nLC-MS/MS. Protein function was classified by GO biological process (Cluego v2.0.7 + Clupedia v1.0.8) and protein-protein interaction network was constructed (PSICQUIC, Cytoscape). Results Most proteins with fold change were increased in A/J mice. The functional category with the highest percentage of altered genes was oxidation-reduction process (20%). Subnetwork analysis revealed that proteins with fold change interacted with Disks large homolog 4 and Calcium-activated potassium channel subunit alpha-1. A/J mice had an increase in proteins related to energy flux and oxidative stress. Conclusion This could be a possible explanation for the high susceptibility of these mice to the effects of F, since the exposure also induces oxidative stress. PMID:27383706

  10. Genetics

    MedlinePlus

    Homozygous; Inheritance; Heterozygous; Inheritance patterns; Heredity and disease; Heritable; Genetic markers ... The chromosomes are made up of strands of genetic information called DNA. Each chromosome contains sections of ...

  11. Genetics

    MedlinePlus

    ... Inheritance; Heterozygous; Inheritance patterns; Heredity and disease; Heritable; Genetic markers ... The chromosomes are made up of strands of genetic information called DNA. Each chromosome contains sections of ...

  12. Remote Manipulator

    NASA Technical Reports Server (NTRS)

    1986-01-01

    SPAR Aerospace Limited's "Canadarm," Canada's contribution to the space shuttle. It is a crane which can operate as a 50 foot extension of an astronaut's arm. It can lift 65,000 pounds in space and retrieve satellites for repair, etc. Redesigned versions have energy and mining applications. Some of its hardware has been redeveloped for use as a Hydro manipulator in a nuclear reactor where it is expected to be extremely cost effective.

  13. Genetic Analysis of Tongue Size and Taste Papillae Number and Size in Recombinant Inbred Strains of Mice

    PubMed Central

    Reiner, David J.; Jan, Taha A.; Boughter, John D.; Li, Cheng-Xiang; Lu, Lu; Williams, Robert W.

    2008-01-01

    Quantitative trait loci (QTLs) analysis has been used to examine natural variation of phenotypes in the mouse somatosensory cortex, hippocampus, cerebellum, and amygdala. QTL analysis has also been utilized to map and identify genes underlying anatomical features such as muscle, organ, and body weights. However, this methodology has not been previously applied to identification of anatomical structures related to gustatory phenotypes. In this study, we used QTL analysis to map and characterize genes underlying tongue size, papillae number, and papillae area. In a set of 43 BXD recombinant inbred (RI) mice (n = 111) and 2 parental strains (C57BL/6J and DBA/2J; n = 7), we measured tongue length, width, and weight. In a subset of 23 BXD RI mice and the parental mice, we measured filiform and fungiform papillae number and fungiform papillae area. Using QTL linkage analysis (through WebQTL), we detected 2 significant and noninteracting QTLs influencing tongue length on chromosomes 5 and 7. We also found a significant QTL on chromosome 19 underlying fungiform papillae area and a suggestive QTL on chromosome 2 linked to fungiform papillae number. From these QTLs, we identified a number of candidate genes within the QTL intervals that include SRY-box containing gene, nebulin-related anchoring protein, and actin-binding LIM protein 1. This study is an important first step in identifying genetic factors underlying tongue size, papillae size, and papillae number using QTL analysis. PMID:18653645

  14. A Phenotyping Regimen for Genetically Modified Mice Used to Study Genes Implicated in Human Diseases of Aging.

    PubMed

    Patterson, Victoria L; Thompson, Brian S; Cherry, Catherine; Wang, Shao-Bin; Chen, Bo; Hoh, Josephine

    2016-01-01

    Age-related diseases are becoming increasingly prevalent and the burden continues to grow as our population ages. Effective treatments are necessary to lessen the impact of debilitating conditions but remain elusive in many cases. Only by understanding the causes and pathology of diseases associated with aging, can scientists begin to identify potential therapeutic targets and develop strategies for intervention. The most common age-related conditions are neurodegenerative disorders such as Parkinson's disease and blindness. Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly. Genome wide association studies have previously identified loci that are associated with increased susceptibility to this disease and identified two regions of interest: complement factor H (CFH) and the 10q26 locus, where the age-related maculopathy susceptibility 2 (ARMS2) and high-temperature requirement factor A1 (HtrA1) genes are located. CFH acts as a negative regulator of the alternative pathway (AP) of the complement system while HtrA1 is an extracellular serine protease. ARMS2 is located upstream of HtrA1 in the primate genome, although the gene is absent in mice. To study the effects of these genes, humanized knock-in mouse lines of Cfh and ARMS2, knockouts of Cfh, HtrA1, HtrA2, HtrA3 and HtrA4 as well as a conditional neural deletion of HtrA2 were generated. Of all the genetically engineered mice produced only mice lacking HtrA2, either systemically or in neural tissues, displayed clear phenotypes. In order to examine these mice thoroughly and systematically, an initial phenotyping schedule was established, consisting of a series of tests related to two main diseases of interest: AMD and Parkinson's. Genetically modified mice can be subjected to appropriate experiments to identify phenotypes that may be related to the associated diseases in humans. A phenotyping regimen with a mitochondrial focus is presented here alongside representative results

  15. Characterization of Sleeping Beauty Transposition and Its Application to Genetic Screening in Mice

    PubMed Central

    Horie, Kyoji; Yusa, Kosuke; Yae, Kojiro; Odajima, Junko; Fischer, Sylvia E. J.; Keng, Vincent W.; Hayakawa, Tomoko; Mizuno, Sumi; Kondoh, Gen; Ijiri, Takashi; Matsuda, Yoichi; Plasterk, Ronald H. A.; Takeda, Junji

    2003-01-01

    The use of mutant mice plays a pivotal role in determining the function of genes, and the recently reported germ line transposition of the Sleeping Beauty (SB) transposon would provide a novel system to facilitate this approach. In this study, we characterized SB transposition in the mouse germ line and assessed its potential for generating mutant mice. Transposition sites not only were clustered within 3 Mb near the donor site but also were widely distributed outside this cluster, indicating that the SB transposon can be utilized for both region-specific and genome-wide mutagenesis. The complexity of transposition sites in the germ line was high enough for large-scale generation of mutant mice. Based on these initial results, we conducted germ line mutagenesis by using a gene trap scheme, and the use of a green fluorescent protein reporter made it possible to select for mutant mice rapidly and noninvasively. Interestingly, mice with mutations in the same gene, each with a different insertion site, were obtained by local transposition events, demonstrating the feasibility of the SB transposon system for region-specific mutagenesis. Our results indicate that the SB transposon system has unique features that complement other mutagenesis approaches. PMID:14645530

  16. Genetic Ablation of Calcium-independent Phospholipase A2γ Induces Glomerular Injury in Mice.

    PubMed

    Elimam, Hanan; Papillon, Joan; Kaufman, Daniel R; Guillemette, Julie; Aoudjit, Lamine; Gross, Richard W; Takano, Tomoko; Cybulsky, Andrey V

    2016-07-01

    Glomerular visceral epithelial cells (podocytes) play a critical role in the maintenance of glomerular permselectivity. Podocyte injury, manifesting as proteinuria, is the cause of many glomerular diseases. We reported previously that calcium-independent phospholipase A2γ (iPLA2γ) is cytoprotective against complement-mediated glomerular epithelial cell injury. Studies in iPLA2γ KO mice have demonstrated an important role for iPLA2γ in mitochondrial lipid turnover, membrane structure, and metabolism. The aim of the present study was to employ iPLA2γ KO mice to better understand the role of iPLA2γ in normal glomerular and podocyte function as well as in glomerular injury. We show that deletion of iPLA2γ did not cause detectable albuminuria; however, it resulted in mitochondrial structural abnormalities and enhanced autophagy in podocytes as well as loss of podocytes in aging KO mice. Moreover, after induction of anti-glomerular basement membrane nephritis in young mice, iPLA2γ KO mice exhibited significantly increased levels of albuminuria, podocyte injury, and loss of podocytes compared with wild type. Thus, iPLA2γ has a protective functional role in the normal glomerulus and in glomerulonephritis. Understanding the role of iPLA2γ in glomerular pathophysiology provides opportunities for the development of novel therapeutic approaches to glomerular injury and proteinuria. PMID:27226532

  17. The severity of retinal pathology in homozygous Crb1rd8/rd8 mice is dependent on additional genetic factors

    PubMed Central

    Luhmann, Ulrich F.O.; Carvalho, Livia S.; Holthaus, Sophia-Martha kleine; Cowing, Jill A.; Greenaway, Simon; Chu, Colin J.; Herrmann, Philipp; Smith, Alexander J.; Munro, Peter M.G.; Potter, Paul; Bainbridge, James W.B.; Ali, Robin R.

    2015-01-01

    Understanding phenotype–genotype correlations in retinal degeneration is a major challenge. Mutations in CRB1 lead to a spectrum of autosomal recessive retinal dystrophies with variable phenotypes suggesting the influence of modifying factors. To establish the contribution of the genetic background to phenotypic variability associated with the Crb1rd8/rd8 mutation, we compared the retinal pathology of Crb1rd8/rd8/J inbred mice with that of two Crb1rd8/rd8 lines backcrossed with C57BL/6JOlaHsd mice. Topical endoscopic fundal imaging and scanning laser ophthalmoscopy fundus images of all three Crb1rd8/rd8 lines showed a significant increase in the number of inferior retinal lesions that was strikingly variable between the lines. Optical coherence tomography, semithin, ultrastructural morphology and assessment of inflammatory and vascular marker by immunohistochemistry and quantitative reverse transcriptase-polymerase chain reaction revealed that the lesions were associated with photoreceptor death, Müller and microglia activation and telangiectasia-like vascular remodelling—features that were stable in the inbred, variable in the second, but virtually absent in the third Crb1rd8/rd8 line, even at 12 months of age. This suggests that the Crb1rd8/rd8 mutation is necessary, but not sufficient for the development of these degenerative features. By whole-genome SNP analysis of the genotype–phenotype correlation, a candidate region on chromosome 15 was identified. This may carry one or more genetic modifiers for the manifestation of the retinal pathology associated with mutations in Crb1. This study also provides insight into the nature of the retinal vascular lesions that likely represent a clinical correlate for the formation of retinal telangiectasia or Coats-like vasculopathy in patients with CRB1 mutations that are thought to depend on such genetic modifiers. PMID:25147295

  18. The severity of retinal pathology in homozygous Crb1rd8/rd8 mice is dependent on additional genetic factors.

    PubMed

    Luhmann, Ulrich F O; Carvalho, Livia S; Holthaus, Sophia-Martha Kleine; Cowing, Jill A; Greenaway, Simon; Chu, Colin J; Herrmann, Philipp; Smith, Alexander J; Munro, Peter M G; Potter, Paul; Bainbridge, James W B; Ali, Robin R

    2015-01-01

    Understanding phenotype-genotype correlations in retinal degeneration is a major challenge. Mutations in CRB1 lead to a spectrum of autosomal recessive retinal dystrophies with variable phenotypes suggesting the influence of modifying factors. To establish the contribution of the genetic background to phenotypic variability associated with the Crb1(rd8/rd8) mutation, we compared the retinal pathology of Crb1(rd8/rd8)/J inbred mice with that of two Crb1(rd8/rd8) lines backcrossed with C57BL/6JOlaHsd mice. Topical endoscopic fundal imaging and scanning laser ophthalmoscopy fundus images of all three Crb1(rd8/rd8) lines showed a significant increase in the number of inferior retinal lesions that was strikingly variable between the lines. Optical coherence tomography, semithin, ultrastructural morphology and assessment of inflammatory and vascular marker by immunohistochemistry and quantitative reverse transcriptase-polymerase chain reaction revealed that the lesions were associated with photoreceptor death, Müller and microglia activation and telangiectasia-like vascular remodelling-features that were stable in the inbred, variable in the second, but virtually absent in the third Crb1(rd8/rd8) line, even at 12 months of age. This suggests that the Crb1(rd8/rd8) mutation is necessary, but not sufficient for the development of these degenerative features. By whole-genome SNP analysis of the genotype-phenotype correlation, a candidate region on chromosome 15 was identified. This may carry one or more genetic modifiers for the manifestation of the retinal pathology associated with mutations in Crb1. This study also provides insight into the nature of the retinal vascular lesions that likely represent a clinical correlate for the formation of retinal telangiectasia or Coats-like vasculopathy in patients with CRB1 mutations that are thought to depend on such genetic modifiers. PMID:25147295

  19. Genetic-Background Modulation of Core and Variable Autistic-Like Symptoms in Fmr1 Knock-Out Mice

    PubMed Central

    Pietropaolo, Susanna; Guilleminot, Aurélie; Martin, Benoît; D'Amato, Francesca R.; Crusio, Wim E.

    2011-01-01

    Background No animal models of autism spectrum disorders (ASD) with good construct validity are currently available; using genetic models of pathologies characterized by ASD-like deficits, but with known causes, may be therefore a promising strategy. The Fmr1-KO mouse is an example of this approach, modeling Fragile X syndrome, a well-known genetic disorder presenting ASD symptoms. The Fmr1-KO is available on different genetic backgrounds (FVB versus C57BL/6), which may explain some of the conflicting results that have been obtained with these mutants up till now. Methods Fmr1 KO and their wild-type littermates on both the FVB and C57BL/6 genetic backgrounds were examined on a battery of tests modeling the clinical symptoms of ASD, including the triad of core symptoms (alterations in social interaction and communication, presence of repetitive behaviors), as well as the secondary symptoms (disturbances in sensori-motor reactivity and in circadian patterns of activity, epileptic events). Results Fmr1-KO mice displayed autistic-like core symptoms of altered social interaction and occurrence of repetitive behaviors with additional hyperactivity. The genetic background modulated the effects of the Fmr1 deletion and it appears that the C57BL/6 background may be more suitable for further research on core autistic-like symptoms. Conclusions The Fmr1-mouse line does not recapitulate all of the main core and secondary ASD symptoms, but still can be useful to elucidate the neurobiological mechanisms underlying specific ASD-like endophenotypes. PMID:21364941

  20. Developmental etiology for neuroanatomical and cognitive deficits in mice overexpressing Galphas, a G-protein subunit genetically linked to schizophrenia.

    PubMed

    Kelly, M P; Stein, J M; Vecsey, C G; Favilla, C; Yang, X; Bizily, S F; Esposito, M F; Wand, G; Kanes, S J; Abel, T

    2009-04-01

    Schizophrenia is a widespread psychiatric disorder, affecting 1% of people. Despite this high prevalence, schizophrenia is not well treated because of its enigmatic developmental origin. We explore here the developmental etiology of endophenotypes associated with schizophrenia using a regulated transgenic approach in mice. Recently, a polymorphism that increases mRNA levels of the G-protein subunit Galphas was genetically linked to schizophrenia. Here we show that regulated overexpression of Galphas mRNA in forebrain neurons of mice is sufficient to cause a number of schizophrenia-related phenotypes, as measured in adult mice, including sensorimotor gating deficits (prepulse inhibition of acoustic startle, PPI) that are reversed by haloperidol or the phosphodiesterase inhibitor rolipram, psychomotor agitation (hyperlocomotion), hippocampus-dependent learning and memory retrieval impairments (hidden water maze, contextual fear conditioning), and enlarged ventricles. Interestingly, overexpression of Galphas during development plays a significant role in some (PPI, spatial learning and memory and neuroanatomical deficits) but not all of these adulthood phenotypes. Pharmacological and biochemical studies suggest the Galphas-induced behavioral deficits correlate with compensatory decreases in hippocampal and cortical cyclic AMP (cAMP) levels. These decreases in cAMP may lead to reduced activation of the guanine exchange factor Epac (also known as RapGEF 3/4) as stimulation of Epac with the select agonist 8-pCPT-2'-O-Me-cAMP increases PPI and improves memory in C57BL/6J mice. Thus, we suggest that the developmental impact of a given biochemical insult, such as increased Galphas expression, is phenotype specific and that Epac may prove to be a novel therapeutic target for the treatment of both developmentally regulated and non-developmentally regulated symptoms associated with schizophrenia. PMID:19030002

  1. Genetic ablation of the GluK4 kainate receptor subunit causes anxiolytic and antidepressant-like behavior in mice.

    PubMed

    Catches, Justin S; Xu, Jian; Contractor, Anis

    2012-03-17

    There is a clear link between dysregulation of glutamatergic signaling and mood disorders. Genetic variants in the glutamate receptor gene GRIK4, which encodes the kainate receptor subunit GluK4, alter the susceptibility for depression, bipolar disorder and schizophrenia. Here we demonstrate that Grik4(-/-) mice have reduced anxiety and an antidepressant-like phenotype. In the elevated zero-maze, a test for anxiety and risk taking behavior, Grik4(-/-) mice spent significantly more time exploring the open areas of the maze. In anxiogenic tests of marble-burying and novelty-induced suppression of feeding, anxiety-like behavior was consistently reduced in knockout animals. In the forced swim test, a test of learned helplessness that is used to determine depression-like behavior, knockout mice demonstrated significantly less immobility suggesting that Grik4 ablation has an antidepressant-like effect. Finally, in the sucrose preference test, a test for anhedonia in rodents, Grik4(-/-) mice demonstrated increased sucrose preference. Expression of the GluK4 receptor subunit in the forebrain is restricted to the CA3 region of the hippocampus and dentate gyrus regions where KARs are known to modulate synaptic plasticity. We tested whether Grik4 ablation had effects on mossy fiber (MF) plasticity and found there to be a significant impairment in LTP likely through a loss of KAR modulation of excitability of the presynaptic MF axons. These studies demonstrate a clear anxiolytic and antidepressant phenotype associated with ablation of Grik4 and a parallel disruption in hippocampal plasticity, providing support for the importance of this receptor subunit in mood disorders. PMID:22203159

  2. Effects of Dietary Zinc Manipulation on Growth Performance, Zinc Status and Immune Response during Giardia lamblia Infection: A Study in CD-1 Mice

    PubMed Central

    Iñigo-Figueroa, Gemma; Méndez-Estrada, Rosa O.; Quihui-Cota, Luis; Velásquez-Contreras, Carlos A.; Garibay-Escobar, Adriana; Canett-Romero, Rafael; Astiazarán-García, Humberto

    2013-01-01

    Associations between Giardia lamblia infection and low serum concentrations of zinc have been reported in young children. Interestingly, relatively few studies have examined the effects of different dietary zinc levels on the parasite-infected host. The aims of this study were to compare the growth performance and zinc status in response to varying levels of dietary zinc and to measure the antibody-mediated response of mice during G. lamblia infection. Male CD-1 mice were fed using 1 of 4 experimental diets: adequate-zinc (ZnA), low-zinc (ZnL), high-zinc (ZnH) and supplemented-zinc (ZnS) diet containing 30, 10, 223 and 1383 mg Zn/kg respectively. After a 10 days feeding period, mice were inoculated orally with 5 × 106 G. lamblia trophozoites and were maintained on the assigned diet during the course of infection (30 days). Giardia-free mice fed ZnL diets were able to attain normal growth and antibody-mediated response. Giardia-infected mice fed ZnL and ZnA diets presented a significant growth retardation compared to non-infected controls. Zinc supplementation avoided this weight loss during G. lamblia infection and up-regulated the host’s humoral immune response by improving the production of specific antibodies. Clinical outcomes of zinc supplementation during giardiasis included significant weight gain, higher anti-G. lamblia IgG antibodies and improved serum zinc levels despite the ongoing infection. A maximum growth rate and antibody-mediated response were attained in mice fed ZnH diet. No further increases in body weight, zinc status and humoral immune capacity were noted by feeding higher zinc levels (ZnS) than the ZnH diet. These findings probably reflect biological effect of zinc that could be of public health importance in endemic areas of infection. PMID:24002196

  3. Genetic absence of nNOS worsens fetal alcohol effects in mice. II: Microencephaly and neuronal losses

    PubMed Central

    Karacay, Bahri; Mahoney, Jo; Plume, Jeffrey; Bonthius, Daniel J.

    2014-01-01

    Background Prenatal alcohol exposure can kill developing neurons, leading to microencephaly and mental retardation. However, not all fetuses are equally vulnerable to alcohol’s neurotoxic effects. While some fetuses are severely affected and are ultimately diagnosed with fetal alcohol syndrome (FAS), others have no evidence of neuropathology and are behaviorally normal. These widely different outcomes among alcohol-exposed fetuses are likely due, in part, to genetic differences. Some fetuses possess genotypes that make them much more vulnerable than others to alcohol’s teratogenic effects. However, to date, only one gene has been identified whose mutation can worsen alcohol-induced behavioral deficits in an animal model of FAS. That gene is neuronal nitric oxide synthase (nNOS). The purpose of this study was to determine whether mutation of nNOS can likewise worsen alcohol-induced microencephaly and lead to permanent neuronal deficits. Methods Wild type and nNOS−/− mice received alcohol (0.0, 2.2, or 4.4 mg/g) daily over postnatal days (PD) 4–9. Beginning on PD 85, the mice underwent a series of behavioral tests, the results of which are reported in the companion paper. The brains were then weighed, and stereological cell counts were performed on the cerebral cortex and hippocampal formation, which are the brain regions that mediate the aforementioned behavioral tasks. Results Alcohol caused dose-dependent microencephaly, but only in the nNOS−/− mice and not in wild type mice. Alcohol-induced neuronal losses were more severe in the nNOS−/− mice than in the wild type mice in all of the brain regions examined, including the cerebral cortex, hippocampal CA3 subregion, hippocampal CA1 subregion, and dentate gyrus. Conclusions Targeted mutation of the nNOS gene increases the vulnerability of the developing brain to alcohol-induced growth restriction and neuronal losses. This increased neuropathology is associated with worsened behavioral dysfunction

  4. [Genetic divergence and allozymic variability in mice of the genus Apodemus s. lato (Muridae, Rodentia)].

    PubMed

    Mezhzherin, S V; Zykov, A E

    1991-01-01

    Genetic variability of 36 presumed loci was examined in 5 species of subgenus Sylvaemus (sylvaticus, flavicollis, microps, falzfeini, ponticus) and in 3 species of the subgenus Apodemus s. str. (agrarius, peninsulae, speciosus) from different geographic regions of the USSR. Taxonomic status and species affiliation of A. s. chorassanicus from Turkmenia and A. s. tscherga from Altay have been established: the former is identical to A. falzfeini from the Ukraine, the latter is identical to A. microps. Genus Apodemus s. lato can be divided into two different geni (Apodemus s. str. and Sylvaemus) on the basis of genetic distance between them (D = 1,518). Genetic differentiation within subgenus Sylvaemus is 0.311, within subgenus Apodemus s. str. is 1,011. The observed differences in genetic heterozygosity between species (H varies from 0 to 0.067) are, probably, due to the historical events which take place in the formation of areas of these species. PMID:1796503

  5. Genetic modeling of gliomas in mice: new tools to tackle old problems

    PubMed Central

    Hambardzumyan, Dolores; Parada, Luis F.; Holland, Eric C.; Charest, Al

    2011-01-01

    The recently published comprehensive profiles of genomic alterations in glioma have led to a refinement in our understanding of the molecular events that underlie this cancer. Using state-of-the-art genomic tools, several laboratories have created and characterized accurate genetically engineered mouse models of glioma based on specific genetic alterations observed in human tumors. These in vivo brain tumor models faithfully recapitulate the histopathology, etiology, and biology of gliomas and provide an exceptional experimental system to discover novel therapeutic targets and test therapeutic agents. This review focuses on mouse models of glioma with a special emphasis on genetically engineered models developed around key genetic glioma signature mutations in the PDGFR, EGFR and NF1 genes and pathways. The resulting animal models have provided insight into many fundamental and mechanistic facets of tumor initiation, maintenance and resistance to therapeutic intervention and will continue to do so in the future. PMID:21305617

  6. Genetic identification of unique immunological responses in mice infected with virulent and attenuated Francisella tularensis

    PubMed Central

    Kingry, Luke C.; Troyer, Ryan M.; Marlenee, Nicole L.; Bielefeldt-Ohmann, Helle; Bowen, Richard A.; Schenkel, Alan R.; Dow, Steven W.; Slayden, Richard A.

    2010-01-01

    Francisella tularensis is a category A select agent based on its infectivity and virulence but disease mechanisms in Francisella tularensis infection remain poorly understood. Murine pulmonary models of infection were therefore employed to assess and compare dissemination and pathology and to elucidate the host immune response to infection with the highly virulent Type A F. tularensis strain Schu4 versus the less virulent Type B live vaccine strain (LVS). We found that dissemination and pathology in the spleen was significantly greater in mice infected with F. tularensis Schu4 compared to mice infected with F. tularensis LVS. Using gene expression profiling to compare the response to infection with the two F. tularensis strains, we found that there were significant differences in the expression of genes involved in the apoptosis pathway, antigen processing and presentation pathways, and inflammatory response pathways in mice infected with Schu4 when compared to LVS. These transcriptional differences coincided with marked differences in dissemination and severity of organ lesions in mice infected with the Schu4 and LVS strains. Therefore, these findings indicate that altered apoptosis, antigen presentation and production of inflammatory mediators explain the differences in pathogenicity of F. tularensis Schu4 and LVS. PMID:21070859

  7. [Biologic and molecular genetic properties of a transplantable human primary gastric cancer in nude mice].

    PubMed

    Chen, S S

    1989-05-01

    A human primary gastric cancer tissue (adenocarcinoma II-III) was transplanted into nude mice (SWISS/DF. nu/nu). It has been transferred for 8 generations at 56 sites in 28 nude mice with transplantable rate of 100%. The transplanted tumor is designated as transplantable human primary gastric cancer-1 in nude mice (THPGC-1). The growth of THPGC-1 is rather rapid and the size of transplanted tumor reaches 1 cm2, 4-5 weeks after transfer. The morphology and histochemistry of the original tumor were retained well in the initial and serial transplanted tumors. THPGC-1 could secret carcinoembryonic antigen (CEA). After intravenous or intraperitoneal injection of 131I-antiCEA monoclonal antibody into the THPGC-1 bearing nude mice, the radiolabeled antibody was concentrated and localized in the tumor as shown by gamma-camera analysis. Similar pattern of lactate dehydrogenase isoenzyme was observed both in primary gastric cancer tissue and THPGC-1 tissue. Chromosomal examination revealed that THPGC-1 was human aneuploid ones. Southern blot analysis showed that the pattern of repetitive DNA bands and the structures of 28s, rDNA, c-H-ras and c-myc genes in THPGC-1 were identical to the original primary gastric cancer DNA. The results suggest that THPGC-1 be a reliable model for the research of the molecular biology of cancer cells and experimental gastric cancer diagnosis and treatment. PMID:2693024

  8. Genetic variance and covariance patterns for body weight and energy balance characters in an advanced intercross population of mice

    PubMed Central

    Leamy, Larry J; Elo, Kari; Nielsen, Merlyn K; Van Vleck, L Dale; Pomp, Daniel

    2005-01-01

    We estimated heritabilities and genetic correlations for a suite of 15 characters in five functional groups in an advanced intercross population of over 2000 mice derived from a cross of inbred lines selected for high and low heat loss. Heritabilities averaged 0.56 for three body weights, 0.23 for two energy balance characters, 0.48 for three bone characters, 0.35 for four measures of adiposity, and 0.27 for three organ weights, all of which were generally consistent in magnitude with estimates derived in previous studies. Genetic correlations varied from -0.65 to +0.98, and were higher within these functional groups than between groups. These correlations generally conformed to a priori expectations, being positive in sign for energy expenditure and consumption (+0.24) and negative in sign for energy expenditure and adiposity (-0.17). The genetic correlations of adiposity with body weight at 3, 6, and 12 weeks of age (-0.29, -0.22, -0.26) all were negative in sign but not statistically significant. The independence of body weight and adiposity suggests that this advanced intercross population is ideal for a comprehensive discovery of genes controlling regulation of mammalian adiposity that are distinct from those for body weight. PMID:16194522

  9. Genetic and Hormonal Control of Bone Volume, Architecture, and Remodeling in XXY Mice

    PubMed Central

    Liu, Peter Y; Kalak, Robert; Lue, YanHe; Jia, Yue; Erkkila, Krista; Zhou, Hong; Seibel, Markus J; Wang, Christina; Swerdloff, Ronald S; Dunstan, Colin R

    2010-01-01

    Klinefelter syndrome is the most common chromosomal aneuploidy in men (XXY karyotype, 1 in 600 live births) and results in testicular (infertility and androgen deficiency) and nontesticular (cognitive impairment and osteoporosis) deficits. The extent to which skeletal changes are due to testosterone deficiency or arise directly from gene overdosage cannot be determined easily in humans. To answer this, we generated XXY mice through a four-generation breeding scheme. Eight intact XXY and 9 XY littermate controls and 8 castrated XXY mice and 8 castrated XY littermate controls were euthanized at 1 year of age. Castration occurred 6 months prior to killing. A third group of 9 XXY and 11 XY littermates were castrated and simultaneously implanted with a 1-cm Silastic testosterone capsule 8 weeks prior to sacrifice. Tibias were harvested from all three groups and examined by micro–computed tomography and histomorphometry. Blood testosterone concentration was assayed by radioimmunoassay. Compared with intact XY controls, intact androgen-deficient XXY mice had lower bone volume (6.8% ± 1.2% versus8.8% ± 1.7%, mean ± SD, p = .01) and thinner trabeculae (50 ± 4 µm versus 57 ± 5 µm, p = .007). Trabecular separation (270 ± 20 µm versus 270 ± 20 µm) or osteoclast number relative to bone surface (2.4 ± 1.0/mm2 versus 2.7 ± 1.5/mm2) did not differ significantly. Testosterone-replaced XXY mice continued to show lower bone volume (5.5% ± 2.4% versus 8.1% ± 3.5%, p = .026). They also exhibited greater trabecular separation (380 ± 69 µm versus 324 ± 62 µm, p = .040) but equivalent blood testosterone concentrations (6.3 ± 1.8 ng/mL versus 8.2 ± 4.2 ng/mL, p = .28) compared with testosterone-replaced XY littermates. In contrast, castration alone drastically decreased bone volume (p < .001), trabecular thickness (p = .05), and trabecular separation (p < .01) to such a great extent that differences between XXY and XY mice were undetectable. In conclusion, XXY mice

  10. Genetic dissection of medial habenula–interpeduncular nucleus pathway function in mice

    PubMed Central

    Kobayashi, Yuki; Sano, Yoshitake; Vannoni, Elisabetta; Goto, Hiromichi; Suzuki, Hitomi; Oba, Atsuko; Kawasaki, Hiroaki; Kanba, Shigenobu; Lipp, Hans-Peter; Murphy, Niall P.; Wolfer, David P.; Itohara, Shigeyoshi

    2013-01-01

    The habenular complex linking forebrain and midbrain structures is subdivided into the medial (mHb) and the lateral nuclei (lHb). The mHb is characterized by the expression of specific nicotinic acetylcholine receptor isoforms and the release of acetylcholine to the interpeduncular nucleus (IPN), the sole output region of the mHb. The specific function of this circuit, however, is poorly understood. Here we generated transgenic mice in which mHb cells were selectively ablated postnatally. These lesions led to large reductions in acetylcholine levels within the IPN. The mutant mice exhibited abnormalities in a wide range of behavioral domains. They tended to be hyperactive during the early night period and were maladapted when repeatedly exposed to new environments. Mutant mice also showed a high rate of premature responses in the 5-choice serial reaction time task (5-CSRTT), indicating impulsive and compulsive behavior. Additionally, mice also exhibited delay and effort aversion in a decision-making test, deficits in spatial memory, a subtle increase in anxiety levels, and attenuated sensorimotor gating. IntelliCage studies under social housing conditions confirmed hyperactivity, environmental maladaptation, and impulsive/compulsive behavior, delay discounting, deficits in long-term spatial memory, and reduced flexibility in complex learning paradigms. In 5-CSRTT and adaptation tasks, systemic administration of nicotine slowed down nose-poke reaction and enhanced adaptation in control but not mutant mice. These findings demonstrate that the mHb–IPN pathway plays a crucial role in inhibitory control and cognition-dependent executive functions. PMID:23487260

  11. Genetic Analysis of Substrain Divergence in Non-Obese Diabetic (NOD) Mice.

    PubMed

    Simecek, Petr; Churchill, Gary A; Yang, Hyuna; Rowe, Lucy B; Herberg, Lieselotte; Serreze, David V; Leiter, Edward H

    2015-05-01

    The non-obese diabetic (NOD) mouse is a polygenic model for type 1 diabetes that is characterized by insulitis, a leukocytic infiltration of the pancreatic islets. During ~35 years since the original inbred strain was developed in Japan, NOD substrains have been established at different laboratories around the world. Although environmental differences among NOD colonies capable of impacting diabetes incidence have been recognized, differences arising from genetic divergence have not been analyzed previously. We use both mouse diversity array and whole-exome capture sequencing platforms to identify genetic differences distinguishing five NOD substrains. We describe 64 single-nucleotide polymorphisms, and two short indels that differ in coding regions of the five NOD substrains. A 100-kb deletion on Chromosome 3 distinguishes NOD/ShiLtJ and NOD/ShiLtDvs from three other substrains, whereas a 111-kb deletion in the Icam2 gene on Chromosome 11 is unique to the NOD/ShiLtDvs genome. The extent of genetic divergence for NOD substrains is compared with similar studies for C57BL6 and BALB/c substrains. As mutations are fixed to homozygosity by continued inbreeding, significant differences in substrain phenotypes are to be expected. These results emphasize the importance of using embryo freezing methods to minimize genetic drift within substrains and of applying appropriate genetic nomenclature to permit substrain recognition when one is used. PMID:25740934

  12. Behavioral and genetic investigations of low exploratory behavior in Il18r1−/− mice: We can’t always blame it on the targeted gene

    PubMed Central

    Eisener-Dorman, Amy F.; Lawrence, David A.; Bolivar, Valerie J.

    2010-01-01

    The development of gene targeting technologies has enabled research with immune system-related knockout mouse strains to advance our understanding of how cytokines and their receptors interact and influence a number of body systems, including the central nervous system. A critical issue when we are interpreting phenotypic data from these knockout strains is the potential role of genes other than the targeted one. Although many of the knockout strains have been made congenic on a C57BL/6 (B6) genetic background, there remains a certain amount of genetic material from the129 substrain that was used in the development of these strains. This genetic material could result in phenotypes incorrectly attributed to the targeted gene. We recently reported low activity behavior in Il10−/− mice that was linked to this genetic material rather than the targeted gene itself. In the current study we confirm the generalizability of those earlier findings, by assessing behavior in Il18−/− and Il18r1−/− knockout mice. We identified low activity and high anxiety-like behaviors in Il18r1−/− mice, whereas Il18−/− mice displayed little anxiety-like behavior. Although Il18r1−/− mice are considered a congenic strain, we have identified substantial regions of 129P2-derived genetic material not only flanking the ablated Il18r1 on Chromosome 1, but also on Chromosomes 4, 5, 8, 10, and 14. Our studies suggest that residual 129-derived gene(s), rather than the targeted Il18r1 gene, is/are responsible for the low level of activity seen in the Il18r1−/− mice. Mapping studies are necessary to identify the gene or genes contributing to the low activity phenotype. PMID:20580925

  13. Identification of T. gondii epitopes, adjuvants, & host genetic factors that influence protection of mice & humans

    PubMed Central

    Tan, Tze Guan; Mui, Ernest; Cong, Hua; Witola, William; Montpetit, Alexandre; Muench, Stephen P.; Sidney, John; Alexander, Jeff; Sette, Alessandro; Grigg, Michael; Maewal, Ajesh; McLeod, Rima

    2010-01-01

    Toxoplasma gondii is an intracellular parasite that causes severe neurologic and ocular disease in immune-compromised and congenitally infected individuals. There is no vaccine protective against human toxoplasmosis. Herein, immunization of Ld mice with HF10 (HPGSVNEFDF) with palmitic acid moieties or a monophosphoryl lipid A derivative elicited potent IFN-γ production from Ld-restricted CD8+ T cells in vitro and protected mice. CD8+ T cell peptide epitopes from T. gondii dense granule proteins GRA 3, 6, 7, and Sag 1, immunogenic in humans for HLA-A02+, HLA-A03+, and HLA-B07+ cells were identified. Since peptide repertoire presented by MHC class I molecules to CD8+ T cells is shaped by endoplasmic reticulum-associated aminopeptidase (ERAAP), polymorphisms in the human ERAAP gene ERAP1 were studied and associate with susceptibility to human congenital toxoplasmosis (p<0.05). These results have important implications for vaccine development. PMID:20347630

  14. Genetic differences in hepatic lipid peroxidation potential and iron levels in mice.

    PubMed

    Gerhard, Glenn S; Kaufmann, Elizabeth J; Wang, Xujun; Erikson, Keith M; Abraham, Joseph; Grundy, Martin; Beard, John L; Chorney, Michael J

    2002-01-01

    Oxidative damage to macromolecules, including lipids, has been hypothesized as a mechanism of aging. One end product of lipid peroxidation, malondialdehyde (MDA), is often quantified as a measure of oxidative damage to lipids. We used a commercial colorimetric assay for MDA (Bioxytech LPO-586, Oxis International, Portland, OR) to measure lipid peroxidation potential in liver tissue from young (2 month) male mice from recombinant inbred (RI) mouse strains from the C57BL/6J (B6)xDBA/2J (D2) series (BXD). The LPO-586 assay (LPO) reliably detected significant differences (P<0.0001) in lipid peroxidation potential between the B6 and D2 parental strains, and yielded a more than two-fold variation across the BXD RI strains. In both B6 and D2 mice, LPO results were greater in old (23 month) mice, with a larger age-related increase in the D2 strain. As the level of iron can influence lipid peroxidation, we also measured hepatic non-heme iron levels in the same strains. Although iron level exhibited a slightly negative overall correlation (r(2)=0.119) with LPO results among the entire group of BXD RI strains, a sub-group with lower LPO values were highly correlated (r(2)=0.704). LPO results were also positively correlated with iron levels from a group of 8 other inbred mouse strains (r(2)=0.563). The BXD RI LPO data were statistically analyzed to nominate quantitaive trait loci (QTL). A single marker, Zfp4, which maps to 55.2 cM on chromosome 8, achieved a significance level of P<0.0006. At least two potentially relevant candidate genes reside close to this chromosomal position. Hepatic lipid peroxidation potential appears to be a strain related trait in mice that is amenable to QTL analysis. PMID:11718810

  15. Genetic determinants of fibro-osseous lesions in aged inbred mice.

    PubMed

    Berndt, Annerose; Ackert-Bicknell, Cheryl; Silva, Kathleen A; Kennedy, Victoria E; Sundberg, Beth A; Cates, Justin M; Schofield, Paul N; Sundberg, John P

    2016-02-01

    Fibro-osseous lesions in mice are progressive aging changes in which the bone marrow is replaced to various degrees by fibrovascular stroma and bony trabeculae in a wide variety of bones. The frequency and severity varied greatly among 28 different inbred mouse stains, predominantly affecting females, ranging from 0% for 10 strains to 100% for KK/HlJ and NZW/LacJ female mice. Few lesions were observed in male mice and for 23 of the strains, no lesions were observed in males for any of the cohorts. There were no significant correlations between strain-specific severities of fibro-osseous lesions and ovarian (r=0.11; P=0.57) or endometrial (r=0.03; P=0.89) cyst formation frequency or abnormalities in parathyroid glands. Frequency of fibro-osseous lesions was most strongly associated (P<10(-6)) with genome variations on chromosome (Chr) 8 at 90.6 and 90.8Mb (rs33108071, rs33500669; P=5.0·10(-10), 1.3·10(-6)), Chr 15 at 23.6 and 23.8Mb (rs32087871, rs45770368; P=7.3·10(-7), 2.7·10(-6)), and Chr 19 at 33.2, 33.4, and 33.6Mb (rs311004232, rs30524929, rs30448815; P=2.8·10(-6), 2.8·10(-6), 2.8·10(-6)) in genome-wide association studies (GWAS). The relatively large number of candidate genes identified in the GWAS analyses suggests that this may be an extremely complex polygenic disease. These results indicate that fibro-osseous lesions are surprisingly common in many inbred strains of laboratory mice as they age. While this presents little problem in most studies that utilize young animals, it may complicate aging studies, particularly those focused on bone. PMID:26589134

  16. Analysis of apolipoprotein A5, C3 and plasma triglyceride concentrations in genetically engineered mice

    SciTech Connect

    Baroukh, Nadine; Bauge, Eric; Akiyama, Jennifer; Chang, Jessie; Afzal, Veena; Fruchart, Jean-Charles; Rubin, Edward M.; Fruchart, Jamila; Pennacchio, Len A.

    2004-03-11

    To address the relationship between the apolipoprotein A5 and C3 genes, we generated independent lines of mice that either over-expressed or completely lacked both genes. We report both lines display normal triglyceride concentrations compared to over-expression or deletion of either gene alone. Together, these data support that APOA5 and APOC3 independently influence plasma triglyceride concentrations but in an opposing manner.

  17. The nociceptin system and hippocampal cognition in mice: a pharmacological and genetic analysis.

    PubMed

    Kuzmin, Alexander; Madjid, Nather; Johansson, Björn; Terenius, Lars; Ogren, Sven Ove

    2009-12-11

    This study examines the effects of NOP agonists nociceptin/orphanin FQ (N/OFQ) and Ro 64-6198, NOP antagonists [Nphe(1)]N/OFQ(1-13)-NH(2) Nphe(1) and naloxone benzoylhydrazone (NalBzoH) on spatial memory in NMRI mice and pronociceptin (proNC) knockout (KO) mice using the water maze task. N/OFQ, administered i.c.v. (1, 5 and 10 nmol/mouse) and into hippocampal CA3 (1 nmol/mouse, bilaterally), impaired acquisition and retention in the maze. Impairments were blocked by pre-treatment with Nphe(1) (10 nmol, i.c.v.). Ro 64-6198 (0.1-0.3-1 mg/kg i.p.) also dose-dependently impaired learning. However, pre-treatment with NalBzoH (1 mg/kg, s.c.) failed to modify the effects of Ro 64-6198. Nphe(1) (10 nmol/mouse i.c.v.) and NalBzoH (1 mg/kg, s.c.) by themselves failed to affect maze performance, despite a tendency for enhanced performance. Prepro N/OFQ knockout (ppN/OFQ -/-) showed evidence of improved learning, evident at retention trials and in reversal training. ppN/OFQ -/- mice were not impaired by N/OFQ (10 nmol i.c.v.) in the task, suggesting that changes in postsynaptic NOP receptors may occur in such KO mice. It is concluded that N/OFQ and NOP receptors have an important role in hippocampus-dependent spatial learning and memory, probably by modulation of glutamatergic functions. PMID:19782658

  18. Genetic interactions with sex make a relatively small contribution to the heritability of complex traits in mice.

    PubMed

    Krohn, Jon; Speed, Doug; Palme, Rupert; Touma, Chadi; Mott, Richard; Flint, Jonathan

    2014-01-01

    The extent to which sex-specific genetic effects contribute to phenotypic variation is largely unknown. We applied a novel Bayesian method, sparse partitioning, to detect gene by sex (GxS) and gene by gene (GxG) quantitative loci (QTLs) in 1,900 outbred heterogeneous stock mice. In an analysis of 55 phenotypes, we detected 16 GxS and 6 GxG QTLs. The increase in the amount of phenotypic variance explained by models including GxS was small, ranging from 0.14% to 4.30%. We conclude that GxS rarely make a large overall contribution to the heritability of phenotypes, however there are cases where these will be individually important. PMID:24811081

  19. Neuromolecular basis of parental behavior in laboratory mice and rats: with special emphasis on technical issues of using mouse genetics.

    PubMed

    Kuroda, Kumi O; Tachikawa, Kashiko; Yoshida, Sachine; Tsuneoka, Yousuke; Numan, Michael

    2011-07-01

    To support the well-being of the parent-infant relationship, the neuromolecular mechanisms of parental behaviors should be clarified. From neuroanatomical analyses in laboratory rats, the medial preoptic area (MPOA) has been shown to be of critical importance in parental retrieving behavior. More recently, various gene-targeted mouse strains have been found to be defective in different aspects of parental behaviors, contributing to the identification of molecules and signaling pathways required for the behavior. Therefore, the neuromolecular basis of "mother love" is now a fully approachable research field in modern molecular neuroscience. In this review, we will provide a summary of the required brain areas and gene for parental behavior in laboratory mice (Mus musculus) and rats (Rattus norvegicus). Basic protocols and technical considerations on studying the mechanism of parental behavior using genetically-engineered mouse strains will also be presented. PMID:21338647

  20. A Dopaminergic Gene Cluster in the Prefrontal Cortex Predicts Performance Indicative of General Intelligence in Genetically Heterogeneous Mice

    PubMed Central

    Kolata, Stefan; Light, Kenneth; Wass, Christopher D.; Colas-Zelin, Danielle; Roy, Debasri; Matzel, Louis D.

    2010-01-01

    Background Genetically heterogeneous mice express a trait that is qualitatively and psychometrically analogous to general intelligence in humans, and as in humans, this trait co-varies with the processing efficacy of working memory (including its dependence on selective attention). Dopamine signaling in the prefrontal cortex (PFC) has been established to play a critical role in animals' performance in both working memory and selective attention tasks. Owing to this role of the PFC in the regulation of working memory, here we compared PFC gene expression profiles of 60 genetically diverse CD-1 mice that exhibited a wide range of general learning abilities (i.e., aggregate performance across five diverse learning tasks). Methodology/Principal Findings Animals' general cognitive abilities were first determined based on their aggregate performance across a battery of five diverse learning tasks. With a procedure designed to minimize false positive identifications, analysis of gene expression microarrays (comprised of ≈25,000 genes) identified a small number (<20) of genes that were differentially expressed across animals that exhibited fast and slow aggregate learning abilities. Of these genes, one functional cluster was identified, and this cluster (Darpp-32, Drd1a, and Rgs9) is an established modulator of dopamine signaling. Subsequent quantitative PCR found that expression of these dopaminegic genes plus one vascular gene (Nudt6) were significantly correlated with individual animal's general cognitive performance. Conclusions/Significance These results indicate that D1-mediated dopamine signaling in the PFC, possibly through its modulation of working memory, is predictive of general cognitive abilities. Furthermore, these results provide the first direct evidence of specific molecular pathways that might potentially regulate general intelligence. PMID:21103339

  1. Mice and the reactor: the "genetics experiment" in 1950s Britain.

    PubMed

    De Chadarevian, Soraya

    2006-01-01

    The postwar investments by several governments into the development of atomic energy for military and peaceful uses fuelled the fears not only of the exposure to acute doses of radiation as could be expected from nuclear accidents or atomic warfare but also of the long-term effects of low-dose exposure to radiation. Following similar studies pursued under the aegis of the Manhattan Project in the United States, the "genetics experiment" discussed by scientists and government officials in Britain soon after the war, consisted in large-scale low-dose irradiation experiments of laboratory animals to assess the effects of such exposures on humans. The essay deals with the history of that project and its impact on postwar genetics. It argues that radiobiological concerns driven by atomic politics lay at the heart of much genetics research after the war and that the atomic links are crucial to understand how genetics became an overriding concern in the late 20th century. PMID:17575956

  2. Redox Indicator Mice Stably Expressing Genetically Encoded Neuronal roGFP: Versatile Tools to Decipher Subcellular Redox Dynamics in Neuropathophysiology

    PubMed Central

    Wagener, Kerstin C.; Kolbrink, Benedikt; Dietrich, Katharina; Kizina, Kathrin M.; Terwitte, Lukas S.; Kempkes, Belinda; Bao, Guobin

    2016-01-01

    Abstract Aims: Reactive oxygen species (ROS) and downstream redox alterations not only mediate physiological signaling but also neuropathology. For long, ROS/redox imaging was hampered by a lack of reliable probes. Genetically encoded redox sensors overcame this gap and revolutionized (sub)cellular redox imaging. Yet, the successful delivery of sensor-coding DNA, which demands transfection/transduction of cultured preparations or stereotaxic microinjections of each subject, remains challenging. By generating transgenic mice, we aimed to overcome limiting cultured preparations, circumvent surgical interventions, and to extend effectively redox imaging to complex and adult preparations. Results: Our redox indicator mice widely express Thy1-driven roGFP1 (reduction–oxidation-sensitive green fluorescent protein 1) in neuronal cytosol or mitochondria. Negative phenotypic effects of roGFP1 were excluded and its proper targeting and functionality confirmed. Redox mapping by ratiometric wide-field imaging reveals most oxidizing conditions in CA3 neurons. Furthermore, mitochondria are more oxidized than cytosol. Cytosolic and mitochondrial roGFP1s reliably report cell endogenous redox dynamics upon metabolic challenge or stimulation. Fluorescence lifetime imaging yields stable, but marginal, response ranges. We therefore developed automated excitation ratiometric 2-photon imaging. It offers superior sensitivity, spatial resolution, and response dynamics. Innovation and Conclusion: Redox indicator mice enable quantitative analyses of subcellular redox dynamics in a multitude of preparations and at all postnatal stages. This will uncover cell- and compartment-specific cerebral redox signals and their defined alterations during development, maturation, and aging. Cross-breeding with other disease models will reveal molecular details on compartmental redox homeostasis in neuropathology. Combined with ratiometric 2-photon imaging, this will foster our mechanistic understanding

  3. Genetic regulation analysis reveals involvement of tumor necrosis factor and alpha-induced protein 3 in stress response in mice.

    PubMed

    Xu, Jian; Dai, Aihua; Chen, Qi; Liu, Xiaorong; Zhang, Yu; Wang, Hongmei; Li, Haizhen; Chen, Ying; Cao, Maohong

    2016-01-15

    In order to study whether Tnfaip3 is related to stress response and further to find it's genetic regulation, we use C57BL/6J (B6) and DBA/2 (D2) mice to built the model of chronic unpredictable mild stress. RT-PCR, Western blotting and immunohistochemistry were used for studying the expression variation of Tnfaip3 in hippocampus tissue of B6 and D2 mice after being stressed. We found that the expression of Tnfaip3 was more remarkably increased in chronic unpredictable stress models than that in untreated mice (P<0.05). It is indicated that Tnfaip3 might take part in the process of stress response. The expression of Tnfaip3 is regulated by a cis-acting quantitative trait locus (cis-eQTL). We identified 5 genes are controlled by Tnfaip3 and the expression of 64 genes highly associated with Tnfaip3, 9 of those have formerly been participate in stress related pathways. In order to estimate the relationship between Tnfaip3 and its downstream genes or network members, we transfected SH-SY5Y cells with Tnfaip3 siRNA leading to down-regulation of Tnfaip3 mRNA. We confirmed a significant influence of Tnfaip3 depletion on the expression of Tsc22d3, Pex7, Rap2a, Slc2a3, and Gap43. These validated downstream genes and members of Tnfaip3 gene network provide us new insight into the biological mechanisms of Tnfaip3 in chronic unpredictable stress. PMID:26546835

  4. Ontogenic and morphological study of gonadal formation in genetically-modified sex reversal XY(POS) mice.

    PubMed

    Umemura, Yuria; Miyamoto, Ryosuke; Hashimoto, Rie; Kinoshita, Kyoko; Omotehara, Takuya; Nagahara, Daichi; Hirano, Tetsushi; Kubota, Naoto; Minami, Kiichi; Yanai, Shogo; Masuda, Natsumi; Yuasa, Hideto; Mantani, Youhei; Matsuo, Eiko; Yokoyama, Toshifumi; Kitagawa, Hiroshi; Hoshi, Nobuhiko

    2016-01-01

    Mammalian sexual fate is determined by the presence or absence of sex determining region of the Y chromosome (Sry) in the "bipotential" gonads. Recent studies have demonstrated that both male and female sexual development are induced by distinct and active genetic pathways. Breeding the Y chromosome from Mus m. domesticus poschiavinus (POS) strains into C57BL/6J (B6J) mice (B6J-XY(POS)) has been shown to induce sex reversal (75%: bilateral ovary, 25%: true hermaphrodites). However, our B6N-XY(POS) mice, which were generated by backcrossing of B6J-XY(POS) on an inbred B6N-XX, develop as males (36%: bilateral testis with fertility as well as bilateral ovary (34%), and the remainder develop as true hermaphrodites. Here, we investigated in detail the expressions of essential sex-related genes and histological features in B6N-XY(POS) mice from the fetal period to adulthood. The onsets of both Sry and SRY-box 9 (Sox9) expressions as determined spatiotemporally by whole-mount immunohistochemistry in the B6N-XY(POS) gonads occurred 2-3 tail somites later than those in B6N-XY(B6) gonads, but earlier than those in B6J-XY(POS), respectively. It is possible that such a small difference in timing of the Sry expression underlies testicular development in our B6N-XY(POS). Our study is the first to histologically show the expression and ectopic localization of a female-related gene in the XY(POS) testes and a male-related gene in the XY(POS) ovaries. The results from these and previous experiments indicate that the interplay between genome variants, epigenetics and developmental gene regulation is crucial for testis development. PMID:26194606

  5. Heterozygous ambra1 deficiency in mice: a genetic trait with autism-like behavior restricted to the female gender.

    PubMed

    Dere, Ekrem; Dahm, Liane; Lu, Derek; Hammerschmidt, Kurt; Ju, Anes; Tantra, Martesa; Kästner, Anne; Chowdhury, Kamal; Ehrenreich, Hannelore

    2014-01-01

    Autism-spectrum disorders (ASD) are heterogeneous, highly heritable neurodevelopmental conditions affecting around 0.5% of the population across cultures, with a male/female ratio of approximately 4:1. Phenotypically, ASD are characterized by social interaction and communication deficits, restricted interests, repetitive behaviors, and reduced cognitive flexibility. Identified causes converge at the level of the synapse, ranging from mutation of synaptic genes to quantitative alterations in synaptic protein expression, e.g., through compromised transcriptional or translational control. We wondered whether reduced turnover and degradation of synapses, due to deregulated autophagy, would lead to similar phenotypical consequences. Ambra1, strongly expressed in cortex, hippocampus, and striatum, is a positive regulator of Beclin1, a principal player in autophagosome formation. While homozygosity of the Ambra1 null mutation causes embryonic lethality, heterozygous mice with reduced Ambra1 expression are viable, reproduce normally, and lack any immediately obvious phenotype. Surprisingly, comprehensive behavioral characterization of these mice revealed an autism-like phenotype in Ambra1 (+/-) females only, including compromised communication and social interactions, a tendency of enhanced stereotypies/repetitive behaviors, and impaired cognitive flexibility. Reduced ultrasound communication was found in adults as well as pups, which achieved otherwise normal neurodevelopmental milestones. These features were all absent in male Ambra1 (+/-) mice. As a first hint explaining this gender difference, we found a much stronger reduction of Ambra1 protein in the cortex of Ambra1 (+/-) females compared to males. To conclude, Ambra1 deficiency can induce an autism-like phenotype. The restriction to the female gender of autism-generation by a defined genetic trait is unique thus far and warrants further investigation. PMID:24904333

  6. Heterozygous Ambra1 Deficiency in Mice: A Genetic Trait with Autism-Like Behavior Restricted to the Female Gender

    PubMed Central

    Dere, Ekrem; Dahm, Liane; Lu, Derek; Hammerschmidt, Kurt; Ju, Anes; Tantra, Martesa; Kästner, Anne; Chowdhury, Kamal; Ehrenreich, Hannelore

    2014-01-01

    Autism-spectrum disorders (ASD) are heterogeneous, highly heritable neurodevelopmental conditions affecting around 0.5% of the population across cultures, with a male/female ratio of approximately 4:1. Phenotypically, ASD are characterized by social interaction and communication deficits, restricted interests, repetitive behaviors, and reduced cognitive flexibility. Identified causes converge at the level of the synapse, ranging from mutation of synaptic genes to quantitative alterations in synaptic protein expression, e.g., through compromised transcriptional or translational control. We wondered whether reduced turnover and degradation of synapses, due to deregulated autophagy, would lead to similar phenotypical consequences. Ambra1, strongly expressed in cortex, hippocampus, and striatum, is a positive regulator of Beclin1, a principal player in autophagosome formation. While homozygosity of the Ambra1 null mutation causes embryonic lethality, heterozygous mice with reduced Ambra1 expression are viable, reproduce normally, and lack any immediately obvious phenotype. Surprisingly, comprehensive behavioral characterization of these mice revealed an autism-like phenotype in Ambra1+/− females only, including compromised communication and social interactions, a tendency of enhanced stereotypies/repetitive behaviors, and impaired cognitive flexibility. Reduced ultrasound communication was found in adults as well as pups, which achieved otherwise normal neurodevelopmental milestones. These features were all absent in male Ambra1+/− mice. As a first hint explaining this gender difference, we found a much stronger reduction of Ambra1 protein in the cortex of Ambra1+/− females compared to males. To conclude, Ambra1 deficiency can induce an autism-like phenotype. The restriction to the female gender of autism-generation by a defined genetic trait is unique thus far and warrants further investigation. PMID:24904333

  7. Genetic Analysis of Genome-Scale Recombination Rate Evolution in House Mice

    PubMed Central

    Dumont, Beth L.; Payseur, Bret A.

    2011-01-01

    The rate of meiotic recombination varies markedly between species and among individuals. Classical genetic experiments demonstrated a heritable component to population variation in recombination rate, and specific sequence variants that contribute to recombination rate differences between individuals have recently been identified. Despite these advances, the genetic basis of species divergence in recombination rate remains unexplored. Using a cytological assay that allows direct in situ imaging of recombination events in spermatocytes, we report a large (∼30%) difference in global recombination rate between males of two closely related house mouse subspecies (Mus musculus musculus and M. m. castaneus). To characterize the genetic basis of this recombination rate divergence, we generated an F2 panel of inter-subspecific hybrid males (n = 276) from an intercross between wild-derived inbred strains CAST/EiJ (M. m. castaneus) and PWD/PhJ (M. m. musculus). We uncover considerable heritable variation for recombination rate among males from this mapping population. Much of the F2 variance for recombination rate and a substantial portion of the difference in recombination rate between the parental strains is explained by eight moderate- to large-effect quantitative trait loci, including two transgressive loci on the X chromosome. In contrast to the rapid evolution observed in males, female CAST/EiJ and PWD/PhJ animals show minimal divergence in recombination rate (∼5%). The existence of loci on the X chromosome suggests a genetic mechanism to explain this male-biased evolution. Our results provide an initial map of the genetic changes underlying subspecies differences in genome-scale recombination rate and underscore the power of the house mouse system for understanding the evolution of this trait. PMID:21695226

  8. Reversal of phenotypes in MECP2 duplication mice using genetic rescue or antisense oligonucleotides.

    PubMed

    Sztainberg, Yehezkel; Chen, Hong-mei; Swann, John W; Hao, Shuang; Tang, Bin; Wu, Zhenyu; Tang, Jianrong; Wan, Ying-Wooi; Liu, Zhandong; Rigo, Frank; Zoghbi, Huda Y

    2015-12-01

    Copy number variations have been frequently associated with developmental delay, intellectual disability and autism spectrum disorders. MECP2 duplication syndrome is one of the most common genomic rearrangements in males and is characterized by autism, intellectual disability, motor dysfunction, anxiety, epilepsy, recurrent respiratory tract infections and early death. The broad range of deficits caused by methyl-CpG-binding protein 2 (MeCP2) overexpression poses a daunting challenge to traditional biochemical-pathway-based therapeutic approaches. Accordingly, we sought strategies that directly target MeCP2 and are amenable to translation into clinical therapy. The first question that we addressed was whether the neurological dysfunction is reversible after symptoms set in. Reversal of phenotypes in adult symptomatic mice has been demonstrated in some models of monogenic loss-of-function neurological disorders, including loss of MeCP2 in Rett syndrome, indicating that, at least in some cases, the neuroanatomy may remain sufficiently intact so that correction of the molecular dysfunction underlying these disorders can restore healthy physiology. Given the absence of neurodegeneration in MECP2 duplication syndrome, we propose that restoration of normal MeCP2 levels in MECP2 duplication adult mice would rescue their phenotype. By generating and characterizing a conditional Mecp2-overexpressing mouse model, here we show that correction of MeCP2 levels largely reverses the behavioural, molecular and electrophysiological deficits. We also reduced MeCP2 using an antisense oligonucleotide strategy, which has greater translational potential. Antisense oligonucleotides are small, modified nucleic acids that can selectively hybridize with messenger RNA transcribed from a target gene and silence it, and have been successfully used to correct deficits in different mouse models. We find that antisense oligonucleotide treatment induces a broad phenotypic rescue in adult

  9. Idh1 mutations contribute to the development of T-cell malignancies in genetically engineered mice

    PubMed Central

    Hao, Zhenyue; Cairns, Rob A.; Inoue, Satoshi; Li, Wanda Y.; Sheng, Yi; Lemonnier, François; Wakeham, Andrew; Snow, Bryan E.; Dominguez-Brauer, Carmen; Ye, Jing; Larsen, Dana M.; Straley, Kimberly S.; Tobin, Erica R.; Narayanaswamy, Rohini; Gaulard, Philippe; Mak, Tak W.

    2016-01-01

    Gain-of-function mutations in isocitrate dehydrogenase 1 (IDH1) are key drivers of hematopoietic malignancies. Although these mutations are most commonly associated with myeloid diseases, they also occur in malignancies of the T-cell lineage. To investigate their role in these diseases and provide tractable disease models for further investigation, we analyzed the T-cell compartment in a conditional knock-in (KI) mouse model of mutant Idh1. We observed the development of a spontaneous T-cell acute lymphoblastic leukemia (T-ALL) in these animals. The disease was transplantable and maintained expression of mutant IDH1. Whole-exome sequencing revealed the presence of a spontaneous activating mutation in Notch1, one of the most common mutations in human T-ALL, suggesting Idh1 mutations may have the capacity to cooperate with Notch1 to drive T-ALL. To further investigate the Idh1 mutation as an oncogenic driver in the T-cell lineage, we crossed Idh1-KI mice with conditional Trp53 null mice, a well-characterized model of T-cell malignancy, and found that T-cell lymphomagenesis was accelerated in mice bearing both mutations. Because both IDH1 and p53 are known to affect cellular metabolism, we compared the requirements for glucose and glutamine in cells derived from these tumors and found that cells bearing the Idh1 mutation have an increased dependence on both glucose and glutamine. These data suggest that mutant IDH1 contributes to malignancy in the T-cell lineage and may alter the metabolic profile of malignant T cells. PMID:26787889

  10. Genetic predisposition and parameters of malignant progression in K14-HPV16 transgenic mice.

    PubMed Central

    Coussens, L. M.; Hanahan, D.; Arbeit, J. M.

    1996-01-01

    Reproducible multi-stage progression to invasive squamous carcinoma of the epidermis has been achieved in transgenic mice expressing the HPV16 early-region genes, including the E6/E7 oncogenes, under the control of the human keratin-14 promoter/enhancer. Although 100% of K14-HPV16 transgenic animals develop hyperplastic and/or dysplastic lesions in several inbred backgrounds, including C57BL/6, BALB/c, and SSIN/SENCAR, only mice backcrossed into the FVB/n background progress to malignant squamous cell carcinomas of two pathological grades, well differentiated and moderate/poorly differentiated (WDSC or MPDSC, respectively), each displaying characteristic patterns of malignant behavior. WDSCs typically arise within the epidermis of the ear and invade deeply into the underlying dermis but fail to metastasize, whereas MPDSCs develop on the chest and truncal skin and invariably metastasize to regional lymph nodes. The transition to the malignant state, in 21% of FVB/n transgenic mice, is characterized by alteration of the repertoire of keratin intermediate filament proteins expressed within neoplastic epidermis, such that WDSCs maintain expression of keratins common to terminally differentiating stratified keratinocytes (K10), whereas MPDSCs are distinguished from WDSCs by activation of embryonic and mucosal keratins (K13, K8, and K19). Precursor hyperplastic and dysplastic lesions are characterized by a progressively increased proliferative index, striking morphological alterations in keratinocyte cell-cell and cell-matrix interactions, and extensive remodeling of the underlying dermal stroma. Remarkably, this extensive stromal remodeling, which may facilitate both angiogenesis and eventual tumor cell invasion, develops early at the dysplastic stage in all animals well before malignant conversion. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:8952526

  11. In vivo adeno-associated viral vector-mediated genetic engineering of white and brown adipose tissue in adult mice.

    PubMed

    Jimenez, Veronica; Muñoz, Sergio; Casana, Estefania; Mallol, Cristina; Elias, Ivet; Jambrina, Claudia; Ribera, Albert; Ferre, Tura; Franckhauser, Sylvie; Bosch, Fatima

    2013-12-01

    Adipose tissue is pivotal in the regulation of energy homeostasis through the balance of energy storage and expenditure and as an endocrine organ. An inadequate mass and/or alterations in the metabolic and endocrine functions of adipose tissue underlie the development of obesity, insulin resistance, and type 2 diabetes. To fully understand the metabolic and molecular mechanism(s) involved in adipose dysfunction, in vivo genetic modification of adipocytes holds great potential. Here, we demonstrate that adeno-associated viral (AAV) vectors, especially serotypes 8 and 9, mediated efficient transduction of white (WAT) and brown adipose tissue (BAT) in adult lean and obese diabetic mice. The use of short versions of the adipocyte protein 2 or uncoupling protein-1 promoters or micro-RNA target sequences enabled highly specific, long-term AAV-mediated transgene expression in white or brown adipocytes. As proof of concept, delivery of AAV vectors encoding for hexokinase or vascular endothelial growth factor to WAT or BAT resulted in increased glucose uptake or increased vessel density in targeted depots. This method of gene transfer also enabled the secretion of stable high levels of the alkaline phosphatase marker protein into the bloodstream by transduced WAT. Therefore, AAV-mediated genetic engineering of adipose tissue represents a useful tool for the study of adipose pathophysiology and, likely, for the future development of new therapeutic strategies for obesity and diabetes. PMID:24043756

  12. In Vivo Adeno-Associated Viral Vector–Mediated Genetic Engineering of White and Brown Adipose Tissue in Adult Mice

    PubMed Central

    Jimenez, Veronica; Muñoz, Sergio; Casana, Estefania; Mallol, Cristina; Elias, Ivet; Jambrina, Claudia; Ribera, Albert; Ferre, Tura; Franckhauser, Sylvie; Bosch, Fatima

    2013-01-01

    Adipose tissue is pivotal in the regulation of energy homeostasis through the balance of energy storage and expenditure and as an endocrine organ. An inadequate mass and/or alterations in the metabolic and endocrine functions of adipose tissue underlie the development of obesity, insulin resistance, and type 2 diabetes. To fully understand the metabolic and molecular mechanism(s) involved in adipose dysfunction, in vivo genetic modification of adipocytes holds great potential. Here, we demonstrate that adeno-associated viral (AAV) vectors, especially serotypes 8 and 9, mediated efficient transduction of white (WAT) and brown adipose tissue (BAT) in adult lean and obese diabetic mice. The use of short versions of the adipocyte protein 2 or uncoupling protein-1 promoters or micro-RNA target sequences enabled highly specific, long-term AAV-mediated transgene expression in white or brown adipocytes. As proof of concept, delivery of AAV vectors encoding for hexokinase or vascular endothelial growth factor to WAT or BAT resulted in increased glucose uptake or increased vessel density in targeted depots. This method of gene transfer also enabled the secretion of stable high levels of the alkaline phosphatase marker protein into the bloodstream by transduced WAT. Therefore, AAV-mediated genetic engineering of adipose tissue represents a useful tool for the study of adipose pathophysiology and, likely, for the future development of new therapeutic strategies for obesity and diabetes. PMID:24043756

  13. Applications in genetic risk estimation of data on the induction of dominant skeletal mutations in mice

    SciTech Connect

    Selby, P.B.

    1982-01-01

    Studies on the induction of dominant skeleton mutations and of dominant cataract mutations provide means of estimating genetic hazard to humans from radiation. The breeding-test method of studying the induction of dominant skeletal mutations is slow and cumbersome. In an attempt to devise a more rapid method, three non-breeding-test methods have been developed which are likely to have wider application in mutagenicity testing. (ACR)

  14. The mineralization phenotype in Abcc6 ( -/- ) mice is affected by Ggcx gene deficiency and genetic background--a model for pseudoxanthoma elasticum.

    PubMed

    Li, Qiaoli; Uitto, Jouni

    2010-02-01

    Pseudoxanthoma elasticum (PXE) is an autosomal recessive disorder characterized by ectopic mineralization of connective tissues and shows considerable intra- and inter-familial phenotypic variability. PXE is caused by mutations in the ABCC6 gene, and targeted ablation of Abcc6 in mouse recapitulates PXE. In this study, we examined the hypothesis that the GGCX gene encoding gamma-glutamyl carboxylase may interfere with the mineralization process in Abcc6 ( -/- ) mice. Thus, Abcc6 ( -/- ) and Ggcx (+/-) mice were generated on 129S1;C57 and 129S1;129X1;C57 genetic backgrounds, respectively, and backcrossed with C57BL/6J for five generations. Thus, these strains differ by the 129X1 contribution to the background of the mice. We then generated Abcc6 ( -/- ) ;Ggcx (+/+) and Abcc6 ( -/- ) ;Ggcx (+/-) mice by crossing Abcc6 ( -/- ) and Ggcx (+/-) mice. The degree of mineralization of connective capsule of vibrissae, a biomarker of the mineralization process in PXE, was evaluated by computerized morphometric analysis and quantified colorimetrically by calcium and phosphate levels in tissues. The mineralization of the vibrissae in Abcc6 ( -/- ) mice takes place at approximately 5-6 weeks of age and is significantly enhanced at 3 months of age in comparison to wild-type mice (>10-fold, p < 0.001). However, the onset of mineralization in Abcc6 ( -/- ) ;Ggcx (+/+) mice was delayed until between 3 and 4 months of age, suggesting that the genetic background plays a role in modifying the mineralization process. The mineralization in the Abcc6 ( -/- ) ;Ggcx (+/- ) mice was accelerated in comparison with age-matched Abcc6 ( -/- ) ;Ggcx (+/+) mice, with approximately 3-fold difference at 3, 4, and 9 months of age (p < 0.01). The mineralization process was also accelerated in these mice by a special custom-designed diet with mineral modifications. These findings suggest a role for both the GGCX gene and the genetic background as well as dietary factors in modulating the phenotypic

  15. Genetic Determinants of Atherosclerosis, Obesity and Energy Balance in Consomic Mice

    PubMed Central

    Spiezio, Sabrina H.; Amon, Lynn M.; McMillen, Timothy S.; Vick, Cynthia M.; Houston, Barbara A.; Caldwell, Mark; Ogimoto, Kayoko; Morton, Gregory J.; Kirk, Elizabeth A.; Schwartz, Michael W.; Nadeau, Joseph H.; LeBoeuf, Renée C.

    2014-01-01

    Metabolic diseases such as obesity and atherosclerosis result from complex interactions between environmental factors and genetic variants. A panel of chromosome substitution strains (CSSs) was developed to characterize genetic and dietary factors contributing to metabolic diseases and other biological traits and biomedical conditions. Our goal here was to identify quantitative trait loci (QTLs) contributing to obesity, energy expenditure and atherosclerosis. Parental strains C57BL/6 and A/J together with a panel of 21 CSSs derived from these progenitors were subjected to chronic feeding of rodent chow and atherosclerotic (females) or diabetogenic (males) test diets, and evaluated for a variety of metabolic phenotypes including several traits unique to this report, namely fat pad weights, energy balance and atherosclerosis. A total of 297 QTLs across 35 traits were discovered, two of which provided significant protection from atherosclerosis, and several dozen QTLs modulated body weight, body composition and circulating lipid levels in females and males. While several QTLs confirmed previous reports, most QTLs were novel. Finally, we applied the CSS quantitative genetic approach to energy balance, and identified three novel QTLs controlling energy expenditure and one QTL modulating food intake. Overall, we identified many new QTLs and phenotyped several novel traits in this mouse model of diet-induced metabolic diseases. PMID:25001233

  16. Genetic determinants of atherosclerosis, obesity, and energy balance in consomic mice.

    PubMed

    Spiezio, Sabrina H; Amon, Lynn M; McMillen, Timothy S; Vick, Cynthia M; Houston, Barbara A; Caldwell, Mark; Ogimoto, Kayoko; Morton, Gregory J; Kirk, Elizabeth A; Schwartz, Michael W; Nadeau, Joseph H; LeBoeuf, Renée C

    2014-12-01

    Metabolic diseases such as obesity and atherosclerosis result from complex interactions between environmental factors and genetic variants. A panel of chromosome substitution strains (CSSs) was developed to characterize genetic and dietary factors contributing to metabolic diseases and other biological traits and biomedical conditions. Our goal here was to identify quantitative trait loci (QTLs) contributing to obesity, energy expenditure, and atherosclerosis. Parental strains C57BL/6 and A/J together with a panel of 21 CSSs derived from these progenitors were subjected to chronic feeding of rodent chow and atherosclerotic (females) or diabetogenic (males) test diets, and evaluated for a variety of metabolic phenotypes including several traits unique to this report, namely fat pad weights, energy balance, and atherosclerosis. A total of 297 QTLs across 35 traits were discovered, two of which provided significant protection from atherosclerosis, and several dozen QTLs modulated body weight, body composition, and circulating lipid levels in females and males. While several QTLs confirmed previous reports, most QTLs were novel. Finally, we applied the CSS quantitative genetic approach to energy balance, and identified three novel QTLs controlling energy expenditure and one QTL modulating food intake. Overall, we identified many new QTLs and phenotyped several novel traits in this mouse model of diet-induced metabolic diseases. PMID:25001233

  17. A forward genetic screen in mice identifies mutants with abnormal cortical patterning.

    PubMed

    Ha, Seungshin; Stottmann, Rolf W; Furley, Andrew J; Beier, David R

    2015-01-01

    Formation of a 6-layered cortical plate and axon tract patterning are key features of cerebral cortex development. Abnormalities of these processes may be the underlying cause for a range of functional disabilities seen in human neurodevelopmental disorders. To identify mouse mutants with defects in cortical lamination or corticofugal axon guidance, N-ethyl-N-nitrosourea (ENU) mutagenesis was performed using mice expressing LacZ reporter genes in layers II/III and V of the cortex (Rgs4-lacZ) or in corticofugal axons (TAG1-tau-lacZ). Four lines with abnormal cortical lamination have been identified. One of these was a splice site mutation in reelin (Reln) that results in a premature stop codon and the truncation of the C-terminal region (CTR) domain of reelin. Interestingly, this novel allele of Reln did not display cerebellar malformation or ataxia, and this is the first report of a Reln mutant without a cerebellar defect. Four lines with abnormal cortical axon development were also identified, one of which was found by whole-genome resequencing to carry a mutation in Lrp2. These findings demonstrated that the application of ENU mutagenesis to mice carrying transgenic reporters marking cortical anatomy is a sensitive and specific method to identify mutations that disrupt patterning of the developing brain. PMID:23968836

  18. Genetic variation in male sexual behaviour in a population of white-footed mice in relation to photoperiod

    PubMed Central

    Sharp, Kathy; Bucci, Donna; Zelensky, Paul K.; Chesney, Alanna; Tidhar, Wendy; Broussard, David R.; Heideman, Paul D.

    2015-01-01

    In natural populations, genetic variation in seasonal male sexual behaviour could affect behavioural ecology and evolution. In a wild-source population of white-footed mice, Peromyscus leucopus, from Virginia, U.S.A., males experiencing short photoperiod show high levels of genetic variation in reproductive organ mass and neuroendocrine traits related to fertility. We tested whether males from two divergent selection lines, one that strongly suppresses fertility under short photoperiod (responder) and one that weakly suppresses fertility under short photoperiod (nonresponder), also differ in photoperiod-dependent sexual behaviour and responses to female olfactory cues. Under short, but not long, photoperiod, there were significant differences between responder and nonresponder males in sexual behaviour and likelihood of inseminating a female. Males that were severely oligospermic or azoospermic under short photoperiod failed to display sexual behaviour in response to an ovariectomized and hormonally primed receptive female. However, on the day following testing, females were positive for spermatozoa only when paired with a male having a sperm count in the normal range for males under long photoperiod. Males from the nonresponder line showed accelerated reproductive development under short photoperiod in response to urine-soiled bedding from females, but males from the responder line did not. The results indicate genetic variation in sexual behaviour that is expressed under short, but not long, photoperiod, and indicate a potential link between heritable neuroendocrine variation and male sexual behaviour. In winter in a natural population, this heritable behavioural variation could affect fitness, seasonal life history trade-offs and population growth. PMID:25983335

  19. piggyBac transposon somatic mutagenesis with an activated reporter and tracker (PB-SMART) for genetic screens in mice.

    PubMed

    Landrette, Sean F; Cornett, Jonathan C; Ni, Thomas K; Bosenberg, Marcus W; Xu, Tian

    2011-01-01

    Somatic forward genetic screens have the power to interrogate thousands of genes in a single animal. Retroviral and transposon mutagenesis systems in mice have been designed and deployed in somatic tissues for surveying hematopoietic and solid tumor formation. In the context of cancer, the ability to visually mark mutant cells would present tremendous advantages for identifying tumor formation, monitoring tumor growth over time, and tracking tumor infiltrations and metastases into wild-type tissues. Furthermore, locating mutant clones is a prerequisite for screening and analyzing most other somatic phenotypes. For this purpose, we developed a system using the piggyBac (PB) transposon for somatic mutagenesis with an activated reporter and tracker, called PB-SMART. The PB-SMART mouse genetic screening system can simultaneously induce somatic mutations and mark mutated cells using bioluminescence or fluorescence. The marking of mutant cells enable analyses that are not possible with current somatic mutagenesis systems, such as tracking cell proliferation and tumor growth, detecting tumor cell infiltrations, and reporting tissue mutagenesis levels by a simple ex vivo visual readout. We demonstrate that PB-SMART is highly mutagenic, capable of tumor induction with low copy transposons, which facilitates the mapping and identification of causative insertions. We further integrated a conditional transposase with the PB-SMART system, permitting tissue-specific mutagenesis with a single cross to any available Cre line. Targeting the germline, the system could also be used to conduct F1 screens. With these features, PB-SMART provides an integrated platform for individual investigators to harness the power of somatic mutagenesis and phenotypic screens to decipher the genetic basis of mammalian biology and disease. PMID:22039523

  20. Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice

    PubMed Central

    McNeill, Robert S.; Schmid, Ralf S.; Bash, Ryan E.; Vitucci, Mark; White, Kristen K.; Werneke, Andrea M.; Constance, Brian H.; Huff, Byron; Miller, C. Ryan

    2014-01-01

    Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases. PMID:25146643

  1. Sympathetic activity induced by naloxone-precipitated morphine withdrawal is blocked in genetically engineered mice lacking functional CRF1 receptor

    SciTech Connect

    García-Carmona, Juan-Antonio; Martínez-Laorden, Elena; Milanés, María-Victoria; Laorden, María-Luisa

    2015-02-15

    There is large body evidence indicating that stress can lead to cardiovascular disease. However, the exact brain areas and the mechanisms involved remain to be revealed. Here, we performed a series of experiments to characterize the role of CRF1 receptor (CRF1R) in the stress response induced by naloxone-precipitated morphine withdrawal. The experiments were performed in the hypothalamic paraventricular nucleus (PVN) ventrolateral medulla (VLM), brain regions involved in the regulation of cardiovascular activity, and in the right ventricle by using genetically engineered mice lacking functional CRF1R levels (KO). Mice were treated with increasing doses of morphine and withdrawal was precipitated by naloxone administration. Noradrenaline (NA) turnover, c-Fos, expression, PKA and TH phosphorylated at serine 40, was evaluated by high-performance liquid chromatography (HPLC), immunohistochemistry and immunoblotting. Morphine withdrawal induced an enhancement of NA turnover in PVN in parallel with an increase in TH neurons expressing c-Fos in VLM in wild-type mice. In addition we have demonstrated an increase in NA turnover, TH phosphorylated at serine 40 and PKA levels in heart. The main finding of the present study was that NA turnover, TH positive neurons that express c-Fos, TH phosphorylated at serine 40 and PKA expression observed during morphine withdrawal were significantly inhibited in CRF1R KO mice. Our results demonstrate that CRF/CRF1R activation may contribute to the adaptive changes induced by naloxone-precipitated withdrawal in the heart and in the brain areas which modulate the cardiac sympathetic function and suggest that CRF/CRF1R pathways could be contributing to cardiovascular disease associated to opioid addiction. - Highlights: • Naloxone-precipitated morphine withdrawal increases sympathetic activity in the PVN and heart. • Co-localization of TH phosphorylated at serine 40/c-Fos in the VLM after morphine withdrawal • Naloxone

  2. Manipulating Representations.

    PubMed

    Recchia-Luciani, Angelo N M

    2012-04-01

    The present paper proposes a definition for the complex polysemic concepts of consciousness and awareness (in humans as well as in other species), and puts forward the idea of a progressive ontological development of consciousness from a state of 'childhood' awareness, in order to explain that humans are not only able to manipulate objects, but also their mental representations. The paper builds on the idea of qualia intended as entities posing regular invariant requests to neural processes, trough the permanence of different properties. The concept of semantic differential introduces the properties of metaphorical qualia as an exclusively human ability. Furthermore this paper proposes a classification of qualia, according to the models-with different levels of abstraction-they are implied in, in a taxonomic perspective. This, in turn, becomes a source of categorization of divergent representations, sign systems, and forms of intentionality, relying always on biological criteria. New emerging image-of-the-world-devices are proposed, whose qualia are likely to be only accessible to humans: emotional qualia, where emotion accounts for the invariant and dominant property; and the qualic self where continuity, combined with the oneness of the self, accounts for the invariant and dominant property. The concept of congruence between different domains in a metaphor introduces the possibility of a general evaluation of truth and falsity of all kinds of metaphorical constructs, while the work of Matte Blanco enables us to classify conscious versus unconscious metaphors, both in individuals and in social organizations. PMID:22347988

  3. Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice

    PubMed Central

    2010-01-01

    Background Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia. Results In order to determine the genetic factors that contribute to these T2D related characteristics in TH mice, we interbred TH mice with C57BL/6J (B6) mice. The parental, F1, and F2 mice were phenotyped at 8, 12, 16, 20, and 24 weeks of age for 4-hour fasting plasma triglyceride, cholesterol, insulin, and glucose levels and body, fat pad and carcass weights. The F2 mice were genotyped genome-wide and used for quantitative trait locus (QTL) mapping. We also applied a genetical genomic approach using a subset of the F2 mice to seek candidate genes underlying the QTLs. Major QTLs were detected on chromosomes (Chrs) 1, 11, 4, and 8 for hypertriglyceridemia, 1 and 3 for hypercholesterolemia, 4 for hyperglycemia, 11 and 1 for body weight, 1 for fat pad weight, and 11 and 14 for carcass weight. Most alleles, except for Chr 3 and 14 QTLs, increased phenotypic values when contributed by the TH strain. Fourteen pairs of interacting loci were detected, none of which overlapped the major QTLs. The QTL interval linked to hypercholesterolemia and hypertriglyceridemia on distal Chr 1 contains Apoa2 gene. Sequencing analysis revealed polymorphisms of Apoa2 in TH mice, suggesting Apoa2 as the candidate gene for the hyperlipidemia QTL. Gene expression analysis added novel information and aided in selection of candidates underlying the QTLs. Conclusions We identified several genetic loci that affect the quantitative variations of plasma lipid and glucose levels and obesity traits in a TH × B6

  4. Reversal of phenotypes in MECP2 duplication mice using genetic rescue or antisense oligos

    PubMed Central

    Sztainberg, Yehezkel; Chen, Hong-mei; Swann, John W.; Hao, Shuang; Tang, Bin; Wu, Zhenyu; Tang, Jianrong; Wan, Ying-Wooi; Liu, Zhandong; Rigo, Frank; Zoghbi, Huda Y.

    2015-01-01

    Copy number variations have been frequently associated with developmental delay, intellectual disability, and autism spectrum disorders1. MECP2 duplication syndrome is one of the most common genomic rearrangements in males2 and is characterized by autism, intellectual disability, motor dysfunction, anxiety, epilepsy, recurrent respiratory tract infections, and early death3–5. The broad range of deficits caused by methyl-CpG-binding protein 2 (MeCP2) overexpression poses a daunting challenge to traditional biochemical pathway-based therapeutic approaches. Accordingly, we sought strategies that directly target MeCP2 and are amenable to translation into clinical therapy. The first question, however, was whether the neurological dysfunction is reversible after symptoms set in. Reversal of phenotypes in adult symptomatic mice has been demonstrated in some models of monogenic loss-of-function neurological disorders6–8, including loss of MeCP2 in Rett syndrome9, indicating that, at least in some cases, the neuroanatomy may remain sufficiently intact so that correction of the molecular dysfunction underlying these disorders can restore healthy physiology. Given the absence of neurodegeneration in MECP2 duplication syndrome, we hypothesized that restoration of normal MeCP2 levels in MECP2 duplication adult mice would rescue their phenotype. Therefore, we first generated and characterized a conditional Mecp2-overexpressing mouse model and showed that correction of MeCP2 levels largely reversed the behavioral, molecular, and electrophysiological deficits. Next, we sought a translational strategy to reduce MeCP2 and turned to antisense oligonucleotides (ASOs). ASOs are small modified nucleic acids that can selectively hybridize with mRNA transcribed from a target gene and silence it10,11, and have been successfully used to correct deficits in different mouse models12–18. We found that ASO treatment induced a broad phenotypic rescue in adult symptomatic transgenic MECP2

  5. Urethral Obstruction by Seminal Coagulum is Associated with Medetomidine–Ketamine Anesthesia in Male Mice on C57BL/6J and Mixed Genetic Backgrounds

    PubMed Central

    Wells, Sara; Trower, Chris; Hough, Tertius A; Stewart, Michelle; Cheeseman, Michael T

    2009-01-01

    Male and female mice were anesthetized by intraperitoneal injection with a mixture delivering 0.5 mg/kg medetomidine and 50 mg/kg ketamine to achieve immobilization for whole-body radiographs and bone densitometry, as part of a phenotypic screen for bone and mineral disorders in mice carrying genetic modifications induced through mutagenesis with N′-ethyl-N′-nitrosourea. Morbidity and mortality occurred in 19 of 628 (3%) of male mice 24 to 72 h after a seemingly uneventful recovery from anesthesia. No morbidity or mortality occurred in 1564 female mice that were similar in age to the affected male mice and that underwent the same procedure. Of the 7 male mice that underwent postmortem examinations, 5 had urinary bladders grossly distended with urine and 1 had ascites. In addition, the pelvic or penile urethra in 5 of the examined male mice was obstructed with seminal coagulum associated with varying degrees of erosion of the urothelial lining and inflammation of the urethra. In 2 of these animals, from which plasma samples were recovered, azotemia, hyperphosphatemia, and hyperkalemia were present. The predilection for delayed morbidity and mortality in males after anesthesia suggests that anesthesia with 0.5 mg/kg medetomidine and 50 mg/kg ketamine is a potential risk factor for obstructive uropathy due to release of seminal coagulum. This adverse effect did not recur when we altered our anesthesia protocol to 10 mg/kg xylazine and 100 mg/kg ketamine. PMID:19476720

  6. Bone Marrow Transplantation in Mice as a Tool to Generate Genetically Modified Animals

    NASA Astrophysics Data System (ADS)

    Rőszer, Tamás; Pintye, Éva; Benkő, Ilona

    2008-12-01

    Transgenic mice can be used either as models of known inherited human diseases or can be applied to perform phenotypic tests of genes with unknown function. In some special applications of gene modification we have to create a tissue specific mutation of a given gene. In some cases however the gene modification can be lethal in the intrauterine life, therefore we should engraft the mutated cells in the postnatal life period. After total body irradiation transplantation of bone marrow cells can be a solution to introduce mutant hematopoietic stem cells into a mature animal. Bone marrow transplantation is a useful and novel tool to study the role of hematopoietic cells in the pathogenesis of inflammation, autoimmune syndromes and many metabolic alterations coupled recently to leukocyte functions.

  7. Bone Marrow Transplantation in Mice as a Tool to Generate Genetically Modified Animals

    SciTech Connect

    Roszer, Tamas; Pintye, Eva; Benko', Ilona

    2008-12-08

    Transgenic mice can be used either as models of known inherited human diseases or can be applied to perform phenotypic tests of genes with unknown function. In some special applications of gene modification we have to create a tissue specific mutation of a given gene. In some cases however the gene modification can be lethal in the intrauterine life, therefore we should engraft the mutated cells in the postnatal life period. After total body irradiation transplantation of bone marrow cells can be a solution to introduce mutant hematopoietic stem cells into a mature animal. Bone marrow transplantation is a useful and novel tool to study the role of hematopoietic cells in the pathogenesis of inflammation, autoimmune syndromes and many metabolic alterations coupled recently to leukocyte functions.

  8. Behavioral Analysis of Genetically Modified Mice Indicates Essential Roles of Neurosteroidal Estrogen

    PubMed Central

    Honda, Shin-Ichiro; Wakatsuki, Toru; Harada, Nobuhiro

    2011-01-01

    Aromatase in the mouse brain is expressed only in the nerve cells of specific brain regions with a transient peak during the neonatal period when sexual behaviors become organized. The aromatase-knockout (ArKO) mouse, generated to shed light on the physiological functions of estrogen in the brain, exhibited various abnormal behaviors, concomitant with undetectable estrogen and increased androgen in the blood. To further elucidate the effects of neurosteroidal estrogens on behavioral phenotypes, we first prepared an brain-specific aromatase transgenic (bsArTG) mouse by introduction of a human aromatase transgene controlled under a −6.5 kb upstream region of the brain-specific promoter of the mouse aromatase gene into fertilized mouse eggs, because the −6.5 kb promoter region was previously shown to contain the minimal essential element responsible for brain-specific spatiotemporal expression. Then, an ArKO mouse expressing the human aromatase only in the brain was generated by crossing the bsArTG mouse with the ArKO mouse. The resulting mice (ArKO/bsArTG mice) nearly recovered from abnormal sexual, aggressive, and locomotive (exploratory) behaviors, in spite of having almost the same serum levels of estrogen and androgen as the adult ArKO mouse. These results suggest that estrogens locally synthesized in the specific neurons of the perinatal mouse brain directly act on the neurons and play crucial roles in the organization of neuronal networks participating in the control of sexual, aggressive, and locomotive (exploratory) behaviors. PMID:22654807

  9. Differential Insulin Secretion of High-Fat Diet-Fed C57BL/6NN and C57BL/6NJ Mice: Implications of Mixed Genetic Background in Metabolic Studies

    PubMed Central

    Attané, Camille; Peyot, Marie-Line; Lussier, Roxane; Zhang, Dongwei; Joly, Erik; Madiraju, S. R. Murthy; Prentki, Marc

    2016-01-01

    Many metabolic studies employ tissue-specific gene knockout mice, which requires breeding of floxed gene mice, available mostly on C57BL/6N (NN) genetic background, with cre or Flp recombinase-expressing mice, available on C57BL/6J (JJ) background, resulting in the generation of mixed C57BL/6NJ (NJ) genetic background mice. Recent awareness of many genetic differences between NN and JJ strains including the deletion of nicotinamide nucleotide transhydrogenase (nnt), necessitates examination of the consequence of mixed NJ background on glucose tolerance, beta cell function and other metabolic parameters. Male mice with NN and NJ genetic background were fed with normal or high fat diets (HFD) for 12 weeks and glucose and insulin homeostasis were studied. Genotype had no effect on body weight and food intake in mice fed normal or high fat diets. Insulinemia in the fed and fasted states and after a glucose challenge was lower in HFD-fed NJ mice, even though their glycemia and insulin sensitivity were similar to NN mice. NJ mice showed mild glucose intolerance. Moreover, glucose- but not KCl-stimulated insulin secretion in isolated islets was decreased in HFD-fed NJ vs NN mice without changes in insulin content and beta cell mass. Under normal diet, besides reduced fed insulinemia, NN and NJ mice presented similar metabolic parameters. However, HFD-fed NJ mice displayed lower fed and fasted insulinemia and glucose-induced insulin secretion in vivo and ex vivo, as compared to NN mice. These results strongly caution against using unmatched mixed genetic background C57BL/6 mice for comparisons, particularly under HFD conditions. PMID:27403868

  10. Visual Tuning Properties of Genetically Identified Layer 2/3 Neuronal Types in the Primary Visual Cortex of Cre-Transgenic Mice

    PubMed Central

    Zariwala, Hatim A.; Madisen, Linda; Ahrens, Kurt F.; Bernard, Amy; Lein, Edward S.; Jones, Allan R.; Zeng, Hongkui

    2011-01-01

    The putative excitatory and inhibitory cell classes within the mouse primary visual cortex V1 have different functional properties as studied using recording microelectrode. Excitatory neurons show high selectivity for the orientation angle of moving gratings while the putative inhibitory neurons show poor selectivity. However, the study of selectivity of the genetically identified interneurons and their subtypes remain controversial. Here we use novel Cre-driver and reporter mice to identify genetic subpopulations in vivo for two-photon calcium dye imaging: Wfs1(+)/Gad1(−) mice that labels layer 2/3 excitatory cell population and Pvalb(+)/Gad1(+) mice that labels a genetic subpopulation of inhibitory neurons. The cells in both mice were identically labeled with a tdTomato protein, visible in vivo, using a Cre-reporter line. We found that the Wfs1(+) cells exhibited visual tuning properties comparable to the excitatory population, i.e., high selectivity and tuning to the angle, direction, and spatial frequency of oriented moving gratings. The functional tuning of Pvalb(+) neurons was consistent with previously reported narrow-spiking interneurons in microelectrode studies, exhibiting poorer selectivity than the excitatory neurons. This study demonstrates the utility of Cre-transgenic mouse technology in selective targeting of subpopulations of neurons and makes them amenable to structural, functional, and connectivity studies. PMID:21283555

  11. Genetic Dissection of Dietary Restriction in Mice Supports the Metabolic Efficiency Model of Life Extension

    PubMed Central

    Rikke, Brad A.; Liao, Chen-Yu; McQueen, Matthew B.; Nelson, James F.; Johnson, Thomas E.

    2010-01-01

    Dietary restriction (DR) has been used for decades to retard aging in rodents, but its mechanism of action remains an enigma. A principal roadblock has been that DR affects many different processes, making it difficult to distinguish cause and effect. To address this problem, we applied a quantitative genetics approach utilizing the ILSXISS series of mouse recombinant inbred strains. Across 42 strains, mean female lifespan ranged from 380 to 1070 days on DR (fed 60% of ad libitum [AL]) and from 490 to 1020 days on an AL diet. Longevity under DR and AL is under genetic control, showing 34% and 36% heritability, respectively. There was no correlation between lifespans on DR and AL; thus different genes modulate longevity under the two regimens. DR lifespans are significantly correlated with female fertility after return to an AL diet after various periods of DR (R = 0.44, P = 0.006). We assessed fuel efficiency (FE, ability to maintain growth and body weight independent of absolute food intake) using a multivariate approach and found it to be correlated with longevity and female fertility, suggesting possible causality. We found several quantitative trait loci responsible for these traits, mapping to chromosomes 7, 9, and 15. We present a metabolic model in which the anti-aging effects of DR are consistent with the ability to efficiently utilize dietary resources. PMID:20452416

  12. Unveiling the roles of the glutathione redox system in vivo by analyzing genetically modified mice

    PubMed Central

    Fujii, Junichi; Ito, Jun-itsu; Zhang, Xuhong; Kurahashi, Toshihiro

    2011-01-01

    Redox status affects various cellular activities, such as proliferation, differentiation, and death. Recent studies suggest pivotal roles of reactive oxygen species not only in pathogenesis under oxidative insult but also in intracellular signal transduction. Glutathione is present in several millimolar concentrations in the cytoplasm and has multiple roles in the regulation of cellular homeostasis. Two enzymes, γ-glutamylcysteine synthetase and glutathione synthetase, constitute the de novo synthesis machinery, while glutathione reductase is involved in the recycling of oxidized glutathione. Multidrug resistant proteins and some other transporters are responsible for exporting oxidized glutathione, glutathione conjugates, and S-nitrosoglutathione. In addition to antioxidation, glutathione is more positively involved in cellular activity via its sulfhydryl moiety of a molecule. Animals in which genes responsible for glutathione metabolism are genetically modified can be used as beneficial and reliable models to elucidate roles of glutathione in vivo. This review article overviews recent progress in works related to genetically modified rodents and advances in the elucidation of glutathione-mediated reactions. PMID:21980221

  13. Ghrelin and eating behavior: evidence and insights from genetically-modified mouse models

    PubMed Central

    Uchida, Aki; Zigman, Jeffrey M.; Perelló, Mario

    2013-01-01

    Ghrelin is an octanoylated peptide hormone, produced by endocrine cells of the stomach, which acts in the brain to increase food intake and body weight. Our understanding of the mechanisms underlying ghrelin's effects on eating behaviors has been greatly improved by the generation and study of several genetically manipulated mouse models. These models include mice overexpressing ghrelin and also mice with genetic deletion of ghrelin, the ghrelin receptor [the growth hormone secretagogue receptor (GHSR)] or the enzyme that post-translationally modifies ghrelin [ghrelin O-acyltransferase (GOAT)]. In addition, a GHSR-null mouse model in which GHSR transcription is globally blocked but can be cell-specifically reactivated in a Cre recombinase-mediated fashion has been generated. Here, we summarize findings obtained with these genetically manipulated mice, with the aim to highlight the significance of the ghrelin system in the regulation of both homeostatic and hedonic eating, including that occurring in the setting of chronic psychosocial stress. PMID:23882175

  14. Quantitative genetic study of maximal electroshock seizure threshold in mice: evidence for a major seizure susceptibility locus on distal chromosome 1.

    PubMed

    Ferraro, T N; Golden, G T; Smith, G G; Longman, R L; Snyder, R L; DeMuth, D; Szpilzak, I; Mulholland, N; Eng, E; Lohoff, F W; Buono, R J; Berrettini, W H

    2001-07-01

    We conducted a quantitative trait locus (QTL) mapping study to dissect the multifactorial nature of maximal electroshock seizure threshold (MEST) in C57BL/6 (B6) and DBA/2 (D2) mice. MEST determination involved a standard paradigm in which 8- to 12-week-old mice received one shock per day with a daily incremental increase in electrical current until a maximal seizure (tonic hindlimb extension) was induced. Mean MEST values in parental strains were separated by over five standard deviation units, with D2 mice showing lower values than B6 mice. The distribution of MEST values in B6xD2 F2 intercrossed mice spanned the entire phenotypic range defined by parental strains. Statistical mapping yielded significant evidence for QTLs on chromosomes 1, 2, 5, and 15, which together explained over 60% of the phenotypic variance in the model. The chromosome 1 QTL represents a locus of major effect, accounting for about one-third of the genetic variance. Experiments involving a congenic strain (B6.D2-Mtv7(a)/Ty) enabled more precise mapping of the chromosome 1 QTL and indicate that it lies in the genetic interval between markers D1Mit145 and D1Mit17. These results support the hypothesis that the distal portion of chromosome 1 harbors a gene(s) that has a fundamental role in regulating seizure susceptibility. PMID:11472065

  15. Genetic modulation of nephrocalcinosis in mouse models of ectopic mineralization: the Abcc6(tm1Jfk) and Enpp1(asj) mutant mice.

    PubMed

    Li, Qiaoli; Chou, David W; Price, Thea P; Sundberg, John P; Uitto, Jouni

    2014-06-01

    Ectopic mineralization of renal tissues in nephrocalcinosis is a complex, multifactorial process. The purpose of this study was to examine the role of genetic modulation and the role of diet in nephrocalcinosis using two established mouse models of ectopic mineralization, Abcc6(tm1Jfk) and Enpp1(asj) mice, which serve as models for pseudoxanthoma elasticum and generalized arterial calcification of infancy, two heritable disorders, respectively. These mutant mice, when on standard rodent diet, develop nephrocalcinosis only at a very late age. In contrast, when placed on an 'acceleration diet' composed of increased phosphate and reduced magnesium content, they showed extensive mineralization of the kidneys affecting primarily the medullary tubules as well as arcuate and renal arteries, as examined by histopathology and quantitated by chemical assay for calcium. Mineralization could also be detected noninvasively by micro computed tomography. Whereas the heterozygous mice did not develop nephrocalcinosis, compound heterozygous mice carrying both mutant alleles, Abcc6(tm1Jfk/+) and Enpp1(+/asj), developed ectopic mineralization similar to that noted in homozygous mice for either gene, indicating that deletion of one Abcc6 allele along with Enpp1 haploinsufficiency resulted in renal mineralization. Thus, synergistic genetic defects in the complex mineralization/antimineralization network can profoundly modulate the degree of ectopic mineralization in nephrocalcinosis. PMID:24732453

  16. An Integrated Genetic-Genomic Approach for the Identification of Novel Cancer Loci in Mice Sensitized to c-Myc–Induced Apoptosis

    PubMed Central

    Mendrysa, Susan M.; Akagi, Keiko; Roayaei, Jean; Lien, Wen-Hui; Copeland, Neal G.; Jenkins, Nancy A.; Eisenman, Robert N.

    2010-01-01

    Deregulated c-Myc is associated with a wide range of human cancers. In many cell types, overexpression of c-Myc potently promotes cell growth and proliferation concomitant with the induction of apoptosis. Secondary genetic events that shift this balance either by increasing growth and proliferation or limiting apoptosis are likely to cooperate with c-Myc in tumorigenesis. Here, the authors have performed large-scale insertional mutagenesis in Eµ-c-myc mice that, through mdm2 loss of function mutations, are sensitized to apoptosis. The authors chose to use this genetic background based on the hypothesis that the high level of apoptosis induced by c-Myc overexpression in MDM2-deficient mice would act as a rate-limiting barrier for lymphoma development. As a result, it was predicted that the spectrum of retroviral insertions would be shifted toward loci that harbor antiapoptotic genes. Nine novel common insertion sites (CISs) specific to mice with this sensitized genetic background were identified, suggesting the presence of novel antiapoptotic cancer genes. Moreover, cross-comparing the data to the Retroviral Tagged Cancer Gene Database, the authors identified an additional 23 novel CISs. Here, evidence is presented that 2 genes, ppp1r16b and hdac6, identified at CISs, are bona fide cellular oncogenes. This study highlights the power of combining unique sensitized genetic backgrounds with large-scale mutagenesis as an approach for identifying novel cancer genes. PMID:20927200

  17. Keith R. Porter Lecture, 1996. Of mice and men: genetic disorders of the cytoskeleton.

    PubMed Central

    Fuchs, E

    1997-01-01

    Since the time when I was a postdoctoral fellow under the supervision of Dr. Howard Green, then at the Massachusetts Institute of Technology, I have been interested in understanding the molecular mechanisms underlying growth, differentiation, and development in the mammalian ectoderm. The ectoderm gives rise to epidermal keratinocytes and to neurons, which are the only two cell types of the body that devote most of their protein-synthesizing machinery to developing an elaborate cytoskeletal architecture composed of 10-nm intermediate filaments (IFs). Our interest is in understanding the architecture of the cytoskeleton in keratinocytes and in neurons, and in elucidating how perturbations in this architecture can lead to degenerative diseases of the skin and the nervous system. I will concentrate on the intermediate filament network of the skin and its associated genetic disorders, since this has been a long-standing interest of my laboratory at the University of Chicago. Images PMID:9190201

  18. Genetic modeling of ovarian phenotypes in mice for the study of human polycystic ovary syndrome.

    PubMed

    Feng, Yi; Li, Xin; Shao, Ruijin

    2013-01-01

    Polycystic ovary syndrome (PCOS) presents with a range of clinical complications including hyperandrogenism, polycystic ovaries, chronic oligo/anovulation, infertility, and metabolic alterations related to insulin resistance. Because the mechanism by which this disorder develops is poorly understood, information from experimental models of human disease phenotypes may help to define the mechanisms for the initiation and development of PCOS-related pathological events. The establishment of animal models compatible with human PCOS is challenging, and applying the lessons learned from these models to human PCOS is often complicated. In this mini-review we provide examples of currently available genetic mouse models, their ovarian phenotypes, and their possible relationship to different aspects of human PCOS. Because of the practical and ethical limitations of studying PCOS-related events in humans, our understanding of the mechanisms that contribute to the etiology of human PCOS may be enhanced through further study of these transgenic and knockout mouse models. PMID:23390562

  19. Genetic analysis of jumbled spine and ribs (Jsr) mutation affecting the vertebral development in mice.

    PubMed

    Okano, Shinya; Asano, Atsushi; Kon, Yasuhiro; Miyoshi, Hiroyuki; Watanabe, Tomomasa

    2002-10-01

    The jumbled spine and ribs (Jsr) mouse was derived from a spontaneous mutation. As the phenotype, a shortened trunk and kinky tail are characteristic Jsr traits. In this study, on high resolution mapping it was found that Lunatic fringe (Lfng) mapped at the same position as Jsr. Lfng was identified as the candidate gene for Jsr, but sequence analysis of this gene revealed no substitution in the coding region of cDNA. Therefore, we adopted the strategy of positional cloning for Jsr using a mouse bacterial artificial chromosome (BAC) library. A BAC contig was constructed from three BAC clones showing positive signals of Lfng and 11MMHAP75FRD8.seq near the Jsr locus on chromosome 5. Based on the genetic mapping of both T7 and sp6 ends of a clone of BAC382-O-7 (BAC382), the Jsr gene was considered to exist in BAC382 and to be positioned near the sp6 side. PMID:12392169

  20. Immune Competency of a Hairless Mouse Strain for Improved Preclinical Studies in Genetically-Engineered Mice

    PubMed Central

    Schaffer, Beverly S.; Grayson, Marcia H.; Wortham, Joy M.; Kubicek, Courtney B.; McCleish, Amanda T.; Prajapati, Suresh I.; Nelon, Laura D.; Brady, Michelle M.; Jung, Inkyung; Hosoyama, Tohru; Sarro, Leslea M.; Hanes, Martha A.; Rubin, Brian P.; Michalek, Joel E.; Clifford, Charles B.; Infante, Anthony J.; Keller, Charles

    2010-01-01

    Genetically-engineered mouse models (GEMMs) of cancer are of increasing value to preclinical therapeutics. Optical imaging is a cost-effective method of assessing deep-seated tumor growth in GEMMs whose tumors can be encoded to express luminescent or fluorescent reporters, although reporter signal attenuation would be improved if animals were fur-free. In this study, we sought to determine whether hereditable furlessness resulting from a hypomorphic mutation in the Hairless gene would or would not also affect immune competence. By assessment of humoral and cellular immunity of the SKH1 mouse line bearing the hypomorphic Hairless mutation, we determined that blood counts, immunoglobulin levels, and CD4+ and CD8+ T cells were comparable between SKH1 and the C57Bl/6 strain. On examination of T cell subsets, statistically significant differences in naïve T cells (1.7 vs. 3.4 × 105 cells/spleen in SKH1 vs. C57Bl/6, p=0.008) and memory T cells (1.4 vs. 0.13 × 106 cells/spleen in SKH1 vs. C57Bl/6, p=0.008) were detected. However, the numerical differences did not result in altered T cell functional response to antigen re-challenge (keyhole limpet hemocyanin) in a lymph node cell in vitro proliferative assay. Furthermore, interbreeding the SKH1 mouse line to a rhabdomyosarcoma GEMM demonstrated preserved anti-tumor responses of CD56+ Natural Killer cells and CD163+ macrophages, without any differences in tumor pathology. The fur-free GEMM was also especially amenable to multiplex optical imaging. Thus, SKH1 represents an immune competent, fur-free mouse strain which may be of use for interbreeding to other genetically-engineered mouse models of cancer for improved preclinical studies. PMID:20663932

  1. Genetic ablation of SOX18 function suppresses tumor lymphangiogenesis and metastasis of melanoma in mice.

    PubMed

    Duong, Tam; Proulx, Steven T; Luciani, Paola; Leroux, Jean-Christophe; Detmar, Michael; Koopman, Peter; Francois, Mathias

    2012-06-15

    The lymphatic vasculature provides a major route for tumor metastasis and inhibiting neolymphangiogenesis induced by tumors can reduce metastasis in animal models. Developmental biology studies have identified the transcription factor SOX18 as a critical switch for lymphangiogenesis in the mouse embryo. Here, we show that SOX18 is also critical for tumor-induced lymphangiogenesis, and we show that suppressing SOX18 function is sufficient to impede tumor metastasis. Immunofluorescence analysis of murine tumor xenografts showed that SOX18 is reexpressed during tumor-induced neolymphangiogenesis. Tumors generated by implantation of firefly luciferase-expressing B16-F10 melanoma cells exhibited a reduced rate of metastasis to the regional draining lymph node in Sox18-deficient mice, as assessed by live bioluminescence imaging. Lower metastatic rates correlated with reduced tumoral lymphatic vessel density and diameter and with impaired drainage of peritumoral injected liposomes specific for lymph vessels from the sentinel lymph nodes. Overall, our findings suggested that SOX18 induction is a key step in mediating tumor lymphangiogenesis and metastasis, and they identify SOX18 as a potential therapeutic target for metastatic blockade. PMID:22523034

  2. Multiple effects of genetic background on variegated transgene expression in mice.

    PubMed Central

    Opsahl, Margaret L; McClenaghan, Margaret; Springbett, Anthea; Reid, Sarah; Lathe, Richard; Colman, Alan; Whitelaw, C Bruce A

    2002-01-01

    BLG/7 transgenic mice express an ovine beta-lactoglobulin transgene during lactation. Unusually, transgene expression levels in milk differ between siblings. This variable expression is due to variegated transgene expression in the mammary gland and is reminiscent of position-effect variegation. The BLG/7 line was created and maintained on a mixed CBA x C57BL/6 background. We have investigated the effect on transgene expression of backcrossing for 13 generations into these backgrounds. Variable transgene expression was observed in all populations examined, confirming that it is an inherent property of the transgene array at its site of integration. There were also strain-specific effects on transgene expression that appear to be independent of the inherent variegation. The transgene, compared to endogenous milk protein genes, is specifically susceptible to inbreeding depression. Outcrossing restored transgene expression levels to that of the parental population; thus suppression was not inherited. Finally, no generation-dependent decrease in mean expression levels was observed in the parental population. Thus, although the BLG/7 transgene is expressed in a variegated manner, there was no generation-associated accumulated silencing of transgene expression. PMID:11901126

  3. Human fibrocyte-derived exosomes accelerate wound healing in genetically diabetic mice.

    PubMed

    Geiger, Adolf; Walker, Audrey; Nissen, Erwin

    2015-11-13

    Diabetic ulcers represent a substantial societal and healthcare burden worldwide and scarcely respond to current treatment strategies. This study was addressed to evaluate the therapeutic potential of exosomes secreted by human circulating fibrocytes, a population of mesenchymal progenitors involved in normal wound healing via paracrine signaling. The exosomes released from cells sequentially stimulated with platelet-derived growth factor-BB and transforming growth factor-β1, in the presence of fibroblast growth factor 2, did not show potential immunogenicity. These exosomes exhibited in-vitro proangiogenic properties, activated diabetic dermal fibroblasts, induced the migration and proliferation of diabetic keratinocytes, and accelerated wound closure in diabetic mice in vivo. Important components of the exosomal cargo were heat shock protein-90α, total and activated signal transducer and activator of transcription 3, proangiogenic (miR-126, miR-130a, miR-132) and anti-inflammatory (miR124a, miR-125b) microRNAs, and a microRNA regulating collagen deposition (miR-21). This proof-of-concept study demonstrates the feasibility of the use of fibrocytes-derived exosomes for the treatment of diabetic ulcers. PMID:26454169

  4. Immunotoxicological Evaluation of Corn Genetically Modified with Bacillus thuringiensis Cry1Ah Gene by a 30-Day Feeding Study in BALB/c Mice

    PubMed Central

    Song, Yan; Liang, Chunlai; Wang, Wei; Fang, Jin; Sun, Nana; Jia, Xudong; Li, Ning

    2014-01-01

    This study was to investigate the immunotoxicological potential of corn genetically modified (GM) with Bacillus thuringiensis (Bt) Cry1Ah gene in BALB/c mice. Female BALB/c mice were randomly assigned to one of the four groups: the negative control group, the parental corn group, the GM corn group and the positive control group with 10 mice per group. Mice in the GM corn group and the parental corn group were fed with diets containing 70% corresponding corn for 30 days. Mice in the negative control group and the positive control group were fed with AIN93G diet, administered with saline or 200 mg/kg of cyclophosphamide (CY) via intraperitoneal injection 24 h before the termination of the study, respectively. At the end of the study, the immunotoxicological effects of the GM corn were evaluated through immunopathology parameters including body and organ weights, hematology and clinical chemistry parameters, histological examination, peripheral blood lymphocytes phenotype; humoral immunity including antibody plaque-forming cell, serum immunoglobulin, cytokine and half hemolysis value; cellular immunity such as mitogen-induced splenocyte proliferation, cytotoxic T-lymphocyte reaction, delayed-type hypersensitivity reaction; non-specific immunity including phagocytic activities of phagocytes, natural killer cell activity. A single dose of cyclophosphamide (200 mg/kg bw) was found to have significant adverse effects on immunopathology, cellular immunity, and humoral immunity in mice. The corn genetically modified with Bt Cry1Ah gene is considered consistent with the parental corn in terms of immunopathology, humoral immunity, cellular immunity and non-specific immunity. No adverse immunotoxicological effects of GM corn with Bt Cry1Ah gene were found when feeding mice for 30 days. PMID:24520311

  5. Smad4-Irf6 genetic interaction and TGFβ-mediated IRF6 signaling cascade are crucial for palatal fusion in mice

    PubMed Central

    Iwata, Jun-ichi; Suzuki, Akiko; Pelikan, Richard C.; Ho, Thach-Vu; Sanchez-Lara, Pedro A.; Urata, Mark; Dixon, Michael J.; Chai, Yang

    2013-01-01

    Cleft palate is one of the most common human birth defects and is associated with multiple genetic and environmental risk factors. Although mutations in the genes encoding transforming growth factor beta (TGFβ) signaling molecules and interferon regulatory factor 6 (Irf6) have been identified as genetic risk factors for cleft palate, little is known about the relationship between TGFβ signaling and IRF6 activity during palate formation. Here, we show that TGFβ signaling regulates expression of Irf6 and the fate of the medial edge epithelium (MEE) during palatal fusion in mice. Haploinsufficiency of Irf6 in mice with basal epithelial-specific deletion of the TGFβ signaling mediator Smad4 (Smad4fl/fl;K14-Cre;Irf6+/R84C) results in compromised p21 expression and MEE persistence, similar to observations in Tgfbr2fl/fl;K14-Cre mice, although the secondary palate of Irf6+/R84C and Smad4fl/fl;K14-Cre mice form normally. Furthermore, Smad4fl/fl;K14-Cre;Irf6+/R84C mice show extra digits that are consistent with abnormal toe and nail phenotypes in individuals with Van der Woude and popliteal pterygium syndromes, suggesting that the TGFβ/SMAD4/IRF6 signaling cascade might be a well-conserved mechanism in regulating multiple organogenesis. Strikingly, overexpression of Irf6 rescued p21 expression and MEE degeneration in Tgfbr2fl/fl;K14-Cre mice. Thus, IRF6 and SMAD4 synergistically regulate the fate of the MEE, and TGFβ-mediated Irf6 activity is responsible for MEE degeneration during palatal fusion in mice. PMID:23406900

  6. Effect of systemically increasing human full-length Klotho on glucose metabolism in db/db mice.

    PubMed

    Forsberg, E A; Olauson, H; Larsson, T; Catrina, S B

    2016-03-01

    The metabolic effects of antiaging Klotho were previously investigated in vivo by genetic manipulation. We have here studied the metabolic effect of physiologic levels of circulating full length Klotho in db/db mice. Increasing the full-length human Klotho levels has a positive effect on blood glucose through increasing insulin secretion. PMID:26806457

  7. Culture and Manipulation of Embryonic Cells

    PubMed Central

    Edgar, Lois G.; Goldstein, Bob

    2012-01-01

    The direct manipulation of embryonic cells is an important tool for addressing key questions in cell and developmental biology. C. elegans is relatively unique among genetic model systems in being amenable to manipulation of embryonic cells. Embryonic cell manipulation has allowed the identification of cell interactions by direct means, and it has been an important technique for dissecting mechanisms by which cell fates are specified, cell divisions are oriented, and morphogenesis is accomplished. Here, we present detailed methods for isolating, manipulating and culturing embryonic cells of C. elegans. PMID:22226523

  8. Mechanisms of Stage-Transcending Protection Following Immunization of Mice with Late Liver Stage-Arresting Genetically Attenuated Malaria Parasites

    PubMed Central

    Sack, Brandon K.; Keitany, Gladys J.; Vaughan, Ashley M.; Miller, Jessica L.; Wang, Ruobing; Kappe, Stefan H. I.

    2015-01-01

    Malaria, caused by Plasmodium parasite infection, continues to be one of the leading causes of worldwide morbidity and mortality. Development of an effective vaccine has been encumbered by the complex life cycle of the parasite that has distinct pre-erythrocytic and erythrocytic stages of infection in the mammalian host. Historically, malaria vaccine development efforts have targeted each stage in isolation. An ideal vaccine, however, would target multiple life cycle stages with multiple arms of the immune system and be capable of eliminating initial infection in the liver, the subsequent blood stage infection, and would prevent further parasite transmission. We have previously shown that immunization of mice with Plasmodium yoelii genetically attenuated parasites (GAP) that arrest late in liver stage development elicits stage-transcending protection against both a sporozoite challenge and a direct blood stage challenge. Here, we show that this immunization strategy engenders both T- and B-cell responses that are essential for stage-transcending protection, but the relative importance of each is determined by the host genetic background. Furthermore, potent anti-blood stage antibodies elicited after GAP immunization rely heavily on FC-mediated functions including complement fixation and FC receptor binding. These protective antibodies recognize the merozoite surface but do not appear to recognize the immunodominant merozoite surface protein-1. The antigen(s) targeted by stage-transcending immunity are present in both the late liver stages and blood stage parasites. The data clearly show that GAP-engendered protective immune responses can target shared antigens of pre-erythrocytic and erythrocytic parasite life cycle stages. As such, this model constitutes a powerful tool to identify novel, protective and stage-transcending T and B cell targets for incorporation into a multi-stage subunit vaccine. PMID:25974076

  9. High-Resolution Genetic Mapping of Complex Traits from a Combined Analysis of F2 and Advanced Intercross Mice

    PubMed Central

    Parker, Clarissa C.; Carbonetto, Peter; Sokoloff, Greta; Park, Yeonhee J.; Abney, Mark; Palmer, Abraham A.

    2014-01-01

    Genetic influences on anxiety disorders are well documented; however, the specific genes underlying these disorders remain largely unknown. To identify quantitative trait loci (QTL) for conditioned fear and open field behavior, we used an F2 intercross (n = 490) and a 34th-generation advanced intercross line (AIL) (n = 687) from the LG/J and SM/J inbred mouse strains. The F2 provided strong support for several QTL, but within wide chromosomal regions. The AIL yielded much narrower QTL, but the results were less statistically significant, despite the larger number of mice. Simultaneous analysis of the F2 and AIL provided strong support for QTL and within much narrower regions. We used a linear mixed-model approach, implemented in the program QTLRel, to correct for possible confounding due to familial relatedness. Because we recorded the full pedigree, we were able to empirically compare two ways of accounting for relatedness: using the pedigree to estimate kinship coefficients and using genetic marker estimates of “realized relatedness.” QTL mapping using the marker-based estimates yielded more support for QTL, but only when we excluded the chromosome being scanned from the marker-based relatedness estimates. We used a forward model selection procedure to assess evidence for multiple QTL on the same chromosome. Overall, we identified 12 significant loci for behaviors in the open field and 12 significant loci for conditioned fear behaviors. Our approach implements multiple advances to integrated analysis of F2 and AILs that provide both power and precision, while maintaining the advantages of using only two inbred strains to map QTL. PMID:25236452

  10. Genetic deletion of Cxcl14 in mice alters uterine NK cells

    SciTech Connect

    Cao, Qichen; Chen, Hua; Deng, Zhili; Yue, Jingwen; Chen, Qi; Cao, Yujing; Ning, Lina; Lei, Xiaohua; Duan, Enkui

    2013-06-14

    Highlights: •We first examined the expression of Cxcl14 in MLAp and DB of uterus. •We found the uNK cells in MLAp and decidua express Cxcl14. •In Cxcl14{sup −/−} placenta, we found significantly decreased uNK cells. •We first performed microarray to compare the gene expression in MLAp and DB. -- Abstract: The uterine natural killer cells (uNK cells) are the major immune cells in pregnant uterus and the number of uNK cells is dramatically increased during placentation and embryo development. The uNK cells are necessary for the immune tolerance, cytokine secretion and angiogenesis of placenta. Former studies indicated that the population expansion of uNK cells was accomplished through recruitment of NK cell precursors from the spleen and bone marrow, but not proliferation of NK cells. However, the necessary molecules within this process were little understood. Here in our study, we found the co-localized expression of Cxcl14 protein with uNK cells in E13.5 pregnant uterus. Moreover, we used Cxcl14 knockout mice to examine uNK cells in mesometrial lymphoid aggregate of pregnancy (MLAp) and decidua basalis (DB) of E13.5 pregnant uterus and found significantly decreased uNK cells in Cxcl14{sup −/−} pregnant uteri compared with Cxcl14{sup +/−} pregnant uteri. To further explorer the molecular change in MLAp and DB after Cxcl14 knockout, we isolated the MLAp and DB from Cxcl14{sup +/+} and Cxcl14{sup −/−} pregnant uteri and performed microarray analysis. We found many genes were up and down regulated after Cxcl14 knockout. In conclusion, our results suggested the important function of Cxcl14 in uNK cells and the proper level of Cxcl14 protein were required to recruit NK cells to pregnant uterus.

  11. The severity of mammary gland developmental defects is linked to the overall functional status of Cx43 as revealed by genetically modified mice

    PubMed Central

    Stewart, Michael K. G.; Gong, Xiang-Qun; Barr, Kevin J.; Bai, Donglin; Fishman, Glenn I.; Laird, Dale W.

    2012-01-01

    Genetically modified mice mimicking ODDD (oculodentodigital dysplasia), a disease characterized by reduced Cx43 (connexin 43)-mediated gap junctional intercellular communication, represent an in vivo model to assess the role of Cx43 in mammary gland development and function. We previously reported that severely compromised Cx43 function delayed mammary gland development and impaired milk ejection in mice that harboured a G60S Cx43 mutant, yet there are no reports of lactation defects in ODDD patients. To address this further, we obtained a second mouse model of ODDD expressing an I130T Cx43 mutant to assess whether a mutant with partial gap junction channel activity would be sufficient to retain mammary gland development and function. The results of the present study show that virgin Cx43I130T/+ mice exhibited a temporary delay in ductal elongation at 4 weeks. In addition, Cx43I130T/+ mice develop smaller mammary glands at parturition due to reduced cell proliferation despite similar overall gland architecture. Distinct from Cx43G60S/+ mice, Cx43I130T/+ mice adequately produce and deliver milk to pups, suggesting that milk ejection is unaffected. Thus the present study suggests that a loss-of-function mutant of Cx43 with partial gap junction channel coupling conductance results in a less severe mammary gland phenotype, which may partially explain the lack of reported lactation defects associated with ODDD patients. PMID:23075222

  12. Genetic analysis of low survival rate of pups in RR/Sgn inbred mice.

    PubMed

    Suto, Jun-ichi

    2015-07-01

    Newborn offspring of the inbred mouse RR/Sgn strain have a low survival rate prior to weaning. We hypothesized that this is a consequence of an inferior nurturing ability of RR/Sgn mothers and that RR/Sgn mothers have a tendency to lose their pups. We performed quantitative trait locus (QTL) mapping for inferior nurturing ability and tendency to lose pups in RR/Sgn mothers. The number of pups was adjusted to 6 per dam on the day of delivery, and the number of surviving pups and their total weight (litter weight) were scored at 12 days after birth. Nurturing ability was evaluated by litter weight, and tendency to lose pups was evaluated by scoring whether or not the mothers lost their pups. For litter weight, we identified one significant QTL on chromosome 4 and three suggestive QTLs on chromosomes 7, 9 and 17. The RR/Sgn allele was associated with lower litter weight at all loci. For the tendency to lose pups, we identified three suggestive QTLs on chromosomes 4, 9 and 16. The RR/Sgn allele was associated with an increased tendency to lose pups at all loci. These results supported our hypothesis that the low survival rate phenotype was attributable, at least in part, to a phenotype whereby mothers display inferior nurturing ability and a tendency to lose pups. Thus, it suggests that these two traits share genetic basis. PMID:25754650

  13. Genetic correction of β-thalassemia patient-specific iPS cells and its use in improving hemoglobin production in irradiated SCID mice

    PubMed Central

    Wang, Yixuan; Zheng, Chen-Guang; Jiang, Yonghua; Zhang, Jiqin; Chen, Jiayu; Yao, Chao; Zhao, Qingguo; Liu, Sheng; Chen, Ke; Du, Juan; Yang, Ze; Gao, Shaorong

    2012-01-01

    The generation of induced pluripotent stem cells (iPSCs) from differentiated somatic cells by over-expression of several transcription factors has the potential to cure many genetic and degenerative diseases currently recalcitrant to traditional clinical approaches. One such genetic disease is β-thalassemia major (Cooley's anemia). This disease is caused by either a point mutation or the deletion of several nucleotides in the β-globin gene, and it threatens the lives of millions of people in China. In the present study, we successfully generated iPSCs from fibroblasts collected from a 2-year-old patient who was diagnosed with a homozygous 41/42 deletion in his β-globin gene. More importantly, we successfully corrected this genetic mutation in the β-thalassemia iPSCs by homologous recombination. Furthermore, transplantation of the genetically corrected iPSCs-derived hematopoietic progenitors into sub-lethally irradiated immune deficient SCID mice showed improved hemoglobin production compared with the uncorrected iPSCs. Moreover, the generation of human β-globin could be detected in the mice transplanted with corrected iPSCs-derived hematopietic progenitors. Our study provides strong evidence that iPSCs generated from a patient with a genetic disease can be corrected by homologous recombination and that the corrected iPSCs have potential clinical uses. PMID:22310243

  14. Ex vivo multiscale quantitation of skin biomechanics in wild-type and genetically-modified mice using multiphoton microscopy

    PubMed Central

    Bancelin, Stéphane; Lynch, Barbara; Bonod-Bidaud, Christelle; Ducourthial, Guillaume; Psilodimitrakopoulos, Sotiris; Dokládal, Petr; Allain, Jean-Marc; Schanne-Klein, Marie-Claire; Ruggiero, Florence

    2015-01-01

    Soft connective tissues such as skin, tendon or cornea are made of about 90% of extracellular matrix proteins, fibrillar collagens being the major components. Decreased or aberrant collagen synthesis generally results in defective tissue mechanical properties as the classic form of Elhers-Danlos syndrome (cEDS). This connective tissue disorder is caused by mutations in collagen V genes and is mainly characterized by skin hyperextensibility. To investigate the relationship between the microstructure of normal and diseased skins and their macroscopic mechanical properties, we imaged and quantified the microstructure of dermis of ex vivo murine skin biopsies during uniaxial mechanical assay using multiphoton microscopy. We used two genetically-modified mouse lines for collagen V: a mouse model for cEDS harboring a Col5a2 deletion (a.k.a. pN allele) and the transgenic K14-COL5A1 mice which overexpress the human COL5A1 gene in skin. We showed that in normal skin, the collagen fibers continuously align with stretch, generating the observed increase in mechanical stress. Moreover, dermis from both transgenic lines exhibited altered collagen reorganization upon traction, which could be linked to microstructural modifications. These findings show that our multiscale approach provides new crucial information on the biomechanics of dermis that can be extended to all collagen-rich soft tissues. PMID:26631592

  15. Ex vivo multiscale quantitation of skin biomechanics in wild-type and genetically-modified mice using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Bancelin, Stéphane; Lynch, Barbara; Bonod-Bidaud, Christelle; Ducourthial, Guillaume; Psilodimitrakopoulos, Sotiris; Dokládal, Petr; Allain, Jean-Marc; Schanne-Klein, Marie-Claire; Ruggiero, Florence

    2015-12-01

    Soft connective tissues such as skin, tendon or cornea are made of about 90% of extracellular matrix proteins, fibrillar collagens being the major components. Decreased or aberrant collagen synthesis generally results in defective tissue mechanical properties as the classic form of Elhers-Danlos syndrome (cEDS). This connective tissue disorder is caused by mutations in collagen V genes and is mainly characterized by skin hyperextensibility. To investigate the relationship between the microstructure of normal and diseased skins and their macroscopic mechanical properties, we imaged and quantified the microstructure of dermis of ex vivo murine skin biopsies during uniaxial mechanical assay using multiphoton microscopy. We used two genetically-modified mouse lines for collagen V: a mouse model for cEDS harboring a Col5a2 deletion (a.k.a. pN allele) and the transgenic K14-COL5A1 mice which overexpress the human COL5A1 gene in skin. We showed that in normal skin, the collagen fibers continuously align with stretch, generating the observed increase in mechanical stress. Moreover, dermis from both transgenic lines exhibited altered collagen reorganization upon traction, which could be linked to microstructural modifications. These findings show that our multiscale approach provides new crucial information on the biomechanics of dermis that can be extended to all collagen-rich soft tissues.

  16. Genetic Ablation of Parietal Cells in Transgenic Mice: A New Model for Analyzing Cell Lineage Relationships in the Gastric Mucosa

    NASA Astrophysics Data System (ADS)

    Canfield, Victor; West, A. Brian; Goldenring, James R.; Levenson, Robert

    1996-03-01

    The gastric mucosa of mammalian stomach contains several differentiated cell types specialized for the secretion of acid, digestive enzymes, mucus, and hormones. Understanding whether each of these cell lineages is derived from a common stem cell has been a challenging problem. We have used a genetic approach to analyze the ontogeny of progenitor cells within mouse stomach. Herpes simplex virus 1 thymidine kinase was targeted to parietal cells within the gastric mucosa of transgenic mice, and parietal cells were ablated by treatment of animals with the antiherpetic drug ganciclovir. Ganciclovir treatment produced complete ablation of parietal cells, dissolution of gastric glands, and loss of chief and mucus-producing cells. Termination of drug treatment led to the reemergence of all major gastric epithelial cell types and restoration of glandular architecture. Our results imply the existence of a pluripotent stem cell for the gastric mucosa. Parietal cell ablation should provide a model for analyzing cell lineage relationships within the stomach as well as mechanisms underlying gastric injury and repair.

  17. Genetic recombination variation in wild Robertsonian mice: on the role of chromosomal fusions and Prdm9 allelic background

    PubMed Central

    Capilla, Laia; Medarde, Nuria; Alemany-Schmidt, Alexandra; Oliver-Bonet, Maria; Ventura, Jacint; Ruiz-Herrera, Aurora

    2014-01-01

    Despite the existence of formal models to explain how chromosomal rearrangements can be fixed in a population in the presence of gene flow, few empirical data are available regarding the mechanisms by which genome shuffling contributes to speciation, especially in mammals. In order to shed light on this intriguing evolutionary process, here we present a detailed empirical study that shows how Robertsonian (Rb) fusions alter the chromosomal distribution of recombination events during the formation of the germline in a Rb system of the western house mouse (Mus musculus domesticus). Our results indicate that both the total number of meiotic crossovers and the chromosomal distribution of recombination events are reduced in mice with Rb fusions and that this can be related to alterations in epigenetic signatures for heterochromatinization. Furthermore, we detected novel house mouse Prdm9 allelic variants in the Rb system. Remarkably, mean recombination rates were positively correlated with a decrease in the number of ZnF domains in the Prdm9 gene. The suggestion that recombination can be modulated by both chromosomal reorganizations and genetic determinants that control the formation of double-stranded breaks during meiosis opens new avenues for understanding the role of recombination in chromosomal speciation. PMID:24850922

  18. Genetic labeling of Tas1r1 and Tas2r131 taste receptor cells in mice.

    PubMed

    Voigt, Anja; Hübner, Sandra; Lossow, Kristina; Hermans-Borgmeyer, Irm; Boehm, Ulrich; Meyerhof, Wolfgang

    2012-11-01

    Characterization of the peripheral taste system relies on the identification and visualization of the different taste bud cell types. So far, genetic strategies to label taste receptor cells are limited to sweet, sour, and salty detecting cells. To visualize Tas1r1 umami and Tas2r131 bitter sensing cells, we generated animals in which the Tas1r1 and Tas2r131 open reading frames are replaced by expression cassettes containing the fluorescent proteins mCherry or hrGFP, respectively. These animals enabled us to visualize and quantify the entire oral Tas1r1 and Tas2r131 cell populations. Tas1r1-mCherry cells were predominantly detected in fungiform papillae, whereas Tas2r131-hrGFP cells, which are ~4-fold more abundant, were mainly present in foliate and vallate papillae. In the palate, both cell types were similarly distributed. Mice carrying both recombinant alleles demonstrated completely segregated Tas1r1 and Tas2r131 cell populations. Only ~50% of the entire bitter cell population expressed hrGFP, indicating that bitter taste receptor cells express a subset of the bitter receptor repertoire. In extragustatory tissues, mCherry fluorescence was observed in testis and hrGFP fluorescence in testis, thymus, vomeronasal organ, and respiratory epithelium, suggesting that only few extraoral sites express Tas2r131 and Tas1r1 receptors at levels comparable to taste tissue. PMID:23010799

  19. Genetic association between helpless trait and depression-related phenotypes: evidence from crossbreeding studies with H/Rouen and NH/Rouen mice.

    PubMed

    El Yacoubi, Malika; Popa, Daniela; Martin, Benoît; Zimmer, Luc; Hamon, Michel; Adrien, Joëlle; Vaugeois, Jean-Marie

    2012-04-01

    Genetic factors are believed to be involved in the aetiology of unipolar depressive disorders. We have previously described a model built up by selective breeding of mice with different responses in the tail suspension test, a screening test for potential antidepressants. In this model, helpless H/Rouen mice are essentially immobile in this test, as well as in the Porsolt forced-swim test, whereas non-helpless NH/Rouen mice show the opposite behaviour, i.e. very low immobility. However, it is unclear whether or not the other phenotypic differences (forced swim test, locomotor activity, sucrose test, sleep patterns, effect of fluoxetine) observed between H/Rouen and the NH/Rouen mice may be attributed to a genetic drift phenomenon during the selection step, rather than being related to the trait of selection. In this study we used reciprocal crossbreeding between H/Rouen and NH/Rouen mice and obtained a segregating F2 population in order to determine whether phenotypic differences between the two lines co-segregate with the trait of selection. In the segregating F2 population, we found significant and strong genetic correlations between helplessness in the tail suspension test and some phenotypical features associated with depressive disorders such as 'alterations of sleep patterns', behavioural response to fluoxetine, immobility duration in the forced swim test, and anhedonia. Our results converge with clinical observations in depressed humans. These results strengthen the validity of the H/Rouen mouse as a model of depression, notably for preclinical studies with antidepressants. In addition, this model should open the way to identifying genes related to depression-like behaviours. PMID:21557882

  20. Genetically Modeled Mice with Mutations in Mitochondrial Metabolic Enzymes for the Study of Cancer

    PubMed Central

    Piruat, José I.; Millán-Uclés, África

    2014-01-01

    genetically modified in the three different enzymes. PMID:25126540

  1. Genetic reductions of BACE1 and amyloid-β ameliorate impairment of conditioned taste aversion memory in 5XFAD Alzheimer model mice

    PubMed Central

    Devi, Latha; Ohno, Masuo

    2010-01-01

    Although transgenic mouse models of Alzheimer’s disease (AD) recapitulate amyloid-β (Aβ)-related pathologies and cognitive impairments, previous studies have mainly evaluated their hippocampus-dependent memory dysfunctions using behavioral tasks such as the water maze and fear conditioning. However, multiple memory systems become impaired in AD as disease progresses, and it is important to test whether other forms of memory are affected in AD models. This study was designed to use conditioned taste aversion (CTA) and contextual fear conditioning paradigms to compare the phenotypes of hippocampus-independent and dependent memory functions, respectively, in 5XFAD APP/PS1 transgenic mice that harbor five familial AD (FAD) mutations. While both types of memory were significantly impaired in 5XFAD mice, the onset of CTA memory deficits (~9 months of age) was delayed compared to that of contextual memory deficits (~6 months of age). Furthermore, 5XFAD mice genetically engineered to have reduced levels of β-site APP-cleaving enzyme 1 (BACE1+/−·5XFAD) exhibited improved CTA memory, which was equivalent to the performance of wild-type controls. Importantly, elevated levels of cerebral β-secretase-cleaved C-terminal fragment (C99) and Aβ peptides in 5XFAD mice were significantly reduced in BACE1+/−·5XFAD mice. Furthermore, Aβ deposition in the insular cortex and basolateral amygdala, two brain regions critically involved in CTA performance, was also reduced in BACE1+/−·5XFAD mice compared to 5XFAD mice. Our findings indicate that the CTA paradigm is useful for evaluating a hippocampus-independent form of memory defects in AD model mice, which is sensitive to rescue by partial reductions of the β-secretase BACE1 and consequently of cerebral Aβ. PMID:20092558

  2. Liver PPAR{alpha} and UCP2 are involved in the regulation of obesity and lipid metabolism by swim training in genetically obese db/db mice

    SciTech Connect

    Oh, Ki Sook; Kim, Mina; Lee, Jinmi; Kim, Min Jeong; Nam, Youn Shin; Ham, Jung Eun; Shin, Soon Shik; Lee, Chung Moo . E-mail: Chung@sookmyung.ac.kr; Yoon, Michung . E-mail: yoon60@mokwon.ac.kr

    2006-07-07

    Swim training for 6 weeks significantly decreased body weight gain, adipose tissue mass, and adipocyte size in both sexes of genetically obese db/db mice compared with their respective sedentary controls. Swim training also caused significant decreases in serum levels of free fatty acids, triglycerides, and total cholesterol in both sexes of obese mice. Concomitantly, hepatic mRNA levels of peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}) target enzymes responsible for mitochondrial and peroxisomal fatty acid {beta}-oxidation were significantly increased by swim training. Moreover, mRNA levels of uncoupling protein 2 (UCP2) in liver were also markedly increased by swim training. In conclusion, these results suggest that swim training-induced transcriptional activation of hepatic PPAR{alpha} target enzymes and UCP2 may effectively prevent body weight gain, adiposity, and lipid disorders caused by leptin receptor deficiency in both sexes of mice.

  3. Practical pathology of aging mice

    PubMed Central

    Pettan-Brewer, Christina; Treuting, Piper M.

    2011-01-01

    Old mice will have a subset of lesions as part of the progressive decline in organ function that defines aging. External and palpable lesions will be noted by the research, husbandry, or veterinary staff during testing, cage changing, or physical exams. While these readily observable lesions may cause alarm, not all cause undue distress or are life-threatening. In aging research, mice are maintained until near end of life that, depending on strain and genetic manipulation, can be upwards of 33 months. Aging research has unique welfare issues related to age-related decline, debilitation, fragility, and associated pain of chronic diseases. An effective aging research program includes the collaboration and education of the research, husbandry, and veterinary staff, and of the members of the institution animal care and use committee. This collaborative effort is critical to humanely maintaining older mice and preventing excessive censorship due to non-lethal diseases. Part of the educational process is becoming familiar with how old mice appear clinically, at necropsy and histopathologically. This baseline knowledge is important in making the determination of humane end points, defining health span, contributing causes of death and effects of interventions. The goal of this paper is to introduce investigators to age-associated diseases and lesion patterns in mice from clinical presentation to pathologic assessment. To do so, we present and illustrate the common clinical appearances, necropsy and histopathological lesions seen in subsets of the aging colonies maintained at the University of Washington. PMID:22953032

  4. Practical pathology of aging mice.

    PubMed

    Pettan-Brewer, Christina; Treuting, Piper M

    2011-01-01

    Old mice will have a subset of lesions as part of the progressive decline in organ function that defines aging. External and palpable lesions will be noted by the research, husbandry, or veterinary staff during testing, cage changing, or physical exams. While these readily observable lesions may cause alarm, not all cause undue distress or are life-threatening. In aging research, mice are maintained until near end of life that, depending on strain and genetic manipulation, can be upwards of 33 months. Aging research has unique welfare issues related to age-related decline, debilitation, fragility, and associated pain of chronic diseases. An effective aging research program includes the collaboration and education of the research, husbandry, and veterinary staff, and of the members of the institution animal care and use committee. This collaborative effort is critical to humanely maintaining older mice and preventing excessive censorship due to non-lethal diseases. Part of the educational process is becoming familiar with how old mice appear clinically, at necropsy and histopathologically. This baseline knowledge is important in making the determination of humane end points, defining health span, contributing causes of death and effects of interventions. The goal of this paper is to introduce investigators to age-associated diseases and lesion patterns in mice from clinical presentation to pathologic assessment. To do so, we present and illustrate the common clinical appearances, necropsy and histopathological lesions seen in subsets of the aging colonies maintained at the University of Washington. PMID:22953032

  5. Copper is toxic to PrP-ablated mice and exacerbates disease in a mouse model of E200K genetic prion disease.

    PubMed

    Canello, Tamar; Friedman-Levi, Yael; Mizrahi, Michal; Binyamin, Orli; Cohen, Eran; Frid, Kati; Gabizon, Ruth

    2012-03-01

    The pathogenesis of the diverse forms of prion disease was attributed solely to the accumulation of the misfolded PrP forms, and not to the potential loss of normal PrP(C) function during disease propagation. In this respect, it was also not established whether mutant PrPs linked to genetic prion diseases, as is the case for E200K PrP, preserve the function of PrP(C). We now show that fibroblasts generated from both PrP-ablated mice and TgMHu2ME199K, a transgenic mouse line mimicking E200KCJD, were significantly more sensitive to copper toxicity than wt fibroblasts. Long-term administration of copper significantly accelerated the onset and progression of spontaneous prion disease in TgMHu2ME199K mice and caused marked irritability and cerebellar associated tip-toe walking in PrP(0/0) mice, while wt mice were not affected. Our results are consistent with the hypothesis that a functional PrP(C) is required to protect cells from high levels of copper, and that its substitution for a nonfunctional mutant PrP may accelerate the onset of genetic prion disease during oxidative insults. PMID:22198568

  6. Transgenic mice recapitulate the phenotypic heterogeneity of genetic prion diseases without developing prion infectivity: Role of intracellular PrP retention in neurotoxicity.

    PubMed

    Chiesa, Roberto; Restelli, Elena; Comerio, Liliana; Del Gallo, Federico; Imeri, Luca

    2016-03-01

    Genetic prion diseases are degenerative brain disorders caused by mutations in the gene encoding the prion protein (PrP). Different PrP mutations cause different diseases, including Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker (GSS) syndrome and fatal familial insomnia (FFI). The reason for this variability is not known. It has been suggested that prion strains with unique self-replicating and neurotoxic properties emerge spontaneously in individuals carrying PrP mutations, dictating the phenotypic expression of disease. We generated transgenic mice expressing the FFI mutation, and found that they developed a fatal neurological illness highly reminiscent of FFI, and different from those of similarly generated mice modeling genetic CJD and GSS. Thus transgenic mice recapitulate the phenotypic differences seen in humans. The mutant PrPs expressed in these mice are misfolded but unable to self-replicate. They accumulate in different compartments of the neuronal secretory pathway, impairing the membrane delivery of ion channels essential for neuronal function. Our results indicate that conversion of mutant PrP into an infectious isoform is not required for pathogenesis, and suggest that the phenotypic variability may be due to different effects of mutant PrP on intracellular transport. PMID:26864450

  7. Transgenic mice recapitulate the phenotypic heterogeneity of genetic prion diseases without developing prion infectivity: Role of intracellular PrP retention in neurotoxicity

    PubMed Central

    Chiesa, Roberto; Restelli, Elena; Comerio, Liliana; Del Gallo, Federico; Imeri, Luca

    2016-01-01

    abstract Genetic prion diseases are degenerative brain disorders caused by mutations in the gene encoding the prion protein (PrP). Different PrP mutations cause different diseases, including Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker (GSS) syndrome and fatal familial insomnia (FFI). The reason for this variability is not known. It has been suggested that prion strains with unique self-replicating and neurotoxic properties emerge spontaneously in individuals carrying PrP mutations, dictating the phenotypic expression of disease. We generated transgenic mice expressing the FFI mutation, and found that they developed a fatal neurological illness highly reminiscent of FFI, and different from those of similarly generated mice modeling genetic CJD and GSS. Thus transgenic mice recapitulate the phenotypic differences seen in humans. The mutant PrPs expressed in these mice are misfolded but unable to self-replicate. They accumulate in different compartments of the neuronal secretory pathway, impairing the membrane delivery of ion channels essential for neuronal function. Our results indicate that conversion of mutant PrP into an infectious isoform is not required for pathogenesis, and suggest that the phenotypic variability may be due to different effects of mutant PrP on intracellular transport. PMID:26864450

  8. Involvement of endocannabinoids in alcohol “binge” drinking: studies of mice with human fatty acid amide hydrolase genetic variation and after CB1 receptor antagonists

    PubMed Central

    Zhou, Yan; Huang, Ted; Lee, Francis; Kreek, Mary Jeanne

    2016-01-01

    Background The endocannabinoid system has been found to play an important role in modulating alcohol intake. Inhibition or genetic deletion of fatty acid amide hydrolase (FAAH, a key catabolic enzyme for endocannabinoids) leads to increased alcohol consumption and preference in rodent models. A common human single-nucleotide polymorphism (SNP; C385A, rs324420) in the FAAH gene is associated with decreased enzymatic activity of FAAH, resulting in increased anandamide levels in both humans and FAAH C385A knock-in mice. Methods As this FAAH SNP has been reported to be associated with altered alcohol abuse, the present study used these genetic knock-in mice containing the human SNP C385A to determine the impact of variant FAAH gene on alcohol “binge” drinking in the drinking-in-the-dark (DID) model. Results We found that the FAAHA/A mice had greater alcohol intake and preference than the wild-type FAAHC/C mice, suggesting that increased endocannabinoid signaling in FAAHA/A mice led to increased alcohol “binge” consumption. The specificity on alcohol vulnerability was suggested by the lack of any FAAH genotype difference on sucrose or saccharin intake. Using the “binge” DID model, we confirmed that selective CB1 receptor antagonist AM251 reduced alcohol intake in the wild-type mice. Conclusions These data suggest that there is direct and selective involvement of the human FAAH C385A SNP and CB1 receptors in alcohol “binge” drinking. PMID:26857901

  9. Generation and Characterisation of a Pax8-CreERT2 Transgenic Line and a Slc22a6-CreERT2 Knock-In Line for Inducible and Specific Genetic Manipulation of Renal Tubular Epithelial Cells

    PubMed Central

    Espana-Agusti, Judit; Zou, Xiangang; Wong, Kim; Fu, Beiyuan; Yang, Fengtang; Tuveson, David A.; Adams, David J.; Matakidou, Athena

    2016-01-01

    Genetically relevant mouse models need to recapitulate the hallmarks of human disease by permitting spatiotemporal gene targeting. This is especially important for replicating the biology of complex diseases like cancer, where genetic events occur in a sporadic fashion within developed somatic tissues. Though a number of renal tubule targeting mouse lines have been developed their utility for the study of renal disease is limited by lack of inducibility and specificity. In this study we describe the generation and characterisation of two novel mouse lines directing CreERT2 expression to renal tubular epithelia. The Pax8-CreERT2 transgenic line uses the mouse Pax8 promoter to direct expression of CreERT2 to all renal tubular compartments (proximal and distal tubules as well as collecting ducts) whilst the Slc22a6-CreERT2 knock-in line utilises the endogenous mouse Slc22a6 locus to specifically target the epithelium of proximal renal tubules. Both lines show high organ and tissue specificity with no extrarenal activity detected. To establish the utility of these lines for the study of renal cancer biology, Pax8-CreERT2 and Slc22a6-CreERT2 mice were crossed to conditional Vhl knockout mice to induce long-term renal tubule specific Vhl deletion. These models exhibited renal specific activation of the hypoxia inducible factor pathway (a VHL target). Our results establish Pax8-CreERT2 and Slc22a6-CreERT2 mice as valuable tools for the investigation and modelling of complex renal biology and disease. PMID:26866916

  10. Generation and Characterisation of a Pax8-CreERT2 Transgenic Line and a Slc22a6-CreERT2 Knock-In Line for Inducible and Specific Genetic Manipulation of Renal Tubular Epithelial Cells.

    PubMed

    Espana-Agusti, Judit; Zou, Xiangang; Wong, Kim; Fu, Beiyuan; Yang, Fengtang; Tuveson, David A; Adams, David J; Matakidou, Athena

    2016-01-01

    Genetically relevant mouse models need to recapitulate the hallmarks of human disease by permitting spatiotemporal gene targeting. This is especially important for replicating the biology of complex diseases like cancer, where genetic events occur in a sporadic fashion within developed somatic tissues. Though a number of renal tubule targeting mouse lines have been developed their utility for the study of renal disease is limited by lack of inducibility and specificity. In this study we describe the generation and characterisation of two novel mouse lines directing CreERT2 expression to renal tubular epithelia. The Pax8-CreERT2 transgenic line uses the mouse Pax8 promoter to direct expression of CreERT2 to all renal tubular compartments (proximal and distal tubules as well as collecting ducts) whilst the Slc22a6-CreERT2 knock-in line utilises the endogenous mouse Slc22a6 locus to specifically target the epithelium of proximal renal tubules. Both lines show high organ and tissue specificity with no extrarenal activity detected. To establish the utility of these lines for the study of renal cancer biology, Pax8-CreERT2 and Slc22a6-CreERT2 mice were crossed to conditional Vhl knockout mice to induce long-term renal tubule specific Vhl deletion. These models exhibited renal specific activation of the hypoxia inducible factor pathway (a VHL target). Our results establish Pax8-CreERT2 and Slc22a6-CreERT2 mice as valuable tools for the investigation and modelling of complex renal biology and disease. PMID:26866916

  11. Genetics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Capsicum represents one of several well characterized Solanaceous genera. A wealth of classical and molecular genetics research is available for the genus. Information gleaned from its cultivated relatives, tomato and potato, provide further insight for basic and applied studies. Early ...

  12. Genetics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maintaining genetic variation in wild populations of Arctic organisms is fundamental to the long-term persistence of high latitude biodiversity. Variability is important because it provides options for species to respond to changing environmental conditions and novel challenges such as emerging path...

  13. Genetically-Defined Deficiency of Mannose-Binding Lectin Is Associated with Protection after Experimental Stroke in Mice and Outcome in Human Stroke

    PubMed Central

    Cervera, Alvaro; Planas, Anna M.; Justicia, Carles; Urra, Xabier; Jensenius, Jens C.; Torres, Ferran; Lozano, Francisco; Chamorro, Angel

    2010-01-01

    Background The complement system is a major effector of innate immunity that has been involved in stroke brain damage. Complement activation occurs through the classical, alternative and lectin pathways. The latter is initiated by mannose-binding lectin (MBL) and MBL-associated serine proteases (MASPs). Here we investigated whether the lectin pathway contributes to stroke outcome in mice and humans. Methodology/Principal Findings Focal cerebral ischemia/reperfusion in MBL-null mice induced smaller infarctions, better functional outcome, and diminished C3 deposition and neutrophil infiltration than in wild-type mice. Accordingly, reconstitution of MBL-null mice with recombinant human MBL (rhMBL) enhanced brain damage. In order to investigate the clinical relevance of these experimental observations, a study of MBL2 and MASP-2 gene polymorphism rendering the lectin pathway dysfunctional was performed in 135 stroke patients. In logistic regression adjusted for age, gender and initial stroke severity, unfavourable outcome at 3 months was associated with MBL-sufficient genotype (OR 10.85, p = 0.008) and circulating MBL levels (OR 1.29, p = 0.04). Individuals carrying MBL-low genotypes (17.8%) had lower C3, C4, and CRP levels, and the proinflammatory cytokine profile was attenuated versus MBL-sufficient genotypes. Conclusions/Significance In conclusion, genetically defined MBL-deficiency is associated with a better outcome after acute stroke in mice and humans. PMID:20140243

  14. Macrophage production during murine listeriosis: colony-stimulating factor 1 (CSF-1) and CSF-1-binding cells in genetically resistant and susceptible mice.

    PubMed Central

    Cheers, C; Stanley, E R

    1988-01-01

    The concentration of the macrophage-specific colony-stimulating factor (CSF-1) and the numbers of bone marrow and spleen cells with specific receptors for that factor have been investigated in a number of mouse strains under normal conditions and after infection with the facultative intracellular bacterium Listeria monocytogenes. The CSF-1 concentration in serum and tissue was markedly elevated in infected mice, the degree of stimulation reflecting the dose of L. monocytogenes. The CSF-1 titer did not correlate with genetic resistance or susceptibility of the mice to L. monocytogenes. In contrast to the effect of lipopolysaccharide, Listeria infection was able to increase the level of CSF-1 in the lipopolysaccharide nonresponder strain C3H/HeJ. In line with earlier findings on colony-forming cells, cells bearing receptors for CSF-1 in uninfected susceptible BALB/cJ mice were only half those in resistant C57BL/6J mice. After infection the majority of these cells disappeared from the bone marrow and spleen cells of both resistant and susceptible mice. The number of CSF-1 receptor-bearing cells in the normal bone marrow may determine the degree of resistance to L. monocytogenes. PMID:3262588

  15. Manipulating the Gut Microbiota: Methods and Challenges.

    PubMed

    Ericsson, Aaron C; Franklin, Craig L

    2015-01-01

    Eukaryotic organisms are colonized by rich and dynamic communities of microbes, both internally (e.g., in the gastrointestinal and respiratory tracts) and externally (e.g., on skin and external mucosal surfaces). The vast majority of bacterial microbes reside in the lower gastrointestinal (GI) tract, and it is estimated that the gut of a healthy human is home to some 100 trillion bacteria, roughly an order of magnitude greater than the number of host somatic cells. The development of culture-independent methods to characterize the gut microbiota (GM) has spurred a renewed interest in its role in host health and disease. Indeed, associations have been identified between various changes in the composition of the GM and an extensive list of diseases, both enteric and systemic. Animal models provide a means whereby causal relationships between characteristic differences in the GM and diseases or conditions can be formally tested using genetically identical animals in highly controlled environments. Clearly, the GM and its interactions with the host and myriad environmental factors are exceedingly complex, and it is rare that a single microbial taxon associates with, much less causes, a phenotype with perfect sensitivity and specificity. Moreover, while the exact numbers are the subject of debate, it is well recognized that only a minority of gut bacteria can be successfully cultured ex vivo. Thus, to perform studies investigating causal roles of the GM in animal model phenotypes, researchers need clever techniques to experimentally manipulate the GM of animals, and several ingenious methods of doing so have been developed, each providing its own type of information and with its own set of advantages and drawbacks. The current review will focus on the various means of experimentally manipulating the GM of research animals, drawing attention to the factors that would aid a researcher in selecting an experimental approach, and with an emphasis on mice and rats, the

  16. Genetic Engineering

    ERIC Educational Resources Information Center

    Phillips, John

    1973-01-01

    Presents a review of genetic engineering, in which the genotypes of plants and animals (including human genotypes) may be manipulated for the benefit of the human species. Discusses associated problems and solutions and provides an extensive bibliography of literature relating to genetic engineering. (JR)

  17. Obese gene expression: reduction by fasting and stimulation by insulin and glucose in lean mice, and persistent elevation in acquired (diet-induced) and genetic (yellow agouti) obesity.

    PubMed Central

    Mizuno, T M; Bergen, H; Funabashi, T; Kleopoulos, S P; Zhong, Y G; Bauman, W A; Mobbs, C V

    1996-01-01

    Mutations in the obese (ob) gene lead to obesity. This gene has been recently cloned, but the factors regulating its expression have not been elucidated. To address the regulation of the ob gene with regard to body weight and nutritional factors, Northern blot analysis was used to assess ob mRNA in adipose tissue from mice [lean, obese due to diet, or genetically (yellow agouti) obese] under different nutritional conditions. ob mRNA was elevated in both forms of obesity, compared to lean controls, correlated with elevations in plasma insulin and body weight, but not plasma glucose. In lean C57BL/6J mice, but not in mice with diet-induced obesity, ob mRNA decreased after a 48-hr fast. Similarly, in lean C57BL/6J controls, but not in obese yellow mice, i.p. glucose injection significantly increased ob mRNA. For up to 30 min after glucose injection, ob mRNA in lean mice significantly correlated with plasma glucose, but not with plasma insulin. In a separate study with only lean mice, ob mRNA was inhibited >90% by fasting, and elevated approximately 2-fold 30 min after i.p. injection of either glucose or insulin. These results suggest that in lean animals glucose and insulin enhance ob gene expression. In contrast to our results in lean mice, in obese animals ob mRNA is elevated and relatively insensitive to nutritional state, possibly due to chronic exposure to elevated plasma insulin and/or glucose. Images Fig. 1 Fig. 4 PMID:8622953

  18. Genetic deletion of TNFα inhibits ultraviolet radiation-induced development of cutaneous squamous cell carcinomas in PKCε transgenic mice via inhibition of cell survival signals.

    PubMed

    Singh, Ashok; Singh, Anupama; Bauer, Samuel J; Wheeler, Deric L; Havighurst, Thomas C; Kim, KyungMann; Verma, Ajit K

    2016-01-01

    Protein kinase C epsilon (PKCε), a Ca(2+)-independent phospholipid-dependent serine/threonine kinase, is among the six PKC isoforms (α, δ, ε, η, μ, ζ) expressed in both mouse and human skin. Epidermal PKCε level dictates the susceptibility of PKCε transgenic (TG) mice to the development of cutaneous squamous cell carcinomas (SCC) elicited either by repeated exposure to ultraviolet radiation (UVR) or by using the DMBA initiation-TPA (12-O-tetradecanoylphorbol-13-acetate) tumor promotion protocol (Wheeler,D.L. et al. (2004) Protein kinase C epsilon is an endogenous photosensitizer that enhances ultraviolet radiation-induced cutaneous damage and development of squamous cell carcinomas. Cancer Res., 64, 7756-7765). Histologically, SCC in TG mice, like human SCC, is poorly differentiated and metastatic. Our earlier studies to elucidate mechanisms of PKCε-mediated development of SCC, using either DMBA-TPA or UVR, indicated elevated release of cytokine TNFα. To determine whether TNFα is essential for the development of SCC in TG mice, we generated PKCε transgenic mice/TNFα-knockout (TG/TNFαKO) by crossbreeding TNFαKO with TG mice. We now present that deletion of TNFα in TG mice inhibited the development of SCC either by repeated UVR exposures or by the DMBA-TPA protocol. TG mice deficient in TNFα elicited both increase in SCC latency and decrease in SCC incidence. Inhibition of UVR-induced SCC development in TG/TNFαKO was accompanied by inhibition of (i) the expression levels of TNFα receptors TNFRI and TNFRII and cell proliferation marker ornithine decarboxylase and metastatic markers MMP7 and MMP9, (ii) the activation of transcription factors Stat3 and NF-kB and (iii) proliferation of hair follicle stem cells and epidermal hyperplasia. The results presented here provide the first genetic evidence that TNFα is linked to PKCε-mediated sensitivity to DMBA-TPA or UVR-induced development of cutaneous SCC. PMID:26586792

  19. Genetic modulation of apoptotic pathways fails to alter disease course in tripeptidyl-peptidase 1 deficient mice.

    PubMed

    Kim, Kwi-Hye; Sleat, David E; Bernard, Ora; Lobel, Peter

    2009-03-27

    Late-infantile neuronal ceroid lipofuscinosis (LINCL) is a fatal, incurable neurodegenerative disease of children caused by the loss of the lysosomal protein tripeptidyl-peptidase 1 (TPP1). Previous studies have suggested that Bcl-2-dependent apoptotic pathways are involved in neuronal cell death in LINCL patients and, as a result, anti-apoptotic treatments that increase Bcl-2 activity have been proposed as a potential therapeutic approach. In this study, we have directly investigated whether targeting anti-apoptotic pathways may be of value in LINCL in a mouse model of this disease that lacks TPP1 and which recapitulates many aspect of the human disease, including a greatly shortened life-span. Our approach was to genetically modify apoptotic pathways and determine the effects of these changes on the severe neurodegenerative phenotype of the LINCL mouse. LINCL mice were generated that either lacked the pro-apoptotic p53 or had increased levels of anti-apoptotic Bcl-2, changes that would exacerbate or ameliorate neuronal death, respectively, should pathways involving these proteins be important. Neither modification affected the shortened life-span of the LINCL mouse. These results suggest that either neuronal death in LINCL does not occur via apoptosis or that it occurs via apoptotic pathways not involving p53 or Bcl-2. Alternatively, pathways involving p53 and/or Bcl-2 may be involved in neuronal death under normal circumstances but may not be the only routes to this end. Importantly, our findings suggest that targeting pathways of cell death involving p53 or Bcl-2 do not represent useful directions for developing effective treatment. PMID:19429009

  20. Stage-dependent benefits and risks of pimobendan in mice with genetic dilated cardiomyopathy and progressive heart failure

    PubMed Central

    Nonaka, Miki; Morimoto, Sachio; Murayama, Takashi; Kurebayashi, Nagomi; Li, Lei; Wang, Yuan-Yuan; Arioka, Masaki; Yoshihara, Tatsuya; Takahashi-Yanaga, Fumi; Sasaguri, Toshiyuki

    2015-01-01

    Background and Purpose The Ca2+ sensitizer pimobendan is a unique inotropic agent that improves cardiac contractility with less of an increase in oxygen consumption and potentially fewer adverse effects on myocardial remodelling and arrhythmia, compared with traditional inotropes. However, clinical trials report contradictory effects of pimobendan in patients with heart failure (HF). We provide mechanistic experimental evidence of the efficacy of pimobendan using a novel mouse model of progressive HF. Experimental Approach A knock-in mouse model of human genetic dilated cardiomyopathy, which shows a clear transition from compensatory to end-stage HF at a fixed time during growth, was used to evaluate the efficacy of pimobendan and explore the underlying molecular and cellular mechanisms. Key Results Pimobendan prevented myocardial remodelling in compensated HF and significantly extended life span in both compensated and end-stage HF, but dose-dependently increased sudden death in end-stage HF. In cardiomyocytes isolated from end-stage HF mice, pimobendan induced triggered activity probably because of early or delayed afterdepolarizations. The L-type Ca2+ channel blocker verapamil decreased the incidence of triggered activity, suggesting that this was from over-elevated cytoplasmic Ca2+ through increased Ca2+ entry by PDE3 inhibition under diminished sarcoplasmic reticulum Ca2+ reuptake and increased Ca2+ leakage from sarcoplasmic reticulum in end-stage HF. Conclusions and Implications Pimobendan was beneficial regardless of HF stage, but increased sudden cardiac death in end-stage HF with extensive remodelling of Ca2+ handling. Reduction of cytoplasmic Ca2+ elevated by PDE3 inhibition might decrease this risk of sudden cardiac death. PMID:25560565

  1. Genetic blockade of adenosine A2A receptors induces cognitive impairments and anatomical changes related to psychotic symptoms in mice.

    PubMed

    Moscoso-Castro, Maria; Gracia-Rubio, Irene; Ciruela, Francisco; Valverde, Olga

    2016-07-01

    Schizophrenia is a chronic severe mental disorder with a presumed neurodevelopmental origin, and no effective treatment. Schizophrenia is a multifactorial disease with genetic, environmental and neurochemical etiology. The main theories on the pathophysiology of this disorder include alterations in dopaminergic and glutamatergic neurotransmission in limbic and cortical areas of the brain. Early hypotheses also suggested that nucleoside adenosine is a putative affected neurotransmitter system, and clinical evidence suggests that adenosine adjuvants improve treatment outcomes, especially in poorly responsive patients. Hence, it is important to elucidate the role of the neuromodulator adenosine in the pathophysiology of schizophrenia. A2A adenosine receptor (A2AR) subtypes are expressed in brain areas controlling motivational responses and cognition, including striatum, and in lower levels in hippocampus and cerebral cortex. The aim of this study was to characterize A2AR knockout (KO) mice with complete and specific inactivation of A2AR, as an animal model for schizophrenia. We performed behavioral, anatomical and neurochemical studies to assess psychotic-like symptoms in adult male and female KO and wild-type (WT) littermates. Our results show impairments in inhibitory responses and sensory gating in A2AR KO animals. Hyperlocomotion induced by d-amphetamine and MK-801 was reduced in KO animals when compared to WT littermates. Moreover, A2AR KO animals show motor disturbances, social and cognitive alterations. Finally, behavioral impairments were associated with enlargement of brain lateral ventricles and decreased BDNF levels in the hippocampus. These data highlight the role of adenosine in the pathophysiology of schizophrenia and provide new possibilities for the therapeutic management of schizophrenia. PMID:27133030

  2. Genetic targeting of NRXN2 in mice unveils role in excitatory cortical synapse function and social behaviors

    PubMed Central

    Born, Gesche; Grayton, Hannah M.; Langhorst, Hanna; Dudanova, Irina; Rohlmann, Astrid; Woodward, Benjamin W.; Collier, David A.; Fernandes, Cathy; Missler, Markus

    2015-01-01

    Human genetics has identified rare copy number variations and deleterious mutations for all neurexin genes (NRXN1-3) in patients with neurodevelopmental diseases, and electrophysiological recordings in animal brains have shown that Nrxns are important for synaptic transmission. While several mouse models for Nrxn1α inactivation have previously been studied for behavioral changes, very little information is available for other variants. Here, we validate that mice lacking Nrxn2α exhibit behavioral abnormalities, characterized by social interaction deficits and increased anxiety-like behavior, which partially overlap, partially differ from Nrxn1α mutant behaviors. Using patch-clamp recordings in Nrxn2α knockout brains, we observe reduced spontaneous transmitter release at excitatory synapses in the neocortex. We also analyse at this cellular level a novel NRXN2 mouse model that carries a combined deletion of Nrxn2α and Nrxn2β. Electrophysiological analysis of this Nrxn2-mutant mouse shows surprisingly similar defects of excitatory release to Nrxn2α, indicating that the β-variant of Nrxn2 has no strong function in basic transmission at these synapses. Inhibitory transmission as well as synapse densities and ultrastructure remain unchanged in the neocortex of both models. Furthermore, at Nrxn2α and Nrxn2-mutant excitatory synapses we find