Science.gov

Sample records for genome program contractor-grantee

  1. DOE Human Genome Program contractor-grantee workshop

    SciTech Connect

    1996-01-01

    This volume contains the proceedings for the DOE Human Genome Program`s Contractor-Grantee Workshop V held in Sante Fe, New Mexico January 28, February 1, 1996. Presentations were divided into sessions entitled Sequencing; Mapping; Informatics; Ethical, Legal, and Social Issues; and Infrastructure. Reports of individual projects described herein are separately indexed and abstracted for the database.

  2. DOE Human Genome Program: Contractor-Grantee Workshop IV, November 13--17, 1994, Santa Fe, New Mexico

    SciTech Connect

    Not Available

    1994-10-01

    This volume contains the proceedings of the fourth Contractor-Grantee Workshop for the Department of Energy (DOE) Human Genome Program. Of the 204 abstracts in this book, some 200 describe the genome research of DOE-funded grantees and contractors located at the multidisciplinary centers at Lawrence Berkeley Laboratory, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory; other DOE-supported laboratories; and more than 54 universities, research organizations, and companies in the United States and abroad. Included are 16 abstracts from ongoing projects in the Ethical, Legal, and Social Issues (ELSI) component, an area that continues to attract considerable attention from a wide variety of interested parties. Three abstracts summarize work in the new Microbial Genome Initiative launched this year by the Office of Health and Environmental Research (OHER) to provide genome sequence and mapping data on industrially important microorganisms and those that live under extreme conditions. Many of the projects will be discussed at plenary sessions held throughout the workshop, and all are represented in the poster sessions.

  3. Genomics:GTL Contractor-Grantee Workshop IV and Metabolic Engineering Working Group Inter-Agency Conference on Metabolic Engineering 2006

    SciTech Connect

    Mansfield, Betty Kay; Martin, Sheryl A

    2006-02-01

    Welcome to the 2006 joint meeting of the fourth Genomics:GTL Contractor-Grantee Workshop and the six Metabolic Engineering Working Group Inter-Agency Conference. The vision and scope of the Genomics:GTL program continue to expand and encompass research and technology issues from diverse scientific disciplines, attracting broad interest and support from researchers at universities, DOE national laboratories, and industry. Metabolic engineering's vision is the targeted and purposeful alteration of metabolic pathways to improve the understanding and use of cellular pathways for chemical transformation, energy transduction, and supramolecular assembly. These two programs have much complementarity in both vision and technological approaches, as reflected in this joint workshop. GLT's challenge to the scientific community remains the further development and use of a broad array of innovative technologies and computational tools to systematically leverage the knowledge and capabilities brought to us by DNA sequencing projects. The goal is to seek a broad and predictive understanding of the functioning and control of complex systems--individual microbes, microbial communities, and plants. GTL's prominent position at the interface of the physical, computational, and biological sciences is both a strength and challenge. Microbes remain GTL's principal biological focus. In the complex 'simplicity' of microbes, they find capabilities needed by DOE and the nation for clean and secure energy, cleanup of environmental contamination, and sequestration of atmospheric carbon dioxide that contributes to global warming. An ongoing challenge for the entire GTL community is to demonstrate that the fundamental science conducted in each of your research projects brings us a step closer to biology-based solutions for these important national energy and environmental needs.

  4. JGI Fungal Genomics Program

    SciTech Connect

    Grigoriev, Igor V.

    2011-03-14

    Genomes of energy and environment fungi are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 50 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such 'parts' suggested by comparative genomics and functional analysis in these areas are presented here

  5. Epidemiology & Genomics Research Program

    Cancer.gov

    The Epidemiology and Genomics Research Program, in the National Cancer Institute's Division of Cancer Control and Population Sciences, funds research in human populations to understand the determinants of cancer occurrence and outcomes.

  6. Fungal Genomics Program

    SciTech Connect

    Grigoriev, Igor

    2012-03-12

    The JGI Fungal Genomics Program aims to scale up sequencing and analysis of fungal genomes to explore the diversity of fungi important for energy and the environment, and to promote functional studies on a system level. Combining new sequencing technologies and comparative genomics tools, JGI is now leading the world in fungal genome sequencing and analysis. Over 120 sequenced fungal genomes with analytical tools are available via MycoCosm (www.jgi.doe.gov/fungi), a web-portal for fungal biologists. Our model of interacting with user communities, unique among other sequencing centers, helps organize these communities, improves genome annotation and analysis work, and facilitates new larger-scale genomic projects. This resulted in 20 high-profile papers published in 2011 alone and contributing to the Genomics Encyclopedia of Fungi, which targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts). Our next grand challenges include larger scale exploration of fungal diversity (1000 fungal genomes), developing molecular tools for DOE-relevant model organisms, and analysis of complex systems and metagenomes.

  7. Human Genome Program

    SciTech Connect

    Not Available

    1993-01-01

    The DOE Human Genome program has grown tremendously, as shown by the marked increase in the number of genome-funded projects since the last workshop held in 1991. The abstracts in this book describe the genome research of DOE-funded grantees and contractors and invited guests, and all projects are represented at the workshop by posters. The 3-day meeting includes plenary sessions on ethical, legal, and social issues pertaining to the availability of genetic data; sequencing techniques, informatics support; and chromosome and cDNA mapping and sequencing.

  8. Programs | Office of Cancer Genomics

    Cancer.gov

    OCG facilitates cancer genomics research through a series of highly-focused programs. These programs generate and disseminate genomic data for use by the cancer research community. OCG programs also promote advances in technology-based infrastructure and create valuable experimental reagents and tools. OCG programs encourage collaboration by interconnecting with other genomics and cancer projects in order to accelerate translation of findings into the clinic. Below are OCG’s current, completed, and initiated programs:

  9. Human genome. 1993 Program report

    SciTech Connect

    Not Available

    1994-03-01

    The purpose of this report is to update the Human Genome 1991-92 Program Report and provide new information on the DOE genome program to researchers, program managers, other government agencies, and the interested public. This FY 1993 supplement includes abstracts of 60 new or renewed projects and listings of 112 continuing and 28 completed projects. These two reports, taken together, present the most complete published view of the DOE Human Genome Program through FY 1993. Research is progressing rapidly toward 15-year goals of mapping and sequencing the DNA of each of the 24 different human chromosomes.

  10. Human Genome Education Program

    SciTech Connect

    Richard Myers; Lane Conn

    2000-05-01

    The funds from the DOE Human Genome Program, for the project period 2/1/96 through 1/31/98, have provided major support for the curriculum development and field testing efforts for two high school level instructional units: Unit 1, ''Exploring Genetic Conditions: Genes, Culture and Choices''; and Unit 2, ''DNA Snapshots: Peaking at Your DNA''. In the original proposal, they requested DOE support for the partial salary and benefits of a Field Test Coordinator position to: (1) complete the field testing and revision of two high school curriculum units, and (2) initiate the education of teachers using these units. During the project period of this two-year DOE grant, a part-time Field-Test Coordinator was hired (Ms. Geraldine Horsma) and significant progress has been made in both of the original proposal objectives. Field testing for Unit 1 has occurred in over 12 schools (local and non-local sites with diverse student populations). Field testing for Unit 2 has occurred in over 15 schools (local and non-local sites) and will continue in 12-15 schools during the 96-97 school year. For both curricula, field-test sites and site teachers were selected for their interest in genetics education and in hands-on science education. Many of the site teachers had no previous experience with HGEP or the unit under development. Both of these first-year biology curriculum units, which contain genetics, biotechnology, societal, ethical and cultural issues related to HGP, are being implemented in many local and non-local schools (SF Bay Area, Southern California, Nebraska, Hawaii, and Texas) and in programs for teachers. These units will reach over 10,000 students in the SF Bay Area and continues to receive support from local corporate and private philanthropic organizations. Although HGEP unit development is nearing completion for both units, data is still being gathered and analyzed on unit effectiveness and student learning. The final field testing result from this analysis will

  11. Mating programs including genomic relationships

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Computer mating programs have helped breeders minimize pedigree inbreeding and avoid recessive defects by mating animals with parents that have fewer common ancestors. With genomic selection, breed associations, AI organizations, and on-farm software providers could use new programs to minimize geno...

  12. Human Genome Program Image Gallery (from genomics.energy.gov)

    DOE Data Explorer

    This collection contains approximately 240 images from the genome programs of DOE's Office of Science. The images are divided into galleries related to biofuels research, systems biology, and basic genomics. Each image has a title, a basic citation, and a credit or source. Most of the images are original graphics created by the Genome Management Information System (GMIS). GMIS images are recognizable by their credit line. Permission to use these graphics is not needed, but please credit the U.S. Department of Energy Genome Programs and provide the website http://genomics.energy.gov. Other images were provided by third parties and not created by the U.S. Department of Energy. Users must contact the person listed in the credit line before using those images. The high-resolution images can be downloaded.

  13. Pseudo Boolean Programming for Partially Ordered Genomes

    NASA Astrophysics Data System (ADS)

    Angibaud, Sébastien; Fertin, Guillaume; Thévenin, Annelyse; Vialette, Stéphane

    Comparing genomes of different species is a crucial problem in comparative genomics. Different measures have been proposed to compare two genomes: number of common intervals, number of adjacencies, number of reversals, etc. These measures are classically used between two totally ordered genomes. However, genetic mapping techniques often give rise to different maps with some unordered genes. Starting from a partial order between genes of a genome, one method to find a total order consists in optimizing a given measure between a linear extension of this partial order and a given total order of a close and well-known genome. However, for most common measures, the problem turns out to be NP-hard. In this paper, we propose a (0,1)-linear programming approach to compute a linear extension of one genome that maximizes the number of common intervals (resp. the number of adjacencies) between this linear extension and a given total order. Next, we propose an algorithm to find linear extensions of two partial orders that maximize the number of adjacencies.

  14. Programmed genome rearrangements in the ciliate Oxytricha

    PubMed Central

    Yerlici, V. Talya; Landweber, Laura F.

    2015-01-01

    The ciliate Oxytricha is a microbial eukaryote with two genomes, one of which experiences extensive genome remodeling during development. Each round of conjugation initiates a cascade of events that construct a transcriptionally active somatic genome from a scrambled germline genome, with considerable help from both long and small noncoding RNAs. This process of genome remodeling entails massive DNA deletion and reshuffling of remaining DNA segments to form functional genes from their interrupted and scrambled germline precursors. The use of Oxytricha as a model system provides an opportunity to study an exaggerated form of programmed genome rearrangement. Furthermore, studying the mechanisms that maintain nuclear dimorphism and mediate genome rearrangement has demonstrated a surprising plasticity and diversity of non-coding RNA pathways, with new roles that go beyond conventional gene silencing. Another aspect of ciliate genetics is their unorthodox patterns of RNA-mediated, epigenetic inheritance, that rival Mendelian inheritance. This review takes the reader through the key experiments in a model eukaryote that led to fundamental discoveries in RNA biology and pushes the biological limits of DNA processing. PMID:26104449

  15. Mating programs including genomic relationships and dominance effects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Breed associations, artificial-insemination organizations, and on-farm software providers need new computerized mating programs for genomic selection so that genomic inbreeding could be minimized by comparing genotypes of potential mates. Efficient methods for transferring elements of the genomic re...

  16. Dairy cattle genomics evaluation program update

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Implementation of genomic evaluation has caused profound changes in dairy cattle breeding. All young bulls bought by major artificial-insemination organizations now are selected based on these evaluation. Evaluation reliability can reach ~75% for yield traits, which is adequate for marketing semen o...

  17. Mating programs including genomic relationships and dominance effects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Computer mating programs have helped breeders minimize pedigree inbreeding and avoid recessive defects by mating animals with parents that have fewer common ancestors. With genomic selection, breed associations, AI organizations, and on-farm software providers could use new programs to minimize geno...

  18. Human Genome Program Report. Part 1, Overview and Progress

    DOE R&D Accomplishments Database

    1997-11-01

    This report contains Part 1 of a two-part report to reflect research and progress in the U.S. Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 1 consists of the program overview and report on progress.

  19. Human genome program report. Part 1, overview and progress

    SciTech Connect

    1997-11-01

    This report contains Part 1 of a two-part report to reflect research and progress in the U.S. Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 1 consists of the program overview and report on progress.

  20. Primer on Molecular Genetics; DOE Human Genome Program

    DOE R&D Accomplishments Database

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  1. Primer on molecular genetics. DOE Human Genome Program

    SciTech Connect

    Not Available

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  2. Human Genome Program Report. Part 2, 1996 Research Abstracts

    DOE R&D Accomplishments Database

    1997-11-01

    This report contains Part 2 of a two-part report to reflect research and progress in the US Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 2 consists of 1996 research abstracts. Attention is focused on the following: sequencing; mapping; informatics; ethical, legal, and social issues; infrastructure; and small business innovation research.

  3. Integrating genomics into applied tropical fruit breeding programs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The plant genetics group at the SHRS is divided into three CRIS projects. All three are in the thematic National Program (NP) 301, Plant Microbial and Insect Genetic Resources, Genomics and Genetic Improvement. A major germplasm/breeding CRIS was established in 1998 for improving and preserving orna...

  4. Human genome program report. Part 2, 1996 research abstracts

    SciTech Connect

    1997-11-01

    This report contains Part 2 of a two-part report to reflect research and progress in the US Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 2 consists of 1996 research abstracts. Attention is focused on the following: sequencing; mapping; informatics; ethical, legal, and social issues; infrastructure; and small business innovation research.

  5. Survey of university programs in remote sensing funded under grants from the NASA University-Space Applications program

    NASA Technical Reports Server (NTRS)

    Madigan, J. A.; Earhart, R. W.

    1978-01-01

    NASA's Office of Space and Terrestrial Applications (OSTA) is currently assessing approaches to transferring NASA technology to both the public and private sectors. As part of this assessment, NASA is evaluating the effectiveness of an ongoing program in remote sensing technology transfer conducted by 20 university contractors/grantees, each supported totally or partially by NASA funds. The University-Space Applications program has as its objective the demonstration of practical benefits from the use of remote sensing technology to a broad spectrum of new users, principally in state and local governments. To evaluate the University-Space Applications program, NASA has a near-term requirement for data on each university effort including total funding, funding sources, length of program, program description, and effectiveness measures.

  6. Genomic Tools in Groundnut Breeding Program: Status and Perspectives.

    PubMed

    Janila, P; Variath, Murali T; Pandey, Manish K; Desmae, Haile; Motagi, Babu N; Okori, Patrick; Manohar, Surendra S; Rathnakumar, A L; Radhakrishnan, T; Liao, Boshou; Varshney, Rajeev K

    2016-01-01

    Groundnut, a nutrient-rich food legume, is cultivated world over. It is valued for its good quality cooking oil, energy and protein rich food, and nutrient-rich fodder. Globally, groundnut improvement programs have developed varieties to meet the preferences of farmers, traders, processors, and consumers. Enhanced yield, tolerance to biotic and abiotic stresses and quality parameters have been the target traits. Spurt in genetic information of groundnut was facilitated by development of molecular markers, genetic, and physical maps, generation of expressed sequence tags (EST), discovery of genes, and identification of quantitative trait loci (QTL) for some important biotic and abiotic stresses and quality traits. The first groundnut variety developed using marker assisted breeding (MAB) was registered in 2003. Since then, USA, China, Japan, and India have begun to use genomic tools in routine groundnut improvement programs. Introgression lines that combine foliar fungal disease resistance and early maturity were developed using MAB. Establishment of marker-trait associations (MTA) paved way to integrate genomic tools in groundnut breeding for accelerated genetic gain. Genomic Selection (GS) tools are employed to improve drought tolerance and pod yield, governed by several minor effect QTLs. Draft genome sequence and low cost genotyping tools such as genotyping by sequencing (GBS) are expected to accelerate use of genomic tools to enhance genetic gains for target traits in groundnut. PMID:27014312

  7. Genomic Tools in Groundnut Breeding Program: Status and Perspectives

    PubMed Central

    Janila, P.; Variath, Murali T.; Pandey, Manish K.; Desmae, Haile; Motagi, Babu N.; Okori, Patrick; Manohar, Surendra S.; Rathnakumar, A. L.; Radhakrishnan, T.; Liao, Boshou; Varshney, Rajeev K.

    2016-01-01

    Groundnut, a nutrient-rich food legume, is cultivated world over. It is valued for its good quality cooking oil, energy and protein rich food, and nutrient-rich fodder. Globally, groundnut improvement programs have developed varieties to meet the preferences of farmers, traders, processors, and consumers. Enhanced yield, tolerance to biotic and abiotic stresses and quality parameters have been the target traits. Spurt in genetic information of groundnut was facilitated by development of molecular markers, genetic, and physical maps, generation of expressed sequence tags (EST), discovery of genes, and identification of quantitative trait loci (QTL) for some important biotic and abiotic stresses and quality traits. The first groundnut variety developed using marker assisted breeding (MAB) was registered in 2003. Since then, USA, China, Japan, and India have begun to use genomic tools in routine groundnut improvement programs. Introgression lines that combine foliar fungal disease resistance and early maturity were developed using MAB. Establishment of marker-trait associations (MTA) paved way to integrate genomic tools in groundnut breeding for accelerated genetic gain. Genomic Selection (GS) tools are employed to improve drought tolerance and pod yield, governed by several minor effect QTLs. Draft genome sequence and low cost genotyping tools such as genotyping by sequencing (GBS) are expected to accelerate use of genomic tools to enhance genetic gains for target traits in groundnut. PMID:27014312

  8. Genomic prediction in CIMMYT maize and wheat breeding programs

    PubMed Central

    Crossa, J; Pérez, P; Hickey, J; Burgueño, J; Ornella, L; Cerón-Rojas, J; Zhang, X; Dreisigacker, S; Babu, R; Li, Y; Bonnett, D; Mathews, K

    2014-01-01

    Genomic selection (GS) has been implemented in animal and plant species, and is regarded as a useful tool for accelerating genetic gains. Varying levels of genomic prediction accuracy have been obtained in plants, depending on the prediction problem assessed and on several other factors, such as trait heritability, the relationship between the individuals to be predicted and those used to train the models for prediction, number of markers, sample size and genotype × environment interaction (GE). The main objective of this article is to describe the results of genomic prediction in International Maize and Wheat Improvement Center's (CIMMYT's) maize and wheat breeding programs, from the initial assessment of the predictive ability of different models using pedigree and marker information to the present, when methods for implementing GS in practical global maize and wheat breeding programs are being studied and investigated. Results show that pedigree (population structure) accounts for a sizeable proportion of the prediction accuracy when a global population is the prediction problem to be assessed. However, when the prediction uses unrelated populations to train the prediction equations, prediction accuracy becomes negligible. When genomic prediction includes modeling GE, an increase in prediction accuracy can be achieved by borrowing information from correlated environments. Several questions on how to incorporate GS into CIMMYT's maize and wheat programs remain unanswered and subject to further investigation, for example, prediction within and between related bi-parental crosses. Further research on the quantification of breeding value components for GS in plant breeding populations is required. PMID:23572121

  9. Genomic prediction in CIMMYT maize and wheat breeding programs.

    PubMed

    Crossa, J; Pérez, P; Hickey, J; Burgueño, J; Ornella, L; Cerón-Rojas, J; Zhang, X; Dreisigacker, S; Babu, R; Li, Y; Bonnett, D; Mathews, K

    2014-01-01

    Genomic selection (GS) has been implemented in animal and plant species, and is regarded as a useful tool for accelerating genetic gains. Varying levels of genomic prediction accuracy have been obtained in plants, depending on the prediction problem assessed and on several other factors, such as trait heritability, the relationship between the individuals to be predicted and those used to train the models for prediction, number of markers, sample size and genotype × environment interaction (GE). The main objective of this article is to describe the results of genomic prediction in International Maize and Wheat Improvement Center's (CIMMYT's) maize and wheat breeding programs, from the initial assessment of the predictive ability of different models using pedigree and marker information to the present, when methods for implementing GS in practical global maize and wheat breeding programs are being studied and investigated. Results show that pedigree (population structure) accounts for a sizeable proportion of the prediction accuracy when a global population is the prediction problem to be assessed. However, when the prediction uses unrelated populations to train the prediction equations, prediction accuracy becomes negligible. When genomic prediction includes modeling GE, an increase in prediction accuracy can be achieved by borrowing information from correlated environments. Several questions on how to incorporate GS into CIMMYT's maize and wheat programs remain unanswered and subject to further investigation, for example, prediction within and between related bi-parental crosses. Further research on the quantification of breeding value components for GS in plant breeding populations is required. PMID:23572121

  10. Genome research in Austria--a program of the future.

    PubMed

    Pasterk, Markus G

    2002-11-01

    Genome research is a central area both for progress in scientific findings in life sciences and for the innovative capacity in medical science, and the pharmaceutical and biotech industries. The research findings obtained by interdisciplinary cooperation are of paramount epistemological importance. They will establish a new understanding of biology. In this context, there will be revolutionary opportunities for new medical therapies, for instance, or for keeping plants and animals healthy. Austria will participate in this science and innovation field and will use the resulting opportunities for scientific and economic development as well as for overall social prosperity. For this purpose, [corrected] Austria has developed the 'Austrian Genome Research Programme', a 'programme of the future' for Austria. This program will be based on the good foundations that genome research has already established in Austria. PMID:12437484

  11. Optimization of Swine Breeding Programs Using Genomic Selection with ZPLAN.

    PubMed

    Lopez, B M; Kang, H S; Kim, T H; Viterbo, V S; Kim, H S; Na, C S; Seo, K S

    2016-05-01

    The objective of this study was to evaluate the present conventional selection program of a swine nucleus farm and compare it with a new selection strategy employing genomic enhanced breeding value (GEBV) as the selection criteria. The ZPLAN+ software was employed to calculate and compare the genetic gain, total cost, return and profit of each selection strategy. The first strategy reflected the current conventional breeding program, which was a progeny test system (CS). The second strategy was a selection scheme based strictly on genomic information (GS1). The third scenario was the same as GS1, but the selection by GEBV was further supplemented by the performance test (GS2). The last scenario was a mixture of genomic information and progeny tests (GS3). The results showed that the accuracy of the selection index of young boars of GS1 was 26% higher than that of CS. On the other hand, both GS2 and GS3 gave 31% higher accuracy than CS for young boars. The annual monetary genetic gain of GS1, GS2 and GS3 was 10%, 12%, and 11% higher, respectively, than that of CS. As expected, the discounted costs of genomic selection strategies were higher than those of CS. The costs of GS1, GS2 and GS3 were 35%, 73%, and 89% higher than those of CS, respectively, assuming a genotyping cost of $120. As a result, the discounted profit per animal of GS1 and GS2 was 8% and 2% higher, respectively, than that of CS while GS3 was 6% lower. Comparison among genomic breeding scenarios revealed that GS1 was more profitable than GS2 and GS3. The genomic selection schemes, especially GS1 and GS2, were clearly superior to the conventional scheme in terms of monetary genetic gain and profit. PMID:26954222

  12. Optimization of Swine Breeding Programs Using Genomic Selection with ZPLAN+

    PubMed Central

    Lopez, B. M.; Kang, H. S.; Kim, T. H.; Viterbo, V. S.; Kim, H. S.; Na, C. S.; Seo, K. S.

    2016-01-01

    The objective of this study was to evaluate the present conventional selection program of a swine nucleus farm and compare it with a new selection strategy employing genomic enhanced breeding value (GEBV) as the selection criteria. The ZPLAN+ software was employed to calculate and compare the genetic gain, total cost, return and profit of each selection strategy. The first strategy reflected the current conventional breeding program, which was a progeny test system (CS). The second strategy was a selection scheme based strictly on genomic information (GS1). The third scenario was the same as GS1, but the selection by GEBV was further supplemented by the performance test (GS2). The last scenario was a mixture of genomic information and progeny tests (GS3). The results showed that the accuracy of the selection index of young boars of GS1 was 26% higher than that of CS. On the other hand, both GS2 and GS3 gave 31% higher accuracy than CS for young boars. The annual monetary genetic gain of GS1, GS2 and GS3 was 10%, 12%, and 11% higher, respectively, than that of CS. As expected, the discounted costs of genomic selection strategies were higher than those of CS. The costs of GS1, GS2 and GS3 were 35%, 73%, and 89% higher than those of CS, respectively, assuming a genotyping cost of $120. As a result, the discounted profit per animal of GS1 and GS2 was 8% and 2% higher, respectively, than that of CS while GS3 was 6% lower. Comparison among genomic breeding scenarios revealed that GS1 was more profitable than GS2 and GS3. The genomic selection schemes, especially GS1 and GS2, were clearly superior to the conventional scheme in terms of monetary genetic gain and profit. PMID:26954222

  13. Genomic resources in mungbean for future breeding programs

    PubMed Central

    Kim, Sue K.; Nair, Ramakrishnan M.; Lee, Jayern; Lee, Suk-Ha

    2015-01-01

    Among the legume family, mungbean (Vigna radiata) has become one of the important crops in Asia, showing a steady increase in global production. It provides a good source of protein and contains most notably folate and iron. Beyond the nutritional value of mungbean, certain features make it a well-suited model organism among legume plants because of its small genome size, short life-cycle, self-pollinating, and close genetic relationship to other legumes. In the past, there have been several efforts to develop molecular markers and linkage maps associated with agronomic traits for the genetic improvement of mungbean and, ultimately, breeding for cultivar development to increase the average yields of mungbean. The recent release of a reference genome of the cultivated mungbean (V. radiata var. radiata VC1973A) and an additional de novo sequencing of a wild relative mungbean (V. radiata var. sublobata) has provided a framework for mungbean genetic and genome research, that can further be used for genome-wide association and functional studies to identify genes related to specific agronomic traits. Moreover, the diverse gene pool of wild mungbean comprises valuable genetic resources of beneficial genes that may be helpful in widening the genetic diversity of cultivated mungbean. This review paper covers the research progress on molecular and genomics approaches and the current status of breeding programs that have developed to move toward the ultimate goal of mungbean improvement. PMID:26322067

  14. Post-Genome Era Pedagogy: How a BS Biotechnology Program Benefits the Liberal Arts Institution

    ERIC Educational Resources Information Center

    Eden, Peter

    2005-01-01

    Genomics profoundly affects society, because genome sequence information is widely used in such areas as genetic testing, genomic medicine/vaccine development, and so forth. Therefore, a responsibility to modernize science curricula exists for "post-genome era" educators. At my university, we developed a BS biotechnology program within a liberal…

  15. [Strategies of the study on herb genome program].

    PubMed

    Chen, Shi-lin; Sun, Yong-zhen; Xu, Jiang; Luo, Hong-mei; Sun, Chao; He, Liu; Cheng, Xiang-lin; Zhang, Bo-li; Xiao, Pei-gen

    2010-07-01

    Herb Genome Program (HerbGP) includes a series of projects on whole genome sequencing (WGS) and post-genomics research of medicinal plants with unique secondary metabolism pathways or/and those of great medical and pharmaceutical importance. In this paper, we systematically discussed the strategy of HerbGP, from species selection, whole-genome sequencing, assembly and bioinformatics analysis, to postgenomics research. HerbGP will push study on Chinese traditional medicines into the front field of life science, by selecting a series of plants with unique secondary metabolism pathways as models and introducing "omics" methods into the research of these medicinal plants. HerbGP will provide great opportunities for China to be the leader in the basic research field of traditional Chinese medicine. HerbGP shall also have significant impacts on the R&D of natural medicines and the development of medicinal farming by analysis of secondary metabolic pathways and selection of cultivars with good agricultural traits. PMID:20931775

  16. An Introduction to the China Rice Functional Genomics Program

    PubMed Central

    Xu, Zhihong

    2002-01-01

    The China Rice Functional Genomics Program (CRFGP) was initiated in 1999 by the Ministry of Science and Technology of China under the National Basic Sciences Initiative and was expected to last for an initial period of five years. The CRFGP involves 20 research groups from the Chinese Academy of Sciences and some major universities and focuses on the identification of genes controlling flowering, plant architecture, fertility, reproduction, metabolic controls and stress responses in rice through a combinatorial approach based on genetics, molecular biology and functional genomics as well as the generation of intellectual properties related to crop breeding and improvements. We will briefly describe the mission of the CRFGP as well as its recent progress. PMID:18628891

  17. 78 FR 18680 - Genomic Medicine Program Advisory Committee, Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ... AFFAIRS Genomic Medicine Program Advisory Committee, Notice of Meeting The Department of Veterans Affairs... Medicine Program Advisory Committee will meet on April 11, 2013, in Suite 1000 at the United States Access... Million Veteran Program, as well as the clinical Genomic Medicine Service. The emerging implications...

  18. 75 FR 26846 - Genomic Medicine Program Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... AFFAIRS Genomic Medicine Program Advisory Committee; Notice of Meeting The Department of Veterans Affairs (VA) gives notice under Public Law 92-463 (Federal Advisory Committee Act) that the Genomic Medicine... protecting the privacy of Veterans; presentations on genomic medicine delivery within VHA and proof...

  19. 76 FR 65563 - Genomic Medicine Program Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ... AFFAIRS Genomic Medicine Program Advisory Committee; Notice of Meeting The Department of Veterans Affairs (VA) gives notice under Public Law 92-463 (Federal Advisory Committee Act) that the Genomic Medicine... continue discussions on the potential impact of whole genome data on clinical decisionmaking. The...

  20. GENOMEPOP: A program to simulate genomes in populations

    PubMed Central

    Carvajal-Rodríguez, Antonio

    2008-01-01

    Background There are several situations in population biology research where simulating DNA sequences is useful. Simulation of biological populations under different evolutionary genetic models can be undertaken using backward or forward strategies. Backward simulations, also called coalescent-based simulations, are computationally efficient. The reason is that they are based on the history of lineages with surviving offspring in the current population. On the contrary, forward simulations are less efficient because the entire population is simulated from past to present. However, the coalescent framework imposes some limitations that forward simulation does not. Hence, there is an increasing interest in forward population genetic simulation and efficient new tools have been developed recently. Software tools that allow efficient simulation of large DNA fragments under complex evolutionary models will be very helpful when trying to better understand the trace left on the DNA by the different interacting evolutionary forces. Here I will introduce GenomePop, a forward simulation program that fulfills the above requirements. The use of the program is demonstrated by studying the impact of intracodon recombination on global and site-specific dN/dS estimation. Results I have developed algorithms and written software to efficiently simulate, forward in time, different Markovian nucleotide or codon models of DNA mutation. Such models can be combined with recombination, at inter and intra codon levels, fitness-based selection and complex demographic scenarios. Conclusion GenomePop has many interesting characteristics for simulating SNPs or DNA sequences under complex evolutionary and demographic models. These features make it unique with respect to other simulation tools. Namely, the possibility of forward simulation under General Time Reversible (GTR) mutation or GTR×MG94 codon models with intra-codon recombination, arbitrary, user-defined, migration patterns, diploid or

  1. Genomic Tools in Cowpea Breeding Programs: Status and Perspectives

    PubMed Central

    Boukar, Ousmane; Fatokun, Christian A.; Huynh, Bao-Lam; Roberts, Philip A.; Close, Timothy J.

    2016-01-01

    Cowpea is one of the most important grain legumes in sub-Saharan Africa (SSA). It provides strong support to the livelihood of small-scale farmers through its contributions to their nutritional security, income generation and soil fertility enhancement. Worldwide about 6.5 million metric tons of cowpea are produced annually on about 14.5 million hectares. The low productivity of cowpea is attributable to numerous abiotic and biotic constraints. The abiotic stress factors comprise drought, low soil fertility, and heat while biotic constraints include insects, diseases, parasitic weeds, and nematodes. Cowpea farmers also have limited access to quality seeds of improved varieties for planting. Some progress has been made through conventional breeding at international and national research institutions in the last three decades. Cowpea improvement could also benefit from modern breeding methods based on molecular genetic tools. A number of advances in cowpea genetic linkage maps, and quantitative trait loci associated with some desirable traits such as resistance to Striga, Macrophomina, Fusarium wilt, bacterial blight, root-knot nematodes, aphids, and foliar thrips have been reported. An improved consensus genetic linkage map has been developed and used to identify QTLs of additional traits. In order to take advantage of these developments single nucleotide polymorphism (SNP) genotyping is being streamlined to establish an efficient workflow supported by genotyping support service (GSS)-client interactions. About 1100 SNPs mapped on the cowpea genome were converted by LGC Genomics to KASP assays. Several cowpea breeding programs have been exploiting these resources to implement molecular breeding, especially for MARS and MABC, to accelerate cowpea variety improvement. The combination of conventional breeding and molecular breeding strategies, with workflow managed through the CGIAR breeding management system (BMS), promises an increase in the number of improved

  2. Genomic Tools in Cowpea Breeding Programs: Status and Perspectives.

    PubMed

    Boukar, Ousmane; Fatokun, Christian A; Huynh, Bao-Lam; Roberts, Philip A; Close, Timothy J

    2016-01-01

    Cowpea is one of the most important grain legumes in sub-Saharan Africa (SSA). It provides strong support to the livelihood of small-scale farmers through its contributions to their nutritional security, income generation and soil fertility enhancement. Worldwide about 6.5 million metric tons of cowpea are produced annually on about 14.5 million hectares. The low productivity of cowpea is attributable to numerous abiotic and biotic constraints. The abiotic stress factors comprise drought, low soil fertility, and heat while biotic constraints include insects, diseases, parasitic weeds, and nematodes. Cowpea farmers also have limited access to quality seeds of improved varieties for planting. Some progress has been made through conventional breeding at international and national research institutions in the last three decades. Cowpea improvement could also benefit from modern breeding methods based on molecular genetic tools. A number of advances in cowpea genetic linkage maps, and quantitative trait loci associated with some desirable traits such as resistance to Striga, Macrophomina, Fusarium wilt, bacterial blight, root-knot nematodes, aphids, and foliar thrips have been reported. An improved consensus genetic linkage map has been developed and used to identify QTLs of additional traits. In order to take advantage of these developments single nucleotide polymorphism (SNP) genotyping is being streamlined to establish an efficient workflow supported by genotyping support service (GSS)-client interactions. About 1100 SNPs mapped on the cowpea genome were converted by LGC Genomics to KASP assays. Several cowpea breeding programs have been exploiting these resources to implement molecular breeding, especially for MARS and MABC, to accelerate cowpea variety improvement. The combination of conventional breeding and molecular breeding strategies, with workflow managed through the CGIAR breeding management system (BMS), promises an increase in the number of improved

  3. GIANT API: an application programming interface for functional genomics

    PubMed Central

    Roberts, Andrew M.; Wong, Aaron K.; Fisk, Ian; Troyanskaya, Olga G.

    2016-01-01

    GIANT API provides biomedical researchers programmatic access to tissue-specific and global networks in humans and model organisms, and associated tools, which includes functional re-prioritization of existing genome-wide association study (GWAS) data. Using tissue-specific interaction networks, researchers are able to predict relationships between genes specific to a tissue or cell lineage, identify the changing roles of genes across tissues and uncover disease-gene associations. Additionally, GIANT API enables computational tools like NetWAS, which leverages tissue-specific networks for re-prioritization of GWAS results. The web services covered by the API include 144 tissue-specific functional gene networks in human, global functional networks for human and six common model organisms and the NetWAS method. GIANT API conforms to the REST architecture, which makes it stateless, cacheable and highly scalable. It can be used by a diverse range of clients including web browsers, command terminals, programming languages and standalone apps for data analysis and visualization. The API is freely available for use at http://giant-api.princeton.edu. PMID:27098035

  4. GIANT API: an application programming interface for functional genomics.

    PubMed

    Roberts, Andrew M; Wong, Aaron K; Fisk, Ian; Troyanskaya, Olga G

    2016-07-01

    GIANT API provides biomedical researchers programmatic access to tissue-specific and global networks in humans and model organisms, and associated tools, which includes functional re-prioritization of existing genome-wide association study (GWAS) data. Using tissue-specific interaction networks, researchers are able to predict relationships between genes specific to a tissue or cell lineage, identify the changing roles of genes across tissues and uncover disease-gene associations. Additionally, GIANT API enables computational tools like NetWAS, which leverages tissue-specific networks for re-prioritization of GWAS results. The web services covered by the API include 144 tissue-specific functional gene networks in human, global functional networks for human and six common model organisms and the NetWAS method. GIANT API conforms to the REST architecture, which makes it stateless, cacheable and highly scalable. It can be used by a diverse range of clients including web browsers, command terminals, programming languages and standalone apps for data analysis and visualization. The API is freely available for use at http://giant-api.princeton.edu. PMID:27098035

  5. 77 FR 16898 - Genomic Medicine Program Advisory Committee, Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF VETERANS AFFAIRS Genomic Medicine Program Advisory Committee, Notice of Meeting The Department of Veterans Affairs (VA) gives notice under Public Law 92-463 (Federal Advisory Committee Act) that the Genomic...

  6. Genomic selection accuracy using multi-family prediction models in a wheat breeding program

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic selection (GS) uses genome-wide molecular marker data to predict the genetic value of selection candidates in breeding programs. In plant breeding, the ability to produce large numbers of progeny per cross allows GS to be conducted within each family. However, this approach requires phenotyp...

  7. 76 FR 24573 - Genomic Medicine Program Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF VETERANS AFFAIRS Genomic Medicine Program Advisory Committee; Notice of Meeting The Department of Veterans Affairs (VA) gives notice under Public Law 92-463 (Federal Advisory Committee Act) that the Genomic...

  8. 77 FR 58913 - Genomic Medicine Program Advisory Committee, Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF VETERANS AFFAIRS Genomic Medicine Program Advisory Committee, Notice of Meeting The Department of Veterans Affairs (VA) gives notice under Public Law 92-463 (Federal Advisory Committee Act) that the Genomic...

  9. 75 FR 61861 - Genomic Medicine Program Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF VETERANS AFFAIRS Genomic Medicine Program Advisory Committee; Notice of Meeting The Department of Veterans Affairs (VA) gives notice under Public Law 92-463 (Federal Advisory Committee Act) that the Genomic...

  10. 78 FR 58612 - Genomic Medicine Program Advisory Committee, Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF VETERANS AFFAIRS Genomic Medicine Program Advisory Committee, Notice of Meeting The Department of Veterans Affairs (VA) gives notice under the Federal Advisory Committee Act, 5 U.S.C. App. 2, that the Genomic...

  11. The NSF Plant Genome Research Outreach Program for American Indians at Iowa State University

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The involvement of Native American students and researchers in plant genome research is minimal. In an effort to increase their representation in the research community, a summer program to mentor Native American/American Indian undergraduates in plant genomics research has begun on the Iowa State U...

  12. Programmed genome rearrangements: in lampreys, all cells are not equal.

    PubMed

    Sémon, Marie; Schubert, Michael; Laudet, Vincent

    2012-08-21

    How can organisms silence deleterious gene loci? A recent study has shed light on a very brute mechanism in a jawless vertebrate: the irreversible deletion of massive chunks of genomic DNA. PMID:22917513

  13. RNA-Mediated Epigenetic Programming of Genome Rearrangements

    PubMed Central

    Nowacki, Mariusz; Shetty, Keerthi; Landweber, Laura F.

    2012-01-01

    RNA, normally thought of as a conduit in gene expression, has a novel mode of action in ciliated protozoa. Maternal RNA templates provide both an organizing guide for DNA rearrangements and a template that can transport somatic mutations to the next generation. This opportunity for RNA-mediated genome rearrangement and DNA repair is profound in the ciliate Oxytricha, which deletes 95% of its germline genome during development in a process that severely fragments its chromosomes and then sorts and reorders the hundreds of thousands of pieces remaining. Oxytricha’s somatic nuclear genome is therefore an epigenome formed through RNA templates and signals arising from the previous generation. Furthermore, this mechanism of RNA-mediated epigenetic inheritance can function across multiple generations, and the discovery of maternal template RNA molecules has revealed new biological roles for RNA and has hinted at the power of RNA molecules to sculpt genomic information in cells. PMID:21801022

  14. Genomic selection needs to be carefully assessed to meet specific requirements in livestock breeding programs

    PubMed Central

    Jonas, Elisabeth; de Koning, Dirk-Jan

    2015-01-01

    Genomic selection is a promising development in agriculture, aiming improved production by exploiting molecular genetic markers to design novel breeding programs and to develop new markers-based models for genetic evaluation. It opens opportunities for research, as novel algorithms and lab methodologies are developed. Genomic selection can be applied in many breeds and species. Further research on the implementation of genomic selection (GS) in breeding programs is highly desirable not only for the common good, but also the private sector (breeding companies). It has been projected that this approach will improve selection routines, especially in species with long reproduction cycles, late or sex-limited or expensive trait recording and for complex traits. The task of integrating GS into existing breeding programs is, however, not straightforward. Despite successful integration into breeding programs for dairy cattle, it has yet to be shown how much emphasis can be given to the genomic information and how much additional phenotypic information is needed from new selection candidates. Genomic selection is already part of future planning in many breeding companies of pigs and beef cattle among others, but further research is needed to fully estimate how effective the use of genomic information will be for the prediction of the performance of future breeding stock. Genomic prediction of production in crossbreeding and across-breed schemes, costs and choice of individuals for genotyping are reasons for a reluctance to fully rely on genomic information for selection decisions. Breeding objectives are highly dependent on the industry and the additional gain when using genomic information has to be considered carefully. This review synthesizes some of the suggested approaches in selected livestock species including cattle, pig, chicken, and fish. It outlines tasks to help understanding possible consequences when applying genomic information in breeding scenarios. PMID

  15. Genomic selection needs to be carefully assessed to meet specific requirements in livestock breeding programs.

    PubMed

    Jonas, Elisabeth; de Koning, Dirk-Jan

    2015-01-01

    Genomic selection is a promising development in agriculture, aiming improved production by exploiting molecular genetic markers to design novel breeding programs and to develop new markers-based models for genetic evaluation. It opens opportunities for research, as novel algorithms and lab methodologies are developed. Genomic selection can be applied in many breeds and species. Further research on the implementation of genomic selection (GS) in breeding programs is highly desirable not only for the common good, but also the private sector (breeding companies). It has been projected that this approach will improve selection routines, especially in species with long reproduction cycles, late or sex-limited or expensive trait recording and for complex traits. The task of integrating GS into existing breeding programs is, however, not straightforward. Despite successful integration into breeding programs for dairy cattle, it has yet to be shown how much emphasis can be given to the genomic information and how much additional phenotypic information is needed from new selection candidates. Genomic selection is already part of future planning in many breeding companies of pigs and beef cattle among others, but further research is needed to fully estimate how effective the use of genomic information will be for the prediction of the performance of future breeding stock. Genomic prediction of production in crossbreeding and across-breed schemes, costs and choice of individuals for genotyping are reasons for a reluctance to fully rely on genomic information for selection decisions. Breeding objectives are highly dependent on the industry and the additional gain when using genomic information has to be considered carefully. This review synthesizes some of the suggested approaches in selected livestock species including cattle, pig, chicken, and fish. It outlines tasks to help understanding possible consequences when applying genomic information in breeding scenarios. PMID

  16. Complexity, Post-genomic Biology and Gene Expression Programs

    NASA Astrophysics Data System (ADS)

    Williams, Rohan B. H.; Luo, Oscar Junhong

    Gene expression represents the fundamental phenomenon by which information encoded in a genome is utilised for the overall biological objectives of the organism. Understanding this level of information transfer is therefore essential for dissecting the mechanistic basis of form and function of organisms. We survey recent developments in the methodology of the life sciences that is relevant for understanding the organisation and function of the genome and review our current understanding of the regulation of gene expression, and finally, outline some new approaches that may be useful in understanding the organisation of gene regulatory systems.

  17. Genomic Tools in Pea Breeding Programs: Status and Perspectives

    PubMed Central

    Tayeh, Nadim; Aubert, Grégoire; Pilet-Nayel, Marie-Laure; Lejeune-Hénaut, Isabelle; Warkentin, Thomas D.; Burstin, Judith

    2015-01-01

    Pea (Pisum sativum L.) is an annual cool-season legume and one of the oldest domesticated crops. Dry pea seeds contain 22–25% protein, complex starch and fiber constituents, and a rich array of vitamins, minerals, and phytochemicals which make them a valuable source for human consumption and livestock feed. Dry pea ranks third to common bean and chickpea as the most widely grown pulse in the world with more than 11 million tons produced in 2013. Pea breeding has achieved great success since the time of Mendel's experiments in the mid-1800s. However, several traits still require significant improvement for better yield stability in a larger growing area. Key breeding objectives in pea include improving biotic and abiotic stress resistance and enhancing yield components and seed quality. Taking advantage of the diversity present in the pea genepool, many mapping populations have been constructed in the last decades and efforts have been deployed to identify loci involved in the control of target traits and further introgress them into elite breeding materials. Pea now benefits from next-generation sequencing and high-throughput genotyping technologies that are paving the way for genome-wide association studies and genomic selection approaches. This review covers the significant development and deployment of genomic tools for pea breeding in recent years. Future prospects are discussed especially in light of current progress toward deciphering the pea genome. PMID:26640470

  18. Genomic Tools in Pea Breeding Programs: Status and Perspectives.

    PubMed

    Tayeh, Nadim; Aubert, Grégoire; Pilet-Nayel, Marie-Laure; Lejeune-Hénaut, Isabelle; Warkentin, Thomas D; Burstin, Judith

    2015-01-01

    Pea (Pisum sativum L.) is an annual cool-season legume and one of the oldest domesticated crops. Dry pea seeds contain 22-25% protein, complex starch and fiber constituents, and a rich array of vitamins, minerals, and phytochemicals which make them a valuable source for human consumption and livestock feed. Dry pea ranks third to common bean and chickpea as the most widely grown pulse in the world with more than 11 million tons produced in 2013. Pea breeding has achieved great success since the time of Mendel's experiments in the mid-1800s. However, several traits still require significant improvement for better yield stability in a larger growing area. Key breeding objectives in pea include improving biotic and abiotic stress resistance and enhancing yield components and seed quality. Taking advantage of the diversity present in the pea genepool, many mapping populations have been constructed in the last decades and efforts have been deployed to identify loci involved in the control of target traits and further introgress them into elite breeding materials. Pea now benefits from next-generation sequencing and high-throughput genotyping technologies that are paving the way for genome-wide association studies and genomic selection approaches. This review covers the significant development and deployment of genomic tools for pea breeding in recent years. Future prospects are discussed especially in light of current progress toward deciphering the pea genome. PMID:26640470

  19. Office of Cancer Genomics launches new program | Office of Cancer Genomics

    Cancer.gov

    The NCI Office of Cancer Genomics, along with Cancer Research UK, foundation Hubrecht Organoid Technology, and Wellcome Trust Sanger Institute, launched the Human Cancer Models Initiative (HCMI). The international collaboration will generate approximately 1,000 new cancer models that are representative of human tumors. These models will allow the research community to better study cancer initiation, development, and progression.

  20. Flexible approaches for teaching computational genomics in a health information management program.

    PubMed

    Zhou, Leming; Watzlaf, Valerie; Abdelhak, Mervat

    2013-01-01

    The astonishing improvement of high-throughput biotechnologies in recent years makes it possible to access a huge amount of genomic data. The association between genomic data and genetic disease has already been and will continue to be applied to personalized healthcare. Health information management (HIM) professionals are the ones who will handle personal genetic information and provide solid evidence to support physicians' diagnoses and personalized treatment strategies, and therefore they will need to have the knowledge and skills to process genomic data. In this paper, we describe flexible approaches for teaching a computational genomics course in the HIM program at the University of Pittsburgh. HIM programs at other universities may choose an appropriate approach to fit into their own curriculum. PMID:23861672

  1. Genome image programs: visualization and interpretation of Escherichia coli microarray experiments.

    PubMed Central

    Zimmer, Daniel P; Paliy, Oleg; Thomas, Brian; Gyaneshwar, Prasad; Kustu, Sydney

    2004-01-01

    We have developed programs to facilitate analysis of microarray data in Escherichia coli. They fall into two categories: manipulation of microarray images and identification of known biological relationships among lists of genes. A program in the first category arranges spots from glass-slide DNA microarrays according to their position in the E. coli genome and displays them compactly in genome order. The resulting genome image is presented in a web browser with an image map that allows the user to identify genes in the reordered image. Another program in the first category aligns genome images from two or more experiments. These images assist in visualizing regions of the genome with common transcriptional control. Such regions include multigene operons and clusters of operons, which are easily identified as strings of adjacent, similarly colored spots. The images are also useful for assessing the overall quality of experiments. The second category of programs includes a database and a number of tools for displaying biological information about many E. coli genes simultaneously rather than one gene at a time, which facilitates identifying relationships among them. These programs have accelerated and enhanced our interpretation of results from E. coli DNA microarray experiments. Examples are given. PMID:15342544

  2. Mechanisms of Programmed DNA Lesions and Genomic Instability in the Immune System

    PubMed Central

    Alt, Frederick W.; Zhang, Yu; Meng, Fei-Long; Guo, Chunguang; Schwer, Bjoern

    2015-01-01

    Chromosomal translocations involving antigen receptor loci are common in lymphoid malignancies. Translocations require DNA double-strand breaks (DSBs) at two chromosomal sites, their physical juxtaposition, and their fusion by end joining. Ability of lymphocytes to generate diverse repertoires of antigen receptors and effector antibodies derives from programmed genomic alterations that produce DSBs. We discuss these lymphocyte-specific processes, with a focus on mechanisms that provide requisite DSB target specificity and mechanisms that suppress DSB translocation. We also discuss recent work that provides new insights into DSB repair pathways and influences of three-dimensional genome organization on physiological processes and cancer genomes. PMID:23374339

  3. CHALLENGES FOR IMPLEMENTING A PTSD PREVENTIVE GENOMIC SEQUENCING PROGRAM IN THE U.S. MILITARY

    PubMed Central

    Lázaro-Muñoz, Gabriel; Juengst, Eric T.

    2015-01-01

    There is growing interest in using the quickly developing field of genomics to contribute to military readiness and effectiveness. Specifically, influential military advisory panels have recommended that the U.S. military apply genomics to help treat, prevent, or minimize the risk for post-traumatic stress disorder (PTSD) among service members. This article highlights some important scientific, legal, and ethical challenges regarding the development and deployment of a preventive genomic sequencing (PGS) program to predict the risk of PTSD among military service members. PMID:26401056

  4. Genome-wide alterations of the DNA replication program during tumor progression

    NASA Astrophysics Data System (ADS)

    Arneodo, A.; Goldar, A.; Argoul, F.; Hyrien, O.; Audit, B.

    2016-08-01

    Oncogenic stress is a major driving force in the early stages of cancer development. Recent experimental findings reveal that, in precancerous lesions and cancers, activated oncogenes may induce stalling and dissociation of DNA replication forks resulting in DNA damage. Replication timing is emerging as an important epigenetic feature that recapitulates several genomic, epigenetic and functional specificities of even closely related cell types. There is increasing evidence that chromosome rearrangements, the hallmark of many cancer genomes, are intimately associated with the DNA replication program and that epigenetic replication timing changes often precede chromosomic rearrangements. The recent development of a novel methodology to map replication fork polarity using deep sequencing of Okazaki fragments has provided new and complementary genome-wide replication profiling data. We review the results of a wavelet-based multi-scale analysis of genomic and epigenetic data including replication profiles along human chromosomes. These results provide new insight into the spatio-temporal replication program and its dynamics during differentiation. Here our goal is to bring to cancer research, the experimental protocols and computational methodologies for replication program profiling, and also the modeling of the spatio-temporal replication program. To illustrate our purpose, we report very preliminary results obtained for the chronic myelogeneous leukemia, the archetype model of cancer. Finally, we discuss promising perspectives on using genome-wide DNA replication profiling as a novel efficient tool for cancer diagnosis, prognosis and personalized treatment.

  5. Cancer Therapy Evaluation Program | Office of Cancer Genomics

    Cancer.gov

    The Cancer Therapy Evaluation Program (CTEP) seeks to improve the lives of cancer patients by finding better treatments, control mechanisms, and cures for cancer. CTEP funds a national program of cancer research, sponsoring clinical trials to evaluate new anti-cancer agents.

  6. Genomic Selection and its Effects on Dairy Cattle Breeding Programs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The availability of high-throughput assays for genotyping single nucleotide polymorphisms (SNP) has led to the genotyping of thousands of dairy cattle, mostly progeny tested bulls in artificial insemination programs or young bulls that are candidates for such programs, using the BovineSNP50 BeadChip...

  7. Efficiency of genomic selection in an established commercial layer breeding program

    PubMed Central

    2013-01-01

    Background In breeding programs for layers, selection of hens and cocks is based on recording phenotypic data from hens in different housing systems. Genomic information can provide additional information for selection and/or allow for a strong reduction in the generation interval. In this study, a typical conventional layer breeding program using a four-line cross was modeled and the expected genetic progress was derived deterministically with the software ZPLAN+. This non-genomic reference scenario was compared to two genomic breeding programs to determine the best strategy for implementing genomic information in layer breeding programs. Results In scenario I, genomic information was used in addition to all other information available in the conventional breeding program, so the generation interval was the same as in the reference scenario, i.e. 14.5 months. Here, we assumed that either only young cocks or young cocks and hens were genotyped as selection candidates. In scenario II, we assumed that breeders of both sexes were used at the biologically earliest possible age, so that at the time of selection only performance data of the parent generation and genomic information of the selection candidates were available. In this case, the generation interval was reduced to eight months. In both scenarios, the number of genotyped male selection candidates was varied between 800 and 4800 males and two sizes of the calibration set (500 or 2000 animals) were considered. All genomic scenarios increased the expected genetic gain and the economic profit of the breeding program. In scenario II, the increase was much more pronounced and even in the most conservative implementation led to a 60% improvement in genetic gain and economic profit. This increase was in all cases associated with higher breeding costs. Conclusions While genomic selection is shown to have the potential to improve genetic gain in layer breeding programs, its implementation remains a business decision of

  8. Introduction to Metagenomics at DOE JGI: Program Overview and Program Informatics (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    SciTech Connect

    Tringe, Susannah

    2011-10-12

    Susannah Tringe of the DOE Joint Genome Institute talks about the Program Overview and Program Informatics at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011

  9. Introduction to Metagenomics at DOE JGI: Program Overview and Program Informatics (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Tringe, Susannah [DOE JGI

    2013-01-22

    Susannah Tringe of the DOE Joint Genome Institute talks about the Program Overview and Program Informatics at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011

  10. The effect of genomic information on optimal contribution selection in livestock breeding programs

    PubMed Central

    2013-01-01

    Background Long-term benefits in animal breeding programs require that increases in genetic merit be balanced with the need to maintain diversity (lost due to inbreeding). This can be achieved by using optimal contribution selection. The availability of high-density DNA marker information enables the incorporation of genomic data into optimal contribution selection but this raises the question about how this information affects the balance between genetic merit and diversity. Methods The effect of using genomic information in optimal contribution selection was examined based on simulated and real data on dairy bulls. We compared the genetic merit of selected animals at various levels of co-ancestry restrictions when using estimated breeding values based on parent average, genomic or progeny test information. Furthermore, we estimated the proportion of variation in estimated breeding values that is due to within-family differences. Results Optimal selection on genomic estimated breeding values increased genetic gain. Genetic merit was further increased using genomic rather than pedigree-based measures of co-ancestry under an inbreeding restriction policy. Using genomic instead of pedigree relationships to restrict inbreeding had a significant effect only when the population consisted of many large full-sib families; with a half-sib family structure, no difference was observed. In real data from dairy bulls, optimal contribution selection based on genomic estimated breeding values allowed for additional improvements in genetic merit at low to moderate inbreeding levels. Genomic estimated breeding values were more accurate and showed more within-family variation than parent average breeding values; for genomic estimated breeding values, 30 to 40% of the variation was due to within-family differences. Finally, there was no difference between constraining inbreeding via pedigree or genomic relationships in the real data. Conclusions The use of genomic estimated breeding

  11. Strategies, Actions, and Outcomes of Pilot State Programs in Public Health Genomics, 2003–2008

    PubMed Central

    St. Pierre, Jeanette; Bach, Janice; Duquette, Debra; Oehlke, Kristen; Nystrom, Robert; Silvey, Kerry; Zlot, Amy; Giles, Rebecca; Johnson, Jenny; Anders, H. Mack; Gwinn, Marta; Khoury, Muin J.

    2014-01-01

    State health departments in Michigan, Minnesota, Oregon, and Utah explored the use of genomic information, including family health history, in chronic disease prevention programs. To support these explorations, the Office of Public Health Genomics at the Centers for Disease Control and Prevention provided cooperative agreement funds from 2003 through 2008. The 4 states’ chronic disease programs identified advocates, formed partnerships, and assessed public data; they integrated genomics into existing state plans for genetics and chronic disease prevention; they developed projects focused on prevention of asthma, cancer, cardiovascular disease, diabetes, and other chronic conditions; and they created educational curricula and materials for health workers, policymakers, and the public. Each state’s program was different because of the need to adapt to existing culture, infrastructure, and resources, yet all were able to enhance their chronic disease prevention programs with the use of family health history, a low-tech “genomic tool.” Additional states are drawing on the experience of these 4 states to develop their own approaches. PMID:24921900

  12. Guide to Accessing Program Data | Office of Cancer Genomics

    Cancer.gov

    Visit the Guide to Accessing TARGET Data page for a visual and interactive guide on how to access OCG program data. Although this guide uses TARGET as an example, it is also applicable to CGCI data. 

  13. Development of Structural Neurobiology and Genomics Programs in the Neurogenetic Institute

    SciTech Connect

    Henderson, Brian E., M.D.

    2006-11-10

    The purpose of the DOE equipment-only grant was to purchase instrumentation in support of structural biology and genomics core facilities in the Zilkha Neurogenetic Institute (ZNI). The ZNI, a new laboratory facility (125,000 GSF) and a center of excellence at the Keck School of Medicine of USC, was opened in 2003. The goal of the ZNI is to recruit upwards of 30 new faculty investigators engaged in interdisciplinary research programs that will add breadth and depth to existing school strengths in neuroscience, epidemiology and genetics. Many of these faculty, and other faculty researchers at the Keck School will access structural biology and genomics facilities developed in the ZNI.

  14. Data Standards for the Genomes to Life Program

    SciTech Connect

    Arkin, Adam; Ambrosiano, John; Babnigg, Gyorgy; Frank, Ed; Geist,Al; Giometti, Carol; Jacobsen, Janet; Samatova, Nagiza; Slater, Nancy; Taylor, Ron

    2004-01-31

    Existing GTL Projects already have produced volumes of dataand, over the course of the next five years, will produce an estimatedhundreds, or possibly thousands, of terabytes of data from hundreds ofexperiments conducted at dozens of laboratories in National Labs anduniversities across the nation. These data will be the basis forpublications by individual researchers, research groups, andmulti-institutional collaborations, and the basis for future DOEdecisions on funding further research in bioremediation. The short-termand long-term value of the data to project participants, to the DOE, andto the nation depends, however, on being able to access the data and onhow, or whether, the data are archived. The ability to access data is thestarting point for data analysis and interpretation, data integration,data mining, and development of data-driven models. Limited orinefficient data access means that less data are analyzed in acost-effective and timely manner. Data production in the GTL Program willlikely outstrip, or may have already outstripped, the ability to analyzethe data. Being able to access data depends on two key factors: datastandards and implementation of the data standards. For the purpose ofthis proposal, a data standard is defined as a standard, documented wayin which data and information about the data are describe. The attributesof the experiment in which the data were collected need to be known andthe measurements corresponding to the data collected need to bedescribed. In general terms, a data standard could be a form (electronicor paper) that is completed by a researcher or a document that prescribeshow a protocol or experiment should be described in writing.Datastandards are critical to data access because they provide a frameworkfor organizing and managing data. Researchers spend significant amountsof time managing data and information about experiments using labnotebooks, computer files, Excel spreadsheets, etc. In addition, dataoutput format

  15. Reproductive technologies combine well with genomic selection in dairy breeding programs.

    PubMed

    Thomasen, J R; Willam, A; Egger-Danner, C; Sørensen, A C

    2016-02-01

    The objective of the present study was to examine whether genomic selection of females interacts with the use of reproductive technologies (RT) to increase annual monetary genetic gain (AMGG). This was tested using a factorial design with 3 factors: genomic selection of females (0 or 2,000 genotyped heifers per year), RT (0 or 50 donors selected at 14 mo of age for producing 10 offspring), and 2 reliabilities of genomic prediction. In addition, different strategies for use of RT and how strategies interact with the reliability of genomic prediction were investigated using stochastic simulation by varying (1) number of donors (25, 50, 100, 200), (2) number of calves born per donor (10 or 20), (3) age of donor (2 or 14 mo), and (4) number of sires (25, 50, 100, 200). In total, 72 different breeding schemes were investigated. The profitability of the different breeding strategies was evaluated by deterministic simulation by varying the costs of a born calf with reproductive technologies at levels of €500, €1,000, and €1,500. The results confirm our hypothesis that combining genomic selection of females with use of RT increases AMGG more than in a reference scheme without genomic selection in females. When the reliability of genomic prediction is high, the effect on rate of inbreeding (ΔF) is small. The study also demonstrates favorable interaction effects between the components of the breeder's equation (selection intensity, selection accuracy, generation interval) for the bull dam donor path, leading to higher AMGG. Increasing the donor program and number of born calves to achieve higher AMGG is associated with the undesirable effect of increased ΔF. This can be alleviated, however, by increasing the numbers of sires without compromising AMGG remarkably. For the major part of the investigated donor schemes, the investment in RT is profitable in dairy cattle populations, even at high levels of costs for RT. PMID:26686703

  16. Economic evaluation of genomic selection in small ruminants: a sheep meat breeding program.

    PubMed

    Shumbusho, F; Raoul, J; Astruc, J M; Palhiere, I; Lemarié, S; Fugeray-Scarbel, A; Elsen, J M

    2016-06-01

    Recent genomic evaluation studies using real data and predicting genetic gain by modeling breeding programs have reported moderate expected benefits from the replacement of classic selection schemes by genomic selection (GS) in small ruminants. The objectives of this study were to compare the cost, monetary genetic gain and economic efficiency of classic selection and GS schemes in the meat sheep industry. Deterministic methods were used to model selection based on multi-trait indices from a sheep meat breeding program. Decisional variables related to male selection candidates and progeny testing were optimized to maximize the annual monetary genetic gain (AMGG), that is, a weighted sum of meat and maternal traits annual genetic gains. For GS, a reference population of 2000 individuals was assumed and genomic information was available for evaluation of male candidates only. In the classic selection scheme, males breeding values were estimated from own and offspring phenotypes. In GS, different scenarios were considered, differing by the information used to select males (genomic only, genomic+own performance, genomic+offspring phenotypes). The results showed that all GS scenarios were associated with higher total variable costs than classic selection (if the cost of genotyping was 123 euros/animal). In terms of AMGG and economic returns, GS scenarios were found to be superior to classic selection only if genomic information was combined with their own meat phenotypes (GS-Pheno) or with their progeny test information. The predicted economic efficiency, defined as returns (proportional to number of expressions of AMGG in the nucleus and commercial flocks) minus total variable costs, showed that the best GS scenario (GS-Pheno) was up to 15% more efficient than classic selection. For all selection scenarios, optimization increased the overall AMGG, returns and economic efficiency. As a conclusion, our study shows that some forms of GS strategies are more advantageous

  17. Design and Implementation of a Genomics Field Trip Program Aimed at Secondary School Students

    PubMed Central

    Fox, Joanne A.

    2012-01-01

    With the rapid pace of advancements in biological research brought about by the application of computer science and information technology, we believe the time is right for introducing genomics and bioinformatics tools and concepts to secondary school students. Our approach has been to offer a full-day field trip in our research facility where secondary school students carry out experiments at the laboratory bench and on a laptop computer. This experience offers benefits for students, teachers, and field trip instructors. In delivering a wide variety of science outreach and education programs, we have learned that a number of factors contribute to designing a successful experience for secondary school students. First, it is important to engage students with authentic and fun activities that are linked to real-world applications and/or research questions. Second, connecting with a local high school teacher to pilot programs and linking to curricula taught in secondary schools will enrich the field trip experience. Whether or not programs are linked directly to local teachers, it is important to be flexible and build in mechanisms for collecting feedback in field trip programs. Finally, graduate students can be very powerful mentors for students and should be encouraged to share their enthusiasm for science and to talk about career paths. Our experiences suggest a real need for effective science outreach programs at the secondary school level and that genomics and bioinformatics are ideal areas to explore. PMID:22956895

  18. Cellular and Molecular Features of Developmentally Programmed Genome Rearrangement in a Vertebrate (Sea Lamprey: Petromyzon marinus)

    PubMed Central

    Timoshevskiy, Vladimir A.; Herdy, Joseph R.; Keinath, Melissa C.; Smith, Jeramiah J.

    2016-01-01

    The sea lamprey (Petromyzon marinus) represents one of the few vertebrate species known to undergo large-scale programmatic elimination of genomic DNA over the course of its normal development. Programmed genome rearrangements (PGRs) result in the reproducible loss of ~20% of the genome from somatic cell lineages during early embryogenesis. Studies of PGR hold the potential to provide novel insights related to the maintenance of genome stability during the cell cycle and coordination between mechanisms responsible for the accurate distribution of chromosomes into daughter cells, yet little is known regarding the mechanistic basis or cellular context of PGR in this or any other vertebrate lineage. Here we identify epigenetic silencing events that are associated with the programmed elimination of DNA and describe the spatiotemporal dynamics of PGR during lamprey embryogenesis. In situ analyses reveal that the earliest DNA methylation (and to some extent H3K9 trimethylation) events are limited to specific extranuclear structures (micronuclei) containing eliminated DNA. During early embryogenesis a majority of micronuclei (~60%) show strong enrichment for repressive chromatin modifications (H3K9me3 and 5meC). These analyses also led to the discovery that eliminated DNA is packaged into chromatin that does not migrate with somatically retained chromosomes during anaphase, a condition that is superficially similar to lagging chromosomes observed in some cancer subtypes. Closer examination of “lagging” chromatin revealed distributions of repetitive elements, cytoskeletal contacts and chromatin contacts that provide new insights into the cellular mechanisms underlying the programmed loss of these segments. Our analyses provide additional perspective on the cellular and molecular context of PGR, identify new structures associated with elimination of DNA and reveal that PGR is completed over the course of several successive cell divisions. PMID:27341395

  19. Prokaryotic Super Program Advisory Committee DOE Joint Genome Institute, Walnut Creek, CA, March 27, 2013

    PubMed Central

    Garrity, George M.; Banfield, Jill; Eisen, Jonathan; van der Lelie, Niels; McMahon, Trina; Rusch, Doug; DeLong, Edward; Moran, Mary Ann; Currie, Cameron; Furhman, Jed; Hallam, Steve; Hugenholtz, Phil; Moran, Nancy; Nelson, Karen; Roberts, Richard; Stepanauskas, Ramunas

    2013-01-01

    The Prokaryotic Super Program Advisory Committee met on March 27, 2013 for their annual review the Prokaryotic Super Program at the DOE Joint Genome Institute. As is the case with any site visit or program review, the objective is to evaluate progress in meeting organizational objectives, provide feedback to from the user-community and to assist the JGI in formulating plans for the coming year. The advisors want to commend the JGI for its central role in developing new technologies and capabilities, and for catalyzing the formation of new collaborative user communities. Highlights of the post-meeting exchanges among the advisors focused on the importance of programmatic initiatives including: • GEBA, which serves as a phylogenetic “base-map” on which our knowledge of functional diversity can be layered. • FEBA, which promises to provide new insights into the physiological capabilities of prokaryotes under highly standardized conditions. • Single-cell genomics technology, which is seen to significantly enhance our ability to interpret genomic and metagenomic data and broaden the scope of the GEBA program to encompass at least a part of the microbial “dark-matter”. • IMG, which is seen to play a central role in JGI programs and is viewed as a strategically important asset in the JGI portfolio. On this latter point, the committee encourages the formation of a strategic relationship between IMG and the Kbase to ensure that the intelligence, deep knowledge and experience captured in the former is not lost. The committee strongly urges the DOE to continue its support for maintaining this critical resource. PMID:24501639

  20. Prokaryotic Super Program Advisory Committee DOE Joint Genome Institute, Walnut Creek, CA, March 27, 2013.

    PubMed

    Garrity, George M; Banfield, Jill; Eisen, Jonathan; van der Lelie, Niels; McMahon, Trina; Rusch, Doug; Delong, Edward; Moran, Mary Ann; Currie, Cameron; Furhman, Jed; Hallam, Steve; Hugenholtz, Phil; Moran, Nancy; Nelson, Karen; Roberts, Richard; Stepanauskas, Ramunas

    2013-07-30

    The Prokaryotic Super Program Advisory Committee met on March 27, 2013 for their annual review the Prokaryotic Super Program at the DOE Joint Genome Institute. As is the case with any site visit or program review, the objective is to evaluate progress in meeting organizational objectives, provide feedback to from the user-community and to assist the JGI in formulating plans for the coming year. The advisors want to commend the JGI for its central role in developing new technologies and capabilities, and for catalyzing the formation of new collaborative user communities. Highlights of the post-meeting exchanges among the advisors focused on the importance of programmatic initiatives including: • GEBA, which serves as a phylogenetic "base-map" on which our knowledge of functional diversity can be layered. • FEBA, which promises to provide new insights into the physiological capabilities of prokaryotes under highly standardized conditions. • Single-cell genomics technology, which is seen to significantly enhance our ability to interpret genomic and metagenomic data and broaden the scope of the GEBA program to encompass at least a part of the microbial "dark-matter". • IMG, which is seen to play a central role in JGI programs and is viewed as a strategically important asset in the JGI portfolio. On this latter point, the committee encourages the formation of a strategic relationship between IMG and the Kbase to ensure that the intelligence, deep knowledge and experience captured in the former is not lost. The committee strongly urges the DOE to continue its support for maintaining this critical resource. PMID:24501639

  1. Report on the Imaging Workshop for the Genomes to Life Program

    SciTech Connect

    Colson, Steven; Sudar, Damir

    2002-11-01

    DOE's Genomes to Life program seeks to understand the composition and function of biochemical networks and pathways that carry out the essential processes of living organisms. Such understanding is critical for DOE to more effectively address its missions-clean energy, carbon management, bioremediation, and mitigation of bioterrorism. Imaging of living organisms links the genome to function and recognizes many of the steps along the way to understanding how cell function changes with time and environmental challenges. Innovations in imaging, coupled with computational advances, will accelerate scientific discovery and enable biological solutions to energy challenges. GTL has four main goals: (1) Identify and characterize the molecular machines of life-multiprotein complexes that execute cellular functions and govern cell form. (2) Characterize gene regulatory networks. (3) Characterize the functional repertoire of complex microbial communities in their natural environments at the molecular level. (4) Develop computational methods and capabilities to advance understanding of complex biological systems and predict their behavior.

  2. A genome resource to address mechanisms of developmental programming: determination of the fetal sheep heart transcriptome

    PubMed Central

    Cox, Laura A; Glenn, Jeremy P; Spradling, Kimberly D; Nijland, Mark J; Garcia, Roy; Nathanielsz, Peter W; Ford, Stephen P

    2012-01-01

    The pregnant sheep has provided seminal insights into reproduction related to animal and human development (ovarian function, fertility, implantation, fetal growth, parturition and lactation). Fetal sheep physiology has been extensively studied since 1950, contributing significantly to the basis for our understanding of many aspects of fetal development and behaviour that remain in use in clinical practice today. Understanding mechanisms requires the combination of systems approaches uniquely available in fetal sheep with the power of genomic studies. Absence of the full range of sheep genomic resources has limited the full realization of the power of this model, impeding progress in emerging areas of pregnancy biology such as developmental programming. We have examined the expressed fetal sheep heart transcriptome using high-throughput sequencing technologies. In so doing we identified 36,737 novel transcripts and describe genes, gene variants and pathways relevant to fundamental developmental mechanisms. Genes with the highest expression levels and with novel exons in the fetal heart transcriptome are known to play central roles in muscle development. We show that high-throughput sequencing methods can generate extensive transcriptome information in the absence of an assembled and annotated genome for that species. The gene sequence data obtained provide a unique genomic resource for sheep specific genetic technology development and, combined with the polymorphism data, augment annotation and assembly of the sheep genome. In addition, identification and pathway analysis of novel fetal sheep heart transcriptome splice variants is a first step towards revealing mechanisms of genetic variation and gene environment interactions during fetal heart development. PMID:22508961

  3. Integration of genomic information into sport horse breeding programs for optimization of accuracy of selection.

    PubMed

    Haberland, A M; König von Borstel, U; Simianer, H; König, S

    2012-09-01

    Reliable selection criteria are required for young riding horses to increase genetic gain by increasing accuracy of selection and decreasing generation intervals. In this study, selection strategies incorporating genomic breeding values (GEBVs) were evaluated. Relevant stages of selection in sport horse breeding programs were analyzed by applying selection index theory. Results in terms of accuracies of indices (r(TI) ) and relative selection response indicated that information on single nucleotide polymorphism (SNP) genotypes considerably increases the accuracy of breeding values estimated for young horses without own or progeny performance. In a first scenario, the correlation between the breeding value estimated from the SNP genotype and the true breeding value (= accuracy of GEBV) was fixed to a relatively low value of r(mg) = 0.5. For a low heritability trait (h(2) = 0.15), and an index for a young horse based only on information from both parents, additional genomic information doubles r(TI) from 0.27 to 0.54. Including the conventional information source 'own performance' into the before mentioned index, additional SNP information increases r(TI) by 40%. Thus, particularly with regard to traits of low heritability, genomic information can provide a tool for well-founded selection decisions early in life. In a further approach, different sources of breeding values (e.g. GEBV and estimated breeding values (EBVs) from different countries) were combined into an overall index when altering accuracies of EBVs and correlations between traits. In summary, we showed that genomic selection strategies have the potential to contribute to a substantial reduction in generation intervals in horse breeding programs. PMID:23031511

  4. Report on the Imaging Workshop for the Genomes to Life Program, April 16-18, 2002

    SciTech Connect

    Colson, STEVEN

    2003-08-04

    This report is a result of the Imaging Workshop for the Genomes to Life (GTL) program held April 16-19, 2002, in Charlotte, North Carolina. The meeting was sponsored by the Office of Biological and Environmental Research and the Office of Advanced Scientific Computing Research of the U.S. Department of Energy's (DOE) Office of Science. The purpose of the workshop was to project a broad vision for future needs and determine the value of imaging to GTL program research. The workshop included four technical sessions with plenary lectures on biology and technology perspectives and technical presentations on needs and approaches as they related to the following areas of the GTL program: (1) Molecular machines (protein complexes); (2) Intracellular and cellular structure, function, and processes; (3) Multicellular: Monoclonal and heterogeneous multicellular systems, cell-cell signaling, and model systems; and (4) Cells in situ and in vivo: Bacteria in the natural environment, microenvironment, and in vivo systems.

  5. The Human Genome Project and Mental Retardation: An Educational Program. Final Progress Report

    SciTech Connect

    Davis, Sharon

    1999-05-03

    The Arc, a national organization on mental retardation, conducted an educational program for members, many of whom have a family member with a genetic condition causing mental retardation. The project informed members about the Human Genome scientific efforts, conducted training regarding ethical, legal and social implications and involved members in issue discussions. Short reports and fact sheets on genetic and ELSI topics were disseminated to 2,200 of the Arc's leaders across the country and to other interested individuals. Materials produced by the project can e found on the Arc's web site, TheArc.org.

  6. Whole-Genome Screening of Newborns? The Constitutional Boundaries of State Newborn Screening Programs

    PubMed Central

    King, Jaime S.; Smith, Monica E.

    2016-01-01

    State newborn screening (NBS) programs routinely screen nearly all of the 4 million newborns in the United States each year for ~30 primary conditions and a number of secondary conditions. NBS could be on the cusp of an unprecedented expansion as a result of advances in whole-genome sequencing (WGS). As WGS becomes cheaper and easier and as our knowledge and understanding of human genetics expand, the question of whether WGS has a role to play in state NBS programs becomes increasingly relevant and complex. As geneticists and state public health officials begin to contemplate the technical and procedural details of whether WGS could benefit existing NBS programs, this is an opportune time to revisit the legal framework of state NBS programs. In this article, we examine the constitutional underpinnings of state-mandated NBS and explore the range of current state statutes and regulations that govern the programs. We consider the legal refinements that will be needed to keep state NBS programs within constitutional bounds, focusing on 2 areas of concern: consent procedures and the criteria used to select new conditions for NBS panels. We conclude by providing options for states to consider when contemplating the use of WGS for NBS. PMID:26729704

  7. FrameD: a flexible program for quality check and gene prediction in prokaryotic genomes and noisy matured eukaryotic sequences

    PubMed Central

    Schiex, Thomas; Gouzy, Jérôme; Moisan, Annick; de Oliveira, Yannick

    2003-01-01

    We describe FrameD, a program that predicts coding regions in prokaryotic and matured eukaryotic sequences. Initially targeted at gene prediction in bacterial GC rich genomes, the gene model used in FrameD also allows to predict genes in the presence of frameshifts and partially undetermined sequences which makes it also very suitable for gene prediction and frameshift correction in unfinished sequences such as EST and EST cluster sequences. Like recent eukaryotic gene prediction programs, FrameD also includes the ability to take into account protein similarity information both in its prediction and its graphical output. Its performances are evaluated on different bacterial genomes. The web site (http://genopole.toulouse.inra.fr/bioinfo/FrameD/FD) allows direct prediction, sequence correction and translation and the ability to learn new models for new organisms. PMID:12824407

  8. FrameD: A flexible program for quality check and gene prediction in prokaryotic genomes and noisy matured eukaryotic sequences.

    PubMed

    Schiex, Thomas; Gouzy, Jérôme; Moisan, Annick; de Oliveira, Yannick

    2003-07-01

    We describe FrameD, a program that predicts coding regions in prokaryotic and matured eukaryotic sequences. Initially targeted at gene prediction in bacterial GC rich genomes, the gene model used in FrameD also allows to predict genes in the presence of frameshifts and partially undetermined sequences which makes it also very suitable for gene prediction and frameshift correction in unfinished sequences such as EST and EST cluster sequences. Like recent eukaryotic gene prediction programs, FrameD also includes the ability to take into account protein similarity information both in its prediction and its graphical output. Its performances are evaluated on different bacterial genomes. The web site (http://genopole.toulouse.inra.fr/bioinfo/FrameD/FD) allows direct prediction, sequence correction and translation and the ability to learn new models for new organisms. PMID:12824407

  9. An Innovative Plant Genomics and Gene Annotation Program for High School, Community College, and University Faculty

    ERIC Educational Resources Information Center

    Hacisalihoglu, Gokhan; Hilgert, Uwe; Nash, E. Bruce; Micklos, David A.

    2008-01-01

    Today's biology educators face the challenge of training their students in modern molecular biology techniques including genomics and bioinformatics. The Dolan DNA Learning Center (DNALC) of Cold Spring Harbor Laboratory has developed and disseminated a bench- and computer-based plant genomics curriculum for biology faculty. In 2007, a five-day…

  10. Extension of Type 2 Diabetes Genome-Wide Association Scan Results in the Diabetes Prevention Program

    PubMed Central

    Moore, Allan F.; Jablonski, Kathleen A.; McAteer, Jarred B.; Saxena, Richa; Pollin, Toni I.; Franks, Paul W.; Hanson, Robert L.; Shuldiner, Alan R.; Knowler, William C.; Altshuler, David; Florez, Jose C.

    2008-01-01

    OBJECTIVE— Genome-wide association scans (GWASs) have identified novel diabetes-associated genes. We evaluated how these variants impact diabetes incidence, quantitative glycemic traits, and response to preventive interventions in 3,548 subjects at high risk of type 2 diabetes enrolled in the Diabetes Prevention Program (DPP), which examined the effects of lifestyle intervention, metformin, and troglitazone versus placebo. RESEARCH DESIGN AND METHODS— We genotyped selected single nucleotide polymorphisms (SNPs) in or near diabetes-associated loci, including EXT2, CDKAL1, CDKN2A/B, IGF2BP2, HHEX, LOC387761, and SLC30A8 in DPP participants and performed Cox regression analyses using genotype, intervention, and their interactions as predictors of diabetes incidence. We evaluated their effect on insulin resistance and secretion at 1 year. RESULTS— None of the selected SNPs were associated with increased diabetes incidence in this population. After adjustments for ethnicity, baseline insulin secretion was lower in subjects with the risk genotype at HHEX rs1111875 (P = 0.01); there were no significant differences in baseline insulin sensitivity. Both at baseline and at 1 year, subjects with the risk genotype at LOC387761 had paradoxically increased insulin secretion; adjustment for self-reported ethnicity abolished these differences. In ethnicity-adjusted analyses, we noted a nominal differential improvement in β-cell function for carriers of the protective genotype at CDKN2A/B after 1 year of troglitazone treatment (P = 0.01) and possibly lifestyle modification (P = 0.05). CONCLUSIONS— We were unable to replicate the GWAS findings regarding diabetes risk in the DPP. We did observe genotype associations with differences in baseline insulin secretion at the HHEX locus and a possible pharmacogenetic interaction at CDKNA2/B. PMID:18544707

  11. Enriched domain detector: a program for detection of wide genomic enrichment domains robust against local variations

    PubMed Central

    Lund, Eivind; Oldenburg, Anja R.; Collas, Philippe

    2014-01-01

    Nuclear lamins contact the genome at the nuclear periphery through large domains and are involved in chromatin organization. Among broad peak calling algorithms available to date, none are suited for mapping lamin–genome interactions genome wide. We disclose a novel algorithm, enriched domain detector (EDD), for analysis of broad enrichment domains from chromatin immunoprecipitation (ChIP)-seq data. EDD enables discovery of genomic domains interacting with broadly distributed proteins, such as A- and B-type lamins affinity isolated by ChIP. The advantages of EDD over existing broad peak callers are sensitivity to domain width rather than enrichment strength at a particular site, and robustness against local variations. PMID:24782521

  12. Genomic selection in a pig population including information from slaughtered full sibs of boars within a sib-testing program.

    PubMed

    Samorè, A B; Buttazzoni, L; Gallo, M; Russo, V; Fontanesi, L

    2015-05-01

    Genomic selection is becoming a common practise in dairy cattle, but only few works have studied its introduction in pig selection programs. Results described for this species are highly dependent on the considered traits and the specific population structure. This paper aims to simulate the impact of genomic selection in a pig population with a training cohort of performance-tested and slaughtered full sibs. This population is selected for performance, carcass and meat quality traits by full-sib testing of boars. Data were simulated using a forward-in-time simulation process that modeled around 60K single nucleotide polymorphisms and several quantitative trait loci distributed across the 18 porcine autosomes. Data were edited to obtain, for each cycle, 200 sires mated with 800 dams to produce 800 litters of 4 piglets each, two males and two females (needed for the sib test), for a total of 3200 newborns. At each cycle, a subset of 200 litters were sib tested, and 60 boars and 160 sows were selected to replace the same number of culled male and female parents. Simulated selection of boars based on performance test data of their full sibs (one castrated brother and two sisters per boar in 200 litters) lasted for 15 cycles. Genotyping and phenotyping of the three tested sibs (training population) and genotyping of the candidate boars (prediction population) were assumed. Breeding values were calculated for traits with two heritability levels (h 2=0.40, carcass traits, and h 2=0.10, meat quality parameters) on simulated pedigrees, phenotypes and genotypes. Genomic breeding values, estimated by various models (GBLUP from raw phenotype or using breeding values and single-step models), were compared with the classical BLUP Animal Model predictions in terms of predictive ability. Results obtained for traits with moderate heritability (h 2=0.40), similar to the heritability of traits commonly measured within a sib-testing program, did not show any benefit from the

  13. The Human Genome Initiative: Implications for the Comprehensive School Health Program.

    ERIC Educational Resources Information Center

    James, Delores C. S.

    1994-01-01

    The Human Genome Initiative (HGI) constructs common resources for studying human genetics. Early identification of people at risk for genetic disorders allows for early education and counseling. HGI research will create inexpensive, reliable genetic tests and diagnoses to help teachers and school staff assess, compare, and channel students. (SM)

  14. Democratizing Human Genome Project Information: A Model Program for Education, Information and Debate in Public Libraries.

    ERIC Educational Resources Information Center

    Pollack, Miriam

    The "Mapping the Human Genome" project demonstrated that librarians can help whomever they serve in accessing information resources in the areas of biological and health information, whether it is the scientists who are developing the information or a member of the public who is using the information. Public libraries can guide library users…

  15. Recurrent parent genome recovery analysis in a marker-assisted backcrossing program of rice (Oryza sativa L.).

    PubMed

    Miah, Gous; Rafii, Mohd Y; Ismail, Mohd R; Puteh, Adam B; Rahim, Harun A; Latif, Mohammad A

    2015-02-01

    Backcross breeding is the most commonly used method for incorporating a blast resistance gene into a rice cultivar. Linkage between the resistance gene and undesirable units can persist for many generations of backcrossing. Marker-assisted backcrossing (MABC) along with marker-assisted selection (MAS) contributes immensely to overcome the main limitation of the conventional breeding and accelerates recurrent parent genome (RPG) recovery. The MABC approach was employed to incorporate (a) blast resistance gene(s) from the donor parent Pongsu Seribu 1, the blast-resistant local variety in Malaysia, into the genetic background of MR219, a popular high-yielding rice variety that is blast susceptible, to develop a blast-resistant MR219 improved variety. In this perspective, the recurrent parent genome recovery was analyzed in early generations of backcrossing using simple sequence repeat (SSR) markers. Out of 375 SSR markers, 70 markers were found polymorphic between the parents, and these markers were used to evaluate the plants in subsequent generations. Background analysis revealed that the extent of RPG recovery ranged from 75.40% to 91.3% and from 80.40% to 96.70% in BC1F1 and BC2F1 generations, respectively. In this study, the recurrent parent genome content in the selected BC2F2 lines ranged from 92.7% to 97.7%. The average proportion of the recurrent parent in the selected improved line was 95.98%. MAS allowed identification of the plants that are more similar to the recurrent parent for the loci evaluated in backcross generations. The application of MAS with the MABC breeding program accelerated the recovery of the RP genome, reducing the number of generations and the time for incorporating resistance against rice blast. PMID:25553855

  16. EXONSAMPLER: a computer program for genome-wide and candidate gene exon sampling for targeted next-generation sequencing.

    PubMed

    Cosart, Ted; Beja-Pereira, Albano; Luikart, Gordon

    2014-11-01

    The computer program EXONSAMPLER automates the sampling of thousands of exon sequences from publicly available reference genome sequences and gene annotation databases. It was designed to provide exon sequences for the efficient, next-generation gene sequencing method called exon capture. The exon sequences can be sampled by a list of gene name abbreviations (e.g. IFNG, TLR1), or by sampling exons from genes spaced evenly across chromosomes. It provides a list of genomic coordinates (a bed file), as well as a set of sequences in fasta format. User-adjustable parameters for collecting exon sequences include a minimum and maximum acceptable exon length, maximum number of exonic base pairs (bp) to sample per gene, and maximum total bp for the entire collection. It allows for partial sampling of very large exons. It can preferentially sample upstream (5 prime) exons, downstream (3 prime) exons, both external exons, or all internal exons. It is written in the Python programming language using its free libraries. We describe the use of EXONSAMPLER to collect exon sequences from the domestic cow (Bos taurus) genome for the design of an exon-capture microarray to sequence exons from related species, including the zebu cow and wild bison. We collected ~10% of the exome (~3 million bp), including 155 candidate genes, and ~16,000 exons evenly spaced genomewide. We prioritized the collection of 5 prime exons to facilitate discovery and genotyping of SNPs near upstream gene regulatory DNA sequences, which control gene expression and are often under natural selection. PMID:24751285

  17. Proceedings of the relevance of mass spectrometry to DNA sequence determination: Research needs for the Human Genome Program

    SciTech Connect

    Edmonds, C.G.; Smith, R.D. ); Smith, L.M. )

    1990-11-01

    A workshop was sponsored for the US Department of Energy (DOE), Office of Health and Environmental Research by Pacific Northwest Laboratory, April 4--5, 1990, in Seattle, Washington, to examine the potential role of mass spectrometry in the joint DOE/National Institutes of Health (NIH) Human Genome Program. The workshop was occasioned by recent developments in mass spectrometry that are providing new levels for selectivity, sensitivity, and, in particular, new methods of ionization appropriate for large biopolymers such as DNA. During discussions, three general mass spectrometric approaches to the determination of DNA sequence were considered: (1) the mass spectrometric detection of isotopic labels from DNA sequencing mixtures separated using gel electrophoresis, (2) the direct mass spectrometric analysis from direct ionization of unfractionated sequencing mixtures where the measured mass of the constituents functions to identify and order the base sequence (replacing separation by gel electrophoresis), and (3) an approach in which a single highly charged molecular ion of a large DNA segment produced is rapidly sequenced in an ion cyclotron resonance ion trap. The consensus of the workshop was that, on the basis of the new developments, mass spectrometry has the potential to provide the substantial increases in sequencing speed required for the Human Genome Program. 66 refs., 3 tabs.

  18. Cytokine-induced megakaryocytic differentiation is regulated by genome-wide loss of a uSTAT transcriptional program.

    PubMed

    Park, Hyun Jung; Li, Juan; Hannah, Rebecca; Biddie, Simon; Leal-Cervantes, Ana I; Kirschner, Kristina; Flores Santa Cruz, David; Sexl, Veronika; Göttgens, Berthold; Green, Anthony R

    2016-03-15

    Metazoan development is regulated by transcriptional networks, which must respond to extracellular cues including cytokines. The JAK/STAT pathway is a highly conserved regulatory module, activated by many cytokines, in which tyrosine-phosphorylated STATs (pSTATs) function as transcription factors. However, the mechanisms by which STAT activation modulates lineage-affiliated transcriptional programs are unclear. We demonstrate that in the absence of thrombopoietin (TPO), tyrosine-unphosphorylated STAT5 (uSTAT5) is present in the nucleus where it colocalizes with CTCF and represses a megakaryocytic transcriptional program. TPO-mediated phosphorylation of STAT5 triggers its genome-wide relocation to STAT consensus sites with two distinct transcriptional consequences, loss of a uSTAT5 program that restrains megakaryocytic differentiation and activation of a canonical pSTAT5-driven program which includes regulators of apoptosis and proliferation. Transcriptional repression by uSTAT5 reflects restricted access of the megakaryocytic transcription factor ERG to target genes. These results identify a previously unrecognized mechanism of cytokine-mediated differentiation. PMID:26702099

  19. Multimedia Presentations on the Human Genome: Implementation and Assessment of a Teaching Program for the Introduction to Genome Science Using a Poster and Animations

    ERIC Educational Resources Information Center

    Kano, Kei; Yahata, Saiko; Muroi, Kaori; Kawakami, Masahiro; Tomoda, Mari; Miyaki, Koichi; Nakayama, Takeo; Kosugi, Shinji; Kato, Kazuto

    2008-01-01

    Genome science, including topics such as gene recombination, cloning, genetic tests, and gene therapy, is now an established part of our daily lives; thus we need to learn genome science to better equip ourselves for the present day. Learning from topics directly related to the human has been suggested to be more effective than learning from…

  20. [Genome-cohort studies for the development of personalized cancer prevention programs in Japan].

    PubMed

    Tanaka, Hideo

    2015-05-01

    One of the most important roles of molecular epidemiology is to investigate gene-environment interactions in order to provide data for personalized risk modification. A case-control study conducted in Aichi showed that an aldehyde dehydrogenase- 2(ALDH2)polymorphism together with cigarette smoking significantly affects the risk of lung cancer. The main purpose of this large-scale genome-cohort study of healthy individuals is to confirm that these factors are associated with the development of diseases and to set optimal thresholds for the environmental factors. The Japan Multi-Institutional Collaborative Cohort(J-MICC)Study was launched in 2005. It has recruited 100,600 healthy participants up to the end of 2014, and plans to follow them until 2025. Although Japanese genome-cohort studies, including the J-MICC Study, the Japan Public Health Center-based Prospective(JPHC)Study, and the Tohoku Medical Megabank Organization Study, consist of different research teams with different financial resources, collaboration to standardize the data collection format for successful pooled analysis is being discussed. PMID:25981648

  1. Genome-wide analysis of genetic and epigenetic control of programmed DNA deletion.

    PubMed

    Swart, Estienne C; Wilkes, Cyril Denby; Sandoval, Pamela Y; Arambasic, Miroslav; Sperling, Linda; Nowacki, Mariusz

    2014-08-01

    During the development of the somatic genome from the Paramecium germline genome the bulk of the copies of ∼45 000 unique, internal eliminated sequences (IESs) are deleted. IES targeting is facilitated by two small RNA (sRNA) classes: scnRNAs, which relay epigenetic information from the parental nucleus to the developing nucleus, and iesRNAs, which are produced and used in the developing nucleus. Why only certain IESs require sRNAs for their removal has been enigmatic. By analyzing the silencing effects of three genes: PGM (responsible for DNA excision), DCL2/3 (scnRNA production) and DCL5 (iesRNA production), we identify key properties required for IES elimination. Based on these results, we propose that, depending on the exact combination of their lengths and end bases, some IESs are less efficiently recognized or excised and have a greater requirement for targeting by scnRNAs and iesRNAs. We suggest that the variation in IES retention following silencing of DCL2/3 is not primarily due to scnRNA density, which is comparatively uniform relative to IES retention, but rather the genetic properties of IESs. Taken together, our analyses demonstrate that in Paramecium the underlying genetic properties of developmentally deleted DNA sequences are essential in determining the sensitivity of these sequences to epigenetic control. PMID:25016527

  2. Genome-wide analysis of p53 transcriptional programs in B cells upon exposure to genotoxic stress in vivo

    PubMed Central

    Tonelli, Claudia; Morelli, Marco J.; Bianchi, Salvatore; Rotta, Luca; Capra, Thelma; Sabò, Arianna; Campaner, Stefano; Amati, Bruno

    2015-01-01

    The tumor suppressor p53 is a transcription factor that coordinates the cellular response to DNA damage. Here we provide an integrated analysis of p53 genomic occupancy and p53-dependent gene regulation in the splenic B and non-B cell compartments of mice exposed to whole-body ionizing radiation, providing insight into general principles of p53 activity in vivo. In unstressed conditions, p53 bound few genomic targets; induction of p53 by ionizing radiation increased the number of p53 bound sites, leading to highly overlapping profiles in the different cell types. Comparison of these profiles with chromatin features in unstressed B cells revealed that, upon activation, p53 localized at active promoters, distal enhancers, and a smaller set of unmarked distal regions. At promoters, recognition of the canonical p53 motif as well as binding strength were associated with p53-dependent transcriptional activation, but not repression, indicating that the latter was most likely indirect. p53-activated targets constituted the core of a cell type-independent response, superimposed onto a cell type-specific program. Core response genes included most of the known p53-regulated genes, as well as many new ones. Our data represent a unique characterization of the p53-regulated response to ionizing radiation in vivo. PMID:26372730

  3. Genomes to Life''Center for Molecular and Cellular Systems'': A research program for identification and characterization of protein complexes.

    SciTech Connect

    Buchanan, M V.; Larimer, Frank; Wiley, H S.; Kennel, S J.; Squier, Thomas C.; Ramsey, John M.; Rodland, Karin D.; Hurst, G B.; Smith, Richard D.; Xu, Ying; Dixon, David A.; Doktycz, M J.; Colson, Steve D.; Gesteland, R; Giometti, Carol S.; Young, Mark E.; Giddings, Ralph M.

    2002-02-01

    Goal 1 of Department of Energy's Genomes to Life (GTL) program seeks to identify and characterize the complete set of protein complexes within a cell. Goal 1 forms the foundation necessary to accomplish the other objectives of the GTL program, which focus on gene regulatory networks and molecular level characterization of interactions in microbial communities. Together this information would allow cells and their components to be understood in sufficient detail to predict, test, and understand the responses of a biological system to its environment. The Center for Molecular and Cellular Systems has been established to identify and characterize protein complexes using high through-put analytical technologies. A dynamic research program is being developed that supports the goals of the Center by focusing on the development of new capabilities for sample preparation and complex separations, molecular level identification of the protein complexes by mass spectrometry, characterization of the complexes in living cells by imaging techniques, and bioinformatics and computational tools for the collection and interpretation of data and formation of databases and tools to allow the data to be shared by the biological community.

  4. GENETICS AND GENOMICS - INTEGRATION OF MOLECULAR GENETICS INTO A BREEDING PROGRAM FOR RAINBOW TROUT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    At the National Center for Cool and Cold Water Aquaculture (US Department of Agriculture, Ag. Research Service) in Leetown, WV, we have a broodstock development program now entering the 2nd generation of family based selective breeding using expected breeding values (EBVs). Our major breeding objec...

  5. Genome-wide view of TGFβ/Foxh1 regulation of the early mesendoderm program

    PubMed Central

    Chiu, William T.; Charney Le, Rebekah; Blitz, Ira L.; Fish, Margaret B.; Li, Yi; Biesinger, Jacob; Xie, Xiaohui; Cho, Ken W. Y.

    2014-01-01

    Nodal/TGFβ signaling regulates diverse biological responses. By combining RNA-seq on Foxh1 and Nodal signaling loss-of-function embryos with ChIP-seq of Foxh1 and Smad2/3, we report a comprehensive genome-wide interaction between Foxh1 and Smad2/3 in mediating Nodal signaling during vertebrate mesendoderm development. This study significantly increases the total number of Nodal target genes regulated by Foxh1 and Smad2/3, and reinforces the notion that Foxh1-Smad2/3-mediated Nodal signaling directly coordinates the expression of a cohort of genes involved in the control of gene transcription, signaling pathway modulation and tissue morphogenesis during gastrulation. We also show that Foxh1 may function independently of Nodal signaling, in addition to its role as a transcription factor mediating Nodal signaling via Smad2/3. Finally, we propose an evolutionarily conserved interaction between Foxh1 and PouV, a mechanism observed in Pou5f1-mediated regulation of pluripotency in human embryonic stem and epiblast cells. PMID:25359723

  6. mlRho – a program for estimating the population mutation and recombination rates from shotgun-sequenced diploid genomes

    PubMed Central

    HAUBOLD, BERNHARD; PFAFFELHUBER, PETER; LYNCH, MICHAEL

    2016-01-01

    Improvements in sequencing technology over the past 5 years are leading to routine application of shotgun sequencing in the fields of ecology and evolution. However, the theory to estimate evolutionary parameters from these data is still being worked out. Here we present an extension and implementation of part of this theory, mlRho. This program can efficiently compute the following three maximum likelihood estimators based on shotgun sequence data obtained from single diploid individuals: the population mutation rate (4Neμ), the sequencing error rate, and the population recombination rate (4Nec). We demonstrate the accuracy of mlRho by applying it to simulated data sets. In addition, we analyse the genomes of the sea squirt Ciona intestinalis and the water flea Daphnia pulex. Ciona intestinalis is an obligate outcrosser, while D. pulex is a cyclic parthenogen, and we discuss how these contrasting life histories are reflected in our parameter estimates. The program mlRho is freely available from http://guanine.evolbio.mpg.de/mlRho. PMID:20331786

  7. mlRho - a program for estimating the population mutation and recombination rates from shotgun-sequenced diploid genomes.

    PubMed

    Haubold, Bernhard; Pfaffelhuber, Peter; Lynch, Michael

    2010-03-01

    Improvements in sequencing technology over the past 5 years are leading to routine application of shotgun sequencing in the fields of ecology and evolution. However, the theory to estimate evolutionary parameters from these data is still being worked out. Here we present an extension and implementation of part of this theory, mlRho. This program can efficiently compute the following three maximum likelihood estimators based on shotgun sequence data obtained from single diploid individuals: the population mutation rate (4N(e)mu), the sequencing error rate, and the population recombination rate (4N(e)c). We demonstrate the accuracy of mlRho by applying it to simulated data sets. In addition, we analyse the genomes of the sea squirt Ciona intestinalis and the water flea Daphnia pulex. Ciona intestinalis is an obligate outcrosser, while D. pulex is a cyclic parthenogen, and we discuss how these contrasting life histories are reflected in our parameter estimates. The program mlRho is freely available from http://guanine.evolbio.mpg.de/mlRho. PMID:20331786

  8. Cultural differences define diagnosis and genomic medicine practice: implications for undiagnosed diseases program in China

    PubMed Central

    Duan, Xiaohong; Markello, Thomas; Adams, David; Toro, Camilo; Tifft, Cynthia; Gahl, William A.; Boerkoel, Cornelius F.

    2013-01-01

    Despite the current acceleration and increasing leadership of Chinese genetics research, genetics and its clinical application have largely been imported to China from the Occident. Neither genetics nor the scientific reductionism underpinning its clinical application is integral to the traditional Chinese worldview. Given that disease concepts and their incumbent diagnoses are historically derived and culturally meaningful, we hypothesize that the cultural expectations of genetic diagnoses and medical genetics practice differs between the Occident and China. Specifically, we suggest that an undiagnosed diseases program in China will differ from the recently established Undiagnosed Diseases Program at the United States National Institutes of Health; a culturally sensitive concept will integrate traditional Chinese understanding of disease with the scientific reductionism of Occidental medicine. PMID:23856975

  9. Cultural differences define diagnosis and genomic medicine practice: implications for undiagnosed diseases program in China.

    PubMed

    Duan, Xiaohong; Markello, Thomas; Adams, David; Toro, Camilo; Tifft, Cynthia; Gahl, William A; Boerkoel, Cornelius F

    2013-09-01

    Despite the current acceleration and increasing leadership of Chinese genetics research, genetics and its clinical application have largely been imported to China from the Occident. Neither genetics nor the scientific reductionism underpinning its clinical application is integral to the traditional Chinese worldview. Given that disease concepts and their incumbent diagnoses are historically derived and culturally meaningful, we hypothesize that the cultural expectations of genetic diagnoses and medical genetics practice differ between the Occident and China. Specifically, we suggest that an undiagnosed diseases program in China will differ from the recently established Undiagnosed Diseases Program at the United States National Institutes of Health; a culturally sensitive concept will integrate traditional Chinese understanding of disease with the scientific reductionism of Occidental medicine. PMID:23856975

  10. The pea aphid (Acyrthosiphon pisum) genome encodes two divergent early developmental programs.

    PubMed

    Duncan, Elizabeth J; Leask, Megan P; Dearden, Peter K

    2013-05-01

    The pea aphid (Acyrthosiphon pisum) can reproduce either sexually or asexually (parthenogenetically), giving rise, in each case, to almost identical adults. These two modes of reproduction are accompanied by differences in ovarian morphology and the developmental environment of the offspring, with sexual forms producing eggs that are laid, whereas asexual development occurs within the mother. Here we examine the effect each mode of reproduction has on the expression of key maternal and axis patterning genes; orthodenticle (otd), hunchback (hb), caudal (cad) and nanos (nos). We show that three of these genes (Ap-hb, Ap-otd and Ap-cad) are expressed differently between the sexually and asexually produced oocytes and embryos of the pea aphid. We also show, using immunohistochemistry and cytoskeletal inhibitors, that Ap-hb RNA is localized differently between sexually and asexually produced oocytes, and that this is likely due to differences in the 3' untranslated regions of the RNA. Furthermore, Ap-hb and Ap-otd have extensive expression domains in early sexually produced embryos, but are not expressed at equivalent stages in asexually produced embryos. These differences in expression likely correspond with substantial changes in the gene regulatory networks controlling early development in the pea aphid. These data imply that in the evolution of parthenogenesis a new program has evolved to control the development of asexually produced embryos, whilst retaining the existing, sexual, developmental program. The patterns of modification of these developmental processes mirror the changes that we see in developmental processes between species, in that early acting pathways in development are less constrained, and evolve faster, than later ones. We suggest that the evolution of the novel asexual development pathway in aphids is not a simple modification of an ancestral system, but the evolution of two very different developmental mechanisms occurring within a single

  11. Genomic Encyclopedia of Fungi

    SciTech Connect

    Grigoriev, Igor

    2012-08-10

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 150 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.

  12. Integrating genomics and proteomics data to predict drug effects using binary linear programming.

    PubMed

    Ji, Zhiwei; Su, Jing; Liu, Chenglin; Wang, Hongyan; Huang, Deshuang; Zhou, Xiaobo

    2014-01-01

    The Library of Integrated Network-Based Cellular Signatures (LINCS) project aims to create a network-based understanding of biology by cataloging changes in gene expression and signal transduction that occur when cells are exposed to a variety of perturbations. It is helpful for understanding cell pathways and facilitating drug discovery. Here, we developed a novel approach to infer cell-specific pathways and identify a compound's effects using gene expression and phosphoproteomics data under treatments with different compounds. Gene expression data were employed to infer potential targets of compounds and create a generic pathway map. Binary linear programming (BLP) was then developed to optimize the generic pathway topology based on the mid-stage signaling response of phosphorylation. To demonstrate effectiveness of this approach, we built a generic pathway map for the MCF7 breast cancer cell line and inferred the cell-specific pathways by BLP. The first group of 11 compounds was utilized to optimize the generic pathways, and then 4 compounds were used to identify effects based on the inferred cell-specific pathways. Cross-validation indicated that the cell-specific pathways reliably predicted a compound's effects. Finally, we applied BLP to re-optimize the cell-specific pathways to predict the effects of 4 compounds (trichostatin A, MS-275, staurosporine, and digoxigenin) according to compound-induced topological alterations. Trichostatin A and MS-275 (both HDAC inhibitors) inhibited the downstream pathway of HDAC1 and caused cell growth arrest via activation of p53 and p21; the effects of digoxigenin were totally opposite. Staurosporine blocked the cell cycle via p53 and p21, but also promoted cell growth via activated HDAC1 and its downstream pathway. Our approach was also applied to the PC3 prostate cancer cell line, and the cross-validation analysis showed very good accuracy in predicting effects of 4 compounds. In summary, our computational model can be

  13. Genome Informatics

    PubMed Central

    Winslow, Raimond L.; Boguski, Mark S.

    2005-01-01

    This article reviews recent advances in genomics and informatics relevant to cardiovascular research. In particular, we review the status of (1) whole genome sequencing efforts in human, mouse, rat, zebrafish, and dog; (2) the development of data mining and analysis tools; (3) the launching of the National Heart, Lung, and Blood Institute Programs for Genomics Applications and Proteomics Initiative; (4) efforts to characterize the cardiac transcriptome and proteome; and (5) the current status of computational modeling of the cardiac myocyte. In each instance, we provide links to relevant sources of information on the World Wide Web and critical appraisals of the promises and the challenges of an expanding and diverse information landscape. PMID:12750305

  14. Accuracy of genomic selection in barley breeding programs: a simulation study based on the real SNP data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this study was to compare the accuracy of genomic selection (i.e., selection based on genome-wide markers) to phenotypic selection through simulations based on real barley SNPs data (1325 SNPs x 863 breeding lines). We simulated 100 QTL at randomly selected SNPs, which were dropped from t...

  15. Phytozome Comparative Plant Genomics Portal

    SciTech Connect

    Goodstein, David; Batra, Sajeev; Carlson, Joseph; Hayes, Richard; Phillips, Jeremy; Shu, Shengqiang; Schmutz, Jeremy; Rokhsar, Daniel

    2014-09-09

    The Dept. of Energy Joint Genome Institute is a genomics user facility supporting DOE mission science in the areas of Bioenergy, Carbon Cycling, and Biogeochemistry. The Plant Program at the JGI applies genomic, analytical, computational and informatics platforms and methods to: 1. Understand and accelerate the improvement (domestication) of bioenergy crops 2. Characterize and moderate plant response to climate change 3. Use comparative genomics to identify constrained elements and infer gene function 4. Build high quality genomic resource platforms of JGI Plant Flagship genomes for functional and experimental work 5. Expand functional genomic resources for Plant Flagship genomes

  16. Generating information-rich high-throughput experimental materials genomes using functional clustering via multitree genetic programming and information theory.

    PubMed

    Suram, Santosh K; Haber, Joel A; Jin, Jian; Gregoire, John M

    2015-04-13

    High-throughput experimental methodologies are capable of synthesizing, screening and characterizing vast arrays of combinatorial material libraries at a very rapid rate. These methodologies strategically employ tiered screening wherein the number of compositions screened decreases as the complexity, and very often the scientific information obtained from a screening experiment, increases. The algorithm used for down-selection of samples from higher throughput screening experiment to a lower throughput screening experiment is vital in achieving information-rich experimental materials genomes. The fundamental science of material discovery lies in the establishment of composition-structure-property relationships, motivating the development of advanced down-selection algorithms which consider the information value of the selected compositions, as opposed to simply selecting the best performing compositions from a high throughput experiment. Identification of property fields (composition regions with distinct composition-property relationships) in high throughput data enables down-selection algorithms to employ advanced selection strategies, such as the selection of representative compositions from each field or selection of compositions that span the composition space of the highest performing field. Such strategies would greatly enhance the generation of data-driven discoveries. We introduce an informatics-based clustering of composition-property functional relationships using a combination of information theory and multitree genetic programming concepts for identification of property fields in a composition library. We demonstrate our approach using a complex synthetic composition-property map for a 5 at. % step ternary library consisting of four distinct property fields and finally explore the application of this methodology for capturing relationships between composition and catalytic activity for the oxygen evolution reaction for 5429 catalyst compositions in a

  17. Genome Maps, a new generation genome browser.

    PubMed

    Medina, Ignacio; Salavert, Francisco; Sanchez, Rubén; de Maria, Alejandro; Alonso, Roberto; Escobar, Pablo; Bleda, Marta; Dopazo, Joaquín

    2013-07-01

    Genome browsers have gained importance as more genomes and related genomic information become available. However, the increase of information brought about by new generation sequencing technologies is, at the same time, causing a subtle but continuous decrease in the efficiency of conventional genome browsers. Here, we present Genome Maps, a genome browser that implements an innovative model of data transfer and management. The program uses highly efficient technologies from the new HTML5 standard, such as scalable vector graphics, that optimize workloads at both server and client sides and ensure future scalability. Thus, data management and representation are entirely carried out by the browser, without the need of any Java Applet, Flash or other plug-in technology installation. Relevant biological data on genes, transcripts, exons, regulatory features, single-nucleotide polymorphisms, karyotype and so forth, are imported from web services and are available as tracks. In addition, several DAS servers are already included in Genome Maps. As a novelty, this web-based genome browser allows the local upload of huge genomic data files (e.g. VCF or BAM) that can be dynamically visualized in real time at the client side, thus facilitating the management of medical data affected by privacy restrictions. Finally, Genome Maps can easily be integrated in any web application by including only a few lines of code. Genome Maps is an open source collaborative initiative available in the GitHub repository (https://github.com/compbio-bigdata-viz/genome-maps). Genome Maps is available at: http://www.genomemaps.org. PMID:23748955

  18. Genome Maps, a new generation genome browser

    PubMed Central

    Medina, Ignacio; Salavert, Francisco; Sanchez, Rubén; de Maria, Alejandro; Alonso, Roberto; Escobar, Pablo; Bleda, Marta; Dopazo, Joaquín

    2013-01-01

    Genome browsers have gained importance as more genomes and related genomic information become available. However, the increase of information brought about by new generation sequencing technologies is, at the same time, causing a subtle but continuous decrease in the efficiency of conventional genome browsers. Here, we present Genome Maps, a genome browser that implements an innovative model of data transfer and management. The program uses highly efficient technologies from the new HTML5 standard, such as scalable vector graphics, that optimize workloads at both server and client sides and ensure future scalability. Thus, data management and representation are entirely carried out by the browser, without the need of any Java Applet, Flash or other plug-in technology installation. Relevant biological data on genes, transcripts, exons, regulatory features, single-nucleotide polymorphisms, karyotype and so forth, are imported from web services and are available as tracks. In addition, several DAS servers are already included in Genome Maps. As a novelty, this web-based genome browser allows the local upload of huge genomic data files (e.g. VCF or BAM) that can be dynamically visualized in real time at the client side, thus facilitating the management of medical data affected by privacy restrictions. Finally, Genome Maps can easily be integrated in any web application by including only a few lines of code. Genome Maps is an open source collaborative initiative available in the GitHub repository (https://github.com/compbio-bigdata-viz/genome-maps). Genome Maps is available at: http://www.genomemaps.org. PMID:23748955

  19. Querying genomic databases

    SciTech Connect

    Baehr, A.; Hagstrom, R.; Joerg, D.; Overbeek, R.

    1991-09-01

    A natural-language interface has been developed that retrieves genomic information by using a simple subset of English. The interface spares the biologist from the task of learning database-specific query languages and computer programming. Currently, the interface deals with the E. coli genome. It can, however, be readily extended and shows promise as a means of easy access to other sequenced genomic databases as well.

  20. A genome-wide association study of malting quality across eight U.S. barley breeding programs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study leverages the breeding data of 1,862 breeding lines evaluated in 97 field trials for genome-wide association study of malting quality traits in barley. The breeding lines were six-row and two-row barley advanced breeding lines from eight barley breeding populations established at six pub...

  1. Microbial genome program report: Optical approaches for physical mapping and sequence assembly of the Deinococcus radiodurans chromosome

    SciTech Connect

    Schwartz, David C.

    1999-11-23

    Maps of genomic or cloned DNA are frequently constructed by analyzing the cleavage patterns produced by restriction enzymes. Restriction enzymes are remarkable reagents that faithfully cleave only at specific sequences of between 4 and 8 nucleotides, which vary according to the specific enzymes. Restriction enzymes are reliable, numerous, and easily obtainable and presently, there are approximately 250 different sequences represented among thousands of enzymes. Restriction maps characterize gene structure and even entire genomes. Furthermore, such maps provide a useful scaffold for the alignment and verification of sequence data. Restriction maps generated by computer and predicted from the sequence are aligned with the actual restriction map. Restriction enzyme action has traditionally been assayed by gel electrophoresis. This technique separates cleaved molecules on the basis of their nobilities under the influence of an applied electrical field, within a gel separation matrix (small fragments have a greater mobility than large ones). Although gel electrophoresis distinguishes different sized DNA fragments (known as a fingerprint), the original order of these fragments remains unknown. The subsequent task of determining the order of such fragments is a labor intensive task, especially when making restriction maps of whole genomes, and therefore despite its obvious utility to genome analysis, it is not widely used.

  2. Whole-Genome Sequences of Two Campylobacter coli Isolates from the Antimicrobial Resistance Monitoring Program in Colombia

    PubMed Central

    Bernal, Johan F.; Donado-Godoy, Pilar; Valencia, María Fernanda; León, Maribel; Gómez, Yolanda; Rodríguez, Fernando; Agarwala, Richa; Landsman, David

    2016-01-01

    Campylobacter coli, along with Campylobacter jejuni, is a major agent of gastroenteritis and acute enterocolitis in humans. We report the whole-genome sequences of two multidrug-resistance C. coli strains, isolated from the Colombian poultry chain. The isolates contain a variety of antimicrobial resistance genes for aminoglycosides, lincosamides, fluoroquinolones, and tetracycline. PMID:26988048

  3. Genotype by environment interaction and the use of unbalanced historical data for genomic selection in an international wheat breeding program

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic selection (GS) offers breeders the possibility of using historic data and unbalanced breeding trials to form training populations for predicting the performance of new lines. However, in using datasets that are unbalanced over time and space, there is increasing exposure to particular genoty...

  4. Assessing the impact of natural service bulls and genotype by environment interactions on genetic gain and inbreeding in organic dairy cattle genomic breeding programs.

    PubMed

    Yin, T; Wensch-Dorendorf, M; Simianer, H; Swalve, H H; König, S

    2014-06-01

    The objective of the present study was to compare genetic gain and inbreeding coefficients of dairy cattle in organic breeding program designs by applying stochastic simulations. Evaluated breeding strategies were: (i) selecting bulls from conventional breeding programs, and taking into account genotype by environment (G×E) interactions, (ii) selecting genotyped bulls within the organic environment for artificial insemination (AI) programs and (iii) selecting genotyped natural service bulls within organic herds. The simulated conventional population comprised 148 800 cows from 2976 herds with an average herd size of 50 cows per herd, and 1200 cows were assigned to 60 organic herds. In a young bull program, selection criteria of young bulls in both production systems (conventional and organic) were either 'conventional' estimated breeding values (EBV) or genomic estimated breeding values (GEBV) for two traits with low (h 2=0.05) and moderate heritability (h 2=0.30). GEBV were calculated for different accuracies (r mg), and G×E interactions were considered by modifying originally simulated true breeding values in the range from r g=0.5 to 1.0. For both traits (h 2=0.05 and 0.30) and r mg⩾0.8, genomic selection of bulls directly in the organic population and using selected bulls via AI revealed higher genetic gain than selecting young bulls in the larger conventional population based on EBV; also without the existence of G×E interactions. Only for pronounced G×E interactions (r g=0.5), and for highly accurate GEBV for natural service bulls (r mg>0.9), results suggests the use of genotyped organic natural service bulls instead of implementing an AI program. Inbreeding coefficients of selected bulls and their offspring were generally lower when basing selection decisions for young bulls on GEBV compared with selection strategies based on pedigree indices. PMID:24703184

  5. Program in Functional Genomics of Autoimmunity and Immunology of yhe University of Kentucky and the University of Alabama

    SciTech Connect

    Alan M Kaplan

    2012-10-12

    This grant will be used to augment the equipment infrastructure and core support at the University of Kentucky and the University of Alabama particularly in the areas of genomics/informatics, molecular analysis and cell separation. In addition, we will promote collaborative research interactions through scientific workshops and exchange of scientists, as well as joint exploration of the role of immune receptors as targets in autoimmunity and host defense, innate and adaptive immune responses, and mucosal immunity in host defense.

  6. Human Genome Project

    SciTech Connect

    Block, S.; Cornwall, J.; Dally, W.; Dyson, F.; Fortson, N.; Joyce, G.; Kimble, H. J.; Lewis, N.; Max, C.; Prince, T.; Schwitters, R.; Weinberger, P.; Woodin, W. H.

    1998-01-04

    The study reviews Department of Energy supported aspects of the United States Human Genome Project, the joint National Institutes of Health/Department of Energy program to characterize all human genetic material, to discover the set of human genes, and to render them accessible for further biological study. The study concentrates on issues of technology, quality assurance/control, and informatics relevant to current effort on the genome project and needs beyond it. Recommendations are presented on areas of the genome program that are of particular interest to and supported by the Department of Energy.

  7. A Review on Genomics APIs

    PubMed Central

    Swaminathan, Rajeswari; Huang, Yungui; Moosavinasab, Soheil; Buckley, Ronald; Bartlett, Christopher W.; Lin, Simon M.

    2015-01-01

    The constant improvement and falling prices of whole human genome Next Generation Sequencing (NGS) has resulted in rapid adoption of genomic information at both clinics and research institutions. Considered together, the complexity of genomics data, due to its large volume and diversity along with the need for genomic data sharing, has resulted in the creation of Application Programming Interface (API) for secure, modular, interoperable access to genomic data from different applications, platforms, and even organizations. The Genomics APIs are a set of special protocols that assist software developers in dealing with multiple genomic data sources for building seamless, interoperable applications leading to the advancement of both genomic and clinical research. These APIs help define a standard for retrieval of genomic data from multiple sources as well as to better package genomic information for integration with Electronic Health Records. This review covers three currently available Genomics APIs: a) Google Genomics, b) SMART Genomics, and c) 23andMe. The functionalities, reference implementations (if available) and authentication protocols of each API are reviewed. A comparative analysis of the different features across the three APIs is provided in the Discussion section. Though Genomics APIs are still under active development and have yet to reach widespread adoption, they hold the promise to make building of complicated genomics applications easier with downstream constructive effects on healthcare. PMID:26702340

  8. MacSyFinder: A Program to Mine Genomes for Molecular Systems with an Application to CRISPR-Cas Systems

    PubMed Central

    Abby, Sophie S.; Néron, Bertrand; Ménager, Hervé; Touchon, Marie; Rocha, Eduardo P. C.

    2014-01-01

    Motivation Biologists often wish to use their knowledge on a few experimental models of a given molecular system to identify homologs in genomic data. We developed a generic tool for this purpose. Results Macromolecular System Finder (MacSyFinder) provides a flexible framework to model the properties of molecular systems (cellular machinery or pathway) including their components, evolutionary associations with other systems and genetic architecture. Modelled features also include functional analogs, and the multiple uses of a same component by different systems. Models are used to search for molecular systems in complete genomes or in unstructured data like metagenomes. The components of the systems are searched by sequence similarity using Hidden Markov model (HMM) protein profiles. The assignment of hits to a given system is decided based on compliance with the content and organization of the system model. A graphical interface, MacSyView, facilitates the analysis of the results by showing overviews of component content and genomic context. To exemplify the use of MacSyFinder we built models to detect and class CRISPR-Cas systems following a previously established classification. We show that MacSyFinder allows to easily define an accurate “Cas-finder” using publicly available protein profiles. Availability and Implementation MacSyFinder is a standalone application implemented in Python. It requires Python 2.7, Hmmer and makeblastdb (version 2.2.28 or higher). It is freely available with its source code under a GPLv3 license at https://github.com/gem-pasteur/macsyfinder. It is compatible with all platforms supporting Python and Hmmer/makeblastdb. The “Cas-finder” (models and HMM profiles) is distributed as a compressed tarball archive as Supporting Information. PMID:25330359

  9. Genomic-Based Optimum Contribution in Conservation and Genetic Improvement Programs with Antagonistic Fitness and Productivity Traits

    PubMed Central

    Sánchez-Molano, Enrique; Pong-Wong, Ricardo; Banos, Georgios

    2016-01-01

    Animal selection for genetic improvement of productivity may lead to an increase in inbreeding through the use of techniques that enhance the reproductive capability of selected animals. Therefore, breeding strategies aim to balance maintaining genetic variability and acceptable fitness levels with increasing productivity. The present study demonstrates the effectiveness of genomic-based optimum contribution strategies at addressing this objective when fitness and productivity are genetically antagonistic traits. Strategies are evaluated in directional selection (increasing productivity) or conservation (maintaining fitness) scenarios. In the former case, substantial rates of genetic gain can be achieved while greatly constraining the rate of increase in inbreeding. Under a conservation approach, inbreeding depression can be effectively halted while also achieving a modest rate of genetic gain for productivity. Furthermore, the use of optimum contribution strategies when combined with a simple non-random mating scheme (minimum kinship method) showed an additional delay in the increase of inbreeding in the short term. In conclusion, genomic-based optimum contribution methods can be effectively used to control inbreeding and inbreeding depression, and still allow genetic gain for productivity traits even when fitness and productivity are antagonistically correlated. PMID:26941779

  10. GenomeVista

    SciTech Connect

    Poliakov, Alexander; Couronne, Olivier

    2002-11-04

    Aligning large vertebrate genomes that are structurally complex poses a variety of problems not encountered on smaller scales. Such genomes are rich in repetitive elements and contain multiple segmental duplications, which increases the difficulty of identifying true orthologous SNA segments in alignments. The sizes of the sequences make many alignment algorithms designed for comparing single proteins extremely inefficient when processing large genomic intervals. We integrated both local and global alignment tools and developed a suite of programs for automatically aligning large vertebrate genomes and identifying conserved non-coding regions in the alignments. Our method uses the BLAT local alignment program to find anchors on the base genome to identify regions of possible homology for a query sequence. These regions are postprocessed to find the best candidates which are then globally aligned using the AVID global alignment program. In the last step conserved non-coding segments are identified using VISTA. Our methods are fast and the resulting alignments exhibit a high degree of sensitivity, covering more than 90% of known coding exons in the human genome. The GenomeVISTA software is a suite of Perl programs that is built on a MySQL database platform. The scheduler gets control data from the database, builds a queve of jobs, and dispatches them to a PC cluster for execution. The main program, running on each node of the cluster, processes individual sequences. A Perl library acts as an interface between the database and the above programs. The use of a separate library allows the programs to function independently of the database schema. The library also improves on the standard Perl MySQL database interfere package by providing auto-reconnect functionality and improved error handling.

  11. GenomeVista

    Energy Science and Technology Software Center (ESTSC)

    2002-11-04

    Aligning large vertebrate genomes that are structurally complex poses a variety of problems not encountered on smaller scales. Such genomes are rich in repetitive elements and contain multiple segmental duplications, which increases the difficulty of identifying true orthologous SNA segments in alignments. The sizes of the sequences make many alignment algorithms designed for comparing single proteins extremely inefficient when processing large genomic intervals. We integrated both local and global alignment tools and developed a suitemore » of programs for automatically aligning large vertebrate genomes and identifying conserved non-coding regions in the alignments. Our method uses the BLAT local alignment program to find anchors on the base genome to identify regions of possible homology for a query sequence. These regions are postprocessed to find the best candidates which are then globally aligned using the AVID global alignment program. In the last step conserved non-coding segments are identified using VISTA. Our methods are fast and the resulting alignments exhibit a high degree of sensitivity, covering more than 90% of known coding exons in the human genome. The GenomeVISTA software is a suite of Perl programs that is built on a MySQL database platform. The scheduler gets control data from the database, builds a queve of jobs, and dispatches them to a PC cluster for execution. The main program, running on each node of the cluster, processes individual sequences. A Perl library acts as an interface between the database and the above programs. The use of a separate library allows the programs to function independently of the database schema. The library also improves on the standard Perl MySQL database interfere package by providing auto-reconnect functionality and improved error handling.« less

  12. Vita Genomics, Inc.

    PubMed

    Shih-Hsin Wu, Lawrence; Su, Chun-Lin; Chen, Ellson

    2007-06-01

    Vita Genomics, Inc., centered in Taiwan and China, aims to be a premier genomics-based biotechnological and biopharmaceutical company in the Asia-Pacific region. The company focuses on conducting pharmacogenomics research, in vitro diagnosis product development and specialty contract research services in both genomics and pharmacogenomics fields. We are now initiating a drug rescue program designed to resurrect drugs that have failed in the previous clinical trials owing to low efficacies. This program applies pharmacogenomics approaches using biomarkers to screen subsets of patients who may respond better or avoid adverse responses to the test drugs. Vita Genomics, Inc. has envisioned itself as an important player in the healthcare industry offering advanced molecular diagnostic products and services, revolutionizing thedrug-development process and providing pharmacogenomic solutions. PMID:17559355

  13. Programs.

    ERIC Educational Resources Information Center

    Community College Journal, 1996

    1996-01-01

    Includes a collection of eight short articles describing model community college programs. Discusses a literacy program, a mobile computer classroom, a support program for at-risk students, a timber-harvesting program, a multimedia presentation on successful women graduates, a career center, a collaboration with NASA, and an Israeli engineering…

  14. HIV-1 and M-PMV RNA Nuclear Export Elements Program Viral Genomes for Distinct Cytoplasmic Trafficking Behaviors

    PubMed Central

    Pocock, Ginger M.; Becker, Jordan T.; Swanson, Chad M.; Ahlquist, Paul; Sherer, Nathan M.

    2016-01-01

    Retroviruses encode cis-acting RNA nuclear export elements that override nuclear retention of intron-containing viral mRNAs including the full-length, unspliced genomic RNAs (gRNAs) packaged into assembling virions. The HIV-1 Rev-response element (RRE) recruits the cellular nuclear export receptor CRM1 (also known as exportin-1/XPO1) using the viral protein Rev, while simple retroviruses encode constitutive transport elements (CTEs) that directly recruit components of the NXF1(Tap)/NXT1(p15) mRNA nuclear export machinery. How gRNA nuclear export is linked to trafficking machineries in the cytoplasm upstream of virus particle assembly is unknown. Here we used long-term (>24 h), multicolor live cell imaging to directly visualize HIV-1 gRNA nuclear export, translation, cytoplasmic trafficking, and virus particle production in single cells. We show that the HIV-1 RRE regulates unique, en masse, Rev- and CRM1-dependent “burst-like” transitions of mRNAs from the nucleus to flood the cytoplasm in a non-localized fashion. By contrast, the CTE derived from Mason-Pfizer monkey virus (M-PMV) links gRNAs to microtubules in the cytoplasm, driving them to cluster markedly to the centrosome that forms the pericentriolar core of the microtubule-organizing center (MTOC). Adding each export element to selected heterologous mRNAs was sufficient to confer each distinct export behavior, as was directing Rev/CRM1 or NXF1/NXT1 transport modules to mRNAs using a site-specific RNA tethering strategy. Moreover, multiple CTEs per transcript enhanced MTOC targeting, suggesting that a cooperative mechanism links NXF1/NXT1 to microtubules. Combined, these results reveal striking, unexpected features of retroviral gRNA nucleocytoplasmic transport and demonstrate roles for mRNA export elements that extend beyond nuclear pores to impact gRNA distribution in the cytoplasm. PMID:27070420

  15. HIV-1 and M-PMV RNA Nuclear Export Elements Program Viral Genomes for Distinct Cytoplasmic Trafficking Behaviors.

    PubMed

    Pocock, Ginger M; Becker, Jordan T; Swanson, Chad M; Ahlquist, Paul; Sherer, Nathan M

    2016-04-01

    Retroviruses encode cis-acting RNA nuclear export elements that override nuclear retention of intron-containing viral mRNAs including the full-length, unspliced genomic RNAs (gRNAs) packaged into assembling virions. The HIV-1 Rev-response element (RRE) recruits the cellular nuclear export receptor CRM1 (also known as exportin-1/XPO1) using the viral protein Rev, while simple retroviruses encode constitutive transport elements (CTEs) that directly recruit components of the NXF1(Tap)/NXT1(p15) mRNA nuclear export machinery. How gRNA nuclear export is linked to trafficking machineries in the cytoplasm upstream of virus particle assembly is unknown. Here we used long-term (>24 h), multicolor live cell imaging to directly visualize HIV-1 gRNA nuclear export, translation, cytoplasmic trafficking, and virus particle production in single cells. We show that the HIV-1 RRE regulates unique, en masse, Rev- and CRM1-dependent "burst-like" transitions of mRNAs from the nucleus to flood the cytoplasm in a non-localized fashion. By contrast, the CTE derived from Mason-Pfizer monkey virus (M-PMV) links gRNAs to microtubules in the cytoplasm, driving them to cluster markedly to the centrosome that forms the pericentriolar core of the microtubule-organizing center (MTOC). Adding each export element to selected heterologous mRNAs was sufficient to confer each distinct export behavior, as was directing Rev/CRM1 or NXF1/NXT1 transport modules to mRNAs using a site-specific RNA tethering strategy. Moreover, multiple CTEs per transcript enhanced MTOC targeting, suggesting that a cooperative mechanism links NXF1/NXT1 to microtubules. Combined, these results reveal striking, unexpected features of retroviral gRNA nucleocytoplasmic transport and demonstrate roles for mRNA export elements that extend beyond nuclear pores to impact gRNA distribution in the cytoplasm. PMID:27070420

  16. Germ Line Transcripts Are Processed by a Dicer-Like Protein That Is Essential for Developmentally Programmed Genome Rearrangements of Tetrahymena thermophila

    PubMed Central

    Malone, Colin D.; Anderson, Alissa M.; Motl, Jason A.; Rexer, Charles H.; Chalker, Douglas L.

    2005-01-01

    Abundant ∼28-nucleotide RNAs that are thought to direct histone H3 lysine 9 (H3K9) methylation and promote the elimination of nearly 15 Mbp of DNA from the developing somatic genome are generated during Tetrahymena thermophila conjugation. To identify the protein(s) that generates these small RNAs, we studied three Dicer-related genes encoded within the Tetrahymena genome, two that contain both RNase III and RNA helicase motifs, Dicer 1 (DCR1) and DCR2, and a third that lacks the helicase domain, Dicer-like 1 (DCL1). DCL1 is expressed upon the initiation of conjugation, and the protein localizes to meiotic micronuclei when bidirectional germ line transcription occurs and small RNAs begin to accumulate. Cells in which we disrupted the DCL1 gene (ΔDCL1) grew normally and initiated conjugation as wild-type cells but arrested near the end of development and eventually died, unable to resume vegetative growth. These ΔDCL1 cells failed to generate the abundant small RNAs but instead accumulated germ line-limited transcripts. Together, our findings demonstrate that these transcripts are the precursors of the small RNAs and that DCL1 performs RNA processing within the micronucleus. Postconjugation ΔDCL1 cells die without eliminating the germ line-limited DNA sequences from their newly formed somatic macronuclei, a result that shows that this Dicer-related gene is required for programmed DNA rearrangements. Surprisingly, ΔDCL1 cells were not deficient in overall H3K9 methylation, but this modification was not enriched on germ line-limited sequences as it is in wild-type cells, which clearly demonstrates that these small RNAs are essential for its targeting to specific loci. PMID:16199890

  17. Prenatal stress-induced programming of genome-wide promoter DNA methylation in 5-HTT-deficient mice

    PubMed Central

    Schraut, K G; Jakob, S B; Weidner, M T; Schmitt, A G; Scholz, C J; Strekalova, T; El Hajj, N; Eijssen, L M T; Domschke, K; Reif, A; Haaf, T; Ortega, G; Steinbusch, H W M; Lesch, K P; Van den Hove, D L

    2014-01-01

    The serotonin transporter gene (5-HTT/SLC6A4)-linked polymorphic region has been suggested to have a modulatory role in mediating effects of early-life stress exposure on psychopathology rendering carriers of the low-expression short (s)-variant more vulnerable to environmental adversity in later life. The underlying molecular mechanisms of this gene-by-environment interaction are not well understood, but epigenetic regulation including differential DNA methylation has been postulated to have a critical role. Recently, we used a maternal restraint stress paradigm of prenatal stress (PS) in 5-HTT-deficient mice and showed that the effects on behavior and gene expression were particularly marked in the hippocampus of female 5-Htt+/− offspring. Here, we examined to which extent these effects are mediated by differential methylation of DNA. For this purpose, we performed a genome-wide hippocampal DNA methylation screening using methylated-DNA immunoprecipitation (MeDIP) on Affymetrix GeneChip Mouse Promoter 1.0 R arrays. Using hippocampal DNA from the same mice as assessed before enabled us to correlate gene-specific DNA methylation, mRNA expression and behavior. We found that 5-Htt genotype, PS and their interaction differentially affected the DNA methylation signature of numerous genes, a subset of which showed overlap with the expression profiles of the corresponding transcripts. For example, a differentially methylated region in the gene encoding myelin basic protein (Mbp) was associated with its expression in a 5-Htt-, PS- and 5-Htt × PS-dependent manner. Subsequent fine-mapping of this Mbp locus linked the methylation status of two specific CpG sites to Mbp expression and anxiety-related behavior. In conclusion, hippocampal DNA methylation patterns and expression profiles of female prenatally stressed 5-Htt+/− mice suggest that distinct molecular mechanisms, some of which are promoter methylation-dependent, contribute to the behavioral effects of the 5-Htt

  18. From genes to genome biology

    SciTech Connect

    Pennisi, E.

    1996-06-21

    This article describes a change in the approach to mapping genomes, from looking at one gene at a time, to other approaches. Strategies include everything from lab techniques to computer programs designed to analyze whole batches of genes at once. Also included is a update on the work on the human genome.

  19. Transgenic system for conditional induction and rescue of chronic myocardial hibernation provides insights into genomic programs of hibernation.

    PubMed

    May, Dalit; Gilon, Dan; Djonov, Valentin; Itin, Ahuva; Lazarus, Alon; Gordon, Oren; Rosenberger, Christian; Keshet, Eli

    2008-01-01

    A key energy-saving adaptation to chronic hypoxia that enables cardiomyocytes to withstand severe ischemic insults is hibernation, i.e., a reversible arrest of contractile function. Whereas hibernating cardiomyocytes represent the critical reserve of dysfunctional cells that can be potentially rescued, a lack of a suitable animal model has hampered insights on this medically important condition. We developed a transgenic mouse system for conditional induction of long-term hibernation and a system to rescue hibernating cardiomyocytes at will. Via myocardium-specific induction (and, in turn, deinduction) of a VEGF-sequestering soluble receptor, we show that VEGF is indispensable for adjusting the coronary vasculature to match increased oxygen consumption and exploit this finding to generate a hypoperfused heart. Importantly, ensuing ischemia is tunable to a level at which large cohorts of cardiomyocytes are driven to enter a hibernation mode, without cardiac cell death. Relieving the VEGF blockade even months later resulted in rapid revascularization and full recovery of contractile function. Furthermore, we show that left ventricular remodeling associated with hibernation is also fully reversible. The unique opportunity to uncouple hibernation from other ischemic heart phenotypes (e.g., infarction) was used to determine the genetic program of hibernation; uncovering hypoxia-inducible factor target genes associated with metabolic adjustments and induced expression of several cardioprotective genes. Autophagy, specifically self-digestion of mitochondria, was identified as a key prosurvival mechanism in hibernating cardiomyocytes. This system may lend itself for examining the potential utility of treatments to rescue dysfunctional cardiomyocytes and reverse maladaptive remodeling. PMID:18162550

  20. Genomic Resources for Cancer Epidemiology

    Cancer.gov

    This page provides links to research resources, complied by the Epidemiology and Genomics Research Program, that may be of interest to genetic epidemiologists conducting cancer research, but is not exhaustive.

  1. Collaborators | Office of Cancer Genomics

    Cancer.gov

    The TARGET initiative is jointly managed within the National Cancer Institute (NCI) by the Office of Cancer Genomics (OCG)Opens in a New Tab and the Cancer Therapy Evaluation Program (CTEP)Opens in a New Tab.

  2. Genome walking.

    PubMed

    Shapter, Frances M; Waters, Daniel L E

    2014-01-01

    Genome walking is a method for determining the DNA sequence of unknown genomic regions flanking a region of known DNA sequence. The Genome walking has the potential to capture 6-7 kb of sequence in a single round. Ideal for identifying gene promoter regions where only the coding region. Genome walking also has significant utility for capturing homologous genes in new species when there are areas in the target gene with strong sequence conservation to the characterized species. The increasing use of next-generation sequencing technologies will see the principles of genome walking adapted to in silico methods. However, for smaller projects, PCR-based genome walking will remain an efficient method of characterizing unknown flanking sequence. PMID:24243201

  3. Prophage Genomics

    PubMed Central

    Canchaya, Carlos; Proux, Caroline; Fournous, Ghislain; Bruttin, Anne; Brüssow, Harald

    2003-01-01

    The majority of the bacterial genome sequences deposited in the National Center for Biotechnology Information database contain prophage sequences. Analysis of the prophages suggested that after being integrated into bacterial genomes, they undergo a complex decay process consisting of inactivating point mutations, genome rearrangements, modular exchanges, invasion by further mobile DNA elements, and massive DNA deletion. We review the technical difficulties in defining such altered prophage sequences in bacterial genomes and discuss theoretical frameworks for the phage-bacterium interaction at the genomic level. The published genome sequences from three groups of eubacteria (low- and high-G+C gram-positive bacteria and γ-proteobacteria) were screened for prophage sequences. The prophages from Streptococcus pyogenes served as test case for theoretical predictions of the role of prophages in the evolution of pathogenic bacteria. The genomes from further human, animal, and plant pathogens, as well as commensal and free-living bacteria, were included in the analysis to see whether the same principles of prophage genomics apply for bacteria living in different ecological niches and coming from distinct phylogenetical affinities. The effect of selection pressure on the host bacterium is apparently an important force shaping the prophage genomes in low-G+C gram-positive bacteria and γ-proteobacteria. PMID:12794192

  4. A Comprehensive Analysis of Replicating Merkel Cell Polyomavirus Genomes Delineates the Viral Transcription Program and Suggests a Role for mcv-miR-M1 in Episomal Persistence.

    PubMed

    Theiss, Juliane Marie; Günther, Thomas; Alawi, Malik; Neumann, Friederike; Tessmer, Uwe; Fischer, Nicole; Grundhoff, Adam

    2015-07-01

    Merkel cell polyomavirus (MCPyV) is considered the etiological agent of Merkel cell carcinoma and persists asymptomatically in the majority of its healthy hosts. Largely due to the lack of appropriate model systems, the mechanisms of viral replication and MCPyV persistence remain poorly understood. Using a semi-permissive replication system, we here report a comprehensive analysis of the role of the MCPyV-encoded microRNA (miRNA) mcv-miR-M1 during short and long-term replication of authentic MCPyV episomes. We demonstrate that cells harboring intact episomes express high levels of the viral miRNA, and that expression of mcv-miR-M1 limits DNA replication. Furthermore, we present RACE, RNA-seq and ChIP-seq studies which allow insight in the viral transcription program and mechanisms of miRNA expression. While our data suggest that mcv-miR-M1 can be expressed from canonical late strand transcripts, we also present evidence for the existence of an independent miRNA promoter that is embedded within early strand coding sequences. We also report that MCPyV genomes can establish episomal persistence in a small number of cells for several months, a time period during which viral DNA as well as LT-Ag and viral miRNA expression can be detected via western blotting, FISH, qPCR and southern blot analyses. Strikingly, despite enhanced replication in short term DNA replication assays, a mutant unable to express the viral miRNA was severely limited in its ability to establish long-term persistence. Our data suggest that MCPyV may have evolved strategies to enter a non- or low level vegetative stage of infection which could aid the virus in establishing and maintaining a lifelong persistence. PMID:26218535

  5. Glucose metabolism ontogenesis in rainbow trout (Oncorhynchus mykiss) in the light of the recently sequenced genome: new tools for intermediary metabolism programming.

    PubMed

    Marandel, Lucie; Véron, Vincent; Surget, Anne; Plagnes-Juan, Élisabeth; Panserat, Stéphane

    2016-03-01

    The rainbow trout (Oncorhynchus mykiss), a carnivorous fish species, displays a 'glucose-intolerant' phenotype when fed a high-carbohydrate diet. The importance of carbohydrate metabolism during embryogenesis and the timing of establishing this later phenotype are currently unclear. In addition, the mechanisms underlying the poor ability of carnivorous fish to use dietary carbohydrates as a major energy substrate are not well understood. It has recently been shown in trout that duplicated genes involved in glucose metabolism may participate in establishing the glucose-intolerant phenotype. The aim of this study was therefore to provide new understanding of glucose metabolism during ontogenesis and nutritional transition, taking into consideration the complexity of the trout genome. Trout were sampled at several stages of development from fertilization to hatching, and alevins were then fed a non-carbohydrate or a high-carbohydrate diet during first feeding. mRNA levels of all glucose metabolism-related genes increased in embryos during the setting up of the primitive liver. After the first meal, genes rapidly displayed expression patterns equivalent to those observed in the livers of juveniles. g6pcb2.a (a glucose 6-phosphatase-encoding gene) was up-regulated in alevins fed a high-carbohydrate diet, mimicking the expression pattern of gck genes. The g6pcb2.a gene may contribute to the non-inhibition of the last step of gluconeogenesis and thus to establishing the glucose-intolerant phenotype in trout fed a high-carbohydrate diet as early as first feeding. This information is crucial for nutritional programming investigations as it suggests that first feeding would be too late to programme glucose metabolism in the long term. PMID:26747908

  6. A Comprehensive Analysis of Replicating Merkel Cell Polyomavirus Genomes Delineates the Viral Transcription Program and Suggests a Role for mcv-miR-M1 in Episomal Persistence

    PubMed Central

    Theiss, Juliane Marie; Günther, Thomas; Alawi, Malik; Neumann, Friederike; Fischer, Nicole; Grundhoff, Adam

    2015-01-01

    Merkel cell polyomavirus (MCPyV) is considered the etiological agent of Merkel cell carcinoma and persists asymptomatically in the majority of its healthy hosts. Largely due to the lack of appropriate model systems, the mechanisms of viral replication and MCPyV persistence remain poorly understood. Using a semi-permissive replication system, we here report a comprehensive analysis of the role of the MCPyV-encoded microRNA (miRNA) mcv-miR-M1 during short and long-term replication of authentic MCPyV episomes. We demonstrate that cells harboring intact episomes express high levels of the viral miRNA, and that expression of mcv-miR-M1 limits DNA replication. Furthermore, we present RACE, RNA-seq and ChIP-seq studies which allow insight in the viral transcription program and mechanisms of miRNA expression. While our data suggest that mcv-miR-M1 can be expressed from canonical late strand transcripts, we also present evidence for the existence of an independent miRNA promoter that is embedded within early strand coding sequences. We also report that MCPyV genomes can establish episomal persistence in a small number of cells for several months, a time period during which viral DNA as well as LT-Ag and viral miRNA expression can be detected via western blotting, FISH, qPCR and southern blot analyses. Strikingly, despite enhanced replication in short term DNA replication assays, a mutant unable to express the viral miRNA was severely limited in its ability to establish long-term persistence. Our data suggest that MCPyV may have evolved strategies to enter a non- or low level vegetative stage of infection which could aid the virus in establishing and maintaining a lifelong persistence. PMID:26218535

  7. Molluscan Evolutionary Genomics

    SciTech Connect

    Simison, W. Brian; Boore, Jeffrey L.

    2005-12-01

    In the last 20 years there have been dramatic advances in techniques of high-throughput DNA sequencing, most recently accelerated by the Human Genome Project, a program that has determined the three billion base pair code on which we are based. Now this tremendous capability is being directed at other genome targets that are being sampled across the broad range of life. This opens up opportunities as never before for evolutionary and organismal biologists to address questions of both processes and patterns of organismal change. We stand at the dawn of a new 'modern synthesis' period, paralleling that of the early 20th century when the fledgling field of genetics first identified the underlying basis for Darwin's theory. We must now unite the efforts of systematists, paleontologists, mathematicians, computer programmers, molecular biologists, developmental biologists, and others in the pursuit of discovering what genomics can teach us about the diversity of life. Genome-level sampling for mollusks to date has mostly been limited to mitochondrial genomes and it is likely that these will continue to provide the best targets for broad phylogenetic sampling in the near future. However, we are just beginning to see an inroad into complete nuclear genome sequencing, with several mollusks and other eutrochozoans having been selected for work about to begin. Here, we provide an overview of the state of molluscan mitochondrial genomics, highlight a few of the discoveries from this research, outline the promise of broadening this dataset, describe upcoming projects to sequence whole mollusk nuclear genomes, and challenge the community to prepare for making the best use of these data.

  8. Aquaculture Genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genomics chapter covers the basics of genome mapping and sequencing and the current status of several relevant species. The chapter briefly describes the development and use of (cDNA, BAC, etc.) libraries for mapping and obtaining specific sequence information. Other topics include comparative ...

  9. Fungal genome sequencing: basic biology to biotechnology.

    PubMed

    Sharma, Krishna Kant

    2016-08-01

    The genome sequences provide a first glimpse into the genomic basis of the biological diversity of filamentous fungi and yeast. The genome sequence of the budding yeast, Saccharomyces cerevisiae, with a small genome size, unicellular growth, and rich history of genetic and molecular analyses was a milestone of early genomics in the 1990s. The subsequent completion of fission yeast, Schizosaccharomyces pombe and genetic model, Neurospora crassa initiated a revolution in the genomics of the fungal kingdom. In due course of time, a substantial number of fungal genomes have been sequenced and publicly released, representing the widest sampling of genomes from any eukaryotic kingdom. An ambitious genome-sequencing program provides a wealth of data on metabolic diversity within the fungal kingdom, thereby enhancing research into medical science, agriculture science, ecology, bioremediation, bioenergy, and the biotechnology industry. Fungal genomics have higher potential to positively affect human health, environmental health, and the planet's stored energy. With a significant increase in sequenced fungal genomes, the known diversity of genes encoding organic acids, antibiotics, enzymes, and their pathways has increased exponentially. Currently, over a hundred fungal genome sequences are publicly available; however, no inclusive review has been published. This review is an initiative to address the significance of the fungal genome-sequencing program and provides the road map for basic and applied research. PMID:25721271

  10. Antarctic Genomics

    PubMed Central

    Clarke, Andrew; Cockell, Charles S.; Convey, Peter; Detrich III, H. William; Fraser, Keiron P. P.; Johnston, Ian A.; Methe, Barbara A.; Murray, Alison E.; Peck, Lloyd S.; Römisch, Karin; Rogers, Alex D.

    2004-01-01

    With the development of genomic science and its battery of technologies, polar biology stands on the threshold of a revolution, one that will enable the investigation of important questions of unprecedented scope and with extraordinary depth and precision. The exotic organisms of polar ecosystems are ideal candidates for genomic analysis. Through such analyses, it will be possible to learn not only the novel features that enable polar organisms to survive, and indeed thrive, in their extreme environments, but also fundamental biological principles that are common to most, if not all, organisms. This article aims to review recent developments in Antarctic genomics and to demonstrate the global context of such studies. PMID:18629155

  11. Genome Science: A Video Tour of the Washington University Genome Sequencing Center for High School and Undergraduate Students

    ERIC Educational Resources Information Center

    Flowers, Susan K.; Easter, Carla; Holmes, Andrea; Cohen, Brian; Bednarski, April E.; Mardis, Elaine R.; Wilson, Richard K.; Elgin, Sarah C. R.

    2005-01-01

    Sequencing of the human genome has ushered in a new era of biology. The technologies developed to facilitate the sequencing of the human genome are now being applied to the sequencing of other genomes. In 2004, a partnership was formed between Washington University School of Medicine Genome Sequencing Center's Outreach Program and Washington…

  12. Genomic Testing

    MedlinePlus

    ... Working Group Independent Web site Informing the effective integration of genomics into health practice—Lynch syndrome ACCE Model for Evaluating Genetic Tests Recommendations by the EGAPP Working Group Top of ... ...

  13. The life cycle of a genome project: perspectives and guidelines inspired by insect genome projects.

    PubMed

    Papanicolaou, Alexie

    2016-01-01

    Many research programs on non-model species biology have been empowered by genomics. In turn, genomics is underpinned by a reference sequence and ancillary information created by so-called "genome projects". The most reliable genome projects are the ones created as part of an active research program and designed to address specific questions but their life extends past publication. In this opinion paper I outline four key insights that have facilitated maintaining genomic communities: the key role of computational capability, the iterative process of building genomic resources, the value of community participation and the importance of manual curation. Taken together, these ideas can and do ensure the longevity of genome projects and the growing non-model species community can use them to focus a discussion with regards to its future genomic infrastructure. PMID:27006757

  14. The life cycle of a genome project: perspectives and guidelines inspired by insect genome projects

    PubMed Central

    Papanicolaou, Alexie

    2016-01-01

    Many research programs on non-model species biology have been empowered by genomics. In turn, genomics is underpinned by a reference sequence and ancillary information created by so-called “genome projects”. The most reliable genome projects are the ones created as part of an active research program and designed to address specific questions but their life extends past publication. In this opinion paper I outline four key insights that have facilitated maintaining genomic communities: the key role of computational capability, the iterative process of building genomic resources, the value of community participation and the importance of manual curation. Taken together, these ideas can and do ensure the longevity of genome projects and the growing non-model species community can use them to focus a discussion with regards to its future genomic infrastructure. PMID:27006757

  15. 78 FR 20933 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel Loan Repayment Program... applications. Place: National Human Genome Research Institute, Room 3055, 5635 Fishers Lane, Rockville,...

  16. 78 FR 68856 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... Review Officer, Scientific Review Branch, National Human Genome Research Institute, National Institutes... of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  17. N-Myc regulates a widespread euchromatic program in the human genome partially independent of its role as a classical transcription factor

    PubMed Central

    Cotterman, Rebecca; Jin, Victor X.; Krig, Sheryl R.; Lemen, Jessica M.; Wey, Alice; Farnham, Peggy J.; Knoepfler, Paul S.

    2009-01-01

    Myc proteins have long been modeled to operate strictly as classical gene specific transcription factors, however we find that N-Myc has a robust role in the human genome in regulating global cellular euchromatin including that of intergenic regions. Strikingly, 90–95% of the total genomic euchromatic marks histone H3 acetylated at lysine 9 and methylated at lysine 4 is N-Myc dependent. However, Myc regulation of transcription, even of genes it directly binds and at which it is required for maintenance of active chromatin, is generally weak. Thus, Myc has a much more potent ability to regulate large domains of euchromatin than to influence transcription of individual genes. Overall, Myc regulation of chromatin in the human genome includes both specific genes, but also expansive genomic domains that invoke functions independent of a classical transcription factor. These findings support a new dual model for Myc chromatin function with important implications for the role of Myc in cancer and stem cell biology, including that of induced pluripotent stem (iPS) cells. PMID:19047142

  18. Genotypes are useful for more than genomic evaluation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New services that provide pedigree discovery, breed composition, mating programs, genomic inbreeding, fertility defects, and inheritance tracking all are possible from low cost genotyping, in addition to genomic evaluation. Genetic markers let breeders select among sibs before their phenotypes becam...

  19. Endometrial and acute myeloid leukemia cancer genomes characterized

    Cancer.gov

    Two studies from The Cancer Genome Atlas (TCGA) program reveal details about the genomic landscapes of acute myeloid leukemia (AML) and endometrial cancer. Both provide new insights into the molecular underpinnings of these cancers with the potential to i

  20. Breeding nursery tissue collection for possible genomic analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenotyping is considered a major bottleneck in breeding programs. With new genomic technologies, high throughput genotype schemes are constantly being developed. However, every genomic technology requires phenotypic data to inform prediction models generated from the technology. Forage breeders con...

  1. Genome databases

    SciTech Connect

    Courteau, J.

    1991-10-11

    Since the Genome Project began several years ago, a plethora of databases have been developed or are in the works. They range from the massive Genome Data Base at Johns Hopkins University, the central repository of all gene mapping information, to small databases focusing on single chromosomes or organisms. Some are publicly available, others are essentially private electronic lab notebooks. Still others limit access to a consortium of researchers working on, say, a single human chromosome. An increasing number incorporate sophisticated search and analytical software, while others operate as little more than data lists. In consultation with numerous experts in the field, a list has been compiled of some key genome-related databases. The list was not limited to map and sequence databases but also included the tools investigators use to interpret and elucidate genetic data, such as protein sequence and protein structure databases. Because a major goal of the Genome Project is to map and sequence the genomes of several experimental animals, including E. coli, yeast, fruit fly, nematode, and mouse, the available databases for those organisms are listed as well. The author also includes several databases that are still under development - including some ambitious efforts that go beyond data compilation to create what are being called electronic research communities, enabling many users, rather than just one or a few curators, to add or edit the data and tag it as raw or confirmed.

  2. Fungal Genomics for Energy and Environment

    SciTech Connect

    Grigoriev, Igor V.

    2013-03-11

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Sequencing Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for users to nominate new species for sequencing. Over 200 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.

  3. Genome Improvement at JGI-HAGSC

    SciTech Connect

    Grimwood, Jane; Schmutz, Jeremy J.; Myers, Richard M.

    2012-03-03

    Since the completion of the sequencing of the human genome, the Joint Genome Institute (JGI) has rapidly expanded its scientific goals in several DOE mission-relevant areas. At the JGI-HAGSC, we have kept pace with this rapid expansion of projects with our focus on assessing, assembling, improving and finishing eukaryotic whole genome shotgun (WGS) projects for which the shotgun sequence is generated at the Production Genomic Facility (JGI-PGF). We follow this by combining the draft WGS with genomic resources generated at JGI-HAGSC or in collaborator laboratories (including BAC end sequences, genetic maps and FLcDNA sequences) to produce an improved draft sequence. For eukaryotic genomes important to the DOE mission, we then add further information from directed experiments to produce reference genomic sequences that are publicly available for any scientific researcher. Also, we have continued our program for producing BAC-based finished sequence, both for adding information to JGI genome projects and for small BAC-based sequencing projects proposed through any of the JGI sequencing programs. We have now built our computational expertise in WGS assembly and analysis and have moved eukaryotic genome assembly from the JGI-PGF to JGI-HAGSC. We have concentrated our assembly development work on large plant genomes and complex fungal and algal genomes.

  4. Listeria Genomics

    NASA Astrophysics Data System (ADS)

    Cabanes, Didier; Sousa, Sandra; Cossart, Pascale

    The opportunistic intracellular foodborne pathogen Listeria monocytogenes has become a paradigm for the study of host-pathogen interactions and bacterial adaptation to mammalian hosts. Analysis of L. monocytogenes infection has provided considerable insight into how bacteria invade cells, move intracellularly, and disseminate in tissues, as well as tools to address fundamental processes in cell biology. Moreover, the vast amount of knowledge that has been gathered through in-depth comparative genomic analyses and in vivo studies makes L. monocytogenes one of the most well-studied bacterial pathogens. This chapter provides an overview of progress in the exploration of genomic, transcriptomic, and proteomic data in Listeria spp. to understand genome evolution and diversity, as well as physiological aspects of metabolism used by bacteria when growing in diverse environments, in particular in infected hosts.

  5. Genome Radio Project: Quarterly report

    SciTech Connect

    1997-08-01

    The process of conducting background research for the programs of the Genome Radio Project is continuing. The most developed of the program ``backgrounders`` have been reviewed by series and program advisors from various fields. Preliminary and background interviews have been conducted with dozens of potential program participants and advisors. Structurally, efforts are being directed toward developing and formalizing the project and series advisor relationships so that the best use can be made of those experts who have offered to assist the project in its presentation of program content. The library of research materials has been expanded considerably, creating a useful resource library for the producers.

  6. Single genome amplification of proviral HIV-1 DNA from dried blood spot specimens collected during early infant screening programs in Lusaka, Zambia

    PubMed Central

    Seu, Lillian; Mwape, Innocent; Guffey, M. Bradford

    2014-01-01

    The ability to evaluate individual HIV-1 virions from the quasispecies of vertically infected infants was evaluated in a field setting at the Centre for Infectious Disease Research in Zambia. Infant heel-prick blood specimens were spotted onto dried blood spot (DBS) filter paper cards at government health clinics. Nucleic acid was extracted and used as a template for HIV-1 proviral DNA detection by a commercial Amplicor HIV-1 PCR test (Roche, version 1.5). On samples that tested positive by commercial diagnostic assay, amplification of DNA was performed using an in-house assay of the 5′ and 3′ region of the HIV-1 genome. Additionally, fragments covering 1200 nucleotides within pol (full length protease and partial reverse transcriptase) and 1400 nucleotides within env (variable 1-variable 5 region) were further analyzed by single genome amplification (SGA). In summary, we have demonstrated an in-house assay for amplifying the 5′ and 3′ proviral HIV-1 DNA as well as pol and env proviral DNA fragments from DBS cards collected and analyzed entirely in Zambia. In conclusion, this study shows the feasibility of utilizing DBS cards to amplify the whole proviral HIV-1 genome as well as perform SGA on key HIV-1 genes. PMID:24667303

  7. Whither genomics?

    PubMed Central

    Murray, Andrew W

    2000-01-01

    The flood of data from genome-wide analysis is transforming biology. We need to develop new, interdisciplinary approaches to convert these data into information about the components and structures of individual biological pathways and to use the resulting information to yield knowledge about general principles that explain the functions and evolution of life. PMID:11104516

  8. The Architecture of a Scrambled Genome Reveals Massive Levels of Genomic Rearrangement during Development

    PubMed Central

    Chen, Xiao; Bracht, John R.; Goldman, Aaron David; Dolzhenko, Egor; Clay, Derek M.; Swart, Estienne C.; Perlman, David H.; Doak, Thomas G.; Stuart, Andrew; Amemiya, Chris T.; Sebra, Robert P.; Landweber, Laura F.

    2014-01-01

    SUMMARY Programmed DNA rearrangements in the single-celled eukaryote Oxytricha trifallax completely rewire its germline into a somatic nucleus during development. This elaborate, RNA-mediated pathway eliminates noncoding DNA sequences that interrupt gene loci and reorganizes the remaining fragments by inversions and permutations to produce functional genes. Here, we report the Oxytricha germline genome and compare it to the somatic genome to present a global view of its massive scale of genome rearrangements. The remarkably encrypted genome architecture contains >3,500 scrambled genes, as well as >800 predicted germline-limited genes expressed, and some posttranslationally modified, during genome rearrangements. Gene segments for different somatic loci often interweave with each other. Single gene segments can contribute to multiple, distinct somatic loci. Terminal precursor segments from neighboring somatic loci map extremely close to each other, often overlapping. This genome assembly provides a draft of a scrambled genome and a powerful model for studies of genome rearrangement. PMID:25171416

  9. The Human Genome Initiative of the Department of Energy

    SciTech Connect

    1988-01-01

    The structural characterization of genes and elucidation of their encoded functions have become a cornerstone of modern health research, biology and biotechnology. A genome program is an organized effort to locate and identify the functions of all the genes of an organism. Beginning with the DOE-sponsored, 1986 human genome workshop at Santa Fe, the value of broadly organized efforts supporting total genome characterization became a subject of intensive study. There is now national recognition that benefits will rapidly accrue from an effective scientific infrastructure for total genome research. In the US genome research is now receiving dedicated funds. Several other nations are implementing genome programs. Supportive infrastructure is being improved through both national and international cooperation. The Human Genome Initiative of the Department of Energy (DOE) is a focused program of Resource and Technology Development, with objectives of speeding and bringing economies to the national human genome effort. This report relates the origins and progress of the Initiative. 34 refs.

  10. The Human Genome Initiative of the Department of Energy

    DOE R&D Accomplishments Database

    1988-01-01

    The structural characterization of genes and elucidation of their encoded functions have become a cornerstone of modern health research, biology and biotechnology. A genome program is an organized effort to locate and identify the functions of all the genes of an organism. Beginning with the DOE-sponsored, 1986 human genome workshop at Santa Fe, the value of broadly organized efforts supporting total genome characterization became a subject of intensive study. There is now national recognition that benefits will rapidly accrue from an effective scientific infrastructure for total genome research. In the US genome research is now receiving dedicated funds. Several other nations are implementing genome programs. Supportive infrastructure is being improved through both national and international cooperation. The Human Genome Initiative of the Department of Energy (DOE) is a focused program of Resource and Technology Development, with objectives of speeding and bringing economies to the national human genome effort. This report relates the origins and progress of the Initiative.

  11. Fueling the Future with Fungal Genomes

    SciTech Connect

    Grigoriev, Igor V.

    2014-10-27

    Genomes of fungi relevant to energy and environment are in focus of the JGI Fungal Genomic Program. One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts and pathogens) and biorefinery processes (cellulose degradation and sugar fermentation) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Science Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for users to nominate new species for sequencing. Over 400 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics will lead to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such ‘parts’ suggested by comparative genomics and functional analysis in these areas are presented here.

  12. Reannotation of Shewanella oneidensis genome.

    PubMed

    Daraselia, N; Dernovoy, D; Tian, Y; Borodovsky, M; Tatusov, R; Tatusova, T

    2003-01-01

    As more and more complete bacterial genome sequences become available, the genome annotation of previously sequenced genomes may become quickly outdated. This is primarily due to the discovery and functional characterization of new genes. We have reannotated the recently published genome of Shewanella oneidensis with the following results: 51 new genes have been identified, and functional annotation has been added to the 97 genes, including 15 new and 82 existing ones with previously unassigned function. The identification of new genes was achieved by predicting the protein coding regions using the HMM-based program GeneMark.hmm. Subsequent comparison of the predicted gene products to the non-redundant protein database using BLAST and the COG (Clusters of Orthologous Groups) database using COGNITOR provided for the functional annotation. PMID:14506846

  13. The Human Genome Project: Past, Present, and Future

    NASA Astrophysics Data System (ADS)

    Watson, James D.

    1990-04-01

    This article presents a short discussion of the development of the human genome program in the United States, a summary of the current status of the organization and administration of the National Institutes of Health component of the program, and some prospects for the future directions of the program and the applications of genome information.

  14. Can genomics boost productivity of orphan crops?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advances in genomics over the past 20 years have enhanced the precision and efficiency of breeding programs in many temperate cereal crops. One of the first applications of genomics-assisted breeding has been the introgression of loci for resistance to biotic stresses or major quantitative trait loc...

  15. Aspergillus flavus Genomics for Controlling Aflatoxin Contamination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The main objectives of the Aspergillus flavus genomics program are to identify genes and regulatory components involved in aflatoxin biosynthesis for solving aflatoxin contamination in agricultural crops. A. flavus Expressed Sequence Tags (EST), microarray and whole genome sequencing have been achi...

  16. Citrus Genomics

    PubMed Central

    Talon, Manuel; Gmitter Jr., Fred G.

    2008-01-01

    Citrus is one of the most widespread fruit crops globally, with great economic and health value. It is among the most difficult plants to improve through traditional breeding approaches. Currently, there is risk of devastation by diseases threatening to limit production and future availability to the human population. As technologies rapidly advance in genomic science, they are quickly adapted to address the biological challenges of the citrus plant system and the world's industries. The historical developments of linkage mapping, markers and breeding, EST projects, physical mapping, an international citrus genome sequencing project, and critical functional analysis are described. Despite the challenges of working with citrus, there has been substantial progress. Citrus researchers engaged in international collaborations provide optimism about future productivity and contributions to the benefit of citrus industries worldwide and to the human population who can rely on future widespread availability of this health-promoting and aesthetically pleasing fruit crop. PMID:18509486

  17. Ancient genomics

    PubMed Central

    Der Sarkissian, Clio; Allentoft, Morten E.; Ávila-Arcos, María C.; Barnett, Ross; Campos, Paula F.; Cappellini, Enrico; Ermini, Luca; Fernández, Ruth; da Fonseca, Rute; Ginolhac, Aurélien; Hansen, Anders J.; Jónsson, Hákon; Korneliussen, Thorfinn; Margaryan, Ashot; Martin, Michael D.; Moreno-Mayar, J. Víctor; Raghavan, Maanasa; Rasmussen, Morten; Velasco, Marcela Sandoval; Schroeder, Hannes; Schubert, Mikkel; Seguin-Orlando, Andaine; Wales, Nathan; Gilbert, M. Thomas P.; Willerslev, Eske; Orlando, Ludovic

    2015-01-01

    The past decade has witnessed a revolution in ancient DNA (aDNA) research. Although the field's focus was previously limited to mitochondrial DNA and a few nuclear markers, whole genome sequences from the deep past can now be retrieved. This breakthrough is tightly connected to the massive sequence throughput of next generation sequencing platforms and the ability to target short and degraded DNA molecules. Many ancient specimens previously unsuitable for DNA analyses because of extensive degradation can now successfully be used as source materials. Additionally, the analytical power obtained by increasing the number of sequence reads to billions effectively means that contamination issues that have haunted aDNA research for decades, particularly in human studies, can now be efficiently and confidently quantified. At present, whole genomes have been sequenced from ancient anatomically modern humans, archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when testing specific hypotheses related to the past. PMID:25487338

  18. Genomic Imprinting

    PubMed Central

    Bajrami, Emirjeta; Spiroski, Mirko

    2016-01-01

    BACKGROUND: Genomic imprinting is the inheritance out of Mendelian borders. Many of inherited diseases and human development violates Mendelian law of inheritance, this way of inheriting is studied by epigenetics. AIM: The aim of this review is to analyze current opinions and options regarding to this way of inheriting. RESULTS: Epigenetics shows that gene expression undergoes changes more complex than modifications in the DNA sequence; it includes the environmental influence on the gametes before conception. Humans inherit two alleles from mother and father, both are functional for the majority of the genes, but sometimes one is turned off or “stamped” and doesn’t show in offspring, that gene is imprinted. Imprinting means that that gene is silenced, and gene from other parent is expressed. The mechanisms for imprinting are still incompletely defined, but they involve epigenetic modifications that are erased and then reset during the creation of eggs and sperm. Genomic imprinting is a process of silencing genes through DNA methylation. The repressed allele is methylated, while the active allele is unmethylated. The most well-known conditions include Prader-Willi syndrome, and Angelman syndrome. Both of these syndromes can be caused by imprinting or other errors involving genes on the long arm of chromosome 15. CONCLUSIONS: Genomic imprinting and other epigenetic mechanisms such as environment is shown that plays role in offspring neurodevelopment and autism spectrum disorder. PMID:27275355

  19. The human genome project and international health

    SciTech Connect

    Watson, J.D.; Cook-Deegan, R.M. )

    1990-06-27

    The human genome project is designed to provide common resources for the study of human genetics, and to assist biomedical researchers in their assault on disease. The main benefit will be to provide several kinds of maps of the human genome, and those of other organisms, to permit rapid isolation of genes for further study about DNA structure and function. This article describes genome research programs in developed and developing countries, and the international efforts that have contributed to genome research programs. For example, the large-scale collaborations to study Duchenne's muscular dystrophy, Huntington's disease, Alzheimer's disease, cystic fibrosis involve collaborators from many nations and families spread throughout the world. In the USA, the US Department of Energy was first to start a dedicated genome research program in 1987. Since then, another major government program has begun at the National Center for Human Genome Research of the National Institutes of Health. Italy, China, Australia, France, Canada, and Japan have genome research programs also.

  20. Human genome protein function database.

    PubMed Central

    Sorenson, D. K.

    1991-01-01

    A database which focuses on the normal functions of the currently-known protein products of the Human Genome was constructed. Information is stored as text, figures, tables, and diagrams. The program contains built-in functions to modify, update, categorize, hypertext, search, create reports, and establish links to other databases. The semi-automated categorization feature of the database program was used to classify these proteins in terms of biomedical functions. PMID:1807638

  1. The development of genomics applied to dairy breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic selection (GS) has profoundly changed dairy cattle breeding in the last decade and can be defined as the use of genomic breeding values (GEBV) in selection programs. The GEBV is the sum of the effects of dense DNA markers across the whole genome, capturing all the quantitative trait loci (QT...

  2. Genomic selection in wheat using genotyping-by-sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic selection (GS) is a promising approach to accelerate gain in plant breeding programs. In GS, genome-wide molecular markers are used to predict total breeding values and make selections of individuals or breeding lines prior to phenotyping. One premise of applying GS is that low-cost genome...

  3. BACFinder: genomic localisation of large insert genomic clones based on restriction fingerprinting

    PubMed Central

    Crowe, Mark L.; Rana, Debashis; Fraser, Fiona; Bancroft, Ian; Trick, Martin

    2002-01-01

    We have developed software that allows the prediction of the genomic location of a bacterial artificial chromosome (BAC) clone, or other large genomic clone, based on a simple restriction digest of the BAC. The mapping is performed by comparing the experimentally derived restriction digest of the BAC DNA with a virtual restriction digest of the whole genome sequence. Our trials indicate that this program identified the genomic regions represented by BAC clones with a degree of accuracy comparable to that of end-sequencing, but at considerably less cost. Although the program has been developed principally for use with Arabidopsis BACs, it should align large insert genomic clones to any fully sequenced genome. PMID:12409477

  4. Computational Profiling of Microbial Genomes using Short Sequences

    NASA Astrophysics Data System (ADS)

    Doering, Dale; Tsukuda, Toyoko

    2001-03-01

    The genomes of a number of microbial species have now been completely sequenced. We have developed a program for the statistical analysis of the appearance frequency and location of short DNA segments within an entire microbial genome. Using this program, the genomes of Methanococcus jannischii (1.66 Mbase; 68radiodurans (3.28 Mbase; 66and compared to a randomly generated genomic pattern. The random sequence shows the expected statistical frequency distribution about the average that equals the genome size divided by the total number of N size short segments (4N). In contrast, the microbial genomes are radically skewed with a large number of segments that rarely occur and a few that are highly represented in the genome. The specific distribution profile of the segments is strongly dependent on the overall bias in the organism. The biased appearance frequency allows us to develop a genome signature of each microbial species.

  5. Teaching Residents Genomic Pathology: A Novel Approach for New Technology

    PubMed Central

    Haspel, Richard L.

    2013-01-01

    Genomics-based diagnostics have become part of patient care. As pathologists have the expertise in clinical laboratory testing as well as access to patient samples, all genomic medicine is genomic pathology. This article will review the evidence that there is a critical need for pathology resident training in genomics. Several individual program curricula are described as well as the progress of the Training Residents in Genomic (TRIG) Working Group. This group has made significant advances towards developing, implementing and evaluating a national curriculum in genomics for pathology residents. The novel approach of the TRIG Working Group can be used as a model for training pathology professionals in any new technology. PMID:23399798

  6. Dissection of genomic correlation matrices using multivariate factor analysis in dairy and dual-purpose cattle breeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    SNP effects estimated in genomic selection programs allow for the prediction of direct genomic values (DGV) both at genome-wide and chromosomal level. As a consequence, genome-wide (G_GW) or chromosomal (G_CHR) correlation matrices between genomic predictions for different traits can be calculated. ...

  7. Building international genomics collaboration for global health security

    SciTech Connect

    Cui, Helen H.; Erkkila, Tracy; Chain, Patrick S. G.; Vuyisich, Momchilo

    2015-12-07

    Genome science and technologies are transforming life sciences globally in many ways and becoming a highly desirable area for international collaboration to strengthen global health. The Genome Science Program at the Los Alamos National Laboratory is leveraging a long history of expertise in genomics research to assist multiple partner nations in advancing their genomics and bioinformatics capabilities. The capability development objectives focus on providing a molecular genomics-based scientific approach for pathogen detection, characterization, and biosurveillance applications. The general approaches include introduction of basic principles in genomics technologies, training on laboratory methodologies and bioinformatic analysis of resulting data, procurement, and installation of next-generation sequencing instruments, establishing bioinformatics software capabilities, and exploring collaborative applications of the genomics capabilities in public health. Genome centers have been established with public health and research institutions in the Republic of Georgia, Kingdom of Jordan, Uganda, and Gabon; broader collaborations in genomics applications have also been developed with research institutions in many other countries.

  8. Building International Genomics Collaboration for Global Health Security

    PubMed Central

    Cui, Helen H.; Erkkila, Tracy; Chain, Patrick S. G.; Vuyisich, Momchilo

    2015-01-01

    Genome science and technologies are transforming life sciences globally in many ways and becoming a highly desirable area for international collaboration to strengthen global health. The Genome Science Program at the Los Alamos National Laboratory is leveraging a long history of expertise in genomics research to assist multiple partner nations in advancing their genomics and bioinformatics capabilities. The capability development objectives focus on providing a molecular genomics-based scientific approach for pathogen detection, characterization, and biosurveillance applications. The general approaches include introduction of basic principles in genomics technologies, training on laboratory methodologies and bioinformatic analysis of resulting data, procurement, and installation of next-generation sequencing instruments, establishing bioinformatics software capabilities, and exploring collaborative applications of the genomics capabilities in public health. Genome centers have been established with public health and research institutions in the Republic of Georgia, Kingdom of Jordan, Uganda, and Gabon; broader collaborations in genomics applications have also been developed with research institutions in many other countries. PMID:26697418

  9. Genomes on ice.

    PubMed

    Parkhill, Julian

    2016-03-01

    This month's Genome Watch discusses the analysis of a Helicobacter pylori genome from the preserved Copper-Age mummy known as the Iceman and how ancient genomes shed light on the history of bacterial pathogens. PMID:26853114

  10. Whole Genome Sequencing

    MedlinePlus

    ... you want to learn. Search form Search Whole Genome Sequencing You are here Home Testing & Services Testing ... the full story, click here . What is whole genome sequencing? Whole genome sequencing is the mapping out ...

  11. Genomics screens for metastasis genes

    PubMed Central

    Yan, Jinchun; Huang, Qihong

    2014-01-01

    Metastasis is responsible for most cancer mortality. The process of metastasis is complex, requiring the coordinated expression and fine regulation of many genes in multiple pathways in both the tumor and host tissues. Identification and characterization of the genetic programs that regulate metastasis is critical to understanding the metastatic process and discovering molecular targets for the prevention and treatment of metastasis. Genomic approaches and functional genomic analyses can systemically discover metastasis genes. In this review, we summarize the genetic tools and methods that have been used to identify and characterize the genes that play critical roles in metastasis. PMID:22684367

  12. Ensembl Genomes 2016: more genomes, more complexity.

    PubMed

    Kersey, Paul Julian; Allen, James E; Armean, Irina; Boddu, Sanjay; Bolt, Bruce J; Carvalho-Silva, Denise; Christensen, Mikkel; Davis, Paul; Falin, Lee J; Grabmueller, Christoph; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Aranganathan, Naveen K; Langridge, Nicholas; Lowy, Ernesto; McDowall, Mark D; Maheswari, Uma; Nuhn, Michael; Ong, Chuang Kee; Overduin, Bert; Paulini, Michael; Pedro, Helder; Perry, Emily; Spudich, Giulietta; Tapanari, Electra; Walts, Brandon; Williams, Gareth; Tello-Ruiz, Marcela; Stein, Joshua; Wei, Sharon; Ware, Doreen; Bolser, Daniel M; Howe, Kevin L; Kulesha, Eugene; Lawson, Daniel; Maslen, Gareth; Staines, Daniel M

    2016-01-01

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including reference sequence, gene models, transcriptional data, genetic variation and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments. These include the development of new analyses and views to represent polyploid genomes (of which bread wheat is the primary exemplar); and the continued up-scaling of the resource, which now includes over 23 000 bacterial genomes, 400 fungal genomes and 100 protist genomes, in addition to 55 genomes from invertebrate metazoa and 39 genomes from plants. This dramatic increase in the number of included genomes is one part of a broader effort to automate the integration of archival data (genome sequence, but also associated RNA sequence data and variant calls) within the context of reference genomes and make it available through the Ensembl user interfaces. PMID:26578574

  13. Ensembl genomes 2016: more genomes, more complexity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent...

  14. Ensembl Genomes 2016: more genomes, more complexity

    PubMed Central

    Kersey, Paul Julian; Allen, James E.; Armean, Irina; Boddu, Sanjay; Bolt, Bruce J.; Carvalho-Silva, Denise; Christensen, Mikkel; Davis, Paul; Falin, Lee J.; Grabmueller, Christoph; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Aranganathan, Naveen K.; Langridge, Nicholas; Lowy, Ernesto; McDowall, Mark D.; Maheswari, Uma; Nuhn, Michael; Ong, Chuang Kee; Overduin, Bert; Paulini, Michael; Pedro, Helder; Perry, Emily; Spudich, Giulietta; Tapanari, Electra; Walts, Brandon; Williams, Gareth; Tello–Ruiz, Marcela; Stein, Joshua; Wei, Sharon; Ware, Doreen; Bolser, Daniel M.; Howe, Kevin L.; Kulesha, Eugene; Lawson, Daniel; Maslen, Gareth; Staines, Daniel M.

    2016-01-01

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including reference sequence, gene models, transcriptional data, genetic variation and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments. These include the development of new analyses and views to represent polyploid genomes (of which bread wheat is the primary exemplar); and the continued up-scaling of the resource, which now includes over 23 000 bacterial genomes, 400 fungal genomes and 100 protist genomes, in addition to 55 genomes from invertebrate metazoa and 39 genomes from plants. This dramatic increase in the number of included genomes is one part of a broader effort to automate the integration of archival data (genome sequence, but also associated RNA sequence data and variant calls) within the context of reference genomes and make it available through the Ensembl user interfaces. PMID:26578574

  15. 76 FR 3643 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Initial Review Group; Genome Research Review... Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: January...

  16. 75 FR 26762 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Initial Review Group; Genome Research Review... Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: May 3,...

  17. 75 FR 2148 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Initial Review Group, Genome Research Review... Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS)...

  18. 75 FR 52537 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Initial Review Group; Genome Research Review... Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS)...

  19. Transposable element junctions in marker development and genomic characterization of barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley is a model plant in genomic studies of Triticeae species. A complete barley genome sequence will facilitate not only barley breeding programs, but also those for related species. However, the large genome size and high repetitive sequence content complicate the barley genome assembly. The ma...

  20. PopGenome: An Efficient Swiss Army Knife for Population Genomic Analyses in R

    PubMed Central

    Pfeifer, Bastian; Wittelsbürger, Ulrich; Ramos-Onsins, Sebastian E.; Lercher, Martin J.

    2014-01-01

    Although many computer programs can perform population genetics calculations, they are typically limited in the analyses and data input formats they offer; few applications can process the large data sets produced by whole-genome resequencing projects. Furthermore, there is no coherent framework for the easy integration of new statistics into existing pipelines, hindering the development and application of new population genetics and genomics approaches. Here, we present PopGenome, a population genomics package for the R software environment (a de facto standard for statistical analyses). PopGenome can efficiently process genome-scale data as well as large sets of individual loci. It reads DNA alignments and single-nucleotide polymorphism (SNP) data sets in most common formats, including those used by the HapMap, 1000 human genomes, and 1001 Arabidopsis genomes projects. PopGenome also reads associated annotation files in GFF format, enabling users to easily define regions or classify SNPs based on their annotation; all analyses can also be applied to sliding windows. PopGenome offers a wide range of diverse population genetics analyses, including neutrality tests as well as statistics for population differentiation, linkage disequilibrium, and recombination. PopGenome is linked to Hudson’s MS and Ewing’s MSMS programs to assess statistical significance based on coalescent simulations. PopGenome’s integration in R facilitates effortless and reproducible downstream analyses as well as the production of publication-quality graphics. Developers can easily incorporate new analyses methods into the PopGenome framework. PopGenome and R are freely available from CRAN (http://cran.r-project.org/) for all major operating systems under the GNU General Public License. PMID:24739305

  1. Funding Opportunity: Genomic Data Centers

    Cancer.gov

    Funding Opportunity CCG, Funding Opportunity Center for Cancer Genomics, CCG, Center for Cancer Genomics, CCG RFA, Center for cancer genomics rfa, genomic data analysis network, genomic data analysis network centers,

  2. Recent developments of genomic research in soybean.

    PubMed

    Chan, Ching; Qi, Xinpeng; Li, Man-Wah; Wong, Fuk-Ling; Lam, Hon-Ming

    2012-07-20

    Soybean is an important cash crop with unique and important traits such as the high seed protein and oil contents, and the ability to perform symbiotic nitrogen fixation. A reference genome of cultivated soybeans was established in 2010, followed by whole-genome re-sequencing of wild and cultivated soybean accessions. These efforts revealed unique features of the soybean genome and helped to understand its evolution. Mapping of variations between wild and cultivated soybean genomes were performed. These genomic variations may be related to the process of domestication and human selection. Wild soybean germplasms exhibited high genomic diversity and hence may be an important source of novel genes/alleles. Accumulation of genomic data will help to refine genetic maps and expedite the identification of functional genes. In this review, we summarize the major findings from the whole-genome sequencing projects and discuss the possible impacts on soybean researches and breeding programs. Some emerging areas such as transcriptomic and epigenomic studies will be introduced. In addition, we also tabulated some useful bioinformatics tools that will help the mining of the soybean genomic data. PMID:22835978

  3. Scaffolder - software for manual genome scaffolding

    PubMed Central

    2012-01-01

    Background The assembly of next-generation short-read sequencing data can result in a fragmented non-contiguous set of genomic sequences. Therefore a common step in a genome project is to join neighbouring sequence regions together and fill gaps. This scaffolding step is non-trivial and requires manually editing large blocks of nucleotide sequence. Joining these sequences together also hides the source of each region in the final genome sequence. Taken together these considerations may make reproducing or editing an existing genome scaffold difficult. Methods The software outlined here, “Scaffolder,” is implemented in the Ruby programming language and can be installed via the RubyGems software management system. Genome scaffolds are defined using YAML - a data format which is both human and machine-readable. Command line binaries and extensive documentation are available. Results This software allows a genome build to be defined in terms of the constituent sequences using a relatively simple syntax. This syntax further allows unknown regions to be specified and additional sequence to be used to fill known gaps in the scaffold. Defining the genome construction in a file makes the scaffolding process reproducible and easier to edit compared with large FASTA nucleotide sequences. Conclusions Scaffolder is easy-to-use genome scaffolding software which promotes reproducibility and continuous development in a genome project. Scaffolder can be found at http://next.gs. PMID:22640820

  4. Enabling functional genomics with genome engineering

    PubMed Central

    Hilton, Isaac B.; Gersbach, Charles A.

    2015-01-01

    Advances in genome engineering technologies have made the precise control over genome sequence and regulation possible across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we review the recent advances of the most widely adopted genome engineering platforms and their application to functional genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current and potential future applications of these tools, as well as their current limitations and areas for future advances. PMID:26430154

  5. Exploring Other Genomes: Bacteria.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    2001-01-01

    Points out the importance of genomes other than the human genome project and provides information on the identified bacterial genomes Pseudomonas aeuroginosa, Leprosy, Cholera, Meningitis, Tuberculosis, Bubonic Plague, and plant pathogens. Considers the computer's use in genome studies. (Contains 14 references.) (YDS)

  6. Navigating yeast genome maintenance with functional genomics.

    PubMed

    Measday, Vivien; Stirling, Peter C

    2016-03-01

    Maintenance of genome integrity is a fundamental requirement of all organisms. To address this, organisms have evolved extremely faithful modes of replication, DNA repair and chromosome segregation to combat the deleterious effects of an unstable genome. Nonetheless, a small amount of genome instability is the driver of evolutionary change and adaptation, and thus a low level of instability is permitted in populations. While defects in genome maintenance almost invariably reduce fitness in the short term, they can create an environment where beneficial mutations are more likely to occur. The importance of this fact is clearest in the development of human cancer, where genome instability is a well-established enabling characteristic of carcinogenesis. This raises the crucial question: what are the cellular pathways that promote genome maintenance and what are their mechanisms? Work in model organisms, in particular the yeast Saccharomyces cerevisiae, has provided the global foundations of genome maintenance mechanisms in eukaryotes. The development of pioneering genomic tools inS. cerevisiae, such as the systematic creation of mutants in all nonessential and essential genes, has enabled whole-genome approaches to identifying genes with roles in genome maintenance. Here, we review the extensive whole-genome approaches taken in yeast, with an emphasis on functional genomic screens, to understand the genetic basis of genome instability, highlighting a range of genetic and cytological screening modalities. By revealing the biological pathways and processes regulating genome integrity, these analyses contribute to the systems-level map of the yeast cell and inform studies of human disease, especially cancer. PMID:26323482

  7. Teaching Genomic Counseling: Preparing the Genetic Counseling Workforce for the Genomic Era

    PubMed Central

    Hooker, Gillian W.; Ormond, Kelly E.; Sweet, Kevin; Biesecker, Barbara B.

    2014-01-01

    Genetic counselors have a long-standing history of working on the clinical forefront of implementing new genetic technology. Genomic sequencing is no exception. The rapid advancement of genomic sequencing technologies, including but not limited to next generation sequencing approaches, across all subspecialties of genetic counseling mandates attention to genetic counselor training at both the graduate and continuing education levels. The current era provides a tremendous opportunity for counselors to become actively involved in making genomics more accessible, engaging the population in decisions to undergo sequencing and effectively translating genomic information to promote health and well-being. In this commentary, we explore reasons why genomic sequencing warrants particular consideration and put forward strategies for training program curricula and continuing education programs to meet this need. PMID:24504939

  8. Genomic definition of species. Revision 2

    SciTech Connect

    Crkvenjakov, R.; Drmanac, R.

    1993-03-01

    A genome is the sum total of the DNA sequences in the cells of an individual organism. The common usage that species possess genomes comes naturally to biochemists, who have shown that all protein and nucleic acid molecules are at the same time species- and individual-specific, with minor individual variations being superimposed on a consensus sequence that is constant for a species. By extension, this property is attributed to the common features of DNA in the chromosomes of members of a given species and is called species genome. Our proposal for the definition of a biological species is as follows: A species comprises a group of actual and potential biological organisms built according to a unique genome program that is recorded, and at least in part expressed, in the structures of their genomic nucleic acid molecule(s), having intragroup sequence differences which can be fully interconverted in the process of organismal reproduction.

  9. Emerging issues in public health genomics

    PubMed Central

    Roberts, J. Scott

    2014-01-01

    This review highlights emerging areas of interest in public health genomics. First, recent advances in newborn screening (NBS) are described, with a focus on practice and policy implications of current and future efforts to expand NBS programs (e.g., via next-generation sequencing). Next, research findings from the rapidly progressing field of epigenetics and epigenomics are detailed, highlighting ways in which our emerging understanding in these areas could guide future intervention and research efforts in public health. We close by considering various ethical, legal and social issues posed by recent developments in public health genomics; these include policies to regulate access to personal genomic information; the need to enhance genetic literacy in both health professionals and the public; and challenges in ensuring that the benefits (and burdens) from genomic discoveries and applications are equitably distributed. Needs for future genomics research that integrates across basic and social sciences are also noted. PMID:25184533

  10. MycoCosm, an Integrated Fungal Genomics Resource

    SciTech Connect

    Shabalov, Igor; Grigoriev, Igor

    2012-03-16

    MycoCosm is a web-based interactive fungal genomics resource, which was first released in March 2010, in response to an urgent call from the fungal community for integration of all fungal genomes and analytical tools in one place (Pan-fungal data resources meeting, Feb 21-22, 2010, Alexandria, VA). MycoCosm integrates genomics data and analysis tools to navigate through over 100 fungal genomes sequenced at JGI and elsewhere. This resource allows users to explore fungal genomes in the context of both genome-centric analysis and comparative genomics, and promotes user community participation in data submission, annotation and analysis. MycoCosm has over 4500 unique visitors/month or 35000+ visitors/year as well as hundreds of registered users contributing their data and expertise to this resource. Its scalable architecture allows significant expansion of the data expected from JGI Fungal Genomics Program, its users, and integration with external resources used by fungal community.

  11. MBGD update 2015: microbial genome database for flexible ortholog analysis utilizing a diverse set of genomic data.

    PubMed

    Uchiyama, Ikuo; Mihara, Motohiro; Nishide, Hiroyo; Chiba, Hirokazu

    2015-01-01

    The microbial genome database for comparative analysis (MBGD) (available at http://mbgd.genome.ad.jp/) is a comprehensive ortholog database for flexible comparative analysis of microbial genomes, where the users are allowed to create an ortholog table among any specified set of organisms. Because of the rapid increase in microbial genome data owing to the next-generation sequencing technology, it becomes increasingly challenging to maintain high-quality orthology relationships while allowing the users to incorporate the latest genomic data available into an analysis. Because many of the recently accumulating genomic data are draft genome sequences for which some complete genome sequences of the same or closely related species are available, MBGD now stores draft genome data and allows the users to incorporate them into a user-specific ortholog database using the MyMBGD functionality. In this function, draft genome data are incorporated into an existing ortholog table created only from the complete genome data in an incremental manner to prevent low-quality draft data from affecting clustering results. In addition, to provide high-quality orthology relationships, the standard ortholog table containing all the representative genomes, which is first created by the rapid classification program DomClust, is now refined using DomRefine, a recently developed program for improving domain-level clustering using multiple sequence alignment information. PMID:25398900

  12. Accelerating Genome Sequencing 100X with FPGAs

    SciTech Connect

    Storaasli, Olaf O; Strenski, Dave

    2007-01-01

    The performance of two Cray XD1 systems with Virtex-II Pro 50 and Virtex-4 LX160 FPGAs was evaluated using the FASTA computational biology program for human genome (DNA and protein) sequence comparisons. FPGA speedups of 50X (Virtex-II Pro 50) and 100X (Virtex-4 LX160) over a 2.2 GHz Opteron were obtained. FPGA coding issues for human genome data are described.

  13. Algorithm to search for genomic rearrangements

    NASA Astrophysics Data System (ADS)

    Nałecz-Charkiewicz, Katarzyna; Nowak, Robert

    2013-10-01

    The aim of this article is to discuss the issue of comparing nucleotide sequences in order to detect chromosomal rearrangements (for example, in the study of genomes of two cucumber varieties, Polish and Chinese). Two basic algorithms for detecting rearrangements has been described: Smith-Waterman algorithm, as well as a new method of searching genetic markers in combination with Knuth-Morris-Pratt algorithm. The computer program in client-server architecture was developed. The algorithms properties were examined on genomes Escherichia coli and Arabidopsis thaliana genomes, and are prepared to compare two cucumber varieties, Polish and Chinese. The results are promising and further works are planned.

  14. TCGA's Pan-Cancer Efforts and Expansion to Include Whole Genome Sequence - TCGA

    Cancer.gov

    Carolyn Hutter, Ph.D., Program Director of NHGRI's Division of Genomic Medicine, discusses the expansion of TCGA's Pan-Cancer efforts to include the Pan-Cancer Analysis of Whole Genomes (PAWG) project.

  15. Genomics and Health Impact Update

    MedlinePlus

    ... Genomics in Practice Newborn Screening Pharmacogenomics Reproductive Health Tools and Databases About the Genomics & Health Impact Update The Office of Public Health Genomics provides updated and credible ...

  16. Integrating sequence, evolution and functional genomics in regulatory genomics

    PubMed Central

    Vingron, Martin; Brazma, Alvis; Coulson, Richard; van Helden, Jacques; Manke, Thomas; Palin, Kimmo; Sand, Olivier; Ukkonen, Esko

    2009-01-01

    With genome analysis expanding from the study of genes to the study of gene regulation, 'regulatory genomics' utilizes sequence information, evolution and functional genomics measurements to unravel how regulatory information is encoded in the genome. PMID:19226437

  17. Genome instability, cancer and aging

    PubMed Central

    Maslov, Alexander Y.; Vijg, Jan

    2015-01-01

    DNA damage-driven genome instability underlies the diversity of life forms generated by the evolutionary process but is detrimental to the somatic cells of individual organisms. The cellular response to DNA damage can be roughly divided in two parts. First, when damage is severe, programmed cell death may occur or, alternatively, temporary or permanent cell cycle arrest. This protects against cancer but can have negative effects on the long term, e.g., by depleting stem cell reservoirs. Second, damage can be repaired through one or more of the many sophisticated genome maintenance pathways. However, erroneous DNA repair and incomplete restoration of chromatin after damage is resolved, produce mutations and epimutations, respectively, both of which have been shown to accumulate with age. An increased burden of mutations and/or epimutations in aged tissues increases cancer risk and adversely affects gene transcriptional regulation, leading to progressive decline in organ function. Cellular degeneration and uncontrolled cell proliferation are both major hallmarks of aging. Despite the fact that one seems to exclude the other, they both may be driven by a common mechanism. Here, we review age related changes in the mammalian genome and their possible functional consequences, with special emphasis on genome instability in stem/progenitor cells. PMID:19344750

  18. Genomic Data Commons | Office of Cancer Genomics

    Cancer.gov

    The NCI’s Center for Cancer Genomics launches the Genomic Data Commons (GDC), a unified data sharing platform for the cancer research community. The mission of the GDC is to enable data sharing across the entire cancer research community, to ultimately support precision medicine in oncology.

  19. Harvesting rice's dispensable genome.

    PubMed

    Wing, Rod A

    2015-01-01

    A rapid and cost-effective approach has been developed to harvest and map the dispensable genome, that is, population-level natural sequence variation within a species that is not present in static genome assemblies. PMID:26429765

  20. Libraries for genomic SELEX.

    PubMed Central

    Singer, B S; Shtatland, T; Brown, D; Gold, L

    1997-01-01

    An increasing number of proteins are being identified that regulate gene expression by binding specific nucleic acidsin vivo. A method termed genomic SELEX facilitates the rapid identification of networks of protein-nucleic acid interactions by identifying within the genomic sequences of an organism the highest affinity sites for any protein of the organism. As with its progenitor, SELEX of random-sequence nucleic acids, genomic SELEX involves iterative binding, partitioning, and amplification of nucleic acids. The two methods differ in that the variable region of the nucleic acid library for genomic SELEX is derived from the genome of an organism. We have used a quick and simple method to construct Escherichia coli, Saccharomyces cerevisiae, and human genomic DNA PCR libraries that can be transcribed with T7 RNA polymerase. We present evidence that the libraries contain overlapping inserts starting at most of the positions within the genome, making these libraries suitable for genomic SELEX. PMID:9016629

  1. Genomic Data Commons launches

    Cancer.gov

    The Genomic Data Commons (GDC), a unified data system that promotes sharing of genomic and clinical data between researchers, launched today with a visit from Vice President Joe Biden to the operations center at the University of Chicago.

  2. GENOMICS AND ENVIRONMENTAL RESEARCH

    EPA Science Inventory

    The impact of recently developed and emerging genomics technologies on environmental sciences has significant implications for human and ecological risk assessment issues. The linkage of data generated from genomics, transcriptomics, proteomics, metabalomics, and ecology can be ...

  3. Exploiting the genome

    SciTech Connect

    Block, S.; Cornwall, J.; Dyson, F.; Koonin, S.; Lewis, N.; Schwitters, R.

    1998-09-11

    In 1997, JASON conducted a DOE-sponsored study of the human genome project with special emphasis on the areas of technology, quality assurance and quality control, and informatics. The present study has two aims: first, to update the 1997 Report in light of recent developments in genome sequencing technology, and second, to consider possible roles for the DOE in the ''post-genomic" era, following acquisition of the complete human genome sequence.

  4. Using CAVE technology for functional genomics studies.

    PubMed

    Sensen, Christoph W

    2002-01-01

    We have established the first Java 3D-enabled CAVE (CAVE automated virtual environment). The Java application programming interface allows the complete separation of the program development from the program execution, opening new application domains for the CAVE technology. Programs can be developed on any Java-enabled computer platform, including Windows, Macintosh, and Linux workstations, and executed in the CAVE without modification. The introduction of Java, one of the major programming environments for bioinformatics, into the CAVE environment allows the rapid development applications for genome research, especially for the analysis of the spatial and temporal data that are being produced by functional genomics experiments. The CAVE technology will play a major role in the modeling of biological systems that is necessary to understand how these systems are organized and how they function. PMID:12614491

  5. COMPARATIVE GENOMICS IN LEGUMES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The legume plant family will soon include three sequenced genomes. The majority of the gene-containing portions of the model legumes Medicago truncatula and Lotus japonicus have been sequenced in clone-by-clone projects, and the sequencing of the soybean genome is underway in a whole-genome shotgun ...

  6. Whole Genome Selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whole genome selection (WGS) is an approach to using DNA markers that are distributed throughout the entire genome. Genes affecting most economically-important traits are distributed throughout the genome and there are relatively few that have large effects with many more genes with progressively sm...

  7. Wheat Genomics: Present Status and Future Prospects

    PubMed Central

    Gupta, P. K.; Mir, R. R.; Mohan, A.; Kumar, J.

    2008-01-01

    Wheat (Triticum aestivum L.), with a large genome (16000 Mb) and high proportion (∼80%) of repetitive sequences, has been a difficult crop for genomics research. However, the availability of extensive cytogenetics stocks has been an asset, which facilitated significant progress in wheat genomic research in recent years. For instance, fairly dense molecular maps (both genetic and physical maps) and a large set of ESTs allowed genome-wide identification of gene-rich and gene-poor regions as well as QTL including eQTL. The availability of markers associated with major economic traits also allowed development of major programs on marker-assisted selection (MAS) in some countries, and facilitated map-based cloning of a number of genes/QTL. Resources for functional genomics including TILLING and RNA interference (RNAi) along with some new approaches like epigenetics and association mapping are also being successfully used for wheat genomics research. BAC/BIBAC libraries for the subgenome D and some individual chromosomes have also been prepared to facilitate sequencing of gene space. In this brief review, we discuss all these advances in some detail, and also describe briefly the available resources, which can be used for future genomics research in this important crop. PMID:18528518

  8. Genomics and functional genomics with haloarchaea.

    PubMed

    Soppa, J; Baumann, A; Brenneis, M; Dambeck, M; Hering, O; Lange, C

    2008-09-01

    The first haloarchaeal genome was published in 2000 and today five genome sequences are available. Transcriptome and proteome analyses have been established for two and three haloarchaeal species, respectively, and more than 20 studies using these functional genomic approaches have been published in the last two years. These studies gave global overviews of metabolic regulation (aerobic and anaerobic respiration, phototrophy, carbon source usage), stress response (UV, X-rays, transition metals, osmotic and temperature stress), cell cycle-dependent transcript level regulation, and transcript half-lives. The only translatome analysis available for any prokaryotic species revealed that 10 and 20% of all transcripts are translationally regulated in Haloferax volcanii and Halobacterium salinarum, respectively. Very effective methods for the construction of in frame deletion mutants have been established recently for haloarchaea and are intensively used to unravel the biological roles of genes in this group. Bioinformatic analyses include both cross-genome comparisons as well as integration of genomic data with experimental results. The first systems biology approaches have been performed that used experimental data to construct predictive models of gene expression and metabolism, respectively. In this contribution the current status of genomics, functional genomics, and molecular genetics of haloarchaea is summarized and selected examples are discussed. PMID:18493745

  9. 10. international mouse genome conference

    SciTech Connect

    Meisler, M.H.

    1996-12-31

    Ten years after hosting the First International Mammalian Genome Conference in Paris in 1986, Dr. Jean-Louis Guenet presided over the Tenth Conference at the Pasteur Institute, October 7--10, 1996. The 1986 conference was a satellite to the Human Gene Mapping Workshop and had approximately 50 attendees. The 1996 meeting was attended by 300 scientists from around the world. In the interim, the number of mapped loci in the mouse increased from 1,000 to over 20,000. This report contains a listing of the program and its participants, and two articles that review the meeting and the role of the laboratory mouse in the Human Genome project. More than 200 papers were presented at the conference covering the following topics: International mouse chromosome committee meetings; Mutant generation and identification; Physical and genetic maps; New technology and resources; Chromatin structure and gene regulation; Rate and hamster genetic maps; Informatics and databases; and Quantitative trait analysis.

  10. Unmet Challenges of Structural Genomics

    PubMed Central

    Chruszcz, Maksymilian; Domagalski, Marcin; Osinski, Tomasz; Wlodawer, Alexander; Minor, Wladek

    2010-01-01

    Summary Structural genomics (SG) programs have developed during the last decade many novel methodologies for faster and more accurate structure determination. These new tools and approaches led to determination of thousands of protein structures. The generation of enormous amounts of experimental data resulted in significant improvements in the understanding of many biological processes at molecular levels. However, the amount of data collected so far is so large that traditional analysis methods are limiting the rate of extraction of biological and biochemical information from 3-D models. This situation has prompted us to review the challenges that remain unmet by structural genomics, as well as the areas in which the potential impact of SG could exceed what has been achieved so far. PMID:20810277

  11. Chromium and Genomic Stability

    PubMed Central

    Wise, Sandra S.; Wise, John Pierce

    2014-01-01

    Many metals serve as micronutrients which protect against genomic instability. Chromium is most abundant in its trivalent and hexavalent forms. Trivalent chromium has historically been considered an essential element, though recent data indicate that while it can have pharmacological effects and value, it is not essential. There are no data indicating that trivalent chromium promotes genomic stability and, instead may promote genomic instability. Hexavalent chromium is widely accepted as highly toxic and carcinogenic with no nutritional value. Recent data indicate that it causes genomic instability and also has no role in promoting genomic stability. PMID:22192535

  12. The Genomic Medicine Game.

    PubMed

    Tran, Elvis; de Andrés-Galiana, Enrique J; Benitez, Sonia; Martin-Sanchez, Fernando; Lopez-Campos, Guillermo H

    2016-01-01

    With advancements in genomics technology, health care has been improving and new paradigms of medicine such as genomic medicine have evolved. The education of clinicians, researchers and students to face the challenges posed by these new approaches, however, has been often lagging behind. From this the Genomic Medicine Game, an educational tool, was created for the purpose of conceptualizing the key components of Genomic Medicine. A number of phenotype-genotype associations were found through a literature review, which was used to be a base for the concepts the Genomic Medicine Game would focus on. Built in Java, the game was successfully tested with promising results. PMID:27577486

  13. Automated correction of genome sequence errors

    PubMed Central

    Gajer, Pawel; Schatz, Michael; Salzberg, Steven L.

    2004-01-01

    By using information from an assembly of a genome, a new program called AutoEditor significantly improves base calling accuracy over that achieved by previous algorithms. This in turn improves the overall accuracy of genome sequences and facilitates the use of these sequences for polymorphism discovery. We describe the algorithm and its application in a large set of recent genome sequencing projects. The number of erroneous base calls in these projects was reduced by 80%. In an analysis of over one million corrections, we found that AutoEditor made just one error per 8828 corrections. By substantially increasing the accuracy of base calling, AutoEditor can dramatically accelerate the process of finishing genomes, which involves closing all gaps and ensuring minimum quality standards for the final sequence. It also greatly improves our ability to discover single nucleotide polymorphisms (SNPs) between closely related strains and isolates of the same species. PMID:14744981

  14. Rhodopseudomonas palustris genome project. Final report

    SciTech Connect

    Harwood, Caroline S.

    2000-11-22

    Rhodopseudomonas palustris is a common soil and water bacterium that makes its living by converting sunlight to cellular energy and by absorbing atmospheric carbon dioxide and converting it to biomass. This microbe can also degrade and recycle components of the woody tissues of plants, wood being the most abundant polymer on earth. Because of its intimate involvement in carbon management and recycling, R. palustris was selected by the DOE Carbon Management Program to have its genome sequenced by the Joint Genome Institute (JGI). This award provided funds for the preparation of R. palustris genomic DNA which was then supplied to the JGI in sufficient amounts to enable the complete sequencing of the R. palustris genome. The PI also supplied the JGI with technical information about the molecular biology of R. palustris.

  15. Intrauterine programming

    PubMed Central

    Sedaghat, Katayoun; Zahediasl, Saleh; Ghasemi, Asghar

    2015-01-01

    In mammals, the intrauterine condition has an important role in the development of fetal physiological systems in later life. Suboptimal maternal environment can alter the regulatory pathways that determine the normal development of the fetus in utero, which in post-natal life may render the individual more susceptible to cardiovascular or metabolic adult-life diseases. Changes in the intrauterine availability of nutrients, oxygen and hormones can change the fetal tissue developmental regulatory planning, which occurs genomically and non-genomically and can cause permanent structural and functional changes in the systems, leading to diseases in early years of life and those that particularly become overt in adulthood. In this review we take a brief look at the main elements which program the fetal system development and consequently induce a crucial impact on the cardiovascular, nervous and hormonal systems in adulthood. PMID:25945232

  16. Microbial genomic taxonomy.

    PubMed

    Thompson, Cristiane C; Chimetto, Luciane; Edwards, Robert A; Swings, Jean; Stackebrandt, Erko; Thompson, Fabiano L

    2013-01-01

    A need for a genomic species definition is emerging from several independent studies worldwide. In this commentary paper, we discuss recent studies on the genomic taxonomy of diverse microbial groups and a unified species definition based on genomics. Accordingly, strains from the same microbial species share >95% Average Amino Acid Identity (AAI) and Average Nucleotide Identity (ANI), >95% identity based on multiple alignment genes, <10 in Karlin genomic signature, and > 70% in silico Genome-to-Genome Hybridization similarity (GGDH). Species of the same genus will form monophyletic groups on the basis of 16S rRNA gene sequences, Multilocus Sequence Analysis (MLSA) and supertree analysis. In addition to the established requirements for species descriptions, we propose that new taxa descriptions should also include at least a draft genome sequence of the type strain in order to obtain a clear outlook on the genomic landscape of the novel microbe. The application of the new genomic species definition put forward here will allow researchers to use genome sequences to define simultaneously coherent phenotypic and genomic groups. PMID:24365132

  17. The Bluejay genome browser.

    PubMed

    Soh, Jung; Gordon, Paul M K; Sensen, Christoph W

    2012-03-01

    The Bluejay genome browser is a stand-alone visualization tool for the multi-scale viewing of annotated genomes and other genomic elements. Bluejay allows users to customize display features to suit their needs, and produces publication-quality graphics. Bluejay provides a multitude of ways to interrelate biological data at the genome scale. Users can load gene expression data into a genome display for expression visualization in context. Multiple genomes can be compared concurrently, including time series expression data, based on Gene Ontology labels. External, context-sensitive biological Web Services are linked to the displayed genomic elements ad hoc for in-depth genomic data analysis and interpretation. Users can mark multiple points of interest in a genome by creating waypoints, and exploit them for easy navigation of single or multiple genomes. Using this comprehensive visual environment, users can study a gene not just in relation to its genome, but also its transcriptome and evolutionary origins. Written in Java, Bluejay is platform-independent and is freely available from http://bluejay.ucalgary.ca. PMID:22389011

  18. Bacterial Genome Instability

    PubMed Central

    Darmon, Elise

    2014-01-01

    SUMMARY Bacterial genomes are remarkably stable from one generation to the next but are plastic on an evolutionary time scale, substantially shaped by horizontal gene transfer, genome rearrangement, and the activities of mobile DNA elements. This implies the existence of a delicate balance between the maintenance of genome stability and the tolerance of genome instability. In this review, we describe the specialized genetic elements and the endogenous processes that contribute to genome instability. We then discuss the consequences of genome instability at the physiological level, where cells have harnessed instability to mediate phase and antigenic variation, and at the evolutionary level, where horizontal gene transfer has played an important role. Indeed, this ability to share DNA sequences has played a major part in the evolution of life on Earth. The evolutionary plasticity of bacterial genomes, coupled with the vast numbers of bacteria on the planet, substantially limits our ability to control disease. PMID:24600039

  19. UCSC genome browser tutorial.

    PubMed

    Zweig, Ann S; Karolchik, Donna; Kuhn, Robert M; Haussler, David; Kent, W James

    2008-08-01

    The University of California Santa Cruz (UCSC) Genome Bioinformatics website consists of a suite of free, open-source, on-line tools that can be used to browse, analyze, and query genomic data. These tools are available to anyone who has an Internet browser and an interest in genomics. The website provides a quick and easy-to-use visual display of genomic data. It places annotation tracks beneath genome coordinate positions, allowing rapid visual correlation of different types of information. Many of the annotation tracks are submitted by scientists worldwide; the others are computed by the UCSC Genome Bioinformatics group from publicly available sequence data. It also allows users to upload and display their own experimental results or annotation sets by creating a custom track. The suite of tools, downloadable data files, and links to documentation and other information can be found at http://genome.ucsc.edu/. PMID:18514479

  20. Variations in genome mass.

    PubMed

    Wachtel, S S; Tiersch, T R

    1993-02-01

    1. Genome size varies considerably among vertebrates, ranging from less than 1 pg to more than 200 pg; the amount of DNA differing among individuals in a population can equal the amount in the entire structural gene complement. 2. Recent technological advances permit evaluation of genome size variation at several levels including sub-chromosomal, chromosomal and cellular. 3. Genome size variation may also be viewed from taxonomic levels, and across evolutionary time frames. 4. As sources of genome size variation are identified and studied, the conundrum of the C-value paradox (lack of correlations among genome size, genomic complexity and phylogenetic status of organisms) may prove to be more apparent than real. 5. For example, the limited and relatively constant genome size of avians may be related to the physiological constraints of flight. PMID:8462275

  1. Collaborative Research to Advance Precision Medicine in the Post-Genomic World | Office of Cancer Genomics

    Cancer.gov

    My name is Subhashini Jagu, and I am the Scientific Program Manager for the Cancer Target Discovery and Development (CTD2) Network at the Office of Cancer Genomics (OCG). In my new role, I help CTD2 work toward its mission, which is to develop new scientific approaches to accelerate the translation of genomic discoveries into new treatments. Collaborative efforts that bring together a variety of expertise and infrastructure are needed to understand and successfully treat cancer, a highly complex disease.

  2. Genotypes are useful for more than genomic evaluation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New services that provide pedigree discovery, breed composition, mating programs, genomic inbreeding, fertility defects, and inheritance tracking all are possible from low-cost genotyping in addition to genomic evaluation. Genetic markers let breeders select among sibs before their phenotypes became...

  3. Towards a whole genome physical map in rainbow trout

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the last five years, tremendous genomic resources were developed in salmonids. In 2005, INRA joined formally the consortium for Genome Research on All Salmonids Program (cGRASP). This consortium (www.cgrasp.org) is the international collaborative structure for establishing needed pre- and post-...

  4. Global Implementation of Genomic Medicine: We Are Not Alone

    PubMed Central

    Manolio, Teri A.; Abramowicz, Marc; Al-Mulla, Fahd; Anderson, Warwick; Balling, Rudi; Berger, Adam C.; Bleyl, Steven; Chakravarti, Aravinda; Chantratita, Wasun; Chisholm, Rex L.; Dissanayake, Vajira H. W.; Dunn, Michael; Dzau, Victor J.; Han, Bok-Ghee; Hubbard, Tim; Kolbe, Anne; Korf, Bruce; Kubo, Michiaki; Lasko, Paul; Leego, Erkki; Mahasirimongkol, Surakameth; Majumdar, Partha P.; Matthijs, Gert; McLeod, Howard L.; Metspalu, Andres; Meulien, Pierre; Miyano, Satoru; Naparstek, Yaakov; O’Rourke, P. Pearl; Patrinos, George P.; Rehm, Heidi L.; Relling, Mary V.; Rennert, Gad; Rodriguez, Laura Lyman; Roden, Dan M.; Shuldiner, Alan R.; Sinha, Sukdev; Tan, Patrick; Ulfendahl, Mats; Ward, Robyn; Williams, Marc S.; Wong, John E.L.; Green, Eric D.; Ginsburg, Geoffrey S.

    2016-01-01

    Advances in high-throughput genomic technologies coupled with a growing number of genomic results potentially useful in clinical care have led to ground-breaking genomic medicine implementation programs in various nations. Many of these innovative programs capitalize on unique local capabilities arising from the structure of their health care systems or their cultural or political milieu, as well as from unusual burdens of disease or risk alleles. Many such programs are being conducted in relative isolation and might benefit from sharing of approaches and lessons learned in other nations. The National Human Genome Research Institute recently brought together 25 of these groups from around the world to describe and compare projects, examine the current state of implementation and desired near-term capabilities, and identify opportunities for collaboration to promote the responsible implementation of genomic medicine. The wide variety of nascent programs in diverse settings demonstrates that implementation of genomic medicine is expanding globally in varied and highly innovative ways. Opportunities for collaboration abound in the areas of evidence generation, health information technology, education, workforce development, pharmacogenomics, and policy and regulatory issues. Several international organizations that are already facilitating effective research collaborations should engage to ensure implementation proceeds collaboratively without potentially wasteful duplication. Efforts to coalesce these groups around concrete but compelling signature projects, such as global eradication of genetically-mediated drug reactions or developing a truly global genomic variant data resource across a wide number of ethnicities, would accelerate appropriate implementation of genomics to improve clinical care world-wide. PMID:26041702

  5. Multiple trait genomic selection methods increase genetic value prediction accuracy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic selection predicts genetic values with genome-wide markers. It is rapidly emerging in plant breeding and is widely implemented in animal breeding. Genetic correlations between quantitative traits are pervasive in many breeding programs. These correlations indicate that measurements of one tr...

  6. Almost finished: the complete genome sequence of Mycosphaerella graminicola

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mycosphaerella graminicola causes septoria tritici blotch of wheat. An 8.9x shotgun sequence of bread wheat strain IPO323 was generated through the Community Sequencing Program of the U.S. Department of Energy’s Joint Genome Institute (JGI), and was finished at the Stanford Human Genome Center. The ...

  7. Genomics to feed a switchgrass breeding program

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of improved cultivars is one of three pillars, along with sustainable production and efficient conversion, required for dedicated cellulosic bioenergy crops to succeed. Breeding new cultivars is a long, slow process requiring patience, dedication, and motivation to realize gains and adva...

  8. About the Epidemiology and Genomics Research Program

    Cancer.gov

    Epidemiology is the scientific study of the causes and distribution of disease in populations. NCI-funded epidemiology research is conducted through research at institutions in the United States and internationally.

  9. 2012 U.S. Department of Energy: Joint Genome Institute: Progress Report

    SciTech Connect

    Gilbert, David

    2013-01-01

    The mission of the U.S. Department of Energy Joint Genome Institute (DOE JGI) is to serve the diverse scientific community as a user facility, enabling the application of large-scale genomics and analysis of plants, microbes, and communities of microbes to address the DOE mission goals in bioenergy and the environment. The DOE JGI's sequencing efforts fall under the Eukaryote Super Program, which includes the Plant and Fungal Genomics Programs; and the Prokaryote Super Program, which includes the Microbial Genomics and Metagenomics Programs. In 2012, several projects made news for their contributions to energy and environment research.

  10. Efficient Methods to Compute Genomic Predictions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efficient methods for processing genomic data were developed to increase reliability of estimated breeding values and simultaneously estimate thousands of marker effects. Algorithms were derived and computer programs tested on simulated data for 50,000 markers and 2,967 bulls. Accurate estimates of ...

  11. Methods of Genomic Competency Integration in Practice

    PubMed Central

    Jenkins, Jean; Calzone, Kathleen A.; Caskey, Sarah; Culp, Stacey; Weiner, Marsha; Badzek, Laurie

    2015-01-01

    Purpose Genomics is increasingly relevant to health care, necessitating support for nurses to incorporate genomic competencies into practice. The primary aim of this project was to develop, implement, and evaluate a year-long genomic education intervention that trained, supported, and supervised institutional administrator and educator champion dyads to increase nursing capacity to integrate genomics through assessments of program satisfaction and institutional achieved outcomes. Design Longitudinal study of 23 Magnet Recognition Program® Hospitals (21 intervention, 2 controls) participating in a 1-year new competency integration effort aimed at increasing genomic nursing competency and overcoming barriers to genomics integration in practice. Methods Champion dyads underwent genomic training consisting of one in-person kick-off training meeting followed by monthly education webinars. Champion dyads designed institution-specific action plans detailing objectives, methods or strategies used to engage and educate nursing staff, timeline for implementation, and outcomes achieved. Action plans focused on a minimum of seven genomic priority areas: champion dyad personal development; practice assessment; policy content assessment; staff knowledge needs assessment; staff development; plans for integration; and anticipated obstacles and challenges. Action plans were updated quarterly, outlining progress made as well as inclusion of new methods or strategies. Progress was validated through virtual site visits with the champion dyads and chief nursing officers. Descriptive data were collected on all strategies or methods utilized, and timeline for achievement. Descriptive data were analyzed using content analysis. Findings The complexity of the competency content and the uniqueness of social systems and infrastructure resulted in a significant variation of champion dyad interventions. Conclusions Nursing champions can facilitate change in genomic nursing capacity through

  12. Complete genome sequence of Methanoculleus marisnigri type strain JR1

    SciTech Connect

    Anderson, Iain; Sieprawska-Lupa, Magdalena; Goltsman, Eugene; Lapidus, Alla L.; Copeland, A; Glavina Del Rio, Tijana; Tice, Hope; Dalin, Eileen; Barry, Kerrie; Saunders, Elizabeth H; Han, Cliff; Brettin, Tom; Detter, J. Chris; Bruce, David; Mikhailova, Natalia; Pitluck, Sam; Hauser, Loren John; Land, Miriam L; Lucas, Susan; Richardson, P M; Whitman, W. B.; Kyrpides, Nikos C

    2009-01-01

    Methanoculleus marisnigri Romesser et al. 1981 is a methanogen belonging to the order Methanomicrobiales within the archaeal phylum Euryarchaeota. The type strain, JR1, was isolated from anoxic sediments of the Black Sea. M. marisnigri is of phylogenetic interest because at the time the sequencing project began only one genome had previously been sequenced from the order Methanomicrobiales. We report here the complete genome sequence of M. marisnigri type strain JR1 and its annotation. This is part of a Joint Genome Institute 2006 Community Sequencing Program to sequence genomes of diverse Archaea.

  13. Complete genome sequence of Methanocorpusculum labreanum type strain Z

    SciTech Connect

    Anderson, Iain; Sieprawska-Lupa, Magdalena; Goltsman, Eugene; Lapidus, Alla L.; Copeland, A; Glavina Del Rio, Tijana; Tice, Hope; Dalin, Eileen; Barry, Kerrie; Pitluck, Sam; Hauser, Loren John; Land, Miriam L; Lucas, Susan; Richardson, P M; Whitman, W. B.; Kyrpides, Nikos C

    2009-01-01

    Methanocorpusculum labreanum is a methanogen belonging to the order Methanomicrobiales within the archaeal phylum Euryarchaeota. The type strain Z was isolated from surface sediments of Tar Pit Lake in the La Brea Tar Pits in Los Angeles, California. M. labreanum is of phylogenetic interest because at the time the sequencing project began only one genome had previously been sequenced from the order Methanomicrobiales. We report here the complete genome sequence of M. labreanum type strain Z and its annotation. This is part of a 2006 Joint Genome Institute Community Sequencing Program project to sequence genomes of diverse Archaea.

  14. Complete genome sequence of Methanocorpusculum labreanum type strain Z

    PubMed Central

    Anderson, Iain J.; Sieprawska-Lupa, Magdalena; Goltsman, Eugene; Lapidus, Alla; Copeland, Alex; Glavina Del Rio, Tijana; Tice, Hope; Dalin, Eileen; Barry, Kerrie; Pitluck, Sam; Hauser, Loren; Land, Miriam; Lucas, Susan; Richardson, Paul; Whitman, William B.; Kyrpides, Nikos C.

    2009-01-01

    Methanocorpusculum labreanum is a methanogen belonging to the order Methanomicrobiales within the archaeal kingdom Euryarchaeota. The type strain Z was isolated from surface sediments of Tar Pit Lake in the La Brea Tar Pits in Los Angeles, California. M. labreanum is of phylogenetic interest because at the time the sequencing project began only one genome had previously been sequenced from the order Methanomicrobiales. We report here the complete genome sequence of M. labreanum type strain Z and its annotation. This is part of a 2006 Joint Genome Institute Community Sequencing Program project to sequence genomes of diverse Archaea. PMID:21304657

  15. Higher-order Genome Organization in Human Disease

    PubMed Central

    Misteli, Tom

    2010-01-01

    Genomes are organized into complex higher-order structures by folding of the DNA into chromatin fibers, chromosome domains, and ultimately chromosomes. The higher-order organization of genomes is functionally important for gene regulation and control of gene expression programs. Defects in how chromatin is globally organized are relevant for physiological and pathological processes. Mutations and transcriptional misregulation of several global genome organizers are linked to human diseases and global alterations in chromatin structure are emerging as key players in maintenance of genome stability, aging, and the formation of cancer translocations. PMID:20591991

  16. 77 FR 50140 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-20

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed.... Day, Ph.D., Scientific Review Officer, CIDR, National Human Genome Research Institute, National... . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  17. 75 FR 53703 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-01

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... Person: Ken D. Nakamura, PhD, Scientific Review Officer, Scientific Review Branch, National Human Genome... Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: August 26,...

  18. 76 FR 22112 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel, Special Emphasis Panel... Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: April...

  19. 76 FR 10909 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-28

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed.... Nakamura, PhD, Scientific Review Officer, Scientific Review Branch, National Human Genome Research...-402-0838. (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome...

  20. 75 FR 60467 - National Human Genome Research Institute; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-30

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Meeting... hereby given of a meeting of the Board of Scientific Counselors, National Human Genome Research Institute... intramural programs and projects conducted by the National Human Genome Research Institute,...

  1. 77 FR 64816 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-23

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed...: Camilla E. Day, Ph.D., Scientific Review Officer, CIDR, National Human Genome Research Institute, National... . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  2. 75 FR 56115 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-15

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel; CEGS DAP. Date... Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: September...

  3. 78 FR 47715 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-06

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed...., Scientific Review Officer, CIDR, National Human Genome Research Institute, National Institutes of Health... Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health,...

  4. 77 FR 20646 - National Human Genome Research Institute; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-05

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel; Loan Repayment Program...: National Human Genome Research Institute, 5635 Fishers Lane, 3rd Floor Conference Room, Rockville, MD...

  5. 75 FR 35821 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-23

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed..., Scientific Review Officer, CIDR, National Human Genome Research Institute, National Institutes of Health... Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health,...

  6. 75 FR 48977 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-12

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed.... Day, PhD, Scientific Review Officer, CIDR, National Human Genome Research Institute, National... . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  7. 75 FR 32957 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-10

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel, Protein Resource RFA... of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  8. 78 FR 70063 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-22

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed....), notice is hereby given of a meeting of the Board of Scientific Counselors, National Human Genome Research... individual intramural programs and projects conducted by the NATIONAL HUMAN GENOME RESEARCH...

  9. 75 FR 62548 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed..., PhD, Scientific Review Officer, CIDR, National Human Genome Research Institute, National Institutes... . Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  10. 75 FR 8977 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed.... Nakamura, PhD, Scientific Review Officer, Scientific Review Branch, National Human Genome Research...-402-0838. (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome...

  11. 76 FR 65204 - National Human Genome Research Institute; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-20

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Meeting... hereby given of a meeting of the Board of Scientific Counselors, National Human Genome Research Institute... intramural programs and projects conducted by the National Human Genome Research Institute,...

  12. 77 FR 74676 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-17

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... Person: Camilla E. Day, Ph.D., Scientific Review Officer, CIDR, National Human Genome Research Institute...@nih.gov . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome...

  13. 75 FR 67380 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-02

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed...: Ken D. Nakamura, PhD, Scientific Review Officer, Scientific Review Branch, National Human Genome... Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: October 26,...

  14. 76 FR 22407 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel; Loan Repayment Program....172, Human Genome Research, National Institutes of Health, HHS) Dated: April 12, 2011. Jennifer...

  15. 76 FR 28056 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed....), notice is hereby given of a meeting of the Board of Scientific Counselors, National Human Genome Research... individual intramural programs and projects conducted by the National Human Genome Research...

  16. 75 FR 8373 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel, GWAS Comparing Design... of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  17. 76 FR 79199 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed...., Scientific Review Officer, CIDR, National Human Genome Research Institute, National Institutes of Health... Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health,...

  18. 76 FR 50486 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-15

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed.... Day, PhD, Scientific Review Officer, CIDR, National Human Genome Research Institute, National... . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  19. 76 FR 66731 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-27

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel, DAP for CEGS-SEP. Date...@mail.nih.gov . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome...

  20. 78 FR 77477 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed...: Camilla E. Day, Ph.D., Scientific Review Officer, CIDR, National Human Genome Research Institute, National... . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  1. 76 FR 35224 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed.... Day, PhD, Scientific Review Officer, CIR, National Human Genome Research Institute, National... . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  2. 76 FR 9031 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-16

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed..., PhD, Scientific Review Officer, CIDR, National Human Genome Research Institute, National Institutes... . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  3. 75 FR 8977 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed...: Camilla E. Day, PhD, Scientific Review Officer, CIDR, National Human Genome Research Institute, National... . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  4. 77 FR 64816 - National Human Genome Research Institute; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-23

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Meeting... hereby given of a meeting of the Board of Scientific Counselors, National Human Genome Research Institute... intramural programs and projects conducted by the National Human Genome Research Institute,...

  5. 77 FR 35991 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed...: Camilla E. Day, Ph.D., Scientific Review Officer, CIDR, National Human Genome Research Institute, National... . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  6. 76 FR 19780 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-08

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... Officer, CIDR, National Human Genome Research Institute, National Institutes of Health, 5635 Fishers Lane... Assistance Program No. 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: April...

  7. 76 FR 36930 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-23

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel, DAP R-25. Date: July...@mail.nih.gov . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome...

  8. 77 FR 31863 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel DAP R25 Eppig.... (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  9. 78 FR 11898 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-20

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed.... Day, Ph.D., Scientific Review Officer CIDR, National Human Genome Research Institute, National... . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  10. 76 FR 50486 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-15

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed....), notice is hereby given of a meeting of the Board of Scientific Counselors, National Human Genome Research... individual intramural programs and projects conducted by the National Human Genome Research...

  11. 75 FR 13558 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed....), notice is hereby given of a meeting of the Board of Scientific Counselors, National Human Genome Research... individual intramural programs and projects conducted by the National Human Genome Research...

  12. Genomics of sorghum.

    PubMed

    Paterson, Andrew H

    2008-01-01

    Sorghum (Sorghum bicolor (L.) Moench) is a subject of plant genomics research based on its importance as one of the world's leading cereal crops, a biofuels crop of high and growing importance, a progenitor of one of the world's most noxious weeds, and a botanical model for many tropical grasses with complex genomes. A rich history of genome analysis, culminating in the recent complete sequencing of the genome of a leading inbred, provides a foundation for invigorating progress toward relating sorghum genes to their functions. Further characterization of the genomes other than Saccharinae cereals may shed light on mechanisms, levels, and patterns of evolution of genome size and structure, laying the foundation for further study of sugarcane and other economically important members of the group. PMID:18483564

  13. The tiniest tiny genomes.

    PubMed

    Moran, Nancy A; Bennett, Gordon M

    2014-01-01

    Starting in 2006, surprisingly tiny genomes have been discovered from numerous bacterial symbionts of insect hosts. Despite their size, each retains some genes that enable provisioning of limiting nutrients or other capabilities required by hosts. Genome sequence analyses show that genome reduction is an ongoing process, resulting in a continuum of sizes, with the smallest genome currently known at 112 kilobases. Genome reduction is typical in host-restricted symbionts and pathogens, but the tiniest genomes are restricted to symbionts required by hosts and restricted to specialized host cells, resulting from long coevolution with hosts. Genes are lost in all functional categories, but core genes for central informational processes, including genes encoding ribosomal proteins, are mostly retained, whereas genes underlying production of cell envelope components are especially depleted. Thus, these entities retain cell-like properties but are heavily dependent on coadaptation of hosts, which continuously evolve to support the symbionts upon which they depend. PMID:24995872

  14. Genome Aliquoting Revisited

    NASA Astrophysics Data System (ADS)

    Warren, Robert; Sankoff, David

    We prove that the genome aliquoting problem, the problem of finding a recent polyploid ancestor of a genome, with breakpoint distance can be solved in polynomial time. We propose an aliquoting algorithm that is a 2-approximation for the genome aliquoting problem with double cut and join distance, improving upon the previous best solution to this problem, Feijão and Meidanis' 4-approximation algorithm.

  15. Physician Assistant Genomic Competencies.

    PubMed

    Goldgar, Constance; Michaud, Ed; Park, Nguyen; Jenkins, Jean

    2016-09-01

    Genomic discoveries are increasingly being applied to the clinical care of patients. All physician assistants (PAs) need to acquire competency in genomics to provide the best possible care for patients within the scope of their practice. In this article, we present an updated version of PA genomic competencies and learning outcomes in a framework that is consistent with the current medical education guidelines and the collaborative nature of PAs in interprofessional health care teams. PMID:27490287

  16. Multiple models for Rosaceae genomics.

    PubMed

    Shulaev, Vladimir; Korban, Schuyler S; Sosinski, Bryon; Abbott, Albert G; Aldwinckle, Herb S; Folta, Kevin M; Iezzoni, Amy; Main, Dorrie; Arús, Pere; Dandekar, Abhaya M; Lewers, Kim; Brown, Susan K; Davis, Thomas M; Gardiner, Susan E; Potter, Daniel; Veilleux, Richard E

    2008-07-01

    The plant family Rosaceae consists of over 100 genera and 3,000 species that include many important fruit, nut, ornamental, and wood crops. Members of this family provide high-value nutritional foods and contribute desirable aesthetic and industrial products. Most rosaceous crops have been enhanced by human intervention through sexual hybridization, asexual propagation, and genetic improvement since ancient times, 4,000 to 5,000 B.C. Modern breeding programs have contributed to the selection and release of numerous cultivars having significant economic impact on the U.S. and world markets. In recent years, the Rosaceae community, both in the United States and internationally, has benefited from newfound organization and collaboration that have hastened progress in developing genetic and genomic resources for representative crops such as apple (Malus spp.), peach (Prunus spp.), and strawberry (Fragaria spp.). These resources, including expressed sequence tags, bacterial artificial chromosome libraries, physical and genetic maps, and molecular markers, combined with genetic transformation protocols and bioinformatics tools, have rendered various rosaceous crops highly amenable to comparative and functional genomics studies. This report serves as a synopsis of the resources and initiatives of the Rosaceae community, recent developments in Rosaceae genomics, and plans to apply newly accumulated knowledge and resources toward breeding and crop improvement. PMID:18487361

  17. Experiences with a single-step genome evaluation.

    PubMed

    Misztal, Ignacy; Aggrey, Samuel E; Muir, William M

    2013-09-01

    Genomic selection can be implemented based on the genomic relationship matrix (GBLUP) and can be combined with phenotypes from nongenotyped animals through the use of best linear unbiased prediction (BLUP). A common method to combine both sources of information involves multiple steps, but is difficult to use with complicated models and is nonoptimal. A simpler method, termed single-step GBLUP, or ssGBLUP, integrates the genomically derived relationships (G) with population-based pedigree relationships (A) into a combined relationship matrix (H) and allows for genomic selection in a single step. The ssGBLUP method is easy to implement and uses standard BLUP-based programs. Experiences with field data in chickens, pigs, and dairy indicate that ssGBLUP is more accurate yet much simpler than multi-step methods. The current limits of ssGBLUP are approximately 100,000 genotypes and 18 traits. Models involving 10 million animals have been run successfully. The inverse of H can also be used in existing programs for parameter estimationm, but a properly scaled G is needed for unbiased estimation. Also, as genomic predictions can be converted to SNP effects, ssGBLUP is useful for genomic-wide association studies. The single-step method for genomic selection translates the use of genomic information into standard BLUP, and variance-component estimation programs become a routine. PMID:23960138

  18. Filarial and Wolbachia genomics.

    PubMed

    Scott, A L; Ghedin, E; Nutman, T B; McReynolds, L A; Poole, C B; Slatko, B E; Foster, J M

    2012-01-01

    Filarial nematode parasites, the causative agents for a spectrum of acute and chronic diseases including lymphatic filariasis and river blindness, threaten the well-being and livelihood of hundreds of millions of people in the developing regions of the world. The 2007 publication on a draft assembly of the 95-Mb genome of the human filarial parasite Brugia malayi- representing the first helminth parasite genome to be sequenced - has been followed in rapid succession by projects that have resulted in the genome sequencing of six additional filarial species, seven nonfilarial nematode parasites of animals and nearly 30 plant parasitic and free-living species. Parallel to the genomic sequencing, transcriptomic and proteomic projects have facilitated genome annotation, expanded our understanding of stage-associated gene expression and provided a first look at the role of epigenetic regulation of filarial genomes through microRNAs. The expansion in filarial genomics will also provide a significant enrichment in our knowledge of the diversity and variability in the genomes of the endosymbiotic bacterium Wolbachia leading to a better understanding of the genetic principles that govern filarial-Wolbachia mutualism. The goal here is to provide an overview of the trends and advances in filarial and Wolbachia genomics. PMID:22098559

  19. Genomics of Clostridium tetani.

    PubMed

    Brüggemann, Holger; Brzuszkiewicz, Elzbieta; Chapeton-Montes, Diana; Plourde, Lucile; Speck, Denis; Popoff, Michel R

    2015-05-01

    Genomic information about Clostridium tetani, the causative agent of the tetanus disease, is scarce. The genome of strain E88, a strain used in vaccine production, was sequenced about 10 years ago. One additional genome (strain 12124569) has recently been released. Here we report three new genomes of C. tetani and describe major differences among all five C. tetani genomes. They all harbor tetanus-toxin-encoding plasmids that contain highly conserved genes for TeNT (tetanus toxin), TetR (transcriptional regulator of TeNT) and ColT (collagenase), but substantially differ in other plasmid regions. The chromosomes share a large core genome that contains about 85% of all genes of a given chromosome. The non-core chromosome comprises mainly prophage-like genomic regions and genes encoding environmental interaction and defense functions (e.g. surface proteins, restriction-modification systems, toxin-antitoxin systems, CRISPR/Cas systems) and other fitness functions (e.g. transport systems, metabolic activities). This new genome information will help to assess the level of genome plasticity of the species C. tetani and provide the basis for detailed comparative studies. PMID:25638019

  20. Between two fern genomes.

    PubMed

    Sessa, Emily B; Banks, Jo Ann; Barker, Michael S; Der, Joshua P; Duffy, Aaron M; Graham, Sean W; Hasebe, Mitsuyasu; Langdale, Jane; Li, Fay-Wei; Marchant, D Blaine; Pryer, Kathleen M; Rothfels, Carl J; Roux, Stanley J; Salmi, Mari L; Sigel, Erin M; Soltis, Douglas E; Soltis, Pamela S; Stevenson, Dennis W; Wolf, Paul G

    2014-01-01

    Ferns are the only major lineage of vascular plants not represented by a sequenced nuclear genome. This lack of genome sequence information significantly impedes our ability to understand and reconstruct genome evolution not only in ferns, but across all land plants. Azolla and Ceratopteris are ideal and complementary candidates to be the first ferns to have their nuclear genomes sequenced. They differ dramatically in genome size, life history, and habit, and thus represent the immense diversity of extant ferns. Together, this pair of genomes will facilitate myriad large-scale comparative analyses across ferns and all land plants. Here we review the unique biological characteristics of ferns and describe a number of outstanding questions in plant biology that will benefit from the addition of ferns to the set of taxa with sequenced nuclear genomes. We explain why the fern clade is pivotal for understanding genome evolution across land plants, and we provide a rationale for how knowledge of fern genomes will enable progress in research beyond the ferns themselves. PMID:25324969

  1. [Landscape and ecological genomics].

    PubMed

    2013-10-01

    Landscape genomics is the modern version of landscape genetics, a discipline that arose approximately 10 years ago as a combination of population genetics, landscape ecology, and spatial statistics. It studies the effects of environmental variables on gene flow and other microevolutionary processes that determine genetic connectivity and variations in populations. In contrast to population genetics, it operates at the level of individual specimens rather than at the level of population samples. Another important difference between landscape genetics and genomics and population genetics is that, in the former, the analysis of gene flow and local adaptations takes quantitative account of landforms and features of the matrix, i.e., hostile spaces that separate species habitats. Landscape genomics is a part of population ecogenomics, which, along with community genomics, is a major part of ecological genomics. One of the principal purposes of landscape genomics is the identification and differentiation of various genome-wide and locus-specific effects. The approaches and computation tools developed for combined analysis of genomic and landscape variables make it possible to detect adaptation-related genome fragments, which facilitates the planning of conservation efforts and the prediction of species' fate in response to expected changes in the environment. PMID:25508669

  2. [Landscape and ecological genomics].

    PubMed

    Tetushkin, E Ia

    2013-10-01

    Landscape genomics is the modern version of landscape genetics, a discipline that arose approximately 10 years ago as a combination of population genetics, landscape ecology, and spatial statistics. It studies the effects of environmental variables on gene flow and other microevolutionary processes that determine genetic connectivity and variations in populations. In contrast to population genetics, it operates at the level of individual specimens rather than at the level of population samples. Another important difference between landscape genetics and genomics and population genetics is that, in the former, the analysis of gene flow and local adaptations takes quantitative account of landforms and features of the matrix, i.e., hostile spaces that separate species habitats. Landscape genomics is a part of population ecogenomics, which, along with community genomics, is a major part of ecological genomics. One of the principal purposes of landscape genomics is the identification and differentiation of various genome-wide and locus-specific effects. The approaches and computation tools developed for combined analysis of genomic and landscape variables make it possible to detect adaptation-related genome fragments, which facilitates the planning of conservation efforts and the prediction of species' fate in response to expected changes in the environment. PMID:25474890

  3. Between Two Fern Genomes

    PubMed Central

    2014-01-01

    Ferns are the only major lineage of vascular plants not represented by a sequenced nuclear genome. This lack of genome sequence information significantly impedes our ability to understand and reconstruct genome evolution not only in ferns, but across all land plants. Azolla and Ceratopteris are ideal and complementary candidates to be the first ferns to have their nuclear genomes sequenced. They differ dramatically in genome size, life history, and habit, and thus represent the immense diversity of extant ferns. Together, this pair of genomes will facilitate myriad large-scale comparative analyses across ferns and all land plants. Here we review the unique biological characteristics of ferns and describe a number of outstanding questions in plant biology that will benefit from the addition of ferns to the set of taxa with sequenced nuclear genomes. We explain why the fern clade is pivotal for understanding genome evolution across land plants, and we provide a rationale for how knowledge of fern genomes will enable progress in research beyond the ferns themselves. PMID:25324969

  4. Genomics of pear and other Rosaceae fruit trees

    PubMed Central

    Yamamoto, Toshiya; Terakami, Shingo

    2016-01-01

    The family Rosaceae includes many economically important fruit trees, such as pear, apple, peach, cherry, quince, apricot, plum, raspberry, and loquat. Over the past few years, whole-genome sequences have been released for Chinese pear, European pear, apple, peach, Japanese apricot, and strawberry. These sequences help us to conduct functional and comparative genomics studies and to develop new cultivars with desirable traits by marker-assisted selection in breeding programs. These genomics resources also allow identification of evolutionary relationships in Rosaceae, development of genome-wide SNP and SSR markers, and construction of reference genetic linkage maps, which are available through the Genome Database for the Rosaceae website. Here, we review the recent advances in genomics studies and their practical applications for Rosaceae fruit trees, particularly pear, apple, peach, and cherry. PMID:27069399

  5. Genomics of pear and other Rosaceae fruit trees.

    PubMed

    Yamamoto, Toshiya; Terakami, Shingo

    2016-01-01

    The family Rosaceae includes many economically important fruit trees, such as pear, apple, peach, cherry, quince, apricot, plum, raspberry, and loquat. Over the past few years, whole-genome sequences have been released for Chinese pear, European pear, apple, peach, Japanese apricot, and strawberry. These sequences help us to conduct functional and comparative genomics studies and to develop new cultivars with desirable traits by marker-assisted selection in breeding programs. These genomics resources also allow identification of evolutionary relationships in Rosaceae, development of genome-wide SNP and SSR markers, and construction of reference genetic linkage maps, which are available through the Genome Database for the Rosaceae website. Here, we review the recent advances in genomics studies and their practical applications for Rosaceae fruit trees, particularly pear, apple, peach, and cherry. PMID:27069399

  6. Genomic sequencing of Pleistocene cave bears

    SciTech Connect

    Noonan, James P.; Hofreiter, Michael; Smith, Doug; Priest, JamesR.; Rohland, Nadin; Rabeder, Gernot; Krause, Johannes; Detter, J. Chris; Paabo, Svante; Rubin, Edward M.

    2005-04-01

    Despite the information content of genomic DNA, ancient DNA studies to date have largely been limited to amplification of mitochondrial DNA due to technical hurdles such as contamination and degradation of ancient DNAs. In this study, we describe two metagenomic libraries constructed using unamplified DNA extracted from the bones of two 40,000-year-old extinct cave bears. Analysis of {approx}1 Mb of sequence from each library showed that, despite significant microbial contamination, 5.8 percent and 1.1 percent of clones in the libraries contain cave bear inserts, yielding 26,861 bp of cave bear genome sequence. Alignment of this sequence to the dog genome, the closest sequenced genome to cave bear in terms of evolutionary distance, revealed roughly the expected ratio of cave bear exons, repeats and conserved noncoding sequences. Only 0.04 percent of all clones sequenced were derived from contamination with modern human DNA. Comparison of cave bear with orthologous sequences from several modern bear species revealed the evolutionary relationship of these lineages. Using the metagenomic approach described here, we have recovered substantial quantities of mammalian genomic sequence more than twice as old as any previously reported, establishing the feasibility of ancient DNA genomic sequencing programs.

  7. Next Generation Characterisation of Cereal Genomes for Marker Discovery

    PubMed Central

    Visendi, Paul; Batley, Jacqueline; Edwards, David

    2013-01-01

    Cereal crops form the bulk of the world’s food sources, and thus their importance cannot be understated. Crop breeding programs increasingly rely on high-resolution molecular genetic markers to accelerate the breeding process. The development of these markers is hampered by the complexity of some of the major cereal crop genomes, as well as the time and cost required. In this review, we address current and future methods available for the characterisation of cereal genomes, with an emphasis on faster and more cost effective approaches for genome sequencing and the development of markers for trait association and marker assisted selection (MAS) in crop breeding programs. PMID:24833229

  8. Advances and Challenges in Genomic Selection for Disease Resistance.

    PubMed

    Poland, Jesse; Rutkoski, Jessica

    2016-08-01

    Breeding for disease resistance is a central focus of plant breeding programs, as any successful variety must have the complete package of high yield, disease resistance, agronomic performance, and end-use quality. With the need to accelerate the development of improved varieties, genomics-assisted breeding is becoming an important tool in breeding programs. With marker-assisted selection, there has been success in breeding for disease resistance; however, much of this work and research has focused on identifying, mapping, and selecting for major resistance genes that tend to be highly effective but vulnerable to breakdown with rapid changes in pathogen races. In contrast, breeding for minor-gene quantitative resistance tends to produce more durable varieties but is a more challenging breeding objective. As the genetic architecture of resistance shifts from single major R genes to a diffused architecture of many minor genes, the best approach for molecular breeding will shift from marker-assisted selection to genomic selection. Genomics-assisted breeding for quantitative resistance will therefore necessitate whole-genome prediction models and selection methodology as implemented for classical complex traits such as yield. Here, we examine multiple case studies testing whole-genome prediction models and genomic selection for disease resistance. In general, whole-genome models for disease resistance can produce prediction accuracy suitable for application in breeding. These models also largely outperform multiple linear regression as would be applied in marker-assisted selection. With the implementation of genomic selection for yield and other agronomic traits, whole-genome marker profiles will be available for the entire set of breeding lines, enabling genomic selection for disease at no additional direct cost. In this context, the scope of implementing genomics selection for disease resistance, and specifically for quantitative resistance and quarantined pathogens

  9. Genomics of Disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This edited book represents the 23rd symposium in the Stadler Genetics Symposia series, and the general theme of this conference was "The Genomics of Disease." The 24 national and international speakers were invited to discuss their world-class research into the advances that genomics has made on c...

  10. Genomics for Weed Science

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous genomic-based studies have provided insight to the physiological and evolutionary processes involved in developmental and environmental processes of model plants such as arabidopsis and rice. However, far fewer efforts have been attempted to use genomic resources to study physiological and ...

  11. Unlocking the bovine genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The draft genome sequence of cattle (Bos taurus) has now been analyzed by the Bovine Genome Sequencing and Analysis Consortium and the Bovine HapMap Consortium, which together represent an extensive collaboration involving more than 300 scientists from 25 different countries. ...

  12. Genetics and Genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Good progress is being made on genetics and genomics of sugar beet, however it is in process and the tools are now being generated and some results are being analyzed. The GABI BeetSeq project released a first draft of the sugar beet genome of KWS2320, a dihaploid (see http://bvseq.molgen.mpg.de/Gen...

  13. Development of Genomic GMACE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of genomics to enhance national genetic evaluation systems of dairy cattle is quickly becoming standard practice. The current MACE procedure used by Interbull may not accommodate these new “genomically-enhanced” national evaluations. An important assumption in MACE may no longer be valid in ...

  14. GENOME OF HORSEPOX VIRUS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Here we present the genomic sequence of horsepox virus (HSPV) isolate MNR-76, an orthopoxvirus (OPV) isolated in 1976 from diseased Mongolian horses. The 212 kbp genome contained 7.5 kbp inverted terminal repeats (ITR) and lacked extensive terminal tandem repetition. HSPV contained 236 ORFs with sim...

  15. Integrative genomic analysis by interoperation of bioinformatics tools in GenomeSpace

    PubMed Central

    Thorvaldsdottir, Helga; Liefeld, Ted; Ocana, Marco; Borges-Rivera, Diego; Pochet, Nathalie; Robinson, James T.; Demchak, Barry; Hull, Tim; Ben-Artzi, Gil; Blankenberg, Daniel; Barber, Galt P.; Lee, Brian T.; Kuhn, Robert M.; Nekrutenko, Anton; Segal, Eran; Ideker, Trey; Reich, Michael; Regev, Aviv; Chang, Howard Y.; Mesirov, Jill P.

    2015-01-01

    Integrative analysis of multiple data types to address complex biomedical questions requires the use of multiple software tools in concert and remains an enormous challenge for most of the biomedical research community. Here we introduce GenomeSpace (http://www.genomespace.org), a cloud-based, cooperative community resource. Seeded as a collaboration of six of the most popular genomics analysis tools, GenomeSpace now supports the streamlined interaction of 20 bioinformatics tools and data resources. To facilitate the ability of non-programming users’ to leverage GenomeSpace in integrative analysis, it offers a growing set of ‘recipes’, short workflows involving a few tools and steps to guide investigators through high utility analysis tasks. PMID:26780094

  16. Genomic Instability and Cancer

    PubMed Central

    Yao, Yixin; Dai, Wei

    2014-01-01

    Genomic instability is a characteristic of most cancer cells. It is an increased tendency of genome alteration during cell division. Cancer frequently results from damage to multiple genes controlling cell division and tumor suppressors. It is known that genomic integrity is closely monitored by several surveillance mechanisms, DNA damage checkpoint, DNA repair machinery and mitotic checkpoint. A defect in the regulation of any of these mechanisms often results in genomic instability, which predisposes the cell to malignant transformation. Posttranslational modifications of the histone tails are closely associated with regulation of the cell cycle as well as chromatin structure. Nevertheless, DNA methylation status is also related to genomic integrity. We attempt to summarize recent developments in this field and discuss the debate of driving force of tumor initiation and progression. PMID:25541596

  17. Microbial Genomes Multiply

    NASA Technical Reports Server (NTRS)

    Doolittle, Russell F.

    2002-01-01

    The publication of the first complete sequence of a bacterial genome in 1995 was a signal event, underscored by the fact that the article has been cited more than 2,100 times during the intervening seven years. It was a marvelous technical achievement, made possible by automatic DNA-sequencing machines. The feat is the more impressive in that complete genome sequencing has now been adopted in many different laboratories around the world. Four years ago in these columns I examined the situation after a dozen microbial genomes had been completed. Now, with upwards of 60 microbial genome sequences determined and twice that many in progress, it seems reasonable to assess just what is being learned. Are new concepts emerging about how cells work? Have there been practical benefits in the fields of medicine and agriculture? Is it feasible to determine the genomic sequence of every bacterial species on Earth? The answers to these questions maybe Yes, Perhaps, and No, respectively.

  18. Genome size evolution: sizing mammalian genomes.

    PubMed

    Redi, C A; Capanna, E

    2012-01-01

    The study of genome size (GS) and its variation is so fascinating to the scientific community because it constitutes the link between the present-day analytical and molecular studies of the genome and the old trunk of the holistic and synthetic view of the genome. The GS of several taxa vary over a broad range and do not correlate with the complexity of the organisms (the C-value paradox). However, the biology of transposable elements has let us reach a satisfactory view of the molecular mechanisms that give rise to GS variation and novelties, providing a less perplexing view of the significance of the GS (C-enigma). The knowledge of the composition and structure of a genome is a pre-requisite for trying to understand the evolution of the main genome signature: its size. The radiation of mammals provides an approximately 180-million-year test case for theories of how GS evolves. It has been found from data-mining GS databases that GS is a useful cyto-taxonomical instrument at the level of orders/superorders, providing genomic signatures characterizing Monotremata, Marsupialia, Afrotheria, Xenarthra, Laurasiatheria, and Euarchontoglires. A hypothetical ancestral mammalian-like GS of 2.9-3.7 pg has been suggested. This value appears compatible with the average values calculated for the high systematic levels of the extant Monotremata (∼2.97 pg) and Marsupialia (∼4.07 pg), suggesting invasion of mobile DNA elements concurrently with the separation of the older clades of Afrotheria (∼5.5 pg) and Xenarthra (∼4.5 pg) with larger GS, leaving the Euarchontoglires (∼3.4 pg) and Laurasiatheria (∼2.8 pg) genomes with fewer transposable elements. However, the paucity of GS data (546 mammalian species sized from 5,488 living species) for species, genera, and families calls for caution. Considering that mammalian species may be vanished even before they are known, GS data are sorely needed to phenotype the effects brought about by their variation and to validate any

  19. Evolution of genome architecture.

    PubMed

    Koonin, Eugene V

    2009-02-01

    Charles Darwin believed that all traits of organisms have been honed to near perfection by natural selection. The empirical basis underlying Darwin's conclusions consisted of numerous observations made by him and other naturalists on the exquisite adaptations of animals and plants to their natural habitats and on the impressive results of artificial selection. Darwin fully appreciated the importance of heredity but was unaware of the nature and, in fact, the very existence of genomes. A century and a half after the publication of the "Origin", we have the opportunity to draw conclusions from the comparisons of hundreds of genome sequences from all walks of life. These comparisons suggest that the dominant mode of genome evolution is quite different from that of the phenotypic evolution. The genomes of vertebrates, those purported paragons of biological perfection, turned out to be veritable junkyards of selfish genetic elements where only a small fraction of the genetic material is dedicated to encoding biologically relevant information. In sharp contrast, genomes of microbes and viruses are incomparably more compact, with most of the genetic material assigned to distinct biological functions. However, even in these genomes, the specific genome organization (gene order) is poorly conserved. The results of comparative genomics lead to the conclusion that the genome architecture is not a straightforward result of continuous adaptation but rather is determined by the balance between the selection pressure, that is itself dependent on the effective population size and mutation rate, the level of recombination, and the activity of selfish elements. Although genes and, in many cases, multigene regions of genomes possess elaborate architectures that ensure regulation of expression, these arrangements are evolutionarily volatile and typically change substantially even on short evolutionary scales when gene sequences diverge minimally. Thus, the observed genome

  20. Implementing genomic medicine in the clinic: the future is here

    PubMed Central

    Manolio, Teri A.; Chisholm, Rex L.; Ozenberger, Brad; Roden, Dan M.; Williams, Marc S.; Wilson, Richard; Bick, David; Bottinger, Erwin P.; Brilliant, Murray H.; Eng, Charis; Frazer, Kelly A.; Korf, Bruce; Ledbetter, David H.; Lupski, James R.; Marsh, Clay; Mrazek, David; Murray, Michael F.; O'Donnell, Peter H.; Rader, Daniel J.; Relling, Mary V.; Shuldiner, Alan R.; Valle, David; Weinshilboum, Richard; Green, Eric D.; Ginsburg, Geoffrey S.

    2013-01-01

    Although the potential for genomics to contribute to clinical care has long been anticipated, the pace of defining the risks and benefits of incorporating genomic findings into medical practice has been relatively slow. Several institutions have recently begun genomic medicine programs, encountering many of the same obstacles and developing the same solutions, often independently. Recognizing that successful early experiences can inform subsequent efforts, the National Human Genome Research Institute brought together a number of these groups to describe their ongoing projects and challenges, identify common infrastructure and research needs, and outline an implementation framework for investigating and introducing similar programs elsewhere. Chief among the challenges were limited evidence and consensus on which genomic variants were medically relevant; lack of reimbursement for genomically driven interventions; and burden to patients and clinicians of assaying, reporting, intervening, and following up genomic findings. Key infrastructure needs included an openly accessible knowledge base capturing sequence variants and their phenotypic associations and a framework for defining and cataloging clinically actionable variants. Multiple institutions are actively engaged in using genomic information in clinical care. Much of this work is being done in isolation and would benefit from more structured collaboration and sharing of best practices. Genet Med 2013:15(4):258–267 PMID:23306799

  1. Maintaining Genome Stability in the Nervous System

    PubMed Central

    McKinnon, Peter J.

    2014-01-01

    Active maintenance of genome stability is a prerequisite for the development and function of the nervous system. The high replication index during neurogenesis and the long life of mature neurons highlight the need for efficient cellular programs to safeguard genetic fidelity. Multiple DNA damage response pathways ensure that replication stress and other types of DNA lesions such as oxidative damage do not impact neural homeostasis. Numerous human neurologic syndromes result from defective DNA damage signaling and compromised genome integrity. These syndromes can involve different neuropathology, which highlights the diverse maintenance roles required for genome stability in the nervous system. Understanding how DNA damage signaling pathways promote neural development and preserve homeostasis is essential for understanding fundamental brain function. PMID:24165679

  2. The Banana Genome Hub

    PubMed Central

    Droc, Gaëtan; Larivière, Delphine; Guignon, Valentin; Yahiaoui, Nabila; This, Dominique; Garsmeur, Olivier; Dereeper, Alexis; Hamelin, Chantal; Argout, Xavier; Dufayard, Jean-François; Lengelle, Juliette; Baurens, Franc-Christophe; Cenci, Alberto; Pitollat, Bertrand; D’Hont, Angélique; Ruiz, Manuel; Rouard, Mathieu; Bocs, Stéphanie

    2013-01-01

    Banana is one of the world’s favorite fruits and one of the most important crops for developing countries. The banana reference genome sequence (Musa acuminata) was recently released. Given the taxonomic position of Musa, the completed genomic sequence has particular comparative value to provide fresh insights about the evolution of the monocotyledons. The study of the banana genome has been enhanced by a number of tools and resources that allows harnessing its sequence. First, we set up essential tools such as a Community Annotation System, phylogenomics resources and metabolic pathways. Then, to support post-genomic efforts, we improved banana existing systems (e.g. web front end, query builder), we integrated available Musa data into generic systems (e.g. markers and genetic maps, synteny blocks), we have made interoperable with the banana hub, other existing systems containing Musa data (e.g. transcriptomics, rice reference genome, workflow manager) and finally, we generated new results from sequence analyses (e.g. SNP and polymorphism analysis). Several uses cases illustrate how the Banana Genome Hub can be used to study gene families. Overall, with this collaborative effort, we discuss the importance of the interoperability toward data integration between existing information systems. Database URL: http://banana-genome.cirad.fr/ PMID:23707967

  3. Genomic Insights into Bifidobacteria

    PubMed Central

    Lee, Ju-Hoon; O'Sullivan, Daniel J.

    2010-01-01

    Summary: Since the discovery in 1899 of bifidobacteria as numerically dominant microbes in the feces of breast-fed infants, there have been numerous studies addressing their role in modulating gut microflora as well as their other potential health benefits. Because of this, they are frequently incorporated into foods as probiotic cultures. An understanding of their full interactions with intestinal microbes and the host is needed to scientifically validate any health benefits they may afford. Recently, the genome sequences of nine strains representing four species of Bifidobacterium became available. A comparative genome analysis of these genomes reveals a likely efficient capacity to adapt to their habitats, with B. longum subsp. infantis exhibiting more genomic potential to utilize human milk oligosaccharides, consistent with its habitat in the infant gut. Conversely, B. longum subsp. longum exhibits a higher genomic potential for utilization of plant-derived complex carbohydrates and polyols, consistent with its habitat in an adult gut. An intriguing observation is the loss of much of this genome potential when strains are adapted to pure culture environments, as highlighted by the genomes of B. animalis subsp. lactis strains, which exhibit the least potential for a gut habitat and are believed to have evolved from the B. animalis species during adaptation to dairy fermentation environments. PMID:20805404

  4. Ensembl comparative genomics resources

    PubMed Central

    Muffato, Matthieu; Beal, Kathryn; Fitzgerald, Stephen; Gordon, Leo; Pignatelli, Miguel; Vilella, Albert J.; Searle, Stephen M. J.; Amode, Ridwan; Brent, Simon; Spooner, William; Kulesha, Eugene; Yates, Andrew; Flicek, Paul

    2016-01-01

    Evolution provides the unifying framework with which to understand biology. The coherent investigation of genic and genomic data often requires comparative genomics analyses based on whole-genome alignments, sets of homologous genes and other relevant datasets in order to evaluate and answer evolutionary-related questions. However, the complexity and computational requirements of producing such data are substantial: this has led to only a small number of reference resources that are used for most comparative analyses. The Ensembl comparative genomics resources are one such reference set that facilitates comprehensive and reproducible analysis of chordate genome data. Ensembl computes pairwise and multiple whole-genome alignments from which large-scale synteny, per-base conservation scores and constrained elements are obtained. Gene alignments are used to define Ensembl Protein Families, GeneTrees and homologies for both protein-coding and non-coding RNA genes. These resources are updated frequently and have a consistent informatics infrastructure and data presentation across all supported species. Specialized web-based visualizations are also available including synteny displays, collapsible gene tree plots, a gene family locator and different alignment views. The Ensembl comparative genomics infrastructure is extensively reused for the analysis of non-vertebrate species by other projects including Ensembl Genomes and Gramene and much of the information here is relevant to these projects. The consistency of the annotation across species and the focus on vertebrates makes Ensembl an ideal system to perform and support vertebrate comparative genomic analyses. We use robust software and pipelines to produce reference comparative data and make it freely available. Database URL: http://www.ensembl.org. PMID:26896847

  5. Genome instability and aging.

    PubMed

    Vijg, Jan; Suh, Yousin

    2013-01-01

    Genome instability has long been implicated as the main causal factor in aging. Somatic cells are continuously exposed to various sources of DNA damage, from reactive oxygen species to UV radiation to environmental mutagens. To cope with the tens of thousands of chemical lesions introduced into the genome of a typical cell each day, a complex network of genome maintenance systems acts to remove damage and restore the correct base pair sequence. Occasionally, however, repair is erroneous, and such errors, as well as the occasional failure to correctly replicate the genome during cell division, are the basis for mutations and epimutations. There is now ample evidence that mutations accumulate in various organs and tissues of higher animals, including humans, mice, and flies. What is not known, however, is whether the frequency of these random changes is sufficient to cause the phenotypic effects generally associated with aging. The exception is cancer, an age-related disease caused by the accumulation of mutations and epimutations. Here, we first review current concepts regarding the relationship between DNA damage, repair, and mutation, as well as the data regarding genome alterations as a function of age. We then describe a model for how randomly induced DNA sequence and epigenomic variants in the somatic genomes of animals can result in functional decline and disease in old age. Finally, we discuss the genetics of genome instability in relation to longevity to address the importance of alterations in the somatic genome as a causal factor in aging and to underscore the opportunities provided by genetic approaches to develop interventions that attenuate genome instability, reduce disease risk, and increase life span. PMID:23398157

  6. Ensembl comparative genomics resources.

    PubMed

    Herrero, Javier; Muffato, Matthieu; Beal, Kathryn; Fitzgerald, Stephen; Gordon, Leo; Pignatelli, Miguel; Vilella, Albert J; Searle, Stephen M J; Amode, Ridwan; Brent, Simon; Spooner, William; Kulesha, Eugene; Yates, Andrew; Flicek, Paul

    2016-01-01

    Evolution provides the unifying framework with which to understand biology. The coherent investigation of genic and genomic data often requires comparative genomics analyses based on whole-genome alignments, sets of homologous genes and other relevant datasets in order to evaluate and answer evolutionary-related questions. However, the complexity and computational requirements of producing such data are substantial: this has led to only a small number of reference resources that are used for most comparative analyses. The Ensembl comparative genomics resources are one such reference set that facilitates comprehensive and reproducible analysis of chordate genome data. Ensembl computes pairwise and multiple whole-genome alignments from which large-scale synteny, per-base conservation scores and constrained elements are obtained. Gene alignments are used to define Ensembl Protein Families, GeneTrees and homologies for both protein-coding and non-coding RNA genes. These resources are updated frequently and have a consistent informatics infrastructure and data presentation across all supported species. Specialized web-based visualizations are also available including synteny displays, collapsible gene tree plots, a gene family locator and different alignment views. The Ensembl comparative genomics infrastructure is extensively reused for the analysis of non-vertebrate species by other projects including Ensembl Genomes and Gramene and much of the information here is relevant to these projects. The consistency of the annotation across species and the focus on vertebrates makes Ensembl an ideal system to perform and support vertebrate comparative genomic analyses. We use robust software and pipelines to produce reference comparative data and make it freely available. Database URL: http://www.ensembl.org. PMID:26896847

  7. Center for Cancer Genomics | Office of Cancer Genomics

    Cancer.gov

    The Center for Cancer Genomics (CCG) was established to unify the National Cancer Institute's activities in cancer genomics, with the goal of advancing genomics research and translating findings into the clinic to improve the precise diagnosis and treatment of cancers. In addition to promoting genomic sequencing approach

  8. Entering the Public Health Genomics Era: Why Must Health Educators Develop Genomic Competencies?

    ERIC Educational Resources Information Center

    Chen, Lei-Shih; Goodson, Patricia

    2007-01-01

    Although the completion of the Human Genome Project will offer new insight into diseases and help develop efficient, personalized treatment or prevention programs, it will also raise new and non-trivial public health issues. Many of these issues fall under the professional purview of public health workers. As members of the public health…

  9. Genomic taxonomy of vibrios

    PubMed Central

    Thompson, Cristiane C; Vicente, Ana Carolina P; Souza, Rangel C; Vasconcelos, Ana Tereza R; Vesth, Tammi; Alves, Nelson; Ussery, David W; Iida, Tetsuya; Thompson, Fabiano L

    2009-01-01

    Background Vibrio taxonomy has been based on a polyphasic approach. In this study, we retrieve useful taxonomic information (i.e. data that can be used to distinguish different taxonomic levels, such as species and genera) from 32 genome sequences of different vibrio species. We use a variety of tools to explore the taxonomic relationship between the sequenced genomes, including Multilocus Sequence Analysis (MLSA), supertrees, Average Amino Acid Identity (AAI), genomic signatures, and Genome BLAST atlases. Our aim is to analyse the usefulness of these tools for species identification in vibrios. Results We have generated four new genome sequences of three Vibrio species, i.e., V. alginolyticus 40B, V. harveyi-like 1DA3, and V. mimicus strains VM573 and VM603, and present a broad analyses of these genomes along with other sequenced Vibrio species. The genome atlas and pangenome plots provide a tantalizing image of the genomic differences that occur between closely related sister species, e.g. V. cholerae and V. mimicus. The vibrio pangenome contains around 26504 genes. The V. cholerae core genome and pangenome consist of 1520 and 6923 genes, respectively. Pangenomes might allow different strains of V. cholerae to occupy different niches. MLSA and supertree analyses resulted in a similar phylogenetic picture, with a clear distinction of four groups (Vibrio core group, V. cholerae-V. mimicus, Aliivibrio spp., and Photobacterium spp.). A Vibrio species is defined as a group of strains that share > 95% DNA identity in MLSA and supertree analysis, > 96% AAI, ≤ 10 genome signature dissimilarity, and > 61% proteome identity. Strains of the same species and species of the same genus will form monophyletic groups on the basis of MLSA and supertree. Conclusion The combination of different analytical and bioinformatics tools will enable the most accurate species identification through genomic computational analysis. This endeavour will culminate in the birth of the online

  10. What Is a Genome?

    PubMed Central

    Goldman, Aaron David; Landweber, Laura F.

    2016-01-01

    The genome is often described as the information repository of an organism. Whether millions or billions of letters of DNA, its transmission across generations confers the principal medium for inheritance of organismal traits. Several emerging areas of research demonstrate that this definition is an oversimplification. Here, we explore ways in which a deeper understanding of genomic diversity and cell physiology is challenging the concepts of physical permanence attached to the genome as well as its role as the sole information source for an organism. PMID:27442251

  11. Building international genomics collaboration for global health security

    DOE PAGESBeta

    Cui, Helen H.; Erkkila, Tracy; Chain, Patrick S. G.; Vuyisich, Momchilo

    2015-12-07

    Genome science and technologies are transforming life sciences globally in many ways and becoming a highly desirable area for international collaboration to strengthen global health. The Genome Science Program at the Los Alamos National Laboratory is leveraging a long history of expertise in genomics research to assist multiple partner nations in advancing their genomics and bioinformatics capabilities. The capability development objectives focus on providing a molecular genomics-based scientific approach for pathogen detection, characterization, and biosurveillance applications. The general approaches include introduction of basic principles in genomics technologies, training on laboratory methodologies and bioinformatic analysis of resulting data, procurement, and installationmore » of next-generation sequencing instruments, establishing bioinformatics software capabilities, and exploring collaborative applications of the genomics capabilities in public health. Genome centers have been established with public health and research institutions in the Republic of Georgia, Kingdom of Jordan, Uganda, and Gabon; broader collaborations in genomics applications have also been developed with research institutions in many other countries.« less

  12. Comparative primate genomics: emerging patterns of genome content and dynamics

    PubMed Central

    Rogers, Jeffrey; Gibbs, Richard A.

    2014-01-01

    Preface Advances in genome sequencing technologies have created new opportunities for comparative primate genomics. Genome assemblies have been published for several primates, with analyses of several others underway. Whole genome assemblies for the great apes provide remarkable new information about the evolutionary origins of the human genome and the processes involved. Genomic data for macaques and other nonhuman primates provide valuable insight into genetic similarities and differences among species used as models for disease-related research. This review summarizes current knowledge regarding primate genome content and dynamics and offers a series of goals for the near future. PMID:24709753

  13. Comparative primate genomics: emerging patterns of genome content and dynamics.

    PubMed

    Rogers, Jeffrey; Gibbs, Richard A

    2014-05-01

    Advances in genome sequencing technologies have created new opportunities for comparative primate genomics. Genome assemblies have been published for various primate species, and analyses of several others are underway. Whole-genome assemblies for the great apes provide remarkable new information about the evolutionary origins of the human genome and the processes involved. Genomic data for macaques and other non-human primates offer valuable insights into genetic similarities and differences among species that are used as models for disease-related research. This Review summarizes current knowledge regarding primate genome content and dynamics, and proposes a series of goals for the near future. PMID:24709753

  14. GenomeView: a next-generation genome browser

    PubMed Central

    Abeel, Thomas; Van Parys, Thomas; Saeys, Yvan; Galagan, James; Van de Peer, Yves

    2012-01-01

    Due to ongoing advances in sequencing technologies, billions of nucleotide sequences are now produced on a daily basis. A major challenge is to visualize these data for further downstream analysis. To this end, we present GenomeView, a stand-alone genome browser specifically designed to visualize and manipulate a multitude of genomics data. GenomeView enables users to dynamically browse high volumes of aligned short-read data, with dynamic navigation and semantic zooming, from the whole genome level to the single nucleotide. At the same time, the tool enables visualization of whole genome alignments of dozens of genomes relative to a reference sequence. GenomeView is unique in its capability to interactively handle huge data sets consisting of tens of aligned genomes, thousands of annotation features and millions of mapped short reads both as viewer and editor. GenomeView is freely available as an open source software package. PMID:22102585

  15. Hymenoptera Genome Database: integrating genome annotations in HymenopteraMine

    PubMed Central

    Elsik, Christine G.; Tayal, Aditi; Diesh, Colin M.; Unni, Deepak R.; Emery, Marianne L.; Nguyen, Hung N.; Hagen, Darren E.

    2016-01-01

    We report an update of the Hymenoptera Genome Database (HGD) (http://HymenopteraGenome.org), a model organism database for insect species of the order Hymenoptera (ants, bees and wasps). HGD maintains genomic data for 9 bee species, 10 ant species and 1 wasp, including the versions of genome and annotation data sets published by the genome sequencing consortiums and those provided by NCBI. A new data-mining warehouse, HymenopteraMine, based on the InterMine data warehousing system, integrates the genome data with data from external sources and facilitates cross-species analyses based on orthology. New genome browsers and annotation tools based on JBrowse/WebApollo provide easy genome navigation, and viewing of high throughput sequence data sets and can be used for collaborative genome annotation. All of the genomes and annotation data sets are combined into a single BLAST server that allows users to select and combine sequence data sets to search. PMID:26578564

  16. Hymenoptera Genome Database: integrating genome annotations in HymenopteraMine.

    PubMed

    Elsik, Christine G; Tayal, Aditi; Diesh, Colin M; Unni, Deepak R; Emery, Marianne L; Nguyen, Hung N; Hagen, Darren E

    2016-01-01

    We report an update of the Hymenoptera Genome Database (HGD) (http://HymenopteraGenome.org), a model organism database for insect species of the order Hymenoptera (ants, bees and wasps). HGD maintains genomic data for 9 bee species, 10 ant species and 1 wasp, including the versions of genome and annotation data sets published by the genome sequencing consortiums and those provided by NCBI. A new data-mining warehouse, HymenopteraMine, based on the InterMine data warehousing system, integrates the genome data with data from external sources and facilitates cross-species analyses based on orthology. New genome browsers and annotation tools based on JBrowse/WebApollo provide easy genome navigation, and viewing of high throughput sequence data sets and can be used for collaborative genome annotation. All of the genomes and annotation data sets are combined into a single BLAST server that allows users to select and combine sequence data sets to search. PMID:26578564

  17. Predicting discovery rates of genomic features.

    PubMed

    Gravel, Simon

    2014-06-01

    Successful sequencing experiments require judicious sample selection. However, this selection must often be performed on the basis of limited preliminary data. Predicting the statistical properties of the final sample based on preliminary data can be challenging, because numerous uncertain model assumptions may be involved. Here, we ask whether we can predict "omics" variation across many samples by sequencing only a fraction of them. In the infinite-genome limit, we find that a pilot study sequencing 5% of a population is sufficient to predict the number of genetic variants in the entire population within 6% of the correct value, using an estimator agnostic to demography, selection, or population structure. To reach similar accuracy in a finite genome with millions of polymorphisms, the pilot study would require ∼15% of the population. We present computationally efficient jackknife and linear programming methods that exhibit substantially less bias than the state of the art when applied to simulated data and subsampled 1000 Genomes Project data. Extrapolating based on the National Heart, Lung, and Blood Institute Exome Sequencing Project data, we predict that 7.2% of sites in the capture region would be variable in a sample of 50,000 African Americans and 8.8% in a European sample of equal size. Finally, we show how the linear programming method can also predict discovery rates of various genomic features, such as the number of transcription factor binding sites across different cell types. PMID:24637199

  18. Application of Genomics Tools to Animal Breeding

    PubMed Central

    Dekkers, Jack C.M.

    2012-01-01

    The main goal in animal breeding is to select individuals that have high breeding values for traits of interest as parents to produce the next generation and to do so as quickly as possible. To date, most programs rely on statistical analysis of large data bases with phenotypes on breeding populations by linear mixed model methodology to estimate breeding values on selection candidates. However, there is a long history of research on the use of genetic markers to identify quantitative trait loci and their use in marker-assisted selection but with limited implementation in practical breeding programs. The advent of high-density SNP genotyping, combined with novel statistical methods for the use of this data to estimate breeding values, has resulted in the recent extensive application of genomic or whole-genome selection in dairy cattle and research to implement genomic selection in other livestock species is underway. The high-density SNP data also provides opportunities to detect QTL and to encover the genetic architecture of quantitative traits, in terms of the distribution of the size of genetic effects that contribute to trait differences in a population. Results show that this genetic architecture differs between traits but that for most traits, over 50% of the genetic variation resides in genomic regions with small effects that are of the order of magnitude that is expected under a highly polygenic model of inheritance. PMID:23115522

  19. Training in Psychiatric Genomics during Residency: A New Challenge

    ERIC Educational Resources Information Center

    Winner, Joel G.; Goebert, Deborah; Matsu, Courtenay; Mrazek, David A.

    2010-01-01

    Objective: The authors ascertained the amount of training in psychiatric genomics that is provided in North American psychiatric residency programs. Methods: A sample of 217 chief residents in psychiatric residency programs in the United States and Canada were identified by e-mail and surveyed to assess their training in psychiatric genetics and…

  20. Lophotrochozoan mitochondrial genomes

    SciTech Connect

    Valles, Yvonne; Boore, Jeffrey L.

    2005-10-01

    Progress in both molecular techniques and phylogeneticmethods has challenged many of the interpretations of traditionaltaxonomy. One example is in the recognition of the animal superphylumLophotrochozoa (annelids, mollusks, echiurans, platyhelminthes,brachiopods, and other phyla), although the relationships within thisgroup and the inclusion of some phyla remain uncertain. While much ofthis progress in phylogenetic reconstruction has been based on comparingsingle gene sequences, we are beginning to see the potential of comparinglarge-scale features of genomes, such as the relative order of genes.Even though tremendous progress is being made on the sequencedetermination of whole nuclear genomes, the dataset of choice forgenome-level characters for many animals across a broad taxonomic rangeremains mitochondrial genomes. We review here what is known aboutmitochondrial genomes of the lophotrochozoans and discuss the promisethat this dataset will enable insight into theirrelationships.

  1. Androgen receptor genomic regulation

    PubMed Central

    Jin, Hong-Jian; Kim, Jung

    2013-01-01

    The transcriptional activity of the androgen receptor (AR) is not only critical for the normal development and function of the prostate but also pivotal to the onset and progression of prostate cancer (PCa). The studies of AR transcriptional regulation were previously limited to a handful of AR-target genes. Owing to the development of various high-throughput genomic technologies, significant advances have been made in recent years. Here we discuss the discoveries of genome-wide androgen-regulated genes in PCa cell lines, animal models and tissues using expression microarray and sequencing, the mapping of genomic landscapes of AR using Combining Chromatin Immunoprecipitation (ChIP)-on-chip and ChIP-seq assays, the interplay of transcriptional cofactors in defining AR binding profiles, and the genomic regulation and AR reprogramming in advanced PCa. PMID:25237629

  2. Mouse genome database 2016

    PubMed Central

    Bult, Carol J.; Eppig, Janan T.; Blake, Judith A.; Kadin, James A.; Richardson, Joel E.

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data. PMID:26578600

  3. The genomics of adaptation.

    PubMed

    Radwan, Jacek; Babik, Wiesław

    2012-12-22

    The amount and nature of genetic variation available to natural selection affect the rate, course and outcome of evolution. Consequently, the study of the genetic basis of adaptive evolutionary change has occupied biologists for decades, but progress has been hampered by the lack of resolution and the absence of a genome-level perspective. Technological advances in recent years should now allow us to answer many long-standing questions about the nature of adaptation. The data gathered so far are beginning to challenge some widespread views of the way in which natural selection operates at the genomic level. Papers in this Special Feature of Proceedings of the Royal Society B illustrate various aspects of the broad field of adaptation genomics. This introductory article sets up a context and, on the basis of a few selected examples, discusses how genomic data can advance our understanding of the process of adaptation. PMID:23097510

  4. Genomics and vaccine development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic-based approaches are driving fundamental changes in our understanding of microbiology. Comparative analysis of microbial strain is providing new insights into pathogen evolution, virulence mechanisms, and host range specificity. Most importantly, gene discovery and genetic variations can now...

  5. Platyzoan mitochondrial genomes.

    PubMed

    Wey-Fabrizius, Alexandra R; Podsiadlowski, Lars; Herlyn, Holger; Hankeln, Thomas

    2013-11-01

    Platyzoa is a putative lophotrochozoan (spiralian) subtaxon within the protostome clade of Metazoa, comprising a range of biologically diverse, mostly small worm-shaped animals. The monophyly of Platyzoa, the relationships between the putative subgroups Platyhelminthes, Gastrotricha and Gnathifera (the latter comprising at least Gnathostomulida, "Rotifera" and Acanthocephala) as well as some aspects of the internal phylogenies of these subgroups are highly debated. Here we review how complete mitochondrial (mt) genome data contribute to these debates. We highlight special features of the mt genomes and discuss problems in mtDNA phylogenies of the clade. Mitochondrial genome data seem to be insufficient to resolve the position of the platyzoan clade within the Spiralia but can help to address internal phylogenetic questions. The present review includes a tabular survey of all published platyzoan mt genomes. PMID:23274056

  6. Mouse genome database 2016.

    PubMed

    Bult, Carol J; Eppig, Janan T; Blake, Judith A; Kadin, James A; Richardson, Joel E

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data. PMID:26578600

  7. The rise of genomics.

    PubMed

    Weissenbach, Jean

    2016-01-01

    A brief history of the development of genomics is provided. Complete sequencing of genomes of uni- and multicellular organisms is based on important progress in sequencing and bioinformatics. Evolution of these methods is ongoing and has triggered an explosion in data production and analysis. Initial analyses focused on the inventory of genes encoding proteins. Completeness and quality of gene prediction remains crucial. Genome analyses profoundly modified our views on evolution, biodiversity and contributed to the detection of new functions, yet to be fully elucidated, such as those fulfilled by non-coding RNAs. Genomics has become the basis for the study of biology and provides the molecular support for a bunch of large-scale studies, the omics. PMID:27263360

  8. Genomic definition of species

    SciTech Connect

    Crkvenjakov, R.; Drmanac, R.

    1991-07-01

    The subject of this paper is the definition of species based on the assumption that genome is the fundamental level for the origin and maintenance of biological diversity. For this view to be logically consistent it is necessary to assume the existence and operation of the new law which we call genome law. For this reason the genome law is included in the explanation of species phenomenon presented here even if its precise formulation and elaboration are left for the future. The intellectual underpinnings of this definition can be traced to Goldschmidt. We wish to explore some philosophical aspects of the definition of species in terms of the genome. The point of proposing the definition on these grounds is that any real advance in evolutionary theory has to be correct in both its philosophy and its science.

  9. Biobanks for Genomics and Genomics for Biobanks

    PubMed Central

    Ducournau, Pascal; Gourraud, Pierre-Antoine; Pontille, David

    2003-01-01

    Biobanks include biological samples and attached databases. Human biobanks occur in research, technological development and medical activities. Population genomics is highly dependent on the availability of large biobanks. Ethical issues must be considered: protecting the rights of those people whose samples or data are in biobanks (information, autonomy, confidentiality, protection of private life), assuring the non-commercial use of human body elements and the optimal use of samples and data. They balance other issues, such as protecting the rights of researchers and companies, allowing long-term use of biobanks while detailed information on future uses is not available. At the level of populations, the traditional form of informed consent is challenged. Other dimensions relate to the rights of a group as such, in addition to individual rights. Conditions of return of results and/or benefit to a population need to be defined. With ‘large-scale biobanking’ a marked trend in genomics, new societal dimensions appear, regarding communication, debate, regulation, societal control and valorization of such large biobanks. Exploring how genomics can help health sector biobanks to become more rationally constituted and exploited is an interesting perspective. For example, evaluating how genomic approaches can help in optimizing haematopoietic stem cell donor registries using new markers and high-throughput techniques to increase immunogenetic variability in such registries is a challenge currently being addressed. Ethical issues in such contexts are important, as not only individual decisions or projects are concerned, but also national policies in the international arena and organization of democratic debate about science, medicine and society. PMID:18629026

  10. GenomeTools: a comprehensive software library for efficient processing of structured genome annotations.

    PubMed

    Gremme, Gordon; Steinbiss, Sascha; Kurtz, Stefan

    2013-01-01

    Genome annotations are often published as plain text files describing genomic features and their subcomponents by an implicit annotation graph. In this paper, we present the GenomeTools, a convenient and efficient software library and associated software tools for developing bioinformatics software intended to create, process or convert annotation graphs. The GenomeTools strictly follow the annotation graph approach, offering a unified graph-based representation. This gives the developer intuitive and immediate access to genomic features and tools for their manipulation. To process large annotation sets with low memory overhead, we have designed and implemented an efficient pull-based approach for sequential processing of annotations. This allows to handle even the largest annotation sets, such as a complete catalogue of human variations. Our object-oriented C-based software library enables a developer to conveniently implement their own functionality on annotation graphs and to integrate it into larger workflows, simultaneously accessing compressed sequence data if required. The careful C implementation of the GenomeTools does not only ensure a light-weight memory footprint while allowing full sequential as well as random access to the annotation graph, but also facilitates the creation of bindings to a variety of script programming languages (like Python and Ruby) sharing the same interface. PMID:24091398

  11. How the genome folds

    NASA Astrophysics Data System (ADS)

    Lieberman Aiden, Erez

    2012-02-01

    I describe Hi-C, a novel technology for probing the three-dimensional architecture of whole genomes by coupling proximity-based ligation with massively parallel sequencing. Working with collaborators at the Broad Institute and UMass Medical School, we used Hi-C to construct spatial proximity maps of the human genome at a resolution of 1Mb. These maps confirm the presence of chromosome territories and the spatial proximity of small, gene-rich chromosomes. We identified an additional level of genome organization that is characterized by the spatial segregation of open and closed chromatin to form two genome-wide compartments. At the megabase scale, the chromatin conformation is consistent with a fractal globule, a knot-free conformation that enables maximally dense packing while preserving the ability to easily fold and unfold any genomic locus. The fractal globule is distinct from the more commonly used globular equilibrium model. Our results demonstrate the power of Hi-C to map the dynamic conformations of whole genomes.

  12. Human Genome Annotation

    NASA Astrophysics Data System (ADS)

    Gerstein, Mark

    A central problem for 21st century science is annotating the human genome and making this annotation useful for the interpretation of personal genomes. My talk will focus on annotating the 99% of the genome that does not code for canonical genes, concentrating on intergenic features such as structural variants (SVs), pseudogenes (protein fossils), binding sites, and novel transcribed RNAs (ncRNAs). In particular, I will describe how we identify regulatory sites and variable blocks (SVs) based on processing next-generation sequencing experiments. I will further explain how we cluster together groups of sites to create larger annotations. Next, I will discuss a comprehensive pseudogene identification pipeline, which has enabled us to identify >10K pseudogenes in the genome and analyze their distribution with respect to age, protein family, and chromosomal location. Throughout, I will try to introduce some of the computational algorithms and approaches that are required for genome annotation. Much of this work has been carried out in the framework of the ENCODE, modENCODE, and 1000 genomes projects.

  13. An archaeal genomic signature

    NASA Technical Reports Server (NTRS)

    Graham, D. E.; Overbeek, R.; Olsen, G. J.; Woese, C. R.

    2000-01-01

    Comparisons of complete genome sequences allow the most objective and comprehensive descriptions possible of a lineage's evolution. This communication uses the completed genomes from four major euryarchaeal taxa to define a genomic signature for the Euryarchaeota and, by extension, the Archaea as a whole. The signature is defined in terms of the set of protein-encoding genes found in at least two diverse members of the euryarchaeal taxa that function uniquely within the Archaea; most signature proteins have no recognizable bacterial or eukaryal homologs. By this definition, 351 clusters of signature proteins have been identified. Functions of most proteins in this signature set are currently unknown. At least 70% of the clusters that contain proteins from all the euryarchaeal genomes also have crenarchaeal homologs. This conservative set, which appears refractory to horizontal gene transfer to the Bacteria or the Eukarya, would seem to reflect the significant innovations that were unique and fundamental to the archaeal "design fabric." Genomic protein signature analysis methods may be extended to characterize the evolution of any phylogenetically defined lineage. The complete set of protein clusters for the archaeal genomic signature is presented as supplementary material (see the PNAS web site, www.pnas.org).

  14. Ebolavirus comparative genomics

    DOE PAGESBeta

    Jun, Se-Ran; Leuze, Michael R.; Nookaew, Intawat; Uberbacher, Edward C.; Land, Miriam; Zhang, Qian; Wanchai, Visanu; Chai, Juanjuan; Nielsen, Morten; Trolle, Thomas; et al

    2015-07-14

    The 2014 Ebola outbreak in West Africa is the largest documented for this virus. We examine the dynamics of this genome, comparing more than one hundred currently available ebolavirus genomes to each other and to other viral genomes. Based on oligomer frequency analysis, the family Filoviridae forms a distinct group from all other sequenced viral genomes. All filovirus genomes sequenced to date encode proteins with similar functions and gene order, although there is considerable divergence in sequences between the three genera Ebolavirus, Cuevavirus, and Marburgvirus within the family Filoviridae. Whereas all ebolavirus genomes are quite similar (multiple sequences of themore » same strain are often identical), variation is most common in the intergenic regions and within specific areas of the genes encoding the glycoprotein (GP), nucleoprotein (NP), and polymerase (L). We predict regions that could contain epitope-binding sites, which might be good vaccine targets. In conclusion, this information, combined with glycosylation sites and experimentally determined epitopes, can identify the most promising regions for the development of therapeutic strategies.« less

  15. Barley Genomics: An Overview

    PubMed Central

    Sreenivasulu, Nese; Graner, Andreas; Wobus, Ulrich

    2008-01-01

    Barley (Hordeum vulgare), first domesticated in the Near East, is a well-studied crop in terms of genetics, genomics, and breeding and qualifies as a model plant for Triticeae research. Recent advances made in barley genomics mainly include the following: (i) rapid accumulation of EST sequence data, (ii) growing number of studies on transcriptome, proteome, and metabolome, (iii) new modeling techniques, (iv) availability of genome-wide knockout collections as well as efficient transformation techniques, and (v) the recently started genome sequencing effort. These developments pave the way for a comprehensive functional analysis and understanding of gene expression networks linked to agronomically important traits. Here, we selectively review important technological developments in barley genomics and related fields and discuss the relevance for understanding genotype-phenotype relationships by using approaches such as genetical genomics and association studies. High-throughput genotyping platforms that have recently become available will allow the construction of high-density genetic maps that will further promote marker-assisted selection as well as physical map construction. Systems biology approaches will further enhance our knowledge and largely increase our abilities to design refined breeding strategies on the basis of detailed molecular physiological knowledge. PMID:18382615

  16. Genome maintenance in the context of 4D chromatin condensation.

    PubMed

    Yu, Sonia; Yang, Fan; Shen, Wen H

    2016-08-01

    The eukaryotic genome is packaged in the three-dimensional nuclear space by forming loops, domains, and compartments in a hierarchical manner. However, when duplicated genomes prepare for segregation, mitotic cells eliminate topologically associating domains and abandon the compartmentalized structure. Alongside chromatin architecture reorganization during the transition from interphase to mitosis, cells halt most DNA-templated processes such as transcription and repair. The intrinsically condensed chromatin serves as a sophisticated signaling module subjected to selective relaxation for programmed genomic activities. To understand the elaborate genome-epigenome interplay during cell cycle progression, the steady three-dimensional genome requires a time scale to form a dynamic four-dimensional and a more comprehensive portrait. In this review, we will dissect the functions of critical chromatin architectural components in constructing and maintaining an orderly packaged chromatin environment. We will also highlight the importance of the spatially and temporally conscious orchestration of chromatin remodeling to ensure high-fidelity genetic transmission. PMID:27098512

  17. Multilevel Research and the Challenges of Implementing Genomic Medicine

    PubMed Central

    Coates, Ralph J.; Fennell, Mary L.; Glasgow, Russell E.; Scheuner, Maren T.; Schully, Sheri D.; Williams, Marc S.; Clauser, Steven B.

    2012-01-01

    Advances in genomics and related fields promise a new era of personalized medicine in the cancer care continuum. Nevertheless, there are fundamental challenges in integrating genomic medicine into cancer practice. We explore how multilevel research can contribute to implementation of genomic medicine. We first review the rapidly developing scientific discoveries in this field and the paucity of current applications that are ready for implementation in clinical and public health programs. We then define a multidisciplinary translational research agenda for successful integration of genomic medicine into policy and practice and consider challenges for successful implementation. We illustrate the agenda using the example of Lynch syndrome testing in newly diagnosed cases of colorectal cancer and cascade testing in relatives. We synthesize existing information in a framework for future multilevel research for integrating genomic medicine into the cancer care continuum. PMID:22623603

  18. A comparison of virus genome sequences with their host silkworm, Bombyx mori.

    PubMed

    Tang, Xu-Dong; Yue, Ya-Jie; Wang, Wei; Li, Nan; Shen, Zhong-Yuan

    2016-01-15

    With the recent availability of the genomes of many viruses and the silkworm, Bombyx mori, as well as a variety of Basic Local Alignment Search Tool (BLAST) programs, a new opportunity to gain insight into the interaction of viruses with the silkworm is possible. This study aims to determine the possible existence of sequence identities between the genomes of viruses and the silkworm and attempts to explain this phenomenon. BLAST searches of the genomes of viruses against the silkworm genome were performed using the resources of the National Center for Biotechnology Information. All studied viruses contained variable numbers of short regions with sequence identity to the genome of the silkworm. The short regions of sequence identity in the genome of the silkworm may be derived from the genomes of viruses in the long history of silkworm-virus interaction. This study is the first to compare these genomes, and may contribute to research on the interaction between viruses and the silkworm. PMID:26432002

  19. Genomics Education for the Public: Perspectives of Genomic Researchers and ELSI Advisors

    PubMed Central

    Jones, Sondra Smolek; Markey, Janell M.; Byerly, Katherine W.; Roberts, Megan C.

    2014-01-01

    Aims: For more than two decades genomic education of the public has been a significant challenge. As genomic information becomes integrated into daily life and routine clinical care, the need for public education is even more critical. We conducted a pilot study to learn how genomic researchers and ethical, legal, and social implications advisors who were affiliated with large-scale genomic variation studies have approached the issue of educating the public about genomics. Methods/Results: Semi-structured telephone interviews were conducted with researchers and advisors associated with the SNP/HAPMAP studies and the Cancer Genome Atlas Study. Respondents described approach(es) associated with educating the public about their study. Interviews were audio-recorded, transcribed, coded, and analyzed by team review. Although few respondents described formal educational efforts, most provided recommendations for what should/could be done, emphasizing the need for an overarching entity(s) to take responsibility to lead the effort to educate the public. Opposing views were described related to: who this should be; the overall goal of the educational effort; and the educational approach. Four thematic areas emerged: What is the rationale for educating the public about genomics?; Who is the audience?; Who should be responsible for this effort?; and What should the content be? Policy issues associated with these themes included the need to agree on philosophical framework(s) to guide the rationale, content, and target audiences for education programs; coordinate previous/ongoing educational efforts; and develop a centralized knowledge base. Suggestions for next steps are presented. Conclusion: A complex interplay of philosophical, professional, and cultural issues can create impediments to genomic education of the public. Many challenges, however, can be addressed by agreement on a guiding philosophical framework(s) and identification of a responsible entity(s) to provide

  20. WheatGenome.info: A Resource for Wheat Genomics Resource.

    PubMed

    Lai, Kaitao

    2016-01-01

    An integrated database with a variety of Web-based systems named WheatGenome.info hosting wheat genome and genomic data has been developed to support wheat research and crop improvement. The resource includes multiple Web-based applications, which are implemented as a variety of Web-based systems. These include a GBrowse2-based wheat genome viewer with BLAST search portal, TAGdb for searching wheat second generation genome sequence data, wheat autoSNPdb, links to wheat genetic maps using CMap and CMap3D, and a wheat genome Wiki to allow interaction between diverse wheat genome sequencing activities. This portal provides links to a variety of wheat genome resources hosted at other research organizations. This integrated database aims to accelerate wheat genome research and is freely accessible via the web interface at http://www.wheatgenome.info/ . PMID:26519407

  1. Genome Project Standards in a New Era of Sequencing

    SciTech Connect

    GSC Consortia; HMP Jumpstart Consortia; Chain, P. S. G.; Grafham, D. V.; Fulton, R. S.; FitzGerald, M. G.; Hostetler, J.; Muzny, D.; Detter, J. C.; Ali, J.; Birren, B.; Bruce, D. C.; Buhay, C.; Cole, J. R.; Ding, Y.; Dugan, S.; Field, D.; Garrity, G. M.; Gibbs, R.; Graves, T.; Han, C. S.; Harrison, S. H.; Highlander, S.; Hugenholtz, P.; Khouri, H. M.; Kodira, C. D.; Kolker, E.; Kyrpides, N. C.; Lang, D.; Lapidus, A.; Malfatti, S. A.; Markowitz, V.; Metha, T.; Nelson, K. E.; Parkhill, J.; Pitluck, S.; Qin, X.; Read, T. D.; Schmutz, J.; Sozhamannan, S.; Strausberg, R.; Sutton, G.; Thomson, N. R.; Tiedje, J. M.; Weinstock, G.; Wollam, A.

    2009-06-01

    For over a decade, genome 43 sequences have adhered to only two standards that are relied on for purposes of sequence analysis by interested third parties (1, 2). However, ongoing developments in revolutionary sequencing technologies have resulted in a redefinition of traditional whole genome sequencing that requires a careful reevaluation of such standards. With commercially available 454 pyrosequencing (followed by Illumina, SOLiD, and now Helicos), there has been an explosion of genomes sequenced under the moniker 'draft', however these can be very poor quality genomes (due to inherent errors in the sequencing technologies, and the inability of assembly programs to fully address these errors). Further, one can only infer that such draft genomes may be of poor quality by navigating through the databases to find the number and type of reads deposited in sequence trace repositories (and not all genomes have this available), or to identify the number of contigs or genome fragments deposited to the database. The difficulty in assessing the quality of such deposited genomes has created some havoc for genome analysis pipelines and contributed to many wasted hours of (mis)interpretation. These same novel sequencing technologies have also brought an exponential leap in raw sequencing capability, and at greatly reduced prices that have further skewed the time- and cost-ratios of draft data generation versus the painstaking process of improving and finishing a genome. The resulting effect is an ever-widening gap between drafted and finished genomes that only promises to continue (Figure 1), hence there is an urgent need to distinguish good and poor datasets. The sequencing institutes in the authorship, along with the NIH's Human Microbiome Project Jumpstart Consortium (3), strongly believe that a new set of standards is required for genome sequences. The following represents a set of six community-defined categories of genome sequence standards that better reflect the

  2. CrusView: a Java-based visualization platform for comparative genomics analyses in Brassicaceae species.

    PubMed

    Chen, Hao; Wang, Xiangfeng

    2013-09-01

    In plants and animals, chromosomal breakage and fusion events based on conserved syntenic genomic blocks lead to conserved patterns of karyotype evolution among species of the same family. However, karyotype information has not been well utilized in genomic comparison studies. We present CrusView, a Java-based bioinformatic application utilizing Standard Widget Toolkit/Swing graphics libraries and a SQLite database for performing visualized analyses of comparative genomics data in Brassicaceae (crucifer) plants. Compared with similar software and databases, one of the unique features of CrusView is its integration of karyotype information when comparing two genomes. This feature allows users to perform karyotype-based genome assembly and karyotype-assisted genome synteny analyses with preset karyotype patterns of the Brassicaceae genomes. Additionally, CrusView is a local program, which gives its users high flexibility when analyzing unpublished genomes and allows users to upload self-defined genomic information so that they can visually study the associations between genome structural variations and genetic elements, including chromosomal rearrangements, genomic macrosynteny, gene families, high-frequency recombination sites, and tandem and segmental duplications between related species. This tool will greatly facilitate karyotype, chromosome, and genome evolution studies using visualized comparative genomics approaches in Brassicaceae species. CrusView is freely available at http://www.cmbb.arizona.edu/CrusView/. PMID:23898041

  3. Cell Death in Genome Evolution

    PubMed Central

    Teng, Xinchen; Hardwick, J. Marie

    2015-01-01

    Inappropriate survival of abnormal cells underlies tumorigenesis. Most discoveries about programmed cell death have come from studying model organisms. Revisiting the experimental contexts that inspired these discoveries helps explain confounding biases that inevitably accompany such discoveries. Amending early biases has added a newcomer to the collection of cell death models. Analysis of gene-dependent death in yeast revealed the surprising influence of single gene mutations on subsequent eukaryotic genome evolution. Similar events may influence the selection for mutations during early tumorigenesis. The possibility that an early random mutation might drive the selection for a cancer driver mutation is conceivable but difficult to demonstrate. This was tested in yeast, revealing that mutation of almost any gene appears to specify the selection for a new second mutation. Some human tumors contain pairs of mutant genes homologous to co-occurring mutant genes in yeast. Here we consider how yeast again provide novel insights into tumorigenesis. PMID:25725369

  4. GapBlaster—A Graphical Gap Filler for Prokaryote Genomes

    PubMed Central

    Veras, Adonney; de Melo, Diego Magalhães; Soares, Siomar; Pinheiro, Kenny; Guimarães, Luis; Azevedo, Vasco; Silva, Artur; Ramos, Rommel T. J.

    2016-01-01

    The advent of NGS (Next Generation Sequencing) technologies has resulted in an exponential increase in the number of complete genomes available in biological databases. This advance has allowed the development of several computational tools enabling analyses of large amounts of data in each of the various steps, from processing and quality filtering to gap filling and manual curation. The tools developed for gap closure are very useful as they result in more complete genomes, which will influence downstream analyses of genomic plasticity and comparative genomics. However, the gap filling step remains a challenge for genome assembly, often requiring manual intervention. Here, we present GapBlaster, a graphical application to evaluate and close gaps. GapBlaster was developed via Java programming language. The software uses contigs obtained in the assembly of the genome to perform an alignment against a draft of the genome/scaffold, using BLAST or Mummer to close gaps. Then, all identified alignments of contigs that extend through the gaps in the draft sequence are presented to the user for further evaluation via the GapBlaster graphical interface. GapBlaster presents significant results compared to other similar software and has the advantage of offering a graphical interface for manual curation of the gaps. GapBlaster program, the user guide and the test datasets are freely available at https://sourceforge.net/projects/gapblaster2015/. It requires Sun JDK 8 and Blast or Mummer. PMID:27171416

  5. GapBlaster-A Graphical Gap Filler for Prokaryote Genomes.

    PubMed

    de Sá, Pablo H C G; Miranda, Fábio; Veras, Adonney; de Melo, Diego Magalhães; Soares, Siomar; Pinheiro, Kenny; Guimarães, Luis; Azevedo, Vasco; Silva, Artur; Ramos, Rommel T J

    2016-01-01

    The advent of NGS (Next Generation Sequencing) technologies has resulted in an exponential increase in the number of complete genomes available in biological databases. This advance has allowed the development of several computational tools enabling analyses of large amounts of data in each of the various steps, from processing and quality filtering to gap filling and manual curation. The tools developed for gap closure are very useful as they result in more complete genomes, which will influence downstream analyses of genomic plasticity and comparative genomics. However, the gap filling step remains a challenge for genome assembly, often requiring manual intervention. Here, we present GapBlaster, a graphical application to evaluate and close gaps. GapBlaster was developed via Java programming language. The software uses contigs obtained in the assembly of the genome to perform an alignment against a draft of the genome/scaffold, using BLAST or Mummer to close gaps. Then, all identified alignments of contigs that extend through the gaps in the draft sequence are presented to the user for further evaluation via the GapBlaster graphical interface. GapBlaster presents significant results compared to other similar software and has the advantage of offering a graphical interface for manual curation of the gaps. GapBlaster program, the user guide and the test datasets are freely available at https://sourceforge.net/projects/gapblaster2015/. It requires Sun JDK 8 and Blast or Mummer. PMID:27171416

  6. Complete genome sequence of Staphylothermus hellenicus P8T

    SciTech Connect

    Anderson, Iain; Wirth, Reinhard; Lucas, Susan; Copeland, A; Lapidus, Alla L.; Cheng, Jan-Fang; Goodwin, Lynne A.; Pitluck, Sam; Davenport, Karen W.; Detter, J. Chris; Han, Cliff; Tapia, Roxanne; Land, Miriam L; Hauser, Loren John; Pati, Amrita; Mikhailova, Natalia; Woyke, Tanja; Klenk, Hans-Peter; Kyrpides, Nikos C; Ivanova, N

    2011-01-01

    Staphylothermus hellenicus belongs to the order Desulfurococcales within the archaeal phy- lum Crenarchaeota. Strain P8T is the type strain of the species and was isolated from a shal- low hydrothermal vent system at Palaeochori Bay, Milos, Greece. It is a hyperthermophilic, anaerobic heterotroph. Here we describe the features of this organism together with the com- plete genome sequence and annotation. The 1,580,347 bp genome with its 1,668 protein- coding and 48 RNA genes was sequenced as part of a DOE Joint Genome Institute (JGI) La- boratory Sequencing Program (LSP) project.

  7. Complete genome sequence of Ferroglobus placidus AEDII12DO

    SciTech Connect

    Anderson, Iain; Risso, Carla; Holmes, Dawn; Lucas, Susan; Copeland, A; Lapidus, Alla L.; Cheng, Jan-Fang; Bruce, David; Goodwin, Lynne A.; Pitluck, Sam; Saunders, Elizabeth H; Brettin, Thomas S; Detter, J. Chris; Han, Cliff; Tapia, Roxanne; Larimer, Frank W; Land, Miriam L; Hauser, Loren John; Woyke, Tanja; Lovley, Derek; Kyrpides, Nikos C; Ivanova, N

    2011-01-01

    Ferroglobus placidus belongs to the order Archaeoglobales within the archaeal phylum Euryar- chaeota. Strain AEDII12DO is the type strain of the species and was isolated from a shallow marine hydrothermal system at Vulcano, Italy. It is a hyperthermophilic, anaerobic chemoli- thoautotroph, but it can also use a variety of aromatic compounds as electron donors. Here we describe the features of this organism together with the complete genome sequence and anno- tation. The 2,196,266 bp genome with its 2,567 protein-coding and 55 RNA genes was se- quenced as part of a DOE Joint Genome Institute Laboratory Sequencing Program (LSP) project.

  8. Complete genome sequence of Serratia plymuthica strain AS12

    SciTech Connect

    Neupane, Saraswoti; Finlay, Roger D.; Alstrom, Sadhna; Goodwin, Lynne A.; Kyrpides, Nikos C; Lucas, Susan; Lapidus, Alla L.; Bruce, David; Pitluck, Sam; Peters, Lin; Ovchinnikova, Galina; Chertkov, Olga; Han, James; Han, Cliff; Tapia, Roxanne; Detter, J. Chris; Land, Miriam L; Hauser, Loren John; Cheng, Jan-Fang; Ivanova, N; Pagani, Ioanna; Klenk, Hans-Peter; Woyke, Tanja; Hogberg, Nils

    2012-01-01

    A plant associated member of the family Enterobacteriaceae, Serratia plymuthica strain AS12 was isolated from rapeseed roots. It is of scientific interest due to its plant growth promoting and plant pathogen inhibiting ability. The genome of S. plymuthica AS12 comprises a 5,443,009 bp long circular chromosome, which consists of 4,952 protein-coding genes, 87 tRNA genes and 7 rRNA operons. This genome was sequenced within the 2010 DOE-JGI Community Sequencing Program (CSP2010) as part of the project entitled 'Genomics of four rapeseed plant growth promoting bacteria with antagonistic effect on plant pathogens'.

  9. Complete genome sequence of Serratia plymuthica strain AS12

    PubMed Central

    Finlay, Roger D.; Alström, Sadhna; Goodwin, Lynne; Kyrpides, Nikos C.; Lucas, Susan; Lapidus, Alla; Bruce, David; Pitluck, Sam; Peters, Lin; Ovchinnikova, Galina; Chertkov, Olga; Han, James; Han, Cliff; Tapia, Roxanne; Detter, John C.; Land, Miriam; Hauser, Loren; Cheng, Jan-Fang; Ivanova, Natalia; Pagani, Ioanna; Klenk, Hans-Peter; Woyke, Tanja; Högberg, Nils

    2012-01-01

    A plant-associated member of the family Enterobacteriaceae, Serratia plymuthica strain AS12 was isolated from rapeseed roots. It is of scientific interest because it promotes plant growth and inhibits plant pathogens. The genome of S. plymuthica AS12 comprises a 5,443,009 bp long circular chromosome, which consists of 4,952 protein-coding genes, 87 tRNA genes and 7 rRNA operons. This genome was sequenced within the 2010 DOE-JGI Community Sequencing Program (CSP2010) as part of the project entitled “Genomics of four rapeseed plant growth promoting bacteria with antagonistic effect on plant pathogens”. PMID:22768360

  10. Genomes to Proteomes

    SciTech Connect

    Panisko, Ellen A.; Grigoriev, Igor; Daly, Don S.; Webb-Robertson, Bobbie-Jo; Baker, Scott E.

    2009-03-01

    Biologists are awash with genomic sequence data. In large part, this is due to the rapid acceleration in the generation of DNA sequence that occurred as public and private research institutes raced to sequence the human genome. In parallel with the large human genome effort, mostly smaller genomes of other important model organisms were sequenced. Projects following on these initial efforts have made use of technological advances and the DNA sequencing infrastructure that was built for the human and other organism genome projects. As a result, the genome sequences of many organisms are available in high quality draft form. While in many ways this is good news, there are limitations to the biological insights that can be gleaned from DNA sequences alone; genome sequences offer only a bird's eye view of the biological processes endemic to an organism or community. Fortunately, the genome sequences now being produced at such a high rate can serve as the foundation for other global experimental platforms such as proteomics. Proteomic methods offer a snapshot of the proteins present at a point in time for a given biological sample. Current global proteomics methods combine enzymatic digestion, separations, mass spectrometry and database searching for peptide identification. One key aspect of proteomics is the prediction of peptide sequences from mass spectrometry data. Global proteomic analysis uses computational matching of experimental mass spectra with predicted spectra based on databases of gene models that are often generated computationally. Thus, the quality of gene models predicted from a genome sequence is crucial in the generation of high quality peptide identifications. Once peptides are identified they can be assigned to their parent protein. Proteins identified as expressed in a given experiment are most useful when compared to other expressed proteins in a larger biological context or biochemical pathway. In this chapter we will discuss the automatic

  11. Genomic homeology between Pennisetum purpureum and Pennisetum glaucum (Poaceae)

    PubMed Central

    dos Reis, Gabriela Barreto; Mesquita, Amanda Teixeira; Torres, Giovana Augusta; Andrade-Vieira, Larissa Fonseca; Pereira, Antônio Vander; Davide, Lisete Chamma

    2014-01-01

    Abstract The genus Pennisetum (Richard, 1805) includes two economically important tropical forage plants: Pennisetum purpureum (Schumacher, 1827) (elephant grass), with 2n = 4x = 28 chromosomes and genomes A'A'BB, and Pennisetum glaucum (Linnaeus, 1753) (pearl millet), with 2n = 2x = 14 chromosomes and genomes AA. The genetic proximity between them allows hybrids to be obtained (2n = 3x = 21) that yield forage of higher quality in relation to the parents. The study of genomic relationships provides subsidies for the knowledge about phylogenetic relations and evolution, and is useful in breeding programs seeking gene introgression. Concerning elephant grass and pearl millet, the homeology between the genomes A and A', and between these and the genome B, has been reported by conventional cytogenetic techniques. The objective of the present study was to demonstrate the degree of homeology between these genomes by means of genomic in situ hybridization (GISH). The results confirmed the homeology between the genomes A of pearl millet and A'B of elephant grass, and showed that there are differences in the distribution and proportion of homologous regions after hybridization. Discussion regarding the evolutionary origin of P. purpureum and P. glaucum was also included. PMID:25349671

  12. Genome position specific priors for genomic prediction

    PubMed Central

    2012-01-01

    Background The accuracy of genomic prediction is highly dependent on the size of the reference population. For small populations, including information from other populations could improve this accuracy. The usual strategy is to pool data from different populations; however, this has not proven as successful as hoped for with distantly related breeds. BayesRS is a novel approach to share information across populations for genomic predictions. The approach allows information to be captured even where the phase of SNP alleles and casuative mutation alleles are reversed across populations, or the actual casuative mutation is different between the populations but affects the same gene. Proportions of a four-distribution mixture for SNP effects in segments of fixed size along the genome are derived from one population and set as location specific prior proportions of distributions of SNP effects for the target population. The model was tested using dairy cattle populations of different breeds: 540 Australian Jersey bulls, 2297 Australian Holstein bulls and 5214 Nordic Holstein bulls. The traits studied were protein-, fat- and milk yield. Genotypic data was Illumina 777K SNPs, real or imputed. Results Results showed an increase in accuracy of up to 3.5% for the Jersey population when using BayesRS with a prior derived from Australian Holstein compared to a model without location specific priors. The increase in accuracy was however lower than was achieved when reference populations were combined to estimate SNP effects, except in the case of fat yield. The small size of the Jersey validation set meant that these improvements in accuracy were not significant using a Hotelling-Williams t-test at the 5% level. An increase in accuracy of 1-2% for all traits was observed in the Australian Holstein population when using a prior derived from the Nordic Holstein population compared to using no prior information. These improvements were significant (P<0.05) using the Hotelling

  13. Translational Genomics in Low and Middle Income Countries: Opportunities and Challenges

    PubMed Central

    Tekola-Ayele, Fasil; Rotimi, Charles N.

    2015-01-01

    Translation of genomic discoveries into patient care is slowly becoming a reality in developed economies around the world. In contrast, low and middle income countries (LMIC) have participated minimally in genomic research for several reasons including lack of coherent national policies, limited number of well-trained genomic scientists, poor research infrastructure, and local economic and cultural challenges. Recent initiatives such as the Human Heredity and Health in Africa (H3Africa), the Qatar Genome Project and the Mexico National Institute of Genomic Medicine (INMEGEN) that aim to address these problems through capacity building and empowerment of local researchers have sparked a paradigm shift. In this short communication, we describe experiences of small-scale medical genetics and translational genomics research programs in LMIC. The lessons drawn from these programs drive home the importance of addressing resource, policy, and socio-cultural dynamics to realize the promise of precision medicine driven by genomic science globally. By echoing lessons from a bench-to-community translational genomics research, we advocate that large-scale genomics research projects can be successfully linked with health care programs. To harness the benefits of genomics-led health care, LMIC governments should begin to develop national genomics policies that will address human and technology capacity development within the context of their national economic and socio-cultural uniqueness. These policies should encourage international collaboration and promote link between the public health program and genomics researchers. Finally, we highlight the potential catalytic roles of the global community to foster translational genomics in LMIC. PMID:26138992

  14. Translational Genomics in Low- and Middle-Income Countries: Opportunities and Challenges.

    PubMed

    Tekola-Ayele, Fasil; Rotimi, Charles N

    2015-01-01

    Translation of genomic discoveries into patient care is slowly becoming a reality in developed economies around the world. In contrast, low- and middle-income countries (LMIC) have participated minimally in genomic research for several reasons including the lack of coherent national policies, the limited number of well-trained genomic scientists, poor research infrastructure, and local economic and cultural challenges. Recent initiatives such as the Human Heredity and Health in Africa (H3Africa), the Qatar Genome Project, and the Mexico National Institute of Genomic Medicine (INMEGEN) that aim to address these problems through capacity building and empowerment of local researchers have sparked a paradigm shift. In this short communication, we describe experiences of small-scale medical genetics and translational genomic research programs in LMIC. The lessons drawn from these programs drive home the importance of addressing resource, policy, and sociocultural dynamics to realize the promise of precision medicine driven by genomic science globally. By echoing lessons from a bench-to-community translational genomic research, we advocate that large-scale genomic research projects can be successfully linked with health care programs. To harness the benefits of genomics-led health care, LMIC governments should begin to develop national genomics policies that will address human and technology capacity development within the context of their national economic and sociocultural uniqueness. These policies should encourage international collaboration and promote the link between the public health program and genomics researchers. Finally, we highlight the potential catalytic roles of the global community to foster translational genomics in LMIC. PMID:26138992

  15. Enredo and Pecan: Genome-wide mammalian consistency-based multiple alignment with paralogs

    PubMed Central

    Paten, Benedict; Herrero, Javier; Beal, Kathryn; Fitzgerald, Stephen; Birney, Ewan

    2008-01-01

    Pairwise whole-genome alignment involves the creation of a homology map, capable of performing a near complete transformation of one genome into another. For multiple genomes this problem is generalized to finding a set of consistent homology maps for converting each genome in the set of aligned genomes into any of the others. The problem can be divided into two principal stages. First, the partitioning of the input genomes into a set of colinear segments, a process which essentially deals with the complex processes of rearrangement. Second, the generation of a base pair level alignment map for each colinear segment. We have developed a new genome-wide segmentation program, Enredo, which produces colinear segments from extant genomes handling rearrangements, including duplications. We have then applied the new alignment program Pecan, which makes the consistency alignment methodology practical at a large scale, to create a new set of genome-wide mammalian alignments. We test both Enredo and Pecan using novel and existing assessment analyses that incorporate both real biological data and simulations, and show that both independently and in combination they outperform existing programs. Alignments from our pipeline are publicly available within the Ensembl genome browser. PMID:18849524

  16. Genomic-associated Markers and comparative Genome Maps of Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola.

    PubMed

    Feng, Wenjie; Wang, Yi; Huang, Lisha; Feng, Chuanshun; Chu, Zhaohui; Ding, Xinhua; Yang, Long

    2015-09-01

    Xanthomonas oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc) cause two major seed quarantine diseases in rice, bacterial blight and bacterial leaf streak, respectively. Xoo and Xoc share high similarity in genomic sequence, which results in hard differentiation of the two pathogens. Genomic-associated Markers and comparative Genome Maps database (GMGM) is an integrated database providing comprehensive information including compared genome maps and full genomic-coverage molecular makers of Xoo and Xoc. This database was established based on bioinformatic analysis of complete sequenced genomes of several X. oryzae pathovars of which the similarity of the genomes was up to 91.39 %. The program was designed with a series of specific PCR primers, including 286 pairs of Xoo dominant markers, 288 pairs of Xoc dominant markers, and 288 pairs of Xoo and Xoc co-dominant markers, which were predicted to distinguish two pathovars. Test on a total of 40 donor pathogen strains using randomly selected 120 pairs of primers demonstrated that over 52.5 % of the primers were efficacious. The GMGM web portal ( http://biodb.sdau.edu.cn/gmgm/ ) will be a powerful tool that can present highly specific diagnostic markers, and it also provides information about comparative genome maps of the two pathogens for future evolution study. PMID:26093644

  17. Evaluation of genome-enabled selection for bacterial cold water disease resistance using progeny performance data in Rainbow Trout: Insights on genotyping methods and genomic prediction models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial cold water disease (BCWD) causes significant economic losses in salmonid aquaculture, and traditional family-based breeding programs aimed at improving BCWD resistance have been limited to exploiting only between-family variation. We used genomic selection (GS) models to predict genomic br...

  18. Berkeley Quantitative Genome Browser

    SciTech Connect

    Hechmer, Aaron

    2008-02-29

    The Berkeley Quantitative Genome Browser provides graphical browsing functionality for genomic data organized, at a minimum, by sequence and position. While supporting the annotation browsing features typical of many other genomic browsers, additional emphasis is placed on viewing and utilizing quantitative data. Data may be read from GFF, SGR, FASTA or any column delimited format. Once the data has been read into the browser's buffer, it may be searched. filtered or subjected to mathematical transformation. The browser also supplies some graphical design manipulation functionality geared towards preparing figures for presentations or publication. A plug-in mechanism enables development outside the core functionality that adds more advanced or esoteric analysis capabilities. BBrowse's development and distribution is open-source and has been built to run on Linux, OSX and MS Windows operating systems.

  19. Genomics, health, and society.

    PubMed

    Chan, Chee Khoon

    2002-01-01

    On June 27, 2001, the World Health Organization conducted hearings in Geneva for a Special Report on Genomics & Health. Initially intended as a document to address the ethical, legal, and social implications of the gathering genomics resolution (ELSI), the terms of reference of the report were significantly modified to give primary emphasis to a scientific and technological assessment of the implications of genomics for human health. The Citizens' Health Initiative, one of two NGOs invited to make submissions at these consultations, suggested that no less important than the scientific and technical assessment was a perspective which gave due attention to the social context and political economy of scientific/technological development and its deployment. The article below touches upon neglected health priorities of poor countries, intellectual property rights and patents, risk management, insurance and discrimination, and predictive (prenatal) testing, reproductive choice, and eugenics. PMID:17208760

  20. Berkeley Quantitative Genome Browser

    Energy Science and Technology Software Center (ESTSC)

    2008-02-29

    The Berkeley Quantitative Genome Browser provides graphical browsing functionality for genomic data organized, at a minimum, by sequence and position. While supporting the annotation browsing features typical of many other genomic browsers, additional emphasis is placed on viewing and utilizing quantitative data. Data may be read from GFF, SGR, FASTA or any column delimited format. Once the data has been read into the browser's buffer, it may be searched. filtered or subjected to mathematical transformation.more » The browser also supplies some graphical design manipulation functionality geared towards preparing figures for presentations or publication. A plug-in mechanism enables development outside the core functionality that adds more advanced or esoteric analysis capabilities. BBrowse's development and distribution is open-source and has been built to run on Linux, OSX and MS Windows operating systems.« less

  1. Genomics for Weed Science

    PubMed Central

    Horvath, David

    2010-01-01

    Numerous genomic-based studies have provided insight to the physiological and evolutionary processes involved in developmental and environmental processes of model plants such as arabidopsis and rice. However, far fewer efforts have been attempted to use genomic resources to study physiological and evolutionary processes of weedy plants. Genomics-based tools such as extensive EST databases and microarrays have been developed for a limited number of weedy species, although application of information and resources developed for model plants and crops are possible and have been exploited. These tools have just begun to provide insights into the response of these weeds to herbivore and pathogen attack, survival of extreme environmental conditions, and interaction with crops. The potential of these tools to illuminate mechanisms controlling the traits that allow weeds to invade novel habitats, survive extreme environments, and that make weeds difficult to eradicate have potential for both improving crops and developing novel methods to control weeds. PMID:20808523

  2. SINGLE CELL GENOME SEQUENCING

    PubMed Central

    Yilmaz, Suzan; Singh, Anup K.

    2011-01-01

    Whole genome amplification and next-generation sequencing of single cells has become a powerful approach for studying uncultivated microorganisms that represent 90–99 % of all environmental microbes. Single cell sequencing enables not only the identification of microbes but also linking of functions to species, a feat not achievable by metagenomic techniques. Moreover, it allows the analysis of low abundance species that may be missed in community-based analyses. It has also proved very useful in complementing metagenomics in the assembly and binning of single genomes. With the advent of drastically cheaper and higher throughput sequencing technologies, it is expected that single cell sequencing will become a standard tool in studying the genome and transcriptome of microbial communities. PMID:22154471

  3. Genomic Southern blot analysis.

    PubMed

    Gebbie, Leigh

    2014-01-01

    This chapter describes a detailed protocol for genomic Southern blot analysis which can be used to detect transgene or endogenous gene sequences in cereal genomes. The protocol follows a standard approach that has been shown to generate high-quality results: size fractionation of genomic DNA; capillary transfer to a nylon membrane; hybridization with a digoxigenin-labelled probe; and detection using a chemiluminescent-based system. High sensitivity and limited background are key to successful Southern blots. The critical steps in this protocol are complete digestion of the right quantity of DNA, careful handling of the membrane to avoid unnecessary background, and optimization of probe concentration and temperatures during the hybridization step. Detailed instructions on how to successfully master these techniques are provided. PMID:24243203

  4. Genomics of Volvocine Algae

    PubMed Central

    Umen, James G.; Olson, Bradley J.S.C.

    2015-01-01

    Volvocine algae are a group of chlorophytes that together comprise a unique model for evolutionary and developmental biology. The species Chlamydomonas reinhardtii and Volvox carteri represent extremes in morphological diversity within the Volvocine clade. Chlamydomonas is unicellular and reflects the ancestral state of the group, while Volvox is multicellular and has evolved numerous innovations including germ-soma differentiation, sexual dimorphism, and complex morphogenetic patterning. The Chlamydomonas genome sequence has shed light on several areas of eukaryotic cell biology, metabolism and evolution, while the Volvox genome sequence has enabled a comparison with Chlamydomonas that reveals some of the underlying changes that enabled its transition to multicellularity, but also underscores the subtlety of this transition. Many of the tools and resources are in place to further develop Volvocine algae as a model for evolutionary genomics. PMID:25883411

  5. Genomic medicine and neurology.

    PubMed

    Vance, Jeffery M; Tekin, Demet

    2011-04-01

    The application of genetics to the understanding of neurology has been highly successful over the past several decades. During the past 10 years, tools were developed to begin genetic investigations into more common disorders such as Alzheimer disease, multiple sclerosis, autism, and Parkinson disease. The era of genomic medicine now has begun and will have an increasing effect on the daily care of common neurologic diseases. Thus it is important for neurologists to have a basic understanding of genomic medicine and how it differs from the traditional clinical genetics of the past. This article provides some basic information about genomic medicine and pharmacogenetics in neurology to help neurologists to begin to adopt these principles into their practice. PMID:22810818

  6. Genomic Imprinting in Mammals

    PubMed Central

    Barlow, Denise P.

    2014-01-01

    Genomic imprinting affects a subset of genes in mammals and results in a monoallelic, parental-specific expression pattern. Most of these genes are located in clusters that are regulated through the use of insulators or long noncoding RNAs (lncRNAs). To distinguish the parental alleles, imprinted genes are epigenetically marked in gametes at imprinting control elements through the use of DNA methylation at the very least. Imprinted gene expression is subsequently conferred through lncRNAs, histone modifications, insulators, and higher-order chromatin structure. Such imprints are maintained after fertilization through these mechanisms despite extensive reprogramming of the mammalian genome. Genomic imprinting is an excellent model for understanding mammalian epigenetic regulation. PMID:24492710

  7. Resequencing rice genomes: an emerging new era of rice genomics.

    PubMed

    Huang, Xuehui; Lu, Tingting; Han, Bin

    2013-04-01

    Rice is a model system for crop genomics studies. Much of the early work on rice genomics focused on analyzing genome-wide genetic variation to further understand rice gene functions in agronomic traits and to generate data and resources for rice research. The advent of next-generation high-throughput DNA sequencing technologies and the completion of high-quality reference genome sequences have enabled the development of sequencing-based genotyping and genome-wide association studies (GWAS) that have significantly advanced rice genetics research. This has led to the emergence of a new era of rice genomics aimed at bridging the knowledge gap between genotype and phenotype in rice. These technologies have also led to pyramid breeding through genomics-assisted selection, which will be useful in breeding elite varieties suitable for sustainable agriculture. Here, we review the recent advances in rice genomics and discuss the future of this line of research. PMID:23295340

  8. Brief Guide to Genomics: DNA, Genes and Genomes

    MedlinePlus

    ... guía de genómica A Brief Guide to Genomics DNA, Genes and Genomes Deoxyribonucleic acid (DNA) is the ... and lead to a disease such as cancer. DNA Sequencing Sequencing simply means determining the exact order ...

  9. Haemonchus contortus: Genome Structure, Organization and Comparative Genomics.

    PubMed

    Laing, R; Martinelli, A; Tracey, A; Holroyd, N; Gilleard, J S; Cotton, J A

    2016-01-01

    One of the first genome sequencing projects for a parasitic nematode was that for Haemonchus contortus. The open access data from the Wellcome Trust Sanger Institute provided a valuable early resource for the research community, particularly for the identification of specific genes and genetic markers. Later, a second sequencing project was initiated by the University of Melbourne, and the two draft genome sequences for H. contortus were published back-to-back in 2013. There is a pressing need for long-range genomic information for genetic mapping, population genetics and functional genomic studies, so we are continuing to improve the Wellcome Trust Sanger Institute assembly to provide a finished reference genome for H. contortus. This review describes this process, compares the H. contortus genome assemblies with draft genomes from other members of the strongylid group and discusses future directions for parasite genomics using the H. contortus model. PMID:27238013

  10. Ebolavirus comparative genomics

    PubMed Central

    Jun, Se-Ran; Leuze, Michael R.; Nookaew, Intawat; Uberbacher, Edward C.; Land, Miriam; Zhang, Qian; Wanchai, Visanu; Chai, Juanjuan; Nielsen, Morten; Trolle, Thomas; Lund, Ole; Buzard, Gregory S.; Pedersen, Thomas D.; Wassenaar, Trudy M.; Ussery, David W.

    2015-01-01

    The 2014 Ebola outbreak in West Africa is the largest documented for this virus. To examine the dynamics of this genome, we compare more than 100 currently available ebolavirus genomes to each other and to other viral genomes. Based on oligomer frequency analysis, the family Filoviridae forms a distinct group from all other sequenced viral genomes. All filovirus genomes sequenced to date encode proteins with similar functions and gene order, although there is considerable divergence in sequences between the three genera Ebolavirus, Cuevavirus and Marburgvirus within the family Filoviridae. Whereas all ebolavirus genomes are quite similar (multiple sequences of the same strain are often identical), variation is most common in the intergenic regions and within specific areas of the genes encoding the glycoprotein (GP), nucleoprotein (NP) and polymerase (L). We predict regions that could contain epitope-binding sites, which might be good vaccine targets. This information, combined with glycosylation sites and experimentally determined epitopes, can identify the most promising regions for the development of therapeutic strategies. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). PMID:26175035

  11. Ebolavirus comparative genomics.

    PubMed

    Jun, Se-Ran; Leuze, Michael R; Nookaew, Intawat; Uberbacher, Edward C; Land, Miriam; Zhang, Qian; Wanchai, Visanu; Chai, Juanjuan; Nielsen, Morten; Trolle, Thomas; Lund, Ole; Buzard, Gregory S; Pedersen, Thomas D; Wassenaar, Trudy M; Ussery, David W

    2015-09-01

    The 2014 Ebola outbreak in West Africa is the largest documented for this virus. To examine the dynamics of this genome, we compare more than 100 currently available ebolavirus genomes to each other and to other viral genomes. Based on oligomer frequency analysis, the family Filoviridae forms a distinct group from all other sequenced viral genomes. All filovirus genomes sequenced to date encode proteins with similar functions and gene order, although there is considerable divergence in sequences between the three genera Ebolavirus, Cuevavirus and Marburgvirus within the family Filoviridae. Whereas all ebolavirus genomes are quite similar (multiple sequences of the same strain are often identical), variation is most common in the intergenic regions and within specific areas of the genes encoding the glycoprotein (GP), nucleoprotein (NP) and polymerase (L). We predict regions that could contain epitope-binding sites, which might be good vaccine targets. This information, combined with glycosylation sites and experimentally determined epitopes, can identify the most promising regions for the development of therapeutic strategies.This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). PMID:26175035

  12. Genome Size and Species Diversification

    PubMed Central

    2010-01-01

    Theoretically, there are reasons to believe that large genome size should favour speciation. Several major factors contributing to genome size, such as duplications and transposable element activity have been proposed to facilitate the formation of new species. However, it is also possible that small genome size promotes speciation. For example, selection for genome reduction may be resolved in different ways in incipient species, leading to incompatibilities. Mutations and chromosomal rearrangements may also be more stably inherited in smaller genomes. Here I review the following lines of empirical evidence bearing on this question: (i) Correlations between genome size and species richness of taxa are often negative. (ii) Fossil evidence in lungfish shows that the accumulation of DNA in the genomes of this group coincided with a reduction in species diversity. (iii) Estimates of speciation interval in mammals correlate positively with genome size. (iv) Genome reductions are inferred at the base of particular species radiations and genome expansions at the base of others. (v) Insect clades that have been increasing in diversity up to the present have smaller genomes than clades that have remained stable or have decreased in diversity. The general pattern emerging from these observations is that higher diversification rates are generally found in small-genome taxa. Since diversification rates are the net effect of speciation and extinction, large genomes may thus either constrain speciation rate, increase extinction rate, or both. I argue that some of the cited examples are unlikely to be explained by extinction alone. PMID:22140283

  13. The cancer genome

    PubMed Central

    Stratton, Michael R.; Campbell, Peter J.; Futreal, P. Andrew

    2010-01-01

    All cancers arise as a result of changes that have occurred in the DNA sequence of the genomes of cancer cells. Over the past quarter of a century much has been learnt about these mutations and the abnormal genes that operate in human cancers. We are now, however, moving into an era in which it will be possible to obtain the complete DNA sequence of large numbers of cancer genomes. These studies will provide us with a detailed and comprehensive perspective on how individual cancers have developed. PMID:19360079

  14. Methanococcus jannaschii genome: revisited

    NASA Technical Reports Server (NTRS)

    Kyrpides, N. C.; Olsen, G. J.; Klenk, H. P.; White, O.; Woese, C. R.

    1996-01-01

    Analysis of genomic sequences is necessarily an ongoing process. Initial gene assignments tend (wisely) to be on the conservative side (Venter, 1996). The analysis of the genome then grows in an iterative fashion as additional data and more sophisticated algorithms are brought to bear on the data. The present report is an emendation of the original gene list of Methanococcus jannaschii (Bult et al., 1996). By using a somewhat more updated database and more relaxed (and operator-intensive) pattern matching methods, we were able to add significantly to, and in a few cases amend, the gene identification table originally published by Bult et al. (1996).

  15. Genomic standards consortium projects.

    PubMed

    Field, Dawn; Sterk, Peter; Kottmann, Renzo; De Smet, J Wim; Amaral-Zettler, Linda; Cochrane, Guy; Cole, James R; Davies, Neil; Dawyndt, Peter; Garrity, George M; Gilbert, Jack A; Glöckner, Frank Oliver; Hirschman, Lynette; Klenk, Hans-Peter; Knight, Rob; Kyrpides, Nikos; Meyer, Folker; Karsch-Mizrachi, Ilene; Morrison, Norman; Robbins, Robert; San Gil, Inigo; Sansone, Susanna; Schriml, Lynn; Tatusova, Tatiana; Ussery, Dave; Yilmaz, Pelin; White, Owen; Wooley, John; Caporaso, Gregory

    2014-06-15

    The Genomic Standards Consortium (GSC) is an open-membership community that was founded in 2005 to work towards the development, implementation and harmonization of standards in the field of genomics. Starting with the defined task of establishing a minimal set of descriptions the GSC has evolved into an active standards-setting body that currently has 18 ongoing projects, with additional projects regularly proposed from within and outside the GSC. Here we describe our recently enacted policy for proposing new activities that are intended to be taken on by the GSC, along with the template for proposing such new activities. PMID:25197446

  16. The Brachypodium genome sequence: a resource for oat genomics research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oat (Avena sativa) is an important cereal crop used as both an animal feed and for human consumption. Genetic and genomic research on oat is hindered because it is hexaploid and possesses a large (13 Gb) genome. Diploid Avena relatives have been employed for genetic and genomic studies, but only mod...

  17. Tick Genomics: The Ixodes genome project and beyond

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ticks and mites (subphylum Chelicerata; subclass Acari) are important pests of animals and plants worldwide. The Ixodes scapularis (black-legged tick) genome sequencing project marks the beginning of the genomics era for the field of acarology. This project is the first to sequence the genome of a...

  18. Comparative Analysis of Genome Sequences with VISTA

    DOE Data Explorer

    Dubchak, Inna

    VISTA is a comprehensive suite of programs and databases developed by and hosted at the Genomics Division of Lawrence Berkeley National Laboratory. They provide information and tools designed to facilitate comparative analysis of genomic sequences. Users have two ways to interact with the suite of applications at the VISTA portal. They can submit their own sequences and alignments for analysis (VISTA servers) or examine pre-computed whole-genome alignments of different species. A key menu option is the Enhancer Browser and Database at http://enhancer.lbl.gov/. The VISTA Enhancer Browser is a central resource for experimentally validated human noncoding fragments with gene enhancer activity as assessed in transgenic mice. Most of these noncoding elements were selected for testing based on their extreme conservation with other vertebrates. The results of this enhancer screen are provided through this publicly available website. The browser also features relevant results by external contributors and a large collection of additional genome-wide conserved noncoding elements which are candidate enhancer sequences. The LBL developers invite external groups to submit computational predictions of developmental enhancers. As of 10/19/2009 the database contains information on 1109 in vivo tested elements - 508 elements with enhancer activity.

  19. The Cassava Genome: Current Progress, Future Directions.

    PubMed

    Prochnik, Simon; Marri, Pradeep Reddy; Desany, Brian; Rabinowicz, Pablo D; Kodira, Chinnappa; Mohiuddin, Mohammed; Rodriguez, Fausto; Fauquet, Claude; Tohme, Joseph; Harkins, Timothy; Rokhsar, Daniel S; Rounsley, Steve

    2012-03-01

    The starchy swollen roots of cassava provide an essential food source for nearly a billion people, as well as possibilities for bioenergy, yet improvements to nutritional content and resistance to threatening diseases are currently impeded. A 454-based whole genome shotgun sequence has been assembled, which covers 69% of the predicted genome size and 96% of protein-coding gene space, with genome finishing underway. The predicted 30,666 genes and 3,485 alternate splice forms are supported by 1.4 M expressed sequence tags (ESTs). Maps based on simple sequence repeat (SSR)-, and EST-derived single nucleotide polymorphisms (SNPs) already exist. Thanks to the genome sequence, a high-density linkage map is currently being developed from a cross between two diverse cassava cultivars: one susceptible to cassava brown streak disease; the other resistant. An efficient genotyping-by-sequencing (GBS) approach is being developed to catalog SNPs both within the mapping population and among diverse African farmer-preferred varieties of cassava. These resources will accelerate marker-assisted breeding programs, allowing improvements in disease-resistance and nutrition, and will help us understand the genetic basis for disease resistance. PMID:22523606

  20. Playing with heart and soul…and genomes: sports implications and applications of personal genomics

    PubMed Central

    2013-01-01

    Whether the integration of genetic/omic technologies in sports contexts will facilitate player success, promote player safety, or spur genetic discrimination depends largely upon the game rules established by those currently designing genomic sports medicine programs. The integration has already begun, but there is not yet a playbook for best practices. Thus far discussions have focused largely on whether the integration would occur and how to prevent the integration from occurring, rather than how it could occur in such a way that maximizes benefits, minimizes risks, and avoids the exacerbation of racial disparities. Previous empirical research has identified members of the personal genomics industry offering sports-related DNA tests, and previous legal research has explored the impact of collective bargaining in professional sports as it relates to the employment protections of the Genetic Information Nondiscrimination Act (GINA). Building upon that research and upon participant observations with specific sports-related DNA tests purchased from four direct-to-consumer companies in 2011 and broader personal genomics (PGx) services, this anthropological, legal, and ethical (ALE) discussion highlights fundamental issues that must be addressed by those developing personal genomic sports medicine programs, either independently or through collaborations with commercial providers. For example, the vulnerability of student-athletes creates a number of issues that require careful, deliberate consideration. More broadly, however, this ALE discussion highlights potential sports-related implications (that ultimately might mitigate or, conversely, exacerbate racial disparities among athletes) of whole exome/genome sequencing conducted by biomedical researchers and clinicians for non-sports purposes. For example, the possibility that exome/genome sequencing of individuals who are considered to be non-patients, asymptomatic, normal, etc. will reveal the presence of variants of

  1. Multiplexed Fragaria Chloroplast Genome Sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method to sequence multiple chloroplast genomes that uses the sequencing depth of ultra high throughput sequencing technologies was recently described. Sequencing complete chloroplast genomes can resolve phylogenetic relationships at low taxonomic levels and identify point mutations and indels tha...

  2. The diversity of fungal genome.

    PubMed

    Mohanta, Tapan Kumar; Bae, Hanhong

    2015-01-01

    The genome size of an organism varies from species to species. The C-value paradox enigma is a very complex puzzle with regards to vast diversity in genome sizes in eukaryotes. Here we reported the detailed genomic information of 172 fungal species among different fungal genomes and found that fungal genomes are very diverse in nature. In fungi, the diversity of genomes varies from 8.97 Mb to 177.57 Mb. The average genome sizes of Ascomycota and Basidiomycota fungi are 36.91 and 46.48 Mb respectively. But higher genome size is observed in Oomycota (74.85 Mb) species, a lineage of fungus-like eukaryotic microorganisms. The average coding genes of Oomycota species are almost doubled than that of Acomycota and Basidiomycota fungus. PMID:25866485

  3. Company profile: Complete Genomics Inc.

    PubMed

    Reid, Clifford

    2011-02-01

    Complete Genomics Inc. is a life sciences company that focuses on complete human genome sequencing. It is taking a completely different approach to DNA sequencing than other companies in the industry. Rather than building a general-purpose platform for sequencing all organisms and all applications, it has focused on a single application - complete human genome sequencing. The company's Complete Genomics Analysis Platform (CGA™ Platform) comprises an integrated package of biochemistry, instrumentation and software that sequences human genomes at the highest quality, lowest cost and largest scale available. Complete Genomics offers a turnkey service that enables customers to outsource their human genome sequencing to the company's genome sequencing center in Mountain View, CA, USA. Customers send in their DNA samples, the company does all the library preparation, DNA sequencing, assembly and variant analysis, and customers receive research-ready data that they can use for biological discovery. PMID:21345140

  4. On genomics, kin, and privacy

    PubMed Central

    Telenti, Amalio; Ayday, Erman; Hubaux, Jean Pierre

    2014-01-01

    The storage of greater numbers of exomes or genomes raises the question of loss of privacy for the individual and for families if genomic data are not properly protected. Access to genome data may result from a personal decision to disclose, or from gaps in protection. In either case, revealing genome data has consequences beyond the individual, as it compromises the privacy of family members. Increasing availability of genome data linked or linkable to metadata through online social networks and services adds one additional layer of complexity to the protection of genome privacy.  The field of computer science and information technology offers solutions to secure genomic data so that individuals, medical personnel or researchers can access only the subset of genomic information required for healthcare or dedicated studies. PMID:25254097

  5. National Human Genome Research Institute

    MedlinePlus

    ... for Patient Care Education All About the Human Genome Project Fact Sheets Genetic Education Resources for Teachers ... Education Kit Online Genetics Education Resources Smithsonian NHGRI Genome Exhibition Talking Glossary: English Talking Glossary: Español Issues ...

  6. Comparative proteogenomics: combining mass spectrometry and comparative genomics to analyze multiple genomes

    SciTech Connect

    Gupta, Nitin; Benhamida, Jamal; Bhargava, Vipul; Goodman, Daniel; Kain , Elisabeth; Kerman, Ian; Nguyen , Ngan; Ollikainen, Noah; Rodriguez, Jesse; Wang, J.; Lipton, Mary S.; Romine, Margaret F.; Bafna, Vineet; Smith, Richard D.; Pevzner, Pavel A.

    2008-07-30

    While bacterial genome annotations have significantly improved in recent years, techniques for bacterial proteome annotation (including post-translational chemical modifications, signal peptides, proteolytic events, etc.) are still in their infancy. At the same time, the number of sequenced bacterial genomes is rising sharply, far outpacing our ability to validate the predicted genes, let alone annotate bacterial proteomes. In this study, we use tandem mass spectrometry (MS/MS) to annotate the proteome of Shewanella oneidensis MR-1, an important microbe for bioremediation. In particular, we provide the first comprehensive map of post-translational modifications in a bacterial genome, including a large number of chemical modifications, signal peptide cleavages and cleavage of N-terminal methionine residues. We also detect multiple genes that were missed or assigned incorrect start positions by gene prediction programs and suggest corrections to improve the gene annotation. This study demonstrates that complementing every genome sequencing project by an MS/MS project would significantly improve both genome and proteome annotations for a reasonable cost.

  7. Importance of anchor genomes for any plant genome project

    PubMed Central

    Messing, Joachim; Llaca, Victor

    1998-01-01

    Progress in agricultural and environmental technologies is hampered by a slower rate of gene discovery in plants than animals. The vast pool of genes in plants, however, will be an important resource for insertion of genes, via biotechnological procedures, into an array of plants, generating unique germ plasms not achievable by conventional breeding. It just became clear that genomes of grasses have evolved in a manner analogous to Lego blocks. Large chromosome segments have been reshuffled and stuffer pieces added between genes. Although some genomes have become very large, the genome with the fewest stuffer pieces, the rice genome, is the Rosetta Stone of all the bigger grass genomes. This means that sequencing the rice genome as anchor genome of the grasses will provide instantaneous access to the same genes in the same relative physical position in other grasses (e.g., corn and wheat), without the need to sequence each of these genomes independently. (i) The sequencing of the entire genome of rice as anchor genome for the grasses will accelerate plant gene discovery in many important crops (e.g., corn, wheat, and rice) by several orders of magnitudes and reduce research and development costs for government and industry at a faster pace. (ii) Costs for sequencing entire genomes have come down significantly. Because of its size, rice is only 12% of the human or the corn genome, and technology improvements by the human genome project are completely transferable, translating in another 50% reduction of the costs. (iii) The physical mapping of the rice genome by a group of Japanese researchers provides a jump start for sequencing the genome and forming an international consortium. Otherwise, other countries would do it alone and own proprietary positions. PMID:9482827

  8. Genomics in Cardiovascular Disease

    PubMed Central

    Roberts, Robert; Marian, A.J.; Dandona, Sonny; Stewart, Alexandre F.R.

    2013-01-01

    A paradigm shift towards biology occurred in the 1990’s subsequently catalyzed by the sequencing of the human genome in 2000. The cost of DNA sequencing has gone from millions to thousands of dollars with sequencing of one’s entire genome costing only $1,000. Rapid DNA sequencing is being embraced for single gene disorders, particularly for sporadic cases and those from small families. Transmission of lethal genes such as associated with Huntington’s disease can, through in-vitro fertilization, avoid passing it on to one’s offspring. DNA sequencing will meet the challenge of elucidating the genetic predisposition for common polygenic diseases, especially in determining the function of the novel common genetic risk variants and identifying the rare variants, which may also partially ascertain the source of the missing heritability. The challenge for DNA sequencing remains great, despite human genome sequences being 99.5% identical, the 3 million single nucleotide polymorphisms (SNPs) responsible for most of the unique features add up to 60 new mutations per person which, for 7 billion people, is 420 billion mutations. It is claimed that DNA sequencing has increased 10,000 fold while information storage and retrieval only 16 fold. The physician and health user will be challenged by the convergence of two major trends, whole genome sequencing and the storage/retrieval and integration of the data. PMID:23524054

  9. Poster: the macaque genome.

    PubMed

    2007-04-13

    The rhesus macaque (Macaca mulatta) facilitates an extraordinary range of biomedical and basic research, and the publication of the genome only makes it a more powerful model for studies of human disease; moreover, the macaque's position relative to humans and chimpanzees affords the opportunity to learn about the processes that have shaped the last 25 million years of primate evolution. To allow users to explore these themes of the macaque genome, Science has created a special interactive version of the poster published in the print edition of the 13 April 2007 issue. The interactive version includes additional text and exploration, as well as embedded video featuring seven scientists discussing the importance of the macaque and its genome sequence in studies of biomedicine and evolution. We have also created an accompanying teaching resource, including a lesson plan aimed at teachers of advanced high school life science students, for exploring what a comparison of the macaque and human genomes can tell us about human biology and evolution. These items are free to all site visitors. PMID:17431172

  10. (Genomic variation in maize)

    SciTech Connect

    Rivin, C.J.

    1991-01-01

    These studies have sought to learn how different DNA sequences and sequence arrangements contribute to genome plasticity in maize. We describe quantitative variation among maize inbred lines for tandemly arrayed and dispersed repeated DNA sequences and gene families, and qualitative variation for sequences homologous to the Mutator family of transposons. The potential of these sequences to undergo unequal crossing over, non-allelic (ectopic) recombination and transposition makes them a source of genome instability. We have found examples of rapid genomic change involving these sequences in Fl hybrids, tissue culture cells and regenerated plants. We describe the repetitive portion of the maize genome as composed primarily of sequences that vary markedly in copy number among different genetic stocks. The most highly variable is the 185 bp repeat associated with the heterochromatic chromosome knobs. Even in lines without visible knobs, there is a considerable quantity of tandemly arrayed repeats. We also found a high degree of variability for the tandemly arrayed 5S and ribosomal DNA repeats. While such variation might be expected as the result of unequal cross-over, we were surprised to find considerable variation among lower copy number, dispersed repeats as well. One highly repeated sequence that showed a complex tandem and dispersed arrangement stood out as showing no detectable variability among the maize lines. In striking contrast to the variability seen between the inbred stocks, individuals within a stock were indistinguishable with regard to their repeated sequence multiplicities.

  11. Better chocolate through genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Theobroma cacao, the cacao or chocolate tree, is a tropical understory tree whose seeds are used to make chocolate. And like any important crop, cacao is the subject of much research. On September 15, 2010, scientists publicly released a preliminary sequence of the cacao genome--which contains all o...

  12. The Nostoc punctiforme Genome

    SciTech Connect

    John C. Meeks

    2001-12-31

    Nostoc punctiforme is a filamentous cyanobacterium with extensive phenotypic characteristics and a relatively large genome, approaching 10 Mb. The phenotypic characteristics include a photoautotrophic, diazotrophic mode of growth, but N. punctiforme is also facultatively heterotrophic; its vegetative cells have multiple development alternatives, including terminal differentiation into nitrogen-fixing heterocysts and transient differentiation into spore-like akinetes or motile filaments called hormogonia; and N. punctiforme has broad symbiotic competence with fungi and terrestrial plants, including bryophytes, gymnosperms and an angiosperm. The shotgun-sequencing phase of the N. punctiforme strain ATCC 29133 genome has been completed by the Joint Genome Institute. Annotation of an 8.9 Mb database yielded 7432 open reading frames, 45% of which encode proteins with known or probable known function and 29% of which are unique to N. punctiforme. Comparative analysis of the sequence indicates a genome that is highly plastic and in a state of flux, with numerous insertion sequences and multilocus repeats, as well as genes encoding transposases and DNA modification enzymes. The sequence also reveals the presence of genes encoding putative proteins that collectively define almost all characteristics of cyanobacteria as a group. N. punctiforme has an extensive potential to sense and respond to environmental signals as reflected by the presence of more than 400 genes encoding sensor protein kinases, response regulators and other transcriptional factors. The signal transduction systems and any of the large number of unique genes may play essential roles in the cell differentiation and symbiotic interaction properties of N. punctiforme.

  13. The human genome project.

    PubMed Central

    Olson, M V

    1993-01-01

    The Human Genome Project in the United States is now well underway. Its programmatic direction was largely set by a National Research Council report issued in 1988. The broad framework supplied by this report has survived almost unchanged despite an upheaval in the technology of genome analysis. This upheaval has primarily affected physical and genetic mapping, the two dominant activities in the present phase of the project. Advances in mapping techniques have allowed good progress toward the specific goals of the project and are also providing strong corollary benefits throughout biomedical research. Actual DNA sequencing of the genomes of the human and model organisms is still at an early stage. There has been little progress in the intrinsic efficiency of DNA-sequence determination. However, refinements in experimental protocols, instrumentation, and project management have made it practical to acquire sequence data on an enlarged scale. It is also increasingly apparent that DNA-sequence data provide a potent means of relating knowledge gained from the study of model organisms to human biology. There is as yet little indication that the infusion of technology from outside biology into the Human Genome Project has been effectively stimulated. Opportunities in this area remain large, posing substantial technical and policy challenges. PMID:8506271

  14. Genetics, genomics and fertility

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to enhance the sustainability of dairy businesses, new management tools are needed to increase the fertility of dairy cattle. Genomic selection has been successfully used by AI studs to screen potential sires and significantly decrease the generation interval of bulls. Buoyed by the success...

  15. Dairy genomics in application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Implementation of genomic evaluation has caused profound changes in dairy cattle breeding. All young bulls bought by major artificial-insemination organizations now are selected based on these evaluation. Evaluation reliability can reach ~75% for yield traits, which is adequate for marketing semen o...

  16. Targeted Large-Scale Deletion of Bacterial Genomes Using CRISPR-Nickases

    PubMed Central

    2015-01-01

    Programmable CRISPR-Cas systems have augmented our ability to produce precise genome manipulations. Here we demonstrate and characterize the ability of CRISPR-Cas derived nickases to direct targeted recombination of both small and large genomic regions flanked by repetitive elements in Escherichia coli. While CRISPR directed double-stranded DNA breaks are highly lethal in many bacteria, we show that CRISPR-guided nickase systems can be programmed to make precise, nonlethal, single-stranded incisions in targeted genomic regions. This induces recombination events and leads to targeted deletion. We demonstrate that dual-targeted nicking enables deletion of 36 and 97 Kb of the genome. Furthermore, multiplex targeting enables deletion of 133 Kb, accounting for approximately 3% of the entire E. coli genome. This technology provides a framework for methods to manipulate bacterial genomes using CRISPR-nickase systems. We envision this system working synergistically with preexisting bacterial genome engineering methods. PMID:26451892

  17. Haploid genomes illustrate epigenetic constraints and gene dosage effects in mammals

    PubMed Central

    2013-01-01

    Sequencing projects have revealed the information of many animal genomes and thereby enabled the exploration of genome evolution. Insights into how genomes have been repeatedly modified provide a basis for understanding evolutionary innovation and the ever increasing complexity of animal developmental programs. Animal genomes are diploid in most cases, suggesting that redundant information in two copies of the genome increases evolutionary fitness. Genomes are well adapted to a diploid state. Changes of ploidy can be accommodated early in development but they rarely permit successful development into adulthood. In mammals, epigenetic mechanisms including imprinting and X inactivation restrict haploid development. These restrictions are relaxed in an early phase of development suggesting that dosage regulation appears less critical. Here we review the recent literature on haploid genomes and dosage effects and try to embed recent findings in an evolutionary perspective. PMID:24305551

  18. Genomic selection in plant breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic selection (GS) is a method to predict the genetic value of selection candidates based on the genomic estimated breeding value (GEBV) predicted from high-density markers positioned throughout the genome. Unlike marker-assisted selection, the GEBV is based on all markers including both minor ...

  19. A theoretical model for whole genome alignment.

    PubMed

    Belal, Nahla A; Heath, Lenwood S

    2011-05-01

    We present a graph-based model for representing two aligned genomic sequences. An alignment graph is a mixed graph consisting of two sets of vertices, each representing one of the input sequences, and three sets of edges. These edges allow the model to represent a number of evolutionary events. This model is used to perform sequence alignment at the level of nucleotides. We define a scoring function for alignment graphs. We show that minimizing the score is NP-complete. However, we present a dynamic programming algorithm that solves the minimization problem optimally for a certain class of alignments, called breakable arrangements. Algorithms for analyzing breakable arrangements are presented. We also present a greedy algorithm that is capable of representing reversals. We present a dynamic programming algorithm that optimally aligns two genomic sequences, when one of the input sequences is a breakable arrangement of the other. Comparing what we define as breakable arrangements to alignments generated by other algorithms, it is seen that many already aligned genomes fall into the category of being breakable. Moreover, the greedy algorithm is shown to represent reversals, besides rearrangements, mutations, and other evolutionary events. PMID:21210739

  20. Plant functional genomics

    NASA Astrophysics Data System (ADS)

    Holtorf, Hauke; Guitton, Marie-Christine; Reski, Ralf

    2002-04-01

    Functional genome analysis of plants has entered the high-throughput stage. The complete genome information from key species such as Arabidopsis thaliana and rice is now available and will further boost the application of a range of new technologies to functional plant gene analysis. To broadly assign functions to unknown genes, different fast and multiparallel approaches are currently used and developed. These new technologies are based on known methods but are adapted and improved to accommodate for comprehensive, large-scale gene analysis, i.e. such techniques are novel in the sense that their design allows researchers to analyse many genes at the same time and at an unprecedented pace. Such methods allow analysis of the different constituents of the cell that help to deduce gene function, namely the transcripts, proteins and metabolites. Similarly the phenotypic variations of entire mutant collections can now be analysed in a much faster and more efficient way than before. The different methodologies have developed to form their own fields within the functional genomics technological platform and are termed transcriptomics, proteomics, metabolomics and phenomics. Gene function, however, cannot solely be inferred by using only one such approach. Rather, it is only by bringing together all the information collected by different functional genomic tools that one will be able to unequivocally assign functions to unknown plant genes. This review focuses on current technical developments and their impact on the field of plant functional genomics. The lower plant Physcomitrella is introduced as a new model system for gene function analysis, owing to its high rate of homologous recombination.

  1. Thinking laterally about genomes.

    PubMed

    Ragan, Mark A

    2009-10-01

    Perhaps the most-surprising discovery of the genome era has been the extent to which prokaryotic and many eukaryotic genomes incorporate genetic material from sources other than their parent(s). Lateral genetic transfer (LGT) among bacteria was first observed about 100 years ago, and is now accepted to underlie important phenomena including the spread of antibiotic resistance and ability to degrade xenobiotics. LGT is invoked, perhaps too readily, to explain a breadth of awkward data including compositional heterogeneity of genomes, disagreement among gene-sequence trees, and mismatch between physiology and systematics. At the same time many details of LGT remain unknown or controversial, and some key questions have scarcely been asked. Here I critically review what we think we know about the existence, extent, mechanism and impact of LGT; identify important open questions; and point to research directions that hold particular promise for elucidating the role of LGT in genome evolution. Evidence for LGT in nature is not only inferential but also direct, and potential vectors are ubiquitous. Genetic material can pass between diverse habitats and be significantly altered during residency in viruses, complicating the inference of donors, In prokaryotes about twice as many genes are interrupted by LGT as are transferred intact, and about 5Short protein domains can be privileged units of transfer. Unresolved phylogenetic issues include the correct null hypothesis, and genes as units of analysis. Themes are beginning to emerge regarding the effect of LGT on cellular networks, but I show why generalization is premature. LGT can associate with radical changes in physiology and ecological niche. Better quantitative models of genome evolution are needed, and theoretical frameworks remain to be developed for some observations including chromosome assembly by LGT. PMID:20180279

  2. TUTORIAL ON NETWORK GENOMICS.

    SciTech Connect

    Forst, C.

    2001-01-01

    With the ever-increasing genomic information pouring into the databases researchers start to look for pattern in genomes. Key questions are the identification of function. In the past function was mainly understood to be assigned to a single gene isolated from other cellular components or mechanisms. Sequence comparison fo single genes and their products (proteins) as well as of intergenic space are a consequence of a well established one-gene one-function interpretation. prediction of function solely by sequence similarity searches are powerful techniques that initiated the advent of bioinformatics and computational biology. Seminal work on sequence alignment by Temple Smith and Michael Waterman [33] and sequence searches with the BLAST algorithm by Altschul et al. [2] provide essential methods for sequence based determination of function. Similar outstanding contributions to determination of function have been archived in the area of structure prediction, molecular modeling and molecular dynamics. Techniques covering ab initio and homology modeling up to biophysical interpretation of long-run molecular dynamics simulations are mentioned ehre. With the ever-increasing number of information of different genetic/genomic origin, new aspect are looked for that deviate from the single gene at a time method. Especially with the identification of surprisingly few human genes the emerging perception in the scientific community that the concept of function has to be extended to include other sequence based as well as non-sequenced based information. A schema of determination of function by different concepts is shown in Figure 1. The tutorial is comprised of the following sections: The first two sections discuss the differences between genomic and non-genomic based context information, section three will cover combined methods. Finally, section four lsits web-resources and databases. All presented approaches extensively employ comparative methods.

  3. GRAbB: Selective Assembly of Genomic Regions, a New Niche for Genomic Research

    PubMed Central

    Zhang, Hao; van Diepeningen, Anne D.; van der Lee, Theo A. J.; Waalwijk, Cees; de Hoog, G. Sybren

    2016-01-01

    GRAbB (Genomic Region Assembly by Baiting) is a new program that is dedicated to assemble specific genomic regions from NGS data. This approach is especially useful when dealing with multi copy regions, such as mitochondrial genome and the rDNA repeat region, parts of the genome that are often neglected or poorly assembled, although they contain interesting information from phylogenetic or epidemiologic perspectives, but also single copy regions can be assembled. The program is capable of targeting multiple regions within a single run. Furthermore, GRAbB can be used to extract specific loci from NGS data, based on homology, like sequences that are used for barcoding. To make the assembly specific, a known part of the region, such as the sequence of a PCR amplicon or a homologous sequence from a related species must be specified. By assembling only the region of interest, the assembly process is computationally much less demanding and may lead to assemblies of better quality. In this study the different applications and functionalities of the program are demonstrated such as: exhaustive assembly (rDNA region and mitochondrial genome), extracting homologous regions or genes (IGS, RPB1, RPB2 and TEF1a), as well as extracting multiple regions within a single run. The program is also compared with MITObim, which is meant for the exhaustive assembly of a single target based on a similar query sequence. GRAbB is shown to be more efficient than MITObim in terms of speed, memory and disk usage. The other functionalities (handling multiple targets simultaneously and extracting homologous regions) of the new program are not matched by other programs. The program is available with explanatory documentation at https://github.com/b-brankovics/grabb. GRAbB has been tested on Ubuntu (12.04 and 14.04), Fedora (23), CentOS (7.1.1503) and Mac OS X (10.7). Furthermore, GRAbB is available as a docker repository: brankovics/grabb (https://hub.docker.com/r/brankovics/grabb/). PMID

  4. Implications of the Human Genome Project

    SciTech Connect

    Kitcher, P.

    1998-11-01

    The Human Genome Project (HGP), launched in 1991, aims to map and sequence the human genome by 2006. During the fifteen-year life of the project, it is projected that $3 billion in federal funds will be allocated to it. The ultimate aims of spending this money are to analyze the structure of human DNA, to identify all human genes, to recognize the functions of those genes, and to prepare for the biology and medicine of the twenty-first century. The following summary examines some of the implications of the program, concentrating on its scientific import and on the ethical and social problems that it raises. Its aim is to expose principles that might be used in applying the information which the HGP will generate. There is no attempt here to translate the principles into detailed proposals for legislation. Arguments and discussion can be found in the full report, but, like this summary, that report does not contain any legislative proposals.

  5. Genome size evolution in macroparasites.

    PubMed

    Sundberg, Lotta-Riina; Pulkkinen, Katja

    2015-04-01

    Reduction in genome size has been associated not only with a parasitic lifestyle in intracellular microparasites but also in some macroparasitic insects and nematodes. We collected the available data on genome size for flatworms, annelids, nematodes and arthropods, compared those with available data for the phylogenetically closest free-living taxa and found evidence of smaller genome sizes for parasites in six of nine comparisons. Our results suggest that despite great differences in evolutionary history and life cycles, parasitism as a lifestyle promotes convergent genome size reduction in macroparasites. We discuss factors that could be associated with small genome size in parasites which require further exploration in the future. PMID:25724591

  6. Professional medical education and genomics.

    PubMed

    Demmer, Laurie A; Waggoner, Darrel J

    2014-01-01

    Genomic medicine is a relatively new concept that involves using individual patients' genomic results in their clinical care. Genetic technology has advanced swiftly over the past decade, and most providers have been left behind without an understanding of this complex field. To realize its full potential, genomic medicine must be both understood and accepted by the greater medical community. The current state of professional medical education in genomics and genomic medicine is reviewed, including ongoing plans to expand educational efforts for medical students, clinical geneticists, and nongeneticist physicians. PMID:24635717

  7. Evolution of plant genome architecture.

    PubMed

    Wendel, Jonathan F; Jackson, Scott A; Meyers, Blake C; Wing, Rod A

    2016-01-01

    We have witnessed an explosion in our understanding of the evolution and structure of plant genomes in recent years. Here, we highlight three important emergent realizations: (1) that the evolutionary history of all plant genomes contains multiple, cyclical episodes of whole-genome doubling that were followed by myriad fractionation processes; (2) that the vast majority of the variation in genome size reflects the dynamics of proliferation and loss of lineage-specific transposable elements; and (3) that various classes of small RNAs help shape genomic architecture and function. We illustrate ways in which understanding these organism-level and molecular genetic processes can be used for crop plant improvement. PMID:26926526

  8. Rice: The First Crop Genome.

    PubMed

    Jackson, Scott A

    2016-12-01

    Rice was the first sequenced crop genome, paving the way for the sequencing of additional and more complicated crop genomes. The impact that the genome sequence made on rice genetics and breeding research was immediate, as evidence by citations and DNA marker use. The impact on other crop genomes was evident too, particularly for those within the grass family. As we celebrate 10 years since the completion of the rice genome sequence, we look forward to new empowering tool sets that will further revolutionize research in rice genetics and breeding and result in varieties that will continue to feed a growing population. PMID:27003180

  9. Nongenetic functions of the genome.

    PubMed

    Bustin, Michael; Misteli, Tom

    2016-05-01

    The primary function of the genome is to store, propagate, and express the genetic information that gives rise to a cell's architectural and functional machinery. However, the genome is also a major structural component of the cell. Besides its genetic roles, the genome affects cellular functions by nongenetic means through its physical and structural properties, particularly by exerting mechanical forces and by serving as a scaffold for binding of cellular components. Major cellular processes affected by nongenetic functions of the genome include establishment of nuclear structure, signal transduction, mechanoresponses, cell migration, and vision in nocturnal animals. We discuss the concept, mechanisms, and implications of nongenetic functions of the genome. PMID:27151873

  10. Using Genomics for Natural Product Structure Elucidation.

    PubMed

    Tietz, Jonathan I; Mitchell, Douglas A

    2016-01-01

    Natural products (NPs) are the most historically bountiful source of chemical matter for drug development-especially for anti-infectives. With insights gleaned from genome mining, interest in natural product discovery has been reinvigorated. An essential stage in NP discovery is structural elucidation, which sheds light not only on the chemical composition of a molecule but also its novelty, properties, and derivatization potential. The history of structure elucidation is replete with techniquebased revolutions: combustion analysis, crystallography, UV, IR, MS, and NMR have each provided game-changing advances; the latest such advance is genomics. All natural products have a genetic basis, and the ability to obtain and interpret genomic information for structure elucidation is increasingly available at low cost to non-specialists. In this review, we describe the value of genomics as a structural elucidation technique, especially from the perspective of the natural product chemist approaching an unknown metabolite. Herein we first introduce the databases and programs of interest to the natural products chemist, with an emphasis on those currently most suited for general usability. We describe strategies for linking observed natural product-linked phenotypes to their corresponding gene clusters. We then discuss techniques for extracting structural information from genes, illustrated with numerous case examples. We also provide an analysis of the biases and limitations of the field with recommendations for future development. Our overview is not only aimed at biologically-oriented researchers already at ease with bioinformatic techniques, but also, in particular, at natural product, organic, and/or medicinal chemists not previously familiar with genomic techniques. PMID:26456468

  11. Complete genome sequence of Allochromatium vinosum DSM 180T

    PubMed Central

    Weissgerber, Thomas; Zigann, Renate; Bruce, David; Chang, Yun-juan; Detter, John C.; Han, Cliff; Hauser, Loren; Jeffries, Cynthia D.; Land, Miriam; Munk, A. Christine; Tapia, Roxanne; Dahl, Christiane

    2011-01-01

    Allochromatium vinosum formerly Chromatium vinosum is a mesophilic purple sulfur bacterium belonging to the family Chromatiaceae in the bacterial class Gammaproteobacteria. The genus Allochromatium contains currently five species. All members were isolated from freshwater, brackish water or marine habitats and are predominately obligate phototrophs. Here we describe the features of the organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a member of the Chromatiaceae within the purple sulfur bacteria thriving in globally occurring habitats. The 3,669,074 bp genome with its 3,302 protein-coding and 64 RNA genes was sequenced within the Joint Genome Institute Community Sequencing Program. PMID:22675582

  12. Genomic approaches to studying human-specific developmental traits.

    PubMed

    Franchini, Lucía F; Pollard, Katherine S

    2015-09-15

    Changes in developmental regulatory programs drive both disease and phenotypic differences among species. Linking human-specific traits to alterations in development is challenging, because we have lacked the tools to assay and manipulate regulatory networks in human and primate embryonic cells. This field was transformed by the sequencing of hundreds of genomes--human and non-human--that can be compared to discover the regulatory machinery of genes involved in human development. This approach has identified thousands of human-specific genome alterations in developmental genes and their regulatory regions. With recent advances in stem cell techniques, genome engineering, and genomics, we can now test these sequences for effects on developmental gene regulation and downstream phenotypes in human cells and tissues. PMID:26395139

  13. A report from the Sixth International Mouse Genome Conference

    SciTech Connect

    Brown, S.

    1992-12-31

    The Sixth Annual Mouse Genome Conference was held in October, 1992 at Buffalo, USA. The mouse is one of the primary model organisms in the Human Genome Project. Through the use of gene targeting studies the mouse has become a powerful biological model for the study of gene function and, in addition, the comparison of the many homologous mutations identified in human and mouse have widened our understanding of the biology of these two organisms. A primary goal in the mouse genome program has been to create a genetic map of STSs of high resolution (<1cM) that would form the basis for the physical mapping of the whole mouse genome. Buffalo saw substantial new progress towards the goal of a very high density genetic map and the beginnings of substantive efforts towards physical mapping in chromosome regions with a high density of genetic markers.

  14. Complete genome sequence of Arthrobacter sp. strain FB24

    SciTech Connect

    Nakatsu, C. H.; Barabote, Ravi; Thompson, Sue; Bruce, David; Detter, Chris; Brettin, T.; Han, Cliff F.; Beasley, Federico; Chen, Weimin; Konopka, Allan; Xie, Gary

    2013-09-30

    Arthrobacter sp. strain FB24 is a species in the genus Arthrobacter Conn and Dimmick 1947, in the family Micrococcaceae and class Actinobacteria. A number of Arthrobacter genome sequences have been completed because of their important role in soil, especially bioremediation. This isolate is of special interest because it is tolerant to multiple metals and it is extremely resistant to elevated concentrations of chromate. The genome consists of a 4,698,945 bp circular chromosome and three plasmids (96,488, 115,507, and 159,536 bp, a total of 5,070,478 bp), coding 4,536 proteins of which 1,257 are without known function. This genome was sequenced as part of the DOE Joint Genome Institute Program.

  15. Genome-wide synteny through highly sensitive sequence alignment: Satsuma

    PubMed Central

    Grabherr, Manfred G.; Russell, Pamela; Meyer, Miriah; Mauceli, Evan; Alföldi, Jessica; Di Palma, Federica; Lindblad-Toh, Kerstin

    2010-01-01

    Motivation: Comparative genomics heavily relies on alignments of large and often complex DNA sequences. From an engineering perspective, the problem here is to provide maximum sensitivity (to find all there is to find), specificity (to only find real homology) and speed (to accommodate the billions of base pairs of vertebrate genomes). Results: Satsuma addresses all three issues through novel strategies: (i) cross-correlation, implemented via fast Fourier transform; (ii) a match scoring scheme that eliminates almost all false hits; and (iii) an asynchronous ‘battleship’-like search that allows for aligning two entire fish genomes (470 and 217 Mb) in 120 CPU hours using 15 processors on a single machine. Availability: Satsuma is part of the Spines software package, implemented in C++ on Linux. The latest version of Spines can be freely downloaded under the LGPL license from http://www.broadinstitute.org/science/programs/genome-biology/spines/ Contact: grabherr@broadinstitute.org PMID:20208069

  16. Assigning protein functions by comparative genome analysis protein phylogenetic profiles

    DOEpatents

    Pellegrini, Matteo; Marcotte, Edward M.; Thompson, Michael J.; Eisenberg, David; Grothe, Robert; Yeates, Todd O.

    2003-05-13

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  17. Determining protein function and interaction from genome analysis

    DOEpatents

    Eisenberg, David; Marcotte, Edward M.; Thompson, Michael J.; Pellegrini, Matteo; Yeates, Todd O.

    2004-08-03

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  18. Complete genome sequence of Arthrobacter sp. strain FB24

    PubMed Central

    Nakatsu, Cindy H.; Barabote, Ravi; Thompson, Sue; Bruce, David; Detter, Chris; Brettin, Thomas; Han, Cliff; Beasley, Federico; Chen, Weimin; Konopka, Allan; Xie, Gary

    2013-01-01

    Arthrobacter sp. strain FB24 is a species in the genus Arthrobacter Conn and Dimmick 1947, in the family Micrococcaceae and class Actinobacteria. A number of Arthrobacter genome sequences have been completed because of their important role in soil, especially bioremediation. This isolate is of special interest because it is tolerant to multiple metals and it is extremely resistant to elevated concentrations of chromate. The genome consists of a 4,698,945 bp circular chromosome and three plasmids (96,488, 115,507, and 159,536 bp, a total of 5,070,478 bp), coding 4,536 proteins of which 1,257 are without known function. This genome was sequenced as part of the DOE Joint Genome Institute Program. PMID:24501649

  19. Global implementation of genomic medicine: We are not alone.

    PubMed

    Manolio, Teri A; Abramowicz, Marc; Al-Mulla, Fahd; Anderson, Warwick; Balling, Rudi; Berger, Adam C; Bleyl, Steven; Chakravarti, Aravinda; Chantratita, Wasun; Chisholm, Rex L; Dissanayake, Vajira H W; Dunn, Michael; Dzau, Victor J; Han, Bok-Ghee; Hubbard, Tim; Kolbe, Anne; Korf, Bruce; Kubo, Michiaki; Lasko, Paul; Leego, Erkki; Mahasirimongkol, Surakameth; Majumdar, Partha P; Matthijs, Gert; McLeod, Howard L; Metspalu, Andres; Meulien, Pierre; Miyano, Satoru; Naparstek, Yaakov; O'Rourke, P Pearl; Patrinos, George P; Rehm, Heidi L; Relling, Mary V; Rennert, Gad; Rodriguez, Laura Lyman; Roden, Dan M; Shuldiner, Alan R; Sinha, Sukdeb; Tan, Patrick; Ulfendahl, Mats; Ward, Robyn; Williams, Marc S; Wong, John E L; Green, Eric D; Ginsburg, Geoffrey S

    2015-06-01

    Around the world, innovative genomic-medicine programs capitalize on singular capabilities arising from local health care systems, cultural or political milieus, and unusual selected risk alleles or disease burdens. Such individual efforts might benefit from the sharing of approaches and lessons learned in other locales. The U.S. National Human Genome Research Institute and the National Academy of Medicine recently brought together 25 of these groups to compare projects, to examine the current state of implementation and desired near-term capabilities, and to identify opportunities for collaboration that promote the responsible practice of genomic medicine. Efforts to coalesce these groups around concrete but compelling signature projects should accelerate the responsible implementation of genomic medicine in efforts to improve clinical care worldwide. PMID:26041702

  20. Genome of Crocodilepox Virus

    PubMed Central

    Afonso, C. L.; Tulman, E. R.; Delhon, G.; Lu, Z.; Viljoen, G. J.; Wallace, D. B.; Kutish, G. F.; Rock, D. L.

    2006-01-01

    Here, we present the genome sequence, with analysis, of a poxvirus infecting Nile crocodiles (Crocodylus niloticus) (crocodilepox virus; CRV). The genome is 190,054 bp (62% G+C) and predicted to contain 173 genes encoding proteins of 53 to 1,941 amino acids. The central genomic region contains genes conserved and generally colinear with those of other chordopoxviruses (ChPVs). CRV is distinct, as the terminal 33-kbp (left) and 13-kbp (right) genomic regions are largely CRV specific, containing 48 unique genes which lack similarity to other poxvirus genes. Notably, CRV also contains 14 unique genes which disrupt ChPV gene colinearity within the central genomic region, including 7 genes encoding GyrB-like ATPase domains similar to those in cellular type IIA DNA topoisomerases, suggestive of novel ATP-dependent functions. The presence of 10 CRV proteins with similarity to components of cellular multisubunit E3 ubiquitin-protein ligase complexes, including 9 proteins containing F-box motifs and F-box-associated regions and a homologue of cellular anaphase-promoting complex subunit 11 (Apc11), suggests that modification of host ubiquitination pathways may be significant for CRV-host cell interaction. CRV encodes a novel complement of proteins potentially involved in DNA replication, including a NAD+-dependent DNA ligase and a protein with similarity to both vaccinia virus F16L and prokaryotic serine site-specific resolvase-invertases. CRV lacks genes encoding proteins for nucleotide metabolism. CRV shares notable genomic similarities with molluscum contagiosum virus, including genes found only in these two viruses. Phylogenetic analysis indicates that CRV is quite distinct from other ChPVs, representing a new genus within the subfamily Chordopoxvirinae, and it lacks recognizable homologues of most ChPV genes involved in virulence and host range, including those involving interferon response, intracellular signaling, and host immune response modulation. These data reveal

  1. Genome of crocodilepox virus.

    PubMed

    Afonso, C L; Tulman, E R; Delhon, G; Lu, Z; Viljoen, G J; Wallace, D B; Kutish, G F; Rock, D L

    2006-05-01

    Here, we present the genome sequence, with analysis, of a poxvirus infecting Nile crocodiles (Crocodylus niloticus) (crocodilepox virus; CRV). The genome is 190,054 bp (62% G+C) and predicted to contain 173 genes encoding proteins of 53 to 1,941 amino acids. The central genomic region contains genes conserved and generally colinear with those of other chordopoxviruses (ChPVs). CRV is distinct, as the terminal 33-kbp (left) and 13-kbp (right) genomic regions are largely CRV specific, containing 48 unique genes which lack similarity to other poxvirus genes. Notably, CRV also contains 14 unique genes which disrupt ChPV gene colinearity within the central genomic region, including 7 genes encoding GyrB-like ATPase domains similar to those in cellular type IIA DNA topoisomerases, suggestive of novel ATP-dependent functions. The presence of 10 CRV proteins with similarity to components of cellular multisubunit E3 ubiquitin-protein ligase complexes, including 9 proteins containing F-box motifs and F-box-associated regions and a homologue of cellular anaphase-promoting complex subunit 11 (Apc11), suggests that modification of host ubiquitination pathways may be significant for CRV-host cell interaction. CRV encodes a novel complement of proteins potentially involved in DNA replication, including a NAD(+)-dependent DNA ligase and a protein with similarity to both vaccinia virus F16L and prokaryotic serine site-specific resolvase-invertases. CRV lacks genes encoding proteins for nucleotide metabolism. CRV shares notable genomic similarities with molluscum contagiosum virus, including genes found only in these two viruses. Phylogenetic analysis indicates that CRV is quite distinct from other ChPVs, representing a new genus within the subfamily Chordopoxvirinae, and it lacks recognizable homologues of most ChPV genes involved in virulence and host range, including those involving interferon response, intracellular signaling, and host immune response modulation. These data

  2. Evolution of small prokaryotic genomes

    PubMed Central

    Martínez-Cano, David J.; Reyes-Prieto, Mariana; Martínez-Romero, Esperanza; Partida-Martínez, Laila P.; Latorre, Amparo; Moya, Andrés; Delaye, Luis

    2015-01-01

    As revealed by genome sequencing, the biology of prokaryotes with reduced genomes is strikingly diverse. These include free-living prokaryotes with ∼800 genes as well as endosymbiotic bacteria with as few as ∼140 genes. Comparative genomics is revealing the evolutionary mechanisms that led to these small genomes. In the case of free-living prokaryotes, natural selection directly favored genome reduction, while in the case of endosymbiotic prokaryotes neutral processes played a more prominent role. However, new experimental data suggest that selective processes may be at operation as well for endosymbiotic prokaryotes at least during the first stages of genome reduction. Endosymbiotic prokaryotes have evolved diverse strategies for living with reduced gene sets inside a host-defined medium. These include utilization of host-encoded functions (some of them coded by genes acquired by gene transfer from the endosymbiont and/or other bacteria); metabolic complementation between co-symbionts; and forming consortiums with other bacteria within the host. Recent genome sequencing projects of intracellular mutualistic bacteria showed that previously believed universal evolutionary trends like reduced G+C content and conservation of genome synteny are not always present in highly reduced genomes. Finally, the simplified molecular machinery of some of these organisms with small genomes may be used to aid in the design of artificial minimal cells. Here we review recent genomic discoveries of the biology of prokaryotes endowed with small gene sets and discuss the evolutionary mechanisms that have been proposed to explain their peculiar nature. PMID:25610432

  3. Advances in plant chromosome genomics.

    PubMed

    Doležel, Jaroslav; Vrána, Jan; Cápal, Petr; Kubaláková, Marie; Burešová, Veronika; Simková, Hana

    2014-01-01

    Next generation sequencing (NGS) is revolutionizing genomics and is providing novel insights into genome organization, evolution and function. The number of plant genomes targeted for sequencing is rising. For the moment, however, the acquisition of full genome sequences in large genome species remains difficult, largely because the short reads produced by NGS platforms are inadequate to cope with repeat-rich DNA, which forms a large part of these genomes. The problem of sequence redundancy is compounded in polyploids, which dominate the plant kingdom. An approach to overcoming some of these difficulties is to reduce the full nuclear genome to its individual chromosomes using flow-sorting. The DNA acquired in this way has proven to be suitable for many applications, including PCR-based physical mapping, in situ hybridization, forming DNA arrays, the development of DNA markers, the construction of BAC libraries and positional cloning. Coupling chromosome sorting with NGS offers opportunities for the study of genome organization at the single chromosomal level, for comparative analyses between related species and for the validation of whole genome assemblies. Apart from the primary aim of reducing the complexity of the template, taking a chromosome-based approach enables independent teams to work in parallel, each tasked with the analysis of a different chromosome(s). Given that the number of plant species tractable for chromosome sorting is increasing, the likelihood is that chromosome genomics - the marriage of cytology and genomics - will make a significant contribution to the field of plant genetics. PMID:24406816

  4. Informational laws of genome structures

    PubMed Central

    Bonnici, Vincenzo; Manca, Vincenzo

    2016-01-01

    In recent years, the analysis of genomes by means of strings of length k occurring in the genomes, called k-mers, has provided important insights into the basic mechanisms and design principles of genome structures. In the present study, we focus on the proper choice of the value of k for applying information theoretic concepts that express intrinsic aspects of genomes. The value k = lg2(n), where n is the genome length, is determined to be the best choice in the definition of some genomic informational indexes that are studied and computed for seventy genomes. These indexes, which are based on information entropies and on suitable comparisons with random genomes, suggest five informational laws, to which all of the considered genomes obey. Moreover, an informational genome complexity measure is proposed, which is a generalized logistic map that balances entropic and anti-entropic components of genomes and is related to their evolutionary dynamics. Finally, applications to computational synthetic biology are briefly outlined. PMID:27354155

  5. Informational laws of genome structures.

    PubMed

    Bonnici, Vincenzo; Manca, Vincenzo

    2016-01-01

    In recent years, the analysis of genomes by means of strings of length k occurring in the genomes, called k-mers, has provided important insights into the basic mechanisms and design principles of genome structures. In the present study, we focus on the proper choice of the value of k for applying information theoretic concepts that express intrinsic aspects of genomes. The value k = lg2(n), where n is the genome length, is determined to be the best choice in the definition of some genomic informational indexes that are studied and computed for seventy genomes. These indexes, which are based on information entropies and on suitable comparisons with random genomes, suggest five informational laws, to which all of the considered genomes obey. Moreover, an informational genome complexity measure is proposed, which is a generalized logistic map that balances entropic and anti-entropic components of genomes and is related to their evolutionary dynamics. Finally, applications to computational synthetic biology are briefly outlined. PMID:27354155

  6. Informational laws of genome structures

    NASA Astrophysics Data System (ADS)

    Bonnici, Vincenzo; Manca, Vincenzo

    2016-06-01

    In recent years, the analysis of genomes by means of strings of length k occurring in the genomes, called k-mers, has provided important insights into the basic mechanisms and design principles of genome structures. In the present study, we focus on the proper choice of the value of k for applying information theoretic concepts that express intrinsic aspects of genomes. The value k = lg2(n), where n is the genome length, is determined to be the best choice in the definition of some genomic informational indexes that are studied and computed for seventy genomes. These indexes, which are based on information entropies and on suitable comparisons with random genomes, suggest five informational laws, to which all of the considered genomes obey. Moreover, an informational genome complexity measure is proposed, which is a generalized logistic map that balances entropic and anti-entropic components of genomes and is related to their evolutionary dynamics. Finally, applications to computational synthetic biology are briefly outlined.

  7. Splicing Programs and Cancer

    PubMed Central

    Germann, Sophie; Gratadou, Lise; Dutertre, Martin; Auboeuf, Didier

    2012-01-01

    Numerous studies report splicing alterations in a multitude of cancers by using gene-by-gene analysis. However, understanding of the role of alternative splicing in cancer is now reaching a new level, thanks to the use of novel technologies allowing the analysis of splicing at a large-scale level. Genome-wide analyses of alternative splicing indicate that splicing alterations can affect the products of gene networks involved in key cellular programs. In addition, many splicing variants identified as being misregulated in cancer are expressed in normal tissues. These observations suggest that splicing programs contribute to specific cellular programs that are altered during cancer initiation and progression. Supporting this model, recent studies have identified splicing factors controlling cancer-associated splicing programs. The characterization of splicing programs and their regulation by splicing factors will allow a better understanding of the genetic mechanisms involved in cancer initiation and progression and the development of new therapeutic targets. PMID:22132318

  8. Comparative genomics of Brassicaceae crops

    PubMed Central

    Sharma, Ashutosh; Li, Xiaonan; Lim, Yong Pyo

    2014-01-01

    The family Brassicaceae is one of the major groups of the plant kingdom and comprises diverse species of great economic, agronomic and scientific importance, including the model plant Arabidopsis. The sequencing of the Arabidopsis genome has revolutionized our knowledge in the field of plant biology and provides a foundation in genomics and comparative biology. Genomic resources have been utilized in Brassica for diversity analyses, construction of genetic maps and identification of agronomic traits. In Brassicaceae, comparative sequence analysis across the species has been utilized to understand genome structure, evolution and the detection of conserved genomic segments. In this review, we focus on the progress made in genetic resource development, genome sequencing and comparative mapping in Brassica and related species. The utilization of genomic resources and next-generation sequencing approaches in improvement of Brassica crops is also discussed. PMID:24987286

  9. Toward genome-enabled mycology.

    PubMed

    Hibbett, David S; Stajich, Jason E; Spatafora, Joseph W

    2013-01-01

    Genome-enabled mycology is a rapidly expanding field that is characterized by the pervasive use of genome-scale data and associated computational tools in all aspects of fungal biology. Genome-enabled mycology is integrative and often requires teams of researchers with diverse skills in organismal mycology, bioinformatics and molecular biology. This issue of Mycologia presents the first complete fungal genomes in the history of the journal, reflecting the ongoing transformation of mycology into a genome-enabled science. Here, we consider the prospects for genome-enabled mycology and the technical and social challenges that will need to be overcome to grow the database of complete fungal genomes and enable all fungal biologists to make use of the new data. PMID:23928422

  10. Comparative genomics of Brassicaceae crops.

    PubMed

    Sharma, Ashutosh; Li, Xiaonan; Lim, Yong Pyo

    2014-05-01

    The family Brassicaceae is one of the major groups of the plant kingdom and comprises diverse species of great economic, agronomic and scientific importance, including the model plant Arabidopsis. The sequencing of the Arabidopsis genome has revolutionized our knowledge in the field of plant biology and provides a foundation in genomics and comparative biology. Genomic resources have been utilized in Brassica for diversity analyses, construction of genetic maps and identification of agronomic traits. In Brassicaceae, comparative sequence analysis across the species has been utilized to understand genome structure, evolution and the detection of conserved genomic segments. In this review, we focus on the progress made in genetic resource development, genome sequencing and comparative mapping in Brassica and related species. The utilization of genomic resources and next-generation sequencing approaches in improvement of Brassica crops is also discussed. PMID:24987286

  11. Genome Science: A Video Tour of the Washington University Genome Sequencing Center for High School and Undergraduate Students

    PubMed Central

    2005-01-01

    Sequencing of the human genome has ushered in a new era of biology. The technologies developed to facilitate the sequencing of the human genome are now being applied to the sequencing of other genomes. In 2004, a partnership was formed between Washington University School of Medicine Genome Sequencing Center's Outreach Program and Washington University Department of Biology Science Outreach to create a video tour depicting the processes involved in large-scale sequencing. “Sequencing a Genome: Inside the Washington University Genome Sequencing Center” is a tour of the laboratory that follows the steps in the sequencing pipeline, interspersed with animated explanations of the scientific procedures used at the facility. Accompanying interviews with the staff illustrate different entry levels for a career in genome science. This video project serves as an example of how research and academic institutions can provide teachers and students with access and exposure to innovative technologies at the forefront of biomedical research. Initial feedback on the video from undergraduate students, high school teachers, and high school students provides suggestions for use of this video in a classroom setting to supplement present curricula. PMID:16341256

  12. Are we Genomic Mosaics? Variations of the Genome of Somatic Cells can Contribute to Diversify our Phenotypes.

    PubMed

    Astolfi, P A; Salamini, F; Sgaramella, V

    2010-09-01

    Theoretical and experimental evidences support the hypothesis that the genomes and the epigenomes may be different in the somatic cells of complex organisms. In the genome, the differences range from single base substitutions to chromosome number; in the epigenome, they entail multiple postsynthetic modifications of the chromatin. Somatic genome variations (SGV) may accumulate during development in response both to genetic programs, which may differ from tissue to tissue, and to environmental stimuli, which are often undetected and generally irreproducible. SGV may jeopardize physiological cellular functions, but also create novel coding and regulatory sequences, to be exposed to intraorganismal Darwinian selection. Genomes acknowledged as comparatively poor in genes, such as humans', could thus increase their pristine informational endowment. A better understanding of SGV will contribute to basic issues such as the "nature vs nurture" dualism and the inheritance of acquired characters. On the applied side, they may explain the low yield of cloning via somatic cell nuclear transfer, provide clues to some of the problems associated with transdifferentiation, and interfere with individual DNA analysis. SGV may be unique in the different cells types and in the different developmental stages, and thus explain the several hundred gaps persisting in the human genomes "completed" so far. They may compound the variations associated to our epigenomes and make of each of us an "(epi)genomic" mosaic. An ensuing paradigm is the possibility that a single genome (the ephemeral one assembled at fertilization) has the capacity to generate several different brains in response to different environments. PMID:21358981

  13. SUMMER RESEARCH INTERNSHIPS IN PLANT GENOME RESEARCH FOR AMERICAN INDIANS AT IOWA STATE UNIVERSITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The involvement of American Indian students and researchers in plant genome research is minimal. In an effort to increase their representation in the research community, we are offering a summer program to mentor seven American Indian undergraduates in plant genomics research. Students selected to...

  14. Whole genome sequencing of a begomovirus-resistant tomato inbred reveals introgressions from wild Solanum species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The low cost of next generation sequencing (NGS) technology and the availability of a large number of well annotated plant genomes has made sequencing technology useful to breeding programs. With the published high quality tomato reference genome of the processing cultivar Heinz 1706, we can now uti...

  15. Impact of marker ascertainment bias on genomic selection accuracy and estimates of genetic diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome-wide molecular markers are readily being applied to evaluate genetic diversity in germplasm collections and for making genomic selections in breeding programs. To accurately predict phenotypes and assay genetic diversity, molecular markers should assay a representative sample of the polymorp...

  16. Harnessing genomics to improve health in the Eastern Mediterranean Region - an executive course in genomics policy.

    PubMed

    Acharya, Tara; Rab, Mohammed Abdur; Singer, Peter A; Daar, Abdallah S

    2005-01-21

    BACKGROUND: While innovations in medicine, science and technology have resulted in improved health and quality of life for many people, the benefits of modern medicine continue to elude millions of people in many parts of the world. To assess the potential of genomics to address health needs in EMR, the World Health Organization's Eastern Mediterranean Regional Office and the University of Toronto Joint Centre for Bioethics jointly organized a Genomics and Public Health Policy Executive Course, held September 20th-23rd, 2003, in Muscat, Oman. The 4-day course was sponsored by WHO-EMRO with additional support from the Canadian Program in Genomics and Global Health. The overall objective of the course was to collectively explore how to best harness genomics to improve health in the region. This article presents the course findings and recommendations for genomics policy in EMR. METHODS: The course brought together senior representatives from academia, biotechnology companies, regulatory bodies, media, voluntary, and legal organizations to engage in discussion. Topics covered included scientific advances in genomics, followed by innovations in business models, public sector perspectives, ethics, legal issues and national innovation systems. RESULTS: A set of recommendations, summarized below, was formulated for the Regional Office, the Member States and for individuals.* Advocacy for genomics and biotechnology for political leadership;* Networking between member states to share information, expertise, training, and regional cooperation in biotechnology; coordination of national surveys for assessment of health biotechnology innovation systems, science capacity, government policies, legislation and regulations, intellectual property policies, private sector activity;* Creation in each member country of an effective National Body on genomics, biotechnology and health to:- formulate national biotechnology strategies- raise biotechnology awareness- encourage teaching and

  17. eGenomics: Cataloguing Our Complete Genome Collection III

    PubMed Central

    Field, Dawn; Garrity, George; Gray, Tanya; Selengut, Jeremy; Sterk, Peter; Thomson, Nick; Tatusova, Tatiana; Cochrane, Guy; Glöckner, Frank Oliver; Kottmann, Renzo; Lister, Allyson L.; Tateno, Yoshio; Vaughan, Robert

    2007-01-01

    This meeting report summarizes the proceedings of the “eGenomics: Cataloguing our Complete Genome Collection III” workshop held September 11–13, 2006, at the National Institute for Environmental eScience (NIEeS), Cambridge, United Kingdom. This 3rd workshop of the Genomic Standards Consortium was divided into two parts. The first half of the three-day workshop was dedicated to reviewing the genomic diversity of our current and future genome and metagenome collection, and exploring linkages to a series of existing projects through formal presentations. The second half was dedicated to strategic discussions. Outcomes of the workshop include a revised “Minimum Information about a Genome Sequence” (MIGS) specification (v1.1), consensus on a variety of features to be added to the Genome Catalogue (GCat), agreement by several researchers to adopt MIGS for imminent genome publications, and an agreement by the EBI and NCBI to input their genome collections into GCat for the purpose of quantifying the amount of optional data already available (e.g., for geographic location coordinates) and working towards a single, global list of all public genomes and metagenomes.

  18. The Genomic Standards Consortium

    PubMed Central

    Field, Dawn; Amaral-Zettler, Linda; Cochrane, Guy; Cole, James R.; Dawyndt, Peter; Garrity, George M.; Gilbert, Jack; Glöckner, Frank Oliver; Hirschman, Lynette; Karsch-Mizrachi, Ilene; Klenk, Hans-Peter; Knight, Rob; Kottmann, Renzo; Kyrpides, Nikos; Meyer, Folker; San Gil, Inigo; Sansone, Susanna-Assunta; Schriml, Lynn M.; Sterk, Peter; Tatusova, Tatiana; Ussery, David W.; White, Owen; Wooley, John

    2011-01-01

    A vast and rich body of information has grown up as a result of the world's enthusiasm for 'omics technologies. Finding ways to describe and make available this information that maximise its usefulness has become a major effort across the 'omics world. At the heart of this effort is the Genomic Standards Consortium (GSC), an open-membership organization that drives community-based standardization activities, Here we provide a short history of the GSC, provide an overview of its range of current activities, and make a call for the scientific community to join forces to improve the quality and quantity of contextual information about our public collections of genomes, metagenomes, and marker gene sequences. PMID:21713030

  19. The dog genome.

    PubMed

    Galibert, F; André, C

    2006-01-01

    Over the last few centuries, several hundred dog breeds have been artificially selected through intense breeding, resulting in the modern dog population having the widest polymorphism spectrum in terms of body shape, behavior and aptitude among mammals. Unfortunately, this diversification has predisposed most breeds to specific diseases of genetic origin. The highly fragmented nature of the dog population offers a great opportunity to track the genes and alleles responsible for these diseases as well as for the various phenotypic traits. This has led to a thorough analysis of the dog genome. Here, we report the main results obtained during the last ten years, culminating in the recent publication of a complete dog genome sequence. PMID:18753768

  20. Big cat genomics.

    PubMed

    O'Brien, Stephen J; Johnson, Warren E

    2005-01-01

    Advances in population and quantitative genomics, aided by the computational algorithms that employ genetic theory and practice, are now being applied to biological questions that surround free-ranging species not traditionally suitable for genetic enquiry. Here we review how applications of molecular genetic tools have been used to describe the natural history, present status, and future disposition of wild cat species. Insight into phylogenetic hierarchy, demographic contractions, geographic population substructure, behavioral ecology, and infectious diseases have revealed strategies for survival and adaptation of these fascinating predators. Conservation, stabilization, and management of the big cats are important areas that derive benefit from the genome resources expanded and applied to highly successful species, imperiled by an expanding human population. PMID:16124868

  1. Mapping the human genome

    SciTech Connect

    Annas, G.C.; Elias, S.

    1992-01-01

    This article is a review of the book Mapping the Human Genome: Using Law and Ethics as Guides, edited by George C. Annas and Sherman Elias. The book is a collection of essays on the subject of using ethics and laws as guides to justify human gene mapping. It addresses specific issues such problems related to eugenics, patents, insurance as well as broad issues such as the societal definitions of normality.

  2. Genomic landscape of liposarcoma

    PubMed Central

    Kanojia, Deepika; Nagata, Yasunobu; Garg, Manoj; Lee, Dhong Hyun; Sato, Aiko; Yoshida, Kenichi; Sato, Yusuke; Sanada, Masashi; Mayakonda, Anand; Bartenhagen, Christoph; Klein, Hans-Ulrich; Doan, Ngan B.; Said, Jonathan W.; Mohith, S.; Gunasekar, Swetha; Shiraishi, Yuichi; Chiba, Kenichi; Tanaka, Hiroko; Miyano, Satoru; Myklebost, Ola; Yang, Henry; Dugas, Martin; Meza-Zepeda, Leonardo A.; Silberman, Allan W.; Forscher, Charles; Tyner, Jeffrey W.; Ogawa, Seishi; Koeffler, H. Phillip

    2015-01-01

    Liposarcoma (LPS) is the most common type of soft tissue sarcoma accounting for 20% of all adult sarcomas. Due to absence of clinically effective treatment options in inoperable situations and resistance to chemotherapeutics, a critical need exists to identify novel therapeutic targets. We analyzed LPS genomic landscape using SNP arrays, whole exome sequencing and targeted exome sequencing to uncover the genomic information for development of specific anti-cancer targets. SNP array analysis indicated known amplified genes (MDM2, CDK4, HMGA2) and important novel genes (UAP1, MIR557, LAMA4, CPM, IGF2, ERBB3, IGF1R). Carboxypeptidase M (CPM), recurrently amplified gene in well-differentiated/de-differentiated LPS was noted as a putative oncogene involved in the EGFR pathway. Notable deletions were found at chromosome 1p (RUNX3, ARID1A), chromosome 11q (ATM, CHEK1) and chromosome 13q14.2 (MIR15A, MIR16-1). Significantly and recurrently mutated genes (false discovery rate < 0.05) included PLEC (27%), MXRA5 (21%), FAT3 (24%), NF1 (20%), MDC1 (10%), TP53 (7%) and CHEK2 (6%). Further, in vitro and in vivo functional studies provided evidence for the tumor suppressor role for Neurofibromin 1 (NF1) gene in different subtypes of LPS. Pathway analysis of recurrent mutations demonstrated signaling through MAPK, JAK-STAT, Wnt, ErbB, axon guidance, apoptosis, DNA damage repair and cell cycle pathways were involved in liposarcomagenesis. Interestingly, we also found mutational and copy number heterogeneity within a primary LPS tumor signifying the importance of multi-region sequencing for cancer-genome guided therapy. In summary, these findings provide insight into the genomic complexity of LPS and highlight potential druggable pathways for targeted therapeutic approach. PMID:26643872

  3. Bioinformatics and genomic medicine.

    PubMed

    Kim, Ju Han

    2002-01-01

    Bioinformatics is a rapidly emerging field of biomedical research. A flood of large-scale genomic and postgenomic data means that many of the challenges in biomedical research are now challenges in computational science. Clinical informatics has long developed methodologies to improve biomedical research and clinical care by integrating experimental and clinical information systems. The informatics revolution in both bioinformatics and clinical informatics will eventually change the current practice of medicine, including diagnostics, therapeutics, and prognostics. Postgenome informatics, powered by high-throughput technologies and genomic-scale databases, is likely to transform our biomedical understanding forever, in much the same way that biochemistry did a generation ago. This paper describes how these technologies will impact biomedical research and clinical care, emphasizing recent advances in biochip-based functional genomics and proteomics. Basic data preprocessing with normalization and filtering, primary pattern analysis, and machine-learning algorithms are discussed. Use of integrative biochip informatics technologies, including multivariate data projection, gene-metabolic pathway mapping, automated biomolecular annotation, text mining of factual and literature databases, and the integrated management of biomolecular databases, are also discussed. PMID:12544491

  4. Exploring genomes for glycosyltransferases.

    PubMed

    Hansen, Sara Fasmer; Bettler, Emmanuel; Rinnan, Asmund; Engelsen, Søren B; Breton, Christelle

    2010-10-01

    Glycosyltransferases are one of the largest and most diverse enzyme groups in Nature. They catalyse the synthesis of glycosidic linkages by the transfer of a sugar residue from a donor to an acceptor substrate. These enzymes have been classified into families on the basis of amino acid sequence similarity that are kept updated in the Carbohydrate Active enZyme database (CAZy, ). The repertoire of glycosyltransferases in genomes is believed to determine the diversity of cellular glycan structures, and current estimates suggest that for most genomes about 1% of the coding regions are glycosyltransferases. However, plants tend to have far more glycosyltransferase genes than any other organism sequenced to date, and this can be explained by the highly complex polysaccharide network that form the cell wall and also by the numerous glycosylated secondary metabolites. In recent years, various bioinformatics strategies have been used to search bacterial and plant genomes for new glycosyltransferase genes. These are based on the use of remote homology detection methods that act at the 1D, 2D, and 3D level. The combined use of methods such as profile Hidden Markov Model (HMM) and fold recognition appears to be appropriate for this class of enzyme. Chemometric tools are also particularly well suited for obtaining an overview of multivariate data and revealing hidden latent information when dealing with large and highly complex datasets. PMID:20556308

  5. Cancer Genome Landscapes

    PubMed Central

    Vogelstein, Bert; Papadopoulos, Nickolas; Velculescu, Victor E.; Zhou, Shibin; Diaz, Luis A.; Kinzler, Kenneth W.

    2013-01-01

    Over the past decade, comprehensive sequencing efforts have revealed the genomic landscapes of common forms of human cancer. For most cancer types, this landscape consists of a small number of “mountains” (genes altered in a high percentage of tumors) and a much larger number of “hills” (genes altered infrequently). To date, these studies have revealed ~140 genes that, when altered by intragenic mutations, can promote or “drive” tumorigenesis. A typical tumor contains two to eight of these “driver gene” mutations; the remaining mutations are passengers that confer no selective growth advantage. Driver genes can be classified into 12 signaling pathways that regulate three core cellular processes: cell fate, cell survival, and genome maintenance. A better understanding of these pathways is one of the most pressing needs in basic cancer research. Even now, however, our knowledge of cancer genomes is sufficient to guide the development of more effective approaches for reducing cancer morbidity and mortality. PMID:23539594

  6. Mapping the human genome

    SciTech Connect

    Cantor, Charles R.

    1989-06-01

    The following pages aim to lay a foundation for understanding the excitement surrounding the ''human genome project,'' as well as to convey a flavor of the ongoing efforts and plans at the Human Genome Center at the Lawrence Berkeley Laboratory. Our own work, of course, is only part of a broad international effort that will dramatically enhance our understanding of human molecular genetics before the end of this century. In this country, the bulk of the effort will be carried out under the auspices of the Department of Energy and the National Institutes of Health, but significant contributions have already been made both by nonprofit private foundations and by private corporation. The respective roles of the DOE and the NIH are being coordinated by an inter-agency committee, the aims of which are to emphasize the strengths of each agency, to facilitate cooperation, and to avoid unnecessary duplication of effort. The NIH, for example, will continue its crucial work in medical genetics and in mapping the genomes of nonhuman species. The DOE, on the other hand, has unique experience in managing large projects, and its national laboratories are repositories of expertise in physics, engineering, and computer science, as well as the life sciences. The tools and techniques the project will ultimately rely on are thus likely to be developed in multidisciplinary efforts at laboratories like LBL. Accordingly, we at LBL take great pride in this enterprise -- an enterprise that will eventually transform our understanding of ourselves.

  7. Nuclear envelope and genome interactions in cell fate

    PubMed Central

    Talamas, Jessica A.; Capelson, Maya

    2015-01-01

    The eukaryotic cell nucleus houses an organism’s genome and is the location within the cell where all signaling induced and development-driven gene expression programs are ultimately specified. The genome is enclosed and separated from the cytoplasm by the nuclear envelope (NE), a double-lipid membrane bilayer, which contains a large variety of trans-membrane and associated protein complexes. In recent years, research regarding multiple aspects of the cell nucleus points to a highly dynamic and coordinated concert of efforts between chromatin and the NE in regulation of gene expression. Details of how this concert is orchestrated and how it directs cell differentiation and disease are coming to light at a rapid pace. Here we review existing and emerging concepts of how interactions between the genome and the NE may contribute to tissue specific gene expression programs to determine cell fate. PMID:25852741

  8. Structural genomics-impact on biomedicine and drug discovery.

    PubMed

    Weigelt, Johan

    2010-05-01

    The field of structural genomics emerged as one of many 'omics disciplines more than a decade ago, and a multitude of large scale initiatives have been launched across the world. Development and implementation of methods for high-throughput structural biology represents a common denominator among different structural genomics programs. From another perspective a distinction between "biology-driven" versus "structure-driven" approaches can be made. This review outlines the general themes of structural genomics, its achievements and its impact on biomedicine and drug discovery. The growing number of high resolution structures of known and potential drug target proteins is expected to have tremendous value for future drug discovery programs. Moreover, the availability of large numbers of purified proteins enables generation of tool reagents, such as chemical probes and antibodies, to further explore protein function in the cell. PMID:20211166

  9. The Functional Genomics Initiative at Oak Ridge National Laboratory

    SciTech Connect

    Johnson, Dabney; Justice, Monica; Beattle, Ken; Buchanan, Michelle; Ramsey, Michael; Ramsey, Rose; Paulus, Michael; Ericson, Nance; Allison, David; Kress, Reid; Mural, Richard; Uberbacher, Ed; Mann, Reinhold

    1997-12-31

    The Functional Genomics Initiative at the Oak Ridge National Laboratory integrates outstanding capabilities in mouse genetics, bioinformatics, and instrumentation. The 50 year investment by the DOE in mouse genetics/mutagenesis has created a one-of-a-kind resource for generating mutations and understanding their biological consequences. It is generally accepted that, through the mouse as a surrogate for human biology, we will come to understand the function of human genes. In addition to this world class program in mammalian genetics, ORNL has also been a world leader in developing bioinformatics tools for the analysis, management and visualization of genomic data. Combining this expertise with new instrumentation technologies will provide a unique capability to understand the consequences of mutations in the mouse at both the organism and molecular levels. The goal of the Functional Genomics Initiative is to develop the technology and methodology necessary to understand gene function on a genomic scale and apply these technologies to megabase regions of the human genome. The effort is scoped so as to create an effective and powerful resource for functional genomics. ORNL is partnering with the Joint Genome Institute and other large scale sequencing centers to sequence several multimegabase regions of both human and mouse genomic DNA, to identify all the genes in these regions, and to conduct fundamental surveys to examine gene function at the molecular and organism level. The Initiative is designed to be a pilot for larger scale deployment in the post-genome era. Technologies will be applied to the examination of gene expression and regulation, metabolism, gene networks, physiology and development.

  10. High-Throughput Genomics Enhances Tomato Breeding Efficiency

    PubMed Central

    Barone, A; Di Matteo, A; Carputo, D; Frusciante, L

    2009-01-01

    Tomato (Solanum lycopersicum) is considered a model plant species for a group of economically important crops, such as potato, pepper, eggplant, since it exhibits a reduced genomic size (950 Mb), a short generation time, and routine transformation technologies. Moreover, it shares with the other Solanaceous plants the same haploid chromosome number and a high level of conserved genomic organization. Finally, many genomic and genetic resources are actually available for tomato, and the sequencing of its genome is in progress. These features make tomato an ideal species for theoretical studies and practical applications in the genomics field. The present review describes how structural genomics assist the selection of new varieties resistant to pathogens that cause damage to this crop. Many molecular markers highly linked to resistance genes and cloned resistance genes are available and could be used for a high-throughput screening of multiresistant varieties. Moreover, a new genomics-assisted breeding approach for improving fruit quality is presented and discussed. It relies on the identification of genetic mechanisms controlling the trait of interest through functional genomics tools. Following this approach, polymorphisms in major gene sequences responsible for variability in the expression of the trait under study are then exploited for tracking simultaneously favourable allele combinations in breeding programs using high-throughput genomic technologies. This aims at pyramiding in the genetic background of commercial cultivars alleles that increase their performances. In conclusion, tomato breeding strategies supported by advanced technologies are expected to target increased productivity and lower costs of improved genotypes even for complex traits. PMID:19721805

  11. Translational genomics for plant breeding with the genome sequence explosion.

    PubMed

    Kang, Yang Jae; Lee, Taeyoung; Lee, Jayern; Shim, Sangrea; Jeong, Haneul; Satyawan, Dani; Kim, Moon Young; Lee, Suk-Ha

    2016-04-01

    The use of next-generation sequencers and advanced genotyping technologies has propelled the field of plant genomics in model crops and plants and enhanced the discovery of hidden bridges between genotypes and phenotypes. The newly generated reference sequences of unstudied minor plants can be annotated by the knowledge of model plants via translational genomics approaches. Here, we reviewed the strategies of translational genomics and suggested perspectives on the current databases of genomic resources and the database structures of translated information on the new genome. As a draft picture of phenotypic annotation, translational genomics on newly sequenced plants will provide valuable assistance for breeders and researchers who are interested in genetic studies. PMID:26269219

  12. The value of wild Theobroma germplasm in genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traditional Theobroma cacao (cacao) breeding has only been marginally successful in improving bean yields and disease resistance. A little over 10 years ago, a Marker-Assisted-Selection (MAS) program was developed for cacao and MAS has significantly increased the rate of genetic gain. Whole genome s...

  13. Genomic analysis of the stress response of rainbow trout

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic analyses have the potential to impact selective breeding programs by identifying markers as proxies for traits which are expensive or difficult to measure. One such set of traits is the physiological responses of rainbow trout to the stresses of the aquaculture environment. Typical stresso...

  14. A Perl script for targeted local genome assembly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whenever a finished genome is unavailable, the characterization of gene families, promoters, and enhancers, would benefit from a program for de novo assembly around a user-supplied initial sequence. The iterative script described here uses blast and phrap for this purpose. At each cycle, the scri...

  15. Sequencing the Genome of the Heirloom Watermelon Cultivar Charleston Gray

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genome of the watermelon cultivar Charleston Gray, a major heirloom which has been used in breeding programs of many watermelon cultivars, was sequenced. Our strategy involved a hybrid approach using the Illumina and 454/Titanium next-generation sequencing technologies. For Illumina, shotgun g...

  16. Cancer Genetic Markers of Susceptibility | Office of Cancer Genomics

    Cancer.gov

    The Cancer Genetic Markers of Susceptibility (CGEMS) project began in 2005 as a 3-year pilot study to identify inherited genetic susceptibility to prostate and breast cancer. CGEMS has developed into a successful research program of genome-wide association studies (GWAS) to identify genetic variants that affect a person’s risk of developing cancer.

  17. Genome size of human oral Treponema species by pulsed-field gel electrophoresis.

    PubMed

    Correia, F F; Plummer, A R; Paster, B J; Dewhirst, F E

    2004-04-01

    The genome sizes of seven strains of oral treponemes were determined using pulsed-field gel electrophoresis (PFGE). These strains represent members from six of the currently known cultivable oral treponeme groups. The PFGE fragments were digitally recorded and then quantitated using GIMP v 1.2, an image manipulation program. The results show that the six oral treponeme genomes are comparable in size, ranging from approximately 2.2 to 2.5 Mbp. The genome sizes of these strains are 20-25% smaller than Treponema denticola strains, which have genome sizes of approximately 2.8-3.0 Mbp. PMID:14871355

  18. Complete genome sequence of the Antarctic Halorubrum lacusprofundi type strain ACAM 34.

    PubMed

    Anderson, Iain J; DasSarma, Priya; Lucas, Susan; Copeland, Alex; Lapidus, Alla; Del Rio, Tijana Glavina; Tice, Hope; Dalin, Eileen; Bruce, David C; Goodwin, Lynne; Pitluck, Sam; Sims, David; Brettin, Thomas S; Detter, John C; Han, Cliff S; Larimer, Frank; Hauser, Loren; Land, Miriam; Ivanova, Natalia; Richardson, Paul; Cavicchioli, Ricardo; DasSarma, Shiladitya; Woese, Carl R; Kyrpides, Nikos C

    2016-01-01

    Halorubrum lacusprofundi is an extreme halophile within the archaeal phylum Euryarchaeota. The type strain ACAM 34 was isolated from Deep Lake, Antarctica. H. lacusprofundi is of phylogenetic interest because it is distantly related to the haloarchaea that have previously been sequenced. It is also of interest because of its psychrotolerance. We report here the complete genome sequence of H. lacusprofundi type strain ACAM 34 and its annotation. This genome is part of a 2006 Joint Genome Institute Community Sequencing Program project to sequence genomes of diverse Archaea. PMID:27617060

  19. Complete genome sequence of Halopiger xanaduensis type strain (SH6T)

    SciTech Connect

    Anderson, Iain; Tindall, Brian; Rohde, Manfred; Lucas, Susan; Han, James; Lapidus, Alla L.; Cheng, Jan-Fang; Goodwin, Lynne A.; Pitluck, Sam; Peters, Lin; Pati, Amrita; Mikhailova, Natalia; Pagani, Ioanna; Teshima, Hazuki; Han, Cliff; Tapia, Roxanne; Land, Miriam L; Woyke, Tanja; Klenk, Hans-Peter; Kyrpides, Nikos C; Ivanova, N

    2012-01-01

    Halopiger xanaduensis is the type species of the genus Halopiger and belongs to the euryarchaeal family Halobacteriaceae. H. xanaduensis strain SH-6, which is designated as the type strain, was isolated from the sediment of a salt lake in Inner Mongolia, Lake Shangmatala. Like other members of the family Halobacteriaceae, it is an extreme halophile requiring at least 2.5 M salt for growth. We report here the sequencing and annotation of the 4,355,268 bp genome, which includes one chromosome and three plasmids. This genome is part of a Joint Genome Institute (JGI) Community Sequencing Program (CSP) project to sequence diverse haloarchaeal genomes.

  20. Connecting Genomic Alterations to Cancer Biology with Proteomics: The NCI Clinical Proteomic Tumor Analysis Consortium

    SciTech Connect

    Ellis, Matthew; Gillette, Michael; Carr, Steven A.; Paulovich, Amanda G.; Smith, Richard D.; Rodland, Karin D.; Townsend, Reid; Kinsinger, Christopher; Mesri, Mehdi; Rodriguez, Henry; Liebler, Daniel

    2013-10-03

    The National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium is applying the latest generation of proteomic technologies to genomically annotated tumors from The Cancer Genome Atlas (TCGA) program, a joint initiative of the NCI and the National Human Genome Research Institute. By providing a fully integrated accounting of DNA, RNA, and protein abnormalities in individual tumors, these datasets will illuminate the complex relationship between genomic abnormalities and cancer phenotypes, thus producing biologic insights as well as a wave of novel candidate biomarkers and therapeutic targets amenable to verifi cation using targeted mass spectrometry methods.

  1. The fungal genome initiative and lessons learned from genome sequencing.

    PubMed

    Cuomo, Christina A; Birren, Bruce W

    2010-01-01

    The sequence of Saccharomyces cerevisiae enabled systematic genome-wide experimental approaches, demonstrating the power of having the complete genome of an organism. The rapid impact of these methods on research in yeast mobilized an effort to expand genomic resources for other fungi. The "fungal genome initiative" represents an organized genome sequencing effort to promote comparative and evolutionary studies across the fungal kingdom. Through such an approach, scientists can not only better understand specific organisms but also illuminate the shared and unique aspects of fungal biology that underlie the importance of fungi in biomedical research, health, food production, and industry. To date, assembled genomes for over 100 fungi are available in public databases, and many more sequencing projects are underway. Here, we discuss both examples of findings from comparative analysis of fungal sequences, with a specific emphasis on yeast genomes, and on the analytical approaches taken to mine fungal genomes. New sequencing methods are accelerating comparative studies of fungi by reducing the cost and difficulty of sequencing. This has driven more common use of sequencing applications, such as to study genome-wide variation in populations or to deeply profile RNA transcripts. These and further technological innovations will continue to be piloted in yeasts and other fungi, and will expand the applications of sequencing to study fungal biology. PMID:20946837

  2. Genomic Data Commons and Genomic Cloud Pilots - Google Hangout

    Cancer.gov

    Join us for a live, moderated discussion about two NCI efforts to expand access to cancer genomics data: the Genomic Data Commons and Genomic Cloud Pilots. NCI subject matters experts will include Louis M. Staudt, M.D., Ph.D., Director Center for Cancer Genomics, Warren Kibbe, Ph.D., Director, NCI Center for Biomedical Informatics and Information Technology, and moderated by Anthony Kerlavage, Ph.D., Chief, Cancer Informatics Branch, Center for Biomedical Informatics and Information Technology. We welcome your questions before and during the Hangout on Twitter using the hashtag #AskNCI.

  3. The coffee genome hub: a resource for coffee genomes

    PubMed Central

    Dereeper, Alexis; Bocs, Stéphanie; Rouard, Mathieu; Guignon, Valentin; Ravel, Sébastien; Tranchant-Dubreuil, Christine; Poncet, Valérie; Garsmeur, Olivier; Lashermes, Philippe; Droc, Gaëtan

    2015-01-01

    The whole genome sequence of Coffea canephora, the perennial diploid species known as Robusta, has been recently released. In the context of the C. canephora genome sequencing project and to support post-genomics efforts, we developed the Coffee Genome Hub (http://coffee-genome.org/), an integrative genome information system that allows centralized access to genomics and genetics data and analysis tools to facilitate translational and applied research in coffee. We provide the complete genome sequence of C. canephora along with gene structure, gene product information, metabolism, gene families, transcriptomics, syntenic blocks, genetic markers and genetic maps. The hub relies on generic software (e.g. GMOD tools) for easy querying, visualizing and downloading research data. It includes a Genome Browser enhanced by a Community Annotation System, enabling the improvement of automatic gene annotation through an annotation editor. In addition, the hub aims at developing interoperability among other existing South Green tools managing coffee data (phylogenomics resources, SNPs) and/or supporting data analyses with the Galaxy workflow manager. PMID:25392413

  4. The Saccharomyces Genome Database: Exploring Genome Features and Their Annotations.

    PubMed

    Cherry, J Michael

    2015-12-01

    Genomic-scale assays result in data that provide information over the entire genome. Such base pair resolution data cannot be summarized easily except via a graphical viewer. A genome browser is a tool that displays genomic data and experimental results as horizontal tracks. Genome browsers allow searches for a chromosomal coordinate or a feature, such as a gene name, but they do not allow searches by function or upstream binding site. Entry into a genome browser requires that you identify the gene name or chromosomal coordinates for a region of interest. A track provides a representation for genomic results and is displayed as a row of data shown as line segments to indicate regions of the chromosome with a feature. Another type of track presents a graph or wiggle plot that indicates the processed signal intensity computed for a particular experiment or set of experiments. Wiggle plots are typical for genomic assays such as the various next-generation sequencing methods (e.g., chromatin immunoprecipitation [ChIP]-seq or RNA-seq), where it represents a peak of DNA binding, histone modification, or the mapping of an RNA sequence. Here we explore the browser that has been built into the Saccharomyces Genome Database (SGD). PMID:26631126

  5. Flexible genomic islands as drivers of genome evolution.

    PubMed

    Rodriguez-Valera, Francisco; Martin-Cuadrado, Ana-Belen; López-Pérez, Mario

    2016-06-01

    Natural prokaryotic populations are composed of multiple clonal lineages that are different in their core genomes in a range that varies typically between 95 and 100% nucleotide identity. Each clonal lineage also carries a complement of not shared flexible genes that can be very large. The compounded flexible genome provides polyclonal populations with enormous gene diversity that can be used to efficiently exploit resources. This has fundamental repercussions for interpreting individual bacterial genomes. They are better understood as parts rather than the whole. Multiple genomes are required to understand how the population interacts with its biotic and abiotic environment. PMID:27085300

  6. Defining Genome Maintenance Pathways using Functional Genomic Approaches

    PubMed Central

    Bansbach, Carol E.; Cortez, David

    2011-01-01

    Genome maintenance activities including DNA repair, cell division cycle control, and checkpoint signaling pathways preserve genome integrity and prevent disease. Defects in these pathways cause birth defects, neurodegeneration, premature aging, and cancer. Recent technical advances in functional genomic approaches such as expression profiling, proteomics, and RNA interference (RNAi) technologies have rapidly expanded our knowledge of the proteins that work in these pathways. In this review, we examine the use of these high-throughput methodologies in higher eukaryotic organisms for the interrogation of genome maintenance activities. PMID:21787120

  7. Genome Projector: zoomable genome map with multiple views

    PubMed Central

    Arakawa, Kazuharu; Tamaki, Satoshi; Kono, Nobuaki; Kido, Nobuhiro; Ikegami, Keita; Ogawa, Ryu; Tomita, Masaru

    2009-01-01

    Background Molecular biology data exist on diverse scales, from the level of molecules to -omics. At the same time, the data at each scale can be categorised into multiple layers, such as the genome, transcriptome, proteome, metabolome, and biochemical pathways. Due to the highly multi-layer and multi-dimensional nature of biological information, software interfaces for database browsing should provide an intuitive interface that allows for rapid migration across different views and scales. The Zoomable User Interface (ZUI) and tabbed browsing have proven successful for this purpose in other areas, especially to navigate the vast information in the World Wide Web. Results This paper presents Genome Projector, a Web-based gateway for genomics information with a zoomable user interface using Google Maps API, equipped with four seamlessly accessible and searchable views: a circular genome map, a traditional genome map, a biochemical pathways map, and a DNA walk map. The Web application for 320 bacterial genomes is available at . All data and software including the source code, documentations, and development API are freely available under the GNU General Public License. Zoomable maps can be easily created from any image file using the development API, and an online data mapping service for Genome Projector is also available at our Web site. Conclusion Genome Projector is an intuitive Web application for browsing genomics information, implemented with a zoomable user interface and tabbed browsing utilising Google Maps API and Asynchronous JavaScript and XML (AJAX) technology. PMID:19166610

  8. The Anolis Lizard Genome: An Amniote Genome without Isochores?

    PubMed Central

    Costantini, Maria; Greif, Gonzalo; Alvarez-Valin, Fernando; Bernardi, Giorgio

    2016-01-01

    Two articles published 5 years ago concluded that the genome of the lizard Anolis carolinensis is an amniote genome without isochores. This claim was apparently contradicting previous results on the general presence of an isochore organization in all vertebrate genomes tested (including Anolis). In this investigation, we demonstrate that the Anolis genome is indeed heterogeneous in base composition, since its macrochromosomes comprise isochores mainly from the L2 and H1 families (a moderately GC-poor and a moderately GC-rich family, respectively), and since the majority of the sequenced microchromosomes consists of H1 isochores. These families are associated with different features of genome structure, including gene density and compositional correlations (e.g., GC3 vs flanking sequence GC and intron GC), as in the case of mammalian and avian genomes. Moreover, the assembled Anolis chromosomes have an enormous number of gaps, which could be due to sequencing problems in GC-rich regions of the genome. In conclusion, the Anolis genome is no exception to the general rule of an isochore organization in the genomes of vertebrates (and other eukaryotes). PMID:26992416

  9. The coffee genome hub: a resource for coffee genomes.

    PubMed

    Dereeper, Alexis; Bocs, Stéphanie; Rouard, Mathieu; Guignon, Valentin; Ravel, Sébastien; Tranchant-Dubreuil, Christine; Poncet, Valérie; Garsmeur, Olivier; Lashermes, Philippe; Droc, Gaëtan

    2015-01-01

    The whole genome sequence of Coffea canephora, the perennial diploid species known as Robusta, has been recently released. In the context of the C. canephora genome sequencing project and to support post-genomics efforts, we developed the Coffee Genome Hub (http://coffee-genome.org/), an integrative genome information system that allows centralized access to genomics and genetics data and analysis tools to facilitate translational and applied research in coffee. We provide the complete genome sequence of C. canephora along with gene structure, gene product information, metabolism, gene families, transcriptomics, syntenic blocks, genetic markers and genetic maps. The hub relies on generic software (e.g. GMOD tools) for easy querying, visualizing and downloading research data. It includes a Genome Browser enhanced by a Community Annotation System, enabling the improvement of automatic gene annotation through an annotation editor. In addition, the hub aims at developing interoperability among other existing South Green tools managing coffee data (phylogenomics resources, SNPs) and/or supporting data analyses with the Galaxy workflow manager. PMID:25392413

  10. Mechanisms of germ line genome instability.

    PubMed

    Kim, Seoyoung; Peterson, Shaun E; Jasin, Maria; Keeney, Scott

    2016-06-01

    During meiosis, numerous DNA double-strand breaks (DSBs) are formed as part of the normal developmental program. This seemingly destructive behavior is necessary for successful meiosis, since repair of the DSBs through homologous recombination (HR) helps to produce physical links between the homologous chromosomes essential for correct chromosome segregation later in meiosis. However, DSB formation at such a massive scale also introduces opportunities to generate gross chromosomal rearrangements. In this review, we explore ways in which meiotic DSBs can result in such genomic alterations. PMID:26880205

  11. Mosquito genomics: progress and challenges.

    PubMed

    Severson, David W; Behura, Susanta K

    2012-01-01

    The whole-genome sequencing of mosquitoes has facilitated our understanding of fundamental biological processes at their basic molecular levels and holds potential for application to mosquito control and prevention of mosquito-borne disease transmission. Draft genome sequences are available for Anopheles gambiae, Aedes aegypti, and Culex quinquefasciatus. Collectively, these represent the major vectors of African malaria, dengue fever and yellow fever viruses, and lymphatic filariasis, respectively. Rapid advances in genome technologies have revealed detailed information on genome architecture as well as phenotype-specific transcriptomics and proteomics. These resources allow for detailed comparative analyses within and across populations as well as species. Next-generation sequencing technologies will likely promote a proliferation of genome sequences for additional mosquito species as well as for individual insects. Here we review the current status of genome research in mosquitoes and identify potential areas for further investigations. PMID:21942845

  12. Invariants of DNA genomic signals

    NASA Astrophysics Data System (ADS)

    Cristea, Paul Dan A.

    2005-02-01

    For large scale analysis purposes, the conversion of genomic sequences into digital signals opens the possibility to use powerful signal processing methods for handling genomic information. The study of complex genomic signals reveals large scale features, maintained over the scale of whole chromosomes, that would be difficult to find by using only the symbolic representation. Based on genomic signal methods and on statistical techniques, the paper defines parameters of DNA sequences which are invariant to transformations induced by SNPs, splicing or crossover. Re-orienting concatenated coding regions in the same direction, regularities shared by the genomic material in all exons are revealed, pointing towards the hypothesis of a regular ancestral structure from which the current chromosome structures have evolved. This property is not found in non-nuclear genomic material, e.g., plasmids.

  13. The genome of Eucalyptus grandis.

    PubMed

    Myburg, Alexander A; Grattapaglia, Dario; Tuskan, Gerald A; Hellsten, Uffe; Hayes, Richard D; Grimwood, Jane; Jenkins, Jerry; Lindquist, Erika; Tice, Hope; Bauer, Diane; Goodstein, David M; Dubchak, Inna; Poliakov, Alexandre; Mizrachi, Eshchar; Kullan, Anand R K; Hussey, Steven G; Pinard, Desre; van der Merwe, Karen; Singh, Pooja; van Jaarsveld, Ida; Silva-Junior, Orzenil B; Togawa, Roberto C; Pappas, Marilia R; Faria, Danielle A; Sansaloni, Carolina P; Petroli, Cesar D; Yang, Xiaohan; Ranjan, Priya; Tschaplinski, Timothy J; Ye, Chu-Yu; Li, Ting; Sterck, Lieven; Vanneste, Kevin; Murat, Florent; Soler, Marçal; Clemente, Hélène San; Saidi, Naijib; Cassan-Wang, Hua; Dunand, Christophe; Hefer, Charles A; Bornberg-Bauer, Erich; Kersting, Anna R; Vining, Kelly; Amarasinghe, Vindhya; Ranik, Martin; Naithani, Sushma; Elser, Justin; Boyd, Alexander E; Liston, Aaron; Spatafora, Joseph W; Dharmwardhana, Palitha; Raja, Rajani; Sullivan, Christopher; Romanel, Elisson; Alves-Ferreira, Marcio; Külheim, Carsten; Foley, William; Carocha, Victor; Paiva, Jorge; Kudrna, David; Brommonschenkel, Sergio H; Pasquali, Giancarlo; Byrne, Margaret; Rigault, Philippe; Tibbits, Josquin; Spokevicius, Antanas; Jones, Rebecca C; Steane, Dorothy A; Vaillancourt, René E; Potts, Brad M; Joubert, Fourie; Barry, Kerrie; Pappas, Georgios J; Strauss, Steven H; Jaiswal, Pankaj; Grima-Pettenati, Jacqueline; Salse, Jérôme; Van de Peer, Yves; Rokhsar, Daniel S; Schmutz, Jeremy

    2014-06-19

    Eucalypts are the world's most widely planted hardwood trees. Their outstanding diversity, adaptability and growth have made them a global renewable resource of fibre and energy. We sequenced and assembled >94% of the 640-megabase genome of Eucalyptus grandis. Of 36,376 predicted protein-coding genes, 34% occur in tandem duplications, the largest proportion thus far in plant genomes. Eucalyptus also shows the highest diversity of genes for specialized metabolites such as terpenes that act as chemical defence and provide unique pharmaceutical oils. Genome sequencing of the E. grandis sister species E. globulus and a set of inbred E. grandis tree genomes reveals dynamic genome evolution and hotspots of inbreeding depression. The E. grandis genome is the first reference for the eudicot order Myrtales and is placed here sister to the eurosids. This resource expands our understanding of the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology. PMID:24919147

  14. Big Data: Astronomical or Genomical?

    PubMed

    Stephens, Zachary D; Lee, Skylar Y; Faghri, Faraz; Campbell, Roy H; Zhai, Chengxiang; Efron, Miles J; Iyer, Ravishankar; Schatz, Michael C; Sinha, Saurabh; Robinson, Gene E

    2015-07-01

    Genomics is a Big Data science and is going to get much bigger, very soon, but it is not known whether the needs of genomics will exceed other Big Data domains. Projecting to the year 2025, we compared genomics with three other major generators of Big Data: astronomy, YouTube, and Twitter. Our estimates show that genomics is a "four-headed beast"--it is either on par with or the most demanding of the domains analyzed here in terms of data acquisition, storage, distribution, and analysis. We discuss aspects of new technologies that will need to be developed to rise up and meet the computational challenges that genomics poses for the near future. Now is the time for concerted, community-wide planning for the "genomical" challenges of the next decade. PMID:26151137

  15. EMERGE: a flexible modelling framework to predict genomic regulatory elements from genomic signatures

    PubMed Central

    van Duijvenboden, Karel; de Boer, Bouke A.; Capon, Nicolas; Ruijter, Jan M.; Christoffels, Vincent M.

    2016-01-01

    Regulatory DNA elements, short genomic segments that regulate gene expression, have been implicated in developmental disorders and human disease. Despite this clinical urgency, only a small fraction of the regulatory DNA repertoire has been confirmed through reporter gene assays. The overall success rate of functional validation of candidate regulatory elements is low. Moreover, the number and diversity of datasets from which putative regulatory elements can be identified is large and rapidly increasing. We generated a flexible and user-friendly tool to integrate the information from different types of genomic datasets, e.g. ATAC-seq, ChIP-seq, conservation, aiming to increase the ease and success rate of functional prediction. To this end, we developed the EMERGE program that merges all datasets that the user considers informative and uses a logistic regression framework, based on validated functional elements, to set optimal weights to these datasets. ROC curve analysis shows that a combination of datasets leads to improved prediction of tissue-specific enhancers in human, mouse and Drosophila genomes. Functional assays based on this prediction can be expected to have substantially higher success rates. The resulting integrated signal for prediction of functional elements can be plotted in a build-in genome browser or exported for further analysis. PMID:26531828

  16. International Cancer Genome Consortium Data Portal--a one-stop shop for cancer genomics data.

    PubMed

    Zhang, Junjun; Baran, Joachim; Cros, A; Guberman, Jonathan M; Haider, Syed; Hsu, Jack; Liang, Yong; Rivkin, Elena; Wang, Jianxin; Whitty, Brett; Wong-Erasmus, Marie; Yao, Long; Kasprzyk, Arek

    2011-01-01

    The International Cancer Genome Consortium (ICGC) is a collaborative effort to characterize genomic abnormalities in 50 different cancer types. To make this data available, the ICGC has created the ICGC Data Portal. Powered by the BioMart software, the Data Portal allows each ICGC member institution to manage and maintain its own databases locally, while seamlessly presenting all the data in a single access point for users. The Data Portal currently contains data from 24 cancer projects, including ICGC, The Cancer Genome Atlas (TCGA), Johns Hopkins University, and the Tumor Sequencing Project. It consists of 3478 genomes and 13 cancer types and subtypes. Available open access data types include simple somatic mutations, copy number alterations, structural rearrangements, gene expression, microRNAs, DNA methylation and exon junctions. Additionally, simple germline variations are available as controlled access data. The Data Portal uses a web-based graphical user interface (GUI) to offer researchers multiple ways to quickly and easily search and analyze the available data. The web interface can assist in constructing complicated queries across multiple data sets. Several application programming interfaces are also available for programmatic access. Here we describe the organization, functionality, and capabilities of the ICGC Data Portal. PMID:21930502

  17. Human Genome Diversity workshop 1

    SciTech Connect

    1992-12-31

    The Human Genome Diversity Project (HGD) is an international interdisciplinary program whose goal is to reveal as much as possible about the current state of genetic diversity among humans and the processes that were responsible for that diversity. Classical premolecular techniques have already proved that a significant component of human genetic variability lies within populations rather than among them. New molecular techniques will permit a dramatic increase in the resolving power of genetic analysis at the population level. Recent social changes in many parts of the world threaten the identity of a number of populations that may be extremely important for understanding human evolutionary history. It is therefore urgent to conduct research on human variation in these areas, while there is still time. The plan is to identify the most representative descendants of ancestral human populations worldwide and then to preserve genetic records of these populations. This is a report of the Population Genetics Workshop (Workshop 1), the first of three to be held to plan HGD, which was focused on sampling strategies and analytic methods from population genetics. The topics discussed were sampling and population structure; analysis of populations; drift versus natural selection; modeling migration and population subdivision; and population structure and subdivision.

  18. Genomics Nursing Faculty Champion Initiative

    PubMed Central

    Jenkins, Jean; Calzone, Kathleen A.

    2016-01-01

    Nurse faculty are challenged to keep up with the emerging and fast-paced field of genomics and the mandate to prepare the nursing workforce to be able to translate genomic research advances into routine clinical care. Using Faculty Champions and other options, the initiative stimulated curriculum development and promoted genomics curriculum integration. The authors summarize this yearlong initiative for undergraduate and graduate nursing faculty. PMID:24300251

  19. Cactus Graphs for Genome Comparisons

    NASA Astrophysics Data System (ADS)

    Paten, Benedict; Diekhans, Mark; Earl, Dent; St. John, John; Ma, Jian; Suh, Bernard; Haussler, David

    We introduce a data structure, analysis and visualization scheme called a cactus graph for comparing sets of related genomes. Cactus graphs capture some of the advantages of de Bruijn and breakpoint graphs in one unified framework. They naturally decompose the common substructures in a set of related genomes into a hierarchy of chains that can be visualized as multiple alignments and nets that can be visualized in circular genome plots.

  20. Descartes' fly: the geometry of genomic annotation.

    PubMed

    Kim, J

    2001-03-01

    The completion of the Drosophila melanogaster genome marks another significant milestone in the growth of sequence information. But it also contributes to the ever-widening gap between sequence information and biological knowledge. One important approach to reducing this gap is theoretical inference through computational technologies. Many computer programs have been designed to annotate genomic sequence information with biologically relevant information. Here, I suggest that all of these methods have a common structure in which the sequence fragments are "coordinated" by some method of description such as Hidden Markov models. The key to the algorithms lies in constructing the most efficient set of coordinates that allow extrapolation and interpolation from existing knowledge. Efficient extrapolation and interpolation are produced if the sequence fragments acquire a natural geometrical structure in the coordinated description. Finding such a coordinate frame is an inductive problem with no algorithmic solution. The greater part of the problem of genomic annotation lies in biological modeling of the data rather than in algorithmic improvements. PMID:11793243