Science.gov

Sample records for genome scale transcriptome

  1. Genome Scale Transcriptomics of Baculovirus-Insect Interactions

    PubMed Central

    Nguyen, Quan; Nielsen, Lars K.; Reid, Steven

    2013-01-01

    Baculovirus-insect cell technologies are applied in the production of complex proteins, veterinary and human vaccines, gene delivery vectors‚ and biopesticides. Better understanding of how baculoviruses and insect cells interact would facilitate baculovirus-based production. While complete genomic sequences are available for over 58 baculovirus species, little insect genomic information is known. The release of the Bombyx mori and Plutella xylostella genomes, the accumulation of EST sequences for several Lepidopteran species, and especially the availability of two genome-scale analysis tools, namely oligonucleotide microarrays and next generation sequencing (NGS), have facilitated expression studies to generate a rich picture of insect gene responses to baculovirus infections. This review presents current knowledge on the interaction dynamics of the baculovirus-insect system‚ which is relatively well studied in relation to nucleocapsid transportation, apoptosis, and heat shock responses, but is still poorly understood regarding responses involved in pro-survival pathways, DNA damage pathways, protein degradation, translation, signaling pathways, RNAi pathways, and importantly metabolic pathways for energy, nucleotide and amino acid production. We discuss how the two genome-scale transcriptomic tools can be applied for studying such pathways and suggest that proteomics and metabolomics can produce complementary findings to transcriptomic studies. PMID:24226166

  2. Genome-Scale Transcriptome Analysis of the Desert Shrub Artemisia sphaerocephala

    PubMed Central

    Zhang, Lijing; Hu, Xiaowei; Miao, Xiumei; Chen, Xiaolong; Nan, Shuzhen; Fu, Hua

    2016-01-01

    Background Artemisia sphaerocephala, a semi-shrub belonging to the Artemisia genus of the Compositae family, is an important pioneer plant that inhabits moving and semi-stable sand dunes in the deserts and steppes of northwest and north-central China. It is very resilient in extreme environments. Additionally, its seeds have excellent nutritional value, and the abundant lipids and polysaccharides in the seeds make this plant a potential valuable source of bio-energy. However, partly due to the scarcity of genetic information, the genetic mechanisms controlling the traits and environmental adaptation capacity of A. sphaerocephala are unknown. Results Here, we present the first in-depth transcriptomic analysis of A. sphaerocephala. To maximize the representation of conditional transcripts, mRNA was obtained from 17 samples, including living tissues of desert-growing A. sphaerocephala, seeds germinated in the laboratory, and calli subjected to no stress (control) and high and low temperature, high and low osmotic, and salt stresses. De novo transcriptome assembly performed using an Illumina HiSeq 2500 platform resulted in the generation of 68,373 unigenes. We analyzed the key genes involved in the unsaturated fatty acid synthesis pathway and identified 26 A. sphaerocephala fad2 genes, which is the largest fad2 gene family reported to date. Furthermore, a set of genes responsible for resistance to extreme temperatures, salt, drought and a combination of stresses was identified. Conclusion The present work provides abundant genomic information for functional dissection of the important traits of A. sphaerocephala and contributes to the current understanding of molecular adaptive mechanisms of A. sphaerocephala in the desert environment. Identification of the key genes in the unsaturated fatty acid synthesis pathway could increase understanding of the biological regulatory mechanisms of fatty acid composition traits in plants and facilitate genetic manipulation of the

  3. Genome-scale DNA methylome and transcriptome profiling of human neutrophils

    PubMed Central

    Chatterjee, Aniruddha; Stockwell, Peter A.; Rodger, Euan J.; Morison, Ian M.

    2016-01-01

    Methylation of DNA molecules is a key mechanism associated with human disease, altered gene expression and phenotype. Using reduced representation bisulphite sequencing (RRBS) technology we have analysed DNA methylation patterns in healthy individuals and identified genes showing significant inter-individual variation. Further, using whole genome transcriptome analysis (RNA-Seq) on the same individuals we showed a local and specific relationship of exon inclusion and variable DNA methylation pattern. For RRBS, 363 million, 100-bp reads were generated from 13 samples using Illumina GAII and HiSeq2000 platforms. Here we also present additional RRBS data for a female pair of monozygotic twins that was not described in our original publication. Further, We performed RNA-Seq on four of these individuals, generating 174 million, 51-bp high quality reads on an Illumina HiSeq2000 platform. The current data set could be exploited as a comprehensive resource for understanding the nature and mechanism of variable phenotypic traits and altered disease susceptibility due to variable DNA methylation and gene expression patterns in healthy individuals. PMID:26978482

  4. Genome-scale DNA methylome and transcriptome profiling of human neutrophils.

    PubMed

    Chatterjee, Aniruddha; Stockwell, Peter A; Rodger, Euan J; Morison, Ian M

    2016-01-01

    Methylation of DNA molecules is a key mechanism associated with human disease, altered gene expression and phenotype. Using reduced representation bisulphite sequencing (RRBS) technology we have analysed DNA methylation patterns in healthy individuals and identified genes showing significant inter-individual variation. Further, using whole genome transcriptome analysis (RNA-Seq) on the same individuals we showed a local and specific relationship of exon inclusion and variable DNA methylation pattern. For RRBS, 363 million, 100-bp reads were generated from 13 samples using Illumina GAII and HiSeq2000 platforms. Here we also present additional RRBS data for a female pair of monozygotic twins that was not described in our original publication. Further, We performed RNA-Seq on four of these individuals, generating 174 million, 51-bp high quality reads on an Illumina HiSeq2000 platform. The current data set could be exploited as a comprehensive resource for understanding the nature and mechanism of variable phenotypic traits and altered disease susceptibility due to variable DNA methylation and gene expression patterns in healthy individuals. PMID:26978482

  5. Transcriptome-based exon capture enables highly cost-effective comparative genomic data collection at moderate evolutionary scales

    PubMed Central

    2012-01-01

    Background To date, exon capture has largely been restricted to species with fully sequenced genomes, which has precluded its application to lineages that lack high quality genomic resources. We developed a novel strategy for designing array-based exon capture in chipmunks (Tamias) based on de novo transcriptome assemblies. We evaluated the performance of our approach across specimens from four chipmunk species. Results We selectively targeted 11,975 exons (~4 Mb) on custom capture arrays, and enriched over 99% of the targets in all libraries. The percentage of aligned reads was highly consistent (24.4-29.1%) across all specimens, including in multiplexing up to 20 barcoded individuals on a single array. Base coverage among specimens and within targets in each species library was uniform, and the performance of targets among independent exon captures was highly reproducible. There was no decrease in coverage among chipmunk species, which showed up to 1.5% sequence divergence in coding regions. We did observe a decline in capture performance of a subset of targets designed from a much more divergent ground squirrel genome (30 My), however, over 90% of the targets were also recovered. Final assemblies yielded over ten thousand orthologous loci (~3.6 Mb) with thousands of fixed and polymorphic SNPs among species identified. Conclusions Our study demonstrates the potential of a transcriptome-enabled, multiplexed, exon capture method to create thousands of informative markers for population genomic and phylogenetic studies in non-model species across the tree of life. PMID:22900609

  6. New Frontiers in Schistosoma Genomics and Transcriptomics

    PubMed Central

    Nahum, Laila A.; Mourão, Marina M.; Oliveira, Guilherme

    2012-01-01

    Schistosomes are digenean blood flukes of aves and mammals comprising 23 species. Some species are causative agents of human schistosomiasis, the second major neglected disease affecting over 230 million people worldwide. Modern technologies including the sequencing and characterization of nucleic acids and proteins have allowed large-scale analyses of parasites and hosts, opening new frontiers in biological research with potential biomedical and biotechnological applications. Nuclear genomes of the three most socioeconomically important species (S. haematobium, S. japonicum, and S. mansoni) have been sequenced and are under intense investigation. Mitochondrial genomes of six Schistosoma species have also been completely sequenced and analysed from an evolutionary perspective. Furthermore, DNA barcoding of mitochondrial sequences is used for biodiversity assessment of schistosomes. Despite the efforts in the characterization of Schistosoma genomes and transcriptomes, many questions regarding the biology and evolution of this important taxon remain unanswered. This paper aims to discuss some advances in the schistosome research with emphasis on genomics and transcriptomics. It also aims to discuss the main challenges of the current research and to point out some future directions in schistosome studies. PMID:23227308

  7. Optimal Scaling of Digital Transcriptomes

    PubMed Central

    Glusman, Gustavo; Caballero, Juan; Robinson, Max; Kutlu, Burak; Hood, Leroy

    2013-01-01

    Deep sequencing of transcriptomes has become an indispensable tool for biology, enabling expression levels for thousands of genes to be compared across multiple samples. Since transcript counts scale with sequencing depth, counts from different samples must be normalized to a common scale prior to comparison. We analyzed fifteen existing and novel algorithms for normalizing transcript counts, and evaluated the effectiveness of the resulting normalizations. For this purpose we defined two novel and mutually independent metrics: (1) the number of “uniform” genes (genes whose normalized expression levels have a sufficiently low coefficient of variation), and (2) low Spearman correlation between normalized expression profiles of gene pairs. We also define four novel algorithms, one of which explicitly maximizes the number of uniform genes, and compared the performance of all fifteen algorithms. The two most commonly used methods (scaling to a fixed total value, or equalizing the expression of certain ‘housekeeping’ genes) yielded particularly poor results, surpassed even by normalization based on randomly selected gene sets. Conversely, seven of the algorithms approached what appears to be optimal normalization. Three of these algorithms rely on the identification of “ubiquitous” genes: genes expressed in all the samples studied, but never at very high or very low levels. We demonstrate that these include a “core” of genes expressed in many tissues in a mutually consistent pattern, which is suitable for use as an internal normalization guide. The new methods yield robustly normalized expression values, which is a prerequisite for the identification of differentially expressed and tissue-specific genes as potential biomarkers. PMID:24223126

  8. Understanding Haemonchus contortus Better Through Genomics and Transcriptomics.

    PubMed

    Gasser, R B; Schwarz, E M; Korhonen, P K; Young, N D

    2016-01-01

    Parasitic roundworms (nematodes) cause substantial mortality and morbidity in animals globally. The barber's pole worm, Haemonchus contortus, is one of the most economically significant parasitic nematodes of small ruminants worldwide. Although this and related nematodes can be controlled relatively well using anthelmintics, resistance against most drugs in common use has become a major problem. Until recently, almost nothing was known about the molecular biology of H. contortus on a global scale. This chapter gives a brief background on H. contortus and haemonchosis, immune responses, vaccine research, chemotherapeutics and current problems associated with drug resistance. It also describes progress in transcriptomics before the availability of H. contortus genomes and the challenges associated with such work. It then reviews major progress on the two draft genomes and developmental transcriptomes of H. contortus, and summarizes their implications for the molecular biology of this worm in both the free-living and the parasitic stages of its life cycle. The chapter concludes by considering how genomics and transcriptomics can accelerate research on Haemonchus and related parasites, and can enable the development of new interventions against haemonchosis. PMID:27238012

  9. Sequencing the AML Genome, Transcriptome, and Epigenome

    PubMed Central

    Mardis, Elaine R.

    2014-01-01

    Leukemia is a disease that develops as a result of changes in the genomes of hematopoietic cells, a fact first appreciated by microscopic examination of the bone marrow cell chromosomes of affected patients. These studies revealed that specific subtypes of leukemia diagnosis correlated with specific chromosomal abnormalities, such as the t(15;17) of acute promyelocytic leukemia1 and the t(9;22) of chronic myeloid leukemia2. Over time, our genomic characterization of hematologic malignancies has moved beyond the resolution of the microscope to that of individual nucleotides in the analysis of whole genome sequencing data using state-of-the-art massively parallel sequencing (MPS) instruments and algorithmic analyses of the resulting data. In addition to studying the genomic sequence alterations that occur in patient’s genomes, these same instruments can decode the methylation landscape of the leukemia genome and the resulting RNA expression landscape of the leukemia transcriptome. Broad correlative analyses can then integrate these three data types to better inform researchers and clinicians about the biology of individual acute myeloid leukemia (AML) cases, facilitating improvements in care and prognosis. PMID:25311738

  10. Multi-Scale Genomic, Transcriptomic and Proteomic Analysis of Colorectal Cancer Cell Lines to Identify Novel Biomarkers

    PubMed Central

    Briffa, Romina; Um, Inhwa; Faratian, Dana; Zhou, Ying; Turnbull, Arran K.; Langdon, Simon P.; Harrison, David J.

    2015-01-01

    Selecting colorectal cancer (CRC) patients likely to respond to therapy remains a clinical challenge. The objectives of this study were to establish which genes were differentially expressed with respect to treatment sensitivity and relate this to copy number in a panel of 15 CRC cell lines. Copy number variations of the identified genes were assessed in a cohort of CRCs. IC50’s were measured for 5-fluorouracil, oxaliplatin, and BEZ-235, a PI3K/mTOR inhibitor. Cell lines were profiled using array comparative genomic hybridisation, Illumina gene expression analysis, reverse phase protein arrays, and targeted sequencing of KRAS hotspot mutations. Frequent gains were observed at 2p, 3q, 5p, 7p, 7q, 8q, 12p, 13q, 14q, and 17q and losses at 2q, 3p, 5q, 8p, 9p, 9q, 14q, 18q, and 20p. Frequently gained regions contained EGFR, PIK3CA, MYC, SMO, TRIB1, FZD1, and BRCA2, while frequently lost regions contained FHIT and MACROD2. TRIB1 was selected for further study. Gene enrichment analysis showed that differentially expressed genes with respect to treatment response were involved in Wnt signalling, EGF receptor signalling, apoptosis, cell cycle, and angiogenesis. Stepwise integration of copy number and gene expression data yielded 47 candidate genes that were significantly correlated. PDCD6 was differentially expressed in all three treatment responses. Tissue microarrays were constructed for a cohort of 118 CRC patients and TRIB1 and MYC amplifications were measured using fluorescence in situ hybridisation. TRIB1 and MYC were amplified in 14.5% and 7.4% of the cohort, respectively, and these amplifications were significantly correlated (p≤0.0001). TRIB1 protein expression in the patient cohort was significantly correlated with pERK, Akt, and Caspase 3 expression. In conclusion, a set of candidate predictive biomarkers for 5-fluorouracil, oxaliplatin, and BEZ235 are described that warrant further study. Amplification of the putative oncogene TRIB1 has been described for

  11. Using Transcriptomics to Understand the Wheat Genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat (Triticum aestivum L.) is one of the most important food crops in the world, and transcriptomics studies of this crop promise to reveal the expression dynamics of genes that control many agriculturally important traits. In this review of wheat transcriptomics research, the current status of tr...

  12. The Anadara trapezia transcriptome: a resource for molluscan physiological genomics.

    PubMed

    Prentis, Peter J; Pavasovic, Ana

    2014-12-01

    In this study we undertook deep sequencing of the blood cockle, Anadara trapezia, transcriptome to generate genomic resources for future functional genomics analyses. Over 27 million high quality paired end reads were assembled into 75024 contigs. Of these contigs, 29013 (38.7%) received significant BLASTx hits and gene ontology (GO) terms were assigned to 13718 of these sequences. This resource will facilitate physiological genomic studies to test the gene expression response of A. trapezia to various environmental stresses. PMID:25151889

  13. Translating cancer genomes and transcriptomes for precision oncology.

    PubMed

    Roychowdhury, Sameek; Chinnaiyan, Arul M

    2016-01-01

    Understanding the molecular landscape of cancer has facilitated the development of diagnostic, prognostic, and predictive biomarkers for clinical oncology. Developments in next-generation DNA sequencing technologies have increased the speed and reduced the cost of sequencing the nucleic acids of cancer cells. This has unlocked opportunities to characterize the genomic and transcriptomic landscapes of cancer for basic science research through projects like The Cancer Genome Atlas. The cancer genome includes DNA-based alterations, such as point mutations or gene duplications. The cancer transcriptome involves RNA-based alterations, including changes in messenger RNAs. Together, the genome and transcriptome can provide a comprehensive view of an individual patient's cancer that is beginning to impact real-time clinical decision-making. The authors discuss several opportunities for translating this basic science knowledge into clinical practice, including a molecular classification of cancer, heritable risk of cancer, eligibility for targeted therapies, and the development of innovative, genomic-based clinical trials. In this review, key applications and new directions are outlined for translating the cancer genome and transcriptome into patient care in the clinic. PMID:26528881

  14. Reptilian Transcriptomes v2.0: An Extensive Resource for Sauropsida Genomics and Transcriptomics

    PubMed Central

    Tzika, Athanasia C.; Ullate-Agote, Asier; Grbic, Djordje; Milinkovitch, Michel C.

    2015-01-01

    Despite the availability of deep-sequencing techniques, genomic and transcriptomic data remain unevenly distributed across phylogenetic groups. For example, reptiles are poorly represented in sequence databases, hindering functional evolutionary and developmental studies in these lineages substantially more diverse than mammals. In addition, different studies use different assembly and annotation protocols, inhibiting meaningful comparisons. Here, we present the “Reptilian Transcriptomes Database 2.0,” which provides extensive annotation of transcriptomes and genomes from species covering the major reptilian lineages. To this end, we sequenced normalized complementary DNA libraries of multiple adult tissues and various embryonic stages of the leopard gecko and the corn snake and gathered published reptilian sequence data sets from representatives of the four extant orders of reptiles: Squamata (snakes and lizards), the tuatara, crocodiles, and turtles. The LANE runner 2.0 software was implemented to annotate all assemblies within a single integrated pipeline. We show that this approach increases the annotation completeness of the assembled transcriptomes/genomes. We then built large concatenated protein alignments of single-copy genes and inferred phylogenetic trees that support the positions of turtles and the tuatara as sister groups of Archosauria and Squamata, respectively. The Reptilian Transcriptomes Database 2.0 resource will be updated to include selected new data sets as they become available, thus making it a reference for differential expression studies, comparative genomics and transcriptomics, linkage mapping, molecular ecology, and phylogenomic analyses involving reptiles. The database is available at www.reptilian-transcriptomes.org and can be enquired using a wwwblast server installed at the University of Geneva. PMID:26133641

  15. Reptilian Transcriptomes v2.0: An Extensive Resource for Sauropsida Genomics and Transcriptomics.

    PubMed

    Tzika, Athanasia C; Ullate-Agote, Asier; Grbic, Djordje; Milinkovitch, Michel C

    2015-06-01

    Despite the availability of deep-sequencing techniques, genomic and transcriptomic data remain unevenly distributed across phylogenetic groups. For example, reptiles are poorly represented in sequence databases, hindering functional evolutionary and developmental studies in these lineages substantially more diverse than mammals. In addition, different studies use different assembly and annotation protocols, inhibiting meaningful comparisons. Here, we present the "Reptilian Transcriptomes Database 2.0," which provides extensive annotation of transcriptomes and genomes from species covering the major reptilian lineages. To this end, we sequenced normalized complementary DNA libraries of multiple adult tissues and various embryonic stages of the leopard gecko and the corn snake and gathered published reptilian sequence data sets from representatives of the four extant orders of reptiles: Squamata (snakes and lizards), the tuatara, crocodiles, and turtles. The LANE runner 2.0 software was implemented to annotate all assemblies within a single integrated pipeline. We show that this approach increases the annotation completeness of the assembled transcriptomes/genomes. We then built large concatenated protein alignments of single-copy genes and inferred phylogenetic trees that support the positions of turtles and the tuatara as sister groups of Archosauria and Squamata, respectively. The Reptilian Transcriptomes Database 2.0 resource will be updated to include selected new data sets as they become available, thus making it a reference for differential expression studies, comparative genomics and transcriptomics, linkage mapping, molecular ecology, and phylogenomic analyses involving reptiles. The database is available at www.reptilian-transcriptomes.org and can be enquired using a wwwblast server installed at the University of Geneva. PMID:26133641

  16. CarrotDB: a genomic and transcriptomic database for carrot.

    PubMed

    Xu, Zhi-Sheng; Tan, Hua-Wei; Wang, Feng; Hou, Xi-Lin; Xiong, Ai-Sheng

    2014-01-01

    Carrot (Daucus carota L.) is an economically important vegetable worldwide and is the largest source of carotenoids and provitamin A in the human diet. Given the importance of this vegetable to humans, research and breeding communities on carrot should obtain useful genomic and transcriptomic information. The first whole-genome sequences of 'DC-27' carrot were de novo assembled and analyzed. Transcriptomic sequences of 14 carrot genotypes were downloaded from the Sequence Read Archive (SRA) database of National Center for Biotechnology Information (NCBI) and mapped to the whole-genome sequence before assembly. Based on these data sets, the first Web-based genomic and transcriptomic database for D. carota (CarrotDB) was developed (database homepage: http://apiaceae.njau.edu.cn/car rotdb). CarrotDB offers the tools of Genome Map and Basic Local Alignment Search Tool. Using these tools, users can search certain target genes and simple sequence repeats along with designed primers of 'DC-27'. Assembled transcriptomic sequences along with fragments per kilobase of transcript sequence per millions base pairs sequenced information (FPKM) information of 14 carrot genotypes are also provided. Users can download de novo assembled whole-genome sequences, putative gene sequences and putative protein sequences of 'DC-27'. Users can also download transcriptome sequence assemblies of 14 carrot genotypes along with their FPKM information. A total of 2826 transcription factor (TF) genes classified into 57 families were identified in the entire genome sequences. These TF genes were embedded in CarrotDB as an interface. The 'GERMPLASM' part of CarrotDB also offers taproot photos of 45 carrot genotypes and a table containing accession numbers, names, countries of origin and colors of cortex, phloem and xylem parts of taproots corresponding to each carrot genotype. CarrotDB will be continuously updated with new information. Database URL: http://apiaceae.njau.edu.cn/carrotdb/ PMID

  17. InsectBase: a resource for insect genomes and transcriptomes.

    PubMed

    Yin, Chuanlin; Shen, Gengyu; Guo, Dianhao; Wang, Shuping; Ma, Xingzhou; Xiao, Huamei; Liu, Jinding; Zhang, Zan; Liu, Ying; Zhang, Yiqun; Yu, Kaixiang; Huang, Shuiqing; Li, Fei

    2016-01-01

    The genomes and transcriptomes of hundreds of insects have been sequenced. However, insect community lacks an integrated, up-to-date collection of insect gene data. Here, we introduce the first release of InsectBase, available online at http://www.insect-genome.com. The database encompasses 138 insect genomes, 116 insect transcriptomes, 61 insect gene sets, 36 gene families of 60 insects, 7544 miRNAs of 69 insects, 96,925 piRNAs of Drosophila melanogaster and Chilo suppressalis, 2439 lncRNA of Nilaparvata lugens, 22,536 pathways of 78 insects, 678,881 untranslated regions (UTR) of 84 insects and 160,905 coding sequences (CDS) of 70 insects. This release contains over 12 million sequences and provides search functionality, a BLAST server, GBrowse, insect pathway construction, a Facebook-like network for the insect community (iFacebook), and phylogenetic analysis of selected genes. PMID:26578584

  18. InsectBase: a resource for insect genomes and transcriptomes

    PubMed Central

    Yin, Chuanlin; Shen, Gengyu; Guo, Dianhao; Wang, Shuping; Ma, Xingzhou; Xiao, Huamei; Liu, Jinding; Zhang, Zan; Liu, Ying; Zhang, Yiqun; Yu, Kaixiang; Huang, Shuiqing; Li, Fei

    2016-01-01

    The genomes and transcriptomes of hundreds of insects have been sequenced. However, insect community lacks an integrated, up-to-date collection of insect gene data. Here, we introduce the first release of InsectBase, available online at http://www.insect-genome.com. The database encompasses 138 insect genomes, 116 insect transcriptomes, 61 insect gene sets, 36 gene families of 60 insects, 7544 miRNAs of 69 insects, 96 925 piRNAs of Drosophila melanogaster and Chilo suppressalis, 2439 lncRNA of Nilaparvata lugens, 22 536 pathways of 78 insects, 678 881 untranslated regions (UTR) of 84 insects and 160 905 coding sequences (CDS) of 70 insects. This release contains over 12 million sequences and provides search functionality, a BLAST server, GBrowse, insect pathway construction, a Facebook-like network for the insect community (iFacebook), and phylogenetic analysis of selected genes. PMID:26578584

  19. Bacillus anthracis genome organization in light of whole transcriptome sequencing

    SciTech Connect

    Martin, Jeffrey; Zhu, Wenhan; Passalacqua, Karla D.; Bergman, Nicholas; Borodovsky, Mark

    2010-03-22

    Emerging knowledge of whole prokaryotic transcriptomes could validate a number of theoretical concepts introduced in the early days of genomics. What are the rules connecting gene expression levels with sequence determinants such as quantitative scores of promoters and terminators? Are translation efficiency measures, e.g. codon adaptation index and RBS score related to gene expression? We used the whole transcriptome shotgun sequencing of a bacterial pathogen Bacillus anthracis to assess correlation of gene expression level with promoter, terminator and RBS scores, codon adaptation index, as well as with a new measure of gene translational efficiency, average translation speed. We compared computational predictions of operon topologies with the transcript borders inferred from RNA-Seq reads. Transcriptome mapping may also improve existing gene annotation. Upon assessment of accuracy of current annotation of protein-coding genes in the B. anthracis genome we have shown that the transcriptome data indicate existence of more than a hundred genes missing in the annotation though predicted by an ab initio gene finder. Interestingly, we observed that many pseudogenes possess not only a sequence with detectable coding potential but also promoters that maintain transcriptional activity.

  20. Comprehensive analyses of genomes, transcriptomes and metabolites of neem tree.

    PubMed

    Kuravadi, Nagesh A; Yenagi, Vijay; Rangiah, Kannan; Mahesh, H B; Rajamani, Anantharamanan; Shirke, Meghana D; Russiachand, Heikham; Loganathan, Ramya Malarini; Shankara Lingu, Chandana; Siddappa, Shilpa; Ramamurthy, Aishwarya; Sathyanarayana, B N; Gowda, Malali

    2015-01-01

    Neem (Azadirachta indica A. Juss) is one of the most versatile tropical evergreen tree species known in India since the Vedic period (1500 BC-600 BC). Neem tree is a rich source of limonoids, having a wide spectrum of activity against insect pests and microbial pathogens. Complex tetranortriterpenoids such as azadirachtin, salanin and nimbin are the major active principles isolated from neem seed. Absolutely nothing is known about the biochemical pathways of these metabolites in neem tree. To identify genes and pathways in neem, we sequenced neem genomes and transcriptomes using next generation sequencing technologies. Assembly of Illumina and 454 sequencing reads resulted in 267 Mb, which accounts for 70% of estimated size of neem genome. We predicted 44,495 genes in the neem genome, of which 32,278 genes were expressed in neem tissues. Neem genome consists about 32.5% (87 Mb) of repetitive DNA elements. Neem tree is phylogenetically related to citrus, Citrus sinensis. Comparative analysis anchored 62% (161 Mb) of assembled neem genomic contigs onto citrus chromomes. Ultrahigh performance liquid chromatography-mass spectrometry-selected reaction monitoring (UHPLC-MS/SRM) method was used to quantify azadirachtin, nimbin, and salanin from neem tissues. Weighted Correlation Network Analysis (WCGNA) of expressed genes and metabolites resulted in identification of possible candidate genes involved in azadirachtin biosynthesis pathway. This study provides genomic, transcriptomic and quantity of top three neem metabolites resource, which will accelerate basic research in neem to understand biochemical pathways. PMID:26290780

  1. Comprehensive analyses of genomes, transcriptomes and metabolites of neem tree

    PubMed Central

    Rangiah, Kannan; Mahesh, HB; Rajamani, Anantharamanan; Shirke, Meghana D.; Russiachand, Heikham; Loganathan, Ramya Malarini; Shankara Lingu, Chandana; Siddappa, Shilpa; Ramamurthy, Aishwarya; Sathyanarayana, BN

    2015-01-01

    Neem (Azadirachta indica A. Juss) is one of the most versatile tropical evergreen tree species known in India since the Vedic period (1500 BC–600 BC). Neem tree is a rich source of limonoids, having a wide spectrum of activity against insect pests and microbial pathogens. Complex tetranortriterpenoids such as azadirachtin, salanin and nimbin are the major active principles isolated from neem seed. Absolutely nothing is known about the biochemical pathways of these metabolites in neem tree. To identify genes and pathways in neem, we sequenced neem genomes and transcriptomes using next generation sequencing technologies. Assembly of Illumina and 454 sequencing reads resulted in 267 Mb, which accounts for 70% of estimated size of neem genome. We predicted 44,495 genes in the neem genome, of which 32,278 genes were expressed in neem tissues. Neem genome consists about 32.5% (87 Mb) of repetitive DNA elements. Neem tree is phylogenetically related to citrus, Citrus sinensis. Comparative analysis anchored 62% (161 Mb) of assembled neem genomic contigs onto citrus chromomes. Ultrahigh performance liquid chromatography-mass spectrometry-selected reaction monitoring (UHPLC-MS/SRM) method was used to quantify azadirachtin, nimbin, and salanin from neem tissues. Weighted Correlation Network Analysis (WCGNA) of expressed genes and metabolites resulted in identification of possible candidate genes involved in azadirachtin biosynthesis pathway. This study provides genomic, transcriptomic and quantity of top three neem metabolites resource, which will accelerate basic research in neem to understand biochemical pathways. PMID:26290780

  2. RNAseq versus genome-predicted transcriptomes: a large population of novel transcripts identified in an Illumina-454 Hydra transcriptome

    PubMed Central

    2013-01-01

    Background Evolutionary studies benefit from deep sequencing technologies that generate genomic and transcriptomic sequences from a variety of organisms. Genome sequencing and RNAseq have complementary strengths. In this study, we present the assembly of the most complete Hydra transcriptome to date along with a comparative analysis of the specific features of RNAseq and genome-predicted transcriptomes currently available in the freshwater hydrozoan Hydra vulgaris. Results To produce an accurate and extensive Hydra transcriptome, we combined Illumina and 454 Titanium reads, giving the primacy to Illumina over 454 reads to correct homopolymer errors. This strategy yielded an RNAseq transcriptome that contains 48’909 unique sequences including splice variants, representing approximately 24’450 distinct genes. Comparative analysis to the available genome-predicted transcriptomes identified 10’597 novel Hydra transcripts that encode 529 evolutionarily-conserved proteins. The annotation of 170 human orthologs points to critical functions in protein biosynthesis, FGF and TOR signaling, vesicle transport, immunity, cell cycle regulation, cell death, mitochondrial metabolism, transcription and chromatin regulation. However, a majority of these novel transcripts encodes short ORFs, at least 767 of them corresponding to pseudogenes. This RNAseq transcriptome also lacks 11’270 predicted transcripts that correspond either to silent genes or to genes expressed below the detection level of this study. Conclusions We established a simple and powerful strategy to combine Illumina and 454 reads and we produced, with genome assistance, an extensive and accurate Hydra transcriptome. The comparative analysis of the RNAseq transcriptome with genome-predicted transcriptomes lead to the identification of large populations of novel as well as missing transcripts that might reflect Hydra-specific evolutionary events. PMID:23530871

  3. A practical guide to sequencing genomes and transcriptomes.

    PubMed

    Sanchez-Flores, Alejandro; Abreu-Goodger, Cei

    2014-01-01

    The emergence of new DNA sequencing technologies has allowed an exponential growth of genomic and transcriptomic data that ultimately yielded important results to several areas such as medicine and biology. This continuous technological progress presents several advantages and caveats that have to be considered for each new method. In this review, we describe the so-called second and third generation DNA sequencing technologies, how they changed the study of genomes and transcriptomes, and most importantly, what are the key factors that should be considered in a sequencing project. Taken together, we present a "sequencing project map" that includes a practical and graphical cost-benefit analysis for genome and transcriptome projects which allows scientist to easily classify their workflow into one of our proposed templates according to the goals and experimental design of the project at hand. In all, this review reflects the pros and cons of the most widely adopted experimental designs, sequencing technologies, and exposes them to help scientists interested in these tools to choose the best strategy for their project. PMID:24304310

  4. The past, present, and future of Leishmania genomics and transcriptomics

    PubMed Central

    Cantacessi, Cinzia; Dantas-Torres, Filipe; Nolan, Matthew J.; Otranto, Domenico

    2015-01-01

    It has been nearly 10 years since the completion of the first entire genome sequence of a Leishmania parasite. Genomic and transcriptomic analyses have advanced our understanding of the biology of Leishmania, and shed new light on the complex interactions occurring within the parasite–host–vector triangle. Here, we review these advances and examine potential avenues for translation of these discoveries into treatment and control programs. In addition, we argue for a strong need to explore how disease in dogs relates to that in humans, and how an improved understanding in line with the ‘One Health’ concept may open new avenues for the control of these devastating diseases. PMID:25638444

  5. The past, present, and future of Leishmania genomics and transcriptomics.

    PubMed

    Cantacessi, Cinzia; Dantas-Torres, Filipe; Nolan, Matthew J; Otranto, Domenico

    2015-03-01

    It has been nearly 10 years since the completion of the first entire genome sequence of a Leishmania parasite. Genomic and transcriptomic analyses have advanced our understanding of the biology of Leishmania, and shed new light on the complex interactions occurring within the parasite-host-vector triangle. Here, we review these advances and examine potential avenues for translation of these discoveries into treatment and control programs. In addition, we argue for a strong need to explore how disease in dogs relates to that in humans, and how an improved understanding in line with the 'One Health' concept may open new avenues for the control of these devastating diseases. PMID:25638444

  6. Status of duckweed genomics and transcriptomics.

    PubMed

    Wang, W; Messing, J

    2015-01-01

    Duckweeds belong to the smallest flowering plants that undergo fast vegetative growth in an aquatic environment. They are commonly used in wastewater treatment and animal feed. Whereas duckweeds have been studied at the biochemical level, their reduced morphology and wide environmental adaption had not been subjected to molecular analysis until recently. Here, we review the progress that has been made in using a DNA barcode system and the sequences of chloroplast and mitochondrial genomes to identify duckweed species at the species or population level. We also review analysis of the nuclear genome sequence of Spirodela that provides new insights into fundamental biological questions. Indeed, reduced gene families and missing genes are consistent with its compact morphogenesis, aquatic floating and suppression of juvenile-to-adult transition. Furthermore, deep RNA sequencing of Spirodela at the onset of dormancy and Landoltia in exposure of nutrient deficiency illustrate the molecular network for environmental adaption and stress response, constituting major progress towards a post-genome sequencing phase, where further functional genomic details can be explored. Rapid advances in sequencing technologies could continue to promote a proliferation of genome sequences for additional ecotypes as well as for other duckweed species. PMID:24995947

  7. Single Cell Genomics and Transcriptomics for Unicellular Eukaryotes

    SciTech Connect

    Ciobanu, Doina; Clum, Alicia; Singh, Vasanth; Salamov, Asaf; Han, James; Copeland, Alex; Grigoriev, Igor; James, Timothy; Singer, Steven; Woyke, Tanja; Malmstrom, Rex; Cheng, Jan-Fang

    2014-03-14

    Despite their small size, unicellular eukaryotes have complex genomes with a high degree of plasticity that allow them to adapt quickly to environmental changes. Unicellular eukaryotes live with prokaryotes and higher eukaryotes, frequently in symbiotic or parasitic niches. To this day their contribution to the dynamics of the environmental communities remains to be understood. Unfortunately, the vast majority of eukaryotic microorganisms are either uncultured or unculturable, making genome sequencing impossible using traditional approaches. We have developed an approach to isolate unicellular eukaryotes of interest from environmental samples, and to sequence and analyze their genomes and transcriptomes. We have tested our methods with six species: an uncharacterized protist from cellulose-enriched compost identified as Platyophrya, a close relative of P. vorax; the fungus Metschnikowia bicuspidate, a parasite of water flea Daphnia; the mycoparasitic fungi Piptocephalis cylindrospora, a parasite of Cokeromyces and Mucor; Caulochytrium protosteloides, a parasite of Sordaria; Rozella allomycis, a parasite of the water mold Allomyces; and the microalgae Chlamydomonas reinhardtii. Here, we present the four components of our approach: pre-sequencing methods, sequence analysis for single cell genome assembly, sequence analysis of single cell transcriptomes, and genome annotation. This technology has the potential to uncover the complexity of single cell eukaryotes and their role in the environmental samples.

  8. Pichia stipitis genomics, transcriptomics, and gene clusters

    PubMed Central

    Jeffries, Thomas W; Van Vleet, Jennifer R Headman

    2009-01-01

    Genome sequencing and subsequent global gene expression studies have advanced our understanding of the lignocellulose-fermenting yeast Pichia stipitis. These studies have provided an insight into its central carbon metabolism, and analysis of its genome has revealed numerous functional gene clusters and tandem repeats. Specialized physiological traits are often the result of several gene products acting together. When coinheritance is necessary for the overall physiological function, recombination and selection favor colocation of these genes in a cluster. These are particularly evident in strongly conserved and idiomatic traits. In some cases, the functional clusters consist of multiple gene families. Phylogenetic analyses of the members in each family show that once formed, functional clusters undergo duplication and differentiation. Genome-wide expression analysis reveals that regulatory patterns of clusters are similar after they have duplicated and that the expression profiles evolve along with functional differentiation of the clusters. Orthologous gene families appear to arise through tandem gene duplication, followed by differentiation in the regulatory and coding regions of the gene. Genome-wide expression analysis combined with cross-species comparisons of functional gene clusters should reveal many more aspects of eukaryotic physiology. PMID:19659741

  9. Whole Genome and Transcriptome Sequencing of a B3 Thymoma

    PubMed Central

    Petrini, Iacopo; Rajan, Arun; Pham, Trung; Voeller, Donna; Davis, Sean; Gao, James; Wang, Yisong; Giaccone, Giuseppe

    2013-01-01

    Molecular pathology of thymomas is poorly understood. Genomic aberrations are frequently identified in tumors but no extensive sequencing has been reported in thymomas. Here we present the first comprehensive view of a B3 thymoma at whole genome and transcriptome levels. A 55-year-old Caucasian female underwent complete resection of a stage IVA B3 thymoma. RNA and DNA were extracted from a snap frozen tumor sample with a fraction of cancer cells over 80%. We performed array comparative genomic hybridization using Agilent platform, transcriptome sequencing using HiSeq 2000 (Illumina) and whole genome sequencing using Complete Genomics Inc platform. Whole genome sequencing determined, in tumor and normal, the sequence of both alleles in more than 95% of the reference genome (NCBI Build 37). Copy number (CN) aberrations were comparable with those previously described for B3 thymomas, with CN gain of chromosome 1q, 5, 7 and X and CN loss of 3p, 6, 11q42.2-qter and q13. One translocation t(11;X) was identified by whole genome sequencing and confirmed by PCR and Sanger sequencing. Ten single nucleotide variations (SNVs) and 2 insertion/deletions (INDELs) were identified; these mutations resulted in non-synonymous amino acid changes or affected splicing sites. The lack of common cancer-associated mutations in this patient suggests that thymomas may evolve through mechanisms distinctive from other tumor types, and supports the rationale for additional high-throughput sequencing screens to better understand the somatic genetic architecture of thymoma. PMID:23577124

  10. Transcriptome and Genome Size Analysis of the Venus Flytrap

    PubMed Central

    Bressendorff, Simon; Seguin-Orlando, Andaine; Petersen, Morten; Sicheritz-Pontén, Thomas; Mundy, John

    2015-01-01

    The insectivorous Venus flytrap (Dionaea muscipula) is renowned from Darwin’s studies of plant carnivory and the origins of species. To provide tools to analyze the evolution and functional genomics of D. muscipula, we sequenced a normalized cDNA library synthesized from mRNA isolated from D. muscipula flowers and traps. Using the Oases transcriptome assembler 79,165,657 quality trimmed reads were assembled into 80,806 cDNA contigs, with an average length of 679 bp and an N50 length of 1,051 bp. A total of 17,047 unique proteins were identified, and assigned to Gene Ontology (GO) and classified into functional categories. A total of 15,547 full-length cDNA sequences were identified, from which open reading frames were detected in 10,941. Comparative GO analyses revealed that D. muscipula is highly represented in molecular functions related to catalytic, antioxidant, and electron carrier activities. Also, using a single copy sequence PCR-based method, we estimated that the genome size of D. muscipula is approx. 3 Gb. Our genome size estimate and transcriptome analyses will contribute to future research on this fascinating, monotypic species and its heterotrophic adaptations. PMID:25886597

  11. Transcriptome and genome size analysis of the Venus flytrap.

    PubMed

    Jensen, Michael Krogh; Vogt, Josef Korbinian; Bressendorff, Simon; Seguin-Orlando, Andaine; Petersen, Morten; Sicheritz-Pontén, Thomas; Mundy, John

    2015-01-01

    The insectivorous Venus flytrap (Dionaea muscipula) is renowned from Darwin's studies of plant carnivory and the origins of species. To provide tools to analyze the evolution and functional genomics of D. muscipula, we sequenced a normalized cDNA library synthesized from mRNA isolated from D. muscipula flowers and traps. Using the Oases transcriptome assembler 79,165,657 quality trimmed reads were assembled into 80,806 cDNA contigs, with an average length of 679 bp and an N50 length of 1,051 bp. A total of 17,047 unique proteins were identified, and assigned to Gene Ontology (GO) and classified into functional categories. A total of 15,547 full-length cDNA sequences were identified, from which open reading frames were detected in 10,941. Comparative GO analyses revealed that D. muscipula is highly represented in molecular functions related to catalytic, antioxidant, and electron carrier activities. Also, using a single copy sequence PCR-based method, we estimated that the genome size of D. muscipula is approx. 3 Gb. Our genome size estimate and transcriptome analyses will contribute to future research on this fascinating, monotypic species and its heterotrophic adaptations. PMID:25886597

  12. The draft genome and transcriptome of Cannabis sativa

    PubMed Central

    2011-01-01

    Background Cannabis sativa has been cultivated throughout human history as a source of fiber, oil and food, and for its medicinal and intoxicating properties. Selective breeding has produced cannabis plants for specific uses, including high-potency marijuana strains and hemp cultivars for fiber and seed production. The molecular biology underlying cannabinoid biosynthesis and other traits of interest is largely unexplored. Results We sequenced genomic DNA and RNA from the marijuana strain Purple Kush using shortread approaches. We report a draft haploid genome sequence of 534 Mb and a transcriptome of 30,000 genes. Comparison of the transcriptome of Purple Kush with that of the hemp cultivar 'Finola' revealed that many genes encoding proteins involved in cannabinoid and precursor pathways are more highly expressed in Purple Kush than in 'Finola'. The exclusive occurrence of Δ9-tetrahydrocannabinolic acid synthase in the Purple Kush transcriptome, and its replacement by cannabidiolic acid synthase in 'Finola', may explain why the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC) is produced in marijuana but not in hemp. Resequencing the hemp cultivars 'Finola' and 'USO-31' showed little difference in gene copy numbers of cannabinoid pathway enzymes. However, single nucleotide variant analysis uncovered a relatively high level of variation among four cannabis types, and supported a separation of marijuana and hemp. Conclusions The availability of the Cannabis sativa genome enables the study of a multifunctional plant that occupies a unique role in human culture. Its availability will aid the development of therapeutic marijuana strains with tailored cannabinoid profiles and provide a basis for the breeding of hemp with improved agronomic characteristics. PMID:22014239

  13. Comparative genomics and transcriptomics of trait-gene association

    PubMed Central

    2012-01-01

    Background The Order Rickettsiales includes important tick-borne pathogens, from Rickettsia rickettsii, which causes Rocky Mountain spotted fever, to Anaplasma marginale, the most prevalent vector-borne pathogen of cattle. Although most pathogens in this Order are transmitted by arthropod vectors, little is known about the microbial determinants of transmission. A. marginale provides unique tools for studying the determinants of transmission, with multiple strain sequences available that display distinct and reproducible transmission phenotypes. The closed core A. marginale genome suggests that any phenotypic differences are due to single nucleotide polymorphisms (SNPs). We combined DNA/RNA comparative genomic approaches using strains with different tick transmission phenotypes and identified genes that segregate with transmissibility. Results Comparison of seven strains with different transmission phenotypes generated a list of SNPs affecting 18 genes and nine promoters. Transcriptional analysis found two candidate genes downstream from promoter SNPs that were differentially transcribed. To corroborate the comparative genomics approach we used three RNA-seq platforms to analyze the transcriptomes from two A. marginale strains with different transmission phenotypes. RNA-seq analysis confirmed the comparative genomics data and found 10 additional genes whose transcription between strains with distinct transmission efficiencies was significantly different. Six regions of the genome that contained no annotation were found to be transcriptionally active, and two of these newly identified transcripts were differentially transcribed. Conclusions This approach identified 30 genes and two novel transcripts potentially involved in tick transmission. We describe the transcriptome of an obligate intracellular bacterium in depth, while employing massive parallel sequencing to dissect an important trait in bacterial pathogenesis. PMID:23181781

  14. Multiple reference genomes and transcriptomes for Arabidopsis thaliana.

    PubMed

    Gan, Xiangchao; Stegle, Oliver; Behr, Jonas; Steffen, Joshua G; Drewe, Philipp; Hildebrand, Katie L; Lyngsoe, Rune; Schultheiss, Sebastian J; Osborne, Edward J; Sreedharan, Vipin T; Kahles, André; Bohnert, Regina; Jean, Géraldine; Derwent, Paul; Kersey, Paul; Belfield, Eric J; Harberd, Nicholas P; Kemen, Eric; Toomajian, Christopher; Kover, Paula X; Clark, Richard M; Rätsch, Gunnar; Mott, Richard

    2011-09-22

    Genetic differences between Arabidopsis thaliana accessions underlie the plant's extensive phenotypic variation, and until now these have been interpreted largely in the context of the annotated reference accession Col-0. Here we report the sequencing, assembly and annotation of the genomes of 18 natural A. thaliana accessions, and their transcriptomes. When assessed on the basis of the reference annotation, one-third of protein-coding genes are predicted to be disrupted in at least one accession. However, re-annotation of each genome revealed that alternative gene models often restore coding potential. Gene expression in seedlings differed for nearly half of expressed genes and was frequently associated with cis variants within 5 kilobases, as were intron retention alternative splicing events. Sequence and expression variation is most pronounced in genes that respond to the biotic environment. Our data further promote evolutionary and functional studies in A. thaliana, especially the MAGIC genetic reference population descended from these accessions. PMID:21874022

  15. The capsicum transcriptome DB: a "hot" tool for genomic research.

    PubMed

    Góngora-Castillo, Elsa; Fajardo-Jaime, Rubén; Fernández-Cortes, Araceli; Jofre-Garfias, Alba E; Lozoya-Gloria, Edmundo; Martínez, Octavio; Ochoa-Alejo, Neftalí; Rivera-Bustamante, Rafael

    2012-01-01

    Chili pepper (Capsicum annuum) is an economically important crop with no available public genome sequence. We describe a genomic resource to facilitate Capsicum annuum research. A collection of Expressed Sequence Tags (ESTs) derived from five C. annuum organs (root, stem, leaf, flower and fruit) were sequenced using the Sanger method and multiple leaf transcriptomes were deeply sampled using with GS-pyrosequencing. A hybrid assembly of 1,324,516 raw reads yielded 32,314 high quality contigs as validated by coverage and identity analysis with existing pepper sequences. Overall, 75.5% of the contigs had significant sequence similarity to entries in nucleic acid and protein databases; 23% of the sequences have not been previously reported for C. annuum and expand sequence resources for this species. A MySQL database and a user-friendly Web interface were constructed with search-tools that permit queries of the ESTs including sequence, functional annotation, Gene Ontology classification, metabolic pathways, and assembly information. The Capsicum Transcriptome DB is free available from http://www.bioingenios.ira.cinvestav.mx:81/Joomla/ PMID:22359434

  16. Comparative Genomics and Transcriptomics Analyses Reveal Divergent Lifestyle Features of Nematode Endoparasitic Fungus Hirsutella minnesotensis

    PubMed Central

    Lai, Yiling; Liu, Keke; Zhang, Xinyu; Zhang, Xiaoling; Li, Kuan; Wang, Niuniu; Shu, Chi; Wu, Yunpeng; Wang, Chengshu; Bushley, Kathryn E.; Xiang, Meichun; Liu, Xingzhong

    2014-01-01

    Hirsutella minnesotensis [Ophiocordycipitaceae (Hypocreales, Ascomycota)] is a dominant endoparasitic fungus by using conidia that adhere to and penetrate the secondary stage juveniles of soybean cyst nematode. Its genome was de novo sequenced and compared with five entomopathogenic fungi in the Hypocreales and three nematode-trapping fungi in the Orbiliales (Ascomycota). The genome of H. minnesotensis is 51.4 Mb and encodes 12,702 genes enriched with transposable elements up to 32%. Phylogenomic analysis revealed that H. minnesotensis was diverged from entomopathogenic fungi in Hypocreales. Genome of H. minnesotensis is similar to those of entomopathogenic fungi to have fewer genes encoding lectins for adhesion and glycoside hydrolases for cellulose degradation, but is different from those of nematode-trapping fungi to possess more genes for protein degradation, signal transduction, and secondary metabolism. Those results indicate that H. minnesotensis has evolved different mechanism for nematode endoparasitism compared with nematode-trapping fungi. Transcriptomics analyses for the time-scale parasitism revealed the upregulations of lectins, secreted proteases and the genes for biosynthesis of secondary metabolites that could be putatively involved in host surface adhesion, cuticle degradation, and host manipulation. Genome and transcriptome analyses provided comprehensive understanding of the evolution and lifestyle of nematode endoparasitism. PMID:25359922

  17. The non-human primate reference transcriptome resource (NHPRTR) for comparative functional genomics

    PubMed Central

    Pipes, Lenore; Li, Sheng; Bozinoski, Marjan; Palermo, Robert; Peng, Xinxia; Blood, Phillip; Kelly, Sara; Weiss, Jeffrey M.; Thierry-Mieg, Jean; Thierry-Mieg, Danielle; Zumbo, Paul; Chen, Ronghua; Schroth, Gary P.; Mason, Christopher E.; Katze, Michael G.

    2013-01-01

    RNA-based next-generation sequencing (RNA-Seq) provides a tremendous amount of new information regarding gene and transcript structure, expression and regulation. This is particularly true for non-coding RNAs where whole transcriptome analyses have revealed that the much of the genome is transcribed and that many non-coding transcripts have widespread functionality. However, uniform resources for raw, cleaned and processed RNA-Seq data are sparse for most organisms and this is especially true for non-human primates (NHPs). Here, we describe a large-scale RNA-Seq data and analysis infrastructure, the NHP reference transcriptome resource (http://nhprtr.org); it presently hosts data from12 species of primates, to be expanded to 15 species/subspecies spanning great apes, old world monkeys, new world monkeys and prosimians. Data are collected for each species using pools of RNA from comparable tissues. We provide data access in advance of its deposition at NCBI, as well as browsable tracks of alignments against the human genome using the UCSC genome browser. This resource will continue to host additional RNA-Seq data, alignments and assemblies as they are generated over the coming years and provide a key resource for the annotation of NHP genomes as well as informing primate studies on evolution, reproduction, infection, immunity and pharmacology. PMID:23203872

  18. TraV: A Genome Context Sensitive Transcriptome Browser

    PubMed Central

    Dietrich, Sascha; Wiegand, Sandra; Liesegang, Heiko

    2014-01-01

    Next-generation sequencing (NGS) technologies like Illumina and ABI Solid enable the investigation of transcriptional activities of genomes. While read mapping tools have been continually improved to enable the processing of the increasing number of reads generated by NGS technologies, analysis and visualization tools are struggling with the amount of data they are presented with. Current tools are capable of handling at most two to three datasets simultaneously before they are limited by available memory or due to processing overhead. In order to process fifteen transcriptome sequencing experiments of Bacillus licheniformis DSM13 obtained in a previous study, we developed TraV, a RNA-Seq analysis and visualization tool. The analytical methods are designed for prokaryotic RNA-seq experiments. TraV calculates single nucleotide activities from the mapping information to visualize and analyze multiple transcriptome sequencing experiments. The use of nucleotide activities instead of single read mapping information is highly memory efficient without incurring a processing overhead. TraV is available at http://appmibio.uni-goettingen.de/index.php?sec=serv. PMID:24709941

  19. Genome-wide transcriptome analysis of human epidermal melanocytes

    PubMed Central

    Haltaufderhyde, Kirk D.; Oancea, Elena

    2015-01-01

    Because human epidermal melanocytes (HEMs) provide critical protection against skin cancer, sunburn, and photoaging, a genome-wide perspective of gene expression in these cells is vital to understanding human skin physiology. In this study we performed high throughput sequencing of HEMs to obtain a complete data set of transcript sizes, abundances, and splicing. As expected, we found that melanocyte specific genes that function in pigmentation were among the highest expressed genes. We analyzed receptor, ion channel and transcription factor gene families to get a better understanding of the cell signalling pathways used by melanocytes. We also performed a comparative transcriptomic analysis of lightly versus darkly pigmented HEMs and found 16 genes differentially expressed in the two pigmentation phenotypes; of those, only one putative melanosomal transporter (SLC45A2) has known function in pigmentation. In addition, we found 166 genes with splice isoforms expressed exclusively in one pigmentation phenotype, 17 of which are genes involved in signal transduction. Our melanocyte transcriptome study provides a comprehensive view and may help identify novel pigmentation genes and potential pharmacological targets. PMID:25451175

  20. SMRT® Sequencing Solutions for Large Genomes and Transcriptomes

    PubMed Central

    Chin, J.; Peluso, P.; Rank, D.; Kim, K.; Landolin, J.; Koren, S.; Phillippy, A.M.; Tseng, E.; Wang, S.; Baybayan, P.; Gu, J.

    2014-01-01

    Single Molecule, Real-Time (SMRT) Sequencing holds promise for addressing new frontiers in large genome complexities, such as long, highly repetitive, low-complexity regions and duplication events, and differentiating between transcript isoforms that are difficult to resolve with short-read technologies. We present solutions available for both reference genome improvement (100 MB) and transcriptome research to best leverage long reads that have exceeded 20 Kb in length. Benefits for these applications are further realized with consistent use of size-selection of input sample using the BluePippin™ device from Sage Science. Highlights from our genome improvement projects using the latest P5-C3 chemistry on model organisms with contig N50 exceeding 6 Mb and longest contig exceeding 12.5 Mb with an average base quality of QV50 will be shared. Additionally, the value of long, intact reads to provide a no-assembly approach to investigate transcript isoforms using our Iso-Seq protocol will be presented.

  1. Transcriptome-wide investigation of genomic imprinting in chicken.

    PubMed

    Frésard, Laure; Leroux, Sophie; Servin, Bertrand; Gourichon, David; Dehais, Patrice; Cristobal, Magali San; Marsaud, Nathalie; Vignoles, Florence; Bed'hom, Bertrand; Coville, Jean-Luc; Hormozdiari, Farhad; Beaumont, Catherine; Zerjal, Tatiana; Vignal, Alain; Morisson, Mireille; Lagarrigue, Sandrine; Pitel, Frédérique

    2014-04-01

    Genomic imprinting is an epigenetic mechanism by which alleles of some specific genes are expressed in a parent-of-origin manner. It has been observed in mammals and marsupials, but not in birds. Until now, only a few genes orthologous to mammalian imprinted ones have been analyzed in chicken and did not demonstrate any evidence of imprinting in this species. However, several published observations such as imprinted-like QTL in poultry or reciprocal effects keep the question open. Our main objective was thus to screen the entire chicken genome for parental-allele-specific differential expression on whole embryonic transcriptomes, using high-throughput sequencing. To identify the parental origin of each observed haplotype, two chicken experimental populations were used, as inbred and as genetically distant as possible. Two families were produced from two reciprocal crosses. Transcripts from 20 embryos were sequenced using NGS technology, producing ∼200 Gb of sequences. This allowed the detection of 79 potentially imprinted SNPs, through an analysis method that we validated by detecting imprinting from mouse data already published. However, out of 23 candidates tested by pyrosequencing, none could be confirmed. These results come together, without a priori, with previous statements and phylogenetic considerations assessing the absence of genomic imprinting in chicken. PMID:24452801

  2. Transcriptome-wide investigation of genomic imprinting in chicken

    PubMed Central

    Frésard, Laure; Leroux, Sophie; Servin, Bertrand; Gourichon, David; Dehais, Patrice; Cristobal, Magali San; Marsaud, Nathalie; Vignoles, Florence; Bed'hom, Bertrand; Coville, Jean-Luc; Hormozdiari, Farhad; Beaumont, Catherine; Zerjal, Tatiana; Vignal, Alain; Morisson, Mireille; Lagarrigue, Sandrine; Pitel, Frédérique

    2014-01-01

    Genomic imprinting is an epigenetic mechanism by which alleles of some specific genes are expressed in a parent-of-origin manner. It has been observed in mammals and marsupials, but not in birds. Until now, only a few genes orthologous to mammalian imprinted ones have been analyzed in chicken and did not demonstrate any evidence of imprinting in this species. However, several published observations such as imprinted-like QTL in poultry or reciprocal effects keep the question open. Our main objective was thus to screen the entire chicken genome for parental-allele-specific differential expression on whole embryonic transcriptomes, using high-throughput sequencing. To identify the parental origin of each observed haplotype, two chicken experimental populations were used, as inbred and as genetically distant as possible. Two families were produced from two reciprocal crosses. Transcripts from 20 embryos were sequenced using NGS technology, producing ∼200 Gb of sequences. This allowed the detection of 79 potentially imprinted SNPs, through an analysis method that we validated by detecting imprinting from mouse data already published. However, out of 23 candidates tested by pyrosequencing, none could be confirmed. These results come together, without a priori, with previous statements and phylogenetic considerations assessing the absence of genomic imprinting in chicken. PMID:24452801

  3. Comprehensive Annotation of the Parastagonospora nodorum Reference Genome Using Next-Generation Genomics, Transcriptomics and Proteogenomics

    PubMed Central

    Dodhia, Kejal; Stoll, Thomas; Hastie, Marcus; Furuki, Eiko; Ellwood, Simon R.; Williams, Angela H.; Tan, Yew-Foon; Testa, Alison C.; Gorman, Jeffrey J.; Oliver, Richard P.

    2016-01-01

    Parastagonospora nodorum, the causal agent of Septoria nodorum blotch (SNB), is an economically important pathogen of wheat (Triticum spp.), and a model for the study of necrotrophic pathology and genome evolution. The reference P. nodorum strain SN15 was the first Dothideomycete with a published genome sequence, and has been used as the basis for comparison within and between species. Here we present an updated reference genome assembly with corrections of SNP and indel errors in the underlying genome assembly from deep resequencing data as well as extensive manual annotation of gene models using transcriptomic and proteomic sources of evidence (https://github.com/robsyme/Parastagonospora_nodorum_SN15). The updated assembly and annotation includes 8,366 genes with modified protein sequence and 866 new genes. This study shows the benefits of using a wide variety of experimental methods allied to expert curation to generate a reliable set of gene models. PMID:26840125

  4. diArk – the database for eukaryotic genome and transcriptome assemblies in 2014

    PubMed Central

    Kollmar, Martin; Kollmar, Lotte; Hammesfahr, Björn; Simm, Dominic

    2015-01-01

    Eukaryotic genomes are the basis for understanding the complexity of life from populations to the molecular level. Recent technological innovations have revolutionized the speed of data generation enabling the sequencing of eukaryotic genomes and transcriptomes within days. The database diArk (http://www.diark.org) has been developed with the aim to provide access to all available assembled genomes and transcriptomes. In September 2014, diArk contains about 2600 eukaryotes with 6000 genome and transcriptome assemblies, of which 22% are not available via NCBI/ENA/DDBJ. Several indicators for the quality of the assemblies are provided to facilitate their comparison for selecting the most appropriate dataset for further studies. diArk has a user-friendly web interface with extensive options for filtering and browsing the sequenced eukaryotes. In this new version of the database we have also integrated species, for which transcriptome assemblies are available, and we provide more analyses of assemblies. PMID:25378341

  5. Parallel evolution of transcriptome architecture during genome reorganization.

    PubMed

    Yoon, Sung Ho; Reiss, David J; Bare, J Christopher; Tenenbaum, Dan; Pan, Min; Slagel, Joseph; Moritz, Robert L; Lim, Sujung; Hackett, Murray; Menon, Angeli Lal; Adams, Michael W W; Barnebey, Adam; Yannone, Steven M; Leigh, John A; Baliga, Nitin S

    2011-11-01

    Assembly of genes into operons is generally viewed as an important process during the continual adaptation of microbes to changing environmental challenges. However, the genome reorganization events that drive this process are also the roots of instability for existing operons. We have determined that there exists a statistically significant trend that correlates the proportion of genes encoded in operons in archaea to their phylogenetic lineage. We have further characterized how microbes deal with operon instability by mapping and comparing transcriptome architectures of four phylogenetically diverse extremophiles that span the range of operon stabilities observed across archaeal lineages: a photoheterotrophic halophile (Halobacterium salinarum NRC-1), a hydrogenotrophic methanogen (Methanococcus maripaludis S2), an acidophilic and aerobic thermophile (Sulfolobus solfataricus P2), and an anaerobic hyperthermophile (Pyrococcus furiosus DSM 3638). We demonstrate how the evolution of transcriptional elements (promoters and terminators) generates new operons, restores the coordinated regulation of translocated, inverted, and newly acquired genes, and introduces completely novel regulation for even some of the most conserved operonic genes such as those encoding subunits of the ribosome. The inverse correlation (r=-0.92) between the proportion of operons with such internally located transcriptional elements and the fraction of conserved operons in each of the four archaea reveals an unprecedented view into varying stages of operon evolution. Importantly, our integrated analysis has revealed that organisms adapted to higher growth temperatures have lower tolerance for genome reorganization events that disrupt operon structures. PMID:21750103

  6. Transcriptome profiling reveals mosaic genomic origins of modern cultivated barley

    PubMed Central

    Dai, Fei; Chen, Zhong-Hua; Wang, Xiaolei; Li, Zefeng; Jin, Gulei; Wu, Dezhi; Cai, Shengguan; Wang, Ning; Wu, Feibo; Nevo, Eviatar; Zhang, Guoping

    2014-01-01

    The domestication of cultivated barley has been used as a model system for studying the origins and early spread of agrarian culture. Our previous results indicated that the Tibetan Plateau and its vicinity is one of the centers of domestication of cultivated barley. Here we reveal multiple origins of domesticated barley using transcriptome profiling of cultivated and wild-barley genotypes. Approximately 48-Gb of clean transcript sequences in 12 Hordeum spontaneum and 9 Hordeum vulgare accessions were generated. We reported 12,530 de novo assembled transcripts in all of the 21 samples. Population structure analysis showed that Tibetan hulless barley (qingke) might have existed in the early stage of domestication. Based on the large number of unique genomic regions showing the similarity between cultivated and wild-barley groups, we propose that the genomic origin of modern cultivated barley is derived from wild-barley genotypes in the Fertile Crescent (mainly in chromosomes 1H, 2H, and 3H) and Tibet (mainly in chromosomes 4H, 5H, 6H, and 7H). This study indicates that the domestication of barley may have occurred over time in geographically distinct regions. PMID:25197090

  7. Transcriptome profiling reveals mosaic genomic origins of modern cultivated barley.

    PubMed

    Dai, Fei; Chen, Zhong-Hua; Wang, Xiaolei; Li, Zefeng; Jin, Gulei; Wu, Dezhi; Cai, Shengguan; Wang, Ning; Wu, Feibo; Nevo, Eviatar; Zhang, Guoping

    2014-09-16

    The domestication of cultivated barley has been used as a model system for studying the origins and early spread of agrarian culture. Our previous results indicated that the Tibetan Plateau and its vicinity is one of the centers of domestication of cultivated barley. Here we reveal multiple origins of domesticated barley using transcriptome profiling of cultivated and wild-barley genotypes. Approximately 48-Gb of clean transcript sequences in 12 Hordeum spontaneum and 9 Hordeum vulgare accessions were generated. We reported 12,530 de novo assembled transcripts in all of the 21 samples. Population structure analysis showed that Tibetan hulless barley (qingke) might have existed in the early stage of domestication. Based on the large number of unique genomic regions showing the similarity between cultivated and wild-barley groups, we propose that the genomic origin of modern cultivated barley is derived from wild-barley genotypes in the Fertile Crescent (mainly in chromosomes 1H, 2H, and 3H) and Tibet (mainly in chromosomes 4H, 5H, 6H, and 7H). This study indicates that the domestication of barley may have occurred over time in geographically distinct regions. PMID:25197090

  8. Consequences of Normalizing Transcriptomic and Genomic Libraries of Plant Genomes Using a Duplex-Specific Nuclease and Tetramethylammonium Chloride

    PubMed Central

    Froenicke, Lutz; Lavelle, Dean; Martineau, Belinda; Perroud, Bertrand; Michelmore, Richard

    2013-01-01

    Several applications of high throughput genome and transcriptome sequencing would benefit from a reduction of the high-copy-number sequences in the libraries being sequenced and analyzed, particularly when applied to species with large genomes. We adapted and analyzed the consequences of a method that utilizes a thermostable duplex-specific nuclease for reducing the high-copy components in transcriptomic and genomic libraries prior to sequencing. This reduces the time, cost, and computational effort of obtaining informative transcriptomic and genomic sequence data for both fully sequenced and non-sequenced genomes. It also reduces contamination from organellar DNA in preparations of nuclear DNA. Hybridization in the presence of 3 M tetramethylammonium chloride (TMAC), which equalizes the rates of hybridization of GC and AT nucleotide pairs, reduced the bias against sequences with high GC content. Consequences of this method on the reduction of high-copy and enrichment of low-copy sequences are reported for Arabidopsis and lettuce. PMID:23409088

  9. Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis

    PubMed Central

    2013-01-01

    Background Nicotiana sylvestris and Nicotiana tomentosiformis are members of the Solanaceae family that includes tomato, potato, eggplant and pepper. These two Nicotiana species originate from South America and exhibit different alkaloid and diterpenoid production. N. sylvestris is cultivated largely as an ornamental plant and it has been used as a diploid model system for studies of terpenoid production, plastid engineering, and resistance to biotic and abiotic stress. N. sylvestris and N. tomentosiformis are considered to be modern descendants of the maternal and paternal donors that formed Nicotiana tabacum about 200,000 years ago through interspecific hybridization. Here we report the first genome-wide analysis of these two Nicotiana species. Results Draft genomes of N. sylvestris and N. tomentosiformis were assembled to 82.9% and 71.6% of their expected size respectively, with N50 sizes of about 80 kb. The repeat content was 72-75%, with a higher proportion of retrotransposons and copia-like long terminal repeats in N. tomentosiformis. The transcriptome assemblies showed that 44,000-53,000 transcripts were expressed in the roots, leaves or flowers. The key genes involved in terpenoid metabolism, alkaloid metabolism and heavy metal transport showed differential expression in the leaves, roots and flowers of N. sylvestris and N. tomentosiformis. Conclusions The reference genomes of N. sylvestris and N. tomentosiformis represent a significant contribution to the SOL100 initiative because, as members of the Nicotiana genus of Solanaceae, they strengthen the value of the already existing resources by providing additional comparative information, thereby helping to improve our understanding of plant metabolism and evolution. PMID:23773524

  10. INTEGRATE: gene fusion discovery using whole genome and transcriptome data

    PubMed Central

    Zhang, Jin; White, Nicole M.; Schmidt, Heather K.; Fulton, Robert S.; Tomlinson, Chad; Warren, Wesley C.; Wilson, Richard K.; Maher, Christopher A.

    2016-01-01

    While next-generation sequencing (NGS) has become the primary technology for discovering gene fusions, we are still faced with the challenge of ensuring that causative mutations are not missed while minimizing false positives. Currently, there are many computational tools that predict structural variations (SV) and gene fusions using whole genome (WGS) and transcriptome sequencing (RNA-seq) data separately. However, as both WGS and RNA-seq have their limitations when used independently, we hypothesize that the orthogonal validation from integrating both data could generate a sensitive and specific approach for detecting high-confidence gene fusion predictions. Fortunately, decreasing NGS costs have resulted in a growing quantity of patients with both data available. Therefore, we developed a gene fusion discovery tool, INTEGRATE, that leverages both RNA-seq and WGS data to reconstruct gene fusion junctions and genomic breakpoints by split-read mapping. To evaluate INTEGRATE, we compared it with eight additional gene fusion discovery tools using the well-characterized breast cell line HCC1395 and peripheral blood lymphocytes derived from the same patient (HCC1395BL). The predictions subsequently underwent a targeted validation leading to the discovery of 131 novel fusions in addition to the seven previously reported fusions. Overall, INTEGRATE only missed six out of the 138 validated fusions and had the highest accuracy of the nine tools evaluated. Additionally, we applied INTEGRATE to 62 breast cancer patients from The Cancer Genome Atlas (TCGA) and found multiple recurrent gene fusions including a subset involving estrogen receptor. Taken together, INTEGRATE is a highly sensitive and accurate tool that is freely available for academic use. PMID:26556708

  11. Transcriptome-guided characterization of genomic rearrangements in a breast cancer cell line

    PubMed Central

    Zhao, Qi; Caballero, Otavia L.; Levy, Samuel; Stevenson, Brian J.; Iseli, Christian; de Souza, Sandro J.; Galante, Pedro A.; Busam, Dana; Leversha, Margaret A.; Chadalavada, Kalyani; Rogers, Yu-Hui; Venter, J. Craig; Simpson, Andrew J. G.; Strausberg, Robert L.

    2009-01-01

    We have identified new genomic alterations in the breast cancer cell line HCC1954, using high-throughput transcriptome sequencing. With 120 Mb of cDNA sequences, we were able to identify genomic rearrangement events leading to fusions or truncations of genes including MRE11 and NSD1, genes already implicated in oncogenesis, and 7 rearrangements involving other additional genes. This approach demonstrates that high-throughput transcriptome sequencing is an effective strategy for the characterization of genomic rearrangements in cancers. PMID:19181860

  12. Annotation of the zebrafish genome through an integrated transcriptomic and proteomic analysis.

    PubMed

    Kelkar, Dhanashree S; Provost, Elayne; Chaerkady, Raghothama; Muthusamy, Babylakshmi; Manda, Srikanth S; Subbannayya, Tejaswini; Selvan, Lakshmi Dhevi N; Wang, Chieh-Huei; Datta, Keshava K; Woo, Sunghee; Dwivedi, Sutopa B; Renuse, Santosh; Getnet, Derese; Huang, Tai-Chung; Kim, Min-Sik; Pinto, Sneha M; Mitchell, Christopher J; Madugundu, Anil K; Kumar, Praveen; Sharma, Jyoti; Advani, Jayshree; Dey, Gourav; Balakrishnan, Lavanya; Syed, Nazia; Nanjappa, Vishalakshi; Subbannayya, Yashwanth; Goel, Renu; Prasad, T S Keshava; Bafna, Vineet; Sirdeshmukh, Ravi; Gowda, Harsha; Wang, Charles; Leach, Steven D; Pandey, Akhilesh

    2014-11-01

    Accurate annotation of protein-coding genes is one of the primary tasks upon the completion of whole genome sequencing of any organism. In this study, we used an integrated transcriptomic and proteomic strategy to validate and improve the existing zebrafish genome annotation. We undertook high-resolution mass-spectrometry-based proteomic profiling of 10 adult organs, whole adult fish body, and two developmental stages of zebrafish (SAT line), in addition to transcriptomic profiling of six organs. More than 7,000 proteins were identified from proteomic analyses, and ∼ 69,000 high-confidence transcripts were assembled from the RNA sequencing data. Approximately 15% of the transcripts mapped to intergenic regions, the majority of which are likely long non-coding RNAs. These high-quality transcriptomic and proteomic data were used to manually reannotate the zebrafish genome. We report the identification of 157 novel protein-coding genes. In addition, our data led to modification of existing gene structures including novel exons, changes in exon coordinates, changes in frame of translation, translation in annotated UTRs, and joining of genes. Finally, we discovered four instances of genome assembly errors that were supported by both proteomic and transcriptomic data. Our study shows how an integrative analysis of the transcriptome and the proteome can extend our understanding of even well-annotated genomes. PMID:25060758

  13. Genome and Transcriptome Analyses Provide Insight into the Euryhaline Adaptation Mechanism of Crassostrea gigas

    PubMed Central

    Zhang, Linlin; Li, Chunyan; Li, Li; She, Zhicai; Huang, Baoyu; Zhang, Guofan

    2013-01-01

    the most important effectors for oyster euryhaline adaptation. This study was the first to explain oyster euryhaline adaptation at a genome-wide scale in C. gigas. PMID:23554902

  14. Genomic and transcriptomic alterations following hybridisation and genome doubling in trigenomic allohexaploid Brassica carinata × Brassica rapa.

    PubMed

    Xu, Y; Zhao, Q; Mei, S; Wang, J

    2012-09-01

    Allopolyploidisation is a prominent evolutionary force that involves two major events: interspecific hybridisation and genome doubling. Both events have important functional consequences in shaping the genomic architecture of the neo-allopolyploids. The respective effects of hybridisation and genome doubling upon genomic and transcriptomic changes in Brassica allopolyploids are unresolved. In this study, amplified fragment length polymorphism (AFLP), methylation-sensitive amplification polymorphism (MSAP) and cDNA-AFLP approaches were used to track genetic, epigenetic and transcriptional changes in both allohexaploid Brassica (ArArBcBcCcCc genome) and triploid hybrids (ArBcCc genome). Results from these groups were compared with each other and also to their parents Brassica carinata (BBCC genome) and Brassica rapa (AA genome). Rapid and dramatic genetic, DNA methylation and gene expression changes were detected in the triploid hybrids. During the shift from triploidy to allohexaploidy, some of the hybridisation-induced alterations underwent reversion. Additionally, novel genetic, epigenetic and transcriptional alterations were also detected. The proportions of A-genome-specific DNA methylation and gene expression alterations were significantly greater than those of BC-genome-specific alterations in the triploid hybrids. However, the two parental genomes were equally affected during the ploidy shift. Hemi-CCG methylation changes induced by hybridisation were recovered after genome doubling. Full-CG methylation changes were a more general process initiated in the hybrid and continued after genome doubling. These results indicate that genome doubling could ameliorate genomic and transcriptomic alterations induced by hybridisation and instigate additional alterations in trigenomic Brassica allohexaploids. Moreover, genome doubling also modified hybridisation-induced progenitor genome-biased alterations and epigenetic alteration characteristics. PMID:22309095

  15. Systems perspectives on erythromycin biosynthesis by comparative genomic and transcriptomic analyses of S. erythraea E3 and NRRL23338 strains

    PubMed Central

    2013-01-01

    Background S. erythraea is a Gram-positive filamentous bacterium used for the industrial-scale production of erythromycin A which is of high clinical importance. In this work, we sequenced the whole genome of a high-producing strain (E3) obtained by random mutagenesis and screening from the wild-type strain NRRL23338, and examined time-series expression profiles of both E3 and NRRL23338. Based on the genomic data and transcriptpmic data of these two strains, we carried out comparative analysis of high-producing strain and wild-type strain at both the genomic level and the transcriptomic level. Results We observed a large number of genetic variants including 60 insertions, 46 deletions and 584 single nucleotide variations (SNV) in E3 in comparison with NRRL23338, and the analysis of time series transcriptomic data indicated that the genes involved in erythromycin biosynthesis and feeder pathways were significantly up-regulated during the 60 hours time-course. According to our data, BldD, a previously identified ery cluster regulator, did not show any positive correlations with the expression of ery cluster, suggesting the existence of alternative regulation mechanisms of erythromycin synthesis in S. erythraea. Several potential regulators were then proposed by integration analysis of genomic and transcriptomic data. Conclusion This is a demonstration of the functional comparative genomics between an industrial S. erythraea strain and the wild-type strain. These findings help to understand the global regulation mechanisms of erythromycin biosynthesis in S. erythraea, providing useful clues for genetic and metabolic engineering in the future. PMID:23902230

  16. Primary analysis of repeat elements of the Asian seabass (Lates calcarifer) transcriptome and genome

    PubMed Central

    Kuznetsova, Inna S.; Thevasagayam, Natascha M.; Sridatta, Prakki S. R.; Komissarov, Aleksey S.; Saju, Jolly M.; Ngoh, Si Y.; Jiang, Junhui; Shen, Xueyan; Orbán, László

    2014-01-01

    As part of our Asian seabass genome project, we are generating an inventory of repeat elements in the genome and transcriptome. The karyotype showed a diploid number of 2n = 24 chromosomes with a variable number of B-chromosomes. The transcriptome and genome of Asian seabass were searched for repetitive elements with experimental and bioinformatics tools. Six different types of repeats constituting 8–14% of the genome were characterized. Repetitive elements were clustered in the pericentromeric heterochromatin of all chromosomes, but some of them were preferentially accumulated in pretelomeric and pericentromeric regions of several chromosomes pairs and have chromosomes specific arrangement. From the dispersed class of fish-specific non-LTR retrotransposon elements Rex1 and MAUI-like repeats were analyzed. They were wide-spread both in the genome and transcriptome, accumulated on the pericentromeric and peritelomeric areas of all chromosomes. Every analyzed repeat was represented in the Asian seabass transcriptome, some showed differential expression between the gonads. The other group of repeats analyzed belongs to the rRNA multigene family. FISH signal for 5S rDNA was located on a single pair of chromosomes, whereas that for 18S rDNA was found on two pairs. A BAC-derived contig containing rDNA was sequenced and assembled into a scaffold containing incomplete fragments of 18S rDNA. Their assembly and chromosomal position revealed that this part of Asian seabass genome is extremely rich in repeats containing evolutionarily conserved and novel sequences. In summary, transcriptome assemblies and cDNA data are suitable for the identification of repetitive DNA from unknown genomes and for comparative investigation of conserved elements between teleosts and other vertebrates. PMID:25120555

  17. VESPA: Software to Facilitate Genomic Annotation of Prokaryotic Organisms Through Integration of Proteomic and Transcriptomic Data

    SciTech Connect

    Peterson, Elena S.; McCue, Lee Ann; Rutledge, Alexandra C.; Jensen, Jeffrey L.; Walker, Julia; Kobold, Mark A.; Webb, Samantha R.; Payne, Samuel H.; Ansong, Charles; Adkins, Joshua N.; Cannon, William R.; Webb-Robertson, Bobbie-Jo M.

    2012-04-25

    Visual Exploration and Statistics to Promote Annotation (VESPA) is an interactive visual analysis software tool that facilitates the discovery of structural mis-annotations in prokaryotic genomes. VESPA integrates high-throughput peptide-centric proteomics data and oligo-centric or RNA-Seq transcriptomics data into a genomic context. The data may be interrogated via visual analysis across multiple levels of genomic resolution, linked searches, exports and interaction with BLAST to rapidly identify location of interest within the genome and evaluate potential mis-annotations.

  18. De novo Transcriptome Assemblies of Rana (Lithobates) catesbeiana and Xenopus laevis Tadpole Livers for Comparative Genomics without Reference Genomes

    PubMed Central

    Birol, Inanc; Behsaz, Bahar; Hammond, S. Austin; Kucuk, Erdi; Veldhoen, Nik; Helbing, Caren C.

    2015-01-01

    In this work we studied the liver transcriptomes of two frog species, the American bullfrog (Rana (Lithobates) catesbeiana) and the African clawed frog (Xenopus laevis). We used high throughput RNA sequencing (RNA-seq) data to assemble and annotate these transcriptomes, and compared how their baseline expression profiles change when tadpoles of the two species are exposed to thyroid hormone. We generated more than 1.5 billion RNA-seq reads in total for the two species under two conditions as treatment/control pairs. We de novo assembled these reads using Trans-ABySS to reconstruct reference transcriptomes, obtaining over 350,000 and 130,000 putative transcripts for R. catesbeiana and X. laevis, respectively. Using available genomics resources for X. laevis, we annotated over 97% of our X. laevis transcriptome contigs, demonstrating the utility and efficacy of our methodology. Leveraging this validated analysis pipeline, we also annotated the assembled R. catesbeiana transcriptome. We used the expression profiles of the annotated genes of the two species to examine the similarities and differences between the tadpole liver transcriptomes. We also compared the gene ontology terms of expressed genes to measure how the animals react to a challenge by thyroid hormone. Our study reports three main conclusions. First, de novo assembly of RNA-seq data is a powerful method for annotating and establishing transcriptomes of non-model organisms. Second, the liver transcriptomes of the two frog species, R. catesbeiana and X. laevis, show many common features, and the distribution of their gene ontology profiles are statistically indistinguishable. Third, although they broadly respond the same way to the presence of thyroid hormone in their environment, their receptor/signal transduction pathways display marked differences. PMID:26121473

  19. De Novo Genome Assembly of Grapevine Yellow Speckle Viroid 1 from a Grapevine Transcriptome

    PubMed Central

    Jo, Yeonhwa; Choi, Hoseong; Yoon, Ju-Yeon; Choi, Seung-Kook

    2015-01-01

    Grapevine yellow speckle viroid 1 (GYSVd1), which is a member of the genus Apscaviroid, causes yellow speckle disease in grapevines. Here, we report the complete de novo genome assembly of GYSVd1 from the grapevine transcriptome and identified 10 single nucleotide polymorphisms of GYSVd1 across the grapevine populations. PMID:25999581

  20. Genomic, transcriptomic and phenomic variation reveals the complex adaptation to stress response of modern maize breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early maize adaptation to different agricultural environments was an important process associated with the creation of a stable food supply that allowed the evolution of human civilization in the Americas. To explore the mechanisms of maize adaptation, genomic, transcriptomic and phenomic data were ...

  1. Transcriptome sequencing and whole genome expression profiling of chrysanthemum under dehydration stress

    PubMed Central

    2013-01-01

    Background Chrysanthemum is one of the most important ornamental crops in the world and drought stress seriously limits its production and distribution. In order to generate a functional genomics resource and obtain a deeper understanding of the molecular mechanisms regarding chrysanthemum responses to dehydration stress, we performed large-scale transcriptome sequencing of chrysanthemum plants under dehydration stress using the Illumina sequencing technology. Results Two cDNA libraries constructed from mRNAs of control and dehydration-treated seedlings were sequenced by Illumina technology. A total of more than 100 million reads were generated and de novo assembled into 98,180 unique transcripts which were further extensively annotated by comparing their sequencing to different protein databases. Biochemical pathways were predicted from these transcript sequences. Furthermore, we performed gene expression profiling analysis upon dehydration treatment in chrysanthemum and identified 8,558 dehydration-responsive unique transcripts, including 307 transcription factors and 229 protein kinases and many well-known stress responsive genes. Gene ontology (GO) term enrichment and biochemical pathway analyses showed that dehydration stress caused changes in hormone response, secondary and amino acid metabolism, and light and photoperiod response. These findings suggest that drought tolerance of chrysanthemum plants may be related to the regulation of hormone biosynthesis and signaling, reduction of oxidative damage, stabilization of cell proteins and structures, and maintenance of energy and carbon supply. Conclusions Our transcriptome sequences can provide a valuable resource for chrysanthemum breeding and research and novel insights into chrysanthemum responses to dehydration stress and offer candidate genes or markers that can be used to guide future studies attempting to breed drought tolerant chrysanthemum cultivars. PMID:24074255

  2. Identifying characteristic scales in the human genome

    NASA Astrophysics Data System (ADS)

    Carpena, P.; Bernaola-Galván, P.; Coronado, A. V.; Hackenberg, M.; Oliver, J. L.

    2007-03-01

    The scale-free, long-range correlations detected in DNA sequences contrast with characteristic lengths of genomic elements, being particularly incompatible with the isochores (long, homogeneous DNA segments). By computing the local behavior of the scaling exponent α of detrended fluctuation analysis (DFA), we discriminate between sequences with and without true scaling, and we find that no single scaling exists in the human genome. Instead, human chromosomes show a common compositional structure with two characteristic scales, the large one corresponding to the isochores and the other to small and medium scale genomic elements.

  3. Maize pan-transcriptome provides novel insights into genome complexity and quantitative trait variation

    PubMed Central

    Jin, Minliang; Liu, Haijun; He, Cheng; Fu, Junjie; Xiao, Yingjie; Wang, Yuebin; Xie, Weibo; Wang, Guoying; Yan, Jianbing

    2016-01-01

    Gene expression variation largely contributes to phenotypic diversity and constructing pan-transcriptome is considered necessary for species with complex genomes. However, the regulation mechanisms and functional consequences of pan-transcriptome is unexplored systematically. By analyzing RNA-seq data from 368 maize diverse inbred lines, we identified almost one-third nuclear genes under expression presence and absence variation, which tend to play regulatory roles and are likely regulated by distant eQTLs. The ePAV was directly used as “genotype” to perform GWAS for 15 agronomic phenotypes and 526 metabolic traits to efficiently explore the associations between transcriptomic and phenomic variations. Through a modified assembly strategy, 2,355 high-confidence novel sequences with total 1.9 Mb lengths were found absent within reference genome. Ten randomly selected novel sequences were fully validated with genomic PCR, including another two NBS_LRR candidates potentially affect flavonoids and disease-resistance. A simulation analysis suggested that the pan-transcriptome of the maize whole kernel is approaching a maximum value of 63,000 genes, and through developing two test-cross populations and surveying several most important yield traits, the dispensable genes were shown to contribute to heterosis. Novel perspectives and resources to discover maize quantitative trait variations were provided to better understand the kernel regulation networks and to enhance maize breeding. PMID:26729541

  4. Maize pan-transcriptome provides novel insights into genome complexity and quantitative trait variation.

    PubMed

    Jin, Minliang; Liu, Haijun; He, Cheng; Fu, Junjie; Xiao, Yingjie; Wang, Yuebin; Xie, Weibo; Wang, Guoying; Yan, Jianbing

    2016-01-01

    Gene expression variation largely contributes to phenotypic diversity and constructing pan-transcriptome is considered necessary for species with complex genomes. However, the regulation mechanisms and functional consequences of pan-transcriptome is unexplored systematically. By analyzing RNA-seq data from 368 maize diverse inbred lines, we identified almost one-third nuclear genes under expression presence and absence variation, which tend to play regulatory roles and are likely regulated by distant eQTLs. The ePAV was directly used as "genotype" to perform GWAS for 15 agronomic phenotypes and 526 metabolic traits to efficiently explore the associations between transcriptomic and phenomic variations. Through a modified assembly strategy, 2,355 high-confidence novel sequences with total 1.9 Mb lengths were found absent within reference genome. Ten randomly selected novel sequences were fully validated with genomic PCR, including another two NBS_LRR candidates potentially affect flavonoids and disease-resistance. A simulation analysis suggested that the pan-transcriptome of the maize whole kernel is approaching a maximum value of 63,000 genes, and through developing two test-cross populations and surveying several most important yield traits, the dispensable genes were shown to contribute to heterosis. Novel perspectives and resources to discover maize quantitative trait variations were provided to better understand the kernel regulation networks and to enhance maize breeding. PMID:26729541

  5. Genome wide transcriptome profiling reveals differential gene expression in secondary metabolite pathway of Cymbopogon winterianus.

    PubMed

    Devi, Kamalakshi; Mishra, Surajit K; Sahu, Jagajjit; Panda, Debashis; Modi, Mahendra K; Sen, Priyabrata

    2016-01-01

    Advances in transcriptome sequencing provide fast, cost-effective and reliable approach to generate large expression datasets especially suitable for non-model species to identify putative genes, key pathway and regulatory mechanism. Citronella (Cymbopogon winterianus) is an aromatic medicinal grass used for anti-tumoral, antibacterial, anti-fungal, antiviral, detoxifying and natural insect repellent properties. Despite of having number of utilities, the genes involved in terpenes biosynthetic pathway is not yet clearly elucidated. The present study is a pioneering attempt to generate an exhaustive molecular information of secondary metabolite pathway and to increase genomic resources in Citronella. Using high-throughput RNA-Seq technology, root and leaf transcriptome was analysed at an unprecedented depth (11.7 Gb). Targeted searches identified majority of the genes associated with metabolic pathway and other natural product pathway viz. antibiotics synthesis along with many novel genes. Terpenoid biosynthesis genes comparative expression results were validated for 15 unigenes by RT-PCR and qRT-PCR. Thus the coverage of these transcriptome is comprehensive enough to discover all known genes of major metabolic pathways. This transcriptome dataset can serve as important public information for gene expression, genomics and function genomics studies in Citronella and shall act as a benchmark for future improvement of the crop. PMID:26877149

  6. Allele Identification for Transcriptome-Based Population Genomics in the Invasive Plant Centaurea solstitialis

    PubMed Central

    Dlugosch, Katrina M.; Lai, Zhao; Bonin, Aurélie; Hierro, José; Rieseberg, Loren H.

    2013-01-01

    Transcriptome sequences are becoming more broadly available for multiple individuals of the same species, providing opportunities to derive population genomic information from these datasets. Using the 454 Life Science Genome Sequencer FLX and FLX-Titanium next-generation platforms, we generated 11−430 Mbp of sequence for normalized cDNA for 40 wild genotypes of the invasive plant Centaurea solstitialis, yellow starthistle, from across its worldwide distribution. We examined the impact of sequencing effort on transcriptome recovery and overlap among individuals. To do this, we developed two novel publicly available software pipelines: SnoWhite for read cleaning before assembly, and AllelePipe for clustering of loci and allele identification in assembled datasets with or without a reference genome. AllelePipe is designed specifically for cases in which read depth information is not appropriate or available to assist with disentangling closely related paralogs from allelic variation, as in transcriptome or previously assembled libraries. We find that modest applications of sequencing effort recover most of the novel sequences present in the transcriptome of this species, including single-copy loci and a representative distribution of functional groups. In contrast, the coverage of variable sites, observation of heterozygosity, and overlap among different libraries are all highly dependent on sequencing effort. Nevertheless, the information gained from overlapping regions was informative regarding coarse population structure and variation across our small number of population samples, providing the first genetic evidence in support of hypothesized invasion scenarios. PMID:23390612

  7. Genome wide transcriptome profiling reveals differential gene expression in secondary metabolite pathway of Cymbopogon winterianus

    PubMed Central

    Devi, Kamalakshi; Mishra, Surajit K.; Sahu, Jagajjit; Panda, Debashis; Modi, Mahendra K.; Sen, Priyabrata

    2016-01-01

    Advances in transcriptome sequencing provide fast, cost-effective and reliable approach to generate large expression datasets especially suitable for non-model species to identify putative genes, key pathway and regulatory mechanism. Citronella (Cymbopogon winterianus) is an aromatic medicinal grass used for anti-tumoral, antibacterial, anti-fungal, antiviral, detoxifying and natural insect repellent properties. Despite of having number of utilities, the genes involved in terpenes biosynthetic pathway is not yet clearly elucidated. The present study is a pioneering attempt to generate an exhaustive molecular information of secondary metabolite pathway and to increase genomic resources in Citronella. Using high-throughput RNA-Seq technology, root and leaf transcriptome was analysed at an unprecedented depth (11.7 Gb). Targeted searches identified majority of the genes associated with metabolic pathway and other natural product pathway viz. antibiotics synthesis along with many novel genes. Terpenoid biosynthesis genes comparative expression results were validated for 15 unigenes by RT-PCR and qRT-PCR. Thus the coverage of these transcriptome is comprehensive enough to discover all known genes of major metabolic pathways. This transcriptome dataset can serve as important public information for gene expression, genomics and function genomics studies in Citronella and shall act as a benchmark for future improvement of the crop. PMID:26877149

  8. Genome-Scale Studies of Aging: Challenges and Opportunities

    PubMed Central

    McCormick, Mark A; Kennedy, Brian K

    2012-01-01

    Whole-genome studies involving a phenotype of interest are increasingly prevalent, in part due to a dramatic increase in speed at which many high throughput technologies can be performed coupled to simultaneous decreases in cost. This type of genome-scale methodology has been applied to the phenotype of lifespan, as well as to whole-transcriptome changes during the aging process or in mutants affecting aging. The value of high throughput discovery-based science in this field is clearly evident, but will it yield a true systems-level understanding of the aging process? Here we review some of this work to date, focusing on recent findings and the unanswered puzzles to which they point. In this context, we also discuss recent technological advances and some of the likely future directions that they portend. PMID:23633910

  9. The genome and transcriptome of Haemonchus contortus, a key model parasite for drug and vaccine discovery

    PubMed Central

    2013-01-01

    Background The small ruminant parasite Haemonchus contortus is the most widely used parasitic nematode in drug discovery, vaccine development and anthelmintic resistance research. Its remarkable propensity to develop resistance threatens the viability of the sheep industry in many regions of the world and provides a cautionary example of the effect of mass drug administration to control parasitic nematodes. Its phylogenetic position makes it particularly well placed for comparison with the free-living nematode Caenorhabditis elegans and the most economically important parasites of livestock and humans. Results Here we report the detailed analysis of a draft genome assembly and extensive transcriptomic dataset for H. contortus. This represents the first genome to be published for a strongylid nematode and the most extensive transcriptomic dataset for any parasitic nematode reported to date. We show a general pattern of conservation of genome structure and gene content between H. contortus and C. elegans, but also a dramatic expansion of important parasite gene families. We identify genes involved in parasite-specific pathways such as blood feeding, neurological function, and drug metabolism. In particular, we describe complete gene repertoires for known drug target families, providing the most comprehensive understanding yet of the action of several important anthelmintics. Also, we identify a set of genes enriched in the parasitic stages of the lifecycle and the parasite gut that provide a rich source of vaccine and drug target candidates. Conclusions The H. contortus genome and transcriptome provide an essential platform for postgenomic research in this and other important strongylid parasites. PMID:23985316

  10. A genome resource to address mechanisms of developmental programming: determination of the fetal sheep heart transcriptome

    PubMed Central

    Cox, Laura A; Glenn, Jeremy P; Spradling, Kimberly D; Nijland, Mark J; Garcia, Roy; Nathanielsz, Peter W; Ford, Stephen P

    2012-01-01

    The pregnant sheep has provided seminal insights into reproduction related to animal and human development (ovarian function, fertility, implantation, fetal growth, parturition and lactation). Fetal sheep physiology has been extensively studied since 1950, contributing significantly to the basis for our understanding of many aspects of fetal development and behaviour that remain in use in clinical practice today. Understanding mechanisms requires the combination of systems approaches uniquely available in fetal sheep with the power of genomic studies. Absence of the full range of sheep genomic resources has limited the full realization of the power of this model, impeding progress in emerging areas of pregnancy biology such as developmental programming. We have examined the expressed fetal sheep heart transcriptome using high-throughput sequencing technologies. In so doing we identified 36,737 novel transcripts and describe genes, gene variants and pathways relevant to fundamental developmental mechanisms. Genes with the highest expression levels and with novel exons in the fetal heart transcriptome are known to play central roles in muscle development. We show that high-throughput sequencing methods can generate extensive transcriptome information in the absence of an assembled and annotated genome for that species. The gene sequence data obtained provide a unique genomic resource for sheep specific genetic technology development and, combined with the polymorphism data, augment annotation and assembly of the sheep genome. In addition, identification and pathway analysis of novel fetal sheep heart transcriptome splice variants is a first step towards revealing mechanisms of genetic variation and gene environment interactions during fetal heart development. PMID:22508961

  11. Recent advances in genomics and transcriptomics of cnidarians.

    PubMed

    Technau, Ulrich; Schwaiger, Michaela

    2015-12-01

    The advent of the genomic era has provided important and surprising insights into the deducted genetic composition of the common ancestor of cnidarians and bilaterians. This has changed our view of how genomes of metazoans evolve and when crucial gene families arose and diverged in animal evolution. Sequencing of several cnidarian genomes showed that cnidarians share a great part of their gene repertoire as well as genome synteny with vertebrates, with less gene losses in the anthozoan cnidarian lineage than for example in ecdysozoans like Drosophila melanogaster or Caenorhabditis elegans. The Hydra genome on the other hand has evolved more rapidly indicated by more divergent sequences, more cases of gene losses and many taxonomically restricted genes. Cnidarian genomes also contain a rich repertoire of transcription factors, including those that in bilaterian model organisms regulate the development of key bilaterian traits such as mesoderm, nervous system development and bilaterality. The sea anemone Nematostella vectensis, and possibly cnidarians in general, does not only share its complex gene repertoire with bilaterians, but also the regulation of crucial developmental regulatory genes via distal enhancer elements. In addition, epigenetic modifications on DNA and chromatin are shared among eumetazoans. This suggests that most conserved genes present in our genomes today, as well as the mechanisms guiding their expression, evolved before the divergence of cnidarians and bilaterians about 600 Myr ago. PMID:26421490

  12. Oil Accumulation by the Oleaginous Diatom Fistulifera solaris as Revealed by the Genome and Transcriptome

    PubMed Central

    Veluchamy, Alaguraj; Tanaka, Michihiro; Abida, Heni; Maréchal, Eric; Bowler, Chris; Muto, Masaki; Sunaga, Yoshihiko; Tanaka, Masayoshi; Taniguchi, Takeaki; Fukuda, Yorikane; Nemoto, Michiko; Matsumoto, Mitsufumi; Wong, Pui Shan; Aburatani, Sachiyo; Fujibuchi, Wataru

    2015-01-01

    Oleaginous photosynthetic organisms such as microalgae are promising sources for biofuel production through the generation of carbon-neutral sustainable energy. However, the metabolic mechanisms driving high-rate lipid production in these oleaginous organisms remain unclear, thus impeding efforts to improve productivity through genetic modifications. We analyzed the genome and transcriptome of the oleaginous diatom Fistulifera solaris JPCC DA0580. Next-generation sequencing technology provided evidence of an allodiploid genome structure, suggesting unorthodox molecular evolutionary and genetic regulatory systems for reinforcing metabolic efficiencies. Although major metabolic pathways were shared with nonoleaginous diatoms, transcriptome analysis revealed unique expression patterns, such as concomitant upregulation of fatty acid/triacylglycerol biosynthesis and fatty acid degradation (β-oxidation) in concert with ATP production. This peculiar pattern of gene expression may account for the simultaneous growth and oil accumulation phenotype and may inspire novel biofuel production technology based on this oleaginous microalga. PMID:25634988

  13. Reliable transformation system for Microbotryum lychnidis-dioicae informed by genome and transcriptome project.

    PubMed

    Toh, Su San; Treves, David S; Barati, Michelle T; Perlin, Michael H

    2016-10-01

    Microbotryum lychnidis-dioicae is a member of a species complex infecting host plants in the Caryophyllaceae. It is used as a model system in many areas of research, but attempts to make this organism tractable for reverse genetic approaches have not been fruitful. Here, we exploited the recently obtained genome sequence and transcriptome analysis to inform our design of constructs for use in Agrobacterium-mediated transformation techniques currently available for other fungi. Reproducible transformation was demonstrated at the genomic, transcriptional and functional levels. Moreover, these initial proof-of-principle experiments provide evidence that supports the findings from initial global transcriptome analysis regarding expression from the respective promoters under different growth conditions of the fungus. The technique thus provides for the first time the ability to stably introduce transgenes and over-express target M. lychnidis-dioicae genes. PMID:27215216

  14. The channel catfish genome sequence provides insights into the evolution of scale formation in teleosts.

    PubMed

    Liu, Zhanjiang; Liu, Shikai; Yao, Jun; Bao, Lisui; Zhang, Jiaren; Li, Yun; Jiang, Chen; Sun, Luyang; Wang, Ruijia; Zhang, Yu; Zhou, Tao; Zeng, Qifan; Fu, Qiang; Gao, Sen; Li, Ning; Koren, Sergey; Jiang, Yanliang; Zimin, Aleksey; Xu, Peng; Phillippy, Adam M; Geng, Xin; Song, Lin; Sun, Fanyue; Li, Chao; Wang, Xiaozhu; Chen, Ailu; Jin, Yulin; Yuan, Zihao; Yang, Yujia; Tan, Suxu; Peatman, Eric; Lu, Jianguo; Qin, Zhenkui; Dunham, Rex; Li, Zhaoxia; Sonstegard, Tad; Feng, Jianbin; Danzmann, Roy G; Schroeder, Steven; Scheffler, Brian; Duke, Mary V; Ballard, Linda; Kucuktas, Huseyin; Kaltenboeck, Ludmilla; Liu, Haixia; Armbruster, Jonathan; Xie, Yangjie; Kirby, Mona L; Tian, Yi; Flanagan, Mary Elizabeth; Mu, Weijie; Waldbieser, Geoffrey C

    2016-01-01

    Catfish represent 12% of teleost or 6.3% of all vertebrate species, and are of enormous economic value. Here we report a high-quality reference genome sequence of channel catfish (Ictalurus punctatus), the major aquaculture species in the US. The reference genome sequence was validated by genetic mapping of 54,000 SNPs, and annotated with 26,661 predicted protein-coding genes. Through comparative analysis of genomes and transcriptomes of scaled and scaleless fish and scale regeneration experiments, we address the genomic basis for the most striking physical characteristic of catfish, the evolutionary loss of scales and provide evidence that lack of secretory calcium-binding phosphoproteins accounts for the evolutionary loss of scales in catfish. The channel catfish reference genome sequence, along with two additional genome sequences and transcriptomes of scaled catfishes, provide crucial resources for evolutionary and biological studies. This work also demonstrates the power of comparative subtraction of candidate genes for traits of structural significance. PMID:27249958

  15. The channel catfish genome sequence provides insights into the evolution of scale formation in teleosts

    PubMed Central

    Liu, Zhanjiang; Liu, Shikai; Yao, Jun; Bao, Lisui; Zhang, Jiaren; Li, Yun; Jiang, Chen; Sun, Luyang; Wang, Ruijia; Zhang, Yu; Zhou, Tao; Zeng, Qifan; Fu, Qiang; Gao, Sen; Li, Ning; Koren, Sergey; Jiang, Yanliang; Zimin, Aleksey; Xu, Peng; Phillippy, Adam M.; Geng, Xin; Song, Lin; Sun, Fanyue; Li, Chao; Wang, Xiaozhu; Chen, Ailu; Jin, Yulin; Yuan, Zihao; Yang, Yujia; Tan, Suxu; Peatman, Eric; Lu, Jianguo; Qin, Zhenkui; Dunham, Rex; Li, Zhaoxia; Sonstegard, Tad; Feng, Jianbin; Danzmann, Roy G.; Schroeder, Steven; Scheffler, Brian; Duke, Mary V.; Ballard, Linda; Kucuktas, Huseyin; Kaltenboeck, Ludmilla; Liu, Haixia; Armbruster, Jonathan; Xie, Yangjie; Kirby, Mona L.; Tian, Yi; Flanagan, Mary Elizabeth; Mu, Weijie; Waldbieser, Geoffrey C.

    2016-01-01

    Catfish represent 12% of teleost or 6.3% of all vertebrate species, and are of enormous economic value. Here we report a high-quality reference genome sequence of channel catfish (Ictalurus punctatus), the major aquaculture species in the US. The reference genome sequence was validated by genetic mapping of 54,000 SNPs, and annotated with 26,661 predicted protein-coding genes. Through comparative analysis of genomes and transcriptomes of scaled and scaleless fish and scale regeneration experiments, we address the genomic basis for the most striking physical characteristic of catfish, the evolutionary loss of scales and provide evidence that lack of secretory calcium-binding phosphoproteins accounts for the evolutionary loss of scales in catfish. The channel catfish reference genome sequence, along with two additional genome sequences and transcriptomes of scaled catfishes, provide crucial resources for evolutionary and biological studies. This work also demonstrates the power of comparative subtraction of candidate genes for traits of structural significance. PMID:27249958

  16. Large-Scale Transcriptome Analysis of Retroelements in the Migratory Locust, Locusta migratoria

    PubMed Central

    Guo, Wei; Wang, Xianhui; Kang, Le

    2012-01-01

    Background Retroelements can successfully colonize eukaryotic genome through RNA-mediated transposition, and are considered to be some of the major mediators of genome size. The migratory locust Locusta migratoria is an insect with a large genome size, and its genome is probably subject to the proliferation of retroelements. An analysis of deep-sequencing transcriptome data will elucidate the structure, diversity and expression characteristics of retroelements. Results We performed a de novo assembly from deep sequencing RNA-seq data and identified 105 retroelements in the locust transcriptome. Phylogenetic analysis of reverse transcriptase sequences revealed 1 copia, 1 BEL, 8 gypsy and 23 non-long terminal repeat (LTR) retroelements in the locust transcriptome. A novel approach was developed to identify full-length LTR retroelements. A total of 5 full-length LTR retroelements and 2 full-length non-LTR retroelements that contained complete structures for retrotransposition were identified. Structural analysis indicated that all these retroelements may have been activated or deprived of retrotransposition activities very recently. Expression profiling analysis revealed that the retroelements exhibited a unique expression pattern at the egg stage and showed differential expression profiles between the solitarious and gregarious phases at the fifth instar and adult stage. Conclusion We hereby present the first de novo transcriptome analysis of retroelements in a species whose genome is not available. This work contributes to a comprehensive understanding of the landscape of retroelements in the locust transcriptome. More importantly, the results reveal that non-LTR retroelements are abundant and diverse in the locust transcriptome. PMID:22792363

  17. KONAGAbase: a genomic and transcriptomic database for the diamondback moth, Plutella xylostella

    PubMed Central

    2013-01-01

    Background The diamondback moth (DBM), Plutella xylostella, is one of the most harmful insect pests for crucifer crops worldwide. DBM has rapidly evolved high resistance to most conventional insecticides such as pyrethroids, organophosphates, fipronil, spinosad, Bacillus thuringiensis, and diamides. Therefore, it is important to develop genomic and transcriptomic DBM resources for analysis of genes related to insecticide resistance, both to clarify the mechanism of resistance of DBM and to facilitate the development of insecticides with a novel mode of action for more effective and environmentally less harmful insecticide rotation. To contribute to this goal, we developed KONAGAbase, a genomic and transcriptomic database for DBM (KONAGA is the Japanese word for DBM). Description KONAGAbase provides (1) transcriptomic sequences of 37,340 ESTs/mRNAs and 147,370 RNA-seq contigs which were clustered and assembled into 84,570 unigenes (30,695 contigs, 50,548 pseudo singletons, and 3,327 singletons); and (2) genomic sequences of 88,530 WGS contigs with 246,244 degenerate contigs and 106,455 singletons from which 6,310 de novo identified repeat sequences and 34,890 predicted gene-coding sequences were extracted. The unigenes and predicted gene-coding sequences were clustered and 32,800 representative sequences were extracted as a comprehensive putative gene set. These sequences were annotated with BLAST descriptions, Gene Ontology (GO) terms, and Pfam descriptions, respectively. KONAGAbase contains rich graphical user interface (GUI)-based web interfaces for easy and efficient searching, browsing, and downloading sequences and annotation data. Five useful search interfaces consisting of BLAST search, keyword search, BLAST result-based search, GO tree-based search, and genome browser are provided. KONAGAbase is publicly available from our website (http://dbm.dna.affrc.go.jp/px/) through standard web browsers. Conclusions KONAGAbase provides DBM comprehensive transcriptomic

  18. The genome and developmental transcriptome of the strongylid nematode Haemonchus contortus

    PubMed Central

    2013-01-01

    Background The barber's pole worm, Haemonchus contortus, is one of the most economically important parasites of small ruminants worldwide. Although this parasite can be controlled using anthelmintic drugs, resistance against most drugs in common use has become a widespread problem. We provide a draft of the genome and the transcriptomes of all key developmental stages of H. contortus to support biological and biotechnological research areas of this and related parasites. Results The draft genome of H. contortus is 320 Mb in size and encodes 23,610 protein-coding genes. On a fundamental level, we elucidate transcriptional alterations taking place throughout the life cycle, characterize the parasite's gene silencing machinery, and explore molecules involved in development, reproduction, host-parasite interactions, immunity, and disease. The secretome of H. contortus is particularly rich in peptidases linked to blood-feeding activity and interactions with host tissues, and a diverse array of molecules is involved in complex immune responses. On an applied level, we predict drug targets and identify vaccine molecules. Conclusions The draft genome and developmental transcriptome of H. contortus provide a major resource to the scientific community for a wide range of genomic, genetic, proteomic, metabolomic, evolutionary, biological, ecological, and epidemiological investigations, and a solid foundation for biotechnological outcomes, including new anthelmintics, vaccines and diagnostic tests. This first draft genome of any strongylid nematode paves the way for a rapid acceleration in our understanding of a wide range of socioeconomically important parasites of one of the largest nematode orders. PMID:23985341

  19. Insights into the Maize Pan-Genome and Pan-Transcriptome[W][OPEN

    PubMed Central

    Hirsch, Candice N.; Foerster, Jillian M.; Johnson, James M.; Sekhon, Rajandeep S.; Muttoni, German; Vaillancourt, Brieanne; Peñagaricano, Francisco; Lindquist, Erika; Pedraza, Mary Ann; Barry, Kerrie; de Leon, Natalia; Kaeppler, Shawn M.; Buell, C. Robin

    2014-01-01

    Genomes at the species level are dynamic, with genes present in every individual (core) and genes in a subset of individuals (dispensable) that collectively constitute the pan-genome. Using transcriptome sequencing of seedling RNA from 503 maize (Zea mays) inbred lines to characterize the maize pan-genome, we identified 8681 representative transcript assemblies (RTAs) with 16.4% expressed in all lines and 82.7% expressed in subsets of the lines. Interestingly, with linkage disequilibrium mapping, 76.7% of the RTAs with at least one single nucleotide polymorphism (SNP) could be mapped to a single genetic position, distributed primarily throughout the nonpericentromeric portion of the genome. Stepwise iterative clustering of RTAs suggests, within the context of the genotypes used in this study, that the maize genome is restricted and further sampling of seedling RNA within this germplasm base will result in minimal discovery. Genome-wide association studies based on SNPs and transcript abundance in the pan-genome revealed loci associated with the timing of the juvenile-to-adult vegetative and vegetative-to-reproductive developmental transitions, two traits important for fitness and adaptation. This study revealed the dynamic nature of the maize pan-genome and demonstrated that a substantial portion of variation may lie outside the single reference genome for a species. PMID:24488960

  20. Genome-Wide Transcriptome and Expression Profile Analysis of Phalaenopsis during Explant Browning

    PubMed Central

    Xu, Chuanjun; Zeng, Biyu; Huang, Junmei; Huang, Wen; Liu, Yumei

    2015-01-01

    Background Explant browning presents a major problem for in vitro culture, and can lead to the death of the explant and failure of regeneration. Considerable work has examined the physiological mechanisms underlying Phalaenopsis leaf explant browning, but the molecular mechanisms of browning remain elusive. In this study, we used whole genome RNA sequencing to examine Phalaenopsis leaf explant browning at genome-wide level. Methodology/Principal Findings We first used Illumina high-throughput technology to sequence the transcriptome of Phalaenopsis and then performed de novo transcriptome assembly. We assembled 79,434,350 clean reads into 31,708 isogenes and generated 26,565 annotated unigenes. We assigned Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations, and potential Pfam domains to each transcript. Using the transcriptome data as a reference, we next analyzed the differential gene expression of explants cultured for 0, 3, and 6 d, respectively. We then identified differentially expressed genes (DEGs) before and after Phalaenopsis explant browning. We also performed GO, KEGG functional enrichment and Pfam analysis of all DEGs. Finally, we selected 11 genes for quantitative real-time PCR (qPCR) analysis to confirm the expression profile analysis. Conclusions/Significance Here, we report the first comprehensive analysis of transcriptome and expression profiles during Phalaenopsis explant browning. Our results suggest that Phalaenopsis explant browning may be due in part to gene expression changes that affect the secondary metabolism, such as: phenylpropanoid pathway and flavonoid biosynthesis. Genes involved in photosynthesis and ATPase activity have been found to be changed at transcription level; these changes may perturb energy metabolism and thus lead to the decay of plant cells and tissues. This study provides comprehensive gene expression data for Phalaenopsis browning. Our data constitute an important resource for further

  1. Transcriptome characterization and SSR discovery in large-scale loach Paramisgurnus dabryanus (Cobitidae, Cypriniformes).

    PubMed

    Li, Caijuan; Ling, Qufei; Ge, Chen; Ye, Zhuqing; Han, Xiaofei

    2015-02-25

    The large-scale loach (Paramisgurnus dabryanus, Cypriniformes) is a bottom-dwelling freshwater species of fish found mainly in eastern Asia. The natural germplasm resources of this important aquaculture species has been recently threatened due to overfishing and artificial propagation. The objective of this study is to obtain the first functional genomic resource and candidate molecular markers for future conservation and breeding research. Illumina paired-end sequencing generated over one hundred million reads that resulted in 71,887 assembled transcripts, with an average length of 1465bp. 42,093 (58.56%) protein-coding sequences were predicted; and 43,837 transcripts had significant matches to NCBI nonredundant protein (Nr) database. 29,389 and 14,419 transcripts were assigned into gene ontology (GO) categories and Eukaryotic Orthologous Groups (KOG), respectively. 22,102 (31.14%) transcripts were mapped to 302 KEGG pathways. In addition, 15,106 candidate SSR markers were identified, with 11,037 pairs of PCR primers designed. 400 primers pairs of SSR selected randomly were validated, of which 364 (91%) pairs of primers were able to produce PCR products. Further test with 41 loci and 20 large-scale loach specimens collected from the four largest lakes in China showed that 36 (87.8%) loci were polymorphic. The transcriptomic profile and SSR repertoire obtained in this study will facilitate population genetic studies and selective breeding of large-scale loach in the future. PMID:25528212

  2. Integrated genome and transcriptome sequencing identifies a novel form of hybrid and aggressive prostate cancer.

    PubMed

    Wu, Chunxiao; Wyatt, Alexander W; Lapuk, Anna V; McPherson, Andrew; McConeghy, Brian J; Bell, Robert H; Anderson, Shawn; Haegert, Anne; Brahmbhatt, Sonal; Shukin, Robert; Mo, Fan; Li, Estelle; Fazli, Ladan; Hurtado-Coll, Antonio; Jones, Edward C; Butterfield, Yaron S; Hach, Faraz; Hormozdiari, Fereydoun; Hajirasouliha, Iman; Boutros, Paul C; Bristow, Robert G; Jones, Steven Jm; Hirst, Martin; Marra, Marco A; Maher, Christopher A; Chinnaiyan, Arul M; Sahinalp, S Cenk; Gleave, Martin E; Volik, Stanislav V; Collins, Colin C

    2012-05-01

    Next-generation sequencing is making sequence-based molecular pathology and personalized oncology viable. We selected an individual initially diagnosed with conventional but aggressive prostate adenocarcinoma and sequenced the genome and transcriptome from primary and metastatic tissues collected prior to hormone therapy. The histology-pathology and copy number profiles were remarkably homogeneous, yet it was possible to propose the quadrant of the prostate tumour that likely seeded the metastatic diaspora. Despite a homogeneous cell type, our transcriptome analysis revealed signatures of both luminal and neuroendocrine cell types. Remarkably, the repertoire of expressed but apparently private gene fusions, including C15orf21:MYC, recapitulated this biology. We hypothesize that the amplification and over-expression of the stem cell gene MSI2 may have contributed to the stable hybrid cellular identity. This hybrid luminal-neuroendocrine tumour appears to represent a novel and highly aggressive case of prostate cancer with unique biological features and, conceivably, a propensity for rapid progression to castrate-resistance. Overall, this work highlights the importance of integrated analyses of genome, exome and transcriptome sequences for basic tumour biology, sequence-based molecular pathology and personalized oncology. PMID:22294438

  3. Phenotypic, genomic, transcriptomic and proteomic changes in Bacillus cereus after a short-term space flight

    NASA Astrophysics Data System (ADS)

    Su, Longxiang; Zhou, Lisha; Liu, Jinwen; Cen, Zhong; Wu, Chunyan; Wang, Tong; Zhou, Tao; Chang, De; Guo, Yinghua; Fang, Xiangqun; Wang, Junfeng; Li, Tianzhi; Yin, Sanjun; Dai, Wenkui; Zhou, Yuping; Zhao, Jiao; Fang, Chengxiang; Yang, Ruifu; Liu, Changting

    2014-01-01

    The environment in space could affect microorganisms by changing a variety of features, including proliferation rate, cell physiology, cell metabolism, biofilm production, virulence, and drug resistance. However, the relevant mechanisms remain unclear. To explore the effect of a space environment on Bacillus cereus, a strain of B. cereus was sent to space for 398 h by ShenZhou VIII from November 1, 2011 to November 17, 2011. A ground simulation with similar temperature conditions was simultaneously performed as a control. After the flight, the flight and control strains were further analyzed using phenotypic, genomic, transcriptomic and proteomic techniques to explore the divergence of B. cereus in a space environment. The flight strains exhibited a significantly slower growth rate, a significantly higher amikacin resistance level, and changes in metabolism relative to the ground control strain. After the space flight, three polymorphic loci were found in the flight strains LCT-BC25 and LCT-BC235. A combined transcriptome and proteome analysis was performed, and this analysis revealed that the flight strains had changes in genes/proteins relevant to metabolism. In addition, certain genes/proteins that are relevant to structural function, gene expression modification and translation, and virulence were also altered. Our study represents the first documented analysis of the phenotypic, genomic, transcriptomic, and proteomic changes that occur in B. cereus during space flight, and our results could be beneficial to the field of space microbiology.

  4. Genome-scale neurogenetics: methodology and meaning

    PubMed Central

    McCarroll, Steven A; Feng, Guoping; Hyman, Steven E

    2016-01-01

    Genetic analysis is currently offering glimpses into molecular mechanisms underlying such neuropsychiatric disorders as schizophrenia, bipolar disorder and autism. After years of frustration, success in identifying disease-associated DNA sequence variation has followed from new genomic technologies, new genome data resources, and global collaborations that could achieve the scale necessary to find the genes underlying highly polygenic disorders. Here we describe early results from genome-scale studies of large numbers of subjects and the emerging significance of these results for neurobiology. PMID:24866041

  5. The plover neurotranscriptome assembly: transcriptomic analysis in an ecological model species without a reference genome.

    PubMed

    Moghadam, Hooman K; Harrison, Peter W; Zachar, Gergely; Székely, Tamás; Mank, Judith E

    2013-07-01

    We assembled a de novo transcriptome of short-read Illumina RNA-Seq data generated from telencephalon and diencephalon tissue samples from the Kentish plover, Charadrius alexandrinus. This is a species of considerable interest in behavioural ecology for its highly variable mating system and parental behaviour, but it lacks genomic resources and is evolutionarily distant from the few available avian draft genome sequences. We assembled and identified over 21,000 transcript contigs with significant expression in our samples, showing high homology to exonic sequences in avian draft genomes. From these, we identified >31,000 high-quality SNPs and > 2500 simple sequence repeats (SSRs). We also analysed expression patterns in our data to identify potential candidate genes related to differences in male and female behaviour, identifying over 200 nonoverlapping putative autosomal transcripts that show significant expression differences between males and females. Gene ontology analysis revealed that female-biased transcripts were significantly enriched for cerebral functions related to learning, cognition and memory, and male-biased transcripts were mostly enriched for terms related to neural function such as neuron projection and synapses. This data set provides one of the first de novo transcriptome assemblies from non-normalized short-read next-generation data and outlines an effective strategy for measuring sequence and expression variability simultaneously without the aid of a reference genome. PMID:23551815

  6. RSIADB, a collective resource for genome and transcriptome analyses in Rhizoctonia solani AG1 IA

    PubMed Central

    Ai, Peng; Zhang, Jinfeng; Deng, Qiming; Wang, Shiquan; Li, Shuangcheng; Zhu, Jun; Li, Ping; Zheng, Aiping

    2016-01-01

    Rice [Oryza sativa (L.)] feeds more than half of the world’s population. Rhizoctonia solani is a major fungal pathogen of rice causing extreme crop losses in all rice-growing regions of the world. R. solani AG1 IA is a major cause of sheath blight in rice. In this study, we constructed a comprehensive and user-friendly web-based database, RSIADB, to analyse its draft genome and transcriptome. The database was built using the genome sequence (10 489 genes) and annotation information for R. solani AG1 IA. A total of six RNAseq samples of R. solani AG1 IA were also analysed, corresponding to 10, 18, 24, 32, 48 and 72 h after infection of rice leaves. The RSIADB database enables users to search, browse, and download gene sequences for R. solani AG1 IA, and mine the data using BLAST, Sequence Extractor, Browse and Construction Diagram tools that were integrated into the database. RSIADB is an important genomic resource for scientists working with R. solani AG1 IA and will assist researchers in analysing the annotated genome and transcriptome of this pathogen. This resource will facilitate studies on gene function, pathogenesis factors and secreted proteins, as well as provide an avenue for comparative analyses of genes expressed during different stages of infection. Database URL: http://genedenovoweb.ticp.net:81/rsia/index.php PMID:27022158

  7. RSIADB, a collective resource for genome and transcriptome analyses in Rhizoctonia solani AG1 IA.

    PubMed

    Chen, Lei; Ai, Peng; Zhang, Jinfeng; Deng, Qiming; Wang, Shiquan; Li, Shuangcheng; Zhu, Jun; Li, Ping; Zheng, Aiping

    2016-01-01

    Rice [Oryza sativa (L.)] feeds more than half of the world's population. Rhizoctonia solaniis a major fungal pathogen of rice causing extreme crop losses in all rice-growing regions of the world. R. solani AG1 IA is a major cause of sheath blight in rice. In this study, we constructed a comprehensive and user-friendly web-based database, RSIADB, to analyse its draft genome and transcriptome. The database was built using the genome sequence (10,489 genes) and annotation information for R. solani AG1 IA. A total of six RNAseq samples of R. solani AG1 IA were also analysed, corresponding to 10, 18, 24, 32, 48 and 72 h after infection of rice leaves. The RSIADB database enables users to search, browse, and download gene sequences for R. solani AG1 IA, and mine the data using BLAST, Sequence Extractor, Browse and Construction Diagram tools that were integrated into the database. RSIADB is an important genomic resource for scientists working with R. solani AG1 IA and will assist researchers in analysing the annotated genome and transcriptome of this pathogen. This resource will facilitate studies on gene function, pathogenesis factors and secreted proteins, as well as provide an avenue for comparative analyses of genes expressed during different stages of infection. Database URL:http://genedenovoweb.ticp.net:81/rsia/index.php. PMID:27022158

  8. Genome and transcriptome of the regeneration-competent flatworm, Macrostomum lignano

    PubMed Central

    Wasik, Kaja; Gurtowski, James; Zhou, Xin; Ramos, Olivia Mendivil; Delás, M. Joaquina; Battistoni, Giorgia; El Demerdash, Osama; Falciatori, Ilaria; Vizoso, Dita B.; Smith, Andrew D.; Ladurner, Peter; Schärer, Lukas; McCombie, W. Richard; Hannon, Gregory J.; Schatz, Michael

    2015-01-01

    The free-living flatworm, Macrostomum lignano has an impressive regenerative capacity. Following injury, it can regenerate almost an entirely new organism because of the presence of an abundant somatic stem cell population, the neoblasts. This set of unique properties makes many flatworms attractive organisms for studying the evolution of pathways involved in tissue self-renewal, cell-fate specification, and regeneration. The use of these organisms as models, however, is hampered by the lack of a well-assembled and annotated genome sequences, fundamental to modern genetic and molecular studies. Here we report the genomic sequence of M. lignano and an accompanying characterization of its transcriptome. The genome structure of M. lignano is remarkably complex, with ∼75% of its sequence being comprised of simple repeats and transposon sequences. This has made high-quality assembly from Illumina reads alone impossible (N50 = 222 bp). We therefore generated 130× coverage by long sequencing reads from the Pacific Biosciences platform to create a substantially improved assembly with an N50 of 64 Kbp. We complemented the reference genome with an assembled and annotated transcriptome, and used both of these datasets in combination to probe gene-expression patterns during regeneration, examining pathways important to stem cell function. PMID:26392545

  9. Hepatocellular carcinoma cell lines retain the genomic and transcriptomic landscapes of primary human cancers

    PubMed Central

    Qiu, Zhixin; Zou, Keke; Zhuang, Liping; Qin, Jianjie; Li, Hong; Li, Chao; Zhang, Zhengtao; Chen, Xiaotao; Cen, Jin; Meng, Zhiqiang; Zhang, Haibin; Li, Yixue; Hui, Lijian

    2016-01-01

    Hepatocellular carcinoma (HCC) cell lines are useful in vitro models for the study of primary HCCs. Because cell lines acquire additional mutations in culture, it is important to understand to what extent HCC cell lines retain the genetic landscapes of primary HCCs. Most HCC cell lines were established during the last century, precluding comparison between cell lines and primary cancers. In this study, 9 Chinese HCC cell lines with matched patient-derived cells at low passages (PDCs) were established in the defined culture condition. Whole genome analyses of 4 HCC cell lines showed that genomic mutation landscapes, including mutations, copy number alterations (CNAs) and HBV integrations, were highly stable during cell line establishment. Importantly, genetic alterations in cancer drivers and druggable genes were reserved in cell lines. HCC cell lines also retained gene expression patterns of primary HCCs during in vitro culture. Finally, sequential analysis of HCC cell lines and PDCs at different passages revealed their comparable and stable genomic and transcriptomic levels if maintained within proper passages. These results show that HCC cell lines largely retain the genomic and transcriptomic landscapes of primary HCCs, thus laying the rationale for testing HCC cell lines as preclinical models in precision medicine. PMID:27273737

  10. The genome and transcriptome of the enteric parasite Entamoeba invadens, a model for encystation

    PubMed Central

    2013-01-01

    Background Several eukaryotic parasites form cysts that transmit infection. The process is found in diverse organisms such as Toxoplasma, Giardia, and nematodes. In Entamoeba histolytica this process cannot be induced in vitro, making it difficult to study. In Entamoeba invadens, stage conversion can be induced, but its utility as a model system to study developmental biology has been limited by a lack of genomic resources. We carried out genome and transcriptome sequencing of E. invadens to identify molecular processes involved in stage conversion. Results We report the sequencing and assembly of the E. invadens genome and use whole transcriptome sequencing to characterize changes in gene expression during encystation and excystation. The E. invadens genome is larger than that of E. histolytica, apparently largely due to expansion of intergenic regions; overall gene number and the machinery for gene regulation are conserved between the species. Over half the genes are regulated during the switch between morphological forms and a key signaling molecule, phospholipase D, appears to regulate encystation. We provide evidence for the occurrence of meiosis during encystation, suggesting that stage conversion may play a key role in recombination between strains. Conclusions Our analysis demonstrates that a number of core processes are common to encystation between distantly related parasites, including meiosis, lipid signaling and RNA modification. These data provide a foundation for understanding the developmental cascade in the important human pathogen E. histolytica and highlight conserved processes more widely relevant in enteric pathogens. PMID:23889909

  11. Hepatocellular carcinoma cell lines retain the genomic and transcriptomic landscapes of primary human cancers.

    PubMed

    Qiu, Zhixin; Zou, Keke; Zhuang, Liping; Qin, Jianjie; Li, Hong; Li, Chao; Zhang, Zhengtao; Chen, Xiaotao; Cen, Jin; Meng, Zhiqiang; Zhang, Haibin; Li, Yixue; Hui, Lijian

    2016-01-01

    Hepatocellular carcinoma (HCC) cell lines are useful in vitro models for the study of primary HCCs. Because cell lines acquire additional mutations in culture, it is important to understand to what extent HCC cell lines retain the genetic landscapes of primary HCCs. Most HCC cell lines were established during the last century, precluding comparison between cell lines and primary cancers. In this study, 9 Chinese HCC cell lines with matched patient-derived cells at low passages (PDCs) were established in the defined culture condition. Whole genome analyses of 4 HCC cell lines showed that genomic mutation landscapes, including mutations, copy number alterations (CNAs) and HBV integrations, were highly stable during cell line establishment. Importantly, genetic alterations in cancer drivers and druggable genes were reserved in cell lines. HCC cell lines also retained gene expression patterns of primary HCCs during in vitro culture. Finally, sequential analysis of HCC cell lines and PDCs at different passages revealed their comparable and stable genomic and transcriptomic levels if maintained within proper passages. These results show that HCC cell lines largely retain the genomic and transcriptomic landscapes of primary HCCs, thus laying the rationale for testing HCC cell lines as preclinical models in precision medicine. PMID:27273737

  12. Genome and transcriptome of the regeneration-competent flatworm, Macrostomum lignano.

    PubMed

    Wasik, Kaja; Gurtowski, James; Zhou, Xin; Ramos, Olivia Mendivil; Delás, M Joaquina; Battistoni, Giorgia; El Demerdash, Osama; Falciatori, Ilaria; Vizoso, Dita B; Smith, Andrew D; Ladurner, Peter; Schärer, Lukas; McCombie, W Richard; Hannon, Gregory J; Schatz, Michael

    2015-10-01

    The free-living flatworm, Macrostomum lignano has an impressive regenerative capacity. Following injury, it can regenerate almost an entirely new organism because of the presence of an abundant somatic stem cell population, the neoblasts. This set of unique properties makes many flatworms attractive organisms for studying the evolution of pathways involved in tissue self-renewal, cell-fate specification, and regeneration. The use of these organisms as models, however, is hampered by the lack of a well-assembled and annotated genome sequences, fundamental to modern genetic and molecular studies. Here we report the genomic sequence of M. lignano and an accompanying characterization of its transcriptome. The genome structure of M. lignano is remarkably complex, with ∼75% of its sequence being comprised of simple repeats and transposon sequences. This has made high-quality assembly from Illumina reads alone impossible (N50=222 bp). We therefore generated 130× coverage by long sequencing reads from the Pacific Biosciences platform to create a substantially improved assembly with an N50 of 64 Kbp. We complemented the reference genome with an assembled and annotated transcriptome, and used both of these datasets in combination to probe gene-expression patterns during regeneration, examining pathways important to stem cell function. PMID:26392545

  13. The Genome and Development-Dependent Transcriptomes of Pyronema confluens: A Window into Fungal Evolution

    PubMed Central

    Traeger, Stefanie; Altegoer, Florian; Freitag, Michael; Gabaldon, Toni; Kempken, Frank; Kumar, Abhishek; Marcet-Houben, Marina; Pöggeler, Stefanie; Stajich, Jason E.; Nowrousian, Minou

    2013-01-01

    Fungi are a large group of eukaryotes found in nearly all ecosystems. More than 250 fungal genomes have already been sequenced, greatly improving our understanding of fungal evolution, physiology, and development. However, for the Pezizomycetes, an early-diverging lineage of filamentous ascomycetes, there is so far only one genome available, namely that of the black truffle, Tuber melanosporum, a mycorrhizal species with unusual subterranean fruiting bodies. To help close the sequence gap among basal filamentous ascomycetes, and to allow conclusions about the evolution of fungal development, we sequenced the genome and assayed transcriptomes during development of Pyronema confluens, a saprobic Pezizomycete with a typical apothecium as fruiting body. With a size of 50 Mb and ∼13,400 protein-coding genes, the genome is more characteristic of higher filamentous ascomycetes than the large, repeat-rich truffle genome; however, some typical features are different in the P. confluens lineage, e.g. the genomic environment of the mating type genes that is conserved in higher filamentous ascomycetes, but only partly conserved in P. confluens. On the other hand, P. confluens has a full complement of fungal photoreceptors, and expression studies indicate that light perception might be similar to distantly related ascomycetes and, thus, represent a basic feature of filamentous ascomycetes. Analysis of spliced RNA-seq sequence reads allowed the detection of natural antisense transcripts for 281 genes. The P. confluens genome contains an unusually high number of predicted orphan genes, many of which are upregulated during sexual development, consistent with the idea of rapid evolution of sex-associated genes. Comparative transcriptomics identified the transcription factor gene pro44 that is upregulated during development in P. confluens and the Sordariomycete Sordaria macrospora. The P. confluens pro44 gene (PCON_06721) was used to complement the S. macrospora pro44 deletion

  14. Defining the transcriptome assembly and its use for genome dynamics and transcriptome profiling studies in pigeonpea (Cajanus cajan L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study reports generation of large-scale genomic resources for pigeonpea, a so-called ‘orphan crop species’ of the semi-arid tropic regions. Roche FLX/454 sequencing was carried out on a normalized cDNA pool prepared from 31 tissues produced 494,353 short transcript reads (STRs). Cluster analysi...

  15. ChiloDB: a genomic and transcriptome database for an important rice insect pest Chilo suppressalis

    PubMed Central

    Yin, Chuanlin; Liu, Ying; Liu, Jinding; Xiao, Huamei; Huang, Shuiqing; Lin, Yongjun; Han, Zhaojun; Li, Fei

    2014-01-01

    ChiloDB is an integrated resource that will be of use to the rice stem borer research community. The rice striped stem borer (SSB), Chilo suppressalis Walker, is a major rice pest that causes severe yield losses in most rice-producing countries. A draft genome of this insect is available. The aims of ChiloDB are (i) to store recently acquired genomic sequence and transcriptome data and integrate them with protein-coding genes, microRNAs, piwi-interacting RNAs (piRNAs) and RNA sequencing (RNA-Seq) data and (ii) to provide comprehensive search tools and downloadable data sets for comparative genomics and gene annotation of this important rice pest. ChiloDB contains the first version of the official SSB gene set, comprising 80 479 scaffolds and 10 221 annotated protein-coding genes. Additionally, 262 SSB microRNA genes predicted from a small RNA library, 82 639 piRNAs identified using the piRNApredictor software, 37 040 transcripts from a midgut transcriptome and 69 977 transcripts from a mixed sample have all been integrated into ChiloDB. ChiloDB was constructed using a data structure that is compatible with data resources, which will be incorporated into the database in the future. This resource will serve as a long-term and open-access database for research on the biology, evolution and pest control of SSB. To the best of our knowledge, ChiloDB is one of the first genomic and transcriptome database for rice insect pests. Database URL: http://ento.njau.edu.cn/ChiloDB. PMID:24997141

  16. ChiloDB: a genomic and transcriptome database for an important rice insect pest Chilo suppressalis.

    PubMed

    Yin, Chuanlin; Liu, Ying; Liu, Jinding; Xiao, Huamei; Huang, Shuiqing; Lin, Yongjun; Han, Zhaojun; Li, Fei

    2014-01-01

    ChiloDB is an integrated resource that will be of use to the rice stem borer research community. The rice striped stem borer (SSB), Chilo suppressalis Walker, is a major rice pest that causes severe yield losses in most rice-producing countries. A draft genome of this insect is available. The aims of ChiloDB are (i) to store recently acquired genomic sequence and transcriptome data and integrate them with protein-coding genes, microRNAs, piwi-interacting RNAs (piRNAs) and RNA sequencing (RNA-Seq) data and (ii) to provide comprehensive search tools and downloadable data sets for comparative genomics and gene annotation of this important rice pest. ChiloDB contains the first version of the official SSB gene set, comprising 80,479 scaffolds and 10 221 annotated protein-coding genes. Additionally, 262 SSB microRNA genes predicted from a small RNA library, 82 639 piRNAs identified using the piRNApredictor software, 37,040 transcripts from a midgut transcriptome and 69 977 transcripts from a mixed sample have all been integrated into ChiloDB. ChiloDB was constructed using a data structure that is compatible with data resources, which will be incorporated into the database in the future. This resource will serve as a long-term and open-access database for research on the biology, evolution and pest control of SSB. To the best of our knowledge, ChiloDB is one of the first genomic and transcriptome database for rice insect pests. Database URL: http://ento.njau.edu.cn/ChiloDB. PMID:24997141

  17. Genome and transcriptome of the porcine whipworm Trichuris suis

    PubMed Central

    Jex, Aaron R.; Nejsum, Peter; Schwarz, Erich M.; Hu, Li; Young, Neil D.; Hall, Ross S.; Korhonen, Pasi K.; Liao, Shengguang; Thamsborg, Stig; Xia, Jinquan; Xu, Pengwei; Wang, Shaowei; Scheerlinck, Jean-Pierre Y.; Hofmann, Andreas; Sternberg, Paul W.; Wang, Jun; Gasser, Robin B.

    2014-01-01

    Trichuris (whipworm) infects 1 billion people worldwide, and causes a disease (trichuriasis) that results in major socioeconomic losses in both humans and pigs. Trichuriasis relates to an inflammation of the large intestine manifested in bloody diarrhoea, and chronic disease can cause malnourishment and stunting in children. Paradoxically, Trichuris of pigs has shown substantial promise as a treatment for human autoimmune disorders, including inflammatory bowel disease (IBD) and multiple sclerosis (MS). Here, we report ~80 megabase (Mb) draft assemblies of the genomes of adult male and female T. suis, and explore stage-, sex- and tissue-specific transcription of messenger and small non-coding RNAs. PMID:24929829

  18. High density linkage mapping of genomic and transcriptomic SNPs for synteny analysis and anchoring the genome sequence of chickpea

    PubMed Central

    Gaur, Rashmi; Jeena, Ganga; Shah, Niraj; Gupta, Shefali; Pradhan, Seema; Tyagi, Akhilesh K; Jain, Mukesh; Chattopadhyay, Debasis; Bhatia, Sabhyata

    2015-01-01

    This study presents genome-wide discovery of SNPs through next generation sequencing of the genome of Cicer reticulatum. Mapping of the C. reticulatum sequenced reads onto the draft genome assembly of C. arietinum (desi chickpea) resulted in identification of 842,104 genomic SNPs which were utilized along with an additional 36,446 genic SNPs identified from transcriptome sequences of the aforementioned varieties. Two new chickpea Oligo Pool All (OPAs) each having 3,072 SNPs were designed and utilized for SNP genotyping of 129 Recombinant Inbred Lines (RILs). Using Illumina GoldenGate Technology genotyping data of 5,041 SNPs were generated and combined with the 1,673 marker data from previously published studies, to generate a high resolution linkage map. The map comprised of 6698 markers distributed on eight linkage groups spanning 1083.93 cM with an average inter-marker distance of 0.16 cM. Utility of the present map was demonstrated for improving the anchoring of the earlier reported draft genome sequence of desi chickpea by ~30% and that of kabuli chickpea by 18%. The genetic map reported in this study represents the most dense linkage map of chickpea , with the potential to facilitate efficient anchoring of the draft genome sequences of desi as well as kabuli chickpea varieties. PMID:26303721

  19. Spider Transcriptomes Identify Ancient Large-Scale Gene Duplication Event Potentially Important in Silk Gland Evolution.

    PubMed

    Clarke, Thomas H; Garb, Jessica E; Hayashi, Cheryl Y; Arensburger, Peter; Ayoub, Nadia A

    2015-07-01

    The evolution of specialized tissues with novel functions, such as the silk synthesizing glands in spiders, is likely an influential driver of adaptive success. Large-scale gene duplication events and subsequent paralog divergence are thought to be required for generating evolutionary novelty. Such an event has been proposed for spiders, but not tested. We de novo assembled transcriptomes from three cobweb weaving spider species. Based on phylogenetic analyses of gene families with representatives from each of the three species, we found numerous duplication events indicative of a whole genome or segmental duplication. We estimated the age of the gene duplications relative to several speciation events within spiders and arachnids and found that the duplications likely occurred after the divergence of scorpions (order Scorpionida) and spiders (order Araneae), but before the divergence of the spider suborders Mygalomorphae and Araneomorphae, near the evolutionary origin of spider silk glands. Transcripts that are expressed exclusively or primarily within black widow silk glands are more likely to have a paralog descended from the ancient duplication event and have elevated amino acid replacement rates compared with other transcripts. Thus, an ancient large-scale gene duplication event within the spider lineage was likely an important source of molecular novelty during the evolution of silk gland-specific expression. This duplication event may have provided genetic material for subsequent silk gland diversification in the true spiders (Araneomorphae). PMID:26058392

  20. Spider Transcriptomes Identify Ancient Large-Scale Gene Duplication Event Potentially Important in Silk Gland Evolution

    PubMed Central

    Clarke, Thomas H.; Garb, Jessica E.; Hayashi, Cheryl Y.; Arensburger, Peter; Ayoub, Nadia A.

    2015-01-01

    The evolution of specialized tissues with novel functions, such as the silk synthesizing glands in spiders, is likely an influential driver of adaptive success. Large-scale gene duplication events and subsequent paralog divergence are thought to be required for generating evolutionary novelty. Such an event has been proposed for spiders, but not tested. We de novo assembled transcriptomes from three cobweb weaving spider species. Based on phylogenetic analyses of gene families with representatives from each of the three species, we found numerous duplication events indicative of a whole genome or segmental duplication. We estimated the age of the gene duplications relative to several speciation events within spiders and arachnids and found that the duplications likely occurred after the divergence of scorpions (order Scorpionida) and spiders (order Araneae), but before the divergence of the spider suborders Mygalomorphae and Araneomorphae, near the evolutionary origin of spider silk glands. Transcripts that are expressed exclusively or primarily within black widow silk glands are more likely to have a paralog descended from the ancient duplication event and have elevated amino acid replacement rates compared with other transcripts. Thus, an ancient large-scale gene duplication event within the spider lineage was likely an important source of molecular novelty during the evolution of silk gland-specific expression. This duplication event may have provided genetic material for subsequent silk gland diversification in the true spiders (Araneomorphae). PMID:26058392

  1. Transcriptome sequencing and microarray development for the Manila clam, Ruditapes philippinarum: genomic tools for environmental monitoring

    PubMed Central

    2011-01-01

    Background The Manila clam, Ruditapes philippinarum, is one of the major aquaculture species in the world and a potential sentinel organism for monitoring the status of marine ecosystems. However, genomic resources for R. philippinarum are still extremely limited. Global analysis of gene expression profiles is increasingly used to evaluate the biological effects of various environmental stressors on aquatic animals under either artificial conditions or in the wild. Here, we report on the development of a transcriptomic platform for global gene expression profiling in the Manila clam. Results A normalized cDNA library representing a mixture of adult tissues was sequenced using a ultra high-throughput sequencing technology (Roche 454). A database consisting of 32,606 unique transcripts was constructed, 9,747 (30%) of which could be annotated by similarity. An oligo-DNA microarray platform was designed and applied to profile gene expression of digestive gland and gills. Functional annotation of differentially expressed genes between different tissues was performed by enrichment analysis. Expression of Natural Antisense Transcripts (NAT) analysis was also performed and bi-directional transcription appears a common phenomenon in the R. philippinarum transcriptome. A preliminary study on clam samples collected in a highly polluted area of the Venice Lagoon demonstrated the applicability of genomic tools to environmental monitoring. Conclusions The transcriptomic platform developed for the Manila clam confirmed the high level of reproducibility of current microarray technology. Next-generation sequencing provided a good representation of the clam transcriptome. Despite the known limitations in transcript annotation and sequence coverage for non model species, sufficient information was obtained to identify a large set of genes potentially involved in cellular response to environmental stress. PMID:21569398

  2. Databases and information integration for the Medicago truncatula genome and transcriptome.

    PubMed

    Cannon, Steven B; Crow, John A; Heuer, Michael L; Wang, Xiaohong; Cannon, Ethalinda K S; Dwan, Christopher; Lamblin, Anne-Francoise; Vasdewani, Jayprakash; Mudge, Joann; Cook, Andrew; Gish, John; Cheung, Foo; Kenton, Steve; Kunau, Timothy M; Brown, Douglas; May, Gregory D; Kim, Dongjin; Cook, Douglas R; Roe, Bruce A; Town, Chris D; Young, Nevin D; Retzel, Ernest F

    2005-05-01

    An international consortium is sequencing the euchromatic genespace of Medicago truncatula. Extensive bioinformatic and database resources support the marker-anchored bacterial artificial chromosome (BAC) sequencing strategy. Existing physical and genetic maps and deep BAC-end sequencing help to guide the sequencing effort, while EST databases provide essential resources for genome annotation as well as transcriptome characterization and microarray design. Finished BAC sequences are joined into overlapping sequence assemblies and undergo an automated annotation process that integrates ab initio predictions with EST, protein, and other recognizable features. Because of the sequencing project's international and collaborative nature, data production, storage, and visualization tools are broadly distributed. This paper describes databases and Web resources for the project, which provide support for physical and genetic maps, genome sequence assembly, gene prediction, and integration of EST data. A central project Web site at medicago.org/genome provides access to genome viewers and other resources project-wide, including an Ensembl implementation at medicago.org, physical map and marker resources at mtgenome.ucdavis.edu, and genome viewers at the University of Oklahoma (www.genome.ou.edu), the Institute for Genomic Research (www.tigr.org), and Munich Information for Protein Sequences Center (mips.gsf.de). PMID:15888676

  3. Optimization of next-generation sequencing transcriptome annotation for species lacking sequenced genomes.

    PubMed

    Ockendon, Nina F; O'Connell, Lauren A; Bush, Stephen J; Monzón-Sandoval, Jimena; Barnes, Holly; Székely, Tamás; Hofmann, Hans A; Dorus, Steve; Urrutia, Araxi O

    2016-03-01

    Next-generation sequencing methods, such as RNA-seq, have permitted the exploration of gene expression in a range of organisms which have been studied in ecological contexts but lack a sequenced genome. However, the efficacy and accuracy of RNA-seq annotation methods using reference genomes from related species have yet to be robustly characterized. Here we conduct a comprehensive power analysis employing RNA-seq data from Drosophila melanogaster in conjunction with 11 additional genomes from related Drosophila species to compare annotation methods and quantify the impact of evolutionary divergence between transcriptome and the reference genome. Our analyses demonstrate that, regardless of the level of sequence divergence, direct genome mapping (DGM), where transcript short reads are aligned directly to the reference genome, significantly outperforms the widely used de novo and guided assembly-based methods in both the quantity and accuracy of gene detection. Our analysis also reveals that DGM recovers a more representative profile of Gene Ontology functional categories, which are often used to interpret emergent patterns in genomewide expression analyses. Lastly, analysis of available primate RNA-seq data demonstrates the applicability of our observations across diverse taxa. Our quantification of annotation accuracy and reduced gene detection associated with sequence divergence thus provides empirically derived guidelines for the design of future gene expression studies in species without sequenced genomes. PMID:26358618

  4. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses.

    PubMed

    O'Connell, Richard J; Thon, Michael R; Hacquard, Stéphane; Amyotte, Stefan G; Kleemann, Jochen; Torres, Maria F; Damm, Ulrike; Buiate, Ester A; Epstein, Lynn; Alkan, Noam; Altmüller, Janine; Alvarado-Balderrama, Lucia; Bauser, Christopher A; Becker, Christian; Birren, Bruce W; Chen, Zehua; Choi, Jaeyoung; Crouch, Jo Anne; Duvick, Jonathan P; Farman, Mark A; Gan, Pamela; Heiman, David; Henrissat, Bernard; Howard, Richard J; Kabbage, Mehdi; Koch, Christian; Kracher, Barbara; Kubo, Yasuyuki; Law, Audrey D; Lebrun, Marc-Henri; Lee, Yong-Hwan; Miyara, Itay; Moore, Neil; Neumann, Ulla; Nordström, Karl; Panaccione, Daniel G; Panstruga, Ralph; Place, Michael; Proctor, Robert H; Prusky, Dov; Rech, Gabriel; Reinhardt, Richard; Rollins, Jeffrey A; Rounsley, Steve; Schardl, Christopher L; Schwartz, David C; Shenoy, Narmada; Shirasu, Ken; Sikhakolli, Usha R; Stüber, Kurt; Sukno, Serenella A; Sweigard, James A; Takano, Yoshitaka; Takahara, Hiroyuki; Trail, Frances; van der Does, H Charlotte; Voll, Lars M; Will, Isa; Young, Sarah; Zeng, Qiandong; Zhang, Jingze; Zhou, Shiguo; Dickman, Martin B; Schulze-Lefert, Paul; Ver Loren van Themaat, Emiel; Ma, Li-Jun; Vaillancourt, Lisa J

    2012-09-01

    Colletotrichum species are fungal pathogens that devastate crop plants worldwide. Host infection involves the differentiation of specialized cell types that are associated with penetration, growth inside living host cells (biotrophy) and tissue destruction (necrotrophy). We report here genome and transcriptome analyses of Colletotrichum higginsianum infecting Arabidopsis thaliana and Colletotrichum graminicola infecting maize. Comparative genomics showed that both fungi have large sets of pathogenicity-related genes, but families of genes encoding secreted effectors, pectin-degrading enzymes, secondary metabolism enzymes, transporters and peptidases are expanded in C. higginsianum. Genome-wide expression profiling revealed that these genes are transcribed in successive waves that are linked to pathogenic transitions: effectors and secondary metabolism enzymes are induced before penetration and during biotrophy, whereas most hydrolases and transporters are upregulated later, at the switch to necrotrophy. Our findings show that preinvasion perception of plant-derived signals substantially reprograms fungal gene expression and indicate previously unknown functions for particular fungal cell types. PMID:22885923

  5. Advances in genomics, transcriptomics and proteomics of toxin-producing cyanobacteria.

    PubMed

    D'Agostino, Paul M; Woodhouse, Jason N; Makower, A Katharina; Yeung, Anna C Y; Ongley, Sarah E; Micallef, Melinda L; Moffitt, Michelle C; Neilan, Brett A

    2016-02-01

    A common misconception persists that the genomes of toxic and non-toxic cyanobacterial strains are largely conserved with the exception of the presence or absence of the genes responsible for toxin production. Implementation of -omics era technologies has challenged this paradigm, with comparative analyses providing increased insight into the differences between strains of the same species. The implementation of genomic, transcriptomic and proteomic approaches has revealed distinct profiles between toxin-producing and non-toxic strains. Further, metagenomics and metaproteomics highlight the genomic potential and functional state of toxic bloom events over time. In this review, we highlight how these technologies have shaped our understanding of the complex relationship between these molecules, their producers and the environment at large within which they persist. PMID:26663762

  6. A comprehensive resource of genomic, epigenomic and transcriptomic sequencing data for the black truffle Tuber melanosporum

    PubMed Central

    2014-01-01

    Background Tuber melanosporum, also known in the gastronomic community as “truffle”, features one of the largest fungal genomes (125 Mb) with an exceptionally high transposable element (TE) and repetitive DNA content (>58%). The main purpose of DNA methylation in fungi is TE silencing. As obligate outcrossing organisms, truffles are bound to a sexual mode of propagation, which together with TEs is thought to represent a major force driving the evolution of DNA methylation. Thus, it was of interest to examine if and how T. melanosporum exploits DNA methylation to maintain genome integrity. Findings We performed whole-genome DNA bisulfite sequencing and mRNA sequencing on different developmental stages of T. melanosporum; namely, fruitbody (“truffle”), free-living mycelium and ectomycorrhiza. The data revealed a high rate of cytosine methylation (>44%), selectively targeting TEs rather than genes with a strong preference for CpG sites. Whole genome DNA sequencing uncovered multiple TE-enriched, copy number variant regions bearing a significant fraction of hypomethylated and expressed TEs, almost exclusively in free-living mycelium propagated in vitro. Treatment of mycelia with 5-azacytidine partially reduced DNA methylation and increased TE transcription. Our transcriptome assembly also resulted in the identification of a set of novel transcripts from 614 genes. Conclusions The datasets presented here provide valuable and comprehensive (epi)genomic information that can be of interest for evolutionary genomics studies of multicellular (filamentous) fungi, in particular Ascomycetes belonging to the subphylum, Pezizomycotina. Evidence derived from comparative methylome and transcriptome analyses indicates that a non-exhaustive and partly reversible methylation process operates in truffles. PMID:25392735

  7. Genome scale metabolic modeling of the riboflavin overproducer Ashbya gossypii.

    PubMed

    Ledesma-Amaro, Rodrigo; Kerkhoven, Eduard J; Revuelta, José Luis; Nielsen, Jens

    2014-06-01

    Ashbya gossypii is a filamentous fungus that naturally overproduces riboflavin, or vitamin B2. Advances in genetic and metabolic engineering of A. gossypii have permitted the switch from industrial chemical synthesis to the current biotechnological production of this vitamin. Additionally, A. gossypii is a model organism with one of the smallest eukaryote genomes being phylogenetically close to Saccharomyces cerevisiae. It has therefore been used to study evolutionary aspects of bakers' yeast. We here reconstructed the first genome scale metabolic model of A. gossypii, iRL766. The model was validated by biomass growth, riboflavin production and substrate utilization predictions. Gene essentiality analysis of the A. gossypii model in comparison with the S. cerevisiae model demonstrated how the whole-genome duplication event that separates the two species has led to an even spread of paralogs among all metabolic pathways. Additionally, iRL766 was used to integrate transcriptomics data from two different growth stages of A. gossypii, comparing exponential growth to riboflavin production stages. Both reporter metabolite analysis and in silico identification of transcriptionally regulated enzymes demonstrated the important involvement of beta-oxidation and the glyoxylate cycle in riboflavin production. PMID:24374726

  8. Transcriptome and metabolome of synthetic Solanum autotetraploids reveal key genomic stress events following polyploidization.

    PubMed

    Fasano, Carlo; Diretto, Gianfranco; Aversano, Riccardo; D'Agostino, Nunzio; Di Matteo, Antonio; Frusciante, Luigi; Giuliano, Giovanni; Carputo, Domenico

    2016-06-01

    Polyploids are generally classified as autopolyploids, derived from a single species, and allopolyploids, arising from interspecific hybridization. The former represent ideal materials with which to study the consequences of genome doubling and ascertain whether there are molecular and functional rules operating following polyploidization events. To investigate whether the effects of autopolyploidization are common to different species, or if species-specific or stochastic events are prevalent, we performed a comprehensive transcriptomic and metabolomic characterization of diploids and autotetraploids of Solanum commersonii and Solanum bulbocastanum. Autopolyploidization remodelled the transcriptome and the metabolome of both species. In S. commersonii, differentially expressed genes (DEGs) were highly enriched in pericentromeric regions. Most changes were stochastic, suggesting a strong genotypic response. However, a set of robustly regulated transcripts and metabolites was also detected, including purine bases and nucleosides, which are likely to underlie a common response to polyploidization. We hypothesize that autopolyploidization results in nucleotide pool imbalance, which in turn triggers a genomic shock responsible for the stochastic events observed. The more extensive genomic stress and the higher number of stochastic events observed in S. commersonii with respect to S. bulbocastanum could be the result of the higher nucleoside depletion observed in this species. PMID:26915816

  9. Integrated clinical, whole-genome, and transcriptome analysis of multisampled lethal metastatic prostate cancer

    PubMed Central

    Bova, G. Steven; Kallio, Heini M.L.; Annala, Matti; Kivinummi, Kati; Högnäs, Gunilla; Häyrynen, Sergei; Rantapero, Tommi; Kivinen, Virpi; Isaacs, William B.; Tolonen, Teemu; Nykter, Matti; Visakorpi, Tapio

    2016-01-01

    We report the first combined analysis of whole-genome sequence, detailed clinical history, and transcriptome sequence of multiple prostate cancer metastases in a single patient (A21). Whole-genome and transcriptome sequence was obtained from nine anatomically separate metastases, and targeted DNA sequencing was performed in cancerous and noncancerous foci within the primary tumor specimen removed 5 yr before death. Transcriptome analysis revealed increased expression of androgen receptor (AR)-regulated genes in liver metastases that harbored an AR p.L702H mutation, suggesting a dominant effect by the mutation despite being present in only one of an estimated 16 copies per cell. The metastases harbored several alterations to the PI3K/AKT pathway, including a clonal truncal mutation in PIK3CG and present in all metastatic sites studied. The list of truncal genomic alterations shared by all metastases included homozygous deletion of TP53, hemizygous deletion of RB1 and CHD1, and amplification of FGFR1. If the patient were treated today, given this knowledge, the use of second-generation androgen-directed therapies, cessation of glucocorticoid administration, and therapeutic inhibition of the PI3K/AKT pathway or FGFR1 receptor could provide personalized benefit. Three previously unreported truncal clonal missense mutations (ABCC4 p.R891L, ALDH9A1 p.W89R, and ASNA1 p.P75R) were expressed at the RNA level and assessed as druggable. The truncal status of mutations may be critical for effective actionability and merit further study. Our findings suggest that a large set of deeply analyzed cases could serve as a powerful guide to more effective prostate cancer basic science and personalized cancer medicine clinical trials. PMID:27148588

  10. Integrated clinical, whole-genome, and transcriptome analysis of multisampled lethal metastatic prostate cancer.

    PubMed

    Bova, G Steven; Kallio, Heini M L; Annala, Matti; Kivinummi, Kati; Högnäs, Gunilla; Häyrynen, Sergei; Rantapero, Tommi; Kivinen, Virpi; Isaacs, William B; Tolonen, Teemu; Nykter, Matti; Visakorpi, Tapio

    2016-05-01

    We report the first combined analysis of whole-genome sequence, detailed clinical history, and transcriptome sequence of multiple prostate cancer metastases in a single patient (A21). Whole-genome and transcriptome sequence was obtained from nine anatomically separate metastases, and targeted DNA sequencing was performed in cancerous and noncancerous foci within the primary tumor specimen removed 5 yr before death. Transcriptome analysis revealed increased expression of androgen receptor (AR)-regulated genes in liver metastases that harbored an AR p.L702H mutation, suggesting a dominant effect by the mutation despite being present in only one of an estimated 16 copies per cell. The metastases harbored several alterations to the PI3K/AKT pathway, including a clonal truncal mutation in PIK3CG and present in all metastatic sites studied. The list of truncal genomic alterations shared by all metastases included homozygous deletion of TP53, hemizygous deletion of RB1 and CHD1, and amplification of FGFR1. If the patient were treated today, given this knowledge, the use of second-generation androgen-directed therapies, cessation of glucocorticoid administration, and therapeutic inhibition of the PI3K/AKT pathway or FGFR1 receptor could provide personalized benefit. Three previously unreported truncal clonal missense mutations (ABCC4 p.R891L, ALDH9A1 p.W89R, and ASNA1 p.P75R) were expressed at the RNA level and assessed as druggable. The truncal status of mutations may be critical for effective actionability and merit further study. Our findings suggest that a large set of deeply analyzed cases could serve as a powerful guide to more effective prostate cancer basic science and personalized cancer medicine clinical trials. PMID:27148588

  11. Orthology Inference in Nonmodel Organisms Using Transcriptomes and Low-Coverage Genomes: Improving Accuracy and Matrix Occupancy for Phylogenomics

    PubMed Central

    Yang, Ya; Smith, Stephen A.

    2014-01-01

    Orthology inference is central to phylogenomic analyses. Phylogenomic data sets commonly include transcriptomes and low-coverage genomes that are incomplete and contain errors and isoforms. These properties can severely violate the underlying assumptions of orthology inference with existing heuristics. We present a procedure that uses phylogenies for both homology and orthology assignment. The procedure first uses similarity scores to infer putative homologs that are then aligned, constructed into phylogenies, and pruned of spurious branches caused by deep paralogs, misassembly, frameshifts, or recombination. These final homologs are then used to identify orthologs. We explore four alternative tree-based orthology inference approaches, of which two are new. These accommodate gene and genome duplications as well as gene tree discordance. We demonstrate these methods in three published data sets including the grape family, Hymenoptera, and millipedes with divergence times ranging from approximately 100 to over 400 Ma. The procedure significantly increased the completeness and accuracy of the inferred homologs and orthologs. We also found that data sets that are more recently diverged and/or include more high-coverage genomes had more complete sets of orthologs. To explicitly evaluate sources of conflicting phylogenetic signals, we applied serial jackknife analyses of gene regions keeping each locus intact. The methods described here can scale to over 100 taxa. They have been implemented in python with independent scripts for each step, making it easy to modify or incorporate them into existing pipelines. All scripts are available from https://bitbucket.org/yangya/phylogenomic_dataset_construction. PMID:25158799

  12. Orthology inference in nonmodel organisms using transcriptomes and low-coverage genomes: improving accuracy and matrix occupancy for phylogenomics.

    PubMed

    Yang, Ya; Smith, Stephen A

    2014-11-01

    Orthology inference is central to phylogenomic analyses. Phylogenomic data sets commonly include transcriptomes and low-coverage genomes that are incomplete and contain errors and isoforms. These properties can severely violate the underlying assumptions of orthology inference with existing heuristics. We present a procedure that uses phylogenies for both homology and orthology assignment. The procedure first uses similarity scores to infer putative homologs that are then aligned, constructed into phylogenies, and pruned of spurious branches caused by deep paralogs, misassembly, frameshifts, or recombination. These final homologs are then used to identify orthologs. We explore four alternative tree-based orthology inference approaches, of which two are new. These accommodate gene and genome duplications as well as gene tree discordance. We demonstrate these methods in three published data sets including the grape family, Hymenoptera, and millipedes with divergence times ranging from approximately 100 to over 400 Ma. The procedure significantly increased the completeness and accuracy of the inferred homologs and orthologs. We also found that data sets that are more recently diverged and/or include more high-coverage genomes had more complete sets of orthologs. To explicitly evaluate sources of conflicting phylogenetic signals, we applied serial jackknife analyses of gene regions keeping each locus intact. The methods described here can scale to over 100 taxa. They have been implemented in python with independent scripts for each step, making it easy to modify or incorporate them into existing pipelines. All scripts are available from https://bitbucket.org/yangya/phylogenomic_dataset_construction. PMID:25158799

  13. Transcriptome characterization for genome annotation and functional genomics in Theobroma cacao

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evidence from leaf transcriptome sequencing using two technology platforms, in combination with protein homology and trained ab initio predictions, previously enabled us to build 35,000 gene models in T. cacao (www.cacaogenomedb.org). Here we review the contribution of each data type to cacao gene a...

  14. Genome-Wide Transcriptome Analysis of Cadmium Stress in Rice

    PubMed Central

    Oono, Youko; Yazawa, Takayuki; Kanamori, Hiroyuki; Sasaki, Harumi; Mori, Satomi; Handa, Hirokazu; Matsumoto, Takashi

    2016-01-01

    Rice growth is severely affected by toxic concentrations of the nonessential heavy metal cadmium (Cd). To elucidate the molecular basis of the response to Cd stress, we performed mRNA sequencing of rice following our previous study on exposure to high concentrations of Cd (Oono et al., 2014). In this study, rice plants were hydroponically treated with low concentrations of Cd and approximately 211 million sequence reads were mapped onto the IRGSP-1.0 reference rice genome sequence. Many genes, including some identified under high Cd concentration exposure in our previous study, were found to be responsive to low Cd exposure, with an average of about 11,000 transcripts from each condition. However, genes expressed constitutively across the developmental course responded only slightly to low Cd concentrations, in contrast to their clear response to high Cd concentration, which causes fatal damage to rice seedlings according to phenotypic changes. The expression of metal ion transporter genes tended to correlate with Cd concentration, suggesting the potential of the RNA-Seq strategy to reveal novel Cd-responsive transporters by analyzing gene expression under different Cd concentrations. This study could help to develop novel strategies for improving tolerance to Cd exposure in rice and other cereal crops. PMID:27034955

  15. Discovery of germline-related genes in Cephalochordate amphioxus: A genome wide survey using genome annotation and transcriptome data.

    PubMed

    Yue, Jia-Xing; Li, Kun-Lung; Yu, Jr-Kai

    2015-12-01

    The generation of germline cells is a critical process in the reproduction of multicellular organisms. Studies in animal models have identified a common repertoire of genes that play essential roles in primordial germ cell (PGC) formation. However, comparative studies also indicate that the timing and regulation of this core genetic program vary considerably in different animals, raising the intriguing questions regarding the evolution of PGC developmental mechanisms in metazoans. Cephalochordates (commonly called amphioxus or lancelets) represent one of the invertebrate chordate groups and can provide important information about the evolution of developmental mechanisms in the chordate lineage. In this study, we used genome and transcriptome data to identify germline-related genes in two distantly related cephalochordate species, Branchiostoma floridae and Asymmetron lucayanum. Branchiostoma and Asymmetron diverged more than 120 MYA, and the most conspicuous difference between them is their gonadal morphology. We used important germline developmental genes in several model animals to search the amphioxus genome and transcriptome dataset for conserved homologs. We also annotated the assembled transcriptome data using Gene Ontology (GO) terms to facilitate the discovery of putative genes associated with germ cell development and reproductive functions in amphioxus. We further confirmed the expression of 14 genes in developing oocytes or mature eggs using whole mount in situ hybridization, suggesting their potential functions in amphioxus germ cell development. The results of this global survey provide a useful resource for testing potential functions of candidate germline-related genes in cephalochordates and for investigating differences in gonad developmental mechanisms between Branchiostoma and Asymmetron species. PMID:25847029

  16. Optimizing de novo transcriptome assembly and extending genomic resources for striped catfish (Pangasianodon hypophthalmus).

    PubMed

    Thanh, Nguyen Minh; Jung, Hyungtaek; Lyons, Russell E; Njaci, Isaac; Yoon, Byoung-Ha; Chand, Vincent; Tuan, Nguyen Viet; Thu, Vo Thi Minh; Mather, Peter

    2015-10-01

    Striped catfish (Pangasianodon hypophthalmus) is a commercially important freshwater fish used in inland aquaculture in the Mekong Delta, Vietnam. The culture industry is facing a significant challenge however from saltwater intrusion into many low topographical coastal provinces across the Mekong Delta as a result of predicted climate change impacts. Developing genomic resources for this species can facilitate the production of improved culture lines that can withstand raised salinity conditions, and so we have applied high-throughput Ion Torrent sequencing of transcriptome libraries from six target osmoregulatory organs from striped catfish as a genomic resource for use in future selection strategies. We obtained 12,177,770 reads after trimming and processing with an average length of 97bp. De novo assemblies were generated using CLC Genomic Workbench, Trinity and Velvet/Oases with the best overall contig performance resulting from the CLC assembly. De novo assembly using CLC yielded 66,451 contigs with an average length of 478bp and N50 length of 506bp. A total of 37,969 contigs (57%) possessed significant similarity with proteins in the non-redundant database. Comparative analyses revealed that a significant number of contigs matched sequences reported in other teleost fishes, ranging in similarity from 45.2% with Atlantic cod to 52% with zebrafish. In addition, 28,879 simple sequence repeats (SSRs) and 55,721 single nucleotide polymorphisms (SNPs) were detected in the striped catfish transcriptome. The sequence collection generated in the current study represents the most comprehensive genomic resource for P. hypophthalmus available to date. Our results illustrate the utility of next-generation sequencing as an efficient tool for constructing a large genomic database for marker development in non-model species. PMID:25979246

  17. Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea

    PubMed Central

    2014-01-01

    Background Brassica oleracea is a valuable vegetable species that has contributed to human health and nutrition for hundreds of years and comprises multiple distinct cultivar groups with diverse morphological and phytochemical attributes. In addition to this phenotypic wealth, B. oleracea offers unique insights into polyploid evolution, as it results from multiple ancestral polyploidy events and a final Brassiceae-specific triplication event. Further, B. oleracea represents one of the diploid genomes that formed the economically important allopolyploid oilseed, Brassica napus. A deeper understanding of B. oleracea genome architecture provides a foundation for crop improvement strategies throughout the Brassica genus. Results We generate an assembly representing 75% of the predicted B. oleracea genome using a hybrid Illumina/Roche 454 approach. Two dense genetic maps are generated to anchor almost 92% of the assembled scaffolds to nine pseudo-chromosomes. Over 50,000 genes are annotated and 40% of the genome predicted to be repetitive, thus contributing to the increased genome size of B. oleracea compared to its close relative B. rapa. A snapshot of both the leaf transcriptome and methylome allows comparisons to be made across the triplicated sub-genomes, which resulted from the most recent Brassiceae-specific polyploidy event. Conclusions Differential expression of the triplicated syntelogs and cytosine methylation levels across the sub-genomes suggest residual marks of the genome dominance that led to the current genome architecture. Although cytosine methylation does not correlate with individual gene dominance, the independent methylation patterns of triplicated copies suggest epigenetic mechanisms play a role in the functional diversification of duplicate genes. PMID:24916971

  18. Genomic and transcriptomic evidence for scavenging of diverse organic compounds by widespread deep-sea archaea

    PubMed Central

    Li, Meng; Baker, Brett J.; Anantharaman, Karthik; Jain, Sunit; Breier, John A.; Dick, Gregory J.

    2015-01-01

    Microbial activity is one of the most important processes to mediate the flux of organic carbon from the ocean surface to the seafloor. However, little is known about the microorganisms that underpin this key step of the global carbon cycle in the deep oceans. Here we present genomic and transcriptomic evidence that five ubiquitous archaeal groups actively use proteins, carbohydrates, fatty acids and lipids as sources of carbon and energy at depths ranging from 800 to 4,950 m in hydrothermal vent plumes and pelagic background seawater across three different ocean basins. Genome-enabled metabolic reconstructions and gene expression patterns show that these marine archaea are motile heterotrophs with extensive mechanisms for scavenging organic matter. Our results shed light on the ecological and physiological properties of ubiquitous marine archaea and highlight their versatile metabolic strategies in deep oceans that might play a critical role in global carbon cycling. PMID:26573375

  19. Genome and Transcriptome Analysis of the Food-Yeast Candida utilis

    PubMed Central

    Tomita, Yasuyuki; Ikeo, Kazuho; Tamakawa, Hideyuki; Gojobori, Takashi; Ikushima, Shigehito

    2012-01-01

    The industrially important food-yeast Candida utilis is a Crabtree effect-negative yeast used to produce valuable chemicals and recombinant proteins. In the present study, we conducted whole genome sequencing and phylogenetic analysis of C. utilis, which showed that this yeast diverged long before the formation of the CUG and Saccharomyces/Kluyveromyces clades. In addition, we performed comparative genome and transcriptome analyses using next-generation sequencing, which resulted in the identification of genes important for characteristic phenotypes of C. utilis such as those involved in nitrate assimilation, in addition to the gene encoding the functional hexose transporter. We also found that an antisense transcript of the alcohol dehydrogenase gene, which in silico analysis did not predict to be a functional gene, was transcribed in the stationary-phase, suggesting a novel system of repression of ethanol production. These findings should facilitate the development of more sophisticated systems for the production of useful reagents using C. utilis. PMID:22629373

  20. Genomic and transcriptomic evidence for scavenging of diverse organic compounds by widespread deep-sea archaea.

    PubMed

    Li, Meng; Baker, Brett J; Anantharaman, Karthik; Jain, Sunit; Breier, John A; Dick, Gregory J

    2015-01-01

    Microbial activity is one of the most important processes to mediate the flux of organic carbon from the ocean surface to the seafloor. However, little is known about the microorganisms that underpin this key step of the global carbon cycle in the deep oceans. Here we present genomic and transcriptomic evidence that five ubiquitous archaeal groups actively use proteins, carbohydrates, fatty acids and lipids as sources of carbon and energy at depths ranging from 800 to 4,950 m in hydrothermal vent plumes and pelagic background seawater across three different ocean basins. Genome-enabled metabolic reconstructions and gene expression patterns show that these marine archaea are motile heterotrophs with extensive mechanisms for scavenging organic matter. Our results shed light on the ecological and physiological properties of ubiquitous marine archaea and highlight their versatile metabolic strategies in deep oceans that might play a critical role in global carbon cycling. PMID:26573375

  1. Sequencing Overview of Ewing Sarcoma: A Journey across Genomic, Epigenomic and Transcriptomic Landscapes

    PubMed Central

    Sand, Laurens G. L.; Szuhai, Karoly; Hogendoorn, Pancras C. W.

    2015-01-01

    Ewing sarcoma is an aggressive neoplasm occurring predominantly in adolescent Caucasians. At the genome level, a pathognomonic EWSR1-ETS translocation is present. The resulting fusion protein acts as a molecular driver in the tumor development and interferes, amongst others, with endogenous transcription and splicing. The Ewing sarcoma cell shows a poorly differentiated, stem-cell like phenotype. Consequently, the cellular origin of Ewing sarcoma is still a hot discussed topic. To further characterize Ewing sarcoma and to further elucidate the role of EWSR1-ETS fusion protein multiple genome, epigenome and transcriptome level studies were performed. In this review, the data from these studies were combined into a comprehensive overview. Presently, classical morphological predictive markers are used in the clinic and the therapy is dominantly based on systemic chemotherapy in combination with surgical interventions. Using sequencing, novel predictive markers and candidates for immuno- and targeted therapy were identified which were summarized in this review. PMID:26193259

  2. Genome-, Transcriptome- and Proteome-Wide Analyses of the Gliadin Gene Families in Triticum urartu

    PubMed Central

    Wang, Dongzhi; Yang, Wenlong; Sun, Jiazhu; Zhang, Aimin; Zhan, Kehui

    2015-01-01

    Gliadins are the major components of storage proteins in wheat grains, and they play an essential role in the dough extensibility and nutritional quality of flour. Because of the large number of the gliadin family members, the high level of sequence identity, and the lack of abundant genomic data for Triticum species, identifying the full complement of gliadin family genes in hexaploid wheat remains challenging. Triticum urartu is a wild diploid wheat species and considered the A-genome donor of polyploid wheat species. The accession PI428198 (G1812) was chosen to determine the complete composition of the gliadin gene families in the wheat A-genome using the available draft genome. Using a PCR-based cloning strategy for genomic DNA and mRNA as well as a bioinformatics analysis of genomic sequence data, 28 gliadin genes were characterized. Of these genes, 23 were α-gliadin genes, three were γ-gliadin genes and two were ω-gliadin genes. An RNA sequencing (RNA-Seq) survey of the dynamic expression patterns of gliadin genes revealed that their synthesis in immature grains began prior to 10 days post-anthesis (DPA), peaked at 15 DPA and gradually decreased at 20 DPA. The accumulation of proteins encoded by 16 of the expressed gliadin genes was further verified and quantified using proteomic methods. The phylogenetic analysis demonstrated that the homologs of these α-gliadin genes were present in tetraploid and hexaploid wheat, which was consistent with T. urartu being the A-genome progenitor species. This study presents a systematic investigation of the gliadin gene families in T. urartu that spans the genome, transcriptome and proteome, and it provides new information to better understand the molecular structure, expression profiles and evolution of the gliadin genes in T. urartu and common wheat. PMID:26132381

  3. Genome-, Transcriptome- and Proteome-Wide Analyses of the Gliadin Gene Families in Triticum urartu.

    PubMed

    Zhang, Yanlin; Luo, Guangbin; Liu, Dongcheng; Wang, Dongzhi; Yang, Wenlong; Sun, Jiazhu; Zhang, Aimin; Zhan, Kehui

    2015-01-01

    Gliadins are the major components of storage proteins in wheat grains, and they play an essential role in the dough extensibility and nutritional quality of flour. Because of the large number of the gliadin family members, the high level of sequence identity, and the lack of abundant genomic data for Triticum species, identifying the full complement of gliadin family genes in hexaploid wheat remains challenging. Triticum urartu is a wild diploid wheat species and considered the A-genome donor of polyploid wheat species. The accession PI428198 (G1812) was chosen to determine the complete composition of the gliadin gene families in the wheat A-genome using the available draft genome. Using a PCR-based cloning strategy for genomic DNA and mRNA as well as a bioinformatics analysis of genomic sequence data, 28 gliadin genes were characterized. Of these genes, 23 were α-gliadin genes, three were γ-gliadin genes and two were ω-gliadin genes. An RNA sequencing (RNA-Seq) survey of the dynamic expression patterns of gliadin genes revealed that their synthesis in immature grains began prior to 10 days post-anthesis (DPA), peaked at 15 DPA and gradually decreased at 20 DPA. The accumulation of proteins encoded by 16 of the expressed gliadin genes was further verified and quantified using proteomic methods. The phylogenetic analysis demonstrated that the homologs of these α-gliadin genes were present in tetraploid and hexaploid wheat, which was consistent with T. urartu being the A-genome progenitor species. This study presents a systematic investigation of the gliadin gene families in T. urartu that spans the genome, transcriptome and proteome, and it provides new information to better understand the molecular structure, expression profiles and evolution of the gliadin genes in T. urartu and common wheat. PMID:26132381

  4. Dictyocaulus viviparus genome, variome and transcriptome elucidate lungworm biology and support future intervention

    PubMed Central

    McNulty, Samantha N.; Strübe, Christina; Rosa, Bruce A.; Martin, John C.; Tyagi, Rahul; Choi, Young-Jun; Wang, Qi; Hallsworth Pepin, Kymberlie; Zhang, Xu; Ozersky, Philip; Wilson, Richard K.; Sternberg, Paul W.; Gasser, Robin B.; Mitreva, Makedonka

    2016-01-01

    The bovine lungworm, Dictyocaulus viviparus (order Strongylida), is an important parasite of livestock that causes substantial economic and production losses worldwide. Here we report the draft genome, variome, and developmental transcriptome of D. viviparus. The genome (161 Mb) is smaller than those of related bursate nematodes and encodes fewer proteins (14,171 total). In the first genome-wide assessment of genomic variation in any parasitic nematode, we found a high degree of sequence variability in proteins predicted to be involved host-parasite interactions. Next, we used extensive RNA sequence data to track gene transcription across the life cycle of D. viviparus, and identified genes that might be important in nematode development and parasitism. Finally, we predicted genes that could be vital in host-parasite interactions, genes that could serve as drug targets, and putative RNAi effectors with a view to developing functional genomic tools. This extensive, well-curated dataset should provide a basis for developing new anthelmintics, vaccines, and improved diagnostic tests and serve as a platform for future investigations of drug resistance and epidemiology of the bovine lungworm and related nematodes. PMID:26856411

  5. Linking genome-scale metabolic modeling and genome annotation

    PubMed Central

    Blais, Edik M.; Chavali, Arvind K.; Papin, Jason A.

    2014-01-01

    Summary Genome-scale metabolic network reconstructions, assembled from annotated genomes, serve as a platform for integrating data from heterogeneous sources and generating hypotheses for further experimental validation. Implementing constraint-based modeling techniques such as Flux Balance Analysis (FBA) on network reconstructions allow for interrogating metabolism at a systems-level, which aids in identifying and rectifying gaps in knowledge. With genome sequences for various organisms from prokaryotes to eukaryotes becoming increasingly available, a significant bottleneck lies in the structural and functional annotation of these sequences. Using topologically-based and biologically-inspired metabolic network refinement, we can better characterize enzymatic functions present in an organism and link annotation of these functions to candidate transcripts, both steps that can be experimentally validated. PMID:23417799

  6. Genotyping-by-Sequencing SNP Identification for Crops without a Reference Genome: Using Transcriptome Based Mapping as an Alternative Strategy.

    PubMed

    Berthouly-Salazar, Cécile; Mariac, Cédric; Couderc, Marie; Pouzadoux, Juliette; Floc'h, Jean-Baptiste; Vigouroux, Yves

    2016-01-01

    Next-generation sequencing opens the way for genomic studies of diversity even for non-model crops and animals. Genome reduction techniques are becoming progressively more popular as they allow a fraction of the genome to be sequenced for multiple individuals and/or populations. These techniques are an efficient way to explore genome diversity in non-model crops and animals for which no reference genome is available. Genome reduction techniques emerged with the development of specific pipelines such as UNEAK (Universal Network Enabled Analysis Kit) and Stacks. However, even for non-model crops and animals, transcriptomes are easier to obtain, thereby making it possible to directly map reads. We investigate the direct use of transcriptome as an alternative strategy. Our specific objective was to compare SNPs obtained from the UNEAK pipeline as well as SNPs obtained by directly mapping genotyping-by-sequencing reads on a transcriptome. We assessed the feasibility of both SNP datasets, UNEAK and transcriptome mapping, to investigate the diversity of 91 samples of wild pearl millet sampled across its distribution area. Both approaches produced several tens of thousands of single nucleotide variants, but differed in the way the variants were identified, leading to differences in the frequency spectrum associated with marked differences in the assessment of diversity. Difference in the frequency spectrum significantly biased a large set of diversity analyses as well as detection of selection approaches. However, whatever the approach, we found very similar inference of genetic structure, with three major genetic groups from West, Central, and East Africa. For non-model crops, using transcriptome data as a reference is thus a particularly promising way to obtain a more thorough analysis of datasets generated using genome reduction techniques. PMID:27379109

  7. Genotyping-by-Sequencing SNP Identification for Crops without a Reference Genome: Using Transcriptome Based Mapping as an Alternative Strategy

    PubMed Central

    Berthouly-Salazar, Cécile; Mariac, Cédric; Couderc, Marie; Pouzadoux, Juliette; Floc’h, Jean-Baptiste; Vigouroux, Yves

    2016-01-01

    Next-generation sequencing opens the way for genomic studies of diversity even for non-model crops and animals. Genome reduction techniques are becoming progressively more popular as they allow a fraction of the genome to be sequenced for multiple individuals and/or populations. These techniques are an efficient way to explore genome diversity in non-model crops and animals for which no reference genome is available. Genome reduction techniques emerged with the development of specific pipelines such as UNEAK (Universal Network Enabled Analysis Kit) and Stacks. However, even for non-model crops and animals, transcriptomes are easier to obtain, thereby making it possible to directly map reads. We investigate the direct use of transcriptome as an alternative strategy. Our specific objective was to compare SNPs obtained from the UNEAK pipeline as well as SNPs obtained by directly mapping genotyping-by-sequencing reads on a transcriptome. We assessed the feasibility of both SNP datasets, UNEAK and transcriptome mapping, to investigate the diversity of 91 samples of wild pearl millet sampled across its distribution area. Both approaches produced several tens of thousands of single nucleotide variants, but differed in the way the variants were identified, leading to differences in the frequency spectrum associated with marked differences in the assessment of diversity. Difference in the frequency spectrum significantly biased a large set of diversity analyses as well as detection of selection approaches. However, whatever the approach, we found very similar inference of genetic structure, with three major genetic groups from West, Central, and East Africa. For non-model crops, using transcriptome data as a reference is thus a particularly promising way to obtain a more thorough analysis of datasets generated using genome reduction techniques. PMID:27379109

  8. Phenotypic, transcriptomic, and genomic features of clonal plasma cells in light-chain amyloidosis.

    PubMed

    Paiva, Bruno; Martinez-Lopez, Joaquin; Corchete, Luis A; Sanchez-Vega, Beatriz; Rapado, Inmaculada; Puig, Noemi; Barrio, Santiago; Sanchez, Maria-Luz; Alignani, Diego; Lasa, Marta; García de Coca, Alfonso; Pardal, Emilia; Oriol, Alberto; Garcia, Maria-Esther Gonzalez; Escalante, Fernando; González-López, Tomás J; Palomera, Luis; Alonso, José; Prosper, Felipe; Orfao, Alberto; Vidriales, Maria-Belen; Mateos, María-Victoria; Lahuerta, Juan-Jose; Gutierrez, Norma C; San Miguel, Jesús F

    2016-06-16

    Immunoglobulin light-chain amyloidosis (AL) and multiple myeloma (MM) are 2 distinct monoclonal gammopathies that involve the same cellular compartment: clonal plasma cells (PCs). Despite the fact that knowledge about MM PC biology has significantly increased in the last decade, the same does not apply for AL. Here, we used an integrative phenotypic, molecular, and genomic approach to study clonal PCs from 24 newly diagnosed patients with AL. Through principal-component-analysis, we demonstrated highly overlapping phenotypic profiles between AL and both monoclonal gammopathy of undetermined significance and MM PCs. However, in contrast to MM, highly purified fluorescence-activated cell-sorted clonal PCs from AL (n = 9) showed almost normal transcriptome, with only 38 deregulated genes vs normal PCs; these included a few tumor-suppressor (CDH1, RCAN) and proapoptotic (GLIPR1, FAS) genes. Notwithstanding, clonal PCs in AL (n = 11) were genomically unstable, with a median of 9 copy number alterations (CNAs) per case, many of such CNAs being similar to those found in MM. Whole-exome sequencing (WES) performed in 5 AL patients revealed a median of 15 nonrecurrent mutations per case. Altogether, our results show that in the absence of a unifying mutation by WES, clonal PCs in AL display phenotypic and CNA profiles similar to MM, but their transcriptome is remarkably similar to that of normal PCs. PMID:27069257

  9. Development of genomic resources for Pacific Herring through targeted transcriptome pyrosequencing.

    PubMed

    Roberts, Steven B; Hauser, Lorenz; Seeb, Lisa W; Seeb, James E

    2012-01-01

    Pacific herring (Clupea pallasii) support commercially and culturally important fisheries but have experienced significant additional pressure from a variety of anthropogenic and environmental sources. In order to provide genomic resources to facilitate organismal and population level research, high-throughput pyrosequencing (Roche 454) was carried out on transcriptome libraries from liver and testes samples taken in Prince William Sound, the Bering Sea, and the Gulf of Alaska. Over 40,000 contigs were identified with an average length of 728 bp. We describe an annotated transcriptome as well as a workflow for single nucleotide polymorphism (SNP) discovery and validation. A subset of 96 candidate SNPs chosen from 10,933 potential SNPs, were tested using a combination of Sanger sequencing and high-resolution melt-curve analysis. Five SNPs supported between-ocean-basin differentiation, while one SNP associated with immune function provided high differentiation between Prince William Sound and Kodiak Island within the Gulf of Alaska. These genomic resources provide a basis for environmental physiology studies and opportunities for marker development and subsequent population structure analysis. PMID:22383979

  10. The capsicum transcriptome DB: a “hot” tool for genomic research

    PubMed Central

    Góngora-Castillo, Elsa; Fajardo-Jaime, Rubén; Fernández-Cortes, Araceli; Jofre-Garfias, Alba E; Lozoya-Gloria, Edmundo; Martínez, Octavio; Ochoa-Alejo, Neftalí; Rivera-Bustamante, Rafael

    2012-01-01

    Chili pepper (Capsicum annuum) is an economically important crop with no available public genome sequence. We describe a genomic resource to facilitate Capsicum annuum research. A collection of Expressed Sequence Tags (ESTs) derived from five C. annuum organs (root, stem, leaf, flower and fruit) were sequenced using the Sanger method and multiple leaf transcriptomes were deeply sampled using with GS-pyrosequencing. A hybrid assembly of 1,324,516 raw reads yielded 32,314 high quality contigs as validated by coverage and identity analysis with existing pepper sequences. Overall, 75.5% of the contigs had significant sequence similarity to entries in nucleic acid and protein databases; 23% of the sequences have not been previously reported for C. annuum and expand sequence resources for this species. A MySQL database and a user-friendly Web interface were constructed with search-tools that permit queries of the ESTs including sequence, functional annotation, Gene Ontology classification, metabolic pathways, and assembly information. The Capsicum Transcriptome DB is free available from http://www.bioingenios.ira.cinvestav.mx:81/Joomla/ PMID:22359434

  11. Genome and Transcriptome Sequences Reveal the Specific Parasitism of the Nematophagous Purpureocillium lilacinum 36-1

    PubMed Central

    Xie, Jialian; Li, Shaojun; Mo, Chenmi; Xiao, Xueqiong; Peng, Deliang; Wang, Gaofeng; Xiao, Yannong

    2016-01-01

    Purpureocillium lilacinum is a promising nematophagous ascomycete able to adapt diverse environments and it is also an opportunistic fungus that infects humans. A microbial inoculant of P. lilacinum has been registered to control plant parasitic nematodes. However, the molecular mechanism of the toxicological processes is still unclear because of the relatively few reports on the subject. In this study, using Illumina paired-end sequencing, the draft genome sequence and the transcriptome of P. lilacinum strain 36-1 infecting nematode-eggs were determined. Whole genome alignment indicated that P. lilacinum 36-1 possessed a more dynamic genome in comparison with P. lilacinum India strain. Moreover, a phylogenetic analysis showed that the P. lilacinum 36-1 had a closer relation to entomophagous fungi. The protein-coding genes in P. lilacinum 36-1 occurred much more frequently than they did in other fungi, which was a result of the depletion of repeat-induced point mutations (RIP). Comparative genome and transcriptome analyses revealed the genes that were involved in pathogenicity, particularly in the recognition, adhesion of nematode-eggs, downstream signal transduction pathways and hydrolase genes. By contrast, certain numbers of cellulose and xylan degradation genes and a lack of polysaccharide lyase genes showed the potential of P. lilacinum 36-1 as an endophyte. Notably, the expression of appressorium-formation and antioxidants-related genes exhibited similar infection patterns in P. lilacinum strain 36-1 to those of the model entomophagous fungi Metarhizium spp. These results uncovered the specific parasitism of P. lilacinum and presented the genes responsible for the infection of nematode-eggs. PMID:27486440

  12. Genome and transcriptome sequencing in prospective metastatic triple-negative breast cancer uncovers therapeutic vulnerabilities.

    PubMed

    Craig, David W; O'Shaughnessy, Joyce A; Kiefer, Jeffrey A; Aldrich, Jessica; Sinari, Shripad; Moses, Tracy M; Wong, Shukmei; Dinh, Jennifer; Christoforides, Alexis; Blum, Joanne L; Aitelli, Cristi L; Osborne, Cynthia R; Izatt, Tyler; Kurdoglu, Ahmet; Baker, Angela; Koeman, Julie; Barbacioru, Catalin; Sakarya, Onur; De La Vega, Francisco M; Siddiqui, Asim; Hoang, Linh; Billings, Paul R; Salhia, Bodour; Tolcher, Anthony W; Trent, Jeffrey M; Mousses, Spyro; Von Hoff, Daniel; Carpten, John D

    2013-01-01

    Triple-negative breast cancer (TNBC) is characterized by the absence of expression of estrogen receptor, progesterone receptor, and HER-2. Thirty percent of patients recur after first-line treatment, and metastatic TNBC (mTNBC) has a poor prognosis with median survival of one year. Here, we present initial analyses of whole genome and transcriptome sequencing data from 14 prospective mTNBC. We have cataloged the collection of somatic genomic alterations in these advanced tumors, particularly those that may inform targeted therapies. Genes mutated in multiple tumors included TP53, LRP1B, HERC1, CDH5, RB1, and NF1. Notable genes involved in focal structural events were CTNNA1, PTEN, FBXW7, BRCA2, WT1, FGFR1, KRAS, HRAS, ARAF, BRAF, and PGCP. Homozygous deletion of CTNNA1 was detected in 2 of 6 African Americans. RNA sequencing revealed consistent overexpression of the FOXM1 gene when tumor gene expression was compared with nonmalignant breast samples. Using an outlier analysis of gene expression comparing one cancer with all the others, we detected expression patterns unique to each patient's tumor. Integrative DNA/RNA analysis provided evidence for deregulation of mutated genes, including the monoallelic expression of TP53 mutations. Finally, molecular alterations in several cancers supported targeted therapeutic intervention on clinical trials with known inhibitors, particularly for alterations in the RAS/RAF/MEK/ERK and PI3K/AKT/mTOR pathways. In conclusion, whole genome and transcriptome profiling of mTNBC have provided insights into somatic events occurring in this difficult to treat cancer. These genomic data have guided patients to investigational treatment trials and provide hypotheses for future trials in this irremediable cancer. PMID:23171949

  13. Genome and Transcriptome Sequences Reveal the Specific Parasitism of the Nematophagous Purpureocillium lilacinum 36-1.

    PubMed

    Xie, Jialian; Li, Shaojun; Mo, Chenmi; Xiao, Xueqiong; Peng, Deliang; Wang, Gaofeng; Xiao, Yannong

    2016-01-01

    Purpureocillium lilacinum is a promising nematophagous ascomycete able to adapt diverse environments and it is also an opportunistic fungus that infects humans. A microbial inoculant of P. lilacinum has been registered to control plant parasitic nematodes. However, the molecular mechanism of the toxicological processes is still unclear because of the relatively few reports on the subject. In this study, using Illumina paired-end sequencing, the draft genome sequence and the transcriptome of P. lilacinum strain 36-1 infecting nematode-eggs were determined. Whole genome alignment indicated that P. lilacinum 36-1 possessed a more dynamic genome in comparison with P. lilacinum India strain. Moreover, a phylogenetic analysis showed that the P. lilacinum 36-1 had a closer relation to entomophagous fungi. The protein-coding genes in P. lilacinum 36-1 occurred much more frequently than they did in other fungi, which was a result of the depletion of repeat-induced point mutations (RIP). Comparative genome and transcriptome analyses revealed the genes that were involved in pathogenicity, particularly in the recognition, adhesion of nematode-eggs, downstream signal transduction pathways and hydrolase genes. By contrast, certain numbers of cellulose and xylan degradation genes and a lack of polysaccharide lyase genes showed the potential of P. lilacinum 36-1 as an endophyte. Notably, the expression of appressorium-formation and antioxidants-related genes exhibited similar infection patterns in P. lilacinum strain 36-1 to those of the model entomophagous fungi Metarhizium spp. These results uncovered the specific parasitism of P. lilacinum and presented the genes responsible for the infection of nematode-eggs. PMID:27486440

  14. Genomic and transcriptomic insights into the efficient entomopathogenicity of Bacillus thuringiensis

    PubMed Central

    Zhu, Lei; Peng, Donghai; Wang, Yueying; Ye, Weixing; Zheng, Jinshui; Zhao, Changming; Han, Dongmei; Geng, Ce; Ruan, Lifang; He, Jin; Yu, Ziniu; Sun, Ming

    2015-01-01

    Bacillus thuringiensis has been globally used as a microbial pesticide for over 70 years. However, information regarding its various adaptions and virulence factors and their roles in the entomopathogenic process remains limited. In this work, we present the complete genomes of two industrially patented Bacillus thuringiensis strains (HD-1 and YBT-1520). A comparative genomic analysis showed a larger and more complicated genome constitution that included novel insecticidal toxicity-related genes (ITRGs). All of the putative ITRGs were summarized according to the steps of infection. A comparative genomic analysis showed that highly toxic strains contained significantly more ITRGs, thereby providing additional strategies for infection, immune evasion, and cadaver utilization. Furthermore, a comparative transcriptomic analysis suggested that a high expression of these ITRGs was a key factor in efficient entomopathogenicity. We identified an active extra urease synthesis system in the highly toxic strains that may aid B. thuringiensis survival in insects (similar to previous results with well-known pathogens). Taken together, these results explain the efficient entomopathogenicity of B. thuringiensis. It provides novel insights into the strategies used by B. thuringiensis to resist and overcome host immune defenses and helps identify novel toxicity factors. PMID:26411888

  15. Extensive Transcriptomic and Genomic Analysis Provides New Insights about Luminal Breast Cancers

    PubMed Central

    Tishchenko, Inna; Milioli, Heloisa Helena; Riveros, Carlos; Moscato, Pablo

    2016-01-01

    Despite constituting approximately two thirds of all breast cancers, the luminal A and B tumours are poorly classified at both clinical and molecular levels. There are contradictory reports on the nature of these subtypes: some define them as intrinsic entities, others as a continuum. With the aim of addressing these uncertainties and identifying molecular signatures of patients at risk, we conducted a comprehensive transcriptomic and genomic analysis of 2,425 luminal breast cancer samples. Our results indicate that the separation between the molecular luminal A and B subtypes—per definition—is not associated with intrinsic characteristics evident in the differentiation between other subtypes. Moreover, t-SNE and MST-kNN clustering approaches based on 10,000 probes, associated with luminal tumour initiation and/or development, revealed the close connections between luminal A and B tumours, with no evidence of a clear boundary between them. Thus, we considered all luminal tumours as a single heterogeneous group for analysis purposes. We first stratified luminal tumours into two distinct groups by their HER2 gene cluster co-expression: HER2-amplified luminal and ordinary-luminal. The former group is associated with distinct transcriptomic and genomic profiles, and poor prognosis; it comprises approximately 8% of all luminal cases. For the remaining ordinary-luminal tumours we further identified the molecular signature correlated with disease outcomes, exhibiting an approximately continuous gene expression range from low to high risk. Thus, we employed four virtual quantiles to segregate the groups of patients. The clinico-pathological characteristics and ratios of genomic aberrations are concordant with the variations in gene expression profiles, hinting at a progressive staging. The comparison with the current separation into luminal A and B subtypes revealed a substantially improved survival stratification. Concluding, we suggest a review of the definition of

  16. Extensive Transcriptomic and Genomic Analysis Provides New Insights about Luminal Breast Cancers.

    PubMed

    Tishchenko, Inna; Milioli, Heloisa Helena; Riveros, Carlos; Moscato, Pablo

    2016-01-01

    Despite constituting approximately two thirds of all breast cancers, the luminal A and B tumours are poorly classified at both clinical and molecular levels. There are contradictory reports on the nature of these subtypes: some define them as intrinsic entities, others as a continuum. With the aim of addressing these uncertainties and identifying molecular signatures of patients at risk, we conducted a comprehensive transcriptomic and genomic analysis of 2,425 luminal breast cancer samples. Our results indicate that the separation between the molecular luminal A and B subtypes-per definition-is not associated with intrinsic characteristics evident in the differentiation between other subtypes. Moreover, t-SNE and MST-kNN clustering approaches based on 10,000 probes, associated with luminal tumour initiation and/or development, revealed the close connections between luminal A and B tumours, with no evidence of a clear boundary between them. Thus, we considered all luminal tumours as a single heterogeneous group for analysis purposes. We first stratified luminal tumours into two distinct groups by their HER2 gene cluster co-expression: HER2-amplified luminal and ordinary-luminal. The former group is associated with distinct transcriptomic and genomic profiles, and poor prognosis; it comprises approximately 8% of all luminal cases. For the remaining ordinary-luminal tumours we further identified the molecular signature correlated with disease outcomes, exhibiting an approximately continuous gene expression range from low to high risk. Thus, we employed four virtual quantiles to segregate the groups of patients. The clinico-pathological characteristics and ratios of genomic aberrations are concordant with the variations in gene expression profiles, hinting at a progressive staging. The comparison with the current separation into luminal A and B subtypes revealed a substantially improved survival stratification. Concluding, we suggest a review of the definition of

  17. Large-scale Gene Ontology analysis of plant transcriptome-derived sequences retrieved by AFLP technology

    PubMed Central

    Botton, Alessandro; Galla, Giulio; Conesa, Ana; Bachem, Christian; Ramina, Angelo; Barcaccia, Gianni

    2008-01-01

    Background After 10-year-use of AFLP (Amplified Fragment Length Polymorphism) technology for DNA fingerprinting and mRNA profiling, large repertories of genome- and transcriptome-derived sequences are available in public databases for model, crop and tree species. AFLP marker systems have been and are being extensively exploited for genome scanning and gene mapping, as well as cDNA-AFLP for transcriptome profiling and differentially expressed gene cloning. The evaluation, annotation and classification of genomic markers and expressed transcripts would be of great utility for both functional genomics and systems biology research in plants. This may be achieved by means of the Gene Ontology (GO), consisting in three structured vocabularies (i.e. ontologies) describing genes, transcripts and proteins of any organism in terms of their associated cellular component, biological process and molecular function in a species-independent manner. In this paper, the functional annotation of about 8,000 AFLP-derived ESTs retrieved in the NCBI databases was carried out by using GO terminology. Results Descriptive statistics on the type, size and nature of gene sequences obtained by means of AFLP technology were calculated. The gene products associated with mRNA transcripts were then classified according to the three main GO vocabularies. A comparison of the functional content of cDNA-AFLP records was also performed by splitting the sequence dataset into monocots and dicots and by comparing them to all annotated ESTs of Arabidopsis and rice, respectively. On the whole, the statistical parameters adopted for the in silico AFLP-derived transcriptome-anchored sequence analysis proved to be critical for obtaining reliable GO results. Such an exhaustive annotation may offer a suitable platform for functional genomics, particularly useful in non-model species. Conclusion Reliable GO annotations of AFLP-derived sequences can be gathered through the optimization of the experimental steps

  18. Genome and transcriptome sequencing of the halophilic fungus Wallemia ichthyophaga: haloadaptations present and absent

    PubMed Central

    2013-01-01

    Background The basidomycete Wallemia ichthyophaga from the phylogenetically distinct class Wallemiomycetes is the most halophilic fungus known to date. It requires at least 10% NaCl and thrives in saturated salt solution. To investigate the genomic basis of this exceptional phenotype, we obtained a de-novo genome sequence of the species type-strain and analysed its transcriptomic response to conditions close to the limits of its lower and upper salinity range. Results The unusually compact genome is 9.6 Mb large and contains 1.67% repetitive sequences. Only 4884 predicted protein coding genes cover almost three quarters of the sequence. Of 639 differentially expressed genes, two thirds are more expressed at lower salinity. Phylogenomic analysis based on the largest dataset used to date (whole proteomes) positions Wallemiomycetes as a 250-million-year-old sister group of Agaricomycotina. Contrary to the closely related species Wallemia sebi, W. ichthyophaga appears to have lost the ability for sexual reproduction. Several protein families are significantly expanded or contracted in the genome. Among these, there are the P-type ATPase cation transporters, but not the sodium/ hydrogen exchanger family. Transcription of all but three cation transporters is not salt dependent. The analysis also reveals a significant enrichment in hydrophobins, which are cell-wall proteins with multiple cellular functions. Half of these are differentially expressed, and most contain an unusually large number of acidic amino acids. This discovery is of particular interest due to the numerous applications of hydrophobines from other fungi in industry, pharmaceutics and medicine. Conclusions W. ichthyophaga is an extremophilic specialist that shows only low levels of adaptability and genetic recombination. This is reflected in the characteristics of its genome and its transcriptomic response to salt. No unusual traits were observed in common salt-tolerance mechanisms, such as transport of

  19. Identification of G protein coupled receptors for opsines and neurohormones in Rhodnius prolixus. Genomic and transcriptomic analysis.

    PubMed

    Ons, Sheila; Lavore, Andrés; Sterkel, Marcos; Wulff, Juan Pedro; Sierra, Ivana; Martínez-Barnetche, Jesús; Rodriguez, Mario Henry; Rivera-Pomar, Rolando

    2016-02-01

    The importance of Chagas disease motivated the scientific effort to obtain the complete genomic sequence of the vector species Rhodnius prolixus, this information is also relevant to the understanding of triatomine biology in general. The central nervous system is the key regulator of insect physiology and behavior. Neurohormones (neuropeptides and biogenic amines) are the chemical messengers involved in the regulation and integration of neuroendocrine signals. In insects, this signaling is mainly mediated by the interaction of neurohormone ligands with G protein coupled receptors (GPCRs). The recently sequenced R. prolixus genome provides us with the opportunity to analyze this important family of genes in triatomines, supplying relevant information for further functional studies. Next-generation sequencing methods offer an excellent opportunity for transcriptomic exploration in key organs and tissues in the presence of a reference genome as well as when a reference genome is not available. We undertook a genomic analysis to obtain a genome-wide inventory of opsines and the GPCRs for neurohormones in R. prolixus. Furthermore, we performed a transcriptomic analysis of R. prolixus central nervous system, focusing on neuropeptide precursor genes and neurohormone and opsines GPCRs. In addition, we mined the whole transcriptomes of Triatoma dimidiata, Triatoma infestans and Triatoma pallidipennis - three sanitary relevant triatomine species - to identify neuropeptide precursors and GPCRs genes. Our study reveals a high degree of sequence conservation in the molecular components of the neuroendocrine system of triatomines. PMID:25976540

  20. Large-scale transcriptome characterization and mass discovery of SNPs in globe artichoke and its related taxa.

    PubMed

    Scaglione, Davide; Lanteri, Sergio; Acquadro, Alberto; Lai, Zhao; Knapp, Steven J; Rieseberg, Loren; Portis, Ezio

    2012-10-01

    Cynara cardunculus (2n = 2× = 34) is a member of the Asteraceae family that contributes significantly to the agricultural economy of the Mediterranean basin. The species includes two cultivated varieties, globe artichoke and cardoon, which are grown mainly for food. Cynara cardunculus is an orphan crop species whose genome/transcriptome has been relatively unexplored, especially in comparison to other Asteraceae crops. Hence, there is a significant need to improve its genomic resources through the identification of novel genes and sequence-based markers, to design new breeding schemes aimed at increasing quality and crop productivity. We report the outcome of cDNA sequencing and assembly for eleven accessions of C. cardunculus. Sequencing of three mapping parental genotypes using Roche 454-Titanium technology generated 1.7 × 10⁶ reads, which were assembled into 38,726 reference transcripts covering 32 Mbp. Putative enzyme-encoding genes were annotated using the KEGG-database. Transcription factors and candidate resistance genes were surveyed as well. Paired-end sequencing was done for cDNA libraries of eight other representative C. cardunculus accessions on an Illumina Genome Analyzer IIx, generating 46 × 10⁶ reads. Alignment of the IGA and 454 reads to reference transcripts led to the identification of 195,400 SNPs with a Bayesian probability exceeding 95%; a validation rate of 90% was obtained by Sanger-sequencing of a subset of contigs. These results demonstrate that the integration of data from different NGS platforms enables large-scale transcriptome characterization, along with massive SNP discovery. This information will contribute to the dissection of key agricultural traits in C. cardunculus and facilitate the implementation of marker-assisted selection programs. PMID:22849342

  1. Genome-wide transcriptome profiling reveals novel insights into Luffa cylindrica browning.

    PubMed

    Chen, Xia; Tan, Taiming; Xu, Changcheng; Huang, Shuping; Tan, Jie; Zhang, Min; Wang, Chunli; Xie, Conghua

    2015-08-01

    Luffa cylindrica (sponge gourd) is one of the most popular vegetables in China. Production and consumption of L. cylindrica are limited due to postharvest browning; however, little is known about the genetic regulation of the browning process. In the present study, transcriptome profiles of L. cylindrica cultivars, YLB05 (browning resistant) and XTR05 (browning sensitive), were analyzed using next-generation sequencing to clarify the genes and mechanisms associated with browning. A total of 9.1 Gb of valid data including 116,703 unigenes (>200 bp) were obtained and 39,473 sequences were annotated by alignment against five public databases. Of these, there were 27,407 genes assigned to 747 Gene Ontology functional categories; and 12,350 genes were annotated with 25 Eukaryotic Orthologous Groups (KOG) categories with 343 KOG functional terms. Additionally, by searching against the Kyoto Encyclopedia of Genes and Genomes database, 8689 unigenes were mapped to 189 pathways. Furthermore, there were 24,556 sequences found to be differentially regulated, including 4344 annotated unigenes. Several genes potentially associated with phenolic oxidation, carbohydrate and hormone metabolism were found differentially regulated between the cultivars of different browning sensitivities. Our results suggest that elements involved in enzymatic processes and other pathways might be responsible for L. cylindrica browning. The present study provides a comprehensive transcriptome sequence resource, which will facilitate further studies on gene discovery and exploiting the fruit browning mechanism of L. cylindrica. PMID:26086104

  2. Microarray-Based Comparative Genomic and Transcriptome Analysis of Borrelia burgdorferi

    PubMed Central

    Iyer, Radha; Schwartz, Ira

    2016-01-01

    Borrelia burgdorferi, the spirochetal agent of Lyme disease, is maintained in nature in a cycle involving a tick vector and a mammalian host. Adaptation to the diverse conditions of temperature, pH, oxygen tension and nutrient availability in these two environments requires the precise orchestration of gene expression. Over 25 microarray analyses relating to B. burgdorferi genomics and transcriptomics have been published. The majority of these studies has explored the global transcriptome under a variety of conditions and has contributed substantially to the current understanding of B. burgdorferi transcriptional regulation. In this review, we present a summary of these studies with particular focus on those that helped define the roles of transcriptional regulators in modulating gene expression in the tick and mammalian milieus. By performing comparative analysis of results derived from the published microarray expression profiling studies, we identified composite gene lists comprising differentially expressed genes in these two environments. Further, we explored the overlap between the regulatory circuits that function during the tick and mammalian phases of the enzootic cycle. Taken together, the data indicate that there is interplay among the distinct signaling pathways that function in feeding ticks and during adaptation to growth in the mammal. PMID:27600075

  3. Comparative transcriptome analysis reveals insights into the streamlined genomes of haplosclerid demosponges.

    PubMed

    Guzman, Christine; Conaco, Cecilia

    2016-01-01

    Sponges (Porifera) are one of the most ancestral metazoan groups. They are characterized by a simple body plan lacking the true tissues and organ systems found in other animals. Members of this phylum display a remarkable diversity of form and function and yet little is known about the composition and complexity of their genomes. In this study, we sequenced the transcriptomes of two marine haplosclerid sponges belonging to Demospongiae, the largest and most diverse class within phylum Porifera, and compared their gene content with members of other sponge classes. We recovered 44,693 and 50,067 transcripts expressed in adult tissues of Haliclona amboinensis and Haliclona tubifera, respectively. These transcripts translate into 20,280 peptides in H. amboinensis and 18,000 peptides in H. tubifera. Genes associated with important signaling and metabolic pathways, regulatory networks, as well as genes that may be important in the organismal stress response, were identified in the transcriptomes. Futhermore, lineage-specific innovations were identified that may be correlated with observed sponge characters and ecological adaptations. The core gene complement expressed within the tissues of adult haplosclerid demosponges may represent a streamlined and flexible genetic toolkit that underlies the ecological success and resilience of sponges to environmental stress. PMID:26738846

  4. Genomic, Transcriptomic, and Phenomic Variation Reveals the Complex Adaptation of Modern Maize Breeding.

    PubMed

    Liu, Haijun; Wang, Xiaqing; Warburton, Marilyn L; Wen, Weiwei; Jin, Minliang; Deng, Min; Liu, Jie; Tong, Hao; Pan, Qingchun; Yang, Xiaohong; Yan, Jianbing

    2015-06-01

    The temperate-tropical division of early maize germplasms to different agricultural environments was arguably the greatest adaptation process associated with the success and near ubiquitous importance of global maize production. Deciphering this history is challenging, but new insight has been gained from examining 558 529 single nucleotide polymorphisms, expression data of 28 769 genes, and 662 traits collected from 368 diverse temperate and tropical maize inbred lines in this study. This is a new attempt to systematically exploit the mechanisms of the adaptation process in maize. Our results indicate that divergence between tropical and temperate lines apparently occurred 3400-6700 years ago. Seven hundred and one genomic selection signals and transcriptomic variants including 2700 differentially expressed individual genes and 389 rewired co-expression network genes were identified. These candidate signals were found to be functionally related to stress responses, and most were associated with directionally selected traits, which may have been an advantage under widely varying environmental conditions faced by maize as it was migrated away from its domestication center. Our study also clearly indicates that such stress adaptation could involve evolution of protein-coding sequences as well as transcriptome-level regulatory changes. The latter process may be a more flexible and dynamic way for maize to adapt to environmental changes along its short evolutionary history. PMID:25620769

  5. Microarray-Based Comparative Genomic and Transcriptome Analysis of Borrelia burgdorferi.

    PubMed

    Iyer, Radha; Schwartz, Ira

    2016-01-01

    Borrelia burgdorferi, the spirochetal agent of Lyme disease, is maintained in nature in a cycle involving a tick vector and a mammalian host. Adaptation to the diverse conditions of temperature, pH, oxygen tension and nutrient availability in these two environments requires the precise orchestration of gene expression. Over 25 microarray analyses relating to B. burgdorferi genomics and transcriptomics have been published. The majority of these studies has explored the global transcriptome under a variety of conditions and has contributed substantially to the current understanding of B. burgdorferi transcriptional regulation. In this review, we present a summary of these studies with particular focus on those that helped define the roles of transcriptional regulators in modulating gene expression in the tick and mammalian milieus. By performing comparative analysis of results derived from the published microarray expression profiling studies, we identified composite gene lists comprising differentially expressed genes in these two environments. Further, we explored the overlap between the regulatory circuits that function during the tick and mammalian phases of the enzootic cycle. Taken together, the data indicate that there is interplay among the distinct signaling pathways that function in feeding ticks and during adaptation to growth in the mammal. PMID:27600075

  6. Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma.

    PubMed

    Hugo, Willy; Zaretsky, Jesse M; Sun, Lu; Song, Chunying; Moreno, Blanca Homet; Hu-Lieskovan, Siwen; Berent-Maoz, Beata; Pang, Jia; Chmielowski, Bartosz; Cherry, Grace; Seja, Elizabeth; Lomeli, Shirley; Kong, Xiangju; Kelley, Mark C; Sosman, Jeffrey A; Johnson, Douglas B; Ribas, Antoni; Lo, Roger S

    2016-03-24

    PD-1 immune checkpoint blockade provides significant clinical benefits for melanoma patients. We analyzed the somatic mutanomes and transcriptomes of pretreatment melanoma biopsies to identify factors that may influence innate sensitivity or resistance to anti-PD-1 therapy. We find that overall high mutational loads associate with improved survival, and tumors from responding patients are enriched for mutations in the DNA repair gene BRCA2. Innately resistant tumors display a transcriptional signature (referred to as the IPRES, or innate anti-PD-1 resistance), indicating concurrent up-expression of genes involved in the regulation of mesenchymal transition, cell adhesion, extracellular matrix remodeling, angiogenesis, and wound healing. Notably, mitogen-activated protein kinase (MAPK)-targeted therapy (MAPK inhibitor) induces similar signatures in melanoma, suggesting that a non-genomic form of MAPK inhibitor resistance mediates cross-resistance to anti-PD-1 therapy. Validation of the IPRES in other independent tumor cohorts defines a transcriptomic subset across distinct types of advanced cancer. These findings suggest that attenuating the biological processes that underlie IPRES may improve anti-PD-1 response in melanoma and other cancer types. PMID:26997480

  7. Comparative transcriptome analysis reveals insights into the streamlined genomes of haplosclerid demosponges

    PubMed Central

    Guzman, Christine; Conaco, Cecilia

    2016-01-01

    Sponges (Porifera) are one of the most ancestral metazoan groups. They are characterized by a simple body plan lacking the true tissues and organ systems found in other animals. Members of this phylum display a remarkable diversity of form and function and yet little is known about the composition and complexity of their genomes. In this study, we sequenced the transcriptomes of two marine haplosclerid sponges belonging to Demospongiae, the largest and most diverse class within phylum Porifera, and compared their gene content with members of other sponge classes. We recovered 44,693 and 50,067 transcripts expressed in adult tissues of Haliclona amboinensis and Haliclona tubifera, respectively. These transcripts translate into 20,280 peptides in H. amboinensis and 18,000 peptides in H. tubifera. Genes associated with important signaling and metabolic pathways, regulatory networks, as well as genes that may be important in the organismal stress response, were identified in the transcriptomes. Futhermore, lineage-specific innovations were identified that may be correlated with observed sponge characters and ecological adaptations. The core gene complement expressed within the tissues of adult haplosclerid demosponges may represent a streamlined and flexible genetic toolkit that underlies the ecological success and resilience of sponges to environmental stress. PMID:26738846

  8. Genome-wide functional genomic and transcriptomic analyses for genes regulating sensitivity to vorinostat

    PubMed Central

    Falkenberg, Katrina J; Gould, Cathryn M; Johnstone, Ricky W; Simpson, Kaylene J

    2014-01-01

    Identification of mechanisms of resistance to histone deacetylase inhibitors, such as vorinostat, is important in order to utilise these anticancer compounds more efficiently in the clinic. Here, we present a dataset containing multiple tiers of stringent siRNA screening for genes that when knocked down conferred sensitivity to vorinostat-induced cell death. We also present data from a miRNA overexpression screen for miRNAs contributing to vorinostat sensitivity. Furthermore, we provide transcriptomic analysis using massively parallel sequencing upon knockdown of 14 validated vorinostat-resistance genes. These datasets are suitable for analysis of genes and miRNAs involved in cell death in the presence and absence of vorinostat as well as computational biology approaches to identify gene regulatory networks. PMID:25977774

  9. Identification of metastasis-associated genes in colorectal cancer through an integrated genomic and transcriptomic analysis

    PubMed Central

    Peng, Sihua

    2013-01-01

    Objective Identification of colorectal cancer (CRC) metastasis genes is one of the most important issues in CRC research. For the purpose of mining CRC metastasis-associated genes, an integrated analysis of microarray data was presented, by combined with evidence acquired from comparative genomic hybridization (CGH) data. Methods Gene expression profile data of CRC samples were obtained at Gene Expression Omnibus (GEO) website. The 15 important chromosomal aberration sites detected by using CGH technology were used for integrated genomic and transcriptomic analysis. Significant Analysis of Microarray (SAM) was used to detect significantly differentially expressed genes across the whole genome. The overlapping genes were selected in their corresponding chromosomal aberration regions, and analyzed by using the Database for Annotation, Visualization and Integrated Discovery (DAVID). Finally, SVM-T-RFE gene selection algorithm was applied to identify metastasis-associated genes in CRC. Results A minimum gene set was obtained with the minimum number [14] of genes, and the highest classification accuracy (100%) in both PRI and META datasets. A fraction of selected genes are associated with CRC or its metastasis. Conclusions Our results demonstrated that integration analysis is an effective strategy for mining cancer-associated genes. PMID:24385689

  10. Genome and Transcriptome of Clostridium phytofermentans, Catalyst for the Direct Conversion of Plant Feedstocks to Fuels

    DOE PAGESBeta

    Petit, Elsa; Coppi, Maddalena V.; Hayes, James C.; Tolonen, Andrew C.; Warnick, Thomas; Latouf, William G.; Amisano, Danielle; Biddle, Amy; Mukherjee, Supratim; Ivanova, Natalia; et al

    2015-06-02

    Clostridium phytofermentans was isolated from forest soil and is distinguished by its capacity to directly ferment plant cell wall polysaccharides into ethanol as the primary product, suggesting that it possesses unusual catabolic pathways. The objective of our present study was to understand the molecular mechanisms of biomass conversion to ethanol in a single organism, Clostridium phytofermentans, by analyzing its complete genome and transcriptome during growth on plant carbohydrates. The saccharolytic versatility of C. phytofermentans is reflected in a diversity of genes encoding ATP-binding cassette sugar transporters and glycoside hydrolases, many of which may have been acquired through horizontal gene transfer.more » These genes are frequently organized as operons that may be controlled individually by the many transcriptional regulators identified in the genome. Preferential ethanol production may be due to high levels of expression of multiple ethanol dehydrogenases and additional pathways maximizing ethanol yield. The genome also encodes three different proteinaceous bacterial microcompartments with the capacity to compartmentalize pathways that divert fermentation intermediates to various products. Lastly, these characteristics make C. phytofermentans an attractive resource for improving the efficiency and speed of biomass conversion to biofuels.« less

  11. The impact of genomic neighborhood on the evolution of human and chimpanzee transcriptome

    PubMed Central

    De, Subhajyoti; Teichmann, Sarah A.; Babu, M. Madan

    2009-01-01

    Divergence of gene expression can result in phenotypic variation, which contributes to the evolution of new species. Although the influence of trans- and cis-regulatory mutations is well known, the genome-wide impact of changes in genomic neighborhood of genes on expression divergence between species remains largely unexplored. Here, we compare the neighborhood of orthologous genes (within a window of 2 MB) in human and chimpanzee with the expression levels of their transcripts from several equivalent tissues and demonstrate that genes with altered neighborhood are more likely to undergo expression divergence than genes with conserved neighborhood. We observe the same trend when expression divergence data were analyzed from six different brain parts that are equivalent between human and chimpanzee. Additionally, we find enrichment for genes with altered neighborhood to be expressed in a tissue-specific manner in the human brain. These results suggest that expression divergence induced by this mechanism could have contributed to the phenotypic differences between human and chimpanzee. We propose that, in addition to other molecular mechanisms, change in genomic neighborhood is an important factor that drives transcriptome evolution. PMID:19233772

  12. Genome and Transcriptome of Clostridium phytofermentans, Catalyst for the Direct Conversion of Plant Feedstocks to Fuels

    SciTech Connect

    Petit, Elsa; Coppi, Maddalena V.; Hayes, James C.; Tolonen, Andrew C.; Warnick, Thomas; Latouf, William G.; Amisano, Danielle; Biddle, Amy; Mukherjee, Supratim; Ivanova, Natalia; Lykidis, Athanassios; Land, Miriam; Hauser, Loren; Kyrpides, Nikos; Henrissat, Bernard; Lau, Joanne; Schnell, Danny J.; Church, George M.; Leschine, Susan B.; Blanchard, Jeffrey L.

    2015-06-02

    Clostridium phytofermentans was isolated from forest soil and is distinguished by its capacity to directly ferment plant cell wall polysaccharides into ethanol as the primary product, suggesting that it possesses unusual catabolic pathways. The objective of our present study was to understand the molecular mechanisms of biomass conversion to ethanol in a single organism, Clostridium phytofermentans, by analyzing its complete genome and transcriptome during growth on plant carbohydrates. The saccharolytic versatility of C. phytofermentans is reflected in a diversity of genes encoding ATP-binding cassette sugar transporters and glycoside hydrolases, many of which may have been acquired through horizontal gene transfer. These genes are frequently organized as operons that may be controlled individually by the many transcriptional regulators identified in the genome. Preferential ethanol production may be due to high levels of expression of multiple ethanol dehydrogenases and additional pathways maximizing ethanol yield. The genome also encodes three different proteinaceous bacterial microcompartments with the capacity to compartmentalize pathways that divert fermentation intermediates to various products. Lastly, these characteristics make C. phytofermentans an attractive resource for improving the efficiency and speed of biomass conversion to biofuels.

  13. Genome and Transcriptome of Clostridium phytofermentans, Catalyst for the Direct Conversion of Plant Feedstocks to Fuels

    PubMed Central

    Petit, Elsa; Coppi, Maddalena V.; Hayes, James C.; Tolonen, Andrew C.; Warnick, Thomas; Latouf, William G.; Amisano, Danielle; Biddle, Amy; Mukherjee, Supratim; Ivanova, Natalia; Lykidis, Athanassios; Land, Miriam; Hauser, Loren; Kyrpides, Nikos; Henrissat, Bernard; Lau, Joanne; Schnell, Danny J.; Church, George M.; Leschine, Susan B.; Blanchard, Jeffrey L.

    2015-01-01

    Clostridium phytofermentans was isolated from forest soil and is distinguished by its capacity to directly ferment plant cell wall polysaccharides into ethanol as the primary product, suggesting that it possesses unusual catabolic pathways. The objective of the present study was to understand the molecular mechanisms of biomass conversion to ethanol in a single organism, Clostridium phytofermentans, by analyzing its complete genome and transcriptome during growth on plant carbohydrates. The saccharolytic versatility of C. phytofermentans is reflected in a diversity of genes encoding ATP-binding cassette sugar transporters and glycoside hydrolases, many of which may have been acquired through horizontal gene transfer. These genes are frequently organized as operons that may be controlled individually by the many transcriptional regulators identified in the genome. Preferential ethanol production may be due to high levels of expression of multiple ethanol dehydrogenases and additional pathways maximizing ethanol yield. The genome also encodes three different proteinaceous bacterial microcompartments with the capacity to compartmentalize pathways that divert fermentation intermediates to various products. These characteristics make C. phytofermentans an attractive resource for improving the efficiency and speed of biomass conversion to biofuels. PMID:26035711

  14. Genome, Transcriptome, and Functional Analyses of Penicillium expansum Provide New Insights Into Secondary Metabolism and Pathogenicity.

    PubMed

    Ballester, Ana-Rosa; Marcet-Houben, Marina; Levin, Elena; Sela, Noa; Selma-Lázaro, Cristina; Carmona, Lourdes; Wisniewski, Michael; Droby, Samir; González-Candelas, Luis; Gabaldón, Toni

    2015-03-01

    The relationship between secondary metabolism and infection in pathogenic fungi has remained largely elusive. The genus Penicillium comprises a group of plant pathogens with varying host specificities and with the ability to produce a wide array of secondary metabolites. The genomes of three Penicillium expansum strains, the main postharvest pathogen of pome fruit, and one Pencillium italicum strain, a postharvest pathogen of citrus fruit, were sequenced and compared with 24 other fungal species. A genomic analysis of gene clusters responsible for the production of secondary metabolites was performed. Putative virulence factors in P. expansum were identified by means of a transcriptomic analysis of apple fruits during the course of infection. Despite a major genome contraction, P. expansum is the Penicillium species with the largest potential for the production of secondary metabolites. Results using knockout mutants clearly demonstrated that neither patulin nor citrinin are required by P. expansum to successfully infect apples. Li et al. ( MPMI-12-14-0398-FI ) reported similar results and conclusions in their recently accepted paper. PMID:25338147

  15. An integrated genomic and transcriptomic survey of mucormycosis-causing fungi

    PubMed Central

    Chibucos, Marcus C.; Soliman, Sameh; Gebremariam, Teclegiorgis; Lee, Hongkyu; Daugherty, Sean; Orvis, Joshua; Shetty, Amol C.; Crabtree, Jonathan; Hazen, Tracy H.; Etienne, Kizee A.; Kumari, Priti; O'Connor, Timothy D.; Rasko, David A.; Filler, Scott G.; Fraser, Claire M.; Lockhart, Shawn R.; Skory, Christopher D.; Ibrahim, Ashraf S.; Bruno, Vincent M.

    2016-01-01

    Mucormycosis is a life-threatening infection caused by Mucorales fungi. Here we sequence 30 fungal genomes, and perform transcriptomics with three representative Rhizopus and Mucor strains and with human airway epithelial cells during fungal invasion, to reveal key host and fungal determinants contributing to pathogenesis. Analysis of the host transcriptional response to Mucorales reveals platelet-derived growth factor receptor B (PDGFRB) signaling as part of a core response to divergent pathogenic fungi; inhibition of PDGFRB reduces Mucorales-induced damage to host cells. The unique presence of CotH invasins in all invasive Mucorales, and the correlation between CotH gene copy number and clinical prevalence, are consistent with an important role for these proteins in mucormycosis pathogenesis. Our work provides insight into the evolution of this medically and economically important group of fungi, and identifies several molecular pathways that might be exploited as potential therapeutic targets. PMID:27447865

  16. An integrated genomic and transcriptomic survey of mucormycosis-causing fungi.

    PubMed

    Chibucos, Marcus C; Soliman, Sameh; Gebremariam, Teclegiorgis; Lee, Hongkyu; Daugherty, Sean; Orvis, Joshua; Shetty, Amol C; Crabtree, Jonathan; Hazen, Tracy H; Etienne, Kizee A; Kumari, Priti; O'Connor, Timothy D; Rasko, David A; Filler, Scott G; Fraser, Claire M; Lockhart, Shawn R; Skory, Christopher D; Ibrahim, Ashraf S; Bruno, Vincent M

    2016-01-01

    Mucormycosis is a life-threatening infection caused by Mucorales fungi. Here we sequence 30 fungal genomes, and perform transcriptomics with three representative Rhizopus and Mucor strains and with human airway epithelial cells during fungal invasion, to reveal key host and fungal determinants contributing to pathogenesis. Analysis of the host transcriptional response to Mucorales reveals platelet-derived growth factor receptor B (PDGFRB) signaling as part of a core response to divergent pathogenic fungi; inhibition of PDGFRB reduces Mucorales-induced damage to host cells. The unique presence of CotH invasins in all invasive Mucorales, and the correlation between CotH gene copy number and clinical prevalence, are consistent with an important role for these proteins in mucormycosis pathogenesis. Our work provides insight into the evolution of this medically and economically important group of fungi, and identifies several molecular pathways that might be exploited as potential therapeutic targets. PMID:27447865

  17. Transcriptomic and genomic evolution under constant cold in Antarctic notothenioid fish

    PubMed Central

    Chen, Zuozhou; Cheng, C.-H. Christina; Zhang, Junfang; Cao, Lixue; Chen, Lei; Zhou, Longhai; Jin, Yudong; Ye, Hua; Deng, Cheng; Dai, Zhonghua; Xu, Qianghua; Hu, Peng; Sun, Shouhong; Shen, Yu; Chen, Liangbiao

    2008-01-01

    The antifreeze glycoprotein-fortified Antarctic notothenioid fishes comprise the predominant fish suborder in the isolated frigid Southern Ocean. Their ecological success undoubtedly entailed evolutionary acquisition of a full suite of cold-stable functions besides antifreeze protection. Prior studies of adaptive changes in these teleost fishes generally examined a single genotype or phenotype. We report here the genome-wide investigations of transcriptional and genomic changes associated with Antarctic notothenioid cold adaptation. We sequenced and characterized 33,560 ESTs from four tissues of the Antarctic notothenioid Dissostichus mawsoni and derived 3,114 nonredundant protein gene families and their expression profiles. Through comparative analyses of same-tissue transcriptome profiles of D. mawsoni and temperate/tropical teleost fishes, we identified 177 notothenioid protein families that were expressed many fold over the latter, indicating cold-related up-regulation. These up-regulated gene families operate in protein biosynthesis, protein folding and degradation, lipid metabolism, antioxidation, antiapoptosis, innate immunity, choriongenesis, and others, all of recognizable functional importance in mitigating stresses in freezing temperatures during notothenioid life histories. We further examined the genomic and evolutionary bases for this expressional up-regulation by comparative genomic hybridization of DNA from four pairs of Antarctic and basal non-Antarctic notothenioids to 10,700 D. mawsoni cDNA probes and discovered significant to astounding (3- to >300-fold, P < 0.05) Antarctic-specific duplications of 118 protein-coding genes, many of which correspond to the up-regulated gene families. Results of our integrative tripartite study strongly suggest that evolution under constant cold has resulted in dramatic genomic expansions of specific protein gene families, augmenting gene expression and gene functions contributing to physiological fitness of

  18. An evaluation of transcriptome-based exon capture for frog phylogenomics across multiple scales of divergence (Class: Amphibia, Order: Anura).

    PubMed

    Portik, Daniel M; Smith, Lydia L; Bi, Ke

    2016-09-01

    Custom sequence capture experiments are becoming an efficient approach for gathering large sets of orthologous markers in nonmodel organisms. Transcriptome-based exon capture utilizes transcript sequences to design capture probes, typically using a reference genome to identify intron-exon boundaries to exclude shorter exons (<200 bp). Here, we test directly using transcript sequences for probe design, which are often composed of multiple exons of varying lengths. Using 1260 orthologous transcripts, we conducted sequence captures across multiple phylogenetic scales for frogs, including outgroups ~100 Myr divergent from the ingroup. We recovered a large phylogenomic data set consisting of sequence alignments for 1047 of the 1260 transcriptome-based loci (~561 000 bp) and a large quantity of highly variable regions flanking the exons in transcripts (~70 000 bp), the latter improving substantially by only including ingroup species (~797 000 bp). We recovered both shorter (<100 bp) and longer exons (>200 bp), with no major reduction in coverage towards the ends of exons. We observed significant differences in the performance of blocking oligos for target enrichment and nontarget depletion during captures, and differences in PCR duplication rates resulting from the number of individuals pooled for capture reactions. We explicitly tested the effects of phylogenetic distance on capture sensitivity, specificity, and missing data, and provide a baseline estimate of expectations for these metrics based on a priori knowledge of nuclear pairwise differences among samples. We provide recommendations for transcriptome-based exon capture design based on our results, cost estimates and offer multiple pipelines for data assembly and analysis. PMID:27241806

  19. Genome-Wide Transcriptome and Proteome Analysis on Different Developmental Stages of Cordyceps militaris

    PubMed Central

    Yin, Yalin; Yu, Guojun; Chen, Yijie; Jiang, Shuai; Wang, Man; Jin, Yanxia; Lan, Xianqing; Liang, Yi; Sun, Hui

    2012-01-01

    Background Cordyceps militaris, an ascomycete caterpillar fungus, has been used as a traditional Chinese medicine for many years owing to its anticancer and immunomodulatory activities. Currently, artificial culturing of this beneficial fungus has been widely used and can meet the market, but systematic molecular studies on the developmental stages of cultured C. militaris at transcriptional and translational levels have not been determined. Methodology/Principal Findings We utilized high-throughput Illumina sequencing to obtain the transcriptomes of C. militaris mycelium and fruiting body. All clean reads were mapped to C. militaris genome and most of the reads showed perfect coverage. Alternative splicing and novel transcripts were predicted to enrich the database. Gene expression analysis revealed that 2,113 genes were up-regulated in mycelium and 599 in fruiting body. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to analyze the genes with expression differences. Moreover, the putative cordycepin metabolism difference between different developmental stages was studied. In addition, the proteome data of mycelium and fruiting body were obtained by one-dimensional gel electrophoresis (1-DGE) coupled with nano-electrospray ionization liquid chromatography tandem mass spectrometry (nESI-LC-MS/MS). 359 and 214 proteins were detected from mycelium and fruiting body respectively. GO, KEGG and Cluster of Orthologous Groups (COG) analysis were further conducted to better understand their difference. We analyzed the amounts of some noteworthy proteins in these two samples including lectin, superoxide dismutase, glycoside hydrolase and proteins involved in cordycepin metabolism, providing important information for further protein studies. Conclusions/Significance The results reveal the difference in gene expression between the mycelium and fruiting body of artificially cultivated C. militaris by transcriptome and proteome

  20. The Arabidopsis Root Transcriptome by Serial Analysis of Gene Expression. Gene Identification Using the Genome Sequence1

    PubMed Central

    Fizames, Cécile; Muños, Stéphane; Cazettes, Céline; Nacry, Philippe; Boucherez, Jossia; Gaymard, Frédéric; Piquemal, David; Delorme, Valérie; Commes, Thérèse; Doumas, Patrick; Cooke, Richard; Marti, Jacques; Sentenac, Hervé; Gojon, Alain

    2004-01-01

    Large-scale identification of genes expressed in roots of the model plant Arabidopsis was performed by serial analysis of gene expression (SAGE), on a total of 144,083 sequenced tags, representing at least 15,964 different mRNAs. For tag to gene assignment, we developed a computational approach based on 26,620 genes annotated from the complete sequence of the genome. The procedure selected warrants the identification of the genes corresponding to the majority of the tags found experimentally, with a high level of reliability, and provides a reference database for SAGE studies in Arabidopsis. This new resource allowed us to characterize the expression of more than 3,000 genes, for which there is no expressed sequence tag (EST) or cDNA in the databases. Moreover, 85% of the tags were specific for one gene. To illustrate this advantage of SAGE for functional genomics, we show that our data allow an unambiguous analysis of most of the individual genes belonging to 12 different ion transporter multigene families. These results indicate that, compared with EST-based tag to gene assignment, the use of the annotated genome sequence greatly improves gene identification in SAGE studies. However, more than 6,000 different tags remained with no gene match, suggesting that a significant proportion of transcripts present in the roots originate from yet unknown or wrongly annotated genes. The root transcriptome characterized in this study markedly differs from those obtained in other organs, and provides a unique resource for investigating the functional specificities of the root system. As an example of the use of SAGE for transcript profiling in Arabidopsis, we report here the identification of 270 genes differentially expressed between roots of plants grown either with NO3- or NH4NO3 as N source. PMID:14730065

  1. Genome-wide transcriptome analysis of Chinese pollination-constant nonastringent persimmon fruit treated with ethanol

    PubMed Central

    2014-01-01

    Background The persimmon Diospyros kaki Thunb. is an important commercial and deciduous fruit tree. The fruits have proanthocyanidin (PA) content of >25% of the dry weight and are astringent. PAs cause astringency that is often undesirable for human consumption; thus, the removal of astringency is an important practice in the persimmon industry. Soluble PAs can be converted to insoluble PAs by enclosing the fruit in a polyethylene bag containing diluted ethanol. The genomic resource development of the persimmon is delayed because of its large and complex genome. Second-generation sequencing is an efficient technique for generating huge sequences that can represent a large number of genes and their expression levels. Results We used 454 sequencing for the de novo transcriptome assembly of persimmon fruit treated with 5% ethanol (Tr library) and without treatment as the control (Co library) to investigate the genes and pathways that control PA biosynthesis and other secondary metabolites. We obtained 374.6 Mb in clean nucleotides comprising 624,690 and 626,203 clean sequencing reads from the Tr and Co libraries, respectively. We also identified 83,898 unigenes; 54,719 (~65.2%) unigenes were annotated based on similarity searches with known proteins. Up to 14,954 of the unigenes were assigned to the protein database Clusters of Orthologous Groups (COG), 24,337 were assigned to the term annotation database of Gene Ontology (GO), and 45,506 were assigned to 200 pathways in the database of Kyoto Encyclopedia of Genes and Genomes (KEGG). The two libraries were compared to identify the differentially expressed unigenes. The expression levels of genes involved in PA biosynthesis and tannin coagulation were analysed, and some of them were verified using quantitative real time PCR (qRT-PCR). Conclusions This study provides abundant genomic data for persimmon and offers comprehensive sequence resources for persimmon research. The transcriptome dataset will improve our

  2. Improved evidence-based genome-scale metabolic models for maize leaf, embryo, and endosperm

    DOE PAGESBeta

    Seaver, Samuel M.D.; Bradbury, Louis M.T.; Frelin, Océane; Zarecki, Raphy; Ruppin, Eytan; Hanson, Andrew D.; Henry, Christopher S.

    2015-03-10

    There is a growing demand for genome-scale metabolic reconstructions for plants, fueled by the need to understand the metabolic basis of crop yield and by progress in genome and transcriptome sequencing. Methods are also required to enable the interpretation of plant transcriptome data to study how cellular metabolic activity varies under different growth conditions or even within different organs, tissues, and developmental stages. Such methods depend extensively on the accuracy with which genes have been mapped to the biochemical reactions in the plant metabolic pathways. Errors in these mappings lead to metabolic reconstructions with an inflated number of reactions andmore » possible generation of unreliable metabolic phenotype predictions. Here we introduce a new evidence-based genome-scale metabolic reconstruction of maize, with significant improvements in the quality of the gene-reaction associations included within our model. We also present a new approach for applying our model to predict active metabolic genes based on transcriptome data. This method includes a minimal set of reactions associated with low expression genes to enable activity of a maximum number of reactions associated with high expression genes. We apply this method to construct an organ-specific model for the maize leaf, and tissue specific models for maize embryo and endosperm cells. We validate our models using fluxomics data for the endosperm and embryo, demonstrating an improved capacity of our models to fit the available fluxomics data. All models are publicly available via the DOE Systems Biology Knowledgebase and PlantSEED, and our new method is generally applicable for analysis transcript profiles from any plant, paving the way for further in silico studies with a wide variety of plant genomes.« less

  3. Improved evidence-based genome-scale metabolic models for maize leaf, embryo, and endosperm

    SciTech Connect

    Seaver, Samuel M.D.; Bradbury, Louis M.T.; Frelin, Océane; Zarecki, Raphy; Ruppin, Eytan; Hanson, Andrew D.; Henry, Christopher S.

    2015-03-10

    There is a growing demand for genome-scale metabolic reconstructions for plants, fueled by the need to understand the metabolic basis of crop yield and by progress in genome and transcriptome sequencing. Methods are also required to enable the interpretation of plant transcriptome data to study how cellular metabolic activity varies under different growth conditions or even within different organs, tissues, and developmental stages. Such methods depend extensively on the accuracy with which genes have been mapped to the biochemical reactions in the plant metabolic pathways. Errors in these mappings lead to metabolic reconstructions with an inflated number of reactions and possible generation of unreliable metabolic phenotype predictions. Here we introduce a new evidence-based genome-scale metabolic reconstruction of maize, with significant improvements in the quality of the gene-reaction associations included within our model. We also present a new approach for applying our model to predict active metabolic genes based on transcriptome data. This method includes a minimal set of reactions associated with low expression genes to enable activity of a maximum number of reactions associated with high expression genes. We apply this method to construct an organ-specific model for the maize leaf, and tissue specific models for maize embryo and endosperm cells. We validate our models using fluxomics data for the endosperm and embryo, demonstrating an improved capacity of our models to fit the available fluxomics data. All models are publicly available via the DOE Systems Biology Knowledgebase and PlantSEED, and our new method is generally applicable for analysis transcript profiles from any plant, paving the way for further in silico studies with a wide variety of plant genomes.

  4. Improved evidence-based genome-scale metabolic models for maize leaf, embryo, and endosperm

    PubMed Central

    Seaver, Samuel M. D.; Bradbury, Louis M. T.; Frelin, Océane; Zarecki, Raphy; Ruppin, Eytan; Hanson, Andrew D.; Henry, Christopher S.

    2015-01-01

    There is a growing demand for genome-scale metabolic reconstructions for plants, fueled by the need to understand the metabolic basis of crop yield and by progress in genome and transcriptome sequencing. Methods are also required to enable the interpretation of plant transcriptome data to study how cellular metabolic activity varies under different growth conditions or even within different organs, tissues, and developmental stages. Such methods depend extensively on the accuracy with which genes have been mapped to the biochemical reactions in the plant metabolic pathways. Errors in these mappings lead to metabolic reconstructions with an inflated number of reactions and possible generation of unreliable metabolic phenotype predictions. Here we introduce a new evidence-based genome-scale metabolic reconstruction of maize, with significant improvements in the quality of the gene-reaction associations included within our model. We also present a new approach for applying our model to predict active metabolic genes based on transcriptome data. This method includes a minimal set of reactions associated with low expression genes to enable activity of a maximum number of reactions associated with high expression genes. We apply this method to construct an organ-specific model for the maize leaf, and tissue specific models for maize embryo and endosperm cells. We validate our models using fluxomics data for the endosperm and embryo, demonstrating an improved capacity of our models to fit the available fluxomics data. All models are publicly available via the DOE Systems Biology Knowledgebase and PlantSEED, and our new method is generally applicable for analysis transcript profiles from any plant, paving the way for further in silico studies with a wide variety of plant genomes. PMID:25806041

  5. Transcriptome Sequencing of Two Phenotypic Mosaic Eucalyptus Trees Reveals Large Scale Transcriptome Re-Modelling

    PubMed Central

    Padovan, Amanda; Patel, Hardip R.; Chuah, Aaron; Huttley, Gavin A.; Krause, Sandra T.; Degenhardt, Jörg; Foley, William J.; Külheim, Carsten

    2015-01-01

    Phenotypic mosaic trees offer an ideal system for studying differential gene expression. We have investigated two mosaic eucalypt trees from two closely related species (Eucalyptus melliodora and E. sideroxylon), which each support two types of leaves: one part of the canopy is resistant to insect herbivory and the remaining leaves are susceptible. Driving this ecological distinction are differences in plant secondary metabolites. We used these phenotypic mosaics to investigate genome wide patterns of foliar gene expression with the aim of identifying patterns of differential gene expression and the somatic mutation(s) that lead to this phenotypic mosaicism. We sequenced the mRNA pool from leaves of the resistant and susceptible ecotypes from both mosaic eucalypts using the Illumina HiSeq 2000 platform. We found large differences in pathway regulation and gene expression between the ecotypes of each mosaic. The expression of the genes in the MVA and MEP pathways is reflected by variation in leaf chemistry, however this is not the case for the terpene synthases. Apart from the terpene biosynthetic pathway, there are several other metabolic pathways that are differentially regulated between the two ecotypes, suggesting there is much more phenotypic diversity than has been described. Despite the close relationship between the two species, they show large differences in the global patterns of gene and pathway regulation. PMID:25978451

  6. Genome and Transcriptome Analysis of the Basidiomycetous Yeast Pseudozyma antarctica Producing Extracellular Glycolipids, Mannosylerythritol Lipids

    PubMed Central

    Hagiwara, Hiroko; Ito, Emi; Machida, Masayuki; Sato, Shun; Habe, Hiroshi; Kitamoto, Dai

    2014-01-01

    Pseudozyma antarctica is a non-pathogenic phyllosphere yeast known as an excellent producer of mannosylerythritol lipids (MELs), multi-functional extracellular glycolipids, from vegetable oils. To clarify the genetic characteristics of P. antarctica, we analyzed the 18 Mb genome of P. antarctica T-34. On the basis of KOG analysis, the number of genes (219 genes) categorized into lipid transport and metabolism classification in P. antarctica was one and a half times larger than that of yeast Saccharomyces cerevisiae (140 genes). The gene encoding an ATP/citrate lyase (ACL) related to acetyl-CoA synthesis conserved in oleaginous strains was found in P. antarctica genome: the single ACL gene possesses the four domains identical to that of the human gene, whereas the other oleaginous ascomycetous species have the two genes covering the four domains. P. antarctica genome exhibited a remarkable degree of synteny to U. maydis genome, however, the comparison of the gene expression profiles under the culture on the two carbon sources, glucose and soybean oil, by the DNA microarray method revealed that transcriptomes between the two species were significantly different. In P. antarctica, expression of the gene sets relating fatty acid metabolism were markedly up-regulated under the oily conditions compared with glucose. Additionally, MEL biosynthesis cluster of P. antarctica was highly expressed regardless of the carbon source as compared to U. maydis. These results strongly indicate that P. antarctica has an oleaginous nature which is relevant to its non-pathogenic and MEL-overproducing characteristics. The analysis and dataset contribute to stimulate the development of improved strains with customized properties for high yield production of functional bio-based materials. PMID:24586250

  7. Genome and transcriptome analysis of the basidiomycetous yeast Pseudozyma antarctica producing extracellular glycolipids, mannosylerythritol lipids.

    PubMed

    Morita, Tomotake; Koike, Hideaki; Hagiwara, Hiroko; Ito, Emi; Machida, Masayuki; Sato, Shun; Habe, Hiroshi; Kitamoto, Dai

    2014-01-01

    Pseudozyma antarctica is a non-pathogenic phyllosphere yeast known as an excellent producer of mannosylerythritol lipids (MELs), multi-functional extracellular glycolipids, from vegetable oils. To clarify the genetic characteristics of P. antarctica, we analyzed the 18 Mb genome of P. antarctica T-34. On the basis of KOG analysis, the number of genes (219 genes) categorized into lipid transport and metabolism classification in P. antarctica was one and a half times larger than that of yeast Saccharomyces cerevisiae (140 genes). The gene encoding an ATP/citrate lyase (ACL) related to acetyl-CoA synthesis conserved in oleaginous strains was found in P. antarctica genome: the single ACL gene possesses the four domains identical to that of the human gene, whereas the other oleaginous ascomycetous species have the two genes covering the four domains. P. antarctica genome exhibited a remarkable degree of synteny to U. maydis genome, however, the comparison of the gene expression profiles under the culture on the two carbon sources, glucose and soybean oil, by the DNA microarray method revealed that transcriptomes between the two species were significantly different. In P. antarctica, expression of the gene sets relating fatty acid metabolism were markedly up-regulated under the oily conditions compared with glucose. Additionally, MEL biosynthesis cluster of P. antarctica was highly expressed regardless of the carbon source as compared to U. maydis. These results strongly indicate that P. antarctica has an oleaginous nature which is relevant to its non-pathogenic and MEL-overproducing characteristics. The analysis and dataset contribute to stimulate the development of improved strains with customized properties for high yield production of functional bio-based materials. PMID:24586250

  8. The Draft Genome and Transcriptome of Amaranthus hypochondriacus: A C4 Dicot Producing High-Lysine Edible Pseudo-Cereal

    PubMed Central

    Sunil, Meeta; Hariharan, Arun K.; Nayak, Soumya; Gupta, Saurabh; Nambisan, Suran R.; Gupta, Ravi P.; Panda, Binay; Choudhary, Bibha; Srinivasan, Subhashini

    2014-01-01

    Grain amaranths, edible C4 dicots, produce pseudo-cereals high in lysine. Lysine being one of the most limiting essential amino acids in cereals and C4 photosynthesis being one of the most sought-after phenotypes in protein-rich legume crops, the genome of one of the grain amaranths is likely to play a critical role in crop research. We have sequenced the genome and transcriptome of Amaranthus hypochondriacus, a diploid (2n = 32) belonging to the order Caryophyllales with an estimated genome size of 466 Mb. Of the 411 linkage single-nucleotide polymorphisms (SNPs) reported for grain amaranths, 355 SNPs (86%) are represented in the scaffolds and 74% of the 8.6 billion bases of the sequenced transcriptome map to the genomic scaffolds. The genome of A. hypochondriacus, codes for at least 24,829 proteins, shares the paleohexaploidy event with species under the superorders Rosids and Asterids, harbours 1 SNP in 1,000 bases, and contains 13.76% of repeat elements. Annotation of all the genes in the lysine biosynthetic pathway using comparative genomics and expression analysis offers insights into the high-lysine phenotype. As the first grain species under Caryophyllales and the first C4 dicot genome reported, the work presented here will be beneficial in improving crops and in expanding our understanding of angiosperm evolution. PMID:25071079

  9. The genome and transcriptome of the pine saprophyte Ophiostoma piceae, and a comparison with the bark beetle-associated pine pathogen Grosmannia clavigera

    PubMed Central

    2013-01-01

    Background Ophiostoma piceae is a wood-staining fungus that grows in the sapwood of conifer logs and lumber. We sequenced its genome and analyzed its transcriptomes under a range of growth conditions. A comparison with the genome and transcriptomes of the mountain pine beetle-associated pathogen Grosmannia clavigera highlights differences between a pathogen that colonizes and kills living pine trees and a saprophyte that colonizes wood and the inner bark of dead trees. Results We assembled a 33 Mbp genome in 45 scaffolds, and predicted approximately 8,884 genes. The genome size and gene content were similar to those of other ascomycetes. Despite having similar ecological niches, O. piceae and G. clavigera showed no large-scale synteny. We identified O. piceae genes involved in the biosynthesis of melanin, which causes wood discoloration and reduces the commercial value of wood products. We also identified genes and pathways involved in growth on simple carbon sources and in sapwood, O. piceae’s natural substrate. Like the pathogen, the saprophyte is able to tolerate terpenes, which are a major class of pine tree defense compounds; unlike the pathogen, it cannot utilize monoterpenes as a carbon source. Conclusions This work makes available the second annotated genome of a softwood ophiostomatoid fungus, and suggests that O. piceae’s tolerance to terpenes may be due in part to these chemicals being removed from the cells by an ABC transporter that is highly induced by terpenes. The data generated will provide the research community with resources for work on host-vector-fungus interactions for wood-inhabiting, beetle-associated saprophytes and pathogens. PMID:23725015

  10. Large-Scale Transcriptome Analysis of Cucumber and Botrytis cinerea during Infection

    PubMed Central

    Liu, Tingting; Zhu, Jing; Wang, Jingqi; He, Xiaoqing; Jin, Yi

    2015-01-01

    Cucumber gray mold caused by Botrytis cinerea is considered one of the most serious cucumber diseases. With the advent of Hi-seq technology, it is possible to study the plant–pathogen interaction at the transcriptome level. To the best of our knowledge, this is the first application of RNA-seq to identify cucumber and B. cinerea differentially expressed genes (DEGs) before and after the plant–pathogen interaction. In total, 248,908,688 raw reads were generated; after removing low-quality reads and those containing adapter and poly-N, 238,341,648 clean reads remained to map the reference genome. There were 3,512 cucumber DEGs and 1,735 B. cinerea DEGs. GO enrichment and KEGG enrichment analysis were performed on these DEGs to study the interaction between cucumber and B. cinerea. To verify the reliability and accuracy of our transcriptome data, 5 cucumber DEGs and 5 B. cinerea DEGs were chosen for RT-PCR verification. This is the first systematic transcriptome analysis of components related to the B. cinerea–cucumber interaction. Functional genes and putative pathways identified herein will increase our understanding of the mechanism of the pathogen–host interaction. PMID:26536465

  11. Heavy metals induce oxidative stress and genome-wide modulation in transcriptome of rice root.

    PubMed

    Dubey, Sonali; Shri, Manju; Misra, Prashant; Lakhwani, Deepika; Bag, Sumit Kumar; Asif, Mehar H; Trivedi, Prabodh Kumar; Tripathi, Rudro Deo; Chakrabarty, Debasis

    2014-06-01

    Industrial growth, ecological disturbances and agricultural practices have contaminated the soil and water with many harmful compounds, including heavy metals. These heavy metals affect growth and development of plants as well as cause severe human health hazards through food chain contamination. In past, studies have been made to identify biochemical and molecular networks associated with heavy metal toxicity and uptake in plants. Studies suggested that most of the physiological and molecular processes affected by different heavy metals are similar to those affected by other abiotic stresses. To identify common and unique responses by different metals, we have studied biochemical and genome-wide modulation in transcriptome of rice (IR-64 cultivar) root after exposure to cadmium (Cd), arsenate [As(V)], lead (Pb) and chromium [Cr(VI)] in hydroponic condition. We observed that root tissue shows variable responses for antioxidant enzyme system for different heavy metals. Genome-wide expression analysis suggests variable number of genes differentially expressed in root in response to As(V), Cd, Pb and Cr(VI) stresses. In addition to unique genes, each heavy metal modulated expression of a large number of common genes. Study also identified cis-acting regions of the promoters which can be determinants for the modulated expression of the genes in response to different heavy metals. Our study advances understanding related to various processes and networks which might be responsible for heavy metal stresses, accumulation and detoxification. PMID:24553786

  12. Whole genome and transcriptome sequencing of matched primary and peritoneal metastatic gastric carcinoma.

    PubMed

    Zhang, J; Huang, J Y; Chen, Y N; Yuan, F; Zhang, H; Yan, F H; Wang, M J; Wang, G; Su, M; Lu, G; Huang, Y; Dai, H; Ji, J; Zhang, J; Zhang, J N; Jiang, Y N; Chen, S J; Zhu, Z G; Yu, Y Y

    2015-01-01

    Gastric cancer is one of the most aggressive cancers and is the second leading cause of cancer death worldwide. Approximately 40% of global gastric cancer cases occur in China, with peritoneal metastasis being the prevalent form of recurrence and metastasis in advanced disease. Currently, there are limited clinical approaches for predicting and treatment of peritoneal metastasis, resulting in a 6-month average survival time. By comprehensive genome analysis will uncover the pathogenesis of peritoneal metastasis. Here we describe a comprehensive whole-genome and transcriptome sequencing analysis of one advanced gastric cancer case, including non-cancerous mucosa, primary cancer and matched peritoneal metastatic cancer. The peripheral blood is used as normal control. We identified 27 mutated genes, of which 19 genes are reported in COSMIC database (ZNF208, CRNN, ATXN3, DCTN1, RP1L1, PRB4, PRB1, MUC4, HS6ST3, MUC17, JAM2, ITGAD, IREB2, IQUB, CORO1B, CCDC121, AKAP2, ACAN and ACADL), and eight genes have not previously been described in gastric cancer (CCDC178, ARMC4, TUBB6, PLIN4, PKLR, PDZD2, DMBT1and DAB1).Additionally,GPX4 and MPND in 19q13.3-13.4 region, is characterized as a novel fusion-gene. This study disclosed novel biological markers and tumorigenic pathways that would predict gastric cancer occurring peritoneal metastasis. PMID:26330360

  13. The genome and transcriptome of the zoonotic hookworm Ancylostoma ceylanicum identify infection-specific gene families

    PubMed Central

    Schwarz, Erich M; Hu, Yan; Antoshechkin, Igor; Miller, Melanie M; Sternberg, Paul W; Aroian, Raffi V

    2015-01-01

    Hookworms infect over 400 million people, stunting and impoverishing them1–3. Sequencing hookworm genomes and finding which genes they express during infection should help in devising new drugs or vaccines against hookworms4,5. Unlike other hookworms, Ancylostoma ceylanicum infects both humans and other mammals, providing a laboratory model for hookworm disease6,7. We determined an A. ceylanicum genome sequence of 313 Mb, with transcriptomic data throughout infection showing expression of 30,738 genes. Approximately 900 genes were upregulated during early infection in vivo, including ASPRs, a cryptic subfamily of activation-associated secreted proteins (ASPs)8. Genes downregulated during early infection included ion channels and G protein–coupled receptors; this downregulation was observed in both parasitic and free-living nematodes. Later, at the onset of heavy blood feeding, C-lectin genes were upregulated along with genes for secreted clade V proteins (SCVPs), encoding a previously undescribed protein family. These findings provide new drug and vaccine targets and should help elucidate hookworm pathogenesis. PMID:25730766

  14. Genomic and transcriptomic analysis of NDM-1 Klebsiella pneumoniae in spaceflight reveal mechanisms underlying environmental adaptability

    PubMed Central

    Li, Jia; Liu, Fei; Wang, Qi; Ge, Pupu; Woo, Patrick C. Y.; Yan, Jinghua; Zhao, Yanlin; Gao, George F.; Liu, Cui Hua; Liu, Changting

    2014-01-01

    The emergence and rapid spread of New Delhi Metallo-beta-lactamase-1 (NDM-1)-producing Klebsiella pneumoniae strains has caused a great concern worldwide. To better understand the mechanisms underlying environmental adaptation of those highly drug-resistant K. pneumoniae strains, we took advantage of the China's Shenzhou 10 spacecraft mission to conduct comparative genomic and transcriptomic analysis of a NDM-1 K. pneumoniae strain (ATCC BAA-2146) being cultivated under different conditions. The samples were recovered from semisolid medium placed on the ground (D strain), in simulated space condition (M strain), or in Shenzhou 10 spacecraft (T strain) for analysis. Our data revealed multiple variations underlying pathogen adaptation into different environments in terms of changes in morphology, H2O2 tolerance and biofilm formation ability, genomic stability and regulation of metabolic pathways. Additionally, we found a few non-coding RNAs to be differentially regulated. The results are helpful for better understanding the adaptive mechanisms of drug-resistant bacterial pathogens. PMID:25163721

  15. Genomic and transcriptomic analysis of NDM-1 Klebsiella pneumoniae in spaceflight reveal mechanisms underlying environmental adaptability.

    PubMed

    Li, Jia; Liu, Fei; Wang, Qi; Ge, Pupu; Woo, Patrick C Y; Yan, Jinghua; Zhao, Yanlin; Gao, George F; Liu, Cui Hua; Liu, Changting

    2014-01-01

    The emergence and rapid spread of New Delhi Metallo-beta-lactamase-1 (NDM-1)-producing Klebsiella pneumoniae strains has caused a great concern worldwide. To better understand the mechanisms underlying environmental adaptation of those highly drug-resistant K. pneumoniae strains, we took advantage of the China's Shenzhou 10 spacecraft mission to conduct comparative genomic and transcriptomic analysis of a NDM-1 K. pneumoniae strain (ATCC BAA-2146) being cultivated under different conditions. The samples were recovered from semisolid medium placed on the ground (D strain), in simulated space condition (M strain), or in Shenzhou 10 spacecraft (T strain) for analysis. Our data revealed multiple variations underlying pathogen adaptation into different environments in terms of changes in morphology, H2O2 tolerance and biofilm formation ability, genomic stability and regulation of metabolic pathways. Additionally, we found a few non-coding RNAs to be differentially regulated. The results are helpful for better understanding the adaptive mechanisms of drug-resistant bacterial pathogens. PMID:25163721

  16. The genome and transcriptome of the zoonotic hookworm Ancylostoma ceylanicum identify infection-specific gene families.

    PubMed

    Schwarz, Erich M; Hu, Yan; Antoshechkin, Igor; Miller, Melanie M; Sternberg, Paul W; Aroian, Raffi V

    2015-04-01

    Hookworms infect over 400 million people, stunting and impoverishing them. Sequencing hookworm genomes and finding which genes they express during infection should help in devising new drugs or vaccines against hookworms. Unlike other hookworms, Ancylostoma ceylanicum infects both humans and other mammals, providing a laboratory model for hookworm disease. We determined an A. ceylanicum genome sequence of 313 Mb, with transcriptomic data throughout infection showing expression of 30,738 genes. Approximately 900 genes were upregulated during early infection in vivo, including ASPRs, a cryptic subfamily of activation-associated secreted proteins (ASPs). Genes downregulated during early infection included ion channels and G protein-coupled receptors; this downregulation was observed in both parasitic and free-living nematodes. Later, at the onset of heavy blood feeding, C-lectin genes were upregulated along with genes for secreted clade V proteins (SCVPs), encoding a previously undescribed protein family. These findings provide new drug and vaccine targets and should help elucidate hookworm pathogenesis. PMID:25730766

  17. Genomic heterogeneity of historical gene flow between two species of newts inferred from transcriptome data.

    PubMed

    Stuglik, Michał T; Babik, Wiesław

    2016-07-01

    The role of gene flow in species formation is a major unresolved issue in speciation biology. Progress in this area requires information on the long-term patterns of gene flow between diverging species. Here, we used thousands of single-nucleotide polymorphisms derived from transcriptome resequencing and a method modeling the joint frequency spectrum of these polymorphisms to reconstruct patterns of historical gene flow between two Lissotriton newts: L. vulgaris (Lv) and L. montandoni (Lm). We tested several models of divergence including complete isolation and various scenarios of historical gene flow. The model of secondary contact received the highest support. According to this model, the species split from their common ancestor ca. 5.5 million years (MY) ago, evolved in isolation for ca. 2 MY, and have been exchanging genes for the last 3.5 MY Demographic changes have been inferred in both species, with the current effective population size of ca. 0.7 million in Lv and 0.2 million in Lm. The postdivergence gene flow resulted in two-directional introgression which affected the genomes of both species, but was more pronounced from Lv to Lm. Interestingly, we found evidence for genomic heterogeneity of interspecific gene flow. This study demonstrates the complexity of long-term gene flow between distinct but incompletely reproductively isolated taxa which divergence was initiated millions of years ago. PMID:27386093

  18. Whole genome and transcriptome sequencing of matched primary and peritoneal metastatic gastric carcinoma

    PubMed Central

    Zhang, J.; Huang, J. Y.; Chen, Y. N.; Yuan, F.; Zhang, H.; Yan, F. H.; Wang, M. J.; Wang, G.; Su, M.; Lu, G; Huang, Y.; Dai, H.; Ji, J.; Zhang, J.; Zhang, J. N.; Jiang, Y. N.; Chen, S. J.; Zhu, Z. G.; Yu, Y. Y.

    2015-01-01

    Gastric cancer is one of the most aggressive cancers and is the second leading cause of cancer death worldwide. Approximately 40% of global gastric cancer cases occur in China, with peritoneal metastasis being the prevalent form of recurrence and metastasis in advanced disease. Currently, there are limited clinical approaches for predicting and treatment of peritoneal metastasis, resulting in a 6-month average survival time. By comprehensive genome analysis will uncover the pathogenesis of peritoneal metastasis. Here we describe a comprehensive whole-genome and transcriptome sequencing analysis of one advanced gastric cancer case, including non-cancerous mucosa, primary cancer and matched peritoneal metastatic cancer. The peripheral blood is used as normal control. We identified 27 mutated genes, of which 19 genes are reported in COSMIC database (ZNF208, CRNN, ATXN3, DCTN1, RP1L1, PRB4, PRB1, MUC4, HS6ST3, MUC17, JAM2, ITGAD, IREB2, IQUB, CORO1B, CCDC121, AKAP2, ACAN and ACADL), and eight genes have not previously been described in gastric cancer (CCDC178, ARMC4, TUBB6, PLIN4, PKLR, PDZD2, DMBT1and DAB1).Additionally,GPX4 and MPND in 19q13.3-13.4 region, is characterized as a novel fusion-gene. This study disclosed novel biological markers and tumorigenic pathways that would predict gastric cancer occurring peritoneal metastasis. PMID:26330360

  19. The First Chameleon Transcriptome: Comparative Genomic Analysis of the OXPHOS System Reveals Loss of COX8 in Iguanian Lizards

    PubMed Central

    Bar-Yaacov, Dan; Bouskila, Amos; Mishmar, Dan

    2013-01-01

    Recently, we found dramatic mitochondrial DNA divergence of Israeli Chamaeleo chamaeleon populations into two geographically distinct groups. We aimed to examine whether the same pattern of divergence could be found in nuclear genes. However, no genomic resource is available for any chameleon species. Here we present the first chameleon transcriptome, obtained using deep sequencing (SOLiD). Our analysis identified 164,000 sequence contigs of which 19,000 yielded unique BlastX hits. To test the efficacy of our sequencing effort, we examined whether the chameleon and other available reptilian transcriptomes harbored complete sets of genes comprising known biochemical pathways, focusing on the nDNA-encoded oxidative phosphorylation (OXPHOS) genes as a model. As a reference for the screen, we used the human 86 (including isoforms) known structural nDNA-encoded OXPHOS subunits. Analysis of 34 publicly available vertebrate transcriptomes revealed orthologs for most human OXPHOS genes. However, OXPHOS subunit COX8 (Cytochrome C oxidase subunit 8), including all its known isoforms, was consistently absent in transcriptomes of iguanian lizards, implying loss of this subunit during the radiation of this suborder. The lack of COX8 in the suborder Iguania is intriguing, since it is important for cellular respiration and ATP production. Our sequencing effort added a new resource for comparative genomic studies, and shed new light on the evolutionary dynamics of the OXPHOS system. PMID:24009133

  20. Transcriptomics and molecular evolutionary rate analysis of the bladderwort (Utricularia), a carnivorous plant with a minimal genome

    PubMed Central

    2011-01-01

    Background The carnivorous plant Utricularia gibba (bladderwort) is remarkable in having a minute genome, which at ca. 80 megabases is approximately half that of Arabidopsis. Bladderworts show an incredible diversity of forms surrounding a defined theme: tiny, bladder-like suction traps on terrestrial, epiphytic, or aquatic plants with a diversity of unusual vegetative forms. Utricularia plants, which are rootless, are also anomalous in physiological features (respiration and carbon distribution), and highly enhanced molecular evolutionary rates in chloroplast, mitochondrial and nuclear ribosomal sequences. Despite great interest in the genus, no genomic resources exist for Utricularia, and the substitution rate increase has received limited study. Results Here we describe the sequencing and analysis of the Utricularia gibba transcriptome. Three different organs were surveyed, the traps, the vegetative shoot bodies, and the inflorescence stems. We also examined the bladderwort transcriptome under diverse stress conditions. We detail aspects of functional classification, tissue similarity, nitrogen and phosphorus metabolism, respiration, DNA repair, and detoxification of reactive oxygen species (ROS). Long contigs of plastid and mitochondrial genomes, as well as sequences for 100 individual nuclear genes, were compared with those of other plants to better establish information on molecular evolutionary rates. Conclusion The Utricularia transcriptome provides a detailed genomic window into processes occurring in a carnivorous plant. It contains a deep representation of the complex metabolic pathways that characterize a putative minimal plant genome, permitting its use as a source of genomic information to explore the structural, functional, and evolutionary diversity of the genus. Vegetative shoots and traps are the most similar organs by functional classification of their transcriptome, the traps expressing hydrolytic enzymes for prey digestion that were previously

  1. Genomics of Compositae crops: reference transcriptome assemblies and evidence of hybridization with wild relatives.

    PubMed

    Hodgins, Kathryn A; Lai, Zhao; Oliveira, Luiz O; Still, David W; Scascitelli, Moira; Barker, Michael S; Kane, Nolan C; Dempewolf, Hannes; Kozik, Alex; Kesseli, Richard V; Burke, John M; Michelmore, Richard W; Rieseberg, Loren H

    2014-01-01

    Although the Compositae harbours only two major food crops, sunflower and lettuce, many other species in this family are utilized by humans and have experienced various levels of domestication. Here, we have used next-generation sequencing technology to develop 15 reference transcriptome assemblies for Compositae crops or their wild relatives. These data allow us to gain insight into the evolutionary and genomic consequences of plant domestication. Specifically, we performed Illumina sequencing of Cichorium endivia, Cichorium intybus, Echinacea angustifolia, Iva annua, Helianthus tuberosus, Dahlia hybrida, Leontodon taraxacoides and Glebionis segetum, as well 454 sequencing of Guizotia scabra, Stevia rebaudiana, Parthenium argentatum and Smallanthus sonchifolius. Illumina reads were assembled using Trinity, and 454 reads were assembled using MIRA and CAP3. We evaluated the coverage of the transcriptomes using BLASTX analysis of a set of ultra-conserved orthologs (UCOs) and recovered most of these genes (88-98%). We found a correlation between contig length and read length for the 454 assemblies, and greater contig lengths for the 454 compared with the Illumina assemblies. This suggests that longer reads can aid in the assembly of more complete transcripts. Finally, we compared the divergence of orthologs at synonymous sites (Ks) between Compositae crops and their wild relatives and found greater divergence when the progenitors were self-incompatible. We also found greater divergence between pairs of taxa that had some evidence of postzygotic isolation. For several more distantly related congeners, such as chicory and endive, we identified a signature of introgression in the distribution of Ks values. PMID:24103297

  2. Genome-wide transcriptome analysis of expression in rice seedling roots in response to supplemental nitrogen.

    PubMed

    Chandran, Anil Kumar Nalini; Priatama, Ryza A; Kumar, Vikranth; Xuan, Yuanhu; Je, Byoung Il; Kim, Chul Min; Jung, Ki-Hong; Han, Chang-Deok

    2016-08-01

    Nitrogen (N) is the most important macronutrient for plant growth and grain yields. For rice crops, nitrate and ammonium are the major N sources. To explore the genomic responses to ammonium supplements in rice roots, we used 17-day-old seedlings grown in the absence of external N that were then exposed to 0.5mM (NH4)2SO4 for 3h. Transcriptomic profiles were examined by microarray experiments. In all, 634 genes were up-regulated at least two-fold by the N-supplement when compared with expression in roots from untreated control plants. Gene Ontology (GO) enrichment analysis revealed that those upregulated genes are associated with 23 GO terms. Among them, metabolic processes for diverse amino acids (i.e., aspartate, threonine, tryptophan, glutamine, l-phenylalanine, and thiamin) as well as nitrogen compounds are highly over-represented, demonstrating that our selected genes are suitable for studying the N-response in roots. This enrichment analysis also indicated that nitrogen is closely linked to diverse transporter activities by primary metabolites, including proteins (amino acids), lipids, and carbohydrates, and is associated with carbohydrate catabolism and cell wall organization. Integration of results from omics analysis of metabolic pathways and transcriptome data using the MapMan tool suggested that the TCA cycle and pathway for mitochondrial electron transport are co-regulated when rice roots are exposed to ammonium. We also investigated the expression of N-responsive marker genes by performing a comparative analysis with root samples from plants grown under different NH4(+) treatments. The diverse responses to such treatment provide useful insight into the global changes related to the shift from an N-deficiency to an enhanced N-supply in rice, a model crop plant. PMID:27340859

  3. Integrative Analysis of Genomics and Transcriptome Data to Identify Potential Functional Genes of BMDs in Females.

    PubMed

    Chen, Yuan-Cheng; Guo, Yan-Fang; He, Hao; Lin, Xu; Wang, Xia-Fang; Zhou, Rou; Li, Wen-Ting; Pan, Dao-Yan; Shen, Jie; Deng, Hong-Wen

    2016-05-01

    Osteoporosis is known to be highly heritable. However, to date, the findings from more than 20 genome-wide association studies (GWASs) have explained less than 6% of genetic risks. Studies suggest that the missing heritability data may be because of joint effects among genes. To identify novel heritability for osteoporosis, we performed a system-level study on bone mineral density (BMD) by weighted gene coexpression network analysis (WGCNA), using the largest GWAS data set for BMD in the field, Genetic Factors for Osteoporosis Consortium (GEFOS-2), and a transcriptomic gene expression data set generated from transiliac bone biopsies in women. A weighted gene coexpression network was generated for 1574 genes with GWAS nominal evidence of association (p ≤ 0.05) based on dissimilarity measurement on the expression data. Twelve distinct gene modules were identified, and four modules showed nominally significant associations with BMD (p ≤ 0.05), but only one module, the yellow module, demonstrated a good correlation between module membership (MM) and gene significance (GS), suggesting that the yellow module serves an important biological role in bone regulation. Interestingly, through characterization of module content and topology, the yellow module was found to be significantly enriched with contractile fiber part (GO:044449), which is widely recognized as having a close relationship between muscle and bone. Furthermore, detailed submodule analyses of important candidate genes (HOMER1, SPTBN1) by all edges within the yellow module implied significant enrichment of functional connections between bone and cytoskeletal protein binding. Our study yielded novel information from system genetics analyses of GWAS data jointly with transcriptomic data. The findings highlighted a module and several genes in the model as playing important roles in the regulation of bone mass in females, which may yield novel insights into the genetic basis of osteoporosis. © 2016

  4. Large-Scale Sequencing: The Future of Genomic Sciences Colloquium

    SciTech Connect

    Margaret Riley; Merry Buckley

    2009-01-01

    Genetic sequencing and the various molecular techniques it has enabled have revolutionized the field of microbiology. Examining and comparing the genetic sequences borne by microbes - including bacteria, archaea, viruses, and microbial eukaryotes - provides researchers insights into the processes microbes carry out, their pathogenic traits, and new ways to use microorganisms in medicine and manufacturing. Until recently, sequencing entire microbial genomes has been laborious and expensive, and the decision to sequence the genome of an organism was made on a case-by-case basis by individual researchers and funding agencies. Now, thanks to new technologies, the cost and effort of sequencing is within reach for even the smallest facilities, and the ability to sequence the genomes of a significant fraction of microbial life may be possible. The availability of numerous microbial genomes will enable unprecedented insights into microbial evolution, function, and physiology. However, the current ad hoc approach to gathering sequence data has resulted in an unbalanced and highly biased sampling of microbial diversity. A well-coordinated, large-scale effort to target the breadth and depth of microbial diversity would result in the greatest impact. The American Academy of Microbiology convened a colloquium to discuss the scientific benefits of engaging in a large-scale, taxonomically-based sequencing project. A group of individuals with expertise in microbiology, genomics, informatics, ecology, and evolution deliberated on the issues inherent in such an effort and generated a set of specific recommendations for how best to proceed. The vast majority of microbes are presently uncultured and, thus, pose significant challenges to such a taxonomically-based approach to sampling genome diversity. However, we have yet to even scratch the surface of the genomic diversity among cultured microbes. A coordinated sequencing effort of cultured organisms is an appropriate place to begin

  5. Complete Genome Sequence of Sporisorium scitamineum and Biotrophic Interaction Transcriptome with Sugarcane

    PubMed Central

    Benevenuto, Juliana; Peters, Leila P.; Carvalho, Giselle; Palhares, Alessandra; Quecine, Maria C.; Nunes, Filipe R. S.; Kmit, Maria C. P.; Wai, Alvan; Hausner, Georg; Aitken, Karen S.; Berkman, Paul J.; Fraser, James A.; Moolhuijzen, Paula M.; Coutinho, Luiz L.; Creste, Silvana; Vieira, Maria L. C.; Kitajima, João P.; Monteiro-Vitorello, Claudia B.

    2015-01-01

    Sporisorium scitamineum is a biotrophic fungus responsible for the sugarcane smut, a worldwide spread disease. This study provides the complete sequence of individual chromosomes of S. scitamineum from telomere to telomere achieved by a combination of PacBio long reads and Illumina short reads sequence data, as well as a draft sequence of a second fungal strain. Comparative analysis to previous available sequences of another strain detected few polymorphisms among the three genomes. The novel complete sequence described herein allowed us to identify and annotate extended subtelomeric regions, repetitive elements and the mitochondrial DNA sequence. The genome comprises 19,979,571 bases, 6,677 genes encoding proteins, 111 tRNAs and 3 assembled copies of rDNA, out of our estimated number of copies as 130. Chromosomal reorganizations were detected when comparing to sequences of S. reilianum, the closest smut relative, potentially influenced by repeats of transposable elements. Repetitive elements may have also directed the linkage of the two mating-type loci. The fungal transcriptome profiling from in vitro and from interaction with sugarcane at two time points (early infection and whip emergence) revealed that 13.5% of the genes were differentially expressed in planta and particular to each developmental stage. Among them are plant cell wall degrading enzymes, proteases, lipases, chitin modification and lignin degradation enzymes, sugar transporters and transcriptional factors. The fungus also modulates transcription of genes related to surviving against reactive oxygen species and other toxic metabolites produced by the plant. Previously described effectors in smut/plant interactions were detected but some new candidates are proposed. Ten genomic islands harboring some of the candidate genes unique to S. scitamineum were expressed only in planta. RNAseq data was also used to reassure gene predictions. PMID:26065709

  6. RUMINANT NUTRITION SYMPOSIUM: Use of genomics and transcriptomics to identify strategies to lower ruminal methanogenesis.

    PubMed

    McAllister, T A; Meale, S J; Valle, E; Guan, L L; Zhou, M; Kelly, W J; Henderson, G; Attwood, G T; Janssen, P H

    2015-04-01

    Globally, methane (CH4) emissions account for 40% to 45% of greenhouse gas emissions from ruminant livestock, with over 90% of these emissions arising from enteric fermentation. Reduction of carbon dioxide to CH4 is critical for efficient ruminal fermentation because it prevents the accumulation of reducing equivalents in the rumen. Methanogens exist in a symbiotic relationship with rumen protozoa and fungi and within biofilms associated with feed and the rumen wall. Genomics and transcriptomics are playing an increasingly important role in defining the ecology of ruminal methanogenesis and identifying avenues for its mitigation. Metagenomic approaches have provided information on changes in abundances as well as the species composition of the methanogen community among ruminants that vary naturally in their CH4 emissions, their feed efficiency, and their response to CH4 mitigators. Sequencing the genomes of rumen methanogens has provided insight into surface proteins that may prove useful in the development of vaccines and has allowed assembly of biochemical pathways for use in chemogenomic approaches to lowering ruminal CH4 emissions. Metagenomics and metatranscriptomic analysis of entire rumen microbial communities are providing new perspectives on how methanogens interact with other members of this ecosystem and how these relationships may be altered to reduce methanogenesis. Identification of community members that produce antimethanogen agents that either inhibit or kill methanogens could lead to the identification of new mitigation approaches. Discovery of a lytic archaeophage that specifically lyses methanogens is 1 such example. Efforts in using genomic data to alter methanogenesis have been hampered by a lack of sequence information that is specific to the microbial community of the rumen. Programs such as Hungate1000 and the Global Rumen Census are increasing the breadth and depth of our understanding of global ruminal microbial communities, steps that

  7. Comparative Genomic and Transcriptomic Analyses Reveal Habitat Differentiation and Different Transcriptional Responses during Pectin Metabolism in Alishewanella Species

    PubMed Central

    Jung, Jaejoon

    2013-01-01

    Alishewanella species are expected to have high adaptability to diverse environments because they are isolated from different natural habitats. To investigate how the evolutionary history of Alishewanella species is reflected in their genomes, we performed comparative genomic and transcriptomic analyses of A. jeotgali, A. aestuarii, and A. agri, which were isolated from fermented seafood, tidal flat sediment, and soil, respectively. Genomic islands with variable GC contents indicated that invasion of prophage and transposition events occurred in A. jeotgali and A. agri but not in A. aestuarii. Habitat differentiation of A. agri from a marine environment to a terrestrial environment was proposed because the species-specific genes of A. agri were similar to those of soil bacteria, whereas those of A. jeotgali and A. aestuarii were more closely related to marine bacteria. Comparative transcriptomic analysis with pectin as a sole carbon source revealed different transcriptional responses in Alishewanella species, especially in oxidative stress-, methylglyoxal detoxification-, membrane maintenance-, and protease/chaperone activity-related genes. Transcriptomic and experimental data demonstrated that A. agri had a higher pectin degradation rate and more resistance to oxidative stress under pectin-amended conditions than the other 2 Alishewanella species. However, expression patterns of genes in the pectin metabolic pathway and of glyoxylate bypass genes were similar among all 3 Alishewanella species. Our comparative genomic and transcriptomic data revealed that Alishewanella species have evolved through horizontal gene transfer and habitat differentiation and that pectin degradation pathways in Alishewanella species are highly conserved, although stress responses of each Alishewanella species differed under pectin culture conditions. PMID:23934491

  8. Dynamic reorganization of the AC16 cardiomyocyte transcriptome in response to TNFα signaling revealed by integrated genomic analyses

    PubMed Central

    2014-01-01

    Background Defining cell type-specific transcriptomes in mammals can be challenging, especially for unannotated regions of the genome. We have developed an analytical pipeline called groHMM for annotating primary transcripts using global nuclear run-on sequencing (GRO-seq) data. Herein, we use this pipeline to characterize the transcriptome of an immortalized adult human ventricular cardiomyocyte cell line (AC16) in response to signaling by tumor necrosis factor alpha (TNFα), which is controlled in part by NF-κB, a key transcriptional regulator of inflammation. A unique aspect of this work is the use of the RNA polymerase II (Pol II) inhibitor α-amanitin, which we used to define a set of RNA polymerase I and III (Pol I and Pol III) transcripts. Results Using groHMM, we identified ~30,000 coding and non-coding transcribed regions in AC16 cells, which includes a set of unique Pol I and Pol III primary transcripts. Many of these transcripts have not been annotated previously, including enhancer RNAs originating from NF-κB binding sites. In addition, we observed that AC16 cells rapidly and dynamically reorganize their transcriptomes in response to TNFα stimulation in an NF-κB-dependent manner, switching from a basal state to a proinflammatory state affecting a spectrum of cardiac-associated protein-coding and non-coding genes. Moreover, we observed distinct Pol II dynamics for up- and downregulated genes, with a rapid release of Pol II into productive elongation for TNFα-stimulated genes. As expected, the TNFα-induced changes in the AC16 transcriptome resulted in corresponding changes in cognate mRNA and protein levels in a similar manner, but with delayed kinetics. Conclusions Our studies illustrate how computational genomics can be used to characterize the signal-regulated transcriptome in biologically relevant cell types, providing new information about how the human genome is organized, transcribed and regulated. In addition, they show how α-amanitin can

  9. Identification of Candidate Adherent-Invasive E. coli Signature Transcripts by Genomic/Transcriptomic Analysis

    PubMed Central

    Zhang, Yuanhao; Rowehl, Leahana; Krumsiek, Julia M.; Orner, Erika P.; Shaikh, Nurmohammad; Tarr, Phillip I.; Sodergren, Erica; Weinstock, George M.; Boedeker, Edgar C.; Xiong, Xuejian; Parkinson, John; Frank, Daniel N.; Li, Ellen; Gathungu, Grace

    2015-01-01

    quantitative polymerase chain reaction assays for 6 genes were conducted on fecal and ileal RNA samples from 22 inflammatory bowel disease (IBD), and 32 patients without IBD (non-IBD). The expression of Cas loci was detected in a higher proportion of CD than non-IBD fecal and ileal RNA samples (p <0.05). These results support a comparative genomic/transcriptomic approach towards identifying candidate AIEC signature transcripts. PMID:26125937

  10. Integrated genomic and transcriptomic analysis of human brain metastases identifies alterations of potential clinical significance.

    PubMed

    Saunus, Jodi M; Quinn, Michael C J; Patch, Ann-Marie; Pearson, John V; Bailey, Peter J; Nones, Katia; McCart Reed, Amy E; Miller, David; Wilson, Peter J; Al-Ejeh, Fares; Mariasegaram, Mythily; Lau, Queenie; Withers, Teresa; Jeffree, Rosalind L; Reid, Lynne E; Da Silva, Leonard; Matsika, Admire; Niland, Colleen M; Cummings, Margaret C; Bruxner, Timothy J C; Christ, Angelika N; Harliwong, Ivon; Idrisoglu, Senel; Manning, Suzanne; Nourse, Craig; Nourbakhsh, Ehsan; Wani, Shivangi; Anderson, Matthew J; Fink, J Lynn; Holmes, Oliver; Kazakoff, Stephen; Leonard, Conrad; Newell, Felicity; Taylor, Darrin; Waddell, Nick; Wood, Scott; Xu, Qinying; Kassahn, Karin S; Narayanan, Vairavan; Taib, Nur Aishah; Teo, Soo-Hwang; Chow, Yock Ping; kConFab; Jat, Parmjit S; Brandner, Sebastian; Flanagan, Adrienne M; Khanna, Kum Kum; Chenevix-Trench, Georgia; Grimmond, Sean M; Simpson, Peter T; Waddell, Nicola; Lakhani, Sunil R

    2015-11-01

    Treatment options for patients with brain metastases (BMs) have limited efficacy and the mortality rate is virtually 100%. Targeted therapy is critically under-utilized, and our understanding of mechanisms underpinning metastatic outgrowth in the brain is limited. To address these deficiencies, we investigated the genomic and transcriptomic landscapes of 36 BMs from breast, lung, melanoma and oesophageal cancers, using DNA copy-number analysis and exome- and RNA-sequencing. The key findings were as follows. (a) Identification of novel candidates with possible roles in BM development, including the significantly mutated genes DSC2, ST7, PIK3R1 and SMC5, and the DNA repair, ERBB-HER signalling, axon guidance and protein kinase-A signalling pathways. (b) Mutational signature analysis was applied to successfully identify the primary cancer type for two BMs with unknown origins. (c) Actionable genomic alterations were identified in 31/36 BMs (86%); in one case we retrospectively identified ERBB2 amplification representing apparent HER2 status conversion, then confirmed progressive enrichment for HER2-positivity across four consecutive metastatic deposits by IHC and SISH, resulting in the deployment of HER2-targeted therapy for the patient. (d) In the ERBB/HER pathway, ERBB2 expression correlated with ERBB3 (r(2)  = 0.496; p < 0.0001) and HER3 and HER4 were frequently activated in an independent cohort of 167 archival BM from seven primary cancer types: 57.6% and 52.6% of cases were phospho-HER3(Y1222) or phospho-HER4(Y1162) membrane-positive, respectively. The HER3 ligands NRG1/2 were barely detectable by RNAseq, with NRG1 (8p12) genomic loss in 63.6% breast cancer-BMs, suggesting a microenvironmental source of ligand. In summary, this is the first study to characterize the genomic landscapes of BM. The data revealed novel candidates, potential clinical applications for genomic profiling of resectable BMs, and highlighted the possibility of therapeutically targeting

  11. Defining the RNA polymerase III transcriptome: Genome-wide localization of the RNA polymerase III transcription machinery in human cells

    PubMed Central

    Canella, Donatella; Praz, Viviane; Reina, Jaime H.; Cousin, Pascal; Hernandez, Nouria

    2010-01-01

    Our view of the RNA polymerase III (Pol III) transcription machinery in mammalian cells arises mostly from studies of the RN5S (5S) gene, the Ad2 VAI gene, and the RNU6 (U6) gene, as paradigms for genes with type 1, 2, and 3 promoters. Recruitment of Pol III onto these genes requires prior binding of well-characterized transcription factors. Technical limitations in dealing with repeated genomic units, typically found at mammalian Pol III genes, have so far hampered genome-wide studies of the Pol III transcription machinery and transcriptome. We have localized, genome-wide, Pol III and some of its transcription factors. Our results reveal broad usage of the known Pol III transcription machinery and define a minimal Pol III transcriptome in dividing IMR90hTert fibroblasts. This transcriptome consists of some 500 actively transcribed genes including a few dozen candidate novel genes, of which we confirmed nine as Pol III transcription units by additional methods. It does not contain any of the microRNA genes previously described as transcribed by Pol III, but reveals two other microRNA genes, MIR886 (hsa-mir-886) and MIR1975 (RNY5, hY5, hsa-mir-1975), which are genuine Pol III transcription units. PMID:20413673

  12. The Genomic HyperBrowser: an analysis web server for genome-scale data

    PubMed Central

    Sandve, Geir K.; Gundersen, Sveinung; Johansen, Morten; Glad, Ingrid K.; Gunathasan, Krishanthi; Holden, Lars; Holden, Marit; Liestøl, Knut; Nygård, Ståle; Nygaard, Vegard; Paulsen, Jonas; Rydbeck, Halfdan; Trengereid, Kai; Clancy, Trevor; Drabløs, Finn; Ferkingstad, Egil; Kalaš, Matúš; Lien, Tonje; Rye, Morten B.; Frigessi, Arnoldo; Hovig, Eivind

    2013-01-01

    The immense increase in availability of genomic scale datasets, such as those provided by the ENCODE and Roadmap Epigenomics projects, presents unprecedented opportunities for individual researchers to pose novel falsifiable biological questions. With this opportunity, however, researchers are faced with the challenge of how to best analyze and interpret their genome-scale datasets. A powerful way of representing genome-scale data is as feature-specific coordinates relative to reference genome assemblies, i.e. as genomic tracks. The Genomic HyperBrowser (http://hyperbrowser.uio.no) is an open-ended web server for the analysis of genomic track data. Through the provision of several highly customizable components for processing and statistical analysis of genomic tracks, the HyperBrowser opens for a range of genomic investigations, related to, e.g., gene regulation, disease association or epigenetic modifications of the genome. PMID:23632163

  13. Comparative description of ten transcriptomes of newly sequenced invertebrates and efficiency estimation of genomic sampling in non-model taxa

    PubMed Central

    2012-01-01

    Introduction Traditionally, genomic or transcriptomic data have been restricted to a few model or emerging model organisms, and to a handful of species of medical and/or environmental importance. Next-generation sequencing techniques have the capability of yielding massive amounts of gene sequence data for virtually any species at a modest cost. Here we provide a comparative analysis of de novo assembled transcriptomic data for ten non-model species of previously understudied animal taxa. Results cDNA libraries of ten species belonging to five animal phyla (2 Annelida [including Sipuncula], 2 Arthropoda, 2 Mollusca, 2 Nemertea, and 2 Porifera) were sequenced in different batches with an Illumina Genome Analyzer II (read length 100 or 150 bp), rendering between ca. 25 and 52 million reads per species. Read thinning, trimming, and de novo assembly were performed under different parameters to optimize output. Between 67,423 and 207,559 contigs were obtained across the ten species, post-optimization. Of those, 9,069 to 25,681 contigs retrieved blast hits against the NCBI non-redundant database, and approximately 50% of these were assigned with Gene Ontology terms, covering all major categories, and with similar percentages in all species. Local blasts against our datasets, using selected genes from major signaling pathways and housekeeping genes, revealed high efficiency in gene recovery compared to available genomes of closely related species. Intriguingly, our transcriptomic datasets detected multiple paralogues in all phyla and in nearly all gene pathways, including housekeeping genes that are traditionally used in phylogenetic applications for their purported single-copy nature. Conclusions We generated the first study of comparative transcriptomics across multiple animal phyla (comparing two species per phylum in most cases), established the first Illumina-based transcriptomic datasets for sponge, nemertean, and sipunculan species, and generated a tractable

  14. Analyses of transcriptome sequences reveal multiple ancient large-scale duplication events in the ancestor of Sphagnopsida (Bryophyta).

    PubMed

    Devos, Nicolas; Szövényi, Péter; Weston, David J; Rothfels, Carl J; Johnson, Matthew G; Shaw, A Jonathan

    2016-07-01

    The goal of this research was to investigate whether there has been a whole-genome duplication (WGD) in the ancestry of Sphagnum (peatmoss) or the class Sphagnopsida, and to determine if the timing of any such duplication(s) and patterns of paralog retention could help explain the rapid radiation and current ecological dominance of peatmosses. RNA sequencing (RNA-seq) data were generated for nine taxa in Sphagnopsida (Bryophyta). Analyses of frequency plots for synonymous substitutions per synonymous site (Ks ) between paralogous gene pairs and reconciliation of 578 gene trees were conducted to assess evidence of large-scale or genome-wide duplication events in each transcriptome. Both Ks frequency plots and gene tree-based analyses indicate multiple duplication events in the history of the Sphagnopsida. The most recent WGD event predates divergence of Sphagnum from the two other genera of Sphagnopsida. Duplicate retention is highly variable across species, which might be best explained by local adaptation. Our analyses indicate that the last WGD could have been an important factor underlying the diversification of peatmosses and facilitated their rise to ecological dominance in peatlands. The timing of the duplication events and their significance in the evolutionary history of peat mosses are discussed. PMID:26900928

  15. Comparative and Transcriptome Analyses Uncover Key Aspects of Coding- and Long Noncoding RNAs in Flatworm Mitochondrial Genomes.

    PubMed

    Ross, Eric; Blair, David; Guerrero-Hernández, Carlos; Sánchez Alvarado, Alejandro

    2016-01-01

    Exploiting the conservation of various features of mitochondrial genomes has been instrumental in resolving phylogenetic relationships. Despite extensive sequence evidence, it has not previously been possible to conclusively resolve some key aspects of flatworm mitochondrial genomes, including generally conserved traits, such as start codons, noncoding regions, the full complement of tRNAs, and whether ATP8 is, or is not, encoded by this extranuclear genome. In an effort to address these difficulties, we sought to determine the mitochondrial transcriptomes and genomes of sexual and asexual taxa of freshwater triclads, a group previously poorly represented in flatworm mitogenomic studies. We have discovered evidence for an alternative start codon, an extended cox1 gene, a previously undescribed conserved open reading frame, long noncoding RNAs, and a highly conserved gene order across the large evolutionary distances represented within the triclads. Our findings contribute to the expansion and refinement of mitogenomics to address evolutionary issues in this diverse group of animals. PMID:26921295

  16. Comparative and Transcriptome Analyses Uncover Key Aspects of Coding- and Long Noncoding RNAs in Flatworm Mitochondrial Genomes

    PubMed Central

    Ross, Eric; Blair, David; Guerrero-Hernández, Carlos; Alvarado, Alejandro Sánchez

    2016-01-01

    Exploiting the conservation of various features of mitochondrial genomes has been instrumental in resolving phylogenetic relationships. Despite extensive sequence evidence, it has not previously been possible to conclusively resolve some key aspects of flatworm mitochondrial genomes, including generally conserved traits, such as start codons, noncoding regions, the full complement of tRNAs, and whether ATP8 is, or is not, encoded by this extranuclear genome. In an effort to address these difficulties, we sought to determine the mitochondrial transcriptomes and genomes of sexual and asexual taxa of freshwater triclads, a group previously poorly represented in flatworm mitogenomic studies. We have discovered evidence for an alternative start codon, an extended cox1 gene, a previously undescribed conserved open reading frame, long noncoding RNAs, and a highly conserved gene order across the large evolutionary distances represented within the triclads. Our findings contribute to the expansion and refinement of mitogenomics to address evolutionary issues in this diverse group of animals. PMID:26921295

  17. Transcriptome sequencing and microarray design for functional genomics in the extremophile Arabidopsis relative Thellungiella salsuginea (Eutrema salsugineum)

    PubMed Central

    2013-01-01

    Background Most molecular studies of plant stress tolerance have been performed with Arabidopsis thaliana, although it is not particularly stress tolerant and may lack protective mechanisms required to survive extreme environmental conditions. Thellungiella salsuginea has attracted interest as an alternative plant model species with high tolerance of various abiotic stresses. While the T. salsuginea genome has recently been sequenced, its annotation is still incomplete and transcriptomic information is scarce. In addition, functional genomics investigations in this species are severely hampered by a lack of affordable tools for genome-wide gene expression studies. Results Here, we report the results of Thellungiella de novo transcriptome assembly and annotation based on 454 pyrosequencing and development and validation of a T. salsuginea microarray. ESTs were generated from a non-normalized and a normalized library synthesized from RNA pooled from samples covering different tissues and abiotic stress conditions. Both libraries yielded partially unique sequences, indicating their necessity to obtain comprehensive transcriptome coverage. More than 1 million sequence reads were assembled into 42,810 unigenes, approximately 50% of which could be functionally annotated. These unigenes were compared to all available Thellungiella genome sequence information. In addition, the groups of Late Embryogenesis Abundant (LEA) proteins, Mitogen Activated Protein (MAP) kinases and protein phosphatases were annotated in detail. We also predicted the target genes for 384 putative miRNAs. From the sequence information, we constructed a 44 k Agilent oligonucleotide microarray. Comparison of same-species and cross-species hybridization results showed superior performance of the newly designed array for T. salsuginea samples. The developed microarrays were used to investigate transcriptional responses of T. salsuginea and Arabidopsis during cold acclimation using the MapMan software

  18. Genomic and transcriptomic analyses of the tangerine pathotype of Alternaria alternata in response to oxidative stress.

    PubMed

    Wang, Mingshuang; Sun, Xuepeng; Yu, Dongliang; Xu, Jianping; Chung, Kuangren; Li, Hongye

    2016-01-01

    The tangerine pathotype of Alternaria alternata produces the A. citri toxin (ACT) and is the causal agent of citrus brown spot that results in significant yield losses worldwide. Both the production of ACT and the ability to detoxify reactive oxygen species (ROS) are required for A. alternata pathogenicity in citrus. In this study, we report the 34.41 Mb genome sequence of strain Z7 of the tangerine pathotype of A. alternata. The host selective ACT gene cluster in strain Z7 was identified, which included 25 genes with 19 of them not reported previously. Of these, 10 genes were present only in the tangerine pathotype, representing the most likely candidate genes for this pathotype specialization. A transcriptome analysis of the global effects of H2O2 on gene expression revealed 1108 up-regulated and 498 down-regulated genes. Expressions of those genes encoding catalase, peroxiredoxin, thioredoxin and glutathione were highly induced. Genes encoding several protein families including kinases, transcription factors, transporters, cytochrome P450, ubiquitin and heat shock proteins were found associated with adaptation to oxidative stress. Our data not only revealed the molecular basis of ACT biosynthesis but also provided new insights into the potential pathways that the phytopathogen A. alternata copes with oxidative stress. PMID:27582273

  19. Genomic and transcriptomic analyses of the tangerine pathotype of Alternaria alternata in response to oxidative stress

    PubMed Central

    Wang, Mingshuang; Sun, Xuepeng; Yu, Dongliang; Xu, Jianping; Chung, Kuangren; Li, Hongye

    2016-01-01

    The tangerine pathotype of Alternaria alternata produces the A. citri toxin (ACT) and is the causal agent of citrus brown spot that results in significant yield losses worldwide. Both the production of ACT and the ability to detoxify reactive oxygen species (ROS) are required for A. alternata pathogenicity in citrus. In this study, we report the 34.41 Mb genome sequence of strain Z7 of the tangerine pathotype of A. alternata. The host selective ACT gene cluster in strain Z7 was identified, which included 25 genes with 19 of them not reported previously. Of these, 10 genes were present only in the tangerine pathotype, representing the most likely candidate genes for this pathotype specialization. A transcriptome analysis of the global effects of H2O2 on gene expression revealed 1108 up-regulated and 498 down-regulated genes. Expressions of those genes encoding catalase, peroxiredoxin, thioredoxin and glutathione were highly induced. Genes encoding several protein families including kinases, transcription factors, transporters, cytochrome P450, ubiquitin and heat shock proteins were found associated with adaptation to oxidative stress. Our data not only revealed the molecular basis of ACT biosynthesis but also provided new insights into the potential pathways that the phytopathogen A. alternata copes with oxidative stress. PMID:27582273

  20. Transcriptome analysis reveals novel regulatory mechanisms in a genome-reduced bacterium.

    PubMed

    Mazin, Pavel V; Fisunov, Gleb Y; Gorbachev, Alexey Y; Kapitskaya, Kristina Y; Altukhov, Ilya A; Semashko, Tatiana A; Alexeev, Dmitry G; Govorun, Vadim M

    2014-12-01

    The avian bacterial pathogen Mycoplasma gallisepticum is a good model for systems studies due to small genome and simplicity of regulatory pathways. In this study, we used RNA-Seq and MS-based proteomics to accurately map coding sequences, transcription start sites (TSSs) and transcript 3'-ends (T3Es). We used obtained data to investigate roles of TSSs and T3Es in stress-induced transcriptional responses. We identified 1061 TSSs at a false discovery rate of 10% and showed that almost all transcription in M. gallisepticum is initiated from classic TATAAT promoters surrounded by A/T-rich sequences. Our analysis revealed the pronounced operon structure complexity: on average, each coding operon has one internal TSS and T3Es in addition to the primary ones. Our transcriptomic approach based on the intervals between the two nearest transcript ends allowed us to identify two classes of T3Es: strong, unregulated, hairpin-containing T3Es and weak, heat shock-regulated, hairpinless T3Es. Comparing gene expression levels under different conditions revealed widespread and divergent transcription regulation in M. gallisepticum. Modeling suggested that the core promoter structure plays an important role in gene expression regulation. We have shown that the heat stress activation of cryptic promoters combined with the hairpinless T3Es suppression leads to widespread, seemingly non-functional transcription. PMID:25361977

  1. A Genome-Wide Longitudinal Transcriptome Analysis of the Aging Model Podospora anserine

    PubMed Central

    Philipp, Oliver; Hamann, Andrea; Servos, Jörg; Werner, Alexandra; Koch, Ina; Osiewacz, Heinz D.

    2013-01-01

    Aging of biological systems is controlled by various processes which have a potential impact on gene expression. Here we report a genome-wide transcriptome analysis of the fungal aging model Podospora anserina. Total RNA of three individuals of defined age were pooled and analyzed by SuperSAGE (serial analysis of gene expression). A bioinformatics analysis identified different molecular pathways to be affected during aging. While the abundance of transcripts linked to ribosomes and to the proteasome quality control system were found to decrease during aging, those associated with autophagy increase, suggesting that autophagy may act as a compensatory quality control pathway. Transcript profiles associated with the energy metabolism including mitochondrial functions were identified to fluctuate during aging. Comparison of wild-type transcripts, which are continuously down-regulated during aging, with those down-regulated in the long-lived, copper-uptake mutant grisea, validated the relevance of age-related changes in cellular copper metabolism. Overall, we (i) present a unique age-related data set of a longitudinal study of the experimental aging model P. anserina which represents a reference resource for future investigations in a variety of organisms, (ii) suggest autophagy to be a key quality control pathway that becomes active once other pathways fail, and (iii) present testable predictions for subsequent experimental investigations. PMID:24376646

  2. Stepwise Evolution of Coral Biomineralization Revealed with Genome-Wide Proteomics and Transcriptomics.

    PubMed

    Takeuchi, Takeshi; Yamada, Lixy; Shinzato, Chuya; Sawada, Hitoshi; Satoh, Noriyuki

    2016-01-01

    Despite the importance of stony corals in many research fields related to global issues, such as marine ecology, climate change, paleoclimatogy, and metazoan evolution, very little is known about the evolutionary origin of coral skeleton formation. In order to investigate the evolution of coral biomineralization, we have identified skeletal organic matrix proteins (SOMPs) in the skeletal proteome of the scleractinian coral, Acropora digitifera, for which large genomic and transcriptomic datasets are available. Scrupulous gene annotation was conducted based on comparisons of functional domain structures among metazoans. We found that SOMPs include not only coral-specific proteins, but also protein families that are widely conserved among cnidarians and other metazoans. We also identified several conserved transmembrane proteins in the skeletal proteome. Gene expression analysis revealed that expression of these conserved genes continues throughout development. Therefore, these genes are involved not only skeleton formation, but also in basic cellular functions, such as cell-cell interaction and signaling. On the other hand, genes encoding coral-specific proteins, including extracellular matrix domain-containing proteins, galaxins, and acidic proteins, were prominently expressed in post-settlement stages, indicating their role in skeleton formation. Taken together, the process of coral skeleton formation is hypothesized as: 1) formation of initial extracellular matrix between epithelial cells and substrate, employing pre-existing transmembrane proteins; 2) additional extracellular matrix formation using novel proteins that have emerged by domain shuffling and rapid molecular evolution and; 3) calcification controlled by coral-specific SOMPs. PMID:27253604

  3. Stepwise Evolution of Coral Biomineralization Revealed with Genome-Wide Proteomics and Transcriptomics

    PubMed Central

    Sawada, Hitoshi; Satoh, Noriyuki

    2016-01-01

    Despite the importance of stony corals in many research fields related to global issues, such as marine ecology, climate change, paleoclimatogy, and metazoan evolution, very little is known about the evolutionary origin of coral skeleton formation. In order to investigate the evolution of coral biomineralization, we have identified skeletal organic matrix proteins (SOMPs) in the skeletal proteome of the scleractinian coral, Acropora digitifera, for which large genomic and transcriptomic datasets are available. Scrupulous gene annotation was conducted based on comparisons of functional domain structures among metazoans. We found that SOMPs include not only coral-specific proteins, but also protein families that are widely conserved among cnidarians and other metazoans. We also identified several conserved transmembrane proteins in the skeletal proteome. Gene expression analysis revealed that expression of these conserved genes continues throughout development. Therefore, these genes are involved not only skeleton formation, but also in basic cellular functions, such as cell-cell interaction and signaling. On the other hand, genes encoding coral-specific proteins, including extracellular matrix domain-containing proteins, galaxins, and acidic proteins, were prominently expressed in post-settlement stages, indicating their role in skeleton formation. Taken together, the process of coral skeleton formation is hypothesized as: 1) formation of initial extracellular matrix between epithelial cells and substrate, employing pre-existing transmembrane proteins; 2) additional extracellular matrix formation using novel proteins that have emerged by domain shuffling and rapid molecular evolution and; 3) calcification controlled by coral-specific SOMPs. PMID:27253604

  4. Transcriptome analysis reveals novel regulatory mechanisms in a genome-reduced bacterium

    PubMed Central

    Mazin, Pavel V.; Fisunov, Gleb Y.; Gorbachev, Alexey Y.; Kapitskaya, Kristina Y.; Altukhov, Ilya A.; Semashko, Tatiana A.; Alexeev, Dmitry G.; Govorun, Vadim M.

    2014-01-01

    The avian bacterial pathogen Mycoplasma gallisepticum is a good model for systems studies due to small genome and simplicity of regulatory pathways. In this study, we used RNA-Seq and MS-based proteomics to accurately map coding sequences, transcription start sites (TSSs) and transcript 3′-ends (T3Es). We used obtained data to investigate roles of TSSs and T3Es in stress-induced transcriptional responses. We identified 1061 TSSs at a false discovery rate of 10% and showed that almost all transcription in M. gallisepticum is initiated from classic TATAAT promoters surrounded by A/T-rich sequences. Our analysis revealed the pronounced operon structure complexity: on average, each coding operon has one internal TSS and T3Es in addition to the primary ones. Our transcriptomic approach based on the intervals between the two nearest transcript ends allowed us to identify two classes of T3Es: strong, unregulated, hairpin-containing T3Es and weak, heat shock-regulated, hairpinless T3Es. Comparing gene expression levels under different conditions revealed widespread and divergent transcription regulation in M. gallisepticum. Modeling suggested that the core promoter structure plays an important role in gene expression regulation. We have shown that the heat stress activation of cryptic promoters combined with the hairpinless T3Es suppression leads to widespread, seemingly non-functional transcription. PMID:25361977

  5. Genome-Wide Transcriptome Profiling of Region-Specific Vulnerability to Oxidative Stress in the Hippocampus

    PubMed Central

    Wang, Xinkun; Pal, Ranu; Chen, Xue-wen; Kumar, Keshava N.; Kim, Ok-Jin; Michaelis, Elias K.

    2007-01-01

    Neurons in the hippocampal CA1 region are particularly sensitive to oxidative stress (OS), whereas those in CA3 are resistant. To uncover mechanisms for selective CA1 vulnerability to OS, we treated organotypic hippocampal slices with duroquinone and compared transcriptional profiles of CA1 vs. CA3 cells at various intervals. Gene Ontology and biological pathway analyses of differentially expressed genes showed that at all time points, CA1 had higher transcriptional activity of stress/inflammatory response, transition metal transport, ferroxidase, and pre-synaptic signaling activity, while CA3 had higher GABA-signaling, postsynaptic, and calcium and potassium channel activity. Real-time PCR and immunoblots confirmed the transcriptome data and the induction of OS by duroquinone in both hippocampal regions. Our functional genomics approach has identified in CA1 cells molecular pathways as well as unique genes, such as, guanosine deaminase, lipocalin2, synaptotagmin 4, and latrophilin 2, whose time-dependent induction following the initiation of OS may represent attempts at neurite outgrowth, synaptic recovery, and resistance against OS. PMID:17553663

  6. Identification of single nucleotide polymorphisms from the transcriptome of an organism with a whole genome duplication

    PubMed Central

    2013-01-01

    Background The common ancestor of salmonid fishes, including rainbow trout (Oncorhynchus mykiss), experienced a whole genome duplication between 20 and 100 million years ago, and many of the duplicated genes have been retained in the trout genome. This retention complicates efforts to detect allelic variation in salmonid fishes. Specifically, single nucleotide polymorphism (SNP) detection is problematic because nucleotide variation can be found between the duplicate copies (paralogs) of a gene as well as between alleles. Results We present a method of differentiating between allelic and paralogous (gene copy) sequence variants, allowing identification of SNPs in organisms with multiple copies of a gene or set of genes. The basic strategy is to: 1) identify windows of unique cDNA sequences with homology to each other, 2) compare these unique cDNAs if they are not shared between individuals (i.e. the cDNA is homozygous in one individual and homozygous for another cDNA in the other individual), and 3) give a “SNP score” value between zero and one to each candidate sequence variant based on six criteria. Using this strategy we were able to detect about seven thousand potential SNPs from the transcriptomes of several clonal lines of rainbow trout. When directly compared to a pre-validated set of SNPs in polyploid wheat, we were also able to estimate the false-positive rate of this strategy as 0 to 28% depending on parameters used. Conclusions This strategy has an advantage over traditional techniques of SNP identification because another dimension of sequencing information is utilized. This method is especially well suited for identifying SNPs in polyploids, both outbred and inbred, but would tend to be conservative for diploid organisms. PMID:24237905

  7. Genomic and transcriptomic analysis of Laccaria bicolor CAZome reveals insights into polysaccharides remodelling during symbiosis establishment.

    PubMed

    Veneault-Fourrey, Claire; Commun, Carine; Kohler, Annegret; Morin, Emmanuelle; Balestrini, Raffaella; Plett, Jonathan; Danchin, Etienne; Coutinho, Pedro; Wiebenga, Ad; de Vries, Ronald P; Henrissat, Bernard; Martin, Francis

    2014-11-01

    Ectomycorrhizal fungi, living in soil forests, are required microorganisms to sustain tree growth and productivity. The establishment of mutualistic interaction with roots to form ectomycorrhiza (ECM) is not well known at the molecular level. In particular, how fungal and plant cell walls are rearranged to establish a fully functional ectomycorrhiza is poorly understood. Nevertheless, it is likely that Carbohydrate Active enZymes (CAZyme) produced by the fungus participate in this process. Genome-wide transcriptome profiling during ECM development was used to examine how the CAZome of Laccaria bicolor is regulated during symbiosis establishment. CAZymes active on fungal cell wall were upregulated during ECM development in particular after 4weeks of contact when the hyphae are surrounding the root cells and start to colonize the apoplast. We demonstrated that one expansin-like protein, whose expression is specific to symbiotic tissues, localizes within fungal cell wall. Whereas L. bicolor genome contained a constricted repertoire of CAZymes active on cellulose and hemicellulose, these CAZymes were expressed during the first steps of root cells colonization. L. bicolor retained the ability to use homogalacturonan, a pectin-derived substrate, as carbon source. CAZymes likely involved in pectin hydrolysis were mainly expressed at the stage of a fully mature ECM. All together, our data suggest an active remodelling of fungal cell wall with a possible involvement of expansin during ECM development. By contrast, a soft remodelling of the plant cell wall likely occurs through the loosening of the cellulose microfibrils by AA9 or GH12 CAZymes and middle lamella smooth remodelling through pectin (homogalacturonan) hydrolysis likely by GH28, GH12 CAZymes. PMID:25173823

  8. Large-Scale Transcriptome Analysis in Faba Bean (Vicia faba L.) under Ascochyta fabae Infection.

    PubMed

    Ocaña, Sara; Seoane, Pedro; Bautista, Rocio; Palomino, Carmen; Claros, Gonzalo M; Torres, Ana M; Madrid, Eva

    2015-01-01

    Faba bean is an important food crop worldwide. However, progress in faba bean genomics lags far behind that of model systems due to limited availability of genetic and genomic information. Using the Illumina platform the faba bean transcriptome from leaves of two lines (29H and Vf136) subjected to Ascochyta fabae infection have been characterized. De novo transcriptome assembly provided a total of 39,185 different transcripts that were functionally annotated, and among these, 13,266 were assigned to gene ontology against Arabidopsis. Quality of the assembly was validated by RT-qPCR amplification of selected transcripts differentially expressed. Comparison of faba bean transcripts with those of better-characterized plant genomes such as Arabidopsis thaliana, Medicago truncatula and Cicer arietinum revealed a sequence similarity of 68.3%, 72.8% and 81.27%, respectively. Moreover, 39,060 single nucleotide polymorphism (SNP) and 3,669 InDels were identified for genotyping applications. Mapping of the sequence reads generated onto the assembled transcripts showed that 393 and 457 transcripts were overexpressed in the resistant (29H) and susceptible genotype (Vf136), respectively. Transcripts involved in plant-pathogen interactions such as leucine rich proteins (LRR) or plant growth regulators involved in plant adaptation to abiotic and biotic stresses were found to be differently expressed in the resistant line. The results reported here represent the most comprehensive transcript database developed so far in faba bean, providing valuable information that could be used to gain insight into the pathways involved in the resistance mechanism against A. fabae and to identify potential resistance genes to be further used in marker assisted selection. PMID:26267359

  9. Large-Scale Transcriptome Analysis in Faba Bean (Vicia faba L.) under Ascochyta fabae Infection

    PubMed Central

    Ocaña, Sara; Seoane, Pedro; Bautista, Rocio; Palomino, Carmen; Claros, Gonzalo M.; Torres, Ana M.; Madrid, Eva

    2015-01-01

    Faba bean is an important food crop worldwide. However, progress in faba bean genomics lags far behind that of model systems due to limited availability of genetic and genomic information. Using the Illumina platform the faba bean transcriptome from leaves of two lines (29H and Vf136) subjected to Ascochyta fabae infection have been characterized. De novo transcriptome assembly provided a total of 39,185 different transcripts that were functionally annotated, and among these, 13,266 were assigned to gene ontology against Arabidopsis. Quality of the assembly was validated by RT-qPCR amplification of selected transcripts differentially expressed. Comparison of faba bean transcripts with those of better-characterized plant genomes such as Arabidopsis thaliana, Medicago truncatula and Cicer arietinum revealed a sequence similarity of 68.3%, 72.8% and 81.27%, respectively. Moreover, 39,060 single nucleotide polymorphism (SNP) and 3,669 InDels were identified for genotyping applications. Mapping of the sequence reads generated onto the assembled transcripts showed that 393 and 457 transcripts were overexpressed in the resistant (29H) and susceptible genotype (Vf136), respectively. Transcripts involved in plant-pathogen interactions such as leucine rich proteins (LRR) or plant growth regulators involved in plant adaptation to abiotic and biotic stresses were found to be differently expressed in the resistant line. The results reported here represent the most comprehensive transcript database developed so far in faba bean, providing valuable information that could be used to gain insight into the pathways involved in the resistance mechanism against A. fabae and to identify potential resistance genes to be further used in marker assisted selection. PMID:26267359

  10. Genome-Scale Variation of Tubeworm Symbionts

    NASA Astrophysics Data System (ADS)

    Robidart, J.; Felbeck, H.

    2005-12-01

    Hydrothermal vent tubeworms are completely dependent on their bacterial symbionts for nutrition. Despite this dependency, many studies have concluded that bacterial symbionts are acquired anew from the environment, every generation rather than the more reliable mode of symbiont transmission from parent directly to offspring. Ribosomal 16S sequences have shown little variation of symbiont phylogeny from worm to worm, but higher resolution genome-scale analyses have found that there is genomic heterogeneity between symbionts from worms in different environments. What genes can be "spared," while resulting in an intact symbiosis? Have symbionts from one environment gained physiological capabilities that make them more fit in that environment? In order to answer these questions, subtractive hybridization was used on symbionts of Riftia pachyptila tubeworms from different environments to gain insight into which genes are present in one symbiont and absent in the other. Many genes were found to be unique to each symbiont and these results will be presented. This technique will be applied to answer many fundamental questions regarding microbial symbiont evolution to a specific physico-chemical environment, to a different host species, and more.

  11. Molecular classification of diffuse cerebral WHO grade II/III gliomas using genome- and transcriptome-wide profiling improves stratification of prognostically distinct patient groups.

    PubMed

    Weller, Michael; Weber, Ruthild G; Willscher, Edith; Riehmer, Vera; Hentschel, Bettina; Kreuz, Markus; Felsberg, Jörg; Beyer, Ulrike; Löffler-Wirth, Henry; Kaulich, Kerstin; Steinbach, Joachim P; Hartmann, Christian; Gramatzki, Dorothee; Schramm, Johannes; Westphal, Manfred; Schackert, Gabriele; Simon, Matthias; Martens, Tobias; Boström, Jan; Hagel, Christian; Sabel, Michael; Krex, Dietmar; Tonn, Jörg C; Wick, Wolfgang; Noell, Susan; Schlegel, Uwe; Radlwimmer, Bernhard; Pietsch, Torsten; Loeffler, Markus; von Deimling, Andreas; Binder, Hans; Reifenberger, Guido

    2015-05-01

    Cerebral gliomas of World Health Organization (WHO) grade II and III represent a major challenge in terms of histological classification and clinical management. Here, we asked whether large-scale genomic and transcriptomic profiling improves the definition of prognostically distinct entities. We performed microarray-based genome- and transcriptome-wide analyses of primary tumor samples from a prospective German Glioma Network cohort of 137 patients with cerebral gliomas, including 61 WHO grade II and 76 WHO grade III tumors. Integrative bioinformatic analyses were employed to define molecular subgroups, which were then related to histology, molecular biomarkers, including isocitrate dehydrogenase 1 or 2 (IDH1/2) mutation, 1p/19q co-deletion and telomerase reverse transcriptase (TERT) promoter mutations, and patient outcome. Genomic profiling identified five distinct glioma groups, including three IDH1/2 mutant and two IDH1/2 wild-type groups. Expression profiling revealed evidence for eight transcriptionally different groups (five IDH1/2 mutant, three IDH1/2 wild type), which were only partially linked to the genomic groups. Correlation of DNA-based molecular stratification with clinical outcome allowed to define three major prognostic groups with characteristic genomic aberrations. The best prognosis was found in patients with IDH1/2 mutant and 1p/19q co-deleted tumors. Patients with IDH1/2 wild-type gliomas and glioblastoma-like genomic alterations, including gain on chromosome arm 7q (+7q), loss on chromosome arm 10q (-10q), TERT promoter mutation and oncogene amplification, displayed the worst outcome. Intermediate survival was seen in patients with IDH1/2 mutant, but 1p/19q intact, mostly astrocytic gliomas, and in patients with IDH1/2 wild-type gliomas lacking the +7q/-10q genotype and TERT promoter mutation. This molecular subgrouping stratified patients into prognostically distinct groups better than histological classification. Addition of gene expression

  12. Identification of genes for controlling swine adipose deposition by integrating transcriptome, whole-genome resequencing, and quantitative trait loci data.

    PubMed

    Xing, Kai; Zhu, Feng; Zhai, LiWei; Chen, ShaoKang; Tan, Zhen; Sun, YangYang; Hou, ZhuoCheng; Wang, ChuDuan

    2016-01-01

    Backfat thickness is strongly associated with meat quality, fattening efficiency, reproductive performance, and immunity in pigs. Fat storage and fatty acid synthesis mainly occur in adipose tissue. Therefore, we used a high-throughput massively parallel sequencing approach to identify transcriptomes in adipose tissue, and whole-genome differences from three full-sibling pairs of pigs with opposite (high and low) backfat thickness phenotypes. We obtained an average of 38.69 million reads for six samples, 78.68% of which were annotated in the reference genome. Eighty-nine overlapping differentially expressed genes were identified among the three pair comparisons. Whole-genome resequencing also detected multiple genetic variations between the pools of DNA from the two groups. Compared with the animal quantitative trait loci (QTL) database, 20 differentially expressed genes were matched to the QTLs associated with fatness in pigs. Our technique of integrating transcriptome, whole-genome resequencing, and QTL database information provided a rich source of important differentially expressed genes and variations. Associate analysis between selected SNPs and backfat thickness revealed that two SNPs and one haplotype of ME1 significantly affected fat deposition in pigs. Moreover, genetic analysis confirmed that variations in the differentially expressed genes may affect fat deposition. PMID:26996612

  13. Identification of genes for controlling swine adipose deposition by integrating transcriptome, whole-genome resequencing, and quantitative trait loci data

    PubMed Central

    Xing, Kai; Zhu, Feng; Zhai, LiWei; Chen, ShaoKang; Tan, Zhen; Sun, YangYang; Hou, ZhuoCheng; Wang, ChuDuan

    2016-01-01

    Backfat thickness is strongly associated with meat quality, fattening efficiency, reproductive performance, and immunity in pigs. Fat storage and fatty acid synthesis mainly occur in adipose tissue. Therefore, we used a high-throughput massively parallel sequencing approach to identify transcriptomes in adipose tissue, and whole-genome differences from three full-sibling pairs of pigs with opposite (high and low) backfat thickness phenotypes. We obtained an average of 38.69 million reads for six samples, 78.68% of which were annotated in the reference genome. Eighty-nine overlapping differentially expressed genes were identified among the three pair comparisons. Whole-genome resequencing also detected multiple genetic variations between the pools of DNA from the two groups. Compared with the animal quantitative trait loci (QTL) database, 20 differentially expressed genes were matched to the QTLs associated with fatness in pigs. Our technique of integrating transcriptome, whole-genome resequencing, and QTL database information provided a rich source of important differentially expressed genes and variations. Associate analysis between selected SNPs and backfat thickness revealed that two SNPs and one haplotype of ME1 significantly affected fat deposition in pigs. Moreover, genetic analysis confirmed that variations in the differentially expressed genes may affect fat deposition. PMID:26996612

  14. A systematic comparison of genome-scale clustering algorithms

    PubMed Central

    2012-01-01

    Background A wealth of clustering algorithms has been applied to gene co-expression experiments. These algorithms cover a broad range of approaches, from conventional techniques such as k-means and hierarchical clustering, to graphical approaches such as k-clique communities, weighted gene co-expression networks (WGCNA) and paraclique. Comparison of these methods to evaluate their relative effectiveness provides guidance to algorithm selection, development and implementation. Most prior work on comparative clustering evaluation has focused on parametric methods. Graph theoretical methods are recent additions to the tool set for the global analysis and decomposition of microarray co-expression matrices that have not generally been included in earlier methodological comparisons. In the present study, a variety of parametric and graph theoretical clustering algorithms are compared using well-characterized transcriptomic data at a genome scale from Saccharomyces cerevisiae. Methods For each clustering method under study, a variety of parameters were tested. Jaccard similarity was used to measure each cluster's agreement with every GO and KEGG annotation set, and the highest Jaccard score was assigned to the cluster. Clusters were grouped into small, medium, and large bins, and the Jaccard score of the top five scoring clusters in each bin were averaged and reported as the best average top 5 (BAT5) score for the particular method. Results Clusters produced by each method were evaluated based upon the positive match to known pathways. This produces a readily interpretable ranking of the relative effectiveness of clustering on the genes. Methods were also tested to determine whether they were able to identify clusters consistent with those identified by other clustering methods. Conclusions Validation of clusters against known gene classifications demonstrate that for this data, graph-based techniques outperform conventional clustering approaches, suggesting that further

  15. Large-Scale Development of Gene-Associated Single-Nucleotide Polymorphism Markers for Molluscan Population Genomic, Comparative Genomic, and Genome-Wide Association Studies

    PubMed Central

    Jiao, Wenqian; Fu, Xiaoteng; Li, Jinqin; Li, Ling; Feng, Liying; Lv, Jia; Zhang, Lu; Wang, Xiaojian; Li, Yangping; Hou, Rui; Zhang, Lingling; Hu, Xiaoli; Wang, Shi; Bao, Zhenmin

    2014-01-01

    Mollusca is the second most diverse group of animals in the world. Despite their perceived importance, omics-level studies have seldom been applied to this group of animals largely due to a paucity of genomic resources. Here, we report the first large-scale gene-associated marker development and evaluation for a bivalve mollusc, Chlamys farreri. More than 21,000 putative single-nucleotide polymorphisms (SNPs) were identified from the C. farreri transcriptome. Primers and probes were designed and synthesized for 4500 SNPs, and 1492 polymorphic markers were successfully developed using a high-resolution melting genotyping platform. These markers are particularly suitable for population genomic analysis due to high polymorphism within and across populations, a low frequency of null alleles, and conformation to neutral expectations. Unexpectedly, high cross-species transferability was observed, suggesting that the transferable SNPs may largely represent ancestral genetic variations that have been preserved differentially among subfamilies of Pectinidae. Gene annotations were available for 73% of the markers, and 65% could be anchored to the recently released Pacific oyster genome. Large-scale association analysis revealed key candidate genes responsible for scallop growth regulation, and provided markers for further genetic improvement of C. farreri in breeding programmes. PMID:24277739

  16. Guitar: An R/Bioconductor Package for Gene Annotation Guided Transcriptomic Analysis of RNA-Related Genomic Features

    PubMed Central

    Cui, Xiaodong; Wei, Zhen; Zhang, Lin; Liu, Hui; Sun, Lei; Zhang, Shao-Wu; Huang, Yufei; Meng, Jia

    2016-01-01

    Biological features, such as genes and transcription factor binding sites, are often denoted with genome-based coordinates as the genomic features. While genome-based representation is usually very effective in correlating various biological features, it can be tedious to examine the relationship between RNA-related genomic features and the landmarks of RNA transcripts with existing tools due to the difficulty in the conversion between genome-based coordinates and RNA-based coordinates. We developed here an open source Guitar R/Bioconductor package for sketching the transcriptomic view of RNA-related biological features represented by genome based coordinates. Internally, Guitar package extracts the standardized RNA coordinates with respect to the landmarks of RNA transcripts, with which hundreds of millions of RNA-related genomic features can then be efficiently analyzed within minutes. We demonstrated the usage of Guitar package in analyzing posttranscriptional RNA modifications (5-methylcytosine and N6-methyladenosine) derived from high-throughput sequencing approaches (MeRIP-Seq and RNA BS-Seq) and show that RNA 5-methylcytosine (m5C) is enriched in 5′UTR. The newly developed Guitar R/Bioconductor package achieves stable performance on the data tested and revealed novel biological insights. It will effectively facilitate the analysis of RNA methylation data and other RNA-related biological features in the future. PMID:27239475

  17. Guitar: An R/Bioconductor Package for Gene Annotation Guided Transcriptomic Analysis of RNA-Related Genomic Features.

    PubMed

    Cui, Xiaodong; Wei, Zhen; Zhang, Lin; Liu, Hui; Sun, Lei; Zhang, Shao-Wu; Huang, Yufei; Meng, Jia

    2016-01-01

    Biological features, such as genes and transcription factor binding sites, are often denoted with genome-based coordinates as the genomic features. While genome-based representation is usually very effective in correlating various biological features, it can be tedious to examine the relationship between RNA-related genomic features and the landmarks of RNA transcripts with existing tools due to the difficulty in the conversion between genome-based coordinates and RNA-based coordinates. We developed here an open source Guitar R/Bioconductor package for sketching the transcriptomic view of RNA-related biological features represented by genome based coordinates. Internally, Guitar package extracts the standardized RNA coordinates with respect to the landmarks of RNA transcripts, with which hundreds of millions of RNA-related genomic features can then be efficiently analyzed within minutes. We demonstrated the usage of Guitar package in analyzing posttranscriptional RNA modifications (5-methylcytosine and N6-methyladenosine) derived from high-throughput sequencing approaches (MeRIP-Seq and RNA BS-Seq) and show that RNA 5-methylcytosine (m(5)C) is enriched in 5'UTR. The newly developed Guitar R/Bioconductor package achieves stable performance on the data tested and revealed novel biological insights. It will effectively facilitate the analysis of RNA methylation data and other RNA-related biological features in the future. PMID:27239475

  18. A genomic and transcriptomic approach to investigate the blue pigment phenotype in Pseudomonas fluorescens.

    PubMed

    Andreani, Nadia Andrea; Carraro, Lisa; Martino, Maria Elena; Fondi, Marco; Fasolato, Luca; Miotto, Giovanni; Magro, Massimiliano; Vianello, Fabio; Cardazzo, Barbara

    2015-11-20

    Pseudomonas fluorescens is a well-known food spoiler, able to cause serious economic losses in the food industry due to its ability to produce many extracellular, and often thermostable, compounds. The most outstanding spoilage events involving P. fluorescens were blue discoloration of several food stuffs, mainly dairy products. The bacteria involved in such high-profile cases have been identified as belonging to a clearly distinct phylogenetic cluster of the P. fluorescens group. Although the blue pigment has recently been investigated in several studies, the biosynthetic pathway leading to the pigment formation, as well as its chemical nature, remain challenging and unsolved points. In the present paper, genomic and transcriptomic data of 4 P. fluorescens strains (2 blue-pigmenting strains and 2 non-pigmenting strains) were analyzed to evaluate the presence and the expression of blue strain-specific genes. In particular, the pangenome analysis showed the presence in the blue-pigmenting strains of two copies of genes involved in the tryptophan biosynthesis pathway (including trpABCDF). The global expression profiling of blue-pigmenting strains versus non-pigmenting strains showed a general up-regulation of genes involved in iron uptake and a down-regulation of genes involved in primary metabolism. Chromogenic reaction of the blue-pigmenting bacterial cells with Kovac's reagent indicated an indole-derivative as the precursor of the blue pigment. Finally, solubility tests and MALDI-TOF mass spectrometry analysis of the isolated pigment suggested that its molecular structure is very probably a hydrophobic indigo analog. PMID:26051958

  19. Oxidative Stress and Heat-Shock Responses in Desulfovibrio vulgaris by Genome-Wide Transcriptomic Analysis

    SciTech Connect

    Zhang, Weiwen; Culley, David E.; Hogan, Mike; Vitiritti, Luigi; Brockman, Fred J.

    2006-05-30

    Abstract Sulfate-reducing bacteria, like Desulfovibrio vulgaris have developed a set of reactions allowing them to survive in environments. To obtain further knowledge of the protecting mechanisms employed in D. vulgaris against the oxidative stress and heat shock, we performed a genome-wide transcriptomic analysis to determine the cellular responses to both stimuli. The results showed that 130 genes were responsive to oxidative stress, while 427 genes responsive to heat-shock, respectively. Functional analyses suggested that the genes regulated were involved in a variety of cellular functions. Metabolic analysis showed that amino acid biosynthetic pathways were induced by both oxidative stress and heat shock treatments, while fatty acid metabolism, purine and cofactor biosynthesis were induced by heat shock only. Rubrerythrin gene (rbR) were upregulated by the oxidative stress, suggesting its important role in the oxidative resistance, whereas the expression of rubredoxin oxidoreductase (rbO), superoxide ismutase (sodB) and catalase (katA) genes were not subjected to regulation by oxidative stress in D. vulgaris. In addition, the results showed that thioredoxin reductase (trxB) was responsive to oxidative stress, suggesting the thiol-specific redox system might be involved in oxidative protection in D. vulgaris. Comparison of cellular responses to oxidative stress and heat-shock allowed the identification of 66 genes that showed a similar drastic response to both environmental stimuli, implying that they might be part of the general stress response (GSR) network in D. vulgaris, which was further supported by the finding of a conserved motif upstream these common-responsive genes.

  20. Genetic, Genomic, and Transcriptomic Studies of Pyruvate Metabolism in Methanosarcina barkeri Fusaro

    PubMed Central

    López Muñoz, Madeline M.; Schönheit, Peter

    2015-01-01

    ABSTRACT Pyruvate, a central intermediate in the carbon fixation pathway of methanogenic archaea, is rarely used as an energy source by these organisms. The sole exception to this rule is a genetically uncharacterized Methanosarcina barkeri mutant capable of using pyruvate as a sole energy and carbon source (the Pyr+ phenotype). Here, we provide evidence that suggests that the Pyr+ mutant is able to metabolize pyruvate by overexpressing pyruvate ferredoxin oxidoreductase (por) and mutating genes involved in central carbon metabolism. Genomic analysis showed that the Pyr+ strain has two mutations localized to Mbar_A1588, the biotin protein ligase subunit of the pyruvate carboxylase (pyc) operon, and Mbar_A2165, a putative transcriptional regulator. Mutants expressing the Mbar_A1588 mutation showed no growth defect compared to the wild type (WT), yet the strains lacked pyc activity. Recreation of the Mbar_A2165 mutation resulted in a 2-fold increase of Por activity and gene expression, suggesting a role in por transcriptional regulation. Further transcriptomic analysis revealed that Pyr+ strains also overexpress the gene encoding phosphoenolpyruvate carboxylase, indicating the presence of a previously uncharacterized route for synthesizing oxaloacetate in M. barkeri and explaining the unimpaired growth in the absence of Pyc. Surprisingly, stringent repression of the por operon was lethal, even when the media were supplemented with pyruvate and/or Casamino Acids, suggesting that por plays an unidentified essential function in M. barkeri. IMPORTANCE The work presented here reveals a complex interaction between anabolic and catabolic pathways involving pyruvate metabolism in Methanosarcina barkeri Fusaro. Among the unexpected findings were an essential role for the enzyme pyruvate-ferredoxin oxidoreductase and an alternate pathway for synthesis of oxaloacetate. These results clarify the mechanism of methanogenic catabolism of pyruvate and expand our understanding of

  1. Ensembl Genomes 2013: scaling up access to genome-wide data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species. The project exploits and extends technologies for genome annotation, analysis and dissemination, developed in the context of the vertebrate-focused Ensembl project, and provi...

  2. Genomic analysis and temperature-dependent transcriptome profiles of the rhizosphere originating strain Pseudomonas aeruginosa M18

    PubMed Central

    2011-01-01

    Background Our previously published reports have described an effective biocontrol agent named Pseudomonas sp. M18 as its 16S rDNA sequence and several regulator genes share homologous sequences with those of P. aeruginosa, but there are several unusual phenotypic features. This study aims to explore its strain specific genomic features and gene expression patterns at different temperatures. Results The complete M18 genome is composed of a single chromosome of 6,327,754 base pairs containing 5684 open reading frames. Seven genomic islands, including two novel prophages and five specific non-phage islands were identified besides the conserved P. aeruginosa core genome. Each prophage contains a putative chitinase coding gene, and the prophage II contains a capB gene encoding a putative cold stress protein. The non-phage genomic islands contain genes responsible for pyoluteorin biosynthesis, environmental substance degradation and type I and III restriction-modification systems. Compared with other P. aeruginosa strains, the fewest number (3) of insertion sequences and the most number (3) of clustered regularly interspaced short palindromic repeats in M18 genome may contribute to the relative genome stability. Although the M18 genome is most closely related to that of P. aeruginosa strain LESB58, the strain M18 is more susceptible to several antimicrobial agents and easier to be erased in a mouse acute lung infection model than the strain LESB58. The whole M18 transcriptomic analysis indicated that 10.6% of the expressed genes are temperature-dependent, with 22 genes up-regulated at 28°C in three non-phage genomic islands and one prophage but none at 37°C. Conclusions The P. aeruginosa strain M18 has evolved its specific genomic structures and temperature dependent expression patterns to meet the requirement of its fitness and competitiveness under selective pressures imposed on the strain in rhizosphere niche. PMID:21884571

  3. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers

    PubMed Central

    Ibrahimpasic, Tihana; Boucai, Laura; Shah, Ronak H.; Dogan, Snjezana; Ricarte-Filho, Julio C.; Krishnamoorthy, Gnana P.; Schultz, Nikolaus; Berger, Michael F.; Sander, Chris; Taylor, Barry S.; Ghossein, Ronald; Ganly, Ian; Fagin, James A.

    2016-01-01

    BACKGROUND. Poorly differentiated thyroid cancer (PDTC) and anaplastic thyroid cancer (ATC) are rare and frequently lethal tumors that so far have not been subjected to comprehensive genetic characterization. METHODS. We performed next-generation sequencing of 341 cancer genes from 117 patient-derived PDTCs and ATCs and analyzed the transcriptome of a representative subset of 37 tumors. Results were analyzed in the context of The Cancer Genome Atlas study (TCGA study) of papillary thyroid cancers (PTC). RESULTS. Compared to PDTCs, ATCs had a greater mutation burden, including a higher frequency of mutations in TP53, TERT promoter, PI3K/AKT/mTOR pathway effectors, SWI/SNF subunits, and histone methyltransferases. BRAF and RAS were the predominant drivers and dictated distinct tropism for nodal versus distant metastases in PDTC. RAS and BRAF sharply distinguished between PDTCs defined by the Turin (PDTC-Turin) versus MSKCC (PDTC-MSK) criteria, respectively. Mutations of EIF1AX, a component of the translational preinitiation complex, were markedly enriched in PDTCs and ATCs and had a striking pattern of co-occurrence with RAS mutations. While TERT promoter mutations were rare and subclonal in PTCs, they were clonal and highly prevalent in advanced cancers. Application of the TCGA-derived BRAF-RAS score (a measure of MAPK transcriptional output) revealed a preserved relationship with BRAF/RAS mutation in PDTCs, whereas ATCs were BRAF-like irrespective of driver mutation. CONCLUSIONS. These data support a model of tumorigenesis whereby PDTCs and ATCs arise from well-differentiated tumors through the accumulation of key additional genetic abnormalities, many of which have prognostic and possible therapeutic relevance. The widespread genomic disruptions in ATC compared with PDTC underscore their greater virulence and higher mortality. FUNDING. This work was supported in part by NIH grants CA50706, CA72597, P50-CA72012, P30-CA008748, and 5T32-CA160001; the Lefkovsky Family

  4. Modeling cancer metabolism on a genome scale

    PubMed Central

    Yizhak, Keren; Chaneton, Barbara; Gottlieb, Eyal; Ruppin, Eytan

    2015-01-01

    Cancer cells have fundamentally altered cellular metabolism that is associated with their tumorigenicity and malignancy. In addition to the widely studied Warburg effect, several new key metabolic alterations in cancer have been established over the last decade, leading to the recognition that altered tumor metabolism is one of the hallmarks of cancer. Deciphering the full scope and functional implications of the dysregulated metabolism in cancer requires both the advancement of a variety of omics measurements and the advancement of computational approaches for the analysis and contextualization of the accumulated data. Encouragingly, while the metabolic network is highly interconnected and complex, it is at the same time probably the best characterized cellular network. Following, this review discusses the challenges that genome-scale modeling of cancer metabolism has been facing. We survey several recent studies demonstrating the first strides that have been done, testifying to the value of this approach in portraying a network-level view of the cancer metabolism and in identifying novel drug targets and biomarkers. Finally, we outline a few new steps that may further advance this field. PMID:26130389

  5. Capturing the response of Clostridium acetobutylicum to chemical stressors using a regulated genome-scale metabolic model

    DOE PAGESBeta

    Dash, Satyakam; Mueller, Thomas J.; Venkataramanan, Keerthi P.; Papoutsakis, Eleftherios T.; Maranas, Costas D.

    2014-10-14

    Clostridia are anaerobic Gram-positive Firmicutes containing broad and flexible systems for substrate utilization, which have been used successfully to produce a range of industrial compounds. Clostridium acetobutylicum has been used to produce butanol on an industrial scale through acetone-butanol-ethanol (ABE) fermentation. A genome-scale metabolic (GSM) model is a powerful tool for understanding the metabolic capacities of an organism and developing metabolic engineering strategies for strain development. The integration of stress related specific transcriptomics information with the GSM model provides opportunities for elucidating the focal points of regulation.

  6. Genome- and transcriptome-assisted development of nuclear insertion/deletion markers for Calanus species (Copepoda: Calanoida) identification.

    PubMed

    Smolina, I; Kollias, S; Poortvliet, M; Nielsen, T G; Lindeque, P; Castellani, C; Møller, E F; Blanco-Bercial, L; Hoarau, G

    2014-09-01

    Copepods of the genus Calanus are key zooplankton species in temperate to arctic marine ecosystems. Despite their ecological importance, species identification remains challenging. Furthermore, the recent report of hybrids among Calanus species highlights the need for diagnostic nuclear markers to efficiently identify parental species and hybrids. Using next-generation sequencing analysis of both the genome and transcriptome from two sibling species, Calanus finmarchicus and Calanus glacialis, we developed a panel of 12 nuclear insertion/deletion markers. All the markers showed species-specific amplicon length. Furthermore, most of the markers were successfully amplified in other Calanus species, allowing the molecular identification of Calanus helgolandicus, Calanus hyperboreus and Calanus marshallae. PMID:24612683

  7. Genome Sequence and Transcriptome Analyses of Chrysochromulina tobin: Metabolic Tools for Enhanced Algal Fitness in the Prominent Order Prymnesiales (Haptophyceae)

    PubMed Central

    Hovde, Blake T.; Deodato, Chloe R.; Hunsperger, Heather M.; Ryken, Scott A.; Yost, Will; Jha, Ramesh K.; Patterson, Johnathan; Monnat, Raymond J.; Barlow, Steven B.; Starkenburg, Shawn R.; Cattolico, Rose Ann

    2015-01-01

    Haptophytes are recognized as seminal players in aquatic ecosystem function. These algae are important in global carbon sequestration, form destructive harmful blooms, and given their rich fatty acid content, serve as a highly nutritive food source to a broad range of eco-cohorts. Haptophyte dominance in both fresh and marine waters is supported by the mixotrophic nature of many taxa. Despite their importance the nuclear genome sequence of only one haptophyte, Emiliania huxleyi (Isochrysidales), is available. Here we report the draft genome sequence of Chrysochromulina tobin (Prymnesiales), and transcriptome data collected at seven time points over a 24-hour light/dark cycle. The nuclear genome of C. tobin is small (59 Mb), compact (∼40% of the genome is protein coding) and encodes approximately 16,777 genes. Genes important to fatty acid synthesis, modification, and catabolism show distinct patterns of expression when monitored over the circadian photoperiod. The C. tobin genome harbors the first hybrid polyketide synthase/non-ribosomal peptide synthase gene complex reported for an algal species, and encodes potential anti-microbial peptides and proteins involved in multidrug and toxic compound extrusion. A new haptophyte xanthorhodopsin was also identified, together with two “red” RuBisCO activases that are shared across many algal lineages. The Chrysochromulina tobin genome sequence provides new information on the evolutionary history, ecology and economic importance of haptophytes. PMID:26397803

  8. Genome Sequence and Transcriptome Analyses of Chrysochromulina tobin: Metabolic Tools for Enhanced Algal Fitness in the Prominent Order Prymnesiales (Haptophyceae).

    PubMed

    Hovde, Blake T; Deodato, Chloe R; Hunsperger, Heather M; Ryken, Scott A; Yost, Will; Jha, Ramesh K; Patterson, Johnathan; Monnat, Raymond J; Barlow, Steven B; Starkenburg, Shawn R; Cattolico, Rose Ann

    2015-01-01

    Haptophytes are recognized as seminal players in aquatic ecosystem function. These algae are important in global carbon sequestration, form destructive harmful blooms, and given their rich fatty acid content, serve as a highly nutritive food source to a broad range of eco-cohorts. Haptophyte dominance in both fresh and marine waters is supported by the mixotrophic nature of many taxa. Despite their importance the nuclear genome sequence of only one haptophyte, Emiliania huxleyi (Isochrysidales), is available. Here we report the draft genome sequence of Chrysochromulina tobin (Prymnesiales), and transcriptome data collected at seven time points over a 24-hour light/dark cycle. The nuclear genome of C. tobin is small (59 Mb), compact (∼ 40% of the genome is protein coding) and encodes approximately 16,777 genes. Genes important to fatty acid synthesis, modification, and catabolism show distinct patterns of expression when monitored over the circadian photoperiod. The C. tobin genome harbors the first hybrid polyketide synthase/non-ribosomal peptide synthase gene complex reported for an algal species, and encodes potential anti-microbial peptides and proteins involved in multidrug and toxic compound extrusion. A new haptophyte xanthorhodopsin was also identified, together with two "red" RuBisCO activases that are shared across many algal lineages. The Chrysochromulina tobin genome sequence provides new information on the evolutionary history, ecology and economic importance of haptophytes. PMID:26397803

  9. Genome Sequence and Transcriptome Analyses of Chrysochromulina tobin: Metabolic Tools for Enhanced Algal Fitness in the Prominent Order Prymnesiales (Haptophyceae)

    SciTech Connect

    Hovde, Blake T.; Deodato, Chloe R.; Hunsperger, Heather M.; Ryken, Scott A.; Yost, Will; Jha, Ramesh K.; Patterson, Johnathan; Monnat, Raymond J.; Barlow, Steven B.; Starkenburg, Shawn R.; Cattolico, Rose Ann; Richardson, Paul M.

    2015-09-23

    Haptophytes are recognized as seminal players in aquatic ecosystem function. These algae are important in global carbon sequestration, form destructive harmful blooms, and given their rich fatty acid content, serve as a highly nutritive food source to a broad range of eco-cohorts. Haptophyte dominance in both fresh and marine waters is supported by the mixotrophic nature of many taxa. Despite their importance the nuclear genome sequence of only one haptophyte, Emiliania huxleyi (Isochrysidales), is available. Here we report the draft genome sequence of Chrysochromulina tobin (Prymnesiales), and transcriptome data collected at seven time points over a 24-hour light/dark cycle. The nuclear genome of C. tobin is small (59 Mb), compact (∼40% of the genome is protein coding) and encodes approximately 16,777 genes. Genes important to fatty acid synthesis, modification, and catabolism show distinct patterns of expression when monitored over the circadian photoperiod. The C. tobin genome harbors the first hybrid polyketide synthase/non-ribosomal peptide synthase gene complex reported for an algal species, and encodes potential anti-microbial peptides and proteins involved in multidrug and toxic compound extrusion. A new haptophyte xanthorhodopsin was also identified, together with two “red” RuBisCO activases that are shared across many algal lineages. In conclusion, the Chrysochromulina tobin genome sequence provides new information on the evolutionary history, ecology and economic importance of haptophytes.

  10. Genome Sequence and Transcriptome Analyses of Chrysochromulina tobin: Metabolic Tools for Enhanced Algal Fitness in the Prominent Order Prymnesiales (Haptophyceae)

    DOE PAGESBeta

    Hovde, Blake T.; Deodato, Chloe R.; Hunsperger, Heather M.; Ryken, Scott A.; Yost, Will; Jha, Ramesh K.; Patterson, Johnathan; Monnat, Raymond J.; Barlow, Steven B.; Starkenburg, Shawn R.; et al

    2015-09-23

    Haptophytes are recognized as seminal players in aquatic ecosystem function. These algae are important in global carbon sequestration, form destructive harmful blooms, and given their rich fatty acid content, serve as a highly nutritive food source to a broad range of eco-cohorts. Haptophyte dominance in both fresh and marine waters is supported by the mixotrophic nature of many taxa. Despite their importance the nuclear genome sequence of only one haptophyte, Emiliania huxleyi (Isochrysidales), is available. Here we report the draft genome sequence of Chrysochromulina tobin (Prymnesiales), and transcriptome data collected at seven time points over a 24-hour light/dark cycle. Themore » nuclear genome of C. tobin is small (59 Mb), compact (∼40% of the genome is protein coding) and encodes approximately 16,777 genes. Genes important to fatty acid synthesis, modification, and catabolism show distinct patterns of expression when monitored over the circadian photoperiod. The C. tobin genome harbors the first hybrid polyketide synthase/non-ribosomal peptide synthase gene complex reported for an algal species, and encodes potential anti-microbial peptides and proteins involved in multidrug and toxic compound extrusion. A new haptophyte xanthorhodopsin was also identified, together with two “red” RuBisCO activases that are shared across many algal lineages. In conclusion, the Chrysochromulina tobin genome sequence provides new information on the evolutionary history, ecology and economic importance of haptophytes.« less

  11. Transcriptomic and proteomic analyses on the supercooling ability and mining of antifreeze proteins of the Chinese white wax scale insect.

    PubMed

    Yu, Shu-Hui; Yang, Pu; Sun, Tao; Qi, Qian; Wang, Xue-Qing; Chen, Xiao-Ming; Feng, Ying; Liu, Bo-Wen

    2016-06-01

    The Chinese white wax scale insect, Ericerus pela, can survive at extremely low temperatures, and some overwintering individuals exhibit supercooling at temperatures below -30°C. To investigate the deep supercooling ability of E. pela, transcriptomic and proteomic analyses were performed to delineate the major gene and protein families responsible for the deep supercooling ability of overwintering females. Gene Ontology (GO) classification and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that genes involved in the mitogen-activated protein kinase, calcium, and PI3K-Akt signaling pathways and pathways associated with the biosynthesis of soluble sugars, sugar alcohols and free amino acids were dominant. Proteins responsible for low-temperature stress, such as cold acclimation proteins, glycerol biosynthesis-related enzymes and heat shock proteins (HSPs) were identified. However, no antifreeze proteins (AFPs) were identified through sequence similarity search methods. A random forest approach identified 388 putative AFPs in the proteome. The AFP gene ep-afp was expressed in Escherichia coli, and the expressed protein exhibited a thermal hysteresis activity of 0.97°C, suggesting its potential role in the deep supercooling ability of E. pela. PMID:26799455

  12. Massive-Scale RNA-Seq Analysis of Non Ribosomal Transcriptome in Human Trisomy 21

    PubMed Central

    Costa, Valerio; Angelini, Claudia; D'Apice, Luciana; Mutarelli, Margherita; Casamassimi, Amelia; Sommese, Linda; Gallo, Maria Assunta; Aprile, Marianna; Esposito, Roberta; Leone, Luigi; Donizetti, Aldo; Crispi, Stefania; Rienzo, Monica; Sarubbi, Berardo; Calabrò, Raffaele; Picardi, Marco; Salvatore, Paola; Infante, Teresa; De Berardinis, Piergiuseppe; Napoli, Claudio; Ciccodicola, Alfredo

    2011-01-01

    Hybridization- and tag-based technologies have been successfully used in Down syndrome to identify genes involved in various aspects of the pathogenesis. However, these technologies suffer from several limits and drawbacks and, to date, information about rare, even though relevant, RNA species such as long and small non-coding RNAs, is completely missing. Indeed, none of published works has still described the whole transcriptional landscape of Down syndrome. Although the recent advances in high-throughput RNA sequencing have revealed the complexity of transcriptomes, most of them rely on polyA enrichment protocols, able to detect only a small fraction of total RNA content. On the opposite end, massive-scale RNA sequencing on rRNA-depleted samples allows the survey of the complete set of coding and non-coding RNA species, now emerging as novel contributors to pathogenic mechanisms. Hence, in this work we analysed for the first time the complete transcriptome of human trisomic endothelial progenitor cells to an unprecedented level of resolution and sensitivity by RNA-sequencing. Our analysis allowed us to detect differential expression of even low expressed genes crucial for the pathogenesis, to disclose novel regions of active transcription outside yet annotated loci, and to investigate a plethora of non-polyadenilated long as well as short non coding RNAs. Novel splice isoforms for a large subset of crucial genes, and novel extended untranslated regions for known genes—possibly novel miRNA targets or regulatory sites for gene transcription—were also identified in this study. Coupling the rRNA depletion of samples, followed by high-throughput RNA-sequencing, to the easy availability of these cells renders this approach very feasible for transcriptome studies, offering the possibility of investigating in-depth blood-related pathological features of Down syndrome, as well as other genetic disorders. PMID:21533138

  13. Integrating transcriptome and genome re-sequencing data to identify key genes and mutations affecting chicken eggshell qualities.

    PubMed

    Zhang, Quan; Zhu, Feng; Liu, Long; Zheng, Chuan Wei; Wang, De He; Hou, Zhuo Cheng; Ning, Zhong Hua

    2015-01-01

    Eggshell damages lead to economic losses in the egg production industry and are a threat to human health. We examined 49-wk-old Rhode Island White hens (Gallus gallus) that laid eggs having shells with significantly different strengths and thicknesses. We used HiSeq 2000 (Illumina) sequencing to characterize the chicken transcriptome and whole genome to identify the key genes and genetic mutations associated with eggshell calcification. We identified a total of 14,234 genes expressed in the chicken uterus, representing 89% of all annotated chicken genes. A total of 889 differentially expressed genes were identified by comparing low eggshell strength (LES) and normal eggshell strength (NES) genomes. The DEGs are enriched in calcification-related processes, including calcium ion transport and calcium signaling pathways as revealed by gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis. Some important matrix proteins, such as OC-116, LTF and SPP1, were also expressed differentially between two groups. A total of 3,671,919 single-nucleotide polymorphisms (SNPs) and 508,035 Indels were detected in protein coding genes by whole-genome re-sequencing, including 1775 non-synonymous variations and 19 frame-shift Indels in DEGs. SNPs and Indels found in this study could be further investigated for eggshell traits. This is the first report to integrate the transcriptome and genome re-sequencing to target the genetic variations which decreased the eggshell qualities. These findings further advance our understanding of eggshell calcification in the chicken uterus. PMID:25974068

  14. Integrating Transcriptome and Genome Re-Sequencing Data to Identify Key Genes and Mutations Affecting Chicken Eggshell Qualities

    PubMed Central

    Liu, Long; Zheng, Chuan Wei; Wang, De He; Hou, Zhuo Cheng; Ning, Zhong Hua

    2015-01-01

    Eggshell damages lead to economic losses in the egg production industry and are a threat to human health. We examined 49-wk-old Rhode Island White hens (Gallus gallus) that laid eggs having shells with significantly different strengths and thicknesses. We used HiSeq 2000 (Illumina) sequencing to characterize the chicken transcriptome and whole genome to identify the key genes and genetic mutations associated with eggshell calcification. We identified a total of 14,234 genes expressed in the chicken uterus, representing 89% of all annotated chicken genes. A total of 889 differentially expressed genes were identified by comparing low eggshell strength (LES) and normal eggshell strength (NES) genomes. The DEGs are enriched in calcification-related processes, including calcium ion transport and calcium signaling pathways as reveled by gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis. Some important matrix proteins, such as OC-116, LTF and SPP1, were also expressed differentially between two groups. A total of 3,671,919 single-nucleotide polymorphisms (SNPs) and 508,035 Indels were detected in protein coding genes by whole-genome re-sequencing, including 1775 non-synonymous variations and 19 frame-shift Indels in DEGs. SNPs and Indels found in this study could be further investigated for eggshell traits. This is the first report to integrate the transcriptome and genome re-sequencing to target the genetic variations which decreased the eggshell qualities. These findings further advance our understanding of eggshell calcification in the chicken uterus. PMID:25974068

  15. Genome and Transcriptome Analysis of the Fungal Pathogen Fusarium oxysporum f. sp. cubense Causing Banana Vascular Wilt Disease

    PubMed Central

    Zeng, Huicai; Fan, Dingding; Zhu, Yabin; Feng, Yue; Wang, Guofen; Peng, Chunfang; Jiang, Xuanting; Zhou, Dajie; Ni, Peixiang; Liang, Changcong; Liu, Lei; Wang, Jun; Mao, Chao

    2014-01-01

    Background The asexual fungus Fusarium oxysporum f. sp. cubense (Foc) causing vascular wilt disease is one of the most devastating pathogens of banana (Musa spp.). To understand the molecular underpinning of pathogenicity in Foc, the genomes and transcriptomes of two Foc isolates were sequenced. Methodology/Principal Findings Genome analysis revealed that the genome structures of race 1 and race 4 isolates were highly syntenic with those of F. oxysporum f. sp. lycopersici strain Fol4287. A large number of putative virulence associated genes were identified in both Foc genomes, including genes putatively involved in root attachment, cell degradation, detoxification of toxin, transport, secondary metabolites biosynthesis and signal transductions. Importantly, relative to the Foc race 1 isolate (Foc1), the Foc race 4 isolate (Foc4) has evolved with some expanded gene families of transporters and transcription factors for transport of toxins and nutrients that may facilitate its ability to adapt to host environments and contribute to pathogenicity to banana. Transcriptome analysis disclosed a significant difference in transcriptional responses between Foc1 and Foc4 at 48 h post inoculation to the banana ‘Brazil’ in comparison with the vegetative growth stage. Of particular note, more virulence-associated genes were up regulated in Foc4 than in Foc1. Several signaling pathways like the mitogen-activated protein kinase Fmk1 mediated invasion growth pathway, the FGA1-mediated G protein signaling pathway and a pathogenicity associated two-component system were activated in Foc4 rather than in Foc1. Together, these differences in gene content and transcription response between Foc1 and Foc4 might account for variation in their virulence during infection of the banana variety ‘Brazil’. Conclusions/Significance Foc genome sequences will facilitate us to identify pathogenicity mechanism involved in the banana vascular wilt disease development. These will thus advance

  16. Analysis of tigecycline resistance development in clinical Acinetobacter baumannii isolates through a combined genomic and transcriptomic approach.

    PubMed

    Liu, Lin; Cui, Yujun; Zheng, Beiwen; Jiang, Saiping; Yu, Wei; Shen, Ping; Ji, Jinru; Li, Lanjuan; Qin, Nan; Xiao, Yonghong

    2016-01-01

    Tigecycline (Tgc) is considered a last-resort antibiotic for the treatment of multi-drug resistant bacteria. To study Tgc resistance development in the important nosocomial pathogen Acinetobacter baumannii, we adopted six clinical isolates from three patients undergoing antibiotic treatment, and bacterial genomic sequences and seven strand-specific transcriptomes were studied. Interestingly, the Tgc-intermediate 2015ZJAB1 only differed from Tgc-resistant 2015ZJAB2 in an SNP-clustered region including OprD, a sugar-type MFS permease, and a LuxR-type transcriptional regulator. Surprisingly, an almost identical region was found in 2015ZJAB3, which supports the possibility of a homologous recombination event that increased Tgc resistance. Furthermore, comparative transcriptomic analysis identified significantly regulated genes associated with Tgc resistance, which was verified using qRT-PCR. Three enriched COG categories included amino acid transport and metabolism, transcription, and inorganic ion transport and metabolism. KEGG analysis revealed common features under Tgc conditions, including up regulated benzoate degradation and a less active TCA cycle. This may be related to selective antimicrobial pressure in the environment and adaptation by lowering metabolism. This study provides the first report of an in vivo evolutionary process that included a putative homologous recombination event conferring Tgc resistance in clinical A. baumannii isolates in which transcriptome analysis revealed resistance-conferring genes and related metabolism characteristics. PMID:27240484

  17. Analysis of tigecycline resistance development in clinical Acinetobacter baumannii isolates through a combined genomic and transcriptomic approach

    PubMed Central

    Liu, Lin; Cui, Yujun; Zheng, Beiwen; Jiang, Saiping; Yu, Wei; Shen, Ping; Ji, Jinru; Li, Lanjuan; Qin, Nan; Xiao, Yonghong

    2016-01-01

    Tigecycline (Tgc) is considered a last-resort antibiotic for the treatment of multi-drug resistant bacteria. To study Tgc resistance development in the important nosocomial pathogen Acinetobacter baumannii, we adopted six clinical isolates from three patients undergoing antibiotic treatment, and bacterial genomic sequences and seven strand-specific transcriptomes were studied. Interestingly, the Tgc-intermediate 2015ZJAB1 only differed from Tgc-resistant 2015ZJAB2 in an SNP-clustered region including OprD, a sugar-type MFS permease, and a LuxR-type transcriptional regulator. Surprisingly, an almost identical region was found in 2015ZJAB3, which supports the possibility of a homologous recombination event that increased Tgc resistance. Furthermore, comparative transcriptomic analysis identified significantly regulated genes associated with Tgc resistance, which was verified using qRT-PCR. Three enriched COG categories included amino acid transport and metabolism, transcription, and inorganic ion transport and metabolism. KEGG analysis revealed common features under Tgc conditions, including up regulated benzoate degradation and a less active TCA cycle. This may be related to selective antimicrobial pressure in the environment and adaptation by lowering metabolism. This study provides the first report of an in vivo evolutionary process that included a putative homologous recombination event conferring Tgc resistance in clinical A. baumannii isolates in which transcriptome analysis revealed resistance-conferring genes and related metabolism characteristics. PMID:27240484

  18. Large-Scale Transcriptome Analysis of Two Sugarcane Genotypes Contrasting for Lignin Content

    PubMed Central

    Vicentini, Renato; Bottcher, Alexandra; Brito, Michael dos Santos; dos Santos, Adriana Brombini; Creste, Silvana; Landell, Marcos Guimarães de Andrade; Cesarino, Igor; Mazzafera, Paulo

    2015-01-01

    Sugarcane is an important crop worldwide for sugar and first generation ethanol production. Recently, the residue of sugarcane mills, named bagasse, has been considered a promising lignocellulosic biomass to produce the second-generation ethanol. Lignin is a major factor limiting the use of bagasse and other plant lignocellulosic materials to produce second-generation ethanol. Lignin biosynthesis pathway is a complex network and changes in the expression of genes of this pathway have in general led to diverse and undesirable impacts on plant structure and physiology. Despite its economic importance, sugarcane genome was still not sequenced. In this study a high-throughput transcriptome evaluation of two sugarcane genotypes contrasting for lignin content was carried out. We generated a set of 85,151 transcripts of sugarcane using RNA-seq and de novo assembling. More than 2,000 transcripts showed differential expression between the genotypes, including several genes involved in the lignin biosynthetic pathway. This information can give valuable knowledge on the lignin biosynthesis and its interactions with other metabolic pathways in the complex sugarcane genome. PMID:26241317

  19. Selecting Superior De Novo Transcriptome Assemblies: Lessons Learned by Leveraging the Best Plant Genome.

    PubMed

    Honaas, Loren A; Wafula, Eric K; Wickett, Norman J; Der, Joshua P; Zhang, Yeting; Edger, Patrick P; Altman, Naomi S; Pires, J Chris; Leebens-Mack, James H; dePamphilis, Claude W

    2016-01-01

    Whereas de novo assemblies of RNA-Seq data are being published for a growing number of species across the tree of life, there are currently no broadly accepted methods for evaluating such assemblies. Here we present a detailed comparison of 99 transcriptome assemblies, generated with 6 de novo assemblers including CLC, Trinity, SOAP, Oases, ABySS and NextGENe. Controlled analyses of de novo assemblies for Arabidopsis thaliana and Oryza sativa transcriptomes provide new insights into the strengths and limitations of transcriptome assembly strategies. We find that the leading assemblers generate reassuringly accurate assemblies for the majority of transcripts. At the same time, we find a propensity for assemblers to fail to fully assemble highly expressed genes. Surprisingly, the instance of true chimeric assemblies is very low for all assemblers. Normalized libraries are reduced in highly abundant transcripts, but they also lack 1000s of low abundance transcripts. We conclude that the quality of de novo transcriptome assemblies is best assessed through consideration of a combination of metrics: 1) proportion of reads mapping to an assembly 2) recovery of conserved, widely expressed genes, 3) N50 length statistics, and 4) the total number of unigenes. We provide benchmark Illumina transcriptome data and introduce SCERNA, a broadly applicable modular protocol for de novo assembly improvement. Finally, our de novo assembly of the Arabidopsis leaf transcriptome revealed ~20 putative Arabidopsis genes lacking in the current annotation. PMID:26731733

  20. Selecting Superior De Novo Transcriptome Assemblies: Lessons Learned by Leveraging the Best Plant Genome

    PubMed Central

    Honaas, Loren A.; Wafula, Eric K.; Wickett, Norman J.; Der, Joshua P.; Zhang, Yeting; Edger, Patrick P.; Altman, Naomi S.; Pires, J. Chris; Leebens-Mack, James H.; dePamphilis, Claude W.

    2016-01-01

    Whereas de novo assemblies of RNA-Seq data are being published for a growing number of species across the tree of life, there are currently no broadly accepted methods for evaluating such assemblies. Here we present a detailed comparison of 99 transcriptome assemblies, generated with 6 de novo assemblers including CLC, Trinity, SOAP, Oases, ABySS and NextGENe. Controlled analyses of de novo assemblies for Arabidopsis thaliana and Oryza sativa transcriptomes provide new insights into the strengths and limitations of transcriptome assembly strategies. We find that the leading assemblers generate reassuringly accurate assemblies for the majority of transcripts. At the same time, we find a propensity for assemblers to fail to fully assemble highly expressed genes. Surprisingly, the instance of true chimeric assemblies is very low for all assemblers. Normalized libraries are reduced in highly abundant transcripts, but they also lack 1000s of low abundance transcripts. We conclude that the quality of de novo transcriptome assemblies is best assessed through consideration of a combination of metrics: 1) proportion of reads mapping to an assembly 2) recovery of conserved, widely expressed genes, 3) N50 length statistics, and 4) the total number of unigenes. We provide benchmark Illumina transcriptome data and introduce SCERNA, a broadly applicable modular protocol for de novo assembly improvement. Finally, our de novo assembly of the Arabidopsis leaf transcriptome revealed ~20 putative Arabidopsis genes lacking in the current annotation. PMID:26731733

  1. Combined Large-Scale Phenotyping and Transcriptomics in Maize Reveals a Robust Growth Regulatory Network.

    PubMed

    Baute, Joke; Herman, Dorota; Coppens, Frederik; De Block, Jolien; Slabbinck, Bram; Dell'Acqua, Matteo; Pè, Mario Enrico; Maere, Steven; Nelissen, Hilde; Inzé, Dirk

    2016-03-01

    Leaves are vital organs for biomass and seed production because of their role in the generation of metabolic energy and organic compounds. A better understanding of the molecular networks underlying leaf development is crucial to sustain global requirements for food and renewable energy. Here, we combined transcriptome profiling of proliferative leaf tissue with in-depth phenotyping of the fourth leaf at later stages of development in 197 recombinant inbred lines of two different maize (Zea mays) populations. Previously, correlation analysis in a classical biparental mapping population identified 1,740 genes correlated with at least one of 14 traits. Here, we extended these results with data from a multiparent advanced generation intercross population. As expected, the phenotypic variability was found to be larger in the latter population than in the biparental population, although general conclusions on the correlations among the traits are comparable. Data integration from the two diverse populations allowed us to identify a set of 226 genes that are robustly associated with diverse leaf traits. This set of genes is enriched for transcriptional regulators and genes involved in protein synthesis and cell wall metabolism. In order to investigate the molecular network context of the candidate gene set, we integrated our data with publicly available functional genomics data and identified a growth regulatory network of 185 genes. Our results illustrate the power of combining in-depth phenotyping with transcriptomics in mapping populations to dissect the genetic control of complex traits and present a set of candidate genes for use in biomass improvement. PMID:26754667

  2. Complete genome sequence and transcriptomics analyses reveal pigment biosynthesis and regulatory mechanisms in an industrial strain, Monascus purpureus YY-1

    PubMed Central

    Yang, Yue; Liu, Bin; Du, Xinjun; Li, Ping; Liang, Bin; Cheng, Xiaozhen; Du, Liangcheng; Huang, Di; Wang, Lei; Wang, Shuo

    2015-01-01

    Monascus has been used to produce natural colorants and food supplements for more than one thousand years, and approximately more than one billion people eat Monascus-fermented products during their daily life. In this study, using next-generation sequencing and optical mapping approaches, a 24.1-Mb complete genome of an industrial strain, Monascus purpureus YY-1, was obtained. This genome consists of eight chromosomes and 7,491 genes. Phylogenetic analysis at the genome level provides convincing evidence for the evolutionary position of M. purpureus. We provide the first comprehensive prediction of the biosynthetic pathway for Monascus pigment. Comparative genomic analyses show that the genome of M. purpureus is 13.6–40% smaller than those of closely related filamentous fungi and has undergone significant gene losses, most of which likely occurred during its specialized adaptation to starch-based foods. Comparative transcriptome analysis reveals that carbon starvation stress, resulting from the use of relatively low-quality carbon sources, contributes to the high yield of pigments by repressing central carbon metabolism and augmenting the acetyl-CoA pool. Our work provides important insights into the evolution of this economically important fungus and lays a foundation for future genetic manipulation and engineering of this strain. PMID:25660389

  3. Complete genome sequence and transcriptomics analyses reveal pigment biosynthesis and regulatory mechanisms in an industrial strain, Monascus purpureus YY-1.

    PubMed

    Yang, Yue; Liu, Bin; Du, Xinjun; Li, Ping; Liang, Bin; Cheng, Xiaozhen; Du, Liangcheng; Huang, Di; Wang, Lei; Wang, Shuo

    2015-01-01

    Monascus has been used to produce natural colorants and food supplements for more than one thousand years, and approximately more than one billion people eat Monascus-fermented products during their daily life. In this study, using next-generation sequencing and optical mapping approaches, a 24.1-Mb complete genome of an industrial strain, Monascus purpureus YY-1, was obtained. This genome consists of eight chromosomes and 7,491 genes. Phylogenetic analysis at the genome level provides convincing evidence for the evolutionary position of M. purpureus. We provide the first comprehensive prediction of the biosynthetic pathway for Monascus pigment. Comparative genomic analyses show that the genome of M. purpureus is 13.6-40% smaller than those of closely related filamentous fungi and has undergone significant gene losses, most of which likely occurred during its specialized adaptation to starch-based foods. Comparative transcriptome analysis reveals that carbon starvation stress, resulting from the use of relatively low-quality carbon sources, contributes to the high yield of pigments by repressing central carbon metabolism and augmenting the acetyl-CoA pool. Our work provides important insights into the evolution of this economically important fungus and lays a foundation for future genetic manipulation and engineering of this strain. PMID:25660389

  4. LEMONS – A Tool for the Identification of Splice Junctions in Transcriptomes of Organisms Lacking Reference Genomes

    PubMed Central

    Bouskila, Amos; Chorev, Michal; Carmel, Liran; Mishmar, Dan

    2015-01-01

    RNA-seq is becoming a preferred tool for genomics studies of model and non-model organisms. However, DNA-based analysis of organisms lacking sequenced genomes cannot rely on RNA-seq data alone to isolate most genes of interest, as DNA codes both exons and introns. With this in mind, we designed a novel tool, LEMONS, that exploits the evolutionary conservation of both exon/intron boundary positions and splice junction recognition signals to produce high throughput splice-junction predictions in the absence of a reference genome. When tested on multiple annotated vertebrate mRNA data, LEMONS accurately identified 87% (average) of the splice-junctions. LEMONS was then applied to our updated Mediterranean chameleon transcriptome, which lacks a reference genome, and predicted a total of 90,820 exon-exon junctions. We experimentally verified these splice-junction predictions by amplifying and sequencing twenty randomly selected genes from chameleon DNA templates. Exons and introns were detected in 19 of 20 of the positions predicted by LEMONS. To the best of our knowledge, LEMONS is currently the only experimentally verified tool that can accurately predict splice-junctions in organisms that lack a reference genome. PMID:26606265

  5. Impact of a short-term exposure to spaceflight on the phenotype, genome, transcriptome and proteome of Escherichia coli

    NASA Astrophysics Data System (ADS)

    Li, Tianzhi; Chang, De; Xu, Huiwen; Chen, Jiapeng; Su, Longxiang; Guo, Yinghua; Chen, Zhenhong; Wang, Yajuan; Wang, Li; Wang, Junfeng; Fang, Xiangqun; Liu, Changting

    2015-07-01

    Escherichia coli (E. coli) is the most widely applied model organism in current biological science. As a widespread opportunistic pathogen, E. coli can survive not only by symbiosis with human, but also outside the host as well, which necessitates the evaluation of its response to the space environment. Therefore, to keep humans safe in space, it is necessary to understand how the bacteria respond to this environment. Despite extensive investigations for a few decades, the response of E. coli to the real space environment is still controversial. To better understand the mechanisms how E. coli overcomes harsh environments such as microgravity in space and to investigate whether these factors may induce pathogenic changes in E. coli that are potentially detrimental to astronauts, we conducted detailed genomics, transcriptomic and proteomic studies on E. coli that experienced 17 days of spaceflight. By comparing two flight strains LCT-EC52 and LCT-EC59 to a control strain LCT-EC106 that was cultured under the same temperature conditions on the ground, we identified metabolism changes, polymorphism changes, differentially expressed genes and proteins in the two flight strains. The flight strains differed from the control in the utilization of more than 30 carbon sources. Two single nucleotide polymorphisms (SNPs) and one deletion were identified in the flight strains. The expression level of more than 1000 genes altered in flight strains. Genes involved in chemotaxis, lipid metabolism and cell motility express differently. Moreover, the two flight strains also differed extensively from each other in terms of metabolism, transcriptome and proteome, indicating the impact of space environment on individual cells is heterogeneous and probably genotype-dependent. This study presents the first systematic profile of E. coli genome, transcriptome and proteome after spaceflight, which helps to elucidate the mechanism that controls the adaptation of microbes to the space

  6. Comparative sequence analyses of genome and transcriptome reveal novel transcripts and variants in the Asian elephant Elephas maximus.

    PubMed

    Reddy, Puli Chandramouli; Sinha, Ishani; Kelkar, Ashwin; Habib, Farhat; Pradhan, Saurabh J; Sukumar, Raman; Galande, Sanjeev

    2015-12-01

    The Asian elephant Elephas maximus and the African elephant Loxodonta africana that diverged 5-7 million years ago exhibit differences in their physiology, behaviour and morphology. A comparative genomics approach would be useful and necessary for evolutionary and functional genetic studies of elephants. We performed sequencing of E. maximus and map to L. africana at ~15X coverage. Through comparative sequence analyses, we have identified Asian elephant specific homozygous, non-synonymous single nucleotide variants (SNVs) that map to 1514 protein coding genes, many of which are involved in olfaction. We also present the first report of a high-coverage transcriptome sequence in E. maximus from peripheral blood lymphocytes. We have identified 103 novel protein coding transcripts and 66-long non-coding (lnc)RNAs. We also report the presence of 181 protein domains unique to elephants when compared to other Afrotheria species. Each of these findings can be further investigated to gain a better understanding of functional differences unique to elephant species, as well as those unique to elephantids in comparison with other mammals. This work therefore provides a valuable resource to explore the immense research potential of comparative analyses of transcriptome and genome sequences in the Asian elephant. PMID:26648035

  7. De novo assembly of a genome-wide transcriptome map of Vicia faba (L.) for transfer cell research

    PubMed Central

    Arun-Chinnappa, Kiruba S.; McCurdy, David W.

    2015-01-01

    Vicia faba (L.) is an important cool-season grain legume species used widely in agriculture but also in plant physiology research, particularly as an experimental model to study transfer cell (TC) development. TCs are specialized nutrient transport cells in plants, characterized by invaginated wall ingrowths with amplified plasma membrane surface area enriched with transporter proteins that facilitate nutrient transfer. Many TCs are formed by trans-differentiation from differentiated cells at apoplasmic/symplasmic boundaries in nutrient transport. Adaxial epidermal cells of isolated cotyledons can be induced to form functional TCs, thus providing a valuable experimental system to investigate genetic regulation of TC trans-differentiation. The genome of V. faba is exceedingly large (ca. 13 Gb), however, and limited genomic information is available for this species. To provide a resource for future transcript profiling of epidermal TC differentiation, we have undertaken de novo assembly of a genome-wide transcriptome map for V. faba. Illumina paired-end sequencing of total RNA pooled from different tissues and different stages, including isolated cotyledons induced to form epidermal TCs, generated 69.5 M reads, of which 65.8 M were used for assembly following trimming and quality control. Assembly using a De-Bruijn graph-based approach generated 21,297 contigs, of which 80.6% were successfully annotated against GO terms. The assembly was validated against known V. faba cDNAs held in GenBank, including transcripts previously identified as being specifically expressed in epidermal cells across TC trans-differentiation. This genome-wide transcriptome map therefore provides a valuable tool for future transcript profiling of epidermal TC trans-differentiation, and also enriches the genetic resources available for this important legume crop species. PMID:25914703

  8. De novo assembly of a genome-wide transcriptome map of Vicia faba (L.) for transfer cell research.

    PubMed

    Arun-Chinnappa, Kiruba S; McCurdy, David W

    2015-01-01

    Vicia faba (L.) is an important cool-season grain legume species used widely in agriculture but also in plant physiology research, particularly as an experimental model to study transfer cell (TC) development. TCs are specialized nutrient transport cells in plants, characterized by invaginated wall ingrowths with amplified plasma membrane surface area enriched with transporter proteins that facilitate nutrient transfer. Many TCs are formed by trans-differentiation from differentiated cells at apoplasmic/symplasmic boundaries in nutrient transport. Adaxial epidermal cells of isolated cotyledons can be induced to form functional TCs, thus providing a valuable experimental system to investigate genetic regulation of TC trans-differentiation. The genome of V. faba is exceedingly large (ca. 13 Gb), however, and limited genomic information is available for this species. To provide a resource for future transcript profiling of epidermal TC differentiation, we have undertaken de novo assembly of a genome-wide transcriptome map for V. faba. Illumina paired-end sequencing of total RNA pooled from different tissues and different stages, including isolated cotyledons induced to form epidermal TCs, generated 69.5 M reads, of which 65.8 M were used for assembly following trimming and quality control. Assembly using a De-Bruijn graph-based approach generated 21,297 contigs, of which 80.6% were successfully annotated against GO terms. The assembly was validated against known V. faba cDNAs held in GenBank, including transcripts previously identified as being specifically expressed in epidermal cells across TC trans-differentiation. This genome-wide transcriptome map therefore provides a valuable tool for future transcript profiling of epidermal TC trans-differentiation, and also enriches the genetic resources available for this important legume crop species. PMID:25914703

  9. Identification of large-scale genomic variation in cancer genomes using in silico reference models.

    PubMed

    Killcoyne, Sarah; Del Sol, Antonio

    2016-01-01

    Identifying large-scale structural variation in cancer genomes continues to be a challenge to researchers. Current methods rely on genome alignments based on a reference that can be a poor fit to highly variant and complex tumor genomes. To address this challenge we developed a method that uses available breakpoint information to generate models of structural variations. We use these models as references to align previously unmapped and discordant reads from a genome. By using these models to align unmapped reads, we show that our method can help to identify large-scale variations that have been previously missed. PMID:26264669

  10. Identification of large-scale genomic variation in cancer genomes using in silico reference models

    PubMed Central

    Killcoyne, Sarah; del Sol, Antonio

    2016-01-01

    Identifying large-scale structural variation in cancer genomes continues to be a challenge to researchers. Current methods rely on genome alignments based on a reference that can be a poor fit to highly variant and complex tumor genomes. To address this challenge we developed a method that uses available breakpoint information to generate models of structural variations. We use these models as references to align previously unmapped and discordant reads from a genome. By using these models to align unmapped reads, we show that our method can help to identify large-scale variations that have been previously missed. PMID:26264669

  11. Intron-genome size relationship on a large evolutionary scale.

    PubMed

    Vinogradov, A E

    1999-09-01

    The intron-genome size relationship was studied across a wide evolutionary range (from slime mold and yeast to human and maize), as well as the relationship between genome size and the ratio of intervening/coding sequence size. The average intron size is scaled to genome size with a slope of about one-fourth for the log-transformed values; i.e., on the global scale its increase in evolution is lower than the increase in genome size by four orders of magnitude. There are exceptions to the general trend. In baker's yeast introns are extraordinarily long for its genome size. Tetrapods also have longer introns than expected for their genome sizes. In teleost fish the mean intron size does not differ significantly, notwithstanding the differences in genome size. In contrast to previous reports, avian introns were not found to be significantly shorter than introns of mammals, although avian genomes are smaller than genomes of mammals on average by about a factor of 2.5. The extra-/intragenic ratio of noncoding DNA can be higher in fungi than in animals, notwithstanding the smaller fungal genomes. In vertebrates and invertebrates taken separately, this ratio is increasing as the increase in genome size. Two hypotheses are proposed to explain the variation in the extra-/intragenic ratio of noncoding DNA in organisms with similar numbers of genes: transition (dynamic) and equilibrium (static). According to the transition model, this variation arises with the rapid shift of genome size because the bulk of extragenic DNA can be changed more rapidly than the finely interspersed intron sequences. The equilibrium model assumes that this variation is a result of selective adjustment of genome size with constraints imposed on the intron size due to its putative link to chromatin structure (and constraints of the splicing machinery). PMID:10473779

  12. On the analysis of large-scale genomic structures.

    PubMed

    Oiwa, Nestor Norio; Goldman, Carla

    2005-01-01

    We apply methods from statistical physics (histograms, correlation functions, fractal dimensions, and singularity spectra) to characterize large-scale structure of the distribution of nucleotides along genomic sequences. We discuss the role of the extension of noncoding segments ("junk DNA") for the genomic organization, and the connection between the coding segment distribution and the high-eukaryotic chromatin condensation. The following sequences taken from GenBank were analyzed: complete genome of Xanthomonas campestri, complete genome of yeast, chromosome V of Caenorhabditis elegans, and human chromosome XVII around gene BRCA1. The results are compared with the random and periodic sequences and those generated by simple and generalized fractal Cantor sets. PMID:15858230

  13. Using Genome-Scale Models to Predict Biological Capabilities

    PubMed Central

    O’Brien, Edward J.; Monk, Jonathan M.; Palsson, Bernhard O.

    2015-01-01

    Constraint-based reconstruction and analysis (COBRA) methods at the genome-scale have been under development since the first whole genome sequences appeared in the mid-1990s. A few years ago this approach began to demonstrate the ability to predict a range of cellular functions including cellular growth capabilities on various substrates and the effect of gene knockouts at the genome-scale. Thus, much interest has developed in understanding and applying these methods to areas such as metabolic engineering, antibiotic design, and organismal and enzyme evolution. This primer will get you started. PMID:26000478

  14. The Mitochondrial Genome and Transcriptome of the Basal Dinoflagellate Hematodinium sp.: Character Evolution within the Highly Derived Mitochondrial Genomes of Dinoflagellates

    PubMed Central

    Gornik, S. G.; Waller, R. F.

    2012-01-01

    The sister phyla dinoflagellates and apicomplexans inherited a drastically reduced mitochondrial genome (mitochondrial DNA, mtDNA) containing only three protein-coding (cob, cox1, and cox3) genes and two ribosomal RNA (rRNA) genes. In apicomplexans, single copies of these genes are encoded on the smallest known mtDNA chromosome (6 kb). In dinoflagellates, however, the genome has undergone further substantial modifications, including massive genome amplification and recombination resulting in multiple copies of each gene and gene fragments linked in numerous combinations. Furthermore, protein-encoding genes have lost standard stop codons, trans-splicing of messenger RNAs (mRNAs) is required to generate complete cox3 transcripts, and extensive RNA editing recodes most genes. From taxa investigated to date, it is unclear when many of these unusual dinoflagellate mtDNA characters evolved. To address this question, we investigated the mitochondrial genome and transcriptome character states of the deep branching dinoflagellate Hematodinium sp. Genomic data show that like later-branching dinoflagellates Hematodinium sp. also contains an inflated, heavily recombined genome of multicopy genes and gene fragments. Although stop codons are also lacking for cox1 and cob, cox3 still encodes a conventional stop codon. Extensive editing of mRNAs also occurs in Hematodinium sp. The mtDNA of basal dinoflagellate Hematodinium sp. indicates that much of the mtDNA modification in dinoflagellates occurred early in this lineage, including genome amplification and recombination, and decreased use of standard stop codons. Trans-splicing, on the other hand, occurred after Hematodinium sp. diverged. Only RNA editing presents a nonlinear pattern of evolution in dinoflagellates as this process occurs in Hematodinium sp. but is absent in some later-branching taxa indicating that this process was either lost in some lineages or developed more than once during the evolution of the highly unusual

  15. Genomic and Transcriptomic Studies of an RDX (Hexahydro-1,3,5-Trinitro-1,3,5-Triazine)-Degrading Actinobacterium

    PubMed Central

    Chen, Hao-Ping; Zhu, Song-Hua; Casabon, Israël; Hallam, Steven J.; Crocker, Fiona H.; Mohn, William W.

    2012-01-01

    Whole-genome sequencing, transcriptomic analyses, and metabolic reconstruction were used to investigate Gordonia sp. strain KTR9's ability to catabolize a range of compounds, including explosives and steroids. Aspects of this mycolic acid-containing actinobacterium's catabolic potential were experimentally verified and compared with those of rhodococci and mycobacteria. PMID:22923396

  16. Genomic and transcriptomic studies of an RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine)-degrading actinobacterium.

    PubMed

    Chen, Hao-Ping; Zhu, Song-Hua; Casabon, Israël; Hallam, Steven J; Crocker, Fiona H; Mohn, William W; Indest, Karl J; Eltis, Lindsay D

    2012-11-01

    Whole-genome sequencing, transcriptomic analyses, and metabolic reconstruction were used to investigate Gordonia sp. strain KTR9's ability to catabolize a range of compounds, including explosives and steroids. Aspects of this mycolic acid-containing actinobacterium's catabolic potential were experimentally verified and compared with those of rhodococci and mycobacteria. PMID:22923396

  17. Complete Genome Sequences of Grapevine Yellow Speckle Viroid 1 and Hop Stunt Viroid Assembled from the Transcriptome of Ixeridium dentatum Plants

    PubMed Central

    Lee, Joong-Hwan; Lim, Seungmo; Lee, Seung-Won; Yoo, Ran Hee; Igori, Davaajargal; Zhao, Fumei; Yoon, Youngnam; Lee, Su-Heon

    2015-01-01

    Here, we report complete genome sequences of grapevine yellow speckle viroid 1 (GYSVd1) and hop stunt viroid (HSVd), members of the family Pospiviroidae, assembled from the transcriptome data generated from Ixeridium dentatum plants. To our knowledge, this is the first report of GYSVd1 and HSVd in I. dentatum. PMID:26514761

  18. Comparative Life Cycle Transcriptomics Revises Leishmania mexicana Genome Annotation and Links a Chromosome Duplication with Parasitism of Vertebrates

    PubMed Central

    Fiebig, Michael; Kelly, Steven; Gluenz, Eva

    2015-01-01

    Leishmania spp. are protozoan parasites that have two principal life cycle stages: the motile promastigote forms that live in the alimentary tract of the sandfly and the amastigote forms, which are adapted to survive and replicate in the harsh conditions of the phagolysosome of mammalian macrophages. Here, we used Illumina sequencing of poly-A selected RNA to characterise and compare the transcriptomes of L. mexicana promastigotes, axenic amastigotes and intracellular amastigotes. These data allowed the production of the first transcriptome evidence-based annotation of gene models for this species, including genome-wide mapping of trans-splice sites and poly-A addition sites. The revised genome annotation encompassed 9,169 protein-coding genes including 936 novel genes as well as modifications to previously existing gene models. Comparative analysis of gene expression across promastigote and amastigote forms revealed that 3,832 genes are differentially expressed between promastigotes and intracellular amastigotes. A large proportion of genes that were downregulated during differentiation to amastigotes were associated with the function of the motile flagellum. In contrast, those genes that were upregulated included cell surface proteins, transporters, peptidases and many uncharacterized genes, including 293 of the 936 novel genes. Genome-wide distribution analysis of the differentially expressed genes revealed that the tetraploid chromosome 30 is highly enriched for genes that were upregulated in amastigotes, providing the first evidence of a link between this whole chromosome duplication event and adaptation to the vertebrate host in this group. Peptide evidence for 42 proteins encoded by novel transcripts supports the idea of an as yet uncharacterised set of small proteins in Leishmania spp. with possible implications for host-pathogen interactions. PMID:26452044

  19. Comparative genomic and transcriptomic analysis revealed genetic characteristics related to solvent formation and xylose utilization in Clostridium acetobutylicum EA 2018

    PubMed Central

    2011-01-01

    Background Clostridium acetobutylicum, a gram-positive and spore-forming anaerobe, is a major strain for the fermentative production of acetone, butanol and ethanol. But a previously isolated hyper-butanol producing strain C. acetobutylicum EA 2018 does not produce spores and has greater capability of solvent production, especially for butanol, than the type strain C. acetobutylicum ATCC 824. Results Complete genome of C. acetobutylicum EA 2018 was sequenced using Roche 454 pyrosequencing. Genomic comparison with ATCC 824 identified many variations which may contribute to the hyper-butanol producing characteristics in the EA 2018 strain, including a total of 46 deletion sites and 26 insertion sites. In addition, transcriptomic profiling of gene expression in EA 2018 relative to that of ATCC824 revealed expression-level changes of several key genes related to solvent formation. For example, spo0A and adhEII have higher expression level, and most of the acid formation related genes have lower expression level in EA 2018. Interestingly, the results also showed that the variation in CEA_G2622 (CAC2613 in ATCC 824), a putative transcriptional regulator involved in xylose utilization, might accelerate utilization of substrate xylose. Conclusions Comparative analysis of C. acetobutylicum hyper-butanol producing strain EA 2018 and type strain ATCC 824 at both genomic and transcriptomic levels, for the first time, provides molecular-level understanding of non-sporulation, higher solvent production and enhanced xylose utilization in the mutant EA 2018. The information could be valuable for further genetic modification of C. acetobutylicum for more effective butanol production. PMID:21284892

  20. Minimally invasive genomic and transcriptomic profiling of visceral cancers by next-generation sequencing of circulating exosomes

    PubMed Central

    San Lucas, F. A.; Allenson, K.; Bernard, V.; Castillo, J.; Kim, D. U.; Ellis, K.; Ehli, E. A.; Davies, G. E.; Petersen, J. L.; Li, D.; Wolff, R.; Katz, M.; Varadhachary, G.; Wistuba, I.; Maitra, A.; Alvarez, H.

    2016-01-01

    Background The ability to perform comprehensive profiling of cancers at high resolution is essential for precision medicine. Liquid biopsies using shed exosomes provide high-quality nucleic acids to obtain molecular characterization, which may be especially useful for visceral cancers that are not amenable to routine biopsies. Patients and methods We isolated shed exosomes in biofluids from three patients with pancreaticobiliary cancers (two pancreatic, one ampullary). We performed comprehensive profiling of exoDNA and exoRNA by whole genome, exome and transcriptome sequencing using the Illumina HiSeq 2500 sequencer. We assessed the feasibility of calling copy number events, detecting mutational signatures and identifying potentially actionable mutations in exoDNA sequencing data, as well as expressed point mutations and gene fusions in exoRNA sequencing data. Results Whole-exome sequencing resulted in 95%–99% of the target regions covered at a mean depth of 133–490×. Genome-wide copy number profiles, and high estimates of tumor fractions (ranging from 56% to 82%), suggest robust representation of the tumor DNA within the shed exosomal compartment. Multiple actionable mutations, including alterations in NOTCH1 and BRCA2, were found in patient exoDNA samples. Further, RNA sequencing of shed exosomes identified the presence of expressed fusion genes, representing an avenue for elucidation of tumor neoantigens. Conclusions We have demonstrated high-resolution profiling of the genomic and transcriptomic landscapes of visceral cancers. A wide range of cancer-derived biomarkers could be detected within the nucleic acid cargo of shed exosomes, including copy number profiles, point mutations, insertions, deletions, gene fusions and mutational signatures. Liquid biopsies using shed exosomes has the potential to be used as a clinical tool for cancer diagnosis, therapeutic stratification and treatment monitoring, precluding the need for direct tumor sampling. PMID

  1. Genome-scale resources for Thermoanaerobacterium saccharolyticum

    DOE PAGESBeta

    Currie, Devin H.; Raman, Babu; Gowen, Christopher M.; Tschaplinski, Timothy J.; Land, Miriam L.; Brown, Steven D.; Covalla, Sean; Klingeman, Dawn Marie; Yang, Zamin Koo; Engle, Nancy L.; et al

    2015-06-26

    Thermoanaerobacterium saccharolyticum is a hemicellulose-degrading thermophilic anaerobe that was previously engineered to produce ethanol at high yield. For this research, a major project was undertaken to develop this organism into an industrial biocatalyst, but the lack of genome information and resources were recognized early on as a key limitation.

  2. Genomic and Transcriptomic Associations Identify a New Insecticide Resistance Phenotype for the Selective Sweep at the Cyp6g1 Locus of Drosophila melanogaster.

    PubMed

    Battlay, Paul; Schmidt, Joshua M; Fournier-Level, Alexandre; Robin, Charles

    2016-01-01

    Scans of the Drosophila melanogaster genome have identified organophosphate resistance loci among those with the most pronounced signature of positive selection. In this study, the molecular basis of resistance to the organophosphate insecticide azinphos-methyl was investigated using the Drosophila Genetic Reference Panel, and genome-wide association. Recently released full transcriptome data were used to extend the utility of the Drosophila Genetic Reference Panel resource beyond traditional genome-wide association studies to allow systems genetics analyses of phenotypes. We found that both genomic and transcriptomic associations independently identified Cyp6g1, a gene involved in resistance to DDT and neonicotinoid insecticides, as the top candidate for azinphos-methyl resistance. This was verified by transgenically overexpressing Cyp6g1 using natural regulatory elements from a resistant allele, resulting in a 6.5-fold increase in resistance. We also identified four novel candidate genes associated with azinphos-methyl resistance, all of which are involved in either regulation of fat storage, or nervous system development. In Cyp6g1, we find a demonstrable resistance locus, a verification that transcriptome data can be used to identify variants associated with insecticide resistance, and an overlap between peaks of a genome-wide association study, and a genome-wide selective sweep analysis. PMID:27317781

  3. Genomic and Transcriptomic Associations Identify a New Insecticide Resistance Phenotype for the Selective Sweep at the Cyp6g1 Locus of Drosophila melanogaster

    PubMed Central

    Battlay, Paul; Schmidt, Joshua M.; Fournier-Level, Alexandre; Robin, Charles

    2016-01-01

    Scans of the Drosophila melanogaster genome have identified organophosphate resistance loci among those with the most pronounced signature of positive selection. In this study, the molecular basis of resistance to the organophosphate insecticide azinphos-methyl was investigated using the Drosophila Genetic Reference Panel, and genome-wide association. Recently released full transcriptome data were used to extend the utility of the Drosophila Genetic Reference Panel resource beyond traditional genome-wide association studies to allow systems genetics analyses of phenotypes. We found that both genomic and transcriptomic associations independently identified Cyp6g1, a gene involved in resistance to DDT and neonicotinoid insecticides, as the top candidate for azinphos-methyl resistance. This was verified by transgenically overexpressing Cyp6g1 using natural regulatory elements from a resistant allele, resulting in a 6.5-fold increase in resistance. We also identified four novel candidate genes associated with azinphos-methyl resistance, all of which are involved in either regulation of fat storage, or nervous system development. In Cyp6g1, we find a demonstrable resistance locus, a verification that transcriptome data can be used to identify variants associated with insecticide resistance, and an overlap between peaks of a genome-wide association study, and a genome-wide selective sweep analysis. PMID:27317781

  4. The OME Framework for genome-scale systems biology

    SciTech Connect

    Palsson, Bernhard O.; Ebrahim, Ali; Federowicz, Steve

    2014-12-19

    The life sciences are undergoing continuous and accelerating integration with computational and engineering sciences. The biology that many in the field have been trained on may be hardly recognizable in ten to twenty years. One of the major drivers for this transformation is the blistering pace of advancements in DNA sequencing and synthesis. These advances have resulted in unprecedented amounts of new data, information, and knowledge. Many software tools have been developed to deal with aspects of this transformation and each is sorely needed [1-3]. However, few of these tools have been forced to deal with the full complexity of genome-scale models along with high throughput genome- scale data. This particular situation represents a unique challenge, as it is simultaneously necessary to deal with the vast breadth of genome-scale models and the dizzying depth of high-throughput datasets. It has been observed time and again that as the pace of data generation continues to accelerate, the pace of analysis significantly lags behind [4]. It is also evident that, given the plethora of databases and software efforts [5-12], it is still a significant challenge to work with genome-scale metabolic models, let alone next-generation whole cell models [13-15]. We work at the forefront of model creation and systems scale data generation [16-18]. The OME Framework was borne out of a practical need to enable genome-scale modeling and data analysis under a unified framework to drive the next generation of genome-scale biological models. Here we present the OME Framework. It exists as a set of Python classes. However, we want to emphasize the importance of the underlying design as an addition to the discussions on specifications of a digital cell. A great deal of work and valuable progress has been made by a number of communities [13, 19-24] towards interchange formats and implementations designed to achieve similar goals. While many software tools exist for handling genome-scale

  5. Pathway analysis of genome-wide association study and transcriptome data highlights new biological pathways in colorectal cancer.

    PubMed

    Quan, Baoku; Qi, Xingsi; Yu, Zhihui; Jiang, Yongshuai; Liao, Mingzhi; Wang, Guangyu; Feng, Rennan; Zhang, Liangcai; Chen, Zugen; Jiang, Qinghua; Liu, Guiyou

    2015-04-01

    Colorectal cancer (CRC) is a common malignancy that meets the definition of a complex disease. Genome-wide association study (GWAS) has identified several loci of weak predictive value in CRC, however, these do not fully explain the occurrence risk. Recently, gene set analysis has allowed enhanced interpretation of GWAS data in CRC, identifying a number of metabolic pathways as important for disease pathogenesis. Whether there are other important pathways involved in CRC, however, remains unclear. We present a systems analysis of KEGG pathways in CRC using (1) a human CRC GWAS dataset and (2) a human whole transcriptome CRC case-control expression dataset. Analysis of the GWAS dataset revealed significantly enriched KEGG pathways related to metabolism, immune system and diseases, cellular processes, environmental information processing, genetic information processing, and neurodegenerative diseases. Altered gene expression was confirmed in these pathways using the transcriptome dataset. Taken together, these findings not only confirm previous work in this area, but also highlight new biological pathways whose deregulation is critical for CRC. These results contribute to our understanding of disease-causing mechanisms and will prove useful for future genetic and functional studies in CRC. PMID:25362561

  6. Large-scale structure of genomic methylation patterns.

    PubMed

    Rollins, Robert A; Haghighi, Fatemeh; Edwards, John R; Das, Rajdeep; Zhang, Michael Q; Ju, Jingyue; Bestor, Timothy H

    2006-02-01

    The mammalian genome depends on patterns of methylated cytosines for normal function, but the relationship between genomic methylation patterns and the underlying sequence is unclear. We have characterized the methylation landscape of the human genome by global analysis of patterns of CpG depletion and by direct sequencing of 3073 unmethylated domains and 2565 methylated domains from human brain DNA. The genome was found to consist of short (<4 kb) unmethylated domains embedded in a matrix of long methylated domains. Unmethylated domains were enriched in promoters, CpG islands, and first exons, while methylated domains comprised interspersed and tandem-repeated sequences, exons other than first exons, and non-annotated single-copy sequences that are depleted in the CpG dinucleotide. The enrichment of regulatory sequences in the relatively small unmethylated compartment suggests that cytosine methylation constrains the effective size of the genome through the selective exposure of regulatory sequences. This buffers regulatory networks against changes in total genome size and provides an explanation for the C value paradox, which concerns the wide variations in genome size that scale independently of gene number. This suggestion is compatible with the finding that cytosine methylation is universal among large-genome eukaryotes, while many eukaryotes with genome sizes <5 x 10(8) bp do not methylate their DNA. PMID:16365381

  7. A blow to the fly - Lucilia cuprina draft genome and transcriptome to support advances in biology and biotechnology.

    PubMed

    Anstead, Clare A; Batterham, Philip; Korhonen, Pasi K; Young, Neil D; Hall, Ross S; Bowles, Vernon M; Richards, Stephen; Scott, Maxwell J; Gasser, Robin B

    2016-01-01

    The blow fly, Lucilia cuprina (Wiedemann, 1830) is a parasitic insect of major global economic importance. Maggots of this fly parasitize the skin of animal hosts, feed on excretions and tissues, and cause severe disease (flystrike or myiasis). Although there has been considerable research on L. cuprina over the years, little is understood about the molecular biology, biochemistry and genetics of this parasitic fly, as well as its relationship with its hosts and the disease that it causes. This situation might change with the recent report of the draft genome and transcriptome of this blow fly, which has given new and global insights into its biology, interactions with the host animal and aspects of insecticide resistance at the molecular level. This genomic resource will likely enable many fundamental and applied research areas in the future. The present article gives a background on L. cuprina and myiasis, a brief account of past and current treatment, prevention and control approaches, and provides a perspective on the impact that the L. cuprina genome should have on future research of this and related parasitic flies, and the design of new and improved interventions for myiasis. PMID:26944522

  8. Genome-Wide Host-Pathogen Interaction Unveiled by Transcriptomic Response of Diamondback Moth to Fungal Infection.

    PubMed

    Chu, Zhen-Jian; Wang, Yu-Jun; Ying, Sheng-Hua; Wang, Xiao-Wei; Feng, Ming-Guang

    2016-01-01

    Genome-wide insight into insect pest response to the infection of Beauveria bassiana (fungal insect pathogen) is critical for genetic improvement of fungal insecticides but has been poorly explored. We constructed three pairs of transcriptomes of Plutella xylostella larvae at 24, 36 and 48 hours post treatment of infection (hptI) and of control (hptC) for insight into the host-pathogen interaction at genomic level. There were 2143, 3200 and 2967 host genes differentially expressed at 24, 36 and 48 hptI/hptC respectively. These infection-responsive genes (~15% of the host genome) were enriched in various immune processes, such as complement and coagulation cascades, protein digestion and absorption, and drug metabolism-cytochrome P450. Fungal penetration into cuticle and host defense reaction began at 24 hptI, followed by most intensive host immune response at 36 hptI and attenuated immunity at 48 hptI. Contrastingly, 44% of fungal genes were differentially expressed in the infection course and enriched in several biological processes, such as antioxidant activity, peroxidase activity and proteolysis. There were 1636 fungal genes co-expressed during 24-48 hptI, including 116 encoding putative secretion proteins. Our results provide novel insights into the insect-pathogen interaction and help to probe molecular mechanisms involved in the fungal infection to the global pest. PMID:27043942

  9. Genome-Wide Host-Pathogen Interaction Unveiled by Transcriptomic Response of Diamondback Moth to Fungal Infection

    PubMed Central

    Chu, Zhen-Jian; Wang, Yu-Jun; Ying, Sheng-Hua; Wang, Xiao-Wei; Feng, Ming-Guang

    2016-01-01

    Genome-wide insight into insect pest response to the infection of Beauveria bassiana (fungal insect pathogen) is critical for genetic improvement of fungal insecticides but has been poorly explored. We constructed three pairs of transcriptomes of Plutella xylostella larvae at 24, 36 and 48 hours post treatment of infection (hptI) and of control (hptC) for insight into the host-pathogen interaction at genomic level. There were 2143, 3200 and 2967 host genes differentially expressed at 24, 36 and 48 hptI/hptC respectively. These infection-responsive genes (~15% of the host genome) were enriched in various immune processes, such as complement and coagulation cascades, protein digestion and absorption, and drug metabolism-cytochrome P450. Fungal penetration into cuticle and host defense reaction began at 24 hptI, followed by most intensive host immune response at 36 hptI and attenuated immunity at 48 hptI. Contrastingly, 44% of fungal genes were differentially expressed in the infection course and enriched in several biological processes, such as antioxidant activity, peroxidase activity and proteolysis. There were 1636 fungal genes co-expressed during 24–48 hptI, including 116 encoding putative secretion proteins. Our results provide novel insights into the insect-pathogen interaction and help to probe molecular mechanisms involved in the fungal infection to the global pest. PMID:27043942

  10. Complete Genome Sequence and Transcriptomic Analysis of the Novel Pathogen Elizabethkingia anophelis in Response to Oxidative Stress

    PubMed Central

    Li, Yingying; Liu, Yang; Chew, Su Chuen; Tay, Martin; Salido, May Margarette Santillan; Teo, Jeanette; Lauro, Federico M.; Givskov, Michael; Yang, Liang

    2015-01-01

    Elizabethkingia anophelis is an emerging pathogen that can cause life-threatening infections in neonates, severely immunocompromised and postoperative patients. The lack of genomic information on E. anophelis hinders our understanding of its mechanisms of pathogenesis. Here, we report the first complete genome sequence of E. anophelis NUHP1 and assess its response to oxidative stress. Elizabethkingia anophelis NUHP1 has a circular genome of 4,369,828 base pairs and 4,141 predicted coding sequences. Sequence analysis indicates that E. anophelis has well-developed systems for scavenging iron and stress response. Many putative virulence factors and antibiotic resistance genes were identified, underscoring potential host–pathogen interactions and antibiotic resistance. RNA-sequencing-based transcriptome profiling indicates that expressions of genes involved in synthesis of an yersiniabactin-like iron siderophore and heme utilization are highly induced as a protective mechanism toward oxidative stress caused by hydrogen peroxide treatment. Chrome azurol sulfonate assay verified that siderophore production of E. anophelis is increased in the presence of oxidative stress. We further showed that hemoglobin facilitates the growth, hydrogen peroxide tolerance, cell attachment, and biofilm formation of E. anophelis NUHP1. Our study suggests that siderophore production and heme uptake pathways might play essential roles in stress response and virulence of the emerging pathogen E. anophelis. PMID:26019164

  11. The Discovery of Novel Genomic, Transcriptomic, and Proteomic Biomarkers in Cardiovascular and Peripheral Vascular Disease: The State of the Art

    PubMed Central

    de Franciscis, Stefano; Metzinger, Laurent; Serra, Raffaele

    2016-01-01

    Cardiovascular disease (CD) and peripheral vascular disease (PVD) are leading causes of mortality and morbidity in western countries and also responsible of a huge burden in terms of disability, functional decline, and healthcare costs. Biomarkers are measurable biological elements that reflect particular physiological or pathological states or predisposition towards diseases and they are currently widely studied in medicine and especially in CD. In this context, biomarkers can also be used to assess the severity or the evolution of several diseases, as well as the effectiveness of particular therapies. Genomics, transcriptomics, and proteomics have opened new windows on disease phenomena and may permit in the next future an effective development of novel diagnostic and prognostic medicine in order to better prevent or treat CD. This review will consider the current evidence of novel biomarkers with clear implications in the improvement of risk assessment, prevention strategies, and medical decision making in the field of CD. PMID:27298828

  12. Genome-wide expression profiling of the transcriptomes of four Paulownia tomentosa accessions in response to drought.

    PubMed

    Dong, Yanpeng; Fan, Guoqiang; Deng, Minjie; Xu, Enkai; Zhao, Zhenli

    2014-10-01

    Paulownia tomentosa is an important foundation forest tree species in semiarid areas. The lack of genetic information hinders research into the mechanisms involved in its response to abiotic stresses. Here, short-read sequencing technology (Illumina) was used to de novo assemble the transcriptome on P. tomentosa. A total of 99,218 unigenes with a mean length of 949 nucleotides were assembled. 68,295 unigenes were selected and the functions of their products were predicted using Clusters of Orthologous Groups, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes annotations. Afterwards, hundreds of genes involved in drought response were identified. Twelve putative drought response genes were analyzed by quantitative real-time polymerase chain reaction. This study provides a dataset of genes and inherent biochemical pathways, which will help in understanding the mechanisms of the water-deficit response in P. tomentosa. To our knowledge, this is the first study to highlight the genetic makeup of P. tomentosa. PMID:25192670

  13. The Mediterranean scorpion Mesobuthus gibbosus (Scorpiones, Buthidae): transcriptome analysis and organization of the genome encoding chlorotoxin-like peptides

    PubMed Central

    2014-01-01

    Background Transcrof toxin genes of scorpion species have been published. Up to this moment, no information on the gene characterization of M. gibbosus is available. Results This study provides the first insight into gene expression in venom glands from M. gibbosus scorpion. A cDNA library was generated from the venom glands and subsequently analyzed (301 clones). Sequences from 177 high-quality ESTs were grouped as 48 Mgib sequences, of those 48 sequences, 40 (29 “singletons” and 11 “contigs”) correspond with one or more ESTs. We identified putative precursor sequences and were grouped them in different categories (39 unique transcripts, one with alternative reading frames), resulting in the identification of 12 new toxin-like and 5 antimicrobial precursors (transcripts). The analysis of the gene families revealed several new components categorized among various toxin families with effect on ion channels. Sequence analysis of a new KTx precursor provides evidence to validate a new KTx subfamily (α-KTx 27.x). A second part of this work involves the genomic organization of three Meg-chlorotoxin-like genes (ClTxs). Genomic DNA sequence reveals close similarities (presence of one same-phase intron) with the sole genomic organization of chlorotoxins ever reported (from M. martensii). Conclusions Transcriptome analysis is a powerful strategy that provides complete information of the gene expression and molecular diversity of the venom glands (telson). In this work, we generated the first catalogue of the gene expression and genomic organization of toxins from M. gibbosus. Our result represents a relevant contribution to the knowledge of toxin transcripts and complementary information related with other cell function proteins and venom peptide transcripts. The genomic organization of the chlorotoxin genes may help to understand the diversity of this gene family. PMID:24746279

  14. Genome-enabled transcriptomics reveals archaeal populations that drive nitrification in a deep-sea hydrothermal plume

    PubMed Central

    Baker, Brett J; Lesniewski, Ryan A; Dick, Gregory J

    2012-01-01

    Ammonia-oxidizing Archaea (AOA) are among the most abundant microorganisms in the oceans and have crucial roles in biogeochemical cycling of nitrogen and carbon. To better understand AOA inhabiting the deep sea, we obtained community genomic and transcriptomic data from ammonium-rich hydrothermal plumes in the Guaymas Basin (GB) and from surrounding deep waters of the Gulf of California. Among the most abundant and active lineages in the sequence data were marine group I (MGI) Archaea related to the cultured autotrophic ammonia-oxidizer, Nitrosopumilus maritimus. Assembly of MGI genomic fragments yielded 2.9 Mb of sequence containing seven 16S rRNA genes (95.4–98.4% similar to N. maritimus), including two near-complete genomes and several lower-abundance variants. Equal copy numbers of MGI 16S rRNA genes and ammonia monooxygenase genes and transcription of ammonia oxidation genes indicates that all of these genotypes actively oxidize ammonia. De novo genomic assembly revealed the functional potential of MGI populations and enhanced interpretation of metatranscriptomic data. Physiological distinction from N. maritimus is evident in the transcription of novel genes, including genes for urea utilization, suggesting an alternative source of ammonia. We were also able to determine which genotypes are most active in the plume. Transcripts involved in nitrification were more prominent in the plume and were among the most abundant transcripts in the community. These unique data sets reveal populations of deep-sea AOA thriving in the ammonium-rich GB that are related to surface types, but with key genomic and physiological differences. PMID:22695863

  15. Genome-Wide Transcriptome Directed Pathway Analysis of Maternal Pre-Eclampsia Susceptibility Genes

    PubMed Central

    Yong, Hannah E. J.; Melton, Phillip E.; Johnson, Matthew P.; Freed, Katy A.; Kalionis, Bill; Murthi, Padma; Brennecke, Shaun P.; Keogh, Rosemary J.; Moses, Eric K.

    2015-01-01

    Background Preeclampsia (PE) is a serious hypertensive pregnancy disorder with a significant genetic component. Numerous genetic studies, including our own, have yielded many susceptibility genes from distinct functional groups. Additionally, transcriptome profiling of tissues at the maternal-fetal interface has likewise yielded many differentially expressed genes. Often there is little overlap between these two approaches, although genes identified in both approaches are significantly associated with PE. We have thus taken a novel integrative bioinformatics approach of analysing pathways common to the susceptibility genes and the PE transcriptome. Methods Using Illumina Human Ht12v4 and Wg6v3 BeadChips, transcriptome profiling was conducted on n = 65 normotensive and n = 60 PE decidua basalis tissues collected at delivery. The R software package libraries lumi and limma were used to preprocess transcript data for pathway analysis. Pathways were analysed and constructed using Pathway Studio. We examined ten candidate genes, which are from these functional groups: activin/inhibin signalling—ACVR1, ACVR1C, ACVR2A, INHA, INHBB; structural components—COL4A1, COL4A2 and M1 family aminopeptidases—ERAP1, ERAP2 and LNPEP. Results/Conclusion Major common regulators/targets of these susceptibility genes identified were AGT, IFNG, IL6, INHBA, SERPINE1, TGFB1 and VEGFA. The top two categories of pathways associated with the susceptibility genes, which were significantly altered in the PE decidual transcriptome, were apoptosis and cell signaling (p < 0.001). Thus, susceptibility genes from distinct functional groups share similar downstream pathways through common regulators/targets, some of which are altered in PE. This study contributes to a better understanding of how susceptibility genes may interact in the development of PE. With this knowledge, more targeted functional analyses of PE susceptibility genes in these key pathways can be performed to examine their

  16. Transcriptome Sequencing and Genome-wide Association Analyses Reveal Lysosomal Function and Actin Cytoskeleton Remodeling in Schizophrenia and Bipolar Disorder

    PubMed Central

    Kim, Sanghyeon; Reimers, Mark; Bacanu, Silviu-Alin; Yu, Hui; Liu, Chunyu; Sun, Jingchun; Wang, Quan; Jia, Peilin; Xu, Fengping; Zhang, Yong; Kendler, Kenneth S.; Peng, Zhiyu; Chen, Xiangning

    2014-01-01

    Schizophrenia (SCZ) and bipolar disorder (BPD) are severe mental disorders with high heritability. Clinicians have long noticed the similarities of clinic symptoms between these disorders. In recent years, accumulating evidence indicates some shared genetic liabilities. However, what is shared remains elusive. In this study, we conducted whole transcriptome analysis of postmortem brain tissues (cingulate cortex) from SCZ, BPD and control subjects, and identified differentially expressed genes in these disorders. We found 105 and 153 genes differentially expressed in SCZ and BPD, respectively. By comparing the t-test scores, we found that many of the genes differentially expressed in SCZ and BPD are concordant in their expression level (q ≤ 0.01, 53 genes; q ≤ 0.05, 213 genes; q ≤ 0.1, 885 genes). Using genome-wide association data from the Psychiatric Genomics Consortium, we found that these differentially and concordantly expressed genes were enriched in association signals for both SCZ (p < 10−7 ) and BPD (p = 0.029). To our knowledge, this is the first time that a substantially large number of genes shows concordant expression and association for both SCZ and BPD. Pathway analyses of these genes indicated that they are involved in the lysosome, Fc gamma receptor mediated phagocytosis, regulation of actin skeleton pathways, along with several cancer pathways. Functional analyses of these genes revealed an interconnected pathway network centered on lysosomal function and the regulation of actin cytoskeleton. These pathways and their interacting network were principally confirmed by an independent transcriptome sequencing dataset of hippocampus. Dysregulation of lysosomal function and cytoskeleton remodeling has direct impacts on endocytosis, phagocytosis, exocytosis, vesicle trafficking, neuronal maturation and migration, neurite outgrowth, and synaptic density and plasticity, and different aspects of these processes have been implicated in SCZ and BPD

  17. Analysis of CATMA transcriptome data identifies hundreds of novel functional genes and improves gene models in the Arabidopsis genome

    PubMed Central

    Aubourg, Sébastien; Martin-Magniette, Marie-Laure; Brunaud, Véronique; Taconnat, Ludivine; Bitton, Frédérique; Balzergue, Sandrine; Jullien, Pauline E; Ingouff, Mathieu; Thareau, Vincent; Schiex, Thomas; Lecharny, Alain; Renou, Jean-Pierre

    2007-01-01

    Background Since the finishing of the sequencing of the Arabidopsis thaliana genome, the Arabidopsis community and the annotator centers have been working on the improvement of gene annotation at the structural and functional levels. In this context, we have used the large CATMA resource on the Arabidopsis transcriptome to search for genes missed by different annotation processes. Probes on the CATMA microarrays are specific gene sequence tags (GSTs) based on the CDS models predicted by the Eugene software. Among the 24 576 CATMA v2 GSTs, 677 are in regions considered as intergenic by the TAIR annotation. We analyzed the cognate transcriptome data in the CATMA resource and carried out data-mining to characterize novel genes and improve gene models. Results The statistical analysis of the results of more than 500 hybridized samples distributed among 12 organs provides an experimental validation for 465 novel genes. The hybridization evidence was confirmed by RT-PCR approaches for 88% of the 465 novel genes. Comparisons with the current annotation show that these novel genes often encode small proteins, with an average size of 137 aa. Our approach has also led to the improvement of pre-existing gene models through both the extension of 16 CDS and the identification of 13 gene models erroneously constituted of two merged CDS. Conclusion This work is a noticeable step forward in the improvement of the Arabidopsis genome annotation. We increased the number of Arabidopsis validated genes by 465 novel transcribed genes to which we associated several functional annotations such as expression profiles, sequence conservation in plants, cognate transcripts and protein motifs. PMID:17980019

  18. Reconstructing genome-wide regulatory network of E. coli using transcriptome data and predicted transcription factor activities

    PubMed Central

    2011-01-01

    Background Gene regulatory networks play essential roles in living organisms to control growth, keep internal metabolism running and respond to external environmental changes. Understanding the connections and the activity levels of regulators is important for the research of gene regulatory networks. While relevance score based algorithms that reconstruct gene regulatory networks from transcriptome data can infer genome-wide gene regulatory networks, they are unfortunately prone to false positive results. Transcription factor activities (TFAs) quantitatively reflect the ability of the transcription factor to regulate target genes. However, classic relevance score based gene regulatory network reconstruction algorithms use models do not include the TFA layer, thus missing a key regulatory element. Results This work integrates TFA prediction algorithms with relevance score based network reconstruction algorithms to reconstruct gene regulatory networks with improved accuracy over classic relevance score based algorithms. This method is called Gene expression and Transcription factor activity based Relevance Network (GTRNetwork). Different combinations of TFA prediction algorithms and relevance score functions have been applied to find the most efficient combination. When the integrated GTRNetwork method was applied to E. coli data, the reconstructed genome-wide gene regulatory network predicted 381 new regulatory links. This reconstructed gene regulatory network including the predicted new regulatory links show promising biological significances. Many of the new links are verified by known TF binding site information, and many other links can be verified from the literature and databases such as EcoCyc. The reconstructed gene regulatory network is applied to a recent transcriptome analysis of E. coli during isobutanol stress. In addition to the 16 significantly changed TFAs detected in the original paper, another 7 significantly changed TFAs have been detected by

  19. GRAT--genome-scale rapid alignment tool.

    PubMed

    Kindlund, Ellen; Tammi, Martti T; Arner, Erik; Nilsson, Daniel; Andersson, Björn

    2007-04-01

    Modern alignment methods designed to work rapidly and efficiently with large datasets often do so at the cost of method sensitivity. To overcome this, we have developed a novel alignment program, GRAT, built to accurately align short, highly similar DNA sequences. The program runs rapidly and requires no more memory and CPU power than a desktop computer. In addition, specificity is ensured by statistically separating the true alignments from spurious matches using phred quality values. An efficient separation is especially important when searching large datasets and whenever there are repeats present in the dataset. Results are superior in comparison to widely used existing software, and analysis of two large genomic datasets show the usefulness and scalability of the algorithm. PMID:17292508

  20. Transcriptome Analysis of Kiwifruit (Actinidia chinensis) Bark in Response to Armoured Scale Insect (Hemiberlesia lataniae) Feeding

    PubMed Central

    Hill, M. Garry; Wurms, Kirstin V.; Davy, Marcus W.; Gould, Elaine; Allan, Andrew; Mauchline, Nicola A.; Luo, Zhiwei; Ah Chee, Annette; Stannard, Kate; Storey, Roy D.; Rikkerink, Erik H.

    2015-01-01

    The kiwifruit cultivar Actinidia chinensis ‘Hort16A’ is resistant to the polyphagous armoured scale insect pest Hemiberlesia lataniae (Hemiptera: Diaspididae). A cDNA microarray consisting of 17,512 unigenes selected from over 132,000 expressed sequence tags (ESTs) was used to measure the transcriptomic profile of the A. chinensis ‘Hort16A’ canes in response to a controlled infestation of H. lataniae. After 2 days, 272 transcripts were differentially expressed. After 7 days, 5,284 (30%) transcripts were differentially expressed. The transcripts were grouped into 22 major functional categories using MapMan software. After 7 days, transcripts associated with photosynthesis (photosystem II) were significantly down-regulated, while those associated with secondary metabolism were significantly up-regulated. A total of 643 transcripts associated with response to stress were differentially expressed. This included biotic stress-related transcripts orthologous with pathogenesis related proteins, the phenylpropanoid pathway, NBS-LRR (R) genes, and receptor-like kinase–leucine rich repeat signalling proteins. While transcriptional studies are not conclusive in their own right, results were suggestive of a defence response involving both ETI and PTI, with predominance of the SA signalling pathway. Exogenous application of an SA-mimic decreased H. lataniae growth on A. chinensis ‘Hort16A’ plants in two laboratory experiments. PMID:26571404

  1. Genome-wide characterization of adaptation and speciation in tiger swallowtail butterflies using de novo transcriptome assemblies.

    PubMed

    Zhang, Wei; Kunte, Krushnamegh; Kronforst, Marcus R

    2013-01-01

    Hybrid speciation appears to be rare in animals, yet characterization of possible examples offers to shed light on the genomic consequences of this unique phenomenon, as well as more general processes such as the role of adaptation in speciation. Here, we first generate transcriptome assemblies for a putative hybrid butterfly species, Papilio appalachiensis, its parental species, P. glaucus and P. canadensis, and an outgroup, P. polytes. Then, we use these data to infer genome-wide patterns of introgression and genomic mosaicism using both phylogenetic and population genetic approaches. Our results reveal that there is little genetic divergence among all three of the focal species, but the subset of gene trees that strongly support a specific tree topology suggest widespread sharing of genetic variation between P. appalachiensis and both parental species, likely as a result of hybrid speciation. We also find evidence for substantial shared genetic variation between P. glaucus and P. canadensis, which may be due to gene flow or ancestral variation. Consistent with previous work, we show that P. applachiensis is more similar to P. canadensis at Z-linked genes and more similar to P. glaucus at mitochondrial genes. We also identify a variety of targets of adaptive evolution, which appear to be enriched for traits that are likely to be important in the evolution of this butterfly system, such as pigmentation, hormone sensitivity, developmental processes, and cuticle formation. Overall, our results provide a genome-wide portrait of divergence and introgression associated with adaptation and speciation in an iconic butterfly radiation. PMID:23737327

  2. T. cacao Transcriptome Sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To compliment the T. cacao genome sequencing initiative and to build a reference set of expressed genes for functional studies, a broad and state-of-the-art approach to transcriptome sequencing is underway. Using newly optimized methods, transcriptome sequencing libraries were prepared from RNA of o...

  3. Symbiodinium transcriptomes: genome insights into the dinoflagellate symbionts of reef-building corals.

    PubMed

    Bayer, Till; Aranda, Manuel; Sunagawa, Shinichi; Yum, Lauren K; Desalvo, Michael K; Lindquist, Erika; Coffroth, Mary Alice; Voolstra, Christian R; Medina, Mónica

    2012-01-01

    Dinoflagellates are unicellular algae that are ubiquitously abundant in aquatic environments. Species of the genus Symbiodinium form symbiotic relationships with reef-building corals and other marine invertebrates. Despite their ecologic importance, little is known about the genetics of dinoflagellates in general and Symbiodinium in particular. Here, we used 454 sequencing to generate transcriptome data from two Symbiodinium species from different clades (clade A and clade B). With more than 56,000 assembled sequences per species, these data represent the largest transcriptomic resource for dinoflagellates to date. Our results corroborate previous observations that dinoflagellates possess the complete nucleosome machinery. We found a complete set of core histones as well as several H3 variants and H2A.Z in one species. Furthermore, transcriptome analysis points toward a low number of transcription factors in Symbiodinium spp. that also differ in the distribution of DNA-binding domains relative to other eukaryotes. In particular the cold shock domain was predominant among transcription factors. Additionally, we found a high number of antioxidative genes in comparison to non-symbiotic but evolutionary related organisms. These findings might be of relevance in the context of the role that Symbiodinium spp. play as coral symbionts.Our data represent the most comprehensive dinoflagellate EST data set to date. This study provides a comprehensive resource to further analyze the genetic makeup, metabolic capacities, and gene repertoire of Symbiodinium and dinoflagellates. Overall, our findings indicate that Symbiodinium possesses some unique characteristics, in particular the transcriptional regulation in Symbiodinium may differ from the currently known mechanisms of eukaryotic gene regulation. PMID:22529998

  4. Salivary Genomics, Transcriptomics and Proteomics: The Emerging Concept of the Oral Ecosystem and their Use in the Early Diagnosis of Cancer and other Diseases

    PubMed Central

    Fábián, T.K; Fejérdy, P; Csermely, P

    2008-01-01

    There is an increasingly growing interest world-wide for the genomics, transcriptomics and proteomics of saliva and the oral cavity, since they provide a non-invasive source of unprecedently rich genetic information. The complexity of oral systems biology goes much beyond the human genome, transcriptome and proteome revealed by oral mucosal cells, gingival crevicular fluid, and saliva, and includes the complexity of the oral microbiota, the symbiotic assembly of bacterial, fungal and other microbial flora in the oral cavity. In our review we summarize the recent information on oral genomics, transcriptomics and proteomics, of both human and microbial origin. We also give an introduction and practical advice on sample collection, handling and storage for analysis. Finally, we show the usefulness of salivary and oral genomics in early diagnosis of cancer, as well as in uncovering other systemic diseases, infections and oral disorders. We close the review by highlighting a number of possible exploratory pathways in this emerging, hot research field. PMID:19424479

  5. From genes to milk: Genomic organization and epigenetic regulation of the mammary transcriptome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Even in genomes lacking operons, a gene's position in the genome influences its potential for expression. The mechanisms by which adjacent genes are co-expressed are still not completely understood. Using lactation and the mammary gland as a model system, we explore the hypothesis that chromatin sta...

  6. Territorial Polymers and Large Scale Genome Organization

    NASA Astrophysics Data System (ADS)

    Grosberg, Alexander

    2012-02-01

    Chromatin fiber in interphase nucleus represents effectively a very long polymer packed in a restricted volume. Although polymer models of chromatin organization were considered, most of them disregard the fact that DNA has to stay not too entangled in order to function properly. One polymer model with no entanglements is the melt of unknotted unconcatenated rings. Extensive simulations indicate that rings in the melt at large length (monomer numbers) N approach the compact state, with gyration radius scaling as N^1/3, suggesting every ring being compact and segregated from the surrounding rings. The segregation is consistent with the known phenomenon of chromosome territories. Surface exponent β (describing the number of contacts between neighboring rings scaling as N^β) appears only slightly below unity, β 0.95. This suggests that the loop factor (probability to meet for two monomers linear distance s apart) should decay as s^-γ, where γ= 2 - β is slightly above one. The later result is consistent with HiC data on real human interphase chromosomes, and does not contradict to the older FISH data. The dynamics of rings in the melt indicates that the motion of one ring remains subdiffusive on the time scale well above the stress relaxation time.

  7. Roary: rapid large-scale prokaryote pan genome analysis

    PubMed Central

    Page, Andrew J.; Cummins, Carla A.; Hunt, Martin; Wong, Vanessa K.; Reuter, Sandra; Holden, Matthew T.G.; Fookes, Maria; Falush, Daniel; Keane, Jacqueline A.; Parkhill, Julian

    2015-01-01

    Summary: A typical prokaryote population sequencing study can now consist of hundreds or thousands of isolates. Interrogating these datasets can provide detailed insights into the genetic structure of prokaryotic genomes. We introduce Roary, a tool that rapidly builds large-scale pan genomes, identifying the core and accessory genes. Roary makes construction of the pan genome of thousands of prokaryote samples possible on a standard desktop without compromising on the accuracy of results. Using a single CPU Roary can produce a pan genome consisting of 1000 isolates in 4.5 hours using 13 GB of RAM, with further speedups possible using multiple processors. Availability and implementation: Roary is implemented in Perl and is freely available under an open source GPLv3 license from http://sanger-pathogens.github.io/Roary Contact: roary@sanger.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26198102

  8. The Transcriptome of the Reference Potato Genome Solanum tuberosum Group Phureja Clone DM1-3 516R44

    PubMed Central

    Massa, Alicia N.; Childs, Kevin L.; Lin, Haining; Bryan, Glenn J.; Giuliano, Giovanni; Buell, C. Robin

    2011-01-01

    Advances in molecular breeding in potato have been limited by its complex biological system, which includes vegetative propagation, autotetraploidy, and extreme heterozygosity. The availability of the potato genome and accompanying gene complement with corresponding gene structure, location, and functional annotation are powerful resources for understanding this complex plant and advancing molecular breeding efforts. Here, we report a reference for the potato transcriptome using 32 tissues and growth conditions from the doubled monoploid Solanum tuberosum Group Phureja clone DM1-3 516R44 for which a genome sequence is available. Analysis of greater than 550 million RNA-Seq reads permitted the detection and quantification of expression levels of over 22,000 genes. Hierarchical clustering and principal component analyses captured the biological variability that accounts for gene expression differences among tissues suggesting tissue-specific gene expression, and genes with tissue or condition restricted expression. Using gene co-expression network analysis, we identified 18 gene modules that represent tissue-specific transcriptional networks of major potato organs and developmental stages. This information provides a powerful resource for potato research as well as studies on other members of the Solanaceae family. PMID:22046362

  9. Analysis of the Phlebiopsis gigantea Genome, Transcriptome and Secretome Provides Insight into Its Pioneer Colonization Strategies of Wood

    DOE PAGESBeta

    Hori, Chiaki; Ishida, Takuya; Igarashi, Kiyohiko; Samejima, Masahiro; Suzuki, Hitoshi; Master, Emma; Ferreira, Patricia; Ruiz-Dueñas, Francisco J.; Held, Benjamin; Canessa, Paulo; et al

    2014-12-04

    Collectively classified as white-rot fungi, certain basidiomycetes efficiently degrade the major structural polymers of wood cell walls. A small subset of these Agaricomycetes, exemplified by Phlebiopsis gigantea, is capable of colonizing freshly exposed conifer sapwood despite its high content of extractives, which retards the establishment of other fungal species. The mechanism(s) by which P. gigantea tolerates and metabolizes resinous compounds have not been explored. Here, we report the annotated P. gigantea genome and compare profiles of its transcriptome and secretome when cultured on freshcut versus solvent-extracted loblolly pine wood. The P. gigantea genome contains a conventional repertoire of hydrolase genesmore » involved in cellulose/hemicellulose degradation, whose patterns of expression were relatively unperturbed by the absence of extractives. The expression of genes typically ascribed to lignin degradation was also largely unaffected. In contrast, genes likely involved in the transformation and detoxification of wood extractives were highly induced in its presence. Their products included an ABC transporter, lipases, cytochrome P450s, glutathione S-transferase and aldehyde dehydrogenase. Other regulated genes of unknown function and several constitutively expressed genes are also likely involved in P. gigantea’s extractives metabolism. These results contribute to our fundamental understanding of pioneer colonization of conifer wood and provide insight into the diverse chemistries employed by fungi in carbon cycling processes.« less

  10. Analysis of the Phlebiopsis gigantea Genome, Transcriptome and Secretome Provides Insight into Its Pioneer Colonization Strategies of Wood

    PubMed Central

    Hori, Chiaki; Ishida, Takuya; Igarashi, Kiyohiko; Samejima, Masahiro; Suzuki, Hitoshi; Master, Emma; Ferreira, Patricia; Ruiz-Dueñas, Francisco J.; Held, Benjamin; Canessa, Paulo; Larrondo, Luis F.; Schmoll, Monika; Druzhinina, Irina S.; Kubicek, Christian P.; Gaskell, Jill A.; Kersten, Phil; St. John, Franz; Glasner, Jeremy; Sabat, Grzegorz; Splinter BonDurant, Sandra; Syed, Khajamohiddin; Yadav, Jagjit; Mgbeahuruike, Anthony C.; Kovalchuk, Andriy; Asiegbu, Fred O.; Lackner, Gerald; Hoffmeister, Dirk; Rencoret, Jorge; Gutiérrez, Ana; Sun, Hui; Lindquist, Erika; Barry, Kerrie; Riley, Robert; Grigoriev, Igor V.; Henrissat, Bernard; Kües, Ursula; Berka, Randy M.; Martínez, Angel T.; Covert, Sarah F.; Blanchette, Robert A.; Cullen, Daniel

    2014-01-01

    Collectively classified as white-rot fungi, certain basidiomycetes efficiently degrade the major structural polymers of wood cell walls. A small subset of these Agaricomycetes, exemplified by Phlebiopsis gigantea, is capable of colonizing freshly exposed conifer sapwood despite its high content of extractives, which retards the establishment of other fungal species. The mechanism(s) by which P. gigantea tolerates and metabolizes resinous compounds have not been explored. Here, we report the annotated P. gigantea genome and compare profiles of its transcriptome and secretome when cultured on fresh-cut versus solvent-extracted loblolly pine wood. The P. gigantea genome contains a conventional repertoire of hydrolase genes involved in cellulose/hemicellulose degradation, whose patterns of expression were relatively unperturbed by the absence of extractives. The expression of genes typically ascribed to lignin degradation was also largely unaffected. In contrast, genes likely involved in the transformation and detoxification of wood extractives were highly induced in its presence. Their products included an ABC transporter, lipases, cytochrome P450s, glutathione S-transferase and aldehyde dehydrogenase. Other regulated genes of unknown function and several constitutively expressed genes are also likely involved in P. gigantea's extractives metabolism. These results contribute to our fundamental understanding of pioneer colonization of conifer wood and provide insight into the diverse chemistries employed by fungi in carbon cycling processes. PMID:25474575

  11. Analysis of the Phlebiopsis gigantea Genome, Transcriptome and Secretome Provides Insight into Its Pioneer Colonization Strategies of Wood

    SciTech Connect

    Hori, Chiaki; Ishida, Takuya; Igarashi, Kiyohiko; Samejima, Masahiro; Suzuki, Hitoshi; Master, Emma; Ferreira, Patricia; Ruiz-Dueñas, Francisco J.; Held, Benjamin; Canessa, Paulo; Larrondo, Luis F.; Schmoll, Monika; Druzhinina, Irina S.; Kubicek, Christian P.; Gaskell, Jill A.; Kersten, Phil; St. John, Franz; Glasner, Jeremy; Sabat, Grzegorz; Splinter BonDurant, Sandra; Syed, Khajamohiddin; Yadav, Jagjit; Mgbeahuruike, Anthony C.; Kovalchuk, Andriy; Asiegbu, Fred O.; Lackner, Gerald; Hoffmeister, Dirk; Rencoret, Jorge; Gutiérrez, Ana; Sun, Hui; Lindquist, Erika; Barry, Kerrie; Riley, Robert; Grigoriev, Igor V.; Henrissat, Bernard; Berka, Randy M.; Martínez, Angel T.; Covert, Sarah F.; Blanchette, Robert A.; Cullen, Daniel; Copenhaver, Gregory P.

    2014-12-04

    Collectively classified as white-rot fungi, certain basidiomycetes efficiently degrade the major structural polymers of wood cell walls. A small subset of these Agaricomycetes, exemplified by Phlebiopsis gigantea, is capable of colonizing freshly exposed conifer sapwood despite its high content of extractives, which retards the establishment of other fungal species. The mechanism(s) by which P. gigantea tolerates and metabolizes resinous compounds have not been explored. Here, we report the annotated P. gigantea genome and compare profiles of its transcriptome and secretome when cultured on freshcut versus solvent-extracted loblolly pine wood. The P. gigantea genome contains a conventional repertoire of hydrolase genes involved in cellulose/hemicellulose degradation, whose patterns of expression were relatively unperturbed by the absence of extractives. The expression of genes typically ascribed to lignin degradation was also largely unaffected. In contrast, genes likely involved in the transformation and detoxification of wood extractives were highly induced in its presence. Their products included an ABC transporter, lipases, cytochrome P450s, glutathione S-transferase and aldehyde dehydrogenase. Other regulated genes of unknown function and several constitutively expressed genes are also likely involved in P. gigantea’s extractives metabolism. These results contribute to our fundamental understanding of pioneer colonization of conifer wood and provide insight into the diverse chemistries employed by fungi in carbon cycling processes.

  12. Genomic Organization, Transcriptomic Analysis, and Functional Characterization of Avian α- and β-Keratins in Diverse Feather Forms

    PubMed Central

    Fan, Wen-Lang; Yan, Jie; Chen, Chih-Kuan; Lai, Yu-Ting; Wu, Siao-Man; Mao, Chi-Tang; Chen, Jun-Jie; Lu, Mei-Yeh Jade; Ho, Meng-Ru; Widelitz, Randall B.; Chen, Chih-Feng; Chuong, Cheng-Ming; Li, Wen-Hsiung

    2014-01-01

    Feathers are hallmark avian integument appendages, although they were also present on theropods. They are composed of flexible corneous materials made of α- and β-keratins, but their genomic organization and their functional roles in feathers have not been well studied. First, we made an exhaustive search of α- and β-keratin genes in the new chicken genome assembly (Galgal4). Then, using transcriptomic analysis, we studied α- and β-keratin gene expression patterns in five types of feather epidermis. The expression patterns of β-keratin genes were different in different feather types, whereas those of α-keratin genes were less variable. In addition, we obtained extensive α- and β-keratin mRNA in situ hybridization data, showing that α-keratins and β-keratins are preferentially expressed in different parts of the feather components. Together, our data suggest that feather morphological and structural diversity can largely be attributed to differential combinations of α- and β-keratin genes in different intrafeather regions and/or feather types from different body parts. The expression profiles provide new insights into the evolutionary origin and diversification of feathers. Finally, functional analysis using mutant chicken keratin forms based on those found in the human α-keratin mutation database led to abnormal phenotypes. This demonstrates that the chicken can be a convenient model for studying the molecular biology of human keratin-based diseases. PMID:25152353

  13. Analysis of the Phlebiopsis gigantea genome, transcriptome and secretome provides insight into its pioneer colonization strategies of wood.

    PubMed

    Hori, Chiaki; Ishida, Takuya; Igarashi, Kiyohiko; Samejima, Masahiro; Suzuki, Hitoshi; Master, Emma; Ferreira, Patricia; Ruiz-Dueñas, Francisco J; Held, Benjamin; Canessa, Paulo; Larrondo, Luis F; Schmoll, Monika; Druzhinina, Irina S; Kubicek, Christian P; Gaskell, Jill A; Kersten, Phil; St John, Franz; Glasner, Jeremy; Sabat, Grzegorz; Splinter BonDurant, Sandra; Syed, Khajamohiddin; Yadav, Jagjit; Mgbeahuruike, Anthony C; Kovalchuk, Andriy; Asiegbu, Fred O; Lackner, Gerald; Hoffmeister, Dirk; Rencoret, Jorge; Gutiérrez, Ana; Sun, Hui; Lindquist, Erika; Barry, Kerrie; Riley, Robert; Grigoriev, Igor V; Henrissat, Bernard; Kües, Ursula; Berka, Randy M; Martínez, Angel T; Covert, Sarah F; Blanchette, Robert A; Cullen, Daniel

    2014-12-01

    Collectively classified as white-rot fungi, certain basidiomycetes efficiently degrade the major structural polymers of wood cell walls. A small subset of these Agaricomycetes, exemplified by Phlebiopsis gigantea, is capable of colonizing freshly exposed conifer sapwood despite its high content of extractives, which retards the establishment of other fungal species. The mechanism(s) by which P. gigantea tolerates and metabolizes resinous compounds have not been explored. Here, we report the annotated P. gigantea genome and compare profiles of its transcriptome and secretome when cultured on fresh-cut versus solvent-extracted loblolly pine wood. The P. gigantea genome contains a conventional repertoire of hydrolase genes involved in cellulose/hemicellulose degradation, whose patterns of expression were relatively unperturbed by the absence of extractives. The expression of genes typically ascribed to lignin degradation was also largely unaffected. In contrast, genes likely involved in the transformation and detoxification of wood extractives were highly induced in its presence. Their products included an ABC transporter, lipases, cytochrome P450s, glutathione S-transferase and aldehyde dehydrogenase. Other regulated genes of unknown function and several constitutively expressed genes are also likely involved in P. gigantea's extractives metabolism. These results contribute to our fundamental understanding of pioneer colonization of conifer wood and provide insight into the diverse chemistries employed by fungi in carbon cycling processes. PMID:25474575

  14. Integration of transcriptomic and genomic data suggests candidate mechanisms for APOE4-mediated pathogenic action in Alzheimer’s disease

    PubMed Central

    Caberlotto, Laura; Marchetti, Luca; Lauria, Mario; Scotti, Marco; Parolo, Silvia

    2016-01-01

    Among the genetic factors known to increase the risk of late onset Alzheimer’s diseases (AD), the presence of the apolipoproteine e4 (APOE4) allele has been recognized as the one with the strongest effect. However, despite decades of research, the pathogenic role of APOE4 in Alzheimer’s disease has not been clearly elucidated yet. In order to investigate the pathogenic action of APOE4, we applied a systems biology approach to the analysis of transcriptomic and genomic data of APOE44 vs. APOE33 allele carriers affected by Alzheimer’s disease. Network analysis combined with a novel technique for biomarker computation allowed the identification of an alteration in aging-associated processes such as inflammation, oxidative stress and metabolic pathways, indicating that APOE4 possibly accelerates pathological processes physiologically induced by aging. Subsequent integration with genomic data indicates that the Notch pathway could be the nodal molecular mechanism altered in APOE44 allele carriers with Alzheimer’s disease. Interestingly, PSEN1 and APP, genes whose mutation are known to be linked to early onset Alzheimer’s disease, are closely linked to this pathway. In conclusion, APOE4 role on inflammation and oxidation through the Notch signaling pathway could be crucial in elucidating the risk factors of Alzheimer’s disease. PMID:27585646

  15. Integration of transcriptomic and genomic data suggests candidate mechanisms for APOE4-mediated pathogenic action in Alzheimer's disease.

    PubMed

    Caberlotto, Laura; Marchetti, Luca; Lauria, Mario; Scotti, Marco; Parolo, Silvia

    2016-01-01

    Among the genetic factors known to increase the risk of late onset Alzheimer's diseases (AD), the presence of the apolipoproteine e4 (APOE4) allele has been recognized as the one with the strongest effect. However, despite decades of research, the pathogenic role of APOE4 in Alzheimer's disease has not been clearly elucidated yet. In order to investigate the pathogenic action of APOE4, we applied a systems biology approach to the analysis of transcriptomic and genomic data of APOE44 vs. APOE33 allele carriers affected by Alzheimer's disease. Network analysis combined with a novel technique for biomarker computation allowed the identification of an alteration in aging-associated processes such as inflammation, oxidative stress and metabolic pathways, indicating that APOE4 possibly accelerates pathological processes physiologically induced by aging. Subsequent integration with genomic data indicates that the Notch pathway could be the nodal molecular mechanism altered in APOE44 allele carriers with Alzheimer's disease. Interestingly, PSEN1 and APP, genes whose mutation are known to be linked to early onset Alzheimer's disease, are closely linked to this pathway. In conclusion, APOE4 role on inflammation and oxidation through the Notch signaling pathway could be crucial in elucidating the risk factors of Alzheimer's disease. PMID:27585646

  16. Whipworm genome and dual-species transcriptome analyses provide molecular insights into an intimate host-parasite interaction

    PubMed Central

    Nichol, Sarah; Tracey, Alan; Holroyd, Nancy; Cotton, James A.; Stanley, Eleanor J.; Zarowiecki, Magdalena; Liu, Jimmy Z.; Huckvale, Thomas; Cooper, Philip J.; Grencis, Richard K.; Berriman, Matthew

    2014-01-01

    Whipworms are common soil-transmitted helminths that cause debilitating chronic infections in man. These nematodes are only distantly related to Caenorhabditis elegans and have evolved to occupy an unusual niche, tunneling through epithelial cells of the large intestine. Here we present the genome sequences of the human-infective Trichuris trichiura and the murine laboratory model T. muris. Based on whole transcriptome analyses we identify many genes that are expressed in a gender- or life stage-specific manner and characterise the transcriptional landscape of a morphological region with unique biological adaptations, namely bacillary band and stichosome, found only in whipworms and related parasites. Using RNAseq data from whipworm-infected mice we describe the regulated Th1-like immune response of the chronically infected cecum in unprecedented detail. In silico screening identifies numerous potential new drug targets against trichuriasis. Together, these genomes and associated functional data elucidate key aspects of the molecular host-parasite interactions that define chronic whipworm infection. PMID:24929830

  17. Genomic and transcriptomic insights into the cytochrome P450 monooxygenase gene repertoire in the rice pest brown planthopper, Nilaparvata lugens.

    PubMed

    Lao, Shu-Hua; Huang, Xiao-Hui; Huang, Hai-Jian; Liu, Cheng-Wen; Zhang, Chuan-Xi; Bao, Yan-Yuan

    2015-11-01

    The cytochrome P450 monooxygenase (P450) gene family is one of the most abundant eukaryotic gene families that encode detoxification enzymes. In this study, we identified an abundance of P450 gene repertoire through genome- and transcriptome-wide analysis in the brown planthopper (Nilaparvata lugens), the most destructive rice pest in Asia. Detailed gene information including the exon-intron organization, size, transcription orientation and distribution in the genome revealed that many P450 loci were closely situated on the same scaffold, indicating frequent occurrence of gene duplications. Insecticide-response expression profiling revealed that imidacloprid significantly increased NlCYP6CS1v2, NLCYP4CE1v2, NlCYP4DE1, NlCYP417A1v2 and NlCYP439A1 expression; while triazophos and deltamethrin notably enhanced NlCYP303A1 expression. Expression analysis at the developmental stage showed the egg-, nymph-, male- and female-specific expression patterns of N. lugens P450 genes. These novel findings will be helpful for clarifying the P450 functions in physiological processes including development, reproduction and insecticide resistance in this insect species. PMID:26234643

  18. Next-generation transcriptome assembly

    SciTech Connect

    Martin, Jeffrey A.; Wang, Zhong

    2011-09-01

    Transcriptomics studies often rely on partial reference transcriptomes that fail to capture the full catalog of transcripts and their variations. Recent advances in sequencing technologies and assembly algorithms have facilitated the reconstruction of the entire transcriptome by deep RNA sequencing (RNA-seq), even without a reference genome. However, transcriptome assembly from billions of RNA-seq reads, which are often very short, poses a significant informatics challenge. This Review summarizes the recent developments in transcriptome assembly approaches - reference-based, de novo and combined strategies-along with some perspectives on transcriptome assembly in the near future.

  19. Ensembl Genomes 2013: scaling up access to genome-wide data.

    PubMed

    Kersey, Paul Julian; Allen, James E; Christensen, Mikkel; Davis, Paul; Falin, Lee J; Grabmueller, Christoph; Hughes, Daniel Seth Toney; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Langridge, Nicholas; McDowall, Mark D; Maheswari, Uma; Maslen, Gareth; Nuhn, Michael; Ong, Chuang Kee; Paulini, Michael; Pedro, Helder; Toneva, Iliana; Tuli, Mary Ann; Walts, Brandon; Williams, Gareth; Wilson, Derek; Youens-Clark, Ken; Monaco, Marcela K; Stein, Joshua; Wei, Xuehong; Ware, Doreen; Bolser, Daniel M; Howe, Kevin Lee; Kulesha, Eugene; Lawson, Daniel; Staines, Daniel Michael

    2014-01-01

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species. The project exploits and extends technologies for genome annotation, analysis and dissemination, developed in the context of the vertebrate-focused Ensembl project, and provides a complementary set of resources for non-vertebrate species through a consistent set of programmatic and interactive interfaces. These provide access to data including reference sequence, gene models, transcriptional data, polymorphisms and comparative analysis. This article provides an update to the previous publications about the resource, with a focus on recent developments. These include the addition of important new genomes (and related data sets) including crop plants, vectors of human disease and eukaryotic pathogens. In addition, the resource has scaled up its representation of bacterial genomes, and now includes the genomes of over 9000 bacteria. Specific extensions to the web and programmatic interfaces have been developed to support users in navigating these large data sets. Looking forward, analytic tools to allow targeted selection of data for visualization and download are likely to become increasingly important in future as the number of available genomes increases within all domains of life, and some of the challenges faced in representing bacterial data are likely to become commonplace for eukaryotes in future. PMID:24163254

  20. Ensembl Genomes 2013: scaling up access to genome-wide data

    PubMed Central

    Kersey, Paul Julian; Allen, James E.; Christensen, Mikkel; Davis, Paul; Falin, Lee J.; Grabmueller, Christoph; Hughes, Daniel Seth Toney; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Langridge, Nicholas; McDowall, Mark D.; Maheswari, Uma; Maslen, Gareth; Nuhn, Michael; Ong, Chuang Kee; Paulini, Michael; Pedro, Helder; Toneva, Iliana; Tuli, Mary Ann; Walts, Brandon; Williams, Gareth; Wilson, Derek; Youens-Clark, Ken; Monaco, Marcela K.; Stein, Joshua; Wei, Xuehong; Ware, Doreen; Bolser, Daniel M.; Howe, Kevin Lee; Kulesha, Eugene; Lawson, Daniel; Staines, Daniel Michael

    2014-01-01

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species. The project exploits and extends technologies for genome annotation, analysis and dissemination, developed in the context of the vertebrate-focused Ensembl project, and provides a complementary set of resources for non-vertebrate species through a consistent set of programmatic and interactive interfaces. These provide access to data including reference sequence, gene models, transcriptional data, polymorphisms and comparative analysis. This article provides an update to the previous publications about the resource, with a focus on recent developments. These include the addition of important new genomes (and related data sets) including crop plants, vectors of human disease and eukaryotic pathogens. In addition, the resource has scaled up its representation of bacterial genomes, and now includes the genomes of over 9000 bacteria. Specific extensions to the web and programmatic interfaces have been developed to support users in navigating these large data sets. Looking forward, analytic tools to allow targeted selection of data for visualization and download are likely to become increasingly important in future as the number of available genomes increases within all domains of life, and some of the challenges faced in representing bacterial data are likely to become commonplace for eukaryotes in future. PMID:24163254

  1. Genome resequencing in Populus: Revealing large-scale genome variation and implications on specialized-trait genomics

    SciTech Connect

    Muchero, Wellington; Labbe, Jessy L; Priya, Ranjan; DiFazio, Steven P; Tuskan, Gerald A

    2014-01-01

    To date, Populus ranks among a few plant species with a complete genome sequence and other highly developed genomic resources. With the first genome sequence among all tree species, Populus has been adopted as a suitable model organism for genomic studies in trees. However, far from being just a model species, Populus is a key renewable economic resource that plays a significant role in providing raw materials for the biofuel and pulp and paper industries. Therefore, aside from leading frontiers of basic tree molecular biology and ecological research, Populus leads frontiers in addressing global economic challenges related to fuel and fiber production. The latter fact suggests that research aimed at improving quality and quantity of Populus as a raw material will likely drive the pursuit of more targeted and deeper research in order to unlock the economic potential tied in molecular biology processes that drive this tree species. Advances in genome sequence-driven technologies, such as resequencing individual genotypes, which in turn facilitates large scale SNP discovery and identification of large scale polymorphisms are key determinants of future success in these initiatives. In this treatise we discuss implications of genome sequence-enable technologies on Populus genomic and genetic studies of complex and specialized-traits.

  2. Genome-wide transcriptomic analysis of the sporophyte of the moss Physcomitrella patens

    PubMed Central

    O’Donoghue, Martin-Timothy; Chater, Caspar; Wallace, Simon; Gray, Julie E.; Beerling, David J.; Fleming, Andrew J.

    2013-01-01

    Bryophytes, the most basal of the extant land plants, diverged at least 450 million years ago. A major feature of these plants is the biphasic alternation of generations between a dominant haploid gametophyte and a minor diploid sporophyte phase. These dramatic differences in form and function occur in a constant genetic background, raising the question of whether the switch from gametophyte-to-sporophyte development reflects major changes in the spectrum of genes being expressed or alternatively whether only limited changes in gene expression occur and the differences in plant form are due to differences in how the gene products are put together. This study performed replicated microarray analyses of RNA from several thousand dissected and developmentally staged sporophytes of the moss Physcomitrella patens, allowing analysis of the transcriptomes of the sporophyte and early gametophyte, as well as the early stages of moss sporophyte development. The data indicate that more significant changes in transcript profile occur during the switch from gametophyte to sporophyte than recently reported, with over 12% of the entire transcriptome of P. patens being altered during this major developmental transition. Analysis of the types of genes contributing to these differences supports the view of the early sporophyte being energetically and nutritionally dependent on the gametophyte, provides a profile of homologues to genes involved in angiosperm stomatal development and physiology which suggests a deeply conserved mechanism of stomatal control, and identifies a novel series of transcription factors associated with moss sporophyte development. PMID:23888066

  3. Genome-scale cold stress response regulatory networks in ten Arabidopsis thaliana ecotypes

    PubMed Central

    2013-01-01

    Background Low temperature leads to major crop losses every year. Although several studies have been conducted focusing on diversity of cold tolerance level in multiple phenotypically divergent Arabidopsis thaliana (A. thaliana) ecotypes, genome-scale molecular understanding is still lacking. Results In this study, we report genome-scale transcript response diversity of 10 A. thaliana ecotypes originating from different geographical locations to non-freezing cold stress (10°C). To analyze the transcriptional response diversity, we initially compared transcriptome changes in all 10 ecotypes using Arabidopsis NimbleGen ATH6 microarrays. In total 6061 transcripts were significantly cold regulated (p < 0.01) in 10 ecotypes, including 498 transcription factors and 315 transposable elements. The majority of the transcripts (75%) showed ecotype specific expression pattern. By using sequence data available from Arabidopsis thaliana 1001 genome project, we further investigated sequence polymorphisms in the core cold stress regulon genes. Significant numbers of non-synonymous amino acid changes were observed in the coding region of the CBF regulon genes. Considering the limited knowledge about regulatory interactions between transcription factors and their target genes in the model plant A. thaliana, we have adopted a powerful systems genetics approach- Network Component Analysis (NCA) to construct an in-silico transcriptional regulatory network model during response to cold stress. The resulting regulatory network contained 1,275 nodes and 7,720 connections, with 178 transcription factors and 1,331 target genes. Conclusions A. thaliana ecotypes exhibit considerable variation in transcriptome level responses to non-freezing cold stress treatment. Ecotype specific transcripts and related gene ontology (GO) categories were identified to delineate natural variation of cold stress regulated differential gene expression in the model plant A. thaliana. The predicted

  4. Genomic and Transcriptomic Analyses of the Facultative Methanotroph Methylocystis sp. Strain SB2 Grown on Methane or Ethanol

    PubMed Central

    Vorobev, Alexey; Jagadevan, Sheeja; Jain, Sunit; Anantharaman, Karthik; Dick, Gregory J.; Vuilleumier, Stéphane

    2014-01-01

    A minority of methanotrophs are able to utilize multicarbon compounds as growth substrates in addition to methane. The pathways utilized by these microorganisms for assimilation of multicarbon compounds, however, have not been explicitly examined. Here, we report the draft genome of the facultative methanotroph Methylocystis sp. strain SB2 and perform a detailed transcriptomic analysis of cultures grown with either methane or ethanol. Evidence for use of the canonical methane oxidation pathway and the serine cycle for carbon assimilation from methane was obtained, as well as for operation of the complete tricarboxylic acid (TCA) cycle and the ethylmalonyl-coenzyme A (EMC) pathway. Experiments with Methylocystis sp. strain SB2 grown on methane revealed that genes responsible for the first step of methane oxidation, the conversion of methane to methanol, were expressed at a significantly higher level than those for downstream oxidative transformations, suggesting that this step may be rate limiting for growth of this strain with methane. Further, transcriptomic analyses of Methylocystis sp. strain SB2 grown with ethanol compared to methane revealed that on ethanol (i) expression of the pathway of methane oxidation and the serine cycle was significantly reduced, (ii) expression of the TCA cycle dramatically increased, and (iii) expression of the EMC pathway was similar. Based on these data, it appears that Methylocystis sp. strain SB2 converts ethanol to acetyl-coenzyme A, which is then funneled into the TCA cycle for energy generation or incorporated into biomass via the EMC pathway. This suggests that some methanotrophs have greater metabolic flexibility than previously thought and that operation of multiple pathways in these microorganisms is highly controlled and integrated. PMID:24610846

  5. The dynamics of the Saccharomyces carlsbergensis brewing yeast transcriptome during a production-scale lager beer fermentation.

    PubMed

    Olesen, Kjeld; Felding, Troels; Gjermansen, Claes; Hansen, Jørgen

    2002-12-01

    The transcriptome of a lager brewing yeast (Saccharomyces carlsbergensis, syn. of S. pastorianus), was analysed at 12 different time points spanning a production-scale lager beer fermentation. Generally, the average expression rapidly increased and had a maximum value on day 2, then decreased as the sugar got consumed. Especially genes involved in protein and lipid biosynthesis or glycolysis were highly expressed during the beginning of the fermentation. Similarities as well as significant differences in expression profiles could be observed when comparing to a previous transcriptome analysis of a laboratory yeast grown in YPD. The regional distribution of various expression levels on the chromosomes appeared to be random or near-random and no reduction in expression near telomeres was observed. PMID:12702272

  6. Genome, transcriptome, and secretome analysis of wood decay fungus postia placenta supports unique mechanisms of lignocellulose conversion

    SciTech Connect

    Martinez, Diego; Challacombe, Jean F; Misra, Monica; Xie, Gary; Brettin, Thomas; Morgenstern, Ingo; Hibbett, David; Schmoll, Monika; Kubicek, Christian P; Ferreira, Patricia; Ruiz - Duenase, Francisco J; Martinez, Angel T; Kersten, Phil; Hammel, Kenneth E; Vanden Wymelenberg, Amber; Gaskell, Jill; Lindquist, Erika; Sabati, Grzegorz; Bondurant, Sandra S; Larrondo, Luis F; Canessa, Paulo; Vicunna, Rafael; Yadavk, Jagiit; Doddapaneni, Harshavardhan; Subramaniank, Venkataramanan; Pisabarro, Antonio G; Lavin, Jose L; Oguiza, Jose A; Master, Emma; Henrissat, Bernard; Coutinho, Pedro M; Harris, Paul; Magnuson, Jon K; Baker, Scott; Bruno, Kenneth; Kenealy, William; Hoegger, Patrik J; Kues, Ursula; Ramaiva, Preethi; Lucas, Susan; Salamov, Asaf; Shapiro, Harris; Tuh, Hank; Chee, Christine L; Teter, Sarah; Yaver, Debbie; James, Tim; Mokrejs, Martin; Pospisek, Martin; Grigoriev, Igor; Rokhsar, Dan; Berka, Randy; Cullen, Dan

    2008-01-01

    Brown-rot fungi such as Postia placenta are common inhabitants of forest ecosystems and are also largely responsible for the destructive decay of wooden structures. Rapid depolymerization of cellulose is a distinguishing feature of brown-rot, but the biochemical mechanisms and underlying genetics are poorly understood. Systematic examination of the P. placenta genome, transcriptome and secretome revealed unique extracellular enzyme systems, including an unusual repertoire of extracellular glycoside hydrolases. Genes encoding exocellobiohydrolases and cellulose-binding domains, typical of cellulolytic microbes, are absent in this efficient cellulose-degrading fungus. When P. placenta was grown in medium containing cellulose as sole carbon source, transcripts corresponding to many hemicellulases and to a single putative {beta}-1-4 endoglucanase were expressed at high levels relative to glucose grown cultures. These transcript profiles were confirmed by direct identification of peptides by liquid chromatography-tandem mass spectrometry (LC{center_dot}MSIMS). Also upregulated during growth on cellulose medium were putative iron reductases, quinone reductase, and structurally divergent oxidases potentially involved in extracellular generation of Fe(II) and H202. These observations are consistent with a biodegradative role for Fenton chemistry in which Fe(II) and H202 react to form hydroxyl radicals, highly reactive oxidants capable of depolymerizing cellulose. The P. placenta genome resources provide unparalleled opportunities for investigating such unusual mechanisms of cellulose conversion. More broadly, the genome offers insight into the diversification of lignocellulose degrading mechanisms in fungi. Comparisons to the closely related white-rot fungus Phanerochaete chrysosporium support an evolutionary shift from white-rot to brown-rot during which the capacity for efficient depolymerization of lignin was lost.

  7. Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion

    SciTech Connect

    Martinez, Diego; Challacombe, Jean; Morgenstern, Ingo; Hibbett, David; Schmoll, Monika; Kubicek, Christian P.; Ferreira, Patricia; Ruiz-Duenas, Francisco; Martinez, Angel T.; Kersten, Phil; Hammel, Ken; Vanden Wymelenberg, Amber; Gaskell, Jill; Lindquist, Erika; Sabat, Gregorz; Splinter Bondurant, Sandra; Larrondo, Luis F.; Canessa, Paulo; Vicuna, Rafael; Yadev, Jagjit; Doddapaneni, Harshavardhan; Subramanian, Venkataramanan; Pisabarro, Antonio; Lavin, Jose L.; Oguiza, Jose A.; Master, Emma; Henrissat, Bernard; Coutinho, Pedro M.; Harris, Paul; Magnuson, Jon K.; Baker, Scott E.; Bruno, Kenneth S.; Kenealy, William; Hoegger, Patrik; Kues, Ursula; Ramaiya, Preethi; Lucas, Susan; Salamov, Asaf; Shapiro, Harris; Tu, Hank; Chee, Christine L.; Misra, Monica; Xie, Gary; Teter, Sarah; Yaver, Debbie; James, Tim; Mokrejs, Martin; Pospisek, Martin; Grigoriev, Igor V.; Brettin, T.; Rokhsar, Daniel S.; Berka, Randy; Cullen, Dan

    2009-02-10

    Brown-rot fungi such as Postia placenta are common inhabitants of forest ecosystems and are also largely responsible for the destructive decay of wooden structures. Rapid depolymerization of cellulose is a distinguishing feature of brown-rot, but the biochemical mechanisms and underlying genetics are poorly understood. Systematic examination of the P. placenta genome, transcriptome, and secretome revealed unique extracellular enzyme systems, including an unusual repertoire of extracellular glycoside hydrolases. Genes encoding exocellobiohydrolases and cellulose-binding domains, typical of cellulolytic microbes, are absent in this efficient cellulose-degrading fungus. When P. placenta was grown in media containing cellulose as sole carbon source, transcripts corresponding to many hemicellulases and to a single putative β-1-4 endoglucanase were expressed at high levels relative to glucose grown cultures. These transcript profiles were confirmed by direct identification of peptides by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Also upregulated under cellulolytic culture conditions were putative iron reductases, quinone reductase, and structurally divergent oxidases potentially involved in extracellular generation of Fe(II) and H2O2. These observations are consistent with a biodegradative role for Fenton chemistry in which Fe(II) and H2O2 react to form hydroxyl radicals, highly reactive oxidants capable of depolymerizing cellulose. The P. placenta genome resources provide unparalleled opportunities for investigating such unusual mechanisms of cellulose conversion. More broadly, the genome offers insight into the diversification of lignocellulose degrading mechanisms in fungi. In particular, comparisons between P. placenta and the closely related white-rot fungus, Phanerochaete chrysosporium support an evolutionary shift from white-rot to brown-rot during which efficient depolymerization of lignin was lost.

  8. Genome Sequence and Transcriptome Analysis of Meat-Spoilage-Associated Lactic Acid Bacterium Lactococcus piscium MKFS47

    PubMed Central

    Johansson, Per; Laine, Pia; Smolander, Olli-Pekka; Sonck, Matti; Rahkila, Riitta; Jääskeläinen, Elina; Paulin, Lars; Auvinen, Petri; Björkroth, Johanna

    2015-01-01

    Lactococcus piscium is a psychrotrophic lactic acid bacterium and is known to be one of the predominant species within spoilage microbial communities in cold-stored packaged foods, particularly in meat products. Its presence in such products has been associated with the formation of buttery and sour off-odors. Nevertheless, the spoilage potential of L. piscium varies dramatically depending on the strain and growth conditions. Additional knowledge about the genome is required to explain such variation, understand its phylogeny, and study gene functions. Here, we present the complete and annotated genomic sequence of L. piscium MKFS47, combined with a time course analysis of the glucose catabolism-based transcriptome. In addition, a comparative analysis of gene contents was done for L. piscium MKFS47 and 29 other lactococci, revealing three distinct clades within the genus. The genome of L. piscium MKFS47 consists of one chromosome, carrying 2,289 genes, and two plasmids. A wide range of carbohydrates was predicted to be fermented, and growth on glycerol was observed. Both carbohydrate and glycerol catabolic pathways were significantly upregulated in the course of time as a result of glucose exhaustion. At the same time, differential expression of the pyruvate utilization pathways, implicated in the formation of spoilage substances, switched the metabolism toward a heterofermentative mode. In agreement with data from previous inoculation studies, L. piscium MKFS47 was identified as an efficient producer of buttery-odor compounds under aerobic conditions. Finally, genes and pathways that may contribute to increased survival in meat environments were considered. PMID:25819958

  9. Genome Sequence and Transcriptome Analysis of Meat-Spoilage-Associated Lactic Acid Bacterium Lactococcus piscium MKFS47.

    PubMed

    Andreevskaya, Margarita; Johansson, Per; Laine, Pia; Smolander, Olli-Pekka; Sonck, Matti; Rahkila, Riitta; Jääskeläinen, Elina; Paulin, Lars; Auvinen, Petri; Björkroth, Johanna

    2015-06-01

    Lactococcus piscium is a psychrotrophic lactic acid bacterium and is known to be one of the predominant species within spoilage microbial communities in cold-stored packaged foods, particularly in meat products. Its presence in such products has been associated with the formation of buttery and sour off-odors. Nevertheless, the spoilage potential of L. piscium varies dramatically depending on the strain and growth conditions. Additional knowledge about the genome is required to explain such variation, understand its phylogeny, and study gene functions. Here, we present the complete and annotated genomic sequence of L. piscium MKFS47, combined with a time course analysis of the glucose catabolism-based transcriptome. In addition, a comparative analysis of gene contents was done for L. piscium MKFS47 and 29 other lactococci, revealing three distinct clades within the genus. The genome of L. piscium MKFS47 consists of one chromosome, carrying 2,289 genes, and two plasmids. A wide range of carbohydrates was predicted to be fermented, and growth on glycerol was observed. Both carbohydrate and glycerol catabolic pathways were significantly upregulated in the course of time as a result of glucose exhaustion. At the same time, differential expression of the pyruvate utilization pathways, implicated in the formation of spoilage substances, switched the metabolism toward a heterofermentative mode. In agreement with data from previous inoculation studies, L. piscium MKFS47 was identified as an efficient producer of buttery-odor compounds under aerobic conditions. Finally, genes and pathways that may contribute to increased survival in meat environments were considered. PMID:25819958

  10. Life-style transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Colletotrichum species are devastating fungal pathogens of major crop plants worldwide. Infection involves differentiation of specialized cell-types associated with host surface penetration, growth inside living host cells (biotrophy) and tissue destruction (necrotrophy). Here we report genome and t...

  11. Bacillus subtilis functional genomics: global characterization of the stringent response by proteome and transcriptome analysis†

    PubMed Central

    Eymann, Christine; Homuth, Georg; Scharf, Christian; Hecker, Michael

    2002-01-01

    The stringent response in Bacillus subtilis was characterized by using proteome and transcriptome approaches. Comparison of protein synthesis patterns of wild-type and relA mutant cells cultivated under conditions which provoke the stringent response revealed significant differences. According to their altered synthesis patterns in response to dl-norvaline, proteins were assigned to four distinct classes: (i) negative stringent control, i.e., strongly decreased protein synthesis in the wild type but not in the relA mutant (e.g., r-proteins); (ii) positive stringent control, i.e., induction of protein synthesis in the wild type only (e.g., YvyD and LeuD); (iii) proteins that were induced independently of RelA (e.g., YjcI); and (iv) proteins downregulated independently of RelA (e.g., glycolytic enzymes). Transcriptome studies based on DNA macroarray techniques were used to complement the proteome data, resulting in comparable induction and repression patterns of almost all corresponding genes. However, a comparison of both approaches revealed that only a subset of RelA-dependent genes or proteins was detectable by proteomics, demonstrating that the transcriptome approach allows a more comprehensive global gene expression profile analysis. The present study presents the first comprehensive description of the stringent response of a bacterial species and an almost complete map of protein-encoding genes affected by (p)ppGpp. The negative stringent control concerns reactions typical of growth and reproduction (ribosome synthesis, DNA synthesis, cell wall synthesis, etc.). Negatively controlled unknown y-genes may also code for proteins with a specific function during growth and reproduction (e.g., YlaG). On the other hand, many genes are induced in a RelA-dependent manner, including genes coding for already-known and as-yet-unknown proteins. A passive model is preferred to explain this positive control relying on the redistribution of the RNA polymerase under the

  12. Genome-wide transcriptomic alterations induced by ethanol treatment in human dental pulp stem cells (DPSCs).

    PubMed

    Khalid, Omar; Kim, Jeffrey J; Duan, Lewei; Hoang, Michael; Elashoff, David; Kim, Yong

    2014-12-01

    Human dental pulp stem cells (DPSCs) isolated from adult dental pulp are multipotent mesenchymal stem cells that can be directed to differentiate into osteogenic/odontogenic cells and also trans-differentiate into neuronal cells. The utility of DPSC has been explored in odontogenic differentiation for tooth regeneration. Alcohol abuse appears to lead to periodontal disease, tooth decay and mouth sores that are potentially precancerous. Persons who abuse alcohol are at high risk of having seriously deteriorated teeth, gums and compromised oral health in general. It is currently unknown if alcohol exposure has any impact on adult stem cell maintenance, stem cell fate determination and plasticity, and stem cell niche environment. Here we provide detailed experimental methods, analysis and information associated with our data deposited into Gene Expression Omnibus (GEO) under GSE57255. Our data provide transcriptomic changes that are occurring by EtOH treatment of DPSCs at 24-hour and 48-hour time point. PMID:25045622

  13. Intraindividual dynamics of transcriptome and genome-wide stability of DNA methylation.

    PubMed

    Furukawa, Ryohei; Hachiya, Tsuyoshi; Ohmomo, Hideki; Shiwa, Yuh; Ono, Kanako; Suzuki, Sadafumi; Satoh, Mamoru; Hitomi, Jiro; Sobue, Kenji; Shimizu, Atsushi

    2016-01-01

    Cytosine methylation at CpG dinucleotides is an epigenetic mechanism that affects the gene expression profiles responsible for the functional differences in various cells and tissues. Although gene expression patterns are dynamically altered in response to various stimuli, the intraindividual dynamics of DNA methylation in human cells are yet to be fully understood. Here, we investigated the extent to which DNA methylation contributes to the dynamics of gene expression by collecting 24 blood samples from two individuals over a period of 3 months. Transcriptome and methylome association analyses revealed that only ~2% of dynamic changes in gene expression could be explained by the intraindividual variation of DNA methylation levels in peripheral blood mononuclear cells and purified monocytes. These results showed that DNA methylation levels remain stable for at least several months, suggesting that disease-associated DNA methylation markers are useful for estimating the risk of disease manifestation. PMID:27192970

  14. Autism spectrum disorders: Integration of the genome, transcriptome and the environment.

    PubMed

    Vijayakumar, N Thushara; Judy, M V

    2016-05-15

    Autism spectrum disorders denote a series of lifelong neurodevelopmental conditions characterized by an impaired social communication profile and often repetitive, stereotyped behavior. Recent years have seen the complex genetic architecture of the disease being progressively unraveled with advancements in gene finding technology and next generation sequencing methods. However, a complete elucidation of the molecular mechanisms behind autism is necessary for potential diagnostic and therapeutic applications. A multidisciplinary approach should be adopted where the focus is not only on the 'genetics' of autism but also on the combinational roles of epigenetics, transcriptomics, immune system disruption and environmental factors that could all influence the etiopathogenesis of the disease. ASD is a clinically heterogeneous disorder with great genetic complexity; only through an integrated multidimensional effort can modern autism research progress further. PMID:27084239

  15. Intraindividual dynamics of transcriptome and genome-wide stability of DNA methylation

    PubMed Central

    Furukawa, Ryohei; Hachiya, Tsuyoshi; Ohmomo, Hideki; Shiwa, Yuh; Ono, Kanako; Suzuki, Sadafumi; Satoh, Mamoru; Hitomi, Jiro; Sobue, Kenji; Shimizu, Atsushi

    2016-01-01

    Cytosine methylation at CpG dinucleotides is an epigenetic mechanism that affects the gene expression profiles responsible for the functional differences in various cells and tissues. Although gene expression patterns are dynamically altered in response to various stimuli, the intraindividual dynamics of DNA methylation in human cells are yet to be fully understood. Here, we investigated the extent to which DNA methylation contributes to the dynamics of gene expression by collecting 24 blood samples from two individuals over a period of 3 months. Transcriptome and methylome association analyses revealed that only ~2% of dynamic changes in gene expression could be explained by the intraindividual variation of DNA methylation levels in peripheral blood mononuclear cells and purified monocytes. These results showed that DNA methylation levels remain stable for at least several months, suggesting that disease-associated DNA methylation markers are useful for estimating the risk of disease manifestation. PMID:27192970

  16. Transcriptome sequencing reveals both neutral and adaptive genome dynamics in a marine invader.

    PubMed

    Tepolt, C K; Palumbi, S R

    2015-08-01

    Species invasions cause significant ecological and economic damage, and genetic information is important to understanding and managing invasive species. In the ocean, many invasive species have high dispersal and gene flow, lowering the discriminatory power of traditional genetic approaches. High-throughput sequencing holds tremendous promise for increasing resolution and illuminating the relative contributions of selection and drift in marine invasion, but has not yet been used to compare the diversity and dynamics of a high-dispersal invader in its native and invaded ranges. We test a transcriptome-based approach in the European green crab (Carcinus maenas), a widespread invasive species with high gene flow and a well-known invasion history, in two native and five invasive populations. A panel of 10 809 transcriptome-derived nuclear SNPs identified significant population structure among highly bottlenecked invasive populations that were previously undifferentiated with traditional markers. Comparing the full data set and a subset of 9246 putatively neutral SNPs strongly suggested that non-neutral processes are the primary driver of population structure within the species' native range, while neutral processes appear to dominate in the invaded range. Non-neutral native range structure coincides with significant differences in intraspecific thermal tolerance, suggesting temperature as a potential selective agent. These results underline the importance of adaptation in shaping intraspecific differences even in high geneflow marine invasive species. They also demonstrate that high-throughput approaches have broad utility in determining neutral structure in recent invasions of such species. Together, neutral and non-neutral data derived from high-throughput approaches may increase the understanding of invasion dynamics in high-dispersal species. PMID:26118396

  17. Genome-wide transcriptomic profiling of Anopheles gambiae hemocytes reveals pathogen-specific signatures upon bacterial challenge and Plasmodium berghei infection

    PubMed Central

    Baton, Luke A; Robertson, Anne; Warr, Emma; Strand, Michael R; Dimopoulos, George

    2009-01-01

    Background The mosquito Anopheles gambiae is a major vector of human malaria. Increasing evidence indicates that blood cells (hemocytes) comprise an essential arm of the mosquito innate immune response against both bacteria and malaria parasites. To further characterize the role of hemocytes in mosquito immunity, we undertook the first genome-wide transcriptomic analyses of adult female An. gambiae hemocytes following infection by two species of bacteria and a malaria parasite. Results We identified 4047 genes expressed in hemocytes, using An. gambiae genome-wide microarrays. While 279 transcripts were significantly enriched in hemocytes relative to whole adult female mosquitoes, 959 transcripts exhibited immune challenge-related regulation. The global transcriptomic responses of hemocytes to challenge with different species of bacteria and/or different stages of malaria parasite infection revealed discrete, minimally overlapping, pathogen-specific signatures of infection-responsive gene expression; 105 of these represented putative immunity-related genes including anti-Plasmodium factors. Of particular interest was the specific co-regulation of various members of the Imd and JNK immune signaling pathways during malaria parasite invasion of the mosquito midgut epithelium. Conclusion Our genome-wide transcriptomic analysis of adult mosquito hemocytes reveals pathogen-specific signatures of gene regulation and identifies several novel candidate genes for future functional studies. PMID:19500340

  18. Large-scale data mining pilot project in human genome

    SciTech Connect

    Musick, R.; Fidelis, R.; Slezak, T.

    1997-05-01

    This whitepaper briefly describes a new, aggressive effort in large- scale data Livermore National Labs. The implications of `large- scale` will be clarified Section. In the short term, this effort will focus on several @ssion-critical questions of Genome project. We will adapt current data mining techniques to the Genome domain, to quantify the accuracy of inference results, and lay the groundwork for a more extensive effort in large-scale data mining. A major aspect of the approach is that we will be fully-staffed data warehousing effort in the human Genome area. The long term goal is strong applications- oriented research program in large-@e data mining. The tools, skill set gained will be directly applicable to a wide spectrum of tasks involving a for large spatial and multidimensional data. This includes applications in ensuring non-proliferation, stockpile stewardship, enabling Global Ecology (Materials Database Industrial Ecology), advancing the Biosciences (Human Genome Project), and supporting data for others (Battlefield Management, Health Care).

  19. Adaptation of an abundant Roseobacter RCA organism to pelagic systems revealed by genomic and transcriptomic analyses.

    PubMed

    Voget, Sonja; Wemheuer, Bernd; Brinkhoff, Thorsten; Vollmers, John; Dietrich, Sascha; Giebel, Helge-Ansgar; Beardsley, Christine; Sardemann, Carla; Bakenhus, Insa; Billerbeck, Sara; Daniel, Rolf; Simon, Meinhard

    2015-02-01

    The RCA (Roseobacter clade affiliated) cluster, with an internal 16S rRNA gene sequence similarity of >98%, is the largest cluster of the marine Roseobacter clade and most abundant in temperate to (sub)polar oceans, constituting up to 35% of total bacterioplankton. The genome analysis of the first described species of the RCA cluster, Planktomarina temperata RCA23, revealed that this phylogenetic lineage is deeply branching within the Roseobacter clade. It shares not >65.7% of homologous genes with any other organism of this clade. The genome is the smallest of all closed genomes of the Roseobacter clade, exhibits various features of genome streamlining and encompasses genes for aerobic anoxygenic photosynthesis (AAP) and CO oxidation. In order to assess the biogeochemical significance of the RCA cluster we investigated a phytoplankton spring bloom in the North Sea. This cluster constituted 5.1% of the total, but 10-31% (mean 18.5%) of the active bacterioplankton. A metatranscriptomic analysis showed that the genome of P. temperata RCA23 was transcribed to 94% in the bloom with some variations during day and night. The genome of P. temperata RCA23 was also retrieved to 84% from metagenomic data sets from a Norwegian fjord and to 82% from stations of the Global Ocean Sampling expedition in the northwestern Atlantic. In this region, up to 6.5% of the total reads mapped on the genome of P. temperata RCA23. This abundant taxon appears to be a major player in ocean biogeochemistry. PMID:25083934

  20. Integrative analysis of transcriptome and genome indicates two potential genomic islands are associated with pathogenesis of Mycobacterium tuberculosis.

    PubMed

    Yu, Guohua; Fu, Xuping; Jin, Ke; Zhang, Lu; Wu, Wei; Cui, Zhenling; Hu, Zhongyi; Li, Yao

    2011-12-01

    Mycobacterium tuberculosis (M.tb) is a successful human pathogen and widely prevalent throughout the world. Genomic islands (GIs) are thought to be related to pathogenicity. In this study, we predicted two potential genomic islands in M.tb genome, respectively named as GI-1 and GI-2. It is indicated that the genes belong to PE_PGRS family in GI-1 and genes involved in sulfolipid-1 (SL-1) synthesis in GI-2 are strongly associated with M.tb pathogenesis. Sequence analysis revealed that the five PGRS genes are more polymorphic than other PGRS members in full virulence M.tb complex strains at significance level 0.01 but not in attenuated strains. Expression analysis of microarrays collected from literatures displayed that GI-1 genes, especially Rv3508 might be correlated with the response to the inhibition of aerobic respiration. Microarray analysis also showed that SL-1 cluster genes are drastically down-expressed in attenuated strains relative to full virulence strains. We speculated that the effect of SL-1 on M.tb pathogenicity could be associated with long-term survival and persistence establishment during infection. Additionally, the gene Rv3508 in GI-1 was under positive selection. Rv3508 may involve the response of M.tb to the inhibition of aerobic respiration by low oxygen or drug PA-824, and it may be a common feature of genes in GI-1. These findings may provide some novel insights into M.tb physiology and pathogenesis. PMID:21924330

  1. Capturing the response of Clostridium acetobutylicum to chemical stressors using a regulated genome-scale metabolic model

    SciTech Connect

    Dash, Satyakam; Mueller, Thomas J.; Venkataramanan, Keerthi P.; Papoutsakis, Eleftherios T.; Maranas, Costas D.

    2014-10-14

    Clostridia are anaerobic Gram-positive Firmicutes containing broad and flexible systems for substrate utilization, which have been used successfully to produce a range of industrial compounds. Clostridium acetobutylicum has been used to produce butanol on an industrial scale through acetone-butanol-ethanol (ABE) fermentation. A genome-scale metabolic (GSM) model is a powerful tool for understanding the metabolic capacities of an organism and developing metabolic engineering strategies for strain development. The integration of stress related specific transcriptomics information with the GSM model provides opportunities for elucidating the focal points of regulation.

  2. Integration of genetic, genomic and transcriptomic information identifies putative regulators of adventitious root formation in Populus

    DOE PAGESBeta

    Ribeiro, Cintia L.; Silva, Cynthia M.; Drost, Derek R.; Novaes, Evandro; Novaes, Carolina R. D. B.; Dervinis, Christopher; Kirst, Matias

    2016-03-16

    In this study, adventitious roots (AR) develop from tissues other than the primary root, in a process physiologically regulated by phytohormones. Adventitious roots provide structural support and contribute to water and nutrient absorption, and are critical for commercial vegetative propagation of several crops. Here we quantified the number of AR, root architectural traits and root biomass in cuttings from a pseudo-backcross population of Populus deltoides and Populus trichocarpa. Quantitative trait loci (QTL) mapping and whole-transcriptome analysis of individuals with alternative QTL alleles for AR number were used to identify putative regulators of AR development. As a result, parental individuals andmore » progeny showed extensive segregation for AR developmental traits. Quantitative trait loci for number of AR mapped consistently in the same interval of linkage group (LG) II and LG XIV, explaining 7–10 % of the phenotypic variation. A time series transcriptome analysis identified 26,121 genes differentially expressed during AR development, particularly during the first 24 h after cuttings were harvested. Of those, 1929 genes were differentially regulated between individuals carrying alternative alleles for the two QTL for number of AR, in one or more time point. Eighty-one of these genes were physically located within the QTL intervals for number of AR, including putative homologs of the Arabidopsis genes SUPERROOT2 (SUR2) and TRYPTOPHAN SYNTHASE ALPHA CHAIN (TSA1), both of which are involved in the auxin indole-3-acetic acid (IAA) biosynthesis pathway. In conclusion, this study suggests the involvement of two genes of the tryptophan-dependent auxin biosynthesis pathway, SUR2 and TSA1, in the regulation of a critical trait for the clonal propagation of woody species. A possible model for this regulation is that poplar individuals that have poor AR formation synthesize auxin indole-3-acetic acid (IAA) primarily through the tryptophan (Trp) pathway. Much of

  3. Accelerating the reconstruction of genome-scale metabolic networks

    PubMed Central

    Notebaart, Richard A; van Enckevort, Frank HJ; Francke, Christof; Siezen, Roland J; Teusink, Bas

    2006-01-01

    Background The genomic information of a species allows for the genome-scale reconstruction of its metabolic capacity. Such a metabolic reconstruction gives support to metabolic engineering, but also to integrative bioinformatics and visualization. Sequence-based automatic reconstructions require extensive manual curation, which can be very time-consuming. Therefore, we present a method to accelerate the time-consuming process of network reconstruction for a query species. The method exploits the availability of well-curated metabolic networks and uses high-resolution predictions of gene equivalency between species, allowing the transfer of gene-reaction associations from curated networks. Results We have evaluated the method using Lactococcus lactis IL1403, for which a genome-scale metabolic network was published recently. We recovered most of the gene-reaction associations (i.e. 74 – 85%) which are incorporated in the published network. Moreover, we predicted over 200 additional genes to be associated to reactions, including genes with unknown function, genes for transporters and genes with specific metabolic reactions, which are good candidates for an extension to the previously published network. In a comparison of our developed method with the well-established approach Pathologic, we predicted 186 additional genes to be associated to reactions. We also predicted a relatively high number of complete conserved protein complexes, which are derived from curated metabolic networks, illustrating the potential predictive power of our method for protein complexes. Conclusion We show that our methodology can be applied to accelerate the reconstruction of genome-scale metabolic networks by taking optimal advantage of existing, manually curated networks. As orthology detection is the first step in the method, only the translated open reading frames (ORFs) of a newly sequenced genome are necessary to reconstruct a metabolic network. When more manually curated metabolic

  4. Genome, transcriptome, and functional analyses of Penicillium expansum provide new insights into secondary metabolism and pathogenicity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The relationship between secondary metabolism and infection in pathogenic fungi has remained largely elusive. Penicillium comprises a group of plant pathogens with varying host specificities and with the ability to produce a wide array of secondary metabolites. The genomes of three Penicillium exp...

  5. Genome structures and transcriptomes signify niche adaptation for the multiple-ion-tolerant extremophyte Schrenkiella parvula.

    PubMed

    Oh, Dong-Ha; Hong, Hyewon; Lee, Sang Yeol; Yun, Dae-Jin; Bohnert, Hans J; Dassanayake, Maheshi

    2014-04-01

    Schrenkiella parvula (formerly Thellungiella parvula), a close relative of Arabidopsis (Arabidopsis thaliana) and Brassica crop species, thrives on the shores of Lake Tuz, Turkey, where soils accumulate high concentrations of multiple-ion salts. Despite the stark differences in adaptations to extreme salt stresses, the genomes of S. parvula and Arabidopsis show extensive synteny. S. parvula completes its life cycle in the presence of Na⁺, K⁺, Mg²⁺, Li⁺, and borate at soil concentrations lethal to Arabidopsis. Genome structural variations, including tandem duplications and translocations of genes, interrupt the colinearity observed throughout the S. parvula and Arabidopsis genomes. Structural variations distinguish homologous gene pairs characterized by divergent promoter sequences and basal-level expression strengths. Comparative RNA sequencing reveals the enrichment of ion-transport functions among genes with higher expression in S. parvula, while pathogen defense-related genes show higher expression in Arabidopsis. Key stress-related ion transporter genes in S. parvula showed increased copy number, higher transcript dosage, and evidence for subfunctionalization. This extremophyte offers a framework to identify the requisite adjustments of genomic architecture and expression control for a set of genes found in most plants in a way to support distinct niche adaptation and lifestyles. PMID:24563282

  6. MEMOSys: Bioinformatics platform for genome-scale metabolic models

    PubMed Central

    2011-01-01

    Background Recent advances in genomic sequencing have enabled the use of genome sequencing in standard biological and biotechnological research projects. The challenge is how to integrate the large amount of data in order to gain novel biological insights. One way to leverage sequence data is to use genome-scale metabolic models. We have therefore designed and implemented a bioinformatics platform which supports the development of such metabolic models. Results MEMOSys (MEtabolic MOdel research and development System) is a versatile platform for the management, storage, and development of genome-scale metabolic models. It supports the development of new models by providing a built-in version control system which offers access to the complete developmental history. Moreover, the integrated web board, the authorization system, and the definition of user roles allow collaborations across departments and institutions. Research on existing models is facilitated by a search system, references to external databases, and a feature-rich comparison mechanism. MEMOSys provides customizable data exchange mechanisms using the SBML format to enable analysis in external tools. The web application is based on the Java EE framework and offers an intuitive user interface. It currently contains six annotated microbial metabolic models. Conclusions We have developed a web-based system designed to provide researchers a novel application facilitating the management and development of metabolic models. The system is freely available at http://www.icbi.at/MEMOSys. PMID:21276275

  7. Endophytic Life Strategies Decoded by Genome and Transcriptome Analyses of the Mutualistic Root Symbiont Piriformospora indica

    PubMed Central

    Zuccaro, Alga; Lahrmann, Urs; Güldener, Ulrich; Langen, Gregor; Pfiffi, Stefanie; Biedenkopf, Dagmar; Wong, Philip; Samans, Birgit; Grimm, Carolin; Basiewicz, Magdalena; Murat, Claude; Martin, Francis; Kogel, Karl-Heinz

    2011-01-01

    Recent sequencing projects have provided deep insight into fungal lifestyle-associated genomic adaptations. Here we report on the 25 Mb genome of the mutualistic root symbiont Piriformospora indica (Sebacinales, Basidiomycota) and provide a global characterization of fungal transcriptional responses associated with the colonization of living and dead barley roots. Extensive comparative analysis of the P. indica genome with other Basidiomycota and Ascomycota fungi that have diverse lifestyle strategies identified features typically associated with both, biotrophism and saprotrophism. The tightly controlled expression of the lifestyle-associated gene sets during the onset of the symbiosis, revealed by microarray analysis, argues for a biphasic root colonization strategy of P. indica. This is supported by a cytological study that shows an early biotrophic growth followed by a cell death-associated phase. About 10% of the fungal genes induced during the biotrophic colonization encoded putative small secreted proteins (SSP), including several lectin-like proteins and members of a P. indica-specific gene family (DELD) with a conserved novel seven-amino acids motif at the C-terminus. Similar to effectors found in other filamentous organisms, the occurrence of the DELDs correlated with the presence of transposable elements in gene-poor repeat-rich regions of the genome. This is the first in depth genomic study describing a mutualistic symbiont with a biphasic lifestyle. Our findings provide a significant advance in understanding development of biotrophic plant symbionts and suggest a series of incremental shifts along the continuum from saprotrophy towards biotrophy in the evolution of mycorrhizal association from decomposer fungi. PMID:22022265

  8. Unraveling adaptation of Pontibacter korlensis to radiation and infertility in desert through complete genome and comparative transcriptomic analysis

    PubMed Central

    Dai, Jun; Dai, Wenkui; Qiu, Chuangzhao; Yang, Zhenyu; Zhang, Yi; Zhou, Mengzhou; Zhang, Lei; Fang, Chengxiang; Gao, Qiang; Yang, Qiao; Li, Xin; Wang, Zhi; Wang, Zhiyong; Jia, Zhenhua; Chen, Xiong

    2015-01-01

    The desert is a harsh habitat for flora and microbial life due to its aridness and strong radiation. In this study, we constructed the first complete and deeply annotated genome of the genus Pontibacter (Pontibacter korlensis X14-1T = CCTCC AB 206081T, X14-1). Reconstruction of the sugar metabolism process indicated that strain X14-1 can utilize diverse sugars, including cellulose, starch and sucrose; this result is consistent with previous experiments. Strain X14-1 is also able to resist desiccation and radiation in the desert through well-armed systems related to DNA repair, radical oxygen species (ROS) detoxification and the OstAB and TreYZ pathways for trehalose synthesis. A comparative transcriptomic analysis under gamma radiation revealed that strain X14-1 presents high-efficacy operating responses to radiation, including the robust expression of catalase and the manganese transport protein. Evaluation of 73 novel genes that are differentially expressed showed that some of these genes may contribute to the strain’s adaptation to radiation and desiccation through ferric transport and preservation. PMID:26057562

  9. Hyperlipidemia-associated gene variations and expression patterns revealed by whole-genome and transcriptome sequencing of rabbit models

    PubMed Central

    Wang, Zhen; Zhang, Jifeng; Li, Hong; Li, Junyi; Niimi, Manabu; Ding, Guohui; Chen, Haifeng; Xu, Jie; Zhang, Hongjiu; Xu, Ze; Dai, Yulin; Gui, Tuantuan; Li, Shengdi; Liu, Zhi; Wu, Sujuan; Cao, Mushui; Zhou, Lu; Lu, Xingyu; Wang, Junxia; Yang, Jing; Fu, Yunhe; Yang, Dongshan; Song, Jun; Zhu, Tianqing; Li, Shen; Ning, Bo; Wang, Ziyun; Koike, Tomonari; Shiomi, Masashi; Liu, Enqi; Chen, Luonan; Fan, Jianglin; Chen, Y. Eugene; Li, Yixue

    2016-01-01

    The rabbit (Oryctolagus cuniculus) is an important experimental animal for studying human diseases, such as hypercholesterolemia and atherosclerosis. Despite this, genetic information and RNA expression profiling of laboratory rabbits are lacking. Here, we characterized the whole-genome variants of three breeds of the most popular experimental rabbits, New Zealand White (NZW), Japanese White (JW) and Watanabe heritable hyperlipidemic (WHHL) rabbits. Although the genetic diversity of WHHL rabbits was relatively low, they accumulated a large proportion of high-frequency deleterious mutations due to the small population size. Some of the deleterious mutations were associated with the pathophysiology of WHHL rabbits in addition to the LDLR deficiency. Furthermore, we conducted transcriptome sequencing of different organs of both WHHL and cholesterol-rich diet (Chol)-fed NZW rabbits. We found that gene expression profiles of the two rabbit models were essentially similar in the aorta, even though they exhibited different types of hypercholesterolemia. In contrast, Chol-fed rabbits, but not WHHL rabbits, exhibited pronounced inflammatory responses and abnormal lipid metabolism in the liver. These results provide valuable insights into identifying therapeutic targets of hypercholesterolemia and atherosclerosis with rabbit models. PMID:27245873

  10. Genome-wide transcriptomic analysis uncovers the molecular basis underlying early flowering and apetalous characteristic in Brassica napus L

    PubMed Central

    Yu, Kunjiang; Wang, Xiaodong; Chen, Feng; Chen, Song; Peng, Qi; Li, Hongge; Zhang, Wei; Hu, Maolong; Chu, Pu; Zhang, Jiefu; Guan, Rongzhan

    2016-01-01

    Floral transition and petal onset, as two main aspects of flower development, are crucial to rapeseed evolutionary success and yield formation. Currently, very little is known regarding the genetic architecture that regulates flowering time and petal morphogenesis in Brassica napus. In the present study, a genome-wide transcriptomic analysis was performed with an absolutely apetalous and early flowering line, APL01, and a normally petalled line, PL01, using high-throughput RNA sequencing. In total, 13,205 differential expressed genes were detected, of which 6111 genes were significantly down-regulated, while 7094 genes were significantly up-regulated in the young inflorescences of APL01 compared with PL01. The expression levels of a vast number of genes involved in protein biosynthesis were altered in response to the early flowering and apetalous character. Based on the putative rapeseed flowering genes, an early flowering network, mainly comprised of vernalization and photoperiod pathways, was built. Additionally, 36 putative upstream genes possibly governing the apetalous character of line APL01 were identified, and six genes potentially regulating petal origination were obtained by combining with three petal-related quantitative trait loci. These findings will facilitate understanding of the molecular mechanisms underlying floral transition and petal initiation in B. napus. PMID:27460760

  11. Integration of genomic, transcriptomic and proteomic data identifies two biologically distinct subtypes of invasive lobular breast cancer.

    PubMed

    Michaut, Magali; Chin, Suet-Feung; Majewski, Ian; Severson, Tesa M; Bismeijer, Tycho; de Koning, Leanne; Peeters, Justine K; Schouten, Philip C; Rueda, Oscar M; Bosma, Astrid J; Tarrant, Finbarr; Fan, Yue; He, Beilei; Xue, Zheng; Mittempergher, Lorenza; Kluin, Roelof J C; Heijmans, Jeroen; Snel, Mireille; Pereira, Bernard; Schlicker, Andreas; Provenzano, Elena; Ali, Hamid Raza; Gaber, Alexander; O'Hurley, Gillian; Lehn, Sophie; Muris, Jettie J F; Wesseling, Jelle; Kay, Elaine; Sammut, Stephen John; Bardwell, Helen A; Barbet, Aurélie S; Bard, Floriane; Lecerf, Caroline; O'Connor, Darran P; Vis, Daniël J; Benes, Cyril H; McDermott, Ultan; Garnett, Mathew J; Simon, Iris M; Jirström, Karin; Dubois, Thierry; Linn, Sabine C; Gallagher, William M; Wessels, Lodewyk F A; Caldas, Carlos; Bernards, Rene

    2016-01-01

    Invasive lobular carcinoma (ILC) is the second most frequently occurring histological breast cancer subtype after invasive ductal carcinoma (IDC), accounting for around 10% of all breast cancers. The molecular processes that drive the development of ILC are still largely unknown. We have performed a comprehensive genomic, transcriptomic and proteomic analysis of a large ILC patient cohort and present here an integrated molecular portrait of ILC. Mutations in CDH1 and in the PI3K pathway are the most frequent molecular alterations in ILC. We identified two main subtypes of ILCs: (i) an immune related subtype with mRNA up-regulation of PD-L1, PD-1 and CTLA-4 and greater sensitivity to DNA-damaging agents in representative cell line models; (ii) a hormone related subtype, associated with Epithelial to Mesenchymal Transition (EMT), and gain of chromosomes 1q and 8q and loss of chromosome 11q. Using the somatic mutation rate and eIF4B protein level, we identified three groups with different clinical outcomes, including a group with extremely good prognosis. We provide a comprehensive overview of the molecular alterations driving ILC and have explored links with therapy response. This molecular characterization may help to tailor treatment of ILC through the application of specific targeted, chemo- and/or immune-therapies. PMID:26729235

  12. Genome-wide transcriptomic analysis uncovers the molecular basis underlying early flowering and apetalous characteristic in Brassica napus L.

    PubMed

    Yu, Kunjiang; Wang, Xiaodong; Chen, Feng; Chen, Song; Peng, Qi; Li, Hongge; Zhang, Wei; Hu, Maolong; Chu, Pu; Zhang, Jiefu; Guan, Rongzhan

    2016-01-01

    Floral transition and petal onset, as two main aspects of flower development, are crucial to rapeseed evolutionary success and yield formation. Currently, very little is known regarding the genetic architecture that regulates flowering time and petal morphogenesis in Brassica napus. In the present study, a genome-wide transcriptomic analysis was performed with an absolutely apetalous and early flowering line, APL01, and a normally petalled line, PL01, using high-throughput RNA sequencing. In total, 13,205 differential expressed genes were detected, of which 6111 genes were significantly down-regulated, while 7094 genes were significantly up-regulated in the young inflorescences of APL01 compared with PL01. The expression levels of a vast number of genes involved in protein biosynthesis were altered in response to the early flowering and apetalous character. Based on the putative rapeseed flowering genes, an early flowering network, mainly comprised of vernalization and photoperiod pathways, was built. Additionally, 36 putative upstream genes possibly governing the apetalous character of line APL01 were identified, and six genes potentially regulating petal origination were obtained by combining with three petal-related quantitative trait loci. These findings will facilitate understanding of the molecular mechanisms underlying floral transition and petal initiation in B. napus. PMID:27460760

  13. Genome-wide transcriptome profiling provides insights into floral bud development of summer-flowering Camellia azalea

    PubMed Central

    Fan, Zhengqi; Li, Jiyuan; Li, Xinlei; Wu, Bin; Wang, Jiangying; Liu, Zhongchi; Yin, Hengfu

    2015-01-01

    The transition from vegetative to reproductive growth in woody perennials involves pathways controlling flowering timing, bud dormancy and outgrowth in responses to seasonal cues. However little is known about the mechanism governing the adaptation of signaling pathways to environmental conditions in trees. Camellia azalea is a rare species in this genus flowering during summer, which provides a unique resource for floral timing breeding. Here we reported a comprehensive transcriptomics study to capture the global gene profiles during floral bud development in C. azalea. We examined the genome-wide gene expression between three developmental stages including floral bud initiation, floral organ differentiation and bud outgrowth, and identified nine co-expression clusters with distinctive patterns. Further, we identified the differential expressed genes (DEGs) during development and characterized the functional properties of DEGs by Gene Ontology analysis. We showed that transition from floral bud initiation to floral organ differentiation required changes of genes in flowering timing regulation, while transition to floral bud outgrowth was regulated by various pathways such as cold and light signaling, phytohormone pathways and plant metabolisms. Further analyses of dormancy associated MADS-box genes revealed that SVP- and AGL24- like genes displayed distinct expression patterns suggesting divergent roles during floral bud development. PMID:25978548

  14. Functional genomics of adaptation to hypoxic cold-stress in high-altitude deer mice: transcriptomic plasticity and thermogenic performance.

    PubMed

    Cheviron, Zachary A; Connaty, Alex D; McClelland, Grant B; Storz, Jay F

    2014-01-01

    In species that are distributed across steep environmental gradients, adaptive variation in physiological performance may be attributable to transcriptional plasticity in underlying regulatory networks. Here we report the results of common-garden experiments that were designed to elucidate the role of regulatory plasticity in evolutionary adaptation to hypoxic cold-stress in deer mice (Peromyscus maniculatus). We integrated genomic transcriptional profiles with measures of metabolic enzyme activities and whole-animal thermogenic performance under hypoxia in highland (4350 m) and lowland (430 m) mice from three experimental groups: (1) wild-caught mice that were sampled at their native elevations; (2) wild-caught/lab-reared mice that were deacclimated to low-elevation conditions in a common-garden lab environment; and (3) the F(1) progeny of deacclimated mice that were maintained under the same low-elevation common-garden conditions. In each experimental group, highland mice exhibited greater thermogenic capacities than lowland mice, and this enhanced performance was associated with upregulation of transcriptional modules that influence several hierarchical steps in the O(2) cascade, including tissue O(2) diffusion (angiogenesis) and tissue O(2) utilization (metabolic fuel use and cellular oxidative capacity). Most of these performance-related transcriptomic changes occurred over physiological and developmental timescales, suggesting that regulatory plasticity makes important contributions to fitness-related physiological performance in highland deer mice. PMID:24102503

  15. Hyperlipidemia-associated gene variations and expression patterns revealed by whole-genome and transcriptome sequencing of rabbit models.

    PubMed

    Wang, Zhen; Zhang, Jifeng; Li, Hong; Li, Junyi; Niimi, Manabu; Ding, Guohui; Chen, Haifeng; Xu, Jie; Zhang, Hongjiu; Xu, Ze; Dai, Yulin; Gui, Tuantuan; Li, Shengdi; Liu, Zhi; Wu, Sujuan; Cao, Mushui; Zhou, Lu; Lu, Xingyu; Wang, Junxia; Yang, Jing; Fu, Yunhe; Yang, Dongshan; Song, Jun; Zhu, Tianqing; Li, Shen; Ning, Bo; Wang, Ziyun; Koike, Tomonari; Shiomi, Masashi; Liu, Enqi; Chen, Luonan; Fan, Jianglin; Chen, Y Eugene; Li, Yixue

    2016-01-01

    The rabbit (Oryctolagus cuniculus) is an important experimental animal for studying human diseases, such as hypercholesterolemia and atherosclerosis. Despite this, genetic information and RNA expression profiling of laboratory rabbits are lacking. Here, we characterized the whole-genome variants of three breeds of the most popular experimental rabbits, New Zealand White (NZW), Japanese White (JW) and Watanabe heritable hyperlipidemic (WHHL) rabbits. Although the genetic diversity of WHHL rabbits was relatively low, they accumulated a large proportion of high-frequency deleterious mutations due to the small population size. Some of the deleterious mutations were associated with the pathophysiology of WHHL rabbits in addition to the LDLR deficiency. Furthermore, we conducted transcriptome sequencing of different organs of both WHHL and cholesterol-rich diet (Chol)-fed NZW rabbits. We found that gene expression profiles of the two rabbit models were essentially similar in the aorta, even though they exhibited different types of hypercholesterolemia. In contrast, Chol-fed rabbits, but not WHHL rabbits, exhibited pronounced inflammatory responses and abnormal lipid metabolism in the liver. These results provide valuable insights into identifying therapeutic targets of hypercholesterolemia and atherosclerosis with rabbit models. PMID:27245873

  16. Genome-wide comparison of the transcriptomes of highly enriched normal and chronic myeloid leukemia stem and progenitor cell populations.

    PubMed

    Gerber, Jonathan M; Gucwa, Jessica L; Esopi, David; Gurel, Meltem; Haffner, Michael C; Vala, Milada; Nelson, William G; Jones, Richard J; Yegnasubramanian, Srinivasan

    2013-05-01

    The persistence leukemia stem cells (LSCs) in chronic myeloid leukemia (CML) despite tyrosine kinase inhibition (TKI) may explain relapse after TKI withdrawal. Here we performed genome-wide transcriptome analysis of highly refined CML and normal stem and progenitor cell populations to identify novel targets for the eradication of CML LSCs using exon microarrays. We identified 97 genes that were differentially expressed in CML versus normal stem and progenitor cells. These included cell surface genes significantly upregulated in CML LSCs: DPP4 (CD26), IL2RA (CD25), PTPRD, CACNA1D, IL1RAP, SLC4A4, and KCNK5. Further analyses of the LSCs revealed dysregulation of normal cellular processes, evidenced by alternative splicing of genes in key cancer signaling pathways such as p53 signaling (e.g. PERP, CDKN1A), kinase binding (e.g. DUSP12, MARCKS), and cell proliferation (MYCN, TIMELESS); downregulation of pro-differentiation and TGF-β/BMP signaling pathways; upregulation of oxidative metabolism and DNA repair pathways; and activation of inflammatory cytokines, including CCL2, and multiple oncogenes (e.g., CCND1). These data represent an important resource for understanding the molecular changes in CML LSCs, which may be exploited to develop novel therapies for eradication these cells and achieve cure. PMID:23651669

  17. Integration of genomic, transcriptomic and proteomic data identifies two biologically distinct subtypes of invasive lobular breast cancer

    PubMed Central

    Michaut, Magali; Chin, Suet-Feung; Majewski, Ian; Severson, Tesa M.; Bismeijer, Tycho; de Koning, Leanne; Peeters, Justine K.; Schouten, Philip C.; Rueda, Oscar M.; Bosma, Astrid J.; Tarrant, Finbarr; Fan, Yue; He, Beilei; Xue, Zheng; Mittempergher, Lorenza; Kluin, Roelof J.C.; Heijmans, Jeroen; Snel, Mireille; Pereira, Bernard; Schlicker, Andreas; Provenzano, Elena; Ali, Hamid Raza; Gaber, Alexander; O’Hurley, Gillian; Lehn, Sophie; Muris, Jettie J.F.; Wesseling, Jelle; Kay, Elaine; Sammut, Stephen John; Bardwell, Helen A.; Barbet, Aurélie S.; Bard, Floriane; Lecerf, Caroline; O’Connor, Darran P.; Vis, Daniël J.; Benes, Cyril H.; McDermott, Ultan; Garnett, Mathew J.; Simon, Iris M.; Jirström, Karin; Dubois, Thierry; Linn, Sabine C.; Gallagher, William M.; Wessels, Lodewyk F.A.; Caldas, Carlos; Bernards, Rene

    2016-01-01

    Invasive lobular carcinoma (ILC) is the second most frequently occurring histological breast cancer subtype after invasive ductal carcinoma (IDC), accounting for around 10% of all breast cancers. The molecular processes that drive the development of ILC are still largely unknown. We have performed a comprehensive genomic, transcriptomic and proteomic analysis of a large ILC patient cohort and present here an integrated molecular portrait of ILC. Mutations in CDH1 and in the PI3K pathway are the most frequent molecular alterations in ILC. We identified two main subtypes of ILCs: (i) an immune related subtype with mRNA up-regulation of PD-L1, PD-1 and CTLA-4 and greater sensitivity to DNA-damaging agents in representative cell line models; (ii) a hormone related subtype, associated with Epithelial to Mesenchymal Transition (EMT), and gain of chromosomes 1q and 8q and loss of chromosome 11q. Using the somatic mutation rate and eIF4B protein level, we identified three groups with different clinical outcomes, including a group with extremely good prognosis. We provide a comprehensive overview of the molecular alterations driving ILC and have explored links with therapy response. This molecular characterization may help to tailor treatment of ILC through the application of specific targeted, chemo- and/or immune-therapies. PMID:26729235

  18. The transcriptomes of novel marmoset monkey embryonic stem cell lines reflect distinct genomic features.

    PubMed

    Debowski, Katharina; Drummer, Charis; Lentes, Jana; Cors, Maren; Dressel, Ralf; Lingner, Thomas; Salinas-Riester, Gabriela; Fuchs, Sigrid; Sasaki, Erika; Behr, Rüdiger

    2016-01-01

    Embryonic stem cells (ESCs) are useful for the study of embryonic development. However, since research on naturally conceived human embryos is limited, non-human primate (NHP) embryos and NHP ESCs represent an excellent alternative to the corresponding human entities. Though, ESC lines derived from naturally conceived NHP embryos are still very rare. Here, we report the generation and characterization of four novel ESC lines derived from natural preimplantation embryos of the common marmoset monkey (Callithrix jacchus). For the first time we document derivation of NHP ESCs derived from morula stages. We show that quantitative chromosome-wise transcriptome analyses precisely reflect trisomies present in both morula-derived ESC lines. We also demonstrate that the female ESC lines exhibit different states of X-inactivation which is impressively reflected by the abundance of the lncRNA X inactive-specific transcript (XIST). The novel marmoset ESC lines will promote basic primate embryo and ESC studies as well as preclinical testing of ESC-based regenerative approaches in NHP. PMID:27385131

  19. Alternative Splicing and Transcriptome Profiling of Experimental Autoimmune Encephalomyelitis Using Genome-Wide Exon Arrays

    PubMed Central

    Gillett, Alan; Maratou, Klio; Fewings, Chris; Harris, Robert A.; Jagodic, Maja; Aitman, Tim; Olsson, Tomas

    2009-01-01

    Background Multiple Sclerosis (MS) is a chronic inflammatory disease causing demyelination and nerve loss in the central nervous system. Experimental autoimmune encephalomyelitis (EAE) is an animal model of MS that is widely used to investigate complex pathogenic mechanisms. Transcriptional control through isoform selection and mRNA levels determines pathway activation and ultimately susceptibility to disease. Methodology/Principal Findings We have studied the role of alternative splicing and differential expression in lymph node cells from EAE-susceptible Dark Agouti (DA) and EAE-resistant Piebald Virol Glaxo.AV1 (PVG) inbred rat strains using Affymetrix Gene Chip Rat Exon 1.0 ST Arrays. Comparing the two strains, we identified 11 differentially spliced and 206 differentially expressed genes at day 7 post-immunization, as well as 9 differentially spliced and 144 differentially expressed genes upon autoantigen re-stimulation. Functional clustering and pathway analysis implicate genes for glycosylation, lymphocyte activation, potassium channel activity and cellular differentiation in EAE susceptibility. Conclusions/Significance Our results demonstrate that alternative splicing occurs during complex disease and may govern EAE susceptibility. Additionally, transcriptome analysis not only identified previously defined EAE pathways regulating the immune system, but also novel mechanisms. Furthermore, several identified genes overlap known quantitative trait loci, providing novel causative candidate targets governing EAE. PMID:19915720

  20. The transcriptomes of novel marmoset monkey embryonic stem cell lines reflect distinct genomic features

    PubMed Central

    Debowski, Katharina; Drummer, Charis; Lentes, Jana; Cors, Maren; Dressel, Ralf; Lingner, Thomas; Salinas-Riester, Gabriela; Fuchs, Sigrid; Sasaki, Erika; Behr, Rüdiger

    2016-01-01

    Embryonic stem cells (ESCs) are useful for the study of embryonic development. However, since research on naturally conceived human embryos is limited, non-human primate (NHP) embryos and NHP ESCs represent an excellent alternative to the corresponding human entities. Though, ESC lines derived from naturally conceived NHP embryos are still very rare. Here, we report the generation and characterization of four novel ESC lines derived from natural preimplantation embryos of the common marmoset monkey (Callithrix jacchus). For the first time we document derivation of NHP ESCs derived from morula stages. We show that quantitative chromosome-wise transcriptome analyses precisely reflect trisomies present in both morula-derived ESC lines. We also demonstrate that the female ESC lines exhibit different states of X-inactivation which is impressively reflected by the abundance of the lncRNA X inactive-specific transcript (XIST). The novel marmoset ESC lines will promote basic primate embryo and ESC studies as well as preclinical testing of ESC-based regenerative approaches in NHP. PMID:27385131

  1. Next-Generation Sequencing of the Chrysanthemum nankingense (Asteraceae) Transcriptome Permits Large-Scale Unigene Assembly and SSR Marker Discovery

    PubMed Central

    Wang, Haibin; Jiang, Jiafu; Chen, Sumei; Qi, Xiangyu; Peng, Hui; Li, Pirui; Song, Aiping; Guan, Zhiyong; Fang, Weimin; Liao, Yuan; Chen, Fadi

    2013-01-01

    Background Simple sequence repeats (SSRs) are ubiquitous in eukaryotic genomes. Chrysanthemum is one of the largest genera in the Asteraceae family. Only few Chrysanthemum expressed sequence tag (EST) sequences have been acquired to date, so the number of available EST-SSR markers is very low. Methodology/Principal Findings Illumina paired-end sequencing technology produced over 53 million sequencing reads from C. nankingense mRNA. The subsequent de novo assembly yielded 70,895 unigenes, of which 45,789 (64.59%) unigenes showed similarity to the sequences in NCBI database. Out of 45,789 sequences, 107 have hits to the Chrysanthemum Nr protein database; 679 and 277 sequences have hits to the database of Helianthus and Lactuca species, respectively. MISA software identified a large number of putative EST-SSRs, allowing 1,788 primer pairs to be designed from the de novo transcriptome sequence and a further 363 from archival EST sequence. Among 100 primer pairs randomly chosen, 81 markers have amplicons and 20 are polymorphic for genotypes analysis in Chrysanthemum. The results showed that most (but not all) of the assays were transferable across species and that they exposed a significant amount of allelic diversity. Conclusions/Significance SSR markers acquired by transcriptome sequencing are potentially useful for marker-assisted breeding and genetic analysis in the genus Chrysanthemum and its related genera. PMID:23626799

  2. Triplexator: Detecting nucleic acid triple helices in genomic and transcriptomic data

    PubMed Central

    Buske, Fabian A.; Bauer, Denis C.; Mattick, John S.; Bailey, Timothy L.

    2012-01-01

    Double-stranded DNA is able to form triple-helical structures by accommodating a third nucleotide strand in its major groove. This sequence-specific process offers a potent mechanism for targeting genomic loci of interest that is of great value for biotechnological and gene-therapeutic applications. It is likely that nature has leveraged this addressing system for gene regulation, because computational studies have uncovered an abundance of putative triplex target sites in various genomes, with enrichment particularly in gene promoters. However, to draw a more complete picture of the in vivo role of triplexes, not only the putative targets but also the sequences acting as the third strand and their capability to pair with the predicted target sites need to be studied. Here we present Triplexator, the first computational framework that integrates all aspects of triplex formation, and showcase its potential by discussing research examples for which the different aspects of triplex formation are important. We find that chromatin-associated RNAs have a significantly higher fraction of sequence features able to form triplexes than expected at random, suggesting their involvement in gene regulation. We furthermore identify hundreds of human genes that contain sequence features in their promoter predicted to be able to form a triplex with a target within the same promoter, suggesting the involvement of triplexes in feedback-based gene regulation. With focus on biotechnological applications, we screen mammalian genomes for high-affinity triplex target sites that can be used to target genomic loci specifically and find that triplex formation offers a resolution of ∼1300 nt. PMID:22550012

  3. Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of Clostridium ljungdahlii

    PubMed Central

    2013-01-01

    Background The metabolic capabilities of acetogens to ferment a wide range of sugars, to grow autotrophically on H2/CO2, and more importantly on synthesis gas (H2/CO/CO2) make them very attractive candidates as production hosts for biofuels and biocommodities. Acetogenic metabolism is considered one of the earliest modes of bacterial metabolism. A thorough understanding of various factors governing the metabolism, in particular energy conservation mechanisms, is critical for metabolic engineering of acetogens for targeted production of desired chemicals. Results Here, we present the genome-scale metabolic network of Clostridium ljungdahlii, the first such model for an acetogen. This genome-scale model (iHN637) consisting of 637 genes, 785 reactions, and 698 metabolites captures all the major central metabolic and biosynthetic pathways, in particular pathways involved in carbon fixation and energy conservation. A combination of metabolic modeling, with physiological and transcriptomic data provided insights into autotrophic metabolism as well as aided the characterization of a nitrate reduction pathway in C. ljungdahlii. Analysis of the iHN637 metabolic model revealed that flavin based electron bifurcation played a key role in energy conservation during autotrophic growth and helped identify genes for some of the critical steps in this mechanism. Conclusions iHN637 represents a predictive model that recapitulates experimental data, and provides valuable insights into the metabolic response of C. ljungdahlii to genetic perturbations under various growth conditions. Thus, the model will be instrumental in guiding metabolic engineering of C. ljungdahlii for the industrial production of biocommodities and biofuels. PMID:24274140

  4. Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of Clostridium ljungdahlii

    SciTech Connect

    Nagarajan, H; Sahin, M; Nogales, J; Latif, H; Lovley, DR; Ebrahim, A; Zengler, K

    2013-11-25

    Background: The metabolic capabilities of acetogens to ferment a wide range of sugars, to grow autotrophically on H-2/CO2, and more importantly on synthesis gas (H-2/CO/CO2) make them very attractive candidates as production hosts for biofuels and biocommodities. Acetogenic metabolism is considered one of the earliest modes of bacterial metabolism. A thorough understanding of various factors governing the metabolism, in particular energy conservation mechanisms, is critical for metabolic engineering of acetogens for targeted production of desired chemicals. Results: Here, we present the genome-scale metabolic network of Clostridium ljungdahlii, the first such model for an acetogen. This genome-scale model (iHN637) consisting of 637 genes, 785 reactions, and 698 metabolites captures all the major central metabolic and biosynthetic pathways, in particular pathways involved in carbon fixation and energy conservation. A combination of metabolic modeling, with physiological and transcriptomic data provided insights into autotrophic metabolism as well as aided the characterization of a nitrate reduction pathway in C. ljungdahlii. Analysis of the iHN637 metabolic model revealed that flavin based electron bifurcation played a key role in energy conservation during autotrophic growth and helped identify genes for some of the critical steps in this mechanism. Conclusions: iHN637 represents a predictive model that recapitulates experimental data, and provides valuable insights into the metabolic response of C. ljungdahlii to genetic perturbations under various growth conditions. Thus, the model will be instrumental in guiding metabolic engineering of C. ljungdahlii for the industrial production of biocommodities and biofuels.

  5. A whole-genome sequence and transcriptome perspective on HER2-positive breast cancers

    PubMed Central

    Ferrari, Anthony; Vincent-Salomon, Anne; Pivot, Xavier; Sertier, Anne-Sophie; Thomas, Emilie; Tonon, Laurie; Boyault, Sandrine; Mulugeta, Eskeatnaf; Treilleux, Isabelle; MacGrogan, Gaëtan; Arnould, Laurent; Kielbassa, Janice; Le Texier, Vincent; Blanché, Hélène; Deleuze, Jean-François; Jacquemier, Jocelyne; Mathieu, Marie-Christine; Penault-Llorca, Frédérique; Bibeau, Frédéric; Mariani, Odette; Mannina, Cécile; Pierga, Jean-Yves; Trédan, Olivier; Bachelot, Thomas; Bonnefoi, Hervé; Romieu, Gilles; Fumoleau, Pierre; Delaloge, Suzette; Rios, Maria; Ferrero, Jean-Marc; Tarpin, Carole; Bouteille, Catherine; Calvo, Fabien; Gut, Ivo Glynne; Gut, Marta; Martin, Sancha; Nik-Zainal, Serena; Stratton, Michael R.; Pauporté, Iris; Saintigny, Pierre; Birnbaum, Daniel; Viari, Alain; Thomas, Gilles

    2016-01-01

    HER2-positive breast cancer has long proven to be a clinically distinct class of breast cancers for which several targeted therapies are now available. However, resistance to the treatment associated with specific gene expressions or mutations has been observed, revealing the underlying diversity of these cancers. Therefore, understanding the full extent of the HER2-positive disease heterogeneity still remains challenging. Here we carry out an in-depth genomic characterization of 64 HER2-positive breast tumour genomes that exhibit four subgroups, based on the expression data, with distinctive genomic features in terms of somatic mutations, copy-number changes or structural variations. The results suggest that, despite being clinically defined by a specific gene amplification, HER2-positive tumours melt into the whole luminal–basal breast cancer spectrum rather than standing apart. The results also lead to a refined ERBB2 amplicon of 106 kb and show that several cases of amplifications are compatible with a breakage–fusion–bridge mechanism. PMID:27406316

  6. The genome and transcriptome of Phalaenopsis yield insights into floral organ development and flowering regulation

    PubMed Central

    Cheng, Ting-Chi; Huang, Ya-Wen; Tsai, Yi-Jung; Chen, Yi-Wen; Lee, Chueh-Pai; Chung, Wan-Chia

    2016-01-01

    The Phalaenopsis orchid is an important potted flower of high economic value around the world. We report the 3.1 Gb draft genome assembly of an important winter flowering Phalaenopsis ‘KHM190’ cultivar. We generated 89.5 Gb RNA-seq and 113 million sRNA-seq reads to use these data to identify 41,153 protein-coding genes and 188 miRNA families. We also generated a draft genome for Phalaenopsis pulcherrima ‘B8802,’ a summer flowering species, via resequencing. Comparison of genome data between the two Phalaenopsis cultivars allowed the identification of 691,532 single-nucleotide polymorphisms. In this study, we reveal that the key role of PhAGL6b in the regulation of labellum organ development involves alternative splicing in the big lip mutant. Petal or sepal overexpressing PhAGL6b leads to the conversion into a lip-like structure. We also discovered that the gibberellin pathway that regulates the expression of flowering time genes during the reproductive phase change is induced by cool temperature. Our work thus depicted a valuable resource for the flowering control, flower architecture development, and breeding of the Phalaenopsis orchids. PMID:27190718

  7. The genome and transcriptome of Phalaenopsis yield insights into floral organ development and flowering regulation.

    PubMed

    Huang, Jian-Zhi; Lin, Chih-Peng; Cheng, Ting-Chi; Huang, Ya-Wen; Tsai, Yi-Jung; Cheng, Shu-Yun; Chen, Yi-Wen; Lee, Chueh-Pai; Chung, Wan-Chia; Chang, Bill Chia-Han; Chin, Shih-Wen; Lee, Chen-Yu; Chen, Fure-Chyi

    2016-01-01

    The Phalaenopsis orchid is an important potted flower of high economic value around the world. We report the 3.1 Gb draft genome assembly of an important winter flowering Phalaenopsis 'KHM190' cultivar. We generated 89.5 Gb RNA-seq and 113 million sRNA-seq reads to use these data to identify 41,153 protein-coding genes and 188 miRNA families. We also generated a draft genome for Phalaenopsis pulcherrima 'B8802,' a summer flowering species, via resequencing. Comparison of genome data between the two Phalaenopsis cultivars allowed the identification of 691,532 single-nucleotide polymorphisms. In this study, we reveal that the key role of PhAGL6b in the regulation of labellum organ development involves alternative splicing in the big lip mutant. Petal or sepal overexpressing PhAGL6b leads to the conversion into a lip-like structure. We also discovered that the gibberellin pathway that regulates the expression of flowering time genes during the reproductive phase change is induced by cool temperature. Our work thus depicted a valuable resource for the flowering control, flower architecture development, and breeding of the Phalaenopsis orchids. PMID:27190718

  8. A whole-genome sequence and transcriptome perspective on HER2-positive breast cancers.

    PubMed

    Ferrari, Anthony; Vincent-Salomon, Anne; Pivot, Xavier; Sertier, Anne-Sophie; Thomas, Emilie; Tonon, Laurie; Boyault, Sandrine; Mulugeta, Eskeatnaf; Treilleux, Isabelle; MacGrogan, Gaëtan; Arnould, Laurent; Kielbassa, Janice; Le Texier, Vincent; Blanché, Hélène; Deleuze, Jean-François; Jacquemier, Jocelyne; Mathieu, Marie-Christine; Penault-Llorca, Frédérique; Bibeau, Frédéric; Mariani, Odette; Mannina, Cécile; Pierga, Jean-Yves; Trédan, Olivier; Bachelot, Thomas; Bonnefoi, Hervé; Romieu, Gilles; Fumoleau, Pierre; Delaloge, Suzette; Rios, Maria; Ferrero, Jean-Marc; Tarpin, Carole; Bouteille, Catherine; Calvo, Fabien; Gut, Ivo Glynne; Gut, Marta; Martin, Sancha; Nik-Zainal, Serena; Stratton, Michael R; Pauporté, Iris; Saintigny, Pierre; Birnbaum, Daniel; Viari, Alain; Thomas, Gilles

    2016-01-01

    HER2-positive breast cancer has long proven to be a clinically distinct class of breast cancers for which several targeted therapies are now available. However, resistance to the treatment associated with specific gene expressions or mutations has been observed, revealing the underlying diversity of these cancers. Therefore, understanding the full extent of the HER2-positive disease heterogeneity still remains challenging. Here we carry out an in-depth genomic characterization of 64 HER2-positive breast tumour genomes that exhibit four subgroups, based on the expression data, with distinctive genomic features in terms of somatic mutations, copy-number changes or structural variations. The results suggest that, despite being clinically defined by a specific gene amplification, HER2-positive tumours melt into the whole luminal-basal breast cancer spectrum rather than standing apart. The results also lead to a refined ERBB2 amplicon of 106 kb and show that several cases of amplifications are compatible with a breakage-fusion-bridge mechanism. PMID:27406316

  9. Integrative Genomic and Transcriptomic Analysis Identified Candidate Genes Implicated in the Pathogenesis of Hepatosplenic T-Cell Lymphoma

    PubMed Central

    Finalet Ferreiro, Julio; Rouhigharabaei, Leila; Urbankova, Helena; van der Krogt, Jo-Anne; Michaux, Lucienne; Shetty, Shashirekha; Krenacs, Laszlo; Tousseyn, Thomas; De Paepe, Pascale; Uyttebroeck, Anne; Verhoef, Gregor; Taghon, Tom; Vandenberghe, Peter; Cools, Jan; Wlodarska, Iwona

    2014-01-01

    Hepatosplenic T-cell lymphoma (HSTL) is an aggressive lymphoma cytogenetically characterized by isochromosome 7q [i(7)(q10)], of which the molecular consequences remain unknown. We report here results of an integrative genomic and transcriptomic (expression microarray and RNA-sequencing) study of six i(7)(q10)-positive HSTL cases, including HSTL-derived cell line (DERL-2), and three cases with ring 7 [r(7)], the recently identified rare variant aberration. Using high resolution array CGH, we profiled all cases and mapped the common deleted region (CDR) at 7p22.1p14.1 (34.88 Mb; 3506316-38406226 bp) and the common gained region (CGR) at 7q22.11q31.1 (38.77 Mb; 86259620–124892276 bp). Interestingly, CDR spans a smaller region of 13 Mb (86259620–99271246 bp) constantly amplified in cases with r(7). In addition, we found that TCRG (7p14.1) and TCRB (7q32) are involved in formation of r(7), which seems to be a byproduct of illegitimate somatic rearrangement of both loci. Further transcriptomic analysis has not identified any CDR-related candidate tumor suppressor gene. Instead, loss of 7p22.1p14.1 correlated with an enhanced expression of CHN2 (7p14.1) and the encoded β2-chimerin. Gain and amplification of 7q22.11q31.1 are associated with an increased expression of several genes postulated to be implicated in cancer, including RUNDC3B, PPP1R9A and ABCB1, a known multidrug resistance gene. RNA-sequencing did not identify any disease-defining mutation or gene fusion. Thus, chromosome 7 imbalances remain the only driver events detected in this tumor. We hypothesize that the Δ7p22.1p14.1-associated enhanced expression of CHN2/β2-chimerin leads to downmodulation of the NFAT pathway and a proliferative response, while upregulation of the CGR-related genes provides growth advantage for neoplastic δγT-cells and underlies their intrinsic chemoresistance. Finally, our study confirms the previously described gene expression profile of HSTL and identifies a set of 24 genes

  10. Comprehensive Genome-Wide Transcriptomic Analysis of Immature Articular Cartilage following Ischemic Osteonecrosis of the Femoral Head in Piglets

    PubMed Central

    Adapala, Naga Suresh; Kim, Harry K. W.

    2016-01-01

    Objective Ischemic osteonecrosis of the femoral head (ONFH) in piglets results in an ischemic injury to the immature articular cartilage. The molecular changes in the articular cartilage in response to ONFH have not been investigated using a transcriptomic approach. The purpose of this study was to perform a genome-wide transcriptomic analysis to identify genes that are upregulated in the immature articular cartilage following ONFH. Methods ONFH was induced in the right femoral head of 6-week old piglets. The unoperated femoral head was used as the normal control. At 24 hours (acute ischemic-hypoxic injury), 2 weeks (avascular necrosis in the femoral head) and 4 weeks (early repair) after surgery (n = 4 piglets/time point), RNA was isolated from the articular cartilage of the femoral head. A microarray analysis was performed using Affymetrix Porcine GeneChip Array. An enrichment analysis and functional clustering of the genes upregulated due to ONFH were performed using DAVID and STRING software, respectively. The increased expression of selected genes was confirmed by a real-time qRTPCR analysis. Results Induction of ONFH resulted in the upregulation of 383 genes at 24 hours, 122 genes at 2 weeks and 124 genes at 4 weeks compared to the normal controls. At 24 hours, the genes involved in oxidoreductive, cell-survival, and angiogenic responses were significantly enriched among the upregulated genes. These genes were involved in HIF-1, PI3K-Akt, and MAPK signaling pathways. At 2 weeks, secretory and signaling proteins involved in angiogenic and inflammatory responses, PI3K-Akt and matrix-remodeling pathways were significantly enriched. At 4 weeks, genes that represent inflammatory cytokines and chemokine signaling pathways were significantly enriched. Several index genes (genes that are upregulated at more than one time point following ONFH and are known to be important in various biological processes) including HIF-1A, VEGFA, IL-6, IL6R, IL-8, CCL2, FGF2, TGFB2

  11. Genome and transcriptome delineation of two major oncogenic pathways governing invasive ductal breast cancer development

    PubMed Central

    Aswad, Luay; Yenamandra, Surya Pavan; Ow, Ghim Siong; Grinchuk, Oleg; Ivshina, Anna V.; Kuznetsov, Vladimir A.

    2015-01-01

    Invasive ductal carcinoma (IDC) is a major histo-morphologic type of breast cancer. Histological grading (HG) of IDC is widely adopted by oncologists as a prognostic factor. However, HG evaluation is highly subjective with only 50%–85% inter-observer agreements. Specifically, the subjectivity in the assignment of the intermediate grade (histologic grade 2, HG2) breast cancers (comprising ~50% of IDC cases) results in uncertain disease outcome prediction and sub-optimal systemic therapy. Despite several attempts to identify the mechanisms underlying the HG classification, their molecular bases are poorly understood. We performed integrative bioinformatics analysis of TCGA and several other cohorts (total 1246 patients). We identified a 22-gene tumor aggressiveness grading classifier (22g-TAG) that reflects global bifurcation in the IDC transcriptomes and reclassified patients with HG2 tumors into two genetically and clinically distinct subclasses: histological grade 1-like (HG1-like) and histological grade 3-like (HG3-like). The expression profiles and clinical outcomes of these subclasses were similar to the HG1 and HG3 tumors, respectively. We further reclassified IDC into low genetic grade (LGG = HG1+HG1-like) and high genetic grade (HGG = HG3-like+HG3) subclasses. For the HG1-like and HG3-like IDCs we found subclass-specific DNA alterations, somatic mutations, oncogenic pathways, cell cycle/mitosis and stem cell-like expression signatures that discriminate between these tumors. We found similar molecular patterns in the LGG and HGG tumor classes respectively. Our results suggest the existence of two genetically-predefined IDC classes, LGG and HGG, driven by distinct oncogenic pathways. They provide novel prognostic and therapeutic biomarkers and could open unique opportunities for personalized systemic therapies of IDC patients. PMID:26474389

  12. Biological effects of the olive polyphenol, hydroxytyrosol: An extra view from genome-wide transcriptome analysis.

    PubMed

    Nan, Jia Nancy; Ververis, Katherine; Bollu, Sameera; Rodd, Annabelle L; Swarup, Oshi; Karagiannis, Tom C

    2014-01-01

    Epidemiological and clinical studies have established the health benefits of the Mediterranean diet, an important component of which are olives and olive oil derived from the olive tree (Olea Europea). It is now well-established that not only the major fatty acid constituents, but also the minor phenolic components, in olives and olive oil have important health benefits. Emerging research over the past decade has highlighted the beneficial effects of a range of phenolic compounds from olives and olive oil, particularly for cardiovascular diseases, metabolic syndrome and inflammatory conditions. Mechanisms of action include potent antioxidant and anti-inflammatory effects. Further, accumulating evidence indicates the potential of the polyphenols and potent antioxidants, hydroxytyrosol and oleuropein in oncology. Numerous studies, both in vitro and in vivo, have demonstrated the anticancer effects of hydroxytyrosol which include chemopreventive and cell-specific cytotoxic and apoptotic effects. Indeed, the precise molecular mechanisms accounting for the antioxidant, anti-inflammatory and anticancer properties are now becoming clear and this is, at least in part, due to high through-put gene transcription profiling. Initially, we constructed phylogenetic trees to visualize the evolutionary relationship of members of the Oleaceae family and secondly, between plants producing hydroxytyrosol to make inferences of potential similarities or differences in their medicinal properties and to identify novel plant candidates for the treatment and prevention of disease. Furthermore, given the recent interest in hydroxytyrosol as a potential anticancer agent and chemopreventative we utilized transcriptome analysis in the erythroleukemic cell line K562, to investigate the effects of hydroxytyrosol on three gene pathways: the complement system, The Warburg effect and chromatin remodeling to ascertain relevant gene candidates in the prevention of cancer. PMID:24392471

  13. Genome-scale models of bacterial metabolism: reconstruction and applications

    PubMed Central

    Durot, Maxime; Bourguignon, Pierre-Yves; Schachter, Vincent

    2009-01-01

    Genome-scale metabolic models bridge the gap between genome-derived biochemical information and metabolic phenotypes in a principled manner, providing a solid interpretative framework for experimental data related to metabolic states, and enabling simple in silico experiments with whole-cell metabolism. Models have been reconstructed for almost 20 bacterial species, so far mainly through expert curation efforts integrating information from the literature with genome annotation. A wide variety of computational methods exploiting metabolic models have been developed and applied to bacteria, yielding valuable insights into bacterial metabolism and evolution, and providing a sound basis for computer-assisted design in metabolic engineering. Recent advances in computational systems biology and high-throughput experimental technologies pave the way for the systematic reconstruction of metabolic models from genomes of new species, and a corresponding expansion of the scope of their applications. In this review, we provide an introduction to the key ideas of metabolic modeling, survey the methods, and resources that enable model reconstruction and refinement, and chart applications to the investigation of global properties of metabolic systems, the interpretation of experimental results, and the re-engineering of their biochemical capabilities. PMID:19067749

  14. Genome and transcriptome analysis of the grapevine (Vitis vinifera L.) WRKY gene family

    PubMed Central

    Wang, Min; Vannozzi, Alessandro; Wang, Gang; Liang, Ying-Hai; Tornielli, Giovanni Battista; Zenoni, Sara; Cavallini, Erika; Pezzotti, Mario; Cheng, Zong-Ming (Max)

    2014-01-01

    The plant WRKY gene family represents an ancient and complex class of zinc-finger transcription factors (TFs) that are involved in the regulation of various physiological processes, such as development and senescence, and in plant response to many biotic and abiotic stresses. Despite the growing number of studies on the genomic organisation of WRKY gene family in different species, little information is available about this family in grapevine (Vitis vinifera L.). In the present study, a total number of 59 putative grapevine WRKY transcription factors (VvWRKYs) were identified based on the analysis of various genomic and proteomic grapevine databases. According to their structural and phylogentic features, the identified grapevine WRKY transcription factors were classified into three main groups. In order to shed light into their regulatory roles in growth and development as well as in response to biotic and abiotic stress in grapevine, the VvWRKYs expression profiles were examined in publicly available microarray data. Bioinformatics analysis of these data revealed distinct temporal and spatial expression patterns of VvWRKYs in various tissues, organs and developmental stages, as well as in response to biotic and abiotic stresses. To also extend our analysis to situations not covered by the arrays and to validate our results, the expression profiles of selected VvWRKYs in response to drought stress, Erysiphe necator (powdery mildew) infection, and hormone treatments (salicilic acid and ethylene), were investigated by quantitative real-time reverse transcription PCR (qRT-PCR). The present study provides a foundation for further comparative genomics and functional studies of this important class of transcriptional regulators in grapevine. PMID:26504535

  15. The Dynamic Genome and Transcriptome of the Human Fungal Pathogen Blastomyces and Close Relative Emmonsia

    PubMed Central

    Gallo, Juan E.; Holder, Jason; Sullivan, Thomas D.; Marty, Amber J.; Carmen, John C.; Chen, Zehua; Ding, Li; Gujja, Sharvari; Magrini, Vincent; Misas, Elizabeth; Mitreva, Makedonka; Priest, Margaret; Saif, Sakina; Whiston, Emily A.; Young, Sarah; Zeng, Qiandong; Goldman, William E.; Mardis, Elaine R.; Taylor, John W.; McEwen, Juan G.; Clay, Oliver K.; Klein, Bruce S.; Cuomo, Christina A.

    2015-01-01

    Three closely related thermally dimorphic pathogens are causal agents of major fungal diseases affecting humans in the Americas: blastomycosis, histoplasmosis and paracoccidioidomycosis. Here we report the genome sequence and analysis of four strains of the etiological agent of blastomycosis, Blastomyces, and two species of the related genus Emmonsia, typically pathogens of small mammals. Compared to related species, Blastomyces genomes are highly expanded, with long, often sharply demarcated tracts of low GC-content sequence. These GC-poor isochore-like regions are enriched for gypsy elements, are variable in total size between isolates, and are least expanded in the avirulent B. dermatitidis strain ER-3 as compared with the virulent B. gilchristii strain SLH14081. The lack of similar regions in related species suggests these isochore-like regions originated recently in the ancestor of the Blastomyces lineage. While gene content is highly conserved between Blastomyces and related fungi, we identified changes in copy number of genes potentially involved in host interaction, including proteases and characterized antigens. In addition, we studied gene expression changes of B. dermatitidis during the interaction of the infectious yeast form with macrophages and in a mouse model. Both experiments highlight a strong antioxidant defense response in Blastomyces, and upregulation of dioxygenases in vivo suggests that dioxide produced by antioxidants may be further utilized for amino acid metabolism. We identify a number of functional categories upregulated exclusively in vivo, such as secreted proteins, zinc acquisition proteins, and cysteine and tryptophan metabolism, which may include critical virulence factors missed before in in vitro studies. Across the dimorphic fungi, loss of certain zinc acquisition genes and differences in amino acid metabolism suggest unique adaptations of Blastomyces to its host environment. These results reveal the dynamics of genome evolution

  16. Genome-wide genetic and transcriptomic investigation of variation in antibody response to dietary antigens.

    PubMed

    Rubicz, Rohina; Yolken, Robert; Alaedini, Armin; Drigalenko, Eugene; Charlesworth, Jac C; Carless, Melanie A; Severance, Emily G; Krivogorsky, Bogdana; Dyer, Thomas D; Kent, Jack W; Curran, Joanne E; Johnson, Matthew P; Cole, Shelley A; Almasy, Laura; Moses, Eric K; Blangero, John; Göring, Harald H H

    2014-07-01

    Increased immunoglobulin G (IgG) response to dietary antigens can be associated with gastrointestinal dysfunction and autoimmunity. The underlying processes contributing to these adverse reactions remain largely unknown, and it is likely that genetic factors play a role. Here, we estimate heritability and attempt to localize genetic factors influencing IgG antibody levels against food-derived antigens using an integrative genomics approach. IgG antibody levels were determined by ELISA in >1,300 Mexican Americans for the following food antigens: wheat gliadin; bovine casein; and two forms of bovine serum albumin (BSA-a and BSA-b). Pedigree-based variance components methods were used to estimate additive genetic heritability (h(2) ), perform genome-wide association analyses, and identify transcriptional signatures (based on 19,858 transcripts from peripheral blood lymphocytes). Heritability estimates were significant for all traits (0.15-0.53), and shared environment (based on shared residency among study participants) was significant for casein (0.09) and BSA-a (0.33). Genome-wide significant evidence of association was obtained only for antibody to gliadin (P = 8.57 × 10(-8) ), mapping to the human leukocyte antigen II region, with HLA-DRA and BTNL2 as the best candidate genes. Lack of association of known celiac disease risk alleles HLA-DQ2.5 and -DQ8 with antigliadin antibodies in the studied population suggests a separate genetic etiology. Significant transcriptional signatures were found for all IgG levels except BSA-b. These results demonstrate that individual genetic differences contribute to food antigen antibody measures in this population. Further investigations may elucidate the underlying immunological processes involved. PMID:24962563

  17. Genome Sequencing and Comparative Transcriptomics of the Model Entomopathogenic Fungi Metarhizium anisopliae and M. acridum

    PubMed Central

    Shang, Yanfang; Duan, Zhibing; Hu, Xiao; Xie, Xue-Qin; Zhou, Gang; Peng, Guoxiong; Luo, Zhibing; Huang, Wei; Wang, Bing; Fang, Weiguo; Wang, Sibao; Zhong, Yi; Ma, Li-Jun; St. Leger, Raymond J.; Zhao, Guo-Ping; Pei, Yan; Feng, Ming-Guang; Xia, Yuxian; Wang, Chengshu

    2011-01-01

    Metarhizium spp. are being used as environmentally friendly alternatives to chemical insecticides, as model systems for studying insect-fungus interactions, and as a resource of genes for biotechnology. We present a comparative analysis of the genome sequences of the broad-spectrum insect pathogen Metarhizium anisopliae and the acridid-specific M. acridum. Whole-genome analyses indicate that the genome structures of these two species are highly syntenic and suggest that the genus Metarhizium evolved from plant endophytes or pathogens. Both M. anisopliae and M. acridum have a strikingly larger proportion of genes encoding secreted proteins than other fungi, while ∼30% of these have no functionally characterized homologs, suggesting hitherto unsuspected interactions between fungal pathogens and insects. The analysis of transposase genes provided evidence of repeat-induced point mutations occurring in M. acridum but not in M. anisopliae. With the help of pathogen-host interaction gene database, ∼16% of Metarhizium genes were identified that are similar to experimentally verified genes involved in pathogenicity in other fungi, particularly plant pathogens. However, relative to M. acridum, M. anisopliae has evolved with many expanded gene families of proteases, chitinases, cytochrome P450s, polyketide synthases, and nonribosomal peptide synthetases for cuticle-degradation, detoxification, and toxin biosynthesis that may facilitate its ability to adapt to heterogenous environments. Transcriptional analysis of both fungi during early infection processes provided further insights into the genes and pathways involved in infectivity and specificity. Of particular note, M. acridum transcribed distinct G-protein coupled receptors on cuticles from locusts (the natural hosts) and cockroaches, whereas M. anisopliae transcribed the same receptor on both hosts. This study will facilitate the identification of virulence genes and the development of improved biocontrol strains

  18. Genome-wide analysis of primary CD4+ and CD8+ T cell transcriptomes shows evidence for a network of enriched pathways associated with HIV disease

    PubMed Central

    2011-01-01

    Background HIV preferentially infects CD4+ T cells, and the functional impairment and numerical decline of CD4+ and CD8+ T cells characterize HIV disease. The numerical decline of CD4+ and CD8+ T cells affects the optimal ratio between the two cell types necessary for immune regulation. Therefore, this work aimed to define the genomic basis of HIV interactions with the cellular transcriptome of both CD4+ and CD8+ T cells. Results Genome-wide transcriptomes of primary CD4+ and CD8+ T cells from HIV+ patients were analyzed at different stages of HIV disease using Illumina microarray. For each cell subset, pairwise comparisons were performed and differentially expressed (DE) genes were identified (fold change >2 and B-statistic >0) followed by quantitative PCR validation. Gene ontology (GO) analysis of DE genes revealed enriched categories of complement activation, actin filament, proteasome core and proton-transporting ATPase complex. By gene set enrichment analysis (GSEA), a network of enriched pathways functionally connected by mitochondria was identified in both T cell subsets as a transcriptional signature of HIV disease progression. These pathways ranged from metabolism and energy production (TCA cycle and OXPHOS) to mitochondria meditated cell apoptosis and cell cycle dysregulation. The most unique and significant feature of our work was that the non-progressing status in HIV+ long-term non-progressors was associated with MAPK, WNT, and AKT pathways contributing to cell survival and anti-viral responses. Conclusions These data offer new comparative insights into HIV disease progression from the aspect of HIV-host interactions at the transcriptomic level, which will facilitate the understanding of the genetic basis of transcriptomic interaction of HIV in vivo and how HIV subverts the human gene machinery at the individual cell type level. PMID:21410942

  19. Complete genome sequence and transcriptome regulation of the pentose utilizing yeast Sugiyamaella lignohabitans.

    PubMed

    Bellasio, Martina; Peymann, Armin; Steiger, Matthias G; Valli, Minoska; Sipiczki, Matthias; Sauer, Michael; Graf, Alexandra B; Marx, Hans; Mattanovich, Diethard

    2016-06-01

    Efficient conversion of hexoses and pentoses into value-added chemicals represents one core step for establishing economically feasible biorefineries from lignocellulosic material. While extensive research efforts have recently provided advances in the overall process performance, the quest for new microbial cell factories and novel enzymes sources is still open. As demonstrated recently the yeast Sugiyamaella lignohabitans (formerly Candida lignohabitans) represents a promising microbial cell factory for the production of organic acids from lignocellulosic hydrolysates. We report here the de novo genome assembly of S. lignohabitans using the Single Molecule Real-Time platform, with gene prediction refined by using RNA-seq. The sequencing revealed a 15.98 Mb genome, subdivided into four chromosomes. By phylogenetic analysis, Blastobotrys (Arxula) adeninivorans and Yarrowia lipolytica were found to be close relatives of S. lignohabitans Differential gene expression was evaluated in typical growth conditions on glucose and xylose and allowed a first insight into the transcriptional response of S. lignohabitans to different carbon sources and different oxygenation conditions. Novel sequences for enzymes and transporters involved in the central carbon metabolism, and therefore of potential biotechnological interest, were identified. These data open the way for a better understanding of the metabolism of S. lignohabitans and provide resources for further metabolic engineering. PMID:27189363

  20. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes

    PubMed Central

    Pereira, Bernard; Chin, Suet-Feung; Rueda, Oscar M.; Vollan, Hans-Kristian Moen; Provenzano, Elena; Bardwell, Helen A.; Pugh, Michelle; Jones, Linda; Russell, Roslin; Sammut, Stephen-John; Tsui, Dana W. Y.; Liu, Bin; Dawson, Sarah-Jane; Abraham, Jean; Northen, Helen; Peden, John F.; Mukherjee, Abhik; Turashvili, Gulisa; Green, Andrew R.; McKinney, Steve; Oloumi, Arusha; Shah, Sohrab; Rosenfeld, Nitzan; Murphy, Leigh; Bentley, David R.; Ellis, Ian O.; Purushotham, Arnie; Pinder, Sarah E.; Børresen-Dale, Anne-Lise; Earl, Helena M.; Pharoah, Paul D.; Ross, Mark T.; Aparicio, Samuel; Caldas, Carlos

    2016-01-01

    The genomic landscape of breast cancer is complex, and inter- and intra-tumour heterogeneity are important challenges in treating the disease. In this study, we sequence 173 genes in 2,433 primary breast tumours that have copy number aberration (CNA), gene expression and long-term clinical follow-up data. We identify 40 mutation-driver (Mut-driver) genes, and determine associations between mutations, driver CNA profiles, clinical-pathological parameters and survival. We assess the clonal states of Mut-driver mutations, and estimate levels of intra-tumour heterogeneity using mutant-allele fractions. Associations between PIK3CA mutations and reduced survival are identified in three subgroups of ER-positive cancer (defined by amplification of 17q23, 11q13–14 or 8q24). High levels of intra-tumour heterogeneity are in general associated with a worse outcome, but highly aggressive tumours with 11q13–14 amplification have low levels of intra-tumour heterogeneity. These results emphasize the importance of genome-based stratification of breast cancer, and have important implications for designing therapeutic strategies. PMID:27161491

  1. Technical advances: genome-wide cDNA-AFLP analysis of the Arabidopsis transcriptome.

    PubMed

    Volkmuth, Wayne; Turk, Stefan; Shapiro, Amy; Fang, Yiwen; Kiegle, Ed; van Haaren, Mark; Donson, Jonathan

    2003-01-01

    cDNA-AFLP, a technology historically used to identify small numbers of differentially expressed genes, was adapted as a genome-wide transcript profiling method. mRNA levels were assayed in a diverse range of tissues from Arabidopsis thaliana plants grown under a variety of environmental conditions. The resulting cDNA-AFLP fragments were sequenced. By linking cDNA-AFLP fragments to their corresponding mRNAs via these sequences, a database was generated that contained quantitative expression information for up to two-thirds of gene loci in A. thaliana, ecotype Ws. Using this resource, the expression levels of genes, including those with high nucleotide sequence similarity, could be determined in a high-throughput manner merely by comparing cDNA-AFLP profiles with the database. The lengths of cDNA-AFLP fragments inferred from their electrophoretic mobilities correlated well with actual fragment lengths determined by sequencing. In addition, the concentrations of AFLP fragments from single cDNAs were highly correlated, illustrating the validity of cDNA-AFLP as a quantitative, genome-wide, transcript profiling method. cDNA-AFLP profiles were also qualitatively consistent with mRNA profiles obtained from parallel microarray analysis, and with data from previous studies. PMID:14506844

  2. Tissue-Specific Transcriptomic Profiling of Sorghum propinquum using a Rice Genome Array

    PubMed Central

    Zhang, Ting; Zhao, Xiuqin; Huang, Liyu; Liu, Xiaoyue; Zong, Ying; Zhu, Linghua; Yang, Daichang; Fu, Binying

    2013-01-01

    Sorghum (Sorghum bicolor) is one of the world's most important cereal crops. S. propinquum is a perennial wild relative of S. bicolor with well-developed rhizomes. Functional genomics analysis of S. propinquum, especially with respect to molecular mechanisms related to rhizome growth and development, can contribute to the development of more sustainable grain, forage, and bioenergy cropping systems. In this study, we used a whole rice genome oligonucleotide microarray to obtain tissue-specific gene expression profiles of S. propinquum with special emphasis on rhizome development. A total of 548 tissue-enriched genes were detected, including 31 and 114 unique genes that were expressed predominantly in the rhizome tips (RT) and internodes (RI), respectively. Further GO analysis indicated that the functions of these tissue-enriched genes corresponded to their characteristic biological processes. A few distinct cis-elements, including ABA-responsive RY repeat CATGCA, sugar-repressive TTATCC, and GA-responsive TAACAA, were found to be prevalent in RT-enriched genes, implying an important role in rhizome growth and development. Comprehensive comparative analysis of these rhizome-enriched genes and rhizome-specific genes previously identified in Oryza longistaminata and S. propinquum indicated that phytohormones, including ABA, GA, and SA, are key regulators of gene expression during rhizome development. Co-localization of rhizome-enriched genes with rhizome-related QTLs in rice and sorghum generated functional candidates for future cloning of genes associated with rhizome growth and development. PMID:23536906

  3. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes.

    PubMed

    Pereira, Bernard; Chin, Suet-Feung; Rueda, Oscar M; Vollan, Hans-Kristian Moen; Provenzano, Elena; Bardwell, Helen A; Pugh, Michelle; Jones, Linda; Russell, Roslin; Sammut, Stephen-John; Tsui, Dana W Y; Liu, Bin; Dawson, Sarah-Jane; Abraham, Jean; Northen, Helen; Peden, John F; Mukherjee, Abhik; Turashvili, Gulisa; Green, Andrew R; McKinney, Steve; Oloumi, Arusha; Shah, Sohrab; Rosenfeld, Nitzan; Murphy, Leigh; Bentley, David R; Ellis, Ian O; Purushotham, Arnie; Pinder, Sarah E; Børresen-Dale, Anne-Lise; Earl, Helena M; Pharoah, Paul D; Ross, Mark T; Aparicio, Samuel; Caldas, Carlos

    2016-01-01

    The genomic landscape of breast cancer is complex, and inter- and intra-tumour heterogeneity are important challenges in treating the disease. In this study, we sequence 173 genes in 2,433 primary breast tumours that have copy number aberration (CNA), gene expression and long-term clinical follow-up data. We identify 40 mutation-driver (Mut-driver) genes, and determine associations between mutations, driver CNA profiles, clinical-pathological parameters and survival. We assess the clonal states of Mut-driver mutations, and estimate levels of intra-tumour heterogeneity using mutant-allele fractions. Associations between PIK3CA mutations and reduced survival are identified in three subgroups of ER-positive cancer (defined by amplification of 17q23, 11q13-14 or 8q24). High levels of intra-tumour heterogeneity are in general associated with a worse outcome, but highly aggressive tumours with 11q13-14 amplification have low levels of intra-tumour heterogeneity. These results emphasize the importance of genome-based stratification of breast cancer, and have important implications for designing therapeutic strategies. PMID:27161491

  4. 13C metabolic flux analysis at a genome-scale.

    PubMed

    Gopalakrishnan, Saratram; Maranas, Costas D

    2015-11-01

    Metabolic models used in 13C metabolic flux analysis generally include a limited number of reactions primarily from central metabolism. They typically omit degradation pathways, complete cofactor balances, and atom transition contributions for reactions outside central metabolism. This study addresses the impact on prediction fidelity of scaling-up mapping models to a genome-scale. The core mapping model employed in this study accounts for (75 reactions and 65 metabolites) primarily from central metabolism. The genome-scale metabolic mapping model (GSMM) (697 reaction and 595 metabolites) is constructed using as a basis the iAF1260 model upon eliminating reactions guaranteed not to carry flux based on growth and fermentation data for a minimal glucose growth medium. Labeling data for 17 amino acid fragments obtained from cells fed with glucose labeled at the second carbon was used to obtain fluxes and ranges. Metabolic fluxes and confidence intervals are estimated, for both core and genome-scale mapping models, by minimizing the sum of square of differences between predicted and experimentally measured labeling patterns using the EMU decomposition algorithm. Overall, we find that both topology and estimated values of the metabolic fluxes remain largely consistent between core and GSM model. Stepping up to a genome-scale mapping model leads to wider flux inference ranges for 20 key reactions present in the core model. The glycolysis flux range doubles due to the possibility of active gluconeogenesis, the TCA flux range expanded by 80% due to the availability of a bypass through arginine consistent with labeling data, and the transhydrogenase reaction flux was essentially unresolved due to the presence of as many as five routes for the inter-conversion of NADPH to NADH afforded by the genome-scale model. By globally accounting for ATP demands in the GSMM model the unused ATP decreased drastically with the lower bound matching the maintenance ATP requirement. A non

  5. Comparison of the Mitochondrial Genomes and Steady State Transcriptomes of Two Strains of the Trypanosomatid Parasite, Leishmania tarentolae

    PubMed Central

    Simpson, Larry; Douglass, Stephen M.; Lake, James A.; Pellegrini, Matteo; Li, Feng

    2015-01-01

    U-insertion/deletion RNA editing is a post-transcriptional mitochondrial RNA modification phenomenon required for viability of trypanosomatid parasites. Small guide RNAs encoded mainly by the thousands of catenated minicircles contain the information for this editing. We analyzed by NGS technology the mitochondrial genomes and transcriptomes of two strains, the old lab UC strain and the recently isolated LEM125 strain. PacBio sequencing provided complete minicircle sequences which avoided the assembly problem of short reads caused by the conserved regions. Minicircles were identified by a characteristic size, the presence of three short conserved sequences, a region of inherently bent DNA and the presence of single gRNA genes at a fairly defined location. The LEM125 strain contained over 114 minicircles encoding different gRNAs and the UC strain only ~24 minicircles. Some LEM125 minicircles contained no identifiable gRNAs. Approximate copy numbers of the different minicircle classes in the network were determined by the number of PacBio CCS reads that assembled to each class. Mitochondrial RNA libraries from both strains were mapped against the minicircle and maxicircle sequences. Small RNA reads mapped to the putative gRNA genes but also to multiple regions outside the genes on both strands and large RNA reads mapped in many cases over almost the entire minicircle on both strands. These data suggest that minicircle transcription is complete and bidirectional, with 3’ processing yielding the mature gRNAs. Steady state RNAs in varying abundances are derived from all maxicircle genes, including portions of the repetitive divergent region. The relative extents of editing in both strains correlated with the presence of a cascade of cognate gRNAs. These data should provide the foundation for a deeper understanding of this dynamic genetic system as well as the evolutionary variation of editing in different strains. PMID:26204118

  6. Genome-wide Transcriptome Profiling Reveals the Functional Impact of Rare De Novo and Recurrent CNVs in Autism Spectrum Disorders

    PubMed Central

    Luo, Rui; Sanders, Stephan J.; Tian, Yuan; Voineagu, Irina; Huang, Ni; Chu, Su H.; Klei, Lambertus; Cai, Chaochao; Ou, Jing; Lowe, Jennifer K.; Hurles, Matthew E.; Devlin, Bernie; State, Matthew W.; Geschwind, Daniel H.

    2012-01-01

    Copy-number variants (CNVs) are a major contributor to the pathophysiology of autism spectrum disorders (ASDs), but the functional impact of CNVs remains largely unexplored. Because brain tissue is not available from most samples, we interrogated gene expression in lymphoblasts from 244 families with discordant siblings in the Simons Simplex Collection in order to identify potentially pathogenic variation. Our results reveal that the overall frequency of significantly misexpressed genes (which we refer to here as outliers) identified in probands and unaffected siblings does not differ. However, in probands, but not their unaffected siblings, the group of outlier genes is significantly enriched in neural-related pathways, including neuropeptide signaling, synaptogenesis, and cell adhesion. We demonstrate that outlier genes cluster within the most pathogenic CNVs (rare de novo CNVs) and can be used for the prioritization of rare CNVs of potentially unknown significance. Several nonrecurrent CNVs with significant gene-expression alterations are identified (these include deletions in chromosomal regions 3q27, 3p13, and 3p26 and duplications at 2p15), suggesting that these are potential candidate ASD loci. In addition, we identify distinct expression changes in 16p11.2 microdeletions, 16p11.2 microduplications, and 7q11.23 duplications, and we show that specific genes within the 16p CNV interval correlate with differences in head circumference, an ASD-relevant phenotype. This study provides evidence that pathogenic structural variants have a functional impact via transcriptome alterations in ASDs at a genome-wide level and demonstrates the utility of integrating gene expression with mutation data for the prioritization of genes disrupted by potentially pathogenic mutations. PMID:22726847

  7. Genome-scale study reveals reduced metabolic adaptability in patients with non-alcoholic fatty liver disease.

    PubMed

    Hyötyläinen, Tuulia; Jerby, Livnat; Petäjä, Elina M; Mattila, Ismo; Jäntti, Sirkku; Auvinen, Petri; Gastaldelli, Amalia; Yki-Järvinen, Hannele; Ruppin, Eytan; Orešič, Matej

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is a major risk factor leading to chronic liver disease and type 2 diabetes. Here we chart liver metabolic activity and functionality in NAFLD by integrating global transcriptomic data, from human liver biopsies, and metabolic flux data, measured across the human splanchnic vascular bed, within a genome-scale model of human metabolism. We show that an increased amount of liver fat induces mitochondrial metabolism, lipolysis, glyceroneogenesis and a switch from lactate to glycerol as substrate for gluconeogenesis, indicating an intricate balance of exacerbated opposite metabolic processes in glycemic regulation. These changes were associated with reduced metabolic adaptability on a network level in the sense that liver fat accumulation puts increasing demands on the liver to adaptively regulate metabolic responses to maintain basic liver functions. We propose that failure to meet excessive metabolic challenges coupled with reduced metabolic adaptability may lead to a vicious pathogenic cycle leading to the co-morbidities of NAFLD. PMID:26839171

  8. Genome-scale study reveals reduced metabolic adaptability in patients with non-alcoholic fatty liver disease

    PubMed Central

    Hyötyläinen, Tuulia; Jerby, Livnat; Petäjä, Elina M.; Mattila, Ismo; Jäntti, Sirkku; Auvinen, Petri; Gastaldelli, Amalia; Yki-Järvinen, Hannele; Ruppin, Eytan; Orešič, Matej

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is a major risk factor leading to chronic liver disease and type 2 diabetes. Here we chart liver metabolic activity and functionality in NAFLD by integrating global transcriptomic data, from human liver biopsies, and metabolic flux data, measured across the human splanchnic vascular bed, within a genome-scale model of human metabolism. We show that an increased amount of liver fat induces mitochondrial metabolism, lipolysis, glyceroneogenesis and a switch from lactate to glycerol as substrate for gluconeogenesis, indicating an intricate balance of exacerbated opposite metabolic processes in glycemic regulation. These changes were associated with reduced metabolic adaptability on a network level in the sense that liver fat accumulation puts increasing demands on the liver to adaptively regulate metabolic responses to maintain basic liver functions. We propose that failure to meet excessive metabolic challenges coupled with reduced metabolic adaptability may lead to a vicious pathogenic cycle leading to the co-morbidities of NAFLD. PMID:26839171

  9. Genome-scale constraint-based modeling of Geobacter metallireducens

    PubMed Central

    Sun, Jun; Sayyar, Bahareh; Butler, Jessica E; Pharkya, Priti; Fahland, Tom R; Famili, Iman; Schilling, Christophe H; Lovley, Derek R; Mahadevan, Radhakrishnan

    2009-01-01

    Background Geobacter metallireducens was the first organism that can be grown in pure culture to completely oxidize organic compounds with Fe(III) oxide serving as electron acceptor. Geobacter species, including G. sulfurreducens and G. metallireducens, are used for bioremediation and electricity generation from waste organic matter and renewable biomass. The constraint-based modeling approach enables the development of genome-scale in silico models that can predict the behavior of complex biological systems and their responses to the environments. Such a modeling approach was applied to provide physiological and ecological insights on the metabolism of G. metallireducens. Results The genome-scale metabolic model of G. metallireducens was constructed to include 747 genes and 697 reactions. Compared to the G. sulfurreducens model, the G. metallireducens metabolic model contains 118 unique reactions that reflect many of G. metallireducens' specific metabolic capabilities. Detailed examination of the G. metallireducens model suggests that its central metabolism contains several energy-inefficient reactions that are not present in the G. sulfurreducens model. Experimental biomass yield of G. metallireducens growing on pyruvate was lower than the predicted optimal biomass yield. Microarray data of G. metallireducens growing with benzoate and acetate indicated that genes encoding these energy-inefficient reactions were up-regulated by benzoate. These results suggested that the energy-inefficient reactions were likely turned off during G. metallireducens growth with acetate for optimal biomass yield, but were up-regulated during growth with complex electron donors such as benzoate for rapid energy generation. Furthermore, several computational modeling approaches were applied to accelerate G. metallireducens research. For example, growth of G. metallireducens with different electron donors and electron acceptors were studied using the genome-scale metabolic model, which

  10. Transcriptomic and genomic evidence for Streptococcus agalactiae adaptation to the bovine environment

    PubMed Central

    2013-01-01

    Background Streptococcus agalactiae is a major cause of bovine mastitis, which is the dominant health disorder affecting milk production within the dairy industry and is responsible for substantial financial losses to the industry worldwide. However, there is considerable evidence for host adaptation (ecotypes) within S. agalactiae, with both bovine and human sourced isolates showing a high degree of distinctiveness, suggesting differing ability to cause mastitis. Here, we (i) generate RNAseq data from three S. agalactiae isolates (two putative bovine adapted and one human) and (ii) compare publicly available whole genome shotgun sequence data from an additional 202 isolates, obtained from six host species, to elucidate possible genetic factors/adaptations likely important for S. agalactiae growth and survival in the bovine mammary gland. Results Tests for differential expression showed distinct expression profiles for the three isolates when grown in bovine milk. A key finding for the two putatively bovine adapted isolates was the up regulation of a lactose metabolism operon (Lac.2) that was strongly correlated with the bovine environment (all 36 bovine sourced isolates on GenBank possessed the operon, in contrast to only 8/151 human sourced isolates). Multi locus sequence typing of all genome sequences and phylogenetic analysis using conserved operon genes from 44 S. agalactiae isolates and 16 additional Streptococcus species provided strong evidence for acquisition of the operon via multiple lateral gene transfer events, with all Streptococcus species known to be major causes of mastitis, identified as possible donors. Furthermore, lactose fermentation tests were only positive for isolates possessing Lac.2. Combined, these findings suggest that lactose metabolism is likely an important adaptation to the bovine environment. Additional up regulation in the bovine adapted isolates included genes involved in copper homeostasis, metabolism of purine, pyrimidine

  11. Transcriptomic and genomic analysis of cellulose fermentation by Clostridium thermocellum ATCC 27405

    SciTech Connect

    Raman, Babu; McKeown, Catherine K; Rodriguez, Jr., Miguel; Brown, Steven D; Mielenz, Jonathan R

    2011-01-01

    The ability of Clostridium thermocellum ATCC 27405 wild-type strain to hydrolyze cellulose and ferment the degradation products directly to ethanol and other metabolic byproducts makes it an attractive candidate for consolidated bioprocessing of cellulosic biomass to biofuels. In this study, whole-genome microarrays were used to investigate the expression of C. thermocellum mRNA during growth on crystalline cellulose in controlled replicate batch fermentations. A time-series analysis of gene expression revealed changes in transcript levels of {approx}40% of genes ({approx}1300 out of 3198 ORFs encoded in the genome) during transition from early-exponential to late-stationary phase. K-means clustering of genes with statistically significant changes in transcript levels identified six distinct clusters of temporal expression. Broadly, genes involved in energy production, translation, glycolysis and amino acid, nucleotide and coenzyme metabolism displayed a decreasing trend in gene expression as cells entered stationary phase. In comparison, genes involved in cell structure and motility, chemotaxis, signal transduction and transcription showed an increasing trend in gene expression. Hierarchical clustering of cellulosome-related genes highlighted temporal changes in composition of this multi-enzyme complex during batch growth on crystalline cellulose, with increased expression of several genes encoding hydrolytic enzymes involved in degradation of non-cellulosic substrates in stationary phase. Overall, the results suggest that under low substrate availability, growth slows due to decreased metabolic potential and C. thermocellum alters its gene expression to (i) modulate the composition of cellulosomes that are released into the environment with an increased proportion of enzymes than can efficiently degrade plant polysaccharides other than cellulose, (ii) enhance signal transduction and chemotaxis mechanisms perhaps to sense the oligosaccharide hydrolysis products

  12. De novo transcriptome sequencing facilitates genomic resource generation in Tinospora cordifolia.

    PubMed

    Singh, Rakesh; Kumar, Rajesh; Mahato, Ajay Kumar; Paliwal, Ritu; Singh, Amit Kumar; Kumar, Sundeep; Marla, Soma S; Kumar, Ashok; Singh, Nagendra K

    2016-09-01

    Tinospora cordifolia is known for its medicinal properties owing to the presence of useful constituents such as terpenes, glycosides, steroids, alkaloids, and flavonoids belonging to secondary metabolism origin. However, there is little information available pertaining to critical genomic elements (ESTs, molecular markers) necessary for judicious exploitation of its germplasm. We employed 454 GS-FLX pyrosequencing of entire transcripts and altogether ∼25 K assembled transcripts or Expressed sequence tags (ESTs) were identified. As the interest in T. cordifolia is primarily due to its secondary metabolite constituents, the ESTs pertaining to terpenoids biosynthetic pathway were identified in the present study. Additionally, several ESTs were assigned to different transcription factor families. To validate our transcripts dataset, the novel EST-SSR markers were generated to assess the genetic diversity among germplasm of T. cordifolia. These EST-SSR markers were found to be polymorphic and the dendrogram based on dice similarity index revealed three distinct clustering of accessions. The present study demonstrates effectiveness in using both NEWBLER and MIRA sequence read assembler software for enriching transcript-dataset and thus enables better exploitation of EST resources for mining candidate genes and designing molecular markers. PMID:27465295

  13. Large-scale genomic analysis suggests a neutral punctuated dynamics of transposable elements in bacterial genomes.

    PubMed

    Iranzo, Jaime; Gómez, Manuel J; López de Saro, Francisco J; Manrubia, Susanna

    2014-06-01

    Insertion sequences (IS) are the simplest and most abundant form of transposable DNA found in bacterial genomes. When present in multiple copies, it is thought that they can promote genomic plasticity and genetic exchange, thus being a major force of evolutionary change. The main processes that determine IS content in genomes are, though, a matter of debate. In this work, we take advantage of the large amount of genomic data currently available and study the abundance distributions of 33 IS families in 1811 bacterial chromosomes. This allows us to test simple models of IS dynamics and estimate their key parameters by means of a maximum likelihood approach. We evaluate the roles played by duplication, lateral gene transfer, deletion and purifying selection. We find that the observed IS abundances are compatible with a neutral scenario where IS proliferation is controlled by deletions instead of purifying selection. Even if there may be some cases driven by selection, neutral behavior dominates over large evolutionary scales. According to this view, IS and hosts tend to coexist in a dynamic equilibrium state for most of the time. Our approach also allows for a detection of recent IS expansions, and supports the hypothesis that rapid expansions constitute transient events-punctuations-during which the state of coexistence of IS and host becomes perturbated. PMID:24967627

  14. Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models

    SciTech Connect

    Lewis, Nathan E.; Hixson, Kim K.; Conrad, Tom M.; Lerman, Joshua A.; Charusanti, Pep; Polpitiya, Ashoka D.; Adkins, Joshua N.; Schramm, Gunnar; Purvine, Samuel O.; Lopez-Ferrer, Daniel; Weitz, Karl K.; Eils, Roland; Konig, Rainer; Smith, Richard D.; Palsson, Bernhard O.

    2010-07-27

    After hundreds of generations of mid log phase growth, Escherichia coli acquires a higher growth rate as predicted using flux balance analysis (FBA) on genome-scale metabolic models (GEMs). FBA solutions contain hundreds of variables that can be examined using omics methods. We report that 99% of active reactions from FBA optimal growth solutions are supported by transcriptomic and proteomic data. Moreover, when E. coli adapts to growth rate selective pressure, the resulting evolved strains reinforce the optimal growth predictions. Specifically, through constraint-based analysis of the proteomic and transcriptomic data, we find: 1) selective pressure for the predicted optimal growth states and a minimization of network flux; 2) suppression of genes outside of the optimal growth solutions; and 3) a trend towards usage of more efficient metabolic pathways. For processes not in GEMs, we find 4) an increase in the transcription/translation machinery and stringent response suppression, and 5) that established regulons are significantly down-regulated. Thus, differential expression supports observed growth phenotype changes, and observed expression in evolved strains is consistent with GEM computed optimal growth states.

  15. SeqFold: genome-scale reconstruction of RNA secondary structure integrating high-throughput sequencing data.

    PubMed

    Ouyang, Zhengqing; Snyder, Michael P; Chang, Howard Y

    2013-02-01

    We present an integrative approach, SeqFold, that combines high-throughput RNA structure profiling data with computational prediction for genome-scale reconstruction of RNA secondary structures. SeqFold transforms experimental RNA structure information into a structure preference profile (SPP) and uses it to select stable RNA structure candidates representing the structure ensemble. Under a high-dimensional classification framework, SeqFold efficiently matches a given SPP to the most likely cluster of structures sampled from the Boltzmann-weighted ensemble. SeqFold is able to incorporate diverse types of RNA structure profiling data, including parallel analysis of RNA structure (PARS), selective 2'-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq), fragmentation sequencing (FragSeq) data generated by deep sequencing, and conventional SHAPE data. Using the known structures of a wide range of mRNAs and noncoding RNAs as benchmarks, we demonstrate that SeqFold outperforms or matches existing approaches in accuracy and is more robust to noise in experimental data. Application of SeqFold to reconstruct the secondary structures of the yeast transcriptome reveals the diverse impact of RNA secondary structure on gene regulation, including translation efficiency, transcription initiation, and protein-RNA interactions. SeqFold can be easily adapted to incorporate any new types of high-throughput RNA structure profiling data and is widely applicable to analyze RNA structures in any transcriptome. PMID:23064747

  16. Transcriptional Slippage and RNA Editing Increase the Diversity of Transcripts in Chloroplasts: Insight from Deep Sequencing of Vigna radiata Genome and Transcriptome.

    PubMed

    Lin, Ching-Ping; Ko, Chia-Yun; Kuo, Ching-I; Liu, Mao-Sen; Schafleitner, Roland; Chen, Long-Fang Oliver

    2015-01-01

    We performed deep sequencing of the nuclear and organellar genomes of three mungbean genotypes: Vigna radiata ssp. sublobata TC1966, V. radiata var. radiata NM92 and the recombinant inbred line RIL59 derived from a cross between TC1966 and NM92. Moreover, we performed deep sequencing of the RIL59 transcriptome to investigate transcript variability. The mungbean chloroplast genome has a quadripartite structure including a pair of inverted repeats separated by two single copy regions. A total of 213 simple sequence repeats were identified in the chloroplast genomes of NM92 and RIL59; 78 single nucleotide variants and nine indels were discovered in comparing the chloroplast genomes of TC1966 and NM92. Analysis of the mungbean chloroplast transcriptome revealed mRNAs that were affected by transcriptional slippage and RNA editing. Transcriptional slippage frequency was positively correlated with the length of simple sequence repeats of the mungbean chloroplast genome (R2=0.9911). In total, 41 C-to-U editing sites were found in 23 chloroplast genes and in one intergenic spacer. No editing site that swapped U to C was found. A combination of bioinformatics and experimental methods revealed that the plastid-encoded RNA polymerase-transcribed genes psbF and ndhA are affected by transcriptional slippage in mungbean and in main lineages of land plants, including three dicots (Glycine max, Brassica rapa, and Nicotiana tabacum), two monocots (Oryza sativa and Zea mays), two gymnosperms (Pinus taeda and Ginkgo biloba) and one moss (Physcomitrella patens). Transcript analysis of the rps2 gene showed that transcriptional slippage could affect transcripts at single sequence repeat regions with poly-A runs. It showed that transcriptional slippage together with incomplete RNA editing may cause sequence diversity of transcripts in chloroplasts of land plants. PMID:26076132

  17. Combined Large-Scale Phenotyping and Transcriptomics in Maize Reveals a Robust Growth Regulatory Network1[OPEN

    PubMed Central

    Herman, Dorota; Slabbinck, Bram; Pè, Mario Enrico

    2016-01-01

    Leaves are vital organs for biomass and seed production because of their role in the generation of metabolic energy and organic compounds. A better understanding of the molecular networks underlying leaf development is crucial to sustain global requirements for food and renewable energy. Here, we combined transcriptome profiling of proliferative leaf tissue with in-depth phenotyping of the fourth leaf at later stages of development in 197 recombinant inbred lines of two different maize (Zea mays) populations. Previously, correlation analysis in a classical biparental mapping population identified 1,740 genes correlated with at least one of 14 traits. Here, we extended these results with data from a multiparent advanced generation intercross population. As expected, the phenotypic variability was found to be larger in the latter population than in the biparental population, although general conclusions on the correlations among the traits are comparable. Data integration from the two diverse populations allowed us to identify a set of 226 genes that are robustly associated with diverse leaf traits. This set of genes is enriched for transcriptional regulators and genes involved in protein synthesis and cell wall metabolism. In order to investigate the molecular network context of the candidate gene set, we integrated our data with publicly available functional genomics data and identified a growth regulatory network of 185 genes. Our results illustrate the power of combining in-depth phenotyping with transcriptomics in mapping populations to dissect the genetic control of complex traits and present a set of candidate genes for use in biomass improvement. PMID:26754667

  18. Genome-wide transcriptomic analysis reveals correlation between higher WRKY61 expression and reduced symptom severity in Turnip crinkle virus infected Arabidopsis thaliana

    PubMed Central

    Gao, Ruimin; Liu, Peng; Yong, Yuhan; Wong, Sek-Man

    2016-01-01

    Turnip crinkle virus (TCV) is a carmovirus that infects many Arabidopsis ecotypes. Most studies mainly focused on discovery of resistance genes against TCV infection, and there is no Next Generation Sequencing based comparative genome wide transcriptome analysis reported. In this study, RNA-seq based transcriptome analysis revealed that 238 (155 up-regulated and 83 down-regulated) significant differentially expressed genes with at least 15-fold change were determined. Fifteen genes (including upregulated, unchanged and downregulated) were selected for RNA-seq data validation using quantitative real-time PCR, which showed consistencies between these two sets of data. GO enrichment analysis showed that numerous terms such as stress, immunity, defence and chemical stimulus were affected in TCV-infected plants. One putative plant defence related gene named WRKY61 was selected for further investigation. It showed that WRKY61 overexpression plants displayed reduced symptoms and less virus accumulation, as compared to wild type (WT) and WRKY61 deficient lines, suggesting that higher WRKY61 expression level reduced TCV viral accumulation. In conclusion, our transcriptome analysis showed that global gene expression was detected in TCV-infected Arabidopsis thaliana. WRKY61 gene was shown to be negatively correlated with TCV infection and viral symptoms, which may be connected to plant immunity pathways. PMID:27086702

  19. Genome-wide transcriptomic analysis reveals correlation between higher WRKY61 expression and reduced symptom severity in Turnip crinkle virus infected Arabidopsis thaliana.

    PubMed

    Gao, Ruimin; Liu, Peng; Yong, Yuhan; Wong, Sek-Man

    2016-01-01

    Turnip crinkle virus (TCV) is a carmovirus that infects many Arabidopsis ecotypes. Most studies mainly focused on discovery of resistance genes against TCV infection, and there is no Next Generation Sequencing based comparative genome wide transcriptome analysis reported. In this study, RNA-seq based transcriptome analysis revealed that 238 (155 up-regulated and 83 down-regulated) significant differentially expressed genes with at least 15-fold change were determined. Fifteen genes (including upregulated, unchanged and downregulated) were selected for RNA-seq data validation using quantitative real-time PCR, which showed consistencies between these two sets of data. GO enrichment analysis showed that numerous terms such as stress, immunity, defence and chemical stimulus were affected in TCV-infected plants. One putative plant defence related gene named WRKY61 was selected for further investigation. It showed that WRKY61 overexpression plants displayed reduced symptoms and less virus accumulation, as compared to wild type (WT) and WRKY61 deficient lines, suggesting that higher WRKY61 expression level reduced TCV viral accumulation. In conclusion, our transcriptome analysis showed that global gene expression was detected in TCV-infected Arabidopsis thaliana. WRKY61 gene was shown to be negatively correlated with TCV infection and viral symptoms, which may be connected to plant immunity pathways. PMID:27086702

  20. Transcriptome sequencing reveals a profile that corresponds to genomic variants in Waldenström macroglobulinemia.

    PubMed

    Hunter, Zachary R; Xu, Lian; Yang, Guang; Tsakmaklis, Nicholas; Vos, Josephine M; Liu, Xia; Chen, Jie; Manning, Robert J; Chen, Jiaji G; Brodsky, Philip; Patterson, Christopher J; Gustine, Joshua; Dubeau, Toni; Castillo, Jorge J; Anderson, Kenneth C; Munshi, Nikhil M; Treon, Steven P

    2016-08-11

    Whole-genome sequencing has identified highly prevalent somatic mutations including MYD88, CXCR4, and ARID1A in Waldenström macroglobulinemia (WM). The impact of these and other somatic mutations on transcriptional regulation in WM remains to be clarified. We performed next-generation transcriptional profiling in 57 WM patients and compared findings to healthy donor B cells. Compared with healthy donors, WM patient samples showed greatly enhanced expression of the VDJ recombination genes DNTT, RAG1, and RAG2, but not AICDA Genes related to CXCR4 signaling were also upregulated and included CXCR4, CXCL12, and VCAM1 regardless of CXCR4 mutation status, indicating a potential role for CXCR4 signaling in all WM patients. The WM transcriptional profile was equally dissimilar to healthy memory B cells and circulating B cells likely due increased differentiation rather than cellular origin. The profile for CXCR4 mutations corresponded to diminished B-cell differentiation and suppression of tumor suppressors upregulated by MYD88 mutations in a manner associated with the suppression of TLR4 signaling relative to those mutated for MYD88 alone. Promoter methylation studies of top findings failed to explain this suppressive effect but identified aberrant methylation patterns in MYD88 wild-type patients. CXCR4 and MYD88 transcription were negatively correlated, demonstrated allele-specific transcription bias, and, along with CXCL13, were associated with bone marrow disease involvement. Distinct gene expression profiles for patients with wild-type MYD88, mutated ARID1A, familial predisposition to WM, chr6q deletions, chr3q amplifications, and trisomy 4 are also described. The findings provide novel insights into the molecular pathogenesis and opportunities for targeted therapeutic strategies for WM. PMID:27301862

  1. Global Genome and Transcriptome Analyses of Magnaporthe oryzae Epidemic Isolate 98-06 Uncover Novel Effectors and Pathogenicity-Related Genes, Revealing Gene Gain and Lose Dynamics in Genome Evolution

    PubMed Central

    Dong, Yanhan; Li, Ying; Zhao, Miaomiao; Jing, Maofeng; Liu, Xinyu; Liu, Muxing; Guo, Xianxian; Zhang, Xing; Chen, Yue; Liu, Yongfeng; Liu, Yanhong; Ye, Wenwu; Zhang, Haifeng; Wang, Yuanchao; Zheng, Xiaobo; Wang, Ping; Zhang, Zhengguang

    2015-01-01

    Genome dynamics of pathogenic organisms are driven by pathogen and host co-evolution, in which pathogen genomes are shaped to overcome stresses imposed by hosts with various genetic backgrounds through generation of a variety of isolates. This same principle applies to the rice blast pathogen Magnaporthe oryzae and the rice host; however, genetic variations among different isolates of M. oryzae remain largely unknown, particularly at genome and transcriptome levels. Here, we applied genomic and transcriptomic analytical tools to investigate M. oryzae isolate 98-06 that is the most aggressive in infection of susceptible rice cultivars. A unique 1.4 Mb of genomic sequences was found in isolate 98-06 in comparison to reference strain 70-15. Genome-wide expression profiling revealed the presence of two critical expression patterns of M. oryzae based on 64 known pathogenicity-related (PaR) genes. In addition, 134 candidate effectors with various segregation patterns were identified. Five tested proteins could suppress BAX-mediated programmed cell death in Nicotiana benthamiana leaves. Characterization of isolate-specific effector candidates Iug6 and Iug9 and PaR candidate Iug18 revealed that they have a role in fungal propagation and pathogenicity. Moreover, Iug6 and Iug9 are located exclusively in the biotrophic interfacial complex (BIC) and their overexpression leads to suppression of defense-related gene expression in rice, suggesting that they might participate in biotrophy by inhibiting the SA and ET pathways within the host. Thus, our studies identify novel effector and PaR proteins involved in pathogenicity of the highly aggressive M. oryzae field isolate 98-06, and reveal molecular and genomic dynamics in the evolution of M. oryzae and rice host interactions. PMID:25837042

  2. Genome-scale thermodynamic analysis of Escherichia coli metabolism.

    PubMed

    Henry, Christopher S; Jankowski, Matthew D; Broadbelt, Linda J; Hatzimanikatis, Vassily

    2006-02-15

    Genome-scale metabolic models are an invaluable tool for analyzing metabolic systems as they provide a more complete picture of the processes of metabolism. We have constructed a genome-scale metabolic model of Escherichia coli based on the iJR904 model developed by the Palsson Laboratory at the University of California at San Diego. Group contribution methods were utilized to estimate the standard Gibbs free energy change of every reaction in the constructed model. Reactions in the model were classified based on the activity of the reactions during optimal growth on glucose in aerobic media. The most thermodynamically unfavorable reactions involved in the production of biomass in E. coli were identified as ATP phosphoribosyltransferase, ATP synthase, methylene-tetra-hydrofolate dehydrogenase, and tryptophanase. The effect of a knockout of these reactions on the production of biomass and the production of individual biomass precursors was analyzed. Changes in the distribution of fluxes in the cell after knockout of these unfavorable reactions were also studied. The methodologies and results discussed can be used to facilitate the refinement of the feasible ranges for cellular parameters such as species concentrations and reaction rate constants. PMID:16299075

  3. Current state of genome-scale modeling in filamentous fungi.

    PubMed

    Brandl, Julian; Andersen, Mikael R

    2015-06-01

    The group of filamentous fungi contains important species used in industrial biotechnology for acid, antibiotics and enzyme production. Their unique lifestyle turns these organisms into a valuable genetic reservoir of new natural products and biomass degrading enzymes that has not been used to full capacity. One of the major bottlenecks in the development of new strains into viable industrial hosts is the alteration of the metabolism towards optimal production. Genome-scale models promise a reduction in the time needed for metabolic engineering by predicting the most potent targets in silico before testing them in vivo. The increasing availability of high quality models and molecular biological tools for manipulating filamentous fungi renders the model-guided engineering of these fungal factories possible with comprehensive metabolic networks. A typical fungal model contains on average 1138 unique metabolic reactions and 1050 ORFs, making them a vast knowledge-base of fungal metabolism. In the present review we focus on the current state as well as potential future applications of genome-scale models in filamentous fungi. PMID:25700817

  4. Flux Coupling Analysis of Genome-Scale Metabolic Network Reconstructions

    PubMed Central

    Burgard, Anthony P.; Nikolaev, Evgeni V.; Schilling, Christophe H.; Maranas, Costas D.

    2004-01-01

    In this paper, we introduce the Flux Coupling Finder (FCF) framework for elucidating the topological and flux connectivity features of genome-scale metabolic networks. The framework is demonstrated on genome-scale metabolic reconstructions of Helicobacter pylori, Escherichia coli, and Saccharomyces cerevisiae. The analysis allows one to determine whether any two metabolic fluxes, v1 and v2, are (1) directionally coupled, if a non-zero flux for v1 implies a non-zero flux for v2 but not necessarily the reverse; (2) partially coupled, if a non-zero flux for v1 implies a non-zero, though variable, flux for v2 and vice versa; or (3) fully coupled, if a non-zero flux for v1 implies not only a non-zero but also a fixed flux for v2 and vice versa. Flux coupling analysis also enables the global identification of blocked reactions, which are all reactions incapable of carrying flux under a certain condition; equivalent knockouts, defined as the set of all possible reactions whose deletion forces the flux through a particular reaction to zero; and sets of affected reactions denoting all reactions whose fluxes are forced to zero if a particular reaction is deleted. The FCF approach thus provides a novel and versatile tool for aiding metabolic reconstructions and guiding genetic manipulations. PMID:14718379

  5. The ClinSeq Project: Piloting large-scale genome sequencing for research in genomic medicine

    PubMed Central

    Biesecker, Leslie G.; Mullikin, James C.; Facio, Flavia M.; Turner, Clesson; Cherukuri, Praveen F.; Blakesley, Robert W.; Bouffard, Gerard G.; Chines, Peter S.; Cruz, Pedro; Hansen, Nancy F.; Teer, Jamie K.; Maskeri, Baishali; Young, Alice C.; Manolio, Teri A.; Wilson, Alexander F.; Finkel, Toren; Hwang, Paul; Arai, Andrew; Remaley, Alan T.; Sachdev, Vandana; Shamburek, Robert; Cannon, Richard O.; Green, Eric D.

    2009-01-01

    ClinSeq is a pilot project to investigate the use of whole-genome sequencing as a tool for clinical research. By piloting the acquisition of large amounts of DNA sequence data from individual human subjects, we are fostering the development of hypothesis-generating approaches for performing research in genomic medicine, including the exploration of issues related to the genetic architecture of disease, implementation of genomic technology, informed consent, disclosure of genetic information, and archiving, analyzing, and displaying sequence data. In the initial phase of ClinSeq, we are enrolling roughly 1000 participants; the evaluation of each includes obtaining a detailed family and medical history, as well as a clinical evaluation. The participants are being consented broadly for research on many traits and for whole-genome sequencing. Initially, Sanger-based sequencing of 300–400 genes thought to be relevant to atherosclerosis is being performed, with the resulting data analyzed for rare, high-penetrance variants associated with specific clinical traits. The participants are also being consented to allow the contact of family members for additional studies of sequence variants to explore their potential association with specific phenotypes. Here, we present the general considerations in designing ClinSeq, preliminary results based on the generation of an initial 826 Mb of sequence data, the findings for several genes that serve as positive controls for the project, and our views about the potential implications of ClinSeq. The early experiences with ClinSeq illustrate how large-scale medical sequencing can be a practical, productive, and critical component of research in genomic medicine. PMID:19602640

  6. Unique genome-wide transcriptome profiles of chicken macrophages exposed to Salmonella-derived endotoxin

    PubMed Central

    2010-01-01

    Background Macrophages play essential roles in both innate and adaptive immune responses. Bacteria require endotoxin, a complex lipopolysaccharide, for outer membrane permeability and the host interprets endotoxin as a signal to initiate an innate immune response. The focus of this study is kinetic and global transcriptional analysis of the chicken macrophage response to in vitro stimulation with endotoxin from Salmonella typhimurium-798. Results The 38535-probeset Affymetrix GeneChip Chicken Genome array was used to profile transcriptional response to endotoxin 1, 2, 4, and 8 hours post stimulation (hps). Using a maximum FDR (False Discovery Rate) of 0.05 to declare genes as differentially expressed (DE), we found 13, 33, 1761 and 61 DE genes between endotoxin-stimulated versus non-stimulated cells at 1, 2, 4 and 8 hps, respectively. QPCR demonstrated that endotoxin exposure significantly affected the mRNA expression of IL1B, IL6, IL8, and TLR15, but not IL10 and IFNG in HD 11 cells. Ingenuity Pathway Analysis showed that 10% of the total DE genes were involved in inflammatory response. Three, 9.7, 96.8, and 11.8% of the total DE inflammatory response genes were significantly differentially expressed with endotoxin stimulation at 1, 2, 4 and 8 hps, respectively. The NFKBIA, IL1B, IL8 and CCL4 genes were consistently induced at all times after endotoxin treatment. NLRC5 (CARD domain containing, NOD-like receptor family, RCJMB04_18i2), an intracellular receptor, was induced in HD11 cells treated with endotoxin. Conclusions As above using an in vitro model of chicken response to endotoxin, our data revealed the kinetics of gene networks involved in host response to endotoxin and extend the known complexity of networks in chicken immune response to Gram-negative bacteria such as Salmonella. The induction of NFKBIA, IL1B, IL8, CCL4 genes is a consistent signature of host response to endotoxin over time. We make the first report of induction of a NOD-like receptor

  7. MicroRNAs shape circadian hepatic gene expression on a transcriptome-wide scale

    PubMed Central

    Du, Ngoc-Hien; Arpat, Alaaddin Bulak; De Matos, Mara; Gatfield, David

    2014-01-01

    A considerable proportion of mammalian gene expression undergoes circadian oscillations. Post-transcriptional mechanisms likely make important contributions to mRNA abundance rhythms. We have investigated how microRNAs (miRNAs) contribute to core clock and clock-controlled gene expression using mice in which miRNA biogenesis can be inactivated in the liver. While the hepatic core clock was surprisingly resilient to miRNA loss, whole transcriptome sequencing uncovered widespread effects on clock output gene expression. Cyclic transcription paired with miRNA-mediated regulation was thus identified as a frequent phenomenon that affected up to 30% of the rhythmic transcriptome and served to post-transcriptionally adjust the phases and amplitudes of rhythmic mRNA accumulation. However, only few mRNA rhythms were actually generated by miRNAs. Overall, our study suggests that miRNAs function to adapt clock-driven gene expression to tissue-specific requirements. Finally, we pinpoint several miRNAs predicted to act as modulators of rhythmic transcripts, and identify rhythmic pathways particularly prone to miRNA regulation. DOI: http://dx.doi.org/10.7554/eLife.02510.001 PMID:24867642

  8. Revealing less derived nature of cartilaginous fish genomes with their evolutionary time scale inferred with nuclear genes.

    PubMed

    Renz, Adina J; Meyer, Axel; Kuraku, Shigehiro

    2013-01-01

    Cartilaginous fishes, divided into Holocephali (chimaeras) and Elasmoblanchii (sharks, rays and skates), occupy a key phylogenetic position among extant vertebrates in reconstructing their evolutionary processes. Their accurate evolutionary time scale is indispensable for better understanding of the relationship between phenotypic and molecular evolution of cartilaginous fishes. However, our current knowledge on the time scale of cartilaginous fish evolution largely relies on estimates using mitochondrial DNA sequences. In this study, making the best use of the still partial, but large-scale sequencing data of cartilaginous fish species, we estimate the divergence times between the major cartilaginous fish lineages employing nuclear genes. By rigorous orthology assessment based on available genomic and transcriptomic sequence resources for cartilaginous fishes, we selected 20 protein-coding genes in the nuclear genome, spanning 2973 amino acid residues. Our analysis based on the Bayesian inference resulted in the mean divergence time of 421 Ma, the late Silurian, for the Holocephali-Elasmobranchii split, and 306 Ma, the late Carboniferous, for the split between sharks and rays/skates. By applying these results and other documented divergence times, we measured the relative evolutionary rate of the Hox A cluster sequences in the cartilaginous fish lineages, which resulted in a lower substitution rate with a factor of at least 2.4 in comparison to tetrapod lineages. The obtained time scale enables mapping phenotypic and molecular changes in a quantitative framework. It is of great interest to corroborate the less derived nature of cartilaginous fish at the molecular level as a genome-wide phenomenon. PMID:23825540

  9. Transcriptome resources for the white-footed mouse (Peromyscus leucopus): new genomic tools for investigating ecologically divergent urban and rural populations

    PubMed Central

    Harris, Stephen E.; O’Neill, Rachel J.; Munshi-South, Jason

    2014-01-01

    Genomic resources are important and attainable for examining evolutionary change in divergent natural populations of non-model species. We utilized two Next Generation Sequencing (NGS) platforms, 454 and SOLiD 5500XL, to assemble low coverage transcriptomes of the white-footed mouse (Peromyscus leucopus), a widespread and abundant native rodent in eastern North America. We sequenced liver mRNA transcripts from multiple individuals collected from urban populations in New York City and rural populations in undisturbed protected areas nearby, and assembled a reference transcriptome using 1,080,065,954 SOLiD 5500XL (75 bp) reads and 3,052,640 454 GS FLX + reads. The reference contained 40,908 contigs with a N50 = 1,044 bp and a total content of 30.06 Megabases (Mb). Contigs were annotated from comparisons to Mus musculus (39.96% annotated) Uniprot databases. We identified 104,655 high quality single nucleotide polymorphisms (SNPs) and 65 single sequence repeats (SSRs) with flanking primers. We also used normalized read counts to identify putative gene expression differences in 10 genes between populations. There were 19 contigs significantly differentially expressed in urban populations compared to rural populations, with gene function annotations generally related to the translation and modification of proteins and those involved in immune responses. The individual transcriptomes generated in this study will be used to investigate evolutionary responses to urbanization. The reference transcriptome provides a valuable resource for the scientific community using North American Peromyscus species as emerging model systems for ecological genetics and adaptation. PMID:24980186

  10. Genome, transcriptome and methylome sequencing of a primitively eusocial wasp reveal a greatly reduced DNA methylation system in a social insect.

    PubMed

    Standage, Daniel S; Berens, Ali J; Glastad, Karl M; Severin, Andrew J; Brendel, Volker P; Toth, Amy L

    2016-04-01

    Comparative genomics of social insects has been intensely pursued in recent years with the goal of providing insights into the evolution of social behaviour and its underlying genomic and epigenomic basis. However, the comparative approach has been hampered by a paucity of data on some of the most informative social forms (e.g. incipiently and primitively social) and taxa (especially members of the wasp family Vespidae) for studying social evolution. Here, we provide a draft genome of the primitively eusocial model insect Polistes dominula, accompanied by analysis of caste-related transcriptome and methylome sequence data for adult queens and workers. Polistes dominula possesses a fairly typical hymenopteran genome, but shows very low genomewide GC content and some evidence of reduced genome size. We found numerous caste-related differences in gene expression, with evidence that both conserved and novel genes are related to caste differences. Most strikingly, these -omics data reveal a major reduction in one of the major epigenetic mechanisms that has been previously suggested to be important for caste differences in social insects: DNA methylation. Along with a conspicuous loss of a key gene associated with environmentally responsive DNA methylation (the de novo DNA methyltransferase Dnmt3), these wasps have greatly reduced genomewide methylation to almost zero. In addition to providing a valuable resource for comparative analysis of social insect evolution, our integrative -omics data for this important behavioural and evolutionary model system call into question the general importance of DNA methylation in caste differences and evolution in social insects. PMID:26859767

  11. Genomic, Transcriptomic and Metabolomic Studies of Two Well-Characterized, Laboratory-Derived Vancomycin-Intermediate Staphylococcus aureus Strains Derived from the Same Parent Strain

    PubMed Central

    Hattangady, Dipti S.; Singh, Atul K.; Muthaiyan, Arun; Jayaswal, Radheshyam K.; Gustafson, John E.; Ulanov, Alexander V.; Li, Zhong; Wilkinson, Brian J.; Pfeltz, Richard F.

    2015-01-01

    Complete genome comparisons, transcriptomic and metabolomic studies were performed on two laboratory-selected, well-characterized vancomycin-intermediate Staphylococcus aureus (VISA) derived from the same parent MRSA that have changes in cell wall composition and decreased autolysis. A variety of mutations were found in the VISA, with more in strain 13136p−m+V20 (vancomycin MIC = 16 µg/mL) than strain 13136p−m+V5 (MIC = 8 µg/mL). Most of the mutations have not previously been associated with the VISA phenotype; some were associated with cell wall metabolism and many with stress responses, notably relating to DNA damage. The genomes and transcriptomes of the two VISA support the importance of gene expression regulation to the VISA phenotype. Similarities in overall transcriptomic and metabolomic data indicated that the VISA physiologic state includes elements of the stringent response, such as downregulation of protein and nucleotide synthesis, the pentose phosphate pathway and nutrient transport systems. Gene expression for secreted virulence determinants was generally downregulated, but was more variable for surface-associated virulence determinants, although capsule formation was clearly inhibited. The importance of activated stress response elements could be seen across all three analyses, as in the accumulation of osmoprotectant metabolites such as proline and glutamate. Concentrations of potential cell wall precursor amino acids and glucosamine were increased in the VISA strains. Polyamines were decreased in the VISA, which may facilitate the accrual of mutations. Overall, the studies confirm the wide variability in mutations and gene expression patterns that can lead to the VISA phenotype. PMID:27025616

  12. Genomic, Transcriptomic and Metabolomic Studies of Two Well-Characterized, Laboratory-Derived Vancomycin-Intermediate Staphylococcus aureus Strains Derived from the Same Parent Strain.

    PubMed

    Hattangady, Dipti S; Singh, Atul K; Muthaiyan, Arun; Jayaswal, Radheshyam K; Gustafson, John E; Ulanov, Alexander V; Li, Zhong; Wilkinson, Brian J; Pfeltz, Richard F

    2015-01-01

    Complete genome comparisons, transcriptomic and metabolomic studies were performed on two laboratory-selected, well-characterized vancomycin-intermediate Staphylococcus aureus (VISA) derived from the same parent MRSA that have changes in cell wall composition and decreased autolysis. A variety of mutations were found in the VISA, with more in strain 13136p(-)m⁺V20 (vancomycin MIC = 16 µg/mL) than strain 13136p(-)m⁺V5 (MIC = 8 µg/mL). Most of the mutations have not previously been associated with the VISA phenotype; some were associated with cell wall metabolism and many with stress responses, notably relating to DNA damage. The genomes and transcriptomes of the two VISA support the importance of gene expression regulation to the VISA phenotype. Similarities in overall transcriptomic and metabolomic data indicated that the VISA physiologic state includes elements of the stringent response, such as downregulation of protein and nucleotide synthesis, the pentose phosphate pathway and nutrient transport systems. Gene expression for secreted virulence determinants was generally downregulated, but was more variable for surface-associated virulence determinants, although capsule formation was clearly inhibited. The importance of activated stress response elements could be seen across all three analyses, as in the accumulation of osmoprotectant metabolites such as proline and glutamate. Concentrations of potential cell wall precursor amino acids and glucosamine were increased in the VISA strains. Polyamines were decreased in the VISA, which may facilitate the accrual of mutations. Overall, the studies confirm the wide variability in mutations and gene expression patterns that can lead to the VISA phenotype. PMID:27025616

  13. Optimizing Hybrid de Novo Transcriptome Assembly and Extending Genomic Resources for Giant Freshwater Prawns (Macrobrachium rosenbergii): The Identification of Genes and Markers Associated with Reproduction

    PubMed Central

    Jung, Hyungtaek; Yoon, Byung-Ha; Kim, Woo-Jin; Kim, Dong-Wook; Hurwood, David A.; Lyons, Russell E.; Salin, Krishna R.; Kim, Heui-Soo; Baek, Ilseon; Chand, Vincent; Mather, Peter B.

    2016-01-01

    The giant freshwater prawn, Macrobrachium rosenbergii, a sexually dimorphic decapod crustacean is currently the world’s most economically important cultured freshwater crustacean species. Despite its economic importance, there is currently a lack of genomic resources available for this species, and this has limited exploration of the molecular mechanisms that control the M. rosenbergii sex-differentiation system more widely in freshwater prawns. Here, we present the first hybrid transcriptome from M. rosenbergii applying RNA-Seq technologies directed at identifying genes that have potential functional roles in reproductive-related traits. A total of 13,733,210 combined raw reads (1720 Mbp) were obtained from Ion-Torrent PGM and 454 FLX. Bioinformatic analyses based on three state-of-the-art assemblers, the CLC Genomic Workbench, Trans-ABySS, and Trinity, that use single and multiple k-mer methods respectively, were used to analyse the data. The influence of multiple k-mers on assembly performance was assessed to gain insight into transcriptome assembly from short reads. After optimisation, de novo assembly resulted in 44,407 contigs with a mean length of 437 bp, and the assembled transcripts were further functionally annotated to detect single nucleotide polymorphisms and simple sequence repeat motifs. Gene expression analysis was also used to compare expression patterns from ovary and testis tissue libraries to identify genes with potential roles in reproduction and sex differentiation. The large transcript set assembled here represents the most comprehensive set of transcriptomic resources ever developed for reproduction traits in M. rosenbergii, and the large number of genetic markers predicted should constitute an invaluable resource for future genetic research studies on M. rosenbergii and can be applied more widely on other freshwater prawn species in the genus Macrobrachium. PMID:27164098

  14. Optimizing Hybrid de Novo Transcriptome Assembly and Extending Genomic Resources for Giant Freshwater Prawns (Macrobrachium rosenbergii): The Identification of Genes and Markers Associated with Reproduction.

    PubMed

    Jung, Hyungtaek; Yoon, Byung-Ha; Kim, Woo-Jin; Kim, Dong-Wook; Hurwood, David A; Lyons, Russell E; Salin, Krishna R; Kim, Heui-Soo; Baek, Ilseon; Chand, Vincent; Mather, Peter B

    2016-01-01

    The giant freshwater prawn, Macrobrachium rosenbergii, a sexually dimorphic decapod crustacean is currently the world's most economically important cultured freshwater crustacean species. Despite its economic importance, there is currently a lack of genomic resources available for this species, and this has limited exploration of the molecular mechanisms that control the M. rosenbergii sex-differentiation system more widely in freshwater prawns. Here, we present the first hybrid transcriptome from M. rosenbergii applying RNA-Seq technologies directed at identifying genes that have potential functional roles in reproductive-related traits. A total of 13,733,210 combined raw reads (1720 Mbp) were obtained from Ion-Torrent PGM and 454 FLX. Bioinformatic analyses based on three state-of-the-art assemblers, the CLC Genomic Workbench, Trans-ABySS, and Trinity, that use single and multiple k-mer methods respectively, were used to analyse the data. The influence of multiple k-mers on assembly performance was assessed to gain insight into transcriptome assembly from short reads. After optimisation, de novo assembly resulted in 44,407 contigs with a mean length of 437 bp, and the assembled transcripts were further functionally annotated to detect single nucleotide polymorphisms and simple sequence repeat motifs. Gene expression analysis was also used to compare expression patterns from ovary and testis tissue libraries to identify genes with potential roles in reproduction and sex differentiation. The large transcript set assembled here represents the most comprehensive set of transcriptomic resources ever developed for reproduction traits in M. rosenbergii, and the large number of genetic markers predicted should constitute an invaluable resource for future genetic research studies on M. rosenbergii and can be applied more widely on other freshwater prawn species in the genus Macrobrachium. PMID:27164098

  15. Advances in Swine Transcriptomics

    PubMed Central

    Tuggle, Christopher K.; Wang, Yanfang; Couture, Oliver

    2007-01-01

    The past five years have seen a tremendous rise in porcine transcriptomic data. Available porcine Expressed Sequence Tags (ESTs) have expanded greatly, with over 623,000 ESTs deposited in Genbank. ESTs have been used to expand the pig-human comparative maps, but such data has also been used in many ways to understand pig gene expression. Several methods have been used to identify genes differentially expressed (DE) in specific tissues or cell types under different treatments. These include open screening methods such as suppression subtractive hybridization, differential display, serial analysis of gene expression, and EST sequence frequency, as well as closed methods that measure expression of a defined set of sequences such as hybridization to membrane arrays and microarrays. The use of microarrays to begin large-scale transcriptome analysis has been recently reported, using either specialized or broad-coverage arrays. This review covers published results using the above techniques in the pig, as well as unpublished data provided by the research community, and reports on unpublished Affymetrix data from our group. Published and unpublished bioinformatics efforts are discussed, including recent work by our group to integrate two broad-coverage microarray platforms. We conclude by predicting experiments that will become possible with new anticipated tools and data, including the porcine genome sequence. We emphasize that the need for bioinformatics infrastructure to efficiently store and analyze the expanding amounts of gene expression data is critical, and that this deficit has emerged as a limiting factor for acceleration of genomic understanding in the pig. PMID:17384733

  16. Metabolic modeling of endosymbiont genome reduction on a temporal scale.

    PubMed

    Yizhak, Keren; Tuller, Tamir; Papp, Balázs; Ruppin, Eytan

    2011-03-29

    A fundamental challenge in Systems Biology is whether a cell-scale metabolic model can predict patterns of genome evolution by realistically accounting for associated biochemical constraints. Here, we study the order in which genes are lost in an in silico evolutionary process, leading from the metabolic network of Escherichia coli to that of the endosymbiont Buchnera aphidicola. We examine how this order correlates with the order by which the genes were actually lost, as estimated from a phylogenetic reconstruction. By optimizing this correlation across the space of potential growth and biomass conditions, we compute an upper bound estimate on the model's prediction accuracy (R=0.54). The model's network-based predictive ability outperforms predictions obtained using genomic features of individual genes, reflecting the effect of selection imposed by metabolic stoichiometric constraints. Thus, while the timing of gene loss might be expected to be a completely stochastic evolutionary process, remarkably, we find that metabolic considerations, on their own, make a marked 40% contribution to determining when such losses occur. PMID:21451589

  17. Next-generation genome-scale models for metabolic engineering.

    PubMed

    King, Zachary A; Lloyd, Colton J; Feist, Adam M; Palsson, Bernhard O

    2015-12-01

    Constraint-based reconstruction and analysis (COBRA) methods have become widely used tools for metabolic engineering in both academic and industrial laboratories. By employing a genome-scale in silico representation of the metabolic network of a host organism, COBRA methods can be used to predict optimal genetic modifications that improve the rate and yield of chemical production. A new generation of COBRA models and methods is now being developed--encompassing many biological processes and simulation strategies-and next-generation models enable new types of predictions. Here, three key examples of applying COBRA methods to strain optimization are presented and discussed. Then, an outlook is provided on the next generation of COBRA models and the new types of predictions they will enable for systems metabolic engineering. PMID:25575024

  18. Accomplishments in genome-scale in silico modeling for industrial and medical biotechnology

    PubMed Central

    Milne, Caroline B.; Kim, Pan-Jun; Eddy, James A.; Price, Nathan D.

    2011-01-01

    Driven by advancements in high-throughput biological technologies and the growing number of sequenced genomes, the construction of in silico models at the genome scale has provided powerful tools to investigate a vast array of biological systems and applications. Here, we review comprehensively the uses of such models in industrial and medical biotechnology, including biofuel generation, food production, and drug development. While the use of in silico models is still in its early stages for delivering to industry, significant initial successes have been achieved. For the cases presented here, genome-scale models predict engineering strategies to enhance properties of interest in an organism or to inhibit harmful mechanisms of pathogens or in disease. Going forward, genome-scale in silico models promise to extend their application and analysis scope to become a transformative tool in biotechnology. As such, genome-scale models can provide a basis for rational genome-scale engineering and synthetic biology. PMID:19946878

  19. Babelomics: an integrative platform for the analysis of transcriptomics, proteomics and genomic data with advanced functional profiling

    PubMed Central

    Medina, Ignacio; Carbonell, José; Pulido, Luis; Madeira, Sara C.; Goetz, Stefan; Conesa, Ana; Tárraga, Joaquín; Pascual-Montano, Alberto; Nogales-Cadenas, Ruben; Santoyo, Javier; García, Francisco; Marbà, Martina; Montaner, David; Dopazo, Joaquín

    2010-01-01

    Babelomics is a response to the growing necessity of integrating and analyzing different types of genomic data in an environment that allows an easy functional interpretation of the results. Babelomics includes a complete suite of methods for the analysis of gene expression data that include normalization (covering most commercial platforms), pre-processing, differential gene expression (case-controls, multiclass, survival or continuous values), predictors, clustering; large-scale genotyping assays (case controls and TDTs, and allows population stratification analysis and correction). All these genomic data analysis facilities are integrated and connected to multiple options for the functional interpretation of the experiments. Different methods of functional enrichment or gene set enrichment can be used to understand the functional basis of the experiment analyzed. Many sources of biological information, which include functional (GO, KEGG, Biocarta, Reactome, etc.), regulatory (Transfac, Jaspar, ORegAnno, miRNAs, etc.), text-mining or protein–protein interaction modules can be used for this purpose. Finally a tool for the de novo functional annotation of sequences has been included in the system. This provides support for the functional analysis of non-model species. Mirrors of Babelomics or command line execution of their individual components are now possible. Babelomics is available at http://www.babelomics.org. PMID:20478823

  20. The genome and transcriptome of Trichormus sp. NMC-1: insights into adaptation to extreme environments on the Qinghai-Tibet Plateau.

    PubMed

    Qiao, Qin; Huang, Yanyan; Qi, Ji; Qu, Mingzhi; Jiang, Chen; Lin, Pengcheng; Li, Renhui; Song, Lirong; Yonezawa, Takahiro; Hasegawa, Masami; Crabbe, M James C; Chen, Fan; Zhang, Ticao; Zhong, Yang

    2016-01-01

    The Qinghai-Tibet Plateau (QTP) has the highest biodiversity for an extreme environment worldwide, and provides an ideal natural laboratory to study adaptive evolution. In this study, we generated a draft genome sequence of cyanobacteria Trichormus sp. NMC-1 in the QTP and performed whole transcriptome sequencing under low temperature to investigate the genetic mechanism by which T. sp. NMC-1 adapted to the specific environment. Its genome sequence was 5.9 Mb with a G+C content of 39.2% and encompassed a total of 5362 CDS. A phylogenomic tree indicated that this strain belongs to the Trichormus and Anabaena cluster. Genome comparison between T. sp. NMC-1 and six relatives showed that functionally unknown genes occupied a much higher proportion (28.12%) of the T. sp. NMC-1 genome. In addition, functions of specific, significant positively selected, expanded orthogroups, and differentially expressed genes involved in signal transduction, cell wall/membrane biogenesis, secondary metabolite biosynthesis, and energy production and conversion were analyzed to elucidate specific adaptation traits. Further analyses showed that the CheY-like genes, extracellular polysaccharide and mycosporine-like amino acids might play major roles in adaptation to harsh environments. Our findings indicate that sophisticated genetic mechanisms are involved in cyanobacterial adaptation to the extreme environment of the QTP. PMID:27381465

  1. Phylogenetic marker development for target enrichment from transcriptome and genome skim data: the pipeline and its application in southern African Oxalis (Oxalidaceae).

    PubMed

    Schmickl, Roswitha; Liston, Aaron; Zeisek, Vojtěch; Oberlander, Kenneth; Weitemier, Kevin; Straub, Shannon C K; Cronn, Richard C; Dreyer, Léanne L; Suda, Jan

    2016-09-01

    Phylogenetics benefits from using a large number of putatively independent nuclear loci and their combination with other sources of information, such as the plastid and mitochondrial genomes. To facilitate the selection of orthologous low-copy nuclear (LCN) loci for phylogenetics in nonmodel organisms, we created an automated and interactive script to select hundreds of LCN loci by a comparison between transcriptome and genome skim data. We used our script to obtain LCN genes for southern African Oxalis (Oxalidaceae), a speciose plant lineage in the Greater Cape Floristic Region. This resulted in 1164 LCN genes greater than 600 bp. Using target enrichment combined with genome skimming (Hyb-Seq), we obtained on average 1141 LCN loci, nearly the whole plastid genome and the nrDNA cistron from 23 southern African Oxalis species. Despite a wide range of gene trees, the phylogeny based on the LCN genes was very robust, as retrieved through various gene and species tree reconstruction methods as well as concatenation. Cytonuclear discordance was strong. This indicates that organellar phylogenies alone are unlikely to represent the species tree and stresses the utility of Hyb-Seq in phylogenetics. PMID:26577756

  2. The genome and transcriptome of Trichormus sp. NMC-1: insights into adaptation to extreme environments on the Qinghai-Tibet Plateau

    PubMed Central

    Qiao, Qin; Huang, Yanyan; Qi, Ji; Qu, Mingzhi; Jiang, Chen; Lin, Pengcheng; Li, Renhui; Song, Lirong; Yonezawa, Takahiro; Hasegawa, Masami; Crabbe, M. James C.; Chen, Fan; Zhang, Ticao; Zhong, Yang

    2016-01-01

    The Qinghai-Tibet Plateau (QTP) has the highest biodiversity for an extreme environment worldwide, and provides an ideal natural laboratory to study adaptive evolution. In this study, we generated a draft genome sequence of cyanobacteria Trichormus sp. NMC-1 in the QTP and performed whole transcriptome sequencing under low temperature to investigate the genetic mechanism by which T. sp. NMC-1 adapted to the specific environment. Its genome sequence was 5.9 Mb with a G+C content of 39.2% and encompassed a total of 5362 CDS. A phylogenomic tree indicated that this strain belongs to the Trichormus and Anabaena cluster. Genome comparison between T. sp. NMC-1 and six relatives showed that functionally unknown genes occupied a much higher proportion (28.12%) of the T. sp. NMC-1 genome. In addition, functions of specific, significant positively selected, expanded orthogroups, and differentially expressed genes involved in signal transduction, cell wall/membrane biogenesis, secondary metabolite biosynthesis, and energy production and conversion were analyzed to elucidate specific adaptation traits. Further analyses showed that the CheY-like genes, extracellular polysaccharide and mycosporine-like amino acids might play major roles in adaptation to harsh environments. Our findings indicate that sophisticated genetic mechanisms are involved in cyanobacterial adaptation to the extreme environment of the QTP. PMID:27381465

  3. Genes with Relevance for Early to Late Progression of Colon Carcinoma Based on Combined Genomic and Transcriptomic Information from the Same Patients

    PubMed Central

    Lagerstedt, Kristina K.; Kristiansson, Erik; Lönnroth, Christina; Andersson, Marianne; Iresjö, Britt-Marie; Gustafsson, Annika; Hansson, Elisabeth; Kressner, Ulf; Nordgren, Svante; Enlund, Fredrik; Lundholm, Kent

    2010-01-01

    Background: Genetic and epigenetic alterations in colorectal cancer are numerous. However, it is difficult to judge whether such changes are primary or secondary to the appearance and progression of tumors. Therefore, the aim of the present study was to identify altered DNA regions with significant covariation to transcription alterations along colon cancer progression. Methods: Tumor and normal colon tissue were obtained at primary operations from 24 patients selected by chance. DNA, RNA and microRNAs were extracted from the same biopsy material in all individuals and analyzed by oligo-nucleotide array-based comparative genomic hybridization (CGH), mRNA- and microRNA oligo-arrays. Statistical analyses were performed to assess statistical interactions (correlations, co-variations) between DNA copy number changes and significant alterations in gene and microRNA expression using appropriate parametric and non-parametric statistics. Results: Main DNA alterations were located on chromosome 7, 8, 13 and 20. Tumor DNA copy number gain increased with tumor progression, significantly related to increased gene expression. Copy number loss was not observed in Dukes A tumors. There was no significant relationship between expressed genes and tumor progression across Dukes A–D tumors; and no relationship between tumor stage and the number of microRNAs with significantly altered expression. Interaction analyses identified overall 41 genes, which discriminated early Dukes A plus B tumors from late Dukes C plus D tumor; 28 of these genes remained with correlations between genomic and transcriptomic alterations in Dukes C plus D tumors and 17 in Dukes D. One microRNA (microR-663) showed interactions with DNA alterations in all Dukes A-D tumors. Conclusions: Our modeling confirms that colon cancer progression is related to genomic instability and altered gene expression. However, early invasive tumor growth seemed rather related to transcriptomic alterations, where changes in

  4. Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas.

    PubMed

    Hou, Yu; Guo, Huahu; Cao, Chen; Li, Xianlong; Hu, Boqiang; Zhu, Ping; Wu, Xinglong; Wen, Lu; Tang, Fuchou; Huang, Yanyi; Peng, Jirun

    2016-03-01

    Single-cell genome, DNA methylome, and transcriptome sequencing methods have been separately developed. However, to accurately analyze the mechanism by which transcriptome, genome and DNA methylome regulate each other, these omic methods need to be performed in the same single cell. Here we demonstrate a single-cell triple omics sequencing technique, scTrio-seq, that can be used to simultaneously analyze the genomic copy-number variations (CNVs), DNA methylome, and transcriptome of an individual mammalian cell. We show that large-scale CNVs cause proportional changes in RNA expression of genes within the gained or lost genomic regions, whereas these CNVs generally do not affect DNA methylation in these regions. Furthermore, we applied scTrio-seq to 25 single cancer cells derived from a human hepatocellular carcinoma tissue sample. We identified two subpopulations within these cells based on CNVs, DNA methylome, or transcriptome of individual cells. Our work offers a new avenue of dissecting the complex contribution of genomic and epigenomic heterogeneities to the transcriptomic heterogeneity within a population of cells. PMID:26902283

  5. Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas

    PubMed Central

    Hou, Yu; Guo, Huahu; Cao, Chen; Li, Xianlong; Hu, Boqiang; Zhu, Ping; Wu, Xinglong; Wen, Lu; Tang, Fuchou; Huang, Yanyi; Peng, Jirun

    2016-01-01

    Single-cell genome, DNA methylome, and transcriptome sequencing methods have been separately developed. However, to accurately analyze the mechanism by which transcriptome, genome and DNA methylome regulate each other, these omic methods need to be performed in the same single cell. Here we demonstrate a single-cell triple omics sequencing technique, scTrio-seq, that can be used to simultaneously analyze the genomic copy-number variations (CNVs), DNA methylome, and transcriptome of an individual mammalian cell. We show that large-scale CNVs cause proportional changes in RNA expression of genes within the gained or lost genomic regions, whereas these CNVs generally do not affect DNA methylation in these regions. Furthermore, we applied scTrio-seq to 25 single cancer cells derived from a human hepatocellular carcinoma tissue sample. We identified two subpopulations within these cells based on CNVs, DNA methylome, or transcriptome of individual cells. Our work offers a new avenue of dissecting the complex contribution of genomic and epigenomic heterogeneities to the transcriptomic heterogeneity within a population of cells. PMID:26902283

  6. Genome-scale computational analysis of DNA curvature and repeats in Arabidopsis and rice uncovers plant-specific genomic properties

    PubMed Central

    2011-01-01

    Background Due to its overarching role in genome function, sequence-dependent DNA curvature continues to attract great attention. The DNA double helix is not a rigid cylinder, but presents both curvature and flexibility in different regions, depending on the sequence. More in depth knowledge of the various orders of complexity of genomic DNA structure has allowed the design of sophisticated bioinformatics tools for its analysis and manipulation, which, in turn, have yielded a better understanding of the genome itself. Curved DNA is involved in many biologically important processes, such as transcription initiation and termination, recombination, DNA replication, and nucleosome positioning. CpG islands and tandem repeats also play significant roles in the dynamics and evolution of genomes. Results In this study, we analyzed the relationship between these three structural features within rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana) genomes. A genome-scale prediction of curvature distribution in rice and Arabidopsis indicated that most of the chromosomes of both genomes have maximal chromosomal DNA curvature adjacent to the centromeric region. By analyzing tandem repeats across the genome, we found that frequencies of repeats are higher in regions adjacent to those with high curvature value. Further analysis of CpG islands shows a clear interdependence between curvature value, repeat frequencies and CpG islands. Each CpG island appears in a local minimal curvature region, and CpG islands usually do not appear in the centromere or regions with high repeat frequency. A statistical evaluation demonstrates the significance and non-randomness of these features. Conclusions This study represents the first systematic genome-scale analysis of DNA curvature, CpG islands and tandem repeats at the DNA sequence level in plant genomes, and finds that not all of the chromosomes in plants follow the same rules common to other eukaryote organisms, suggesting that some

  7. De Novo Transcriptome of the Hemimetabolous German Cockroach (Blattella germanica)

    PubMed Central

    Zhou, Xiaojie; Qian, Kun; Tong, Ying; Zhu, Junwei Jerry; Qiu, Xinghui; Zeng, Xiaopeng

    2014-01-01

    Background The German cockroach, Blattella germanica, is an important insect pest that transmits various pathogens mechanically and causes severe allergic diseases. This insect has long served as a model system for studies of insect biology, physiology and ecology. However, the lack of genome or transcriptome information heavily hinder our further understanding about the German cockroach in every aspect at a molecular level and on a genome-wide scale. To explore the transcriptome and identify unique sequences of interest, we subjected the B. germanica transcriptome to massively parallel pyrosequencing and generated the first reference transcriptome for B. germanica. Methodology/Principal Findings A total of 1,365,609 raw reads with an average length of 529 bp were generated via pyrosequencing the mixed cDNA library from different life stages of German cockroach including maturing oothecae, nymphs, adult females and males. The raw reads were de novo assembled to 48,800 contigs and 3,961 singletons with high-quality unique sequences. These sequences were annotated and classified functionally in terms of BLAST, GO and KEGG, and the genes putatively coding detoxification enzyme systems, insecticide targets, key components in systematic RNA interference, immunity and chemoreception pathways were identified. A total of 3,601 SSRs (Simple Sequence Repeats) loci were also predicted. Conclusions/Significance The whole transcriptome pyrosequencing data from this study provides a usable genetic resource for future identification of potential functional genes involved in various biological processes. PMID:25265537

  8. De novo transcriptome sequencing in a songbird, the dark-eyed junco (Junco hyemalis): genomic tools for an ecological model system

    PubMed Central

    2012-01-01

    Background Though genomic-level data are becoming widely available, many of the metazoan species sequenced are laboratory systems whose natural history is not well documented. In contrast, the wide array of species with very well-characterized natural history have, until recently, lacked genomics tools. It is now possible to address significant evolutionary genomics questions by applying high-throughput sequencing to discover the majority of genes for ecologically tractable species, and by subsequently developing microarray platforms from which to investigate gene regulatory networks that function in natural systems. We used GS-FLX Titanium Sequencing (Roche/454-Sequencing) of two normalized libraries of pooled RNA samples to characterize a transcriptome of the dark-eyed junco (Junco hyemalis), a North American sparrow that is a classically studied species in the fields of photoperiodism, speciation, and hormone-mediated behavior. Results From a broad pool of RNA sampled from tissues throughout the body of a male and a female junco, we sequenced a total of 434 million nucleotides from 1.17 million reads that were assembled de novo into 31,379 putative transcripts representing 22,765 gene sets covering 35.8 million nucleotides with 12-fold average depth of coverage. Annotation of roughly half of the putative genes was accomplished using sequence similarity, and expression was confirmed for the majority with a preliminary microarray analysis. Of 716 core bilaterian genes, 646 (90 %) were recovered within our characterized gene set. Gene Ontology, orthoDB orthology groups, and KEGG Pathway annotation provide further functional information about the sequences, and 25,781 potential SNPs were identified. Conclusions The extensive sequence information returned by this effort adds to the growing store of genomic data on diverse species. The extent of coverage and annotation achieved and confirmation of expression, show that transcriptome sequencing provides useful

  9. Genomics and Transcriptomics Analyses of the Oil-Accumulating Basidiomycete Yeast Trichosporon oleaginosus: Insights into Substrate Utilization and Alternative Evolutionary Trajectories of Fungal Mating Systems

    PubMed Central

    Bracharz, Felix; Lorenzen, Jan; Kracht, Octavia N.; Chovatia, Mansi; Daum, Chris; Deshpande, Shweta; Lipzen, Anna; Nolan, Matt; Ohm, Robin A.; Grigoriev, Igor V.; Sun, Sheng; Heitman, Joseph

    2015-01-01

    ABSTRACT Microbial fermentation of agro-industrial waste holds great potential for reducing the environmental impact associated with the production of lipids for industrial purposes from plant biomass. However, the chemical complexity of many residues currently prevents efficient conversion into lipids, creating a high demand for strains with the ability to utilize all energy-rich components of agricultural residues. Here, we present results of genome and transcriptome analyses of Trichosporon oleaginosus. This oil-accumulating yeast is able to grow on a wide variety of substrates, including pentoses and N-acetylglucosamine, making it an interesting candidate for biotechnological applications. Transcriptomics shows specific changes in gene expression patterns under lipid-accumulating conditions. Furthermore, gene content and expression analyses indicate that T. oleaginosus is well-adapted for the utilization of chitin-rich biomass. We also focused on the T. oleaginosus mating type, because this species is a member of the Tremellomycetes, a group that has been intensively analyzed as a model for the evolution of sexual development, the best-studied member being Cryptococcus neoformans. The structure of the T. oleaginosus mating-type regions differs significantly from that of other Tremellomycetes and reveals a new evolutionary trajectory paradigm. Comparative analysis shows that recruitment of developmental genes to the ancestral tetrapolar mating-type loci occurred independently in the Trichosporon and Cryptococcus lineages, supporting the hypothesis of a trend toward larger mating-type regions in fungi. PMID:26199329

  10. Whole genome and transcriptome analyses of environmental antibiotic sensitive and multi-resistant Pseudomonas aeruginosa isolates exposed to waste water and tap water

    PubMed Central

    Schwartz, Thomas; Armant, Olivier; Bretschneider, Nancy; Hahn, Alexander; Kirchen, Silke; Seifert, Martin; Dötsch, Andreas

    2015-01-01

    The fitness of sensitive and resistant Pseudomonas aeruginosa in different aquatic environments depends on genetic capacities and transcriptional regulation. Therefore, an antibiotic-sensitive isolate PA30 and a multi-resistant isolate PA49 originating from waste waters were compared via whole genome and transcriptome Illumina sequencing after exposure to municipal waste water and tap water. A number of different genomic islands (e.g. PAGIs, PAPIs) were identified in the two environmental isolates beside the highly conserved core genome. Exposure to tap water and waste water exhibited similar transcriptional impacts on several gene clusters (antibiotic and metal resistance, genetic mobile elements, efflux pumps) in both environmental P. aeruginosa isolates. The MexCD-OprJ efflux pump was overexpressed in PA49 in response to waste water. The expression of resistance genes, genetic mobile elements in PA49 was independent from the water matrix. Consistently, the antibiotic sensitive strain PA30 did not show any difference in expression of the intrinsic resistance determinants and genetic mobile elements. Thus, the exposure of both isolates to polluted waste water and oligotrophic tap water resulted in similar expression profiles of mentioned genes. However, changes in environmental milieus resulted in rather unspecific transcriptional responses than selected and stimuli-specific gene regulation. PMID:25186059

  11. Whole genome and transcriptome analyses of environmental antibiotic sensitive and multi-resistant Pseudomonas aeruginosa isolates exposed to waste water and tap water.

    PubMed

    Schwartz, Thomas; Armant, Olivier; Bretschneider, Nancy; Hahn, Alexander; Kirchen, Silke; Seifert, Martin; Dötsch, Andreas

    2015-01-01

    The fitness of sensitive and resistant Pseudomonas aeruginosa in different aquatic environments depends on genetic capacities and transcriptional regulation. Therefore, an antibiotic-sensitive isolate PA30 and a multi-resistant isolate PA49 originating from waste waters were compared via whole genome and transcriptome Illumina sequencing after exposure to municipal waste water and tap water. A number of different genomic islands (e.g. PAGIs, PAPIs) were identified in the two environmental isolates beside the highly conserved core genome. Exposure to tap water and waste water exhibited similar transcriptional impacts on several gene clusters (antibiotic and metal resistance, genetic mobile elements, efflux pumps) in both environmental P. aeruginosa isolates. The MexCD-OprJ efflux pump was overexpressed in PA49 in response to waste water. The expression of resistance genes, genetic mobile elements in PA49 was independent from the water matrix. Consistently, the antibiotic sensitive strain PA30 did not show any difference in expression of the intrinsic resistance determinants and genetic mobile elements. Thus, the exposure of both isolates to polluted waste water and oligotrophic tap water resulted in similar expression profiles of mentioned genes. However, changes in environmental milieus resulted in rather unspecific transcriptional responses than selected and stimuli-specific gene regulation. PMID:25186059

  12. The genome and life-stage specific transcriptomes of Globodera pallida elucidate key aspects of plant parasitism by a cyst nematode

    PubMed Central

    2014-01-01

    Background Globodera pallida is a devastating pathogen of potato crops, making it one of the most economically important plant parasitic nematodes. It is also an important model for the biology of cyst nematodes. Cyst nematodes and root-knot nematodes are the two most important plant parasitic nematode groups and together represent a global threat to food security. Results We present the complete genome sequence of G. pallida, together with transcriptomic data from most of the nematode life cycle, particularly focusing on the life cycle stages involved in root invasion and establishment of the biotrophic feeding site. Despite the relatively close phylogenetic relationship with root-knot nematodes, we describe a very different gene family content between the two groups and in particular extensive differences in the repertoire of effectors, including an enormous expansion of the SPRY domain protein family in G. pallida, which includes the SPRYSEC family of effectors. This highlights the distinct biology of cyst nematodes compared to the root-knot nematodes that were, until now, the only sedentary plant parasitic nematodes for which genome information was available. We also present in-depth descriptions of the repertoires of other genes likely to be important in understanding the unique biology of cyst nematodes and of potential drug targets and other targets for their control. Conclusions The data and analyses we present will be central in exploiting post-genomic approaches in the development of much-needed novel strategies for the control of G. pallida and related pathogens. PMID:24580726

  13. Analysis of the Genome and Transcriptome of Cryptococcus neoformans var. grubii Reveals Complex RNA Expression and Microevolution Leading to Virulence Attenuation

    PubMed Central

    Janbon, Guilhem; Ormerod, Kate L.; Paulet, Damien; Byrnes, Edmond J.; Yadav, Vikas; Chatterjee, Gautam; Mullapudi, Nandita; Hon, Chung-Chau; Billmyre, R. Blake; Brunel, François; Bahn, Yong-Sun; Chen, Weidong; Chen, Yuan; Chow, Eve W. L.; Coppée, Jean-Yves; Floyd-Averette, Anna; Gaillardin, Claude; Gerik, Kimberly J.; Goldberg, Jonathan; Gonzalez-Hilarion, Sara; Gujja, Sharvari; Hamlin, Joyce L.; Hsueh, Yen-Ping; Ianiri, Giuseppe; Jones, Steven; Kodira, Chinnappa D.; Kozubowski, Lukasz; Lam, Woei; Marra, Marco; Mesner, Larry D.; Mieczkowski, Piotr A.; Moyrand, Frédérique; Nielsen, Kirsten; Proux, Caroline; Rossignol, Tristan; Schein, Jacqueline E.; Sun, Sheng; Wollschlaeger, Carolin; Wood, Ian A.; Zeng, Qiandong; Neuvéglise, Cécile; Newlon, Carol S.; Perfect, John R.; Lodge, Jennifer K.; Idnurm, Alexander; Stajich, Jason E.; Kronstad, James W.; Sanyal, Kaustuv; Heitman, Joseph; Fraser, James A.; Cuomo, Christina A.; Dietrich, Fred S.

    2014-01-01

    Cryptococcus neoformans is a pathogenic basidiomycetous yeast responsible for more than 600,000 deaths each year. It occurs as two serotypes (A and D) representing two varieties (i.e. grubii and neoformans, respectively). Here, we sequenced the genome and performed an RNA-Seq-based analysis of the C. neoformans var. grubii transcriptome structure. We determined the chromosomal locations, analyzed the sequence/structural features of the centromeres, and identified origins of replication. The genome was annotated based on automated and manual curation. More than 40,000 introns populating more than 99% of the expressed genes were identified. Although most of these introns are located in the coding DNA sequences (CDS), over 2,000 introns in the untranslated regions (UTRs) were also identified. Poly(A)-containing reads were employed to locate the polyadenylation sites of more than 80% of the genes. Examination of the sequences around these sites revealed a new poly(A)-site-associated motif (AUGHAH). In addition, 1,197 miscRNAs were identified. These miscRNAs can be spliced and/or polyadenylated, but do not appear to have obvious coding capacities. Finally, this genome sequence enabled a comparative analysis of strain H99 variants obtained after laboratory passage. The spectrum of mutations identified provides insights into the genetics underlying the micro-evolution of a laboratory strain, and identifies mutations involved in stress responses, mating efficiency, and virulence. PMID:24743168

  14. The evolution of genome-scale models of cancer metabolism

    PubMed Central

    Lewis, Nathan E.; Abdel-Haleem, Alyaa M.

    2013-01-01

    The importance of metabolism in cancer is becoming increasingly apparent with the identification of metabolic enzyme mutations and the growing awareness of the influence of metabolism on signaling, epigenetic markers, and transcription. However, the complexity of these processes has challenged our ability to make sense of the metabolic changes in cancer. Fortunately, constraint-based modeling, a systems biology approach, now enables one to study the entirety of cancer metabolism and simulate basic phenotypes. With the newness of this field, there has been a rapid evolution of both the scope of these models and their applications. Here we review the various constraint-based models built for cancer metabolism and how their predictions are shedding new light on basic cancer phenotypes, elucidating pathway differences between tumors, and dicovering putative anti-cancer targets. As the field continues to evolve, the scope of these genome-scale cancer models must expand beyond central metabolism to address questions related to the diverse processes contributing to tumor development and metastasis. PMID:24027532

  15. Genome Scale Reconstruction of a Salmonella Metabolic Model

    PubMed Central

    AbuOun, Manal; Suthers, Patrick F.; Jones, Gareth I.; Carter, Ben R.; Saunders, Mark P.; Maranas, Costas D.; Woodward, Martin J.; Anjum, Muna F.

    2009-01-01

    Salmonella are closely related to commensal Escherichia coli but have gained virulence factors enabling them to behave as enteric pathogens. Less well studied are the similarities and differences that exist between the metabolic properties of these organisms that may contribute toward niche adaptation of Salmonella pathogens. To address this, we have constructed a genome scale Salmonella metabolic model (iMA945). The model comprises 945 open reading frames or genes, 1964 reactions, and 1036 metabolites. There was significant overlap with genes present in E. coli MG1655 model iAF1260. In silico growth predictions were simulated using the model on different carbon, nitrogen, phosphorous, and sulfur sources. These were compared with substrate utilization data gathered from high throughput phenotyping microarrays revealing good agreement. Of the compounds tested, the majority were utilizable by both Salmonella and E. coli. Nevertheless a number of differences were identified both between Salmonella and E. coli and also within the Salmonella strains included. These differences provide valuable insight into differences between a commensal and a closely related pathogen and within different pathogenic strains opening new avenues for future explorations. PMID:19690172

  16. Transcriptome Analysis of Two Vicia sativa Subspecies: Mining Molecular Markers to Enhance Genomic Resources for Vetch Improvement.

    PubMed

    Kim, Tae-Sung; Raveendar, Sebastin; Suresh, Sundan; Lee, Gi-An; Lee, Jung-Ro; Cho, Joon-Hyeong; Lee, Sok-Young; Ma, Kyung-Ho; Cho, Gyu-Taek; Chung, Jong-Wook

    2015-01-01

    The vetch (Vicia sativa) is one of the most important annual forage legumes globally due to its multiple uses and high nutritional content. Despite these agronomical benefits, many drawbacks, including cyano-alanine toxin, has reduced the agronomic value of vetch varieties. Here, we used 454 technology to sequence the two V. sativa subspecies (ssp. sativa and ssp. nigra) to enrich functional information and genetic marker resources for the vetch research community. A total of 86,532 and 47,103 reads produced 35,202 and 18,808 unigenes with average lengths of 735 and 601 bp for V. sativa sativa and V. sativa nigra, respectively. Gene Ontology annotations and the cluster of orthologous gene classes were used to annotate the function of the Vicia transcriptomes. The Vicia transcriptome sequences were then mined for simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers. About 13% and 3% of the Vicia unigenes contained the putative SSR and SNP sequences, respectively. Among those SSRs, 100 were chosen for the validation and the polymorphism test using the Vicia germplasm set. Thus, our approach takes advantage of the utility of transcriptomic data to expedite a vetch breeding program. PMID:26540077

  17. Transcriptome Analysis of Two Vicia sativa Subspecies: Mining Molecular Markers to Enhance Genomic Resources for Vetch Improvement

    PubMed Central

    Kim, Tae-Sung; Raveendar, Sebastin; Suresh, Sundan; Lee, Gi-An; Lee, Jung-Ro; Cho, Joon-Hyeong; Lee, Sok-Young; Ma, Kyung-Ho; Cho, Gyu-Taek; Chung, Jong-Wook

    2015-01-01

    The vetch (Vicia sativa) is one of the most important annual forage legumes globally due to its multiple uses and high nutritional content. Despite these agronomical benefits, many drawbacks, including cyano-alanine toxin, has reduced the agronomic value of vetch varieties. Here, we used 454 technology to sequence the two V. sativa subspecies (ssp. sativa and ssp. nigra) to enrich functional information and genetic marker resources for the vetch research community. A total of 86,532 and 47,103 reads produced 35,202 and 18,808 unigenes with average lengths of 735 and 601 bp for V. sativa sativa and V. sativa nigra, respectively. Gene Ontology annotations and the cluster of orthologous gene classes were used to annotate the function of the Vicia transcriptomes. The Vicia transcriptome sequences were then mined for simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers. About 13% and 3% of the Vicia unigenes contained the putative SSR and SNP sequences, respectively. Among those SSRs, 100 were chosen for the validation and the polymorphism test using the Vicia germplasm set. Thus, our approach takes advantage of the utility of transcriptomic data to expedite a vetch breeding program. PMID:26540077

  18. A functional genomics tool for the Pacific bluefin tuna: Development of a 44K oligonucleotide microarray from whole-genome sequencing data for global transcriptome analysis.

    PubMed

    Yasuike, Motoshige; Fujiwara, Atushi; Nakamura, Yoji; Iwasaki, Yuki; Nishiki, Issei; Sugaya, Takuma; Shimizu, Akio; Sano, Motohiko; Kobayashi, Takanori; Ototake, Mitsuru

    2016-02-01

    Bluefin tunas are one of the most important fishery resources worldwide. Because of high market values, bluefin tuna farming has been rapidly growing during recent years. At present, the most common form of the tuna farming is based on the stocking of wild-caught fish. Therefore, concerns have been raised about the negative impact of the tuna farming on wild stocks. Recently, the Pacific bluefin tuna (PBT), Thunnus orientalis, has succeeded in completing the reproduction cycle under aquaculture conditions, but production bottlenecks remain to be solved because of very little biological information on bluefin tunas. Functional genomics approaches promise to rapidly increase our knowledge on biological processes in the bluefin tuna. Here, we describe the development of the first 44K PBT oligonucleotide microarray (oligo-array), based on whole-genome shotgun (WGS) sequencing and large-scale expressed sequence tags (ESTs) data. In addition, we also introduce an initial 44K PBT oligo-array experiment using in vitro grown peripheral blood leukocytes (PBLs) stimulated with immunostimulants such as lipopolysaccharide (LPS: a cell wall component of Gram-negative bacteria) or polyinosinic:polycytidylic acid (poly I:C: a synthetic mimic of viral infection). This pilot 44K PBT oligo-array analysis successfully addressed distinct immune processes between LPS- and poly I:C- stimulated PBLs. Thus, we expect that this oligo-array will provide an excellent opportunity to analyze global gene expression profiles for a better understanding of diseases and stress, as well as for reproduction, development and influence of nutrition on tuna aquaculture production. PMID:26477480

  19. Sulphur dioxide evokes a large scale reprogramming of the grape berry transcriptome associated with oxidative signalling and biotic defence responses.

    PubMed

    Giraud, Estelle; Ivanova, Aneta; Gordon, Colin S; Whelan, James; Considine, Michael J

    2012-02-01

    The grape and wine industries are heavily reliant on sulphite preservatives. However, the view that sulphites act directly on bacterial and fungal pathogens may be simplistic. Mechanisms of sulphur-enhanced defences are largely unknown; many sulphur-rich compounds enhance plant defences and sulphite can also have oxidative consequences via production of H(2)O(2) or sulphitolysis. To investigate the effects of sulphur dioxide (SO(2) ) on fresh table grapes (Vitis vinifera L. 'Crimson Seedless'), transcriptome analysis was carried out on berries treated with SO(2) under commercial conditions for 21 d. We found a broad perturbation of metabolic processes, consistent with a large-scale stress response. Transcripts encoding putative sulphur-metabolizing enzymes indicated that sulphite was directed towards chelation and conjugation, and away from oxidation to sulphate. The results indicated that redox poise was altered dramatically by SO(2) treatment, evidenced by alterations in plastid and mitochondrial alternative electron transfer pathways, up-regulation of fermentation transcripts and numerous glutathione S-transferases, along with a down-regulation of components involved in redox homeostasis. Features of biotic stress were up-regulated, notably signalling via auxin, ethylene and jasmonates. Taken together, this inventory of transcriptional responses is consistent with a long-term cellular response to oxidative stress, similar to the effects of reactive oxygen species. PMID:21689113

  20. Developmental Transcriptome of Aplysia californica

    PubMed Central

    HEYLAND, ANDREAS; VUE, ZER; VOOLSTRA, CHRISTIAN R.; MEDINA, MÓNICA; MOROZ, LEONID L.

    2014-01-01

    Genome-wide transcriptional changes in development provide important insight into mechanisms underlying growth, differentiation, and patterning. However, such large-scale developmental studies have been limited to a few representatives of Ecdysozoans and Chordates. Here, we characterize transcriptomes of embryonic, larval, and metamorphic development in the marine mollusc Aplysia californica and reveal novel molecular components associated with life history transitions. Specifically, we identify more than 20 signal peptides, putative hormones, and transcription factors in association with early development and metamorphic stages—many of which seem to be evolutionarily conserved elements of signal transduction pathways. We also characterize genes related to biomineralization—a critical process of molluscan development. In summary, our experiment provides the first large-scale survey of gene expression in mollusc development, and complements previous studies on the regulatory mechanisms underlying body plan patterning and the formation of larval and juvenile structures. This study serves as a resource for further functional annotation of transcripts and genes in Aplysia, specifically and molluscs in general. A comparison of the Aplysia developmental transcriptome with similar studies in the zebra fish Danio rerio, the fruit fly Drosophila melanogaster, the nematode Caenorhabditis elegans, and other studies on molluscs suggests an overall highly divergent pattern of gene regulatory mechanisms that are likely a consequence of the different developmental modes of these organisms. PMID:21328528

  1. Genome-scale transcriptional analyses of first-generation interspecific sunflower hybrids reveals broad regulatory compatibility

    PubMed Central

    2013-01-01

    Background Interspecific hybridization creates individuals harboring diverged genomes. The interaction of these genomes can generate successful evolutionary novelty or disadvantageous genomic conflict. Annual sunflowers Helianthus annuus and H. petiolaris have a rich history of hybridization in natural populations. Although first-generation hybrids generally have low fertility, hybrid swarms that include later generation and fully fertile backcross plants have been identified, as well as at least three independently-originated stable hybrid taxa. We examine patterns of transcript accumulation in the earliest stages of hybridization of these species via analyses of transcriptome sequences from laboratory-derived F1 offspring of an inbred H. annuus cultivar and a wild H. petiolaris accession. Results While nearly 14% of the reference transcriptome showed significant accumulation differences between parental accessions, total F1 transcript levels showed little evidence of dominance, as midparent transcript levels were highly predictive of transcript accumulation in F1 plants. Allelic bias in F1 transcript accumulation was detected in 20% of transcripts containing sufficient polymorphism to distinguish parental alleles; however the magnitude of these biases were generally smaller than differences among parental accessions. Conclusions While analyses of allelic bias suggest that cis regulatory differences between H. annuus and H. petiolaris are common, their effect on transcript levels may be more subtle than trans-acting regulatory differences. Overall, these analyses found little evidence of regulatory incompatibility or dominance interactions between parental genomes within F1 hybrid individuals, although it is unclear whether this is a legacy or an enabler of introgression between species. PMID:23701699

  2. Combining p-values in large-scale genomics experiments.

    PubMed

    Zaykin, Dmitri V; Zhivotovsky, Lev A; Czika, Wendy; Shao, Susan; Wolfinger, Russell D

    2007-01-01

    In large-scale genomics experiments involving thousands of statistical tests, such as association scans and microarray expression experiments, a key question is: Which of the L tests represent true associations (TAs)? The traditional way to control false findings is via individual adjustments. In the presence of multiple TAs, p-value combination methods offer certain advantages. Both Fisher's and Lancaster's combination methods use an inverse gamma transformation. We identify the relation of the shape parameter of that distribution to the implicit threshold value; p-values below that threshold are favored by the inverse gamma method (GM). We explore this feature to improve power over Fisher's method when L is large and the number of TAs is moderate. However, the improvement in power provided by combination methods is at the expense of a weaker claim made upon rejection of the null hypothesis - that there are some TAs among the L tests. Thus, GM remains a global test. To allow a stronger claim about a subset of p-values that is smaller than L, we investigate two methods with an explicit truncation: the rank truncated product method (RTP) that combines the first K-ordered p-values, and the truncated product method (TPM) that combines p-values that are smaller than a specified threshold. We conclude that TPM allows claims to be made about subsets of p-values, while the claim of the RTP is, like GM, more appropriately about all L tests. GM gives somewhat higher power than TPM, RTP, Fisher, and Simes methods across a range of simulations. PMID:17879330

  3. Combining p-values in large scale genomics experiments

    PubMed Central

    Zaykin, Dmitri V.; Zhivotovsky, Lev A.; Czika, Wendy; Shao, Susan; Wolfinger, Russell D.

    2008-01-01

    Summary In large-scale genomics experiments involving thousands of statistical tests, such as association scans and microarray expression experiments, a key question is: Which of the L tests represent true associations (TAs)? The traditional way to control false findings is via individual adjustments. In the presence of multiple TAs, p-value combination methods offer certain advantages. Both Fisher’s and Lancaster’s combination methods use an inverse gamma transformation. We identify the relation of the shape parameter of that distribution to the implicit threshold value; p-values below that threshold are favored by the inverse gamma method (GM). We explore this feature to improve power over Fisher’s method when L is large and the number of TAs is moderate. However, the improvement in power provided by combination methods is at the expense of a weaker claim made upon rejection of the null hypothesis – that there are some TAs among the L tests. Thus, GM remains a global test. To allow a stronger claim about a subset of p-values that is smaller than L, we investigate two methods with an explicit truncation: the rank truncated product method (RTP) that combines the first K ordered p-values, and the truncated product method (TPM) that combines p-values that are smaller than a specified threshold. We conclude that TPM allows claims to be made about subsets of p-values, while the claim of the RTP is, like GM, more appropriately about all L tests. GM gives somewhat higher power than TPM, RTP, Fisher, and Simes methods across a range of simulations. PMID:17879330

  4. Large scale in-silico identification and characterization of simple sequence repeats (SSRs) from de novo assembled transcriptome of Catharanthus roseus (L.) G. Don.

    PubMed

    Kumar, Santosh; Shah, Niraj; Garg, Vanika; Bhatia, Sabhyata

    2014-06-01

    Transcriptomic data of C. roseus offering ample sequence resources for providing better insights into gene diversity: large resource of genic SSR markers to accelerate genomic studies and breeding in Catharanthus . Next-generation sequencing is an efficient system for generating high-throughput complete transcripts/genes and developing molecular markers. We present here the transcriptome sequencing of a 26-day-old Catharanthus roseus seedling tissue using Illumina GAIIX platform that resulted in a total of 3.37 Gb of nucleotide sequence data comprising 29,964,104 reads which were de novo assembled into 26,581 unigenes. Based on similarity searches 58 % of the unigenes were annotated of which 13,580 unique transcripts were assigned 5016 gene ontology terms. Further, 7,687 of the unigenes were found to have Cluster of Orthologous Group classifications, and 4,006 were assigned to 289 Kyoto Encyclopedia of Genes and Genome pathways. Also, 5,221 (19.64 %) of transcripts were distributed to 81 known transcription factor (TF) families. In-silico analysis of the transcriptome resulted in identification of 11,004 SSRs in 26.62 % transcripts from which 2,520 SSR markers were designed which exhibited a non-random pattern of distribution. The most abundant was the trinucleotide repeats (AAG/CTT) followed by the dinucleotide repeats (AG/CT). Location specific analysis of SSRs revealed that SSRs were preferentially associated with the 5'-UTRs with a predicted role in regulation of gene expression. A PCR validation of a set of 48 primers revealed 97.9 % successful amplification, and 76.6 % of them showed polymorphism across different Catharanthus species as well as accessions of C. roseus. In summary, this study will provide an insight into understanding the seedling development and resources for novel gene discovery and SSR development for utilization in marker-assisted selective breeding in C. roseus. PMID:24482265

  5. The Bluejay genome browser.

    PubMed

    Soh, Jung; Gordon, Paul M K; Sensen, Christoph W

    2012-03-01

    The Bluejay genome browser is a stand-alone visualization tool for the multi-scale viewing of annotated genomes and other genomic elements. Bluejay allows users to customize display features to suit their needs, and produces publication-quality graphics. Bluejay provides a multitude of ways to interrelate biological data at the genome scale. Users can load gene expression data into a genome display for expression visualization in context. Multiple genomes can be compared concurrently, including time series expression data, based on Gene Ontology labels. External, context-sensitive biological Web Services are linked to the displayed genomic elements ad hoc for in-depth genomic data analysis and interpretation. Users can mark multiple points of interest in a genome by creating waypoints, and exploit them for easy navigation of single or multiple genomes. Using this comprehensive visual environment, users can study a gene not just in relation to its genome, but also its transcriptome and evolutionary origins. Written in Java, Bluejay is platform-independent and is freely available from http://bluejay.ucalgary.ca. PMID:22389011

  6. Dating the arthropod tree based on large-scale transcriptome data.

    PubMed

    Rehm, Peter; Borner, Janus; Meusemann, Karen; von Reumont, Björn M; Simon, Sabrina; Hadrys, Heike; Misof, Bernhard; Burmester, Thorsten

    2011-12-01

    Molecular sequences do not only allow the reconstruction of phylogenetic relationships among species, but also provide information on the approximate divergence times. Whereas the fossil record dates the origin of most multicellular animal phyla during the Cambrian explosion less than 540 million years ago(mya), molecular clock calculations usually suggest much older dates. Here we used a large multiple sequence alignment derived from Expressed Sequence Tags and genomes comprising 129genes (37,476 amino acid positions) and 117 taxa, including 101 arthropods. We obtained consistent divergence time estimates applying relaxed Bayesian clock models with different priors and multiple calibration points. While the influence of substitution rates, missing data, and model priors were negligible, the clock model had significant effect. A log-normal autocorrelated model was selected on basis of cross-validation. We calculated that arthropods emerged ~600 mya. Onychophorans (velvet worms) and euarthropods split ~590 mya, Pancrustacea and Myriochelata ~560 mya, Myriapoda and Chelicerata ~555 mya, and 'Crustacea' and Hexapoda ~510 mya. Endopterygote insects appeared ~390 mya. These dates are considerably younger than most previous molecular clock estimates and in better agreement with the fossil record. Nevertheless, a Precambrian origin of arthropods and other metazoan phyla is still supported. Our results also demonstrate the applicability of large datasets of random nuclear sequences for approximating the timing of multicellular animal evolution. PMID:21945788

  7. High-throughput generation, optimization and analysis of genome-scale metabolic models.

    SciTech Connect

    Henry, C. S.; DeJongh, M.; Best, A. A.; Frybarger, P. M.; Linsay, B.; Stevens, R. L.

    2010-09-01

    Genome-scale metabolic models have proven to be valuable for predicting organism phenotypes from genotypes. Yet efforts to develop new models are failing to keep pace with genome sequencing. To address this problem, we introduce the Model SEED, a web-based resource for high-throughput generation, optimization and analysis of genome-scale metabolic models. The Model SEED integrates existing methods and introduces techniques to automate nearly every step of this process, taking {approx}48 h to reconstruct a metabolic model from an assembled genome sequence. We apply this resource to generate 130 genome-scale metabolic models representing a taxonomically diverse set of bacteria. Twenty-two of the models were validated against available gene essentiality and Biolog data, with the average model accuracy determined to be 66% before optimization and 87% after optimization.

  8. Unraveling the rat blood genome-wide transcriptome after oral administration of lavender oil by a two-color dye-swap DNA microarray approach.

    PubMed

    Hori, Motohide; Kubo, Hiroko; Shibato, Junko; Saito, Tomomi; Ogawa, Tetsuo; Wakamori, Minoru; Masuo, Yoshinori; Shioda, Seiji; Rakwal, Randeep

    2016-06-01

    Lavender oil (LO) is a commonly used essential oil in aromatherapy as non-traditional medicine. With an aim to demonstrate LO effects on the body, we have recently established an animal model investigating the influence of orally administered LO in rat tissues, genome-wide. In this brief, we investigate the effect of LO ingestion in the blood of rat. Rats were administered LO at usual therapeutic dose (5 mg/kg) in humans, and following collection of the venous blood from the heart and extraction of total RNA, the differentially expressed genes were screened using a 4 × 44-K whole-genome rat chip (Agilent microarray platform; Agilent Technologies, Palo Alto, CA, USA) in conjunction with a two-color dye-swap approach. A total of 834 differentially expressed genes in the blood were identified: 362 up-regulated and 472 down-regulated. These genes were functionally categorized using bioinformatics tools. The gene expression inventory of rat blood transcriptome under LO, a first report, has been deposited into the Gene Expression Omnibus (GEO): GSE67499. The data will be a valuable resource in examining the effects of natural products, and which could also serve as a human model for further functional analysis and investigation. PMID:27330992

  9. Insights into the Physiology and Ecology of the Brackish-Water-Adapted Cyanobacterium Nodularia spumigena CCY9414 Based on a Genome-Transcriptome Analysis

    PubMed Central

    Voß, Björn; Bolhuis, Henk; Fewer, David P.; Kopf, Matthias; Möke, Fred; Haas, Fabian; El-Shehawy, Rehab; Hayes, Paul; Bergman, Birgitta; Sivonen, Kaarina; Dittmann, Elke; Scanlan, Dave J.; Hagemann, Martin; Stal, Lucas J.; Hess, Wolfgang R.

    2013-01-01

    Nodularia spumigena is a filamentous diazotrophic cyanobacterium that dominates the annual late summer cyanobacterial blooms in the Baltic Sea. But N. spumigena also is common in brackish water bodies worldwide, suggesting special adaptation allowing it to thrive at moderate salinities. A draft genome analysis of N. spumigena sp. CCY9414 yielded a single scaffold of 5,462,271 nucleotides in length on which genes for 5,294 proteins were annotated. A subsequent strand-specific transcriptome analysis identified more than 6,000 putative transcriptional start sites (TSS). Orphan TSSs located in intergenic regions led us to predict 764 non-coding RNAs, among them 70 copies of a possible retrotransposon and several potential RNA regulators, some of which are also present in other N2-fixing cyanobacteria. Approximately 4% of the total coding capacity is devoted to the production of secondary metabolites, among them the potent hepatotoxin nodularin, the linear spumigin and the cyclic nodulapeptin. The transcriptional complexity associated with genes involved in nitrogen fixation and heterocyst differentiation is considerably smaller compared to other Nostocales. In contrast, sophisticated systems exist for the uptake and assimilation of iron and phosphorus compounds, for the synthesis of compatible solutes, and for the formation of gas vesicles, required for the active control of buoyancy. Hence, the annotation and interpretation of this sequence provides a vast array of clues into the genomic underpinnings of the physiology of this cyanobacterium and indicates in particular a competitive edge of N. spumigena in nutrient-limited brackish water ecosystems. PMID:23555932

  10. Mining whole genomes and transcriptomes of Jatropha (Jatropha curcas) and Castor bean (Ricinus communis) for NBS-LRR genes and defense response associated transcription factors.

    PubMed

    Sood, Archit; Jaiswal, Varun; Chanumolu, Sree Krishna; Malhotra, Nikhil; Pal, Tarun; Chauhan, Rajinder Singh

    2014-11-01

    Jatropha (Jatropha curcas L.) and Castor bean (Ricinus communis) are oilseed crops of family Euphorbiaceae with the potential of producing high quality biodiesel and having industrial value. Both the bioenergy plants are becoming susceptible to various biotic stresses directly affecting the oil quality and content. No report exists as of today on analysis of Nucleotide Binding Site-Leucine Rich Repeat (NBS-LRR) gene repertoire and defense response transcription factors in both the plant species. In silico analysis of whole genomes and transcriptomes identified 47 new NBS-LRR genes in both the species and 122 and 318 defense response related transcription factors in Jatropha and Castor bean, respectively. The identified NBS-LRR genes and defense response transcription factors were mapped onto the respective genomes. Common and unique NBS-LRR genes and defense related transcription factors were identified in both the plant species. All NBS-LRR genes in both the species were characterized into Toll/interleukin-1 receptor NBS-LRRs (TNLs) and coiled-coil NBS-LRRs (CNLs), position on contigs, gene clusters and motifs and domains distribution. Transcript abundance or expression values were measured for all NBS-LRR genes and defense response transcription factors, suggesting their functional role. The current study provides a repertoire of NBS-LRR genes and transcription factors which can be used in not only dissecting the molecular basis of disease resistance phenotype but also in developing disease resistant genotypes in Jatropha and Castor bean through transgenic or molecular breeding approaches. PMID:25106526

  11. Genome-wide landscape of DNA methylomes and their relationship with mRNA and miRNA transcriptomes in oxidative and glycolytic skeletal muscles

    PubMed Central

    Shen, Linyuan; Du, Jingjing; Xia, Yudong; Tan, Zhendong; Fu, Yuhua; Yang, Qiong; Li, Xuewei; Tang, Guoqing; Jiang, Yanzhi; Wang, Jinyong; Li, Mingzhou; Zhang, Shunhua; Zhu, Li

    2016-01-01

    The physiological, biochemical and functional differences between oxidative and glycolytic muscles play important roles in human metabolic health and in animal meat quality. To explore these differences, we determined the genome-wide landscape of DNA methylomes and their relationship with the mRNA and miRNA transcriptomes of the oxidative muscle psoas major (PMM) and the glycolytic muscle longissimus dorsi (LDM). We observed the hypo-methylation of sub-telomeric regions. A high mitochondrial content contributed to fast replicative senescence in PMM. The differentially methylated regions (DMRs) in promoters (478) and gene bodies (5,718) were mainly enriched in GTPase regulator activity and signaling cascade-mediated pathways. Integration analysis revealed that the methylation status within gene promoters (or gene bodies) and miRNA promoters was negatively correlated with mRNA and miRNA expression, respectively. Numerous genes were closely related to distinct phenotypic traits between LDM and PMM. For example, the hyper-methylation and down-regulation of HK-2 and PFKFB4 were related to decrease glycolytic potential in PMM. In addition, promoter hypo-methylation and the up-regulation of miR-378 silenced the expression of the target genes and promoted capillary biosynthesis in PMM. Together, these results improve understanding of muscle metabolism and development from genomic and epigenetic perspectives. PMID:27561200

  12. Genome-wide landscape of DNA methylomes and their relationship with mRNA and miRNA transcriptomes in oxidative and glycolytic skeletal muscles.

    PubMed

    Shen, Linyuan; Du, Jingjing; Xia, Yudong; Tan, Zhendong; Fu, Yuhua; Yang, Qiong; Li, Xuewei; Tang, Guoqing; Jiang, Yanzhi; Wang, Jinyong; Li, Mingzhou; Zhang, Shunhua; Zhu, Li

    2016-01-01

    The physiological, biochemical and functional differences between oxidative and glycolytic muscles play important roles in human metabolic health and in animal meat quality. To explore these differences, we determined the genome-wide landscape of DNA methylomes and their relationship with the mRNA and miRNA transcriptomes of the oxidative muscle psoas major (PMM) and the glycolytic muscle longissimus dorsi (LDM). We observed the hypo-methylation of sub-telomeric regions. A high mitochondrial content contributed to fast replicative senescence in PMM. The differentially methylated regions (DMRs) in promoters (478) and gene bodies (5,718) were mainly enriched in GTPase regulator activity and signaling cascade-mediated pathways. Integration analysis revealed that the methylation status within gene promoters (or gene bodies) and miRNA promoters was negatively correlated with mRNA and miRNA expression, respectively. Numerous genes were closely related to distinct phenotypic traits between LDM and PMM. For example, the hyper-methylation and down-regulation of HK-2 and PFKFB4 were related to decrease glycolytic potential in PMM. In addition, promoter hypo-methylation and the up-regulation of miR-378 silenced the expression of the target genes and promoted capillary biosynthesis in PMM. Together, these results improve understanding of muscle metabolism and development from genomic and epigenetic perspectives. PMID:27561200

  13. Genome-Wide Identification and Transcriptome-Based Expression Profiling of the Sox Gene Family in the Nile Tilapia (Oreochromis niloticus)

    PubMed Central

    Wei, Ling; Yang, Chao; Tao, Wenjing; Wang, Deshou

    2016-01-01

    The Sox transcription factor family is characterized with the presence of a Sry-related high-mobility group (HMG) box and plays important roles in various biological processes in animals, including sex determination and differentiation, and the development of multiple organs. In this study, 27 Sox genes were identified in the genome of the Nile tilapia (Oreochromis niloticus), and were classified into seven groups. The members of each group of the tilapia Sox genes exhibited a relatively conserved exon-intron structure. Comparative analysis showed that the Sox gene family has undergone an expansion in tilapia and other teleost fishes following their whole genome duplication, and group K only exists in teleosts. Transcriptome-based analysis demonstrated that most of the tilapia Sox genes presented stage-specific and/or sex-dimorphic expressions during gonadal development, and six of the group B Sox genes were specifically expressed in the adult brain. Our results provide a better understanding of gene structure and spatio-temporal expression of the Sox gene family in tilapia, and will be useful for further deciphering the roles of the Sox genes during sex determination and gonadal development in teleosts. PMID:26907269

  14. Genome-Wide Identification and Transcriptome-Based Expression Profiling of the Sox Gene Family in the Nile Tilapia (Oreochromis niloticus).

    PubMed

    Wei, Ling; Yang, Chao; Tao, Wenjing; Wang, Deshou

    2016-01-01

    The Sox transcription factor family is characterized with the presence of a Sry-related high-mobility group