These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Genome Sequencing Centers  

Cancer.gov

The Cancer Genome Atlas (TCGA) Genome Sequencing Centers (GSCs) perform large-scale DNA sequencing using the latest sequencing technologies. Supported by the National Human Genome Research Institute (NHGRI) large-scale sequencing program, the GSCs generate the enormous volume of data required by TCGA, while continually improving existing technologies and methods to expand the frontier of what can be achieved in cancer genome sequencing.

2

Genome Sequencing Center Tour Videos and Classroom Activities  

NSDL National Science Digital Library

A video tour of the Washington University Genome Sequencing CenterâÂÂsupplemented by additional films and classroom activitiesâÂÂcan help advanced high school students and college undergraduates understand the classical techniques of genome sequencing.

Sarah Elgin (Washington University;)

2010-05-28

3

Operational streamlining in a high-throughput genome sequencing center  

E-print Network

Advances in medicine rely on accurate data that is rapidly provided. It is therefore critical for the Genome Sequencing platform of the Broad Institute of MIT and Harvard to continually strive to reduce cost, improve ...

Person, Kerry P. (Kerry Patrick)

2006-01-01

4

Nevada Genomics Center These are general instructions on how to use dnaTools to submit sequencing  

E-print Network

Nevada Genomics Center These are general instructions on how to use dnaTools to submit sequencing samples. We here at the Nevada Genomics Center feel that dnaTools is user friendly and fairly intuitive-784-1657) or email us (Genomics@unr.nevada.edu) and we will assist you. How to use dnaTools Table of Contents

Hemmers, Oliver

5

Genomic sequencing in cancer.  

PubMed

Genomic sequencing has provided critical insights into the etiology of both simple and complex diseases. The enormous reductions in cost for whole genome sequencing have allowed this technology to gain increasing use. Whole genome analysis has impacted research of complex diseases including cancer by allowing the systematic analysis of entire genomes in a single experiment, thereby facilitating the discovery of somatic and germline mutations, and identification of the insertions, deletions, and structural rearrangements, including translocations and inversions, in novel disease genes. Whole-genome sequencing can be used to provide the most comprehensive characterization of the cancer genome, the complexity of which we are only beginning to understand. Hence in this review, we focus on whole-genome sequencing in cancer. PMID:23178448

Tuna, Musaffe; Amos, Christopher I

2013-11-01

6

Genome Characterization Centers  

Cancer.gov

Genomics is a fast-moving field with novel technologies and platforms that help characterize the genome being made available to the research community on a continual basis. The Cancer Genome Atlas (TCGA) Genome Characterization Centers (GCCs) are responsible for characterizing all of the genomic changes found in the tumors studied as part of the TCGA program.

7

The Genome Center at Washington University  

SciTech Connect

Bob Fulton of Washington University discusses the sequencing platforms in use at this large scale genome center on June 2, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM

Fulton, Bob [Washington University

2010-06-02

8

Prenatal Whole Genome Sequencing  

PubMed Central

With whole genome sequencing set to become the preferred method of prenatal screening, we need to pay more attention to the massive amount of information it will deliver to parents—and the fact that we don't yet understand what most of it means. PMID:22777977

Donley, Greer; Hull, Sara Chandros; Berkman, Benjamin E.

2014-01-01

9

Operations capability improvement of a molecular biology laboratory in a high throughput genome sequencing center  

E-print Network

The Broad Institute is a research collaboration of MIT, Harvard University and affiliated hospitals, and the Whitehead Institute for Biomedical Research. Its scientific mission is to "(1) create tools for genomic medicine ...

Vokoun, Matthew R. (Matthew Richard)

2005-01-01

10

Genome Sequence Databases (Overview): Sequencing and Assembly  

SciTech Connect

From the date its role in heredity was discovered, DNA has been generating interest among scientists from different fields of knowledge: physicists have studied the three dimensional structure of the DNA molecule, biologists tried to decode the secrets of life hidden within these long molecules, and technologists invent and improve methods of DNA analysis. The analysis of the nucleotide sequence of DNA occupies a special place among the methods developed. Thanks to the variety of sequencing technologies available, the process of decoding the sequence of genomic DNA (or whole genome sequencing) has become robust and inexpensive. Meanwhile the assembly of whole genome sequences remains a challenging task. In addition to the need to assemble millions of DNA fragments of different length (from 35 bp (Solexa) to 800 bp (Sanger)), great interest in analysis of microbial communities (metagenomes) of different complexities raises new problems and pushes some new requirements for sequence assembly tools to the forefront. The genome assembly process can be divided into two steps: draft assembly and assembly improvement (finishing). Despite the fact that automatically performed assembly (or draft assembly) is capable of covering up to 98% of the genome, in most cases, it still contains incorrectly assembled reads. The error rate of the consensus sequence produced at this stage is about 1/2000 bp. A finished genome represents the genome assembly of much higher accuracy (with no gaps or incorrectly assembled areas) and quality ({approx}1 error/10,000 bp), validated through a number of computer and laboratory experiments.

Lapidus, Alla L.

2009-01-01

11

Fungal Genome Sequencing and Bioenergy  

SciTech Connect

To date, the number of ongoing filamentous fungal genome sequencing projects is almost tenfold fewer than those of bacterial and archaeal genome projects. The fungi chosen for sequencing represent narrow kingdom diversity; most are pathogens or models. We advocate an ambitious, forward-looking phylogenetic-based genome sequencing program, designed to capture metabolic diversity within the fungal kingdom, thereby enhancing research into alternative bioenergy sources, bioremediation, and fungal-environment interactions.

Schadt, Christopher Warren [ORNL; Baker, Scott [Pacific Northwest National Laboratory (PNNL); Thykaer, Jette [Pacific Northwest National Laboratory (PNNL); Adney, William S [National Renewable Energy Laboratory (NREL); Brettin, Tom [Los Alamos National Laboratory (LANL); Brockman, Fred [Pacific Northwest National Laboratory (PNNL); Dhaeseleer, Patrick [Lawrence Livermore National Laboratory (LLNL); Martinez, A diego [Los Alamos National Laboratory (LANL); Miller, R michael [Argonne National Laboratory (ANL); Rokhsar, Daniel [U.S. Department of Energy, Joint Genome Institute; Torok, Tamas [U.S. Department of Energy, Joint Genome Institute; Tuskan, Gerald A [ORNL; Bennett, Joan [Rutgers University; Berka, Randy [Novozymes, Inc; Briggs, Steven [University of California, San Diego; Heitman, Joseph [Duke University; Rizvi, L [Royal Ontario Museum; Taylor, John [University of California, Berkeley; Turgeon, Gillian [Cornell University; Werner-Washburne, Maggie [University of New Mexico, Albuquerque; Himmel, Michael [ORNL

2008-01-01

12

Fungal Genome Sequencing and Bioenergy  

SciTech Connect

To date, the number of ongoing filamentous fungal genome sequencing projects is almost tenfold fewer than those of bacterial and archaeal genome projects. The fungi chosen for sequencing represent narrow kingdom diversity; most are pathogens or models. We advocate an ambitious, forward-looking phylogenetic-based genome sequencing program, designed to capture metabolic diversity within the fungal kingdom, thereby enhancing research into alternative bioenergy sources, bioremediation, and fungal-environment interactions. Published by Elsevier Ltd on behalf of The British Mycological Society.

Baker, Scott [Pacific Northwest National Laboratory (PNNL); Thykaer, Jette [Pacific Northwest National Laboratory (PNNL); Adney, William S [National Renewable Energy Laboratory (NREL); Brettin, Tom [Los Alamos National Laboratory (LANL); Brockman, Fred [Pacific Northwest National Laboratory (PNNL); Dhaeseleer, Patrick [Lawrence Livermore National Laboratory (LLNL); Martinez, A diego [Los Alamos National Laboratory (LANL); Miller, R michael [Argonne National Laboratory (ANL); Rokhsar, Daniel [U.S. Department of Energy, Joint Genome Institute; Schadt, Christopher Warren [ORNL; Torok, Tamas [U.S. Department of Energy, Joint Genome Institute; Tuskan, Gerald A [ORNL; Bennett, Joan [Rutgers University; Berka, Randy [Novozymes, Inc; Briggs, Steven [University of California, San Diego; Heitman, Joseph [Duke University; Taylor, John [University of California, Berkeley; Turgeon, Gillian [Cornell University; Werner-Washburne, Maggie [University of New Mexico, Albuquerque; Himmel, Michael E [National Renewable Energy Laboratory (NREL)

2008-01-01

13

Fungal Genome Sequencing and Bioenergy  

SciTech Connect

To date, the number of ongoing filamentous fungal genome sequencing projects is almost tenfold fewer than those of bacterial and archaeal genome projects. The fungi chosen for sequencing represent narrow kingdom diversity; most are pathogens or models. We advocate an ambitious, forward-looking phylogenetic-based genome sequencing program, designed to capture metabolic diversity within the fungal kingdom, thereby enhancing research into alternative bioenergy sources, bioremediation, and fungal-environment interactions.

Baker, Scott E.; Thykaer, Jette; Adney, William S.; Brettin, T.; Brockman, Fred J.; D'haeseleer, Patrik; Martinez, Antonio D.; Miller, R. M.; Rokhsar, Daniel S.; Schadt, Christopher W.; Torok, Tamas; Tuskan, Gerald; Bennett, Joan W.; Berka, Randy; Briggs, Steve; Heitman, Joseph; Taylor, John; Turgeon, Barbara G.; Werner-Washburne, Maggie; Himmel, Michael E.

2008-09-30

14

NCI Center for Cancer Genomics  

Cancer.gov

NCI’s Center for Cancer Genomics applies genome science to better diagnose and treat cancer patients. The Center supports research to identify the genetic drivers of cancer and to advance the adoption of precise tumor diagnosis and treatment.

15

The Center for integrative genomics  

E-print Network

The Center for integrative genomics Report 2005­2006 #12;Presentation Director's message 4 Scientific advisory committee 6 Organigram of the CIG 7 research The structure and function of genomes and their evolution alexandrereymond ­ Genome structure and expression 10 henrikKaessmann ­ Evolutionary genomics 12

Kaessmann, Henrik

16

MIPS: a database for genomes and protein sequences  

Microsoft Academic Search

The Munich Information Center for Protein Sequences (MIPS-GSF), Martinsried, near Munich, Germany, continues its longstanding tradition to develop and maintain high quality curated genome databases. In addition, efforts have been intensified to cover the wealth of complete genome sequences in a systematic, comprehensive form. Bioinformatics, supporting national as well as European sequencing and functional analysis projects, has resulted in several

Hans-werner Mewes; Dmitrij Frishman; Christian Gruber; Birgitta Geier; Dirk Haase; Andreas Kaps; Kai Lemcke; Gertrud Mannhaupt; Friedhelm Pfeiffer; Christine M. Schüller; S. Stocker; B. Weil

2000-01-01

17

Integrating sequence, evolution and functional genomics in regulatory genomics  

PubMed Central

With genome analysis expanding from the study of genes to the study of gene regulation, 'regulatory genomics' utilizes sequence information, evolution and functional genomics measurements to unravel how regulatory information is encoded in the genome. PMID:19226437

Vingron, Martin; Brazma, Alvis; Coulson, Richard; van Helden, Jacques; Manke, Thomas; Palin, Kimmo; Sand, Olivier; Ukkonen, Esko

2009-01-01

18

Sequencing Complex Genomic Regions  

SciTech Connect

Evan Eichler, Howard Hughes Medical Investigator at the University of Washington, gives the May 28, 2009 keynote speech at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM. Part 2 of 2

Eichler, Evan [University of Washington

2009-05-28

19

Sequencing Complex Genomic Regions  

SciTech Connect

Evan Eichler, Howard Hughes Medical Investigator at the University of Washington, gives the May 28, 2009 keynote speech at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM. Part 1 of 2

Eichler, Evan [University of Washington

2009-05-28

20

Meeting Highlights: Genome Sequencing and Biology 2001  

PubMed Central

We bring you a report from the CSHL Genome Sequencing and Biology Meeting, which has a long and prestigious history. This year there were sessions on large-scale sequencing and analysis, polymorphisms (covering discovery and technologies and mapping and analysis), comparative genomics of mammalian and model organism genomes, functional genomics and bioinformatics. PMID:18628920

2001-01-01

21

The Sequence of the Human Genome  

Microsoft Academic Search

A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was generated by the whole-genome shotgun sequencing method. The 14.8-billion bp DNA sequence was generated over 9 months from 27,271,853 high-quality sequence reads (5.11-fold coverage of the genome) from both ends of plasmid clones made from the DNA of five individuals. Two assembly strategies—a whole-genome

J. Craig Venter; Mark D. Adams; Eugene W. Myers; Peter W. Li; Richard J. Mural; Granger G. Sutton; Hamilton O. Smith; Mark Yandell; Cheryl A. Evans; Robert A. Holt; Jeannine D. Gocayne; Peter Amanatides; Richard M. Ballew; Daniel H. Huson; Jennifer R. Wortman; Qing Zhang; Chinnappa D. Kodira; Xiangqun H. Zheng; Lin Chen; Marian Skupski; Gangadharan Subramanian; Paul D. Thomas; Jinghui Zhang; George L. Gabor Miklos; Catherine Nelson; Samuel Broder; Andrew G. Clark; Joe Nadeau; Victor A. McKusick; Norton Zinder; Arnold J. Levine; Mel Simon; Carolyn Slayman; Michael Hunkapiller; Randall Bolanos; Arthur Delcher; Ian Dew; Daniel Fasulo; Michael Flanigan; Liliana Florea; Aaron Halpern; Sridhar Hannenhalli; Saul Kravitz; Samuel Levy; Clark Mobarry; Knut Reinert; Karin Remington; Jane Abu-Threideh; Ellen Beasley; Kendra Biddick; Vivien Bonazzi; Rhonda Brandon; Michele Cargill; Ishwar Chandramouliswaran; Rosane Charlab; Kabir Chaturvedi; Zuoming Deng; Valentina Di Francesco; Patrick Dunn; Karen Eilbeck; Carlos Evangelista; Andrei E. Gabrielian; Weiniu Gan; Wangmao Ge; Fangcheng Gong; Zhiping Gu; Ping Guan; Thomas J. Heiman; Maureen E. Higgins; Rui-Ru Ji; Zhaoxi Ke; Karen A. Ketchum; Zhongwu Lai; Yiding Lei; Zhenya Li; Jiayin Li; Yong Liang; Xiaoying Lin; Fu Lu; Gennady V. Merkulov; Natalia Milshina; Helen M. Moore; Ashwinikumar K Naik; Vaibhav A. Narayan; Beena Neelam; Deborah Nusskern; Douglas B. Rusch; Steven Salzberg; Wei Shao; Bixiong Shue; Jingtao Sun; Zhen Yuan Wang; Aihui Wang; Xin Wang; Jian Wang; Ming-Hui Wei; Ron Wides; Chunlin Xiao; Chunhua Yan; Alison Yao; Jane Ye; Ming Zhan; Weiqing Zhang; Hongyu Zhang; Qi Zhao; Liansheng Zheng; Fei Zhong; Wenyan Zhong; Shiaoping C. Zhu; Shaying Zhao; Dennis Gilbert; Suzanna Baumhueter; Gene Spier; Christine Carter; Anibal Cravchik; Trevor Woodage; Feroze Ali; Huijin An; Aderonke Awe; Danita Baldwin; Holly Baden; Mary Barnstead; Ian Barrow; Karen Beeson; Dana Busam; Amy Carver; Ming Lai Cheng; Liz Curry; Steve Danaher; Lionel Davenport; Raymond Desilets; Susanne Dietz; Kristina Dodson; Lisa Doup; Steven Ferriera; Neha Garg; Andres Gluecksmann; Brit Hart; Jason Haynes; Charles Haynes; Cheryl Heiner; Suzanne Hladun; Damon Hostin; Jarrett Houck; Timothy Howland; Chinyere Ibegwam; Jeffery Johnson; Francis Kalush; Lesley Kline; Shashi Koduru; Amy Love; Felecia Mann; David May; Steven McCawley; Tina McIntosh; Ivy McMullen; Mee Moy; Linda Moy; Brian Murphy; Keith Nelson; Cynthia Pfannkoch; Eric Pratts; Vinita Puri; Hina Qureshi; Matthew Reardon; Robert Rodriguez; Yu-Hui Rogers; Deanna Romblad; Bob Ruhfel; Richard Scott; Cynthia Sitter; Michelle Smallwood; Erin Stewart; Renee Strong; Ellen Suh; Reginald Thomas; Ni Ni Tint; Sukyee Tse; Claire Vech; Gary Wang; Jeremy Wetter; Sherita Williams; Monica Williams; Sandra Windsor; Emily Winn-Deen; Keriellen Wolfe; Jayshree Zaveri; Karena Zaveri; Josep F. Abril; Roderic Guigo; Michael J. Campbell; Kimmen V. Sjolander; Brian Karlak; Anish Kejariwal; Huaiyu Mi; Betty Lazareva; Thomas Hatton; Apurva Narechania; Karen Diemer; Anushya Muruganujan; Nan Guo; Shinji Sato; Vineet Bafna; Sorin Istrail; Ross Lippert; Russell Schwartz; Brian Walenz; Shibu Yooseph; David Allen; Anand Basu; James Baxendale; Louis Blick; Marcelo Caminha; John Carnes-Stine; Parris Caulk; Yen-Hui Chiang; Carl Dahlke; Anne Deslattes Mays; Maria Dombroski; Michael Donnelly; Dale Ely; Shiva Esparham; Carl Fosler; Harold Gire; Stephen Glanowski; Kenneth Glasser; Anna Glodek; Mark Gorokhov; Ken Graham; Barry Gropman; Michael Harris; Jeremy Heil; Scott Henderson; Jeffrey Hoover; Donald Jennings; John Kasha; Leonid Kagan; Cheryl Kraft; Alexander Levitsky; Mark Lewis; Xiangjun Liu; John Lopez; Daniel Ma; William Majoros; Joe McDaniel; Sean Murphy; Matthew Newman; Trung Nguyen; Ngoc Nguyen; Marc Nodell; Sue Pan; Jim Peck; Marshall Peterson; William Rowe; Robert Sanders; John Scott; Michael Simpson; Thomas Smith; Arlan Sprague; Timothy Stockwell; Russell Turner; Eli Venter; Mei Wang; Meiyuan Wen; David Wu; Mitchell Wu; Ashley Xia; Ali Zandieh; Xiaohong Zhu

2001-01-01

22

Plant genome sequencing - applications for crop improvement.  

PubMed

It is over 10 years since the genome sequence of the first crop was published. Since then, the number of crop genomes sequenced each year has increased steadily. The amazing pace at which genome sequences are becoming available is largely due to the improvement in sequencing technologies both in terms of cost and speed. Modern sequencing technologies allow the sequencing of multiple cultivars of smaller crop genomes at a reasonable cost. Though many of the published genomes are considered incomplete, they nevertheless have proved a valuable tool to understand important crop traits such as fruit ripening, grain traits and flowering time adaptation. PMID:24679255

Bolger, Marie E; Weisshaar, Bernd; Scholz, Uwe; Stein, Nils; Usadel, Björn; Mayer, Klaus F X

2014-04-01

23

Genome sequencing of lymphoid malignancies.  

PubMed

Our understanding of the pathogenesis of lymphoid malignancies has been transformed by next-generation sequencing. The studies in this review have used whole-genome, exome, and transcriptome sequencing to identify recurring structural genetic alterations and sequence mutations that target key cellular pathways in acute lymphoblastic leukemia (ALL) and the lymphomas. Although each tumor type is characterized by a unique genomic landscape, several cellular pathways are mutated in multiple tumor types-transcriptional regulation of differentiation, antigen receptor signaling, tyrosine kinase and Ras signaling, and epigenetic modifications-and individual genes are mutated in multiple tumors, notably TCF3, NOTCH1, MYD88, and BRAF. In addition to providing fundamental insights into tumorigenesis, these studies have also identified potential new markers for diagnosis, risk stratification, and therapeutic intervention. Several genetic alterations are intuitively "druggable" with existing agents, for example, kinase-activating lesions in high-risk B-cell ALL, NOTCH1 in both leukemia and lymphoma, and BRAF in hairy cell leukemia. Future sequencing efforts are required to comprehensively define the genetic basis of all lymphoid malignancies, examine the relative roles of germline and somatic variation, dissect the genetic basis of clonal heterogeneity, and chart a course for clinical sequencing and translation to improved therapeutic outcomes. PMID:24041576

Mullighan, Charles G

2013-12-01

24

On the sequencing of the human genome  

Microsoft Academic Search

Two recent papers using different approaches reported draft sequences of the human genome. The international Human Genome Project (HGP) used the hierarchical shotgun approach, whereas Celera Genomics adopted the whole-genome shotgun (WGS) approach. Here, we analyze whether the latter paper provides a meaningful test of the WGS approach on a mammalian genome. In the Celera paper, the authors did not

Robert H. Waterston; Eric S. Lander; John E. Sulston

2002-01-01

25

MIPS: a database for genomes and protein sequences  

Microsoft Academic Search

The Munich Information Center for Protein Sequences (MIPS-GSF, Neuherberg, Germany) continues to provide genome-related information in a systematic way. MIPS supports both national and European sequencing and functional analysis projects, develops and maintains automatically generated and manually annotated genome-specific databases, develops systematic classification schemes for the functional annotation of protein sequences, and provides tools for the comprehensive analysis of protein

Hans-werner Mewes; Dmitrij Frishman; Ulrich Güldener; Gertrud Mannhaupt; Klaus F. X. Mayer; Martin Mokrejs; Burkhard Morgenstern; Martin Münsterkötter; Stephen Rudd; B. Weil

2002-01-01

26

The Center for integrative genomics  

E-print Network

The Center for integrative genomics Faculty of biology and medicine a new adventure #12;The CIG, a new advenTure · a new institute with state-of-the-art technologies and facilities · Cutting edge institute located in the Génopode building, situated on the spectacular Dorigny campus of the University

Fankhauser, Christian

27

Draft Genome Sequence of Lactobacillus rhamnosus 2166.  

PubMed

In this report, we present a draft sequence of the genome of Lactobacillus rhamnosus strain 2166, a potential novel probiotic. Genome annotation and read mapping onto a reference genome of L. rhamnosus strain GG allowed for the identification of the differences and similarities in the genomic contents and gene arrangements of these strains. PMID:24558254

Karlyshev, Andrey V; Melnikov, Vyacheslav G; Kosarev, Igor V; Abramov, Vyacheslav M

2014-01-01

28

Value of a newly sequenced bacterial genome  

PubMed Central

Next-generation sequencing (NGS) technologies have made high-throughput sequencing available to medium- and small-size laboratories, culminating in a tidal wave of genomic information. The quantity of sequenced bacterial genomes has not only brought excitement to the field of genomics but also heightened expectations that NGS would boost antibacterial discovery and vaccine development. Although many possible drug and vaccine targets have been discovered, the success rate of genome-based analysis has remained below expectations. Furthermore, NGS has had consequences for genome quality, resulting in an exponential increase in draft (partial data) genome deposits in public databases. If no further interests are expressed for a particular bacterial genome, it is more likely that the sequencing of its genome will be limited to a draft stage, and the painstaking tasks of completing the sequencing of its genome and annotation will not be undertaken. It is important to know what is lost when we settle for a draft genome and to determine the “scientific value” of a newly sequenced genome. This review addresses the expected impact of newly sequenced genomes on antibacterial discovery and vaccinology. Also, it discusses the factors that could be leading to the increase in the number of draft deposits and the consequent loss of relevant biological information. PMID:24921006

Barbosa, Eudes GV; Aburjaile, Flavia F; Ramos, Rommel TJ; Carneiro, Adriana R; Le Loir, Yves; Baumbach, Jan; Miyoshi, Anderson; Silva, Artur; Azevedo, Vasco

2014-01-01

29

Genome-tools: a flexible package for genome sequence analysis.  

PubMed

Genome-tools is a Perl module, a set of programs, and a user interface that facilitates access to genome sequence information. The package is flexible, extensible, and designed to be accessible and useful to both nonprogrammers and programmers. Any relatively well-annotated genome available with standard GenBank genome files may be used with genome-tools. A simple Web-based front end permits searching any available genome with an intuitive interface. Flexible design choices also make it simple to handle revised versions of genome annotation files as they change. In addition, programmers can develop cross-genomic tools and analyses with minimal additional overhead by combining genome-tools modules with newly written modules. Genome-tools runs on any computer platform for which Perl is available, including Unix, Microsoft Windows, and Mac OS. By simplifying the access to large amounts of genomic data, genome-tools may be especially useful for molecular biologists looking at newly sequenced genomes, for which few informatics tools are available. The genome-tools Web interface is accessible at http://genome-tools.sourceforge.net, and the source code is available at http://sourceforge.net/projects/genome-tools. PMID:12503321

Lee, William; Chen, Swaine L

2002-12-01

30

Center for Eukaryotic Structural Genomics  

NSDL National Science Digital Library

A collaboration between the Department of Biochemistry at the University of Wisconsin-Madison, the Medical College of Wisconsin, Molecular Kinetics, Inc., and Hebrew University, the Center for Eukaryotic Structural Genomics (CESG) intends to "develop critical technologies for determining three-dimensional structures of proteins rapidly and economically." The site gives an overview of CESG, including the goals and mission of the center, biographies of people involved, and the methodology and results of the program. The results section is the most substantial part of the site, giving information on how target proteins were selected, protocols and technology used, publications based on CESG research, and more.

31

Comparative Sequencing of Plant Genomes: Choices to Make The first sequenced genome of a plant,  

E-print Network

technologies we will use? WHAT SPECIES DO WE SEQUENCE? In a world with .260,000 known plant spe- ciesCOMMENTARY Comparative Sequencing of Plant Genomes: Choices to Make The first sequenced genome of a plant, Arabidopsis thaliana, was published ,6 years ago (Arabidopsis Genome Initiative, 2000). Since

Purugganan, Michael D.

32

Using the Potato Genome Sequence! Robin Buell!  

E-print Network

funding through National Science Foundation 6 #12;With so many potatoes with lots of variation-what genomics & post-genomic biology genomes genera 2002 2010 3 #12;So, you say you can sequence-Now what% of assembly anchored to genetic map 15 #12;16 #12;What are we interested in annotating? Genes

Douches, David S.

33

Next generation sequencing of viral RNA genomes  

PubMed Central

Background With the advent of Next Generation Sequencing (NGS) technologies, the ability to generate large amounts of sequence data has revolutionized the genomics field. Most RNA viruses have relatively small genomes in comparison to other organisms and as such, would appear to be an obvious success story for the use of NGS technologies. However, due to the relatively low abundance of viral RNA in relation to host RNA, RNA viruses have proved relatively difficult to sequence using NGS technologies. Here we detail a simple, robust methodology, without the use of ultra-centrifugation, filtration or viral enrichment protocols, to prepare RNA from diagnostic clinical tissue samples, cell monolayers and tissue culture supernatant, for subsequent sequencing on the Roche 454 platform. Results As representative RNA viruses, full genome sequence was successfully obtained from known lyssaviruses belonging to recognized species and a novel lyssavirus species using these protocols and assembling the reads using de novo algorithms. Furthermore, genome sequences were generated from considerably less than 200 ng RNA, indicating that manufacturers’ minimum template guidance is conservative. In addition to obtaining genome consensus sequence, a high proportion of SNPs (Single Nucleotide Polymorphisms) were identified in the majority of samples analyzed. Conclusions The approaches reported clearly facilitate successful full genome lyssavirus sequencing and can be universally applied to discovering and obtaining consensus genome sequences of RNA viruses from a variety of sources. PMID:23822119

2013-01-01

34

Sequence-tagged connectors: A sequence approach to mapping and scanning the human genome  

PubMed Central

The sequence-tagged connector (STC) strategy proposes to generate sequence tags densely scattered (every 3.3 kilobases) across the human genome by arraying 450,000 bacterial artificial chromosomes (BACs) with randomly cleaved inserts, sequencing both ends of each, and preparing a restriction enzyme fingerprint of each. The STC resource, containing end sequences, fingerprints, and arrayed BACs, creates a map where the interrelationships of the individual BAC clones are resolved through their STCs as overlapping BAC clones are sequenced. Once a seed or initiation BAC clone is sequenced, the minimum overlapping 5? and 3? BAC clones can be identified computationally and sequenced. By reiterating this “sequence-then-map by computer analysis against the STC database” strategy, a minimum tiling path of clones can be sequenced at a rate that is primarily limited by the sequencing throughput of individual genome centers. As of February 1999, we had deposited, together with The Institute for Genomic Research (TIGR), into GenBank 314,000 STCs (?135 megabases), or 4.5% of human genomic DNA. This genome survey reveals numerous genes, genome-wide repeats, simple sequence repeats (potential genetic markers), and CpG islands (potential gene initiation sites). It also illustrates the power of the STC strategy for creating minimum tiling paths of BAC clones for large-scale genomic sequencing. Because the STC resource permits the easy integration of genetic, physical, gene, and sequence maps for chromosomes, it will be a powerful tool for the initial analysis of the human genome and other complex genomes. PMID:10449764

Mahairas, Gregory G.; Wallace, James C.; Smith, Kim; Swartzell, Steven; Holzman, Ted; Keller, Andrew; Shaker, Ron; Furlong, Jeff; Young, Janet; Zhao, Shaying; Adams, Mark D.; Hood, Leroy

1999-01-01

35

Genomic sequencing of Pleistocene cave bears  

SciTech Connect

Despite the information content of genomic DNA, ancient DNA studies to date have largely been limited to amplification of mitochondrial DNA due to technical hurdles such as contamination and degradation of ancient DNAs. In this study, we describe two metagenomic libraries constructed using unamplified DNA extracted from the bones of two 40,000-year-old extinct cave bears. Analysis of {approx}1 Mb of sequence from each library showed that, despite significant microbial contamination, 5.8 percent and 1.1 percent of clones in the libraries contain cave bear inserts, yielding 26,861 bp of cave bear genome sequence. Alignment of this sequence to the dog genome, the closest sequenced genome to cave bear in terms of evolutionary distance, revealed roughly the expected ratio of cave bear exons, repeats and conserved noncoding sequences. Only 0.04 percent of all clones sequenced were derived from contamination with modern human DNA. Comparison of cave bear with orthologous sequences from several modern bear species revealed the evolutionary relationship of these lineages. Using the metagenomic approach described here, we have recovered substantial quantities of mammalian genomic sequence more than twice as old as any previously reported, establishing the feasibility of ancient DNA genomic sequencing programs.

Noonan, James P.; Hofreiter, Michael; Smith, Doug; Priest, JamesR.; Rohland, Nadin; Rabeder, Gernot; Krause, Johannes; Detter, J. Chris; Paabo, Svante; Rubin, Edward M.

2005-04-01

36

The genome sequence of Drosophila melanogaster.  

SciTech Connect

The fly Drosophila melanogaster is one of the most intensively studied organisms in biology and serves as a model system for the investigation of many developmental and cellular processes common to higher eukaryotes, including humans. We have determined the nucleotide sequence of nearly all of the {approximately}120-megabase euchromatic portion of the Drosophila genome using a whole-genome shotgun sequencing strategy supported by extensive clone-based sequence and a high-quality bacterial artificial chromosome physical map. Efforts are under way to close the remaining gaps; however, the sequence is of sufficient accuracy and contiguity to be declared substantially complete and to support an initial analysis of genome structure and preliminary gene annotation and interpretation. The genome encodes {approximately}13,600 genes, somewhat fewer than the smaller Caenorhabditis elegans genome, but with comparable functional diversity.

NONE

2000-03-24

37

Plantagora: Modeling Whole Genome Sequencing and Assembly of Plant Genomes  

PubMed Central

Background Genomics studies are being revolutionized by the next generation sequencing technologies, which have made whole genome sequencing much more accessible to the average researcher. Whole genome sequencing with the new technologies is a developing art that, despite the large volumes of data that can be produced, may still fail to provide a clear and thorough map of a genome. The Plantagora project was conceived to address specifically the gap between having the technical tools for genome sequencing and knowing precisely the best way to use them. Methodology/Principal Findings For Plantagora, a platform was created for generating simulated reads from several different plant genomes of different sizes. The resulting read files mimicked either 454 or Illumina reads, with varying paired end spacing. Thousands of datasets of reads were created, most derived from our primary model genome, rice chromosome one. All reads were assembled with different software assemblers, including Newbler, Abyss, and SOAPdenovo, and the resulting assemblies were evaluated by an extensive battery of metrics chosen for these studies. The metrics included both statistics of the assembly sequences and fidelity-related measures derived by alignment of the assemblies to the original genome source for the reads. The results were presented in a website, which includes a data graphing tool, all created to help the user compare rapidly the feasibility and effectiveness of different sequencing and assembly strategies prior to testing an approach in the lab. Some of our own conclusions regarding the different strategies were also recorded on the website. Conclusions/Significance Plantagora provides a substantial body of information for comparing different approaches to sequencing a plant genome, and some conclusions regarding some of the specific approaches. Plantagora also provides a platform of metrics and tools for studying the process of sequencing and assembly further. PMID:22174807

Barthelson, Roger; McFarlin, Adam J.; Rounsley, Steven D.; Young, Sarah

2011-01-01

38

Initial sequencing and analysis of the human genome  

E-print Network

Initial sequencing and analysis of the human genome International Human Genome Sequencing a draft sequence of the human genome. We also present an initial analysis of the data, describing some genome. The draft genome sequence was generated from a physical map covering more than 96

Eddy, Sean

39

The Characterization of Twenty Sequenced Human Genomes  

PubMed Central

We present the analysis of twenty human genomes to evaluate the prospects for identifying rare functional variants that contribute to a phenotype of interest. We sequenced at high coverage ten “case” genomes from individuals with severe hemophilia A and ten “control” genomes. We summarize the number of genetic variants emerging from a study of this magnitude, and provide a proof of concept for the identification of rare and highly-penetrant functional variants by confirming that the cause of hemophilia A is easily recognizable in this data set. We also show that the number of novel single nucleotide variants (SNVs) discovered per genome seems to stabilize at about 144,000 new variants per genome, after the first 15 individuals have been sequenced. Finally, we find that, on average, each genome carries 165 homozygous protein-truncating or stop loss variants in genes representing a diverse set of pathways. PMID:20838461

Maia, Jessica M.; Zhu, Mingfu; Smith, Jason P.; Cirulli, Elizabeth T.; Fellay, Jacques; Dickson, Samuel P.; Gumbs, Curtis E.; Heinzen, Erin L.; Need, Anna C.; Ruzzo, Elizabeth K.; Singh, Abanish; Campbell, C. Ryan; Hong, Linda K.; Lornsen, Katharina A.; McKenzie, Alexander M.; Sobreira, Nara L. M.; Hoover-Fong, Julie E.; Milner, Joshua D.; Ottman, Ruth; Haynes, Barton F.; Goedert, James J.; Goldstein, David B.

2010-01-01

40

Genome Sequence of Serratia plymuthica V4  

PubMed Central

Serratia spp. are gammaproteobacteria and members of the family Enterobacteriaceae. Here, we announce the genome sequence of Serratia plymuthica strain V4, which produces the siderophore serratiochelin and antimicrobial compounds. PMID:24831138

Cleto, S.; Van der Auwera, G.; Almeida, C.; Vieira, M. J.; Vlamakis, H.

2014-01-01

41

The Human Genome Project: Sequencing the Future  

E-print Network

.The immediate response was considerable skepticism about the technological capability to sequence the genome later, genome technologies and data are revolutionizing biology and providing a vital thrust carbon dioxide to counter global warming and ensure U.S. energy security by reducing our dependence

42

A Complete Neandertal Mitochondrial Genome Sequence Determined  

E-print Network

unequiv- ocally establishes that the Neandertal mtDNA falls outside the variation of extant human mt the variation of modern human mtDNA. Since the mtDNA genome is maternally inherited with- out recombination (mt) genome sequence was reconstructed from a 38,000 year-old Neander- tal individual with 8341 mtDNA

Good, Jeffrey M.

43

Complete Genome Sequence of Equid Herpesvirus 3  

PubMed Central

Equid herpesvirus 3 (EHV-3) is a member of the subfamily Alphaherpesvirinae that causes equine coital exanthema. Here, we report the first complete genome sequence of EHV-3. The 151,601-nt genome encodes 76 distinct genes like other equine alphaherpesviruses, but genetically, EHV-3 is significantly more divergent. PMID:25278519

Vissani, Aldana; Tordoya, Maria Silva; Muylkens, Benoit; Thiry, Etienne; Maes, Piet; Matthijnssens, Jelle; Barrandeguy, Maria; Van Ranst, Marc

2014-01-01

44

Genome sequence and analysis of Lactobacillus helveticus  

PubMed Central

The microbiological characterization of lactobacilli is historically well developed, but the genomic analysis is recent. Because of the widespread use of Lactobacillus helveticus in cheese technology, information concerning the heterogeneity in this species is accumulating rapidly. Recently, the genome of five L. helveticus strains was sequenced to completion and compared with other genomically characterized lactobacilli. The genomic analysis of the first sequenced strain, L. helveticus DPC 4571, isolated from cheese and selected for its characteristics of rapid lysis and high proteolytic activity, has revealed a plethora of genes with industrial potential including those responsible for key metabolic functions such as proteolysis, lipolysis, and cell lysis. These genes and their derived enzymes can facilitate the production of cheese and cheese derivatives with potential for use as ingredients in consumer foods. In addition, L. helveticus has the potential to produce peptides with a biological function, such as angiotensin converting enzyme (ACE) inhibitory activity, in fermented dairy products, demonstrating the therapeutic value of this species. A most intriguing feature of the genome of L. helveticus is the remarkable similarity in gene content with many intestinal lactobacilli. Comparative genomics has allowed the identification of key gene sets that facilitate a variety of lifestyles including adaptation to food matrices or the gastrointestinal tract. As genome sequence and functional genomic information continues to explode, key features of the genomes of L. helveticus strains continue to be discovered, answering many questions but also raising many new ones. PMID:23335916

Cremonesi, Paola; Chessa, Stefania; Castiglioni, Bianca

2013-01-01

45

Genome sequence and comparative analysis of the model rodent malaria  

E-print Network

Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii Medical Centre, PO Box 9600, 2300 RC Leiden, The Netherlands § Naval Medical Research Center, Malaria ........................................................................................................................................................................................................................... Species of malaria parasite that infect rodents have long been used as models for malaria disease research

Salzberg, Steven

46

Intraspecies sequence comparisons for annotating genomes.  

PubMed

Analysis of sequence variation among members of a single species offers a potential approach to identify functional DNA elements responsible for biological features unique to that species. Due to its high rate of allelic polymorphism and ease of genetic manipulability, we chose the sea squirt, Ciona intestinalis, to explore intraspecies sequence comparisons for genome annotation. A large number of C. intestinalis specimens were collected from four continents, and a set of genomic intervals were amplified, resequenced, and analyzed to determine the mutation rates at each nucleotide in the sequence. We found that regions with low mutation rates efficiently demarcated functionally constrained sequences: these include a set of noncoding elements, which we showed in C. intestinalis transgenic assays to act as tissue-specific enhancers, as well as the location of coding sequences. This illustrates that comparisons of multiple members of a species can be used for genome annotation, suggesting a path for the annotation of the sequenced genomes of organisms occupying uncharacterized phylogenetic branches of the animal kingdom. It also raises the possibility that the resequencing of a large number of Homo sapiens individuals might be used to annotate the human genome and identify sequences defining traits unique to our species. PMID:15545499

Boffelli, Dario; Weer, Claire V; Weng, Li; Lewis, Keith D; Shoukry, Malak I; Pachter, Lior; Keys, David N; Rubin, Edward M

2004-12-01

47

POSTDOCTORAL POSITION IN BIOINFORMATICS AND EVOLUTIONARY GENOMICS: Next generation sequencing and analysis of complex polyploid genomes  

E-print Network

POSTDOCTORAL POSITION IN BIOINFORMATICS AND EVOLUTIONARY GENOMICS: Next generation sequencing and analysis of complex polyploid genomes The research group Genome Evolution and Speciation (Team) to work on the analysis of genome and transcriptome sequence data (generated using 454 Roche

Rennes, Université de

48

Sequencing error correction without a reference genome  

PubMed Central

Background Next (second) generation sequencing is an increasingly important tool for many areas of molecular biology, however, care must be taken when interpreting its output. Even a low error rate can cause a large number of errors due to the high number of nucleotides being sequenced. Identifying sequencing errors from true biological variants is a challenging task. For organisms without a reference genome this difficulty is even more challenging. Results We have developed a method for the correction of sequencing errors in data from the Illumina Solexa sequencing platforms. It does not require a reference genome and is of relevance for microRNA studies, unsequenced genomes, variant detection in ultra-deep sequencing and even for RNA-Seq studies of organisms with sequenced genomes where RNA editing is being considered. Conclusions The derived error model is novel in that it allows different error probabilities for each position along the read, in conjunction with different error rates depending on the particular nucleotides involved in the substitution, and does not force these effects to behave in a multiplicative manner. The model provides error rates which capture the complex effects and interactions of the three main known causes of sequencing error associated with the Illumina platforms. PMID:24350580

2013-01-01

49

Mauve: Multiple Alignment of Conserved Genomic Sequence With Rearrangements  

Microsoft Academic Search

As genomes evolve, they undergo large-scale evolutionary processes that present a challenge to sequence comparison not posed by short sequences. Recombination causes frequent genome rearrangements, horizontal transfer introduces new sequences into bacterial chromosomes, and deletions remove segments of the genome. Consequently, each genome is a mosaic of unique lineage-specific segments, regions shared with a subset of other genomes and segments

Aaron C. E. Darling; Bob Mau; Frederick R. Blattner; Nicole T. Perna

2004-01-01

50

Genomic sequence analysis tools: a user's guide.  

PubMed

The wealth of information from various genome sequencing projects provides the biologist with a new perspective from which to analyze, and design experiments with, mammalian systems. The complexity of the information, however, requires new software tools, and numerous such tools are now available. Which type and which specific system is most effective depends, in part, upon how much sequence is to be analyzed and with what level of experimental support. Here we survey a number of mammalian genomic sequence analysis systems with respect to the data they provide and the ease of their use. The hope is to aid the experimental biologist in choosing the most appropriate tool for their analyses. PMID:11226611

Fortna, A; Gardiner, K

2001-03-01

51

Whole Genome Sequence of a Turkish Individual  

PubMed Central

Although whole human genome sequencing can be done with readily available technical and financial resources, the need for detailed analyses of genomes of certain populations still exists. Here we present, for the first time, sequencing and analysis of a Turkish human genome. We have performed 35x coverage using paired-end sequencing, where over 95% of sequencing reads are mapped to the reference genome covering more than 99% of the bases. The assembly of unmapped reads rendered 11,654 contigs, 2,168 of which did not reveal any homology to known sequences, resulting in ?1 Mbp of unmapped sequence. Single nucleotide polymorphism (SNP) discovery resulted in 3,537,794 SNP calls with 29,184 SNPs identified in coding regions, where 106 were nonsense and 259 were categorized as having a high-impact effect. The homo/hetero zygosity (1,415,123?2,122,671 or 1?1.5) and transition/transversion ratios (2,383,204?1,154,590 or 2.06?1) were within expected limits. Of the identified SNPs, 480,396 were potentially novel with 2,925 in coding regions, including 48 nonsense and 95 high-impact SNPs. Functional analysis of novel high-impact SNPs revealed various interaction networks, notably involving hereditary and neurological disorders or diseases. Assembly results indicated 713,640 indels (1?1.09 insertion/deletion ratio), ranging from ?52 bp to 34 bp in length and causing about 180 codon insertion/deletions and 246 frame shifts. Using paired-end- and read-depth-based methods, we discovered 9,109 structural variants and compared our variant findings with other populations. Our results suggest that whole genome sequencing is a valuable tool for understanding variations in the human genome across different populations. Detailed analyses of genomes of diverse origins greatly benefits research in genetics and medicine and should be conducted on a larger scale. PMID:24416366

Dogan, Haluk; Can, Handan; Otu, Hasan H.

2014-01-01

52

Finishing the euchromatic sequence of the human genome  

Microsoft Academic Search

The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and

2004-01-01

53

Genome sequence of the palaeopolyploid soybean.  

PubMed

Soybean (Glycine max) is one of the most important crop plants for seed protein and oil content, and for its capacity to fix atmospheric nitrogen through symbioses with soil-borne microorganisms. We sequenced the 1.1-gigabase genome by a whole-genome shotgun approach and integrated it with physical and high-density genetic maps to create a chromosome-scale draft sequence assembly. We predict 46,430 protein-coding genes, 70% more than Arabidopsis and similar to the poplar genome which, like soybean, is an ancient polyploid (palaeopolyploid). About 78% of the predicted genes occur in chromosome ends, which comprise less than one-half of the genome but account for nearly all of the genetic recombination. Genome duplications occurred at approximately 59 and 13 million years ago, resulting in a highly duplicated genome with nearly 75% of the genes present in multiple copies. The two duplication events were followed by gene diversification and loss, and numerous chromosome rearrangements. An accurate soybean genome sequence will facilitate the identification of the genetic basis of many soybean traits, and accelerate the creation of improved soybean varieties. PMID:20075913

Schmutz, Jeremy; Cannon, Steven B; Schlueter, Jessica; Ma, Jianxin; Mitros, Therese; Nelson, William; Hyten, David L; Song, Qijian; Thelen, Jay J; Cheng, Jianlin; Xu, Dong; Hellsten, Uffe; May, Gregory D; Yu, Yeisoo; Sakurai, Tetsuya; Umezawa, Taishi; Bhattacharyya, Madan K; Sandhu, Devinder; Valliyodan, Babu; Lindquist, Erika; Peto, Myron; Grant, David; Shu, Shengqiang; Goodstein, David; Barry, Kerrie; Futrell-Griggs, Montona; Abernathy, Brian; Du, Jianchang; Tian, Zhixi; Zhu, Liucun; Gill, Navdeep; Joshi, Trupti; Libault, Marc; Sethuraman, Anand; Zhang, Xue-Cheng; Shinozaki, Kazuo; Nguyen, Henry T; Wing, Rod A; Cregan, Perry; Specht, James; Grimwood, Jane; Rokhsar, Dan; Stacey, Gary; Shoemaker, Randy C; Jackson, Scott A

2010-01-14

54

Standardized Metadata for Human Pathogen/Vector Genomic Sequences  

PubMed Central

High throughput sequencing has accelerated the determination of genome sequences for thousands of human infectious disease pathogens and dozens of their vectors. The scale and scope of these data are enabling genotype-phenotype association studies to identify genetic determinants of pathogen virulence and drug/insecticide resistance, and phylogenetic studies to track the origin and spread of disease outbreaks. To maximize the utility of genomic sequences for these purposes, it is essential that metadata about the pathogen/vector isolate characteristics be collected and made available in organized, clear, and consistent formats. Here we report the development of the GSCID/BRC Project and Sample Application Standard, developed by representatives of the Genome Sequencing Centers for Infectious Diseases (GSCIDs), the Bioinformatics Resource Centers (BRCs) for Infectious Diseases, and the U.S. National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health (NIH), informed by interactions with numerous collaborating scientists. It includes mapping to terms from other data standards initiatives, including the Genomic Standards Consortium’s minimal information (MIxS) and NCBI’s BioSample/BioProjects checklists and the Ontology for Biomedical Investigations (OBI). The standard includes data fields about characteristics of the organism or environmental source of the specimen, spatial-temporal information about the specimen isolation event, phenotypic characteristics of the pathogen/vector isolated, and project leadership and support. By modeling metadata fields into an ontology-based semantic framework and reusing existing ontologies and minimum information checklists, the application standard can be extended to support additional project-specific data fields and integrated with other data represented with comparable standards. The use of this metadata standard by all ongoing and future GSCID sequencing projects will provide a consistent representation of these data in the BRC resources and other repositories that leverage these data, allowing investigators to identify relevant genomic sequences and perform comparative genomics analyses that are both statistically meaningful and biologically relevant. PMID:24936976

Dugan, Vivien G.; Emrich, Scott J.; Giraldo-Calderon, Gloria I.; Harb, Omar S.; Newman, Ruchi M.; Pickett, Brett E.; Schriml, Lynn M.; Stockwell, Timothy B.; Stoeckert, Christian J.; Sullivan, Dan E.; Singh, Indresh; Ward, Doyle V.; Yao, Alison; Zheng, Jie; Barrett, Tanya; Birren, Bruce; Brinkac, Lauren; Bruno, Vincent M.; Caler, Elizabet; Chapman, Sinead; Collins, Frank H.; Cuomo, Christina A.; Di Francesco, Valentina; Durkin, Scott; Eppinger, Mark; Feldgarden, Michael; Fraser, Claire; Fricke, W. Florian; Giovanni, Maria; Henn, Matthew R.; Hine, Erin; Hotopp, Julie Dunning; Karsch-Mizrachi, Ilene; Kissinger, Jessica C.; Lee, Eun Mi; Mathur, Punam; Mongodin, Emmanuel F.; Murphy, Cheryl I.; Myers, Garry; Neafsey, Daniel E.; Nelson, Karen E.; Nierman, William C.; Puzak, Julia; Rasko, David; Roos, David S.; Sadzewicz, Lisa; Silva, Joana C.; Sobral, Bruno; Squires, R. Burke; Stevens, Rick L.; Tallon, Luke; Tettelin, Herve; Wentworth, David; White, Owen; Will, Rebecca; Wortman, Jennifer; Zhang, Yun; Scheuermann, Richard H.

2014-01-01

55

Using comparative genomics to reorder the human genome sequence into a virtual sheep genome  

Microsoft Academic Search

BACKGROUND: Is it possible to construct an accurate and detailed subgene-level map of a genome using bacterial artificial chromosome (BAC) end sequences, a sparse marker map, and the sequences of other genomes? RESULTS: A sheep BAC library, CHORI-243, was constructed and the BAC end sequences were determined and mapped with high sensitivity and low specificity onto the frameworks of the

Brian P Dalrymple; Ewen F Kirkness; Mikhail Nefedov; Sean McWilliam; Abhirami Ratnakumar; Wes Barris; Shaying Zhao; Jyoti Shetty; Jillian F Maddox; Margaret O'Grady; Frank Nicholas; Allan M Crawford; Tim Smith; Pieter J de Jong; John McEwan; V Hutton Oddy; Noelle E Cockett

2007-01-01

56

The Diploid Genome Sequence of an Individual Human  

PubMed Central

Presented here is a genome sequence of an individual human. It was produced from ?32 million random DNA fragments, sequenced by Sanger dideoxy technology and assembled into 4,528 scaffolds, comprising 2,810 million bases (Mb) of contiguous sequence with approximately 7.5-fold coverage for any given region. We developed a modified version of the Celera assembler to facilitate the identification and comparison of alternate alleles within this individual diploid genome. Comparison of this genome and the National Center for Biotechnology Information human reference assembly revealed more than 4.1 million DNA variants, encompassing 12.3 Mb. These variants (of which 1,288,319 were novel) included 3,213,401 single nucleotide polymorphisms (SNPs), 53,823 block substitutions (2–206 bp), 292,102 heterozygous insertion/deletion events (indels)(1–571 bp), 559,473 homozygous indels (1–82,711 bp), 90 inversions, as well as numerous segmental duplications and copy number variation regions. Non-SNP DNA variation accounts for 22% of all events identified in the donor, however they involve 74% of all variant bases. This suggests an important role for non-SNP genetic alterations in defining the diploid genome structure. Moreover, 44% of genes were heterozygous for one or more variants. Using a novel haplotype assembly strategy, we were able to span 1.5 Gb of genome sequence in segments >200 kb, providing further precision to the diploid nature of the genome. These data depict a definitive molecular portrait of a diploid human genome that provides a starting point for future genome comparisons and enables an era of individualized genomic information. PMID:17803354

Levy, Samuel; Sutton, Granger; Ng, Pauline C; Feuk, Lars; Halpern, Aaron L; Walenz, Brian P; Axelrod, Nelson; Huang, Jiaqi; Kirkness, Ewen F; Denisov, Gennady; Lin, Yuan; MacDonald, Jeffrey R; Pang, Andy Wing Chun; Shago, Mary; Stockwell, Timothy B; Tsiamouri, Alexia; Bafna, Vineet; Bansal, Vikas; Kravitz, Saul A; Busam, Dana A; Beeson, Karen Y; McIntosh, Tina C; Remington, Karin A; Abril, Josep F; Gill, John; Borman, Jon; Rogers, Yu-Hui; Frazier, Marvin E; Scherer, Stephen W; Strausberg, Robert L; Venter, J. Craig

2007-01-01

57

Complete genomic sequence of turkey coronavirus  

Microsoft Academic Search

Turkey coronavirus (TCoV), one of the least characterized of all known coronaviruses, was isolated from an outbreak of acute enteritis in young turkeys in Ontario, Canada, and the full-length genomic sequence was determined. The full-length genome was 27,632 nucleotides plus the 3? poly(A) tail. Two open reading frames, ORFs 1a and 1b, resided in the first two thirds of the

M. H. Gomaa; J. R. Barta; D. Ojkic; D. Yoo

2008-01-01

58

Sequencing the AML Genome, Transcriptome, and Epigenome.  

PubMed

Leukemia is a disease that develops as a result of changes in the genomes of hematopoietic cells, a fact first appreciated by microscopic examination of the bone marrow cell chromosomes of affected patients. These studies revealed that specific subtypes of leukemia diagnoses correlated with specific chromosomal abnormalities, such as the t(15;17) of acute promyelocytic leukemia and the t(9;22) of chronic myeloid leukemia. Over time, our genomic characterization of hematologic malignancies has moved beyond the resolution of the microscope to that of individual nucleotides in the analysis of whole-genome sequencing (WGS) data using state-of-the-art massively parallel sequencing (MPS) instruments and algorithmic analyses of the resulting data. In addition to studying the genomic sequence alterations that occur in patients' genomes, these same instruments can decode the methylation landscape of the leukemia genome and the resulting RNA expression landscape of the leukemia transcriptome. Broad correlative analyses can then integrate these 3 data types to better inform researchers and clinicians about the biology of individual acute myeloid leukemia (AML) cases, facilitating improvements in care and prognosis. PMID:25311738

Mardis, Elaine R

2014-10-01

59

Sequencing the public health genome.  

PubMed

The exposome paradigm provides a new approach for conceptualizing and analyzing the impact of single exposures on health outcomes. This article describes the methods used to sequence the public health exposome and implications for the dynamic, multi-dimensional data information system developed by investigators at Meharry Medical College. PMID:23395949

Juarez, Paul

2013-02-01

60

Noninvasive fetal genome sequencing: a primer  

PubMed Central

We recently demonstrated whole genome sequencing of a human fetus using only parental DNA samples and plasma from the pregnant mother. This proof-of-concept study demonstrated how samples obtained noninvasively in the first or second trimester can be analyzed to yield a highly accurate and substantially complete genetic profile of the fetus, including both inherited and de novo variation. Here, we revisit our original study from a clinical standpoint, provide an overview of the scientific approach, and describe opportunities and challenges along the path towards clinical adoption of noninvasive fetal whole genome sequencing (NIFWGS). PMID:23553552

Snyder, Matthew W.; Simmons, LaVone E.; Kitzman, Jacob O.; Santillan, Donna A.; Santillan, Mark K.; Gammill, Hilary S.; Shendure, Jay

2013-01-01

61

The Trichomonas vaginalis Genome Sequencing Project  

NSDL National Science Digital Library

The Institute for Genomic Research (TIGR) in 2003 released the first draft assembly of the Trichomonas vaginalis_genome, available through this website to the academic and not-for-profit research community for noncommercial use only. TIGR will release more data at regular intervals during the sequencing project, which should help researchers better understand this widespread parasite and its role in HIV infection, neo-natal disorders, predisposition to cervical cancer, and of course, vaginitis. The website also includes background information on T. vaginalis, as well as a link to TIGR's sequencing project for Entamoeba histolytica -- a closely related organism.

62

Assigning genomic sequences to CATH  

Microsoft Academic Search

We report the latest release (version 1.6) of the CATH protein domains database (http:\\/\\/www.biochem.ucl. ac.uk\\/bsm\\/cath ). This is a hierarchical classification of 18 577 domains into evolutionary families and structural groupings. We have identified 1028 homo- logous superfamilies in which the proteins have both structural, and sequence or functional similarity. These can be further clustered into 672 fold groups and

Frances M. G. Pearl; David Lee; James E. Bray; Ian Sillitoe; Annabel E. Todd; Andrew P. Harrison; Janet M. Thornton; Christine A. Orengo

2000-01-01

63

Complete genome sequence of Caulobacter crescentus  

PubMed Central

The complete genome sequence of Caulobacter crescentus was determined to be 4,016,942 base pairs in a single circular chromosome encoding 3,767 genes. This organism, which grows in a dilute aquatic environment, coordinates the cell division cycle and multiple cell differentiation events. With the annotated genome sequence, a full description of the genetic network that controls bacterial differentiation, cell growth, and cell cycle progression is within reach. Two-component signal transduction proteins are known to play a significant role in cell cycle progression. Genome analysis revealed that the C. crescentus genome encodes a significantly higher number of these signaling proteins (105) than any bacterial genome sequenced thus far. Another regulatory mechanism involved in cell cycle progression is DNA methylation. The occurrence of the recognition sequence for an essential DNA methylating enzyme that is required for cell cycle regulation is severely limited and shows a bias to intergenic regions. The genome contains multiple clusters of genes encoding proteins essential for survival in a nutrient poor habitat. Included are those involved in chemotaxis, outer membrane channel function, degradation of aromatic ring compounds, and the breakdown of plant-derived carbon sources, in addition to many extracytoplasmic function sigma factors, providing the organism with the ability to respond to a wide range of environmental fluctuations. C. crescentus is, to our knowledge, the first free-living ?-class proteobacterium to be sequenced and will serve as a foundation for exploring the biology of this group of bacteria, which includes the obligate endosymbiont and human pathogen Rickettsia prowazekii, the plant pathogen Agrobacterium tumefaciens, and the bovine and human pathogen Brucella abortus. PMID:11259647

Nierman, William C.; Feldblyum, Tamara V.; Laub, Michael T.; Paulsen, Ian T.; Nelson, Karen E.; Eisen, Jonathan; Heidelberg, John F.; Alley, M. R. K.; Ohta, Noriko; Maddock, Janine R.; Potocka, Isabel; Nelson, William C.; Newton, Austin; Stephens, Craig; Phadke, Nikhil D.; Ely, Bert; DeBoy, Robert T.; Dodson, Robert J.; Durkin, A. Scott; Gwinn, Michelle L.; Haft, Daniel H.; Kolonay, James F.; Smit, John; Craven, M. B.; Khouri, Hoda; Shetty, Jyoti; Berry, Kristi; Utterback, Teresa; Tran, Kevin; Wolf, Alex; Vamathevan, Jessica; Ermolaeva, Maria; White, Owen; Salzberg, Steven L.; Venter, J. Craig; Shapiro, Lucy; Fraser, Claire M.

2001-01-01

64

Complete genome sequence of Caulobacter crescentus.  

PubMed

The complete genome sequence of Caulobacter crescentus was determined to be 4,016,942 base pairs in a single circular chromosome encoding 3,767 genes. This organism, which grows in a dilute aquatic environment, coordinates the cell division cycle and multiple cell differentiation events. With the annotated genome sequence, a full description of the genetic network that controls bacterial differentiation, cell growth, and cell cycle progression is within reach. Two-component signal transduction proteins are known to play a significant role in cell cycle progression. Genome analysis revealed that the C. crescentus genome encodes a significantly higher number of these signaling proteins (105) than any bacterial genome sequenced thus far. Another regulatory mechanism involved in cell cycle progression is DNA methylation. The occurrence of the recognition sequence for an essential DNA methylating enzyme that is required for cell cycle regulation is severely limited and shows a bias to intergenic regions. The genome contains multiple clusters of genes encoding proteins essential for survival in a nutrient poor habitat. Included are those involved in chemotaxis, outer membrane channel function, degradation of aromatic ring compounds, and the breakdown of plant-derived carbon sources, in addition to many extracytoplasmic function sigma factors, providing the organism with the ability to respond to a wide range of environmental fluctuations. C. crescentus is, to our knowledge, the first free-living alpha-class proteobacterium to be sequenced and will serve as a foundation for exploring the biology of this group of bacteria, which includes the obligate endosymbiont and human pathogen Rickettsia prowazekii, the plant pathogen Agrobacterium tumefaciens, and the bovine and human pathogen Brucella abortus. PMID:11259647

Nierman, W C; Feldblyum, T V; Laub, M T; Paulsen, I T; Nelson, K E; Eisen, J A; Heidelberg, J F; Alley, M R; Ohta, N; Maddock, J R; Potocka, I; Nelson, W C; Newton, A; Stephens, C; Phadke, N D; Ely, B; DeBoy, R T; Dodson, R J; Durkin, A S; Gwinn, M L; Haft, D H; Kolonay, J F; Smit, J; Craven, M B; Khouri, H; Shetty, J; Berry, K; Utterback, T; Tran, K; Wolf, A; Vamathevan, J; Ermolaeva, M; White, O; Salzberg, S L; Venter, J C; Shapiro, L; Fraser, C M; Eisen, J

2001-03-27

65

Multilocus sequence typing of total-genome-sequenced bacteria.  

PubMed

Accurate strain identification is essential for anyone working with bacteria. For many species, multilocus sequence typing (MLST) is considered the "gold standard" of typing, but it is traditionally performed in an expensive and time-consuming manner. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available to scientists and routine diagnostic laboratories. Currently, the cost is below that of traditional MLST. The new challenges will be how to extract the relevant information from the large amount of data so as to allow for comparison over time and between laboratories. Ideally, this information should also allow for comparison to historical data. We developed a Web-based method for MLST of 66 bacterial species based on WGS data. As input, the method uses short sequence reads from four sequencing platforms or preassembled genomes. Updates from the MLST databases are downloaded monthly, and the best-matching MLST alleles of the specified MLST scheme are found using a BLAST-based ranking method. The sequence type is then determined by the combination of alleles identified. The method was tested on preassembled genomes from 336 isolates covering 56 MLST schemes, on short sequence reads from 387 isolates covering 10 schemes, and on a small test set of short sequence reads from 29 isolates for which the sequence type had been determined by traditional methods. The method presented here enables investigators to determine the sequence types of their isolates on the basis of WGS data. This method is publicly available at www.cbs.dtu.dk/services/MLST. PMID:22238442

Larsen, Mette V; Cosentino, Salvatore; Rasmussen, Simon; Friis, Carsten; Hasman, Henrik; Marvig, Rasmus Lykke; Jelsbak, Lars; Sicheritz-Pontén, Thomas; Ussery, David W; Aarestrup, Frank M; Lund, Ole

2012-04-01

66

Genome sequencing and analysis of Aspergillus oryzae  

Microsoft Academic Search

The genome of Aspergillus oryzae, a fungus important for the production of traditional fermented foods and beverages in Japan, has been sequenced. The ability to secrete large amounts of proteins and the development of a transformation system have facilitated the use of A. oryzae in modern biotechnology. Although both A. oryzae and Aspergillus flavus belong to the section Flavi of

Masayuki Machida; Kiyoshi Asai; Motoaki Sano; Toshihiro Tanaka; Toshitaka Kumagai; Goro Terai; Ken-Ichi Kusumoto; Toshihide Arima; Osamu Akita; Yutaka Kashiwagi; Keietsu Abe; Katsuya Gomi; Hiroyuki Horiuchi; Katsuhiko Kitamoto; Tetsuo Kobayashi; Michio Takeuchi; David W. Denning; James E. Galagan; William C. Nierman; Jiujiang Yu; David B. Archer; Joan W. Bennett; Deepak Bhatnagar; Thomas E. Cleveland; Natalie D. Fedorova; Osamu Gotoh; Hiroshi Horikawa; Akira Hosoyama; Masayuki Ichinomiya; Rie Igarashi; Kazuhiro Iwashita; Praveen Rao Juvvadi; Masashi Kato; Yumiko Kato; Taishin Kin; Akira Kokubun; Hiroshi Maeda; Noriko Maeyama; Jun-Ichi Maruyama; Hideki Nagasaki; Tasuku Nakajima; Ken Oda; Kinya Okada; Ian Paulsen; Kazutoshi Sakamoto; Toshihiko Sawano; Mikio Takahashi; Kumiko Takase; Yasunobu Terabayashi; Jennifer R. Wortman; Osamu Yamada; Youhei Yamagata; Hideharu Anazawa; Yoji Hata; Yoshinao Koide; Takashi Komori; Yasuji Koyama; Toshitaka Minetoki; Sivasundaram Suharnan; Akimitsu Tanaka; Katsumi Isono; Satoru Kuhara; Naotake Ogasawara; Hisashi Kikuchi

2005-01-01

67

Genome Sequence of Corynebacterium ulcerans Strain 210932  

PubMed Central

In this work, we present the complete genome sequence of Corynebacterium ulcerans strain 210932, isolated from a human. The species is an emergent pathogen that infects a variety of wild and domesticated animals and humans. It is associated with a growing number of cases of a diphtheria-like disease around the world. PMID:25428977

Viana, Marcus Vinicius Canário; de Jesus Benevides, Leandro; Batista Mariano, Diego Cesar; de Souza Rocha, Flávia; Bagano Vilas Boas, Priscilla Carolinne; Folador, Edson Luiz; Pereira, Felipe Luiz; Alves Dorella, Fernanda; Gomes Leal, Carlos Augusto; Fiorini de Carvalho, Alex; Silva, Artur; de Castro Soares, Siomar; Pereira Figueiredo, Henrique Cesar; Guimarães, Luis Carlos

2014-01-01

68

Reconstruction of Ancestral Genomic Sequences Using Likelihood  

E-print Network

algorithm and the FPT into an algorithm with arbitrary good approximation guarantee (PTAS). We tested our for reconstructing the ancestral genomes for a set of lentiviruses (relatives of HIV). Availability: Supplementary sequences evolve. Based on our beliefs we state an optimization criterion by which the "correct" ancestral

Lagergren, Jens

69

Tracking adaptive evolutionary events in genomic sequences  

PubMed Central

As more gene and genomic sequences from an increasing assortment of species become available, new pictures of evolution are emerging. Improved methods can pinpoint where positive and negative selection act in individual codons in specific genes on specific branches of phylogenetic trees. Positive selection appears to be important in the interaction between genotype, protein structure, function, and organismal phenotype. PMID:12093382

Liberles, David A; Wayne, Marta L

2002-01-01

70

Draft Genome Sequence of Virgibacillus halodenitrificans 1806  

PubMed Central

Virgibacillus halodenitrificans 1806 is an endospore-forming halophilic bacterium isolated from salterns in Korea. Here, we report the draft genome sequence of V. halodenitrificans 1806, which may reveal the molecular basis of osmoadaptation and insights into carbon and anaerobic metabolism in moderate halophiles. PMID:23105070

Lee, Sang-Jae; Lee, Yong-Jik; Jeong, Haeyoung; Lee, Sang Jun; Lee, Han-Seung; Pan, Jae-Gu

2012-01-01

71

Genome Sequence of Bacillus licheniformis WX-02  

PubMed Central

Bacillus licheniformis is an important bacterium that has been used extensively for large-scale industrial production of exoenzymes and peptide antibiotics. B. licheniformis WX-02 produces poly-gamma-glutamate increasingly when fermented under stress conditions. Here its genome sequence (4,270,104 bp, with G+C content of 46.06%), which comprises a circular chromosome, is announced. PMID:22689245

Yangtse, Wuming; Zhou, Yinhua; Lei, Yang; Qiu, Yimin; Wei, Xuetuan; Ji, Zhixia; Qi, Gaofu; Yong, Yangchun; Chen, Lingling

2012-01-01

72

Genome sequence of Bacillus licheniformis WX-02.  

PubMed

Bacillus licheniformis is an important bacterium that has been used extensively for large-scale industrial production of exoenzymes and peptide antibiotics. B. licheniformis WX-02 produces poly-gamma-glutamate increasingly when fermented under stress conditions. Here its genome sequence (4,270,104 bp, with G+C content of 46.06%), which comprises a circular chromosome, is announced. PMID:22689245

Yangtse, Wuming; Zhou, Yinhua; Lei, Yang; Qiu, Yimin; Wei, Xuetuan; Ji, Zhixia; Qi, Gaofu; Yong, Yangchun; Chen, Lingling; Chen, Shouwen

2012-07-01

73

Overview of PSB track on gene structure identification in large-scale genomic sequence.  

National Technical Information Service (NTIS)

The recent funding of more than a dozen major genome centers to begin community-wide high-throughput sequencing of the human genome has created a significant new challenge for the computational analysis of DNA sequence and the prediction of gene structure...

E. C. Uberbacher, Y. Xu

1998-01-01

74

Human Whole-Genome Shotgun Sequencing James L. Weber1,3  

E-print Network

different human donors would be sheared, size-selected, and cloned into E. coli. Insert sizes would fallHuman Whole-Genome Shotgun Sequencing James L. Weber1,3 and Eugene W. Myers2 1 Center for Medical Science, University of Arizona, Tucson, Arizona 85721 Large-scale sequencing of the human genome is now

Batzoglou, Serafim

75

Genome variation discovery with high-throughput sequencing data  

E-print Network

-throughput sequencing (HTS) technologies is enabling sequencing of human genomes at a signifi- cantly lower cost and copy-number variants from these mappings. Keywords: high-throughput sequencing; genome variation/Solexa and AB SOLiD, are able to sequence a full human genome per week at a cost 200-fold less than previous

Toronto, University of

76

Agaricus bisporus genome sequence: a commentary.  

PubMed

The genomes of two isolates of Agaricus bisporus have been sequenced recently. This soil-inhabiting fungus has a wide geographical distribution in nature and it is also cultivated in an industrialized indoor process ($4.7bn annual worldwide value) to produce edible mushrooms. Previously this lignocellulosic fungus has resisted precise econutritional classification, i.e. into white- or brown-rot decomposers. The generation of the genome sequence and transcriptomic analyses has revealed a new classification, 'humicolous', for species adapted to grow in humic-rich, partially decomposed leaf material. The Agaricus biporus genomes contain a collection of polysaccharide and lignin-degrading genes and more interestingly an expanded number of genes (relative to other lignocellulosic fungi) that enhance degradation of lignin derivatives, i.e. heme-thiolate peroxidases and ?-etherases. A motif that is hypothesized to be a promoter element in the humicolous adaptation suite is present in a large number of genes specifically up-regulated when the mycelium is grown on humic-rich substrate. The genome sequence of A. bisporus offers a platform to explore fungal biology in carbon-rich soil environments and terrestrial cycling of carbon, nitrogen, phosphorus and potassium. PMID:23558250

Kerrigan, Richard W; Challen, Michael P; Burton, Kerry S

2013-06-01

77

Defining Genome Project Standards in a New Era of Sequencing  

SciTech Connect

Patrick Chain of the DOE Joint Genome Institute gives a talk on behalf of the International Genome Sequencing Standards Consortium on the need for intermediate genome classifications between "draft" and "finished"

Chain, Patrick [DOE-JGI

2009-05-27

78

Whole-genome sequencing in bacteriology: state of the art  

PubMed Central

Over the last ten years, genome sequencing capabilities have expanded exponentially. There have been tremendous advances in sequencing technology, DNA sample preparation, genome assembly, and data analysis. This has led to advances in a number of facets of bacterial genomics, including metagenomics, clinical medicine, bacterial archaeology, and bacterial evolution. This review examines the strengths and weaknesses of techniques in bacterial genome sequencing, upcoming technologies, and assembly techniques, as well as highlighting recent studies that highlight new applications for bacterial genomics. PMID:24143115

Dark, Michael J

2013-01-01

79

The Norway spruce genome sequence and conifer genome evolution.  

PubMed

Conifers have dominated forests for more than 200?million years and are of huge ecological and economic importance. Here we present the draft assembly of the 20-gigabase genome of Norway spruce (Picea abies), the first available for any gymnosperm. The number of well-supported genes (28,354) is similar to the >100 times smaller genome of Arabidopsis thaliana, and there is no evidence of a recent whole-genome duplication in the gymnosperm lineage. Instead, the large genome size seems to result from the slow and steady accumulation of a diverse set of long-terminal repeat transposable elements, possibly owing to the lack of an efficient elimination mechanism. Comparative sequencing of Pinus sylvestris, Abies sibirica, Juniperus communis, Taxus baccata and Gnetum gnemon reveals that the transposable element diversity is shared among extant conifers. Expression of 24-nucleotide small RNAs, previously implicated in transposable element silencing, is tissue-specific and much lower than in other plants. We further identify numerous long (>10,000?base pairs) introns, gene-like fragments, uncharacterized long non-coding RNAs and short RNAs. This opens up new genomic avenues for conifer forestry and breeding. PMID:23698360

Nystedt, Björn; Street, Nathaniel R; Wetterbom, Anna; Zuccolo, Andrea; Lin, Yao-Cheng; Scofield, Douglas G; Vezzi, Francesco; Delhomme, Nicolas; Giacomello, Stefania; Alexeyenko, Andrey; Vicedomini, Riccardo; Sahlin, Kristoffer; Sherwood, Ellen; Elfstrand, Malin; Gramzow, Lydia; Holmberg, Kristina; Hällman, Jimmie; Keech, Olivier; Klasson, Lisa; Koriabine, Maxim; Kucukoglu, Melis; Käller, Max; Luthman, Johannes; Lysholm, Fredrik; Niittylä, Totte; Olson, Ake; Rilakovic, Nemanja; Ritland, Carol; Rosselló, Josep A; Sena, Juliana; Svensson, Thomas; Talavera-López, Carlos; Theißen, Günter; Tuominen, Hannele; Vanneste, Kevin; Wu, Zhi-Qiang; Zhang, Bo; Zerbe, Philipp; Arvestad, Lars; Bhalerao, Rishikesh; Bohlmann, Joerg; Bousquet, Jean; Garcia Gil, Rosario; Hvidsten, Torgeir R; de Jong, Pieter; MacKay, John; Morgante, Michele; Ritland, Kermit; Sundberg, Björn; Thompson, Stacey Lee; Van de Peer, Yves; Andersson, Björn; Nilsson, Ove; Ingvarsson, Pär K; Lundeberg, Joakim; Jansson, Stefan

2013-05-30

80

Genome, Epigenome and RNA sequences of Monozygotic Twins Discordant for Multiple Sclerosis  

SciTech Connect

Neil Miller, Deputy Director of Software Engineering at the National Center for Genome Resources, discusses a monozygotic twin study on June 2, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM

Miller, Neil [National Center for Genome Resources

2010-06-02

81

Initial sequencing and comparative analysis of the mouse genome  

Microsoft Academic Search

The sequence of the mouse genome is a key informational tool for understanding the contents of the human genome and a key experimental tool for biomedical research. Here, we report the results of an international collaboration to produce a high-quality draft sequence of the mouse genome. We also present an initial comparative analysis of the mouse and human genomes, describing

Robert H. Waterston; Kerstin Lindblad-Toh; Ewan Birney; Jane Rogers; Josep F. Abril; Pankaj Agarwal; Richa Agarwala; Rachel Ainscough; Marina Alexandersson; Peter An; Stylianos E. Antonarakis; John Attwood; Robert Baertsch; Jonathon Bailey; Karen Barlow; Stephan Beck; Eric Berry; Bruce Birren; Toby Bloom; Peer Bork; Marc Botcherby; Nicolas Bray; Michael R. Brent; Daniel G. Brown; Stephen D. Brown; Carol Bult; John Burton; Jonathan Butler; Robert D. Campbell; Piero Carninci; Simon Cawley; Francesca Chiaromonte; Asif T. Chinwalla; Deanna M. Church; Michele Clamp; Christopher Clee; Francis S. Collins; Lisa L. Cook; Richard R. Copley; Alan Coulson; Olivier Couronne; James Cuff; Val Curwen; Tim Cutts; Mark Daly; Robert David; Joy Davies; Kimberly D. Delehaunty; Justin Deri; Emmanouil T. Dermitzakis; Colin Dewey; Nicholas J. Dickens; Mark Diekhans; Sheila Dodge; Inna Dubchak; Diane M. Dunn; Sean R. Eddy; Laura Elnitski; Richard D. Emes; Pallavi Eswara; Eduardo Eyras; Adam Felsenfeld; Ginger A. Fewell; Paul Flicek; Karen Foley; Wayne N. Frankel; Lucinda A. Fulton; Robert S. Fulton; Terrence S. Furey; Diane Gage; Richard A. Gibbs; Gustavo Glusman; Sante Gnerre; Nick Goldman; Leo Goodstadt; Darren Grafham; Tina A. Graves; Eric D. Green; Simon Gregory; Roderic Guigó; Mark Guyer; Ross C. Hardison; David Haussler; Yoshihide Hayashizaki; LaDeana W. Hillier; Angela Hinrichs; Wratko Hlavina; Timothy Holzer; Fan Hsu; Axin Hua; Tim Hubbard; Adrienne Hunt; Ian Jackson; David B. Jaffe; L. Steven Johnson; Matthew Jones; Thomas A. Jones; Ann Joy; Michael Kamal; Elinor K. Karlsson; Donna Karolchik; Arkadiusz Kasprzyk; Jun Kawai; Evan Keibler; Cristyn Kells; W. James Kent; Andrew Kirby; Diana L. Kolbe; Ian Korf; Raju S. Kucherlapati; Edward J. Kulbokas; David Kulp; Tom Landers; J. P. Leger; Steven Leonard; Ivica Letunic; Rosie Levine; Jia Li; Ming Li; Christine Lloyd; Susan Lucas; Bin Ma; Donna R. Maglott; Elaine R. Mardis; Lucy Matthews; Evan Mauceli; John H. Mayer; Megan McCarthy; W. Richard McCombie; Stuart McLaren; Kirsten McLay; John D. McPherson; Jim Meldrim; Beverley Meredith; Jill P. Mesirov; Webb Miller; Tracie L. Miner; Emmanuel Mongin; Kate T. Montgomery; Michael Morgan; Richard Mott; James C. Mullikin; Donna M. Muzny; William E. Nash; Joanne O. Nelson; Michael N. Nhan; Robert Nicol; Zemin Ning; Chad Nusbaum; Michael J. O'Connor; Yasushi Okazaki; Karen Oliver; Emma Overton-Larty; Lior Pachter; Genís Parra; Kymberlie H. Pepin; Jane Peterson; Pavel Pevzner; Robert Plumb; Craig S. Pohl; Alex Poliakov; Tracy C. Ponce; Simon Potter; Michael Quail; Alexandre Reymond; Bruce A. Roe; Krishna M. Roskin; Edward M. Rubin; Alistair G. Rust; Victor Sapojnikov; Brian Schultz; Jörg Schultz; Scott Schwartz; Carol Scott; Steven Seaman; Steve Searle; Ted Sharpe; Andrew Sheridan; Ratna Shownkeen; Sarah Sims; Jonathan B. Singer; Guy Slater; Arian Smit; Douglas R. Smith; Brian Spencer; Arne Stabenau; Nicole Stange-Thomann; Charles Sugnet; Mikita Suyama; Glenn Tesler; Johanna Thompson; David Torrents; Evanne Trevaskis; John Tromp; Catherine Ucla; Abel Ureta-Vidal; Jade P. Vinson; Andrew C. von Niederhausern; Claire M. Wade; Melanie Wall; Ryan J. Weber; Robert B. Weiss; Michael C. Wendl; Anthony P. West; Kris Wetterstrand; Raymond Wheeler; Simon Whelan; Jamey Wierzbowski; David Willey; Sophie Williams; Richard K. Wilson; Eitan Winter; Kim C. Worley; Dudley Wyman; Shan Yang; Shiaw-Pyng Yang; Evgeny M. Zdobnov; Michael C. Zody; Eric S. Lander; Chris P. Ponting; Matthias S. Schwartz

2002-01-01

82

The diploid genome sequence of an Asian individual  

Microsoft Academic Search

Here we present the first diploid genome sequence of an Asian individual. The genome was sequenced to 36-fold average coverage using massively parallel sequencing technology. We aligned the short reads onto the NCBI human reference genome to 99.97% coverage, and guided by the reference genome, we used uniquely mapped reads to assemble a high-quality consensus sequence for 92% of the

Jun Wang; Wei Wang; Ruiqiang Li; Yingrui Li; Geng Tian; Laurie Goodman; Wei Fan; Junqing Zhang; Jun Li; Juanbin Zhang; Yiran Guo; Binxiao Feng; Heng Li; Yao Lu; Xiaodong Fang; Huiqing Liang; Zhenglin Du; Dong Li; Yiqing Zhao; Yujie Hu; Zhenzhen Yang; Hancheng Zheng; Ines Hellmann; Michael Inouye; John Pool; Xin Yi; Jing Zhao; Jinjie Duan; Yan Zhou; Junjie Qin; Lijia Ma; Guoqing Li; Zhentao Yang; Guojie Zhang; Bin Yang; Chang Yu; Fang Liang; Wenjie Li; Shaochuan Li; Dawei Li; Peixiang Ni; Jue Ruan; Qibin Li; Hongmei Zhu; Dongyuan Liu; Zhike Lu; Ning Li; Guangwu Guo; Jianguo Zhang; Jia Ye; Lin Fang; Qin Hao; Quan Chen; Yu Liang; Yeyang Su; A. San; Cuo Ping; Shuang Yang; Fang Chen; Li Li; Ke Zhou; Hongkun Zheng; Yuanyuan Ren; Ling Yang; Guohua Yang; Zhuo Li; Xiaoli Feng; Karsten Kristiansen; Gane Ka-Shu Wong; Rasmus Nielsen; Richard Durbin; Lars Bolund; Xiuqing Zhang; Songgang Li; Huanming Yang; Jian Wang

2008-01-01

83

The genome sequence of Schizosaccharomyces pombe  

Microsoft Academic Search

We have sequenced and annotated the genome of fission yeast (Schizosaccharomyces pombe), which contains the smallest number of protein-coding genes yet recorded for a eukaryote: 4,824. The centromeres are between 35 and 110 kilobases (kb) and contain related repeats including a highly conserved 1.8-kb element. Regions upstream of genes are longer than in budding yeast (Saccharomyces cerevisiae), possibly reflecting more-extended

R. Gwilliam; M.-A. Rajandream; M. Lyne; R. Lyne; A. Stewart; J. Sgouros; N. Peat; J. Hayles; S. Baker; D. Basham; S. Bowman; K. Brooks; D. Brown; S. Brown; T. Chillingworth; C. Churcher; M. Collins; R. Connor; A. Cronin; P. Davis; T. Feltwell; A. Fraser; S. Gentles; A. Goble; N. Hamlin; D. Harris; J. Hidalgo; G. Hodgson; S. Holroyd; T. Hornsby; S. Howarth; E. J. Huckle; S. Hunt; K. Jagels; K. James; L. Jones; M. Jones; S. Leather; S. McDonald; J. McLean; P. Mooney; S. Moule; K. Mungall; L. Murphy; D. Niblett; C. Odell; K. Oliver; S. O'Neil; D. Pearson; M. A. Quail; E. Rabbinowitsch; K. Rutherford; S. Rutter; D. Saunders; K. Seeger; S. Sharp; J. Skelton; M. Simmonds; R. Squares; S. Squares; K. Stevens; K. Taylor; R. G. Taylor; A. Tivey; S. Walsh; T. Warren; S. Whitehead; J. Woodward; G. Volckaert; R. Aert; J. Robben; B. Grymonprez; I. Weltjens; E. Vanstreels; M. Rieger; M. Schäfer; S. Müller-Auer; C. Gabel; M. Fuchs; C. Fritzc; E. Holzer; D. Moestl; H. Hilbert; K. Borzym; I. Langer; A. Beck; H. Lehrach; R. Reinhardt; T. M. Pohl; P. Eger; W. Zimmermann; H. Wedler; R. Wambutt; B. Purnelle; A. Goffeau; E. Cadieu; S. Dréano; S. Gloux; V. Lelaure; S. Mottier; F. Galibert; S. J. Aves; Z. Xiang; C. Hunt; K. Moore; S. M. Hurst; M. Lucas; M. Rochet; C. Gaillardin; V. A. Tallada; A. Garzon; G. Thode; R. R. Daga; L. Cruzado; J. Jimenez; M. Sánchez; F. del Rey; J. Benito; A. Domínguez; J. L. Revuelta; S. Moreno; J. Armstrong; S. L. Forsburg; L. Cerrutti; T. Lowe; W. R. McCombie; I. Paulsen; J. Potashkin; G. V. Shpakovski; D. Ussery; B. G. Barrell; P. Nurse

2002-01-01

84

Draft Genome Sequence of Rubrivivax gelatinosus CBS  

PubMed Central

Rubrivivax gelatinosus CBS, a purple nonsulfur photosynthetic bacterium, can grow photosynthetically using CO and N2 as the sole carbon and nitrogen nutrients, respectively. R. gelatinosus CBS is of particular interest due to its ability to metabolize CO and yield H2. We present the 5-Mb draft genome sequence of R. gelatinosus CBS with the goal of providing genetic insight into the metabolic properties of this bacterium. PMID:22628496

Hu, Pingsha; Lang, Juan; Wawrousek, Karen; Yu, Jianping; Maness, Pin-Ching

2012-01-01

85

Draft genome sequence of Rubrivivax gelatinosus CBS.  

PubMed

Rubrivivax gelatinosus CBS, a purple nonsulfur photosynthetic bacterium, can grow photosynthetically using CO and N(2) as the sole carbon and nitrogen nutrients, respectively. R. gelatinosus CBS is of particular interest due to its ability to metabolize CO and yield H(2). We present the 5-Mb draft genome sequence of R. gelatinosus CBS with the goal of providing genetic insight into the metabolic properties of this bacterium. PMID:22628496

Hu, Pingsha; Lang, Juan; Wawrousek, Karen; Yu, Jianping; Maness, Pin-Ching; Chen, Jin

2012-06-01

86

Complete Genome Sequences of 138 Mycobacteriophages  

PubMed Central

Bacteriophages are the most numerous biological entities in the biosphere, and although their genetic diversity is high, it remains ill defined. Mycobacteriophages—the viruses of mycobacterial hosts—provide insights into this diversity as well as tools for manipulating Mycobacterium tuberculosis. We report here the complete genome sequences of 138 new mycobacteriophages, which—together with the 83 mycobacteriophages previously reported—represent the largest collection of phages known to infect a single common host, Mycobacterium smegmatis mc2 155. PMID:22282335

2012-01-01

87

Genome sequence of Halobacterium species NRC-1  

PubMed Central

We report the complete sequence of an extreme halophile, Halobacterium sp. NRC-1, harboring a dynamic 2,571,010-bp genome containing 91 insertion sequences representing 12 families and organized into a large chromosome and 2 related minichromosomes. The Halobacterium NRC-1 genome codes for 2,630 predicted proteins, 36% of which are unrelated to any previously reported. Analysis of the genome sequence shows the presence of pathways for uptake and utilization of amino acids, active sodium-proton antiporter and potassium uptake systems, sophisticated photosensory and signal transduction pathways, and DNA replication, transcription, and translation systems resembling more complex eukaryotic organisms. Whole proteome comparisons show the definite archaeal nature of this halophile with additional similarities to the Gram-positive Bacillus subtilis and other bacteria. The ease of culturing Halobacterium and the availability of methods for its genetic manipulation in the laboratory, including construction of gene knockouts and replacements, indicate this halophile can serve as an excellent model system among the archaea. PMID:11016950

Ng, Wailap Victor; Kennedy, Sean P.; Mahairas, Gregory G.; Berquist, Brian; Pan, Min; Shukla, Hem Dutt; Lasky, Stephen R.; Baliga, Nitin S.; Thorsson, Vesteinn; Sbrogna, Jennifer; Swartzell, Steven; Weir, Douglas; Hall, John; Dahl, Timothy A.; Welti, Russell; Goo, Young Ah; Leithauser, Brent; Keller, Kim; Cruz, Randy; Danson, Michael J.; Hough, David W.; Maddocks, Deborah G.; Jablonski, Peter E.; Krebs, Mark P.; Angevine, Christine M.; Dale, Heather; Isenbarger, Thomas A.; Peck, Ronald F.; Pohlschroder, Mechthild; Spudich, John L.; Jung, Kwang-Hwan; Alam, Maqsudul; Freitas, Tracey; Hou, Shaobin; Daniels, Charles J.; Dennis, Patrick P.; Omer, Arina D.; Ebhardt, Holger; Lowe, Todd M.; Liang, Ping; Riley, Monica; Hood, Leroy; DasSarma, Shiladitya

2000-01-01

88

The Predictive Capacity of Personal Genome Sequencing  

PubMed Central

New DNA sequencing methods will soon make it possible to identify all germline variants in any individual at a reasonable cost. However, the ability of whole-genome sequencing to predict predisposition to common diseases in the general population is unknown. To estimate this predictive capacity, we use the concept of a “genometype”. A specific genometype represents the genomes in the population conferring a specific level of genetic risk for a specified disease. Using this concept, we estimated the capacity of whole-genome sequencing to identify individuals at clinically significant risk for 24 different diseases. Our estimates were derived from the analysis of large numbers of monozygotic twin pairs; twins of a pair share the same genometype and therefore identical genetic risk factors. Our analyses indicate that: (i) for 23 of the 24 diseases, the majority of individuals will receive negative test results, (ii) these negative test results will, in general, not be very informative, as the risk of developing 19 of the 24 diseases in those who test negative will still be, at minimum, 50 - 80% of that in the general population, and (iii) on the positive side, in the best-case scenario more than 90% of tested individuals might be alerted to a clinically significant predisposition to at least one disease. These results have important implications for the valuation of genetic testing by industry, health insurance companies, public policy makers and consumers. PMID:22472521

Roberts, Nicholas J.; Vogelstein, Joshua T.; Parmigiani, Giovanni; Kinzler, Kenneth W.; Vogelstein, Bert; Velculescu, Victor E.

2013-01-01

89

The Z curve database: a graphic representation of genome sequences  

Microsoft Academic Search

Motivation: Genome projects for many prokaryotic and eukaryotic species have been completed and more new genome projects are being underway currently. The avail- ability of a large number of genomic sequences for re- searchers creates a need to find graphic tools to study genomes in a perceivable form. The Z curve is one of such tools available for visualizing genomes.

Chun-ting Zhang; Ren Zhang; Hong-yu Ou

2003-01-01

90

Identification of ancient remains through genomic sequencing  

PubMed Central

Studies of ancient DNA have been hindered by the preciousness of remains, the small quantities of undamaged DNA accessible, and the limitations associated with conventional PCR amplification. In these studies, we developed and applied a genomewide adapter-mediated emulsion PCR amplification protocol for ancient mammalian samples estimated to be between 45,000 and 69,000 yr old. Using 454 Life Sciences (Roche) and Illumina sequencing (formerly Solexa sequencing) technologies, we examined over 100 megabases of DNA from amplified extracts, revealing unbiased sequence coverage with substantial amounts of nonredundant nuclear sequences from the sample sources and negligible levels of human contamination. We consistently recorded over 500-fold increases, such that nanogram quantities of starting material could be amplified to microgram quantities. Application of our protocol to a 50,000-yr-old uncharacterized bone sample that was unsuccessful in mitochondrial PCR provided sufficient nuclear sequences for comparison with extant mammals and subsequent phylogenetic classification of the remains. The combined use of emulsion PCR amplification and high-throughput sequencing allows for the generation of large quantities of DNA sequence data from ancient remains. Using such techniques, even small amounts of ancient remains with low levels of endogenous DNA preservation may yield substantial quantities of nuclear DNA, enabling novel applications of ancient DNA genomics to the investigation of extinct phyla. PMID:18426903

Blow, Matthew J.; Zhang, Tao; Woyke, Tanja; Speller, Camilla F.; Krivoshapkin, Andrei; Yang, Dongya Y.; Derevianko, Anatoly; Rubin, Edward M.

2008-01-01

91

Why Assembling Plant Genome Sequences Is So Challenging  

PubMed Central

In spite of the biological and economic importance of plants, relatively few plant species have been sequenced. Only the genome sequence of plants with relatively small genomes, most of them angiosperms, in particular eudicots, has been determined. The arrival of next-generation sequencing technologies has allowed the rapid and efficient development of new genomic resources for non-model or orphan plant species. But the sequencing pace of plants is far from that of animals and microorganisms. This review focuses on the typical challenges of plant genomes that can explain why plant genomics is less developed than animal genomics. Explanations about the impact of some confounding factors emerging from the nature of plant genomes are given. As a result of these challenges and confounding factors, the correct assembly and annotation of plant genomes is hindered, genome drafts are produced, and advances in plant genomics are delayed. PMID:24832233

Claros, Manuel Gonzalo; Bautista, Rocio; Guerrero-Fernandez, Dario; Benzerki, Hicham; Seoane, Pedro; Fernandez-Pozo, Noe

2012-01-01

92

Mauve: Multiple Alignment of Conserved Genomic Sequence With Rearrangements  

PubMed Central

As genomes evolve, they undergo large-scale evolutionary processes that present a challenge to sequence comparison not posed by short sequences. Recombination causes frequent genome rearrangements, horizontal transfer introduces new sequences into bacterial chromosomes, and deletions remove segments of the genome. Consequently, each genome is a mosaic of unique lineage-specific segments, regions shared with a subset of other genomes and segments conserved among all the genomes under consideration. Furthermore, the linear order of these segments may be shuffled among genomes. We present methods for identification and alignment of conserved genomic DNA in the presence of rearrangements and horizontal transfer. Our methods have been implemented in a software package called Mauve. Mauve has been applied to align nine enterobacterial genomes and to determine global rearrangement structure in three mammalian genomes. We have evaluated the quality of Mauve alignments and drawn comparison to other methods through extensive simulations of genome evolution. PMID:15231754

Darling, Aaron C.E.; Mau, Bob; Blattner, Frederick R.; Perna, Nicole T.

2004-01-01

93

Advances in understanding cancer genomes through second-generation sequencing  

Microsoft Academic Search

Cancers are caused by the accumulation of genomic alterations. Therefore, analyses of cancer genome sequences and structures provide insights for understanding cancer biology, diagnosis and therapy. The application of second-generation DNA sequencing technologies (also known as next-generation sequencing) — through whole-genome, whole-exome and whole-transcriptome approaches — is allowing substantial advances in cancer genomics. These methods are facilitating an increase in

Stacey Gabriel; Gad Getz; Matthew Meyerson

2010-01-01

94

Morphology and genome sequence of phage ?1402  

PubMed Central

Phages are among the simplest biological entities known and simultaneously the most numerous and ubiquitous members of the biosphere. Among the three families of tailed dsDNA phages, the Myoviridae have the most structurally sophisticated tails which are capable of contraction, unlike the simpler tails of the Podoviridae and Siphoviridae. Such “nanomachines” tails are involved in both efficient phage adsorption and genome injection. Their structural complexity probably necessitates multistep morphogenetic pathways, involving non-structural components, to correctly assemble the structural constituents. For reasons probably related, at least in part, to such morphological intricacy, myoviruses tend to have larger genomes than simpler phages. As a consequence, there are no well-characterized myoviruses with a size of less than 40 kb. Here we report on the characterization and sequencing of the 23,931 bp genome of the dwarf myovirus ?1402 of Bdellovibrio bacteriovorus. Our genomic analysis shows that ?1402 differs substantially from all other known phages and appears to be the smallest known autonomous myovirus. PMID:22164347

Ackermann, Hans-W; Krisch, Henry M

2011-01-01

95

Discovering the Genome of Data Centers  

E-print Network

Faloutsos · Wenbo He · Lei Li · Oliver Kennedy · Alan Roytman · Andreas Terzis · Qiang Wang #12;#12;Data-subscription Consolidation #12;DC Genome Project Measure Model Plan Control Improve Data Center Efficiency power performance, Urgaonkar et al. 2009, Wang et al. 2010] Power Tracking Utility power price changes Battery charging

Hunt, Galen

96

University of Tokyo-Institute of Medical Science: Human Genome Center  

NSDL National Science Digital Library

The Human Genome Center was established in 1991 at the University of Tokyo's Institute of Medical Science. In pursuit of progress in the areas of human disease diagnosis, care, and prevention, the Center conducts genome research in Japan and participates in "international activities in database construction, mapping, and sequencing of the human genome." The Genome Center website contains links to its nine Laboratories which conduct research in the following areas: Genome Structure, Sequence Analysis, Molecular Medicine, and DNA Information Analysis, to name a few. Laboratory pages contain information about research, publications, staff, and services. The Center site also links to a number of databases and software tools including a database of Japanese Single Nucleotide Polymorphisms (JSNP), Microbial Genome Database for Comparative Analysis (MBGD), PSI-BLAST, TFBIND (software for searching transcription factor binding sites), and more.

97

Genome Sequence of the Pea Aphid Acyrthosiphon The International Aphid Genomics Consortium"  

E-print Network

Genome Sequence of the Pea Aphid Acyrthosiphon pisum The International Aphid Genomics Consortium we present the 464 Mb draft genome assembly of the pea aphid Acyrthosiphon pisum. This first published whole genome sequence of a basal hemimetabolous insect provides an outgroup to the multiple

Paris-Sud XI, Université de

98

Ten years of bacterial genome sequencing: comparative-genomics-based discoveries  

Microsoft Academic Search

It has been more than 10 years since the first bacterial genome sequence was published. Hundreds of bacterial genome sequences are now available for comparative genomics, and searching a given protein against more than a thousand genomes will soon be possible. The subject of this review will address a relatively straightforward question: “What have we learned from this vast amount of

Tim T. Binnewies; Yair Motro; Peter F. Hallin; Ole Lund; David Dunn; Tom La; David J. Hampson; Matthew Bellgard; Trudy M. Wassenaar; David W. Ussery

2006-01-01

99

Initial sequencing and comparative analysis of the mouse genome  

SciTech Connect

The sequence of the mouse genome is a key informational tool for understanding the contents of the human genome and a key experimental tool for biomedical research. Here, we report the results of an international collaboration to produce a high-quality draft sequence of the mouse genome. We also present an initial comparative analysis of the mouse and human genomes, describing some of the insights that can be gleaned from the two sequences. We discuss topics including the analysis of the evolutionary forces shaping the size, structure and sequence of the genomes; the conservation of large-scale synteny across most of the genomes; the much lower extent of sequence orthology covering less than half of the genomes; the proportions of the genomes under selection; the number of protein-coding genes; the expansion of gene families related to reproduction and immunity; the evolution of proteins; and the identification of intraspecies polymorphism.

Waterston, Robert H.; Lindblad-Toh, Kerstin; Birney, Ewan; Rogers, Jane; Abril, Josep F.; Agarwal, Pankaj; Agarwala, Richa; Ainscough, Rachel; Alexandersson, Marina; An, Peter; Antonarakis, Stylianos E.; Attwood, John; Baertsch, Robert; Bailey, Jonathon; Barlow, Karen; Beck, Stephan; Berry, Eric; Birren, Bruce; Bloom, Toby; Bork, Peer; Botcherby, Marc; Bray, Nicolas; Brent, Michael R.; Brown, Daniel G.; Brown, Stephen D.; Bult, Carol; Burton, John; Butler, Jonathan; Campbell, Robert D.; Carninci, Piero; Cawley, Simon; Chiaromonte, Francesca; Chinwalla, Asif T.; Church, Deanna M.; Clamp, Michele; Clee, Christopher; Collins, Francis S.; Cook, Lisa L.; Copley, Richard R.; Coulson, Alan; Couronne, Olivier; Cuff, James; Curwen, Val; Cutts, Tim; Daly, Mark; David, Robert; Davies, Joy; Delehaunty, Kimberly D.; Deri, Justin; Dermitzakis, Emmanouil T.; Dewey, Colin; Dickens, Nicholas J.; Diekhans, Mark; Dodge, Sheila; Dubchak, Inna; Dunn, Diane M.; Eddy, Sean R.; Elnitski, Laura; Emes, Richard D.; Eswara, Pallavi; Eyras, Eduardo; Felsenfeld, Adam; Fewell, Ginger A.; Flicek, Paul; Foley, Karen; Frankel, Wayne N.; Fulton, Lucinda A.; Fulton, Robert S.; Furey, Terrence S.; Gage, Diane; Gibbs, Richard A.; Glusman, Gustavo; Gnerre, Sante; Goldman, Nick; Goodstadt, Leo; Grafham, Darren; Graves, Tina A.; Green, Eric D.; Gregory, Simon; Guigo, Roderic; Guyer, Mark; Hardison, Ross C.; Haussler, David; Hayashizaki, Yoshihide; Hillier, LaDeana W.; Hinrichs, Angela; Hlavina, Wratko; Holzer, Timothy; Hsu, Fan; Hua, Axin; Hubbard, Tim; Hunt, Adrienne; Jackson, Ian; Jaffe, David B.; Johnson, L. Steven; Jones, Matthew; Jones, Thomas A.; Joy, Ann; Kamal, Michael; Karlsson, Elinor K.; Karolchik, Donna; Kasprzyk, Arkadiusz; Kawai, Jun; Keibler, Evan; Kells, Cristyn; Kent, W. James; Kirby, Andrew; Kolbe, Diana L.; Korf, Ian; Kucherlapati, Raju S.; Kulbokas III, Edward J.; Kulp, David; Landers, Tom; Leger, J.P.; Leonard, Steven; Letunic, Ivica; Levine, Rosie; et al.

2002-12-15

100

Selected Insights from Application of Whole Genome Sequencing for Outbreak Investigations  

PubMed Central

Purpose of review The advent of high-throughput whole genome sequencing has the potential to revolutionize the conduct of outbreak investigation. Because of its ultimate pathogen strain resolution, whole genome sequencing could augment traditional epidemiologic investigations of infectious disease outbreaks. Recent findings The combination of whole genome sequencing and intensive epidemiologic analysis provided new insights on the sources and transmission dynamics of large-scale epidemics caused by Escherichia coli and Vibrio cholerae, nosocomial outbreaks caused by methicillin-resistant Staphylococcus aureus, Klebsiella pneumonia, and Mycobacterium abscessus, community-centered outbreaks caused by Mycobacterium tuberculosis, and natural disaster-associated outbreak caused by environmentally acquired molds. Summary When combined with traditional epidemiologic investigation, whole genome sequencing has proven useful for elucidating sources and transmission dynamics of disease outbreaks. Development of a fully automated bioinformatics pipeline for analysis of whole genome sequence data is much needed to make this powerful tool more widely accessible. PMID:23856896

Le, Vien Thi Minh; Diep, Binh An

2014-01-01

101

The Jackson Laboratory: The Mouse Genome Sequence Project  

NSDL National Science Digital Library

Part of the Mouse Genome Informatics program (last reported on in the NSDL Scout Report for the Life Sciences on March 19, 2004) at the Jackson Laboratory, this website presents The Mouse Genome Sequence (MGS) project. MGS is designed "to integrate emerging mouse genomic sequence data with the genetic and biological data available in MGD and GXD." The site links to Eukaryotic Genome Annotation Projects, as well as Sequence Analysis Tools including MouseBlast and Genome Analysis. The site also offers basic background information about the Mouse Genome Sequencing Initiative, and provides site users with access to groups involved in mouse genome sequencing, the BAC clone library, request forms for targeted sequencing, and more.

102

Proposal Article A Proposal to Sequence Genomes of Unique  

E-print Network

species would define a new paradigm for geronto- logical research. For example, nearly all vertebrates sequencing of genomes, including the human genome, has revolutionized biomedical research. The projected genome sequencing of a large number of mam- malian species, such as several primates, will offer extra

de Magalhães, João Pedro

103

Human genome mapping and sequencing: perspectives for toxicology  

Microsoft Academic Search

Until recently, the human genome programs were mainly directed towards the development of maps to identify disease genes. Three major tools: the genetic map, the physical map and the gene map are presently available. The human genome project is now progressively shifting to massive sequencing although sequence-ready maps are not yet available for a large part of the human genome.

Jean Weissenbach

1998-01-01

104

Comprehensive transcriptome analysis with the Genome Sequencer FLX System  

E-print Network

-deletions and chromosomal rearrangements. When investigating unsequenced organisms or mapping back to the human genomeComprehensive transcriptome analysis with the Genome Sequencer FLX System Protein isoforms make just 200 ng of RNA as sample input, the Genome Sequencer FLX System offers a powerful solution to help

Cai, Long

105

Optimizing the BACEnd Strategy for Sequencing the Human Genome  

E-print Network

Optimizing the BAC­End Strategy for Sequencing the Human Genome Richard M. Karp \\Lambda Ron Shamir y April 24, 1999 Abstract The rapid increase in human genome sequencing effort and the emergence University, Tel Aviv, 69978, Israel. 1 #12; 1 Introduction With the Human Genome Project moving from the map

Shamir, Ron

106

A snapshot of the emerging tomato genome sequence  

Microsoft Academic Search

The genome of tomato (Solanum lycopersicum L.) is being sequenced by an international consortium of 10 countries (Korea, China, the United Kingdom, India, the Netherlands, France, Japan, Spain, Italy, and the United States) as part of the larger “International Solanaceae Genome Project (SOL): Systems Approach to Diversity and Adaptation” initiative. The tomato genome sequencing project uses an ordered bacterial artificial

L. A. Mueller; R. M. Klein Lankhorst; S. D. Tanksley; R. M. Peters; Staveren van M. J; E. Datema; M. W. E. J. Fiers; Ham van R. C. H. J; D. Szinay; Jong de J. H. S. G. M; N. Menda; I. Y. Tecle; A. Bombarely; S. Stack; S. M. Royer; S.-B. Chang; L. A. Shearer; B. D. Kim; S.-H. Jo; C.-G. Hur; D. Choi; C.-B. Li; J. Zhao; H. Jiang; Y. Geng; Y. Dai; H. Fan; J. Chen; F. Lu; J. Shi; S. Sun; X. Yang; C. Lu; M. Chen; Z. Cheng; H. Ling; Y. Xue; Y. Wang; G. B. Seymour; G. J. Bishop; G. Bryan; J. Rogers; S. Sims; S. Butcher; D. Buchan; J. Abbott; H. Beasley; C. Nicholson; C. Riddle; S. Humphray; K. McLaren; S. Mathur; S. Vyas; A. U. Solanke; R. Kumar; V. Gupta; A. K. Sharma; P. Khurana; J. P. Khurana; A. Tyagi; Sarita; P. Chowdhury; S. Shridhar; D. Chattopadhyay; A. Pandit; P. Singh; A. Kumar; R. Dixit; A. Singh; S. Praveen; V. Dalal; M. Yadav; I. A. Ghazi; K. Gaikwad; T. R. Sharma; T. Mohapatra; N. K. Singh; H. de Jong; S. Peters; M. van Staveren; R. C. H. J. van Ham; P. Lindhout; M. Philippot; P. Frasse; F. Regad; M. Zouine; M. Bouzayen; E. Asamizu; S. Sato; H. Fukuoka; S. Tabata; D. Shibata; M. A. Botella; M. Perez-Alonso; V. Fernandez-Pedrosa; S. Osorio; A. Mico; A. Granell; Z. Zhang; J. He; S. Huang; Y. Du; D. Qu; L. Liu; D. Liu; J. Wang; Z. Ye; W. Yang; G. Wang; A. Vezzi; S. Todesco; G. Valle; G. Falcone; M. Pietrella; G. Giuliano; S. Grandillo; A. Traini; N. D'Agostino; M. L. Chiusano; M. Ercolano; A. Barone; L. Frusciante; H. Schoof; A. Jocker; R. Bruggmann; M. Spannagl; K. X. F. Mayer; R. Guigo; F. Camara; S. Rombauts; J. A. Fawcett; Y. Van de Peer; S. Knapp; D. Zamir; W. Stiekema

2009-01-01

107

Draft Genome Sequence of Geotrichum candidum Strain 3C  

PubMed Central

We report here the draft genome sequence of Geotrichum candidum strain 3C, which is a filamentous yeast-like fungus that holds great promise for biotechnology. The genome was sequenced using Ion Torrent and 454 platforms. The estimated genome size was 41.4 Mb, and 14,579 protein-coding genes were predicted ab initio. PMID:25278525

Bobrov, Kirill S.; Eneyskaya, Elena V.; Kulminskaya, Anna A.

2014-01-01

108

Draft Genome Sequence of Geotrichum candidum Strain 3C.  

PubMed

We report here the draft genome sequence of Geotrichum candidum strain 3C, which is a filamentous yeast-like fungus that holds great promise for biotechnology. The genome was sequenced using Ion Torrent and 454 platforms. The estimated genome size was 41.4 Mb, and 14,579 protein-coding genes were predicted ab initio. PMID:25278525

Polev, Dmitrii E; Bobrov, Kirill S; Eneyskaya, Elena V; Kulminskaya, Anna A

2014-01-01

109

Mapping the Human Reference Genome's Missing Sequence by Three-Way Admixture in Latino Genomes  

E-print Network

ARTICLE Mapping the Human Reference Genome's Missing Sequence by Three-Way Admixture in Latino on next-generation sequencing, utilize physical maps of the human genome's sequence to inter- pret. McCarroll1,2,3,* A principal obstacle to completing maps and analyses of the human genome involves

McCarroll, Steve

110

Automated correction of genome sequence errors Pawel Gajer*, Michael Schatz and Steven L. Salzberg  

E-print Network

Automated correction of genome sequence errors Pawel Gajer*, Michael Schatz and Steven L. Salzberg The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA Received November 7%. In an analysis of over one million corrections, we found that AutoEditor made just one error per 8828 corrections

Salzberg, Steven

111

Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis  

Microsoft Academic Search

The 4 202 353 bp genome of the alkaliphilic bacterium Bacillus halodurans C-125 contains 4066 predicted protein coding sequences (CDSs), 2141 (52.7%) of which have functional assignments, 1182 (29%) of which are conserved CDSs with unknown function and 743 (18.3%) of which have no match to any protein database. Among the total CDSs, 8.8% match sequences of proteins found only

Hideto Takami; Kaoru Nakasone; Yoshihiro Takaki; Go Maeno; Rumie Sasaki; Noriaki Masui; Fumie Fuji; Chie Hirama; Yuka Nakamura; Naotake Ogasawara; Satoru Kuhara; Koki Horikoshi

2000-01-01

112

Evaluation of Genome Sequencing Quality in Selected Plant Species Using Expressed Sequence Tags  

PubMed Central

Background With the completion of genome sequencing projects for more than 30 plant species, large volumes of genome sequences have been produced and stored in online databases. Advancements in sequencing technologies have reduced the cost and time of whole genome sequencing enabling more and more plants to be subjected to genome sequencing. Despite this, genome sequence qualities of multiple plants have not been evaluated. Methodology/Principal Finding Integrity and accuracy were calculated to evaluate the genome sequence quality of 32 plants. The integrity of a genome sequence is presented by the ratio of chromosome size and genome size (or between scaffold size and genome size), which ranged from 55.31% to nearly 100%. The accuracy of genome sequence was presented by the ratio between matched EST and selected ESTs where 52.93% ? 98.28% and 89.02% ? 98.85% of the randomly selected clean ESTs could be mapped to chromosome and scaffold sequences, respectively. According to the integrity, accuracy and other analysis of each plant species, thirteen plant species were divided into four levels. Arabidopsis thaliana, Oryza sativa and Zea mays had the highest quality, followed by Brachypodium distachyon, Populus trichocarpa, Vitis vinifera and Glycine max, Sorghum bicolor, Solanum lycopersicum and Fragaria vesca, and Lotus japonicus, Medicago truncatula and Malus × domestica in that order. Assembling the scaffold sequences into chromosome sequences should be the primary task for the remaining nineteen species. Low GC content and repeat DNA influences genome sequence assembly. Conclusion The quality of plant genome sequences was found to be lower than envisaged and thus the rapid development of genome sequencing projects as well as research on bioinformatics tools and the algorithms of genome sequence assembly should provide increased processing and correction of genome sequences that have already been published. PMID:23922843

Shangguan, Lingfei; Han, Jian; Kayesh, Emrul; Sun, Xin; Zhang, Changqing; Pervaiz, Tariq; Wen, Xicheng; Fang, Jinggui

2013-01-01

113

Complete genome sequence of Methanoculleus marisnigri type strain JR1  

SciTech Connect

Methanoculleus marisnigri Romesser et al. 1981 is a methanogen belonging to the order Methanomicrobiales within the archaeal phylum Euryarchaeota. The type strain, JR1, was isolated from anoxic sediments of the Black Sea. M. marisnigri is of phylogenetic interest because at the time the sequencing project began only one genome had previously been sequenced from the order Methanomicrobiales. We report here the complete genome sequence of M. marisnigri type strain JR1 and its annotation. This is part of a Joint Genome Institute 2006 Community Sequencing Program to sequence genomes of diverse Archaea.

Anderson, Iain [U.S. Department of Energy, Joint Genome Institute; Sieprawska-Lupa, Magdalena [University of Georgia, Athens, GA; Goltsman, Eugene [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Barry, Kerrie [U.S. Department of Energy, Joint Genome Institute; Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Brettin, Tom [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Hauser, Loren John [ORNL; Land, Miriam L [ORNL; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Richardson, P M [U.S. Department of Energy, Joint Genome Institute; Whitman, W. B. [University of Georgia, Athens, GA; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute

2009-01-01

114

Genomic Sequence Comparisons, 1987-2003 Final Report  

SciTech Connect

This project was to develop new DNA sequencing and RNA and protein quantitation methods and related genome annotation tools. The project began in 1987 with the development of multiplex sequencing (published in Science in 1988), and one of the first automated sequencing methods. This lead to the first commercial genome sequence in 1994 and to the establishment of the main commercial participants (GTC then Agencourt) in the public DOE/NIH genome project. In collaboration with GTC we contributed to one of the first complete DOE genome sequences, in 1997, that of Methanobacterium thermoautotropicum, a species of great relevance to energy-rich gas production.

George M. Church

2004-07-29

115

Genome sequencing of the important oilseed crop Sesamum indicum L  

PubMed Central

The Sesame Genome Working Group (SGWG) has been formed to sequence and assemble the sesame (Sesamum indicum L.) genome. The status of this project and our planned analyses are described. PMID:23369264

2013-01-01

116

Draft Genome Sequence of Bacillus amyloliquefaciens B-1895.  

PubMed

In this report, we present a draft genome sequence of Bacillus amyloliquefaciens strain B-1895. Comparison with the genome of a reference strain demonstrated similar overall organization, as well as differences involving large gene clusters. PMID:24948774

Karlyshev, Andrey V; Melnikov, Vyacheslav G; Chistyakov, Vladimir A

2014-01-01

117

Draft Genome Sequence of Bacillus amyloliquefaciens B-1895  

PubMed Central

In this report, we present a draft genome sequence of Bacillus amyloliquefaciens strain B-1895. Comparison with the genome of a reference strain demonstrated similar overall organization, as well as differences involving large gene clusters. PMID:24948774

Melnikov, Vyacheslav G.; Chistyakov, Vladimir A.

2014-01-01

118

Initial impact of the sequencing of the human genome  

E-print Network

The sequence of the human genome has dramatically accelerated biomedical research. Here I explore its impact, in the decade since its publication, on our understanding of the biological functions encoded in the genome, on ...

Massachusetts Institute of Technology. Department of Biology; Broad Institute of MIT and Harvard; Lander, Eric S.; Lander, Eric S.

119

First complete genome sequence of infectious laryngotracheitis virus  

PubMed Central

Background Infectious laryngotracheitis virus (ILTV) is an alphaherpesvirus that causes acute respiratory disease in chickens worldwide. To date, only one complete genomic sequence of ILTV has been reported. This sequence was generated by concatenating partial sequences from six different ILTV strains. Thus, the full genomic sequence of a single (individual) strain of ILTV has not been determined previously. This study aimed to use high throughput sequencing technology to determine the complete genomic sequence of a live attenuated vaccine strain of ILTV. Results The complete genomic sequence of the Serva vaccine strain of ILTV was determined, annotated and compared to the concatenated ILTV reference sequence. The genome size of the Serva strain was 152,628 bp, with a G + C content of 48%. A total of 80 predicted open reading frames were identified. The Serva strain had 96.5% DNA sequence identity with the concatenated ILTV sequence. Notably, the concatenated ILTV sequence was found to lack four large regions of sequence, including 528 bp and 594 bp of sequence in the UL29 and UL36 genes, respectively, and two copies of a 1,563 bp sequence in the repeat regions. Considerable differences in the size of the predicted translation products of 4 other genes (UL54, UL30, UL37 and UL38) were also identified. More than 530 single-nucleotide polymorphisms (SNPs) were identified. Most SNPs were located within three genomic regions, corresponding to sequence from the SA-2 ILTV vaccine strain in the concatenated ILTV sequence. Conclusions This is the first complete genomic sequence of an individual ILTV strain. This sequence will facilitate future comparative genomic studies of ILTV by providing an appropriate reference sequence for the sequence analysis of other ILTV strains. PMID:21501528

2011-01-01

120

Spectrum-Based De Novo Repeat Detection in Genomic Sequences  

Microsoft Academic Search

ABSTRACT A novel approach,to the detection of genomic,repeats is presented in this paper. The technique, dubbed SAGRI (Spectrum Assisted Genomic Repeat Identifier), is based on the spectrum (set of sequence k-mers, for some k) of the genomic sequence. Specifically, the genome,is scanned,twice. The first scan (FindHit) detects candidate,pairs of repeat- segments, by effectively reconstructing portions of the Euler path of

Huy Hoang Do; Kwok Pui Choi; Franco P. Preparata; Wing-kin Sung; Louxin Zhang

2008-01-01

121

Draft genome sequence of the coccolithovirus EhV-84  

PubMed Central

The Coccolithoviridae is a recently discovered group of viruses that infect the marine coccolithophorid Emiliania huxleyi. Emiliania huxleyi virus 84 (EhV-84) has a 160 -180 nm diameter icosahedral structure and a genome of approximately 400 kbp. Here we describe the structural and genomic features of this virus, together with a near complete draft genome sequence (~99%) and its annotation. This is the fourth genome sequence of a member of the coccolithovirus family. PMID:22180805

Nissimov, Jozef I.; Worthy, Charlotte A.; Rooks, Paul; Napier, Johnathan A.; Kimmance, Susan A.; Henn, Matthew R; Ogata, Hiroyuki; Allen, Michael J.

2011-01-01

122

Next-generation sequencing strategies for characterizing the turkey genome.  

PubMed

The turkey genome sequencing project was initiated in 2008 and has relied primarily on next-generation sequencing (NGS) technologies. Our first efforts used a synergistic combination of 2 NGS platforms (Roche/454 and Illumina GAII), detailed bacterial artificial chromosome (BAC) maps, and unique assembly tools to sequence and assemble the genome of the domesticated turkey, Meleagris gallopavo. Since the first release in 2010, efforts to improve the genome assembly, gene annotation, and genomic analyses continue. The initial assembly build (2.01) represented about 89% of the genome sequence with 17X coverage depth (931 Mb). Sequence contigs were assigned to 30 of the 40 chromosomes with approximately 10% of the assembled sequence corresponding to unassigned chromosomes (ChrUn). The sequence has been refined through both genome-wide and area-focused sequencing, including shotgun and paired-end sequencing, and targeted sequencing of chromosomal regions with low or incomplete coverage. These additional efforts have improved the sequence assembly resulting in 2 subsequent genome builds of higher genome coverage (25X/Build3.0 and 30X/Build4.0) with a current sequence totaling 1,010 Mb. Further, BAC with end sequences assigned to the Z/W and MG18 (MHC) chromosomes, ChrUn, or not placed in the previous build were isolated, deeply sequenced (Hi-Seq), and incorporated into the latest build (5.0). To aid in the annotation and to generate a gene expression atlas of major tissues, a comprehensive set of RNA samples was collected at various developmental stages of female and male turkeys. Transcriptome sequencing data (using Illumina Hi-Seq) will provide information to enhance the final assembly and ultimately improve sequence annotation. The most current sequence covers more than 95% of the turkey genome and should yield a much improved gene level of annotation, making it a valuable resource for studying genetic variations underlying economically important traits in poultry. PMID:24570472

Dalloul, Rami A; Zimin, Aleksey V; Settlage, Robert E; Kim, Sungwon; Reed, Kent M

2014-02-01

123

Sequencing the Human Genome: A Historical Perspective on Challenges for Systems Integration  

Microsoft Academic Search

The sequence of the human genomewas declared finished on April 14, 2003. Analyses have been published in the journal Nature for chromosomes 6, 7, 14, 20, 21, 22 andY, with the other chromosomes to followin 2004. Although the Human Genome Project\\u000a officially began in 1990, most of the publicly accessible sequence data were produced by 20 genome centers in six

Lee Rowen

124

Selection to sequence: opportunities in fungal genomics  

SciTech Connect

Selection is a biological force, causing genotypic and phenotypic change over time. Whether environmental or human induced, selective pressures shape the genotypes and the phenotypes of organisms both in nature and in the laboratory. In nature, selective pressure is highly dynamic and the sum of the environment and other organisms. In the laboratory, selection is used in genetic studies and industrial strain development programs to isolate mutants affecting biological processes of interest to researchers. Selective pressures are important considerations for fungal biology. In the laboratory a number of fungi are used as experimental systems to study a wide range of biological processes and in nature fungi are important pathogens of plants and animals and play key roles in carbon and nitrogen cycling. The continued development of high throughput sequencing technologies makes it possible to characterize at the genomic level, the effect of selective pressures both in the lab and in nature for filamentous fungi as well as other organisms.

Baker, Scott E.

2009-12-01

125

The Reference Genome Sequence of Saccharomyces cerevisiae: Then and Now  

PubMed Central

The genome of the budding yeast Saccharomyces cerevisiae was the first completely sequenced from a eukaryote. It was released in 1996 as the work of a worldwide effort of hundreds of researchers. In the time since, the yeast genome has been intensively studied by geneticists, molecular biologists, and computational scientists all over the world. Maintenance and annotation of the genome sequence have long been provided by the Saccharomyces Genome Database, one of the original model organism databases. To deepen our understanding of the eukaryotic genome, the S. cerevisiae strain S288C reference genome sequence was updated recently in its first major update since 1996. The new version, called “S288C 2010,” was determined from a single yeast colony using modern sequencing technologies and serves as the anchor for further innovations in yeast genomic science. PMID:24374639

Engel, Stacia R.; Dietrich, Fred S.; Fisk, Dianna G.; Binkley, Gail; Balakrishnan, Rama; Costanzo, Maria C.; Dwight, Selina S.; Hitz, Benjamin C.; Karra, Kalpana; Nash, Robert S.; Weng, Shuai; Wong, Edith D.; Lloyd, Paul; Skrzypek, Marek S.; Miyasato, Stuart R.; Simison, Matt; Cherry, J. Michael

2014-01-01

126

Genome scanning : an AFM-based DNA sequencing technique  

E-print Network

Genome Scanning is a powerful new technique for DNA sequencing. The method presented in this thesis uses an atomic force microscope with a functionalized cantilever tip to sequence single stranded DNA immobilized to a mica ...

Elmouelhi, Ahmed (Ahmed M.), 1979-

2003-01-01

127

Mapping the Human Reference Genome’s Missing Sequence by Three-Way Admixture in Latino Genomes  

PubMed Central

A principal obstacle to completing maps and analyses of the human genome involves the genome’s “inaccessible” regions: sequences (often euchromatic and containing genes) that are isolated from the rest of the euchromatic genome by heterochromatin and other repeat-rich sequence. We describe a way to localize these sequences by using ancestry linkage disequilibrium in populations that derive ancestry from at least three continents, as is the case for Latinos. We used this approach to map the genomic locations of almost 20 megabases of sequence unlocalized or missing from the current human genome reference (NCBI Genome GRCh37)—a substantial fraction of the human genome’s remaining unmapped sequence. We show that the genomic locations of most sequences that originated from fosmids and larger clones can be admixture mapped in this way, by using publicly available whole-genome sequence data. Genome assembly efforts and future builds of the human genome reference will be strongly informed by this localization of genes and other euchromatic sequences that are embedded within highly repetitive pericentromeric regions. PMID:23932108

Genovese, Giulio; Handsaker, Robert E.; Li, Heng; Kenny, Eimear E.; McCarroll, Steven A.

2013-01-01

128

BorreliaBase: a phylogeny-centered browser of Borrelia genomes  

PubMed Central

Background The bacterial genus Borrelia (phylum Spirochaetes) consists of two groups of pathogens represented respectively by B. burgdorferi, the agent of Lyme borreliosis, and B. hermsii, the agent of tick-borne relapsing fever. The number of publicly available Borrelia genomic sequences is growing rapidly with the discovery and sequencing of Borrelia strains worldwide. There is however a lack of dedicated online databases to facilitate comparative analyses of Borrelia genomes. Description We have developed BorreliaBase, an online database for comparative browsing of Borrelia genomes. The database is currently populated with sequences from 35 genomes of eight Lyme-borreliosis (LB) group Borrelia species and 7 Relapsing-fever (RF) group Borrelia species. Distinct from genome repositories and aggregator databases, BorreliaBase serves manually curated comparative-genomic data including genome-based phylogeny, genome synteny, and sequence alignments of orthologous genes and intergenic spacers. Conclusions With a genome phylogeny at its center, BorreliaBase allows online identification of hypervariable lipoprotein genes, potential regulatory elements, and recombination footprints by providing evolution-based expectations of sequence variability at each genomic locus. The phylo-centric design of BorreliaBase (http://borreliabase.org) is a novel model for interactive browsing and comparative analysis of bacterial genomes online. PMID:24994456

2014-01-01

129

Genome Sequence of Brevibacillus laterosporus Strain GI-9  

PubMed Central

We report the 5.18-Mb genome sequence of Brevibacillus laterosporus strain GI-9, isolated from a subsurface soil sample during a screen for novel strains producing antimicrobial compounds. The draft genome of this strain will aid in biotechnological exploitation and comparative genomics of Brevibacillus laterosporus strains. PMID:22328768

Sharma, Vikas; Singh, Pradip K.; Midha, Samriti; Ranjan, Manish

2012-01-01

130

Complete Genome Sequences of Helicobacter pylori Clarithromycin-Resistant Strains  

PubMed Central

We report the complete genome sequences of two Helicobacter pylori clarithromycin-resistant strains. Clarithromycin (CLR)-resistant strains were obtained under the exposure of H. pylori strain 26695 on agar plates with low clarithromycin concentrations. The genome data provide insights into the genomic changes of H. pylori under selection by clarithromycin in vitro. PMID:24233587

Binh, Tran Thanh; Suzuki, Rumiko; Shiota, Seiji; Kwon, Dong Hyeon

2013-01-01

131

Genome sequence of Brevibacillus laterosporus strain GI-9.  

PubMed

We report the 5.18-Mb genome sequence of Brevibacillus laterosporus strain GI-9, isolated from a subsurface soil sample during a screen for novel strains producing antimicrobial compounds. The draft genome of this strain will aid in biotechnological exploitation and comparative genomics of Brevibacillus laterosporus strains. PMID:22328768

Sharma, Vikas; Singh, Pradip K; Midha, Samriti; Ranjan, Manish; Korpole, Suresh; Patil, Prabhu B

2012-03-01

132

Accurate whole human genome sequencing using reversible terminator chemistry  

Microsoft Academic Search

DNA sequence information underpins genetic research, enabling discoveries of important biological or medical benefit. Sequencing projects have traditionally used long (400-800 base pair) reads, but the existence of reference sequences for the human and many other genomes makes it possible to develop new, fast approaches to re-sequencing, whereby shorter reads are compared to a reference to identify intraspecies genetic variation.

David R. Bentley; Shankar Balasubramanian; Harold P. Swerdlow; Geoffrey P. Smith; John Milton; Clive G. Brown; Kevin P. Hall; Dirk J. Evers; Colin L. Barnes; Helen R. Bignell; Jonathan M. Boutell; Jason Bryant; Richard J. Carter; R. Keira Cheetham; Anthony J. Cox; Darren J. Ellis; Michael R. Flatbush; Niall A. Gormley; Sean J. Humphray; Leslie J. Irving; Mirian S. Karbelashvili; Scott M. Kirk; Heng Li; Xiaohai Liu; Klaus S. Maisinger; Lisa J. Murray; Bojan Obradovic; Tobias Ost; Michael L. Parkinson; Mark R. Pratt; Isabelle M. J. Rasolonjatovo; Mark T. Reed; Roberto Rigatti; Chiara Rodighiero; Mark T. Ross; Andrea Sabot; Subramanian V. Sankar; Aylwyn Scally; Gary P. Schroth; Mark E. Smith; Vincent P. Smith; Anastassia Spiridou; Peta E. Torrance; Svilen S. Tzonev; Eric H. Vermaas; Klaudia Walter; Xiaolin Wu; Lu Zhang; Mohammed D. Alam; Carole Anastasi; Ify C. Aniebo; David M. D. Bailey; Iain R. Bancarz; Saibal Banerjee; Selena G. Barbour; Primo A. Baybayan; Vincent A. Benoit; Kevin F. Benson; Claire Bevis; Phillip J. Black; Asha Boodhun; Joe S. Brennan; John A. Bridgham; Rob C. Brown; Andrew A. Brown; Dale H. Buermann; Abass A. Bundu; James C. Burrows; Nigel P. Carter; Nestor Castillo; Maria Chiara E. Catenazzi; Simon Chang; R. Neil Cooley; Natasha R. Crake; Olubunmi O. Dada; Konstantinos D. Diakoumakos; Belen Dominguez-Fernandez; David J. Earnshaw; Ugonna C. Egbujor; David W. Elmore; Sergey S. Etchin; Mark R. Ewan; Milan Fedurco; Louise J. Fraser; Karin V. Fuentes Fajardo; W. Scott Furey; David George; Kimberley J. Gietzen; Colin P. Goddard; George S. Golda; Philip A. Granieri; David L. Gustafson; Nancy F. Hansen; Kevin Harnish; Christian D. Haudenschild; Narinder I. Heyer; Matthew M. Hims; Johnny T. Ho; Adrian M. Horgan; Katya Hoschler; Steve Hurwitz; Denis V. Ivanov; Maria Q. Johnson; Terena James; T. A. Huw Jones; Gyoung-Dong Kang; Tzvetana H. Kerelska; Alan D. Kersey; Irina Khrebtukova; Alex P. Kindwall; Zoya Kingsbury; Paula I. Kokko-Gonzales; Anil Kumar; Marc A. Laurent; Cynthia T. Lawley; Sarah E. Lee; Xavier Lee; Arnold K. Liao; Jennifer A. Loch; Mitch Lok; Shujun Luo; Radhika M. Mammen; John W. Martin; Patrick G. McCauley; Paul McNitt; Parul Mehta; Keith W. Moon; Joe W. Mullens; Taksina Newington; Zemin Ning; Bee Ling Ng; Sonia M. Novo; Mark A. Osborne; Andrew Osnowski; Omead Ostadan; Lambros L. Paraschos; Lea Pickering; Andrew C. Pike; D. Chris Pinkard; Daniel P. Pliskin; Joe Podhasky; Victor J. Quijano; Come Raczy; Vicki H. Rae; Stephen R. Rawlings; Ana Chiva Rodriguez; Phyllida M. Roe; John Rogers; Maria C. Rogert Bacigalupo; Nikolai Romanov; Anthony Romieu; Rithy K. Roth; Natalie J. Rourke; Silke T. Ruediger; Eli Rusman; Raquel M. Sanches-Kuiper; Martin R. Schenker; Josefina M. Seoane; Richard J. Shaw; Mitch K. Shiver; Steven W. Short; Ning L. Sizto; Johannes P. Sluis; Melanie A. Smith; Jean Ernest Sohna Sohna; Eric J. Spence; Kim Stevens; Neil Sutton; Lukasz Szajkowski; Carolyn L. Tregidgo; Gerardo Turcatti; Stephanie vandeVondele; Yuli Verhovsky; Selene M. Virk; Suzanne Wakelin; Gregory C. Walcott; Jingwen Wang; Graham J. Worsley; Juying Yan; Ling Yau; Mike Zuerlein; Jane Rogers; James C. Mullikin; Matthew E. Hurles; Nick J. McCooke; John S. West; Frank L. Oaks; Peter L. Lundberg; David Klenerman; Richard Durbin; Anthony J. Smith

2008-01-01

133

Whole-genome sequencing and variant discovery in C. elegans  

Microsoft Academic Search

Massively parallel sequencing instruments enable rapid and inexpensive DNA sequence data production. Because these instruments are new, their data require characterization with respect to accuracy and utility. To address this, we sequenced a Caernohabditis elegans N2 Bristol strain isolate using the Solexa Sequence Analyzer, and compared the reads to the reference genome to characterize the data and to evaluate coverage

LaDeana W Hillier; Gabor T Marth; Aaron R Quinlan; David Dooling; Ginger Fewell; Derek Barnett; Paul Fox; Jarret I Glasscock; Matthew Hickenbotham; Weichun Huang; Vincent J Magrini; Ryan J Richt; Sacha N Sander; Donald A Stewart; Michael Stromberg; Eric F Tsung; Todd Wylie; Tim Schedl; Richard K Wilson; Elaine R Mardis

2008-01-01

134

Mapping the human reference genome's missing sequence by three-way admixture in Latino genomes.  

PubMed

A principal obstacle to completing maps and analyses of the human genome involves the genome's "inaccessible" regions: sequences (often euchromatic and containing genes) that are isolated from the rest of the euchromatic genome by heterochromatin and other repeat-rich sequence. We describe a way to localize these sequences by using ancestry linkage disequilibrium in populations that derive ancestry from at least three continents, as is the case for Latinos. We used this approach to map the genomic locations of almost 20 megabases of sequence unlocalized or missing from the current human genome reference (NCBI Genome GRCh37)-a substantial fraction of the human genome's remaining unmapped sequence. We show that the genomic locations of most sequences that originated from fosmids and larger clones can be admixture mapped in this way, by using publicly available whole-genome sequence data. Genome assembly efforts and future builds of the human genome reference will be strongly informed by this localization of genes and other euchromatic sequences that are embedded within highly repetitive pericentromeric regions. PMID:23932108

Genovese, Giulio; Handsaker, Robert E; Li, Heng; Kenny, Eimear E; McCarroll, Steven A

2013-09-01

135

On the current status of Phakopsora pachyrhizi genome sequencing.  

PubMed

Recent advances in the field of sequencing technologies and bioinformatics allow a more rapid access to genomes of non-model organisms at sinking costs. Accordingly, draft genomes of several economically important cereal rust fungi have been released in the last 3 years. Aside from the very recent flax rust and poplar rust draft assemblies there are no genomic data available for other dicot-infecting rust fungi. In this article we outline rust fungus sequencing efforts and comment on the current status of Phakopsora pachyrhizi (Asian soybean rust) genome sequencing. PMID:25221558

Loehrer, Marco; Vogel, Alexander; Huettel, Bruno; Reinhardt, Richard; Benes, Vladimir; Duplessis, Sébastien; Usadel, Björn; Schaffrath, Ulrich

2014-01-01

136

Initial sequencing and analysis of the human genome  

Microsoft Academic Search

The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

Eric S. Lander; Lauren M. Linton; Bruce Birren; Chad Nusbaum; Michael C. Zody; Jennifer Baldwin; Keri Devon; Ken Dewar; Michael Doyle; William FitzHugh; Roel Funke; Diane Gage; Katrina Harris; Andrew Heaford; John Howland; Lisa Kann; Jessica Lehoczky; Rosie LeVine; Paul McEwan; Kevin McKernan; James Meldrim; Jill P. Mesirov; Cher Miranda; William Morris; Jerome Naylor; Christina Raymond; Mark Rosetti; Ralph Santos; Andrew Sheridan; Carrie Sougnez; Nicole Stange-Thomann; Nikola Stojanovic; Aravind Subramanian; Dudley Wyman; Jane Rogers; John Sulston; Rachael Ainscough; Stephan Beck; David Bentley; John Burton; Christopher Clee; Nigel Carter; Alan Coulson; Rebecca Deadman; Panos Deloukas; Andrew Dunham; Ian Dunham; Richard Durbin; Lisa French; Darren Grafham; Simon Gregory; Tim Hubbard; Sean Humphray; Adrienne Hunt; Matthew Jones; Christine Lloyd; Amanda McMurray; Lucy Matthews; Simon Mercer; Sarah Milne; James C. Mullikin; Andrew Mungall; Robert Plumb; Mark Ross; Ratna Shownkeen; Sarah Sims; Robert H. Waterston; Richard K. Wilson; LaDeana W. Hillier; John D. McPherson; Marco A. Marra; Elaine R. Mardis; Lucinda A. Fulton; Asif T. Chinwalla; Kymberlie H. Pepin; Warren R. Gish; Stephanie L. Chissoe; Michael C. Wendl; Kim D. Delehaunty; Tracie L. Miner; Andrew Delehaunty; Jason B. Kramer; Lisa L. Cook; Robert S. Fulton; Douglas L. Johnson; Patrick J. Minx; Sandra W. Clifton; Trevor Hawkins; Elbert Branscomb; Paul Predki; Paul Richardson; Sarah Wenning; Tom Slezak; Norman Doggett; Jan-Fang Cheng; Anne Olsen; Susan Lucas; Christopher Elkin; Edward Uberbacher; Marvin Frazier; Richard A. Gibbs; Donna M. Muzny; Steven E. Scherer; John B. Bouck; Erica J. Sodergren; Kim C. Worley; Catherine M. Rives; James H. Gorrell; Michael L. Metzker; Susan L. Naylor; Raju S. Kucherlapati; David L. Nelson; George M. Weinstock; Yoshiyuki Sakaki; Asao Fujiyama; Masahira Hattori; Tetsushi Yada; Atsushi Toyoda; Takehiko Itoh; Chiharu Kawagoe; Hidemi Watanabe; Yasushi Totoki; Todd Taylor; Jean Weissenbach; Roland Heilig; William Saurin; Francois Artiguenave; Philippe Brottier; Thomas Bruls; Eric Pelletier; Catherine Robert; Patrick Wincker; Douglas R. Smith; Lynn Doucette-Stamm; Marc Rubenfield; Keith Weinstock; Hong Mei Lee; JoAnn Dubois; André Rosenthal; Matthias Platzer; Gerald Nyakatura; Stefan Taudien; Andreas Rump; Huanming Yang; Jun Yu; Jian Wang; Guyang Huang; Jun Gu; Leroy Hood; Lee Rowen; Anup Madan; Shizen Qin; Ronald W. Davis; Nancy A. Federspiel; A. Pia Abola; Michael J. Proctor; Richard M. Myers; Jeremy Schmutz; Mark Dickson; Jane Grimwood; David R. Cox; Maynard V. Olson; Rajinder Kaul; Christopher Raymond; Nobuyoshi Shimizu; Kazuhiko Kawasaki; Shinsei Minoshima; Glen A. Evans; Maria Athanasiou; Roger Schultz; Bruce A. Roe; Feng Chen; Huaqin Pan; Juliane Ramser; Hans Lehrach; Richard Reinhardt; W. Richard McCombie; Melissa de la Bastide; Neilay Dedhia; Helmut Blöcker; Klaus Hornischer; Gabriele Nordsiek; Richa Agarwala; L. Aravind; Jeffrey A. Bailey; Serafim Batzoglou; Ewan Birney; Peer Bork; Daniel G. Brown; Christopher B. Burge; Lorenzo Cerutti; Hsiu-Chuan Chen; Deanna Church; Michele Clamp; Richard R. Copley; Tobias Doerks; Sean R. Eddy; Evan E. Eichler; Terrence S. Furey; James Galagan; James G. R. Gilbert; Cyrus Harmon; Yoshihide Hayashizaki; David Haussler; Henning Hermjakob; Karsten Hokamp; Wonhee Jang; L. Steven Johnson; Thomas A. Jones; Simon Kasif; Arek Kaspryzk; Scot Kennedy; W. James Kent; Paul Kitts; Eugene V. Koonin; Ian Korf; David Kulp; Doron Lancet; Todd M. Lowe; Aoife McLysaght; Tarjei Mikkelsen; John V. Moran; Nicola Mulder; Victor J. Pollara; Chris P. Ponting; Greg Schuler; Jörg Schultz; Guy Slater; Arian F. A. Smit; Elia Stupka; Joseph Szustakowki; Danielle Thierry-Mieg; Jean Thierry-Mieg; Lukas Wagner; John Wallis; Raymond Wheeler; Alan Williams; Yuri I. Wolf; Kenneth H. Wolfe; Shiaw-Pyng Yang; Ru-Fang Yeh; Francis Collins; Mark S. Guyer; Jane Peterson; Adam Felsenfeld; Kris A. Wetterstrand; Aristides Patrinos; Michael J. Morgan

2001-01-01

137

Full Genome Sequence of Giant Panda Rotavirus Strain CH-1.  

PubMed

We report here the complete genomic sequence of the giant panda rotavirus strain CH-1. This work is the first to document the complete genomic sequence (segments 1 to 11) of the CH-1 strain, which offers an effective platform for providing authentic research experiences to novice scientists. PMID:23469354

Guo, Ling; Yan, Qigui; Yang, Shaolin; Wang, Chengdong; Chen, Shijie; Yang, Xiaonong; Hou, Rong; Quan, Zifang; Hao, Zhongxiang

2013-01-01

138

Draft Genome Sequence of Kocuria rhizophila P7-4?  

PubMed Central

We report the draft genome sequence of Kocuria rhizophila P7-4, which was isolated from the intestine of Siganus doliatus caught in the Pacific Ocean. The 2.83-Mb genome sequence consists of 75 large contigs (>100 bp in size) and contains 2,462 predicted protein-coding genes. PMID:21685281

Kim, Woo-Jin; Kim, Young-Ok; Kim, Dae-Soo; Choi, Sang-Haeng; Kim, Dong-Wook; Lee, Jun-Seo; Kong, Hee Jeong; Nam, Bo-Hye; Kim, Bong-Seok; Lee, Sang-Jun; Park, Hong-Seog; Chae, Sung-Hwa

2011-01-01

139

Draft Genome Sequence of Raoultella planticola, Isolated from River Water  

PubMed Central

We isolated Raoultella planticola from a river water sample, which was phenotypically indistinguishable from Escherichia coli on MI agar. The genome sequence of R. planticola was determined to gain information about its metabolic functions contributing to its false positive appearance of E. coli on MI agar. We report the first whole genome sequence of Raoultella planticola. PMID:25323725

Kahler, Amy; Strockbine, Nancy; Gladney, Lori; Hill, Vincent R.

2014-01-01

140

Genome Sequence of the Nonpathogenic Pseudomonas aeruginosa Strain ATCC 15442  

PubMed Central

Pseudomonas aeruginosa ATCC 15442 is an environmental strain of the Pseudomonas genus. Here, we present a 6.77-Mb assembly of its genome sequence. Besides giving insights into characteristics associated with the pathogenicity of P. aeruginosa, such as virulence, drug resistance, and biofilm formation, the genome sequence may provide some information related to biotechnological utilization of the strain. PMID:24786961

Wang, Yujiao; Li, Chao; Ma, Cuiqing; Xu, Ping

2014-01-01

141

Complete Genome Sequences of Five Paenibacillus larvae Bacteriophages  

PubMed Central

Paenibacillus larvae is a pathogen of honeybees that causes American foulbrood (AFB). We isolated bacteriophages from soil containing bee debris collected near beehives in Utah. We announce five high-quality complete genome sequences, which represent the first completed genome sequences submitted to GenBank for any P. larvae bacteriophage. PMID:24233582

Sheflo, Michael A.; Gardner, Adam V.; Merrill, Bryan D.; Fisher, Joshua N. B.; Lunt, Bryce L.; Breakwell, Donald P.; Grose, Julianne H.

2013-01-01

142

Draft Genome Sequence of the Wolbachia Endosymbiont of Drosophila suzukii.  

PubMed

Wolbachia is one of the most successful and abundant symbiotic bacteria in nature, infecting more than 40% of the terrestrial arthropod species. Here we report the draft genome sequence of a novel Wolbachia strain named "wSuzi" that was retrieved from the genome sequencing of its host, the invasive pest Drosophila suzukii. PMID:23472225

Siozios, Stefanos; Cestaro, Alessandro; Kaur, Rupinder; Pertot, Ilaria; Rota-Stabelli, Omar; Anfora, Gianfranco

2013-01-01

143

Draft Genome Sequence of the Wolbachia Endosymbiont of Drosophila suzukii  

PubMed Central

Wolbachia is one of the most successful and abundant symbiotic bacteria in nature, infecting more than 40% of the terrestrial arthropod species. Here we report the draft genome sequence of a novel Wolbachia strain named “wSuzi” that was retrieved from the genome sequencing of its host, the invasive pest Drosophila suzukii. PMID:23472225

Cestaro, Alessandro; Kaur, Rupinder; Pertot, Ilaria; Rota-Stabelli, Omar; Anfora, Gianfranco

2013-01-01

144

Draft Genome Sequence of the Fish Pathogen Piscirickettsia salmonis  

PubMed Central

Piscirickettsia salmonis is a Gram-negative intracellular fish pathogen that has a significant impact on the salmon industry. Here, we report the genome sequence of P. salmonis strain LF-89. This is the first draft genome sequence of P. salmonis, and it reveals interesting attributes, including flagellar genes, despite this bacterium being considered nonmotile. PMID:24201203

Eppinger, Mark; McNair, Katelyn; Zogaj, Xhavit; Dinsdale, Elizabeth A.; Edwards, Robert A.

2013-01-01

145

Unexpected cross-species contamination in genome sequencing projects  

PubMed Central

The raw data from a genome sequencing project sometimes contains DNA from contaminating organisms, which may be introduced during sample collection or sequence preparation. In some instances, these contaminants remain in the sequence even after assembly and deposition of the genome into public databases. As a result, searches of these databases may yield erroneous and confusing results. We used efficient microbiome analysis software to scan the draft assembly of domestic cow, Bos taurus, and identify 173 small contigs that appeared to derive from microbial contaminants. In the course of verifying these findings, we discovered that one genome, Neisseria gonorrhoeae TCDC-NG08107, although putatively a complete genome, contained multiple sequences that actually derived from the cow and sheep genomes. Our findings illustrate the need to carefully validate findings of anomalous DNA that rely on comparisons to either draft or finished genomes.

Merchant, Samier; Wood, Derrick E.

2014-01-01

146

Minimum taxonomic criteria for bacterial genome sequence depositions and announcements.  

PubMed

Multiple bioinformatic methods are available to analyse the information encoded within the complete genome sequence of a bacterium and accurately assign its species status or nearest phylogenetic neighbour. However, it is clear that even now in what is the third decade of bacterial genomics, taxonomically incorrect genome sequence depositions are still being made. We outline a simple scheme of bioinformatic analysis and a set of minimum criteria that should be applied to all bacterial genomic data to ensure that they are accurately assigned to the species or genus level prior to database deposition. To illustrate the utility of the bioinformatic workflow, we analysed the recently deposited genome sequence of Lactobacillus acidophilus 30SC and demonstrated that this DNA was in fact derived from a strain of Lactobacillus amylovorus. Using these methods researchers can ensure that the taxonomic accuracy of genome sequence depositions is maintained within the ever increasing nucleic acid datasets. PMID:22366464

Bull, Matthew J; Marchesi, Julian R; Vandamme, Peter; Plummer, Sue; Mahenthiralingam, Eshwar

2012-04-01

147

The human genome sequence: impact on health care  

Microsoft Academic Search

The recent sequencing of the human genome, resulting from two independent global efforts, is poised to revolutionize all aspects of human health. This landmark achievement has also vindicated two different methodologies that can now be used to target other important large genomes. The human genome sequence has revealed several novel\\/surprising features notably the probable presence of a mere 30-35,000 genes.

M. D. Bashyam; S. E. Hasnain

2003-01-01

148

Genome sequence of the human malaria parasite Plasmodium falciparum  

Microsoft Academic Search

The parasite Plasmodium falciparum is responsible for hundreds of millions of cases of malaria, and kills more than one million African children annually. Here we report an analysis of the genome sequence of P. falciparum clone 3D7. The 23-megabase nuclear genome consists of 14 chromosomes, encodes about 5,300 genes, and is the most (A + T)-rich genome sequenced to date.

Malcolm J. Gardner; Neil Hall; Eula Fung; Owen White; Matthew Berriman; Richard W. Hyman; Jane M. Carlton; Arnab Pain; Sharen Bowman; Ian T. Paulsen; Keith James; Kim Rutherford; Steven L. Salzberg; Alister Craig; Sue Kyes; Man-Suen Chan; Vishvanath Nene; Shamira J. Shallom; Bernard Suh; Jeremy Peterson; Sam Angiuoli; Mihaela Pertea; Jonathan Allen; Jeremy Selengut; Daniel Haft; Michael W. Mather; Akhil B. Vaidya; Alan H. Fairlamb; Martin J. Fraunholz; David S. Roos; Stuart A. Ralph; Geoffrey I. McFadden; Leda M. Cummings; G. Mani Subramanian; Chris Mungall; J. Craig Venter; Daniel J. Carucci; Stephen L. Hoffman; Chris Newbold; Ronald W. Davis; Claire M. Fraser; Bart Barrell

2002-01-01

149

Draft Sequences of the Radish (Raphanus sativus L.) Genome.  

PubMed

Radish (Raphanus sativus L., n = 9) is one of the major vegetables in Asia. Since the genomes of Brassica and related species including radish underwent genome rearrangement, it is quite difficult to perform functional analysis based on the reported genomic sequence of Brassica rapa. Therefore, we performed genome sequencing of radish. Short reads of genomic sequences of 191.1 Gb were obtained by next-generation sequencing (NGS) for a radish inbred line, and 76,592 scaffolds of ?300 bp were constructed along with the bacterial artificial chromosome-end sequences. Finally, the whole draft genomic sequence of 402 Mb spanning 75.9% of the estimated genomic size and containing 61,572 predicted genes was obtained. Subsequently, 221 single nucleotide polymorphism markers and 768 PCR-RFLP markers were used together with the 746 markers produced in our previous study for the construction of a linkage map. The map was combined further with another radish linkage map constructed mainly with expressed sequence tag-simple sequence repeat markers into a high-density integrated map of 1,166 cM with 2,553 DNA markers. A total of 1,345 scaffolds were assigned to the linkage map, spanning 116.0 Mb. Bulked PCR products amplified by 2,880 primer pairs were sequenced by NGS, and SNPs in eight inbred lines were identified. PMID:24848699

Kitashiba, Hiroyasu; Li, Feng; Hirakawa, Hideki; Kawanabe, Takahiro; Zou, Zhongwei; Hasegawa, Yoichi; Tonosaki, Kaoru; Shirasawa, Sachiko; Fukushima, Aki; Yokoi, Shuji; Takahata, Yoshihito; Kakizaki, Tomohiro; Ishida, Masahiko; Okamoto, Shunsuke; Sakamoto, Koji; Shirasawa, Kenta; Tabata, Satoshi; Nishio, Takeshi

2014-10-01

150

Draft Sequences of the Radish (Raphanus sativus L.) Genome  

PubMed Central

Radish (Raphanus sativus L., n = 9) is one of the major vegetables in Asia. Since the genomes of Brassica and related species including radish underwent genome rearrangement, it is quite difficult to perform functional analysis based on the reported genomic sequence of Brassica rapa. Therefore, we performed genome sequencing of radish. Short reads of genomic sequences of 191.1 Gb were obtained by next-generation sequencing (NGS) for a radish inbred line, and 76,592 scaffolds of ?300 bp were constructed along with the bacterial artificial chromosome-end sequences. Finally, the whole draft genomic sequence of 402 Mb spanning 75.9% of the estimated genomic size and containing 61,572 predicted genes was obtained. Subsequently, 221 single nucleotide polymorphism markers and 768 PCR-RFLP markers were used together with the 746 markers produced in our previous study for the construction of a linkage map. The map was combined further with another radish linkage map constructed mainly with expressed sequence tag-simple sequence repeat markers into a high-density integrated map of 1,166 cM with 2,553 DNA markers. A total of 1,345 scaffolds were assigned to the linkage map, spanning 116.0 Mb. Bulked PCR products amplified by 2,880 primer pairs were sequenced by NGS, and SNPs in eight inbred lines were identified. PMID:24848699

Kitashiba, Hiroyasu; Li, Feng; Hirakawa, Hideki; Kawanabe, Takahiro; Zou, Zhongwei; Hasegawa, Yoichi; Tonosaki, Kaoru; Shirasawa, Sachiko; Fukushima, Aki; Yokoi, Shuji; Takahata, Yoshihito; Kakizaki, Tomohiro; Ishida, Masahiko; Okamoto, Shunsuke; Sakamoto, Koji; Shirasawa, Kenta; Tabata, Satoshi; Nishio, Takeshi

2014-01-01

151

Implications of the Plastid Genome Sequence of Typha (Typhaceae, Poales) for Understanding Genome Evolution in Poaceae  

Microsoft Academic Search

Plastid genomes of the grasses (Poaceae) are unusual in their organization and rates of sequence evolution. There has been\\u000a a recent surge in the availability of grass plastid genome sequences, but a comprehensive comparative analysis of genome evolution\\u000a has not been performed that includes any related families in the Poales. We report on the plastid genome of Typha latifolia, the

Mary M. GuisingerTimothy; Timothy W. Chumley; Jennifer V. Kuehl; Jeffrey L. Boore; Robert K. Jansen

2010-01-01

152

Personalizing Embedded Assessment Sequences in Narrative-Centered Learning Environments  

E-print Network

for personalizing embedded assessment sequences that is based on collaborative filtering. We examine personalized sequences. Keywords: Narrative-Centered Learning Environments, Embedded Assessment, Collaborative FilteringPersonalizing Embedded Assessment Sequences in Narrative-Centered Learning Environments

Young, R. Michael

153

Automated De Novo Identification of Repeat Sequence Families in Sequenced Genomes  

Microsoft Academic Search

Repetitive sequences make up a major part of eukaryotic genomes. We have developed an approachfor th e de novo identification and classification of repeat sequence families that is based on extensions to the usual approachof single linkage clustering of local pairwise alignments betwe en genomic sequences. Our extensions use multiple alignment information to define the boundaries of individual copies of

Zhirong Bao; Sean R. Eddy

2002-01-01

154

Progress in Understanding and Sequencing the Genome of Brassica rapa  

PubMed Central

Brassica rapa, which is closely related to Arabidopsis thaliana, is an important crop and a model plant for studying genome evolution via polyploidization. We report the current understanding of the genome structure of B. rapa and efforts for the whole-genome sequencing of the species. The tribe Brassicaceae, which comprises ca. 240 species, descended from a common hexaploid ancestor with a basic genome similar to that of Arabidopsis. Chromosome rearrangements, including fusions and/or fissions, resulted in the present-day “diploid” Brassica species with variation in chromosome number and phenotype. Triplicated genomic segments of B. rapa are collinear to those of A. thaliana with InDels. The genome triplication has led to an approximately 1.7-fold increase in the B. rapa gene number compared to that of A. thaliana. Repetitive DNA of B. rapa has also been extensively amplified and has diverged from that of A. thaliana. For its whole-genome sequencing, the Brassica rapa Genome Sequencing Project (BrGSP) consortium has developed suitable genomic resources and constructed genetic and physical maps. Ten chromosomes of B. rapa are being allocated to BrGSP consortium participants, and each chromosome will be sequenced by a BAC-by-BAC approach. Genome sequencing of B. rapa will offer a new perspective for plant biology and evolution in the context of polyploidization. PMID:18288250

Hong, Chang Pyo; Kwon, Soo-Jin; Kim, Jung Sun; Yang, Tae-Jin; Park, Beom-Seok; Lim, Yong Pyo

2008-01-01

155

Scrutinizing Virus Genome Termini by High-Throughput Sequencing  

PubMed Central

Analysis of genomic terminal sequences has been a major step in studies on viral DNA replication and packaging mechanisms. However, traditional methods to study genome termini are challenging due to the time-consuming protocols and their inefficiency where critical details are lost easily. Recent advances in next generation sequencing (NGS) have enabled it to be a powerful tool to study genome termini. In this study, using NGS we sequenced one iridovirus genome and twenty phage genomes and confirmed for the first time that the high frequency sequences (HFSs) found in the NGS reads are indeed the terminal sequences of viral genomes. Further, we established a criterion to distinguish the type of termini and the viral packaging mode. We also obtained additional terminal details such as terminal repeats, multi-termini, asymmetric termini. With this approach, we were able to simultaneously detect details of the genome termini as well as obtain the complete sequence of bacteriophage genomes. Theoretically, this application can be further extended to analyze larger and more complicated genomes of plant and animal viruses. This study proposed a novel and efficient method for research on viral replication, packaging, terminase activity, transcription regulation, and metabolism of the host cell. PMID:24465717

Fan, Huahao; Jiang, Huanhuan; Chen, Yubao; Tong, Yigang

2014-01-01

156

Whole-Genome Sequences of Thirteen Isolates of Borrelia burgdorferi  

SciTech Connect

Borrelia burgdorferi is a causative agent of Lyme disease in North America and Eurasia. The first complete genome sequence of B. burgdorferi strain 31, available for more than a decade, has assisted research on the pathogenesis of Lyme disease. Because a single genome sequence is not sufficient to understand the relationship between genotypic and geographic variation and disease phenotype, we determined the whole-genome sequences of 13 additional B. burgdorferi isolates that span the range of natural variation. These sequences should allow improved understanding of pathogenesis and provide a foundation for novel detection, diagnosis, and prevention strategies.

Schutzer S. E.; Dunn J.; Fraser-Liggett, C. M.; Casjens, S. R.; Qiu, W.-G.; Mongodin, E. F.; Luft, B. J.

2011-02-01

157

Using Partial Genomic Fosmid Libraries for Sequencing CompleteOrganellar Genomes  

SciTech Connect

Organellar genome sequences provide numerous phylogenetic markers and yield insight into organellar function and molecular evolution. These genomes are much smaller in size than their nuclear counterparts; thus, their complete sequencing is much less expensive than total nuclear genome sequencing, making broader phylogenetic sampling feasible. However, for some organisms it is challenging to isolate plastid DNA for sequencing using standard methods. To overcome these difficulties, we constructed partial genomic libraries from total DNA preparations of two heterotrophic and two autotrophic angiosperm species using fosmid vectors. We then used macroarray screening to isolate clones containing large fragments of plastid DNA. A minimum tiling path of clones comprising the entire genome sequence of each plastid was selected, and these clones were shotgun-sequenced and assembled into complete genomes. Although this method worked well for both heterotrophic and autotrophic plants, nuclear genome size had a dramatic effect on the proportion of screened clones containing plastid DNA and, consequently, the overall number of clones that must be screened to ensure full plastid genome coverage. This technique makes it possible to determine complete plastid genome sequences for organisms that defy other available organellar genome sequencing methods, especially those for which limited amounts of tissue are available.

McNeal, Joel R.; Leebens-Mack, James H.; Arumuganathan, K.; Kuehl, Jennifer V.; Boore, Jeffrey L.; dePamphilis, Claude W.

2005-08-26

158

Genome Sequence of Tumebacillus flagellatus GST4, the First Genome Sequence of a Species in the Genus Tumebacillus  

PubMed Central

We present here the first genome sequence of a species in the genus Tumebacillus. The draft genome sequence of Tumebacillus flagellatus GST4 provides a genetic basis for future studies addressing the origins, evolution, and ecological role of Tumebacillus organisms, as well as a source of acid-resistant amylase-encoding genes for further studies. PMID:25395648

Wang, Qing-Yan; Huang, Yan-Yan; Song, Li-Fu; Du, Qi-Shi; Yu, Bo; Chen, Dong

2014-01-01

159

Center for Cell and Genome Sciences, Crocker Science Building  

E-print Network

chemistry Center for Cell and Genome Sciences genetic engineering building artificial life brain engineering photodiodes #12;the Cell engineering the genome, imaging proteins Invitrogen at the intersection of chemistry

Tipple, Brett

160

Complete Genome Sequence of Mycoplasma haemofelis, a Hemotropic Mycoplasma?  

PubMed Central

Here, we present the genome sequence of Mycoplasma haemofelis strain Langford 1, representing the first hemotropic mycoplasma (hemoplasma) species to be completely sequenced and annotated. Originally isolated from a cat with hemolytic anemia, this strain induces severe hemolytic anemia when inoculated into specific-pathogen-free-derived cats. The genome sequence has provided insights into the biology of this uncultivatable hemoplasma and has identified potential molecular mechanisms underlying its pathogenicity. PMID:21317334

Barker, Emily N.; Helps, Chris R.; Peters, Iain R.; Darby, Alistair C.; Radford, Alan D.; Tasker, Severine

2011-01-01

161

Complete Genome Sequence of Salmonella Bacteriophage SS3e  

PubMed Central

A Salmonella lytic bacteriophage, SS3e, was isolated, and its genome was sequenced completely. This phage is able to lyse not only various Salmonella serovars but also Escherichia coli, Shigella sonnei, Enterobacter cloacae, and Serratia marcescens, indicating a broad host specificity. Genomic sequence analysis of SS3e revealed a linear double-stranded DNA sequence of 40,793 bp harboring 58 open reading frames, which is highly similar to Salmonella phages SETP13 and MB78. PMID:22923809

Kim, Sung-Hun; Park, Jeong-Hyun; Lee, Bok-Kwon; Kwon, Hyuk-Joon; Shin, Ji-Hyun; Kim, Jungmin

2012-01-01

162

Complete genome sequence of Anaerococcus prevotii type strain (PC1).  

PubMed

Anaerococcus prevotii (Foubert and Douglas 1948) Ezaki et al. 2001 is the type species of the genus, and is of phylogenetic interest because of its arguable assignment to the provisionally arranged family 'Peptostreptococcaceae'. A. prevotii is an obligate anaerobic coccus, usually arranged in clumps or tetrads. The strain, whose genome is described here, was originally isolated from human plasma; other strains of the species were also isolated from clinical specimen. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a member of the genus. Next to Finegoldia magna, A. prevotii is only the second species from the family 'Peptostreptococcaceae' for which a complete genome sequence is described. The 1,998,633 bp long genome (chromosome and one plasmid) with its 1852 protein-coding and 61 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:21304652

Labutti, Kurt; Pukall, Rudiger; Steenblock, Katja; Glavina Del Rio, Tijana; Tice, Hope; Copeland, Alex; Cheng, Jan-Fang; Lucas, Susan; Chen, Feng; Nolan, Matt; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ivanova, Natalia; Mavromatis, Konstantinos; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Chain, Patrick; Saunders, Elizabeth; Brettin, Thomas; Detter, John C; Han, Cliff; Göker, Markus; Bristow, Jim; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Lapidus, Alla

2009-01-01

163

Reference genome sequence of the model plant Setaria  

SciTech Connect

We generated a high-quality reference genome sequence for foxtail millet (Setaria italica). The ~400-Mb assembly covers ~80% of the genome and >95% of the gene space. The assembly was anchored to a 992-locus genetic map and was annotated by comparison with >1.3 million expressed sequence tag reads. We produced more than 580 million RNA-Seq reads to facilitate expression analyses. We also sequenced Setaria viridis, the ancestral wild relative of S. italica, and identified regions of differential single-nucleotide polymorphism density, distribution of transposable elements, small RNA content, chromosomal rearrangement and segregation distortion. The genus Setaria includes natural and cultivated species that demonstrate a wide capacity for adaptation. The genetic basis of this adaptation was investigated by comparing five sequenced grass genomes. We also used the diploid Setaria genome to evaluate the ongoing genome assembly of a related polyploid, switchgrass (Panicum virgatum).

Bennetzen, Jeffrey L [ORNL; Schmutz, Jeremy [Hudson Alpha Institute of Biotechnology; Wang, Hao [University of Georgia, Athens, GA; Percifield, Ryan [University of Georgia, Athens, GA; Hawkins, Jennifer [University of Georgia, Athens, GA; Pontaroli, Ana C. [University of Georgia, Athens, GA; Estep, Matt [University of Georgia, Athens, GA; Feng, Liang [University of Georgia, Athens, GA; Vaughn, Justin N [ORNL; Grimwood, Jane [Hudson Alpha Institute of Biotechnology; Jenkins, Jerry [Hudson Alpha Institute of Biotechnology; Barry, Kerrie [U.S. Department of Energy, Joint Genome Institute; Lindquist, Erika [U.S. Department of Energy, Joint Genome Institute; Hellsten, Uffe [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Wang, Xuewen [University of Georgia, Athens, GA; Wu, Xiaomei [University of Georgia, Athens, GA; Mitros, Therese [University of California, Berkeley; Triplett, Jimmy [University of Missouri, St. Louis; Yang, Xiaohan [ORNL; Ye, Chuyu [ORNL; Mauro-Herrera, Margarita [Oklahoma State University; Wang, Lin [Cornell University; Li, Pinghua [Cornell University; Sharma, Manoj [University of California, Davis; Sharma, Rita [University of California, Davis; Ronald, Pamela [University of California, Davis; Panaud, Olivier [Universite de Perpignan, Perpignan, France; Kellogg, Elizabeth A. [University of Missouri, St. Louis; Brutnell, Thomas P. [Cornell University; Doust, Andrew N. [Oklahoma State University; Tuskan, Gerald A [ORNL; Rokhsar, Daniel [U.S. Department of Energy, Joint Genome Institute; Devos, Katrien M [ORNL

2012-01-01

164

Reference genome sequence of the model plant Setaria.  

PubMed

We generated a high-quality reference genome sequence for foxtail millet (Setaria italica). The ?400-Mb assembly covers ?80% of the genome and >95% of the gene space. The assembly was anchored to a 992-locus genetic map and was annotated by comparison with >1.3 million expressed sequence tag reads. We produced more than 580 million RNA-Seq reads to facilitate expression analyses. We also sequenced Setaria viridis, the ancestral wild relative of S. italica, and identified regions of differential single-nucleotide polymorphism density, distribution of transposable elements, small RNA content, chromosomal rearrangement and segregation distortion. The genus Setaria includes natural and cultivated species that demonstrate a wide capacity for adaptation. The genetic basis of this adaptation was investigated by comparing five sequenced grass genomes. We also used the diploid Setaria genome to evaluate the ongoing genome assembly of a related polyploid, switchgrass (Panicum virgatum). PMID:22580951

Bennetzen, Jeffrey L; Schmutz, Jeremy; Wang, Hao; Percifield, Ryan; Hawkins, Jennifer; Pontaroli, Ana C; Estep, Matt; Feng, Liang; Vaughn, Justin N; Grimwood, Jane; Jenkins, Jerry; Barry, Kerrie; Lindquist, Erika; Hellsten, Uffe; Deshpande, Shweta; Wang, Xuewen; Wu, Xiaomei; Mitros, Therese; Triplett, Jimmy; Yang, Xiaohan; Ye, Chu-Yu; Mauro-Herrera, Margarita; Wang, Lin; Li, Pinghua; Sharma, Manoj; Sharma, Rita; Ronald, Pamela C; Panaud, Olivier; Kellogg, Elizabeth A; Brutnell, Thomas P; Doust, Andrew N; Tuskan, Gerald A; Rokhsar, Daniel; Devos, Katrien M

2012-06-01

165

Marsupial Genome Sequences: Providing Insight into Evolution and Disease  

PubMed Central

Marsupials (metatherians), with their position in vertebrate phylogeny and their unique biological features, have been studied for many years by a dedicated group of researchers, but it has only been since the sequencing of the first marsupial genome that their value has been more widely recognised. We now have genome sequences for three distantly related marsupial species (the grey short-tailed opossum, the tammar wallaby, and Tasmanian devil), with the promise of many more genomes to be sequenced in the near future, making this a particularly exciting time in marsupial genomics. The emergence of a transmissible cancer, which is obliterating the Tasmanian devil population, has increased the importance of obtaining and analysing marsupial genome sequence for understanding such diseases as well as for conservation efforts. In addition, these genome sequences have facilitated studies aimed at answering questions regarding gene and genome evolution and provided insight into the evolution of epigenetic mechanisms. Here I highlight the major advances in our understanding of evolution and disease, facilitated by marsupial genome projects, and speculate on the future contributions to be made by such sequences. PMID:24278712

Deakin, Janine E.

2012-01-01

166

A new approach to genome mapping and sequencing: slalom libraries  

PubMed Central

We describe here an efficient strategy for simultaneous genome mapping and sequencing. The approach is based on physically oriented, overlapping restriction fragment libraries called slalom libraries. Slalom libraries combine features of general genomic, jumping and linking libraries. Slalom libraries can be adapted to different applications and two main types of slalom libraries are described in detail. This approach was used to map and sequence (with ?46% coverage) two human P1-derived artificial chromosome (PAC) clones, each of ?100 kb. This model experiment demonstrates the feasibility of the approach and shows that the efficiency (cost-effectiveness and speed) of existing mapping/sequencing methods could be improved at least 5–10-fold. Furthermore, since the efficiency of contig assembly in the slalom approach is virtually independent of length of sequence reads, even short sequences produced by rapid, high throughput sequencing techniques would suffice to complete a physical map and a sequence scan of a small genome. PMID:11788732

Zabarovska, Veronika I.; Gizatullin, Rinat Z.; Al-Amin, Ali N.; Podowski, Raf; Protopopov, Alexei I.; Lofdahl, Sven; Wahlestedt, Claes; Winberg, Gosta; Kashuba, Vladimir I.; Ernberg, Ingemar; Zabarovsky, Eugene R.

2002-01-01

167

A new approach to genome mapping and sequencing: slalom libraries.  

PubMed

We describe here an efficient strategy for simultaneous genome mapping and sequencing. The approach is based on physically oriented, overlapping restriction fragment libraries called slalom libraries. Slalom libraries combine features of general genomic, jumping and linking libraries. Slalom libraries can be adapted to different applications and two main types of slalom libraries are described in detail. This approach was used to map and sequence (with approximately 46% coverage) two human P1-derived artificial chromosome (PAC) clones, each of approximately 100 kb. This model experiment demonstrates the feasibility of the approach and shows that the efficiency (cost-effectiveness and speed) of existing mapping/sequencing methods could be improved at least 5-10-fold. Furthermore, since the efficiency of contig assembly in the slalom approach is virtually independent of length of sequence reads, even short sequences produced by rapid, high throughput sequencing techniques would suffice to complete a physical map and a sequence scan of a small genome. PMID:11788732

Zabarovska, Veronika I; Gizatullin, Rinat Z; Al-Amin, Ali N; Podowski, Raf; Protopopov, Alexei I; Löfdahl, Sven; Wahlestedt, Claes; Winberg, Gösta; Kashuba, Vladimir I; Ernberg, Ingemar; Zabarovsky, Eugene R

2002-01-15

168

The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae.  

PubMed

The currently available yeast mitochondrial DNA (mtDNA) sequence is incomplete, contains many errors and is derived from several polymorphic strains. Here, we report that the mtDNA sequence of the strain used for nuclear genome sequencing assembles into a circular map of 85,779 bp which includes 10 kb of new sequence. We give a list of seven small hypothetical open reading frames (ORFs). Hot spots of point mutations are found in exons near the insertion sites of optional mobile group I intron-related sequences. Our data suggest that shuffling of mobile elements plays an important role in the remodelling of the yeast mitochondrial genome. PMID:9872396

Foury, F; Roganti, T; Lecrenier, N; Purnelle, B

1998-12-01

169

Complete genome sequence of Thermomonospora curvata type strain (B9)  

SciTech Connect

Thermomonospora curvata Henssen 1957 is the type species of the genus Thermomonospora. This genus is of interest because members of this clade are sources of new antibiotics, enzymes, and products with pharmacological activity. In addition, members of this genus participate in the active degradation of cellulose. This is the first complete genome sequence of a member of the family Thermomonosporaceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 5,639,016 bp long genome with its 4,985 protein-coding and 76 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

Chertkov, Olga [Los Alamos National Laboratory (LANL); Sikorski, Johannes [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Nolan, Matt [Joint Genome Institute, Walnut Creek, California; Lapidus, Alla L. [Joint Genome Institute, Walnut Creek, California; Lucas, Susan [Joint Genome Institute, Walnut Creek, California; Glavina Del Rio, Tijana [Joint Genome Institute, Walnut Creek, California; Tice, Hope [Joint Genome Institute, Walnut Creek, California; Cheng, Jan-Fang [Joint Genome Institute, Walnut Creek, California; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [Joint Genome Institute, Walnut Creek, California; Liolios, Konstantinos [Joint Genome Institute, Walnut Creek, California; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [Joint Genome Institute, Walnut Creek, California; Palaniappan, Krishna [Joint Genome Institute, Walnut Creek, California; Ngatchou, Olivier Duplex [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Brettin, Thomas S [ORNL; Han, Cliff [Los Alamos National Laboratory (LANL); Detter, J. Chris [Joint Genome Institute, Walnut Creek, California; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [Joint Genome Institute, Walnut Creek, California; Bristow, James [Joint Genome Institute, Walnut Creek, California; Eisen, Jonathan [Joint Genome Institute, Walnut Creek, California; Markowitz, Victor [Joint Genome Institute, Walnut Creek, California; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Kyrpides, Nikos C [Joint Genome Institute, Walnut Creek, California

2011-01-01

170

Multiplex Sequencing of Seven Ocular Herpes Simplex Virus Type-1 Genomes: Phylogeny, Sequence Variability,  

E-print Network

Multiplex Sequencing of Seven Ocular Herpes Simplex Virus Type-1 Genomes: Phylogeny, Sequence-7812 Herpes simplex virus (HSV)-1 is a significant human patho- gen causing diseases such as mucocutaneous

Craven, Mark

171

Cataloging Coding Sequence Variations in Human Genome Databases  

Microsoft Academic Search

BackgroundWith the recent growth of information on sequence variations in the human genome, predictions regarding the functional effects and relevance to disease phenotypes of coding sequence variations are becoming increasingly important. The aims of this study were to catalog protein-coding sequence variations (CVs) occurring in genetic variation databases and to use bioinformatic programs to analyze CVs. In addition, we aim

Hong-Hee Won; Hee-Jin Kim; Kyung-A. Lee; Jong-Won Kim; Cecile Fairhead

2008-01-01

172

Genome sequencing: a systematic review of health economic evidence  

PubMed Central

Recently the sequencing of the human genome has become a major biological and clinical research field. However, the public health impact of this new technology with focus on the financial effect is not yet to be foreseen. To provide an overview of the current health economic evidence for genome sequencing, we conducted a thorough systematic review of the literature from 17 databases. In addition, we conducted a hand search. Starting with 5 520 records we ultimately included five full-text publications and one internet source, all focused on cost calculations. The results were very heterogeneous and, therefore, difficult to compare. Furthermore, because the methodology of the publications was quite poor, the reliability and validity of the results were questionable. The real costs for the whole sequencing workflow, including data management and analysis, remain unknown. Overall, our review indicates that the current health economic evidence for genome sequencing is quite poor. Therefore, we listed aspects that needed to be considered when conducting health economic analyses of genome sequencing. Thereby, specifics regarding the overall aim, technology, population, indication, comparator, alternatives after sequencing, outcomes, probabilities, and costs with respect to genome sequencing are discussed. For further research, at the outset, a comprehensive cost calculation of genome sequencing is needed, because all further health economic studies rely on valid cost data. The results will serve as an input parameter for budget-impact analyses or cost-effectiveness analyses. PMID:24330507

2013-01-01

173

Management of Incidental Findings in Clinical Genomic Sequencing  

PubMed Central

Genomic sequencing is becoming accurate, fast, and inexpensive, and is rapidly being incorporated into clinical practice. Incidental findings, which result in large numbers from genomic sequencing, are a potential barrier to the utility of this new technology due to their high prevalence and the lack of evidence or guidelines available to guide their clinical interpretation. This unit reviews the definition, classification, and management of incidental findings from genomic sequencing. The unit focuses on the clinical aspects of handling incidental findings, with an emphasis on the key role of clinical context in defining incidental findings and determining their clinical relevance and utility. PMID:23595601

Krier, Joel B.; Green, Robert C.

2013-01-01

174

Complete genome sequence of Ferroglobus placidus AEDII12DO  

PubMed Central

Ferroglobus placidus belongs to the order Archaeoglobales within the archaeal phylum Euryarchaeota. Strain AEDII12DO is the type strain of the species and was isolated from a shallow marine hydrothermal system at Vulcano, Italy. It is a hyperthermophilic, anaerobic chemolithoautotroph, but it can also use a variety of aromatic compounds as electron donors. Here we describe the features of this organism together with the complete genome sequence and annotation. The 2,196,266 bp genome with its 2,567 protein-coding and 55 RNA genes was sequenced as part of a DOE Joint Genome Institute Laboratory Sequencing Program (LSP) project. PMID:22180810

Anderson, Iain; Risso, Carla; Holmes, Dawn; Lucas, Susan; Copeland, Alex; Lapidus, Alla; Cheng, Jan-Fang; Bruce, David; Goodwin, Lynne; Pitluck, Samuel; Saunders, Elizabeth; Brettin, Thomas; Detter, John C.; Han, Cliff; Tapia, Roxanne; Larimer, Frank; Land, Miriam; Hauser, Loren; Woyke, Tanja; Lovley, Derek; Kyrpides, Nikos; Ivanova, Natalia

2011-01-01

175

Complete genome sequence of Staphylothermus hellenicus P8T  

SciTech Connect

Staphylothermus hellenicus belongs to the order Desulfurococcales within the archaeal phy- lum Crenarchaeota. Strain P8T is the type strain of the species and was isolated from a shal- low hydrothermal vent system at Palaeochori Bay, Milos, Greece. It is a hyperthermophilic, anaerobic heterotroph. Here we describe the features of this organism together with the com- plete genome sequence and annotation. The 1,580,347 bp genome with its 1,668 protein- coding and 48 RNA genes was sequenced as part of a DOE Joint Genome Institute (JGI) La- boratory Sequencing Program (LSP) project.

Anderson, Iain [U.S. Department of Energy, Joint Genome Institute; Wirth, Reinhard [Universitat Regensburg, Regensburg, Germany; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Davenport, Karen W. [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute

2011-01-01

176

Genomic treasure troves: complete genome sequencing of herbarium and insect museum specimens.  

PubMed

Unlocking the vast genomic diversity stored in natural history collections would create unprecedented opportunities for genome-scale evolutionary, phylogenetic, domestication and population genomic studies. Many researchers have been discouraged from using historical specimens in molecular studies because of both generally limited success of DNA extraction and the challenges associated with PCR-amplifying highly degraded DNA. In today's next-generation sequencing (NGS) world, opportunities and prospects for historical DNA have changed dramatically, as most NGS methods are actually designed for taking short fragmented DNA molecules as templates. Here we show that using a standard multiplex and paired-end Illumina sequencing approach, genome-scale sequence data can be generated reliably from dry-preserved plant, fungal and insect specimens collected up to 115 years ago, and with minimal destructive sampling. Using a reference-based assembly approach, we were able to produce the entire nuclear genome of a 43-year-old Arabidopsis thaliana (Brassicaceae) herbarium specimen with high and uniform sequence coverage. Nuclear genome sequences of three fungal specimens of 22-82 years of age (Agaricus bisporus, Laccaria bicolor, Pleurotus ostreatus) were generated with 81.4-97.9% exome coverage. Complete organellar genome sequences were assembled for all specimens. Using de novo assembly we retrieved between 16.2-71.0% of coding sequence regions, and hence remain somewhat cautious about prospects for de novo genome assembly from historical specimens. Non-target sequence contaminations were observed in 2 of our insect museum specimens. We anticipate that future museum genomics projects will perhaps not generate entire genome sequences in all cases (our specimens contained relatively small and low-complexity genomes), but at least generating vital comparative genomic data for testing (phylo)genetic, demographic and genetic hypotheses, that become increasingly more horizontal. Furthermore, NGS of historical DNA enables recovering crucial genetic information from old type specimens that to date have remained mostly unutilized and, thus, opens up a new frontier for taxonomic research as well. PMID:23922691

Staats, Martijn; Erkens, Roy H J; van de Vossenberg, Bart; Wieringa, Jan J; Kraaijeveld, Ken; Stielow, Benjamin; Geml, József; Richardson, James E; Bakker, Freek T

2013-01-01

177

Genomic Treasure Troves: Complete Genome Sequencing of Herbarium and Insect Museum Specimens  

PubMed Central

Unlocking the vast genomic diversity stored in natural history collections would create unprecedented opportunities for genome-scale evolutionary, phylogenetic, domestication and population genomic studies. Many researchers have been discouraged from using historical specimens in molecular studies because of both generally limited success of DNA extraction and the challenges associated with PCR-amplifying highly degraded DNA. In today's next-generation sequencing (NGS) world, opportunities and prospects for historical DNA have changed dramatically, as most NGS methods are actually designed for taking short fragmented DNA molecules as templates. Here we show that using a standard multiplex and paired-end Illumina sequencing approach, genome-scale sequence data can be generated reliably from dry-preserved plant, fungal and insect specimens collected up to 115 years ago, and with minimal destructive sampling. Using a reference-based assembly approach, we were able to produce the entire nuclear genome of a 43-year-old Arabidopsis thaliana (Brassicaceae) herbarium specimen with high and uniform sequence coverage. Nuclear genome sequences of three fungal specimens of 22–82 years of age (Agaricus bisporus, Laccaria bicolor, Pleurotus ostreatus) were generated with 81.4–97.9% exome coverage. Complete organellar genome sequences were assembled for all specimens. Using de novo assembly we retrieved between 16.2–71.0% of coding sequence regions, and hence remain somewhat cautious about prospects for de novo genome assembly from historical specimens. Non-target sequence contaminations were observed in 2 of our insect museum specimens. We anticipate that future museum genomics projects will perhaps not generate entire genome sequences in all cases (our specimens contained relatively small and low-complexity genomes), but at least generating vital comparative genomic data for testing (phylo)genetic, demographic and genetic hypotheses, that become increasingly more horizontal. Furthermore, NGS of historical DNA enables recovering crucial genetic information from old type specimens that to date have remained mostly unutilized and, thus, opens up a new frontier for taxonomic research as well. PMID:23922691

Staats, Martijn; Erkens, Roy H. J.; van de Vossenberg, Bart; Wieringa, Jan J.; Kraaijeveld, Ken; Stielow, Benjamin; Geml, Jozsef; Richardson, James E.; Bakker, Freek T.

2013-01-01

178

Recurrent insertion and duplication generate networks of transposable element sequences in the Drosophila melanogaster genome  

Microsoft Academic Search

BACKGROUND: The recent availability of genome sequences has provided unparalleled insights into the broad-scale patterns of transposable element (TE) sequences in eukaryotic genomes. Nevertheless, the difficulties that TEs pose for genome assembly and annotation have prevented detailed, quantitative inferences about the contribution of TEs to genomes sequences. RESULTS: Using a high-resolution annotation of TEs in Release 4 genome sequence, we

Casey M Bergman; Hadi Quesneville; Dominique Anxolabéhère; Michael Ashburner

2006-01-01

179

Genome Announcement1 Draft genome sequence of the electricity producing3  

E-print Network

-positive dissimilatory metal25 reducing bacteria (DMRB) for which there is a draft genome sequence. Consistent with26 knowledge of extracellular respiration by Gram-positive bacteria. By comparing these58 mechanisms to Gram phylogenetic neighbors with sequenced genomes (5, 7, 8). C-type cytochromes are63 essential for the reduction

Hazen, Terry

180

A Genome-Wide Analysis of FRT-Like Sequences in the Human Genome  

PubMed Central

Efficient and precise genome manipulations can be achieved by the Flp/FRT system of site-specific DNA recombination. Applications of this system are limited, however, to cases when target sites for Flp recombinase, FRT sites, are pre-introduced into a genome locale of interest. To expand use of the Flp/FRT system in genome engineering, variants of Flp recombinase can be evolved to recognize pre-existing genomic sequences that resemble FRT and thus can serve as recombination sites. To understand the distribution and sequence properties of genomic FRT-like sites, we performed a genome-wide analysis of FRT-like sites in the human genome using the experimentally-derived parameters. Out of 642,151 identified FRT-like sequences, 581,157 sequences were unique and 12,452 sequences had at least one exact duplicate. Duplicated FRT-like sequences are located mostly within LINE1, but also within LTRs of endogenous retroviruses, Alu repeats and other repetitive DNA sequences. The unique FRT-like sequences were classified based on the number of matches to FRT within the first four proximal bases pairs of the Flp binding elements of FRT and the nature of mismatched base pairs in the same region. The data obtained will be useful for the emerging field of genome engineering. PMID:21448289

Shultz, Jeffry L.; Voziyanova, Eugenia; Konieczka, Jay H.; Voziyanov, Yuri

2011-01-01

181

De Novo Whole-Genome Sequence and Genome Annotation of Lichtheimia ramosa  

PubMed Central

We report the annotated draft genome sequence of Lichtheimia ramosa (JMRC FSU:6197). It has been reported to be a causative organism of mucormycosis, a rare but rapidly progressive infection in immunocompromised humans. The functionally annotated genomic sequence consists of 74 scaffolds with a total number of 11,510 genes. PMID:25212617

Linde, Jorg; Schwartze, Volker; Binder, Ulrike; Lass-Florl, Cornelia

2014-01-01

182

The Arabidopsis lyrata genome sequence and the basis of rapid genome size change  

SciTech Connect

In our manuscript, we present a high-quality genome sequence of the Arabidopsis thaliana relative, Arabidopsis lyrata, produced by dideoxy sequencing. We have performed the usual types of genome analysis (gene annotation, dN/dS studies etc. etc.), but this is relegated to the Supporting Information. Instead, we focus on what was a major motivation for sequencing this genome, namely to understand how A. thaliana lost half its genome in a few million years and lived to tell the tale. The rather surprising conclusion is that there is not a single genomic feature that accounts for the reduced genome, but that every aspect centromeres, intergenic regions, transposable elements, gene family number is affected through hundreds of thousands of cuts. This strongly suggests that overall genome size in itself is what has been under selection, a suggestion that is strongly supported by our demonstration (using population genetics data from A. thaliana) that new deletions seem to be driven to fixation.

Hu, Tina T.; Pattyn, Pedro; Bakker, Erica G.; Cao, Jun; Cheng, Jan-Fang; Clark, Richard M.; Fahlgren, Noah; Fawcett, Jeffrey A.; Grimwood, Jane; Gundlach, Heidrun; Haberer, Georg; Hollister, Jesse D.; Ossowski, Stephan; Ottilar, Robert P.; Salamov, Asaf A.; Schneeberger, Korbinian; Spannagl, Manuel; Wang, Xi; Yang, Liang; Nasrallah, Mikhail E.; Bergelson, Joy; Carrington, James C.; Gaut, Brandon S.; Schmutz, Jeremy; Mayer, Klaus F. X.; Van de Peer, Yves; Grigoriev, Igor V.; Nordborg, Magnus; Weigel, Detlef; Guo, Ya-Long

2011-04-29

183

Assembly of large genomes using second-generation sequencing  

PubMed Central

Second-generation sequencing technology can now be used to sequence an entire human genome in a matter of days and at low cost. Sequence read lengths, initially very short, have rapidly increased since the technology first appeared, and we now are seeing a growing number of efforts to sequence large genomes de novo from these short reads. In this Perspective, we describe the issues associated with short-read assembly, the different types of data produced by second-gen sequencers, and the latest assembly algorithms designed for these data. We also review the genomes that have been assembled recently from short reads and make recommendations for sequencing strategies that will yield a high-quality assembly. PMID:20508146

Schatz, Michael C.; Delcher, Arthur L.; Salzberg, Steven L.

2010-01-01

184

Complete genome sequence of Haloterrigena turkmenica type strain (4k).  

PubMed

Haloterrigena turkmenica (Zvyagintseva and Tarasov 1987) Ventosa et al. 1999, comb. nov. is the type species of the genus Haloterrigena in the euryarchaeal family Halobacteriaceae. It is of phylogenetic interest because of the yet unclear position of the genera Haloterrigena and Natrinema within the Halobacteriaceae, which created some taxonomic problems historically. H. turkmenica, was isolated from sulfate saline soil in Turkmenistan, is a relatively fast growing, chemoorganotrophic, carotenoid-containing, extreme halophile, requiring at least 2 M NaCl for growth. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the genus Haloterrigena, but the eighth genome sequence from a member of the family Halobacteriaceae. The 5,440,782 bp genome (including six plasmids) with its 5,287 protein-coding and 63 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:21304683

Saunders, Elisabeth; Tindall, Brian J; Fähnrich, Regine; Lapidus, Alla; Copeland, Alex; Del Rio, Tijana Glavina; Lucas, Susan; Chen, Feng; Tice, Hope; Cheng, Jan-Fang; Han, Cliff; Detter, John C; Bruce, David; Goodwin, Lynne; Chain, Patrick; Pitluck, Sam; Pati, Amrita; Ivanova, Natalia; Mavromatis, Konstantinos; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Brettin, Thomas; Rohde, Manfred; Göker, Markus; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Klenk, Hans-Peter; Kyrpides, Nikos C

2010-01-01

185

Genome sequencing and analysis of the model grass Brachypodium distachyon  

SciTech Connect

Three subfamilies of grasses, the Ehrhartoideae, Panicoideae and Pooideae, provide the bulk of human nutrition and are poised to become major sources of renewable energy. Here we describe the genome sequence of the wild grass Brachypodium distachyon (Brachypodium), which is, to our knowledge, the first member of the Pooideae subfamily to be sequenced. Comparison of the Brachypodium, rice and sorghum genomes shows a precise history of genome evolution across a broad diversity of the grasses, and establishes a template for analysis of the large genomes of economically important pooid grasses such as wheat. The high-quality genome sequence, coupled with ease of cultivation and transformation, small size and rapid life cycle, will help Brachypodium reach its potential as an important model system for developing new energy and food crops.

Yang, Xiaohan [ORNL; Kalluri, Udaya C [ORNL; Tuskan, Gerald A [ORNL

2010-01-01

186

Perspectives of integrative cancer genomics in next generation sequencing era.  

PubMed

The explosive development of genomics technologies including microarrays and next generation sequencing (NGS) has provided comprehensive maps of cancer genomes, including the expression of mRNAs and microRNAs, DNA copy numbers, sequence variations, and epigenetic changes. These genome-wide profiles of the genetic aberrations could reveal the candidates for diagnostic and/or prognostic biomarkers as well as mechanistic insights into tumor development and progression. Recent efforts to establish the huge cancer genome compendium and integrative omics analyses, so-called "integromics", have extended our understanding on the cancer genome, showing its daunting complexity and heterogeneity. However, the challenges of the structured integration, sharing, and interpretation of the big omics data still remain to be resolved. Here, we review several issues raised in cancer omics data analysis, including NGS, focusing particularly on the study design and analysis strategies. This might be helpful to understand the current trends and strategies of the rapidly evolving cancer genomics research. PMID:23105932

Kwon, So Mee; Cho, Hyunwoo; Choi, Ji Hye; Jee, Byul A; Jo, Yuna; Woo, Hyun Goo

2012-06-01

187

Draft Genome Sequences of Five Multilocus Sequence Types of Nonencapsulated Streptococcus pneumoniae  

PubMed Central

Nonencapsulated Streptococcus pneumoniae can colonize the human nasopharynx and cause conjunctivitis and otitis media. Different deletions in the capsular polysaccharide biosynthesis locus and different multilocus sequence types have been described for nonencapsulated strains. Draft genome sequences were generated to provide insight into the genomic diversity of these strains. PMID:23887920

Keller, Lance E.; Thomas, Jonathan C.; Luo, Xiao; Nahm, Moon H.; McDaniel, Larry S.

2013-01-01

188

Sequencing of Chloroplast Genome Using Whole Cellular DNA and Solexa Sequencing Technology  

PubMed Central

Sequencing of the chloroplast (cp) genome using traditional sequencing methods has been difficult because of its size (>120?kb) and the complicated procedures required to prepare templates. To explore the feasibility of sequencing the cp genome using DNA extracted from whole cells and Solexa sequencing technology, we sequenced whole cellular DNA isolated from leaves of three Brassica rapa accessions with one lane per accession. In total, 246, 362, and 361?Mb sequence data were generated for the three accessions Chiifu-401-42, Z16, and FT, respectively. Micro-reads were assembled by reference-guided assembly using the cpDNA sequences of B. rapa, Arabidopsis thaliana, and Nicotiana tabacum. We achieved coverage of more than 99.96% of the cp genome in the three tested accessions using the B. rapa sequence as the reference. When A. thaliana or N. tabacum sequences were used as references, 99.7–99.8 or 95.5–99.7% of the B. rapa cp genome was covered, respectively. These results demonstrated that sequencing of whole cellular DNA isolated from young leaves using the Illumina Genome Analyzer is an efficient method for high-throughput sequencing of cp genome. PMID:23162558

Wu, Jian; Liu, Bo; Cheng, Feng; Ramchiary, Nirala; Choi, Su Ryun; Lim, Yong Pyo; Wang, Xiao-Wu

2012-01-01

189

Complete genome sequence of Allochromatium vinosum DSM 180T  

PubMed Central

Allochromatium vinosum formerly Chromatium vinosum is a mesophilic purple sulfur bacterium belonging to the family Chromatiaceae in the bacterial class Gammaproteobacteria. The genus Allochromatium contains currently five species. All members were isolated from freshwater, brackish water or marine habitats and are predominately obligate phototrophs. Here we describe the features of the organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a member of the Chromatiaceae within the purple sulfur bacteria thriving in globally occurring habitats. The 3,669,074 bp genome with its 3,302 protein-coding and 64 RNA genes was sequenced within the Joint Genome Institute Community Sequencing Program. PMID:22675582

Weissgerber, Thomas; Zigann, Renate; Bruce, David; Chang, Yun-juan; Detter, John C.; Han, Cliff; Hauser, Loren; Jeffries, Cynthia D.; Land, Miriam; Munk, A. Christine; Tapia, Roxanne; Dahl, Christiane

2011-01-01

190

Genome Sequence of Bacillus thuringiensis subsp. kurstaki Strain HD-1  

PubMed Central

We report here the complete genome sequence of Bacillus thuringiensis subsp. kurstaki strain HD-1, which serves as the primary U.S. reference standard for all commercial insecticidal formulations of B. thuringiensis manufactured around the world. PMID:25035322

Day, Michael; Ibrahim, Mohamed; Dyer, David

2014-01-01

191

Draft Genome Sequence of Lactobacillus animalis 381-IL-28  

PubMed Central

Lactobacillus animalis 381-IL-28 is an integral component of a multistrain commercial culture with food biopreservative and pathogen biocontrol functionality. A draft sequence of the L. animalis 381-IL-28 genome is described in this paper. PMID:24874675

Rajendran, Mahitha; Altermann, Eric

2014-01-01

192

Commentary on patents: Full bacterial DNA sequences boost genomics  

SciTech Connect

Together with recent U.S. federal court decisions on DNA patenting, the sequencing achievement indicates that efforts on the broader genomics front may be moving more rapidly than had been previously thought.

Fox, J.L.

1995-07-01

193

Complete genome sequences of six strains of the genus methylobacterium  

SciTech Connect

The complete and assembled genome sequences were determined for six strains of the alphaproteobacterial genus Methylobacterium, chosen for their key adaptations to different plant-associated niches and environmental constraints.

Marx, Christopher J [Harvard University; Bringel, Francoise O. [University of Strasbourg; Christoserdova, Ludmila [University of Washington, Seattle; Moulin, Lionel [UMR, France; Farhan Ul Haque, Muhammad [CNRS, Strasbourg, France; Fleischman, Darrell E. [Wright State University, Dayton, OH; Gruffaz, Christelle [CNRS, Strasbourg, France; Jourand, Philippe [UMR, France; Knief, Claudia [ETH Zurich, Switzerland; Lee, Ming-Chun [Harvard University; Muller, Emilie E. L. [CNRS, Strasbourg, France; Nadalig, Thierry [CNRS, Strasbourg, France; Peyraud, Remi [ETH Zurich, Switzerland; Roselli, Sandro [CNRS, Strasbourg, France; Russ, Lina [ETH Zurich, Switzerland; Aguero, Fernan [Universidad Nacional de General San Martin; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Lajus, Aurelie [Genoscope/Centre National de la Recherche Scientifique-Unite Mixte de Recherche; Land, Miriam L [ORNL; Medigue, Claudine [Genoscope/Centre National de la Recherche Scientifique-Unite Mixte de Recherche; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Stolyar, Sergey [University of Washington; Vorholt, Julia A. [ETH Zurich, Switzerland; Vuilleumier, Stephane [University of Strasbourg

2012-01-01

194

Complete Genome Sequence of Rahnella aquatilis CIP 78.65  

SciTech Connect

Rahnella aquatilis CIP 78.65 is a gammaproteobacterium isolated from a drinking water source in Lille, France. Here we report the complete genome sequence of Rahnella aquatilis CIP 78.65, the type strain of R. aquatilis.

Martinez, Robert J [University of Alabama, Tuscaloosa; Bruce, David [Los Alamos National Laboratory (LANL); Detter, J C [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Han, James [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Held, Brittany [Los Alamos National Laboratory (LANL); Land, Miriam L [ORNL; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Pennacchio, Len [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Sobeckya, Patricia A. [University of Alabama, Tuscaloosa

2012-01-01

195

Complete Genome Sequences of Six Strains of the Genus Methylobacterium  

SciTech Connect

The complete and assembled genome sequences were determined for six strains of the alphaproteobacterial genus Methylobacterium, chosen for their key adaptations to different plant-associated niches and environmental constraints.

Marx, Christopher J [Harvard University; Bringel, Francoise O. [University of Strasbourg; Christoserdova, Ludmila [University of Washington, Seattle; Moulin, Lionel [UMR, France; UI Hague, Muhammad Farhan [University of Strasbourg; Fleischman, Darrell E. [Wright State University, Dayton, OH; Gruffaz, Christelle [CNRS, Strasbourg, France; Jourand, Philippe [UMR, France; Knief, Claudia [ETH Zurich, Switzerland; Lee, Ming-Chun [Harvard University; Muller, Emilie E. L. [CNRS, Strasbourg, France; Nadalig, Thierry [CNRS, Strasbourg, France; Peyraud, Remi [ETH Zurich, Switzerland; Roselli, Sandro [CNRS, Strasbourg, France; Russ, Lina [ETH Zurich, Switzerland; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Ivanov, Pavel S. [University of Wyoming, Laramie; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Lajus, Aurelie [Genoscope/Centre National de la Recherche Scientifique-Unite Mixte de Recherche; Land, Miriam L [ORNL; Medigue, Claudine [Genoscope/Centre National de la Recherche Scientifique-Unite Mixte de Recherche; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Stolyar, Sergey [University of Washington; Vorholt, Julia A. [ETH Zurich, Switzerland; Vuilleumier, Stephane [University of Strasbourg

2012-01-01

196

Initial genome sequencing and analysis of multiple myeloma  

E-print Network

Multiple myeloma is an incurable malignancy of plasma cells, and its pathogenesis is poorly understood. Here we report the massively parallel sequencing of 38 tumour genomes and their comparison to matched normal DNAs. ...

Lander, Eric S.

197

Science Originals: Sequencing Cancer Genomes: Targeted Cancer Therapies  

NSDL National Science Digital Library

Applying DNA sequencing to cancer genomes is providing insights that have allowed researchers to turn some cancers into chronic diseases rather than deadly ones. Still, the ultimate goal is to kill the cancer.

Robert Frederick (AAAS;)

2011-03-25

198

Fulfilling the Promise of a Sequenced Human Genome – Part II  

SciTech Connect

Eric Green, scientific director of the National Human Genome Research Institute (NHGRI), gives the opening keynote speech at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM on May 27, 2009. Part 2 of 2

Green, Eric [National Human Genome Research Institute

2009-05-27

199

Fulfilling the Promise of a Sequenced Human Genome – Part I  

SciTech Connect

Eric Green, scientific director of the National Human Genome Research Institute (NHGRI), gives the opening keynote speech at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM on May 27, 2009. Part 1 of 2

Green, Eric [National Human Genome Research Institute

2009-05-27

200

Bacterial epidemiology and biology - lessons from genome sequencing  

PubMed Central

Next-generation sequencing has ushered in a new era of microbial genomics, enabling the detailed historical and geographical tracing of bacteria. This is helping to shape our understanding of bacterial evolution. PMID:22027015

2011-01-01

201

Genome Sequence of the Fish Pathogen Flavobacterium columnare ATCC 49512  

PubMed Central

Flavobacterium columnare is a Gram-negative, rod-shaped, motile, and highly prevalent fish pathogen causing columnaris disease in freshwater fish worldwide. Here, we present the complete genome sequence of F. columnare strain ATCC 49512. PMID:22535941

Tekedar, Hasan C.; Karsi, Attila; Gillaspy, Allison F.; Dyer, David W.; Benton, Nicole R.; Zaitshik, Jeremy; Vamenta, Stefanie; Banes, Michelle M.; Gulsoy, Nagihan; Aboko-Cole, Mary; Waldbieser, Geoffrey C.

2012-01-01

202

Sequence Imputation of HPV16 Genomes for Genetic Association Studies  

E-print Network

,2 , Laura Reimers3 , Koenraad van Doorslaer2 , Mark Schiffman4 , Rob DeSalle5 , Rolando Herrero6 , Kai Yu4, Reimers L, van Doorslaer K, Schiffman M, et al. (2011) Sequence Imputation of HPV16 Genomes for Genetic

DeSalle, Rob

203

Melanoma genome sequencing reveals frequent PREX2 mutations  

E-print Network

Melanoma is notable for its metastatic propensity, lethality in the advanced setting and association with ultraviolet exposure early in life. To obtain a comprehensive genomic view of melanoma in humans, we sequenced the ...

Lander, Eric S.

204

Genome Sequence of Mycoplasma hyorhinis Strain DBS 1050  

PubMed Central

Mycoplasma hyorhinis is known as one of the most prevalent contaminants of mammalian cell and tissue cultures worldwide. Here, we present the complete genome sequence of the fastidious M. hyorhinis strain DBS 1050. PMID:24604646

Soika, Valerii; Volokhov, Dmitriy; Simonyan, Vahan; Chizhikov, Vladimir

2014-01-01

205

Genomics through the lens of next-generation sequencing  

PubMed Central

A report on the 23rd annual meeting on 'The Biology of Genomes', 11-15 May 2010, Cold Spring Harbor, USA. Meeting report Recent advances in high-throughput sequencing technologies have greatly increased the scale and scope of genomics research, and this was evident throughout the recent Biology of Genomes meeting at the Cold Spring Harbor Laboratory. Here we describe some highlights of the meeting. PMID:20587080

2010-01-01

206

Dissection of the Octoploid Strawberry Genome by Deep Sequencing of the Genomes of Fragaria Species  

PubMed Central

Cultivated strawberry (Fragaria x ananassa) is octoploid and shows allogamous behaviour. The present study aims at dissecting this octoploid genome through comparison with its wild relatives, F. iinumae, F. nipponica, F. nubicola, and F. orientalis by de novo whole-genome sequencing on an Illumina and Roche 454 platforms. The total length of the assembled Illumina genome sequences obtained was 698 Mb for F. x ananassa, and ?200 Mb each for the four wild species. Subsequently, a virtual reference genome termed FANhybrid_r1.2 was constructed by integrating the sequences of the four homoeologous subgenomes of F. x ananassa, from which heterozygous regions in the Roche 454 and Illumina genome sequences were eliminated. The total length of FANhybrid_r1.2 thus created was 173.2 Mb with the N50 length of 5137 bp. The Illumina-assembled genome sequences of F. x ananassa and the four wild species were then mapped onto the reference genome, along with the previously published F. vesca genome sequence to establish the subgenomic structure of F. x ananassa. The strategy adopted in this study has turned out to be successful in dissecting the genome of octoploid F. x ananassa and appears promising when applied to the analysis of other polyploid plant species. PMID:24282021

Hirakawa, Hideki; Shirasawa, Kenta; Kosugi, Shunichi; Tashiro, Kosuke; Nakayama, Shinobu; Yamada, Manabu; Kohara, Mistuyo; Watanabe, Akiko; Kishida, Yoshie; Fujishiro, Tsunakazu; Tsuruoka, Hisano; Minami, Chiharu; Sasamoto, Shigemi; Kato, Midori; Nanri, Keiko; Komaki, Akiko; Yanagi, Tomohiro; Guoxin, Qin; Maeda, Fumi; Ishikawa, Masami; Kuhara, Satoru; Sato, Shusei; Tabata, Satoshi; Isobe, Sachiko N.

2014-01-01

207

Dissection of the octoploid strawberry genome by deep sequencing of the genomes of Fragaria species.  

PubMed

Cultivated strawberry (Fragaria x ananassa) is octoploid and shows allogamous behaviour. The present study aims at dissecting this octoploid genome through comparison with its wild relatives, F. iinumae, F. nipponica, F. nubicola, and F. orientalis by de novo whole-genome sequencing on an Illumina and Roche 454 platforms. The total length of the assembled Illumina genome sequences obtained was 698 Mb for F. x ananassa, and ?200 Mb each for the four wild species. Subsequently, a virtual reference genome termed FANhybrid_r1.2 was constructed by integrating the sequences of the four homoeologous subgenomes of F. x ananassa, from which heterozygous regions in the Roche 454 and Illumina genome sequences were eliminated. The total length of FANhybrid_r1.2 thus created was 173.2 Mb with the N50 length of 5137 bp. The Illumina-assembled genome sequences of F. x ananassa and the four wild species were then mapped onto the reference genome, along with the previously published F. vesca genome sequence to establish the subgenomic structure of F. x ananassa. The strategy adopted in this study has turned out to be successful in dissecting the genome of octoploid F. x ananassa and appears promising when applied to the analysis of other polyploid plant species. PMID:24282021

Hirakawa, Hideki; Shirasawa, Kenta; Kosugi, Shunichi; Tashiro, Kosuke; Nakayama, Shinobu; Yamada, Manabu; Kohara, Mistuyo; Watanabe, Akiko; Kishida, Yoshie; Fujishiro, Tsunakazu; Tsuruoka, Hisano; Minami, Chiharu; Sasamoto, Shigemi; Kato, Midori; Nanri, Keiko; Komaki, Akiko; Yanagi, Tomohiro; Guoxin, Qin; Maeda, Fumi; Ishikawa, Masami; Kuhara, Satoru; Sato, Shusei; Tabata, Satoshi; Isobe, Sachiko N

2014-01-01

208

Genome sequence of vanilla distortion mosaic virus infecting Coriandrum sativum.  

PubMed

The 9573-nucleotide genome of a potyvirus was sequenced from a Coriandrum sativum plant from India with viral symptoms. On analysis, this virus was shown to have greater than 85 % nucleotide sequence identity to vanilla distortion mosaic virus (VDMV). Analysis of the putative coat protein sequence confirmed that this virus was in fact VDMV, with greater than 91 % amino acid sequence identity. The genome appears to encode a 3083-amino-acid polyprotein potentially cleaved into the 10 mature proteins expected in potyviruses. Phylogenetic analysis confirmed that VDMV is a distinct but ungrouped member of the genus Potyvirus. PMID:25252813

Adams, I P; Rai, S; Deka, M; Harju, V; Hodges, T; Hayward, G; Skelton, A; Fox, A; Boonham, N

2014-12-01

209

Complete genome sequence of Treponema pallidum strain DAL-1  

PubMed Central

Treponema pallidum strain DAL-1 is a human uncultivable pathogen causing the sexually transmitted disease syphilis. Strain DAL-1 was isolated from the amniotic fluid of a pregnant woman in the secondary stage of syphilis. Here we describe the 1,139,971 bp long genome of T. pallidum strain DAL-1 which was sequenced using two independent sequencing methods (454 pyrosequencing and Illumina). In rabbits, strain DAL-1 replicated better than the T. pallidum strain Nichols. The comparison of the complete DAL-1 genome sequence with the Nichols sequence revealed a list of genetic differences that are potentially responsible for the increased rabbit virulence of the DAL-1 strain. PMID:23449808

Zobanikova, Marie; Mikolka, Pavol; Cejkova, Darina; Pospisilova, Petra; Chen, Lei; Strouhal, Michal; Qin, Xiang; Weinstock, George M.; Smajs, David

2012-01-01

210

Intra-species sequence comparisons for annotating genomes  

SciTech Connect

Analysis of sequence variation among members of a single species offers a potential approach to identify functional DNA elements responsible for biological features unique to that species. Due to its high rate of allelic polymorphism and ease of genetic manipulability, we chose the sea squirt, Ciona intestinalis, to explore intra-species sequence comparisons for genome annotation. A large number of C. intestinalis specimens were collected from four continents and a set of genomic intervals amplified, resequenced and analyzed to determine the mutation rates at each nucleotide in the sequence. We found that regions with low mutation rates efficiently demarcated functionally constrained sequences: these include a set of noncoding elements, which we showed in C intestinalis transgenic assays to act as tissue-specific enhancers, as well as the location of coding sequences. This illustrates that comparisons of multiple members of a species can be used for genome annotation, suggesting a path for the annotation of the sequenced genomes of organisms occupying uncharacterized phylogenetic branches of the animal kingdom and raises the possibility that the resequencing of a large number of Homo sapiens individuals might be used to annotate the human genome and identify sequences defining traits unique to our species. The sequence data from this study has been submitted to GenBank under accession nos. AY667278-AY667407.

Boffelli, Dario; Weer, Claire V.; Weng, Li; Lewis, Keith D.; Shoukry, Malak I.; Pachter, Lior; Keys, David N.; Rubin, Edward M.

2004-07-15

211

The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae  

Microsoft Academic Search

The currently available yeast mitochondrial DNA (mtDNA) sequence is incomplete, contains many errors and is derived from several polymorphic strains. Here, we report that the mtDNA sequence of the strain used for nuclear genome sequencing assembles into a circular map of 85?779 bp which includes 10 kb of new sequence. We give a list of seven small hypothetical open reading

Françoise Foury; Tiziana Roganti; Nicolas Lecrenier; Bénédicte Purnelle

1998-01-01

212

Genome Sequence of Fusarium graminearum Isolate CS3005.  

PubMed

Fusarium graminearum is one of the most important fungal pathogens of wheat, barley, and maize worldwide. This announcement reports the genome sequence of a highly virulent Australian isolate of this species to supplement the existing genome of the North American F. graminearum isolate Ph1. PMID:24744326

Gardiner, Donald M; Stiller, Jiri; Kazan, Kemal

2014-01-01

213

Sequence Analysis of the Genome of the Neodiprion sertifer Nucleopolyhedrovirus  

Microsoft Academic Search

The genome of the Neodiprion sertifer nucleopolyhedrovirus (NeseNPV), which infects the European pine sawfly, N. sertifer (Hymenoptera: Diprionidae), was sequenced and analyzed. The genome was 86,462 bp in size. The CG content of 34% was lower than that of the majority of baculoviruses. A total of 90 methionine- initiated open reading frames (ORFs) with more than 50 amino acids and

Alejandra Garcia-Maruniak; James E. Maruniak; Paolo M. A. Zanotto; Aissa E. Doumbouya; Jaw-Ching Liu; Thomas M. Merritt; Jennifer S. Lanoie

2004-01-01

214

Combined Evidence Annotation of Transposable Elements in Genome Sequences  

E-print Network

sequences (e.g., 44.4% of the human genome; [1]), and there is no doubt that modern genomic DNA has evolved , Dominique Anxolabehere1 1 Laboratoire Dynamique du Ge´nome et Evolution, Institut Jacques Monod, Paris.6%) are inserted into at least one other TE, forming a nest of elements. The pipeline allows rapid and thorough

Paris-Sud XI, Université de

215

Complete Genome Sequence of Marinobacter sp. BSs20148.  

PubMed

Marinobacter sp. BSs20148 was isolated from marine sediment collected from the Arctic Ocean at a water depth of 3,800 m. Here we report the complete genome sequence of Marinobacter sp. BSs20148. This genomic information will facilitate the study of the physiological metabolism, ecological roles, and evolution of the Marinobacter species. PMID:23682144

Song, Lai; Ren, Lufeng; Li, Xingang; Yu, Dan; Yu, Yong; Wang, Xumin; Liu, Guiming

2013-01-01

216

Letter to the Editor Toward Sequencing Cotton (Gossypium) Genomes  

E-print Network

$900 million. Cotton fiber is an outstanding model for the study of plant cell elongation and cell wallLetter to the Editor Toward Sequencing Cotton (Gossypium) Genomes Despite rapidly decreasing costs complex ge- nomes de novo. The cotton (Gossypium spp.) genomes represent a challenging case. To this end

Chee, Peng W.

217

Complete Genome Sequence of Cronobacter sakazakii Strain CMCC 45402  

PubMed Central

Cronobacter sakazakii is considered to be an important pathogen involved in life-threatening neonatal infections. Here, we report the annotated complete genome sequence of C. sakazakii strain CMCC 45402, obtained from a milk sample in China. The major findings from the genomic analysis provide a better understanding of the isolates from China. PMID:24435860

Zhao, Zhijing; Wang, Lei; Wang, Bin; Liang, Haoyu; Ye, Qiang

2014-01-01

218

Complete Genome Sequence of Cronobacter sakazakii Strain CMCC 45402.  

PubMed

Cronobacter sakazakii is considered to be an important pathogen involved in life-threatening neonatal infections. Here, we report the annotated complete genome sequence of C. sakazakii strain CMCC 45402, obtained from a milk sample in China. The major findings from the genomic analysis provide a better understanding of the isolates from China. PMID:24435860

Zhao, Zhijing; Wang, Lei; Wang, Bin; Liang, Haoyu; Ye, Qiang; Zeng, Ming

2014-01-01

219

The genome sequence and structure of rice chromosome 1  

Microsoft Academic Search

The rice species Oryza sativa is considered to be a model plant because of its small genome size, extensive genetic map, relative ease of transformation and synteny with other cereal crops. Here we report the essentially complete sequence of chromosome 1, the longest chromosome in the rice genome. We summarize characteristics of the chromosome structure and the biological insight gained

Takuji Sasaki; Takashi Matsumoto; Kimiko Yamamoto; Katsumi Sakata; Tomoya Baba; Yuichi Katayose; Jianzhong Wu; Yoshihito Niimura; Zhukuan Cheng; Yoshiaki Nagamura; Baltazar A. Antonio; Hiroyuki Kanamori; Satomi Hosokawa; Masatoshi Masukawa; Koji Arikawa; Yoshino Chiden; Mika Hayashi; Masako Okamoto; Tsuyu Ando; Hiroyoshi Aoki; Kohei Arita; Masao Hamada; Chizuko Harada; Saori Hijishita; Mikiko Honda; Yoko Ichikawa; Atsuko Idonuma; Masumi Iijima; Michiko Ikeda; Maiko Ikeno; Sachie Ito; Tomoko Ito; Yuichi Ito; Yukiyo Ito; Aki Iwabuchi; Kozue Kamiya; Wataru Karasawa; Satoshi Katagiri; Ari Kikuta; Noriko Kobayashi; Izumi Kono; Kayo Machita; Tomoko Maehara; Hiroshi Mizuno; Tatsumi Mizubayashi; Yoshiyuki Mukai; Hideki Nagasaki; Marina Nakashima; Yuko Nakama; Yumi Nakamichi; Mari Nakamura; Nobukazu Namiki; Manami Negishi; Isamu Ohta; Nozomi Ono; Shoko Saji; Kumiko Sakai; Michie Shibata; Takanori Shimokawa; Ayahiko Shomura; Jianyu Song; Yuka Takazaki; Kimihiro Terasawa; Kumiko Tsuji; Kazunori Waki; Harumi Yamagata; Hiroko Yamane; Shoji Yoshiki; Rie Yoshihara; Kazuko Yukawa; Huisun Zhong; Hisakazu Iwama; Toshinori Endo; Hidetaka Ito; Jang Ho Hahn; Ho-Il Kim; Moo-Young Eun; Masahiro Yano; Jiming Jiang; Takashi Gojobori

2002-01-01

220

Draft Genome Sequence of Penicillium marneffei Strain PM1  

PubMed Central

Penicillium marneffei is the most important thermal dimorphic, pathogenic fungus endemic in China and Southeast Asia and is particularly important in HIV-positive patients. We report the 28,887,485-bp draft genome sequence of P. marneffei, which contains its complete mitochondrial genome, sexual cycle genes, a high diversity of Mp1p homologues, and polyketide synthase genes. PMID:22131218

Woo, Patrick C. Y.; Lau, Susanna K. P.; Liu, Bin; Cai, James J.; Chong, Ken T. K.; Tse, Herman; Kao, Richard Y. T.; Chan, Che-Man; Chow, Wang-Ngai; Yuen, Kwok-Yung

2011-01-01

221

Draft Genome Sequence of Necropsobacter rosorum Strain P709T  

PubMed Central

Necropsobacter is a recently described genus that contains a single species, N. rosorum, and belongs to the family Pasteurellaceae. Here, we present the draft genome of N. rosorum strain P709T, which is the first genome sequence from this species. PMID:25301642

Padmanabhan, Roshan; Robert, Catherine; Fenollar, Florence; Raoult, Didier

2014-01-01

222

Draft Genome Sequence of Mycobacterium cosmeticum DSM 44829  

PubMed Central

We announce the draft genome sequence of Mycobacterium cosmeticum strain DSM 44829, a nontuberculous species responsible for opportunistic infection. The genome described here is composed of 6,462,090 bp, with a G+C content of 68.24%. It contains 6,281 protein-coding genes and 75 predicted RNA genes. PMID:24723727

Croce, Olivier; Robert, Catherine; Raoult, Didier

2014-01-01

223

Draft Genome Sequence of Mycobacterium austroafricanum DSM 44191  

PubMed Central

We announce the draft genome sequence of Mycobacterium austroafricanum DSM 44191T (= E9789-SA12441T), a non-tuberculosis species responsible for opportunistic infection. The genome described here has a size of 6,772,357 bp with a G+C content of 66.79% and contains 6,419 protein-coding genes and 112 RNA genes. PMID:24744336

Croce, Olivier; Robert, Catherine; Raoult, Didier

2014-01-01

224

Draft Genome Sequence of Mycobacterium triplex DSM 44626  

PubMed Central

We announce the draft genome sequence of Mycobacterium triplex strain DSM 44626, a nontuberculosis species responsible for opportunistic infections. The genome described here is composed of 6,382,840 bp, with a G+C content of 66.57%, and contains 5,988 protein-coding genes and 81 RNA genes. PMID:24874681

Sassi, Mohamed; Croce, Olivier; Robert, Catherine; Raoult, Didier

2014-01-01

225

Draft Genome Sequence of Mycobacterium vulneris DSM 45247T  

PubMed Central

We report the draft genome sequence of Mycobacterium vulneris DSM 45247T strain, an emerging, opportunistic pathogen of the Mycobacterium avium complex. The genome described here is composed of 6,981,439 bp (with a G+C content of 67.14%) and has 6,653 protein-coding genes and 84 predicted RNA genes. PMID:24812218

Croce, Olivier; Robert, Catherine; Raoult, Didier

2014-01-01

226

Draft Genome Sequence of Mycobacterium mageritense DSM 44476T  

PubMed Central

We report the draft genome sequence of Mycobacterium mageritense strain DSM 44476T (CIP 104973), a nontuberculosis species responsible for various infections. The genome described here is composed of 7,966,608 bp, with a G+C content of 66.95%, and contains 7,675 protein-coding genes and 120 predicted RNA genes. PMID:24786954

Croce, Olivier; Robert, Catherine; Raoult, Didier

2014-01-01

227

Whole-genome sequences of three symbiotic endozoicomonas strains.  

PubMed

Members of the genus Endozoicomonas associate with a wide range of marine organisms. Here, we report on the whole-genome sequencing, assembly, and annotation of three Endozoicomonas type strains. These data will assist in exploring interactions between Endozoicomonas organisms and their hosts, and it will aid in the assembly of genomes from uncultivated Endozoicomonas spp. PMID:25125646

Neave, Matthew J; Michell, Craig T; Apprill, Amy; Voolstra, Christian R

2014-01-01

228

Genome Sequence of Fusarium graminearum Isolate CS3005  

PubMed Central

Fusarium graminearum is one of the most important fungal pathogens of wheat, barley, and maize worldwide. This announcement reports the genome sequence of a highly virulent Australian isolate of this species to supplement the existing genome of the North American F. graminearum isolate Ph1. PMID:24744326

Stiller, Jiri; Kazan, Kemal

2014-01-01

229

Draft Genome Sequence of Amycolatopsis decaplanina Strain DSM 44594T  

PubMed Central

We report the 8.5-Mb genome sequence of Amycolatopsis decaplanina strain DSM 44594T, isolated from a soil sample from India. The draft genome of strain DSM 44594T consists of 8,533,276 bp with a 68.6% G+C content, 7,899 protein-coding genes, and 57 RNAs. PMID:23558534

Kaur, Navjot; Kumar, Shailesh; Bala, Monu; Raghava, Gajendra Pal Singh

2013-01-01

230

Complete Genome Sequence of the Soil Actinomycete Kocuria rhizophila  

Microsoft Academic Search

The soil actinomycete Kocuria rhizophila belongs to the suborder Micrococcineae, a divergent bacterial group for which only a limited amount of genomic information is currently available. K. rhizophila is also important in industrial applications; e.g., it is commonly used as a standard quality control strain for antimicrobial susceptibility testing. Sequencing and annotation of the genome of K. rhizophila DC2201 (NBRC

Hiromi Takarada; Mitsuo Sekine; Hiroki Kosugi; Yasunori Matsuo; Takatomo Fujisawa; Seiha Omata; Emi Kishi; Ai Shimizu; Naofumi Tsukatani; Satoshi Tanikawa; Nobuyuki Fujita; Shigeaki Harayama

2008-01-01

231

Draft genome sequences of 10 strains of the genus exiguobacterium.  

PubMed

High-quality draft genome sequences were determined for 10 Exiguobacterium strains in order to provide insight into their evolutionary strategies for speciation and environmental adaptation. The selected genomes include psychrotrophic and thermophilic species from a range of habitats, which will allow for a comparison of metabolic pathways and stress response genes. PMID:25323723

Vishnivetskaya, Tatiana A; Chauhan, Archana; Layton, Alice C; Pfiffner, Susan M; Huntemann, Marcel; Copeland, Alex; Chen, Amy; Kyrpides, Nikos C; Markowitz, Victor M; Palaniappan, Krishna; Ivanova, Natalia; Mikhailova, Natalia; Ovchinnikova, Galina; Andersen, Evan W; Pati, Amrita; Stamatis, Dimitrios; Reddy, T B K; Shapiro, Nicole; Nordberg, Henrik P; Cantor, Michael N; Hua, X Susan; Woyke, Tanja

2014-01-01

232

A new approach to genome mapping and sequencing: slalom libraries  

Microsoft Academic Search

We describe here an efficient strategy for simultaneous genome mapping and sequencing. The approach is based on physically oriented, overlapping restriction fragment libraries called slalom libraries. Slalom libraries combine features of general genomic, jumping and linking libraries. Slalom libraries can be adapted to different applications and two main types of slalom libraries are described in detail. This approach was used

Veronika I. Zabarovska; Rinat Z. Gizatullin; Ali N. Al-Amin; Raf Podowski; Alexei I. Protopopov; Sven Löfdahl; Claes Wahlestedt; Gösta Winberg; Vladimir I. Kashuba; Ingemar Ernberg; Eugene R. Zabarovsky

2002-01-01

233

The Genomic Sequence of the Accidental Pathogen Legionella pneumophila  

Microsoft Academic Search

We present the genomic sequence of Legionella pneumophila, the bacterial agent of Legionnaires' disease, a potentially fatal pneumonia acquired from aerosolized contaminated fresh water. The genome includes a 45-kilobase pair element that can exist in chromosomal and episomal forms, selective expansions of important gene families, genes for unexpected metabolic pathways, and previously unknown candidate virulence determinants. We highlight the genes

Minchen Chien; Irina Morozova; Shundi Shi; Huitao Sheng; Jing Chen; Shawn M. Gomez; Gifty Asamani; Kendra Hill; John Nuara; Marc Feder; Justin Rineer; Joseph J. Greenberg; Valeria Steshenko; Samantha H. Park; Baohui Zhao; Elita Teplitskaya; John R. Edwards; Sergey Pampou; Anthi Georghiou; I.-Chun Chou; William Iannuccilli; Michael E. Ulz; Dae H. Kim; Alex Geringer-Sameth; Curtis Goldsberry; Pavel Morozov; Stuart G. Fischer; Gil Segal; Xiaoyan Qu; Andrey Rzhetsky; Peisen Zhang; Eftihia Cayanis; Pieter J. De Jong; Jingyue Ju; Sergey Kalachikov; Howard A. Shuman; James J. Russo

2004-01-01

234

Draft Genome Sequence of the Sexually Transmitted Pathogen Trichomonas vaginalis  

Microsoft Academic Search

We describe the genome sequence of the protist Trichomonas vaginalis, a sexually transmitted human pathogen. Repeats and transposable elements comprise about two-thirds of the ~160-megabase genome, reflecting a recent massive expansion of genetic material. This expansion, in conjunction with the shaping of metabolic pathways that likely transpired through lateral gene transfer from bacteria, and amplification of specific gene families implicated

J. M. Carlton; R. P. Hirt; J. C. Silva; A. L. Delcher; Michael Schatz; Qi Zhao; J. R. Wortman; S. L. Bidwell; U. C. M. Alsmark; Sébastien Besteiro; Thomas Sicheritz-Ponten; C. J. Noel; J. B. Dacks; P. G. Foster; Cedric Simillion; Y. Van de Peer; Diego Miranda-Saavedra; G. J. Barton; G. D. Westrop; S. Muller; Daniele Dessi; P. L. Fiori; Qinghu Ren; Ian Paulsen; Hanbang Zhang; F. D. Bastida-Corcuera; Augusto Simoes-Barbosa; M. T. Brown; R. D. Hayes; Mandira Mukherjee; C. Y. Okumura; Rachel Schneider; A. J. Smith; Stepanka Vanacova; Maria Villalvazo; B. J. Haas; Mihaela Pertea; Tamara V. Feldblyum; T. R. Utterback; Chung-Li Shu; Kazutoyo Osoegawa; P. J. de Jong; Ivan Hrdy; Lenka Horvathova; Zuzana Zubacova; Pavel Dolezal; Shehre-Banoo Malik; J. M. Logsdon; Katrin Henze; Arti Gupta; Ching C. Wang; R. L. Dunne; J. A. Upcroft; Peter Upcroft; Owen White; S. L. Salzberg; Petrus Tang; Cheng-Hsun Chiu; Ying-Shiung Lee; T. M. Embley; G. H. Coombs; J. C. Mottram; Jan Tachezy; C. M. Fraser-Liggett; P. J. Johnson

2007-01-01

235

Draft Genome Sequence of Enterobacter cloacae Strain JD6301  

PubMed Central

Enterobacter cloacae strain JD6301 was isolated from a mixed culture with wastewater collected from a municipal treatment facility and oleaginous microorganisms. A draft genome sequence of this organism indicates that it has a genome size of 4,772,910 bp, an average G+C content of 53%, and 4,509 protein-coding genes. PMID:24874669

Wilson, Jessica G.; French, William T.; Lipzen, Anna; Martin, Joel; Schackwitz, Wendy; Woyke, Tanja; Shapiro, Nicole; Bullard, James W.; Champlin, Franklin R.

2014-01-01

236

Draft Genome Sequences of 10 Strains of the Genus Exiguobacterium  

PubMed Central

High-quality draft genome sequences were determined for 10 Exiguobacterium strains in order to provide insight into their evolutionary strategies for speciation and environmental adaptation. The selected genomes include psychrotrophic and thermophilic species from a range of habitats, which will allow for a comparison of metabolic pathways and stress response genes. PMID:25323723

Chauhan, Archana; Layton, Alice C.; Pfiffner, Susan M.; Huntemann, Marcel; Copeland, Alex; Chen, Amy; Kyrpides, Nikos C.; Markowitz, Victor M.; Palaniappan, Krishna; Ivanova, Natalia; Mikhailova, Natalia; Ovchinnikova, Galina; Andersen, Evan W.; Pati, Amrita; Stamatis, Dimitrios; Reddy, T. B. K.; Shapiro, Nicole; Nordberg, Henrik P.; Cantor, Michael N.; Hua, X. Susan; Woyke, Tanja

2014-01-01

237

Detecting selection using a single genome sequence of  

E-print Network

strength of selection on each gene in the entire genomes of Mycobacterium tuberculosis and Plasmodium falci genome sequence of M. tuberculosis and P. falciparum Joshua B. Plotkin1 , Jonathan Dushoff2,3 & Hunter B, particularly the PE/PPE family2 of putative surface proteins in M. tuberculosis and the EMP1 family3

Plotkin, Joshua B.

238

Whole Genome and Transcriptome Sequencing of a B3 Thymoma  

PubMed Central

Molecular pathology of thymomas is poorly understood. Genomic aberrations are frequently identified in tumors but no extensive sequencing has been reported in thymomas. Here we present the first comprehensive view of a B3 thymoma at whole genome and transcriptome levels. A 55-year-old Caucasian female underwent complete resection of a stage IVA B3 thymoma. RNA and DNA were extracted from a snap frozen tumor sample with a fraction of cancer cells over 80%. We performed array comparative genomic hybridization using Agilent platform, transcriptome sequencing using HiSeq 2000 (Illumina) and whole genome sequencing using Complete Genomics Inc platform. Whole genome sequencing determined, in tumor and normal, the sequence of both alleles in more than 95% of the reference genome (NCBI Build 37). Copy number (CN) aberrations were comparable with those previously described for B3 thymomas, with CN gain of chromosome 1q, 5, 7 and X and CN loss of 3p, 6, 11q42.2-qter and q13. One translocation t(11;X) was identified by whole genome sequencing and confirmed by PCR and Sanger sequencing. Ten single nucleotide variations (SNVs) and 2 insertion/deletions (INDELs) were identified; these mutations resulted in non-synonymous amino acid changes or affected splicing sites. The lack of common cancer-associated mutations in this patient suggests that thymomas may evolve through mechanisms distinctive from other tumor types, and supports the rationale for additional high-throughput sequencing screens to better understand the somatic genetic architecture of thymoma. PMID:23577124

Petrini, Iacopo; Rajan, Arun; Pham, Trung; Voeller, Donna; Davis, Sean; Gao, James; Wang, Yisong; Giaccone, Giuseppe

2013-01-01

239

Complete Genome Sequence of the Methanogenic Archaeon, Methanococcus jannaschii  

Microsoft Academic Search

The complete 1.66-megabase pair genome sequence of an autotrophic archaeon, Methanococcus jannaschii, and its 58- and 16-kilobase pair extrachromosomal elements have been determined by whole-genome random sequencing. A total of 1738 predicted proteincoding genes were identified; however, only a minority of these (38 percent) could be assigned a putative cellular role with high confidence. Although the majority of genes related

Carol J. Bult; Owen White; Gary J. Olsen; Lixin Zhou; Robert D. Fleischmann; Granger G. Sutton; Judith A. Blake; Lisa M. Fitzgerald; Rebecca A. Clayton; Jeannine D. Gocayne; Anthony R. Kerlavage; Brian A. Dougherty; Jean-Francois Tomb; Mark D. Adams; Claudia I. Reich; Ross Overbeek; Ewen F. Kirkness; Keith G. Weinstock; Joseph M. Merrick; Anna Glodek; John L. Scott; Neil S. M. Geoghagen; Janice F. Weidman; Joyce L. Fuhrmann; Dave Nguyen; Teresa R. Utterback; Jenny M. Kelley; Jeremy D. Peterson; Paul W. Sadow; Michael C. Hanna; Matthew D. Cotton; Kevin M. Roberts; Margaret A. Hurst; Brian P. Kaine; Mark Borodovsky; Hans-Peter Klenk; Claire M. Fraser; Hamilton O. Smith; Carl R. Woese; J. Craig Venter

1996-01-01

240

The Genome Sequence of the SARS-Associated Coronavirus  

Microsoft Academic Search

We sequenced the 29,751-base genome of the severe acute respiratory syndrome (SARS)-associated coronavirus known as the Tor2 isolate. The genome sequence reveals that this coronavirus is only moderately related to other known coronaviruses, including two human coronaviruses, HCoV-OC43 and HCoV-229E. Phylogenetic analysis of the predicted viral proteins indicates that the virus does not closely resemble any of the three previously

Marco A. Marra; Steven J. M. Jones; Caroline R. Astell; Robert A. Holt; Angela Brooks-Wilson; Yaron S. N. Butterfield; Jaswinder Khattra; Jennifer K. Asano; Sarah A. Barber; Susanna Y. Chan; Alison Cloutier; Shaun M. Coughlin; Doug Freeman; Noreen Girn; Obi L. Griffith; Stephen R. Leach; Michael Mayo; Helen McDonald; Stephen B. Montgomery; Pawan K. Pandoh; Anca S. Petrescu; A. Gordon Robertson; Jacqueline E. Schein; Asim Siddiqui; Duane E. Smailus; Jeff M. Stott; George S. Yang; Francis Plummer; Anton Andonov; Harvey Artsob; Nathalie Bastien; Kathy Bernard; Timothy F. Booth; Donnie Bowness; Michael Drebot; Lisa Fernando; Ramon Flick; Michael Garbutt; Michael Garbutt; Allen Grolla; Heinz Feldmann; Adrienne Meyers; Amin Kabani; Yan Li; Susan Normand; Ute Stroher; Graham A. Tipples; Shaun Tyler; Robert Vogrig; Diane Ward; Robert C. Brunham; Mel Krajden; Martin Petric; Danuta M. Skowronski; Chris Upton; Rachel L. Roper

2003-01-01

241

Complete genome sequence of a raccoon rabies virus isolate  

Microsoft Academic Search

The entire genome of a mid-Atlantic raccoon strain rabies virus (RRV) isolated in Canada was sequenced; this is the second North American wildlife rabies virus isolate to be fully characterized. The overall organization and length of the genome was similar to that of other lyssaviruses. The nucleotide sequence identity of the raccoon strain ranged between 32.7% and 85.0% when compared

Annamaria G. Szanto; Susan A. Nadin-Davis; Bradley N. White

2008-01-01

242

Comparative Genome Analysis at the Sequence Level in the Brassicaceae  

Microsoft Academic Search

\\u000a In the world of plant genome sequencing, the cultivated Brassica species have been relatively under-resourced compared with other crop species largely due to their position in the economic\\u000a hierarchy of perceived importance. Thus, with the completion of the Arabidopsis thaliana genome in the year 2000, the limited sequencing efforts undertaken in the Brassica crops and other species of the Brassicaceae

Chris Town; Renate Schmidt; Ian Bancroft

243

Genomic distribution of simple sequence repeats in Brassica rapa.  

PubMed

Simple Sequence Repeats (SSRs) represent short tandem duplications found within all eukaryotic organisms. To examine the distribution of SSRs in the genome of Brassica rapa ssp. pekinensis, SSRs from different genomic regions representing 17.7 Mb of genomic sequence were surveyed. SSRs appear more abundant in non-coding regions (86.6%) than in coding regions (13.4%). Comparison of SSR densities in different genomic regions demonstrated that SSR density was greatest within the 5'-flanking regions of the predicted genes. The proportion of different repeat motifs varied between genomic regions, with trinucleotide SSRs more prevalent in predicted coding regions, reflecting the codon structure in these regions. SSRs were also preferentially associated with gene-rich regions, with peri-centromeric heterochromatin SSRs mostly associated with retrotransposons. These results indicate that the distribution of SSRs in the genome is non-random. Comparison of SSR abundance between B. rapa and the closely related species Arabidopsis thaliana suggests a greater abundance of SSRs in B. rapa, which may be due to the proposed genome triplication. Our results provide a comprehensive view of SSR genomic distribution and evolution in Brassica for comparison with the sequenced genomes of A. thaliana and Oryza sativa. PMID:17646709

Hong, Chang Pyo; Piao, Zhong Yun; Kang, Tae Wook; Batley, Jacqueline; Yang, Tae-Jin; Hur, Yoon-Kang; Bhak, Jong; Park, Beom-Seok; Edwards, David; Lim, Yong Pyo

2007-06-30

244

The sequencing of the human genome and the entire genomes of many model organisms has resulted in the identification of  

E-print Network

313 The sequencing of the human genome and the entire genomes of many model organisms has resulted TF transcription factor Introduction The sequencing of the human genome and the entire genomes genomics techniques for mapping transcription regulatory networks have evolved on the basis of advances

245

Sequencing viral genomes from a single isolated plaque  

PubMed Central

Background Whole genome sequencing of viruses and bacteriophages is often hindered because of the need for large quantities of genomic material. A method is described that combines single plaque sequencing with an optimization of Sequence Independent Single Primer Amplification (SISPA). This method can be used for de novo whole genome next-generation sequencing of any cultivable virus without the need for large-scale production of viral stocks or viral purification using centrifugal techniques. Methods A single viral plaque of a variant of the 2009 pandemic H1N1 human Influenza A virus was isolated and amplified using the optimized SISPA protocol. The sensitivity of the SISPA protocol presented here was tested with bacteriophage F_HA0480sp/Pa1651 DNA. The amplified products were sequenced with 454 and Illumina HiSeq platforms. Mapping and de novo assemblies were performed to analyze the quality of data produced from this optimized method. Results Analysis of the sequence data demonstrated that from a single viral plaque of Influenza A, a mapping assembly with 3590-fold average coverage representing 100% of the genome could be produced. The de novo assembled data produced contigs with 30-fold average sequence coverage, representing 96.5% of the genome. Using only 10 pg of starting DNA from bacteriophage F_HA0480sp/Pa1651 in the SISPA protocol resulted in sequencing data that gave a mapping assembly with 3488-fold average sequence coverage, representing 99.9% of the reference and a de novo assembly with 45-fold average sequence coverage, representing 98.1% of the genome. Conclusions The optimized SISPA protocol presented here produces amplified product that when sequenced will give high quality data that can be used for de novo assembly. The protocol requires only a single viral plaque or as little as 10 pg of DNA template, which will facilitate rapid identification of viruses during an outbreak and viruses that are difficult to propagate. PMID:23742765

2013-01-01

246

Large-Scale Sequencing: The Future of Genomic Sciences Colloquium  

SciTech Connect

Genetic sequencing and the various molecular techniques it has enabled have revolutionized the field of microbiology. Examining and comparing the genetic sequences borne by microbes - including bacteria, archaea, viruses, and microbial eukaryotes - provides researchers insights into the processes microbes carry out, their pathogenic traits, and new ways to use microorganisms in medicine and manufacturing. Until recently, sequencing entire microbial genomes has been laborious and expensive, and the decision to sequence the genome of an organism was made on a case-by-case basis by individual researchers and funding agencies. Now, thanks to new technologies, the cost and effort of sequencing is within reach for even the smallest facilities, and the ability to sequence the genomes of a significant fraction of microbial life may be possible. The availability of numerous microbial genomes will enable unprecedented insights into microbial evolution, function, and physiology. However, the current ad hoc approach to gathering sequence data has resulted in an unbalanced and highly biased sampling of microbial diversity. A well-coordinated, large-scale effort to target the breadth and depth of microbial diversity would result in the greatest impact. The American Academy of Microbiology convened a colloquium to discuss the scientific benefits of engaging in a large-scale, taxonomically-based sequencing project. A group of individuals with expertise in microbiology, genomics, informatics, ecology, and evolution deliberated on the issues inherent in such an effort and generated a set of specific recommendations for how best to proceed. The vast majority of microbes are presently uncultured and, thus, pose significant challenges to such a taxonomically-based approach to sampling genome diversity. However, we have yet to even scratch the surface of the genomic diversity among cultured microbes. A coordinated sequencing effort of cultured organisms is an appropriate place to begin, since not only are their genomes available, but they are also accompanied by data on environment and physiology that can be used to understand the resulting data. As single cell isolation methods improve, there should be a shift toward incorporating uncultured organisms and communities into this effort. Efforts to sequence cultivated isolates should target characterized isolates from culture collections for which biochemical data are available, as well as other cultures of lasting value from personal collections. The genomes of type strains should be among the first targets for sequencing, but creative culture methods, novel cell isolation, and sorting methods would all be helpful in obtaining organisms we have not yet been able to cultivate for sequencing. The data that should be provided for strains targeted for sequencing will depend on the phylogenetic context of the organism and the amount of information available about its nearest relatives. Annotation is an important part of transforming genome sequences into useful resources, but it represents the most significant bottleneck to the field of comparative genomics right now and must be addressed. Furthermore, there is a need for more consistency in both annotation and achieving annotation data. As new annotation tools become available over time, re-annotation of genomes should be implemented, taking advantage of advancements in annotation techniques in order to capitalize on the genome sequences and increase both the societal and scientific benefit of genomics work. Given the proper resources, the knowledge and ability exist to be able to select model systems, some simple, some less so, and dissect them so that we may understand the processes and interactions at work in them. Colloquium participants suggest a five-pronged, coordinated initiative to exhaustively describe six different microbial ecosystems, designed to describe all the gene diversity, across genomes. In this effort, sequencing should be complemented by other experimental data, particularly transcriptomics and metabolomics data, all of which

Margaret Riley; Merry Buckley

2009-01-01

247

Mitochondrial Genome Sequence of the Legume Vicia faba.  

PubMed

The number of plant mitochondrial genomes sequenced exceeds two dozen. However, for a detailed comparative study of different phylogenetic branches more plant mitochondrial genomes should be sequenced. This article presents sequencing data and comparative analysis of mitochondrial DNA (mtDNA) of the legume Vicia faba. The size of the V. faba circular mitochondrial master chromosome of cultivar Broad Windsor was estimated as 588,000?bp with a genome complexity of 387,745?bp and 52 conservative mitochondrial genes; 32 of them encoding proteins, 3 rRNA, and 17 tRNA genes. Six tRNA genes were highly homologous to chloroplast genome sequences. In addition to the 52 conservative genes, 114 unique open reading frames (ORFs) were found, 36 without significant homology to any known proteins and 29 with homology to the Medicago truncatula nuclear genome and to other plant mitochondrial ORFs, 49 ORFs were not homologous to M. truncatula but possessed sequences with significant homology to other plant mitochondrial or nuclear ORFs. In general, the unique ORFs revealed very low homology to known closely related legumes, but several sequence homologies were found between V. faba, Beta vulgaris, Nicotiana tabacum, Vitis vinifera, and even the monocots Oryza sativa and Zea mays. Most likely these ORFs arose independently during angiosperm evolution (Kubo and Mikami, 2007; Kubo and Newton, 2008). Computational analysis revealed in total about 45% of V. faba mtDNA sequence being homologous to the Medicago truncatula nuclear genome (more than to any sequenced plant mitochondrial genome), and 35% of this homology ranging from a few dozen to 12,806?bp are located on chromosome 1. Apparently, mitochondrial rrn5, rrn18, rps10, ATP synthase subunit alpha, cox2, and tRNA sequences are part of transcribed nuclear mosaic ORFs. PMID:23675376

Negruk, Valentine

2013-01-01

248

Genome sequence of the date palm Phoenix dactylifera L  

PubMed Central

Date palm (Phoenix dactylifera L.) is a cultivated woody plant species with agricultural and economic importance. Here we report a genome assembly for an elite variety (Khalas), which is 605.4?Mb in size and covers >90% of the genome (~671?Mb) and >96% of its genes (~41,660 genes). Genomic sequence analysis demonstrates that P. dactylifera experienced a clear genome-wide duplication after either ancient whole genome duplications or massive segmental duplications. Genetic diversity analysis indicates that its stress resistance and sugar metabolism-related genes tend to be enriched in the chromosomal regions where the density of single-nucleotide polymorphisms is relatively low. Using transcriptomic data, we also illustrate the date palm’s unique sugar metabolism that underlies fruit development and ripening. Our large-scale genomic and transcriptomic data pave the way for further genomic studies not only on P. dactylifera but also other Arecaceae plants. PMID:23917264

Al-Mssallem, Ibrahim S.; Hu, Songnian; Zhang, Xiaowei; Lin, Qiang; Liu, Wanfei; Tan, Jun; Yu, Xiaoguang; Liu, Jiucheng; Pan, Linlin; Zhang, Tongwu; Yin, Yuxin; Xin, Chengqi; Wu, Hao; Zhang, Guangyu; Ba Abdullah, Mohammed M.; Huang, Dawei; Fang, Yongjun; Alnakhli, Yasser O.; Jia, Shangang; Yin, An; Alhuzimi, Eman M.; Alsaihati, Burair A.; Al-Owayyed, Saad A.; Zhao, Duojun; Zhang, Sun; Al-Otaibi, Noha A.; Sun, Gaoyuan; Majrashi, Majed A.; Li, Fusen; Tala; Wang, Jixiang; Yun, Quanzheng; Alnassar, Nafla A.; Wang, Lei; Yang, Meng; Al-Jelaify, Rasha F.; Liu, Kan; Gao, Shenghan; Chen, Kaifu; Alkhaldi, Samiyah R.; Liu, Guiming; Zhang, Meng; Guo, Haiyan; Yu, Jun

2013-01-01

249

Complete Genome Sequence of Methanobacterium thermoautotrophicum DH: Functional Analysis and Comparative Genomics  

Microsoft Academic Search

The complete 1,751,377-bp sequence of the genome of the thermophilic archaeon Methanobacterium thermo- autotrophicum DH has been determined by a whole-genome shotgun sequencing approach. A total of 1,855 open reading frames (ORFs) have been identified that appear to encode polypeptides, 844 (46%) of which have been assigned putative functions based on their similarities to database sequences with assigned functions. A

DOUGLAS R. SMITH; LYNN A. DOUCETTE-STAMM; CRAIG DELOUGHERY; HONGMEI LEE; JOANN DUBOIS; TYLER ALDREDGE; ROMINA BASHIRZADEH; DERRON BLAKELY; ROBIN COOK; KATIE GILBERT; DAWN HARRISON; LIEU HOANG; PAMELA KEAGLE; WENDY LUMM; BRYAN POTHIER; DAYONG QIU; ROB SPADAFORA; RITA VICAIRE; YING WANG; JAMEY WIERZBOWSKI; RENE GIBSON; NILOFER JIWANI; ANTHONY CARUSO; DAVID BUSH; HERSHEL SAFER; DONIVAN PATWELL; SHASHI PRABHAKAR; STEVE MCDOUGALL; GEORGE SHIMER; ANIL GOYAL; SHMUEL PIETROKOVSKI; GEORGE M. CHURCH; CHARLES J. DANIELS; JEN-I MAO; PHIL RICE; JORK NOLLING; JOHN N. REEVE

1997-01-01

250

Characterizing the walnut genome through analyses of BAC end sequences.  

PubMed

Persian walnut (Juglans regia L.) is an economically important tree for its nut crop and timber. To gain insight into the structure and evolution of the walnut genome, we constructed two bacterial artificial chromosome (BAC) libraries, containing a total of 129,024 clones, from in vitro-grown shoots of J. regia cv. Chandler using the HindIII and MboI cloning sites. A total of 48,218 high-quality BAC end sequences (BESs) were generated, with an accumulated sequence length of 31.2 Mb, representing approximately 5.1% of the walnut genome. Analysis of repeat DNA content in BESs revealed that approximately 15.42% of the genome consists of known repetitive DNA, while walnut-unique repetitive DNA identified in this study constitutes 13.5% of the genome. Among the walnut-unique repetitive DNA, Julia SINE and JrTRIM elements represent the first identified walnut short interspersed element (SINE) and terminal-repeat retrotransposon in miniature (TRIM) element, respectively; both types of elements are abundant in the genome. As in other species, these SINEs and TRIM elements could be exploited for developing repeat DNA-based molecular markers in walnut. Simple sequence repeats (SSR) from BESs were analyzed and found to be more abundant in BESs than in expressed sequence tags. The density of SSR in the walnut genome analyzed was also slightly higher than that in poplar and papaya. Sequence analysis of BESs indicated that approximately 11.5% of the walnut genome represents a coding sequence. This study is an initial characterization of the walnut genome and provides the largest genomic resource currently available; as such, it will be a valuable tool in studies aimed at genetically improving walnut. PMID:22101470

Wu, Jiajie; Gu, Yong Q; Hu, Yuqin; You, Frank M; Dandekar, Abhaya M; Leslie, Charles A; Aradhya, Mallikarjuna; Dvorak, Jan; Luo, Ming-Cheng

2012-01-01

251

Complete genome sequence of Serratia plymuthica strain AS12  

PubMed Central

A plant-associated member of the family Enterobacteriaceae, Serratia plymuthica strain AS12 was isolated from rapeseed roots. It is of scientific interest because it promotes plant growth and inhibits plant pathogens. The genome of S. plymuthica AS12 comprises a 5,443,009 bp long circular chromosome, which consists of 4,952 protein-coding genes, 87 tRNA genes and 7 rRNA operons. This genome was sequenced within the 2010 DOE-JGI Community Sequencing Program (CSP2010) as part of the project entitled “Genomics of four rapeseed plant growth promoting bacteria with antagonistic effect on plant pathogens”. PMID:22768360

Finlay, Roger D.; Alstrom, Sadhna; Goodwin, Lynne; Kyrpides, Nikos C.; Lucas, Susan; Lapidus, Alla; Bruce, David; Pitluck, Sam; Peters, Lin; Ovchinnikova, Galina; Chertkov, Olga; Han, James; Han, Cliff; Tapia, Roxanne; Detter, John C.; Land, Miriam; Hauser, Loren; Cheng, Jan-Fang; Ivanova, Natalia; Pagani, Ioanna; Klenk, Hans-Peter; Woyke, Tanja; Hogberg, Nils

2012-01-01

252

RESTseq - Efficient Benchtop Population Genomics with RESTriction Fragment SEQuencing  

PubMed Central

We present RESTseq, an improved approach for a cost efficient, highly flexible and repeatable enrichment of DNA fragments from digested genomic DNA using Next Generation Sequencing platforms including small scale Personal Genome sequencers. Easy adjustments make it suitable for a wide range of studies requiring SNP detection or SNP genotyping from fine-scale linkage mapping to population genomics and population genetics also in non-model organisms. We demonstrate the validity of our approach by comparing two honeybee and several stingless bee samples. PMID:23691128

Stolle, Eckart; Moritz, Robin F. A.

2013-01-01

253

RESTseq--efficient benchtop population genomics with RESTriction Fragment SEQuencing.  

PubMed

We present RESTseq, an improved approach for a cost efficient, highly flexible and repeatable enrichment of DNA fragments from digested genomic DNA using Next Generation Sequencing platforms including small scale Personal Genome sequencers. Easy adjustments make it suitable for a wide range of studies requiring SNP detection or SNP genotyping from fine-scale linkage mapping to population genomics and population genetics also in non-model organisms. We demonstrate the validity of our approach by comparing two honeybee and several stingless bee samples. PMID:23691128

Stolle, Eckart; Moritz, Robin F A

2013-01-01

254

Complete genome sequence of Serratia plymuthica strain AS12  

SciTech Connect

A plant associated member of the family Enterobacteriaceae, Serratia plymuthica strain AS12 was isolated from rapeseed roots. It is of scientific interest due to its plant growth promoting and plant pathogen inhibiting ability. The genome of S. plymuthica AS12 comprises a 5,443,009 bp long circular chromosome, which consists of 4,952 protein-coding genes, 87 tRNA genes and 7 rRNA operons. This genome was sequenced within the 2010 DOE-JGI Community Sequencing Program (CSP2010) as part of the project entitled 'Genomics of four rapeseed plant growth promoting bacteria with antagonistic effect on plant pathogens'.

Neupane, Saraswoti [Uppsala University, Uppsala, Sweden; Finlay, Roger D. [Uppsala University, Uppsala, Sweden; Alstrom, Sadhna [Uppsala University, Uppsala, Sweden; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Peters, Lin [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Chertkov, Olga [Los Alamos National Laboratory (LANL); Han, James [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Hogberg, Nils [Uppsala University, Uppsala, Sweden

2012-01-01

255

Complete genome sequence of Ferroglobus placidus AEDII12DO  

SciTech Connect

Ferroglobus placidus belongs to the order Archaeoglobales within the archaeal phylum Euryar- chaeota. Strain AEDII12DO is the type strain of the species and was isolated from a shallow marine hydrothermal system at Vulcano, Italy. It is a hyperthermophilic, anaerobic chemoli- thoautotroph, but it can also use a variety of aromatic compounds as electron donors. Here we describe the features of this organism together with the complete genome sequence and anno- tation. The 2,196,266 bp genome with its 2,567 protein-coding and 55 RNA genes was se- quenced as part of a DOE Joint Genome Institute Laboratory Sequencing Program (LSP) project.

Anderson, Iain [U.S. Department of Energy, Joint Genome Institute; Risso, Carla [University of Massachusetts, Amherst; Holmes, Dawn [University of Massachusetts, Amherst; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Brettin, Thomas S [ORNL; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Larimer, Frank W [ORNL; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Lovley, Derek [University of Massachusetts, Amherst; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute

2011-01-01

256

Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis.  

PubMed

We describe the genome sequence of the protist Trichomonas vaginalis, a sexually transmitted human pathogen. Repeats and transposable elements comprise about two-thirds of the approximately 160-megabase genome, reflecting a recent massive expansion of genetic material. This expansion, in conjunction with the shaping of metabolic pathways that likely transpired through lateral gene transfer from bacteria, and amplification of specific gene families implicated in pathogenesis and phagocytosis of host proteins may exemplify adaptations of the parasite during its transition to a urogenital environment. The genome sequence predicts previously unknown functions for the hydrogenosome, which support a common evolutionary origin of this unusual organelle with mitochondria. PMID:17218520

Carlton, Jane M; Hirt, Robert P; Silva, Joana C; Delcher, Arthur L; Schatz, Michael; Zhao, Qi; Wortman, Jennifer R; Bidwell, Shelby L; Alsmark, U Cecilia M; Besteiro, Sébastien; Sicheritz-Ponten, Thomas; Noel, Christophe J; Dacks, Joel B; Foster, Peter G; Simillion, Cedric; Van de Peer, Yves; Miranda-Saavedra, Diego; Barton, Geoffrey J; Westrop, Gareth D; Müller, Sylke; Dessi, Daniele; Fiori, Pier Luigi; Ren, Qinghu; Paulsen, Ian; Zhang, Hanbang; Bastida-Corcuera, Felix D; Simoes-Barbosa, Augusto; Brown, Mark T; Hayes, Richard D; Mukherjee, Mandira; Okumura, Cheryl Y; Schneider, Rachel; Smith, Alias J; Vanacova, Stepanka; Villalvazo, Maria; Haas, Brian J; Pertea, Mihaela; Feldblyum, Tamara V; Utterback, Terry R; Shu, Chung-Li; Osoegawa, Kazutoyo; de Jong, Pieter J; Hrdy, Ivan; Horvathova, Lenka; Zubacova, Zuzana; Dolezal, Pavel; Malik, Shehre-Banoo; Logsdon, John M; Henze, Katrin; Gupta, Arti; Wang, Ching C; Dunne, Rebecca L; Upcroft, Jacqueline A; Upcroft, Peter; White, Owen; Salzberg, Steven L; Tang, Petrus; Chiu, Cheng-Hsun; Lee, Ying-Shiung; Embley, T Martin; Coombs, Graham H; Mottram, Jeremy C; Tachezy, Jan; Fraser-Liggett, Claire M; Johnson, Patricia J

2007-01-12

257

Draft Genome Sequence of the Sexually Transmitted Pathogen Trichomonas vaginalis  

PubMed Central

We describe the genome sequence of the protist Trichomonas vaginalis, a sexually transmitted human pathogen. Repeats and transposable elements comprise about two-thirds of the ~160-megabase genome, reflecting a recent massive expansion of genetic material. This expansion, in conjunction with the shaping of metabolic pathways that likely transpired through lateral gene transfer from bacteria, and amplification of specific gene families implicated in pathogenesis and phagocytosis of host proteins may exemplify adaptations of the parasite during its transition to a urogenital environment. The genome sequence predicts previously unknown functions for the hydrogenosome, which support a common evolutionary origin of this unusual organelle with mitochondria. PMID:17218520

Carlton, Jane M.; Hirt, Robert P.; Silva, Joana C.; Delcher, Arthur L.; Schatz, Michael; Zhao, Qi; Wortman, Jennifer R.; Bidwell, Shelby L.; Alsmark, U. Cecilia M.; Besteiro, Sébastien; Sicheritz-Ponten, Thomas; Noel, Christophe J.; Dacks, Joel B.; Foster, Peter G.; Simillion, Cedric; Van de Peer, Yves; Miranda-Saavedra, Diego; Barton, Geoffrey J.; Westrop, Gareth D.; Müller, Sylke; Dessi, Daniele; Fiori, Pier Luigi; Ren, Qinghu; Paulsen, Ian; Zhang, Hanbang; Bastida-Corcuera, Felix D.; Simoes-Barbosa, Augusto; Brown, Mark T.; Hayes, Richard D.; Mukherjee, Mandira; Okumura, Cheryl Y.; Schneider, Rachel; Smith, Alias J.; Vanacova, Stepanka; Villalvazo, Maria; Haas, Brian J.; Pertea, Mihaela; Feldblyum, Tamara V.; Utterback, Terry R.; Shu, Chung-Li; Osoegawa, Kazutoyo; de Jong, Pieter J.; Hrdy, Ivan; Horvathova, Lenka; Zubacova, Zuzana; Dolezal, Pavel; Malik, Shehre-Banoo; Logsdon, John M.; Henze, Katrin; Gupta, Arti; Wang, Ching C.; Dunne, Rebecca L.; Upcroft, Jacqueline A.; Upcroft, Peter; White, Owen; Salzberg, Steven L.; Tang, Petrus; Chiu, Cheng-Hsun; Lee, Ying-Shiung; Embley, T. Martin; Coombs, Graham H.; Mottram, Jeremy C.; Tachezy, Jan; Fraser-Liggett, Claire M.; Johnson, Patricia J.

2007-01-01

258

Comparison of Sample Sequences of the Salmonella typhi Genome to the Sequence of the Complete Escherichia coli K-12 Genome  

PubMed Central

Raw sequence data representing the majority of a bacterial genome can be obtained at a tiny fraction of the cost of a completed sequence. To demonstrate the utility of such a resource, 870 single-stranded M13 clones were sequenced from a shotgun library of the Salmonella typhi Ty2 genome. The sequence reads averaged over 400 bases and sampled the genome with an average spacing of once every 5,000 bases. A total of 339,243 bases of unique sequence was generated (approximately 7% representation). The sample of 870 sequences was compared to the complete Escherichia coli K-12 genome and to the rest of the GenBank database, which can also be considered a collection of sampled sequences. Despite the incomplete S. typhi data set, interesting categories could easily be discerned. Sixteen percent of the sequences determined from S. typhi had close homologs among known Salmonella sequences (P < 1e?40 in BlastX or BlastN), reflecting the proportion of these genomes that have been sequenced previously; 277 sequences (32%) had no apparent orthologs in the complete E. coli K-12 genome (P > 1e?20), of which 155 sequences (18%) had no close similarities to any sequence in the database (P > 1e?5). Eight of the 277 sequences had similarities to genes in other strains of E. coli or plasmids, and six sequences showed evidence of novel phage lysogens or sequence remnants of phage integrations, including a member of the lambda family (P < 1e?15). Twenty-three sample sequences had a significantly closer similarity a sequence in the database from organisms other than the E. coli/Salmonella clade (which includes Shigella and Citrobacter). These sequences are new candidate lateral transfer events to the S. typhi lineage or deletions on the E. coli K-12 lineage. Eleven putative junctions of insertion/deletion events greater than 100 bp were observed in the sample, indicating that well over 150 such events may distinguish S. typhi from E. coli K-12. The need for automatic methods to more effectively exploit sample sequences is discussed. PMID:9712782

McClelland, Michael; Wilson, Richard K.

1998-01-01

259

Mining genome sequencing data to identify the genomic features linked to breast cancer histopathology  

PubMed Central

Background: Genetics and genomics have radically altered our understanding of breast cancer progression. However, the genomic basis of various histopathologic features of breast cancer is not yet well-defined. Materials and Methods: The Cancer Genome Atlas (TCGA) is an international database containing a large collection of human cancer genome sequencing data. cBioPortal is a web tool developed for mining these sequencing data. We performed mining of TCGA sequencing data in an attempt to characterize the genomic features correlated with breast cancer histopathology. We first assessed the quality of the TCGA data using a group of genes with known alterations in various cancers. Both genome-wide gene mutation and copy number changes as well as a group of genes with a high frequency of genetic changes were then correlated with various histopathologic features of invasive breast cancer. Results: Validation of TCGA data using a group of genes with known alterations in breast cancer suggests that the TCGA has accurately documented the genomic abnormalities of multiple malignancies. Further analysis of TCGA breast cancer sequencing data shows that accumulation of specific genomic defects is associated with higher tumor grade, larger tumor size and receptor negativity. Distinct groups of genomic changes were found to be associated with the different grades of invasive ductal carcinoma. The mutator role of the TP53 gene was validated by genomic sequencing data of invasive breast cancer and TP53 mutation was found to play a critical role in defining high tumor grade. Conclusions: Data mining of the TCGA genome sequencing data is an innovative and reliable method to help characterize the genomic abnormalities associated with histopathologic features of invasive breast cancer. PMID:24672738

Ping, Zheng; Siegal, Gene P.; Almeida, Jonas S.; Schnitt, Stuart J.; Shen, Dejun

2014-01-01

260

Short reads, circular genome: skimming solid sequence to construct the bighorn sheep mitochondrial genome.  

PubMed

As sequencing technology improves, an increasing number of projects aim to generate full genome sequence, even for nonmodel taxa. These projects may be feasibly conducted at lower read depths if the alignment can be aided by previously developed genomic resources from a closely related species. We investigated the feasibility of constructing a complete mitochondrial (mt) genome without preamplification or other targeting of the sequence. Here we present a full mt genome sequence (16,463 nucleotides) for the bighorn sheep (Ovis canadensis) generated though alignment of SOLiD short-read sequences to a reference genome. Average read depth was 1240, and each base was covered by at least 36 reads. We then conducted a phylogenomic analysis with 27 other bovid mitogenomes, which placed bighorn sheep firmly in the Ovis clade. These results show that it is possible to generate a complete mitogenome by skimming a low-coverage genomic sequencing library. This technique will become increasingly applicable as the number of taxa with some level of genome sequence rises. PMID:21948953

Miller, Joshua M; Malenfant, René M; Moore, Stephen S; Coltman, David W

2012-01-01

261

Corruption of genomic databases with anomalous sequence.  

PubMed Central

We describe evidence that DNA sequences from vectors used for cloning and sequencing have been incorporated accidentally into eukaryotic entries in the GenBank database. These incorporations were not restricted to one type of vector or to a single mechanism. Many minor instances may have been the result of simple editing errors, but some entries contained large blocks of vector sequence that had been incorporated by contamination or other accidents during cloning. Some cases involved unusual rearrangements and areas of vector distant from the normal insertion sites. Matches to vector were found in 0.23% of 20,000 sequences analyzed in GenBank Release 63. Although the possibility of anomalous sequence incorporation has been recognized since the inception of GenBank and should be easy to avoid, recent evidence suggests that this problem is increasing more quickly than the database itself. The presence of anomalous sequence may have serious consequences for the interpretation and use of database entries, and will have an impact on issues of database management. The incorporated vector fragments described here may also be useful for a crude estimate of the fidelity of sequence information in the database. In alignments with well-defined ends, the matching sequences showed 96.8% identity to vector; when poorer matches with arbitrary limits were included, the aggregate identity to vector sequence was 94.8%. PMID:1614861

Lamperti, E D; Kittelberger, J M; Smith, T F; Villa-Komaroff, L

1992-01-01

262

Complete Genome Sequence of a Novel Pestivirus from Sheep  

PubMed Central

We report here the complete genome sequence of pestivirus strain Aydin/04-TR, which is the prototype of a group of similar viruses currently present in sheep and goats in Turkey. Sequence data from this virus showed that it clusters separately from the established and previously proposed tentative pestivirus species. PMID:22997427

Schmeiser, Stefanie; Oguzoglu, Tuba Cigdem; Postel, Alexander

2012-01-01

263

Triplex-forming oligonucleotide target sequences in the human genome  

Microsoft Academic Search

The existence of sequences in the human genome which can be a target for triplex formation, and accordingly are candidates for anti-gene therapies, has been studied by using bioinformatics tools. It was found that the population of triplex-forming oligonucleotide target sequences (TTS) is much more abundant than that expected from simple random models. The population of TTS is large in

J. Ramon Goni; Xavier de la Cruz; Modesto Orozco

2004-01-01

264

Genome Sequence of Fusobacterium nucleatum Subspecies Polymorphum — a Genetically Tractable  

Microsoft Academic Search

Fusobacterium nucleatum is a prominent member of the oral microbiota and is a common cause of human infection. F. nucleatum includes five subspecies: polymorphum, nucleatum, vincentii, fusiforme, and animalis. F. nucleatum subsp. polymorphum ATCC 10953 has been well characterized phenotypically and, in contrast to previously sequenced strains, is amenable to gene transfer. We sequenced and annotated the 2,429,698 bp genome

Fusobacterium Sandor; E. Karpathy; Xiang Qin; Jason Gioia; Huaiyang Jiang; Yamei Liu; Joseph F. Petrosino; Shailaja Yerrapragada; George E. Fox; Susan Kinder Haake; George M. Weinstock; Sarah K. Highlander

265

Genome Sequences of Vibrio navarrensis, a Potential Human Pathogen  

PubMed Central

Vibrio navarrensis is an aquatic bacterium recently shown to be associated with human illness. We report the first genome sequences of three V. navarrensis strains obtained from clinical and environmental sources. Preliminary analyses of the sequences reveal that V. navarrensis contains genes commonly associated with virulence in other human pathogens. PMID:25414502

Gladney, Lori M.; Katz, Lee S.; Knipe, Kristen M.; Rowe, Lori A.; Conley, Andrew B.; Rishishwar, Lavanya; Mariño-Ramírez, Leonardo

2014-01-01

266

Environmental Genome Shotgun Sequencing of the Sargasso Sea  

Microsoft Academic Search

We have applied ``whole-genome shotgun sequencing'' to microbial populations collected en masse on tangential flow and impact filters from seawater samples collected from the Sargasso Sea near Bermuda. A total of 1.045 billion base pairs of nonredundant sequence was generated, annotated, and analyzed to elucidate the gene content, diversity, and relative abundance of the organisms within these environmental samples. These

J. Craig Venter; Karin Remington; John F. Heidelberg; Aaron L. Halpern; Doug Rusch; Dongying Wu; Ian Paulsen; Karen E. Nelson; William Nelson; Derrick E. Fouts; Samuel Levy; Anthony H. Knap; Michael W. Lomas; Ken Nealson; Owen White; Jeremy Peterson; Jeff Hoffman; Rachel Parsons; Holly Baden-Tillson; Cynthia Pfannkoch; Yu-Hui Rogers; Hamilton O. Smith

2004-01-01

267

Revisiting the sequencing of the first tree genome: Populus trichocarpa.  

PubMed

Ten years ago, it was announced that the Joint Genome Institute with funds provided by the Department of Energy, Office of Science, Biological and Environmental Research would sequence the black cottonwood (Populus trichocarpa Torr. & Gray) genome. This landmark decision was the culmination of work by the forest science community to develop Populus as a model system. Since its public release in late 2006, the availability of the Populus genome has spawned research in plant biology, morphology, genetics and ecology. Here we address how the tree physiologist has used this resource. More specifically, we revisit our earlier contention that the rewards of sequencing the Populus genome would depend on how quickly scientists working with woody perennials could adopt molecular approaches to investigate the mechanistic underpinnings of basic physiological processes. Several examples illustrate the integration of functional and comparative genomics into the forest sciences, especially in areas that target improved understanding of the developmental differences between woody perennials and herbaceous annuals (e.g., phase transitions). Sequencing the Populus genome and the availability of genetic and genomic resources has also been instrumental in identifying candidate genes that underlie physiological and morphological traits of interest. Genome-enabled research has advanced our understanding of how phenotype and genotype are related and provided insights into the genetic mechanisms whereby woody perennials adapt to environmental stress. In the future, we anticipate that low-cost, high-throughput sequencing will continue to facilitate research in tree physiology and enhance our understanding at scales of individual organisms and populations. A challenge remains, however, as to how genomic resources, including the Populus genome, can be used to understand ecosystem function. Although examples are limited, progress in this area is encouraging and will undoubtedly improve as future research targets the many unique aspects of Populus as a keystone species in terrestrial ecosystems. PMID:23100257

Wullschleger, Stan D; Weston, D J; DiFazio, S P; Tuskan, G A

2013-04-01

268

Sequence Analysis of the Genome of Carnation (Dianthus caryophyllus L.)  

PubMed Central

The whole-genome sequence of carnation (Dianthus caryophyllus L.) cv. ‘Francesco’ was determined using a combination of different new-generation multiplex sequencing platforms. The total length of the non-redundant sequences was 568 887 315 bp, consisting of 45 088 scaffolds, which covered 91% of the 622 Mb carnation genome estimated by k-mer analysis. The N50 values of contigs and scaffolds were 16 644 bp and 60 737 bp, respectively, and the longest scaffold was 1 287 144 bp. The average GC content of the contig sequences was 36%. A total of 1050, 13, 92 and 143 genes for tRNAs, rRNAs, snoRNA and miRNA, respectively, were identified in the assembled genomic sequences. For protein-encoding genes, 43 266 complete and partial gene structures excluding those in transposable elements were deduced. Gene coverage was ?98%, as deduced from the coverage of the core eukaryotic genes. Intensive characterization of the assigned carnation genes and comparison with those of other plant species revealed characteristic features of the carnation genome. The results of this study will serve as a valuable resource for fundamental and applied research of carnation, especially for breeding new carnation varieties. Further information on the genomic sequences is available at http://carnation.kazusa.or.jp. PMID:24344172

Yagi, Masafumi; Kosugi, Shunichi; Hirakawa, Hideki; Ohmiya, Akemi; Tanase, Koji; Harada, Taro; Kishimoto, Kyutaro; Nakayama, Masayoshi; Ichimura, Kazuo; Onozaki, Takashi; Yamaguchi, Hiroyasu; Sasaki, Nobuhiro; Miyahara, Taira; Nishizaki, Yuzo; Ozeki, Yoshihiro; Nakamura, Noriko; Suzuki, Takamasa; Tanaka, Yoshikazu; Sato, Shusei; Shirasawa, Kenta; Isobe, Sachiko; Miyamura, Yoshinori; Watanabe, Akiko; Nakayama, Shinobu; Kishida, Yoshie; Kohara, Mitsuyo; Tabata, Satoshi

2014-01-01

269

Next-generation sequencing and large genome assemblies  

PubMed Central

The next-generation sequencing (NGS) revolution has drastically reduced time and cost requirements for sequencing of large genomes, and also qualitatively changed the problem of assembly. This article reviews the state of the art in de novo genome assembly, paying particular attention to mammalian-sized genomes. The strengths and weaknesses of the main sequencing platforms are highlighted, leading to a discussion of assembly and the new challenges associated with NGS data. Current approaches to assembly are outlined and the various software packages available are introduced and compared. The question of whether quality assemblies can be produced using short-read NGS data alone, or whether it must be combined with more expensive sequencing techniques, is considered. Prospects for future assemblers and tests of assembly performance are also discussed. PMID:22676195

Henson, Joseph; Tischler, German; Ning, Zemin

2012-01-01

270

Complete Genome Sequence of Treponema pallidum, the  

E-print Network

spirochete, Borrelia burgdorferi, the agent of Lyme disease, identified unique and common genes agent of Lyme disease, are similar in having relatively small genomes and surviv- ing only. The disease quickly reached epidemic pro- portions in Europe and spread across the world during the early 16th

Salzberg, Steven

271

The Diploid Genome Sequence of an Individual Human  

Microsoft Academic Search

Presented here is a genome sequence of an individual human. It was produced from ?32 million random DNA fragments, sequenced by Sanger dideoxy technology and assembled into 4,528 scaffolds, comprising 2,810 million bases (Mb) of contiguous sequence with approximately 7.5-fold coverage for any given region. We developed a modified version of the Celera assembler to facilitate the identification and comparison

Samuel Levy; Granger Sutton; Pauline C Ng; Lars Feuk; Aaron L Halpern; Brian P Walenz; Nelson Axelrod; Jiaqi Huang; Ewen F Kirkness; Gennady Denisov; Yuan Lin; Jeffrey R MacDonald; Andy Wing Chun Pang; Mary Shago; Timothy B Stockwell; Alexia Tsiamouri; Vineet Bafna; Vikas Bansal; Saul A Kravitz; Dana A Busam; Karen Y Beeson; Tina C McIntosh; Karin A Remington; Josep F Abril; John Gill; Jon Borman; Yu-Hui Rogers; Marvin E Frazier; Stephen W Scherer; Robert L Strausberg; J. Craig Venter

2007-01-01

272

Sequence-Based Mapping of the Polyploid Wheat Genome  

PubMed Central

The emergence of new sequencing technologies has provided fast and cost-efficient strategies for high-resolution mapping of complex genomes. Although these approaches hold great promise to accelerate genome analysis, their application in studying genetic variation in wheat has been hindered by the complexity of its polyploid genome. Here, we applied the next-generation sequencing of a wheat doubled-haploid mapping population for high-resolution gene mapping and tested its utility for ordering shotgun sequence contigs of a flow-sorted wheat chromosome. A bioinformatical pipeline was developed for reliable variant analysis of sequence data generated for polyploid wheat mapping populations. The results of variant mapping were consistent with the results obtained using the wheat 9000 SNP iSelect assay. A reference map of the wheat genome integrating 2740 gene-associated single-nucleotide polymorphisms from the wheat iSelect assay, 1351 diversity array technology, 118 simple sequence repeat/sequence-tagged sites, and 416,856 genotyping-by-sequencing markers was developed. By analyzing the sequenced megabase-size regions of the wheat genome we showed that mapped markers are located within 40?100 kb from genes providing a possibility for high-resolution mapping at the level of a single gene. In our population, gene loci controlling a seed color phenotype cosegregated with 2459 markers including one that was located within the red seed color gene. We demonstrate that the high-density reference map presented here is a useful resource for gene mapping and linking physical and genetic maps of the wheat genome. PMID:23665877

Saintenac, Cyrille; Jiang, Dayou; Wang, Shichen; Akhunov, Eduard

2013-01-01

273

Draft Genome Sequences of Two Virulent Serotypes of Avian Pasteurella multocida  

PubMed Central

Here we report the draft genome sequences of two virulent avian strains of Pasteurella multocida. Comparative analyses of these genomes were done with the published genome sequence of avirulent P. multocida strain Pm70. PMID:23405337

Abrahante, Juan E.; Johnson, Timothy J.; Hunter, Samuel S.; Maheswaran, Samuel K.; Hauglund, Melissa J.; Bayles, Darrell O.; Tatum, Fred M.

2013-01-01

274

Draft Genome Sequences of Two Virulent Serotypes of Avian Pasteurella multocida.  

PubMed

Here we report the draft genome sequences of two virulent avian strains of Pasteurella multocida. Comparative analyses of these genomes were done with the published genome sequence of avirulent P. multocida strain Pm70. PMID:23405337

Abrahante, Juan E; Johnson, Timothy J; Hunter, Samuel S; Maheswaran, Samuel K; Hauglund, Melissa J; Bayles, Darrell O; Tatum, Fred M; Briggs, Robert E

2013-01-01

275

Genome Sequencing Highlights the Dynamic Early History of Dogs  

PubMed Central

To identify genetic changes underlying dog domestication and reconstruct their early evolutionary history, we generated high-quality genome sequences from three gray wolves, one from each of the three putative centers of dog domestication, two basal dog lineages (Basenji and Dingo) and a golden jackal as an outgroup. Analysis of these sequences supports a demographic model in which dogs and wolves diverged through a dynamic process involving population bottlenecks in both lineages and post-divergence gene flow. In dogs, the domestication bottleneck involved at least a 16-fold reduction in population size, a much more severe bottleneck than estimated previously. A sharp bottleneck in wolves occurred soon after their divergence from dogs, implying that the pool of diversity from which dogs arose was substantially larger than represented by modern wolf populations. We narrow the plausible range for the date of initial dog domestication to an interval spanning 11–16 thousand years ago, predating the rise of agriculture. In light of this finding, we expand upon previous work regarding the increase in copy number of the amylase gene (AMY2B) in dogs, which is believed to have aided digestion of starch in agricultural refuse. We find standing variation for amylase copy number variation in wolves and little or no copy number increase in the Dingo and Husky lineages. In conjunction with the estimated timing of dog origins, these results provide additional support to archaeological finds, suggesting the earliest dogs arose alongside hunter-gathers rather than agriculturists. Regarding the geographic origin of dogs, we find that, surprisingly, none of the extant wolf lineages from putative domestication centers is more closely related to dogs, and, instead, the sampled wolves form a sister monophyletic clade. This result, in combination with dog-wolf admixture during the process of domestication, suggests that a re-evaluation of past hypotheses regarding dog origins is necessary. PMID:24453982

Freedman, Adam H.; Gronau, Ilan; Schweizer, Rena M.; Ortega-Del Vecchyo, Diego; Han, Eunjung; Silva, Pedro M.; Galaverni, Marco; Fan, Zhenxin; Marx, Peter; Lorente-Galdos, Belen; Beale, Holly; Ramirez, Oscar; Hormozdiari, Farhad; Alkan, Can; Vila, Carles; Squire, Kevin; Geffen, Eli; Kusak, Josip; Boyko, Adam R.; Parker, Heidi G.; Lee, Clarence; Tadigotla, Vasisht; Siepel, Adam; Bustamante, Carlos D.; Harkins, Timothy T.; Nelson, Stanley F.; Ostrander, Elaine A.; Marques-Bonet, Tomas; Wayne, Robert K.; Novembre, John

2014-01-01

276

Pervasive sequence patents cover the entire human genome  

PubMed Central

The scope and eligibility of patents for genetic sequences have been debated for decades, but a critical case regarding gene patents (Association of Molecular Pathologists v. Myriad Genetics) is now reaching the US Supreme Court. Recent court rulings have supported the assertion that such patents can provide intellectual property rights on sequences as small as 15 nucleotides (15mers), but an analysis of all current US patent claims and the human genome presented here shows that 15mer sequences from all human genes match at least one other gene. The average gene matches 364 other genes as 15mers; the breast-cancer-associated gene BRCA1 has 15mers matching at least 689 other genes. Longer sequences (1,000 bp) still showed extensive cross-gene matches. Furthermore, 15mer-length claims from bovine and other animal patents could also claim as much as 84% of the genes in the human genome. In addition, when we expanded our analysis to full-length patent claims on DNA from all US patents to date, we found that 41% of the genes in the human genome have been claimed. Thus, current patents for both short and long nucleotide sequences are extraordinarily non-specific and create an uncertain, problematic liability for genomic medicine, especially in regard to targeted re-sequencing and other sequence diagnostic assays. PMID:23522065

2013-01-01

277

Complete Chloroplast Genome Sequence of a Major Allogamous Forage Species, Perennial Ryegrass (Lolium perenne L.)  

PubMed Central

Lolium perenne L. (perennial ryegrass) is globally one of the most important forage and grassland crops. We sequenced the chloroplast (cp) genome of Lolium perenne cultivar Cashel. The L. perenne cp genome is 135 282 bp with a typical quadripartite structure. It contains genes for 76 unique proteins, 30 tRNAs and four rRNAs. As in other grasses, the genes accD, ycf1 and ycf2 are absent. The genome is of average size within its subfamily Pooideae and of medium size within the Poaceae. Genome size differences are mainly due to length variations in non-coding regions. However, considerable length differences of 1–27 codons in comparison of L. perenne to other Poaceae and 1–68 codons among all Poaceae were also detected. Within the cp genome of this outcrossing cultivar, 10 insertion/deletion polymorphisms and 40 single nucleotide polymorphisms were detected. Two of the polymorphisms involve tiny inversions within hairpin structures. By comparing the genome sequence with RT–PCR products of transcripts for 33 genes, 31 mRNA editing sites were identified, five of them unique to Lolium. The cp genome sequence of L. perenne is available under Accession number AM777385 at the European Molecular Biology Laboratory, National Center for Biotechnology Information and DNA DataBank of Japan. PMID:19414502

Diekmann, Kerstin; Hodkinson, Trevor R.; Wolfe, Kenneth H.; van den Bekerom, Rob; Dix, Philip J.; Barth, Susanne

2009-01-01

278

Systematic genome sequence differences among leaf cells within individual trees  

PubMed Central

Background Even in the age of next-generation sequencing (NGS), it has been unclear whether or not cells within a single organism have systematically distinctive genomes. Resolving this question, one of the most basic biological problems associated with DNA mutation rates, can assist efforts to elucidate essential mechanisms of cancer. Results Using genome profiling (GP), we detected considerable systematic variation in genome sequences among cells in individual woody plants. The degree of genome sequence difference (genomic distance) varied systematically from the bottom to the top of the plant, such that the greatest divergence was observed between leaf genomes from uppermost branches and the remainder of the tree. This systematic variation was observed within both Yoshino cherry and Japanese beech trees. Conclusions As measured by GP, the genomic distance between two cells within an individual organism was non-negligible, and was correlated with physical distance (i.e., branch-to-branch distance). This phenomenon was assumed to be the result of accumulation of mutations from each cell division, implying that the degree of divergence is proportional to the number of generations separating the two cells. PMID:24548431

2014-01-01

279

Aligning Multiple Genomic Sequences With the Threaded Blockset Aligner  

PubMed Central

We define a “threaded blockset,” which is a novel generalization of the classic notion of a multiple alignment. A new computer program called TBA (for “threaded blockset aligner”) builds a threaded blockset under the assumption that all matching segments occur in the same order and orientation in the given sequences; inversions and duplications are not addressed. TBA is designed to be appropriate for aligning many, but by no means all, megabase-sized regions of multiple mammalian genomes. The output of TBA can be projected onto any genome chosen as a reference, thus guaranteeing that different projections present consistent predictions of which genomic positions are orthologous. This capability is illustrated using a new visualization tool to view TBA-generated alignments of vertebrate Hox clusters from both the mammalian and fish perspectives. Experimental evaluation of alignment quality, using a program that simulates evolutionary change in genomic sequences, indicates that TBA is more accurate than earlier programs. To perform the dynamic-programming alignment step, TBA runs a stand-alone program called MULTIZ, which can be used to align highly rearranged or incompletely sequenced genomes. We describe our use of MULTIZ to produce the whole-genome multiple alignments at the Santa Cruz Genome Browser. PMID:15060014

Blanchette, Mathieu; Kent, W. James; Riemer, Cathy; Elnitski, Laura; Smit, Arian F.A.; Roskin, Krishna M.; Baertsch, Robert; Rosenbloom, Kate; Clawson, Hiram; Green, Eric D.; Haussler, David; Miller, Webb

2004-01-01

280

Genome sequence of the pea aphid Acyrthosiphon pisum.  

PubMed

Aphids are important agricultural pests and also biological models for studies of insect-plant interactions, symbiosis, virus vectoring, and the developmental causes of extreme phenotypic plasticity. Here we present the 464 Mb draft genome assembly of the pea aphid Acyrthosiphon pisum. This first published whole genome sequence of a basal hemimetabolous insect provides an outgroup to the multiple published genomes of holometabolous insects. Pea aphids are host-plant specialists, they can reproduce both sexually and asexually, and they have coevolved with an obligate bacterial symbiont. Here we highlight findings from whole genome analysis that may be related to these unusual biological features. These findings include discovery of extensive gene duplication in more than 2000 gene families as well as loss of evolutionarily conserved genes. Gene family expansions relative to other published genomes include genes involved in chromatin modification, miRNA synthesis, and sugar transport. Gene losses include genes central to the IMD immune pathway, selenoprotein utilization, purine salvage, and the entire urea cycle. The pea aphid genome reveals that only a limited number of genes have been acquired from bacteria; thus the reduced gene count of Buchnera does not reflect gene transfer to the host genome. The inventory of metabolic genes in the pea aphid genome suggests that there is extensive metabolite exchange between the aphid and Buchnera, including sharing of amino acid biosynthesis between the aphid and Buchnera. The pea aphid genome provides a foundation for post-genomic studies of fundamental biological questions and applied agricultural problems. PMID:20186266

2010-02-01

281

Genomic Sequence or Signature Tags (GSTs) from the Genome Group at Brookhaven National Laboratory (BNL)  

DOE Data Explorer

Genomic Signature Tags (GSTs) are the products of a method we have developed for identifying and quantitatively analyzing genomic DNAs. The DNA is initially fragmented with a type II restriction enzyme. An oligonucleotide adaptor containing a recognition site for MmeI, a type IIS restriction enzyme, is then used to release 21-bp tags from fixed positions in the DNA relative to the sites recognized by the fragmenting enzyme. These tags are PCR-amplified, purified, concatenated and then cloned and sequenced. The tag sequences and abundances are used to create a high resolution GST sequence profile of the genomic DNA. [Quoted from Genomic Signature Tags (GSTs): A System for Profiling Genomic DNA, Dunn, John J.; McCorkle, Sean R.; Praissman, Laura A.; Hind, Geoffrey; Van der Lelie, Daniel; Bahou, Wadie F.; Gnatenko, Dmitri V.; Krause, Maureen K., Revised 9/13/2002

Dunn, John J.; McCorkle, Sean R.; Praissman, Laura A.; Hind, Geoffrey; Van der Lelie, Daniel; Bahou, Wadie F.; Gnatenko, Dmitri V.; Krause, Maureen K.

282

Adaptive seeds tame genomic sequence comparison  

PubMed Central

The main way of analyzing biological sequences is by comparing and aligning them to each other. It remains difficult, however, to compare modern multi-billionbase DNA data sets. The difficulty is caused by the nonuniform (oligo)nucleotide composition of these sequences, rather than their size per se. To solve this problem, we modified the standard seed-and-extend approach (e.g., BLAST) to use adaptive seeds. Adaptive seeds are matches that are chosen based on their rareness, instead of using fixed-length matches. This method guarantees that the number of matches, and thus the running time, increases linearly, instead of quadratically, with sequence length. LAST, our open source implementation of adaptive seeds, enables fast and sensitive comparison of large sequences with arbitrarily nonuniform composition. PMID:21209072

Kielbasa, Szymon M.; Wan, Raymond; Sato, Kengo; Horton, Paul; Frith, Martin C.

2011-01-01

283

LLNL Genomic Assessment: Viral and Bacterial Sequencing Needs for TMTI, Task 1.4.2 Report  

SciTech Connect

Good progress has been made on both bacterial and viral sequencing by the TMTI centers. While access to appropriate samples is a limiting factor to throughput, excellent progress has been made with respect to getting agreements in place with key sources of relevant materials. Sharing of sequenced genomes funded by TMTI has been extremely limited to date. The April 2010 exercise should force a resolution to this, but additional managerial pressures may be needed to ensure that rapid sharing of TMTI-funded sequencing occurs, regardless of collaborator constraints concerning ultimate publication(s). Policies to permit TMTI-internal rapid sharing of sequenced genomes should be written into all TMTI agreements with collaborators now being negotiated. TMTI needs to establish a Web-based system for tracking samples destined for sequencing. This includes metadata on sample origins and contributor, information on sample shipment/receipt, prioritization by TMTI, assignment to one or more sequencing centers (including possible TMTI-sponsored sequencing at a contributor site), and status history of the sample sequencing effort. While this system could be a component of the AFRL system, it is not part of any current development effort. Policy and standardized procedures are needed to ensure appropriate verification of all TMTI samples prior to the investment in sequencing. PCR, arrays, and classical biochemical tests are examples of potential verification methods. Verification is needed to detect miss-labeled, degraded, mixed or contaminated samples. Regular QC exercises are needed to ensure that the TMTI-funded centers are meeting all standards for producing quality genomic sequence data.

Slezak, T; Borucki, M; Lam, M; Lenhoff, R; Vitalis, E

2010-01-26

284

Sequences Promoting Recoding Are Singular Genomic Elements  

Microsoft Academic Search

\\u000a The distribution of sequences which induce non-standard decoding, especially of shift-prone sequences, is very unusual. On\\u000a one hand, since they can disrupt standard genetic readout, they are avoided within the coding regions of most genes. On the\\u000a other hand, they play important regulatory roles for the expression of those genes where they do occur. As a result, they\\u000a are preserved

Pavel V. Baranov; Olga Gurvich

285

Draft genome sequence of the Tibetan antelope  

PubMed Central

The Tibetan antelope (Pantholops hodgsonii) is endemic to the extremely inhospitable high-altitude environment of the Qinghai-Tibetan Plateau, a region that has a low partial pressure of oxygen and high ultraviolet radiation. Here we generate a draft genome of this artiodactyl and use it to detect the potential genetic bases of highland adaptation. Compared with other plain-dwelling mammals, the genome of the Tibetan antelope shows signals of adaptive evolution and gene-family expansion in genes associated with energy metabolism and oxygen transmission. Both the highland American pika, and the Tibetan antelope have signals of positive selection for genes involved in DNA repair and the production of ATPase. Genes associated with hypoxia seem to have experienced convergent evolution. Thus, our study suggests that common genetic mechanisms might have been utilized to enable high-altitude adaptation. PMID:23673643

Ge, Ri-Li; Cai, Qingle; Shen, Yong-Yi; San, A; Ma, Lan; Zhang, Yong; Yi, Xin; Chen, Yan; Yang, Lingfeng; Huang, Ying; He, Rongjun; Hui, Yuanyuan; Hao, Meirong; Li, Yue; Wang, Bo; Ou, Xiaohua; Xu, Jiaohui; Zhang, Yongfen; Wu, Kui; Geng, Chunyu; Zhou, Weiping; Zhou, Taicheng; Irwin, David M.; Yang, Yingzhong; Ying, Liu; Bao, Haihua; Kim, Jaebum; Larkin, Denis M.; Ma, Jian; Lewin, Harris A.; Xing, Jinchuan; Platt, Roy N.; Ray, David A.; Auvil, Loretta; Capitanu, Boris; Zhang, Xiufeng; Zhang, Guojie; Murphy, Robert W.; Wang, Jun; Zhang, Ya-Ping; Wang, Jian

2013-01-01

286

AACR 2014: NCI/NIH-Sponsored Session: Large-Scale Genomics Data for the Research Community through the NCI Center for Cancer Genomics  

Cancer.gov

The NCI’s Center for Cancer Genomics (CCG), which includes the Office of Cancer Genomics and The Cancer Genome Atlas Program Office, provides the research community access to large-scale molecular characterization data, which is largely sequence-based. CCG programs aim to improve patient outcome through identification of valid molecular targets and associated molecular markers (prognostic or diagnostic), in and across diseases investigated, which should ultimately lead to the rapid development of novel, more effective therapies.

287

Rosaceaous Genome Sequencing: Perspectives and Progress  

Microsoft Academic Search

\\u000a The long-term goal of plant genomics is to identify, isolate and determine the function of plant genes that are associated\\u000a with both vegetative and reproductive phenotypes. Most phenotypes require the coordinated activity and regulatory control\\u000a of suites of genes over time and in precise positions within the plant. Until recently, the idea of establishing a comprehensive\\u000a approach to isolate and

Bryon Sosinski; Vladimir Shulaev; Amit Dhingra; Ananth Kalyanaraman; Roger Bumgarner; Daniel Rokhsar; Ignazio Verde; Riccardo Velasco; Albert G. Abbott

288

A rapid whole genome sequencing and analysis system supporting genomic epidemiology (7th Annual SFAF Meeting, 2012)  

ScienceCinema

Michael FitzGerald on "A rapid whole genome sequencing and analysis system supporting genomic epidemiology" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

FitzGerald, Michael [Broad Institute

2013-02-12

289

Triticeae genomics: advances in sequence analysis of large genome cereal crops  

Microsoft Academic Search

Whole genome sequencing provides direct access to all genes of an organism and represents an essential step towards a systematic\\u000a understanding of (crop) plant biology. Wheat and barley, two of the most important crop species worldwide, have two- to five-fold\\u000a larger genomes than human – too large to be completely sequenced at current costs. Nevertheless, significant progress has\\u000a been made

Nils Stein

2007-01-01

290

Complete genome sequence of Arcobacter nitrofigilis type strain (CIT)  

PubMed Central

Arcobacter nitrofigilis (McClung et al. 1983) Vandamme et al. 1991 is the type species of the genus Arcobacter in the family Campylobacteraceae within the Epsilonproteobacteria. The species was first described in 1983 as Campylobacter nitrofigilis [1] after its detection as a free-living, nitrogen-fixing Campylobacter species associated with Spartina alterniflora Loisel roots [2]. It is of phylogenetic interest because of its lifestyle as a symbiotic organism in a marine environment in contrast to many other Arcobacter species which are associated with warm-blooded animals and tend to be pathogenic. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a type stain of the genus Arcobacter. The 3,192,235 bp genome with its 3,154 protein-coding and 70 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:21304714

Pati, Amrita; Gronow, Sabine; Lapidus, Alla; Copeland, Alex; Glavina Del Rio, Tijana; Nolan, Matt; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Han, Cliff; Chertkov, Olga; Bruce, David; Tapia, Roxanne; Goodwin, Lynne; Pitluck, Sam; Liolios, Konstantinos; Ivanova, Natalia; Mavromatis, Konstantinos; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D.; Detter, John C.; Rohde, Manfred; Göker, Markus; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Klenk, Hans-Peter; Kyrpides, Nikos C.

2010-01-01

291

Complete genome sequence of Arthrobacter sp. strain FB24  

SciTech Connect

Arthrobacter sp. strain FB24 is a species in the genus Arthrobacter Conn and Dimmick 1947, in the family Micrococcaceae and class Actinobacteria. A number of Arthrobacter genome sequences have been completed because of their important role in soil, especially bioremediation. This isolate is of special interest because it is tolerant to multiple metals and it is extremely resistant to elevated concentrations of chromate. The genome consists of a 4,698,945 bp circular chromosome and three plasmids (96,488, 115,507, and 159,536 bp, a total of 5,070,478 bp), coding 4,536 proteins of which 1,257 are without known function. This genome was sequenced as part of the DOE Joint Genome Institute Program.

Nakatsu, C. H.; Barabote, Ravi; Thompson, Sue; Bruce, David; Detter, Chris; Brettin, T.; Han, Cliff F.; Beasley, Federico; Chen, Weimin; Konopka, Allan; Xie, Gary

2013-09-30

292

Draft genome sequence of the rubber tree Hevea brasiliensis  

PubMed Central

Background Hevea brasiliensis, a member of the Euphorbiaceae family, is the major commercial source of natural rubber (NR). NR is a latex polymer with high elasticity, flexibility, and resilience that has played a critical role in the world economy since 1876. Results Here, we report the draft genome sequence of H. brasiliensis. The assembly spans ~1.1 Gb of the estimated 2.15 Gb haploid genome. Overall, ~78% of the genome was identified as repetitive DNA. Gene prediction shows 68,955 gene models, of which 12.7% are unique to Hevea. Most of the key genes associated with rubber biosynthesis, rubberwood formation, disease resistance, and allergenicity have been identified. Conclusions The knowledge gained from this genome sequence will aid in the future development of high-yielding clones to keep up with the ever increasing need for natural rubber. PMID:23375136

2013-01-01

293

Complete genome sequence of Desulfohalobium retbaense type strain (HR(100)).  

PubMed

Desulfohalobium retbaense (Ollivier et al. 1991) is the type species of the polyphyletic genus Desulfohalobium, which comprises, at the time of writing, two species and represents the family Desulfohalobiaceae within the Deltaproteobacteria. D. retbaense is a moderately halophilic sulfate-reducing bacterium, which can utilize H(2) and a limited range of organic substrates, which are incompletely oxidized to acetate and CO(2), for growth. The type strain HR(100) (T) was isolated from sediments of the hypersaline Retba Lake in Senegal. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a member of the family Desulfohalobiaceae. The 2,909,567 bp genome (one chromosome and a 45,263 bp plasmid) with its 2,552 protein-coding and 57 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:21304676

Spring, Stefan; Nolan, Matt; Lapidus, Alla; Glavina Del Rio, Tijana; Copeland, Alex; Tice, Hope; Cheng, Jan-Fang; Lucas, Susan; Land, Miriam; Chen, Feng; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ivanova, Natalia; Mavromatis, Konstantinos; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Munk, Christine; Kiss, Hajnalka; Chain, Patrick; Han, Cliff; Brettin, Thomas; Detter, John C; Schüler, Esther; Göker, Markus; Rohde, Manfred; Bristow, Jim; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter

2010-01-01

294

Complete genome sequence of a virulent isolate of Streptococcus pneumoniae.  

PubMed

The 2,160,837-base pair genome sequence of an isolate of Streptococcus pneumoniae, a Gram-positive pathogen that causes pneumonia, bacteremia, meningitis, and otitis media, contains 2236 predicted coding regions; of these, 1440 (64%) were assigned a biological role. Approximately 5% of the genome is composed of insertion sequences that may contribute to genome rearrangements through uptake of foreign DNA. Extracellular enzyme systems for the metabolism of polysaccharides and hexosamines provide a substantial source of carbon and nitrogen for S. pneumoniae and also damage host tissues and facilitate colonization. A motif identified within the signal peptide of proteins is potentially involved in targeting these proteins to the cell surface of low-guanine/cytosine (GC) Gram-positive species. Several surface-exposed proteins that may serve as potential vaccine candidates were identified. Comparative genome hybridization with DNA arrays revealed strain differences in S. pneumoniae that could contribute to differences in virulence and antigenicity. PMID:11463916

Tettelin, H; Nelson, K E; Paulsen, I T; Eisen, J A; Read, T D; Peterson, S; Heidelberg, J; DeBoy, R T; Haft, D H; Dodson, R J; Durkin, A S; Gwinn, M; Kolonay, J F; Nelson, W C; Peterson, J D; Umayam, L A; White, O; Salzberg, S L; Lewis, M R; Radune, D; Holtzapple, E; Khouri, H; Wolf, A M; Utterback, T R; Hansen, C L; McDonald, L A; Feldblyum, T V; Angiuoli, S; Dickinson, T; Hickey, E K; Holt, I E; Loftus, B J; Yang, F; Smith, H O; Venter, J C; Dougherty, B A; Morrison, D A; Hollingshead, S K; Fraser, C M

2001-07-20

295

Sequencing and analysis of an Irish human genome  

PubMed Central

Background Recent studies generating complete human sequences from Asian, African and European subgroups have revealed population-specific variation and disease susceptibility loci. Here, choosing a DNA sample from a population of interest due to its relative geographical isolation and genetic impact on further populations, we extend the above studies through the generation of 11-fold coverage of the first Irish human genome sequence. Results Using sequence data from a branch of the European ancestral tree as yet unsequenced, we identify variants that may be specific to this population. Through comparisons with HapMap and previous genetic association studies, we identified novel disease-associated variants, including a novel nonsense variant putatively associated with inflammatory bowel disease. We describe a novel method for improving SNP calling accuracy at low genome coverage using haplotype information. This analysis has implications for future re-sequencing studies and validates the imputation of Irish haplotypes using data from the current Human Genome Diversity Cell Line Panel (HGDP-CEPH). Finally, we identify gene duplication events as constituting significant targets of recent positive selection in the human lineage. Conclusions Our findings show that there remains utility in generating whole genome sequences to illustrate both general principles and reveal specific instances of human biology. With increasing access to low cost sequencing we would predict that even armed with the resources of a small research group a number of similar initiatives geared towards answering specific biological questions will emerge. PMID:20822512

2010-01-01

296

Sequence-Tagged Connectors: A Sequence Approach to Mapping and Scanning the Human Genome  

Microsoft Academic Search

The sequence-tagged connector (STC) strategy proposes to generate sequence tags densely scattered (every 3.3 kilobases) across the human genome by arraying 450,000 bacterial artificial chromosomes (BACs) with randomly cleaved inserts, sequencing both ends of each, and preparing a restriction enzyme fingerprint of each. The STC resource, containing end sequences, fingerprints, and arrayed BACs, creates a map where the interrelationships of

Gregory G. Mahairas; James C. Wallace; Kim Smith; Steven Swartzell; Ted Holzman; Andrew Keller; Ron Shaker; Jepf Furlong; Janet Young; Shaying Zhao; Mark D. Adams; Leroy Hood

1999-01-01

297

Contribution to Sequencing of the Deinococcus radiodurans Genome  

SciTech Connect

The stated goal of this project was to supply The Institute for Genomic Research (TIGR) with pure DNA from the bacterium Deinocmus radiodurans RI for purposes of complete genomic sequencing by TIGR. We subsequently decided to expand this project to include a second goal; this second goal was the development of a NotI chromosomal map of D. radiodurans R1 using Pulsed Field Gel Electrophoresis (PFGE).

Minton, K.W.

1999-03-11

298

Genome Sequence of Mycoplasma columbinum Strain SF7  

PubMed Central

Mycoplasma columbinum is a member of nonglycolytic Mycoplasma species which can hydrolyze arginine. Increasingly research has revealed that M. columbinum is associated with respiratory disease of pigeons and that the respiratory disease symptoms could be eliminated via the use of mycoplasma treatment medicine. Here we report the genome sequence of M. columbinum strain SF7, which is the first genome report for M. columbinum. PMID:23599295

Guo, Zisheng; Xu, Xiaolong; Zheng, Qian; Li, Tingting; Kuang, Shichang; Zhang, Zongde; Chen, Yushan; Lu, Xidong; Zhou, Rui; Jin, Hui

2013-01-01

299

Ancient human genome sequence of an extinct Palaeo-Eskimo  

E-print Network

diversity and composition directly. To access such data, ancient genomic sequencing is needed. Presently no genome from an ancient human has been published, the closest being two data sets representing a few megabases (Mb) ofDNA froma singleNeanderthal9..., Denmark. 8Departments of Integrative Biology and Statistics, UC-Berkeley, 4098 VLSB, Berkeley, California 94720, USA. 9Research Laboratory for Archaeology and the History of Art, Dyson Perrins Building, South Parks Road, Oxford OX1 3QY, UK. 10Department...

Rasmussen, Morten; Li, Yingrui; Lindgreen, Stinus; Pedersen, Jakob Skou; Albrechtsen, Anders; Moltke, Ida; Metspalu, Mait; Metspalu, Ene; Kivisild, Toomas; Gupta, Ramneek; Bertalan, Marcelo; Nielsen, Kasper; Gilbert, M. Thomas P.; Wang, Yong; Raghavan, Maanasa; Campos, Paula F.; Kamp, Hanne Munkholm; Wilson, Andrew S.; Gledhill, Andrew; Tridico, Silvana; Bunce, Michael; Lorenzen, Eline D.; Binladen, Jonas; Guo, Xiaosen; Zhao, Jing; Zhang, Xiuqing; Zhang, Hao; Li, Zhuo; Chen, Minfeng; Orlando, Ludovic; Kristiansen, Karsten; Bak, Mads; Tommerup, Niels; Bendixen, Christian; Pierre, Tracey L.; Gronnow, Bjarne; Meldgaard, Morten; Andreasen, Claus; Fedorova, Sardana A.; Osipova, Ludmila P.; Higham, Thomas F. G.; Ramsey, Christopher Bronk; Hansen, Thomas v. O.; Nielsen, Finn C.; Crawford, Michael H.; Brunak, Soren; Sicheritz-Ponten, Thomas; Villems, Richard; Nielsen, Rasmus; Krogh, Anders; Wang, Jun; Willerslev, Eske

2010-02-11

300

Nanopore Sequencing of the phi X 174 genome  

E-print Network

Nanopore sequencing of DNA is a single-molecule technique that may achieve long reads, low cost, and high speed with minimal sample preparation and instrumentation. Here, we build on recent progress with respect to nanopore resolution and DNA control to interpret the procession of ion current levels observed during the translocation of DNA through the pore MspA. As approximately four nucleotides affect the ion current of each level, we measured the ion current corresponding to all 256 four-nucleotide combinations (quadromers). This quadromer map is highly predictive of ion current levels of previously unmeasured sequences derived from the bacteriophage phi X 174 genome. Furthermore, we show nanopore sequencing reads of phi X 174 up to 4,500 bases in length that can be unambiguously aligned to the phi X 174 reference genome, and demonstrate proof-of-concept utility with respect to hybrid genome assembly and polymorphism detection. All methods and data are made fully available.

Laszlo, Andrew H; Ross, Brian C; Brinkerhoff, Henry; Adey, Andrew; Nova, Ian C; Craig, Jonathan M; Langford, Kyle W; Samson, Jenny Mae; Daza, Riza; Doering, Kenji; Shendure, Jay; Gundlach, Jens H

2014-01-01

301

Genome sequence of the model medicinal mushroom Ganoderma lucidum  

PubMed Central

Ganoderma lucidum is a widely used medicinal macrofungus in traditional Chinese medicine that creates a diverse set of bioactive compounds. Here we report its 43.3-Mb genome, encoding 16,113 predicted genes, obtained using next-generation sequencing and optical mapping approaches. The sequence analysis reveals an impressive array of genes encoding cytochrome P450s (CYPs), transporters and regulatory proteins that cooperate in secondary metabolism. The genome also encodes one of the richest sets of wood degradation enzymes among all of the sequenced basidiomycetes. In all, 24 physical CYP gene clusters are identified. Moreover, 78 CYP genes are coexpressed with lanosterol synthase, and 16 of these show high similarity to fungal CYPs that specifically hydroxylate testosterone, suggesting their possible roles in triterpenoid biosynthesis. The elucidation of the G. lucidum genome makes this organism a potential model system for the study of secondary metabolic pathways and their regulation in medicinal fungi. PMID:22735441

Chen, Shilin; Xu, Jiang; Liu, Chang; Zhu, Yingjie; Nelson, David R.; Zhou, Shiguo; Li, Chunfang; Wang, Lizhi; Guo, Xu; Sun, Yongzhen; Luo, Hongmei; Li, Ying; Song, Jingyuan; Henrissat, Bernard; Levasseur, Anthony; Qian, Jun; Li, Jianqin; Luo, Xiang; Shi, Linchun; He, Liu; Xiang, Li; Xu, Xiaolan; Niu, Yunyun; Li, Qiushi; Han, Mira V.; Yan, Haixia; Zhang, Jin; Chen, Haimei; Lv, Aiping; Wang, Zhen; Liu, Mingzhu; Schwartz, David C.; Sun, Chao

2012-01-01

302

Exploring genome characteristics and sequence quality without a reference  

PubMed Central

Motivation: The de novo assembly of large, complex genomes is a significant challenge with currently available DNA sequencing technology. While many de novo assembly software packages are available, comparatively little attention has been paid to assisting the user with the assembly. Results: This article addresses the practical aspects of de novo assembly by introducing new ways to perform quality assessment on a collection of sequence reads. The software implementation calculates per-base error rates, paired-end fragment-size distributions and coverage metrics in the absence of a reference genome. Additionally, the software will estimate characteristics of the sequenced genome, such as repeat content and heterozygosity that are key determinants of assembly difficulty. Availability: The software described is freely available online (https://github.com/jts/sga) and open source under the GNU Public License. Contact: jared.simpson@oicr.on.ca Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:24443382

2014-01-01

303

Molecular Poltergeists: Mitochondrial DNA Copies (numts) in Sequenced Nuclear Genomes  

PubMed Central

The natural transfer of DNA from mitochondria to the nucleus generates nuclear copies of mitochondrial DNA (numts) and is an ongoing evolutionary process, as genome sequences attest. In humans, five different numts cause genetic disease and a dozen human loci are polymorphic for the presence of numts, underscoring the rapid rate at which mitochondrial sequences reach the nucleus over evolutionary time. In the laboratory and in nature, numts enter the nuclear DNA via non-homolgous end joining (NHEJ) at double-strand breaks (DSBs). The frequency of numt insertions among 85 sequenced eukaryotic genomes reveal that numt content is strongly correlated with genome size, suggesting that the numt insertion rate might be limited by DSB frequency. Polymorphic numts in humans link maternally inherited mitochondrial genotypes to nuclear DNA haplotypes during the past, offering new opportunities to associate nuclear markers with mitochondrial markers back in time. PMID:20168995

Hazkani-Covo, Einat; Zeller, Raymond M.; Martin, William

2010-01-01

304

Complete Genome Sequence of Rickettsia typhi and Comparison with Sequences of Other Rickettsiae  

Microsoft Academic Search

Rickettsia typhi, the causative agent of murine typhus, is an obligate intracellular bacterium with a life cycle involving both vertebrate and invertebrate hosts. Here we present the complete genome sequence of R. typhi (1,111,496 bp) and compare it to the two published rickettsial genome sequences: R. prowazekii and R. conorii. We identified 877 genes in R. typhi encoding 3 rRNAs,

Michael P. McLeod; Xiang Qin; Sandor E. Karpathy; Jason Gioia; Sarah K. Highlander; George E. Fox; Thomas Z. McNeill; Huaiyang Jiang; Donna Muzny; Leni S. Jacob; Alicia C. Hawes; Erica Sodergren; Rachel Gill; Jennifer Hume; Maggie Morgan; Guangwei Fan; Anita G. Amin; Richard A. Gibbs; Chao Hong; Xue-jie Yu; David H. Walker; George M. Weinstock

305

Genomics:GTL Bioenergy Research Centers White Paper  

SciTech Connect

In his Advanced Energy Initiative announced in January 2006, President George W. Bush committed the nation to new efforts to develop alternative sources of energy to replace imported oil and fossil fuels. Developing cost-effective and energy-efficient methods of producing renewable alternative fuels such as cellulosic ethanol from biomass and solar-derived biofuels will require transformational breakthroughs in science and technology. Incremental improvements in current bioenergy production methods will not suffice. The Genomics:GTL Bioenergy Research Centers will be dedicated to fundamental research on microbe and plant systems with the goal of developing knowledge that will advance biotechnology-based strategies for biofuels production. The aim is to spur substantial progress toward cost-effective production of biologically based renewable energy sources. This document describes the rationale for the establishment of the centers and their objectives in light of the U.S. Department of Energy's mission and goals. Developing energy-efficient and cost-effective methods of producing alternative fuels such as cellulosic ethanol from biomass will require transformational breakthroughs in science and technology. Incremental improvements in current bioenergy-production methods will not suffice. The focus on microbes (for cellular mechanisms) and plants (for source biomass) fundamentally exploits capabilities well known to exist in the microbial world. Thus 'proof of concept' is not required, but considerable basic research into these capabilities remains an urgent priority. Several developments have converged in recent years to suggest that systems biology research into microbes and plants promises solutions that will overcome critical roadblocks on the path to cost-effective, large-scale production of cellulosic ethanol and other renewable energy from biomass. The ability to rapidly sequence the DNA of any organism is a critical part of these new capabilities, but it is only a first step. Other advances include the growing number of high-throughput techniques for protein production and characterization; a range of new instrumentation for observing proteins and other cell constituents; the rapid growth of commercially available reagents for protein production; a new generation of high-intensity light sources that provide precision imaging on the nanoscale and allow observation of molecular interactions in ultrafast time intervals; major advances in computational capability; and the continually increasing numbers of these instruments and technologies within the national laboratory infrastructure, at universities, and in private industry. All these developments expand our ability to elucidate mechanisms present in living cells, but much more remains to be done. The Centers are designed to accomplish GTL program objectives more rapidly, more effectively, and at reduced cost by concentrating appropriate technologies and scientific expertise, from genome sequence to an integrated systems understanding of the pathways and internal structures of microbes and plants most relevant to developing bioenergy compounds. The Centers will seek to understand the principles underlying the structural and functional design of selected microbial, plant, and molecular systems. This will be accomplished by building technological pathways linking the genome-determined components in an organism with bioenergy-relevant cellular systems that can be characterized sufficiently to generate realistic options for biofuel development. In addition, especially in addressing what are believed to be nearer-term approaches to renewable energy (e.g., producing cellulosic ethanol cost-effectively and energy-efficiently), the Center research team must understand in depth the current industrial-level roadblocks and bottlenecks (see section, GTL's Vision for Biological Energy Alternatives, below). For the Centers, and indeed the entire BER effort, to be successful, Center research must be integrated with individual investigator research, and coordination of activities,

Mansfield, Betty Kay [ORNL; Alton, Anita Jean [ORNL; Andrews, Shirley H [ORNL; Bownas, Jennifer Lynn [ORNL; Casey, Denise [ORNL; Martin, Sheryl A [ORNL; Mills, Marissa [ORNL; Nylander, Kim [ORNL; Wyrick, Judy M [ORNL; Drell, Dr. Daniel [Office of Science, Department of Energy; Weatherwax, Sharlene [U.S. Department of Energy; Carruthers, Julie [U.S. Department of Energy

2006-08-01

306

Supplementary Materials for A high coverage genome sequence from an archaic Denisovan individual  

E-print Network

........................................... 12 Note 5: Sequencing and processing of 11 present-day human genomes1 Supplementary Materials for A high coverage genome sequence from an archaic Denisovan individual Note 4: Processing and mapping raw sequence data from Denisova

Reich, David

307

The genome sequence of the colonial chordate, Botryllus schlosseri  

PubMed Central

Botryllus schlosseri is a colonial urochordate that follows the chordate plan of development following sexual reproduction, but invokes a stem cell-mediated budding program during subsequent rounds of asexual reproduction. As urochordates are considered to be the closest living invertebrate relatives of vertebrates, they are ideal subjects for whole genome sequence analyses. Using a novel method for high-throughput sequencing of eukaryotic genomes, we sequenced and assembled 580 Mbp of the B. schlosseri genome. The genome assembly is comprised of nearly 14,000 intron-containing predicted genes, and 13,500 intron-less predicted genes, 40% of which could be confidently parceled into 13 (of 16 haploid) chromosomes. A comparison of homologous genes between B. schlosseri and other diverse taxonomic groups revealed genomic events underlying the evolution of vertebrates and lymphoid-mediated immunity. The B. schlosseri genome is a community resource for studying alternative modes of reproduction, natural transplantation reactions, and stem cell-mediated regeneration. DOI: http://dx.doi.org/10.7554/eLife.00569.001 PMID:23840927

Voskoboynik, Ayelet; Neff, Norma F; Sahoo, Debashis; Newman, Aaron M; Pushkarev, Dmitry; Koh, Winston; Passarelli, Benedetto; Fan, H Christina; Mantalas, Gary L; Palmeri, Karla J; Ishizuka, Katherine J; Gissi, Carmela; Griggio, Francesca; Ben-Shlomo, Rachel; Corey, Daniel M; Penland, Lolita; White, Richard A; Weissman, Irving L; Quake, Stephen R

2013-01-01

308

Melanoma genome sequencing reveals frequent PREX2 mutations  

PubMed Central

Melanoma is notable for its metastatic propensity, lethality in the advanced setting, and association with ultraviolet (UV) exposure early in life1. To obtain a comprehensive genomic view of melanoma, we sequenced the genomes of 25 metastatic melanomas and matched germline DNA. A wide range of point mutation rates was observed: lowest in melanomas whose primaries arose on non-UV exposed hairless skin of the extremities (3 and 14 per Mb genome), intermediate in those originating from hair-bearing skin of the trunk (range = 5 to 55 per Mb), and highest in a patient with a documented history of chronic sun exposure (111 per Mb). Analysis of whole-genome sequence data identified PREX2 - a PTEN-interacting protein and negative regulator of PTEN in breast cancer2 - as a significantly mutated gene with a mutation frequency of approximately 14% in an independent extension cohort of 107 human melanomas. PREX2 mutations are biologically relevant, as ectopic expression of mutant PREX2 accelerated tumor formation of immortalized human melanocytes in vivo. Thus, whole-genome sequencing of human melanoma tumors revealed genomic evidence of UV pathogenesis and discovered a new recurrently mutated gene in melanoma. PMID:22622578

Berger, Michael F.; Hodis, Eran; Heffernan, Timothy P.; Deribe, Yonathan Lissanu; Lawrence, Michael S.; Protopopov, Alexei; Ivanova, Elena; Watson, Ian R.; Nickerson, Elizabeth; Ghosh, Papia; Zhang, Hailei; Zeid, Rhamy; Ren, Xiaojia; Cibulskis, Kristian; Sivachenko, Andrey Y.; Wagle, Nikhil; Sucker, Antje; Sougnez, Carrie; Onofrio, Robert; Ambrogio, Lauren; Auclair, Daniel; Fennell, Timothy; Carter, Scott L.; Drier, Yotam; Stojanov, Petar; Singer, Meredith A.; Voet, Douglas; Jing, Rui; Saksena, Gordon; Barretina, Jordi; Ramos, Alex H.; Pugh, Trevor J.; Stransky, Nicolas; Parkin, Melissa; Winckler, Wendy; Mahan, Scott; Ardlie, Kristin; Baldwin, Jennifer; Wargo, Jennifer; Schadendorf, Dirk; Meyerson, Matthew; Gabriel, Stacey B.; Golub, Todd R.; Wagner, Stephan N.; Lander, Eric S.; Getz, Gad; Chin, Lynda; Garraway, Levi A.

2012-01-01

309

Melanoma genome sequencing reveals frequent PREX2 mutations.  

PubMed

Melanoma is notable for its metastatic propensity, lethality in the advanced setting and association with ultraviolet exposure early in life. To obtain a comprehensive genomic view of melanoma in humans, we sequenced the genomes of 25 metastatic melanomas and matched germline DNA. A wide range of point mutation rates was observed: lowest in melanomas whose primaries arose on non-ultraviolet-exposed hairless skin of the extremities (3 and 14 per megabase (Mb) of genome), intermediate in those originating from hair-bearing skin of the trunk (5-55 per Mb), and highest in a patient with a documented history of chronic sun exposure (111 per Mb). Analysis of whole-genome sequence data identified PREX2 (phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 2)--a PTEN-interacting protein and negative regulator of PTEN in breast cancer--as a significantly mutated gene with a mutation frequency of approximately 14% in an independent extension cohort of 107 human melanomas. PREX2 mutations are biologically relevant, as ectopic expression of mutant PREX2 accelerated tumour formation of immortalized human melanocytes in vivo. Thus, whole-genome sequencing of human melanoma tumours revealed genomic evidence of ultraviolet pathogenesis and discovered a new recurrently mutated gene in melanoma. PMID:22622578

Berger, Michael F; Hodis, Eran; Heffernan, Timothy P; Deribe, Yonathan Lissanu; Lawrence, Michael S; Protopopov, Alexei; Ivanova, Elena; Watson, Ian R; Nickerson, Elizabeth; Ghosh, Papia; Zhang, Hailei; Zeid, Rhamy; Ren, Xiaojia; Cibulskis, Kristian; Sivachenko, Andrey Y; Wagle, Nikhil; Sucker, Antje; Sougnez, Carrie; Onofrio, Robert; Ambrogio, Lauren; Auclair, Daniel; Fennell, Timothy; Carter, Scott L; Drier, Yotam; Stojanov, Petar; Singer, Meredith A; Voet, Douglas; Jing, Rui; Saksena, Gordon; Barretina, Jordi; Ramos, Alex H; Pugh, Trevor J; Stransky, Nicolas; Parkin, Melissa; Winckler, Wendy; Mahan, Scott; Ardlie, Kristin; Baldwin, Jennifer; Wargo, Jennifer; Schadendorf, Dirk; Meyerson, Matthew; Gabriel, Stacey B; Golub, Todd R; Wagner, Stephan N; Lander, Eric S; Getz, Gad; Chin, Lynda; Garraway, Levi A

2012-05-24

310

Complete genome sequence of Haliscomenobacter hydrossis type strain (OT)  

SciTech Connect

Haliscomenobacter hydrossis van Veen et al. 1973 is the type species of the genus Halisco- menobacter, which belongs to order 'Sphingobacteriales'. The species is of interest because of its isolated phylogenetic location in the tree of life, especially the so far genomically un- charted part of it, and because the organism grows in a thin, hardly visible hyaline sheath. Members of the species were isolated from fresh water of lakes and from ditch water. The genome of H. hydrossis is the first completed genome sequence reported from a member of the family 'Saprospiraceae'. The 8,771,651 bp long genome with its three plasmids of 92 kbp, 144 kbp and 164 kbp length contains 6,848 protein-coding and 60 RNA genes, and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

Daligault, Hajnalka E. [Los Alamos National Laboratory (LANL); Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Zeytun, Ahmet [Los Alamos National Laboratory (LANL); Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Verbarg, Susanne [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute

2011-01-01

311

Draft Genome Sequence of Bacillus endophyticus 2102  

PubMed Central

Bacillus endophyticus 2102 is an endospore-forming, plant growth-promoting rhizobacterium isolated from a hypersaline pond in South Korea. Here we present the draft sequence of B. endophyticus 2102, which is of interest because of its potential use in the industrial production of algaecides and bioplastics and for the treatment of industrial textile effluents. PMID:23012284

Lee, Yong-Jik; Lee, Sang-Jae; Kim, Sun Hong; Lee, Sang Jun; Kim, Byoung-Chan; Lee, Han-Seung

2012-01-01

312

A HIGH COVERAGE GENOME SEQUENCE FROM AN ARCHAIC DENISOVAN INDIVIDUAL  

PubMed Central

We present a DNA library preparation method that has allowed us to reconstruct a high coverage (30X) genome sequence of a Denisovan, an extinct relative of Neandertals. The quality of this genome allows a direct estimation of Denisovan heterozygosity indicating that genetic diversity in these archaic hominins was extremely low. It also allows tentative dating of the specimen on the basis of “missing evolution” in its genome, detailed measurements of Denisovan and Neandertal admixture into present-day human populations, and the generation of a near-complete catalog of genetic changes that swept to high frequency in modern humans since their divergence from Denisovans. PMID:22936568

Meyer, Matthias; Kircher, Martin; Gansauge, Marie-Theres; Li, Heng; Racimo, Fernando; Mallick, Swapan; Schraiber, Joshua G.; Jay, Flora; Prufer, Kay; de Filippo, Cesare; Sudmant, Peter H.; Alkan, Can; Fu, Qiaomei; Do, Ron; Rohland, Nadin; Tandon, Arti; Siebauer, Michael; Green, Richard E.; Bryc, Katarzyna; Briggs, Adrian W.; Stenzel, Udo; Dabney, Jesse; Shendure, Jay; Kitzman, Jacob; Hammer, Michael F.; Shunkov, Michael V.; Derevianko, Anatoli P.; Patterson, Nick; Andres, Aida M.; Eichler, Evan E.; Slatkin, Montgomery; Reich, David; Kelso, Janet; Paabo, Svante

2013-01-01

313

Mapping and sequencing of structural variation from eight human genomes  

PubMed Central

Genetic variation among individual humans occurs on many different scales, ranging from gross alterations in the human karyotype to single nucleotide changes. Here we explore variation on an intermediate scale—particularly insertions, deletions and inversions affecting from a few thousand to a few million base pairs. We employed a clone-based method to interrogate this intermediate structural variation in eight individuals of diverse geographic ancestry. Our analysis provides a comprehensive overview of the normal pattern of structural variation present in these genomes, refining the location of 1,695 structural variants. We find that 50% were seen in more than one individual and that nearly half lay outside regions of the genome previously described as structurally variant. We discover 525 new insertion sequences that are not present in the human reference genome and show that many of these are variable in copy number between individuals. Complete sequencing of 261 structural variants reveals considerable locus complexity and provides insights into the different mutational processes that have shaped the human genome. These data provide the first high-resolution sequence map of human structural variation—a standard for genotyping platforms and a prelude to future individual genome sequencing projects. PMID:18451855

Kidd, Jeffrey M.; Cooper, Gregory M.; Donahue, William F.; Hayden, Hillary S.; Sampas, Nick; Graves, Tina; Hansen, Nancy; Teague, Brian; Alkan, Can; Antonacci, Francesca; Haugen, Eric; Zerr, Troy; Yamada, N. Alice; Tsang, Peter; Newman, Tera L.; Tüzün, Eray; Cheng, Ze; Ebling, Heather M.; Tusneem, Nadeem; David, Robert; Gillett, Will; Phelps, Karen A.; Weaver, Molly; Saranga, David; Brand, Adrianne; Tao, Wei; Gustafson, Erik; McKernan, Kevin; Chen, Lin; Malig, Maika; Smith, Joshua D.; Korn, Joshua M.; McCarroll, Steven A.; Altshuler, David A.; Peiffer, Daniel A.; Dorschner, Michael; Stamatoyannopoulos, John; Schwartz, David; Nickerson, Deborah A.; Mullikin, James C.; Wilson, Richard K.; Bruhn, Laurakay; Olson, Maynard V.; Kaul, Rajinder; Smith, Douglas R.; Eichler, Evan E.

2008-01-01

314

Castor Bean Organelle Genome Sequencing and Worldwide Genetic Diversity Analysis  

PubMed Central

Castor bean is an important oil-producing plant in the Euphorbiaceae family. Its high-quality oil contains up to 90% of the unusual fatty acid ricinoleate, which has many industrial and medical applications. Castor bean seeds also contain ricin, a highly toxic Type 2 ribosome-inactivating protein, which has gained relevance in recent years due to biosafety concerns. In order to gain knowledge on global genetic diversity in castor bean and to ultimately help the development of breeding and forensic tools, we carried out an extensive chloroplast sequence diversity analysis. Taking advantage of the recently published genome sequence of castor bean, we assembled the chloroplast and mitochondrion genomes extracting selected reads from the available whole genome shotgun reads. Using the chloroplast reference genome we used the methylation filtration technique to readily obtain draft genome sequences of 7 geographically and genetically diverse castor bean accessions. These sequence data were used to identify single nucleotide polymorphism markers and phylogenetic analysis resulted in the identification of two major clades that were not apparent in previous population genetic studies using genetic markers derived from nuclear DNA. Two distinct sub-clades could be defined within each major clade and large-scale genotyping of castor bean populations worldwide confirmed previously observed low levels of genetic diversity and showed a broad geographic distribution of each sub-clade. PMID:21750729

Chan, Agnes P.; Williams, Amber L.; Rice, Danny W.; Liu, Xinyue; Melake-Berhan, Admasu; Huot Creasy, Heather; Puiu, Daniela; Rosovitz, M. J.; Khouri, Hoda M.; Beckstrom-Sternberg, Stephen M.; Allan, Gerard J.; Keim, Paul; Ravel, Jacques; Rabinowicz, Pablo D.

2011-01-01

315

Complete genome sequence of Pyrolobus fumarii type strain (1AT)  

SciTech Connect

Pyrolobus fumarii Bl chl et al. 1997 is the type species of the genus Pyrolobus, which be- longs to the crenarchaeal family Pyrodictiaceae. The species is a facultatively microaerophilic non-motile crenarchaeon. It is of interest because of its isolated phylogenetic location in the tree of life and because it is a hyperthermophilic chemolithoautotroph known as the primary producer of organic matter at deep-sea hydrothermal vents. P. fumarii exhibits currently the highest optimal growth temperature of all life forms on earth (106 C). This is the first com- pleted genome sequence of a member of the genus Pyrolobus to be published and only the second genome sequence from a member of the family Pyrodictiaceae. Although Diversa Corporation announced the completion of sequencing of the P. fumarii genome on Septem- ber 25, 2001, this sequence was never released to the public. The 1,843,267 bp long genome with its 1,986 protein-coding and 52 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

Anderson, Iain [U.S. Department of Energy, Joint Genome Institute; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Hammon, Nancy [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Huber, Harald [Universitat Regensburg, Regensburg, Germany; Yasawong, Montri [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Abt, Birte [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Sikorski, Johannes [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Wirth, Reinhard [Universitat Regensburg, Regensburg, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute

2011-01-01

316

Sequencing quality assessment tools to enable data-driven informatics for high throughput genomics  

PubMed Central

The processes of quality assessment and control are an active area of research at The Genome Analysis Centre (TGAC). Unlike other sequencing centers that often concentrate on a certain species or technology, TGAC applies expertise in genomics and bioinformatics to a wide range of projects, often requiring bespoke wet lab and in silico workflows. TGAC is fortunate to have access to a diverse range of sequencing and analysis platforms, and we are at the forefront of investigations into library quality and sequence data assessment. We have developed and implemented a number of algorithms, tools, pipelines and packages to ascertain, store, and expose quality metrics across a number of next-generation sequencing platforms, allowing rapid and in-depth cross-platform Quality Control (QC) bioinformatics. In this review, we describe these tools as a vehicle for data-driven informatics, offering the potential to provide richer context for downstream analysis and to inform experimental design. PMID:24381581

Leggett, Richard M.; Ramirez-Gonzalez, Ricardo H.; Clavijo, Bernardo J.; Waite, Darren; Davey, Robert P.

2013-01-01

317

Building a model: developing genomic resources for common milkweed (Asclepias syriaca) with low coverage genome sequencing  

PubMed Central

Background Milkweeds (Asclepias L.) have been extensively investigated in diverse areas of evolutionary biology and ecology; however, there are few genetic resources available to facilitate and compliment these studies. This study explored how low coverage genome sequencing of the common milkweed (Asclepias syriaca L.) could be useful in characterizing the genome of a plant without prior genomic information and for development of genomic resources as a step toward further developing A. syriaca as a model in ecology and evolution. Results A 0.5× genome of A. syriaca was produced using Illumina sequencing. A virtually complete chloroplast genome of 158,598 bp was assembled, revealing few repeats and loss of three genes: accD, clpP, and ycf1. A nearly complete rDNA cistron (18S-5.8S-26S; 7,541 bp) and 5S rDNA (120 bp) sequence were obtained. Assessment of polymorphism revealed that the rDNA cistron and 5S rDNA had 0.3% and 26.7% polymorphic sites, respectively. A partial mitochondrial genome sequence (130,764 bp), with identical gene content to tobacco, was also assembled. An initial characterization of repeat content indicated that Ty1/copia-like retroelements are the most common repeat type in the milkweed genome. At least one A. syriaca microread hit 88% of Catharanthus roseus (Apocynaceae) unigenes (median coverage of 0.29×) and 66% of single copy orthologs (COSII) in asterids (median coverage of 0.14×). From this partial characterization of the A. syriaca genome, markers for population genetics (microsatellites) and phylogenetics (low-copy nuclear genes) studies were developed. Conclusions The results highlight the promise of next generation sequencing for development of genomic resources for any organism. Low coverage genome sequencing allows characterization of the high copy fraction of the genome and exploration of the low copy fraction of the genome, which facilitate the development of molecular tools for further study of a target species and its relatives. This study represents a first step in the development of a community resource for further study of plant-insect co-evolution, anti-herbivore defense, floral developmental genetics, reproductive biology, chemical evolution, population genetics, and comparative genomics using milkweeds, and A. syriaca in particular, as ecological and evolutionary models. PMID:21542930

2011-01-01

318

Profiling DNA Methylomes from Microarray to Genome-Scale Sequencing  

PubMed Central

DNA cytosine methylation is a central epigenetic modification which plays critical roles in cellular processes including genome regulation, development and disease. Here, we review current and emerging microarray and next-generation sequencing based technologies that enhance our knowledge of DNA methylation profiling. Each methodology has limitations and their unique applications, and combinations of several modalities may help build the entire methylome. With advances on next-generation sequencing technologies, it is now possible to globally map the DNA cytosine methylation at single-base resolution, providing new insights into the regulation and dynamics of DNA methylation in genomes. PMID:20218736

Huang, Yi-Wen; Huang, Tim H.-M.; Wang, Li-Shu

2010-01-01

319

Assessing the impact of comparative genomic sequence data on the functional annotation of the Drosophila genome  

Microsoft Academic Search

Background  It is widely accepted that comparative sequence data can aid the functional annotation of genome sequences; however, the most\\u000a informative species and features of genome evolution for comparison remain to be determined.\\u000a \\u000a \\u000a \\u000a \\u000a Results  We analyzed conservation in eight genomic regions (apterous, even-skipped, fushi tarazu, twist, and Rhodopsins 1, 2, 3 and 4) from four Drosophila species (D. erecta, D. pseudoobscura, D.

Casey M Bergman; Barret D Pfeiffer; Diego E Rincón-Limas; Roger A Hoskins; Andreas Gnirke; Chris J Mungall; Adrienne M Wang; Brent Kronmiller; Joanne Pacleb; Soo Park; Mark Stapleton; Kenneth Wan; Reed A George; Pieter J de Jong; Juan Botas; Gerald M Rubin; Susan E Celniker

2002-01-01

320

Identification of cis-regulatory sequence variations in individual genome sequences  

PubMed Central

Functional contributions of cis-regulatory sequence variations to human genetic disease are numerous. For instance, disrupting variations in a HNF4A transcription factor binding site upstream of the Factor IX gene contributes causally to hemophilia B Leyden. Although clinical genome sequence analysis currently focuses on the identification of protein-altering variation, the impact of cis-regulatory mutations can be similarly strong. New technologies are now enabling genome sequencing beyond exomes, revealing variation across the non-coding 98% of the genome responsible for developmental and physiological patterns of gene activity. The capacity to identify causal regulatory mutations is improving, but predicting functional changes in regulatory DNA sequences remains a great challenge. Here we explore the existing methods and software for prediction of functional variation situated in the cis-regulatory sequences governing gene transcription and RNA processing. PMID:21989199

2011-01-01

321

Unveiling Mycoplasma hyopneumoniae Promoters: Sequence Definition and Genomic Distribution  

PubMed Central

Several Mycoplasma species have had their genome completely sequenced, including four strains of the swine pathogen Mycoplasma hyopneumoniae. Nevertheless, little is known about the nucleotide sequences that control transcriptional initiation in these microorganisms. Therefore, with the objective of investigating the promoter sequences of M. hyopneumoniae, 23 transcriptional start sites (TSSs) of distinct genes were mapped. A pattern that resembles the ?70 promoter ?10 element was found upstream of the TSSs. However, no ?35 element was distinguished. Instead, an AT-rich periodic signal was identified. About half of the experimentally defined promoters contained the motif 5?-TRTGn-3?, which was identical to the ?16 element usually found in Gram-positive bacteria. The defined promoters were utilized to build position-specific scoring matrices in order to scan putative promoters upstream of all coding sequences (CDSs) in the M. hyopneumoniae genome. Two hundred and one signals were found associated with 169 CDSs. Most of these sequences were located within 100 nucleotides of the start codons. This study has shown that the number of promoter-like sequences in the M. hyopneumoniae genome is more frequent than expected by chance, indicating that most of the sequences detected are probably biologically functional. PMID:22334569

Weber, Shana de Souto; Sant'Anna, Fernando Hayashi; Schrank, Irene Silveira

2012-01-01

322

The mitochondrial genome sequence of the Tasmanian tiger (Thylacinus cynocephalus).  

PubMed

We report the first two complete mitochondrial genome sequences of the thylacine (Thylacinus cynocephalus), or so-called Tasmanian tiger, extinct since 1936. The thylacine's phylogenetic position within australidelphian marsupials has long been debated, and here we provide strong support for the thylacine's basal position in Dasyuromorphia, aided by mitochondrial genome sequence that we generated from the extant numbat (Myrmecobius fasciatus). Surprisingly, both of our thylacine sequences differ by 11%-15% from putative thylacine mitochondrial genes in GenBank, with one of our samples originating from a direct offspring of the previously sequenced individual. Our data sample each mitochondrial nucleotide an average of 50 times, thereby providing the first high-fidelity reference sequence for thylacine population genetics. Our two sequences differ in only five nucleotides out of 15,452, hinting at a very low genetic diversity shortly before extinction. Despite the samples' heavy contamination with bacterial and human DNA and their temperate storage history, we estimate that as much as one-third of the total DNA in each sample is from the thylacine. The microbial content of the two thylacine samples was subjected to metagenomic analysis, and showed striking differences between a wild-captured individual and a born-in-captivity one. This study therefore adds to the growing evidence that extensive sequencing of museum collections is both feasible and desirable, and can yield complete genomes. PMID:19139089

Miller, Webb; Drautz, Daniela I; Janecka, Jan E; Lesk, Arthur M; Ratan, Aakrosh; Tomsho, Lynn P; Packard, Mike; Zhang, Yeting; McClellan, Lindsay R; Qi, Ji; Zhao, Fangqing; Gilbert, M Thomas P; Dalén, Love; Arsuaga, Juan Luis; Ericson, Per G P; Huson, Daniel H; Helgen, Kristofer M; Murphy, William J; Götherström, Anders; Schuster, Stephan C

2009-02-01

323

Establishing a framework for comparative analysis of genome sequences  

SciTech Connect

This paper describes a framework and a high-level language toolkit for comparative analysis of genome sequence alignment The framework integrates the information derived from multiple sequence alignment and phylogenetic tree (hypothetical tree of evolution) to derive new properties about sequences. Multiple sequence alignments are treated as an abstract data type. Abstract operations have been described to manipulate a multiple sequence alignment and to derive mutation related information from a phylogenetic tree by superimposing parsimonious analysis. The framework has been applied on protein alignments to derive constrained columns (in a multiple sequence alignment) that exhibit evolutionary pressure to preserve a common property in a column despite mutation. A Prolog toolkit based on the framework has been implemented and demonstrated on alignments containing 3000 sequences and 3904 columns.

Bansal, A.K.

1995-06-01

324

The genome sequence of the model ascomycete fungus Podospora anserina  

PubMed Central

Background The dung-inhabiting ascomycete fungus Podospora anserina is a model used to study various aspects of eukaryotic and fungal biology, such as ageing, prions and sexual development. Results We present a 10X draft sequence of P. anserina genome, linked to the sequences of a large expressed sequence tag collection. Similar to higher eukaryotes, the P. anserina transcription/splicing machinery generates numerous non-conventional transcripts. Comparison of the P. anserina genome and orthologous gene set with the one of its close relatives, Neurospora crassa, shows that synteny is poorly conserved, the main result of evolution being gene shuffling in the same chromosome. The P. anserina genome contains fewer repeated sequences and has evolved new genes by duplication since its separation from N. crassa, despite the presence of the repeat induced point mutation mechanism that mutates duplicated sequences. We also provide evidence that frequent gene loss took place in the lineages leading to P. anserina and N. crassa. P. anserina contains a large and highly specialized set of genes involved in utilization of natural carbon sources commonly found in its natural biotope. It includes genes potentially involved in lignin degradation and efficient cellulose breakdown. Conclusion The features of the P. anserina genome indicate a highly dynamic evolution since the divergence of P. anserina and N. crassa, leading to the ability of the former to use specific complex carbon sources that match its needs in its natural biotope. PMID:18460219

Espagne, Eric; Lespinet, Olivier; Malagnac, Fabienne; Da Silva, Corinne; Jaillon, Olivier; Porcel, Betina M; Couloux, Arnaud; Aury, Jean-Marc; Segurens, Beatrice; Poulain, Julie; Anthouard, Veronique; Grossetete, Sandrine; Khalili, Hamid; Coppin, Evelyne; Dequard-Chablat, Michelle; Picard, Marguerite; Contamine, Veronique; Arnaise, Sylvie; Bourdais, Anne; Berteaux-Lecellier, Veronique; Gautheret, Daniel; de Vries, Ronald P; Battaglia, Evy; Coutinho, Pedro M; Danchin, Etienne GJ; Henrissat, Bernard; Khoury, Riyad EL; Sainsard-Chanet, Annie; Boivin, Antoine; Pinan-Lucarre, Berangere; Sellem, Carole H; Debuchy, Robert; Wincker, Patrick; Weissenbach, Jean; Silar, Philippe

2008-01-01

325

Complete Sequence and Genomic Analysis of Rhesus Cytomegalovirus  

PubMed Central

The complete DNA sequence of rhesus cytomegalovirus (RhCMV) strain 68-1 was determined with the whole-genome shotgun approach on virion DNA. The RhCMV genome is 221,459 bp in length and possesses a 49% G+C base composition. The genome contains 230 potential open reading frames (ORFs) of 100 or more codons that are arranged colinearly with counterparts of previously sequenced betaherpesviruses such as human cytomegalovirus (HCMV). Of the 230 RhCMV ORFs, 138 (60%) are homologous to known HCMV proteins. The conserved ORFs include the structural, replicative, and transcriptional regulatory proteins, immune evasion elements, G protein-coupled receptors, and immunoglobulin homologues. Interestingly, the RhCMV genome also contains sequences with homology to cyclooxygenase-2, an enzyme associated with inflammatory processes. Closer examination identified a series of candidate exons with the capacity to encode a full-length cyclooxygenase-2 protein. Counterparts of cyclooxygenase-2 have not been found in other sequenced herpesviruses. The availability of the complete RhCMV sequence along with the ability to grow RhCMV in vitro will facilitate the construction of recombinant viral strains for identifying viral determinants of CMV pathogenicity in the experimentally infected rhesus macaque and to the development of CMV as a vaccine vector. PMID:12767982

Hansen, Scott G.; Strelow, Lisa I.; Franchi, David C.; Anders, David G.; Wong, Scott W.

2003-01-01

326

The Genomic HyperBrowser: inferential genomics at the sequence level  

PubMed Central

The immense increase in the generation of genomic scale data poses an unmet analytical challenge, due to a lack of established methodology with the required flexibility and power. We propose a first principled approach to statistical analysis of sequence-level genomic information. We provide a growing collection of generic biological investigations that query pairwise relations between tracks, represented as mathematical objects, along the genome. The Genomic HyperBrowser implements the approach and is available at http://hyperbrowser.uio.no. PMID:21182759

2010-01-01

327

Sequence modelling and an extensible data model for genomic database  

SciTech Connect

The Human Genome Project (HGP) plans to sequence the human genome by the beginning of the next century. It will generate DNA sequences of more than 10 billion bases and complex marker sequences (maps) of more than 100 million markers. All of these information will be stored in database management systems (DBMSs). However, existing data models do not have the abstraction mechanism for modelling sequences and existing DBMS`s do not have operations for complex sequences. This work addresses the problem of sequence modelling in the context of the HGP and the more general problem of an extensible object data model that can incorporate the sequence model as well as existing and future data constructs and operators. First, we proposed a general sequence model that is application and implementation independent. This model is used to capture the sequence information found in the HGP at the conceptual level. In addition, abstract and biological sequence operators are defined for manipulating the modelled sequences. Second, we combined many features of semantic and object oriented data models into an extensible framework, which we called the ``Extensible Object Model``, to address the need of a modelling framework for incorporating the sequence data model with other types of data constructs and operators. This framework is based on the conceptual separation between constructors and constraints. We then used this modelling framework to integrate the constructs for the conceptual sequence model. The Extensible Object Model is also defined with a graphical representation, which is useful as a tool for database designers. Finally, we defined a query language to support this model and implement the query processor to demonstrate the feasibility of the extensible framework and the usefulness of the conceptual sequence model.

Li, Peter Wei-Der [California Univ., San Francisco, CA (United States); [Lawrence Berkeley Lab., CA (United States)

1992-01-01

328

Sequence modelling and an extensible data model for genomic database  

SciTech Connect

The Human Genome Project (HGP) plans to sequence the human genome by the beginning of the next century. It will generate DNA sequences of more than 10 billion bases and complex marker sequences (maps) of more than 100 million markers. All of these information will be stored in database management systems (DBMSs). However, existing data models do not have the abstraction mechanism for modelling sequences and existing DBMS's do not have operations for complex sequences. This work addresses the problem of sequence modelling in the context of the HGP and the more general problem of an extensible object data model that can incorporate the sequence model as well as existing and future data constructs and operators. First, we proposed a general sequence model that is application and implementation independent. This model is used to capture the sequence information found in the HGP at the conceptual level. In addition, abstract and biological sequence operators are defined for manipulating the modelled sequences. Second, we combined many features of semantic and object oriented data models into an extensible framework, which we called the Extensible Object Model'', to address the need of a modelling framework for incorporating the sequence data model with other types of data constructs and operators. This framework is based on the conceptual separation between constructors and constraints. We then used this modelling framework to integrate the constructs for the conceptual sequence model. The Extensible Object Model is also defined with a graphical representation, which is useful as a tool for database designers. Finally, we defined a query language to support this model and implement the query processor to demonstrate the feasibility of the extensible framework and the usefulness of the conceptual sequence model.

Li, Peter Wei-Der (California Univ., San Francisco, CA (United States) Lawrence Berkeley Lab., CA (United States))

1992-01-01

329

Genomic insight into the common carp ( Cyprinus carpio ) genome by sequencing analysis of BAC-end sequences  

Microsoft Academic Search

Background  Common carp is one of the most important aquaculture teleost fish in the world. Common carp and other closely related Cyprinidae\\u000a species provide over 30% aquaculture production in the world. However, common carp genomic resources are still relatively\\u000a underdeveloped. BAC end sequences (BES) are important resources for genome research on BAC-anchored genetic marker development,\\u000a linkage map and physical map integration,

Peng Xu; Jiongtang Li; Yan Li; Runzi Cui; Jintu Wang; Jian Wang; Yan Zhang; Zixia Zhao; Xiaowen Sun

2011-01-01

330

Complete genome sequence of Thauera aminoaromatica strain MZ1T  

SciTech Connect

Thauera aminoaromatica strain MZ1T, an isolate belonging to genus Thauera, of the family Rhodocyclaceae and the class the Betaproteobacteria, has been characterized for its ability to produce abundant exopolysaccharide and degrade various aromatic compounds with nitrate as an electron acceptor. These properties, if fully understood at the genome-sequence level, can aid in environmental processing of organic matter in anaerobic cycles by short-circuiting a central anaerobic metabolite, acetate, from microbiological conversion to methane, a criti-cal greenhouse gas. Strain MZ1T is the first strain from the genus Thauera with a completely sequenced genome. The 4,496,212 bp chromosome and 78,374 bp plasmid contain 4,071 protein-coding and 71 RNA genes, and were sequenced as part of the DOE Community Se-quencing Program CSP{_}776774.

Sanseverino, John [ORNL; Chauhan, Archana [University of Tennessee, Knoxville (UTK); Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Sims, David [Los Alamos National Laboratory (LANL); Brettin, Thomas S [ORNL; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Chang, Yun-Juan [ORNL; Larimer, Frank W [ORNL; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Moser, Scott [University of Tennessee, Knoxville (UTK); Jegier, Patricia [University of Tennessee, Knoxville (UTK); Close, Dan [University of Tennessee, Knoxville (UTK); Wang, Ying [University of Tennessee, Knoxville (UTK); Layton, Alice [University of Tennessee, Knoxville (UTK); Allen, Michael S. [University of Tennessee, Knoxville (UTK); Sayler, Gary [University of Tennessee, Knoxville (UTK)

2012-01-01

331

Complete genome sequence of Thauera aminoaromatica strain MZ1T  

PubMed Central

Thauera aminoaromatica strain MZ1T, an isolate belonging to genus Thauera, of the family Rhodocyclaceae and the class the Betaproteobacteria, has been characterized for its ability to produce abundant exopolysaccharide and degrade various aromatic compounds with nitrate as an electron acceptor. These properties, if fully understood at the genome-sequence level, can aid in environmental processing of organic matter in anaerobic cycles by short-circuiting a central anaerobic metabolite, acetate, from microbiological conversion to methane, a critical greenhouse gas. Strain MZ1T is the first strain from the genus Thauera with a completely sequenced genome. The 4,496,212 bp chromosome and 78,374 bp plasmid contain 4,071 protein-coding and 71 RNA genes, and were sequenced as part of the DOE Community Sequencing Program CSP_776774. PMID:23407619

Jiang, Ke; Sanseverino, John; Chauhan, Archana; Lucas, Susan; Copeland, Alex; Lapidus, Alla; Del Rio, Tijana Glavina; Dalin, Eileen; Tice, Hope; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Sims, David; Brettin, Thomas; Detter, John C.; Han, Cliff; Chang, Y.J.; Larimer, Frank; Land, Miriam; Hauser, Loren; Kyrpides, Nikos C.; Mikhailova, Natalia; Moser, Scott; Jegier, Patricia; Close, Dan; DeBruyn, Jennifer M.; Wang, Ying; Layton, Alice C.; Allen, Michael S.; Sayler, Gary S.

2012-01-01

332

Complete genome sequence of Thauera aminoaromatica strain MZ1T.  

PubMed

Thauera aminoaromatica strain MZ1T, an isolate belonging to genus Thauera, of the family Rhodocyclaceae and the class the Betaproteobacteria, has been characterized for its ability to produce abundant exopolysaccharide and degrade various aromatic compounds with nitrate as an electron acceptor. These properties, if fully understood at the genome-sequence level, can aid in environmental processing of organic matter in anaerobic cycles by short-circuiting a central anaerobic metabolite, acetate, from microbiological conversion to methane, a critical greenhouse gas. Strain MZ1T is the first strain from the genus Thauera with a completely sequenced genome. The 4,496,212 bp chromosome and 78,374 bp plasmid contain 4,071 protein-coding and 71 RNA genes, and were sequenced as part of the DOE Community Sequencing Program CSP_776774. PMID:23407619

Jiang, Ke; Sanseverino, John; Chauhan, Archana; Lucas, Susan; Copeland, Alex; Lapidus, Alla; Del Rio, Tijana Glavina; Dalin, Eileen; Tice, Hope; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Sims, David; Brettin, Thomas; Detter, John C; Han, Cliff; Chang, Y J; Larimer, Frank; Land, Miriam; Hauser, Loren; Kyrpides, Nikos C; Mikhailova, Natalia; Moser, Scott; Jegier, Patricia; Close, Dan; Debruyn, Jennifer M; Wang, Ying; Layton, Alice C; Allen, Michael S; Sayler, Gary S

2012-07-30

333

Complete genome sequence of Allochromatium vinosum DSM 180T  

SciTech Connect

Allochromatium vinosum formerly Chromatium vinosum is a mesophilic purple sulfur bacte- rium belonging to the family Chromatiaceae in the bacterial class Gammaproteobacteria. The genus Allochromatium contains currently five species. All members were isolated from fresh- water, brackish water or marine habitats and are predominately obligate phototrophs. Here we describe the features of the organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a member of the Chromatiaceae within the purple sulfur bacteria thriving in globally occurring habitats. The 3,669,074 bp ge- nome with its 3,302 protein-coding and 64 RNA genes was sequenced within the Joint Ge- nome Institute Community Sequencing Program.

Weissgerber, Thomas [Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany; Zigann, Renate [Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany; Bruce, David [Los Alamos National Laboratory (LANL); Chang, Yun-Juan [ORNL; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Hauser, Loren John [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Land, Miriam L [ORNL; Munk, Christine [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Dahl, Christiane [Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany

2011-01-01

334

Barnacle: an assembly algorithm for clone-based sequences of whole genomes  

E-print Network

illustrate our approach by assembling the human genome. Our novel method abandons the original physical-mapping by the International Human Genome Sequencing Consortium (IHGSC) (International Human Genome Se- quencing Consortium of the genome. For example, the human genome is more than half repeated sequences, which include large 50­500 Kb

Choi, Vicky

335

The first complete chloroplast genome sequence of a lycophyte, Huperzia lucidula (Lycopodiaceae)  

E-print Network

The first complete chloroplast genome sequence of a lycophyte, Huperzia lucidula (Lycopodiaceae complete chloroplast genome of a lycophyte, Huperzia lucidula. This plant belongs to a significant clade, and shotgun sequencing to 8Ã? depth coverage to obtain the complete chloroplast genome sequence. The genome

Olmstead, Richard

336

Mitochondrial Genome Sequences Effectively Reveal the Phylogeny of Hylobates Gibbons  

Microsoft Academic Search

BackgroundUniquely among hominoids, gibbons exist as multiple geographically contiguous taxa exhibiting distinctive behavioral, morphological, and karyotypic characteristics. However, our understanding of the evolutionary relationships of the various gibbons, especially among Hylobates species, is still limited because previous studies used limited taxon sampling or short mitochondrial DNA (mtDNA) sequences. Here we use mtDNA genome sequences to reconstruct gibbon phylogenetic relationships and

Yi-Chiao Chan; Christian Roos; Miho Inoue-Murayama; Eiji Inoue; Chih-Chin Shih; Kurtis Jai-Chyi Pei; Linda Vigilant; Robert C. Fleischer

2010-01-01

337

Addressing chromosome evolution in the whole-genome sequence era  

Microsoft Academic Search

The evolution of karyotypes has been the subject of intensive study since the middle of the 20th century. This was motivated\\u000a by the observation that the karyotypes of related species showed remarkable conservation. The recent emergence of whole-genome\\u000a sequencing projects gives the opportunity to complement the cytogenetic approaches by addressing the conservation of karyotypes\\u000a using chromosome sequence comparison. In this

Thomas Faraut

2008-01-01

338

The Complete Genome Sequence of Escherichia coli K-12  

Microsoft Academic Search

The 4,639,221- base pair sequence of Escherichia coli K-12 is presented. Of 4288 protein-coding genes annotated, 38 percent have no attributed function. Comparison with five other sequenced microbes reveals ubiquitous as well as narrowly distributed gene families; many families of similar genes within E. coli are also evident. The largest family of paralogous proteins contains 80 ABC transporters. The genome

Frederick R. Blattner; Guy Plunkett III; Craig A. Bloch; Nicole T. Perna; Valerie Burland; Monica Riley; Julio Collado-Vides; Jeremy D. Glasner; Christopher K. Rode; George F. Mayhew; Jason Gregor; Nelson Wayne Davis; Heather A. Kirkpatrick; Michael A. Goeden; Debra J. Rose; Bob Mau; Ying Shao

2007-01-01

339

Sequence and organization of the human mitochondrial genome  

Microsoft Academic Search

The complete sequence of the 16,569-base pair human mitochondrial genome is presented. The genes for the 12S and 16S rRNAs, 22 tRNAs, cytochrome c oxidase subunits I, II and III, ATPase subunit 6, cytochrome b and eight other predicted protein coding genes have been located. The sequence shows extreme economy in that the genes have none or only a few

S. Anderson; A. T. Bankier; B. G. Barrell; M. H. L. de Bruijn; A. R. Coulson; J. Drouin; I. C. Eperon; D. P. Nierlich; B. A. Roe; F. Sanger; P. H. Schreier; A. J. H. Smith; R. Staden; I. G. Young

1981-01-01

340

The complete genome sequence of the gastric pathogen Helicobacter pylori  

Microsoft Academic Search

Helicobacter pylori, strain 26695, has a circular genome of 1,667,867 base pairs and 1,590 predicted coding sequences. Sequence analysis indicates that H. pylori has well-developed systems for motility, for scavenging iron, and for DNA restriction and modification. Many putative adhesins, lipoproteins and other outer membrane proteins were identified, underscoring the potential complexity of host-pathogen interaction. Based on the large number

Jean-F. Tomb; Owen White; Anthony R. Kerlavage; Rebecca A. Clayton; Granger G. Sutton; Robert D. Fleischmann; Karen A. Ketchum; Hans Peter Klenk; Steven Gill; Brian A. Dougherty; Karen Nelson; John Quackenbush; Lixin Zhou; Ewen F. Kirkness; Scott Peterson; Brendan Loftus; Delwood Richardson; Robert Dodson; Hanif G. Khalak; Anna Glodek; Keith McKenney; Lisa M. Fitzegerald; Norman Lee; Mark D. Adams; Erin K. Hickey; Douglas E. Berg; Jeanine D. Gocayne; Teresa R. Utterback; Jeremy D. Peterson; Jenny M. Kelley; Matthew D. Cotton; Janice M. Weidman; Claire Fujii; Cheryl Bowman; Larry Watthey; Erik Wallin; William S. Hayes; Mark Borodovsky; Peter D. Karp; Hamilton O. Smith; Claire M. Fraser; J. Craig Venter

1997-01-01

341

High-throughput bisulfite sequencing in mammalian genomes  

Microsoft Academic Search

DNA methylation is a critical epigenetic mark that is essential for mammalian development and aberrant in many diseases including cancer. Over the past decade multiple methods have been developed and applied to characterize its genome-wide distribution. Of these, reduced representation bisulfite sequencing (RRBS) generates nucleotide resolution DNA methylation bisulfite sequencing libraries that enrich for CpG-dense regions by methylation-insensitive restriction digestion.

Zachary D. Smith; Hongcang Gu; Christoph Bock; Andreas Gnirke; Alexander Meissner

2009-01-01

342

Human-specific nonsense mutations identified by genome sequence comparisons  

Microsoft Academic Search

The comparative study of the human and chimpanzee genomes may shed light on the genetic ingredients for the evolution of the\\u000a unique traits of humans. Here, we present a simple procedure to identify human-specific nonsense mutations that might have\\u000a arisen since the human–chimpanzee divergence. The procedure involves collecting orthologous sequences in which a stop codon\\u000a of the human sequence is

Yoonsoo Hahn; Byungkook Lee

2006-01-01

343

Sequencing and annotated analysis of the Holstein cow genome.  

PubMed

The aim of our study was to create a high-quality Holstein cow genome reference sequence and describe the different types of variations in this genome compared to the reference Hereford breed. We generated one fragment and three mate-paired libraries from genomic DNA. Raw files were mapped and paired to the reference cow (Bos taurus) genome assemblies bosTau6/UMD_3.1. BioScope (v1.3) software was used for mapping and variant analysis. Initial sequencing resulted in 2,842,744,008 of 50-bp reads. Average mapping efficiency was 78.4 % and altogether 2,168,425,497 reads and 98,022,357,422 bp were successfully mapped, resulting in 36.7X coverage. Tertiary analysis found 5,923,230 SNPs in the bovine genome, of which 3,833,249 were heterozygous and 2,089,981 were homozygous variants. Annotation revealed that 4,241,000 of all discovered SNPs were annotated in the dbSNP database and 1,682,230 SNPs were considered as novel. Large indel variations accounted for 48,537,190 bp of the entire genome and there were 138,504 of them. The largest deletion was 18,594 bp and the largest insertion was 13,498 bp. Another group of variants, small indels (n = 458,061), accounted for the total variation of 1,839,872 nucleotides in the genome. Only 92,115 small indels were listed in the dbSNP and therefore 365,946 small indels were novel. Finally, we identified 1,876 inversions in the bovine genome. In conclusion, this is another description of the Holstein cow genome and, similar to previous studies, we found a large amount of novel variations. Better knowledge of these variations could explain significant phenotypic differences (e.g., health, production, reproduction) between different breeds. PMID:23893136

Kõks, Sulev; Lilleoja, Rutt; Reimann, Ene; Salumets, Andres; Reemann, Paula; Jaakma, Ülle

2013-08-01

344

Draft Genome Sequence of the Earliest Cronobacter sakazakii Sequence Type 4 Strain, NCIMB 8272  

PubMed Central

The Cronobacter sakazakii clonal lineage defined as sequence type 4 (ST4) is associated with severe cases of neonatal meningitis and persistence in powdered infant formula. For genome sequencing of the earliest deposited culture collection strain of Cronobacter sakazakii ST4, we used the strain NCIMB 8272, originally isolated from milk powder in 1950. PMID:24072871

Masood, Naqash; Moore, Karen; Farbos, Audrey; Hariri, Sumyya; Paszkiewicz, Konrad; Dickins, Ben; McNally, Alan

2013-01-01

345

Draft Genome Sequence of the Earliest Cronobacter sakazakii Sequence Type 4 Strain, NCIMB 8272.  

PubMed

The Cronobacter sakazakii clonal lineage defined as sequence type 4 (ST4) is associated with severe cases of neonatal meningitis and persistence in powdered infant formula. For genome sequencing of the earliest deposited culture collection strain of Cronobacter sakazakii ST4, we used the strain NCIMB 8272, originally isolated from milk powder in 1950. PMID:24072871

Masood, Naqash; Moore, Karen; Farbos, Audrey; Hariri, Sumyya; Paszkiewicz, Konrad; Dickins, Ben; McNally, Alan; Forsythe, Stephen

2013-01-01

346

Complete Genome Sequence of Brucella melitensis 133, an Isolate of Biovar 1 of Sequence Type 32  

PubMed Central

Brucellosis is highly epidemic in China. Of the six classical species, Brucella melitensis and biovar 1 are the most represented species and biovar that cause human brucellosis in China. Here, we report the genome sequence of Brucella melitensis strain 133, a strain of biovar 1 of sequence type 32. PMID:23209199

Ke, Yuehua; Zhen, Qing; Li, Tiefeng; Wang, Yufei; Yuan, Xitong; Xu, Jie; Huang, Liuyu; Wang, Dali

2012-01-01

347

Complete genome sequence of Brucella melitensis 133, an isolate of biovar 1 of sequence type 32.  

PubMed

Brucellosis is highly epidemic in China. Of the six classical species, Brucella melitensis and biovar 1 are the most represented species and biovar that cause human brucellosis in China. Here, we report the genome sequence of Brucella melitensis strain 133, a strain of biovar 1 of sequence type 32. PMID:23209199

Ke, Yuehua; Zhen, Qing; Li, Tiefeng; Wang, Yufei; Yuan, Xitong; Xu, Jie; Huang, Liuyu; Wang, Dali; Song, Hongbin; Chen, Zeliang

2012-12-01

348

Mitochondrial Genome Sequences Effectively Reveal the Phylogeny of Hylobates Gibbons  

PubMed Central

Background Uniquely among hominoids, gibbons exist as multiple geographically contiguous taxa exhibiting distinctive behavioral, morphological, and karyotypic characteristics. However, our understanding of the evolutionary relationships of the various gibbons, especially among Hylobates species, is still limited because previous studies used limited taxon sampling or short mitochondrial DNA (mtDNA) sequences. Here we use mtDNA genome sequences to reconstruct gibbon phylogenetic relationships and reveal the pattern and timing of divergence events in gibbon evolutionary history. Methodology/Principal Findings We sequenced the mitochondrial genomes of 51 individuals representing 11 species belonging to three genera (Hylobates, Nomascus and Symphalangus) using the high-throughput 454 sequencing system with the parallel tagged sequencing approach. Three phylogenetic analyses (maximum likelihood, Bayesian analysis and neighbor-joining) depicted the gibbon phylogenetic relationships congruently and with strong support values. Most notably, we recover a well-supported phylogeny of the Hylobates gibbons. The estimation of divergence times using Bayesian analysis with relaxed clock model suggests a much more rapid speciation process in Hylobates than in Nomascus. Conclusions/Significance Use of more than 15 kb sequences of the mitochondrial genome provided more informative and robust data than previous studies of short mitochondrial segments (e.g., control region or cytochrome b) as shown by the reliable reconstruction of divergence patterns among Hylobates gibbons. Moreover, molecular dating of the mitogenomic divergence times implied that biogeographic change during the last five million years may be a factor promoting the speciation of Sundaland animals, including Hylobates species. PMID:21203450

Chan, Yi-Chiao; Roos, Christian; Inoue-Murayama, Miho; Inoue, Eiji; Shih, Chih-Chin; Pei, Kurtis Jai-Chyi; Vigilant, Linda

2010-01-01

349

Complete genome sequence of Methanoplanus petrolearius type strain (SEBR 4847).  

PubMed

Methanoplanus petrolearius Ollivier et al. 1998 is the type strain of the genus Methanoplanus. The strain was originally isolated from an offshore oil field from the Gulf of Guinea. Members of the genus Methanoplanus are of interest because they play an important role in the carbon cycle and also because of their significant contribution to the global warming by methane emission in the atmosphere. Like other archaea of the family Methanomicrobiales, the members of the genus Methanoplanus are able to use CO(2) and H(2) as a source of carbon and energy; acetate is required for growth and probably also serves as carbon source. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first complete genome sequence of a member of the family Methanomicrobiaceae and the sixth complete genome sequence from the order Methanomicrobiales. The 2,843,290 bp long genome with its 2,824 protein-coding and 57 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:21304750

Brambilla, Evelyne; Djao, Olivier Duplex Ngatchou; Daligault, Hajnalka; Lapidus, Alla; Lucas, Susan; Hammon, Nancy; Nolan, Matt; Tice, Hope; Cheng, Jan-Fang; Han, Cliff; Tapia, Roxanne; Goodwin, Lynne; Pitluck, Sam; Liolios, Konstantinos; Ivanova, Natalia; Mavromatis, Konstantinos; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Rohde, Manfred; Spring, Stefan; Sikorski, Johannes; Göker, Markus; Woyke, Tanja; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter

2010-01-01

350

Sequence Determination from Overlapping Fragments: A Simple Model of Whole-Genome Shotgun Sequencing  

NASA Astrophysics Data System (ADS)

Assembling fragments randomly sampled from along a sequence is the basis of whole-genome shotgun sequencing, a technique used to map the DNA of the human and other genomes. We calculate the probability that a random sequence can be recovered from a collection of overlapping fragments. We provide an exact solution for an infinite alphabet and in the case of constant overlaps. For the general problem we apply two assembly strategies and give the probability that the assembly puzzle can be solved in the limit of infinitely many fragments.

Derrida, Bernard; Fink, Thomas M.

2002-02-01

351

Evaluation of next generation mtGenome sequencing using the Ion Torrent Personal Genome Machine (PGM)?  

PubMed Central

Insights into the human mitochondrial phylogeny have been primarily achieved by sequencing full mitochondrial genomes (mtGenomes). In forensic genetics (partial) mtGenome information can be used to assign haplotypes to their phylogenetic backgrounds, which may, in turn, have characteristic geographic distributions that would offer useful information in a forensic case. In addition and perhaps even more relevant in the forensic context, haplogroup-specific patterns of mutations form the basis for quality control of mtDNA sequences. The current method for establishing (partial) mtDNA haplotypes is Sanger-type sequencing (STS), which is laborious, time-consuming, and expensive. With the emergence of Next Generation Sequencing (NGS) technologies, the body of available mtDNA data can potentially be extended much more quickly and cost-efficiently. Customized chemistries, laboratory workflows and data analysis packages could support the community and increase the utility of mtDNA analysis in forensics. We have evaluated the performance of mtGenome sequencing using the Personal Genome Machine (PGM) and compared the resulting haplotypes directly with conventional Sanger-type sequencing. A total of 64 mtGenomes (>1 million bases) were established that yielded high concordance with the corresponding STS haplotypes (<0.02% differences). About two-thirds of the differences were observed in or around homopolymeric sequence stretches. In addition, the sequence alignment algorithm employed to align NGS reads played a significant role in the analysis of the data and the resulting mtDNA haplotypes. Further development of alignment software would be desirable to facilitate the application of NGS in mtDNA forensic genetics. PMID:23948325

Parson, Walther; Strobl, Christina; Huber, Gabriela; Zimmermann, Bettina; Gomes, Sibylle M.; Souto, Luis; Fendt, Liane; Delport, Rhena; Langit, Reina; Wootton, Sharon; Lagace, Robert; Irwin, Jodi

2013-01-01

352

Draft Genome Sequence of Pectobacterium wasabiae Strain CFIA1002  

PubMed Central

Pectobacterium wasabiae, originally causing soft rot disease in horseradish in Japan, was recently found to cause blackleg-like symptoms on potato in the United States, Canada, and Europe. A draft genome sequence of a Canadian potato isolate of P. wasabiae CFIA1002 will enhance the characterization of its pathogenicity and host specificity features. PMID:24831134

Yuan, Kat (Xiaoli); Adam, Zaky; Tambong, James; Levesque, C. Andre; Chen, Wen; Lewis, Christopher T.; De Boer, Solke H.

2014-01-01

353

Complete Genome Sequence of Escherichia coli BW25113.  

PubMed

Escherichia coli BW25113 is the parent strain of the Keio collection comprising nearly 4,000 single-gene deletion mutants. We report the complete 4,631,469-bp genome sequence of this strain and the key variations from the type strain E. coli MG1655. PMID:25323716

Grenier, Frédéric; Matteau, Dominick; Baby, Vincent; Rodrigue, Sébastien

2014-01-01

354

Draft Genome Sequence of Bacillus subtilis strain KATMIRA1933  

PubMed Central

In this report, we present a draft sequence of Bacillus subtilis KATMIRA1933. Previous studies demonstrated probiotic properties of this strain partially attributed to production of an antibacterial compound, subtilosin. Comparative analysis of this strain’s genome with that of a commercial probiotic strain, B. subtilis Natto, is presented. PMID:24948771

Melnikov, Vyacheslav G.; Chikindas, Michael L.

2014-01-01

355

Draft Genome Sequence of Halomonas smyrnensis AAD6T  

PubMed Central

Halomonas smyrnensis AAD6T is a Gram-negative, aerobic, exopolysaccharide-producing, and moderately halophilic bacterium that produces levan, a fructose homopolymer with many potential uses in various industries. We report the draft genome sequence of H. smyrnensis AAD6T, which will accelerate research on the rational design and optimization of microbial levan production. PMID:23012275

Sogutcu, Elif; Emrence, Zeliha; Arikan, Muzzaffer; Cakiris, Aris; Abaci, Neslihan; Oner, Ebru Toksoy; Ustek, Duran

2012-01-01

356

Draft genome sequence of the mulberry tree Morus notabilis.  

PubMed

Human utilization of the mulberry-silkworm interaction started at least 5,000 years ago and greatly influenced world history through the Silk Road. Complementing the silkworm genome sequence, here we describe the genome of a mulberry species Morus notabilis. In the 330-Mb genome assembly, we identify 128 Mb of repetitive sequences and 29,338 genes, 60.8% of which are supported by transcriptome sequencing. Mulberry gene sequences appear to evolve ~3 times faster than other Rosales, perhaps facilitating the species' spread worldwide. The mulberry tree is among a few eudicots but several Rosales that have not preserved genome duplications in more than 100 million years; however, a neopolyploid series found in the mulberry tree and several others suggest that new duplications may confer benefits. Five predicted mulberry miRNAs are found in the haemolymph and silk glands of the silkworm, suggesting interactions at molecular levels in the plant-herbivore relationship. The identification and analyses of mulberry genes involved in diversifying selection, resistance and protease inhibitor expressed in the laticifers will accelerate the improvement of mulberry plants. PMID:24048436

He, Ningjia; Zhang, Chi; Qi, Xiwu; Zhao, Shancen; Tao, Yong; Yang, Guojun; Lee, Tae-Ho; Wang, Xiyin; Cai, Qingle; Li, Dong; Lu, Mengzhu; Liao, Sentai; Luo, Guoqing; He, Rongjun; Tan, Xu; Xu, Yunmin; Li, Tian; Zhao, Aichun; Jia, Ling; Fu, Qiang; Zeng, Qiwei; Gao, Chuan; Ma, Bi; Liang, Jiubo; Wang, Xiling; Shang, Jingzhe; Song, Penghua; Wu, Haiyang; Fan, Li; Wang, Qing; Shuai, Qin; Zhu, Juanjuan; Wei, Congjin; Zhu-Salzman, Keyan; Jin, Dianchuan; Wang, Jinpeng; Liu, Tao; Yu, Maode; Tang, Cuiming; Wang, Zhenjiang; Dai, Fanwei; Chen, Jiafei; Liu, Yan; Zhao, Shutang; Lin, Tianbao; Zhang, Shougong; Wang, Junyi; Wang, Jian; Yang, Huanming; Yang, Guangwei; Wang, Jun; Paterson, Andrew H; Xia, Qingyou; Ji, Dongfeng; Xiang, Zhonghuai

2013-01-01

357

Draft Genome Sequence of the Aeromonas diversa Type Strain  

PubMed Central

We present here the first genome sequence of the Aeromonas diversa type strain (CECT 4254T). This strain was isolated from the leg wound of a patient in New Orleans (Louisiana) and was originally described as enteric group 501 and distinguished from A. schubertii by DNA-DNA hybridization and phenotypical characterization. PMID:23792745

Farfan, Maribel; Spataro, Nino; Sanglas, Ariadna; Albarral, Vicenta; Loren, J. Gaspar

2013-01-01

358

Genome Sequence of Klebsiella pneumoniae Respiratory Isolate IA565  

PubMed Central

Klebsiella pneumoniae is a clinically significant opportunistic bacterial pathogen as well as a normal member of the human microbiota. K. pneumoniae strain IA565 was isolated from a tracheal aspirate at the University of Iowa Hospitals and Clinics. Here, we present the genome sequence of K. pneumoniae IA565. PMID:25212620

Johnson, Jeremiah G.; Spurbeck, Rachel R.; Sandhu, Sukhinder K.

2014-01-01

359

Genome Sequence of the Yeast Cyberlindnera fabianii (Hansenula fabianii)  

PubMed Central

The yeast Cyberlindnera fabianii is used in wastewater treatment, fermentation of alcoholic beverages, and has caused blood infections. To assist in the accurate identification of this species, and to determine the genetic basis for properties involved in fermentation and water treatment, we sequenced and annotated the genome of C. fabianii (YJS4271). PMID:25103752

Freel, Kelle C.; Sarilar, Veronique; Neuveglise, Cecile; Devillers, Hugo; Friedrich, Anne

2014-01-01

360

Genome Sequence of Salmonella enterica subsp. enterica Strain Durban.  

PubMed

We report the genome sequence of Salmonella enterica subsp. enterica strain Durban, isolated from a patient with salmonellosis and typhoid fever. The strain is closely related to S. enterica subsp. enterica strain P125109 but differs in loss of the SE20 prophage and acquisition of a prophage similar to ELPhiS. PMID:24812224

Russell, Daniel A; Bowman, Charles A; Hatfull, Graham F

2014-01-01

361

Draft Genome Sequence of Bacillus megaterium Type Strain ATCC 14581.  

PubMed

Bacillus megaterium is a Gram-positive, rod-shaped, spore-forming bacterium of biotechnological importance. Here, we report a 5.7-Mbp draft genome sequence of B. megaterium ATCC 14581, which is the type strain of the species. PMID:25395629

Arya, Gitanjali; Petronella, Nicholas; Crosthwait, Jennifer; Carrillo, Catherine D; Shwed, Philip S

2014-01-01

362

Genome Sequence of Porphyromonas gingivalis Strain HG66 (DSM 28984).  

PubMed

Porphyromonas gingivalis is considered a major etiologic agent in adult periodontitis. Gingipains are among its most important virulence factors, but their release is unique in strain HG66. We present the genome sequence of HG66 with a single contig of 2,441,680 bp and a G+C content of 48.1%. PMID:25291768

Siddiqui, Huma; Yoder-Himes, Deborah Ruth; Mizgalska, Danuta; Nguyen, Ky-Anh; Potempa, Jan; Olsen, Ingar

2014-01-01

363

Draft Genome Sequence of Mycobacterium neoaurum Strain DSM 44074T  

PubMed Central

We report the draft genome sequence of Mycobacterium neoaurum strain DSM 44074T, a nontuberculosis species responsible for opportunistic infections in immunocompromised patients. The strain described here is composed of 5,536,033 bp, with a G+C content of 66.24%, and carries 5,274 protein-coding genes and 72 RNA genes. PMID:25013147

Phelippeau, Michael; Robert, Catherine; Croce, Olivier; Raoult, Didier

2014-01-01

364

Genome Sequence of Porphyromonas gingivalis Strain HG66 (DSM 28984)  

PubMed Central

Porphyromonas gingivalis is considered a major etiologic agent in adult periodontitis. Gingipains are among its most important virulence factors, but their release is unique in strain HG66. We present the genome sequence of HG66 with a single contig of 2,441,680 bp and a G+C content of 48.1%. PMID:25291768

Yoder-Himes, Deborah Ruth; Mizgalska, Danuta; Nguyen, Ky-Anh; Potempa, Jan; Olsen, Ingar

2014-01-01

365

Ancient human genome sequence of an extinct Palaeo-Eskimo  

E-print Network

mitochondrial DNA (mtDNA) genome16 . A total of 80% of the recovered DNA was human, with no evidence of modern to the individual. This provides evidence for a migration from Siberia into the New World some 5,500 years ago, independent of that giving rise to the modern Native Americans and Inuit. Recent advances in DNA sequencing

Nielsen, Rasmus

366

Draft Genome Sequence of Buttiauxella agrestis, Isolated from Surface Water  

PubMed Central

MI agar is routinely used for quantifying Escherichia coli in drinking water. A suspect E. coli colony isolated from a water sample was identified as Buttiauxella agrestis. The whole genome sequence of B. agrestis was determined to understand the genetic basis for its phenotypic resemblance to E. coli on MI agar. PMID:25323724

Kahler, Amy; Strockbine, Nancy; Gladney, Lori; Hill, Vincent R.

2014-01-01

367

Complete Genome Sequence of Escherichia coli BW25113  

PubMed Central

Escherichia coli BW25113 is the parent strain of the Keio collection comprising nearly 4,000 single-gene deletion mutants. We report the complete 4,631,469-bp genome sequence of this strain and the key variations from the type strain E. coli MG1655. PMID:25323716

Grenier, Frederic; Matteau, Dominick; Baby, Vincent

2014-01-01

368

The complete genome sequence of polygonum ringspot virus.  

PubMed

The complete genome sequence of polygonum ringspot virus (PolRSV), genus Tospovirus, family Bunyaviridae, was determined. This is the first report of the complete genome sequence for a European tospovirus isolate. The large RNA of PolRSV was 8893 nucleotides (nt) in size and contained a single open reading frame of 8628 nucleotides in the viral-complementary sense, coding for a predicted RNA-dependent RNA polymerase of 330.9 kDa. Two untranslated regions of 230 and 32 nucleotides were present at the 5' and 3' termini, respectively, which showed conserved terminal sequences, as commonly observed for tospovirus genomic RNAs. The medium and small (S) RNAs were 4710 and 2485 nucleotides in size, respectively, and showed 99 % homology to the corresponding genomic segment of a previously partially characterized PolRSV isolate, Plg3. Protein sequences for GN/GC, N and NSs were identical in length in the two PolRSV isolates, while an amino acid insertion was observed for the NSm protein of the newly characterized isolate. The noncoding intergenic region of the S RNA was very short (183 nt) and was not predicted to form a hairpin structure, confirming that this unique characteristic within tospoviruses, previously observed for Plg3, is not isolate specific. PMID:25000901

Margaria, P; Miozzi, L; Ciuffo, M; Pappu, H; Turina, M

2014-11-01

369

Draft Genome Sequence of Mycobacterium farcinogenes NCTC 10955  

PubMed Central

We report the draft genome sequence of Mycobacterium farcinogenes NCTC 10955 (=DSM 43637T), a nontuberculosis species responsible for bovine farcy. The strain described here is composed of 6,139,893 bp, with a G+C content of 65.73%, and contains 5,816 protein-coding genes and 76 RNA genes. PMID:24874688

Croce, Olivier; Robert, Catherine; Raoult, Didier

2014-01-01

370

Genome Sequence of Duck Pathogen Mycoplasma anatis Strain 1340  

PubMed Central

Mycoplasma anatis, a member of the class Mollicutes, is the causative agent of a contagious infectious disease of domestic ducklings, wild birds, and eggs. Increasing reports show that coinfection of M. anatis with Escherichia coli results in substantial economic impacts on the duck farms in China. Here, we announce the first genome sequence of M. anatis. PMID:21952548

Guo, Zisheng; Chen, Ping; Ren, Pinxing; Kuang, Shichang; Zhou, Zutao; Li, Zili; Liu, Mei; Shi, Deshi; Xiao, Yuncai; Wang, Xiliang; Zhou, Rui; Jin, Hui; Bi, Dingren

2011-01-01

371

The genome sequence of the extreme thermophile Thermus thermophilus  

Microsoft Academic Search

Thermus thermophilus HB27 is an extremely thermophilic, halotolerant bacterium, which was originally isolated from a natural thermal environment in Japan. This organism has considerable biotechnological potential; many thermostable proteins isolated from members of the genus Thermus are indispensable in research and in industrial applications. We present here the complete genome sequence of T. thermophilus HB27, the first for the genus

Anke Henne; H. Bruggemann; Carsten Raasch; Arnim Wiezer; Thomas Hartsch; Heiko Liesegang; Andre Johann; Tanja Lienard; Olivia Gohl; Rosa Martinez-Arias; Carsten Jacobi; Vytaute Starkuviene; Silke Schlenczeck; Silke Dencker; Robert Huber; Hans-Peter Klenk; Wilfried Kramer; Rainer Merkl; Gerhard Gottschalk; Hans-Joachim Fritz

2004-01-01

372

The Genome Sequence of the Malaria Mosquito Anopheles gambiae  

E-print Network

The Genome Sequence of the Malaria Mosquito Anopheles gambiae Robert A. Holt,1 * G. Mani insights into the phys- iological adaptations of a hematophagous insect. The mosquito is both an elegant, exquisitely adapted organism and a scourge of humanity. The principal mosquito-borne human illnesses

Salzberg, Steven

373

Profiling DNA Methylomes from Microarray to Genome-Scale Sequencing  

Microsoft Academic Search

DNA cytosine methylation is a central epigenetic modification which plays critical roles in cellular processes including genome regulation, development and disease. Here, we review current and emerging microarray and next-generation sequencing based technologies that enhance our knowledge of DNA methylation profiling. Each methodology has limitations and their unique applications, and combinations of several modalities may help build the entire methylome.

Yi-Wen Huang; Tim H.-M. Huang; D. Li-Shu Wang

2010-01-01

374

Complete Genome Sequence of Actinobaculum schaalii Strain CCUG 27420  

PubMed Central

Complete genome sequencing of the emerging uropathogen Actinobaculum schaalii indicates that an important mechanism of its virulence is attachment pili, which allow the organism to adhere to the surface of animal cells, greatly enhancing the ability of this organism to colonize the urinary tract. PMID:25189588

Kristiansen, Rikke; Dueholm, Morten S.; Bank, Steffen; Nielsen, Per Halkjaer; Karst, S?ren M.; Cattoir, Vincent; Lienhard, Reto; Grisold, Andrea J.; Olsen, Anne Buchhave; Reinhard, Mark; S?by, Karen Marie; Christensen, Jens J?rgen; Prag, J?rgen

2014-01-01

375

Draft Genome Sequence of Geobacillus thermopakistaniensis Strain MAS1  

PubMed Central

Geobacillus thermopakistaniensis strain MAS1 was isolated from a hot spring located in the Northern Areas of Pakistan. The draft genome sequence was 3.5 Mb and identified a number of genes of potential industrial importance, including genes encoding glycoside hydrolases, pullulanase, amylopullulanase, glycosidase, and alcohol dehydrogenases. PMID:24903880

Rashid, Naeem; Ayyampalayam, Saravanaraj

2014-01-01

376

The Genome Sequence of Herpes Simplex Virus Type 2  

Microsoft Academic Search

The complete 152-kbp genomic DNA sequence of herpes simplex virus type 1 (HSV-1) was published in 1988 (56) and since then has been very widely employed in a great range of research on HSV-1. Additionally, results from this most stud- ied member of the family Herpesviridae have fed powerfully into research on other herpesviruses. In contrast, although a substantial number

AIDAN DOLAN; FIONA E. JAMIESON; CHARLES CUNNINGHAM; BARBARA C. BARNETT; DUNCAN J. MCGEOCH

2010-01-01

377

Complete genome sequence of phototrophic betaproteobacterium Rubrivivax gelatinosus IL144.  

PubMed

Rubrivivax gelatinosus is a facultative photoheterotrophic betaproteobacterium living in freshwater ponds, sewage ditches, activated sludge, and food processing wastewater. There have not been many studies on photosynthetic betaproteobacteria. Here we announce the complete genome sequence of the best-studied phototrophic betaproteobacterium, R. gelatinosus IL-144 (NBRC 100245). PMID:22689232

Nagashima, Sakiko; Kamimura, Akiko; Shimizu, Takayuki; Nakamura-Isaki, Sanae; Aono, Eiji; Sakamoto, Koji; Ichikawa, Natsuko; Nakazawa, Hidekazu; Sekine, Mitsuo; Yamazaki, Shuji; Fujita, Nobuyuki; Shimada, Keizo; Hanada, Satoshi; Nagashima, Kenji V P

2012-07-01

378

Complete Genome Sequence of Phototrophic Betaproteobacterium Rubrivivax gelatinosus IL144  

PubMed Central

Rubrivivax gelatinosus is a facultative photoheterotrophic betaproteobacterium living in freshwater ponds, sewage ditches, activated sludge, and food processing wastewater. There have not been many studies on photosynthetic betaproteobacteria. Here we announce the complete genome sequence of the best-studied phototrophic betaproteobacterium, R. gelatinosus IL-144 (NBRC 100245). PMID:22689232

Kamimura, Akiko; Shimizu, Takayuki; Nakamura-Isaki, Sanae; Aono, Eiji; Sakamoto, Koji; Ichikawa, Natsuko; Nakazawa, Hidekazu; Sekine, Mitsuo; Yamazaki, Shuji; Fujita, Nobuyuki; Shimada, Keizo; Hanada, Satoshi; Nagashima, Kenji V. P.

2012-01-01

379

Draft genome sequence of Halomonas smyrnensis AAD6T.  

PubMed

Halomonas smyrnensis AAD6(T) is a Gram-negative, aerobic, exopolysaccharide-producing, and moderately halophilic bacterium that produces levan, a fructose homopolymer with many potential uses in various industries. We report the draft genome sequence of H. smyrnensis AAD6(T), which will accelerate research on the rational design and optimization of microbial levan production. PMID:23012275

Sogutcu, Elif; Emrence, Zeliha; Arikan, Muzzaffer; Cakiris, Aris; Abaci, Neslihan; Öner, Ebru Toksoy; Ustek, Duran; Arga, Kazim Yalcin

2012-10-01

380

Computational prediction of methylation status in human genomic sequences  

E-print Network

Computational prediction of methylation status in human genomic sequences Rajdeep Das*, Nevenka analysis on human and mouse and came to a similar conclusion. Yang et al. (6) proposed a computational describe a computational pat- tern recognition method that is used to predict the methylation landscape

381

Genome Sequence of a Nicotine-Degrading Strain of Arthrobacter  

PubMed Central

We announce a 4.63-Mb genome assembly of an isolated bacterium that is the first sequenced nicotine-degrading Arthrobacter strain. Nicotine catabolism genes of the nicotine-degrading plasmid pAO1 were predicted, but plasmid function genes were not found. These results will help to better illustrate the molecular mechanism of nicotine degradation by Arthrobacter. PMID:23012289

Yao, Yuxiang; Ren, Huixue; Yu, Hao; Wang, Lijuan

2012-01-01

382

Tandem Clusters of Membrane Proteins in Complete Genome Sequences  

E-print Network

of genes coding for membrane proteins was investigated in 16 complete genomes: 4 archaea, 11 bacteria of isolated ATP-binding protein components in the ABC transporters. Possible implications of tandem cluster for the limitation of the sequence similarity search for functional identification. Aurora and Rose (1998) used

Kihara, Daisuke

383

Genome Sequence of Lysinibacillus sphaericus Strain KCTC 3346T  

PubMed Central

Lysinibacillus sphaericus is a heterogeneous species that includes strains that produce mosquitocidal toxin proteins. Herein, we report the 4.56-Mb draft genome sequence of the nonpathogenic L. sphaericus strain KCTC 3346T, which provides clues for the phylogenetic reassessment of L. sphaericus species and an understanding of its physiological properties. PMID:23950128

Jeong, Da-Eun; Sim, Young Mi; Park, Seung-Hwan

2013-01-01

384

DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome  

Microsoft Academic Search

Acute myeloid leukaemia is a highly malignant haematopoietic tumour that affects about 13,000 adults in the United States each year. The treatment of this disease has changed little in the past two decades, because most of the genetic events that initiate the disease remain undiscovered. Whole-genome sequencing is now possible at a reasonable cost and timeframe to use this approach

Timothy J. Ley; Li Ding; Bob Fulton; Michael D. McLellan; Ken Chen; David Dooling; Brian H. Dunford-Shore; Sean McGrath; Matthew Hickenbotham; Lisa Cook; Rachel Abbott; David E. Larson; Dan C. Koboldt; Craig Pohl; Scott Smith; Amy Hawkins; Scott Abbott; Devin Locke; LaDeana W. Hillier; Tracie Miner; Lucinda Fulton; Vincent Magrini; Todd Wylie; Jarret Glasscock; Joshua Conyers; Nathan Sander; Xiaoqi Shi; John R. Osborne; Patrick Minx; David Gordon; Asif Chinwalla; Yu Zhao; Rhonda E. Ries; Jacqueline E. Payton; Peter Westervelt; Michael H. Tomasson; Mark Watson; Jack Baty; Jennifer Ivanovich; Sharon Heath; William D. Shannon; Rakesh Nagarajan; Matthew J. Walter; Daniel C. Link; Timothy A. Graubert; John F. DiPersio; Richard K. Wilson; Elaine R. Mardis

2008-01-01

385

Draft Genome Sequence of Bacillus megaterium Type Strain ATCC 14581  

PubMed Central

Bacillus megaterium is a Gram-positive, rod-shaped, spore-forming bacterium of biotechnological importance. Here, we report a 5.7-Mbp draft genome sequence of B. megaterium ATCC 14581, which is the type strain of the species. PMID:25395629

Arya, Gitanjali; Petronella, Nicholas; Crosthwait, Jennifer; Carrillo, Catherine D.

2014-01-01

386

Complete Genome Sequence of a Mosaic Bacteriophage, Waukesha92  

PubMed Central

In this study, we determined the complete genome sequence of a mosaic bacteriophage, Waukesha92, which was isolated from soil using Bacillus thuringiensis as the host organism. This temperate Myoviridae bacteriophage has similarities to phages SpaA1 and BceA1 and the Bacillus thuringiensis plasmid pBMB165. PMID:25146131

Sauder, A. Brooke; Carter, Brandon; Langouet Astrie, Christophe

2014-01-01

387

The Genome Sequence of the Malaria Mosquito Anopheles gambiae  

Microsoft Academic Search

Anopheles gambiae is the principal vector of malaria, a disease that afflicts more than 500 million people and causes more than 1 million deaths each year. Tenfold shotgun sequence coverage was obtained from the PEST strain of A. gambiae and assembled into scaffolds that span 278 million base pairs. A total of 91% of the genome was organized in 303

Robert A. Holt; G. Mani Subramanian; Aaron Halpern; Granger G. Sutton; Rosane Charlab; Deborah R. Nusskern; Patrick Wincker; Andrew G. Clark; José M. C. Ribeiro; Ron Wides; Steven L. Salzberg; Brendan Loftus; Mark Yandell; William H. Majoros; Douglas B. Rusch; Zhongwu Lai; Cheryl L. Kraft; Josep F. Abril; Veronique Anthouard; Peter Arensburger; Peter W. Atkinson; Holly Baden; Veronique de Berardinis; Danita Baldwin; Vladimir Benes; Jim Biedler; Claudia Blass; Randall Bolanos; Didier Boscus; Mary Barnstead; Shuang Cai; Kabir Chatuverdi; George K. Christophides; Mathew A. Chrystal; Michele Clamp; Anibal Cravchik; Val Curwen; Ali Dana; Art Delcher; Ian Dew; Cheryl A. Evans; Michael Flanigan; Anne Grundschober-Freimoser; Lisa Friedli; Zhiping Gu; Ping Guan; Roderic Guigo; Maureen E. Hillenmeyer; Susanne L. Hladun; James R. Hogan; Young S. Hong; Jeffrey Hoover; Olivier Jaillon; Zhaoxi Ke; Chinnappa Kodira; Elena Kokoza; Anastasios Koutsos; Ivica Letunic; Alex Levitsky; Yong Liang; Jhy-Jhu Lin; Neil F. Lobo; John R. Lopez; Joel A. Malek; Tina C. McIntosh; Stephan Meister; Jason Miller; Clark Mobarry; Emmanuel Mongin; Sean D. Murphy; David A. O'Brochta; Cynthia Pfannkoch; Rong Qi; Megan A. Regier; Karin Remington; Hongguang Shao; Maria V. Sharakhova; Cynthia D. Sitter; Jyoti Shetty; Thomas J. Smith; Renee Strong; Jingtao Sun; Dana Thomasova; Lucas Q. Ton; Pantelis Topalis; Zhijian Tu; Maria F. Unger; Brian Walenz; Aihui Wang; Jian Wang; Mei Wang; Xuelan Wang; Kerry J. Woodford; Jennifer R. Wortman; Martin Wu; Evgeny M. Zdobnov; Hongyu Zhang; Qi Zhao; Shaying Zhao; Shiaoping C. Zhu; Igor Zhimulev; Mario Coluzzi; Alessandra della Torre; Charles W. Roth; Christos Louis; Francis Kalush; Richard J. Mural; Eugene W. Myers; Mark D. Adams; Hamilton O. Smith; Samuel Broder; Malcolm J. Gardner; Claire M. Fraser; Ewan Birney; Peer Bork; Paul T. Brey; J. Craig Venter; Jean Weissenbach; Fotis C. Kafatos; Frank H. Collins; Stephen L. Hoffman

2002-01-01

388

Sequencing strategy for the whole mitochondrial genome resulting in high quality sequences  

PubMed Central

Background It has been demonstrated that a reliable and fail-safe sequencing strategy is mandatory for high-quality analysis of mitochondrial (mt) DNA, as the sequencing and base-calling process is prone to error. Here, we present a high quality, reliable and easy handling manual procedure for the sequencing of full mt genomes that is also appropriate for laboratories where fully automated processes are not available. Results We amplified whole mitochondrial genomes as two overlapping PCR-fragments comprising each about 8500 bases in length. We developed a set of 96 primers that can be applied to a (manual) 96 well-based technology, which resulted in at least double strand sequence coverage of the entire coding region (codR). Conclusion This elaborated sequencing strategy is straightforward and allows for an unambiguous sequence analysis and interpretation including sometimes challenging phenomena such as point and length heteroplasmy that are relevant for the investigation of forensic and clinical samples. PMID:19331681

Fendt, Liane; Zimmermann, Bettina; Daniaux, Martin; Parson, Walther

2009-01-01

389

Genome sequence and description of Corynebacterium ihumii sp. nov.  

PubMed Central

Corynebacterium ihumii strain GD7T sp. nov. is proposed as the type strain of a new species, which belongs to the family Corynebacteriaceae of the class Actinobacteria. This strain was isolated from the fecal flora of a 62 year-old male patient, as a part of the culturomics study. Corynebacterium ihumii is a Gram positive, facultativly anaerobic, nonsporulating bacillus. Here, we describe the features of this organism, together with the high quality draft genome sequence, annotation and the comparison with other member of the genus Corynebacteria. C. ihumii genome is 2,232,265 bp long (one chromosome but no plasmid) containing 2,125 protein-coding and 53 RNA genes, including 4 rRNA genes. The whole-genome shotgun sequence of Corynebacterium ihumii strain GD7T sp. nov has been deposited in EMBL under accession number GCA_000403725. PMID:25197488

Padmanabhan, Roshan; Dubourg, Gregory; Lagier, Jean-Christophe; Couderc, Carine; Michelle, Caroline; Raoult, Didier; Fournier, Pierre-Edouard

2014-01-01

390

The dynamics of genome replication using deep sequencing  

PubMed Central

Eukaryotic genomes are replicated from multiple DNA replication origins. We present complementary deep sequencing approaches to measure origin location and activity in Saccharomyces cerevisiae. Measuring the increase in DNA copy number during a synchronous S-phase allowed the precise determination of genome replication. To map origin locations, replication forks were stalled close to their initiation sites; therefore, copy number enrichment was limited to origins. Replication timing profiles were generated from asynchronous cultures using fluorescence-activated cell sorting. Applying this technique we show that the replication profiles of haploid and diploid cells are indistinguishable, indicating that both cell types use the same cohort of origins with the same activities. Finally, increasing sequencing depth allowed the direct measure of replication dynamics from an exponentially growing culture. This is the first time this approach, called marker frequency analysis, has been successfully applied to a eukaryote. These data provide a high-resolution resource and methodological framework for studying genome biology. PMID:24089142

Muller, Carolin A.; Hawkins, Michelle; Retkute, Renata; Malla, Sunir; Wilson, Ray; Blythe, Martin J.; Nakato, Ryuichiro; Komata, Makiko; Shirahige, Katsuhiko; de Moura, Alessandro P.S.; Nieduszynski, Conrad A.

2014-01-01

391

A Microbial Metagenome (Leucobacter sp.) in Caenorhabditis Whole Genome Sequences  

PubMed Central

DNA of apparently recent bacterial origin is found in the genomic sequences of Caenorhabditis angaria and Caenorhabditis remanei. Here we present evidence that the DNA belongs to a single species of the genus Leucobacter (high-GC Gram+ Actinobacteria). Metagenomic tools enabled the assembly of the contaminating sequences in a draft genome of 3.2 Mb harboring 2,826 genes. This information provides insight into a microbial organism intimately associated with Caenorhabditis as well as a solid basis for the reassignment of 3,373 metazoan entries of the public database to a novel bacterial species (Leucobacter sp. AEAR). The application of metagenomic techniques can thus prevent annotation errors and reveal unexpected genetic information in data obtained by conventional genomics. PMID:23585714

Percudani, Riccardo

2013-01-01

392

Complete genome sequence of Intrasporangium calvumtype strain (7 KIPT)  

SciTech Connect

Intrasporangium calvum Kalakoutskii et al. 1967 is the type species of the genus Intrasporangium, which belongs to the actinobacterial family Intrasporangiaceae. The species is a Gram-positive bacterium that forms a branching mycelium, which tends to break into irregular fragments. The mycelium of this strain may bear intercalary vesicles but does not contain spores. The strain described in this study is an airborne organism that was isolated from a school dining room in 1967. One particularly interesting feature of I. calvum is that the type of its menaquinone is different from all other representatives of the family Intrasporangiaceae. This is the first completed genome sequence from a member of the genus Intrasporangium and also the first sequence from the family Intrasporangiaceae. The 4,024,382 bp long genome with its 3,653 protein-coding and 57 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

Glavina Del Rio, Tijana [Joint Genome Institute, Walnut Creek, California; Chertkov, Olga [Los Alamos National Laboratory (LANL); Yasawong, Montri [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Lucas, Susan [Joint Genome Institute, Walnut Creek, California; Deshpande, Shweta [Joint Genome Institute, Walnut Creek, California; Cheng, Jan-Fang [Joint Genome Institute, Walnut Creek, California; Detter, J. Chris [Joint Genome Institute, Walnut Creek, California; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [Joint Genome Institute, Walnut Creek, California; Liolios, Konstantinos [Joint Genome Institute, Walnut Creek, California; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [Joint Genome Institute, Walnut Creek, California; Palaniappan, Krishna [Joint Genome Institute, Walnut Creek, California; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Pukall, Rudiger [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Sikorski, Johannes [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [Joint Genome Institute, Walnut Creek, California; Bristow, James [Joint Genome Institute, Walnut Creek, California; Eisen, Jonathan [Joint Genome Institute, Walnut Creek, California; Markowitz, Victor [Joint Genome Institute, Walnut Creek, California; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [Joint Genome Institute, Walnut Creek, California; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lapidus, Alla L. [Joint Genome Institute, Walnut Creek, California

2010-01-01

393

Structure-based inference of molecular functions of proteins of unknown function from Berkeley Structural Genomics Center  

SciTech Connect

Advances in sequence genomics have resulted in an accumulation of a huge number of protein sequences derived from genome sequences. However, the functions of a large portion of them cannot be inferred based on the current methods of sequence homology detection to proteins of known functions. Three-dimensional structure can have an important impact in providing inference of molecular function (physical and chemical function) of a protein of unknown function. Structural genomics centers worldwide have been determining many 3-D structures of the proteins of unknown functions, and possible molecular functions of them have been inferred based on their structures. Combined with bioinformatics and enzymatic assay tools, the successful acceleration of the process of protein structure determination through high throughput pipelines enables the rapid functional annotation of a large fraction of hypothetical proteins. We present a brief summary of the process we used at the Berkeley Structural Genomics Center to infer molecular functions of proteins of unknown function.

Kim, Sung-Hou; Shin, Dong Hae; Hou, Jingtong; Chandonia, John-Marc; Das, Debanu; Choi, In-Geol; Kim, Rosalind; Kim, Sung-Hou

2007-09-02

394

Simultaneous rapid sequencing of multiple RNA virus genomes.  

PubMed

Comparing sequences of archived viruses collected over many years to the present allows the study of viral evolution and contributes to the design of new vaccines. However, the difficulty, time and expense of generating full-length sequences individually from each archived sample have hampered these studies. Next generation sequencing technologies have been utilized for analysis of clinical and environmental samples to identify viral pathogens that may be present. This has led to the discovery of many new, uncharacterized viruses from a number of viral families. Use of these sequencing technologies would be advantageous in examining viral evolution. In this study, a sequencing procedure was used to sequence simultaneously and rapidly multiple archived samples using a single standard protocol. This procedure utilized primers composed of 20 bases of known sequence with 8 random bases at the 3'-end that also served as an identifying barcode that allowed the differentiation each viral library following pooling and sequencing. This conferred sequence independence by random priming both first and second strand cDNA synthesis. Viral stocks were treated with a nuclease cocktail to reduce the presence of host nucleic acids. Viral RNA was extracted, followed by single tube random-primed double-stranded cDNA synthesis. The resultant cDNAs were amplified by primer-specific PCR, pooled, size fractionated and sequenced on the Ion Torrent PGM platform. The individual virus genomes were readily assembled by both de novo and template-assisted assembly methods. This procedure consistently resulted in near full length, if not full-length, genomic sequences and was used to sequence multiple bovine pestivirus and coronavirus isolates simultaneously. PMID:24589514

Neill, John D; Bayles, Darrell O; Ridpath, Julia F

2014-06-01

395

Assessment of Whole Genome Amplification for Sequence Capture and Massively Parallel Sequencing  

PubMed Central

Exome sequence capture and massively parallel sequencing can be combined to achieve inexpensive and rapid global analyses of the functional sections of the genome. The difficulties of working with relatively small quantities of genetic material, as may be necessary when sharing tumor biopsies between collaborators for instance, can be overcome using whole genome amplification. However, the potential drawbacks of using a whole genome amplification technology based on random primers in combination with sequence capture followed by massively parallel sequencing have not yet been examined in detail, especially in the context of mutation discovery in tumor material. In this work, we compare mutations detected in sequence data for unamplified DNA, whole genome amplified DNA, and RNA originating from the same tumor tissue samples from 16 patients diagnosed with non-small cell lung cancer. The results obtained provide a comprehensive overview of the merits of these techniques for mutation analysis. We evaluated the identified genetic variants, and found that most (74%) of them were observed in both the amplified and the unamplified sequence data. Eighty-nine percent of the variations found by WGA were shared with unamplified DNA. We demonstrate a strategy for avoiding allelic bias by including RNA-sequencing information. PMID:24409309

Hasmats, Johanna; Green, Henrik; Orear, Cedric; Validire, Pierre; Huss, Mikael; Kaller, Max; Lundeberg, Joakim

2014-01-01

396

[Sequencing and analysis of the complete genome sequence of WU polyomavirus in Fuzhou, China].  

PubMed

WU polyomavirus (WUPyV), a new member of the genus Polyomavirus in the family Polyomaviridae, is recently found in patients with respiratory tract infections. In our study, the complete genome of the two WUPyV isolates (FZ18, FZTF) were sequenced and deposited in GenBank (accession nos. FJ890981, FJ890982). The two sequences of the WUPyV isolates in this study varied little from each other. Compared with other complete genome sequences of WUPyV in GenBank (strain B0, S1-S4, CLFF, accession nos. EF444549, EF444550, EF444551, EF444552, EF444553, EU296475 respectively), the sequence length in nucleotides is 5228bp, 1bp shorter than the known sequences. The deleted base pair was at nucleotide position 4536 in the non-coding region of large T antigen (LTAg). The genome of the WUPyV encoded for five proteins. They were three capsid proteins: VP2, VP1, VP3 and LTAg, small T antigen (STAg), respectively. To investigate whether these nucleotide sequences had any unique features, we compared the genome sequence of the 2 WUPyV isolates in Fuzhou, China to those documented in the GenBank database by using PHYLIP software version 3.65 and the neighbor-joining method. The 2 WUPyV strains in our study were clustered together. Strain FZTF was more closed to the reference strain B0 of Australian than strain FZ18. PMID:21528542

Xiu, Wen-qiong; Shen, Xiao-na; Liu, Guang-hua; Xie, Jian-feng; Kang, Yu-lan; Wang, Mei-ai; Zhang, Wen-qing; Weng, Qi-zhu; Yan, Yan-sheng

2011-03-01

397

Detection of inter-spread repeat sequence in genomic DNA sequence.  

PubMed

Various types of periodic patterns in nucleotide sequences are known to be very abundant in a genomic DNA sequence, and to play important biological roles such as gene expression, genome structural stabilization, and recombination. We present a new method, named "STEPSTONE", to find a specific periodic pattern of repeat sequence, inter-spread repeat, in which the tandem repeats of the conserved and the not-conserved regions appear periodically. In our method, at first, the data on periods of short repeat sequences found in a target sequence are stored as a hash data, and then are selected by application of an auto-correlation test in time series analysis. Among the statistically selected sequences, the inter-spread repeats are obtained by usual alignment procedures through two steps. To test the performance of our method, we examined the inter-spread repeats in Mycobacterium tuberculosis and Zamia paucijuga genomic sequences. As a result, our method exactly detected the repeats in the two sequences, being useful for identifying systematically the inter-spread repeats in DNA sequence. PMID:15712120

Murakami, Hiroo; Sugaya, Nobuyoshi; Sato, Makihiko; Imaizumi, Akira; Aburatani, Sachiyo; Horimoto, Katsuhisa

2004-01-01

398

Update on the Maize Genome Sequencing Project The Maize Genome Sequencing Project  

E-print Network

at a lower cost than in the past. Second, new high-resolution, high-throughput DNA fingerprinting methods is likely to be too diverged to serve as a resource for efficient map-based cloning of maize traits. However and human genomes (Gregory et al., 2002). Our current picture of the maize genome is largely derived from

Brendel, Volker

399

SVA: software for annotating and visualizing sequenced human genomes  

PubMed Central

Summary: Here we present Sequence Variant Analyzer (SVA), a software tool that assigns a predicted biological function to variants identified in next-generation sequencing studies and provides a browser to visualize the variants in their genomic contexts. SVA also provides for flexible interaction with software implementing variant association tests allowing users to consider both the bioinformatic annotation of identified variants and the strength of their associations with studied traits. We illustrate the annotation features of SVA using two simple examples of sequenced genomes that harbor Mendelian mutations. Availability and implementation: Freely available on the web at http://www.svaproject.org. Contact: d.ge@duke.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21624899

Ge, Dongliang; Ruzzo, Elizabeth K.; Shianna, Kevin V.; He, Min; Pelak, Kimberly; Heinzen, Erin L.; Need, Anna C.; Cirulli, Elizabeth T.; Maia, Jessica M.; Dickson, Samuel P.; Zhu, Mingfu; Singh, Abanish; Allen, Andrew S.; Goldstein, David B.

2011-01-01

400

Complete mitochondrial genome sequence of the humphead wrasse, Cheilinus undulatus.  

PubMed

The humphead wrasse (Cheilinus undulatus) is a large coral fish that has become threatened due to habitat loss and fishing pressure. We sequenced the mitochondrial genome of C. undulatus, using a normal PCR method. The complete mtDNA sequence encoded 13 protein genes, 22 tRNA genes and 2 rRNA genes. It was found to be 16,613 bp in length and had an overall H-strand base compositions of 27.3 for A, 30.9 for C, 16.8 for G, and 25.0% for T. Compared with the sequences of 8 other members of the family Labridae, gene content, genome organization, and nucleotide compositions were similar. All tRNAs formed a typical clover-leaf structure, except tRNA(Ser) (AGY), and most of the size variations among tRNAs stemmed from variations of length in the arm and loop of T?, and loop of DHU. PMID:23661435

Qi, X Z; Yin, S W; Luo, J; Huo, R

2013-01-01

401

Ensemble analysis of adaptive compressed genome sequencing strategies  

PubMed Central

Background Acquiring genomes at single-cell resolution has many applications such as in the study of microbiota. However, deep sequencing and assembly of all of millions of cells in a sample is prohibitively costly. A property that can come to rescue is that deep sequencing of every cell should not be necessary to capture all distinct genomes, as the majority of cells are biological replicates. Biologically important samples are often sparse in that sense. In this paper, we propose an adaptive compressed method, also known as distilled sensing, to capture all distinct genomes in a sparse microbial community with reduced sequencing effort. As opposed to group testing in which the number of distinct events is often constant and sparsity is equivalent to rarity of an event, sparsity in our case means scarcity of distinct events in comparison to the data size. Previously, we introduced the problem and proposed a distilled sensing solution based on the breadth first search strategy. We simulated the whole process which constrained our ability to study the behavior of the algorithm for the entire ensemble due to its computational intensity. Results In this paper, we modify our previous breadth first search strategy and introduce the depth first search strategy. Instead of simulating the entire process, which is intractable for a large number of experiments, we provide a dynamic programming algorithm to analyze the behavior of the method for the entire ensemble. The ensemble analysis algorithm recursively calculates the probability of capturing every distinct genome and also the expected total sequenced nucleotides for a given population profile. Our results suggest that the expected total sequenced nucleotides grows proportional to log of the number of cells and proportional linearly with the number of distinct genomes. The probability of missing a genome depends on its abundance and the ratio of its size over the maximum genome size in the sample. The modified resource allocation method accommodates a parameter to control that probability. Availability The squeezambler 2.0 C++ source code is available at http://sourceforge.net/projects/hyda/. The ensemble analysis MATLAB code is available at http://sourceforge.net/projects/distilled-sequencing/. PMID:25252999

2014-01-01

402

Deriving group A Streptococcus typing information from short-read whole-genome sequencing data.  

PubMed

Typing of group A Streptococcus (GAS) is crucial for infection control and epidemiology. While whole-genome sequencing (WGS) is revolutionizing the way that bacterial organisms are typed, it is necessary to provide backward compatibility with currently used typing schemas to facilitate comparisons and understanding of epidemiological trends. Here, we sequenced the genomes of 191 GAS isolates representing 42 different emm types and used bioinformatics tools to derive commonly used GAS typing information directly from the short-read WGS data. We show that emm typing and multilocus sequence typing can be achieved rapidly and efficiently using this approach, which also permits the determination of the presence or absence of genes associated with GAS tissue tropism. We also report on how the WGS data analysis was instrumental in identifying ambiguities present in the commonly used emm type database hosted by the U.S. Centers for Disease Control and Prevention. PMID:24648555

Athey, Taryn B T; Teatero, Sarah; Li, Aimin; Marchand-Austin, Alex; Beall, Bernard W; Fittipaldi, Nahuel

2014-06-01

403

A map of human genome variation from population scale sequencing  

PubMed Central

The 1000 Genomes Project aims to provide a deep characterisation of human genome sequence variation as a foundation for investigating the relationship between genotype and phenotype. We present results of the pilot phase of the project, designed to develop and compare different strategies for genome wide sequencing with high throughput sequencing platforms. We undertook three projects: low coverage whole genome sequencing of 179 individuals from four populations, high coverage sequencing of two mother-father-child trios, and exon targeted sequencing of 697 individuals from seven populations. We describe the location, allele frequency and local haplotype structure of approximately 15 million SNPs, 1 million short insertions and deletions and 20,000 structural variants, the majority of which were previously undescribed. We show that over 95% of the currently accessible variants found in any individual are present in this dataset; on average, each person carries approximately 250 to 300 loss of function variants in annotated genes and 50 to 100 variants previously implicated in inherited disorders. We demonstrate how these results can be used to inform association and functional studies. From the two trios we directly estimate the rate of de novo germline base substitution mutations to be approximately 10?8 per base pair per generation. We find many putative functional variants with large allele frequency differences between populations. We explore the data with regard to signatures of natural selection, and identify a marked reduction of genetic variation in the neighbourhood of genes, due to selection at linked sites. These methods and public data will support the next phase of human genetic research. PMID:20981092

2011-01-01

404

Motivators for participation in a whole-genome sequencing study: implications for translational genomics research  

PubMed Central

The promise of personalized medicine depends on the ability to integrate genetic sequencing information into disease risk assessment for individuals. As genomic sequencing technology enters the realm of clinical care, its scale necessitates answers to key social and behavioral research questions about the complexities of understanding, communicating, and ultimately using sequence information to improve health. Our study captured the motivations and expectations of research participants who consented to participate in a research protocol, ClinSeq, which offers to return a subset of the data generated through high-throughput sequencing. We present findings from an exploratory study of 322 participants, most of whom identified themselves as white, non-Hispanic, and coming from higher socio-economic groups. Participants aged 45–65 years answered open-ended questions about the reasons they consented to ClinSeq and about what they anticipated would come of genomic sequencing. Two main reasons for participating were as follows: a conviction to altruism in promoting research, and a desire to learn more about genetic factors that contribute to one's own health risk. Overall, participants expected genomic research to help improve understanding of disease causes and treatments. Our findings offer a first glimpse into the motivations and expectations of individuals seeking their own genomic information, and provide initial insights into the value these early adopters of technology place on information generated by high-throughput sequencing studies. PMID:21731059

Facio, Flavia M; Brooks, Stephanie; Loewenstein, Johanna; Green, Susannah; Biesecker, Leslie G; Biesecker, Barbara B

2011-01-01

405

Complete Genome Sequence and Comparative Genomics of Shigella flexneri Serotype 2a Strain 2457T  

Microsoft Academic Search

We determined the complete genome sequence of Shigella flexneri serotype 2a strain 2457T (4,599,354 bp). Shigella species cause >1 million deaths per year from dysentery and diarrhea and have a lifestyle that is markedly different from those of closely related bacteria, including Escherichia coli. The genome exhibits the backbone and island mosaic structure of E. coli pathogens, albeit with much

J. Wei; M. B. Goldberg; V. Burland; M. M. Venkatesan; W. Deng; G. Fournier; G. F. Mayhew; G. Plunkett; D. J. Rose; A. Darling; B. Mau; N. T. Perna; S. M. Payne; L. J. Runyen-Janecky; S. Zhou; D. C. Schwartz; F. R. Blattner

2003-01-01

406

Mapping whole genome shotgun sequence and variant calling in mammalian species without their reference genomes.  

PubMed

Genomics research in mammals has produced reference genome sequences that are essential for identifying variation associated with disease.  High quality reference genome sequences are now available for humans, model species, and economically important agricultural animals.  Comparisons between these species have provided unique insights into mammalian gene function.  However, the number of species with reference genomes is small compared to those needed for studying molecular evolutionary relationships in the tree of life.  For example, among the even-toed ungulates there are approximately 300 species whose phylogenetic relationships have been calculated in the 10k trees project.  Only six of these have reference genomes:  cattle, swine, sheep, goat, water buffalo, and bison.  Although reference sequences will eventually be developed for additional hoof stock, the resources in terms of time, money, infrastructure and expertise required to develop a quality reference genome may be unattainable for most species for at least another decade.  In this work we mapped 35 Gb of next generation sequence data of a Katahdin sheep to its own species' reference genome ( Ovis aries Oar3.1) and to that of a species that diverged 15 to 30 million years ago ( Bos taurus UMD3.1).  In total, 56% of reads covered 76% of UMD3.1 to an average depth of 6.8 reads per site, 83 million variants were identified, of which 78 million were homozygous and likely represent interspecies nucleotide differences. Excluding repeat regions and sex chromosomes, nearly 3.7 million heterozygous sites were identified in this animal vs. bovine UMD3.1, representing polymorphisms occurring in sheep.  Of these, 41% could be readily mapped to orthologous positions in ovine Oar3.1 with 80% corroborated as heterozygous.  These variant sites, identified via interspecies mapping could be used for comparative genomics, disease association studies, and ultimately to understand mammalian gene function. PMID:25075278

Kalbfleisch, Ted; Heaton, Michael P

2013-01-01

407

Genome Sequencing Reveals a Phage in Helicobacter pylori  

PubMed Central

ABSTRACT Helicobacter pylori chronically infects the gastric mucosa in more than half of the human population; in a subset of this population, its presence is associated with development of severe disease, such as gastric cancer. Genomic analysis of several strains has revealed an extensive H. pylori pan-genome, likely to grow as more genomes are sampled. Here we describe the draft genome sequence (63 contigs; 26× mean coverage) of H. pylori strain B45, isolated from a patient with gastric mucosa-associated lymphoid tissue (MALT) lymphoma. The major finding was a 24.6-kb prophage integrated in the bacterial genome. The prophage shares most of its genes (22/27) with prophage region II of Helicobacter acinonychis strain Sheeba. After UV treatment of liquid cultures, circular DNA carrying the prophage integrase gene could be detected, and intracellular tailed phage-like particles were observed in H. pylori cells by transmission electron microscopy, indicating that phage production can be induced from the prophage. PCR amplification and sequencing of the integrase gene from 341 H. pylori strains from different geographic regions revealed a high prevalence of the prophage (21.4%). Phylogenetic reconstruction showed four distinct clusters in the integrase gene, three of which tended to be specific for geographic regions. Our study implies that phages may play important roles in the ecology and evolution of H. pylori. PMID:22086490

Lehours, Philippe; Vale, Filipa F.; Bjursell, Magnus K.; Melefors, Ojar; Advani, Reza; Glavas, Steve; Guegueniat, Julia; Gontier, Etienne; Lacomme, Sabrina; Alves Matos, Antonio; Menard, Armelle; Megraud, Francis; Engstrand, Lars; Andersson, Anders F.

2011-01-01

408

Genomic Sequencing and Analysis of Sucra jujuba Nucleopolyhedrovirus  

PubMed Central

The complete nucleotide sequence of Sucra jujuba nucleopolyhedrovirus (SujuNPV) was determined by 454 pyrosequencing. The SujuNPV genome was 135,952 bp in length with an A+T content of 61.34%. It contained 131 putative open reading frames (ORFs) covering 87.9% of the genome. Among these ORFs, 37 were conserved in all baculovirus genomes that have been completely sequenced, 24 were conserved in lepidopteran baculoviruses, 65 were found in other baculoviruses, and 5 were unique to the SujuNPV genome. Seven homologous regions (hrs) were identified in the SujuNPV genome. SujuNPV contained several genes that were duplicated or copied multiple times: two copies of helicase, DNA binding protein gene (dbp), p26 and cg30, three copies of the inhibitor of the apoptosis gene (iap), and four copies of the baculovirus repeated ORF (bro). Phylogenetic analysis suggested that SujuNPV belongs to a subclade of group II alphabaculovirus, which differs from other baculoviruses in that all nine members of this subclade contain a second copy of dbp. PMID:25329074

Liu, Xiaoping; Yin, Feifei; Zhu, Zheng; Hou, Dianhai; Wang, Jun; Zhang, Lei; Wang, Manli; Wang, Hualin; Hu, Zhihong; Deng, Fei

2014-01-01

409

The impact of next-generation sequencing on genomics  

PubMed Central

This article reviews basic concepts, general applications, and the potential impact of next-generation sequencing (NGS) technologies on genomics, with particular reference to currently available and possible future platforms and bioinformatics. NGS technologies have demonstrated the capacity to sequence DNA at unprecedented speed, thereby enabling previously unimaginable scientific achievements and novel biological applications. But, the massive data produced by NGS also presents a significant challenge for data storage, analyses, and management solutions. Advanced bioinformatic tools are essential for the successful application of NGS technology. As evidenced throughout this review, NGS technologies will have a striking impact on genomic research and the entire biological field. With its ability to tackle the unsolved challenges unconquered by previous genomic technologies, NGS is likely to unravel the complexity of the human genome in terms of genetic variations, some of which may be confined to susceptible loci for some common human conditions. The impact of NGS technologies on genomics will be far reaching and likely change the field for years to come. PMID:21477781

Zhang, Jun; Chiodini, Rod; Badr, Ahmed; Zhang, Genfa

2011-01-01

410

Complete genome sequence of Actinosynnema mirum type strain (101T)  

SciTech Connect

Actinosynnema mirum Hasegawa et al. 1978 is the type species of the genus, and is of phylogenetic interest because of its central phylogenetic location in the Actino-synnemataceae, a rapidly growing family within the actinobacterial suborder Pseudo-nocardineae. A. mirum is characterized by its motile spores borne on synnemata and as a producer of nocardicin antibiotics. It is capable of growing aerobically and under a moderate CO2 atmosphere. The strain is a Gram-positive, aerial and substrate mycelium producing bacterium, originally isolated from a grass blade collected from the Raritan River, New Jersey. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first complete genome sequence of a member of the family Actinosynnemataceae, and only the second sequence from the actinobacterial suborder Pseudonocardineae. The 8,248,144 bp long single replicon genome with its 7100 protein-coding and 77 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

Land, Miriam L [ORNL; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Mayilraj, Shanmugam [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Chen, Feng [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Chertkov, Olga [Los Alamos National Laboratory (LANL); Bruce, David [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Brettin, Thomas S [ORNL; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Tindall, Brian [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

2009-01-01

411

Genomic sequence analysis of Helicoverpa armigera nucleopolyhedrovirus isolated from Australia.  

PubMed

The complete genomic sequence of Helicoverpa armigera nucleopolyhedrovirus from Australia, HearNPV-Au, was determined and analyzed. The HearNPV-Au genome was 130,992 bp in size with a G + C content of 39 mol% and contained 134 predicted open reading frames (ORFs) consisting of more than 150 nucleotides. HearNPV-Au shared 94 ORFs with AcMNPV, HearSNPV-G4 and SeMNPV, and was most closely related to HearSNPV-G4. The nucleotide sequence identity between HearNPV-Au and HearSNPV-G4 genome was 99 %. The major differences were found in homologous regions (hrs) and baculovirus repeat ORFs (bro) genes. Five hrs and two bro genes were identified in the HearNPV-Au genome. All of the 134 ORFs identified in HearNPV-Au were also found in HearSNPV-G4, except the homologue of ORF59 (bro) in HearSNPV-G4. The sequence data strongly suggested that HearNPV-Au and HearSNPV-G4 belong to the same virus species. PMID:24757712

Zhang, Huan; Yang, Qing; Qin, Qi-Lian; Zhu, Wei; Zhang, Zhi-Fang; Li, Yi-Nü; Zhang, Ning; Zhang, Ji-Hong

2014-03-01

412

Genomic sequence analysis of Helicoverpa armigera nucleopolyhedrovirus isolated from Australia.  

PubMed

The complete genomic sequence of Helicoverpa armigera nucleopolyhedrovirus from Australia, HearNPV-Au, was determined and analyzed. The HearNPV-Au genome was 130,992 bp in size with a G+C content of 39 mol% and contained 134 predicted open reading frames (ORFs) consisting of more than 150 nucleotides. HearNPV-Au shared 94 ORFs with AcMNPV, HearSNPV-G4 and SeMNPV, and was most closely related to HearSNPV-G4. The nucleotide sequence identity between HearNPV-Au and HearSNPV-G4 genome was 99%. The major differences were found in homologous regions (hrs) and baculovirus repeat ORFs (bro) genes. Five hrs and two bro genes were identified in the HearNPV-Au genome. All of the 134 ORFs identified in HearNPV-Au were also found in HearSNPV-G4, except the homologue of ORF59 (bro) in HearSNPV-G4. The sequence data strongly suggested that HearNPV-Au and HearSNPV-G4 belong to the same virus species. PMID:24077655

Zhang, Huan; Yang, Qing; Qin, Qi-Lian; Zhu, Wei; Zhang, Zhi-Fang; Li, Yi-Nü; Zhang, Ning; Zhang, Ji-Hong

2014-03-01

413

Human genetics and genomics a decade after the release of the draft sequence of the human genome  

PubMed Central

Substantial progress has been made in human genetics and genomics research over the past ten years since the publication of the draft sequence of the human genome in 2001. Findings emanating directly from the Human Genome Project, together with those from follow-on studies, have had an enormous impact on our understanding of the architecture and function of the human genome. Major developments have been made in cataloguing genetic variation, the International HapMap Project, and with respect to advances in genotyping technologies. These developments are vital for the emergence of genome-wide association studies in the investigation of complex diseases and traits. In parallel, the advent of high-throughput sequencing technologies has ushered in the 'personal genome sequencing' era for both normal and cancer genomes, and made possible large-scale genome sequencing studies such as the 1000 Genomes Project and the International Cancer Genome Consortium. The high-throughput sequencing and sequence-capture technologies are also providing new opportunities to study Mendelian disorders through exome sequencing and whole-genome sequencing. This paper reviews these major developments in human genetics and genomics over the past decade. PMID:22155605

2011-01-01

414

Operon Prediction for Sequenced Bacterial Genomes without Experimental Information? †  

PubMed Central

Various computational approaches have been proposed for operon prediction, but most algorithms rely on experimental or functional data that are only available for a small subset of sequenced genomes. In this study, we explored the possibility of using phylogenetic information to aid in operon prediction, and we constructed a Bayesian hidden Markov model that incorporates comparative genomic data with traditional predictors, such as intergenic distances. The prediction algorithm performs as well as the best previously reported method, with several significant advantages. It uses fewer data sources and so it is easier to implement, and the method is more broadly applicable than previous methods—it can be applied to essentially every gene in any sequenced bacterial genome. Furthermore, we show that near-optimal performance is easily reached with a generic set of comparative genomes and does not depend on a specific relationship between the subject genome and the comparative set. We applied the algorithm to the Bacillus anthracis genome and found that it successfully predicted all previously verified B. anthracis operons. To further test its performance, we chose a predicted operon (BA1489-92) containing several genes with little apparent functional relatedness and tested their cotranscriptional nature. Experimental evidence shows that these genes are cotranscribed, and the data have interesting implications for B. anthracis biology. Overall, our findings show that this algorithm is capable of highly sensitive and accurate operon prediction in a wide range of bacterial genomes and that these predictions can lead to the rapid discovery of new functional relationships among genes. PMID:17122389

Bergman, Nicholas H.; Passalacqua, Karla D.; Hanna, Philip C.; Qin, Zhaohui S.

2007-01-01

415

Arrangement of repetitive sequences in the genome of herpesvirus Sylvilagus.  

PubMed Central

Herpesvirus sylvilagus is a lymphotropic (type gamma) herpesvirus of cottontail rabbits (Sylvilagus floridanus). Analysis of virion DNA of herpesvirus sylvilagus has revealed that the genome consists of one stretch of about 120 kilobase pairs of internal, unique DNA flanked by a variable number of 553-base-pair tandem repeats. The G + C content of the repetitive DNA is extremely high (83%), as determined by sequencing. The organization of the herpesvirus sylvilagus genome is, therefore, similar to that of the primate lymphotropic viruses herpesvirus saimiri and herpesvirus ateles. Images PMID:2911114

Medveczky, M M; Geck, P; Clarke, C; Byrnes, J; Sullivan, J L; Medveczky, P G

1989-01-01

416

Draft genome sequence of Bacillus amyloliquefaciens HB-26.  

PubMed

Bacillus amyloliquefaciens HB-26, a Gram-positive bacterium was isolated from soil in China. SDS-PAGE analysis showed this strain secreted six major protein bands of 65, 60, 55, 34, 25 and 20 kDa. A bioassay of this strain reveals that it shows specific activity against P. brassicae and nematode. Here we describe the features of this organism, together with the draft genome sequence and annotation. The 3,989,358 bp long genome (39 contigs) contains 4,001 protein-coding genes and 80 RNA genes. PMID:25197462

Liu, Xiao-Yan; Min, Yong; Wang, Kai-Mei; Wan, Zhong-Yi; Zhang, Zhi-Gang; Cao, Chun-Xia; Zhou, Rong-Hua; Jiang, Ai-Bing; Liu, Cui-Jun; Zhang, Guang-Yang; Cheng, Xian-Liang; Zhang, Wei; Yang, Zi-Wen

2014-06-15

417

Draft genome sequence of Rhodococcus rhodochrous strain ATCC 17895  

PubMed Central

Rhodococcus rhodochrous ATCC 17895 possesses an array of mono- and dioxygenases, as well as hydratases, which makes it an interesting organism for biocatalysis. R. rhodochrous is a Gram-positive aerobic bacterium with a rod-like morphology. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 6,869,887 bp long genome contains 6,609 protein-coding genes and 53 RNA genes. Based on small subunit rRNA analysis, the strain is more likely to be a strain of Rhodococcus erythropolis rather than Rhodococcus rhodochrous. PMID:24501654

Chen, Bi-Shuang; Otten, Linda G.; Resch, Verena; Muyzer, Gerard; Hanefeld, Ulf

2013-01-01

418

Genome sequence of the tobacco bacterial wilt pathogen Ralstonia solanacearum.  

PubMed

Ralstonia solanacearum is a causal agent of plant bacterial wilt with thousands of distinct strains in a heterogeneous species complex. Here we report the genome sequence of a phylotype IB strain, Y45, isolated from tobacco (Nicotiana tabacum) in China. Compared with the published genomes of eight strains which were isolated from other hosts and habitats, 794 specific genes and many rearrangements/inversion events were identified in the tobacco strain, demonstrating that this strain represents an important node within the R. solanacearum complex. PMID:21994922

Li, Zefeng; Wu, Sanling; Bai, Xuefei; Liu, Yun; Lu, Jianfei; Liu, Yong; Xiao, Bingguang; Lu, Xiuping; Fan, Longjiang

2011-11-01

419

Arrangement of repetitive sequences in the genome of herpesvirus Sylvilagus.  

PubMed

Herpesvirus sylvilagus is a lymphotropic (type gamma) herpesvirus of cottontail rabbits (Sylvilagus floridanus). Analysis of virion DNA of herpesvirus sylvilagus has revealed that the genome consists of one stretch of about 120 kilobase pairs of internal, unique DNA flanked by a variable number of 553-base-pair tandem repeats. The G + C content of the repetitive DNA is extremely high (83%), as determined by sequencing. The organization of the herpesvirus sylvilagus genome is, therefore, similar to that of the primate lymphotropic viruses herpesvirus saimiri and herpesvirus ateles. PMID:2911114

Medveczky, M M; Geck, P; Clarke, C; Byrnes, J; Sullivan, J L; Medveczky, P G

1989-02-01