Science.gov

Sample records for genome-wide transcriptional analysis

  1. Genome-wide analysis of the MYB transcription factor superfamily in soybean

    PubMed Central

    2012-01-01

    Background The MYB superfamily constitutes one of the most abundant groups of transcription factors described in plants. Nevertheless, their functions appear to be highly diverse and remain rather unclear. To date, no genome-wide characterization of this gene family has been conducted in a legume species. Here we report the first genome-wide analysis of the whole MYB superfamily in a legume species, soybean (Glycine max), including the gene structures, phylogeny, chromosome locations, conserved motifs, and expression patterns, as well as a comparative genomic analysis with Arabidopsis. Results A total of 244 R2R3-MYB genes were identified and further classified into 48 subfamilies based on a phylogenetic comparative analysis with their putative orthologs, showed both gene loss and duplication events. The phylogenetic analysis showed that most characterized MYB genes with similar functions are clustered in the same subfamily, together with the identification of orthologs by synteny analysis, functional conservation among subgroups of MYB genes was strongly indicated. The phylogenetic relationships of each subgroup of MYB genes were well supported by the highly conserved intron/exon structures and motifs outside the MYB domain. Synonymous nucleotide substitution (dN/dS) analysis showed that the soybean MYB DNA-binding domain is under strong negative selection. The chromosome distribution pattern strongly indicated that genome-wide segmental and tandem duplication contribute to the expansion of soybean MYB genes. In addition, we found that ~ 4% of soybean R2R3-MYB genes had undergone alternative splicing events, producing a variety of transcripts from a single gene, which illustrated the extremely high complexity of transcriptome regulation. Comparative expression profile analysis of R2R3-MYB genes in soybean and Arabidopsis revealed that MYB genes play conserved and various roles in plants, which is indicative of a divergence in function. Conclusions In this

  2. Genome-wide analysis of FOXO3 mediated transcription regulation through RNA polymerase II profiling.

    PubMed

    Eijkelenboom, Astrid; Mokry, Michal; de Wit, Elzo; Smits, Lydia M; Polderman, Paulien E; van Triest, Miranda H; van Boxtel, Ruben; Schulze, Almut; de Laat, Wouter; Cuppen, Edwin; Burgering, Boudewijn M T

    2013-01-01

    Forkhead box O (FOXO) transcription factors are key players in diverse cellular processes affecting tumorigenesis, stem cell maintenance and lifespan. To gain insight into the mechanisms of FOXO-regulated target gene expression, we studied genome-wide effects of FOXO3 activation. Profiling RNA polymerase II changes shows that FOXO3 regulates gene expression through transcription initiation. Correlative analysis of FOXO3 and RNA polymerase II ChIP-seq profiles demonstrates FOXO3 to act as a transcriptional activator. Furthermore, this analysis reveals a significant part of FOXO3 gene regulation proceeds through enhancer regions. FOXO3 binds to pre-existing enhancers and further activates these enhancers as shown by changes in histone acetylation and RNA polymerase II recruitment. In addition, FOXO3-mediated enhancer activation correlates with regulation of adjacent genes and pre-existence of chromatin loops between FOXO3 bound enhancers and target genes. Combined, our data elucidate how FOXOs regulate gene transcription and provide insight into mechanisms by which FOXOs can induce different gene expression programs depending on chromatin architecture. PMID:23340844

  3. Genome Wide Transcriptional Profile Analysis of Vitis amurensis and Vitis vinifera in Response to Cold Stress

    PubMed Central

    Xin, Haiping; Zhu, Wei; Wang, Lina; Xiang, Yue; Fang, Linchuan; Li, Jitao; Sun, Xiaoming; Wang, Nian; Londo, Jason P.; Li, Shaohua

    2013-01-01

    Grape is one of the most important fruit crops worldwide. The suitable geographical locations and productivity of grapes are largely limited by temperature. Vitis amurensis is a wild grapevine species with remarkable cold-tolerance, exceeding that of Vitis vinifera, the dominant cultivated species of grapevine. However, the molecular mechanisms that contribute to the enhanced freezing tolerance of V. amurensis remain unknown. Here we used deep sequencing data from restriction endonuclease-generated cDNA fragments to evaluate the whole genome wide modification of transcriptome of V. amurensis under cold treatment. Vitis vinifera cv. Muscat of Hamburg was used as control to help investigate the distinctive features of V. amruensis in responding to cold stress. Approximately 9 million tags were sequenced from non-cold treatment (NCT) and cold treatment (CT) cDNA libraries in each species of grapevine sampled from shoot apices. Alignment of tags into V. vinifera cv. Pinot noir (PN40024) annotated genome identified over 15,000 transcripts in each library in V. amruensis and more than 16,000 in Muscat of Hamburg. Comparative analysis between NCT and CT libraries indicate that V. amurensis has fewer differential expressed genes (DEGs, 1314 transcripts) than Muscat of Hamburg (2307 transcripts) when exposed to cold stress. Common DEGs (408 transcripts) suggest that some genes provide fundamental roles during cold stress in grapes. The most robust DEGs (more than 20-fold change) also demonstrated significant differences between two kinds of grapevine, indicating that cold stress may trigger species specific pathways in V. amurensis. Functional categories of DEGs indicated that the proportion of up-regulated transcripts related to metabolism, transport, signal transduction and transcription were more abundant in V. amurensis. Several highly expressed transcripts that were found uniquely accumulated in V. amurensis are discussed in detail. This subset of unique candidate

  4. Genome-wide transcription analysis of histidine-related cataract in Atlantic salmon (Salmo salar L)

    PubMed Central

    Waagbø, Rune; Breck, Olav; Stavrum, Anne-Kristin; Petersen, Kjell; Olsvik, Pål A.

    2009-01-01

    progression in cataract formation. Conclusions Dietary histidine regimes affected cataract formation and lens gene expression in adult Atlantic salmon. Regulated transcripts selected from the results of this genome-wide transcription analysis might be used as possible biological markers for cataract development in Atlantic salmon. PMID:19597568

  5. Genome-Wide Identification and Analysis of the MYB Transcription Factor Superfamily in Solanum lycopersicum.

    PubMed

    Li, Zhenjun; Peng, Rihe; Tian, Yongsheng; Han, Hongjuan; Xu, Jing; Yao, Quanhong

    2016-08-01

    MYB proteins constitute one of the largest transcription factor families in the plant kingdom, members of which perform a variety of functions in plant biological processes. However, there are only very limited reports on the characterization of MYB transcription factors in tomato (Solanum lycopersicum). In our study, a total of 127 MYB genes have been identified in the tomato genome. A complete overview of these MYB genes is presented, including the phylogeny, gene structures, protein motifs, chromosome locations and expression patterns. The 127 SlMYB proteins could be classified into 18 subgroups based on domain similarity and phylogenetic topology. Phylogenetic analysis of SlMYBs along with MYBs from Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) indicated 14 subfamilies. Conserved motifs outside the MYB domain may reflect their functional conservation. The identified tomato MYB genes were distributed on 12 chromosomes at various densities but mainly in chromosomes 6 and 10 (12.6% and 11.8%, respectively). Genome-wide segmental and tandem duplications were also found, which may contribute to the expansion of SlMYB genes. RNA-sequencing and microarray data revealed tissue-specific and stress-responsive expression patterns of SlMYB genes. The expression profiles of SlMYB genes in response to salicylic acid (SA) and jasmonic acid methyl ester (MeJA) were also investigated by real-time PCR. Moreover, ethylene-responsive element-binding factor-associated amphiphilic repression (EAR) motifs were found in 24 SlMYB proteins. Collectively, our comprehensive analysis of SlMYB genes will facilitate future functional studies of the tomato MYB gene family and probably other Solanaceae plants. PMID:27279646

  6. Genome wide analysis of transcript levels after perturbation of the EGFR pathway in the Drosophila ovary.

    PubMed

    Jordan, Katherine C; Hatfield, Steven D; Tworoger, Michael; Ward, Ellen J; Fischer, Karin A; Bowers, Stuart; Ruohola-Baker, Hannele

    2005-03-01

    Defects in the epidermal growth factor receptor (EGFR) pathway can lead to aggressive tumor formation. Activation of this pathway during normal development produces multiple outcomes at the cellular level, leading to cellular differentiation and cell cycle activation. To elucidate the downstream events induced by this pathway, we used genome-wide cDNA microarray technology to identify potential EGFR targets in Drosophila oogenesis. We focused on genes for which the transcriptional responses due to EGFR pathway activation and inactivation were in opposite directions, as this is expected for genes that are directly regulated by the pathway in this tissue type. We perturbed the EGFR pathway in epithelial follicle cells using seven different genetic backgrounds. To activate the pathway, we overexpressed an activated form of the EGFR (UAS-caEGFR), and an activated form of the signal transducer Raf (UAS-caRaf); we also over- or ectopically expressed the downstream homeobox transcription factor Mirror (UAS-mirr) and the ligand-activating serine protease Rhomboid (UAS-rho). To reduce pathway activity we used loss-of-function mutations in the ligand (gurken) and receptor (torpedo). From microarrays containing 6,255 genes, we found 454 genes that responded in an opposite manner in gain-of-function and loss-of-function conditions among which are many Wingless signaling pathway components. Further analysis of two such components, sugarless and pangolin, revealed a function for these genes in late follicle cell patterning. Of interest, components of other signaling pathways were also enriched in the EGFR target group, suggesting that one reason for the pleiotropic effects seen with EGFR activity in cancer progression and development may be its ability to regulate many other signaling pathways. PMID:15704171

  7. Genome-Wide Analysis of Basic/Helix-Loop-Helix Transcription Factor Family in Rice and Arabidopsis1[W

    PubMed Central

    Li, Xiaoxing; Duan, Xuepeng; Jiang, Haixiong; Sun, Yujin; Tang, Yuanping; Yuan, Zheng; Guo, Jingkang; Liang, Wanqi; Chen, Liang; Yin, Jingyuan; Ma, Hong; Wang, Jian; Zhang, Dabing

    2006-01-01

    The basic/helix-loop-helix (bHLH) transcription factors and their homologs form a large family in plant and animal genomes. They are known to play important roles in the specification of tissue types in animals. On the other hand, few plant bHLH proteins have been studied functionally. Recent completion of whole genome sequences of model plants Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) allows genome-wide analysis and comparison of the bHLH family in flowering plants. We have identified 167 bHLH genes in the rice genome, and their phylogenetic analysis indicates that they form well-supported clades, which are defined as subfamilies. In addition, sequence analysis of potential DNA-binding activity, the sequence motifs outside the bHLH domain, and the conservation of intron/exon structural patterns further support the evolutionary relationships among these proteins. The genome distribution of rice bHLH genes strongly supports the hypothesis that genome-wide and tandem duplication contributed to the expansion of the bHLH gene family, consistent with the birth-and-death theory of gene family evolution. Bioinformatics analysis suggests that rice bHLH proteins can potentially participate in a variety of combinatorial interactions, endowing them with the capacity to regulate a multitude of transcriptional programs. In addition, similar expression patterns suggest functional conservation between some rice bHLH genes and their close Arabidopsis homologs. PMID:16896230

  8. Genome Wide Binding Site Analysis Reveals Transcriptional Coactivation of Cytokinin-Responsive Genes by DELLA Proteins

    PubMed Central

    Marín-de la Rosa, Nora; Pfeiffer, Anne; Hill, Kristine; Locascio, Antonella; Bhalerao, Rishikesh P.; Miskolczi, Pal; Grønlund, Anne L.; Wanchoo-Kohli, Aakriti; Thomas, Stephen G.; Bennett, Malcolm J.; Lohmann, Jan U.; Blázquez, Miguel A.; Alabadí, David

    2015-01-01

    The ability of plants to provide a plastic response to environmental cues relies on the connectivity between signaling pathways. DELLA proteins act as hubs that relay environmental information to the multiple transcriptional circuits that control growth and development through physical interaction with transcription factors from different families. We have analyzed the presence of one DELLA protein at the Arabidopsis genome by chromatin immunoprecipitation coupled to large-scale sequencing and we find that it binds at the promoters of multiple genes. Enrichment analysis shows a strong preference for cis elements recognized by specific transcription factor families. In particular, we demonstrate that DELLA proteins are recruited by type-B ARABIDOPSIS RESPONSE REGULATORS (ARR) to the promoters of cytokinin-regulated genes, where they act as transcriptional co-activators. The biological relevance of this mechanism is underpinned by the necessity of simultaneous presence of DELLAs and ARRs to restrict root meristem growth and to promote photomorphogenesis. PMID:26134422

  9. Genetic Analysis of Genome-Wide Transcriptional Regulation through eQTL Mapping in Soy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variation in gene transcript accumulation levels can be measured to map underlying expression Quantitative Trait Loci (eQTL). Coincident genetic locations of eQTL and phenotypic QTL provide the basis for further investigation of the molecular mechanisms involved. Genetic analysis of expression trait...

  10. Genome-wide analysis reveals regulatory role of G4 DNA in gene transcription

    PubMed Central

    Du, Zhuo; Zhao, Yiqiang; Li, Ning

    2008-01-01

    G-quadruplex or G4 DNA, a four-stranded DNA structure formed in G-rich sequences, has been hypothesized to be a structural motif involved in gene regulation. In this study, we examined the regulatory role of potential G4 DNA motifs (PG4Ms) located in the putative transcriptional regulatory region (TRR, –500 to +500) of genes across the human genome. We found that PG4Ms in the 500-bp region downstream of the annotated transcription start site (TSS; PG4MD500) are associated with gene expression. Generally, PG4MD500-positive genes are expressed at higher levels than PG4MD500-negative genes, and an increased number of PG4MD500 provides a cumulative effect. This observation was validated by controlling for attributes, including gene family, function, and promoter similarity. We also observed an asymmetric pattern of PG4MD500 distribution between strands, whereby the frequency of PG4MD500 in the coding strand is generally higher than that in the template strand. Further analysis showed that the presence of PG4MD500 and its strand asymmetry are associated with significant enrichment of RNAP II at the putative TRR. On the basis of these results, we propose a model of G4 DNA-mediated stimulation of transcription with the hypothesis that PG4MD500 contributes to gene transcription by maintaining the DNA in an open conformation, while the asymmetric distribution of PG4MD500 considerably reduces the probability of blocking the progression of the RNA polymerase complex on the template strand. Our findings provide a comprehensive view of the regulatory function of G4 DNA in gene transcription. PMID:18096746

  11. Genome-Wide Identification and Expression Analysis of the NAC Transcription Factor Family in Cassava

    PubMed Central

    Yan, Yan; Hou, Xiaowan; Zou, Meiling; Lu, Cheng; Wang, Wenquan; Peng, Ming

    2015-01-01

    NAC [no apical meristem (NAM), Arabidopsis transcription activation factor [ATAF1/2] and cup-shaped cotyledon (CUC2)] proteins is one of the largest groups of plant specific transcription factors and plays a crucial role in plant growth, development, and adaption to the environment. Currently, no information is known about the NAC family in cassava. In this study, 96 NAC genes (MeNACs) were identified from the cassava genome. Phylogenetic analysis of the NACs from cassava and Arabidopsis showed that MeNAC proteins can be clustered into 16 subgroups. Gene structure analysis found that the number of introns of MeNAC genes varied from 0 to 5, with the majority of MeNAC genes containing two introns, indicating a small gene structure diversity of cassava NAC genes. Conserved motif analysis revealed that all of the identified MeNACs had the conserved NAC domain and/or NAM domain. Global expression analysis suggested that MeNAC genes exhibited different expression profiles in different tissues between wild subspecies and cultivated varieties, indicating their involvement in the functional diversity of different accessions. Transcriptome analysis demonstrated that MeNACs had a widely transcriptional response to drought stress and that they had differential expression profiles in different accessions, implying their contribution to drought stress resistance in cassava. Finally, the expression of twelve MeNAC genes was analyzed under osmotic, salt, cold, ABA, and H2O2 treatments, indicating that cassava NACs may represent convergence points of different signaling pathways. Taken together, this work found some excellent tissue-specific and abiotic stress-responsive candidate MeNAC genes, which would provide a solid foundation for functional investigation of the NAC family, crop improvement and improved understanding of signal transduction in plants. These data bring new insight on the complexity of the transcriptional control of MeNAC genes and support the hypothesis that

  12. Genome-wide digital transcript analysis of putative fruitlet abscission related genes regulated by ethephon in litchi

    PubMed Central

    Li, Caiqin; Wang, Yan; Ying, Peiyuan; Ma, Wuqiang; Li, Jianguo

    2015-01-01

    The high level of physiological fruitlet abscission in litchi (Litchi chinensis Sonn.) causes severe yield loss. Cell separation occurs at the fruit abscission zone (FAZ) and can be triggered by ethylene. However, a deep knowledge of the molecular events occurring in the FAZ is still unknown. Here, genome-wide digital transcript abundance (DTA) analysis of putative fruit abscission related genes regulated by ethephon in litchi were studied. More than 81 million high quality reads from seven ethephon treated and untreated control libraries were obtained by high-throughput sequencing. Through DTA profile analysis in combination with Gene Ontology and KEGG pathway enrichment analyses, a total of 2730 statistically significant candidate genes were involved in the ethephon-promoted litchi fruitlet abscission. Of these, there were 1867 early-responsive genes whose expressions were up- or down-regulated from 0 to 1 d after treatment. The most affected genes included those related to ethylene biosynthesis and signaling, auxin transport and signaling, transcription factors (TFs), protein ubiquitination, ROS response, calcium signal transduction, and cell wall modification. These genes could be clustered into four groups and 13 subgroups according to their similar expression patterns. qRT-PCR displayed the expression pattern of 41 selected candidate genes, which proved the accuracy of our DTA data. Ethephon treatment significantly increased fruit abscission and ethylene production of fruitlet. The possible molecular events to control the ethephon-promoted litchi fruitlet abscission were prompted out. The increased ethylene evolution in fruitlet would suppress the synthesis and polar transport of auxin and trigger abscission signaling. To the best of our knowledge, it is the first time to monitor the gene expression profile occurring in the FAZ-enriched pedicel during litchi fruit abscission induced by ethephon on the genome-wide level. This study will contribute to a better

  13. Genome-wide digital transcript analysis of putative fruitlet abscission related genes regulated by ethephon in litchi.

    PubMed

    Li, Caiqin; Wang, Yan; Ying, Peiyuan; Ma, Wuqiang; Li, Jianguo

    2015-01-01

    The high level of physiological fruitlet abscission in litchi (Litchi chinensis Sonn.) causes severe yield loss. Cell separation occurs at the fruit abscission zone (FAZ) and can be triggered by ethylene. However, a deep knowledge of the molecular events occurring in the FAZ is still unknown. Here, genome-wide digital transcript abundance (DTA) analysis of putative fruit abscission related genes regulated by ethephon in litchi were studied. More than 81 million high quality reads from seven ethephon treated and untreated control libraries were obtained by high-throughput sequencing. Through DTA profile analysis in combination with Gene Ontology and KEGG pathway enrichment analyses, a total of 2730 statistically significant candidate genes were involved in the ethephon-promoted litchi fruitlet abscission. Of these, there were 1867 early-responsive genes whose expressions were up- or down-regulated from 0 to 1 d after treatment. The most affected genes included those related to ethylene biosynthesis and signaling, auxin transport and signaling, transcription factors (TFs), protein ubiquitination, ROS response, calcium signal transduction, and cell wall modification. These genes could be clustered into four groups and 13 subgroups according to their similar expression patterns. qRT-PCR displayed the expression pattern of 41 selected candidate genes, which proved the accuracy of our DTA data. Ethephon treatment significantly increased fruit abscission and ethylene production of fruitlet. The possible molecular events to control the ethephon-promoted litchi fruitlet abscission were prompted out. The increased ethylene evolution in fruitlet would suppress the synthesis and polar transport of auxin and trigger abscission signaling. To the best of our knowledge, it is the first time to monitor the gene expression profile occurring in the FAZ-enriched pedicel during litchi fruit abscission induced by ethephon on the genome-wide level. This study will contribute to a better

  14. Genome-wide transcriptional analysis of flagellar regeneration in Chlamydomonas reinhardtii identifies orthologs of ciliary disease genes

    NASA Technical Reports Server (NTRS)

    Stolc, Viktor; Samanta, Manoj Pratim; Tongprasit, Waraporn; Marshall, Wallace F.

    2005-01-01

    The important role that cilia and flagella play in human disease creates an urgent need to identify genes involved in ciliary assembly and function. The strong and specific induction of flagellar-coding genes during flagellar regeneration in Chlamydomonas reinhardtii suggests that transcriptional profiling of such cells would reveal new flagella-related genes. We have conducted a genome-wide analysis of RNA transcript levels during flagellar regeneration in Chlamydomonas by using maskless photolithography method-produced DNA oligonucleotide microarrays with unique probe sequences for all exons of the 19,803 predicted genes. This analysis represents previously uncharacterized whole-genome transcriptional activity profiling study in this important model organism. Analysis of strongly induced genes reveals a large set of known flagellar components and also identifies a number of important disease-related proteins as being involved with cilia and flagella, including the zebrafish polycystic kidney genes Qilin, Reptin, and Pontin, as well as the testis-expressed tubby-like protein TULP2.

  15. Genome-wide transcriptional analysis of flagellar regeneration in Chlamydomonas reinhardtii identifies orthologs of ciliary disease genes

    PubMed Central

    Stolc, Viktor; Samanta, Manoj Pratim; Tongprasit, Waraporn; Marshall, Wallace F.

    2005-01-01

    The important role that cilia and flagella play in human disease creates an urgent need to identify genes involved in ciliary assembly and function. The strong and specific induction of flagellar-coding genes during flagellar regeneration in Chlamydomonas reinhardtii suggests that transcriptional profiling of such cells would reveal new flagella-related genes. We have conducted a genome-wide analysis of RNA transcript levels during flagellar regeneration in Chlamydomonas by using maskless photolithography method-produced DNA oligonucleotide microarrays with unique probe sequences for all exons of the 19,803 predicted genes. This analysis represents previously uncharacterized whole-genome transcriptional activity profiling study in this important model organism. Analysis of strongly induced genes reveals a large set of known flagellar components and also identifies a number of important disease-related proteins as being involved with cilia and flagella, including the zebrafish polycystic kidney genes Qilin, Reptin, and Pontin, as well as the testis-expressed tubby-like protein TULP2. PMID:15738400

  16. Genome-Wide Phylogenetic Comparative Analysis of Plant Transcriptional Regulation: A Timeline of Loss, Gain, Expansion, and Correlation with Complexity

    PubMed Central

    Lang, Daniel; Weiche, Benjamin; Timmerhaus, Gerrit; Richardt, Sandra; Riaño-Pachón, Diego M.; Corrêa, Luiz G. G.; Reski, Ralf; Mueller-Roeber, Bernd; Rensing, Stefan A.

    2010-01-01

    Evolutionary retention of duplicated genes encoding transcription-associated proteins (TAPs, comprising transcription factors and other transcriptional regulators) has been hypothesized to be positively correlated with increasing morphological complexity and paleopolyploidizations, especially within the plant kingdom. Here, we present the most comprehensive set of classification rules for TAPs and its application for genome-wide analyses of plants and algae. Using a dated species tree and phylogenetic comparative (PC) analyses, we define the timeline of TAP loss, gain, and expansion among Viridiplantae and find that two major bursts of gain/expansion occurred, coinciding with the water-to-land transition and the radiation of flowering plants. For the first time, we provide PC proof for the long-standing hypothesis that TAPs are major driving forces behind the evolution of morphological complexity, the latter in Plantae being shaped significantly by polyploidization and subsequent biased paleolog retention. Principal component analysis incorporating the number of TAPs per genome provides an alternate and significant proxy for complexity, ideally suited for PC genomics. Our work lays the ground for further interrogation of the shaping of gene regulatory networks underlying the evolution of organism complexity. PMID:20644220

  17. Genome-wide transcript analysis of Bradyrhizobium japonicum bacteroids in soybean root nodules.

    PubMed

    Pessi, Gabriella; Ahrens, Christian H; Rehrauer, Hubert; Lindemann, Andrea; Hauser, Felix; Fischer, Hans-Martin; Hennecke, Hauke

    2007-11-01

    The transcriptome of endosymbiotic Bradyrhizobium japonicum bacteroids was assessed, using RNA extracted from determinate soybean root nodules. Results were compared with the transcript profiles of B. japonicum cells grown in either aerobic or microaerobic culture. Microoxia is a known trigger for the induction of symbiotically relevant genes. In fact, one third of the genes induced in bacteroids at day 21 after inoculation are congruent with those up-regulated in culture by a decreased oxygen concentration. The other induced genes, however, may be regulated by cues other than oxygen limitation. Both groups of genes provide a rich source for the possible discovery of novel functions related to symbiosis. Samples taken at different timepoints in nodule development have led to the distinction of genes expressed early and late in bacteroids. The experimental approach applied here is also useful for B. japonicum mutant analyses. As an example, we compared the transcriptome of wild-type bacteroids with that of bacteroids formed by a mutant defective in the RNA polymerase transcription factor sigma54. This led to a collection of hitherto unrecognized B. japonicum genes potentially transcribed in planta in a sigma54-dependent manner. PMID:17977147

  18. Genetic analysis of genome-wide transcriptional regulation through eQTL mapping in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gene expression Quantitative Trait Loci (eQTL) mapping is a powerful tool for identifying the genetic basis of gene expression variation. Coincident genetic locations of eQTL and phenotypic QTL provide the basis for further investigation of the molecular mechanisms involved. Genetic analysis of expr...

  19. Genome-wide transcriptional analysis of the human cell cycle identifies genes differentially regulated in normal and cancer cells

    PubMed Central

    Bar-Joseph, Ziv; Siegfried, Zahava; Brandeis, Michael; Brors, Benedikt; Lu, Yong; Eils, Roland; Dynlacht, Brian D.; Simon, Itamar

    2008-01-01

    Characterization of the transcriptional regulatory network of the normal cell cycle is essential for understanding the perturbations that lead to cancer. However, the complete set of cycling genes in primary cells has not yet been identified. Here, we report the results of genome-wide expression profiling experiments on synchronized primary human foreskin fibroblasts across the cell cycle. Using a combined experimental and computational approach to deconvolve measured expression values into “single-cell” expression profiles, we were able to overcome the limitations inherent in synchronizing nontransformed mammalian cells. This allowed us to identify 480 periodically expressed genes in primary human foreskin fibroblasts. Analysis of the reconstructed primary cell profiles and comparison with published expression datasets from synchronized transformed cells reveals a large number of genes that cycle exclusively in primary cells. This conclusion was supported by both bioinformatic analysis and experiments performed on other cell types. We suggest that this approach will help pinpoint genetic elements contributing to normal cell growth and cellular transformation. PMID:18195366

  20. Genome-wide identification and analysis of the B3 superfamily of transcription factors in Brassicaceae and major crop plants.

    PubMed

    Peng, Fred Y; Weselake, Randall J

    2013-05-01

    The plant-specific B3 superfamily of transcription factors has diverse functions in plant growth and development. Using a genome-wide domain analysis, we identified 92, 187, 58, 90, 81, 55, and 77 B3 transcription factor genes in the sequenced genome of Arabidopsis, Brassica rapa, castor bean (Ricinus communis), cocoa (Theobroma cacao), soybean (Glycine max), maize (Zea mays), and rice (Oryza sativa), respectively. The B3 superfamily has substantially expanded during the evolution in eudicots particularly in Brassicaceae, as compared to monocots in the analysis. We observed domain duplication in some of these B3 proteins, forming more complex domain architectures than currently understood. We found that the length of B3 domains exhibits a large variation, which may affect their exact number of α-helices and β-sheets in the core structure of B3 domains, and possibly have functional implications. Analysis of the public microarray data indicated that most of the B3 gene pairs encoding Arabidopsis-rice orthologs are preferentially expressed in different tissues, suggesting their different roles in these two species. Using ESTs in crops, we identified many B3 genes preferentially expressed in reproductive tissues. In a sequence-based quantitative trait loci analysis in rice and maize, we have found many B3 genes associated with traits such as grain yield, seed weight and number, and protein content. Our results provide a framework for future studies into the function of B3 genes in different phases of plant development, especially the ones related to traits in major crops. PMID:23377560

  1. Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors under Multiple Stresses in Brassica napus.

    PubMed

    He, Yajun; Mao, Shaoshuai; Gao, Yulong; Zhu, Liying; Wu, Daoming; Cui, Yixin; Li, Jiana; Qian, Wei

    2016-01-01

    WRKY transcription factors play important roles in responses to environmental stress stimuli. Using a genome-wide domain analysis, we identified 287 WRKY genes with 343 WRKY domains in the sequenced genome of Brassica napus, 139 in the A sub-genome and 148 in the C sub-genome. These genes were classified into eight groups based on phylogenetic analysis. In the 343 WRKY domains, a total of 26 members showed divergence in the WRKY domain, and 21 belonged to group I. This finding suggested that WRKY genes in group I are more active and variable compared with genes in other groups. Using genome-wide identification and analysis of the WRKY gene family in Brassica napus, we observed genome duplication, chromosomal/segmental duplications and tandem duplication. All of these duplications contributed to the expansion of the WRKY gene family. The duplicate segments that were detected indicated that genome duplication events occurred in the two diploid progenitors B. rapa and B. olearecea before they combined to form B. napus. Analysis of the public microarray database and EST database for B. napus indicated that 74 WRKY genes were induced or preferentially expressed under stress conditions. According to the public QTL data, we identified 77 WRKY genes in 31 QTL regions related to various stress tolerance. We further evaluated the expression of 26 BnaWRKY genes under multiple stresses by qRT-PCR. Most of the genes were induced by low temperature, salinity and drought stress, indicating that the WRKYs play important roles in B. napus stress responses. Further, three BnaWRKY genes were strongly responsive to the three multiple stresses simultaneously, which suggests that these 3 WRKY may have multi-functional roles in stress tolerance and can potentially be used in breeding new rapeseed cultivars. We also found six tandem repeat pairs exhibiting similar expression profiles under the various stress conditions, and three pairs were mapped in the stress related QTL regions

  2. Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors under Multiple Stresses in Brassica napus

    PubMed Central

    He, Yajun; Mao, Shaoshuai; Gao, Yulong; Zhu, Liying; Wu, Daoming; Cui, Yixin; Li, Jiana; Qian, Wei

    2016-01-01

    WRKY transcription factors play important roles in responses to environmental stress stimuli. Using a genome-wide domain analysis, we identified 287 WRKY genes with 343 WRKY domains in the sequenced genome of Brassica napus, 139 in the A sub-genome and 148 in the C sub-genome. These genes were classified into eight groups based on phylogenetic analysis. In the 343 WRKY domains, a total of 26 members showed divergence in the WRKY domain, and 21 belonged to group I. This finding suggested that WRKY genes in group I are more active and variable compared with genes in other groups. Using genome-wide identification and analysis of the WRKY gene family in Brassica napus, we observed genome duplication, chromosomal/segmental duplications and tandem duplication. All of these duplications contributed to the expansion of the WRKY gene family. The duplicate segments that were detected indicated that genome duplication events occurred in the two diploid progenitors B. rapa and B. olearecea before they combined to form B. napus. Analysis of the public microarray database and EST database for B. napus indicated that 74 WRKY genes were induced or preferentially expressed under stress conditions. According to the public QTL data, we identified 77 WRKY genes in 31 QTL regions related to various stress tolerance. We further evaluated the expression of 26 BnaWRKY genes under multiple stresses by qRT-PCR. Most of the genes were induced by low temperature, salinity and drought stress, indicating that the WRKYs play important roles in B. napus stress responses. Further, three BnaWRKY genes were strongly responsive to the three multiple stresses simultaneously, which suggests that these 3 WRKY may have multi-functional roles in stress tolerance and can potentially be used in breeding new rapeseed cultivars. We also found six tandem repeat pairs exhibiting similar expression profiles under the various stress conditions, and three pairs were mapped in the stress related QTL regions

  3. Gene Expression Quantitative Trait Locus Analysis of 16,000 Barley Genes Reveals a Complex Pattern of Genome-wide Transcriptional Regulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcript abundance data from cRNA hybridizations to Affymetrix microarrays can be used for simultaneous marker development and genome-wide eQTL (expression Quantitative Trait Loci) analysis of crops. We have shown that it is easily possible to use the information from Affymetrix expression arrays ...

  4. Comparative Analysis of Regulatory Elements between Escherichia coli and Klebsiella pneumoniae by Genome-Wide Transcription Start Site Profiling

    PubMed Central

    Qiu, Yu; Nagarajan, Harish; Seo, Joo-Hyun; Cho, Byung-Kwan; Tsai, Shih-Feng; Palsson, Bernhard Ø.

    2012-01-01

    Genome-wide transcription start site (TSS) profiles of the enterobacteria Escherichia coli and Klebsiella pneumoniae were experimentally determined through modified 5′ RACE followed by deep sequencing of intact primary mRNA. This identified 3,746 and 3,143 TSSs for E. coli and K. pneumoniae, respectively. Experimentally determined TSSs were then used to define promoter regions and 5′ UTRs upstream of coding genes. Comparative analysis of these regulatory elements revealed the use of multiple TSSs, identical sequence motifs of promoter and Shine-Dalgarno sequence, reflecting conserved gene expression apparatuses between the two species. In both species, over 70% of primary transcripts were expressed from operons having orthologous genes during exponential growth. However, expressed orthologous genes in E. coli and K. pneumoniae showed a strikingly different organization of upstream regulatory regions with only 20% identical promoters with TSSs in both species. Over 40% of promoters had TSSs identified in only one species, despite conserved promoter sequences existing in the other species. 662 conserved promoters having TSSs in both species resulted in the same number of comparable 5′ UTR pairs, and that regulatory element was found to be the most variant region in sequence among promoter, 5′ UTR, and ORF. In K. pneumoniae, 48 sRNAs were predicted and 36 of them were expressed during exponential growth. Among them, 34 orthologous sRNAs between two species were analyzed in depth, and the analysis showed that many sRNAs of K. pneumoniae, including pleiotropic sRNAs such as rprA, arcZ, and sgrS, may work in the same way as in E. coli. These results reveal a new dimension of comparative genomics such that a comparison of two genomes needs to be comprehensive over all levels of genome organization. PMID:22912590

  5. Genome-wide analysis of the role of global transcriptional regulator GntR1 in Corynebacterium glutamicum.

    PubMed

    Tanaka, Yuya; Takemoto, Norihiko; Ito, Terukazu; Teramoto, Haruhiko; Yukawa, Hideaki; Inui, Masayuki

    2014-09-01

    The transcriptional regulator GntR1 downregulates the genes for gluconate catabolism and pentose phosphate pathway in Corynebacterium glutamicum. Gluconate lowers the DNA binding affinity of GntR1, which is probably the mechanism of gluconate-dependent induction of these genes. In addition, GntR1 positively regulates ptsG, a gene encoding a major glucose transporter, and pck, a gene encoding phosphoenolpyruvate carboxykinase. Here, we searched for the new target of GntR1 on a genome-wide scale by chromatin immunoprecipitation in conjunction with microarray (ChIP-chip) analysis. This analysis identified 56 in vivo GntR1 binding sites, of which 7 sites were previously reported. The newly identified GntR1 sites include the upstream regions of carbon metabolism genes such as pyk, maeB, gapB, and icd, encoding pyruvate kinase, malic enzyme, glyceraldehyde 3-phosphate dehydrogenase B, and isocitrate dehydrogenase, respectively. Binding of GntR1 to the promoter region of these genes was confirmed by electrophoretic mobility shift assay. The activity of the icd, gapB, and maeB promoters was reduced by the mutation at the GntR1 binding site, in contrast to the pyk promoter activity, which was increased, indicating that GntR1 is a transcriptional activator of icd, gapB, and maeB and is a repressor of pyk. Thus, it is likely that GntR1 stimulates glucose uptake by inducing the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) gene while repressing pyk to increase PEP availability in the absence of gluconate. Repression of zwf and gnd may reduce the NADPH supply, which may be compensated by the induction of maeB and icd. Upregulation of icd, gapB, and maeB and downregulation of pyk by GntR1 probably support gluconeogenesis. PMID:24982307

  6. DeCoN: genome-wide analysis of in vivo transcriptional dynamics during pyramidal neuron fate selection in neocortex

    PubMed Central

    Brettler, Andrea C.; Chen, Hsu-Hsin; Hrvatin, Siniša; Rinn, John L.; Arlotta, Paola

    2015-01-01

    Neuronal development requires a complex choreography of transcriptional decisions to obtain specific cellular identities. Realizing the ultimate goal of identifying genome-wide signatures that define and drive specific neuronal fates has been hampered by enormous complexity in both time and space during development. Here, we have paired high-throughput purification of pyramidal neuron subclasses with deep profiling of spatiotemporal transcriptional dynamics during corticogenesis to resolve lineage choice decisions. We identified numerous features ranging from spatial and temporal usage of alternative mRNA isoforms and promoters to a host of mRNA genes modulated during fate specification. Notably, we uncovered numerous long non-coding RNAs with restricted temporal and cell type specific expression. To facilitate future exploration, we provide an interactive online database to enable multidimensional data mining and dissemination. This multi-faceted study generates a powerful resource and informs understanding of the transcriptional regulation underlying pyramidal neuron diversity in the neocortex. PMID:25556833

  7. Genome-wide analysis of cell type-specific gene transcription during spore formation in Clostridium difficile.

    PubMed

    Saujet, Laure; Pereira, Fátima C; Serrano, Monica; Soutourina, Olga; Monot, Marc; Shelyakin, Pavel V; Gelfand, Mikhail S; Dupuy, Bruno; Henriques, Adriano O; Martin-Verstraete, Isabelle

    2013-01-01

    Clostridium difficile, a Gram positive, anaerobic, spore-forming bacterium is an emergent pathogen and the most common cause of nosocomial diarrhea. Although transmission of C. difficile is mediated by contamination of the gut by spores, the regulatory cascade controlling spore formation remains poorly characterized. During Bacillus subtilis sporulation, a cascade of four sigma factors, σ(F) and σ(G) in the forespore and σ(E) and σ(K) in the mother cell governs compartment-specific gene expression. In this work, we combined genome wide transcriptional analyses and promoter mapping to define the C. difficile σ(F), σ(E), σ(G) and σ(K) regulons. We identified about 225 genes under the control of these sigma factors: 25 in the σ(F) regulon, 97 σ(E)-dependent genes, 50 σ(G)-governed genes and 56 genes under σ(K) control. A significant fraction of genes in each regulon is of unknown function but new candidates for spore coat proteins could be proposed as being synthesized under σ(E) or σ(K) control and detected in a previously published spore proteome. SpoIIID of C. difficile also plays a pivotal role in the mother cell line of expression repressing the transcription of many members of the σ(E) regulon and activating sigK expression. Global analysis of developmental gene expression under the control of these sigma factors revealed deviations from the B. subtilis model regarding the communication between mother cell and forespore in C. difficile. We showed that the expression of the σ(E) regulon in the mother cell was not strictly under the control of σ(F) despite the fact that the forespore product SpoIIR was required for the processing of pro-σ(E). In addition, the σ(K) regulon was not controlled by σ(G) in C. difficile in agreement with the lack of pro-σ(K) processing. This work is one key step to obtain new insights about the diversity and evolution of the sporulation process among Firmicutes. PMID:24098137

  8. Genome-Wide Analysis of Cell Type-Specific Gene Transcription during Spore Formation in Clostridium difficile

    PubMed Central

    Saujet, Laure; Soutourina, Olga; Monot, Marc; Shelyakin, Pavel V.; Gelfand, Mikhail S.; Dupuy, Bruno; Henriques, Adriano O.; Martin-Verstraete, Isabelle

    2013-01-01

    Clostridium difficile, a Gram positive, anaerobic, spore-forming bacterium is an emergent pathogen and the most common cause of nosocomial diarrhea. Although transmission of C. difficile is mediated by contamination of the gut by spores, the regulatory cascade controlling spore formation remains poorly characterized. During Bacillus subtilis sporulation, a cascade of four sigma factors, σF and σG in the forespore and σE and σK in the mother cell governs compartment-specific gene expression. In this work, we combined genome wide transcriptional analyses and promoter mapping to define the C. difficile σF, σE, σG and σK regulons. We identified about 225 genes under the control of these sigma factors: 25 in the σF regulon, 97 σE-dependent genes, 50 σG-governed genes and 56 genes under σK control. A significant fraction of genes in each regulon is of unknown function but new candidates for spore coat proteins could be proposed as being synthesized under σE or σK control and detected in a previously published spore proteome. SpoIIID of C. difficile also plays a pivotal role in the mother cell line of expression repressing the transcription of many members of the σE regulon and activating sigK expression. Global analysis of developmental gene expression under the control of these sigma factors revealed deviations from the B. subtilis model regarding the communication between mother cell and forespore in C. difficile. We showed that the expression of the σE regulon in the mother cell was not strictly under the control of σF despite the fact that the forespore product SpoIIR was required for the processing of pro-σE. In addition, the σK regulon was not controlled by σG in C. difficile in agreement with the lack of pro-σK processing. This work is one key step to obtain new insights about the diversity and evolution of the sporulation process among Firmicutes. PMID:24098137

  9. The Phytocyanin Gene Family in Rice (Oryza sativa L.): Genome-Wide Identification, Classification and Transcriptional Analysis

    PubMed Central

    Ma, Haoli; Zhao, Heming; Liu, Zhi; Zhao, Jie

    2011-01-01

    Background Phytocyanins (PCs) are plant-specific blue copper proteins involved in electron transport, and a large number of known PCs are considered to be chimeric arabinogalactan proteins (AGPs). To date there has not been a genome-wide overview of the OsPC gene family. Therefore, as the first step and a useful strategy to elucidate the functions of OsPCs, there is an urgent need for a thorough genome-wide analysis of this gene family. Methodology/Principal Findings In this study, a total of 62 OsPC genes were identified through a comprehensive bioinformatics analysis of the rice (Oryza sativa L.) genome. Based on phylogeny and motif constitution, the family of OsPCs was classified into three subclasses: uclacyanin-like proteins (OsUCLs), stellacyanin-like proteins (OsSCLs) and early nodulin-like proteins (OsENODLs). Structure and glycosylation prediction indicated that 46 OsPCs were glycosylphosphatigylinositol-anchored proteins and 38 OsPCs were chimeric AGPs. Gene duplication analysis revealed that chromosomal segment and tandem duplications contributed almost equally to the expansion of this gene family, and duplication events were mostly happened in the OsUCL subfamily. The expression profiles of OsPC genes were analyzed at different stages of vegetative and reproductive development and under abiotic stresses. It revealed that a large number of OsPC genes were abundantly expressed in the various stages of development. Moreover, 17 genes were regulated under the treatments of abiotic stresses. Conclusions/Significance The genome-wide identification and expression analysis of OsPC genes should facilitate research in this gene family and give new insights toward elucidating their functions in higher plants. PMID:21984902

  10. A genome-wide transcriptional analysis of producer and non-producer NS0 myeloma cell lines.

    PubMed

    Khoo, Soo Hean Gary; Falciani, Francesco; Al-Rubeai, Mohamed

    2007-06-01

    'Genome-wide' or 'global' gene expression profiling provides a powerful approach to the characterization of a cell's transcriptional state. Such technology has been used in animal cell culture to create genome-wide snapshots of transcriptional activity in response to environmental factors or cellular triggers under bioprocessing conditions. Furthermore, it allows us to have a fundamental understanding of genetic mechanisms involved in recombinant protein production. One such mechanism adversely affecting the growth of recombinant bacteria is the increased metabolic burden resulting from the maintenance of plasmid copy number and heterologous protein expression. There have also been some reports on the effect of metabolic burden in mammalian cell systems. In the present study, we have used a mouse array representing 6400 genes to assess the expression profile of a WT (wild-type) mouse plasmacytoma cell line, NS0 WT, and a GS (glutamine synthetase)-NS0 6A1-100 cell line expressing chimaeric monoclonal antibody. The producer cells did not exhibit a slower growth as the result of any metabolic burden, but showed differences in metabolic activity. Gene expression profiling revealed that the producer cell line was selected for a higher expression of chromosomal genes, genes for zinc-finger proteins as well as cell-cycle-related events. On the other hand, protein synthesis is greater and ribosomal genes were more expressed in the WT cells. A possible shift from expressing antigen presenting proteins to recombinant protein could also be seen. Hence, gene expression profiling suggests that the effect of the metabolic burden in slowing growth can be mostly negated in producer cell lines by careful clonal selection, where stable transfected cells are selected for both high productivity as well as high growth rates. PMID:17223793

  11. Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage

    PubMed Central

    Wilson, Clyde; Zeng, Linghe; Ismail, Abdelbagi M.; Condamine, Pascal; Close, Timothy J.

    2006-01-01

    Rice yield is most sensitive to salinity stress imposed during the panicle initiation (PI) stage. In this study, we have focused on physiological and transcriptional responses of four rice genotypes exposed to salinity stress during PI. The genotypes selected included a pair of indicas (IR63731 and IR29) and a pair of japonica (Agami and M103) rice subspecies with contrasting salt tolerance. Physiological characterization showed that tolerant genotypes maintained a much lower shoot Na+ concentration relative to sensitive genotypes under salinity stress. Global gene expression analysis revealed a strikingly large number of genes which are induced by salinity stress in sensitive genotypes, IR29 and M103 relative to tolerant lines. We found 19 probe sets to be commonly induced in all four genotypes. We found several salinity modulated, ion homeostasis related genes from our analysis. We also studied the expression of SKC1, a cation transporter reported by others as a major source of variation in salt tolerance in rice. The transcript abundance of SKC1 did not change in response to salinity stress at PI stage in the shoot tissue of all four genotypes. However, we found the transcript abundance of SKC1 to be significantly higher in tolerant japonica Agami relative to sensitive japonica M103 under control and stressed conditions during PI stage. Electronic supplementary material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s11103-006-9112-0 and is accessible for authorized users. PMID:17160619

  12. Genome-wide characterization and analysis of bZIP transcription factor gene family related to abiotic stress in cassava.

    PubMed

    Hu, Wei; Yang, Hubiao; Yan, Yan; Wei, Yunxie; Tie, Weiwei; Ding, Zehong; Zuo, Jiao; Peng, Ming; Li, Kaimian

    2016-01-01

    The basic leucine zipper (bZIP) transcription factor family plays crucial roles in various aspects of biological processes. Currently, no information is available regarding the bZIP family in the important tropical crop cassava. Herein, 77 bZIP genes were identified from cassava. Evolutionary analysis indicated that MebZIPs could be divided into 10 subfamilies, which was further supported by conserved motif and gene structure analyses. Global expression analysis suggested that MebZIPs showed similar or distinct expression patterns in different tissues between cultivated variety and wild subspecies. Transcriptome analysis of three cassava genotypes revealed that many MebZIP genes were activated by drought in the root of W14 subspecies, indicating the involvement of these genes in the strong resistance of cassava to drought. Expression analysis of selected MebZIP genes in response to osmotic, salt, cold, ABA, and H2O2 suggested that they might participate in distinct signaling pathways. Our systematic analysis of MebZIPs reveals constitutive, tissue-specific and abiotic stress-responsive candidate MebZIP genes for further functional characterization in planta, yields new insights into transcriptional regulation of MebZIP genes, and lays a foundation for understanding of bZIP-mediated abiotic stress response. PMID:26947924

  13. Genome-wide characterization and analysis of bZIP transcription factor gene family related to abiotic stress in cassava

    PubMed Central

    Hu, Wei; Yang, Hubiao; Yan, Yan; Wei, Yunxie; Tie, Weiwei; Ding, Zehong; Zuo, Jiao; Peng, Ming; Li, Kaimian

    2016-01-01

    The basic leucine zipper (bZIP) transcription factor family plays crucial roles in various aspects of biological processes. Currently, no information is available regarding the bZIP family in the important tropical crop cassava. Herein, 77 bZIP genes were identified from cassava. Evolutionary analysis indicated that MebZIPs could be divided into 10 subfamilies, which was further supported by conserved motif and gene structure analyses. Global expression analysis suggested that MebZIPs showed similar or distinct expression patterns in different tissues between cultivated variety and wild subspecies. Transcriptome analysis of three cassava genotypes revealed that many MebZIP genes were activated by drought in the root of W14 subspecies, indicating the involvement of these genes in the strong resistance of cassava to drought. Expression analysis of selected MebZIP genes in response to osmotic, salt, cold, ABA, and H2O2 suggested that they might participate in distinct signaling pathways. Our systematic analysis of MebZIPs reveals constitutive, tissue-specific and abiotic stress-responsive candidate MebZIP genes for further functional characterization in planta, yields new insights into transcriptional regulation of MebZIP genes, and lays a foundation for understanding of bZIP-mediated abiotic stress response. PMID:26947924

  14. Genome-Wide Transcriptional Profile Analysis of Prunus persica in Response to Low Sink Demand after Fruit Removal.

    PubMed

    Duan, Wei; Xu, Hongguo; Liu, Guotian; Fan, Peige; Liang, Zhenchang; Li, Shaohua

    2016-01-01

    Prunus persica fruits were removed from 1-year-old shoots to analysis photosynthesis, chlorophyll fluorescence and genes changes in leaves to low sink demand caused by fruit removal (-fruit) during the final stage of rapid fruit growth. A decline in net photosynthesis rate was observed, accompanied with a decrease in stomatal conductance. The intercellular CO2 concentrations and leaf temperature increased as compared with a normal fruit load (+fruit). Moreover, low sink demand significantly inhibited the donor side and the reaction center of photosystem II. 382 genes in leaf with an absolute fold change ≥1 change in expression level, representing 116 up- and 266 down-regulated genes except for unknown transcripts. Among these, 25 genes for photosynthesis were down-regulated, 69 stress and 19 redox related genes up-regulated under the low sink demand. These studies revealed high leaf temperature may result in a decline of net photosynthesis rate through down-regulation in photosynthetic related genes and up-regulation in redox and stress related genes, especially heat shock proteins genes. The complex changes in genes at the transcriptional level under low sink demand provided useful starting points for in-depth analyses of source-sink relationship in P. persica. PMID:27446115

  15. Genome-Wide Transcriptional Profile Analysis of Prunus persica in Response to Low Sink Demand after Fruit Removal

    PubMed Central

    Duan, Wei; Xu, Hongguo; Liu, Guotian; Fan, Peige; Liang, Zhenchang; Li, Shaohua

    2016-01-01

    Prunus persica fruits were removed from 1-year-old shoots to analysis photosynthesis, chlorophyll fluorescence and genes changes in leaves to low sink demand caused by fruit removal (−fruit) during the final stage of rapid fruit growth. A decline in net photosynthesis rate was observed, accompanied with a decrease in stomatal conductance. The intercellular CO2 concentrations and leaf temperature increased as compared with a normal fruit load (+fruit). Moreover, low sink demand significantly inhibited the donor side and the reaction center of photosystem II. 382 genes in leaf with an absolute fold change ≥1 change in expression level, representing 116 up- and 266 down-regulated genes except for unknown transcripts. Among these, 25 genes for photosynthesis were down-regulated, 69 stress and 19 redox related genes up-regulated under the low sink demand. These studies revealed high leaf temperature may result in a decline of net photosynthesis rate through down-regulation in photosynthetic related genes and up-regulation in redox and stress related genes, especially heat shock proteins genes. The complex changes in genes at the transcriptional level under low sink demand provided useful starting points for in-depth analyses of source-sink relationship in P. persica. PMID:27446115

  16. Genome-wide analysis of p53 transcriptional programs in B cells upon exposure to genotoxic stress in vivo

    PubMed Central

    Tonelli, Claudia; Morelli, Marco J.; Bianchi, Salvatore; Rotta, Luca; Capra, Thelma; Sabò, Arianna; Campaner, Stefano; Amati, Bruno

    2015-01-01

    The tumor suppressor p53 is a transcription factor that coordinates the cellular response to DNA damage. Here we provide an integrated analysis of p53 genomic occupancy and p53-dependent gene regulation in the splenic B and non-B cell compartments of mice exposed to whole-body ionizing radiation, providing insight into general principles of p53 activity in vivo. In unstressed conditions, p53 bound few genomic targets; induction of p53 by ionizing radiation increased the number of p53 bound sites, leading to highly overlapping profiles in the different cell types. Comparison of these profiles with chromatin features in unstressed B cells revealed that, upon activation, p53 localized at active promoters, distal enhancers, and a smaller set of unmarked distal regions. At promoters, recognition of the canonical p53 motif as well as binding strength were associated with p53-dependent transcriptional activation, but not repression, indicating that the latter was most likely indirect. p53-activated targets constituted the core of a cell type-independent response, superimposed onto a cell type-specific program. Core response genes included most of the known p53-regulated genes, as well as many new ones. Our data represent a unique characterization of the p53-regulated response to ionizing radiation in vivo. PMID:26372730

  17. Genome-wide analysis reveals conserved transcriptional responses downstream of resting potential change in Xenopus embryos, axolotl regeneration, and human mesenchymal cell differentiation.

    PubMed

    Pai, Vaibhav P; Martyniuk, Christopher J; Echeverri, Karen; Sundelacruz, Sarah; Kaplan, David L; Levin, Michael

    2016-02-01

    Endogenous bioelectric signaling via changes in cellular resting potential (V mem) is a key regulator of patterning during regeneration and embryogenesis in numerous model systems. Depolarization of V mem has been functionally implicated in dedifferentiation, tumorigenesis, anatomical re-specification, and appendage regeneration. However, no unbiased analyses have been performed to understand genome-wide transcriptional responses to V mem change in vivo. Moreover, it is unknown which genes or gene networks represent conserved targets of bioelectrical signaling across different patterning contexts and species. Here, we use microarray analysis to comparatively analyze transcriptional responses to V mem depolarization. We compare the response of the transcriptome during embryogenesis (Xenopus development), regeneration (axolotl regeneration), and stem cell differentiation (human mesenchymal stem cells in culture) to identify common networks across model species that are associated with depolarization. Both subnetwork enrichment and PANTHER analyses identified a number of key genetic modules as targets of V mem change, and also revealed important (well-conserved) commonalities in bioelectric signal transduction, despite highly diverse experimental contexts and species. Depolarization regulates specific transcriptional networks across all three germ layers (ectoderm, mesoderm, and endoderm) such as cell differentiation and apoptosis, and this information will be used for developing mechanistic models of bioelectric regulation of patterning. Moreover, our analysis reveals that V mem change regulates transcripts related to important disease pathways such as cancer and neurodegeneration, which may represent novel targets for emerging electroceutical therapies. PMID:27499876

  18. Genome-wide identification and transcriptional expression analysis of mitogen-activated protein kinase and mitogen-activated protein kinase kinase genes in Capsicum annuum

    PubMed Central

    Liu, Zhiqin; Shi, Lanping; Liu, Yanyan; Tang, Qian; Shen, Lei; Yang, Sheng; Cai, Jinsen; Yu, Huanxin; Wang, Rongzhang; Wen, Jiayu; Lin, Youquan; Hu, Jiong; Liu, Cailing; Zhang, Yangwen; Mou, Shaoliang; He, Shuilin

    2015-01-01

    The tripartite mitogen-activated protein kinase (MAPK) signaling cascades have been implicated in plant growth, development, and environment adaptation, but a comprehensive understanding of MAPK signaling at genome-wide level is limited in Capsicum annuum. Herein, genome-wide identification and transcriptional expression analysis of MAPK and MAPK kinase (MAPKK) were performed in pepper. A total of 19 pepper MAPK (CaMAPKs) genes and five MAPKK (CaMAPKKs) genes were identified. Phylogenetic analysis indicated that CaMAPKs and CaMAPKKs could be classified into four groups and each group contains similar exon-intron structures. However, significant divergences were also found. Notably, five members of the pepper MAPKK family were much less conserved than those found in Arabidopsis, and 9 Arabidopsis MAPKs did not have orthologs in pepper. Additionally, 7 MAPKs in Arabidopsis had either two or three orthologs in the pepper genome, and six pepper MAPKs and one MAPKK differing in sequence were found in three pepper varieties. Quantitative real-time RT-PCR analysis showed that the majority of MAPK and MAPKK genes were ubiquitously expressed and transcriptionally modified in pepper leaves after treatments with heat, salt, and Ralstonia solanacearum inoculation as well as exogenously applied salicylic acid, methyl jasmonate, ethephon, and abscisic acid. The MAPKK-MAPK interactome was tested by yeast two-hybrid assay, the results showed that one MAPKK might interact with multiple MAPKs, one MAPK might also interact with more than one MAPKKs, constituting MAPK signaling networks which may collaborate in transmitting upstream signals into appropriate downstream cellular responses and processes. These results will facilitate future functional characterization of MAPK cascades in pepper. PMID:26442088

  19. Genome-wide identification, classification and expression analysis of the heat shock transcription factor family in Chinese cabbage.

    PubMed

    Song, Xiaoming; Liu, Gaofeng; Duan, Weike; Liu, Tongkun; Huang, Zhinan; Ren, Jun; Li, Ying; Hou, Xilin

    2014-08-01

    The Hsf gene family, one of the most important transcription factor families, plays crucial roles in regulating heat resistance. However, a systematic and comprehensive analysis of this gene family has not been reported in Chinese cabbage. Therefore, systematic analysis of the Hsf gene family in Chinese cabbage has profound significance. In this study, 35 BrHsf genes were identified from Chinese cabbage, which could be classified into three groups according to their structural characteristics and phylogenetic comparisons with Arabidopsis and rice. Thirty-three BrHsf genes mapped on chromosomes were further assigned to three subgenomes and eight ancestral karyotypes. Distribution mapping showed that BrHsf genes were non-randomly localized on chromosomes. Chinese cabbage and Arabidopsis shared 22 orthologous gene pairs. The expansion of BrHsf genes mainly resulted from genome triplication. Comparative analysis showed that the most Hsf genes were in Chinese cabbage among the five species analyzed. Interestingly, the number of Hsf genes of heat-resistant plants (Theobroma cacao and Musa acuminata) was fewer than that in Chinese cabbage. The expression patterns of BrHsf genes were different in six tissues, based on RNA-seq. Quantitative real-time-PCR analysis showed that the expression level of BrHsf genes varied under various abiotic stresses. In conclusion, this comprehensive analysis of BrHsf genes will provide rich resources, aiding the determination of Hsfs functions in plant heat resistance. Furthermore, the comparative genomics analysis deepened our understanding of Hsf genes' evolution accompanied by the polyploidy event of Chinese cabbage. PMID:24609322

  20. Genome-wide identification, classification, and analysis of heat shock transcription factor family in Chinese cabbage (Brassica rapa pekinensis).

    PubMed

    Huang, X Y; Tao, P; Li, B Y; Wang, W H; Yue, Z C; Lei, J L; Zhong, X M

    2015-01-01

    Chinese cabbage (Brassica rapa ssp. pekinensis) is one of the most important vegetable crops grown worldwide, and various methods exist for selection, propagation, and cultivation. The entire Chinese cabbage genome has been sequenced, and the heat shock transcription factor family (Hsfs) has been found to play a central role in plant growth and development and in the response to biotic and abiotic stress conditions, particularly in acquired thermotolerance. We analyzed heat tolerance mechanisms in Chinese cabbage. In this study, 30 Hsfs were identified from the Chinese cabbage genome database. The classification, phylogenetic reconstruction, chromosome distribution, conserved motifs, expression analysis, and interaction networks of the Hsfs were predicted and analyzed. Thirty BrHsfs were classified into 3 major classes (class A, B, and C) according to their structural characteristics and phylogenetic comparisons, and class A was further subdivided into 8 subclasses. Distribution mapping results showed that Hsf genes were located on 10 Chinese cabbage chromosomes. The expression profile indicated that Hsfs play differential roles in 5 organs in Chinese cabbage, and likely participate in the development of underground parts and regulation of reproductive growth. An orthologous gene interaction network was constructed, and included MBF1C, ROF1, TBP2, CDC2, and HSP70 5 genes, which are closely related to heat stress. Our results contribute to the understanding of the complexity of Hsfs in Chinese cabbage and provide a basis for further functional gene research. PMID:25867366

  1. Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis.

    PubMed

    Vanderauwera, Sandy; Zimmermann, Philip; Rombauts, Stéphane; Vandenabeele, Steven; Langebartels, Christian; Gruissem, Wilhelm; Inzé, Dirk; Van Breusegem, Frank

    2005-10-01

    In plants, reactive oxygen species and, more particularly, hydrogen peroxide (H(2)O(2)) play a dual role as toxic by-products of normal cell metabolism and as regulatory molecules in stress perception and signal transduction. Peroxisomal catalases are an important sink for photorespiratory H(2)O(2). Using ATH1 Affymetrix microarrays, expression profiles were compared between control and catalase-deficient Arabidopsis (Arabidopsis thaliana) plants. Reduced catalase levels already provoked differences in nuclear gene expression under ambient growth conditions, and these effects were amplified by high light exposure in a sun simulator for 3 and 8 h. This genome-wide expression analysis allowed us to reveal the expression characteristics of complete pathways and functional categories during H(2)O(2) stress. In total, 349 transcripts were significantly up-regulated by high light in catalase-deficient plants and 88 were down-regulated. From this data set, H(2)O(2) was inferred to play a key role in the transcriptional up-regulation of small heat shock proteins during high light stress. In addition, several transcription factors and candidate regulatory genes involved in H(2)O(2) transcriptional gene networks were identified. Comparisons with other publicly available transcriptome data sets of abiotically stressed Arabidopsis revealed an important intersection with H(2)O(2)-deregulated genes, positioning elevated H(2)O(2) levels as an important signal within abiotic stress-induced gene expression. Finally, analysis of transcriptional changes in a combination of a genetic (catalase deficiency) and an environmental (high light) perturbation identified a transcriptional cluster that was strongly and rapidly induced by high light in control plants, but impaired in catalase-deficient plants. This cluster comprises the complete known anthocyanin regulatory and biosynthetic pathway, together with genes encoding unknown proteins. PMID:16183842

  2. Genome wide identification of Acidithiobacillus ferrooxidans (ATCC 23270) transcription factors and comparative analysis of ArsR and MerR metal regulators.

    PubMed

    Hödar, Christian; Moreno, Pablo; di Genova, Alex; Latorre, Mauricio; Reyes-Jara, Angélica; Maass, Alejandro; González, Mauricio; Cambiazo, Verónica

    2012-02-01

    Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophilic bacterium that obtains its energy from the oxidation of ferrous iron, elemental sulfur, or reduced sulfur minerals. This capability makes it of great industrial importance due to its applications in biomining. During the industrial processes, A. ferrooxidans survives to stressing circumstances in its environment, such as an extremely acidic pH and high concentration of transition metals. In order to gain insight into the organization of A. ferrooxidans regulatory networks and to provide a framework for further studies in bacterial growth under extreme conditions, we applied a genome-wide annotation procedure to identify 87 A. ferrooxidans transcription factors. We classified them into 19 families that were conserved among diverse prokaryotic phyla. Our annotation procedure revealed that A. ferrooxidans genome contains several members of the ArsR and MerR families, which are involved in metal resistance and detoxification. Analysis of their sequences revealed known and potentially new mechanism to coordinate gene-expression in response to metal availability. A. ferrooxidans inhabit some of the most metal-rich environments known, thus transcription factors identified here seem to be good candidates for functional studies in order to determine their physiological roles and to place them into A. ferrooxidans transcriptional regulatory networks. PMID:21830017

  3. Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice yield is most sensitive to salinity imposed during panicle initiation stage. In this study, we have focused on physiological and transcriptional responses of four rice genotypes exposed to salinity stress during panicle initiation. The genotypes selected included a pair of indicas (IR63731 and ...

  4. RNA-Seq analysis of stuA mutants in Fusarium verticillioides indicates dramatic genomic wide transcriptional reprogramming

    Technology Transfer Automated Retrieval System (TEKTRAN)

    StuA, first discovered in Aspergillus nidulans and a member of the APSES class of transcription factors, regulates several essential developmental stages in fungi such as virulence, sporulation and toxin production in phytopathogenic fungi. Fusarium verticillioides (Fv), a maize phytopathogen, produ...

  5. Genome-wide Expression Analysis and Metabolite Profiling Elucidate Transcriptional Regulation of Flavonoid Biosynthesis and Modulation under Abiotic Stresses in Banana

    PubMed Central

    Pandey, Ashutosh; Alok, Anshu; Lakhwani, Deepika; Singh, Jagdeep; Asif, Mehar H.; Trivedi, Prabodh K.

    2016-01-01

    Flavonoid biosynthesis is largely regulated at the transcriptional level due to the modulated expression of genes related to the phenylpropanoid pathway in plants. Although accumulation of different flavonoids has been reported in banana, a staple fruit crop, no detailed information is available on regulation of the biosynthesis in this important plant. We carried out genome-wide analysis of banana (Musa acuminata, AAA genome) and identified 28 genes belonging to 9 gene families associated with flavonoid biosynthesis. Expression analysis suggested spatial and temporal regulation of the identified genes in different tissues of banana. Analysis revealed enhanced expression of genes related to flavonol and proanthocyanidin (PA) biosynthesis in peel and pulp at the early developmental stages of fruit. Genes involved in anthocyanin biosynthesis were highly expressed during banana fruit ripening. In general, higher accumulation of metabolites was observed in the peel as compared to pulp tissue. A correlation between expression of genes and metabolite content was observed at the early stage of fruit development. Furthermore, this study also suggests regulation of flavonoid biosynthesis, at transcriptional level, under light and dark exposures as well as methyl jasmonate (MJ) treatment in banana. PMID:27539368

  6. Genome-wide Expression Analysis and Metabolite Profiling Elucidate Transcriptional Regulation of Flavonoid Biosynthesis and Modulation under Abiotic Stresses in Banana.

    PubMed

    Pandey, Ashutosh; Alok, Anshu; Lakhwani, Deepika; Singh, Jagdeep; Asif, Mehar H; Trivedi, Prabodh K

    2016-01-01

    Flavonoid biosynthesis is largely regulated at the transcriptional level due to the modulated expression of genes related to the phenylpropanoid pathway in plants. Although accumulation of different flavonoids has been reported in banana, a staple fruit crop, no detailed information is available on regulation of the biosynthesis in this important plant. We carried out genome-wide analysis of banana (Musa acuminata, AAA genome) and identified 28 genes belonging to 9 gene families associated with flavonoid biosynthesis. Expression analysis suggested spatial and temporal regulation of the identified genes in different tissues of banana. Analysis revealed enhanced expression of genes related to flavonol and proanthocyanidin (PA) biosynthesis in peel and pulp at the early developmental stages of fruit. Genes involved in anthocyanin biosynthesis were highly expressed during banana fruit ripening. In general, higher accumulation of metabolites was observed in the peel as compared to pulp tissue. A correlation between expression of genes and metabolite content was observed at the early stage of fruit development. Furthermore, this study also suggests regulation of flavonoid biosynthesis, at transcriptional level, under light and dark exposures as well as methyl jasmonate (MJ) treatment in banana. PMID:27539368

  7. Genome-wide characterization and expression analysis of common bean bHLH transcription factors in response to excess salt concentration.

    PubMed

    Kavas, Musa; Baloğlu, Mehmet Cengiz; Atabay, Elif Seda; Ziplar, Ummugulsum Tanman; Daşgan, Hayriye Yıldız; Ünver, Turgay

    2016-02-01

    Members of basic helix-loop-helix (bHLH) gene family found in all eukaryotes play crucial roles in response to stress. Though, most eukaryotes carry the proteins of this family, biological functions of the most bHLH family members are not deeply evaluated in plants. In this study, we conducted a comprehensive genome-wide analysis of bHLH transcription factors in salt tolerant common bean. We identified 155 bHLH protein-encoding genes (PvbHLH) by using in silico comparative genomics tools. Based on the phylogenetic tree, PvbHLH genes were classified into 8 main groups with 21 subfamilies. Exon-intron analysis indicated that proteins belonging to same main groups exhibited a closely related gene structure. While, the PvbHLH gene family has been mainly expanded through segmental duplications, a total of 11 tandem duplication were detected. Genome-wide expression analysis of bHLH genes showed that 63 PvbHLH genes were differentially expressed in at least one tissue. Three of them displayed higher expression values in both leaf and root tissues. The in silico micro-RNA target transcript analyses revealed that totally 100 PvHLH genes targeted by 86 plant miRNAs. The most abundant transcripts, which were targeted by all 18 plant miRNA, were belonging to PvHLH-22 and PvHLH-44 genes. The expression of 16 PvbHLH genes in the root and leaf tissues of salt-stressed common bean was evaluated using qRT-PCR. Among them, two of PvbHLHs, PvbHLH-54, PvbHLH-148, were found to be up-regulated in both tissues in correlation with RNA-seq measurements. The results of this study could help improve understanding of biological functions of common bean bHLH family under salt stress. Additionally, it may provide basic resources for analyzing bHLH protein function for improving economic, agronomic and ecological benefit in common bean and other species. PMID:26193947

  8. Design and bioinformatics analysis of genome-wide CLIP experiments

    PubMed Central

    Wang, Tao; Xiao, Guanghua; Chu, Yongjun; Zhang, Michael Q.; Corey, David R.; Xie, Yang

    2015-01-01

    The past decades have witnessed a surge of discoveries revealing RNA regulation as a central player in cellular processes. RNAs are regulated by RNA-binding proteins (RBPs) at all post-transcriptional stages, including splicing, transportation, stabilization and translation. Defects in the functions of these RBPs underlie a broad spectrum of human pathologies. Systematic identification of RBP functional targets is among the key biomedical research questions and provides a new direction for drug discovery. The advent of cross-linking immunoprecipitation coupled with high-throughput sequencing (genome-wide CLIP) technology has recently enabled the investigation of genome-wide RBP–RNA binding at single base-pair resolution. This technology has evolved through the development of three distinct versions: HITS-CLIP, PAR-CLIP and iCLIP. Meanwhile, numerous bioinformatics pipelines for handling the genome-wide CLIP data have also been developed. In this review, we discuss the genome-wide CLIP technology and focus on bioinformatics analysis. Specifically, we compare the strengths and weaknesses, as well as the scopes, of various bioinformatics tools. To assist readers in choosing optimal procedures for their analysis, we also review experimental design and procedures that affect bioinformatics analyses. PMID:25958398

  9. Effects of supplementary butyrate on butanol production and the metabolic switch in Clostridium beijerinckii NCIMB 8052: genome-wide transcriptional analysis with RNA-Seq

    PubMed Central

    2013-01-01

    Background Butanol (n-butanol) has high values as a promising fuel source and chemical feedstock. Biobutanol is usually produced by the solventogenic clostridia through a typical biphasic (acidogenesis and solventogenesis phases) acetone-butanol-ethanol (ABE) fermentation process. It is well known that the acids produced in the acidogenic phase are significant and play important roles in the switch to solventogenesis. However, the mechanism that triggers the metabolic switch is still not clear. Results Sodium butyrate (40 mM) was supplemented into the medium for the ABE fermentation with Clostridium beijerinckii NCIMB 8052. With butyrate addition (reactor R1), solvent production was triggered early in the mid-exponential phase and completed quickly in < 50 h, while in the control (reactor R2), solventogenesis was initiated during the late exponential phase and took > 90 h to complete. Butyrate supplementation led to 31% improvement in final butanol titer, 58% improvement in sugar-based yield, and 133% improvement in butanol productivity, respectively. The butanol/acetone ratio was 2.4 versus 1.8 in the control, indicating a metabolic shift towards butanol production due to butyrate addition. Genome-wide transcriptional dynamics was investigated with RNA-Seq analysis. In reactor R1, gene expression related to solventogenesis was induced about 10 hours earlier when compared to that in reactor R2. Although the early sporulation genes were induced after the onset of solventogenesis in reactor R1 (mid-exponential phase), the sporulation events were delayed and uncoupled from the solventogenesis. In contrast, in reactor R2, sporulation genes were induced at the onset of solventogenesis, and highly expressed through the solventogenesis phase. The motility genes were generally down-regulated to lower levels prior to stationary phase in both reactors. However, in reactor R2 this took much longer and gene expression was maintained at comparatively higher levels

  10. Genome Wide Analysis of the Apple MYB Transcription Factor Family Allows the Identification of MdoMYB121 Gene Confering Abiotic Stress Tolerance in Plants

    PubMed Central

    Wang, Rong-Kai; Zhang, Rui-Fen; Hao, Yu-Jin

    2013-01-01

    The MYB proteins comprise one of the largest families of transcription factors (TFs) in plants. Although several MYB genes have been characterized to play roles in secondary metabolism, the MYB family has not yet been identified in apple. In this study, 229 apple MYB genes were identified through a genome-wide analysis and divided into 45 subgroups. A computational analysis was conducted using the apple genomic database to yield a complete overview of the MYB family, including the intron-exon organizations, the sequence features of the MYB DNA-binding domains, the carboxy-terminal motifs, and the chromosomal locations. Subsequently, the expression of 18 MYB genes, including 12 were chosen from stress-related subgroups, while another 6 ones from other subgroups, in response to various abiotic stresses was examined. It was found that several of these MYB genes, particularly MdoMYB121, were induced by multiple stresses. The MdoMYB121 was then further functionally characterized. Its predicted protein was found to be localized in the nucleus. A transgenic analysis indicated that the overexpression of the MdoMYB121 gene remarkably enhanced the tolerance to high salinity, drought, and cold stresses in transgenic tomato and apple plants. Our results indicate that the MYB genes are highly conserved in plant species and that MdoMYB121 can be used as a target gene in genetic engineering approaches to improve the tolerance of plants to multiple abiotic stresses. PMID:23950843

  11. Genome-Wide Analysis of Factors Affecting Transcription Elongation and DNA Repair: A New Role for PAF and Ccr4-Not in Transcription-Coupled Repair

    PubMed Central

    Gaillard, Hélène; Tous, Cristina; Botet, Javier; González-Aguilera, Cristina; Quintero, Maria José; Viladevall, Laia; García-Rubio, María L.; Rodríguez-Gil, Alfonso; Marín, Antonio; Ariño, Joaquín; Revuelta, José Luis; Chávez, Sebastián; Aguilera, Andrés

    2009-01-01

    RNA polymerases frequently deal with a number of obstacles during transcription elongation that need to be removed for transcription resumption. One important type of hindrance consists of DNA lesions, which are removed by transcription-coupled repair (TC-NER), a specific sub-pathway of nucleotide excision repair. To improve our knowledge of transcription elongation and its coupling to TC-NER, we used the yeast library of non-essential knock-out mutations to screen for genes conferring resistance to the transcription-elongation inhibitor mycophenolic acid and the DNA-damaging agent 4-nitroquinoline-N-oxide. Our data provide evidence that subunits of the SAGA and Ccr4-Not complexes, Mediator, Bre1, Bur2, and Fun12 affect transcription elongation to different extents. Given the dependency of TC-NER on RNA Polymerase II transcription and the fact that the few proteins known to be involved in TC-NER are related to transcription, we performed an in-depth TC-NER analysis of a selection of mutants. We found that mutants of the PAF and Ccr4-Not complexes are impaired in TC-NER. This study provides evidence that PAF and Ccr4-Not are required for efficient TC-NER in yeast, unraveling a novel function for these transcription complexes and opening new perspectives for the understanding of TC-NER and its functional interconnection with transcription elongation. PMID:19197357

  12. Genome-wide analysis of histone methylation reveals chromatin state-based complex regulation of differential gene transcription and function of CD8 memory T cells

    PubMed Central

    Araki, Yasuto; Wang, Zhibin; Zang, Chongzhi; Wood, William H.; Schones, Dustin; Cui, Kairong; Roh, Tae-Young; Lhotsky, Brad; Wersto, Robert P.; Peng, Weiqun; Becker, Kevin G.; Zhao, Keji; Weng, Nan-ping

    2009-01-01

    Summary Memory lymphocytes are characterized by their ability to exhibit a rapid response to the recall antigen, in which differential transcription plays a significant role, yet the underlying mechanism is not understood. We report here a genome-wide analysis of histone methylation on two histone H3 lysine residues (H3K4me3 and H3K27me3) and gene expression profiles in naïve and memory CD8 T cells. We found that a general correlation exists between the levels of gene expression and the levels of H3K4me3 (positive correlation) and H3K27me3 (negative correlation) across the gene body. These correlations display four distinct modes: repressive, active, poised, and bivalent, reflecting different functions of these genes. Furthermore, a permissive chromatin state of each gene is established by a combination of different histone modifications. Our findings reveal a complex regulation by histone methylation in differential gene expression and suggest that histone methylation may be responsible for memory CD8 T cell function. PMID:19523850

  13. Genome-wide analysis correlates Ayurveda Prakriti

    PubMed Central

    Govindaraj, Periyasamy; Nizamuddin, Sheikh; Sharath, Anugula; Jyothi, Vuskamalla; Rotti, Harish; Raval, Ritu; Nayak, Jayakrishna; Bhat, Balakrishna K.; Prasanna, B. V.; Shintre, Pooja; Sule, Mayura; Joshi, Kalpana S.; Dedge, Amrish P.; Bharadwaj, Ramachandra; Gangadharan, G. G.; Nair, Sreekumaran; Gopinath, Puthiya M.; Patwardhan, Bhushan; Kondaiah, Paturu; Satyamoorthy, Kapaettu; Valiathan, Marthanda Varma Sankaran; Thangaraj, Kumarasamy

    2015-01-01

    The practice of Ayurveda, the traditional medicine of India, is based on the concept of three major constitutional types (Vata, Pitta and Kapha) defined as “Prakriti”. To the best of our knowledge, no study has convincingly correlated genomic variations with the classification of Prakriti. In the present study, we performed genome-wide SNP (single nucleotide polymorphism) analysis (Affymetrix, 6.0) of 262 well-classified male individuals (after screening 3416 subjects) belonging to three Prakritis. We found 52 SNPs (p ≤ 1 × 10−5) were significantly different between Prakritis, without any confounding effect of stratification, after 106 permutations. Principal component analysis (PCA) of these SNPs classified 262 individuals into their respective groups (Vata, Pitta and Kapha) irrespective of their ancestry, which represent its power in categorization. We further validated our finding with 297 Indian population samples with known ancestry. Subsequently, we found that PGM1 correlates with phenotype of Pitta as described in the ancient text of Caraka Samhita, suggesting that the phenotypic classification of India’s traditional medicine has a genetic basis; and its Prakriti-based practice in vogue for many centuries resonates with personalized medicine. PMID:26511157

  14. Heterosis in early maize ear inflorescence development: a genome-wide transcription analysis for two maize inbred lines and their hybrid.

    PubMed

    Ding, Haiping; Qin, Cheng; Luo, Xirong; Li, Lujiang; Chen, Zhe; Liu, Hongjun; Gao, Jian; Lin, Haijian; Shen, Yaou; Zhao, Maojun; Lübberstedt, Thomas; Zhang, Zhiming; Pan, Guangtang

    2014-01-01

    Heterosis, or hybrid vigor, contributes to superior agronomic performance of hybrids compared to their inbred parents. Despite its importance, little is known about the genetic and molecular basis of heterosis. Early maize ear inflorescences formation affects grain yield, and are thus an excellent model for molecular mechanisms involved in heterosis. To determine the parental contributions and their regulation during maize ear-development-genesis, we analyzed genome-wide digital gene expression profiles in two maize elite inbred lines (B73 and Mo17) and their F1 hybrid using deep sequencing technology. Our analysis revealed 17,128 genes expressed in these three genotypes and 22,789 genes expressed collectively in the present study. Approximately 38% of the genes were differentially expressed in early maize ear inflorescences from heterotic cross, including many transcription factor genes and some presence/absence variations (PAVs) genes, and exhibited multiple modes of gene action. These different genes showing differential expression patterns were mainly enriched in five cellular component categories (organelle, cell, cell part, organelle part and macromolecular complex), five molecular function categories (structural molecule activity, binding, transporter activity, nucleic acid binding transcription factor activity and catalytic activity), and eight biological process categories (cellular process, metabolic process, biological regulation, regulation of biological process, establishment of localization, cellular component organization or biogenesis, response to stimulus and localization). Additionally, a significant number of genes were expressed in only one inbred line or absent in both inbred lines. Comparison of the differences of modes of gene action between previous studies and the present study revealed only a small number of different genes had the same modes of gene action in both maize seedlings and ear inflorescences. This might be an indication that in

  15. Heterosis in Early Maize Ear Inflorescence Development: A Genome-Wide Transcription Analysis for Two Maize Inbred Lines and Their Hybrid

    PubMed Central

    Ding, Haiping; Qin, Cheng; Luo, Xirong; Li, Lujiang; Chen, Zhe; Liu, Hongjun; Gao, Jian; Lin, Haijian; Shen, Yaou; Zhao, Maojun; Lübberstedt, Thomas; Zhang, Zhiming; Pan, Guangtang

    2014-01-01

    Heterosis, or hybrid vigor, contributes to superior agronomic performance of hybrids compared to their inbred parents. Despite its importance, little is known about the genetic and molecular basis of heterosis. Early maize ear inflorescences formation affects grain yield, and are thus an excellent model for molecular mechanisms involved in heterosis. To determine the parental contributions and their regulation during maize ear-development-genesis, we analyzed genome-wide digital gene expression profiles in two maize elite inbred lines (B73 and Mo17) and their F1 hybrid using deep sequencing technology. Our analysis revealed 17,128 genes expressed in these three genotypes and 22,789 genes expressed collectively in the present study. Approximately 38% of the genes were differentially expressed in early maize ear inflorescences from heterotic cross, including many transcription factor genes and some presence/absence variations (PAVs) genes, and exhibited multiple modes of gene action. These different genes showing differential expression patterns were mainly enriched in five cellular component categories (organelle, cell, cell part, organelle part and macromolecular complex), five molecular function categories (structural molecule activity, binding, transporter activity, nucleic acid binding transcription factor activity and catalytic activity), and eight biological process categories (cellular process, metabolic process, biological regulation, regulation of biological process, establishment of localization, cellular component organization or biogenesis, response to stimulus and localization). Additionally, a significant number of genes were expressed in only one inbred line or absent in both inbred lines. Comparison of the differences of modes of gene action between previous studies and the present study revealed only a small number of different genes had the same modes of gene action in both maize seedlings and ear inflorescences. This might be an indication that in

  16. Genome-wide activities of Polycomb complexes control pervasive transcription.

    PubMed

    Lee, Hun-Goo; Kahn, Tatyana G; Simcox, Amanda; Schwartz, Yuri B; Pirrotta, Vincenzo

    2015-08-01

    Polycomb group (PcG) complexes PRC1 and PRC2 are well known for silencing specific developmental genes. PRC2 is a methyltransferase targeting histone H3K27 and producing H3K27me3, essential for stable silencing. Less well known but quantitatively much more important is the genome-wide role of PRC2 that dimethylates ∼70% of total H3K27. We show that H3K27me2 occurs in inverse proportion to transcriptional activity in most non-PcG target genes and intergenic regions and is governed by opposing roaming activities of PRC2 and complexes containing the H3K27 demethylase UTX. Surprisingly, loss of H3K27me2 results in global transcriptional derepression proportionally greatest in silent or weakly transcribed intergenic and genic regions and accompanied by an increase of H3K27ac and H3K4me1. H3K27me2 therefore sets a threshold that prevents random, unscheduled transcription all over the genome and even limits the activity of highly transcribed genes. PRC1-type complexes also have global roles. Unexpectedly, we find a pervasive distribution of histone H2A ubiquitylated at lysine 118 (H2AK118ub) outside of canonical PcG target regions, dependent on the RING/Sce subunit of PRC1-type complexes. We show, however, that H2AK118ub does not mediate the global PRC2 activity or the global repression and is predominantly produced by a new complex involving L(3)73Ah, a homolog of mammalian PCGF3. PMID:25986499

  17. Genome wide transcription start sites analysis of Xanthomonas campestris pv. campestris B100 with insights into the gum gene cluster directing the biosynthesis of the exopolysaccharide xanthan.

    PubMed

    Alkhateeb, Rabeaa S; Vorhölter, Frank-Jörg; Rückert, Christian; Mentz, Almut; Wibberg, Daniel; Hublik, Gerd; Niehaus, Karsten; Pühler, Alfred

    2016-05-10

    Xanthomonas campestris pv. campestris (Xcc) is the major producer of the exopolysaccharide xanthan, the commercially most important natural polysaccharide of microbial origin. The current work provides deeper insights into the yet uncharacterized transcriptomic features of the xanthan producing strain Xcc-B100. Towards this goal, RNA sequencing of a library based on the selective enrichment of the 5' ends of native transcripts was performed. This approach resulted in the genome wide identification of 3067 transcription start sites (TSSs) that were further classified based on their genomic positions. Among them, 1545 mapped upstream of an actively transcribed CDS and 1363 were classified as novel TSSs representing antisense, internal, and TSSs belonging to previously unidentified genomic features. Analyzing the transcriptional strength of primary and antisense TSSs revealed that in some instances antisense transcription seemed to be initiated at a higher level than its sense counterpart. Mapping the exact positions of TSSs aided in the identification of promoter consensus motifs, ribosomal binding sites, and enhanced the genome annotation of 159 in silico predicted translational start (TLS) sites. The global view on length distribution of the 5' untranslated regions (5'-UTRs) deduced from the data pointed to the occurrence of leaderless transcripts and transcripts with unusually long 5'-UTRs, in addition to identifying seven putative riboswitch elements for Xcc-B100. Concerning the biosynthesis of xanthan, we focused on the transcriptional organization of the gum gene cluster. Under the conditions tested, we present evidence for a complex transcription pattern of the gum genes with multiple TSSs and an obvious considerable role of antisense transcription. The gene gumB, encoding an outer membrane xanthan exporter, is presented here as an example for genes that possessed a strong antisense TSS. PMID:26975844

  18. Genome-wide analysis of human global and transcription-coupled excision repair of UV damage at single-nucleotide resolution

    PubMed Central

    Hu, Jinchuan; Adar, Sheera; Selby, Christopher P.

    2015-01-01

    We developed a method for genome-wide mapping of DNA excision repair named XR-seq (excision repair sequencing). Human nucleotide excision repair generates two incisions surrounding the site of damage, creating an ∼30-mer. In XR-seq, this fragment is isolated and subjected to high-throughput sequencing. We used XR-seq to produce stranded, nucleotide-resolution maps of repair of two UV-induced DNA damages in human cells: cyclobutane pyrimidine dimers (CPDs) and (6-4) pyrimidine–pyrimidone photoproducts [(6-4)PPs]. In wild-type cells, CPD repair was highly associated with transcription, specifically with the template strand. Experiments in cells defective in either transcription-coupled excision repair or general excision repair isolated the contribution of each pathway to the overall repair pattern and showed that transcription-coupled repair of both photoproducts occurs exclusively on the template strand. XR-seq maps capture transcription-coupled repair at sites of divergent gene promoters and bidirectional enhancer RNA (eRNA) production at enhancers. XR-seq data also uncovered the repair characteristics and novel sequence preferences of CPDs and (6-4)PPs. XR-seq and the resulting repair maps will facilitate studies of the effects of genomic location, chromatin context, transcription, and replication on DNA repair in human cells. PMID:25934506

  19. Genome-wide analysis of DNA methylation in hepatoblastoma tissues

    PubMed Central

    Cui, Ximao; Liu, Baihui; Zheng, Shan; Dong, Kuiran; Dong, Rui

    2016-01-01

    DNA methylation has a crucial role in cancer biology. In the present study, a genome-wide analysis of DNA methylation in hepatoblastoma (HB) tissues was performed to verify differential methylation levels between HB and normal tissues. As alpha-fetoprotein (AFP) has a critical role in HB, AFP methylation levels were also detected using pyrosequencing. Normal and HB liver tissue samples (frozen tissue) were obtained from patients with HB. Genome-wide analysis of DNA methylation in these tissues was performed using an Infinium HumanMethylation450 BeadChip, and the results were confirmed with reverse transcription-quantitative polymerase chain reaction. The Infinium HumanMethylation450 BeadChip demonstrated distinctively less methylation in HB tissues than in non-tumor tissues. In addition, methylation enrichment was observed in positions near the transcription start site of AFP, which exhibited lower methylation levels in HB tissues than in non-tumor liver tissues. Lastly, a significant negative correlation was observed between AFP messenger RNA expression and DNA methylation percentage, using linear Pearson's R correlation coefficients. The present results demonstrate differential methylation levels between HB and normal tissues, and imply that aberrant methylation of AFP in HB could reflect HB development. Expansion of these findings could provide useful insight into HB biology. PMID:27446465

  20. Advances in genome-wide DNA methylation analysis

    PubMed Central

    Gupta, Romi; Nagarajan, Arvindhan; Wajapeyee, Narendra

    2013-01-01

    The covalent DNA modification of cytosine at position 5 (5-methylcytosine; 5mC) has emerged as an important epigenetic mark most commonly present in the context of CpG dinucleotides in mammalian cells. In pluripotent stem cells and plants, it is also found in non-CpG and CpNpG contexts, respectively. 5mC has important implications in a diverse set of biological processes, including transcriptional regulation. Aberrant DNA methylation has been shown to be associated with a wide variety of human ailments and thus is the focus of active investigation. Methods used for detecting DNA methylation have revolutionized our understanding of this epigenetic mark and provided new insights into its role in diverse biological functions. Here we describe recent technological advances in genome-wide DNA methylation analysis and discuss their relative utility and drawbacks, providing specific examples from studies that have used these technologies for genome-wide DNA methylation analysis to address important biological questions. Finally, we discuss a newly identified covalent DNA modification, 5-hydroxymethylcytosine (5hmC), and speculate on its possible biological function, as well as describe a new methodology that can distinguish 5hmC from 5mC. PMID:20964631

  1. Genome-wide transcriptome analysis of human epidermal melanocytes

    PubMed Central

    Haltaufderhyde, Kirk D.; Oancea, Elena

    2015-01-01

    Because human epidermal melanocytes (HEMs) provide critical protection against skin cancer, sunburn, and photoaging, a genome-wide perspective of gene expression in these cells is vital to understanding human skin physiology. In this study we performed high throughput sequencing of HEMs to obtain a complete data set of transcript sizes, abundances, and splicing. As expected, we found that melanocyte specific genes that function in pigmentation were among the highest expressed genes. We analyzed receptor, ion channel and transcription factor gene families to get a better understanding of the cell signalling pathways used by melanocytes. We also performed a comparative transcriptomic analysis of lightly versus darkly pigmented HEMs and found 16 genes differentially expressed in the two pigmentation phenotypes; of those, only one putative melanosomal transporter (SLC45A2) has known function in pigmentation. In addition, we found 166 genes with splice isoforms expressed exclusively in one pigmentation phenotype, 17 of which are genes involved in signal transduction. Our melanocyte transcriptome study provides a comprehensive view and may help identify novel pigmentation genes and potential pharmacological targets. PMID:25451175

  2. Genome-wide identification of citrus ATP-citrate lyase genes and their transcript analysis in fruits reveals their possible role in citrate utilization.

    PubMed

    Hu, Xiao-Mei; Shi, Cai-Yun; Liu, Xiao; Jin, Long-Fei; Liu, Yong-Zhong; Peng, Shu-Ang

    2015-02-01

    ATP-citrate lyase (ACL, EC4.1.3.8) catalyzes citrate to oxaloacetate and acetyl-CoA in the cell cytosol, and has important roles in normal plant growth and in the biosynthesis of some secondary metabolites. We identified three ACL genes, CitACLα1, CitACLα2, and CitACLβ1, in the citrus genome database. Both CitACLα1 and CitACLα2 encode putative ACL α subunits with 82.5 % amino acid identity, whereas CitACLβ1 encodes a putative ACL β subunit. Gene structure analysis showed that CitACLα1 and CitACLα2 had 12 exons and 11 introns, and CitACLβ1 had 16 exons and 15 introns. CitACLα1 and CitACLβ1 were predominantly expressed in flower, and CitACLα2 was predominantly expressed in stem and fibrous roots. As fruits ripen, the transcript levels of CitACLα1, CitACLβ1, and/or CitACLα2 in cultivars 'Niuher' and 'Owari' increased, accompanied by significant decreases in citrate content, while their transcript levels decreased significantly in 'Egan No. 1' and 'Iyokan', although citrate content also decreased. In 'HB pummelo', in which acid content increased as fruit ripened, and in acid-free pummelo, transcript levels of CitACLα2, CitACLβ1, and/or CitACLα1 increased. Moreover, mild drought stress and ABA treatment significantly increased citrate contents in fruits. Transcript levels of the three genes were significantly reduced by mild drought stress, and the transcript level of only CitACLβ1 was significantly reduced by ABA treatment. Taken together, these data indicate that the effects of ACL on citrate use during fruit ripening depends on the cultivar, and the reduction in ACL gene expression may be attributed to citrate increases under mild drought stress or ABA treatment. PMID:25120169

  3. Massively expedited genome-wide heritability analysis (MEGHA).

    PubMed

    Ge, Tian; Nichols, Thomas E; Lee, Phil H; Holmes, Avram J; Roffman, Joshua L; Buckner, Randy L; Sabuncu, Mert R; Smoller, Jordan W

    2015-02-24

    The discovery and prioritization of heritable phenotypes is a computational challenge in a variety of settings, including neuroimaging genetics and analyses of the vast phenotypic repositories in electronic health record systems and population-based biobanks. Classical estimates of heritability require twin or pedigree data, which can be costly and difficult to acquire. Genome-wide complex trait analysis is an alternative tool to compute heritability estimates from unrelated individuals, using genome-wide data that are increasingly ubiquitous, but is computationally demanding and becomes difficult to apply in evaluating very large numbers of phenotypes. Here we present a fast and accurate statistical method for high-dimensional heritability analysis using genome-wide SNP data from unrelated individuals, termed massively expedited genome-wide heritability analysis (MEGHA) and accompanying nonparametric sampling techniques that enable flexible inferences for arbitrary statistics of interest. MEGHA produces estimates and significance measures of heritability with several orders of magnitude less computational time than existing methods, making heritability-based prioritization of millions of phenotypes based on data from unrelated individuals tractable for the first time to our knowledge. As a demonstration of application, we conducted heritability analyses on global and local morphometric measurements derived from brain structural MRI scans, using genome-wide SNP data from 1,320 unrelated young healthy adults of non-Hispanic European ancestry. We also computed surface maps of heritability for cortical thickness measures and empirically localized cortical regions where thickness measures were significantly heritable. Our analyses demonstrate the unique capability of MEGHA for large-scale heritability-based screening and high-dimensional heritability profile construction. PMID:25675487

  4. Massively expedited genome-wide heritability analysis (MEGHA)

    PubMed Central

    Ge, Tian; Nichols, Thomas E.; Lee, Phil H.; Holmes, Avram J.; Roffman, Joshua L.; Buckner, Randy L.; Sabuncu, Mert R.; Smoller, Jordan W.

    2015-01-01

    The discovery and prioritization of heritable phenotypes is a computational challenge in a variety of settings, including neuroimaging genetics and analyses of the vast phenotypic repositories in electronic health record systems and population-based biobanks. Classical estimates of heritability require twin or pedigree data, which can be costly and difficult to acquire. Genome-wide complex trait analysis is an alternative tool to compute heritability estimates from unrelated individuals, using genome-wide data that are increasingly ubiquitous, but is computationally demanding and becomes difficult to apply in evaluating very large numbers of phenotypes. Here we present a fast and accurate statistical method for high-dimensional heritability analysis using genome-wide SNP data from unrelated individuals, termed massively expedited genome-wide heritability analysis (MEGHA) and accompanying nonparametric sampling techniques that enable flexible inferences for arbitrary statistics of interest. MEGHA produces estimates and significance measures of heritability with several orders of magnitude less computational time than existing methods, making heritability-based prioritization of millions of phenotypes based on data from unrelated individuals tractable for the first time to our knowledge. As a demonstration of application, we conducted heritability analyses on global and local morphometric measurements derived from brain structural MRI scans, using genome-wide SNP data from 1,320 unrelated young healthy adults of non-Hispanic European ancestry. We also computed surface maps of heritability for cortical thickness measures and empirically localized cortical regions where thickness measures were significantly heritable. Our analyses demonstrate the unique capability of MEGHA for large-scale heritability-based screening and high-dimensional heritability profile construction. PMID:25675487

  5. Genome-Wide Transcriptional Profiling and Metabolic Analysis Uncover Multiple Molecular Responses of the Grass Species Lolium perenne Under Low-Intensity Xenobiotic Stress

    PubMed Central

    Serra, Anne-Antonella; Couée, Ivan; Heijnen, David; Michon-Coudouel, Sophie; Sulmon, Cécile; Gouesbet, Gwenola

    2015-01-01

    Lolium perenne, which is a major component of pastures, lawns, and grass strips, can be exposed to xenobiotic stresses due to diffuse and residual contaminations of soil. L. perenne was recently shown to undergo metabolic adjustments in response to sub-toxic levels of xenobiotics. To gain insight in such chemical stress responses, a de novo transcriptome analysis was carried out on leaves from plants subjected at the root level to low levels of xenobiotics, glyphosate, tebuconazole, and a combination of the two, leading to no adverse physiological effect. Chemical treatments influenced significantly the relative proportions of functional categories and of transcripts related to carbohydrate processes, to signaling, to protein-kinase cascades, such as Serine/Threonine-protein kinases, to transcriptional regulations, to responses to abiotic or biotic stimuli and to responses to phytohormones. Transcriptomics-based expressions of genes encoding different types of SNF1 (sucrose non-fermenting 1)-related kinases involved in sugar and stress signaling or encoding key metabolic enzymes were in line with specific qRT-PCR analysis or with the important metabolic and regulatory changes revealed by metabolomic analysis. The effects of pesticide treatments on metabolites and gene expression strongly suggest that pesticides at low levels, as single molecule or as mixture, affect cell signaling and functioning even in the absence of major physiological impact. This global analysis of L. perenne therefore highlighted the interactions between molecular regulation of responses to xenobiotics, and also carbohydrate dynamics, energy dysfunction, phytohormones and calcium signaling. PMID:26734031

  6. Genome-wide transcriptional reorganization associated with senescence-to-immortality switch during human hepatocellular carcinogenesis.

    PubMed

    Yildiz, Gokhan; Arslan-Ergul, Ayca; Bagislar, Sevgi; Konu, Ozlen; Yuzugullu, Haluk; Gursoy-Yuzugullu, Ozge; Ozturk, Nuri; Ozen, Cigdem; Ozdag, Hilal; Erdal, Esra; Karademir, Sedat; Sagol, Ozgul; Mizrak, Dilsa; Bozkaya, Hakan; Ilk, Hakki Gokhan; Ilk, Ozlem; Bilen, Biter; Cetin-Atalay, Rengul; Akar, Nejat; Ozturk, Mehmet

    2013-01-01

    Senescence is a permanent proliferation arrest in response to cell stress such as DNA damage. It contributes strongly to tissue aging and serves as a major barrier against tumor development. Most tumor cells are believed to bypass the senescence barrier (become "immortal") by inactivating growth control genes such as TP53 and CDKN2A. They also reactivate telomerase reverse transcriptase. Senescence-to-immortality transition is accompanied by major phenotypic and biochemical changes mediated by genome-wide transcriptional modifications. This appears to happen during hepatocellular carcinoma (HCC) development in patients with liver cirrhosis, however, the accompanying transcriptional changes are virtually unknown. We investigated genome-wide transcriptional changes related to the senescence-to-immortality switch during hepatocellular carcinogenesis. Initially, we performed transcriptome analysis of senescent and immortal clones of Huh7 HCC cell line, and identified genes with significant differential expression to establish a senescence-related gene list. Through the analysis of senescence-related gene expression in different liver tissues we showed that cirrhosis and HCC display expression patterns compatible with senescent and immortal phenotypes, respectively; dysplasia being a transitional state. Gene set enrichment analysis revealed that cirrhosis/senescence-associated genes were preferentially expressed in non-tumor tissues, less malignant tumors, and differentiated or senescent cells. In contrast, HCC/immortality genes were up-regulated in tumor tissues, or more malignant tumors and progenitor cells. In HCC tumors and immortal cells genes involved in DNA repair, cell cycle, telomere extension and branched chain amino acid metabolism were up-regulated, whereas genes involved in cell signaling, as well as in drug, lipid, retinoid and glycolytic metabolism were down-regulated. Based on these distinctive gene expression features we developed a 15-gene

  7. Genome-wide analysis of AP2/ERF transcription factors in carrot (Daucus carota L.) reveals evolution and expression profiles under abiotic stress.

    PubMed

    Li, Meng-Yao; Xu, Zhi-Sheng; Huang, Ying; Tian, Chang; Wang, Feng; Xiong, Ai-Sheng

    2015-12-01

    AP2/ERF is a large transcription factor family that regulates plant physiological processes, such as plant development and stress response. Carrot (Daucus carota L.) is an important economical crop with a genome size of 480 Mb; the draft genome sequencing of this crop has been completed by our group. However, little is known about the AP2/ERF factors in carrot. In this study, a total of 267 putative AP2/ERF factors were identified from the whole-genome sequence of carrot. These AP2/ERF proteins were phylogenetically clustered into five subfamilies based on their similarity to the amino acid sequences from Arabidopsis. The distribution and comparative genome analysis of the AP2/ERF factors among plants showed the AP2/ERF factors had expansion during the evolutionary process, and the AP2 domain was highly conserved during evolution. The number of AP2/ERF factors in land plants expanded during their evolution. A total of 60 orthologous and 145 coorthologous AP2/ERF gene pairs between carrot and Arabidopsis were identified, and the interaction network of orthologous genes was constructed. The expression patterns of eight AP2/ERF family genes from each subfamily (DREB, ERF, AP2, and RAV) were related to abiotic stresses. Yeast one-hybrid and β-galactosidase activity assays confirmed the DRE and GCC box-binding activities of DREB subfamily genes. This study is the first to identify and characterize the AP2/ERF transcription factors in carrot using whole-genome analysis, and the findings may serve as references for future functional research on the transcription factors in carrot. PMID:25971861

  8. Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae.

    PubMed

    Carretero-Paulet, Lorenzo; Galstyan, Anahit; Roig-Villanova, Irma; Martínez-García, Jaime F; Bilbao-Castro, Jose R; Robertson, David L

    2010-07-01

    Basic helix-loop-helix proteins (bHLHs) are found throughout the three eukaryotic kingdoms and constitute one of the largest families of transcription factors. A growing number of bHLH proteins have been functionally characterized in plants. However, some of these have not been previously classified. We present here an updated and comprehensive classification of the bHLHs encoded by the whole sequenced genomes of Arabidopsis (Arabidopsis thaliana), Populus trichocarpa, Oryza sativa, Physcomitrella patens, and five algae species. We define a plant bHLH consensus motif, which allowed the identification of novel highly diverged atypical bHLHs. Using yeast two-hybrid assays, we confirm that (1) a highly diverged bHLH has retained protein interaction activity and (2) the two most conserved positions in the consensus play an essential role in dimerization. Phylogenetic analysis permitted classification of the 638 bHLH genes identified into 32 subfamilies. Evolutionary and functional relationships within subfamilies are supported by intron patterns, predicted DNA-binding motifs, and the architecture of conserved protein motifs. Our analyses reveal the origin and evolutionary diversification of plant bHLHs through differential expansions, domain shuffling, and extensive sequence divergence. At the functional level, this would translate into different subfamilies evolving specific DNA-binding and protein interaction activities as well as differential transcriptional regulatory roles. Our results suggest a role for bHLH proteins in generating plant phenotypic diversity and provide a solid framework for further investigations into the role carried out in the transcriptional regulation of key growth and developmental processes. PMID:20472752

  9. Genome-Wide Classification and Evolutionary Analysis of the bHLH Family of Transcription Factors in Arabidopsis, Poplar, Rice, Moss, and Algae1[W

    PubMed Central

    Carretero-Paulet, Lorenzo; Galstyan, Anahit; Roig-Villanova, Irma; Martínez-García, Jaime F.; Bilbao-Castro, Jose R.; Robertson, David L.

    2010-01-01

    Basic helix-loop-helix proteins (bHLHs) are found throughout the three eukaryotic kingdoms and constitute one of the largest families of transcription factors. A growing number of bHLH proteins have been functionally characterized in plants. However, some of these have not been previously classified. We present here an updated and comprehensive classification of the bHLHs encoded by the whole sequenced genomes of Arabidopsis (Arabidopsis thaliana), Populus trichocarpa, Oryza sativa, Physcomitrella patens, and five algae species. We define a plant bHLH consensus motif, which allowed the identification of novel highly diverged atypical bHLHs. Using yeast two-hybrid assays, we confirm that (1) a highly diverged bHLH has retained protein interaction activity and (2) the two most conserved positions in the consensus play an essential role in dimerization. Phylogenetic analysis permitted classification of the 638 bHLH genes identified into 32 subfamilies. Evolutionary and functional relationships within subfamilies are supported by intron patterns, predicted DNA-binding motifs, and the architecture of conserved protein motifs. Our analyses reveal the origin and evolutionary diversification of plant bHLHs through differential expansions, domain shuffling, and extensive sequence divergence. At the functional level, this would translate into different subfamilies evolving specific DNA-binding and protein interaction activities as well as differential transcriptional regulatory roles. Our results suggest a role for bHLH proteins in generating plant phenotypic diversity and provide a solid framework for further investigations into the role carried out in the transcriptional regulation of key growth and developmental processes. PMID:20472752

  10. Genome-wide identification and characterization of WRKY transcriptional factor family in apple and analysis of their responses to waterlogging and drought stress.

    PubMed

    Meng, Dong; Li, Yuanyuan; Bai, Yang; Li, Mingjun; Cheng, Lailiang

    2016-06-01

    As one of the largest transcriptional factor families in plants, WRKY genes play significant roles in various biotic and abiotic stress responses. Although the WRKY gene family has been characterized in a few plant species, the details remain largely unknown in the apple (Malus domestica Borkh.). In this study, we identified a total of 127 MdWRKYs from the apple genome, which were divided into four subgroups according to the WRKY domains and zinc finger motif. Most of them were mapped onto the apple's 17 chromosomes and were expressed in more than one tissue, including shoot tips, mature leaves, fruit and apple calli. We then contrasted WRKY expression patterns between calli grown in solid medium (control) and liquid medium (representing waterlogging stress) and found that 34 WRKY genes were differentially expressed between the two growing conditions. Finally, we determined the expression patterns of 10 selected WRKY genes in an apple rootstock, G41, in response to waterlogging and drought stress, which identified candidate genes involved in responses to water stress for functional analysis. Our data provide interesting candidate MdWRKYs for future functional analysis and demonstrate that apple callus is a useful system for characterizing gene expression and function in apple. PMID:26970718

  11. Genome-Wide Detection and Analysis of Multifunctional Genes

    PubMed Central

    Pritykin, Yuri; Ghersi, Dario; Singh, Mona

    2015-01-01

    Many genes can play a role in multiple biological processes or molecular functions. Identifying multifunctional genes at the genome-wide level and studying their properties can shed light upon the complexity of molecular events that underpin cellular functioning, thereby leading to a better understanding of the functional landscape of the cell. However, to date, genome-wide analysis of multifunctional genes (and the proteins they encode) has been limited. Here we introduce a computational approach that uses known functional annotations to extract genes playing a role in at least two distinct biological processes. We leverage functional genomics data sets for three organisms—H. sapiens, D. melanogaster, and S. cerevisiae—and show that, as compared to other annotated genes, genes involved in multiple biological processes possess distinct physicochemical properties, are more broadly expressed, tend to be more central in protein interaction networks, tend to be more evolutionarily conserved, and are more likely to be essential. We also find that multifunctional genes are significantly more likely to be involved in human disorders. These same features also hold when multifunctionality is defined with respect to molecular functions instead of biological processes. Our analysis uncovers key features about multifunctional genes, and is a step towards a better genome-wide understanding of gene multifunctionality. PMID:26436655

  12. Genome-Wide Detection and Analysis of Multifunctional Genes.

    PubMed

    Pritykin, Yuri; Ghersi, Dario; Singh, Mona

    2015-10-01

    Many genes can play a role in multiple biological processes or molecular functions. Identifying multifunctional genes at the genome-wide level and studying their properties can shed light upon the complexity of molecular events that underpin cellular functioning, thereby leading to a better understanding of the functional landscape of the cell. However, to date, genome-wide analysis of multifunctional genes (and the proteins they encode) has been limited. Here we introduce a computational approach that uses known functional annotations to extract genes playing a role in at least two distinct biological processes. We leverage functional genomics data sets for three organisms--H. sapiens, D. melanogaster, and S. cerevisiae--and show that, as compared to other annotated genes, genes involved in multiple biological processes possess distinct physicochemical properties, are more broadly expressed, tend to be more central in protein interaction networks, tend to be more evolutionarily conserved, and are more likely to be essential. We also find that multifunctional genes are significantly more likely to be involved in human disorders. These same features also hold when multifunctionality is defined with respect to molecular functions instead of biological processes. Our analysis uncovers key features about multifunctional genes, and is a step towards a better genome-wide understanding of gene multifunctionality. PMID:26436655

  13. Genome-Wide Analysis of the AP2/ERF Transcription Factors Family and the Expression Patterns of DREB Genes in Moso Bamboo (Phyllostachys edulis).

    PubMed

    Wu, Huili; Lv, Hao; Li, Long; Liu, Jun; Mu, Shaohua; Li, Xueping; Gao, Jian

    2015-01-01

    The AP2/ERF transcription factor family, one of the largest families unique to plants, performs a significant role in terms of regulation of growth and development, and responses to biotic and abiotic stresses. Moso bamboo (Phyllostachys edulis) is a fast-growing non-timber forest species with the highest ecological, economic and social values of all bamboos in Asia. The draft genome of moso bamboo and the available genomes of other plants provide great opportunities to research global information on the AP2/ERF family in moso bamboo. In total, 116 AP2/ERF transcription factors were identified in moso bamboo. The phylogeny analyses indicated that the 116 AP2/ERF genes could be divided into three subfamilies: AP2, RAV and ERF; and the ERF subfamily genes were divided into 11 groups. The gene structures, exons/introns and conserved motifs of the PeAP2/ERF genes were analyzed. Analysis of the evolutionary patterns and divergence showed the PeAP2/ERF genes underwent a large-scale event around 15 million years ago (MYA) and the division time of AP2/ERF family genes between rice and moso bamboo was 15-23 MYA. We surveyed the putative promoter regions of the PeDREBs and showed that largely stress-related cis-elements existed in these genes. Further analysis of expression patterns of PeDREBs revealed that the most were strongly induced by drought, low-temperature and/or high salinity stresses in roots and, in contrast, most PeDREB genes had negative functions in leaves under the same respective stresses. In this study there were two main interesting points: there were fewer members of the PeDREB subfamily in moso bamboo than in other plants and there were differences in DREB gene expression profiles between leaves and roots triggered in response to abiotic stress. The information produced from this study may be valuable in overcoming challenges in cultivating moso bamboo. PMID:25985202

  14. Genome-Wide Analysis of the AP2/ERF Transcription Factors Family and the Expression Patterns of DREB Genes in Moso Bamboo (Phyllostachys edulis)

    PubMed Central

    Li, Long; Liu, Jun; Mu, Shaohua; Li, Xueping; Gao, Jian

    2015-01-01

    The AP2/ERF transcription factor family, one of the largest families unique to plants, performs a significant role in terms of regulation of growth and development, and responses to biotic and abiotic stresses. Moso bamboo (Phyllostachys edulis) is a fast-growing non-timber forest species with the highest ecological, economic and social values of all bamboos in Asia. The draft genome of moso bamboo and the available genomes of other plants provide great opportunities to research global information on the AP2/ERF family in moso bamboo. In total, 116 AP2/ERF transcription factors were identified in moso bamboo. The phylogeny analyses indicated that the 116 AP2/ERF genes could be divided into three subfamilies: AP2, RAV and ERF; and the ERF subfamily genes were divided into 11 groups. The gene structures, exons/introns and conserved motifs of the PeAP2/ERF genes were analyzed. Analysis of the evolutionary patterns and divergence showed the PeAP2/ERF genes underwent a large-scale event around 15 million years ago (MYA) and the division time of AP2/ERF family genes between rice and moso bamboo was 15–23 MYA. We surveyed the putative promoter regions of the PeDREBs and showed that largely stress-related cis-elements existed in these genes. Further analysis of expression patterns of PeDREBs revealed that the most were strongly induced by drought, low-temperature and/or high salinity stresses in roots and, in contrast, most PeDREB genes had negative functions in leaves under the same respective stresses. In this study there were two main interesting points: there were fewer members of the PeDREB subfamily in moso bamboo than in other plants and there were differences in DREB gene expression profiles between leaves and roots triggered in response to abiotic stress. The information produced from this study may be valuable in overcoming challenges in cultivating moso bamboo. PMID:25985202

  15. Genome-Wide Survey and Expression Analysis of the Plant-Specific NAC Transcription Factor Family in Soybean During Development and Dehydration Stress

    PubMed Central

    Le, Dung Tien; Nishiyama, Rie; Watanabe, Yasuko; Mochida, Keiichi; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo; Tran, Lam-Son Phan

    2011-01-01

    Plant-specific NAC transcription factors (TFs) play important roles in regulating diverse biological processes, including development, senescence, growth, cell division and responses to environmental stress stimuli. Within the soybean genome, we identified 152 full-length GmNAC TFs, including 11 membrane-bound members. In silico analysis of the GmNACs, together with their Arabidopsis and rice counterparts, revealed similar NAC architecture. Next, we explored the soybean Affymetrix array and Illumina transcriptome sequence data to analyse tissue-specific expression profiles of GmNAC genes. Phylogenetic analysis using stress-related NAC TFs from Arabidopsis and rice as seeding sequences identified 58 of the 152 GmNACs as putative stress-responsive genes, including eight previously reported dehydration-responsive GmNACs. We could design gene-specific primers for quantitative real-time PCR verification of 38 out of 50 newly predicted stress-related genes. Twenty-five and six GmNACs were found to be induced and repressed 2-fold or more, respectively, in soybean roots and/or shoots in response to dehydration. GmNAC085, whose amino acid sequence was 39%; identical to that of well-known SNAC1/ONAC2, was the most induced gene upon dehydration, showing 390-fold and 20-fold induction in shoots and roots, respectively. Our systematic analysis has identified excellent tissue-specific and/or dehydration-responsive candidate GmNAC genes for in-depth characterization and future development of improved drought-tolerant transgenic soybeans. PMID:21685489

  16. Genome-Wide Analysis of C2H2 Zinc-Finger Family Transcription Factors and Their Responses to Abiotic Stresses in Poplar (Populus trichocarpa)

    PubMed Central

    Liu, Quangang; Wang, Zhanchao; Xu, Xuemei; Zhang, Haizhen; Li, Chenghao

    2015-01-01

    Background C2H2 zinc-finger (C2H2-ZF) proteins are a large gene family in plants that participate in various aspects of normal plant growth and development, as well as in biotic and abiotic stress responses. To date, no overall analysis incorporating evolutionary history and expression profiling of the C2H2-ZF gene family in model tree species poplar (Populus trichocarpa) has been reported. Principal Findings Here, we identified 109 full-length C2H2-ZF genes in P. trichocarpa, and classified them into four groups, based on phylogenetic analysis. The 109 C2H2-ZF genes were distributed unequally on 19 P. trichocarpa linkage groups (LGs), with 39 segmental duplication events, indicating that segmental duplication has been important in the expansion of the C2H2-ZF gene family. Promoter cis-element analysis indicated that most of the C2H2-ZF genes contain phytohormone or abiotic stress-related cis-elements. The expression patterns of C2H2-ZF genes, based on heatmap analysis, suggested that C2H2-ZF genes are involved in tissue and organ development, especially root and floral development. Expression analysis based on quantitative real-time reverse transcription polymerase chain reaction indicated that C2H2-ZF genes are significantly involved in drought, heat and salt response, possibly via different mechanisms. Conclusions This study provides a thorough overview of the P. trichocarpa C2H2-ZF gene family and presents a new perspective on the evolution of this gene family. In particular, some C2H2-ZF genes may be involved in environmental stress tolerance regulation. PtrZFP2, 19 and 95 showed high expression levels in leaves and/or roots under environmental stresses. Additionally, this study provided a solid foundation for studying the biological roles of C2H2-ZF genes in Populus growth and development. These results form the basis for further investigation of the roles of these candidate genes and for future genetic engineering and gene functional studies in Populus. PMID

  17. The peptide semax affects the expression of genes related to the immune and vascular systems in rat brain focal ischemia: genome-wide transcriptional analysis

    PubMed Central

    2014-01-01

    Background The nootropic neuroprotective peptide Semax (Met-Glu-His-Phe-Pro-Gly-Pro) has proved efficient in the therapy of brain stroke; however, the molecular mechanisms underlying its action remain obscure. Our genome-wide study was designed to investigate the response of the transcriptome of ischemized rat brain cortex tissues to the action of Semax in vivo. Results The gene-expression alteration caused by the action of the peptide Semax was compared with the gene expression of the “ischemia” group animals at 3 and 24 h after permanent middle cerebral artery occlusion (pMCAO). The peptide predominantly enhanced the expression of genes related to the immune system. Three hours after pMCAO, Semax influenced the expression of some genes that affect the activity of immune cells, and, 24 h after pMCAO, the action of Semax on the immune response increased considerably. The genes implicated in this response represented over 50% of the total number of genes that exhibited Semax-induced altered expression. Among the immune-response genes, the expression of which was modulated by Semax, genes that encode immunoglobulins and chemokines formed the most notable groups. In response to Semax administration, 24 genes related to the vascular system exhibited altered expression 3 h after pMCAO, whereas 12 genes were changed 24 h after pMCAO. These genes are associated with such processes as the development and migration of endothelial tissue, the migration of smooth muscle cells, hematopoiesis, and vasculogenesis. Conclusions Semax affects several biological processes involved in the function of various systems. The immune response is the process most markedly affected by the drug. Semax altered the expression of genes that modulate the amount and mobility of immune cells and enhanced the expression of genes that encode chemokines and immunoglobulins. In conditions of rat brain focal ischemia, Semax influenced the expression of genes that promote the formation and

  18. Genome-Wide Mapping of the Binding Sites and Structural Analysis of Kaposi's Sarcoma-Associated Herpesvirus Viral Interferon Regulatory Factor 2 Reveal that It Is a DNA-Binding Transcription Factor

    PubMed Central

    Hu, Haidai; Dong, Jiazhen; Liang, Deguang; Gao, Zengqiang; Bai, Lei; Sun, Rui; Hu, Hao; Zhang, Heng

    2015-01-01

    DNA-binding properties remain poorly understood. In this study, we performed the first genome-wide vIRF2-binding site mapping in the human genome and found vIRF2 can bind to the promoter regions of 100 target cellular genes. X-ray structure analysis and functional studies provided unique insights into its DNA-binding potency and regulation of target gene expression. Our study suggested that vIRF2 could act as a transcription factor of its target genes and contribute to KSHV infection and pathogenesis through versatile functions. PMID:26537687

  19. Identification of a Salmonella ancillary copper detoxification mechanism by a comparative analysis of the genome-wide transcriptional response to copper and zinc excess.

    PubMed

    Pontel, Lucas B; Scampoli, Nadia L; Porwollik, Steffen; Checa, Susana K; McClelland, Michael; Soncini, Fernando C

    2014-08-01

    Copper and zinc are essential metal ions, but toxic in excess. Bacteria have evolved different strategies to control their intracellular concentrations, ensuring proper supply while avoiding toxicity, including the induction of metal-specific as well as non-specific mechanisms. We compared the transcriptional profiles of Salmonella Typhimurium after exposure to either copper or zinc ions in both rich and minimal media. Besides metal-specific regulatory networks many global stress-response pathways react to an excess of either of these metal ions. Copper excess affects both zinc and iron homeostasis by inducing transcription of these metal-specific regulons. In addition to the control of zinc-specific regulons, zinc excess affects the Cpx regulon and the σ(E) envelope-stress responses. Finally, novel metal-specific upregulated genes were detected including a new copper-detoxification pathway that involves the siderophore enterobactin and the outer-membrane protein TolC. This work sheds light onto the transcriptional landscape of Salmonella after copper or zinc overload, and discloses a new mechanism of copper detoxification. PMID:24858080

  20. Genome-wide association interaction analysis for Alzheimer's disease

    PubMed Central

    Gusareva, Elena S.; Carrasquillo, Minerva M.; Bellenguez, Céline; Cuyvers, Elise; Colon, Samuel; Graff-Radford, Neill R.; Petersen, Ronald C.; Dickson, Dennis W.; Mahachie Johna, Jestinah M.; Bessonov, Kyrylo; Van Broeckhoven, Christine; Williams, Julie; Amouyel, Philippe; Sleegers, Kristel; Ertekin-Taner, Nilüfer; Lambert, Jean-Charles; Van Steen, Kristel

    2015-01-01

    We propose a minimal protocol for exhaustive genome-wide association interaction analysis that involves screening for epistasis over large-scale genomic data combining strengths of different methods and statistical tools. The different steps of this protocol are illustrated on a real-life data application for Alzheimer's disease (AD) (2259 patients and 6017 controls from France). Particularly, in the exhaustive genome-wide epistasis screening we identified AD-associated interacting SNPs-pair from chromosome 6q11.1 (rs6455128, the KHDRBS2 gene) and 13q12.11 (rs7989332, the CRYL1 gene) (p = 0.006, corrected for multiple testing). A replication analysis in the independent AD cohort from Germany (555 patients and 824 controls) confirmed the discovered epistasis signal (p = 0.036). This signal was also supported by a meta-analysis approach in 5 independent AD cohorts that was applied in the context of epistasis for the first time. Transcriptome analysis revealed negative correlation between expression levels of KHDRBS2 and CRYL1 in both the temporal cortex (β = −0.19, p = 0.0006) and cerebellum (β = −0.23, p < 0.0001) brain regions. This is the first time a replicable epistasis associated with AD was identified using a hypothesis free screening approach. PMID:24958192

  1. Genome-wide analysis of transcriptional changes in the thoracic muscle of the migratory locust, Locusta migratoria, exposed to hypobaric hypoxia.

    PubMed

    Zhao, De Jian; Zhang, Zhen Yu; Harrison, Jon; Kang, Le

    2012-11-01

    Hypobaric hypoxia has both beneficial and detrimental effects on living organisms in high altitude regions. The impact of hypobaric hypoxia has been investigated in numerous vertebrates. However, it is still not well characterized how invertebrates respond to hypobaric hypoxia. In this study, we examined the transcriptional profiles of locust thoracic muscles using microarrays to disclose their strategies to cope with hypobaric hypoxia. We found that hypoxia-inducible factor (HIF) and its target genes did not respond significantly to hypobaric hypoxia. As with severe, normobaric hypoxia, mitochondrial activities were systemically suppressed, mainly involving in energy production and mitochondrial biogenesis. The surveillance processes, involving in clearance of dysfunctional proteins in endoplasmic reticulum, were activated, e.g. endoplasmic reticulum-associated degradation, protein glycosylation, and protein folding. In contrast to severe, normobaric hypoxia, glycolysis was suppressed and the pentose phosphate pathway strengthened. Our data suggested that hypobaric hypoxia induced an oxidative stress rather than an energy crisis in locust thoracic muscles. Our research provides a different perspective of biological responses to hypoxia, complementing the well-studied biological responses to extreme, normobaric hypoxia. PMID:22985864

  2. Genome-wide association analysis identifies three psoriasis susceptibility loci

    PubMed Central

    Stuart, Philip E.; Nair, Rajan P.; Ellinghaus, Eva; Ding, Jun; Tejasvi, Trilokraj; Gudjonsson, Johann E.; Li, Yun; Weidinger, Stephan; Eberlein, Bernadette; Gieger, Christian; Wichmann, H. Erich; Kunz, Manfred; Ike, Robert; Krueger, Gerald G.; Bowcock, Anne M.; Mroweitz, Ulrich; Lim, Henry W.; Voorhees, John J.; Abecasis, Goncalo R.; Weichenthal, Michael; Franke, Andre; Rahman, Proton; Gladman, Dafna D.; Elder, James T.

    2010-01-01

    To identify novel psoriasis susceptibility loci, we carried out a meta-analysis of two recent genome-wide association studies 1,2, yielding a discovery sample of 1,831 cases and 2,546 controls. 102 of the most promising loci in the discovery analysis were followed up in a three-stage replication study using 4,064 cases and 4,685 controls from Michigan, Toronto, Newfoundland, and Germany. Association at a genome-wide level of significance for the combined discovery and replication samples was found for three genomic regions. One contains NOS2 (rs4795067, p = 4 × 10−11), another contains FBXL19 (rs10782001, p = 9 × 10−10), and a third contains PSMA6 and NFKBIA (rs12586317, p = 2 × 10−8). All three loci were also strongly associated with the subphenotypes of psoriatic arthritis and purely cutaneous psoriasis. Finally, we confirmed a recently identified3 association signal near RNF114. PMID:20953189

  3. Genome-Wide Transcriptional Regulation Mediated by Biochemically Distinct SWI/SNF Complexes.

    PubMed

    Raab, Jesse R; Resnick, Samuel; Magnuson, Terry

    2015-12-01

    Multiple positions within the SWI/SNF chromatin remodeling complex can be filled by mutually exclusive subunits. Inclusion or exclusion of these proteins defines many unique forms of SWI/SNF and has profound functional consequences. Often this complex is studied as a single entity within a particular cell type and we understand little about the functional relationship between these biochemically distinct forms of the remodeling complex. Here we examine the functional relationships among three complex-specific ARID (AT-Rich Interacting Domain) subunits using genome-wide chromatin immunoprecipitation, transcriptome analysis, and transcription factor binding maps. We find widespread overlap in transcriptional regulation and the genomic binding of distinct SWI/SNF complexes. ARID1B and ARID2 participate in wide-spread cooperation to repress hundreds of genes. Additionally, we find numerous examples of competition between ARID1A and another ARID, and validate that gene expression changes following loss of one ARID are dependent on the function of an alternative ARID. These distinct regulatory modalities are correlated with differential occupancy by transcription factors. Together, these data suggest that distinct SWI/SNF complexes dictate gene-specific transcription through functional interactions between the different forms of the SWI/SNF complex and associated co-factors. Most genes regulated by SWI/SNF are controlled by multiple biochemically distinct forms of the complex, and the overall expression of a gene is the product of the interaction between these different SWI/SNF complexes. The three mutually exclusive ARID family members are among the most frequently mutated chromatin regulators in cancer, and understanding the functional interactions and their role in transcriptional regulation provides an important foundation to understand their role in cancer. PMID:26716708

  4. Genome-Wide Transcriptional Regulation Mediated by Biochemically Distinct SWI/SNF Complexes

    PubMed Central

    Raab, Jesse R.; Resnick, Samuel; Magnuson, Terry

    2015-01-01

    Multiple positions within the SWI/SNF chromatin remodeling complex can be filled by mutually exclusive subunits. Inclusion or exclusion of these proteins defines many unique forms of SWI/SNF and has profound functional consequences. Often this complex is studied as a single entity within a particular cell type and we understand little about the functional relationship between these biochemically distinct forms of the remodeling complex. Here we examine the functional relationships among three complex-specific ARID (AT-Rich Interacting Domain) subunits using genome-wide chromatin immunoprecipitation, transcriptome analysis, and transcription factor binding maps. We find widespread overlap in transcriptional regulation and the genomic binding of distinct SWI/SNF complexes. ARID1B and ARID2 participate in wide-spread cooperation to repress hundreds of genes. Additionally, we find numerous examples of competition between ARID1A and another ARID, and validate that gene expression changes following loss of one ARID are dependent on the function of an alternative ARID. These distinct regulatory modalities are correlated with differential occupancy by transcription factors. Together, these data suggest that distinct SWI/SNF complexes dictate gene-specific transcription through functional interactions between the different forms of the SWI/SNF complex and associated co-factors. Most genes regulated by SWI/SNF are controlled by multiple biochemically distinct forms of the complex, and the overall expression of a gene is the product of the interaction between these different SWI/SNF complexes. The three mutually exclusive ARID family members are among the most frequently mutated chromatin regulators in cancer, and understanding the functional interactions and their role in transcriptional regulation provides an important foundation to understand their role in cancer. PMID:26716708

  5. The Csr system regulates genome-wide mRNA stability and transcription and thus gene expression in Escherichia coli.

    PubMed

    Esquerré, Thomas; Bouvier, Marie; Turlan, Catherine; Carpousis, Agamemnon J; Girbal, Laurence; Cocaign-Bousquet, Muriel

    2016-01-01

    Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype E. coli (MG1655) and isogenic mutant strains deficient in CsrA or CsrD activity demonstrating for the first time that CsrA and CsrD are global negative and positive regulators of transcription, respectively. The role of CsrA in transcription regulation may be indirect due to the 4.6-fold increase in csrD mRNA concentration in the CsrA deficient strain. Transcriptional action of CsrA and CsrD on a few genes was validated by transcriptional fusions. In addition to an effect on transcription, CsrA stabilizes thousands of mRNAs. This is the first demonstration that CsrA is a global positive regulator of mRNA stability. For one hundred genes, we predict that direct control of mRNA stability by CsrA might contribute to metabolic adaptation by regulating expression of genes involved in carbon metabolism and transport independently of transcriptional regulation. PMID:27112822

  6. The Csr system regulates genome-wide mRNA stability and transcription and thus gene expression in Escherichia coli

    PubMed Central

    Esquerré, Thomas; Bouvier, Marie; Turlan, Catherine; Carpousis, Agamemnon J.; Girbal, Laurence; Cocaign-Bousquet, Muriel

    2016-01-01

    Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype E. coli (MG1655) and isogenic mutant strains deficient in CsrA or CsrD activity demonstrating for the first time that CsrA and CsrD are global negative and positive regulators of transcription, respectively. The role of CsrA in transcription regulation may be indirect due to the 4.6-fold increase in csrD mRNA concentration in the CsrA deficient strain. Transcriptional action of CsrA and CsrD on a few genes was validated by transcriptional fusions. In addition to an effect on transcription, CsrA stabilizes thousands of mRNAs. This is the first demonstration that CsrA is a global positive regulator of mRNA stability. For one hundred genes, we predict that direct control of mRNA stability by CsrA might contribute to metabolic adaptation by regulating expression of genes involved in carbon metabolism and transport independently of transcriptional regulation. PMID:27112822

  7. Genome-wide analysis and expression patterns of ZF-HD transcription factors under different developmental tissues and abiotic stresses in Chinese cabbage.

    PubMed

    Wang, Wenli; Wu, Peng; Li, Ying; Hou, XiLin

    2016-06-01

    The ZF-HD gene family plays an important role in plant developmental processes and stress responses. However, the function of the ZF-HD genes in Chinese cabbage remains largely unknown. Chinese cabbage (Brassica rapa ssp. pekinensis) is a member of one of the most important leaf vegetables grown worldwide. The entire Chinese cabbage genome sequence has been determined, and more than forty thousand proteins have been identified to date. In this study, 31 ZF-HD genes were identified in Chinese cabbage. We show here that the BraZF-HD genes could be categorized into ZHD and MIF subfamilies. Among them, ZHD genes are plant-specific, nearly all intronless, and related to MINI ZINC FINGER genes that possess only the zinc finger. Phylogenetic analysis suggested that ZHDs have expanded considerably during angiosperm evolution. In addition, the ZHD group has 24 members, which is twice as much as the Arabidopsis ZHD group, indicating that the Chinese cabbage ZHD genes have been retained more frequently than other group genes. Real-time PCR analysis showed that most of BraZF-HD genes are preferentially expressed in flower. Furthermore, most of these genes are significantly induced under photoperiod or vernalization conditions, as well as abiotic stresses. Thereby implying that they may play important roles in these processes. This study provides insight into the evolution of ZF-HD genes in Chinese cabbage genome and may aid efforts to further characterize the function of these predicted ZF-HD genes in flowering and resistance. PMID:26546019

  8. The CHR site: definition and genome-wide identification of a cell cycle transcriptional element

    PubMed Central

    Müller, Gerd A.; Wintsche, Axel; Stangner, Konstanze; Prohaska, Sonja J.; Stadler, Peter F.; Engeland, Kurt

    2014-01-01

    The cell cycle genes homology region (CHR) has been identified as a DNA element with an important role in transcriptional regulation of late cell cycle genes. It has been shown that such genes are controlled by DREAM, MMB and FOXM1-MuvB and that these protein complexes can contact DNA via CHR sites. However, it has not been elucidated which sequence variations of the canonical CHR are functional and how frequent CHR-based regulation is utilized in mammalian genomes. Here, we define the spectrum of functional CHR elements. As the basis for a computational meta-analysis, we identify new CHR sequences and compile phylogenetic motif conservation as well as genome-wide protein-DNA binding and gene expression data. We identify CHR elements in most late cell cycle genes binding DREAM, MMB, or FOXM1-MuvB. In contrast, Myb- and forkhead-binding sites are underrepresented in both early and late cell cycle genes. Our findings support a general mechanism: sequential binding of DREAM, MMB and FOXM1-MuvB complexes to late cell cycle genes requires CHR elements. Taken together, we define the group of CHR-regulated genes in mammalian genomes and provide evidence that the CHR is the central promoter element in transcriptional regulation of late cell cycle genes by DREAM, MMB and FOXM1-MuvB. PMID:25106871

  9. Genome-Wide Transcriptional Response of Saccharomyces cerevisiae to Stress-Induced Perturbations

    PubMed Central

    Taymaz-Nikerel, Hilal; Cankorur-Cetinkaya, Ayca; Kirdar, Betul

    2016-01-01

    Cells respond to environmental and/or genetic perturbations in order to survive and proliferate. Characterization of the changes after various stimuli at different -omics levels is crucial to comprehend the adaptation of cells to the changing conditions. Genome-wide quantification and analysis of transcript levels, the genes affected by perturbations, extends our understanding of cellular metabolism by pointing out the mechanisms that play role in sensing the stress caused by those perturbations and related signaling pathways, and in this way guides us to achieve endeavors, such as rational engineering of cells or interpretation of disease mechanisms. Saccharomyces cerevisiae as a model system has been studied in response to different perturbations and corresponding transcriptional profiles were followed either statically or/and dynamically, short and long term. This review focuses on response of yeast cells to diverse stress inducing perturbations, including nutritional changes, ionic stress, salt stress, oxidative stress, osmotic shock, and to genetic interventions such as deletion and overexpression of genes. It is aimed to conclude on common regulatory phenomena that allow yeast to organize its transcriptomic response after any perturbation under different external conditions. PMID:26925399

  10. Systems-Level Analysis of Genome-Wide Association Data

    PubMed Central

    Farber, Charles R.

    2013-01-01

    Genome-wide association studies (GWAS) have emerged as the method of choice for identifying common variants affecting complex disease. In a GWAS, particular attention is placed, for obvious reasons, on single-nucleotide polymorphisms (SNPs) that exceed stringent genome-wide significance thresholds. However, it is expected that many SNPs with only nominal evidence of association (e.g., P < 0.05) truly influence disease. Efforts to extract additional biological information from entire GWAS datasets have primarily focused on pathway-enrichment analyses. However, these methods suffer from a number of limitations and typically fail to lead to testable hypotheses. To evaluate alternative approaches, we performed a systems-level analysis of GWAS data using weighted gene coexpression network analysis. A weighted gene coexpression network was generated for 1918 genes harboring SNPs that displayed nominal evidence of association (P ≤ 0.05) from a GWAS of bone mineral density (BMD) using microarray data on circulating monocytes isolated from individuals with extremely low or high BMD. Thirteen distinct gene modules were identified, each comprising coexpressed and highly interconnected GWAS genes. Through the characterization of module content and topology, we illustrate how network analysis can be used to discover disease-associated subnetworks and characterize novel interactions for genes with a known role in the regulation of BMD. In addition, we provide evidence that network metrics can be used as a prioritizing tool when selecting genes and SNPs for replication studies. Our results highlight the advantages of using systems-level strategies to add value to and inform GWAS. PMID:23316444

  11. Genome-wide Analysis Reveals New Roles for the Activation Domains of the Saccharomyces cerevisiae Heat Shock Transcription Factor (Hsf1) during the Transient Heat Shock Response*S

    PubMed Central

    Eastmond, Dawn L.; Nelson, Hillary C. M.

    2008-01-01

    In response to elevated temperatures, cells from many organisms rapidly transcribe a number of mRNAs. In Saccharomyces cerevisiae, this protective response involves two regulatory systems: the heat shock transcription factor (Hsf1) and the Msn2 and Msn4 (Msn2/4) transcription factors. Both systems modulate the induction of specific heat shock genes. However, the contribution of Hsf1, independent of Msn2/4, is only beginning to emerge. To address this question, we constructed an msn2/4 double mutant and used microarrays to elucidate the genome-wide expression program of Hsf1. The data showed that 7.6% of the genome was heat-induced. The up-regulated genes belong to a wide range of functional categories, with a significant increase in the chaperone and metabolism genes. We then focused on the contribution of the activation domains of Hsf1 to the expression profile and extended our analysis to include msn2/4Δ strains deleted for the N-terminal or C-terminal activation domain of Hsf1. Cluster analysis of the heat-induced genes revealed activation domain-specific patterns of expression, with each cluster also showing distinct preferences for functional categories. Computational analysis of the promoters of the induced genes affected by the loss of an activation domain showed a distinct preference for positioning and topology of the Hsf1 binding site. This study provides insight into the important role that both activation domains play for the Hsf1 regulatory system to rapidly and effectively transcribe its regulon in response to heat shock. PMID:16926161

  12. A Robust Analytical Pipeline for Genome-Wide Identification of the Genes Regulated by a Transcription Factor: Combinatorial Analysis Performed Using gSELEX-Seq and RNA-Seq

    PubMed Central

    Kojima, Takaaki; Kunitake, Emi; Ihara, Kunio; Kobayashi, Tetsuo; Nakano, Hideo

    2016-01-01

    For identifying the genes that are regulated by a transcription factor (TF), we have established an analytical pipeline that combines genomic systematic evolution of ligands by exponential enrichment (gSELEX)-Seq and RNA-Seq. Here, SELEX was used to select DNA fragments from an Aspergillus nidulans genomic library that bound specifically to AmyR, a TF from A. nidulans. High-throughput sequencing data were obtained for the DNAs enriched through the selection, following which various in silico analyses were performed. Mapping reads to the genome revealed the binding motifs including the canonical AmyR-binding motif, CGGN8CGG, as well as the candidate promoters controlled by AmyR. In parallel, differentially expressed genes related to AmyR were identified by using RNA-Seq analysis with samples from A. nidulans WT and amyR deletant. By obtaining the intersecting set of genes detected using both gSELEX-Seq and RNA-Seq, the genes directly regulated by AmyR in A. nidulans can be identified with high reliability. This analytical pipeline is a robust platform for comprehensive genome-wide identification of the genes that are regulated by a target TF. PMID:27411092

  13. A genome wide transcriptional model of the complex response to pre-TCR signalling during thymocyte differentiation.

    PubMed

    Sahni, Hemant; Ross, Susan; Barbarulo, Alessandro; Solanki, Anisha; Lau, Ching-In; Furmanski, Anna; Saldaña, José Ignacio; Ono, Masahiro; Hubank, Mike; Barenco, Martino; Crompton, Tessa

    2015-10-01

    Developing thymocytes require pre-TCR signalling to differentiate from CD4-CD8- double negative to CD4+CD8+ double positive cell. Here we followed the transcriptional response to pre-TCR signalling in a synchronised population of differentiating double negative thymocytes. This time series analysis revealed a complex transcriptional response, in which thousands of genes were up and down-regulated before changes in cell surface phenotype were detected. Genome-wide measurement of RNA degradation of individual genes showed great heterogeneity in the rate of degradation between different genes. We therefore used time course expression and degradation data and a genome wide transcriptional modelling (GWTM) strategy to model the transcriptional response of genes up-regulated on pre-TCR signal transduction. This analysis revealed five major temporally distinct transcriptional activities that up regulate transcription through time, whereas down-regulation of expression occurred in three waves. Our model thus placed known regulators in a temporal perspective, and in addition identified novel candidate regulators of thymocyte differentiation. PMID:26415229

  14. Genome-wide DNA methylation analysis in hepatocellular carcinoma.

    PubMed

    Yamada, Nobuhisa; Yasui, Kohichiroh; Dohi, Osamu; Gen, Yasuyuki; Tomie, Akira; Kitaichi, Tomoko; Iwai, Naoto; Mitsuyoshi, Hironori; Sumida, Yoshio; Moriguchi, Michihisa; Yamaguchi, Kanji; Nishikawa, Taichiro; Umemura, Atsushi; Naito, Yuji; Tanaka, Shinji; Arii, Shigeki; Itoh, Yoshito

    2016-04-01

    Epigenetic changes as well as genetic changes are mechanisms of tumorigenesis. We aimed to identify novel genes that are silenced by DNA hypermethylation in hepatocellular carcinoma (HCC). We screened for genes with promoter DNA hypermethylation using a genome-wide methylation microarray analysis in primary HCC (the discovery set). The microarray analysis revealed that there were 2,670 CpG sites that significantly differed in regards to the methylation level between the tumor and non-tumor liver tissues; 875 were significantly hypermethylated and 1,795 were significantly hypomethylated in the HCC tumors compared to the non‑tumor tissues. Further analyses using methylation-specific PCR, combined with expression analysis, in the validation set of primary HCC showed that, in addition to three known tumor-suppressor genes (APC, CDKN2A, and GSTP1), eight genes (AKR1B1, GRASP, MAP9, NXPE3, RSPH9, SPINT2, STEAP4, and ZNF154) were significantly hypermethylated and downregulated in the HCC tumors compared to the non-tumor liver tissues. Our results suggest that epigenetic silencing of these genes may be associated with HCC. PMID:26883180

  15. Comparative analysis of methods for genome-wide nucleosome cartography.

    PubMed

    Quintales, Luis; Vázquez, Enrique; Antequera, Francisco

    2015-07-01

    Nucleosomes contribute to compacting the genome into the nucleus and regulate the physical access of regulatory proteins to DNA either directly or through the epigenetic modifications of the histone tails. Precise mapping of nucleosome positioning across the genome is, therefore, essential to understanding the genome regulation. In recent years, several experimental protocols have been developed for this purpose that include the enzymatic digestion, chemical cleavage or immunoprecipitation of chromatin followed by next-generation sequencing of the resulting DNA fragments. Here, we compare the performance and resolution of these methods from the initial biochemical steps through the alignment of the millions of short-sequence reads to a reference genome to the final computational analysis to generate genome-wide maps of nucleosome occupancy. Because of the lack of a unified protocol to process data sets obtained through the different approaches, we have developed a new computational tool (NUCwave), which facilitates their analysis, comparison and assessment and will enable researchers to choose the most suitable method for any particular purpose. NUCwave is freely available at http://nucleosome.usal.es/nucwave along with a step-by-step protocol for its use. PMID:25296770

  16. Genome-wide association analysis identifies six new loci associated with forced vital capacity

    PubMed Central

    Loth, Daan W.; Artigas, María Soler; Gharib, Sina A.; Wain, Louise V.; Franceschini, Nora; Koch, Beate; Pottinger, Tess; Smith, Albert Vernon; Duan, Qing; Oldmeadow, Chris; Lee, Mi Kyeong; Strachan, David P.; James, Alan L.; Huffman, Jennifer E.; Vitart, Veronique; Ramasamy, Adaikalavan; Wareham, Nicholas J.; Kaprio, Jaakko; Wang, Xin-Qun; Trochet, Holly; Kähönen, Mika; Flexeder, Claudia; Albrecht, Eva; Lopez, Lorna M.; de Jong, Kim; Thyagarajan, Bharat; Alves, Alexessander Couto; Enroth, Stefan; Omenaas, Ernst; Joshi, Peter K.; Fall, Tove; Viňuela, Ana; Launer, Lenore J.; Loehr, Laura R.; Fornage, Myriam; Li, Guo; Wilk, Jemma B.; Tang, Wenbo; Manichaikul, Ani; Lahousse, Lies; Harris, Tamara B.; North, Kari E.; Rudnicka, Alicja R.; Hui, Jennie; Gu, Xiangjun; Lumley, Thomas; Wright, Alan F.; Hastie, Nicholas D.; Campbell, Susan; Kumar, Rajesh; Pin, Isabelle; Scott, Robert A.; Pietiläinen, Kirsi H.; Surakka, Ida; Liu, Yongmei; Holliday, Elizabeth G.; Schulz, Holger; Heinrich, Joachim; Davies, Gail; Vonk, Judith M.; Wojczynski, Mary; Pouta, Anneli; Johansson, Åsa; Wild, Sarah H.; Ingelsson, Erik; Rivadeneira, Fernando; Völzke, Henry; Hysi, Pirro G.; Eiriksdottir, Gudny; Morrison, Alanna C.; Rotter, Jerome I.; Gao, Wei; Postma, Dirkje S.; White, Wendy B.; Rich, Stephen S.; Hofman, Albert; Aspelund, Thor; Couper, David; Smith, Lewis J.; Psaty, Bruce M.; Lohman, Kurt; Burchard, Esteban G.; Uitterlinden, André G.; Garcia, Melissa; Joubert, Bonnie R.; McArdle, Wendy L.; Musk, A. Bill; Hansel, Nadia; Heckbert, Susan R.; Zgaga, Lina; van Meurs, Joyce B.J.; Navarro, Pau; Rudan, Igor; Oh, Yeon-Mok; Redline, Susan; Jarvis, Deborah; Zhao, Jing Hua; Rantanen, Taina; O’Connor, George T.; Ripatti, Samuli; Scott, Rodney J.; Karrasch, Stefan; Grallert, Harald; Gaddis, Nathan C.; Starr, John M.; Wijmenga, Cisca; Minster, Ryan L.; Lederer, David J.; Pekkanen, Juha; Gyllensten, Ulf; Campbell, Harry; Morris, Andrew P.; Gläser, Sven; Hammond, Christopher J.; Burkart, Kristin M.; Beilby, John; Kritchevsky, Stephen B.; Gudnason, Vilmundur; Hancock, Dana B.; Williams, O. Dale; Polasek, Ozren; Zemunik, Tatijana; Kolcic, Ivana; Petrini, Marcy F.; Wjst, Matthias; Kim, Woo Jin; Porteous, David J.; Scotland, Generation; Smith, Blair H.; Viljanen, Anne; Heliövaara, Markku; Attia, John R.; Sayers, Ian; Hampel, Regina; Gieger, Christian; Deary, Ian J.; Boezen, H. Marike; Newman, Anne; Jarvelin, Marjo-Riitta; Wilson, James F.; Lind, Lars; Stricker, Bruno H.; Teumer, Alexander; Spector, Timothy D.; Melén, Erik; Peters, Marjolein J.; Lange, Leslie A.; Barr, R. Graham; Bracke, Ken R.; Verhamme, Fien M.; Sung, Joohon; Hiemstra, Pieter S.; Cassano, Patricia A.; Sood, Akshay; Hayward, Caroline; Dupuis, Josée; Hall, Ian P.; Brusselle, Guy G.; Tobin, Martin D.; London, Stephanie J.

    2014-01-01

    Forced vital capacity (FVC), a spirometric measure of pulmonary function, reflects lung volume and is used to diagnose and monitor lung diseases. We performed genome-wide association study meta-analysis of FVC in 52,253 individuals from 26 studies and followed up the top associations in 32,917 additional individuals of European ancestry. We found six new regions associated at genome-wide significance (P < 5 × 10−8) with FVC in or near EFEMP1, BMP6, MIR-129-2/HSD17B12, PRDM11, WWOX, and KCNJ2. Two (GSTCD and PTCH1) loci previously associated with spirometric measures were related to FVC. Newly implicated regions were followed-up in samples of African American, Korean, Chinese, and Hispanic individuals. We detected transcripts for all six newly implicated genes in human lung tissue. The new loci may inform mechanisms involved in lung development and pathogenesis of restrictive lung disease. PMID:24929828

  17. Genome-wide association analysis identifies six new loci associated with forced vital capacity.

    PubMed

    Loth, Daan W; Soler Artigas, María; Gharib, Sina A; Wain, Louise V; Franceschini, Nora; Koch, Beate; Pottinger, Tess D; Smith, Albert Vernon; Duan, Qing; Oldmeadow, Chris; Lee, Mi Kyeong; Strachan, David P; James, Alan L; Huffman, Jennifer E; Vitart, Veronique; Ramasamy, Adaikalavan; Wareham, Nicholas J; Kaprio, Jaakko; Wang, Xin-Qun; Trochet, Holly; Kähönen, Mika; Flexeder, Claudia; Albrecht, Eva; Lopez, Lorna M; de Jong, Kim; Thyagarajan, Bharat; Alves, Alexessander Couto; Enroth, Stefan; Omenaas, Ernst; Joshi, Peter K; Fall, Tove; Viñuela, Ana; Launer, Lenore J; Loehr, Laura R; Fornage, Myriam; Li, Guo; Wilk, Jemma B; Tang, Wenbo; Manichaikul, Ani; Lahousse, Lies; Harris, Tamara B; North, Kari E; Rudnicka, Alicja R; Hui, Jennie; Gu, Xiangjun; Lumley, Thomas; Wright, Alan F; Hastie, Nicholas D; Campbell, Susan; Kumar, Rajesh; Pin, Isabelle; Scott, Robert A; Pietiläinen, Kirsi H; Surakka, Ida; Liu, Yongmei; Holliday, Elizabeth G; Schulz, Holger; Heinrich, Joachim; Davies, Gail; Vonk, Judith M; Wojczynski, Mary; Pouta, Anneli; Johansson, Asa; Wild, Sarah H; Ingelsson, Erik; Rivadeneira, Fernando; Völzke, Henry; Hysi, Pirro G; Eiriksdottir, Gudny; Morrison, Alanna C; Rotter, Jerome I; Gao, Wei; Postma, Dirkje S; White, Wendy B; Rich, Stephen S; Hofman, Albert; Aspelund, Thor; Couper, David; Smith, Lewis J; Psaty, Bruce M; Lohman, Kurt; Burchard, Esteban G; Uitterlinden, André G; Garcia, Melissa; Joubert, Bonnie R; McArdle, Wendy L; Musk, A Bill; Hansel, Nadia; Heckbert, Susan R; Zgaga, Lina; van Meurs, Joyce B J; Navarro, Pau; Rudan, Igor; Oh, Yeon-Mok; Redline, Susan; Jarvis, Deborah L; Zhao, Jing Hua; Rantanen, Taina; O'Connor, George T; Ripatti, Samuli; Scott, Rodney J; Karrasch, Stefan; Grallert, Harald; Gaddis, Nathan C; Starr, John M; Wijmenga, Cisca; Minster, Ryan L; Lederer, David J; Pekkanen, Juha; Gyllensten, Ulf; Campbell, Harry; Morris, Andrew P; Gläser, Sven; Hammond, Christopher J; Burkart, Kristin M; Beilby, John; Kritchevsky, Stephen B; Gudnason, Vilmundur; Hancock, Dana B; Williams, O Dale; Polasek, Ozren; Zemunik, Tatijana; Kolcic, Ivana; Petrini, Marcy F; Wjst, Matthias; Kim, Woo Jin; Porteous, David J; Scotland, Generation; Smith, Blair H; Viljanen, Anne; Heliövaara, Markku; Attia, John R; Sayers, Ian; Hampel, Regina; Gieger, Christian; Deary, Ian J; Boezen, H Marike; Newman, Anne; Jarvelin, Marjo-Riitta; Wilson, James F; Lind, Lars; Stricker, Bruno H; Teumer, Alexander; Spector, Timothy D; Melén, Erik; Peters, Marjolein J; Lange, Leslie A; Barr, R Graham; Bracke, Ken R; Verhamme, Fien M; Sung, Joohon; Hiemstra, Pieter S; Cassano, Patricia A; Sood, Akshay; Hayward, Caroline; Dupuis, Josée; Hall, Ian P; Brusselle, Guy G; Tobin, Martin D; London, Stephanie J

    2014-07-01

    Forced vital capacity (FVC), a spirometric measure of pulmonary function, reflects lung volume and is used to diagnose and monitor lung diseases. We performed genome-wide association study meta-analysis of FVC in 52,253 individuals from 26 studies and followed up the top associations in 32,917 additional individuals of European ancestry. We found six new regions associated at genome-wide significance (P < 5 × 10(-8)) with FVC in or near EFEMP1, BMP6, MIR129-2-HSD17B12, PRDM11, WWOX and KCNJ2. Two loci previously associated with spirometric measures (GSTCD and PTCH1) were related to FVC. Newly implicated regions were followed up in samples from African-American, Korean, Chinese and Hispanic individuals. We detected transcripts for all six newly implicated genes in human lung tissue. The new loci may inform mechanisms involved in lung development and the pathogenesis of restrictive lung disease. PMID:24929828

  18. Genome-wide analysis of microRNA and mRNA expression signatures in cancer

    PubMed Central

    Li, Ming-hui; Fu, Sheng-bo; Xiao, Hua-sheng

    2015-01-01

    Cancer is an extremely diverse and complex disease that results from various genetic and epigenetic changes such as DNA copy-number variations, mutations, and aberrant mRNA and/or protein expression caused by abnormal transcriptional regulation. The expression profiles of certain microRNAs (miRNAs) and messenger RNAs (mRNAs) are closely related to cancer progression stages. In the past few decades, DNA microarray and next-generation sequencing techniques have been widely applied to identify miRNA and mRNA signatures for cancers on a genome-wide scale and have provided meaningful insights into cancer diagnosis, prognosis and personalized medicine. In this review, we summarize the progress in genome-wide analysis of miRNAs and mRNAs as cancer biomarkers, highlighting their diagnostic and prognostic roles. PMID:26299954

  19. Genome-Wide Analysis of Human Metapneumovirus Evolution

    PubMed Central

    Kim, Jin Il; Park, Sehee; Lee, Ilseob; Park, Kwang Sook; Kwak, Eun Jung; Moon, Kwang Mee; Lee, Chang Kyu; Bae, Joon-Yong; Park, Man-Seong; Song, Ki-Joon

    2016-01-01

    Human metapneumovirus (HMPV) has been described as an important etiologic agent of upper and lower respiratory tract infections, especially in young children and the elderly. Most of school-aged children might be introduced to HMPVs, and exacerbation with other viral or bacterial super-infection is common. However, our understanding of the molecular evolution of HMPVs remains limited. To address the comprehensive evolutionary dynamics of HMPVs, we report a genome-wide analysis of the eight genes (N, P, M, F, M2, SH, G, and L) using 103 complete genome sequences. Phylogenetic reconstruction revealed that the eight genes from one HMPV strain grouped into the same genetic group among the five distinct lineages (A1, A2a, A2b, B1, and B2). A few exceptions of phylogenetic incongruence might suggest past recombination events, and we detected possible recombination breakpoints in the F, SH, and G coding regions. The five genetic lineages of HMPVs shared quite remote common ancestors ranging more than 220 to 470 years of age with the most recent origins for the A2b sublineage. Purifying selection was common, but most protein genes except the F and M2-2 coding regions also appeared to experience episodic diversifying selection. Taken together, these suggest that the five lineages of HMPVs maintain their individual evolutionary dynamics and that recombination and selection forces might work on shaping the genetic diversity of HMPVs. PMID:27046055

  20. Improved Statistics for Genome-Wide Interaction Analysis

    PubMed Central

    Ueki, Masao; Cordell, Heather J.

    2012-01-01

    Recently, Wu and colleagues [1] proposed two novel statistics for genome-wide interaction analysis using case/control or case-only data. In computer simulations, their proposed case/control statistic outperformed competing approaches, including the fast-epistasis option in PLINK and logistic regression analysis under the correct model; however, reasons for its superior performance were not fully explored. Here we investigate the theoretical properties and performance of Wu et al.'s proposed statistics and explain why, in some circumstances, they outperform competing approaches. Unfortunately, we find minor errors in the formulae for their statistics, resulting in tests that have higher than nominal type 1 error. We also find minor errors in PLINK's fast-epistasis and case-only statistics, although theory and simulations suggest that these errors have only negligible effect on type 1 error. We propose adjusted versions of all four statistics that, both theoretically and in computer simulations, maintain correct type 1 error rates under the null hypothesis. We also investigate statistics based on correlation coefficients that maintain similar control of type 1 error. Although designed to test specifically for interaction, we show that some of these previously-proposed statistics can, in fact, be sensitive to main effects at one or both loci, particularly in the presence of linkage disequilibrium. We propose two new “joint effects” statistics that, provided the disease is rare, are sensitive only to genuine interaction effects. In computer simulations we find, in most situations considered, that highest power is achieved by analysis under the correct genetic model. Such an analysis is unachievable in practice, as we do not know this model. However, generally high power over a wide range of scenarios is exhibited by our joint effects and adjusted Wu statistics. We recommend use of these alternative or adjusted statistics and urge caution when using Wu et al

  1. Genome-wide pathway analysis of genome-wide association studies on systemic lupus erythematosus and rheumatoid arthritis.

    PubMed

    Lee, Young Ho; Bae, Sang-Cheol; Choi, Sung Jae; Ji, Jong Dae; Song, Gwan Gyu

    2012-12-01

    The aim of this study was to explore candidate single nucleotide polymorphisms (SNPs) and candidate mechanisms of systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Two SLE genome-wide association studies (GWASs) datasets were included in this study. Meta-analysis was conducted using 737,984 SNPs in 1,527 SLE cases and 3,421 controls of European ancestry, and 4,429 SNPs that met a threshold of p < 0.01 in a Korean RA GWAS dataset was used. ICSNPathway (identify candidate causal SNPs and pathways) analysis was applied to the meta-analysis results of the SLE GWAS datasets, and a RA GWAS dataset. The most significant result of SLE GWAS meta-analysis concerned rs2051549 in the human leukocyte antigen (HLA) region (p = 3.36E-22). In the non-HLA region, meta-analysis identified 6 SNPs associated with SLE with genome-wide significance (STAT4, TNPO3, BLK, FAM167A, and IRF5). ICSNPathway identified five candidate causal SNPs and 13 candidate causal pathways. This pathway-based analysis provides three hypotheses of the biological mechanism involved. First, rs8084 and rs7192 → HLA-DRA → bystander B cell activation. Second, rs1800629 → TNF → cytokine network. Third, rs1150752 and rs185819 → TNXB → collagen metabolic process. ICSNPathway analysis identified three candidate causal non-HLA SNPs and four candidate causal pathways involving the PADI4, MTR, PADI2, and TPH2 genes of RA. We identified five candidate SNPs and thirteen pathways, involving bystander B cell activation, cytokine network, and collagen metabolic processing, which may contribute to SLE susceptibility, and we revealed candidate causal non-HLA SNPs, genes, and pathways of RA. PMID:23053960

  2. Dry and wet approaches for genome-wide functional annotation of conventional and unconventional transcriptional activators.

    PubMed

    Levati, Elisabetta; Sartini, Sara; Ottonello, Simone; Montanini, Barbara

    2016-01-01

    Transcription factors (TFs) are master gene products that regulate gene expression in response to a variety of stimuli. They interact with DNA in a sequence-specific manner using a variety of DNA-binding domain (DBD) modules. This allows to properly position their second domain, called "effector domain", to directly or indirectly recruit positively or negatively acting co-regulators including chromatin modifiers, thus modulating preinitiation complex formation as well as transcription elongation. At variance with the DBDs, which are comprised of well-defined and easily recognizable DNA binding motifs, effector domains are usually much less conserved and thus considerably more difficult to predict. Also not so easy to identify are the DNA-binding sites of TFs, especially on a genome-wide basis and in the case of overlapping binding regions. Another emerging issue, with many potential regulatory implications, is that of so-called "moonlighting" transcription factors, i.e., proteins with an annotated function unrelated to transcription and lacking any recognizable DBD or effector domain, that play a role in gene regulation as their second job. Starting from bioinformatic and experimental high-throughput tools for an unbiased, genome-wide identification and functional characterization of TFs (especially transcriptional activators), we describe both established (and usually well affordable) as well as newly developed platforms for DNA-binding site identification. Selected combinations of these search tools, some of which rely on next-generation sequencing approaches, allow delineating the entire repertoire of TFs and unconventional regulators encoded by the any sequenced genome. PMID:27453771

  3. Dynamics of oscillatory phenotypes in S. cerevisiae reveal a network of genome-wide transcriptional oscillators

    PubMed Central

    Chin, Shwe L.; Marcus, Ian M.; Klevecz, Robert R.; Li, Caroline M.

    2012-01-01

    Genetic and environmental factors are well-studied influences on phenotype; however, time is a variable that is rarely considered when studying changes in cellular phenotype. Time-resolved microarray data revealed genome-wide transcriptional oscillation in a yeast continuous culture system with ~2 and ~4 h periods. We mapped the global patterns of transcriptional oscillations into a 3D map to represent different cellular phenotypes of redox cycles. This map shows the dynamic nature of gene expression in that transcripts are ordered and coupled to each other through time and concentration space. Although cells differed in oscillation periods, transcripts involved in certain processes were conserved in a deterministic way. When oscillation period lengthened, the peak to trough ratio of transcripts increased and the fraction of cells in the unbudded (G0/G1) phase of the cell division cycle increased. Decreasing the glucose level in the culture media was one way to increase the redox cycle, possibly from changes in metabolic flux. The period may be responding to lower glucose levels by increasing the fraction of cells in G1 and reducing S-phase gating so that cells can spend more time in catabolic processes. Our results support that gene transcripts are coordinated with metabolic functions and the cell division cycle. PMID:22289124

  4. Decoding genome-wide GadEWX-transcriptional regulatory networks reveals multifaceted cellular responses to acid stress in Escherichia coli

    PubMed Central

    Seo, Sang Woo; Kim, Donghyuk; O'Brien, Edward J.; Szubin, Richard; Palsson, Bernhard O.

    2015-01-01

    The regulators GadE, GadW and GadX (which we refer to as GadEWX) play a critical role in the transcriptional regulation of the glutamate-dependent acid resistance (GDAR) system in Escherichia coli K-12 MG1655. However, the genome-wide regulatory role of GadEWX is still unknown. Here we comprehensively reconstruct the genome-wide GadEWX transcriptional regulatory network and RpoS involvement in E. coli K-12 MG1655 under acidic stress. Integrative data analysis reveals that GadEWX regulons consist of 45 genes in 31 transcription units and 28 of these genes were associated with RpoS-binding sites. We demonstrate that GadEWX directly and coherently regulate several proton-generating/consuming enzymes with pairs of negative-feedback loops for pH homeostasis. In addition, GadEWX regulate genes with assorted functions, including molecular chaperones, acid resistance, stress response and other regulatory activities. These results show how GadEWX simultaneously coordinate many cellular processes to produce the overall response of E. coli to acid stress. PMID:26258987

  5. Decoding genome-wide GadEWX-transcriptional regulatory networks reveals multifaceted cellular responses to acid stress in Escherichia coli.

    PubMed

    Seo, Sang Woo; Kim, Donghyuk; O'Brien, Edward J; Szubin, Richard; Palsson, Bernhard O

    2015-01-01

    The regulators GadE, GadW and GadX (which we refer to as GadEWX) play a critical role in the transcriptional regulation of the glutamate-dependent acid resistance (GDAR) system in Escherichia coli K-12 MG1655. However, the genome-wide regulatory role of GadEWX is still unknown. Here we comprehensively reconstruct the genome-wide GadEWX transcriptional regulatory network and RpoS involvement in E. coli K-12 MG1655 under acidic stress. Integrative data analysis reveals that GadEWX regulons consist of 45 genes in 31 transcription units and 28 of these genes were associated with RpoS-binding sites. We demonstrate that GadEWX directly and coherently regulate several proton-generating/consuming enzymes with pairs of negative-feedback loops for pH homeostasis. In addition, GadEWX regulate genes with assorted functions, including molecular chaperones, acid resistance, stress response and other regulatory activities. These results show how GadEWX simultaneously coordinate many cellular processes to produce the overall response of E. coli to acid stress. PMID:26258987

  6. Genome-Wide Transcriptional Response of the Archaeon Thermococcus gammatolerans to Cadmium

    PubMed Central

    Lagorce, Arnaud; Fourçans, Aude; Dutertre, Murielle; Bouyssiere, Brice; Zivanovic, Yvan; Confalonieri, Fabrice

    2012-01-01

    Thermococcus gammatolerans, the most radioresistant archaeon known to date, is an anaerobic and hyperthermophilic sulfur-reducing organism living in deep-sea hydrothermal vents. Knowledge of mechanisms underlying archaeal metal tolerance in such metal-rich ecosystem is still poorly documented. We showed that T. gammatolerans exhibits high resistance to cadmium (Cd), cobalt (Co) and zinc (Zn), a weaker tolerance to nickel (Ni), copper (Cu) and arsenate (AsO4) and that cells exposed to 1 mM Cd exhibit a cellular Cd concentration of 67 µM. A time-dependent transcriptomic analysis using microarrays was performed at a non-toxic (100 µM) and a toxic (1 mM) Cd dose. The reliability of microarray data was strengthened by real time RT-PCR validations. Altogether, 114 Cd responsive genes were revealed and a substantial subset of genes is related to metal homeostasis, drug detoxification, re-oxidization of cofactors and ATP production. This first genome-wide expression profiling study of archaeal cells challenged with Cd showed that T. gammatolerans withstands induced stress through pathways observed in both prokaryotes and eukaryotes but also through new and original strategies. T. gammatolerans cells challenged with 1 mM Cd basically promote: 1) the induction of several transporter/permease encoding genes, probably to detoxify the cell; 2) the upregulation of Fe transporters encoding genes to likely compensate Cd damages in iron-containing proteins; 3) the induction of membrane-bound hydrogenase (Mbh) and membrane-bound hydrogenlyase (Mhy2) subunits encoding genes involved in recycling reduced cofactors and/or in proton translocation for energy production. By contrast to other organisms, redox homeostasis genes appear constitutively expressed and only a few genes encoding DNA repair proteins are regulated. We compared the expression of 27 Cd responsive genes in other stress conditions (Zn, Ni, heat shock, γ-rays), and showed that the Cd transcriptional pattern is

  7. Genome-wide transcriptional responses of Alteromonas naphthalenivorans SN2 to contaminated seawater and marine tidal flat sediment.

    PubMed

    Jin, Hyun Mi; Jeong, Hye Im; Kim, Kyung Hyun; Hahn, Yoonsoo; Madsen, Eugene L; Jeon, Che Ok

    2016-01-01

    A genome-wide transcriptional analysis of Alteromonas naphthalenivorans SN2 was performed to investigate its ecophysiological behavior in contaminated tidal flats and seawater. The experimental design mimicked these habitats that either added naphthalene or pyruvate; tidal flat-naphthalene (TF-N), tidal flat-pyruvate (TF-P), seawater-naphthalene (SW-N), and seawater-pyruvate (SW-P). The transcriptional profiles clustered by habitat (TF-N/TF-P and SW-N/SW-P), rather than carbon source, suggesting that the former may exert a greater influence on genome-wide expression in strain SN2 than the latter. Metabolic mapping of cDNA reads from strain SN2 based on KEGG pathway showed that metabolic and regulatory genes associated with energy metabolism, translation, and cell motility were highly expressed in all four test conditions, probably highlighting the copiotrophic properties of strain SN2 as an opportunistic marine r-strategist. Differential gene expression analysis revealed that strain SN2 displayed specific cellular responses to environmental variables (tidal flat, seawater, naphthalene, and pyruvate) and exhibited certain ecological fitness traits -- its notable PAH degradation capability in seasonally cold tidal flat might be reflected in elevated expression of stress response and chaperone proteins, while fast growth in nitrogen-deficient and aerobic seawater probably correlated with high expression of glutamine synthetase, enzymes utilizing nitrite/nitrate, and those involved in the removal of reactive oxygen species. PMID:26887987

  8. Genome-wide transcriptional responses of Alteromonas naphthalenivorans SN2 to contaminated seawater and marine tidal flat sediment

    PubMed Central

    Jin, Hyun Mi; Jeong, Hye Im; Kim, Kyung Hyun; Hahn, Yoonsoo; Madsen, Eugene L.; Jeon, Che Ok

    2016-01-01

    A genome-wide transcriptional analysis of Alteromonas naphthalenivorans SN2 was performed to investigate its ecophysiological behavior in contaminated tidal flats and seawater. The experimental design mimicked these habitats that either added naphthalene or pyruvate; tidal flat-naphthalene (TF-N), tidal flat-pyruvate (TF-P), seawater-naphthalene (SW-N), and seawater-pyruvate (SW-P). The transcriptional profiles clustered by habitat (TF-N/TF-P and SW-N/SW-P), rather than carbon source, suggesting that the former may exert a greater influence on genome-wide expression in strain SN2 than the latter. Metabolic mapping of cDNA reads from strain SN2 based on KEGG pathway showed that metabolic and regulatory genes associated with energy metabolism, translation, and cell motility were highly expressed in all four test conditions, probably highlighting the copiotrophic properties of strain SN2 as an opportunistic marine r-strategist. Differential gene expression analysis revealed that strain SN2 displayed specific cellular responses to environmental variables (tidal flat, seawater, naphthalene, and pyruvate) and exhibited certain ecological fitness traits –– its notable PAH degradation capability in seasonally cold tidal flat might be reflected in elevated expression of stress response and chaperone proteins, while fast growth in nitrogen-deficient and aerobic seawater probably correlated with high expression of glutamine synthetase, enzymes utilizing nitrite/nitrate, and those involved in the removal of reactive oxygen species. PMID:26887987

  9. A genome-wide RNAi screen identifies a new transcriptional module required for self-renewal.

    PubMed

    Hu, Guang; Kim, Jonghwan; Xu, Qikai; Leng, Yumei; Orkin, Stuart H; Elledge, Stephen J

    2009-04-01

    We performed a genome-wide siRNA screen in mouse embryonic stem (ES) cells to identify genes essential for self-renewal, and found 148 genes whose down-regulation caused differentiation. Many of the identified genes function in gene regulation and/or development, and are highly expressed in ES cells and embryonic tissues. We further identified target genes of two transcription regulators Cnot3 and Trim28. We discovered that Cnot3 and Trim28 co-occupy many putative gene promoters with c-Myc and Zfx, but not other pluripotency-associated transcription factors. They form a unique module in the self-renewal transcription network, separate from the core module formed by Nanog, Oct4, and Sox2. The transcriptional targets of this module are enriched for genes involved in cell cycle, cell death, and cancer. This supports the idea that regulatory networks controlling self-renewal in stem cells may also be active in certain cancers and may represent novel anti-cancer targets. Our screen has implicated over 100 new genes in ES cell self-renewal, and illustrates the power of RNAi and forward genetics for the systematic study of self-renewal. PMID:19339689

  10. Genome-wide modeling of transcription kinetics reveals patterns of RNA production delays

    PubMed Central

    Honkela, Antti; Peltonen, Jaakko; Topa, Hande; Charapitsa, Iryna; Matarese, Filomena; Grote, Korbinian; Stunnenberg, Hendrik G.; Reid, George; Lawrence, Neil D.; Rattray, Magnus

    2015-01-01

    Genes with similar transcriptional activation kinetics can display very different temporal mRNA profiles because of differences in transcription time, degradation rate, and RNA-processing kinetics. Recent studies have shown that a splicing-associated RNA production delay can be significant. To investigate this issue more generally, it is useful to develop methods applicable to genome-wide datasets. We introduce a joint model of transcriptional activation and mRNA accumulation that can be used for inference of transcription rate, RNA production delay, and degradation rate given data from high-throughput sequencing time course experiments. We combine a mechanistic differential equation model with a nonparametric statistical modeling approach allowing us to capture a broad range of activation kinetics, and we use Bayesian parameter estimation to quantify the uncertainty in estimates of the kinetic parameters. We apply the model to data from estrogen receptor α activation in the MCF-7 breast cancer cell line. We use RNA polymerase II ChIP-Seq time course data to characterize transcriptional activation and mRNA-Seq time course data to quantify mature transcripts. We find that 11% of genes with a good signal in the data display a delay of more than 20 min between completing transcription and mature mRNA production. The genes displaying these long delays are significantly more likely to be short. We also find a statistical association between high delay and late intron retention in pre-mRNA data, indicating significant splicing-associated production delays in many genes. PMID:26438844

  11. Genome-wide modeling of transcription kinetics reveals patterns of RNA production delays.

    PubMed

    Honkela, Antti; Peltonen, Jaakko; Topa, Hande; Charapitsa, Iryna; Matarese, Filomena; Grote, Korbinian; Stunnenberg, Hendrik G; Reid, George; Lawrence, Neil D; Rattray, Magnus

    2015-10-20

    Genes with similar transcriptional activation kinetics can display very different temporal mRNA profiles because of differences in transcription time, degradation rate, and RNA-processing kinetics. Recent studies have shown that a splicing-associated RNA production delay can be significant. To investigate this issue more generally, it is useful to develop methods applicable to genome-wide datasets. We introduce a joint model of transcriptional activation and mRNA accumulation that can be used for inference of transcription rate, RNA production delay, and degradation rate given data from high-throughput sequencing time course experiments. We combine a mechanistic differential equation model with a nonparametric statistical modeling approach allowing us to capture a broad range of activation kinetics, and we use Bayesian parameter estimation to quantify the uncertainty in estimates of the kinetic parameters. We apply the model to data from estrogen receptor α activation in the MCF-7 breast cancer cell line. We use RNA polymerase II ChIP-Seq time course data to characterize transcriptional activation and mRNA-Seq time course data to quantify mature transcripts. We find that 11% of genes with a good signal in the data display a delay of more than 20 min between completing transcription and mature mRNA production. The genes displaying these long delays are significantly more likely to be short. We also find a statistical association between high delay and late intron retention in pre-mRNA data, indicating significant splicing-associated production delays in many genes. PMID:26438844

  12. A high definition look at the NF-Y regulome reveals genome-wide associations with selected transcription factors.

    PubMed

    Dolfini, Diletta; Zambelli, Federico; Pedrazzoli, Maurizio; Mantovani, Roberto; Pavesi, Giulio

    2016-06-01

    NF-Y is a trimeric transcription factor (TF), binding the CCAAT box element, for which several results suggest a pioneering role in activation of transcription. In this work, we integrated 380 ENCODE ChIP-Seq experiments for 154 TFs and cofactors with sequence analysis, protein-protein interactions and RNA profiling data, in order to identify genome-wide regulatory modules resulting from the co-association of NF-Y with other TFs. We identified three main degrees of co-association with NF-Y for sequence-specific TFs. In the most relevant one, we found TFs having a significant overlap with NF-Y in their DNA binding loci, some with a precise spacing of binding sites with respect to the CCAAT box, others (FOS, Sp1/2, RFX5, IRF3, PBX3) mostly lacking their canonical binding site and bound to arrays of well spaced CCAAT boxes. As expected, NF-Y binding also correlates with RNA Pol II General TFs and with subunits of complexes involved in the control of H3K4 methylations. Co-association patterns are confirmed by protein-protein interactions, and correspond to specific functional categorizations and expression level changes of target genes following NF-Y inactivation. These data define genome-wide rules for the organization of NF-Y-centered regulatory modules, supporting a model of distinct categorization and synergy with well defined sets of TFs. PMID:26896797

  13. A high definition look at the NF-Y regulome reveals genome-wide associations with selected transcription factors

    PubMed Central

    Dolfini, Diletta; Zambelli, Federico; Pedrazzoli, Maurizio; Mantovani, Roberto; Pavesi, Giulio

    2016-01-01

    NF-Y is a trimeric transcription factor (TF), binding the CCAAT box element, for which several results suggest a pioneering role in activation of transcription. In this work, we integrated 380 ENCODE ChIP-Seq experiments for 154 TFs and cofactors with sequence analysis, protein–protein interactions and RNA profiling data, in order to identify genome-wide regulatory modules resulting from the co-association of NF-Y with other TFs. We identified three main degrees of co-association with NF-Y for sequence-specific TFs. In the most relevant one, we found TFs having a significant overlap with NF-Y in their DNA binding loci, some with a precise spacing of binding sites with respect to the CCAAT box, others (FOS, Sp1/2, RFX5, IRF3, PBX3) mostly lacking their canonical binding site and bound to arrays of well spaced CCAAT boxes. As expected, NF-Y binding also correlates with RNA Pol II General TFs and with subunits of complexes involved in the control of H3K4 methylations. Co-association patterns are confirmed by protein–protein interactions, and correspond to specific functional categorizations and expression level changes of target genes following NF-Y inactivation. These data define genome-wide rules for the organization of NF-Y-centered regulatory modules, supporting a model of distinct categorization and synergy with well defined sets of TFs. PMID:26896797

  14. Genome-Wide Identification of the Target Genes of AP2-O, a Plasmodium AP2-Family Transcription Factor.

    PubMed

    Kaneko, Izumi; Iwanaga, Shiroh; Kato, Tomomi; Kobayashi, Issei; Yuda, Masao

    2015-05-01

    Stage-specific transcription is a fundamental biological process in the life cycle of the Plasmodium parasite. Proteins containing the AP2 DNA-binding domain are responsible for stage-specific transcriptional regulation and belong to the only known family of transcription factors in Plasmodium parasites. Comprehensive identification of their target genes will advance our understanding of the molecular basis of stage-specific transcriptional regulation and stage-specific parasite development. AP2-O is an AP2 family transcription factor that is expressed in the mosquito midgut-invading stage, called the ookinete, and is essential for normal morphogenesis of this stage. In this study, we identified the genome-wide target genes of AP2-O by chromatin immunoprecipitation-sequencing and elucidate how this AP2 family transcription factor contributes to the formation of this motile stage. The analysis revealed that AP2-O binds specifically to the upstream genomic regions of more than 500 genes, suggesting that approximately 10% of the parasite genome is directly regulated by AP2-O. These genes are involved in distinct biological processes such as morphogenesis, locomotion, midgut penetration, protection against mosquito immunity and preparation for subsequent oocyst development. This direct and global regulation by AP2-O provides a model for gene regulation in Plasmodium parasites and may explain how these parasites manage to control their complex life cycle using a small number of sequence-specific AP2 transcription factors. PMID:26018192

  15. Genome-Wide Identification of the Target Genes of AP2-O, a Plasmodium AP2-Family Transcription Factor

    PubMed Central

    Kaneko, Izumi; Iwanaga, Shiroh; Kato, Tomomi; Kobayashi, Issei; Yuda, Masao

    2015-01-01

    Stage-specific transcription is a fundamental biological process in the life cycle of the Plasmodium parasite. Proteins containing the AP2 DNA-binding domain are responsible for stage-specific transcriptional regulation and belong to the only known family of transcription factors in Plasmodium parasites. Comprehensive identification of their target genes will advance our understanding of the molecular basis of stage-specific transcriptional regulation and stage-specific parasite development. AP2-O is an AP2 family transcription factor that is expressed in the mosquito midgut-invading stage, called the ookinete, and is essential for normal morphogenesis of this stage. In this study, we identified the genome-wide target genes of AP2-O by chromatin immunoprecipitation-sequencing and elucidate how this AP2 family transcription factor contributes to the formation of this motile stage. The analysis revealed that AP2-O binds specifically to the upstream genomic regions of more than 500 genes, suggesting that approximately 10% of the parasite genome is directly regulated by AP2-O. These genes are involved in distinct biological processes such as morphogenesis, locomotion, midgut penetration, protection against mosquito immunity and preparation for subsequent oocyst development. This direct and global regulation by AP2-O provides a model for gene regulation in Plasmodium parasites and may explain how these parasites manage to control their complex life cycle using a small number of sequence-specific AP2 transcription factors. PMID:26018192

  16. Meta-Analysis of Genome-Wide Association Studies of Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Neale, Benjamin M.; Medland, Sarah E.; Ripke, Stephan; Asherson, Philip; Franke, Barbara; Lesch, Klaus-Peter; Faraone, Stephen V.; Nguyen, Thuy Trang; Schafer, Helmut; Holmans, Peter; Daly, Mark; Steinhausen, Hans-Christoph; Freitag, Christine; Reif, Andreas; Renner, Tobias J.; Romanos, Marcel; Romanos, Jasmin; Walitza, Susanne; Warnke, Andreas; Meyer, Jobst; Palmason, Haukur; Buitelaar, Jan; Vasquez, Alejandro Arias; Lambregts-Rommelse, Nanda; Gill, Michael; Anney, Richard J. L.; Langely, Kate; O'Donovan, Michael; Williams, Nigel; Owen, Michael; Thapar, Anita; Kent, Lindsey; Sergeant, Joseph; Roeyers, Herbert; Mick, Eric; Biederman, Joseph; Doyle, Alysa; Smalley, Susan; Loo, Sandra; Hakonarson, Hakon; Elia, Josephine; Todorov, Alexandre; Miranda, Ana; Mulas, Fernando; Ebstein, Richard P.; Rothenberger, Aribert; Banaschewski, Tobias; Oades, Robert D.; Sonuga-Barke, Edmund; McGough, James; Nisenbaum, Laura; Middleton, Frank; Hu, Xiaolan; Nelson, Stan

    2010-01-01

    Objective: Although twin and family studies have shown attention-deficit/hyperactivity disorder (ADHD) to be highly heritable, genetic variants influencing the trait at a genome-wide significant level have yet to be identified. As prior genome-wide association studies (GWAS) have not yielded significant results, we conducted a meta-analysis of…

  17. Phenome-wide analysis of genome-wide polygenic scores.

    PubMed

    Krapohl, E; Euesden, J; Zabaneh, D; Pingault, J-B; Rimfeld, K; von Stumm, S; Dale, P S; Breen, G; O'Reilly, P F; Plomin, R

    2016-09-01

    Genome-wide polygenic scores (GPS), which aggregate the effects of thousands of DNA variants from genome-wide association studies (GWAS), have the potential to make genetic predictions for individuals. We conducted a systematic investigation of associations between GPS and many behavioral traits, the behavioral phenome. For 3152 unrelated 16-year-old individuals representative of the United Kingdom, we created 13 GPS from the largest GWAS for psychiatric disorders (for example, schizophrenia, depression and dementia) and cognitive traits (for example, intelligence, educational attainment and intracranial volume). The behavioral phenome included 50 traits from the domains of psychopathology, personality, cognitive abilities and educational achievement. We examined phenome-wide profiles of associations for the entire distribution of each GPS and for the extremes of the GPS distributions. The cognitive GPS yielded stronger predictive power than the psychiatric GPS in our UK-representative sample of adolescents. For example, education GPS explained variation in adolescents' behavior problems (~0.6%) and in educational achievement (~2%) but psychiatric GPS were associated with neither. Despite the modest effect sizes of current GPS, quantile analyses illustrate the ability to stratify individuals by GPS and opportunities for research. For example, the highest and lowest septiles for the education GPS yielded a 0.5 s.d. difference in mean math grade and a 0.25 s.d. difference in mean behavior problems. We discuss the usefulness and limitations of GPS based on adult GWAS to predict genetic propensities earlier in development. PMID:26303664

  18. Mammalian Heat Shock Response and Mechanisms Underlying Its Genome-wide Transcriptional Regulation.

    PubMed

    Mahat, Dig B; Salamanca, H Hans; Duarte, Fabiana M; Danko, Charles G; Lis, John T

    2016-04-01

    The heat shock response (HSR) is critical for survival of all organisms. However, its scope, extent, and the molecular mechanism of regulation are poorly understood. Here we show that the genome-wide transcriptional response to heat shock in mammals is rapid and dynamic and results in induction of several hundred and repression of several thousand genes. Heat shock factor 1 (HSF1), the "master regulator" of the HSR, controls only a fraction of heat shock-induced genes and does so by increasing RNA polymerase II release from promoter-proximal pause. Notably, HSF2 does not compensate for the lack of HSF1. However, serum response factor appears to transiently induce cytoskeletal genes independently of HSF1. The pervasive repression of transcription is predominantly HSF1-independent and is mediated through reduction of RNA polymerase II pause release. Overall, mammalian cells orchestrate rapid, dynamic, and extensive changes in transcription upon heat shock that are largely modulated at pause release, and HSF1 plays a limited and specialized role. PMID:27052732

  19. Technical advances: genome-wide cDNA-AFLP analysis of the Arabidopsis transcriptome.

    PubMed

    Volkmuth, Wayne; Turk, Stefan; Shapiro, Amy; Fang, Yiwen; Kiegle, Ed; van Haaren, Mark; Donson, Jonathan

    2003-01-01

    cDNA-AFLP, a technology historically used to identify small numbers of differentially expressed genes, was adapted as a genome-wide transcript profiling method. mRNA levels were assayed in a diverse range of tissues from Arabidopsis thaliana plants grown under a variety of environmental conditions. The resulting cDNA-AFLP fragments were sequenced. By linking cDNA-AFLP fragments to their corresponding mRNAs via these sequences, a database was generated that contained quantitative expression information for up to two-thirds of gene loci in A. thaliana, ecotype Ws. Using this resource, the expression levels of genes, including those with high nucleotide sequence similarity, could be determined in a high-throughput manner merely by comparing cDNA-AFLP profiles with the database. The lengths of cDNA-AFLP fragments inferred from their electrophoretic mobilities correlated well with actual fragment lengths determined by sequencing. In addition, the concentrations of AFLP fragments from single cDNAs were highly correlated, illustrating the validity of cDNA-AFLP as a quantitative, genome-wide, transcript profiling method. cDNA-AFLP profiles were also qualitatively consistent with mRNA profiles obtained from parallel microarray analysis, and with data from previous studies. PMID:14506844

  20. Genome-wide discovery of functional transcription factor binding sites by comparative genomics: The case of Stat3

    PubMed Central

    Vallania, Francesco; Schiavone, Davide; Dewilde, Sarah; Pupo, Emanuela; Garbay, Serge; Calogero, Raffaele; Pontoglio, Marco; Provero, Paolo; Poli, Valeria

    2009-01-01

    The identification of direct targets of transcription factors is a key problem in the study of gene regulatory networks. However, the use of high throughput experimental methods, such as ChIP-chip and ChIP-sequencing, is limited by their high cost and strong dependence on cellular type and context. We developed a computational method for the genome-wide identification of functional transcription factor binding sites based on positional weight matrices, comparative genomics, and gene expression profiling. The method was applied to Stat3, a transcription factor playing crucial roles in inflammation, immunity and oncogenesis, and able to induce distinct subsets of target genes in different cell types or conditions. A newly generated positional weight matrix enabled us to assign affinity scores of high specificity, as measured by EMSA competition assays. Phylogenetic conservation with 7 vertebrate species was used to select the binding sites most likely to be functional. Validation was carried out on predicted sites within genes identified as differentially expressed in the presence or absence of Stat3 by microarray analysis. Twelve of the fourteen sites tested were bound by Stat3 in vivo, as assessed by Chromatin Immunoprecipitation, allowing us to identify 9 Stat3 transcriptional targets. Given its high validation rate, and the availability of large transcription factor-dependent gene expression datasets obtained under diverse experimental conditions, our approach appears to be a valid alternative to high-throughput experimental assays for the discovery of novel direct targets of transcription factors. PMID:19282476

  1. Genome-wide analysis of promoter architecture in Drosophila melanogaster

    SciTech Connect

    Hoskins, Roger A.; Landolin, Jane M.; Brown, James B.; Sandler, Jeremy E.; Takahashi, Hazuki; Lassmann, Timo; Yu, Charles; Booth, Benjamin W.; Zhang, Dayu; Wan, Kenneth H.; Yang, Li; Boley, Nathan; Andrews, Justen; Kaufman, Thomas C.; Graveley, Brenton R.; Bickel, Peter J.; Carninci, Piero; Carlson, Joseph W.; Celniker, Susan E.

    2010-10-20

    Core promoters are critical regions for gene regulation in higher eukaryotes. However, the boundaries of promoter regions, the relative rates of initiation at the transcription start sites (TSSs) distributed within them, and the functional significance of promoter architecture remain poorly understood. We produced a high-resolution map of promoters active in the Drosophila melanogaster embryo by integrating data from three independent and complementary methods: 21 million cap analysis of gene expression (CAGE) tags, 1.2 million RNA ligase mediated rapid amplification of cDNA ends (RLMRACE) reads, and 50,000 cap-trapped expressed sequence tags (ESTs). We defined 12,454 promoters of 8037 genes. Our analysis indicates that, due to non-promoter-associated RNA background signal, previous studies have likely overestimated the number of promoter-associated CAGE clusters by fivefold. We show that TSS distributions form a complex continuum of shapes, and that promoters active in the embryo and adult have highly similar shapes in 95% of cases. This suggests that these distributions are generally determined by static elements such as local DNA sequence and are not modulated by dynamic signals such as histone modifications. Transcription factor binding motifs are differentially enriched as a function of promoter shape, and peaked promoter shape is correlated with both temporal and spatial regulation of gene expression. Our results contribute to the emerging view that core promoters are functionally diverse and control patterning of gene expression in Drosophila and mammals.

  2. Genome-wide computational prediction and analysis of core promoter elements across plant monocots and dicots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcription initiation, essential to gene expression regulation, involves recruitment of basal transcription factors to the core promoter elements (CPEs). The distribution of currently known CPEs across plant genomes is largely unknown. This is the first large scale genome-wide report on the compu...

  3. Genome-wide view of natural antisense transcripts in Arabidopsis thaliana

    PubMed Central

    Yuan, Chunhui; Wang, Jingjing; Harrison, Andrew P.; Meng, Xianwen; Chen, Dijun; Chen, Ming

    2015-01-01

    Natural antisense transcripts (NATs) are endogenous transcripts that can form double-stranded RNA structures. Many protein-coding genes (PCs) and non-protein-coding genes (NPCs) tend to form cis-NATs and trans-NATs, respectively. In this work, we identified 4,080 cis-NATs and 2,491 trans-NATs genome-widely in Arabidopsis. Of these, 5,385 NAT-siRNAs were detected from the small RNA sequencing data. NAT-siRNAs are typically 21nt, and are processed by Dicer-like 1 (DCL1)/DCL2 and RDR6 and function in epigenetically activated situations, or 24nt, suggesting these are processed by DCL3 and RDR2 and function in environment stress. NAT-siRNAs are significantly derived from PC/PC pairs of trans-NATs and NPC/NPC pairs of cis-NATs. Furthermore, NAT pair genes typically have similar pattern of epigenetic status. Cis-NATs tend to be marked by euchromatic modifications, whereas trans-NATs tend to be marked by heterochromatic modifications. PMID:25922535

  4. Genome-wide view of natural antisense transcripts in Arabidopsis thaliana.

    PubMed

    Yuan, Chunhui; Wang, Jingjing; Harrison, Andrew P; Meng, Xianwen; Chen, Dijun; Chen, Ming

    2015-06-01

    Natural antisense transcripts (NATs) are endogenous transcripts that can form double-stranded RNA structures. Many protein-coding genes (PCs) and non-protein-coding genes (NPCs) tend to form cis-NATs and trans-NATs, respectively. In this work, we identified 4,080 cis-NATs and 2,491 trans-NATs genome-widely in Arabidopsis. Of these, 5,385 NAT-siRNAs were detected from the small RNA sequencing data. NAT-siRNAs are typically 21nt, and are processed by Dicer-like 1 (DCL1)/DCL2 and RDR6 and function in epigenetically activated situations, or 24nt, suggesting these are processed by DCL3 and RDR2 and function in environment stress. NAT-siRNAs are significantly derived from PC/PC pairs of trans-NATs and NPC/NPC pairs of cis-NATs. Furthermore, NAT pair genes typically have similar pattern of epigenetic status. Cis-NATs tend to be marked by euchromatic modifications, whereas trans-NATs tend to be marked by heterochromatic modifications. PMID:25922535

  5. Genome-wide identification and characterization of transcription start sites and promoters in the tunicate Ciona intestinalis.

    PubMed

    Yokomori, Rui; Shimai, Kotaro; Nishitsuji, Koki; Suzuki, Yutaka; Kusakabe, Takehiro G; Nakai, Kenta

    2016-01-01

    The tunicate Ciona intestinalis, an invertebrate chordate, has recently emerged as a powerful model organism for gene regulation analysis. However, few studies have been conducted to identify and characterize its transcription start sites (TSSs) and promoters at the genome-wide level. Here, using TSS-seq, we identified TSSs at the genome-wide scale and characterized promoters in C. intestinalis. Specifically, we identified TSS clusters (TSCs), high-density regions of TSS-seq tags, each of which appears to originate from an identical promoter. TSCs were found not only at known TSSs but also in other regions, suggesting the existence of many unknown transcription units in the genome. We also identified candidate promoters of 79 ribosomal protein (RP) genes, each of which had the major TSS in a polypyrimidine tract and showed a sharp TSS distribution like human RP gene promoters. Ciona RP gene promoters, however, did not appear to have typical TATA boxes, unlike human RP gene promoters. In Ciona non-RP promoters, two pyrimidine-purine dinucleotides, CA and TA, were frequently used as TSSs. Despite the absence of CpG islands, Ciona TATA-less promoters showed low expression specificity like CpG-associated human TATA-less promoters. By using TSS-seq, we also predicted trans-spliced gene TSSs and found that their downstream regions had higher G+T content than those of non-trans-spliced gene TSSs. Furthermore, we identified many putative alternative promoters, some of which were regulated in a tissue-specific manner. Our results provide valuable information about TSSs and promoter characteristics in C. intestinalis and will be helpful in future analysis of transcriptional regulation in chordates. PMID:26668163

  6. Genome-wide identification and characterization of transcription start sites and promoters in the tunicate Ciona intestinalis

    PubMed Central

    Yokomori, Rui; Shimai, Kotaro; Nishitsuji, Koki; Suzuki, Yutaka; Kusakabe, Takehiro G.; Nakai, Kenta

    2016-01-01

    The tunicate Ciona intestinalis, an invertebrate chordate, has recently emerged as a powerful model organism for gene regulation analysis. However, few studies have been conducted to identify and characterize its transcription start sites (TSSs) and promoters at the genome-wide level. Here, using TSS-seq, we identified TSSs at the genome-wide scale and characterized promoters in C. intestinalis. Specifically, we identified TSS clusters (TSCs), high-density regions of TSS-seq tags, each of which appears to originate from an identical promoter. TSCs were found not only at known TSSs but also in other regions, suggesting the existence of many unknown transcription units in the genome. We also identified candidate promoters of 79 ribosomal protein (RP) genes, each of which had the major TSS in a polypyrimidine tract and showed a sharp TSS distribution like human RP gene promoters. Ciona RP gene promoters, however, did not appear to have typical TATA boxes, unlike human RP gene promoters. In Ciona non-RP promoters, two pyrimidine-purine dinucleotides, CA and TA, were frequently used as TSSs. Despite the absence of CpG islands, Ciona TATA-less promoters showed low expression specificity like CpG-associated human TATA-less promoters. By using TSS-seq, we also predicted trans-spliced gene TSSs and found that their downstream regions had higher G+T content than those of non-trans-spliced gene TSSs. Furthermore, we identified many putative alternative promoters, some of which were regulated in a tissue-specific manner. Our results provide valuable information about TSSs and promoter characteristics in C. intestinalis and will be helpful in future analysis of transcriptional regulation in chordates. PMID:26668163

  7. Genome-Wide Chromatin Immunoprecipitation Sequencing Analysis Shows that WhiB Is a Transcription Factor That Cocontrols Its Regulon with WhiA To Initiate Developmental Cell Division in Streptomyces

    PubMed Central

    Chandra, Govind; Bibb, Maureen J.; Findlay, Kim C.; Buttner, Mark J.

    2016-01-01

    ABSTRACT WhiB is the founding member of a family of proteins (the WhiB-like [Wbl] family) that carry a [4Fe-4S] iron-sulfur cluster and play key roles in diverse aspects of the biology of actinomycetes, including pathogenesis, antibiotic resistance, and the control of development. In Streptomyces, WhiB is essential for the process of developmentally controlled cell division that leads to sporulation. The biochemical function of Wbl proteins has been controversial; here, we set out to determine unambiguously if WhiB functions as a transcription factor using chromatin immunoprecipitation sequencing (ChIP-seq) in Streptomyces venezuelae. In the first demonstration of in vivo genome-wide Wbl binding, we showed that WhiB regulates the expression of key genes required for sporulation by binding upstream of ~240 transcription units. Strikingly, the WhiB regulon is identical to the previously characterized WhiA regulon, providing an explanation for the identical phenotypes of whiA and whiB mutants. Using ChIP-seq, we demonstrated that in vivo DNA binding by WhiA depends on WhiB and vice versa, showing that WhiA and WhiB function cooperatively to control expression of a common set of WhiAB target genes. Finally, we show that mutation of the cysteine residues that coordinate the [4Fe-4S] cluster in WhiB prevents DNA binding by both WhiB and WhiA in vivo. PMID:27094333

  8. Genome-wide prediction and annotation of Burkholderia pseudomallei AraC/XylS family transcription regulator.

    PubMed

    Lim, Boon-San; Chong, Chan-Eng; Zamrod, Zulkeflie; Nathan, Sheila; Mohamed, Rahmah

    2007-01-01

    Many members of the AraC/XylS family transcription regulator have been proven to play a critical role in regulating bacterial virulence factors in response to environmental stress. By using the Hidden Markov Model (HMM) profile built from the alignment of a 99 amino acid conserved domain sequence of 273 AraC/XylS family transcription regulators, we detected a total of 45 AraC/XylS family transcription regulators in the genome of the Gram-negative pathogen, Burkholderia pseudomallei. Further in silico analysis of each detected AraC/XylS family transcription regulatory protein and its neighboring genes allowed us to make a first-order guess on the role of some of these transcription regulators in regulating important virulence factors such as those involved in three type III secretion systems and biosynthesis of pyochelin, exopolysaccharide (EPS) and phospholipase C. This paper has demonstrated an efficient and systematic genome-wide scale prediction of the AraC/XylS family that can be applied to other protein families. PMID:18391231

  9. From Human Monocytes to Genome-Wide Binding Sites - A Protocol for Small Amounts of Blood: Monocyte Isolation/ChIP-Protocol/Library Amplification/Genome Wide Computational Data Analysis

    PubMed Central

    Weiterer, Sebastian; Uhle, Florian; Bhuju, Sabin; Jarek, Michael; Weigand, Markus A.; Bartkuhn, Marek

    2014-01-01

    Chromatin immunoprecipitation in combination with a genome-wide analysis via high-throughput sequencing is the state of the art method to gain genome-wide representation of histone modification or transcription factor binding profiles. However, chromatin immunoprecipitation analysis in the context of human experimental samples is limited, especially in the case of blood cells. The typically extremely low yields of precipitated DNA are usually not compatible with library amplification for next generation sequencing. We developed a highly reproducible protocol to present a guideline from the first step of isolating monocytes from a blood sample to analyse the distribution of histone modifications in a genome-wide manner. Conclusion: The protocol describes the whole work flow from isolating monocytes from human blood samples followed by a high-sensitivity and small-scale chromatin immunoprecipitation assay with guidance for generating libraries compatible with next generation sequencing from small amounts of immunoprecipitated DNA. PMID:24732314

  10. Genome-Wide Identification and Expression Profile of Dof Transcription Factor Gene Family in Pepper (Capsicum annuum L.).

    PubMed

    Wu, Zhiming; Cheng, Jiaowen; Cui, Junjie; Xu, Xiaowan; Liang, Guansheng; Luo, Xirong; Chen, Xiaocui; Tang, Xiangqun; Hu, Kailin; Qin, Cheng

    2016-01-01

    Dof (DNA-binding One Zinc Finger) transcription factor family is unique to plants and has diverse roles associated with plant-specific phenomena, such as light, phytohormone and defense responses as well as seed development and germination. Although, genome-wide analysis of this family has been performed in many species, information regarding Dof genes in the pepper, Capsicum annuum L., is extremely limited. In this study, exhaustive searches of pepper genome revealed 33 potential CaDofs that were phylogenetically clustered into four subgroups. Twenty-nine of the 33 Dof genes could be mapped on 11 chromosomes, except for chromosome 7. The intron/exon organizations and conserved motif compositions of these genes were also analyzed. Additionally, phylogenetic analysis and classification of the Dof transcription factor family in eight plant species revealed that S. lycopersicum and C. annuum as well as O. sativa and S. bicolor Dof proteins may have evolved conservatively. Moreover, comprehensive expression analysis of CaDofs using a RNA-seq atlas and quantitative real-time polymerase chain reaction (qRT-PCR) revealed that these genes exhibit a variety of expression patterns. Most of the CaDofs were expressed in at least one of the tissues tested, whereas several genes were identified as being highly responsive to heat and salt stresses. Overall, this study describes the first genome-wide analysis of the pepper Dof family, whose genes exhibited different expression patterns in all primary fruit developmental stages and tissue types, as in response to abiotic stress. In particular, some Dof genes might be used as biomarkers for heat and salt stress. The results could expand our understanding of the roles of Dof genes in pepper. PMID:27200047

  11. Genome-Wide Identification and Expression Profile of Dof Transcription Factor Gene Family in Pepper (Capsicum annuum L.)

    PubMed Central

    Wu, Zhiming; Cheng, Jiaowen; Cui, Junjie; Xu, Xiaowan; Liang, Guansheng; Luo, Xirong; Chen, Xiaocui; Tang, Xiangqun; Hu, Kailin; Qin, Cheng

    2016-01-01

    Dof (DNA-binding One Zinc Finger) transcription factor family is unique to plants and has diverse roles associated with plant-specific phenomena, such as light, phytohormone and defense responses as well as seed development and germination. Although, genome-wide analysis of this family has been performed in many species, information regarding Dof genes in the pepper, Capsicum annuum L., is extremely limited. In this study, exhaustive searches of pepper genome revealed 33 potential CaDofs that were phylogenetically clustered into four subgroups. Twenty-nine of the 33 Dof genes could be mapped on 11 chromosomes, except for chromosome 7. The intron/exon organizations and conserved motif compositions of these genes were also analyzed. Additionally, phylogenetic analysis and classification of the Dof transcription factor family in eight plant species revealed that S. lycopersicum and C. annuum as well as O. sativa and S. bicolor Dof proteins may have evolved conservatively. Moreover, comprehensive expression analysis of CaDofs using a RNA-seq atlas and quantitative real-time polymerase chain reaction (qRT-PCR) revealed that these genes exhibit a variety of expression patterns. Most of the CaDofs were expressed in at least one of the tissues tested, whereas several genes were identified as being highly responsive to heat and salt stresses. Overall, this study describes the first genome-wide analysis of the pepper Dof family, whose genes exhibited different expression patterns in all primary fruit developmental stages and tissue types, as in response to abiotic stress. In particular, some Dof genes might be used as biomarkers for heat and salt stress. The results could expand our understanding of the roles of Dof genes in pepper. PMID:27200047

  12. Link between Epigenomic Alterations and Genome-Wide Aberrant Transcriptional Response to Allergen in Dendritic Cells Conveying Maternal Asthma Risk

    PubMed Central

    Mikhaylova, Lyudmila; Zhang, Yiming; Kobzik, Lester; Fedulov, Alexey V.

    2013-01-01

    We investigated the link between epigenome-wide methylation aberrations at birth and genomic transcriptional changes upon allergen sensitization that occur in the neonatal dendritic cells (DC) due to maternal asthma. We previously demonstrated that neonates of asthmatic mothers are born with a functional skew in splenic DCs that can be seen even in allergen-naïve pups and can convey allergy responses to normal recipients. However, minimal-to-no transcriptional or phenotypic changes were found to explain this alteration. Here we provide in-depth analysis of genome-wide DNA methylation profiles and RNA transcriptional (microarray) profiles before and after allergen sensitization. We identified differentially methylated and differentially expressed loci and performed manually-curated matching of methylation status of the key regulatory sequences (promoters and CpG islands) to expression of their respective transcripts before and after sensitization. We found that while allergen-naive DCs from asthma-at-risk neonates have minimal transcriptional change compared to controls, the methylation changes are extensive. The substantial transcriptional change only becomes evident upon allergen sensitization, when it occurs in multiple genes with the pre-existing epigenetic alterations. We demonstrate that maternal asthma leads to both hyper- and hypomethylation in neonatal DCs, and that both types of events at various loci significantly overlap with transcriptional responses to allergen. Pathway analysis indicates that approximately 1/2 of differentially expressed and differentially methylated genes directly interact in known networks involved in allergy and asthma processes. We conclude that congenital epigenetic changes in DCs are strongly linked to altered transcriptional responses to allergen and to early-life asthma origin. The findings are consistent with the emerging paradigm that asthma is a disease with underlying epigenetic changes. PMID:23950928

  13. Genome-wide analysis of the maternal-to-zygotic transition in Drosophila primordial germ cells

    PubMed Central

    2012-01-01

    Background During the maternal-to-zygotic transition (MZT) vast changes in the embryonic transcriptome are produced by a combination of two processes: elimination of maternally provided mRNAs and synthesis of new transcripts from the zygotic genome. Previous genome-wide analyses of the MZT have been restricted to whole embryos. Here we report the first such analysis for primordial germ cells (PGCs), the progenitors of the germ-line stem cells. Results We purified PGCs from Drosophila embryos, defined their proteome and transcriptome, and assessed the content, scale and dynamics of their MZT. Transcripts encoding proteins that implement particular types of biological functions group into nine distinct expression profiles, reflecting coordinate control at the transcriptional and posttranscriptional levels. mRNAs encoding germ-plasm components and cell-cell signaling molecules are rapidly degraded while new transcription produces mRNAs encoding the core transcriptional and protein synthetic machineries. The RNA-binding protein Smaug is essential for the PGC MZT, clearing transcripts encoding proteins that regulate stem cell behavior, transcriptional and posttranscriptional processes. Computational analyses suggest that Smaug and AU-rich element binding proteins function independently to control transcript elimination. Conclusions The scale of the MZT is similar in the soma and PGCs. However, the timing and content of their MZTs differ, reflecting the distinct developmental imperatives of these cell types. The PGC MZT is delayed relative to that in the soma, likely because relief of PGC-specific transcriptional silencing is required for zygotic genome activation as well as for efficient maternal transcript clearance. PMID:22348290

  14. Genome-Wide Transcriptional Profiling Reveals Connective Tissue Mast Cell Accumulation in Bronchopulmonary Dysplasia

    PubMed Central

    Bhattacharya, Soumyaroop; Go, Diana; Krenitsky, Daria L.; Huyck, Heidi L.; Solleti, Siva Kumar; Lunger, Valerie A.; Metlay, Leon; Srisuma, Sorachai; Wert, Susan E.; Pryhuber, Gloria S.

    2012-01-01

    Rationale: Bronchopulmonary dysplasia (BPD) is a major complication of premature birth. Risk factors for BPD are complex and include prenatal infection and O2 toxicity. BPD pathology is equally complex and characterized by inflammation and dysmorphic airspaces and vasculature. Due to the limited availability of clinical samples, an understanding of the molecular pathogenesis of this disease and its causal mechanisms and associated biomarkers is limited. Objectives: Apply genome-wide expression profiling to define pathways affected in BPD lungs. Methods: Lung tissue was obtained at autopsy from 11 BPD cases and 17 age-matched control subjects without BPD. RNA isolated from these tissue samples was interrogated using microarrays. Standard gene selection and pathway analysis methods were applied to the data set. Abnormal expression patterns were validated by quantitative reverse transcriptase–polymerase chain reaction and immunohistochemistry. Measurements and Main Results: We identified 159 genes differentially expressed in BPD tissues. Pathway analysis indicated previously appreciated (e.g., DNA damage regulation of cell cycle) as well as novel (e.g., B-cell development) biological functions were affected. Three of the five most highly induced genes were mast cell (MC)-specific markers. We confirmed an increased accumulation of connective tissue MCTC (chymase expressing) mast cells in BPD tissues. Increased expression of MCTC markers was also demonstrated in an animal model of BPD-like pathology. Conclusions: We present a unique genome-wide expression data set from human BPD lung tissue. Our data provide information on gene expression patterns associated with BPD and facilitated the discovery that MCTC accumulation is a prominent feature of this disease. These observations have significant clinical and mechanistic implications. PMID:22723293

  15. Assessing statistical significance in multivariable genome wide association analysis

    PubMed Central

    Buzdugan, Laura; Kalisch, Markus; Navarro, Arcadi; Schunk, Daniel; Fehr, Ernst; Bühlmann, Peter

    2016-01-01

    Motivation: Although Genome Wide Association Studies (GWAS) genotype a very large number of single nucleotide polymorphisms (SNPs), the data are often analyzed one SNP at a time. The low predictive power of single SNPs, coupled with the high significance threshold needed to correct for multiple testing, greatly decreases the power of GWAS. Results: We propose a procedure in which all the SNPs are analyzed in a multiple generalized linear model, and we show its use for extremely high-dimensional datasets. Our method yields P-values for assessing significance of single SNPs or groups of SNPs while controlling for all other SNPs and the family wise error rate (FWER). Thus, our method tests whether or not a SNP carries any additional information about the phenotype beyond that available by all the other SNPs. This rules out spurious correlations between phenotypes and SNPs that can arise from marginal methods because the ‘spuriously correlated’ SNP merely happens to be correlated with the ‘truly causal’ SNP. In addition, the method offers a data driven approach to identifying and refining groups of SNPs that jointly contain informative signals about the phenotype. We demonstrate the value of our method by applying it to the seven diseases analyzed by the Wellcome Trust Case Control Consortium (WTCCC). We show, in particular, that our method is also capable of finding significant SNPs that were not identified in the original WTCCC study, but were replicated in other independent studies. Availability and implementation: Reproducibility of our research is supported by the open-source Bioconductor package hierGWAS. Contact: peter.buehlmann@stat.math.ethz.ch Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153677

  16. Genome-wide analysis of TCP family in tobacco.

    PubMed

    Chen, L; Chen, Y Q; Ding, A M; Chen, H; Xia, F; Wang, W F; Sun, Y H

    2016-01-01

    The TCP family is a transcription factor family, members of which are extensively involved in plant growth and development as well as in signal transduction in the response against many physiological and biochemical stimuli. In the present study, 61 TCP genes were identified in tobacco (Nicotiana tabacum) genome. Bioinformatic methods were employed for predicting and analyzing the gene structure, gene expression, phylogenetic analysis, and conserved domains of TCP proteins in tobacco. The 61 NtTCP genes were divided into three diverse groups, based on the division of TCP genes in tomato and Arabidopsis, and the results of the conserved domain and sequence analyses further confirmed the classification of the NtTCP genes. The expression pattern of NtTCP also demonstrated that majority of these genes play important roles in all the tissues, while some special genes exercise their functions only in specific tissues. In brief, the comprehensive and thorough study of the TCP family in other plants provides sufficient resources for studying the structure and functions of TCPs in tobacco. PMID:27323069

  17. Genome-wide histone acetylation correlates with active transcription in maize.

    PubMed

    Zhang, Wei; Garcia, Nelson; Feng, Yaping; Zhao, Han; Messing, Joachim

    2015-10-01

    Gene expression is regulated at many different levels during the life cycle of all plant species. Recent investigations have taken advantage of next-generation sequencing to study the relevance of DNA methylation and sRNAs in controlling tissue-specific gene expression in maize at the genome-wide level. Here, we profiled H3K27ac in maize, which has one of the largest sequenced plant genomes due to the amplification of retrotransposons. Because transcribed genes represent only a small proportion of its genome, gene-specific epigenetic modifications are concentrated in a relatively small percentage of the genome. Indeed, H3K27ac marks are mostly in gene-rich, in contrast to gene-poor regions. A large proportion of those marks are located in transcribed regions of genes, including 111 out of 458 known genetic loci. Moreover, increased transcription correlates with the presence of H3K27ac modification in gene bodies. Using maize as an example, we suggest that H3K27ac marks actively transcribed genes in plants. PMID:26021446

  18. MPE-seq, a new method for the genome-wide analysis of chromatin structure.

    PubMed

    Ishii, Haruhiko; Kadonaga, James T; Ren, Bing

    2015-07-01

    The analysis of chromatin structure is essential for the understanding of transcriptional regulation in eukaryotes. Here we describe methidiumpropyl-EDTA sequencing (MPE-seq), a method for the genome-wide characterization of chromatin that involves the digestion of nuclei withMPE-Fe(II) followed by massively parallel sequencing. Like micrococcal nuclease (MNase), MPE-Fe(II) preferentially cleaves the linker DNA between nucleosomes. However, there are differences in the cleavage of nuclear chromatin by MPE-Fe(II) relative to MNase. Most notably, immediately upstream of the transcription start site of active promoters, we frequently observed nucleosome-sized (141-190 bp) and subnucleosome-sized (such as 101-140 bp) peaks of digested chromatin fragments with MPE-seq but not with MNase-seq. These peaks also correlate with the presence of core histones and could thus be due, at least in part, to noncanonical chromatin structures such as labile nucleosome-like particles that have been observed in other contexts. The subnucleosome-sized MPE-seq peaks exhibit a particularly distinct association with active promoters. In addition, unlike MNase, MPE-Fe(II) cleaves nuclear DNA with little sequence bias. In this regard, we found that DNA sequences at RNA splice sites are hypersensitive to digestion by MNase but not by MPE-Fe(II). This phenomenon may have affected the analysis of nucleosome occupancy over exons. These findings collectively indicate that MPE-seq provides a unique and straightforward means for the genome-wide analysis of chromatin structure with minimal DNA sequence bias. In particular, the combined use of MPE-seq and MNase-seq enables the identification of noncanonical chromatin structures that are likely to be important for the regulation of gene expression. PMID:26080409

  19. Genome-wide expression analysis of genetic networks in Neurospora crassa

    PubMed Central

    Logan, David A; Koch, Allison L; Dong, Wubei; Griffith, James; Nilsen, Roger; Case, Mary E; Schüttler, Heinz-Bernd; Arnold, Jonathan

    2007-01-01

    The products of five structural genes and two regulatory genes of the qa gene cluster of Neurospora crassa control the metabolism of quinic acid (QA) as a carbon source. A detailed genetic network model of this metabolic process has been reported. This investigation is designed to expand the current model of the QA reaction network. The ensemble method of network identification was used to model RNA profiling data on the qa gene cluster. Through microarray and cluster analysis, genome-wide identification of RNA transcripts associated with quinic acid metabolism in N. crassa is described and suggests a connection to other metabolic circuits. More than 100 genes whose products include carbon metabolism, protein degradation and modification, amino acid metabolism and ribosome synthesis appear to be connected to quinic acid metabolism. The core of the qa gene cluster network is validated with respect to RNA profiling data obtained from microarrays. PMID:17597928

  20. Dating the age of admixture via wavelet transform analysis of genome-wide data.

    PubMed

    Pugach, Irina; Matveyev, Rostislav; Wollstein, Andreas; Kayser, Manfred; Stoneking, Mark

    2011-01-01

    We describe a PCA-based genome scan approach to analyze genome-wide admixture structure, and introduce wavelet transform analysis as a method for estimating the time of admixture. We test the wavelet transform method with simulations and apply it to genome-wide SNP data from eight admixed human populations. The wavelet transform method offers better resolution than existing methods for dating admixture, and can be applied to either SNP or sequence data from humans or other species. PMID:21352535

  1. Dating the age of admixture via wavelet transform analysis of genome-wide data

    PubMed Central

    2011-01-01

    We describe a PCA-based genome scan approach to analyze genome-wide admixture structure, and introduce wavelet transform analysis as a method for estimating the time of admixture. We test the wavelet transform method with simulations and apply it to genome-wide SNP data from eight admixed human populations. The wavelet transform method offers better resolution than existing methods for dating admixture, and can be applied to either SNP or sequence data from humans or other species. PMID:21352535

  2. Mammalian NET-seq analysis defines nascent RNA profiles and associated RNA processing genome-wide.

    PubMed

    Nojima, Takayuki; Gomes, Tomás; Carmo-Fonseca, Maria; Proudfoot, Nicholas J

    2016-03-01

    The transcription cycle of RNA polymerase II (Pol II) correlates with changes to the phosphorylation state of its large subunit C-terminal domain (CTD). We recently developed Native Elongation Transcript sequencing using mammalian cells (mNET-seq), which generates single-nucleotide-resolution genome-wide profiles of nascent RNA and co-transcriptional RNA processing that are associated with different CTD phosphorylation states. Here we provide a detailed protocol for mNET-seq. First, Pol II elongation complexes are isolated with specific phospho-CTD antibodies from chromatin solubilized by micrococcal nuclease digestion. Next, RNA derived from within the Pol II complex is size fractionated and Illumina sequenced. Using mNET-seq, we have previously shown that Pol II pauses at both ends of protein-coding genes but with different CTD phosphorylation patterns, and we have also detected phosphorylation at serine 5 (Ser5-P) CTD-specific splicing intermediates and Pol II accumulation over co-transcriptionally spliced exons. With moderate biochemical and bioinformatic skills, mNET-seq can be completed in ∼6 d, not including sequencing and data analysis. PMID:26844429

  3. A Genome-Wide Longitudinal Transcriptome Analysis of the Aging Model Podospora anserine

    PubMed Central

    Philipp, Oliver; Hamann, Andrea; Servos, Jörg; Werner, Alexandra; Koch, Ina; Osiewacz, Heinz D.

    2013-01-01

    Aging of biological systems is controlled by various processes which have a potential impact on gene expression. Here we report a genome-wide transcriptome analysis of the fungal aging model Podospora anserina. Total RNA of three individuals of defined age were pooled and analyzed by SuperSAGE (serial analysis of gene expression). A bioinformatics analysis identified different molecular pathways to be affected during aging. While the abundance of transcripts linked to ribosomes and to the proteasome quality control system were found to decrease during aging, those associated with autophagy increase, suggesting that autophagy may act as a compensatory quality control pathway. Transcript profiles associated with the energy metabolism including mitochondrial functions were identified to fluctuate during aging. Comparison of wild-type transcripts, which are continuously down-regulated during aging, with those down-regulated in the long-lived, copper-uptake mutant grisea, validated the relevance of age-related changes in cellular copper metabolism. Overall, we (i) present a unique age-related data set of a longitudinal study of the experimental aging model P. anserina which represents a reference resource for future investigations in a variety of organisms, (ii) suggest autophagy to be a key quality control pathway that becomes active once other pathways fail, and (iii) present testable predictions for subsequent experimental investigations. PMID:24376646

  4. Genome-wide analysis of Polycomb targets in Drosophila

    SciTech Connect

    Schwartz, Yuri B.; Kahn, Tatyana G.; Nix, David A.; Li,Xiao-Yong; Bourgon, Richard; Biggin, Mark; Pirrotta, Vincenzo

    2006-04-01

    Polycomb Group (PcG) complexes are multiprotein assemblages that bind to chromatin and establish chromatin states leading to epigenetic silencing. PcG proteins regulate homeotic genes in flies and vertebrates but little is known about other PcG targets and the role of the PcG in development, differentiation and disease. We have determined the distribution of the PcG proteins PC, E(Z) and PSC and of histone H3K27 trimethylation in the Drosophila genome. At more than 200 PcG target genes, binding sites for the three PcG proteins colocalize to presumptive Polycomb Response Elements (PREs). In contrast, H3 me3K27 forms broad domains including the entire transcription unit and regulatory regions. PcG targets are highly enriched in genes encoding transcription factors but receptors, signaling proteins, morphogens and regulators representing all major developmental pathways are also included.

  5. Genome-wide Scanning and Characterization of Sorghum bicolor L. Heat Shock Transcription Factors.

    PubMed

    Nagaraju, M; Reddy, Palakolanu Sudhakar; Kumar, S Anil; Srivastava, Rakesh K; Kishor, P B Kavi; Rao, D Manohar

    2015-08-01

    A genome-wide scanning of Sorghum bicolor resulted in the identification of 25 SbHsf genes. Phylogenetic analysis shows the ortholog genes that are clustered with only rice, representing a common ancestor. Promoter analysis revealed the identification of different cis-acting elements that are responsible for abiotic as well as biotic stresses. Hsf domains like DBD, NLS, NES, and AHA have been analyzed for their sequence similarity and functional characterization. Tissue specific expression patterns of Hsfs in different tissues like mature embryo, seedling, root, and panicle were studied using real-time PCR. While Hsfs4 and 22 are highly expressed in panicle, 4 and 9 are expressed in seedlings. Sorghum plants were exposed to different abiotic stress treatments but no expression of any Hsf was observed when seedlings were treated with ABA. High level expression of Hsf1 was noticed during high temperature as well as cold stresses, 4 and 6 during salt and 5, 6, 10, 13, 19, 23 and 25 during drought stress. This comprehensive analysis of SbHsf genes will provide an insight on how these genes are regulated in different tissues and also under different abiotic stresses and help to determine the functions of Hsfs during drought and temperature stress tolerance. PMID:27006630

  6. Genome-wide Scanning and Characterization of Sorghum bicolor L. Heat Shock Transcription Factors

    PubMed Central

    Nagaraju, M.; Reddy, Palakolanu Sudhakar; Kumar, S. Anil; Srivastava, Rakesh K.; Kishor, P. B. Kavi; Rao, D. Manohar

    2015-01-01

    A genome-wide scanning of Sorghum bicolor resulted in the identification of 25 SbHsf genes. Phylogenetic analysis shows the ortholog genes that are clustered with only rice, representing a common ancestor. Promoter analysis revealed the identification of different cis-acting elements that are responsible for abiotic as well as biotic stresses. Hsf domains like DBD, NLS, NES, and AHA have been analyzed for their sequence similarity and functional characterization. Tissue specific expression patterns of Hsfs in different tissues like mature embryo, seedling, root, and panicle were studied using real-time PCR. While Hsfs4 and 22 are highly expressed in panicle, 4 and 9 are expressed in seedlings. Sorghum plants were exposed to different abiotic stress treatments but no expression of any Hsf was observed when seedlings were treated with ABA. High level expression of Hsf1 was noticed during high temperature as well as cold stresses, 4 and 6 during salt and 5, 6, 10, 13, 19, 23 and 25 during drought stress. This comprehensive analysis of SbHsf genes will provide an insight on how these genes are regulated in different tissues and also under different abiotic stresses and help to determine the functions of Hsfs during drought and temperature stress tolerance. PMID:27006630

  7. Impaired alveolarization and intra-uterine growth restriction in rats: a postnatal genome-wide analysis.

    PubMed

    Zana-Taieb, E; Pham, H; Franco-Montoya, M L; Jacques, S; Letourneur, F; Baud, O; Jarreau, P H; Vaiman, D

    2015-02-01

    Intra-uterine growth restriction (IUGR) dramatically increases the risk of bronchopulmonary dysplasia in preterm babies, a disease characterized by arrested alveolarization and abnormal microvascular angiogenesis. We have previously described a rodent low protein diet (LPD) model of IUGR inducing impaired alveolarization, but failed to demonstrate any modification of the classical factors involved in lung development. We performed a genome-wide microarray analysis in 120 rat pups with LPD-induced IUGR and their controls, at three key time points of the alveolarization process: postnatal day 4 (P4): start of alveolarization; P10: peak of the alveolarization process and P21: end of the alveolarization process. Results were analysed using Arraymining, DAVID and KEGG software and validated by qRT-PCR and western blots. Considering a cut-off of 2:1 as significant, 67 transcripts at P4, 102 transcripts at P10 and 451 transcripts at P21 were up-regulated, and 89 transcripts at P4, 25 transcripts at P10 and 585 transcripts at P21 were down-regulated. Automatic functional classification identified three main modified pathways, 'cell adhesion molecules', 'cardiac muscle contraction' and 'peroxisome proliferator-activated receptor' (PPAR). Protein analysis confirmed involvement of the PPAR pathway, with an increase of FABP4, an activator of this pathway, at P4 and an increase of adiponectin at P21. Other data also suggest involvement of the PPAR pathway in impaired alveolarization. Our results show that deregulation of the PPAR pathway may be an important component of the mechanism inducing impaired alveolarization observed in IUGR. The complete dataset is available as GEO profiles on the Gene Expression Omnibus (GEO) database ( www.ncbi.nih.gov/geo/, GEO Accession No. GSE56956). PMID:25347958

  8. Genome-wide microarray analysis of tomato roots showed defined responses to iron deficiency

    PubMed Central

    2012-01-01

    Background Plants react to iron deficiency stress adopting different kind of adaptive responses. Tomato, a Strategy I plant, improves iron uptake through acidification of rhizosphere, reduction of Fe3+ to Fe2+ and transport of Fe2+ into the cells. Large-scale transcriptional analyses of roots under iron deficiency are only available for a very limited number of plant species with particular emphasis for Arabidopsis thaliana. Regarding tomato, an interesting model species for Strategy I plants and an economically important crop, physiological responses to Fe-deficiency have been thoroughly described and molecular analyses have provided evidence for genes involved in iron uptake mechanisms and their regulation. However, no detailed transcriptome analysis has been described so far. Results A genome-wide transcriptional analysis, performed with a chip that allows to monitor the expression of more than 25,000 tomato transcripts, identified 97 differentially expressed transcripts by comparing roots of Fe-deficient and Fe-sufficient tomato plants. These transcripts are related to the physiological responses of tomato roots to the nutrient stress resulting in an improved iron uptake, including regulatory aspects, translocation, root morphological modification and adaptation in primary metabolic pathways, such as glycolysis and TCA cycle. Other genes play a role in flavonoid biosynthesis and hormonal metabolism. Conclusions The transcriptional characterization confirmed the presence of the previously described mechanisms to adapt to iron starvation in tomato, but also allowed to identify other genes potentially playing a role in this process, thus opening new research perspectives to improve the knowledge on the tomato root response to the nutrient deficiency. PMID:22433273

  9. Genome-Wide Transcriptome Analysis of Cadmium Stress in Rice

    PubMed Central

    Oono, Youko; Yazawa, Takayuki; Kanamori, Hiroyuki; Sasaki, Harumi; Mori, Satomi; Handa, Hirokazu; Matsumoto, Takashi

    2016-01-01

    Rice growth is severely affected by toxic concentrations of the nonessential heavy metal cadmium (Cd). To elucidate the molecular basis of the response to Cd stress, we performed mRNA sequencing of rice following our previous study on exposure to high concentrations of Cd (Oono et al., 2014). In this study, rice plants were hydroponically treated with low concentrations of Cd and approximately 211 million sequence reads were mapped onto the IRGSP-1.0 reference rice genome sequence. Many genes, including some identified under high Cd concentration exposure in our previous study, were found to be responsive to low Cd exposure, with an average of about 11,000 transcripts from each condition. However, genes expressed constitutively across the developmental course responded only slightly to low Cd concentrations, in contrast to their clear response to high Cd concentration, which causes fatal damage to rice seedlings according to phenotypic changes. The expression of metal ion transporter genes tended to correlate with Cd concentration, suggesting the potential of the RNA-Seq strategy to reveal novel Cd-responsive transporters by analyzing gene expression under different Cd concentrations. This study could help to develop novel strategies for improving tolerance to Cd exposure in rice and other cereal crops. PMID:27034955

  10. Genome-Wide Identification and Expression Analysis of Calcium-dependent Protein Kinase in Tomato

    PubMed Central

    Hu, Zhangjian; Lv, Xiangzhang; Xia, Xiaojian; Zhou, Jie; Shi, Kai; Yu, Jingquan; Zhou, Yanhong

    2016-01-01

    Calcium-dependent protein kinases (CDPKs) play critical roles in regulating growth, development and stress response in plants. Information about CDPKs in tomato, however, remains obscure although it is one of the most important model crops in the world. In this study, we performed a bioinformatics analysis of the entire tomato genome and identified 29 CDPK genes. These CDPK genes are found to be located in 12 chromosomes, and could be divided into four groups. Analysis of the gene structure and splicing site reflected high structure conservation within different CDPK gene groups both in the exon-intron pattern and mRNA splicing. Transcripts of most CDPK genes varied with plant organs and developmental stages and their transcripts could be differentially induced by abscisic acid (ABA), brassinosteroids (BRs), methyl jasmonate (MeJA), and salicylic acid (SA), as well as after exposure to heat, cold, and drought, respectively. To our knowledge, this is the first report about the genome-wide analysis of the CDPK gene family in tomato, and the findings obtained offer a clue to the elaborated regulatory role of CDPKs in plant growth, development and stress response in tomato. PMID:27092168

  11. Genomic-Wide Analysis with Microarrays in Human Oncology

    PubMed Central

    Inaoka, Kenichi; Inokawa, Yoshikuni; Nomoto, Shuji

    2015-01-01

    DNA microarray technologies have advanced rapidly and had a profound impact on examining gene expression on a genomic scale in research. This review discusses the history and development of microarray and DNA chip devices, and specific microarrays are described along with their methods and applications. In particular, microarrays have detected many novel cancer-related genes by comparing cancer tissues and non-cancerous tissues in oncological research. Recently, new methods have been in development, such as the double-combination array and triple-combination array, which allow more effective analysis of gene expression and epigenetic changes. Analysis of gene expression alterations in precancerous regions compared with normal regions and array analysis in drug-resistance cancer tissues are also successfully performed. Compared with next-generation sequencing, a similar method of genome analysis, several important differences distinguish these techniques and their applications. Development of novel microarray technologies is expected to contribute to further cancer research.

  12. Functional Genomics of Rice Pollen and Seed Development by Genome-wide Transcript Profiling and Ds Insertion Mutagenesis

    PubMed Central

    Jiang, Shu-Ye; Ramachandran, Srinivasan

    2011-01-01

    Rice pollen and seed development are directly related to grain yield. To further improve rice yield, it is important for us to functionally annotate the genes controlling pollen/seed development and to use them for rice breeding. Here we first carried out a genome-wide expression analysis with an emphasis on genes being involved in rice pollen and seed development. Based on the transcript profiling, we have identified and functionally classified 82 highly expressed pollen-specific, 12 developing seed-specific and 19 germinating seed-specific genes. We then presented the utilization of the maize transposon Dissociation (Ds) insertion lines for functional genomics of rice pollen and seed development and as alternative germplasm resources for rice breeding. We have established a two-element Activator/Dissociation (Ac/Ds) gene trap tagging system and generated around 20,000 Ds insertion lines. We have subjected these lines for screens to obtain high and low yield Ds insertion lines. Some interesting lines have been obtained with higher yield or male sterility. Flanking Sequence Tags (FSTs) analyses showed that these Ds-tagged genes encoded various proteins including transcription factors, transport proteins, unknown functional proteins and so on. They exhibited diversified expression patterns. Our results suggested that rice could be improved not only by introducing foreign genes but also by knocking out its endogenous genes. This finding might provide a new way for rice breeder to further improve rice varieties. PMID:21209789

  13. Genome-Wide Transcriptional Response of Silkworm (Bombyx mori) to Infection by the Microsporidian Nosema bombycis

    PubMed Central

    Pan, Guoqing; Li, Zhihong; Han, Bing; Xu, Jinshan; Lan, Xiqian; Chen, Jie; Yang, Donglin; Chen, Quanmei; Sang, Qi; Ji, Xiaocun; Li, Tian; Long, Mengxian; Zhou, Zeyang

    2013-01-01

    Microsporidia have attracted much attention because they infect a variety of species ranging from protists to mammals, including immunocompromised patients with AIDS or cancer. Aside from the study on Nosema ceranae, few works have focused on elucidating the mechanism in host response to microsporidia infection. Nosema bombycis is a pathogen of silkworm pébrine that causes great economic losses to the silkworm industry. Detailed understanding of the host (Bombyx mori) response to infection by N. bombycis is helpful for prevention of this disease. A genome-wide survey of the gene expression profile at 2, 4, 6 and 8 days post-infection by N. bombycis was performed and results showed that 64, 244, 1,328, 1,887 genes were induced, respectively. Up to 124 genes, which are involved in basal metabolism pathways, were modulated. Notably, B. mori genes that play a role in juvenile hormone synthesis and metabolism pathways were induced, suggesting that the host may accumulate JH as a response to infection. Interestingly, N. bombycis can inhibit the silkworm serine protease cascade melanization pathway in hemolymph, which may be due to the secretion of serpins in the microsporidia. N. bombycis also induced up-regulation of several cellular immune factors, in which CTL11 has been suggested to be involved in both spore recognition and immune signal transduction. Microarray and real-time PCR analysis indicated the activation of silkworm Toll and JAK/STAT pathways. The notable up-regulation of antimicrobial peptides, including gloverins, lebocins and moricins, strongly indicated that antimicrobial peptide defense mechanisms were triggered to resist the invasive microsporidia. An analysis of N. bombycis-specific response factors suggested their important roles in anti-microsporidia defense. Overall, this study primarily provides insight into the potential molecular mechanisms for the host-parasite interaction between B. mori and N. bombycis and may provide a foundation for

  14. Genome-wide transcriptional response of silkworm (Bombyx mori) to infection by the microsporidian Nosema bombycis.

    PubMed

    Ma, Zhengang; Li, Chunfeng; Pan, Guoqing; Li, Zhihong; Han, Bing; Xu, Jinshan; Lan, Xiqian; Chen, Jie; Yang, Donglin; Chen, Quanmei; Sang, Qi; Ji, Xiaocun; Li, Tian; Long, Mengxian; Zhou, Zeyang

    2013-01-01

    Microsporidia have attracted much attention because they infect a variety of species ranging from protists to mammals, including immunocompromised patients with AIDS or cancer. Aside from the study on Nosema ceranae, few works have focused on elucidating the mechanism in host response to microsporidia infection. Nosema bombycis is a pathogen of silkworm pébrine that causes great economic losses to the silkworm industry. Detailed understanding of the host (Bombyx mori) response to infection by N. bombycis is helpful for prevention of this disease. A genome-wide survey of the gene expression profile at 2, 4, 6 and 8 days post-infection by N. bombycis was performed and results showed that 64, 244, 1,328, 1,887 genes were induced, respectively. Up to 124 genes, which are involved in basal metabolism pathways, were modulated. Notably, B. mori genes that play a role in juvenile hormone synthesis and metabolism pathways were induced, suggesting that the host may accumulate JH as a response to infection. Interestingly, N. bombycis can inhibit the silkworm serine protease cascade melanization pathway in hemolymph, which may be due to the secretion of serpins in the microsporidia. N. bombycis also induced up-regulation of several cellular immune factors, in which CTL11 has been suggested to be involved in both spore recognition and immune signal transduction. Microarray and real-time PCR analysis indicated the activation of silkworm Toll and JAK/STAT pathways. The notable up-regulation of antimicrobial peptides, including gloverins, lebocins and moricins, strongly indicated that antimicrobial peptide defense mechanisms were triggered to resist the invasive microsporidia. An analysis of N. bombycis-specific response factors suggested their important roles in anti-microsporidia defense. Overall, this study primarily provides insight into the potential molecular mechanisms for the host-parasite interaction between B. mori and N. bombycis and may provide a foundation for

  15. Genome-wide Association Study and Meta-Analysis Identify ISL1 as Genome-wide Significant Susceptibility Gene for Bladder Exstrophy

    PubMed Central

    Draaken, Markus; Knapp, Michael; Pennimpede, Tracie; Schmidt, Johanna M.; Ebert, Anne-Karolin; Rösch, Wolfgang; Stein, Raimund; Utsch, Boris; Hirsch, Karin; Boemers, Thomas M.; Mangold, Elisabeth; Heilmann, Stefanie; Ludwig, Kerstin U.; Jenetzky, Ekkehart; Zwink, Nadine; Moebus, Susanne; Herrmann, Bernhard G.; Mattheisen, Manuel; Nöthen, Markus M.

    2015-01-01

    The bladder exstrophy-epispadias complex (BEEC) represents the severe end of the uro-rectal malformation spectrum, and is thought to result from aberrant embryonic morphogenesis of the cloacal membrane and the urorectal septum. The most common form of BEEC is isolated classic bladder exstrophy (CBE). To identify susceptibility loci for CBE, we performed a genome-wide association study (GWAS) of 110 CBE patients and 1,177 controls of European origin. Here, an association was found with a region of approximately 220kb on chromosome 5q11.1. This region harbors the ISL1 (ISL LIM homeobox 1) gene. Multiple markers in this region showed evidence for association with CBE, including 84 markers with genome-wide significance. We then performed a meta-analysis using data from a previous GWAS by our group of 98 CBE patients and 526 controls of European origin. This meta-analysis also implicated the 5q11.1 locus in CBE risk. A total of 138 markers at this locus reached genome-wide significance in the meta-analysis, and the most significant marker (rs9291768) achieved a P value of 2.13 × 10−12. No other locus in the meta-analysis achieved genome-wide significance. We then performed murine expression analyses to follow up this finding. Here, Isl1 expression was detected in the genital region within the critical time frame for human CBE development. Genital regions with Isl1 expression included the peri-cloacal mesenchyme and the urorectal septum. The present study identified the first genome-wide significant locus for CBE at chromosomal region 5q11.1, and provides strong evidence for the hypothesis that ISL1 is the responsible candidate gene in this region. PMID:25763902

  16. Genome-wide Comparative Analysis of Annexin Superfamily in Plants

    PubMed Central

    Jami, Sravan Kumar; Clark, Greg B.; Ayele, Belay T.; Ashe, Paula; Kirti, Pulugurtha Bharadwaja

    2012-01-01

    Most annexins are calcium-dependent, phospholipid-binding proteins with suggested functions in response to environmental stresses and signaling during plant growth and development. They have previously been identified and characterized in Arabidopsis and rice, and constitute a multigene family in plants. In this study, we performed a comparative analysis of annexin gene families in the sequenced genomes of Viridiplantae ranging from unicellular green algae to multicellular plants, and identified 149 genes. Phylogenetic studies of these deduced annexins classified them into nine different arbitrary groups. The occurrence and distribution of bona fide type II calcium binding sites within the four annexin domains were found to be different in each of these groups. Analysis of chromosomal distribution of annexin genes in rice, Arabidopsis and poplar revealed their localization on various chromosomes with some members also found on duplicated chromosomal segments leading to gene family expansion. Analysis of gene structure suggests sequential or differential loss of introns during the evolution of land plant annexin genes. Intron positions and phases are well conserved in annexin genes from representative genomes ranging from Physcomitrella to higher plants. The occurrence of alternative motifs such as K/R/HGD was found to be overlapping or at the mutated regions of the type II calcium binding sites indicating potential functional divergence in certain plant annexins. This study provides a basis for further functional analysis and characterization of annexin multigene families in the plant lineage. PMID:23133603

  17. Reconstructing genome-wide regulatory network of E. coli using transcriptome data and predicted transcription factor activities

    PubMed Central

    2011-01-01

    Background Gene regulatory networks play essential roles in living organisms to control growth, keep internal metabolism running and respond to external environmental changes. Understanding the connections and the activity levels of regulators is important for the research of gene regulatory networks. While relevance score based algorithms that reconstruct gene regulatory networks from transcriptome data can infer genome-wide gene regulatory networks, they are unfortunately prone to false positive results. Transcription factor activities (TFAs) quantitatively reflect the ability of the transcription factor to regulate target genes. However, classic relevance score based gene regulatory network reconstruction algorithms use models do not include the TFA layer, thus missing a key regulatory element. Results This work integrates TFA prediction algorithms with relevance score based network reconstruction algorithms to reconstruct gene regulatory networks with improved accuracy over classic relevance score based algorithms. This method is called Gene expression and Transcription factor activity based Relevance Network (GTRNetwork). Different combinations of TFA prediction algorithms and relevance score functions have been applied to find the most efficient combination. When the integrated GTRNetwork method was applied to E. coli data, the reconstructed genome-wide gene regulatory network predicted 381 new regulatory links. This reconstructed gene regulatory network including the predicted new regulatory links show promising biological significances. Many of the new links are verified by known TF binding site information, and many other links can be verified from the literature and databases such as EcoCyc. The reconstructed gene regulatory network is applied to a recent transcriptome analysis of E. coli during isobutanol stress. In addition to the 16 significantly changed TFAs detected in the original paper, another 7 significantly changed TFAs have been detected by

  18. Identification of Genetic Susceptibility Loci for Colorectal Tumors in a Genome-wide Meta-analysis

    PubMed Central

    Peters, Ulrike; Jiao, Shuo; Schumacher, Fredrick R.; Hutter, Carolyn M.; Aragaki, Aaron K.; Baron, John A.; Berndt, Sonja I.; Bézieau, Stéphane; Brenner, Hermann; Butterbach, Katja; Caan, Bette J.; Campbell, Peter T.; Carlson, Christopher S.; Casey, Graham; Chan, Andrew T.; Chang-Claude, Jenny; Chanock, Stephen J.; Chen, Lin S.; Coetzee, Gerhard A.; Coetzee, Simon G.; Conti, David V.; Curtis, Keith R.; Duggan, David; Edwards, Todd; Fuchs, Charles S.; Gallinger, Steven; Giovannucci, Edward L.; Gogarten, Stephanie M.; Gruber, Stephen B.; Haile, Robert W.; Harrison, Tabitha A.; Hayes, Richard B.; Henderson, Brian E.; Hoffmeister, Michael; Hopper, John L.; Hudson, Thomas J.; Hunter, David J.; Jackson, Rebecca D.; Jee, Sun Ha; Jenkins, Mark A.; Jia, Wei-Hua; Kolonel, Laurence N.; Kooperberg, Charles; Küry, Sébastien; Lacroix, Andrea Z.; Laurie, Cathy C.; Laurie, Cecelia A.; Le Marchand, Loic; Lemire, Mathieu; Levine, David; Lindor, Noralane M.; Liu, Yan; Ma, Jing; Makar, Karen W.; Matsuo, Keitaro; Newcomb, Polly A.; Potter, John D.; Prentice, Ross L.; Qu, Conghui; Rohan, Thomas; Rosse, Stephanie A.; Schoen, Robert E.; Seminara, Daniela; Shrubsole, Martha; Shu, Xiao-Ou; Slattery, Martha L.; Taverna, Darin; Thibodeau, Stephen N.; Ulrich, Cornelia M.; White, Emily; Xiang, Yongbing; Zanke, Brent W.; Zeng, Yi-Xin; Zhang, Ben; Zheng, Wei; Hsu, Li

    2013-01-01

    BACKGROUND & AIMS Heritable factors contribute to the development of colorectal cancer. Identifying the genetic loci associated with colorectal tumor formation could elucidate the mechanisms of pathogenesis. METHODS We conducted a genome-wide association study that included 14 studies, 12,696 cases of colorectal tumors (11,870 cancer, 826 adenoma), and 15,113 controls of European descent. The 10 most statistically significant, previously unreported findings were followed up in 6 studies; these included 3056 colorectal tumor cases (2098 cancer, 958 adenoma) and 6658 controls of European and Asian descent. RESULTS Based on the combined analysis, we identified a locus that reached the conventional genome-wide significance level at less than 5.0 × 10−8: an intergenic region on chromosome 2q32.3, close to nucleic acid binding protein 1 (most significant single nucleotide polymorphism: rs11903757; odds ratio [OR], 1.15 per risk allele; P = 3.7 × 10−8). We also found evidence for 3 additional loci with P values less than 5.0 × 10−7: a locus within the laminin gamma 1 gene on chromosome 1q25.3 (rs10911251; OR, 1.10 per risk allele; P = 9.5 × 10−8), a locus within the cyclin D2 gene on chromosome 12p13.32 (rs3217810 per risk allele; OR, 0.84; P = 5.9 × 10−8), and a locus in the T-box 3 gene on chromosome 12q24.21 (rs59336; OR, 0.91 per risk allele; P = 3.7 × 10−7). CONCLUSIONS In a large genome-wide association study, we associated polymorphisms close to nucleic acid binding protein 1 (which encodes a DNA-binding protein involved in DNA repair) with colorectal tumor risk. We also provided evidence for an association between colorectal tumor risk and polymorphisms in laminin gamma 1 (this is the second gene in the laminin family to be associated with colorectal cancers), cyclin D2 (which encodes for cyclin D2), and T-box 3 (which encodes a T-box transcription factor and is a target of Wnt signaling to β-catenin). The roles of these genes and their products

  19. Genome-wide expression analysis upon constitutive activation of the HacA bZIP transcription factor in Aspergillus niger reveals a coordinated cellular response to counteract ER stress

    PubMed Central

    2012-01-01

    Background HacA/Xbp1 is a conserved bZIP transcription factor in eukaryotic cells which regulates gene expression in response to various forms of secretion stress and as part of secretory cell differentiation. In the present study, we replaced the endogenous hacA gene of an Aspergillus niger strain with a gene encoding a constitutively active form of the HacA transcription factor (HacACA). The impact of constitutive HacA activity during exponential growth was explored in bioreactor controlled cultures using transcriptomic analysis to identify affected genes and processes. Results Transcription profiles for the wild-type strain (HacAWT) and the HacACA strain were obtained using Affymetrix GeneChip analysis of three replicate batch cultures of each strain. In addition to the well known HacA targets such as the ER resident foldases and chaperones, GO enrichment analysis revealed up-regulation of genes involved in protein glycosylation, phospholipid biosynthesis, intracellular protein transport, exocytosis and protein complex assembly in the HacACA mutant. Biological processes over-represented in the down-regulated genes include those belonging to central metabolic pathways, translation and transcription. A remarkable transcriptional response in the HacACA strain was the down-regulation of the AmyR transcription factor and its target genes. Conclusions The results indicate that the constitutive activation of the HacA leads to a coordinated regulation of the folding and secretion capacity of the cell, but with consequences on growth and fungal physiology to reduce secretion stress. PMID:22846479

  20. A Tool Set for the Genome-Wide Analysis of Neurospora crassa by RT-PCR.

    PubMed

    Hurley, Jennifer H; Dasgupta, Arko; Andrews, Peter; Crowell, Alexander M; Ringelberg, Carol; Loros, Jennifer J; Dunlap, Jay C

    2015-10-01

    Neurospora crassa is an important model organism for filamentous fungi as well as for circadian biology and photobiology. Although the community-accumulated tool set for the molecular analysis of Neurospora is extensive, two components are missing: (1) dependable reference genes whose level of expression are relatively constant across light/dark cycles and as a function of time of day and (2) a catalog of primers specifically designed for real-time PCR (RT-PCR). To address the first of these we have identified genes that are optimal for use as reference genes in RT-PCR across a wide range of expression levels; the mRNA/transcripts from these genes have potential for use as reference noncycling transcripts outside of Neurospora. In addition, we have generated a genome-wide set of RT-PCR primers, thereby streamlining the analysis of gene expression. In validation studies these primers successfully identified target mRNAs arising from 70% (34 of 49) of all tested genes and from all (28) of the moderately to highly expressed tested genes. PMID:26248984

  1. Genome-Wide Analysis of Wilms' Tumor 1-Controlled Gene Expression in Podocytes Reveals Key Regulatory Mechanisms.

    PubMed

    Kann, Martin; Ettou, Sandrine; Jung, Youngsook L; Lenz, Maximilian O; Taglienti, Mary E; Park, Peter J; Schermer, Bernhard; Benzing, Thomas; Kreidberg, Jordan A

    2015-09-01

    The transcription factor Wilms' tumor suppressor 1 (WT1) is key to podocyte development and viability; however, WT1 transcriptional networks in podocytes remain elusive. We provide a comprehensive analysis of the genome-wide WT1 transcriptional network in podocytes in vivo using chromatin immunoprecipitation followed by sequencing (ChIPseq) and RNA sequencing techniques. Our data show a specific role for WT1 in regulating the podocyte-specific transcriptome through binding to both promoters and enhancers of target genes. Furthermore, we inferred a podocyte transcription factor network consisting of WT1, LMX1B, TCF21, Fox-class and TEAD family transcription factors, and MAFB that uses tissue-specific enhancers to control podocyte gene expression. In addition to previously described WT1-dependent target genes, ChIPseq identified novel WT1-dependent signaling systems. These targets included components of the Hippo signaling system, underscoring the power of genome-wide transcriptional-network analyses. Together, our data elucidate a comprehensive gene regulatory network in podocytes suggesting that WT1 gene regulatory function and podocyte cell-type specification can best be understood in the context of transcription factor-regulatory element network interplay. PMID:25636411

  2. Genome wide analysis of blood pressure variability and ischemic stroke

    PubMed Central

    Khan, Muhammad S; Nalls, Michael A; Bevan, Steve; Cheng, Yu-Ching; Chen, Wei-Min; Malik, Rainer; McCarthy, Nina S; Holliday, Elizabeth G; Speed, Douglas; Hasan, Nazeeha; Pucek, Mateusz; Rinne, Paul E.; Sever, Peter; Stanton, Alice; Shields, Denis C; Maguire, Jane M; McEvoy, Mark; Scott, Rodney J; Ferrucci, Luigi; Macleod, Mary J; Attia, John; Markus, Hugh S; Sale, Michele M; Worrall, Bradford B; Mitchell, Braxton D; Dichgans, Martin; Sudlow, Cathy; Meschia, James F; Rothwell, Peter M

    2013-01-01

    Background and Purpose Visit-to-visit variability in BP is associated with ischemic stroke. We sought to determine whether such variability has a genetic aetiology and whether genetic variants associated with BP variability are also associated with ischemic stroke. Methods A GWAS for loci influencing BP variability was undertaken in 3,802 individuals from the Anglo-Scandinavian Cardiac Outcome Trial (ASCOT) study where long-term visit-to-visit and within visit BP measures were available. Since BP variability is strongly associated with ischemic stroke, we genotyped the sentinel SNP in an independent ischemic stroke population comprising of 8,624 cases and 12,722 controls and in 3,900 additional (Scandinavian) participants from the ASCOT study in order to replicate our findings. Results The ASCOT discovery GWAS identified a cluster of 17 correlated SNPs within the NLGN1 gene (3q26.31) associated with BP variability. The strongest association was with rs976683 (p=1.4×10−8). Conditional analysis on rs976683 provided no evidence of additional independent associations at the locus. Analysis of rs976683 in ischemic stroke patients found no association for overall stroke (OR 1.02; 95% CI 0.97-1.07; p=0.52) or its sub-types: CE (OR 1.07; 95% CI 0.97-1.16; p=0.17), LVD (OR 0.98; 95% 0.89-1.07; p=0.60) and SVD (OR 1.07; 95% CI 0.97-1.17; p=0.19). No evidence for association was found between rs976683 and BP variability in the additional (Scandinavian) ASCOT participants (p=0.18). Conclusions We identified a cluster of SNPs at the NLGN1 locus showing significant association with BP variability. Follow up analyses did not support an association with risk of ischemic stroke and its subtypes. PMID:23929743

  3. Defining the RNA polymerase III transcriptome: Genome-wide localization of the RNA polymerase III transcription machinery in human cells

    PubMed Central

    Canella, Donatella; Praz, Viviane; Reina, Jaime H.; Cousin, Pascal; Hernandez, Nouria

    2010-01-01

    Our view of the RNA polymerase III (Pol III) transcription machinery in mammalian cells arises mostly from studies of the RN5S (5S) gene, the Ad2 VAI gene, and the RNU6 (U6) gene, as paradigms for genes with type 1, 2, and 3 promoters. Recruitment of Pol III onto these genes requires prior binding of well-characterized transcription factors. Technical limitations in dealing with repeated genomic units, typically found at mammalian Pol III genes, have so far hampered genome-wide studies of the Pol III transcription machinery and transcriptome. We have localized, genome-wide, Pol III and some of its transcription factors. Our results reveal broad usage of the known Pol III transcription machinery and define a minimal Pol III transcriptome in dividing IMR90hTert fibroblasts. This transcriptome consists of some 500 actively transcribed genes including a few dozen candidate novel genes, of which we confirmed nine as Pol III transcription units by additional methods. It does not contain any of the microRNA genes previously described as transcribed by Pol III, but reveals two other microRNA genes, MIR886 (hsa-mir-886) and MIR1975 (RNY5, hY5, hsa-mir-1975), which are genuine Pol III transcription units. PMID:20413673

  4. Genome-Wide Expression Analysis in Down Syndrome: Insight into Immunodeficiency

    PubMed Central

    Li, Chong; Jin, Lei; Bai, Yun; Chen, Qimin; Fu, Lijun; Yang, Minjun; Xiao, Huasheng; Zhao, Guoping; Wang, Shengyue

    2012-01-01

    Down syndrome (DS) is caused by triplication of Human chromosome 21 (Hsa21) and associated with an array of deleterious phenotypes, including mental retardation, heart defects and immunodeficiency. Genome-wide expression patterns of uncultured peripheral blood cells are useful to understanding of DS-associated immune dysfunction. We used a Human Exon microarray to characterize gene expression in uncultured peripheral blood cells derived from DS individuals and age-matched controls from two age groups: neonate (N) and child (C). A total of 174 transcript clusters (gene-level) with eight located on Hsa21 in N group and 383 transcript clusters including 56 on Hsa21 in C group were significantly dysregulated in DS individuals. Microarray data were validated by quantitative polymerase chain reaction. Functional analysis revealed that the dysregulated genes in DS were significantly enriched in two and six KEGG pathways in N and C group, respectively. These pathways included leukocyte trans-endothelial migration, B cell receptor signaling pathway and primary immunodeficiency, etc., which causally implicated dysfunctional immunity in DS. Our results provided a comprehensive picture of gene expression patterns in DS at the two developmental stages and pointed towards candidate genes and molecular pathways potentially associated with the immune dysfunction in DS. PMID:23155455

  5. Genome-Wide Identification and Expression Analysis of WRKY Gene Family in Capsicum annuum L.

    PubMed Central

    Diao, Wei-Ping; Snyder, John C.; Wang, Shu-Bin; Liu, Jin-Bing; Pan, Bao-Gui; Guo, Guang-Jun; Wei, Ge

    2016-01-01

    The WRKY family of transcription factors is one of the most important families of plant transcriptional regulators with members regulating multiple biological processes, especially in regulating defense against biotic and abiotic stresses. However, little information is available about WRKYs in pepper (Capsicum annuum L.). The recent release of completely assembled genome sequences of pepper allowed us to perform a genome-wide investigation for pepper WRKY proteins. In the present study, a total of 71 WRKY genes were identified in the pepper genome. According to structural features of their encoded proteins, the pepper WRKY genes (CaWRKY) were classified into three main groups, with the second group further divided into five subgroups. Genome mapping analysis revealed that CaWRKY were enriched on four chromosomes, especially on chromosome 1, and 15.5% of the family members were tandemly duplicated genes. A phylogenetic tree was constructed depending on WRKY domain' sequences derived from pepper and Arabidopsis. The expression of 21 selected CaWRKY genes in response to seven different biotic and abiotic stresses (salt, heat shock, drought, Phytophtora capsici, SA, MeJA, and ABA) was evaluated by quantitative RT-PCR; Some CaWRKYs were highly expressed and up-regulated by stress treatment. Our results will provide a platform for functional identification and molecular breeding studies of WRKY genes in pepper. PMID:26941768

  6. Genome-wide Identification and Structural, Functional and Evolutionary Analysis of WRKY Components of Mulberry.

    PubMed

    Baranwal, Vinay Kumar; Negi, Nisha; Khurana, Paramjit

    2016-01-01

    Mulberry is known to be sensitive to several biotic and abiotic stresses, which in turn have a direct impact on the yield of silk, because it is the sole food source for the silk worm. WRKYs are a family of transcription factors, which play an important role in combating various biotic and abiotic stresses. In this study, we identified 54 genes with conserved WRKY motifs in the Morus notabilis genome. Motif searches coupled with a phylogenetic analysis revealed seven sub-groups as well as the absence of members of Group Ib in mulberry. Analyses of the 2K upstream region in addition to a gene ontology terms enrichment analysis revealed putative functions of mulberry WRKYs under biotic and abiotic stresses. An RNA-seq-based analysis showed that several of the identified WRKYs have shown preferential expression in the leaf, bark, root, male flower, and winter bud of M. notabilis. Finally, expression analysis by qPCR under different stress and hormone treatments revealed genotype-specific responses. Taken together, our results briefs about the genome-wide identification of WRKYs as well as their differential response to stresses and hormones. Importantly, these data can also be utilized to identify potential molecular targets for conferring tolerance to various stresses in mulberry. PMID:27477686

  7. Genome-wide Identification and Structural, Functional and Evolutionary Analysis of WRKY Components of Mulberry

    PubMed Central

    Baranwal, Vinay Kumar; Negi, Nisha; Khurana, Paramjit

    2016-01-01

    Mulberry is known to be sensitive to several biotic and abiotic stresses, which in turn have a direct impact on the yield of silk, because it is the sole food source for the silk worm. WRKYs are a family of transcription factors, which play an important role in combating various biotic and abiotic stresses. In this study, we identified 54 genes with conserved WRKY motifs in the Morus notabilis genome. Motif searches coupled with a phylogenetic analysis revealed seven sub-groups as well as the absence of members of Group Ib in mulberry. Analyses of the 2K upstream region in addition to a gene ontology terms enrichment analysis revealed putative functions of mulberry WRKYs under biotic and abiotic stresses. An RNA-seq-based analysis showed that several of the identified WRKYs have shown preferential expression in the leaf, bark, root, male flower, and winter bud of M. notabilis. Finally, expression analysis by qPCR under different stress and hormone treatments revealed genotype-specific responses. Taken together, our results briefs about the genome-wide identification of WRKYs as well as their differential response to stresses and hormones. Importantly, these data can also be utilized to identify potential molecular targets for conferring tolerance to various stresses in mulberry. PMID:27477686

  8. Genome-Wide Analysis of Branched-Chain Amino Acid Levels in Arabidopsis Seeds[W

    PubMed Central

    Angelovici, Ruthie; Lipka, Alexander E.; Deason, Nicholas; Gonzalez-Jorge, Sabrina; Lin, Haining; Cepela, Jason; Buell, Robin; Gore, Michael A.; DellaPenna, Dean

    2013-01-01

    Branched-chain amino acids (BCAAs) are three of the nine essential amino acids in human and animal diets and are important for numerous processes in development and growth. However, seed BCAA levels in major crops are insufficient to meet dietary requirements, making genetic improvement for increased and balanced seed BCAAs an important nutritional target. Addressing this issue requires a better understanding of the genetics underlying seed BCAA content and composition. Here, a genome-wide association study and haplotype analysis for seed BCAA traits in Arabidopsis thaliana revealed a strong association with a chromosomal interval containing two BRANCHED-CHAIN AMINO ACID TRANSFERASES, BCAT1 and BCAT2. Linkage analysis, reverse genetic approaches, and molecular complementation analysis demonstrated that allelic variation at BCAT2 is responsible for the natural variation of seed BCAAs in this interval. Complementation analysis of a bcat2 null mutant with two significantly different alleles from accessions Bayreuth-0 and Shahdara is consistent with BCAT2 contributing to natural variation in BCAA levels, glutamate recycling, and free amino acid homeostasis in seeds in an allele-dependent manner. The seed-specific phenotype of bcat2 null alleles, its strong transcription induction during late seed development, and its subcellular localization to the mitochondria are consistent with a unique, catabolic role for BCAT2 in BCAA metabolism in seeds. PMID:24368787

  9. Genome-Wide Analysis of the Cyclin Gene Family in Tomato

    PubMed Central

    Zhang, Tingyan; Wang, Xin; Lu, Yongen; Cai, Xiaofeng; Ye, Zhibiao; Zhang, Junhong

    2014-01-01

    Cyclins play important roles in cell division and cell expansion. They also interact with cyclin-dependent kinases to control cell cycle progression in plants. Our genome-wide analysis identified 52 expressed cyclin genes in tomato. Phylogenetic analysis of the deduced amino sequences of tomato and Arabidopsis cyclin genes divided them into 10 types, A-, B-, C-, D-, H-, L-, T-, U-, SDS- and J18. Pfam analysis indicated that most tomato cyclins contain a cyclin-N domain. C-, H- and J18 types only contain a cyclin-C domain, and U-type cyclins contain another potential cyclin domain. All of the cyclin genes are distributed throughout the tomato genome except for chromosome 8, and 30 of them were found to be segmentally duplicated; they are found on the duplicate segments of chromosome 1, 2, 3, 4, 5, 6, 10, 11 and 12, suggesting that tomato cyclin genes experienced a mass of segmental duplication. Quantitative real-time polymerase chain reaction analysis indicates that the expression patterns of tomato cyclin genes were significantly different in vegetative and reproductive stages. Transcription of most cyclin genes can be enhanced or repressed by exogenous application of gibberellin, which implies that gibberellin maybe a direct regulator of cyclin genes. The study presented here may be useful as a guide for further functional research on tomato cyclins. PMID:24366066

  10. Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at vèraison

    PubMed Central

    Pilati, Stefania; Perazzolli, Michele; Malossini, Andrea; Cestaro, Alessandro; Demattè, Lorenzo; Fontana, Paolo; Dal Ri, Antonio; Viola, Roberto; Velasco, Riccardo; Moser, Claudio

    2007-01-01

    Background Grapevine (Vitis species) is among the most important fruit crops in terms of cultivated area and economic impact. Despite this relevance, little is known about the transcriptional changes and the regulatory circuits underlying the biochemical and physical changes occurring during berry development. Results Fruit ripening in the non-climacteric crop species Vitis vinifera L. has been investigated at the transcriptional level by the use of the Affymetrix Vitis GeneChip® which contains approximately 14,500 unigenes. Gene expression data obtained from berries sampled before and after véraison in three growing years, were analyzed to identify genes specifically involved in fruit ripening and to investigate seasonal influences on the process. From these analyses a core set of 1477 genes was found which was similarly modulated in all seasons. We were able to separate ripening specific isoforms within gene families and to identify ripening related genes which appeared strongly regulated also by the seasonal weather conditions. Transcripts annotation by Gene Ontology vocabulary revealed five overrepresented functional categories of which cell wall organization and biogenesis, carbohydrate and secondary metabolisms and stress response were specifically induced during the ripening phase, while photosynthesis was strongly repressed. About 19% of the core gene set was characterized by genes involved in regulatory processes, such as transcription factors and transcripts related to hormonal metabolism and signal transduction. Auxin, ethylene and light emerged as the main stimuli influencing berry development. In addition, an oxidative burst, previously not detected in grapevine, characterized by rapid accumulation of H2O2 starting from véraison and by the modulation of many ROS scavenging enzymes, was observed. Conclusion The time-course gene expression analysis of grapevine berry development has identified the occurrence of two well distinct phases along the

  11. Genome-wide Identification of TCP Family Transcription Factors from Populus euphratica and Their Involvement in Leaf Shape Regulation.

    PubMed

    Ma, Xiaodong; Ma, Jianchao; Fan, Di; Li, Chaofeng; Jiang, Yuanzhong; Luo, Keming

    2016-01-01

    Higher plants have been shown to experience a juvenile vegetative phase, an adult vegetative phase, and a reproductive phase during its postembryonic development and distinct lateral organ morphologies have been observed at the different development stages. Populus euphratica, commonly known as a desert poplar, has developed heteromorphic leaves during its development. The TCP family genes encode a group of plant-specific transcription factors involved in several aspects of plant development. In particular, TCPs have been shown to influence leaf size and shape in many herbaceous plants. However, whether these functions are conserved in woody plants remains unknown. In the present study, we carried out genome-wide identification of TCP genes in P. euphratica and P. trichocarpa, and 33 and 36 genes encoding putative TCP proteins were found, respectively. Phylogenetic analysis of the poplar TCPs together with Arabidopsis TCPs indicated a biased expansion of the TCP gene family via segmental duplications. In addition, our results have also shown a correlation between different expression patterns of several P. euphratica TCP genes and leaf shape variations, indicating their involvement in the regulation of leaf shape development. PMID:27605130

  12. Genome-wide Identification of TCP Family Transcription Factors from Populus euphratica and Their Involvement in Leaf Shape Regulation

    PubMed Central

    Ma, Xiaodong; Ma, Jianchao; Fan, Di; Li, Chaofeng; Jiang, Yuanzhong; Luo, Keming

    2016-01-01

    Higher plants have been shown to experience a juvenile vegetative phase, an adult vegetative phase, and a reproductive phase during its postembryonic development and distinct lateral organ morphologies have been observed at the different development stages. Populus euphratica, commonly known as a desert poplar, has developed heteromorphic leaves during its development. The TCP family genes encode a group of plant-specific transcription factors involved in several aspects of plant development. In particular, TCPs have been shown to influence leaf size and shape in many herbaceous plants. However, whether these functions are conserved in woody plants remains unknown. In the present study, we carried out genome-wide identification of TCP genes in P. euphratica and P. trichocarpa, and 33 and 36 genes encoding putative TCP proteins were found, respectively. Phylogenetic analysis of the poplar TCPs together with Arabidopsis TCPs indicated a biased expansion of the TCP gene family via segmental duplications. In addition, our results have also shown a correlation between different expression patterns of several P. euphratica TCP genes and leaf shape variations, indicating their involvement in the regulation of leaf shape development. PMID:27605130

  13. Genome-wide analysis reveals gene expression and metabolic network dynamics during embryo development in Arabidopsis.

    PubMed

    Xiang, Daoquan; Venglat, Prakash; Tibiche, Chabane; Yang, Hui; Risseeuw, Eddy; Cao, Yongguo; Babic, Vivijan; Cloutier, Mathieu; Keller, Wilf; Wang, Edwin; Selvaraj, Gopalan; Datla, Raju

    2011-05-01

    Embryogenesis is central to the life cycle of most plant species. Despite its importance, because of the difficulty associated with embryo isolation, global gene expression programs involved in plant embryogenesis, especially the early events following fertilization, are largely unknown. To address this gap, we have developed methods to isolate whole live Arabidopsis (Arabidopsis thaliana) embryos as young as zygote and performed genome-wide profiling of gene expression. These studies revealed insights into patterns of gene expression relating to: maternal and paternal contributions to zygote development, chromosomal level clustering of temporal expression in embryogenesis, and embryo-specific functions. Functional analysis of some of the modulated transcription factor encoding genes from our data sets confirmed that they are critical for embryogenesis. Furthermore, we constructed stage-specific metabolic networks mapped with differentially regulated genes by combining the microarray data with the available Kyoto Encyclopedia of Genes and Genomes metabolic data sets. Comparative analysis of these networks revealed the network-associated structural and topological features, pathway interactions, and gene expression with reference to the metabolic activities during embryogenesis. Together, these studies have generated comprehensive gene expression data sets for embryo development in Arabidopsis and may serve as an important foundational resource for other seed plants. PMID:21402797

  14. Genome-Wide Analysis of the Lysine Biosynthesis Pathway Network during Maize Seed Development

    PubMed Central

    Liu, Yuwei; Xie, Shaojun; Yu, Jingjuan

    2016-01-01

    Lysine is one of the most limiting essential amino acids for humans and livestock. The nutritional value of maize (Zea mays L.) is reduced by its poor lysine content. To better understand the lysine biosynthesis pathway in maize seed, we conducted a genome-wide analysis of the genes involved in lysine biosynthesis. We identified lysine biosynthesis pathway genes (LBPGs) and investigated whether a diaminopimelate pathway variant exists in maize. We analyzed two genes encoding the key enzyme dihydrodipicolinate synthase, and determined that they contribute differently to lysine synthesis during maize seed development. A coexpression network of LBPGs was constructed using RNA-sequencing data from 21 developmental stages of B73 maize seed. We found a large set of genes encoding ribosomal proteins, elongation factors and zein proteins that were coexpressed with LBPGs. The coexpressed genes were enriched in cellular metabolism terms and protein related terms. A phylogenetic analysis of the LBPGs from different plant species revealed different relationships. Additionally, six transcription factor (TF) families containing 13 TFs were identified as the Hub TFs of the LBPGs modules. Several expression quantitative trait loci of LBPGs were also identified. Our results should help to elucidate the lysine biosynthesis pathway network in maize seed. PMID:26829553

  15. Signatures of positive selection in East African Shorthorn Zebu: a genome-wide SNP analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The small East African Shorthorn Zebu is the main indigenous cattle across East Africa. A recent genome wide SNPs analysis has revealed their ancient stable African taurine x Asian zebu admixture. Here, we assess the presence of candidate signature of positive selection in their genome, with the aim...

  16. Methods for meta-analysis of genome-wide association studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A limitation of many genome-wide association studies (GWA) in animal breeding is that there are many loci with small effect sizes; thus, larger sample sizes (N) are required to guarantee suitable power of detection. For increasing N, results from different GWA can be combined in a meta-analysis (MA-...

  17. Genome-Wide Transcriptome and Expression Profile Analysis of Phalaenopsis during Explant Browning

    PubMed Central

    Xu, Chuanjun; Zeng, Biyu; Huang, Junmei; Huang, Wen; Liu, Yumei

    2015-01-01

    Background Explant browning presents a major problem for in vitro culture, and can lead to the death of the explant and failure of regeneration. Considerable work has examined the physiological mechanisms underlying Phalaenopsis leaf explant browning, but the molecular mechanisms of browning remain elusive. In this study, we used whole genome RNA sequencing to examine Phalaenopsis leaf explant browning at genome-wide level. Methodology/Principal Findings We first used Illumina high-throughput technology to sequence the transcriptome of Phalaenopsis and then performed de novo transcriptome assembly. We assembled 79,434,350 clean reads into 31,708 isogenes and generated 26,565 annotated unigenes. We assigned Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations, and potential Pfam domains to each transcript. Using the transcriptome data as a reference, we next analyzed the differential gene expression of explants cultured for 0, 3, and 6 d, respectively. We then identified differentially expressed genes (DEGs) before and after Phalaenopsis explant browning. We also performed GO, KEGG functional enrichment and Pfam analysis of all DEGs. Finally, we selected 11 genes for quantitative real-time PCR (qPCR) analysis to confirm the expression profile analysis. Conclusions/Significance Here, we report the first comprehensive analysis of transcriptome and expression profiles during Phalaenopsis explant browning. Our results suggest that Phalaenopsis explant browning may be due in part to gene expression changes that affect the secondary metabolism, such as: phenylpropanoid pathway and flavonoid biosynthesis. Genes involved in photosynthesis and ATPase activity have been found to be changed at transcription level; these changes may perturb energy metabolism and thus lead to the decay of plant cells and tissues. This study provides comprehensive gene expression data for Phalaenopsis browning. Our data constitute an important resource for further

  18. On the analysis of a repeated measure design in genome-wide association analysis.

    PubMed

    Lee, Young; Park, Suyeon; Moon, Sanghoon; Lee, Juyoung; Elston, Robert C; Lee, Woojoo; Won, Sungho

    2014-12-01

    Longitudinal data enables detecting the effect of aging/time, and as a repeated measures design is statistically more efficient compared to cross-sectional data if the correlations between repeated measurements are not large. In particular, when genotyping cost is more expensive than phenotyping cost, the collection of longitudinal data can be an efficient strategy for genetic association analysis. However, in spite of these advantages, genome-wide association studies (GWAS) with longitudinal data have rarely been analyzed taking this into account. In this report, we calculate the required sample size to achieve 80% power at the genome-wide significance level for both longitudinal and cross-sectional data, and compare their statistical efficiency. Furthermore, we analyzed the GWAS of eight phenotypes with three observations on each individual in the Korean Association Resource (KARE). A linear mixed model allowing for the correlations between observations for each individual was applied to analyze the longitudinal data, and linear regression was used to analyze the first observation on each individual as cross-sectional data. We found 12 novel genome-wide significant disease susceptibility loci that were then confirmed in the Health Examination cohort, as well as some significant interactions between age/sex and SNPs. PMID:25464127

  19. Application of genome-wide expression analysis to human health and disease

    PubMed Central

    Cobb, J. Perren; Mindrinos, Michael N.; Miller-Graziano, Carol; Calvano, Steve E.; Baker, Henry V.; Xiao, Wenzhong; Laudanski, Krzysztof; Brownstein, Bernard H.; Elson, Constance M.; Hayden, Douglas L.; Herndon, David N.; Lowry, Stephen F.; Maier, Ronald V.; Schoenfeld, David A.; Moldawer, Lyle L.; Davis, Ronald W.; Tompkins, Ronald G.

    2005-01-01

    The application of genome-wide expression analysis to a large-scale, multicentered program in critically ill patients poses a number of theoretical and technical challenges. We describe here an analytical and organizational approach to a systematic evaluation of the variance associated with genome-wide expression analysis specifically tailored to study human disease. We analyzed sources of variance in genome-wide expression analyses performed with commercial oligonucleotide arrays. In addition, variance in gene expression in human blood leukocytes caused by repeated sampling in the same subject, among different healthy subjects, among different leukocyte subpopulations, and the effect of traumatic injury, were also explored. We report that analytical variance caused by sample processing was acceptably small. Blood leukocyte gene expression in the same individual over a 24-h period was remarkably constant. In contrast, genome-wide expression varied significantly among different subjects and leukocyte subpopulations. Expectedly, traumatic injury induced dramatic changes in apparent gene expression that were greater in magnitude than the analytical noise and interindividual variance. We demonstrate that the development of a nation-wide program for gene expression analysis with careful attention to analytical details can reduce the variance in the clinical setting to a level where patterns of gene expression are informative among different healthy human subjects, and can be studied with confidence in human disease. PMID:15781863

  20. Sparse principal component analysis for identifying ancestry-informative markers in genome-wide association studies.

    PubMed

    Lee, Seokho; Epstein, Michael P; Duncan, Richard; Lin, Xihong

    2012-05-01

    Genome-wide association studies (GWAS) routinely apply principal component analysis (PCA) to infer population structure within a sample to correct for confounding due to ancestry. GWAS implementation of PCA uses tens of thousands of single-nucleotide polymorphisms (SNPs) to infer structure, despite the fact that only a small fraction of such SNPs provides useful information on ancestry. The identification of this reduced set of ancestry-informative markers (AIMs) from a GWAS has practical value; for example, researchers can genotype the AIM set to correct for potential confounding due to ancestry in follow-up studies that utilize custom SNP or sequencing technology. We propose a novel technique to identify AIMs from genome-wide SNP data using sparse PCA. The procedure uses penalized regression methods to identify those SNPs in a genome-wide panel that significantly contribute to the principal components while encouraging SNPs that provide negligible loadings to vanish from the analysis. We found that sparse PCA leads to negligible loss of ancestry information compared to traditional PCA analysis of genome-wide SNP data. We further demonstrate the value of sparse PCA for AIM selection using real data from the International HapMap Project and a genomewide study of inflammatory bowel disease. We have implemented our approach in open-source R software for public use. PMID:22508067

  1. MYB Transcription Factors in Chinese Pear (Pyrus bretschneideri Rehd.): Genome-Wide Identification, Classification, and Expression Profiling during Fruit Development.

    PubMed

    Cao, Yunpeng; Han, Yahui; Li, Dahui; Lin, Yi; Cai, Yongping

    2016-01-01

    The MYB family is one of the largest families of transcription factors in plants. Although, some MYBs were reported to play roles in secondary metabolism, no comprehensive study of the MYB family in Chinese pear (Pyrus bretschneideri Rehd.) has been reported. In the present study, we performed genome-wide analysis of MYB genes in Chinese pear, designated as PbMYBs, including analyses of their phylogenic relationships, structures, chromosomal locations, promoter regions, GO annotations, and collinearity. A total of 129 PbMYB genes were identified in the pear genome and were divided into 31 subgroups based on phylogenetic analysis. These PbMYBs were unevenly distributed among 16 chromosomes (total of 17 chromosomes). The occurrence of gene duplication events indicated that whole-genome duplication and segmental duplication likely played key roles in expansion of the PbMYB gene family. Ka/Ks analysis suggested that the duplicated PbMYBs mainly experienced purifying selection with restrictive functional divergence after the duplication events. Interspecies microsynteny analysis revealed maximum orthology between pear and peach, followed by plum and strawberry. Subsequently, the expression patterns of 20 PbMYB genes that may be involved in lignin biosynthesis according to their phylogenetic relationships were examined throughout fruit development. Among the 20 genes examined, PbMYB25 and PbMYB52 exhibited expression patterns consistent with the typical variations in the lignin content previously reported. Moreover, sub-cellular localization analysis revealed that two proteins PbMYB25 and PbMYB52 were localized to the nucleus. All together, PbMYB25 and PbMYB52 were inferred to be candidate genes involved in the regulation of lignin biosynthesis during the development of pear fruit. This study provides useful information for further functional analysis of the MYB gene family in pear. PMID:27200050

  2. MYB Transcription Factors in Chinese Pear (Pyrus bretschneideri Rehd.): Genome-Wide Identification, Classification, and Expression Profiling during Fruit Development

    PubMed Central

    Cao, Yunpeng; Han, Yahui; Li, Dahui; Lin, Yi; Cai, Yongping

    2016-01-01

    The MYB family is one of the largest families of transcription factors in plants. Although, some MYBs were reported to play roles in secondary metabolism, no comprehensive study of the MYB family in Chinese pear (Pyrus bretschneideri Rehd.) has been reported. In the present study, we performed genome-wide analysis of MYB genes in Chinese pear, designated as PbMYBs, including analyses of their phylogenic relationships, structures, chromosomal locations, promoter regions, GO annotations, and collinearity. A total of 129 PbMYB genes were identified in the pear genome and were divided into 31 subgroups based on phylogenetic analysis. These PbMYBs were unevenly distributed among 16 chromosomes (total of 17 chromosomes). The occurrence of gene duplication events indicated that whole-genome duplication and segmental duplication likely played key roles in expansion of the PbMYB gene family. Ka/Ks analysis suggested that the duplicated PbMYBs mainly experienced purifying selection with restrictive functional divergence after the duplication events. Interspecies microsynteny analysis revealed maximum orthology between pear and peach, followed by plum and strawberry. Subsequently, the expression patterns of 20 PbMYB genes that may be involved in lignin biosynthesis according to their phylogenetic relationships were examined throughout fruit development. Among the 20 genes examined, PbMYB25 and PbMYB52 exhibited expression patterns consistent with the typical variations in the lignin content previously reported. Moreover, sub-cellular localization analysis revealed that two proteins PbMYB25 and PbMYB52 were localized to the nucleus. All together, PbMYB25 and PbMYB52 were inferred to be candidate genes involved in the regulation of lignin biosynthesis during the development of pear fruit. This study provides useful information for further functional analysis of the MYB gene family in pear. PMID:27200050

  3. Genome-wide survey of transcriptional initiation in the pathogenic fungus, Candida glabrata.

    PubMed

    Aoyama, Toshihiro; Nakayama, Hironobu; Ueno, Keigo; Inukai, Tatsuya; Tanabe, Koichi; Nagi, Minoru; Bard, Martin; Chibana, Hiroji

    2014-06-01

    DNA sequencing of the 5'-flanking region of the transcriptome effectively identifies transcription initiation sites and also aids in identifying unknown genes. This study describes a comprehensive polling of transcription start sites and an analysis of full-length complementary DNAs derived from the genome of the pathogenic fungus Candida glabrata. A comparison of the sequence reads derived from a cDNA library prepared from cells grown under different culture conditions against the reference genomic sequence of the Candida Genome Database (CGD: http://www.candidagenome.org/) revealed the expression of 4316 genes and their acknowledged transcription start sites (TSSs). In addition this analysis also predicted 59 new genes including 22 that showed no homology to the genome of Saccharomyces cerevisiae, a genetically close relative of C. glabrata. Furthermore, comparison of the 5'-untranslated regions (5'-UTRs) and core promoters of C. glabrata to those of S. cerevisiae showed various global similarities and differences among orthologous genes. Thus, the C. glabrata transcriptome can complement the annotation of the genome database and should provide new insights into the organization, regulation, and function of genes of this important human pathogen. PMID:24725256

  4. Genome-wide DNA methylation analysis in cohesin mutant human cell lines

    PubMed Central

    Liu, Jinglan; Zhang, Zhe; Bando, Masashige; Itoh, Takehiko; Deardorff, Matthew A.; Li, Jennifer R.; Clark, Dinah; Kaur, Maninder; Tatsuro, Kondo; Kline, Antonie D.; Chang, Celia; Vega, Hugo; Jackson, Laird G.; Spinner, Nancy B.; Shirahige, Katsuhiko; Krantz, Ian D.

    2010-01-01

    The cohesin complex has recently been shown to be a key regulator of eukaryotic gene expression, although the mechanisms by which it exerts its effects are poorly understood. We have undertaken a genome-wide analysis of DNA methylation in cohesin-deficient cell lines from probands with Cornelia de Lange syndrome (CdLS). Heterozygous mutations in NIPBL, SMC1A and SMC3 genes account for ∼65% of individuals with CdLS. SMC1A and SMC3 are subunits of the cohesin complex that controls sister chromatid cohesion, whereas NIPBL facilitates cohesin loading and unloading. We have examined the methylation status of 27 578 CpG dinucleotides in 72 CdLS and control samples. We have documented the DNA methylation pattern in human lymphoblastoid cell lines (LCLs) as well as identified specific differential DNA methylation in CdLS. Subgroups of CdLS probands and controls can be classified using selected CpG loci. The X chromosome was also found to have a unique DNA methylation pattern in CdLS. Cohesin preferentially binds to hypo-methylated DNA in control LCLs, whereas the differential DNA methylation alters cohesin binding in CdLS. Our results suggest that in addition to DNA methylation multiple mechanisms may be involved in transcriptional regulation in human cells and in the resultant gene misexpression in CdLS. PMID:20448023

  5. Genome-wide analysis of high risk human papillomavirus E2 proteins in human primary keratinocytes.

    PubMed

    Sunthamala, Nuchsupha; Pang, Chai Ling; Thierry, Francoise; Teissier, Sebastien; Pientong, Chamsai; Ekalaksananan, Tipaya

    2014-12-01

    The E2 protein is expressed in the early stage of human papillomavirus (HPV) infection that is associated with cervical lesions. This protein plays important roles in regulation of viral replication and transcription. To characterize the role of E2 protein in modulation of cellular gene expression in HPV infected cells, genome-wide expression profiling of human primary keratinocytes (HPK) harboring HPV16 E2 and HPV18 E2 was investigated using microarray. The Principle Components Analysis (PCA) revealed that the expression data of HPV16 E2 and HPV18 E2-transduced HPKs were rather closely clustered. The Venn diagram of modulated genes showed an overlap of 10 common genes in HPV16 E2 expressing HPK and HPV18 E2 expressing HPK. These genes were expressed with significant difference by comparison with control cells. In addition, the distinct sets of modulated genes were detected 14 and 34 genes in HPV16 E2 and HPV18 E2 expressing HPKs, respectively. PMID:26484085

  6. Genome-wide gene expression analysis of mouse embryonic stem cells exposed to p-dichlorobenzene.

    PubMed

    Tani, Hidenori; Takeshita, Jun-Ichi; Aoki, Hiroshi; Abe, Ryosuke; Toyoda, Akinobu; Endo, Yasunori; Miyamoto, Sadaaki; Gamo, Masashi; Torimura, Masaki

    2016-09-01

    Because of the limitations of whole animal testing approaches for toxicological assessment, new cell-based assay systems have been widely studied. In this study, we focused on two biological products for toxicological assessment: mouse embryonic stem cells (mESCs) and long noncoding RNAs (lncRNAs). mESCs possess the abilities of self-renewal and differentiation into multiple cell types. LlncRNAs are an important class of pervasive non-protein-coding transcripts involved in the molecular mechanisms associated with responses to chemicals. We exposed mESCs to p-dichlorobenzene (p-DCB) for 1 or 28 days (daily dose), extracted total RNA, and performed deep sequencing analyses. The genome-wide gene expression analysis indicated that mechanisms modulating proteins occurred following acute and chronic exposures, and mechanisms modulating genomic DNA occurred following chronic exposure. Moreover, our results indicate that three novel lncRNAs (Snora41, Gm19947, and Scarna3a) in mESCs respond to p-DCB exposure. We propose that these lncRNAs have the potential to be surrogate indicators of p-DCB responses in mESCs. PMID:26975756

  7. Genome-wide characterization and comparative analysis of the MLO gene family in cotton.

    PubMed

    Wang, Xiaoyan; Ma, Qifeng; Dou, Lingling; Liu, Zhen; Peng, Renhai; Yu, Shuxun

    2016-06-01

    In plants, MLO (Mildew Locus O) gene encodes a plant-specific seven transmembrane (TM) domain protein involved in several cellular processes, including susceptibility to powdery mildew (PM). In this study, a genome-wide characterization of the MLO gene family in G. raimondii L., G. arboreum L. and G. hirsutum L. was performed. In total, 22, 17 and 38 homologous sequences were identified for each species, respectively. Gene organization, including chromosomal location, gene clustering and gene duplication, was investigated. Homologues related to PM susceptibility in upland cotton were inferred by phylogenetic relationships with functionally characterized MLO proteins. To conduct a comparative analysis between MLO candidate genes from G. raimondii L., G. arboreum L. and G. hirsutum L., orthologous relationships and conserved synteny blocks were constructed. The transcriptional variation of 38 GhMLO genes in response to exogenous application of salt, mannitol (Man), abscisic acid (ABA), ethylene (ETH), jasmonic acid (JA) and salicylic acid (SA) was monitored. Further studies should be conducted to elucidate the functions of MLO genes in PM susceptibility and phytohormone signalling pathways. PMID:26986931

  8. Genome-wide meta-analysis of cerebral white matter hyperintensities in patients with stroke

    PubMed Central

    Zhang, Cathy R.; Adib-Samii, Poneh; Devan, William J.; Parsons, Owen E.; Lanfranconi, Silvia; Gregory, Sarah; Cloonan, Lisa; Falcone, Guido J.; Radmanesh, Farid; Fitzpatrick, Kaitlin; Kanakis, Allison; Barrick, Thomas R.; Moynihan, Barry; Lewis, Cathryn M.; Boncoraglio, Giorgio B.; Lemmens, Robin; Thijs, Vincent; Sudlow, Cathie; Wardlaw, Joanna; Rothwell, Peter M.; Meschia, James F.; Worrall, Bradford B.; Levi, Christopher; Bevan, Steve; Furie, Karen L.; Dichgans, Martin; Rosand, Jonathan; Markus, Hugh S.; Rost, Natalia

    2016-01-01

    Objective: For 3,670 stroke patients from the United Kingdom, United States, Australia, Belgium, and Italy, we performed a genome-wide meta-analysis of white matter hyperintensity volumes (WMHV) on data imputed to the 1000 Genomes reference dataset to provide insights into disease mechanisms. Methods: We first sought to identify genetic associations with white matter hyperintensities in a stroke population, and then examined whether genetic loci previously linked to WMHV in community populations are also associated in stroke patients. Having established that genetic associations are shared between the 2 populations, we performed a meta-analysis testing which associations with WMHV in stroke-free populations are associated overall when combined with stroke populations. Results: There were no associations at genome-wide significance with WMHV in stroke patients. All previously reported genome-wide significant associations with WMHV in community populations shared direction of effect in stroke patients. In a meta-analysis of the genome-wide significant and suggestive loci (p < 5 × 10−6) from community populations (15 single nucleotide polymorphisms in total) and from stroke patients, 6 independent loci were associated with WMHV in both populations. Four of these are novel associations at the genome-wide level (rs72934505 [NBEAL1], p = 2.2 × 10−8; rs941898 [EVL], p = 4.0 × 10−8; rs962888 [C1QL1], p = 1.1 × 10−8; rs9515201 [COL4A2], p = 6.9 × 10−9). Conclusions: Genetic associations with WMHV are shared in otherwise healthy individuals and patients with stroke, indicating common genetic susceptibility in cerebral small vessel disease. PMID:26674333

  9. Genome-wide analysis of gestational gene-environment interactions in the developing kidney

    PubMed Central

    Yan, Lei; Yao, Xiao; Bachvarov, Dimcho; Saifudeen, Zubaida

    2014-01-01

    The G protein-coupled bradykinin B2 receptor (Bdkrb2) plays an important role in regulation of blood pressure under conditions of excess salt intake. Our previous work has shown that Bdkrb2 also plays a developmental role since Bdkrb2−/− embryos, but not their wild-type or heterozygous littermates, are prone to renal dysgenesis in response to gestational high salt intake. Although impaired terminal differentiation and apoptosis are consistent findings in the Bdkrb2−/− mutant kidneys, the developmental pathways downstream of gene-environment interactions leading to the renal phenotype remain unknown. Here, we performed genome-wide transcriptional profiling on embryonic kidneys from salt-stressed Bdkrb2+/+ and Bdkrb2−/− embryos. The results reveal significant alterations in key pathways regulating Wnt signaling, apoptosis, embryonic development, and cell-matrix interactions. In silico analysis reveal that nearly 12% of differentially regulated genes harbor one or more Pax2 DNA-binding sites in their promoter region. Further analysis shows that metanephric kidneys of salt-stressed Bdkrb2−/− have a significant downregulation of Pax2 gene expression. This was corroborated in Bdkrb2−/−;Pax2GFP+/tg mice, demonstrating that Pax2 transcriptional activity is significantly repressed by gestational salt-Bdkrb2 interactions. We conclude that gestational gene (Bdkrb2) and environment (salt) interactions cooperate to impact gene expression programs in the developing kidney. Suppression of Pax2 likely contributes to the defects in epithelial survival, growth, and differentiation in salt-stressed BdkrB2−/− mice. PMID:25005792

  10. Genome-Wide Analysis of Polycistronic MicroRNAs in Cultivated and Wild Rice.

    PubMed

    Baldrich, Patricia; Hsing, Yue-Ie Caroline; San Segundo, Blanca

    2016-01-01

    MicroRNAs (miRNAs) are small noncoding RNAs that direct posttranscriptional gene silencing in eukaryotes. They are frequently clustered in the genomes of animals and can be independently transcribed or simultaneously transcribed into single polycistronic transcripts. Only a few miRNA clusters have been described in plants, and most of them are generated from independent transcriptional units. Here, we used a combination of bioinformatic tools and experimental analyses to discover new polycistronic miRNAs in rice. A genome-wide analysis of clustering patterns of MIRNA loci in the rice genome was carried out using a criterion of 3 kb as the maximal distance between two miRNAs. This analysis revealed 28 loci with the ability to form the typical hairpin structure of miRNA precursors in which 2 or more mature miRNAs mapped along the same structure. RT-PCR provided evidence for the polycistronic nature of seven miRNA precursors containing homologous or nonhomologous miRNA species. Polycistronic miRNAs and candidate polycistronic miRNAs are located across different rice chromosomes, except chromosome 12, and resided in both duplicated and nonduplicated chromosomal regions. Finally, most polycistronic and candidate polycistronic miRNAs showed a pattern of conservation in the genome of rice species with an AA genome. The diversity in the organization of MIR genes that are transcribed as polycistrons suggests a versatile mechanism for the control of gene expression in different biological processes and supports additional levels of complexity in miRNA functioning in plants. PMID:27190137

  11. Genome-Wide Analysis of Polycistronic MicroRNAs in Cultivated and Wild Rice

    PubMed Central

    Baldrich, Patricia; Hsing, Yue-Ie Caroline; San Segundo, Blanca

    2016-01-01

    MicroRNAs (miRNAs) are small noncoding RNAs that direct posttranscriptional gene silencing in eukaryotes. They are frequently clustered in the genomes of animals and can be independently transcribed or simultaneously transcribed into single polycistronic transcripts. Only a few miRNA clusters have been described in plants, and most of them are generated from independent transcriptional units. Here, we used a combination of bioinformatic tools and experimental analyses to discover new polycistronic miRNAs in rice. A genome-wide analysis of clustering patterns of MIRNA loci in the rice genome was carried out using a criterion of 3 kb as the maximal distance between two miRNAs. This analysis revealed 28 loci with the ability to form the typical hairpin structure of miRNA precursors in which 2 or more mature miRNAs mapped along the same structure. RT-PCR provided evidence for the polycistronic nature of seven miRNA precursors containing homologous or nonhomologous miRNA species. Polycistronic miRNAs and candidate polycistronic miRNAs are located across different rice chromosomes, except chromosome 12, and resided in both duplicated and nonduplicated chromosomal regions. Finally, most polycistronic and candidate polycistronic miRNAs showed a pattern of conservation in the genome of rice species with an AA genome. The diversity in the organization of MIR genes that are transcribed as polycistrons suggests a versatile mechanism for the control of gene expression in different biological processes and supports additional levels of complexity in miRNA functioning in plants. PMID:27190137

  12. Genome-wide review of transcriptional complexity in mouse protein kinases and phosphatases

    PubMed Central

    Forrest, Alistair RR; Taylor, Darrin F; Crowe, Mark L; Chalk, Alistair M; Waddell, Nic J; Kolle, Gabriel; Faulkner, Geoffrey J; Kodzius, Rimantas; Katayama, Shintaro; Wells, Christine; Kai, Chikatoshi; Kawai, Jun; Carninci, Piero; Hayashizaki, Yoshihide; Grimmond, Sean M

    2006-01-01

    Background Alternative transcripts of protein kinases and protein phosphatases are known to encode peptides with altered substrate affinities, subcellular localizations, and activities. We undertook a systematic study to catalog the variant transcripts of every protein kinase-like and phosphatase-like locus of mouse . Results By reviewing all available transcript evidence, we found that at least 75% of kinase and phosphatase loci in mouse generate alternative splice forms, and that 44% of these loci have well supported alternative 5' exons. In a further analysis of full-length cDNAs, we identified 69% of loci as generating more than one peptide isoform. The 1,469 peptide isoforms generated from these loci correspond to 1,080 unique Interpro domain combinations, many of which lack catalytic or interaction domains. We also report on the existence of likely dominant negative forms for many of the receptor kinases and phosphatases, including some 26 secreted decoys (seven known and 19 novel: Alk, Csf1r, Egfr, Epha1, 3, 5,7 and 10, Ephb1, Flt1, Flt3, Insr, Insrr, Kdr, Met, Ptk7, Ptprc, Ptprd, Ptprg, Ptprl, Ptprn, Ptprn2, Ptpro, Ptprr, Ptprs, and Ptprz1) and 13 transmembrane forms (four known and nine novel: Axl, Bmpr1a, Csf1r, Epha4, 5, 6 and 7, Ntrk2, Ntrk3, Pdgfra, Ptprk, Ptprm, Ptpru). Finally, by mining public gene expression data (MPSS and microarrays), we confirmed tissue-specific expression of ten of the novel isoforms. Conclusion These findings suggest that alternative transcripts of protein kinases and phosphatases are produced that encode different domain structures, and that these variants are likely to play important roles in phosphorylation-dependent signaling pathways. PMID:16507138

  13. Examination of the Genome-Wide Transcriptional Response of Escherichia coli O157:H7 to Cinnamaldehyde Exposure

    PubMed Central

    Visvalingam, Jeyachchandran; Hernandez-Doria, Juan David

    2013-01-01

    Cinnamaldehyde is a natural antimicrobial that has been found to be effective against many food-borne pathogens, including Escherichia coli O157:H7. Although its antimicrobial effects have been well investigated, limited information is available on its effects at the molecular level. Sublethal treatment at 200 mg/liter cinnamaldehyde inhibited growth of E. coli O157:H7 at 37°C and for ≤2 h caused cell elongation, but from 2 to 4 h growth resumed and cells reverted to normal length. To understand this transient behavior, genome-wide transcriptional analysis of E. coli O157:H7 was performed at 2 and 4 h of exposure to cinnamaldehyde in conjunction with reverse-phase high-performance liquid chromatography (RP-HPLC) analysis for cinnamaldehyde and other cinnamic compounds. Drastically different gene expression profiles were obtained at 2 and 4 h. RP-HPLC analysis showed that cinnamaldehyde was structurally stable for at least 2 h. At 2 h of exposure, cinnamaldehyde induced expression of many oxidative stress-related genes and repressed expression of DNA, protein, O-antigen, and fimbrial synthetic genes. At 4 h, many cinnamaldehyde-induced repressive effects on E. coli O157:H7 gene expression were reversed, and cells became more motile and grew at a slightly higher rate. Data indicated that by 4 h, E. coli O157:H7 was able to convert cinnamaldehyde into the less toxic cinnamic alcohol using dehydrogenase/reductase enzymes (YqhD and DkgA). This is the first study to characterize the ability of E. coli O157:H7 to convert cinnamaldehyde into cinnamic alcohol which, in turn, showed that the antimicrobial activity of cinnamaldehyde is mainly attributable to its carbonyl aldehyde group. PMID:23183978

  14. Tomato genome-wide transcriptional responses to Fusarium wilt and Tomato Mosaic Virus.

    PubMed

    Andolfo, Giuseppe; Ferriello, Francesca; Tardella, Luca; Ferrarini, Alberto; Sigillo, Loredana; Frusciante, Luigi; Ercolano, Maria Raffaella

    2014-01-01

    Since gene expression approaches constitute a starting point for investigating plant-pathogen systems, we performed a transcriptional analysis to identify a set of genes of interest in tomato plants infected with F. oxysporum f. sp. lycopersici (Fol) and Tomato Mosaic Virus (ToMV). Differentially expressed tomato genes upon inoculation with Fol and ToMV were identified at two days post-inoculation. A large overlap was found in differentially expressed genes throughout the two incompatible interactions. However, Gene Ontology enrichment analysis evidenced specific categories in both interactions. Response to ToMV seems more multifaceted, since more than 70 specific categories were enriched versus the 30 detected in Fol interaction. In particular, the virus stimulated the production of an invertase enzyme that is able to redirect the flux of carbohydrates, whereas Fol induced a homeostatic response to prevent the fungus from killing cells. Genomic mapping of transcripts suggested that specific genomic regions are involved in resistance response to pathogen. Coordinated machinery could play an important role in prompting the response, since 60% of pathogen receptor genes (NB-ARC-LRR, RLP, RLK) were differentially regulated during both interactions. Assessment of genomic gene expression patterns could help in building up models of mediated resistance responses. PMID:24804963

  15. Genome-wide identification and analysis of the MADS-box gene family in sesame.

    PubMed

    Wei, Xin; Wang, Linhai; Yu, Jingyin; Zhang, Yanxin; Li, Donghua; Zhang, Xiurong

    2015-09-10

    MADS-box genes encode transcription factors that play crucial roles in plant growth and development. Sesame (Sesamum indicum L.) is an oil crop that contributes to the daily oil and protein requirements of almost half of the world's population; therefore, a genome-wide analysis of the MADS-box gene family is needed. Fifty-seven MADS-box genes were identified from 14 linkage groups of the sesame genome. Analysis of phylogenetic relationships with Arabidopsis thaliana, Utricularia gibba and Solanum lycopersicum MADS-box genes was performed. Sesame MADS-box genes were clustered into four groups: 28 MIKC(c)-type, 5 MIKC(⁎)-type, 14 Mα-type and 10 Mγ-type. Gene structure analysis revealed from 1 to 22 exons of sesame MADS-box genes. The number of exons in type II MADS-box genes greatly exceeded the number in type I genes. Motif distribution analysis of sesame MADS-box genes also indicated that type II MADS-box genes contained more motifs than type I genes. These results suggested that type II sesame MADS-box genes had more complex structures. By analyzing expression profiles of MADS-box genes in seven sesame transcriptomes, we determined that MIKC(C)-type MADS-box genes played significant roles in sesame flower and seed development. Although most MADS-box genes in the same clade showed similar expression features, some gene functions were diversified from the orthologous Arabidopsis genes. This research will contribute to uncovering the role of MADS-box genes in sesame development. PMID:25967387

  16. Genome-wide identification, evolutionary and expression analysis of the aspartic protease gene superfamily in grape

    PubMed Central

    2013-01-01

    Background Aspartic proteases (APs) are a large family of proteolytic enzymes found in almost all organisms. In plants, they are involved in many biological processes, such as senescence, stress responses, programmed cell death, and reproduction. Prior to the present study, no grape AP gene(s) had been reported, and their research on woody species was very limited. Results In this study, a total of 50 AP genes (VvAP) were identified in the grape genome, among which 30 contained the complete ASP domain. Synteny analysis within grape indicated that segmental and tandem duplication events contributed to the expansion of the grape AP family. Additional analysis between grape and Arabidopsis demonstrated that several grape AP genes were found in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes arose before the divergence of grape and Arabidopsis. Phylogenetic relationships of the 30 VvAPs with the complete ASP domain and their Arabidopsis orthologs, as well as their gene and protein features were analyzed and their cellular localization was predicted. Moreover, expression profiles of VvAP genes in six different tissues were determined, and their transcript abundance under various stresses and hormone treatments were measured. Twenty-seven VvAP genes were expressed in at least one of the six tissues examined; nineteen VvAPs responded to at least one abiotic stress, 12 VvAPs responded to powdery mildew infection, and most of the VvAPs responded to SA and ABA treatments. Furthermore, integrated synteny and phylogenetic analysis identified orthologous AP genes between grape and Arabidopsis, providing a unique starting point for investigating the function of grape AP genes. Conclusions The genome-wide identification, evolutionary and expression analyses of grape AP genes provide a framework for future analysis of AP genes in defining their roles during stress response. Integrated synteny and phylogenetic analyses provide novel insight into the

  17. Genome-wide mapping of conserved microRNAs and their host transcripts in Tribolium castaneum.

    PubMed

    Luo, Qibin; Zhou, Qing; Yu, Xiaomin; Lin, Hongbin; Hu, Songnian; Yu, Jun

    2008-06-01

    MicroRNAs (miRNAs) are endogenous 22-nt RNAs, which play important regulatory roles by post-transcriptional gene silencing. A computational strategy has been developed for the identification of conserved miRNAs based on features of known metazoan miRNAs in red flour beetle (Tribolium castaneum), which is regarded as one of the major laboratory models of arthropods. Among 118 putative miRNAs, 47% and 53% of the predicted miRNAs from the red flour beetle are harbored by known protein-coding genes (intronic) and genes located outside (intergenic miRNA), respectively. There are 31 intronic miRNAs in the same transcriptional orientation as the host genes, which may share RNA polymerase II and spliceosomal machinery with their host genes for their biogenesis. A hypothetical feedback model has been proposed based on the analysis of the relationship between intronic miRNAs and their host genes in the development of red flour beetle. PMID:18571123

  18. Blood Genome-Wide Transcriptional Profiles of HER2 Negative Breast Cancers Patients

    PubMed Central

    Balacescu, Ovidiu; Balacescu, Loredana; Gherman, Claudia; Drigla, Flaviu; Pop, Laura; Bolba-Morar, Gabriela; Tudoran, Oana; Berindan-Neagoe, Ioana

    2016-01-01

    Tumors act systemically to sustain cancer progression, affecting the physiological processes in the host and triggering responses in the blood circulating cells. In this study, we explored blood transcriptional patterns of patients with two subtypes of HER2 negative breast cancers, with different prognosis and therapeutic outcome. Peripheral blood samples from seven healthy female donors and 29 women with breast cancer including 14 triple-negative breast cancers and 15 hormone-dependent breast cancers were evaluated by microarray. We also evaluated the stroma in primary tumors. Transcriptional analysis revealed distinct molecular signatures in the blood of HER2− breast cancer patients according to ER/PR status. Our data showed the implication of immune signaling in both breast cancer subtypes with an enrichment of these processes in the blood of TNBC patients. We observed a significant alteration of “chemokine signaling,” “IL-8 signaling,” and “communication between innate and adaptive immune cells” pathways in the blood of TNBC patients correlated with an increased inflammation and necrosis in their primary tumors. Overall, our data indicate that the presence of triple-negative breast cancer is associated with an enrichment of altered systemic immune-related pathways, suggesting that immunotherapy could possibly be synergistic to the chemotherapy, to improve the clinical outcome of these patients. PMID:26884644

  19. Genome wide transcriptional profiling of acclimation to photoperiod in high-latitude accessions of Arabidopsis thaliana.

    PubMed

    Lewandowska-Sabat, Anna Monika; Winge, Per; Fjellheim, Siri; Dørum, Guro; Bones, Atle Magnar; Rognli, Odd Arne

    2012-04-01

    Three Arabidopsis thaliana accessions originating from the northernmost boundary of the species distribution in Norway (59-68°N) were used to study global wide transcriptional responses to 16 and 24 h photoperiods during flower initiation. Significant analysis of microarrays (SAM), analyses of statistically overrepresented gene ontologies (GOstat) and gene set enrichment analyses (GSEA) were used to identify candidate genes and genetic pathways underlying phenotypic adaptations of accessions to different photoperiods. Statistical analyses identified 732 and 258 differentially expressed genes between accessions in 16 and 24 h photoperiod, respectively. Among significantly expressed genes, ethylene mediated signaling pathway was significantly overrepresented in 16 h photoperiod, while genes involved in response to auxin stimulus were found to be significantly overrepresented in 24 h photoperiod. Several gene sets were found to be differentially expressed among accessions, e.g. cold acclimation, dehydration response, phytochrome signaling, vernalization response and circadian clock regulated flowering time genes. These results revealed several candidate genes and pathways likely involved in transcriptional control of photoperiodic response. In particular, ethylene and auxin signaling pathway may represent candidate genes contributing to local adaptation of high-latitude accessions of A. thaliana. PMID:22325875

  20. AUTOGSCAN: powerful tools for automated genome-wide linkage and linkage disequilibrium analysis.

    PubMed

    Hiekkalinna, Tero; Terwilliger, Joseph D; Sammalisto, Sampo; Peltonen, Leena; Perola, Markus

    2005-02-01

    Genome-wide linkage analysis using multiple traits and statistical software packages is a tedious process which requires a significant amount of manual file manipulation. Different linkage analysis programs require different input file formats, making the task of analyzing data with multiple methods even more time-consuming. We have developed a software tool, AUTOGSCAN, that automates file formatting, the running of statistical analyses, and the summarizing of resulting statistics for whole genome scans with a push of a button, using several independent, and often idiosyncratic, statistical software packages such as MERLIN, SOLAR and GENEHUNTER. We also describe a program, ANALYZE, designed to run qualitative linkage analysis with several different statistical strategies and programs to efficiently screen for linkage and linkage disequilibrium for a given discrete trait. The ANALYZE program can also be used by AUTOGSCAN in a genome-wide sense. PMID:15836805

  1. Genome-wide identification of soybean WRKY transcription factors in response to salt stress.

    PubMed

    Yu, Yanchong; Wang, Nan; Hu, Ruibo; Xiang, Fengning

    2016-01-01

    Members of the large family of WRKY transcription factors are involved in a wide range of developmental and physiological processes, most particularly in the plant response to biotic and abiotic stress. Here, an analysis of the soybean genome sequence allowed the identification of the full complement of 188 soybean WRKY genes. Phylogenetic analysis revealed that soybean WRKY genes were classified into three major groups (I, II, III), with the second group further categorized into five subgroups (IIa-IIe). The soybean WRKYs from each group shared similar gene structures and motif compositions. The location of the GmWRKYs was dispersed over all 20 soybean chromosomes. The whole genome duplication appeared to have contributed significantly to the expansion of the family. Expression analysis by RNA-seq indicated that in soybean root, 66 of the genes responded rapidly and transiently to the imposition of salt stress, all but one being up-regulated. While in aerial part, 49 GmWRKYs responded, all but two being down-regulated. RT-qPCR analysis showed that in the whole soybean plant, 66 GmWRKYs exhibited distinct expression patterns in response to salt stress, of which 12 showed no significant change, 35 were decreased, while 19 were induced. The data present here provide critical clues for further functional studies of WRKY gene in soybean salt tolerance. PMID:27386364

  2. Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality

    PubMed Central

    Kamvar, Zhian N.; Brooks, Jonah C.; Grünwald, Niklaus J.

    2015-01-01

    To gain a detailed understanding of how plant microbes evolve and adapt to hosts, pesticides, and other factors, knowledge of the population dynamics and evolutionary history of populations is crucial. Plant pathogen populations are often clonal or partially clonal which requires different analytical tools. With the advent of high throughput sequencing technologies, obtaining genome-wide population genetic data has become easier than ever before. We previously contributed the R package poppr specifically addressing issues with analysis of clonal populations. In this paper we provide several significant extensions to poppr with a focus on large, genome-wide SNP data. Specifically, we provide several new functionalities including the new function mlg.filter to define clone boundaries allowing for inspection and definition of what is a clonal lineage, minimum spanning networks with reticulation, a sliding-window analysis of the index of association, modular bootstrapping of any genetic distance, and analyses across any level of hierarchies. PMID:26113860

  3. Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous malignant melanoma.

    PubMed

    Law, Matthew H; Bishop, D Timothy; Lee, Jeffrey E; Brossard, Myriam; Martin, Nicholas G; Moses, Eric K; Song, Fengju; Barrett, Jennifer H; Kumar, Rajiv; Easton, Douglas F; Pharoah, Paul D P; Swerdlow, Anthony J; Kypreou, Katerina P; Taylor, John C; Harland, Mark; Randerson-Moor, Juliette; Akslen, Lars A; Andresen, Per A; Avril, Marie-Françoise; Azizi, Esther; Scarrà, Giovanna Bianchi; Brown, Kevin M; Dȩbniak, Tadeusz; Duffy, David L; Elder, David E; Fang, Shenying; Friedman, Eitan; Galan, Pilar; Ghiorzo, Paola; Gillanders, Elizabeth M; Goldstein, Alisa M; Gruis, Nelleke A; Hansson, Johan; Helsing, Per; Hočevar, Marko; Höiom, Veronica; Ingvar, Christian; Kanetsky, Peter A; Chen, Wei V; Landi, Maria Teresa; Lang, Julie; Lathrop, G Mark; Lubiński, Jan; Mackie, Rona M; Mann, Graham J; Molven, Anders; Montgomery, Grant W; Novaković, Srdjan; Olsson, Håkan; Puig, Susana; Puig-Butille, Joan Anton; Qureshi, Abrar A; Radford-Smith, Graham L; van der Stoep, Nienke; van Doorn, Remco; Whiteman, David C; Craig, Jamie E; Schadendorf, Dirk; Simms, Lisa A; Burdon, Kathryn P; Nyholt, Dale R; Pooley, Karen A; Orr, Nick; Stratigos, Alexander J; Cust, Anne E; Ward, Sarah V; Hayward, Nicholas K; Han, Jiali; Schulze, Hans-Joachim; Dunning, Alison M; Bishop, Julia A Newton; Demenais, Florence; Amos, Christopher I; MacGregor, Stuart; Iles, Mark M

    2015-09-01

    Thirteen common susceptibility loci have been reproducibly associated with cutaneous malignant melanoma (CMM). We report the results of an international 2-stage meta-analysis of CMM genome-wide association studies (GWAS). This meta-analysis combines 11 GWAS (5 previously unpublished) and a further three stage 2 data sets, totaling 15,990 CMM cases and 26,409 controls. Five loci not previously associated with CMM risk reached genome-wide significance (P < 5 × 10(-8)), as did 2 previously reported but unreplicated loci and all 13 established loci. Newly associated SNPs fall within putative melanocyte regulatory elements, and bioinformatic and expression quantitative trait locus (eQTL) data highlight candidate genes in the associated regions, including one involved in telomere biology. PMID:26237428

  4. Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality.

    PubMed

    Kamvar, Zhian N; Brooks, Jonah C; Grünwald, Niklaus J

    2015-01-01

    To gain a detailed understanding of how plant microbes evolve and adapt to hosts, pesticides, and other factors, knowledge of the population dynamics and evolutionary history of populations is crucial. Plant pathogen populations are often clonal or partially clonal which requires different analytical tools. With the advent of high throughput sequencing technologies, obtaining genome-wide population genetic data has become easier than ever before. We previously contributed the R package poppr specifically addressing issues with analysis of clonal populations. In this paper we provide several significant extensions to poppr with a focus on large, genome-wide SNP data. Specifically, we provide several new functionalities including the new function mlg.filter to define clone boundaries allowing for inspection and definition of what is a clonal lineage, minimum spanning networks with reticulation, a sliding-window analysis of the index of association, modular bootstrapping of any genetic distance, and analyses across any level of hierarchies. PMID:26113860

  5. Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous malignant melanoma

    PubMed Central

    Law, Matthew H.; Bishop, D. Timothy; Martin, Nicholas G.; Moses, Eric K.; Song, Fengju; Barrett, Jennifer H.; Kumar, Rajiv; Easton, Douglas F.; Pharoah, Paul D. P.; Swerdlow, Anthony J.; Kypreou, Katerina P.; Taylor, John C.; Harland, Mark; Randerson-Moor, Juliette; Akslen, Lars A.; Andresen, Per A.; Avril, Marie-Françoise; Azizi, Esther; Scarrà, Giovanna Bianchi; Brown, Kevin M.; Dębniak, Tadeusz; Duffy, David L.; Elder, David E.; Fang, Shenying; Friedman, Eitan; Galan, Pilar; Ghiorzo, Paola; Gillanders, Elizabeth M.; Goldstein, Alisa M.; Gruis, Nelleke A.; Hansson, Johan; Helsing, Per; Hočevar, Marko; Höiom, Veronica; Ingvar, Christian; Kanetsky, Peter A.; Chen, Wei V.; Landi, Maria Teresa; Lang, Julie; Lathrop, G. Mark; Lubiński, Jan; Mackie, Rona M.; Mann, Graham J.; Molven, Anders; Montgomery, Grant W.; Novaković, Srdjan; Olsson, Håkan; Puig, Susana; Puig-Butille, Joan Anton; Qureshi, Abrar A.; Radford-Smith, Graham L.; van der Stoep, Nienke; van Doorn, Remco; Whiteman, David C.; Craig, Jamie E.; Schadendorf, Dirk; Simms, Lisa A.; Burdon, Kathryn P.; Nyholt, Dale R.; Pooley, Karen A.; Orr, Nick; Stratigos, Alexander J.; Cust, Anne E.; Ward, Sarah V.; Hayward, Nicholas K.; Han, Jiali; Schulze, Hans-Joachim; Dunning, Alison M.; Bishop, Julia A. Newton; MacGregor, Stuart; Iles, Mark M.

    2015-01-01

    Thirteen common susceptibility loci have been reproducibly associated with cutaneous malignant melanoma (CMM). We report the results of an international 2-stage meta-analysis of CMM genome-wide association studies (GWAS). This meta-analysis combines 11 GWAS (5 previously unpublished) and a further three stage 2 data sets, totaling 15,990 CMM cases and 26,409 controls. Five loci not previously associated with CMM risk reached genome-wide significance (P < 5×10–8), as did two previously-reported but un-replicated loci and all thirteen established loci. Novel SNPs fall within putative melanocyte regulatory elements, and bioinformatic and expression quantitative trait locus (eQTL) data highlight candidate genes including one involved in telomere biology. PMID:26237428

  6. Cytokine-induced megakaryocytic differentiation is regulated by genome-wide loss of a uSTAT transcriptional program.

    PubMed

    Park, Hyun Jung; Li, Juan; Hannah, Rebecca; Biddie, Simon; Leal-Cervantes, Ana I; Kirschner, Kristina; Flores Santa Cruz, David; Sexl, Veronika; Göttgens, Berthold; Green, Anthony R

    2016-03-15

    Metazoan development is regulated by transcriptional networks, which must respond to extracellular cues including cytokines. The JAK/STAT pathway is a highly conserved regulatory module, activated by many cytokines, in which tyrosine-phosphorylated STATs (pSTATs) function as transcription factors. However, the mechanisms by which STAT activation modulates lineage-affiliated transcriptional programs are unclear. We demonstrate that in the absence of thrombopoietin (TPO), tyrosine-unphosphorylated STAT5 (uSTAT5) is present in the nucleus where it colocalizes with CTCF and represses a megakaryocytic transcriptional program. TPO-mediated phosphorylation of STAT5 triggers its genome-wide relocation to STAT consensus sites with two distinct transcriptional consequences, loss of a uSTAT5 program that restrains megakaryocytic differentiation and activation of a canonical pSTAT5-driven program which includes regulators of apoptosis and proliferation. Transcriptional repression by uSTAT5 reflects restricted access of the megakaryocytic transcription factor ERG to target genes. These results identify a previously unrecognized mechanism of cytokine-mediated differentiation. PMID:26702099

  7. Genome-wide identification and characterization of GRAS transcription factors in sacred lotus (Nelumbo nucifera)

    PubMed Central

    Zhou, Ying; Zhou, Yu; Yang, Jie

    2016-01-01

    The GRAS gene family is one of the most important plant-specific gene families, which encodes transcriptional regulators and plays an essential role in plant development and physiological processes. The GRAS gene family has been well characterized in many higher plants such as Arabidopsis, rice, Chinese cabbage, tomato and tobacco. In this study, we identified 38 GRAS genes in sacred lotus (Nelumbo nucifera), analyzed their physical and chemical characteristics and performed phylogenetic analysis using the GRAS genes from eight representative plant species to show the evolution of GRAS genes in Planta. In addition, the gene structures and motifs of the sacred lotus GRAS proteins were characterized in detail. Comparative analysis identified 42 orthologous and 9 co-orthologous gene pairs between sacred lotus and Arabidopsis, and 35 orthologous and 22 co-orthologous gene pairs between sacred lotus and rice. Based on publically available RNA-seq data generated from leaf, petiole, rhizome and root, we found that most of the sacred lotus GRAS genes exhibited a tissue-specific expression pattern. Eight of the ten PAT1-clade GRAS genes, particularly NnuGRAS-05, NnuGRAS-10 and NnuGRAS-25, were preferentially expressed in rhizome and root. In summary, this is the first in silico analysis of the GRAS gene family in sacred lotus, which will provide valuable information for further molecular and biological analyses of this important gene family.

  8. Genome-wide polysomal analysis of a yeast strain with mutated ribosomal protein S9

    PubMed Central

    Pnueli, Lilach; Arava, Yoav

    2007-01-01

    Background The yeast ribosomal protein S9 (S9) is located at the entrance tunnel of the mRNA into the ribosome. It is known to play a role in accurate decoding and its bacterial homolog (S4) has recently been shown to be involved in opening RNA duplexes. Here we examined the effects of changing the C terminus of S9, which is rich in acidic amino acids and extends out of the ribosome surface. Results We performed a genome-wide analysis to reveal effects at the transcription and translation levels of all yeast genes. While negligible relative changes were observed in steady-state mRNA levels, a significant number of mRNAs appeared to have altered ribosomal density. Notably, 40% of the genes having reliable signals changed their ribosomal association by more than one ribosome. Yet, no general correlations with physical or functional features of the mRNA were observed. Ribosome Density Mapping (RDM) along four of the mRNAs with increased association revealed an increase in ribosomal density towards the end of the coding region for at least two of them. Read-through analysis did not reveal any increase in read-through of a premature stop codon by the mutant strain. Conclusion The ribosomal protein rpS9 appears to be involved in the translation of many mRNAs, since altering its C terminus led to a significant change in ribosomal association of many mRNAs. We did not find strong correlations between these changes and several physical features of the mRNA, yet future studies with advanced tools may allow such correlations to be determined. Importantly, our results indicate an accumulation of ribosomes towards the end of the coding regions of some mRNAs. This suggests an involvement of S9 in ribosomal dissociation during translation termination. PMID:17711575

  9. Genome-wide analysis of antiviral signature genes in porcine macrophages at different activation statuses.

    PubMed

    Sang, Yongming; Brichalli, Wyatt; Rowland, Raymond R R; Blecha, Frank

    2014-01-01

    Macrophages (MФs) can be polarized to various activation statuses, including classical (M1), alternative (M2), and antiviral states. To study the antiviral activation status of porcine MФs during porcine reproductive and respiratory syndrome virus (PRRSV) infection, we used RNA Sequencing (RNA-Seq) for transcriptomic analysis of differentially expressed genes (DEGs). Sequencing assessment and quality evaluation showed that our RNA-Seq data met the criteria for genome-wide transcriptomic analysis. Comparisons of any two activation statuses revealed more than 20,000 DEGs that were normalized to filter out 153-5,303 significant DEGs [false discovery rate (FDR) ≤0.001, fold change ≥2] in each comparison. The highest 5,303 significant DEGs were found between lipopolysaccharide- (LPS) and interferon (IFN)γ-stimulated M1 cells, whereas only 153 significant DEGs were detected between interleukin (IL)-10-polarized M2 cells and control mock-activated cells. To identify signature genes for antiviral regulation pertaining to each activation status, we identified a set of DEGs that showed significant up-regulation in only one activation state. In addition, pathway analyses defined the top 20-50 significantly regulated pathways at each activation status, and we further analyzed DEGs pertinent to pathways mediated by AMP kinase (AMPK) and epigenetic mechanisms. For the first time in porcine macrophages, our transcriptomic analyses not only compared family-wide differential expression of most known immune genes at different activation statuses, but also revealed transcription evidence of multiple gene families. These findings show that using RNA-Seq transcriptomic analyses in virus-infected and status-synchronized macrophages effectively profiled signature genes and gene response pathways for antiviral regulation, which may provide a framework for optimizing antiviral immunity and immune homeostasis. PMID:24505295

  10. Genome-Wide Analysis of Antiviral Signature Genes in Porcine Macrophages at Different Activation Statuses

    PubMed Central

    Sang, Yongming; Brichalli, Wyatt; Rowland, Raymond R. R.; Blecha, Frank

    2014-01-01

    Macrophages (MФs) can be polarized to various activation statuses, including classical (M1), alternative (M2), and antiviral states. To study the antiviral activation status of porcine MФs during porcine reproductive and respiratory syndrome virus (PRRSV) infection, we used RNA Sequencing (RNA-Seq) for transcriptomic analysis of differentially expressed genes (DEGs). Sequencing assessment and quality evaluation showed that our RNA-Seq data met the criteria for genome-wide transcriptomic analysis. Comparisons of any two activation statuses revealed more than 20,000 DEGs that were normalized to filter out 153–5,303 significant DEGs [false discovery rate (FDR) ≤0.001, fold change ≥2] in each comparison. The highest 5,303 significant DEGs were found between lipopolysaccharide- (LPS) and interferon (IFN)γ-stimulated M1 cells, whereas only 153 significant DEGs were detected between interleukin (IL)-10-polarized M2 cells and control mock-activated cells. To identify signature genes for antiviral regulation pertaining to each activation status, we identified a set of DEGs that showed significant up-regulation in only one activation state. In addition, pathway analyses defined the top 20–50 significantly regulated pathways at each activation status, and we further analyzed DEGs pertinent to pathways mediated by AMP kinase (AMPK) and epigenetic mechanisms. For the first time in porcine macrophages, our transcriptomic analyses not only compared family-wide differential expression of most known immune genes at different activation statuses, but also revealed transcription evidence of multiple gene families. These findings show that using RNA-Seq transcriptomic analyses in virus-infected and status-synchronized macrophages effectively profiled signature genes and gene response pathways for antiviral regulation, which may provide a framework for optimizing antiviral immunity and immune homeostasis. PMID:24505295

  11. Genome-Wide Identification, Characterization and Expression Analysis of the TCP Gene Family in Prunus mume

    PubMed Central

    Zhou, Yuzhen; Xu, Zongda; Zhao, Kai; Yang, Weiru; Cheng, Tangren; Wang, Jia; Zhang, Qixiang

    2016-01-01

    TCP proteins, belonging to a plant-specific transcription factors family, are known to have great functions in plant development, especially flower and leaf development. However, there is little information about this gene family in Prunus mume, which is widely cultivated in China as an ornamental and fruit tree. Here a genome-wide analysis of TCP genes was performed to explore their evolution in P. mume. Nineteen PmTCPs were identified and three of them contained putative miR319 target sites. Phylogenetic and comprehensive bioinformatics analyses of these genes revealed that different types of TCP genes had undergone different evolutionary processes and the genes in the same clade had similar chromosomal location, gene structure, and conserved domains. Expression analysis of these PmTCPs indicated that there were diverse expression patterns among different clades. Most TCP genes were predominantly expressed in flower, leaf, and stem, and showed high expression levels in the different stages of flower bud differentiation, especially in petal formation stage and gametophyte development. Genes in TCP-P subfamily had main roles in both flower development and gametophyte development. The CIN genes in double petal cultivars might have key roles in the formation of petal, while they were correlated with gametophyte development in the single petal cultivar. The CYC/TB1 type genes were highly detected in the formation of petal and pistil. The less-complex flower types of P. mume might result from the fact that there were only two CYC type genes present in P. mume and a lack of CYC2 genes to control the identity of flower types. These results lay the foundation for further study on the functions of TCP genes during flower development.

  12. Genome-Wide Transcription Study of Cryptococcus neoformans H99 Clinical Strain versus Environmental Strains

    PubMed Central

    Movahed, Elaheh; Munusamy, Komathy; Tan, Grace Min Yi; Looi, Chung Yeng; Tay, Sun Tee; Wong, Won Fen

    2015-01-01

    The infection of Cryptococcus neoformans is acquired through the inhalation of desiccated yeast cells and basidiospores originated from the environment, particularly from bird’s droppings and decaying wood. Three environmental strains of C. neoformans originated from bird droppings (H4, S48B and S68B) and C. neoformans reference clinical strain (H99) were used for intranasal infection in C57BL/6 mice. We showed that the H99 strain demonstrated higher virulence compared to H4, S48B and S68B strains. To examine if gene expression contributed to the different degree of virulence among these strains, a genome-wide microarray study was performed to inspect the transcriptomic profiles of all four strains. Our results revealed that out of 7,419 genes (22,257 probes) examined, 65 genes were significantly up-or down-regulated in H99 versus H4, S48B and S68B strains. The up-regulated genes in H99 strain include Hydroxymethylglutaryl-CoA synthase (MVA1), Mitochondrial matrix factor 1 (MMF1), Bud-site-selection protein 8 (BUD8), High affinity glucose transporter 3 (SNF3) and Rho GTPase-activating protein 2 (RGA2). Pathway annotation using DAVID bioinformatics resource showed that metal ion binding and sugar transmembrane transporter activity pathways were highly expressed in the H99 strain. We suggest that the genes and pathways identified may possibly play crucial roles in the fungal pathogenesis. PMID:26360021

  13. Genome-wide association analysis of age at onset and psychotic symptoms in bipolar disorder

    PubMed Central

    Mahon, Pamela Belmonte; Pirooznia, Mehdi; Goes, Fernando S.; Seifuddin, Fayaz; Steele, Jo; Lee, Phil Hyoun; Huang, Jie; Hamshere, Marian; DePaulo, J. Raymond; Kelsoe, John R.; Rietschel, Marcella; Nöthen, Markus; Cichon, Sven; Gurling, Hugh; Purcell, Shaun; Smoller, Jordan W.; Craddock, Nick; Schulze, ThomasG.; McMahon, Francis J.; Potash, James B.; Zandi, Peter P.

    2011-01-01

    Genome-wide association studies (GWAS) have identified several susceptibility loci for bipolar disorder (BP), most notably ANK3. However, most of the inherited risk for BP remains unexplained. One reason for the limited success may be the genetic heterogeneity of BP. Clinical sub-phenotypes of BP may identify more etiologically homogeneous subsets of patients, which can be studied with increased power to detect genetic variation. Here, we report on a mega-analysis of two widely studied sub-phenotypes of BP, age at onset and psychotic symptoms, which are familial and clinically significant. We combined data from three GWAS: NIMH Bipolar Disorder Genetic Association Information Network (GAIN-BP), NIMH Bipolar Disorder Genome Study(BiGS), and a German sample. The combined sample consisted of 2836 BP cases with information on sub-phenotypes and 2744 controls. Imputation was performed, resulting in 2.3 million SNPs available for analysis. No SNP reached genome-wide significance for either sub-phenotype. In addition, no SNP reached genome-wide significance in a meta-analysis with an independent replication sample. We had 80% power to detect associations with a common SNP at an OR of 1.6 for psychotic symptoms and a mean difference of 1.8 years in age at onset. Age at onset and psychotic symptoms in BP may be influenced by many genes of smaller effect sizes or other variants not measured well by SNP arrays, such as rare alleles. PMID:21305692

  14. Meta-analysis of genome-wide association studies of attention deficit/hyperactivity disorder

    PubMed Central

    Neale, Benjamin M; Medland, Sarah E.; Ripke, Stephan; Asherson, Philip; Franke, Barbara; Lesch, Klaus-Peter; Faraone, Stephen V.; Nguyen, Thuy Trang; Schäfer, Helmut; Holmans, Peter; Daly, Mark; Steinhausen, Hans-Christoph; Freitag, Christine; Reif, Andreas; Renner, Tobias J.; Romanos, Marcel; Romanos, Jasmin; Walitza, Susanne; Warnke, Andreas; Meyer, Jobst; Palmason, Haukur; Buitelaar, Jan; Vasquez, Alejandro Arias; Lambregts-Rommelse, Nanda; Gill, Michael; Anney, Richard J.L.; Langely, Kate; O’Donovan, Michael; Williams, Nigel; Owen, Michael; Thapar, Anita; Kent, Lindsey; Sergeant, Joseph; Roeyers, Herbert; Mick, Eric; Biederman, Joseph; Doyle, Alysa; Smalley, Susan; Loo, Sandra; Hakonarson, Hakon; Elia, Josephine; Todorov, Alexandre; Miranda, Ana; Mulas, Fernando; Ebstein, Richard P.; Rothenberger, Aribert; Banaschewski, Tobias; Oades, Robert D.; Sonuga-Barke, Edmund; McGough, James; Nisenbaum, Laura; Middleton, Frank; Hu, Xiaolan; Nelson, Stan

    2010-01-01

    Objective Although twin and family studies have shown Attention Deficit/Hyperactivity Disorder (ADHD) to be highly heritable, genetic variants influencing the trait at a genome-wide significant level have yet to be identified. As prior genome-wide association scans (GWAS) have not yielded significant results, we conducted a meta-analysis of existing studies to boost statistical power. Method We used data from four projects: a) the Children’s Hospital of Philadelphia (CHOP), b) phase I of the International Multicenter ADHD Genetics project (IMAGE), c) phase II of IMAGE (IMAGE II), and d) the Pfizer funded study from the University of California, Los Angeles, Washington University and the Massachusetts General Hospital (PUWMa). The final sample size consisted of 2,064 trios, 896 cases and 2,455 controls. For each study, we imputed HapMap SNPs, computed association test statistics and transformed them to Z-scores, and then combined weighted Z-scores in a meta-analysis. Results No genome-wide significant associations were found, although an analysis of candidate genes suggests they may be involved in the disorder. Conclusions Given that ADHD is a highly heritable disorder, our negative results suggest that the effects of common ADHD risk variants must, individually, be very small or that other types of variants, e.g. rare ones, account for much of the disorder’s heritability. PMID:20732625

  15. A guide to genome-wide association analysis and post-analytic interrogation.

    PubMed

    Reed, Eric; Nunez, Sara; Kulp, David; Qian, Jing; Reilly, Muredach P; Foulkes, Andrea S

    2015-12-10

    This tutorial is a learning resource that outlines the basic process and provides specific software tools for implementing a complete genome-wide association analysis. Approaches to post-analytic visualization and interrogation of potentially novel findings are also presented. Applications are illustrated using the free and open-source R statistical computing and graphics software environment, Bioconductor software for bioinformatics and the UCSC Genome Browser. Complete genome-wide association data on 1401 individuals across 861,473 typed single nucleotide polymorphisms from the PennCATH study of coronary artery disease are used for illustration. All data and code, as well as additional instructional resources, are publicly available through the Open Resources in Statistical Genomics project: http://www.stat-gen.org. PMID:26343929

  16. Integrated analysis of genome-wide genetic and epigenetic association data for identification of disease mechanisms.

    PubMed

    Ke, Xiayi; Cortina-Borja, Mario; Silva, Bruno Cesar; Lowe, Robert; Rakyan, Vardhman; Balding, David

    2013-11-01

    Many human diseases are multifactorial, involving multiple genetic and environmental factors impacting on one or more biological pathways. Much of the environmental effect is believed to be mediated through epigenetic changes. Although many genome-wide genetic and epigenetic association studies have been conducted for different diseases and traits, it is still far from clear to what extent the genomic loci and biological pathways identified in the genetic and epigenetic studies are shared. There is also a lack of statistical tools to assess these important aspects of disease mechanisms. In the present study, we describe a protocol for the integrated analysis of genome-wide genetic and epigenetic data based on permutation of a sum statistic for the combined effects in a locus or pathway. The method was then applied to published type 1 diabetes (T1D) genome-wide- and epigenome-wide-association studies data to identify genomic loci and biological pathways that are associated with T1D genetically and epigenetically. Through combined analysis, novel loci and pathways were also identified, which could add to our understanding of disease mechanisms of T1D as well as complex diseases in general. PMID:24071862

  17. Genome-Wide Meta-Analysis of Longitudinal Alcohol Consumption Across Youth and Early Adulthood.

    PubMed

    Adkins, Daniel E; Clark, Shaunna L; Copeland, William E; Kennedy, Martin; Conway, Kevin; Angold, Adrian; Maes, Hermine; Liu, Youfang; Kumar, Gaurav; Erkanli, Alaattin; Patkar, Ashwin A; Silberg, Judy; Brown, Tyson H; Fergusson, David M; Horwood, L John; Eaves, Lindon; van den Oord, Edwin J C G; Sullivan, Patrick F; Costello, E J

    2015-08-01

    The public health burden of alcohol is unevenly distributed across the life course, with levels of use, abuse, and dependence increasing across adolescence and peaking in early adulthood. Here, we leverage this temporal patterning to search for common genetic variants predicting developmental trajectories of alcohol consumption. Comparable psychiatric evaluations measuring alcohol consumption were collected in three longitudinal community samples (N=2,126, obs=12,166). Consumption-repeated measurements spanning adolescence and early adulthood were analyzed using linear mixed models, estimating individual consumption trajectories, which were then tested for association with Illumina 660W-Quad genotype data (866,099 SNPs after imputation and QC). Association results were combined across samples using standard meta-analysis methods. Four meta-analysis associations satisfied our pre-determined genome-wide significance criterion (FDR<0.1) and six others met our 'suggestive' criterion (FDR<0.2). Genome-wide significant associations were highly biological plausible, including associations within GABA transporter 1, SLC6A1 (solute carrier family 6, member 1), and exonic hits in LOC100129340 (mitofusin-1-like). Pathway analyses elaborated single marker results, indicating significant enriched associations to intuitive biological mechanisms, including neurotransmission, xenobiotic pharmacodynamics, and nuclear hormone receptors (NHR). These findings underscore the value of combining longitudinal behavioral data and genome-wide genotype information in order to study developmental patterns and improve statistical power in genomic studies. PMID:26081443

  18. Genome-wide meta-analysis of longitudinal alcohol consumption across youth and early adulthood

    PubMed Central

    Adkins, Daniel E.; Clark, Shaunna L.; Copeland, William E.; Kennedy, Martin; Conway, Kevin; Angold, Adrian; Maes, Hermine; Liu, Youfang; Kumar, Gaurav; Erkanli, Alaattin; Patkar, Ashwin A.; Silberg, Judy; Brown, Tyson H.; Fergusson, David M.; Horwood, L. John; Eaves, Lindon; van den Oord, Edwin J.C.G.; Sullivan, Patrick F.; Costello, E. J.

    2016-01-01

    The public health burden of alcohol is unevenly distributed across the life course, with levels of use, abuse and dependence increasing across adolescence and peaking in early adulthood. Here we leverage this temporal patterning to search for common genetic variants predicting developmental trajectories of alcohol consumption. Comparable psychiatric evaluations measuring alcohol consumption were collected in three, longitudinal community samples (N=2,126, obs=12,166). Consumption repeated measurements spanning adolescence and early adulthood were analyzed using linear mixed models, estimating individual consumption trajectories, which were then tested for association with Illumina 660W-Quad genotype data (866,099 SNPs after imputation and QC). Association results were combined across samples using standard meta-analysis methods. Four meta-analysis associations satisfied our pre-determined genome-wide significance criterion (FDR<0.1) and 6 others met our “suggestive” criterion (FDR<0.2). Genome-wide significant associations were highly biological plausible, including associations within GABA transporter 1, SLC6A1 (solute carrier family 6, member 1), and exonic hits in LOC100129340 (mitofusin-1-like). Pathway analyses elaborated single marker results, indicating significant enriched associations to intuitive biological mechanisms including neurotransmission, xenobiotic pharmacodynamics and nuclear hormone receptors. These findings underscore the value of combining longitudinal behavioral data and genome-wide genotype information in order to study developmental patterns and improve statistical power in genomic studies. PMID:26081443

  19. Five endometrial cancer risk loci identified through genome-wide association analysis.

    PubMed

    Cheng, Timothy H T; Thompson, Deborah J; O'Mara, Tracy A; Painter, Jodie N; Glubb, Dylan M; Flach, Susanne; Lewis, Annabelle; French, Juliet D; Freeman-Mills, Luke; Church, David; Gorman, Maggie; Martin, Lynn; Hodgson, Shirley; Webb, Penelope M; Attia, John; Holliday, Elizabeth G; McEvoy, Mark; Scott, Rodney J; Henders, Anjali K; Martin, Nicholas G; Montgomery, Grant W; Nyholt, Dale R; Ahmed, Shahana; Healey, Catherine S; Shah, Mitul; Dennis, Joe; Fasching, Peter A; Beckmann, Matthias W; Hein, Alexander; Ekici, Arif B; Hall, Per; Czene, Kamila; Darabi, Hatef; Li, Jingmei; Dörk, Thilo; Dürst, Matthias; Hillemanns, Peter; Runnebaum, Ingo; Amant, Frederic; Schrauwen, Stefanie; Zhao, Hui; Lambrechts, Diether; Depreeuw, Jeroen; Dowdy, Sean C; Goode, Ellen L; Fridley, Brooke L; Winham, Stacey J; Njølstad, Tormund S; Salvesen, Helga B; Trovik, Jone; Werner, Henrica M J; Ashton, Katie; Otton, Geoffrey; Proietto, Tony; Liu, Tao; Mints, Miriam; Tham, Emma; Li, Mulin Jun; Yip, Shun H; Wang, Junwen; Bolla, Manjeet K; Michailidou, Kyriaki; Wang, Qin; Tyrer, Jonathan P; Dunlop, Malcolm; Houlston, Richard; Palles, Claire; Hopper, John L; Peto, Julian; Swerdlow, Anthony J; Burwinkel, Barbara; Brenner, Hermann; Meindl, Alfons; Brauch, Hiltrud; Lindblom, Annika; Chang-Claude, Jenny; Couch, Fergus J; Giles, Graham G; Kristensen, Vessela N; Cox, Angela; Cunningham, Julie M; Pharoah, Paul D P; Dunning, Alison M; Edwards, Stacey L; Easton, Douglas F; Tomlinson, Ian; Spurdle, Amanda B

    2016-06-01

    We conducted a meta-analysis of three endometrial cancer genome-wide association studies (GWAS) and two follow-up phases totaling 7,737 endometrial cancer cases and 37,144 controls of European ancestry. Genome-wide imputation and meta-analysis identified five new risk loci of genome-wide significance at likely regulatory regions on chromosomes 13q22.1 (rs11841589, near KLF5), 6q22.31 (rs13328298, in LOC643623 and near HEY2 and NCOA7), 8q24.21 (rs4733613, telomeric to MYC), 15q15.1 (rs937213, in EIF2AK4, near BMF) and 14q32.33 (rs2498796, in AKT1, near SIVA1). We also found a second independent 8q24.21 signal (rs17232730). Functional studies of the 13q22.1 locus showed that rs9600103 (pairwise r(2) = 0.98 with rs11841589) is located in a region of active chromatin that interacts with the KLF5 promoter region. The rs9600103[T] allele that is protective in endometrial cancer suppressed gene expression in vitro, suggesting that regulation of the expression of KLF5, a gene linked to uterine development, is implicated in tumorigenesis. These findings provide enhanced insight into the genetic and biological basis of endometrial cancer. PMID:27135401

  20. Genome-wide DNA methylation analysis in obsessive-compulsive disorder patients.

    PubMed

    Yue, Weihua; Cheng, Weiqiu; Liu, Zhaorui; Tang, Yi; Lu, Tianlan; Zhang, Dai; Tang, Muni; Huang, Yueqin

    2016-01-01

    Literatures have suggested that not only genetic but also environmental factors, interactively accounted for susceptibility of obsessive-compulsive disorder (OCD). DNA methylation may regulate expression of genes as the heritable epigenetic modification. The examination for genome-wide DNA methylation was performed on blood samples from 65 patients with OCD, as well as 96 healthy control subjects. The DNA methylation was examined at over 485,000 CpG sites using the Illumina Infinium Human Methylation450 BeadChip. As a result, 8,417 probes corresponding to 2,190 unique genes were found to be differentially methylated between OCD and healthy control subjects. Of those genes, 4,013 loci were located in CpG islands and 2,478 were in promoter regions. These included BCYRN1, BCOR, FGF13, HLA-DRB1, ARX, etc., which have previously been reported to be associated with OCD. Pathway analyses indicated that regulation of actin cytoskeleton, cell adhesion molecules (CAMs), actin binding, transcription regulator activity, and other pathways might be further associated with risk of OCD. Unsupervised clustering analysis of the top 3,000 most variable probes revealed two distinct groups with significantly more people with OCD in cluster one compared with controls (67.74% of cases v.s. 27.13% of controls, Chi-square = 26.011, df = 1, P = 3.41E-07). These results strongly suggested that differential DNA methylation might play an important role in etiology of OCD. PMID:27527274

  1. Genome-wide DNA methylation analysis in obsessive-compulsive disorder patients

    PubMed Central

    Yue, Weihua; Cheng, Weiqiu; Liu, Zhaorui; Tang, Yi; Lu, Tianlan; Zhang, Dai; Tang, Muni; Huang, Yueqin

    2016-01-01

    Literatures have suggested that not only genetic but also environmental factors, interactively accounted for susceptibility of obsessive-compulsive disorder (OCD). DNA methylation may regulate expression of genes as the heritable epigenetic modification. The examination for genome-wide DNA methylation was performed on blood samples from 65 patients with OCD, as well as 96 healthy control subjects. The DNA methylation was examined at over 485,000 CpG sites using the Illumina Infinium Human Methylation450 BeadChip. As a result, 8,417 probes corresponding to 2,190 unique genes were found to be differentially methylated between OCD and healthy control subjects. Of those genes, 4,013 loci were located in CpG islands and 2,478 were in promoter regions. These included BCYRN1, BCOR, FGF13, HLA-DRB1, ARX, etc., which have previously been reported to be associated with OCD. Pathway analyses indicated that regulation of actin cytoskeleton, cell adhesion molecules (CAMs), actin binding, transcription regulator activity, and other pathways might be further associated with risk of OCD. Unsupervised clustering analysis of the top 3,000 most variable probes revealed two distinct groups with significantly more people with OCD in cluster one compared with controls (67.74% of cases v.s. 27.13% of controls, Chi-square = 26.011, df = 1, P = 3.41E-07). These results strongly suggested that differential DNA methylation might play an important role in etiology of OCD. PMID:27527274

  2. Genome-wide Reconstruction of OxyR and SoxRS Transcriptional Regulatory Networks under Oxidative Stress in Escherichia coli K-12 MG1655.

    PubMed

    Seo, Sang Woo; Kim, Donghyuk; Szubin, Richard; Palsson, Bernhard O

    2015-08-25

    Three transcription factors (TFs), OxyR, SoxR, and SoxS, play a critical role in transcriptional regulation of the defense system for oxidative stress in bacteria. However, their full genome-wide regulatory potential is unknown. Here, we perform a genome-scale reconstruction of the OxyR, SoxR, and SoxS regulons in Escherichia coli K-12 MG1655. Integrative data analysis reveals that a total of 68 genes in 51 transcription units (TUs) belong to these regulons. Among them, 48 genes showed more than 2-fold changes in expression level under single-TF-knockout conditions. This reconstruction expands the genome-wide roles of these factors to include direct activation of genes related to amino acid biosynthesis (methionine and aromatic amino acids), cell wall synthesis (lipid A biosynthesis and peptidoglycan growth), and divalent metal ion transport (Mn(2+), Zn(2+), and Mg(2+)). Investigating the co-regulation of these genes with other stress-response TFs reveals that they are independently regulated by stress-specific TFs. PMID:26279566

  3. Genome-wide characterization of monomeric transcriptional regulators in Mycobacterium tuberculosis.

    PubMed

    Feng, Lipeng; Chen, Zhenkang; Wang, Zhongwei; Hu, Yangbo; Chen, Shiyun

    2016-05-01

    Gene transcription catalysed by RNA polymerase is regulated by transcriptional regulators, which play central roles in the control of gene transcription in both eukaryotes and prokaryotes. In regulating gene transcription, many regulators form dimers that bind to DNA with repeated motifs. However, some regulators function as monomers, but their mechanisms of gene expression control are largely uncharacterized. Here we systematically characterized monomeric versus dimeric regulators in the tuberculosis causative agent Mycobacterium tuberculosis. Of the >160 transcriptional regulators annotated in M. tuberculosis, 154 transcriptional regulators were tested, 22 % probably act as monomers and most are annotated as hypothetical regulators. Notably, all members of the WhiB-like protein family are classified as monomers. To further investigate mechanisms of monomeric regulators, we analysed the actions of these WhiB proteins and found that the majority interact with the principal sigma factor σA, which is also a monomeric protein within the RNA polymerase holoenzyme. Taken together, our study for the first time globally classified monomeric regulators in M. tuberculosis and suggested a mechanism for monomeric regulators in controlling gene transcription through interacting with monomeric sigma factors. PMID:26887897

  4. Genetic determinants of common epilepsies: a meta-analysis of genome-wide association studies

    PubMed Central

    2014-01-01

    Summary Background The epilepsies are a clinically heterogeneous group of neurological disorders. Despite strong evidence for heritability, genome-wide association studies have had little success in identification of risk loci associated with epilepsy, probably because of relatively small sample sizes and insufficient power. We aimed to identify risk loci through meta-analyses of genome-wide association studies for all epilepsy and the two largest clinical subtypes (genetic generalised epilepsy and focal epilepsy). Methods We combined genome-wide association data from 12 cohorts of individuals with epilepsy and controls from population-based datasets. Controls were ethnically matched with cases. We phenotyped individuals with epilepsy into categories of genetic generalised epilepsy, focal epilepsy, or unclassified epilepsy. After standardised filtering for quality control and imputation to account for different genotyping platforms across sites, investigators at each site conducted a linear mixed-model association analysis for each dataset. Combining summary statistics, we conducted fixed-effects meta-analyses of all epilepsy, focal epilepsy, and genetic generalised epilepsy. We set the genome-wide significance threshold at p<1·66 × 10−8. Findings We included 8696 cases and 26 157 controls in our analysis. Meta-analysis of the all-epilepsy cohort identified loci at 2q24.3 (p=8·71 × 10−10), implicating SCN1A, and at 4p15.1 (p=5·44 × 10−9), harbouring PCDH7, which encodes a protocadherin molecule not previously implicated in epilepsy. For the cohort of genetic generalised epilepsy, we noted a single signal at 2p16.1 (p=9·99 × 10−9), implicating VRK2 or FANCL. No single nucleotide polymorphism achieved genome-wide significance for focal epilepsy. Interpretation This meta-analysis describes a new locus not previously implicated in epilepsy and provides further evidence about the genetic architecture of these disorders, with the

  5. The genome-wide molecular signature of transcription factors in leukemia.

    PubMed

    Prange, Koen H M; Singh, Abhishek A; Martens, Joost H A

    2014-08-01

    Transcription factors control expression of genes essential for the normal functioning of the hematopoietic system and regulate development of distinct blood cell types. During leukemogenesis, aberrant regulation of transcription factors such as RUNX1, CBFβ, MLL, C/EBPα, SPI1, GATA, and TAL1 is central to the disease. Here, we will discuss the mechanisms of transcription factor deregulation in leukemia and how in recent years next-generation sequencing approaches have helped to elucidate the molecular role of many of these aberrantly expressed transcription factors. We will focus on the complexes in which these factors reside, the role of posttranslational modification of these factors, their involvement in setting up higher order chromatin structures, and their influence on the local epigenetic environment. We suggest that only comprehensive knowledge on all these aspects will increase our understanding of aberrant gene expression in leukemia as well as open new entry points for therapeutic intervention. PMID:24814246

  6. Genome-wide analysis of epistasis in body mass index using multiple human populations

    PubMed Central

    Wei, Wen-Hua; Hemani, Gib; Gyenesei, Attila; Vitart, Veronique; Navarro, Pau; Hayward, Caroline; Cabrera, Claudia P; Huffman, Jennifer E; Knott, Sara A; Hicks, Andrew A; Rudan, Igor; Pramstaller, Peter P; Wild, Sarah H; Wilson, James F; Campbell, Harry; Hastie, Nicholas D; Wright, Alan F; Haley, Chris S

    2012-01-01

    We surveyed gene–gene interactions (epistasis) in human body mass index (BMI) in four European populations (n<1200) via exhaustive pair-wise genome scans where interactions were computed as F ratios by testing a linear regression model fitting two single-nucleotide polymorphisms (SNPs) with interactions against the one without. Before the association tests, BMI was corrected for sex and age, normalised and adjusted for relatedness. Neither single SNPs nor SNP interactions were genome-wide significant in either cohort based on the consensus threshold (P=5.0E−08) and a Bonferroni corrected threshold (P=1.1E−12), respectively. Next we compared sub genome-wide significant SNP interactions (P<5.0E−08) across cohorts to identify common epistatic signals, where SNPs were annotated to genes to test for gene ontology (GO) enrichment. Among the epistatic genes contributing to the commonly enriched GO terms, 19 were shared across study cohorts of which 15 are previously published genome-wide association loci, including CDH13 (cadherin 13) associated with height and SORCS2 (sortilin-related VPS10 domain containing receptor 2) associated with circulating insulin-like growth factor 1 and binding protein 3. Interactions between the 19 shared epistatic genes and those involving BMI candidate loci (P<5.0E−08) were tested across cohorts and found eight replicated at the SNP level (P<0.05) in at least one cohort, which were further tested and showed limited replication in a separate European population (n>5000). We conclude that genome-wide analysis of epistasis in multiple populations is an effective approach to provide new insights into the genetic regulation of BMI but requires additional efforts to confirm the findings. PMID:22333899

  7. Using genome-wide complex trait analysis to quantify 'missing heritability' in Parkinson's disease.

    PubMed

    Keller, Margaux F; Saad, Mohamad; Bras, Jose; Bettella, Francesco; Nicolaou, Nayia; Simón-Sánchez, Javier; Mittag, Florian; Büchel, Finja; Sharma, Manu; Gibbs, J Raphael; Schulte, Claudia; Moskvina, Valentina; Durr, Alexandra; Holmans, Peter; Kilarski, Laura L; Guerreiro, Rita; Hernandez, Dena G; Brice, Alexis; Ylikotila, Pauli; Stefánsson, Hreinn; Majamaa, Kari; Morris, Huw R; Williams, Nigel; Gasser, Thomas; Heutink, Peter; Wood, Nicholas W; Hardy, John; Martinez, Maria; Singleton, Andrew B; Nalls, Michael A

    2012-11-15

    Genome-wide association studies (GWASs) have been successful at identifying single-nucleotide polymorphisms (SNPs) highly associated with common traits; however, a great deal of the heritable variation associated with common traits remains unaccounted for within the genome. Genome-wide complex trait analysis (GCTA) is a statistical method that applies a linear mixed model to estimate phenotypic variance of complex traits explained by genome-wide SNPs, including those not associated with the trait in a GWAS. We applied GCTA to 8 cohorts containing 7096 case and 19 455 control individuals of European ancestry in order to examine the missing heritability present in Parkinson's disease (PD). We meta-analyzed our initial results to produce robust heritability estimates for PD types across cohorts. Our results identify 27% (95% CI 17-38, P = 8.08E - 08) phenotypic variance associated with all types of PD, 15% (95% CI -0.2 to 33, P = 0.09) phenotypic variance associated with early-onset PD and 31% (95% CI 17-44, P = 1.34E - 05) phenotypic variance associated with late-onset PD. This is a substantial increase from the genetic variance identified by top GWAS hits alone (between 3 and 5%) and indicates there are substantially more risk loci to be identified. Our results suggest that although GWASs are a useful tool in identifying the most common variants associated with complex disease, a great deal of common variants of small effect remain to be discovered. PMID:22892372

  8. Genome-wide Association Analysis Identifies 14 New Risk Loci for Schizophrenia

    PubMed Central

    Ripke, Stephan; O'Dushlaine, Colm; Chambert, Kimberly; Moran, Jennifer L; Kähler, Anna K; Akterin, Susanne; Bergen, Sarah; Collins, Ann L; Crowley, James J; Fromer, Menachem; Kim, Yunjung; Lee, Sang Hong; Magnusson, Patrik KE; Sanchez, Nick; Stahl, Eli A; Williams, Stephanie; Wray, Naomi R; Xia, Kai; Bettella, Francesco; Børglum, Anders D; Bulik-Sullivan, Brendan K; Cormican, Paul; Craddock, Nick; de Leeuw, Christiaan; Durmishi, Naser; Gill, Michael; Golimbet, Vera; Hamshere, Marian L; Holmans, Peter; Hougaard, David M; Kendler, Kenneth S; Lin, Kuang; Morris, Derek W; Mors, Ole; Mortensen, Preben B; Neale, Benjamin M; O'Neill, Francis A; Owen, Michael J; Milovancevic, MilicaPejovic; Posthuma, Danielle; Powell, John; Richards, Alexander L; Riley, Brien P; Ruderfer, Douglas; Rujescu, Dan; Sigurdsson, Engilbert; Silagadze, Teimuraz; Smit, August B; Stefansson, Hreinn; Steinberg, Stacy; Suvisaari, Jaana; Tosato, Sarah; Verhage, Matthijs; Walters, James T; Bramon, Elvira; Corvin, Aiden P; O'Donovan, Michael C; Stefansson, Kari; Scolnick, Edward; Purcell, Shaun; McCarroll, Steve; Sklar, Pamela; Hultman, Christina M; Sullivan, Patrick F

    2013-01-01

    Schizophrenia is a heritable disorder with substantial public health impact. We conducted a multi-stage genome-wide association study (GWAS) for schizophrenia beginning with a Swedish national sample (5,001 cases, 6,243 controls) followed by meta-analysis with prior schizophrenia GWAS (8,832 cases, 12,067 controls) and finally by replication of SNPs in 168 genomic regions in independent samples (7,413 cases, 19,762 controls, and 581 trios). In total, 22 regions met genome-wide significance (14 novel and one previously implicated in bipolar disorder). The results strongly implicate calcium signaling in the etiology of schizophrenia, and include genome-wide significant results for CACNA1C and CACNB2 whose protein products interact. We estimate that ∼8,300 independent and predominantly common SNPs contribute to risk for schizophrenia and that these collectively account for most of its heritability. Common genetic variation plays an important role in the etiology of schizophrenia, and larger studies will allow more detailed understanding of this devastating disorder. PMID:23974872

  9. Genome-wide association analysis to predict optimal antipsychotic dosage in schizophrenia: a pilot study.

    PubMed

    Koga, Arthur T; Strauss, John; Zai, Clement; Remington, Gary; De Luca, Vincenzo

    2016-03-01

    In recent years, several studies have investigated genetic polymorphisms of antipsychotic drug-metabolizing enzymes and receptors. However, most studies focused on drug response and very few have investigated the genetic influence on antipsychotic dosage. The aim of the present study is to test the association between antipsychotic dosages at genome-wide level. The current dosage of antipsychotic medications was collected from 79 schizophrenia patients. The dosage was standardized using three different methods: chlorpromazine equivalent (CPZe), defined daily dose (DDD), and percentage of maximum dose (PM %). The patients were then genotyped using the Illumina HumanOmni2.5-8 BeadChip Kit. All markers were screened for significance using linear regression, and the p values were visualized using a Manhattan plot. The genome-wide analysis showed that the top Single-Nucleotide Polymorphisms (SNPs) associated with dosage variation were rs981975 on chromosome 14 for CPZe, rs4470690 on chromosome 4 for PM %, and rs79323383 on chromosome 8 for DDD. However, no genome-wide significantly associated SNPs were identified. In this pilot sample, we found promising trends for pharmacodynamic targets associated with antipsychotic dosage. Therefore, studies combining large prescription databases may identify genetic predictors to adjust the dose of antipsychotic medication. PMID:26821981

  10. Genome-Wide Identification and Function Analyses of Heat Shock Transcription Factors in Potato

    PubMed Central

    Tang, Ruimin; Zhu, Wenjiao; Song, Xiaoyan; Lin, Xingzhong; Cai, Jinghui; Wang, Man; Yang, Qing

    2016-01-01

    Heat shock transcription factors (Hsfs) play vital roles in the regulation of tolerance to various stresses in living organisms. To dissect the mechanisms of the Hsfs in potato adaptation to abiotic stresses, genome and transcriptome analyses of Hsf gene family were investigated in Solanum tuberosum L. Twenty-seven StHsf members were identified by bioinformatics and phylogenetic analyses and were classified into A, B, and C groups according to their structural and phylogenetic features. StHsfs in the same class shared similar gene structures and conserved motifs. The chromosomal location analysis showed that 27 Hsfs were located in 10 of 12 chromosomes (except chromosome 1 and chromosome 5) and that 18 of these genes formed 9 paralogous pairs. Expression profiles of StHsfs in 12 different organs and tissues uncovered distinct spatial expression patterns of these genes and their potential roles in the process of growth and development. Promoter and quantitative real-time polymerase chain reaction (qRT-PCR) detections of StHsfs were conducted and demonstrated that these genes were all responsive to various stresses. StHsf004, StHsf007, StHsf009, StHsf014, and StHsf019 were constitutively expressed under non-stress conditions, and some specific Hsfs became the predominant Hsfs in response to different abiotic stresses, indicating their important and diverse regulatory roles in adverse conditions. A co-expression network between StHsfs and StHsf -co-expressed genes was generated based on the publicly-available potato transcriptomic databases and identified key candidate StHsfs for further functional studies. PMID:27148315

  11. No Promoter Left Behind (NPLB): learn de novo promoter architectures from genome-wide transcription start sites

    PubMed Central

    Mitra, Sneha; Narlikar, Leelavati

    2016-01-01

    Summary: Promoters have diverse regulatory architectures and thus activate genes differently. For example, some have a TATA-box, many others do not. Even the ones with it can differ in its position relative to the transcription start site (TSS). No Promoter Left Behind (NPLB) is an efficient, organism-independent method for characterizing such diverse architectures directly from experimentally identified genome-wide TSSs, without relying on known promoter elements. As a test case, we show its application in identifying novel architectures in the fly genome. Availability and implementation: Web-server at http://nplb.ncl.res.in. Standalone also at https://github.com/computationalBiology/NPLB/ (Mac OSX/Linux). Contact: l.narlikar@ncl.res.in Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26530723

  12. A functional genome-wide genetic screening identifies new pathways controlling the G1/S transcriptional wave.

    PubMed

    Gaspa, Laura; González-Medina, Alberto; Hidalgo, Elena; Ayté, José

    2016-03-01

    The Schizosaccharomyces pombe MBF complex activates the transcription of genes required for DNA synthesis and S phase. The MBF complex contains several proteins, including the core components Cdc10, Res1 and Res2, the co-repressor proteins Yox1 and Nrm1 and the co-activator Rep2. It has recently been shown how MBF is regulated when either the DNA damage or the DNA synthesis checkpoints are activated. However, how MBF is regulated in a normal unperturbed cell cycle is still not well understood. We have set up a genome-wide genomic screen searching for global regulators of MBF. We have crossed our knock-out collection library with a reporter strain that allows the measurement of MBF activity in live cells by flow cytometry. We confirm previously known regulators of MBF and show that COP9/signalosome and tRNA methyltransferases also regulate MBF activity. PMID:26890608

  13. Refining genome-wide linkage intervals using a meta-analysis of genome-wide association studies identifies loci influencing personality dimensions.

    PubMed

    Amin, Najaf; Hottenga, Jouke-Jan; Hansell, Narelle K; Janssens, A Cecile J W; de Moor, Marleen H M; Madden, Pamela A F; Zorkoltseva, Irina V; Penninx, Brenda W; Terracciano, Antonio; Uda, Manuela; Tanaka, Toshiko; Esko, Tonu; Realo, Anu; Ferrucci, Luigi; Luciano, Michelle; Davies, Gail; Metspalu, Andres; Abecasis, Goncalo R; Deary, Ian J; Raikkonen, Katri; Bierut, Laura J; Costa, Paul T; Saviouk, Viatcheslav; Zhu, Gu; Kirichenko, Anatoly V; Isaacs, Aaron; Aulchenko, Yurii S; Willemsen, Gonneke; Heath, Andrew C; Pergadia, Michele L; Medland, Sarah E; Axenovich, Tatiana I; de Geus, Eco; Montgomery, Grant W; Wright, Margaret J; Oostra, Ben A; Martin, Nicholas G; Boomsma, Dorret I; van Duijn, Cornelia M

    2013-08-01

    Personality traits are complex phenotypes related to psychosomatic health. Individually, various gene finding methods have not achieved much success in finding genetic variants associated with personality traits. We performed a meta-analysis of four genome-wide linkage scans (N=6149 subjects) of five basic personality traits assessed with the NEO Five-Factor Inventory. We compared the significant regions from the meta-analysis of linkage scans with the results of a meta-analysis of genome-wide association studies (GWAS) (N∼17 000). We found significant evidence of linkage of neuroticism to chromosome 3p14 (rs1490265, LOD=4.67) and to chromosome 19q13 (rs628604, LOD=3.55); of extraversion to 14q32 (ATGG002, LOD=3.3); and of agreeableness to 3p25 (rs709160, LOD=3.67) and to two adjacent regions on chromosome 15, including 15q13 (rs970408, LOD=4.07) and 15q14 (rs1055356, LOD=3.52) in the individual scans. In the meta-analysis, we found strong evidence of linkage of extraversion to 4q34, 9q34, 10q24 and 11q22, openness to 2p25, 3q26, 9p21, 11q24, 15q26 and 19q13 and agreeableness to 4q34 and 19p13. Significant evidence of association in the GWAS was detected between openness and rs677035 at 11q24 (P-value=2.6 × 10(-06), KCNJ1). The findings of our linkage meta-analysis and those of the GWAS suggest that 11q24 is a susceptible locus for openness, with KCNJ1 as the possible candidate gene. PMID:23211697

  14. Genome-wide features of neuroendocrine regulation in Drosophila by the basic helix-loop-helix transcription factor DIMMED

    PubMed Central

    Hadžić, Tarik; Park, Dongkook; Abruzzi, Katharine C.; Yang, Lin; Trigg, Jennifer S.; Rohs, Remo; Rosbash, Michael; Taghert, Paul H.

    2015-01-01

    Neuroendocrine (NE) cells use large dense core vesicles (LDCVs) to traffic, process, store and secrete neuropeptide hormones through the regulated secretory pathway. The dimmed (DIMM) basic helix-loop-helix transcription factor of Drosophila controls the level of regulated secretory activity in NE cells. To pursue its mechanisms, we have performed two independent genome-wide analyses of DIMM's activities: (i) in vivo chromatin immunoprecipitation (ChIP) to define genomic sites of DIMM occupancy and (ii) deep sequencing of purified DIMM neurons to characterize their transcriptional profile. By this combined approach, we showed that DIMM binds to conserved E-boxes in enhancers of 212 genes whose expression is enriched in DIMM-expressing NE cells. DIMM binds preferentially to certain E-boxes within first introns of specific gene isoforms. Statistical machine learning revealed that flanking regions of putative DIMM binding sites contribute to its DNA binding specificity. DIMM's transcriptional repertoire features at least 20 LDCV constituents. In addition, DIMM notably targets the pro-secretory transcription factor, creb-A, but significantly, DIMM does not target any neuropeptide genes. DIMM therefore prescribes the scale of secretory activity in NE neurons, by a systematic control of both proximal and distal points in the regulated secretory pathway. PMID:25634895

  15. Ion Torrent sequencing for conducting genome-wide scans for mutation mapping analysis.

    PubMed

    Damerla, Rama Rao; Chatterjee, Bishwanath; Li, You; Francis, Richard J B; Fatakia, Sarosh N; Lo, Cecilia W

    2014-04-01

    Mutation mapping in mice can be readily accomplished by genome wide segregation analysis of polymorphic DNA markers. In this study, we showed the efficacy of Ion Torrent next generation sequencing for conducting genome-wide scans to map and identify a mutation causing congenital heart disease in a mouse mutant, Bishu, recovered from a mouse mutagenesis screen. The Bishu mutant line generated in a C57BL/6J (B6) background was intercrossed with another inbred strain, C57BL/10J (B10), and the resulting B6/B10 hybrid offspring were intercrossed to generate mutants used for the mapping analysis. For each mutant sample, a panel of 123 B6/B10 polymorphic SNPs distributed throughout the mouse genome was PCR amplified, bar coded, and then pooled to generate a single library used for Ion Torrent sequencing. Sequencing carried out using the 314 chip yielded >600,000 usable reads. These were aligned and mapped using a custom bioinformatics pipeline. Each SNP was sequenced to a depth >500×, allowing accurate automated calling of the B6/B10 genotypes. This analysis mapped the mutation in Bishu to an interval on the proximal region of mouse chromosome 4. This was confirmed by parallel capillary sequencing of the 123 polymorphic SNPs. Further analysis of genes in the map interval identified a splicing mutation in Dnaic1(c.204+1G>A), an intermediate chain dynein, as the disease causing mutation in Bishu. Overall, our experience shows Ion Torrent amplicon sequencing is high throughput and cost effective for conducting genome-wide mapping analysis and is easily scalable for other high volume genotyping analyses. PMID:24306492

  16. FVGWAS: Fast voxelwise genome wide association analysis of large-scale imaging genetic data.

    PubMed

    Huang, Meiyan; Nichols, Thomas; Huang, Chao; Yu, Yang; Lu, Zhaohua; Knickmeyer, Rebecca C; Feng, Qianjin; Zhu, Hongtu

    2015-09-01

    More and more large-scale imaging genetic studies are being widely conducted to collect a rich set of imaging, genetic, and clinical data to detect putative genes for complexly inherited neuropsychiatric and neurodegenerative disorders. Several major big-data challenges arise from testing genome-wide (NC>12 million known variants) associations with signals at millions of locations (NV~10(6)) in the brain from thousands of subjects (n~10(3)). The aim of this paper is to develop a Fast Voxelwise Genome Wide Association analysiS (FVGWAS) framework to efficiently carry out whole-genome analyses of whole-brain data. FVGWAS consists of three components including a heteroscedastic linear model, a global sure independence screening (GSIS) procedure, and a detection procedure based on wild bootstrap methods. Specifically, for standard linear association, the computational complexity is O (nNVNC) for voxelwise genome wide association analysis (VGWAS) method compared with O ((NC+NV)n(2)) for FVGWAS. Simulation studies show that FVGWAS is an efficient method of searching sparse signals in an extremely large search space, while controlling for the family-wise error rate. Finally, we have successfully applied FVGWAS to a large-scale imaging genetic data analysis of ADNI data with 708 subjects, 193,275voxels in RAVENS maps, and 501,584 SNPs, and the total processing time was 203,645s for a single CPU. Our FVGWAS may be a valuable statistical toolbox for large-scale imaging genetic analysis as the field is rapidly advancing with ultra-high-resolution imaging and whole-genome sequencing. PMID:26025292

  17. Genome-wide screen of fission yeast mutants for sensitivity to 6-azauracil, an inhibitor of transcriptional elongation.

    PubMed

    Zhou, Huan; Liu, Qi; Shi, Tianfang; Yu, Yao; Lu, Hong

    2015-10-01

    6-Azauracil (6 AU) inhibits enzymes in nucleoside synthesis and depletes the intracellular GTP/UTP pool. Mutations in transcriptional elongation machinery, as well as mutations in a variety of other pathways, exaggerate the growth defect of cells in the presence of 6 AU. Thus, identification of mutations that render cells sensitive to 6 AU will benefit study on the basis of 6 AU-sensitive phenotype. Here we performed a genome-wide screen of a fission yeast deletion library. Of 3235 single-gene deletions, 66 mutants displayed at least 50% drop of fitness in the presence of 6 AU and 60 mutants were reported for the first time; five deletions showed synthetic decrease of fitness when combined with deletion of set3(+) , which encodes a transcriptional regulator. Genes conferring tolerance to 6 AU were enriched in various processes, especially in chromosome segregation. Accordingly, genes encoding subunits of CLRC complex and spindle pole body were over-represented. Mutants were subjected to an in vivo transcript length-dependent reporter assay to assess the potential roles of deleted genes in transcriptional elongation. As with the deletions known to affect elongation, nab2Δ, nxt1Δ, rhp18Δ, SPAC24C9.08Δ, clr3Δ and ncs1Δset3Δ mutants exhibited defects in expressing long transcripts. New 6 AU-sensitive mutants identified here will help to elucidate the mechanism of action of 6 AU in the cells. Meanwhile, our study revealed novel genes potentially involved in transcriptional elongation and provided valuable targets for transcription study. PMID:26173815

  18. Diverse transcription factor binding features revealed by genome-wide ChIP-seq in C. elegans.

    PubMed

    Niu, Wei; Lu, Zhi John; Zhong, Mei; Sarov, Mihail; Murray, John I; Brdlik, Cathleen M; Janette, Judith; Chen, Chao; Alves, Pedro; Preston, Elicia; Slightham, Cindie; Jiang, Lixia; Hyman, Anthony A; Kim, Stuart K; Waterston, Robert H; Gerstein, Mark; Snyder, Michael; Reinke, Valerie

    2011-02-01

    Regulation of gene expression by sequence-specific transcription factors is central to developmental programs and depends on the binding of transcription factors with target sites in the genome. To date, most such analyses in Caenorhabditis elegans have focused on the interactions between a single transcription factor with one or a few select target genes. As part of the modENCODE Consortium, we have used chromatin immunoprecipitation coupled with high-throughput DNA sequencing (ChIP-seq) to determine the genome-wide binding sites of 22 transcription factors (ALR-1, BLMP-1, CEH-14, CEH-30, EGL-27, EGL-5, ELT-3, EOR-1, GEI-11, HLH-1, LIN-11, LIN-13, LIN-15B, LIN-39, MAB-5, MDL-1, MEP-1, PES-1, PHA-4, PQM-1, SKN-1, and UNC-130) at diverse developmental stages. For each factor we determined candidate gene targets, both coding and non-coding. The typical binding sites of almost all factors are within a few hundred nucleotides of the transcript start site. Most factors target a mixture of coding and non-coding target genes, although one factor preferentially binds to non-coding RNA genes. We built a regulatory network among the 22 factors to determine their functional relationships to each other and found that some factors appear to act preferentially as regulators and others as target genes. Examination of the binding targets of three related HOX factors--LIN-39, MAB-5, and EGL-5--indicates that these factors regulate genes involved in cellular migration, neuronal function, and vulval differentiation, consistent with their known roles in these developmental processes. Ultimately, the comprehensive mapping of transcription factor binding sites will identify features of transcriptional networks that regulate C. elegans developmental processes. PMID:21177963

  19. Diverse transcription factor binding features revealed by genome-wide ChIP-seq in C. elegans

    PubMed Central

    Niu, Wei; Lu, Zhi John; Zhong, Mei; Sarov, Mihail; Murray, John I.; Brdlik, Cathleen M.; Janette, Judith; Chen, Chao; Alves, Pedro; Preston, Elicia; Slightham, Cindie; Jiang, Lixia; Hyman, Anthony A.; Kim, Stuart K.; Waterston, Robert H.; Gerstein, Mark; Snyder, Michael; Reinke, Valerie

    2011-01-01

    Regulation of gene expression by sequence-specific transcription factors is central to developmental programs and depends on the binding of transcription factors with target sites in the genome. To date, most such analyses in Caenorhabditis elegans have focused on the interactions between a single transcription factor with one or a few select target genes. As part of the modENCODE Consortium, we have used chromatin immunoprecipitation coupled with high-throughput DNA sequencing (ChIP-seq) to determine the genome-wide binding sites of 22 transcription factors (ALR-1, BLMP-1, CEH-14, CEH-30, EGL-27, EGL-5, ELT-3, EOR-1, GEI-11, HLH-1, LIN-11, LIN-13, LIN-15B, LIN-39, MAB-5, MDL-1, MEP-1, PES-1, PHA-4, PQM-1, SKN-1, and UNC-130) at diverse developmental stages. For each factor we determined candidate gene targets, both coding and non-coding. The typical binding sites of almost all factors are within a few hundred nucleotides of the transcript start site. Most factors target a mixture of coding and non-coding target genes, although one factor preferentially binds to non-coding RNA genes. We built a regulatory network among the 22 factors to determine their functional relationships to each other and found that some factors appear to act preferentially as regulators and others as target genes. Examination of the binding targets of three related HOX factors—LIN-39, MAB-5, and EGL-5—indicates that these factors regulate genes involved in cellular migration, neuronal function, and vulval differentiation, consistent with their known roles in these developmental processes. Ultimately, the comprehensive mapping of transcription factor binding sites will identify features of transcriptional networks that regulate C. elegans developmental processes. PMID:21177963

  20. Meta-analysis of heterogeneous Down Syndrome data reveals consistent genome-wide dosage effects related to neurological processes

    PubMed Central

    2011-01-01

    Background Down syndrome (DS; trisomy 21) is the most common genetic cause of mental retardation in the human population and key molecular networks dysregulated in DS are still unknown. Many different experimental techniques have been applied to analyse the effects of dosage imbalance at the molecular and phenotypical level, however, currently no integrative approach exists that attempts to extract the common information. Results We have performed a statistical meta-analysis from 45 heterogeneous publicly available DS data sets in order to identify consistent dosage effects from these studies. We identified 324 genes with significant genome-wide dosage effects, including well investigated genes like SOD1, APP, RUNX1 and DYRK1A as well as a large proportion of novel genes (N = 62). Furthermore, we characterized these genes using gene ontology, molecular interactions and promoter sequence analysis. In order to judge relevance of the 324 genes for more general cerebral pathologies we used independent publicly available microarry data from brain studies not related with DS and identified a subset of 79 genes with potential impact for neurocognitive processes. All results have been made available through a web server under http://ds-geneminer.molgen.mpg.de/. Conclusions Our study represents a comprehensive integrative analysis of heterogeneous data including genome-wide transcript levels in the domain of trisomy 21. The detected dosage effects build a resource for further studies of DS pathology and the development of new therapies. PMID:21569303

  1. Impact of DNA damaging agents on genome-wide transcriptional profiles in two marine Synechococcus species

    PubMed Central

    Tetu, Sasha G.; Johnson, Daniel A.; Varkey, Deepa; Phillippy, Katherine; Stuart, Rhona K.; Dupont, Chris L.; Hassan, Karl A.; Palenik, Brian; Paulsen, Ian T.

    2013-01-01

    Marine microorganisms, particularly those residing in coastal areas, may come in contact with any number of chemicals of environmental or xenobiotic origin. The sensitivity and response of marine cyanobacteria to such chemicals is, at present, poorly understood. We have looked at the transcriptional response of well characterized Synechococcus open ocean (WH8102) and coastal (CC9311) isolates to two DNA damaging agents, mitomycin C and ethidium bromide, using whole-genome expression microarrays. The coastal strain showed differential regulation of a larger proportion of its genome following “shock” treatment with each agent. Many of the orthologous genes in these strains, including those encoding sensor kinases, showed different transcriptional responses, with the CC9311 genes more likely to show significant changes in both treatments. While the overall response of each strain was considerably different, there were distinct transcriptional responses common to both strains observed for each DNA damaging agent, linked to the mode of action of each chemical. In both CC9311 and WH8102 there was evidence of SOS response induction under mitomycin C treatment, with genes recA, lexA and umuC significantly upregulated in this experiment but not under ethidium bromide treatment. Conversely, ethidium bromide treatment tended to result in upregulation of the DNA-directed RNA polymerase genes, not observed following mitomycin C treatment. Interestingly, a large number of genes residing on putative genomic island regions of each genome also showed significant upregulation under one or both chemical treatments. PMID:23966990

  2. Genome-wide transcriptional responses to carbon starvation in nongrowing Lactococcus lactis.

    PubMed

    Ercan, Onur; Wels, Michiel; Smid, Eddy J; Kleerebezem, Michiel

    2015-04-01

    This paper describes the transcriptional adaptations of nongrowing, retentostat cultures of Lactococcus lactis to starvation. Near-zero-growth cultures (μ = 0.0001 h(-1)) obtained by extended retentostat cultivation were exposed to starvation by termination of the medium supply for 24 h, followed by a recovery period of another 24 h by reinitiating the medium supply to the retentostat culture. During starvation, the viability of the culture was largely retained, and the expression of genes involved in transcription and translational machineries, cell division, and cell membrane energy metabolism was strongly repressed. Expression of these genes was largely recovered following the reinitiation of the medium supply. Starvation triggered the elevated expression of genes associated with synthesis of branched-chain amino acids, histidine, purine, and riboflavin. The expression of these biosynthesis genes was found to remain at an elevated level after reinitiation of the medium supply. In addition, starvation induced the complete gene set predicted to be involved in natural competence in L. lactis KF147, and the elevated expression of these genes was sustained during the subsequent recovery period, but our attempts to experimentally demonstrate natural transformation in these cells failed. Mining the starvation response gene set identified a conserved cis-acting element that resembles the lactococcal CodY motif in the upstream regions of genes associated with transcription and translational machineries, purine biosynthesis, and natural transformation in L. lactis, suggesting a role for CodY in the observed transcriptome adaptations to starvation in nongrowing cells. PMID:25636846

  3. Comparative analysis of genome-wide divergence, domestication footprints and genome-wide association study of root traits for Gossypium hirsutum and Gossypium barbadense

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Use of 10,129 singleton SNPs of known genomic location in tetraploid cotton provided unique opportunities to characterize genome-wide diversity among 440 Gossypium hirsutum and 219 G. barbadense cultivars and landrace accessions of widespread origin. Using genome-wide distributed SNPs, we examined ...

  4. Genome-Wide Analysis and Characterization of Aux/IAA Family Genes in Brassica rapa

    PubMed Central

    Rameneni, Jana Jeevan; Li, Xiaonan; Sivanandhan, Ganesan; Choi, Su Ryun; Pang, Wenxing; Im, Subin; Lim, Yong Pyo

    2016-01-01

    Auxins are the key players in plant growth development involving leaf formation, phototropism, root, fruit and embryo development. Auxin/Indole-3-Acetic Acid (Aux/IAA) are early auxin response genes noted as transcriptional repressors in plant auxin signaling. However, many studies focus on Aux/ARF gene families and much less is known about the Aux/IAA gene family in Brassica rapa (B. rapa). Here we performed a comprehensive genome-wide analysis and identified 55 Aux/IAA genes in B. rapa using four conserved motifs of Aux/IAA family (PF02309). Chromosomal mapping of the B. rapa Aux/IAA (BrIAA) genes facilitated understanding cluster rearrangement of the crucifer building blocks in the genome. Phylogenetic analysis of BrIAA with Arabidopsis thaliana, Oryza sativa and Zea mays identified 51 sister pairs including 15 same species (BrIAA—BrIAA) and 36 cross species (BrIAA—AtIAA) IAA genes. Among the 55 BrIAA genes, expression of 43 and 45 genes were verified using Genebank B. rapa ESTs and in home developed microarray data from mature leaves of Chiifu and RcBr lines. Despite their huge morphological difference, tissue specific expression analysis of BrIAA genes between the parental lines Chiifu and RcBr showed that the genes followed a similar pattern of expression during leaf development and a different pattern during bud, flower and siliqua development stages. The response of the BrIAA genes to abiotic and auxin stress at different time intervals revealed their involvement in stress response. Single Nucleotide Polymorphisms between IAA genes of reference genome Chiifu and RcBr were focused and identified. Our study examines the scope of conservation and divergence of Aux/IAA genes and their structures in B. rapa. Analyzing the expression and structural variation between two parental lines will significantly contribute to functional genomics of Brassica crops and we belive our study would provide a foundation in understanding the Aux/IAA genes in B. rapa. PMID

  5. Genome-Wide Analysis and Characterization of Aux/IAA Family Genes in Brassica rapa.

    PubMed

    Paul, Parameswari; Dhandapani, Vignesh; Rameneni, Jana Jeevan; Li, Xiaonan; Sivanandhan, Ganesan; Choi, Su Ryun; Pang, Wenxing; Im, Subin; Lim, Yong Pyo

    2016-01-01

    Auxins are the key players in plant growth development involving leaf formation, phototropism, root, fruit and embryo development. Auxin/Indole-3-Acetic Acid (Aux/IAA) are early auxin response genes noted as transcriptional repressors in plant auxin signaling. However, many studies focus on Aux/ARF gene families and much less is known about the Aux/IAA gene family in Brassica rapa (B. rapa). Here we performed a comprehensive genome-wide analysis and identified 55 Aux/IAA genes in B. rapa using four conserved motifs of Aux/IAA family (PF02309). Chromosomal mapping of the B. rapa Aux/IAA (BrIAA) genes facilitated understanding cluster rearrangement of the crucifer building blocks in the genome. Phylogenetic analysis of BrIAA with Arabidopsis thaliana, Oryza sativa and Zea mays identified 51 sister pairs including 15 same species (BrIAA-BrIAA) and 36 cross species (BrIAA-AtIAA) IAA genes. Among the 55 BrIAA genes, expression of 43 and 45 genes were verified using Genebank B. rapa ESTs and in home developed microarray data from mature leaves of Chiifu and RcBr lines. Despite their huge morphological difference, tissue specific expression analysis of BrIAA genes between the parental lines Chiifu and RcBr showed that the genes followed a similar pattern of expression during leaf development and a different pattern during bud, flower and siliqua development stages. The response of the BrIAA genes to abiotic and auxin stress at different time intervals revealed their involvement in stress response. Single Nucleotide Polymorphisms between IAA genes of reference genome Chiifu and RcBr were focused and identified. Our study examines the scope of conservation and divergence of Aux/IAA genes and their structures in B. rapa. Analyzing the expression and structural variation between two parental lines will significantly contribute to functional genomics of Brassica crops and we belive our study would provide a foundation in understanding the Aux/IAA genes in B. rapa. PMID

  6. Genome-wide transcriptional response of an avian pathogenic Escherichia coli (APEC) pst mutant

    PubMed Central

    Crépin, Sébastien; Lamarche, Martin G; Garneau, Philippe; Séguin, Julie; Proulx, Julie; Dozois, Charles M; Harel, Josée

    2008-01-01

    Background Avian pathogenic E. coli (APEC) are associated with extraintestinal diseases in poultry. The pstSCAB-phoU operon belongs to the Pho regulon and encodes the phosphate specific transport (Pst) system. A functional Pst system is required for full virulence in APEC and other bacteria and contributes to resistance of APEC to serum, to cationic antimicrobial peptides and acid shock. The global mechanisms contributing to the attenuation and decreased resistance of the APEC pst mutant to environmental stresses have not been investigated at the transcriptional level. To determine the global effect of a pst mutation on gene expression, we compared the transcriptomes of APEC strain χ7122 and its isogenic pst mutant (K3) grown in phosphate-rich medium. Results Overall, 470 genes were differentially expressed by at least 1.5-fold. Interestingly, the pst mutant not only induced systems involved in phosphate acquisition and metabolism, despite phosphate availability, but also modulated stress response mechanisms. Indeed, transcriptional changes in genes associated with the general stress responses, including the oxidative stress response were among the major differences observed. Accordingly, the K3 strain was less resistant to reactive oxygen species (ROS) than the wild-type strain. In addition, the pst mutant demonstrated reduced expression of genes involved in lipopolysaccharide modifications and coding for cell surface components such as type 1 and F9 fimbriae. Phenotypic tests also established that the pst mutant was impaired in its capacity to produce type 1 fimbriae, as demonstrated by western blotting and agglutination of yeast cells, when compared to wild-type APEC strain χ7122. Conclusion Overall, our data elucidated the effects of a pst mutation on the transcriptional response, and further support the role of the Pho regulon as part of a complex network contributing to phosphate homeostasis, adaptive stress responses, and E. coli virulence. PMID:19038054

  7. A mega-analysis of genome-wide association studies for major depressive disorder.

    PubMed

    Ripke, Stephan; Wray, Naomi R; Lewis, Cathryn M; Hamilton, Steven P; Weissman, Myrna M; Breen, Gerome; Byrne, Enda M; Blackwood, Douglas H R; Boomsma, Dorret I; Cichon, Sven; Heath, Andrew C; Holsboer, Florian; Lucae, Susanne; Madden, Pamela A F; Martin, Nicholas G; McGuffin, Peter; Muglia, Pierandrea; Noethen, Markus M; Penninx, Brenda P; Pergadia, Michele L; Potash, James B; Rietschel, Marcella; Lin, Danyu; Müller-Myhsok, Bertram; Shi, Jianxin; Steinberg, Stacy; Grabe, Hans J; Lichtenstein, Paul; Magnusson, Patrik; Perlis, Roy H; Preisig, Martin; Smoller, Jordan W; Stefansson, Kari; Uher, Rudolf; Kutalik, Zoltan; Tansey, Katherine E; Teumer, Alexander; Viktorin, Alexander; Barnes, Michael R; Bettecken, Thomas; Binder, Elisabeth B; Breuer, René; Castro, Victor M; Churchill, Susanne E; Coryell, William H; Craddock, Nick; Craig, Ian W; Czamara, Darina; De Geus, Eco J; Degenhardt, Franziska; Farmer, Anne E; Fava, Maurizio; Frank, Josef; Gainer, Vivian S; Gallagher, Patience J; Gordon, Scott D; Goryachev, Sergey; Gross, Magdalena; Guipponi, Michel; Henders, Anjali K; Herms, Stefan; Hickie, Ian B; Hoefels, Susanne; Hoogendijk, Witte; Hottenga, Jouke Jan; Iosifescu, Dan V; Ising, Marcus; Jones, Ian; Jones, Lisa; Jung-Ying, Tzeng; Knowles, James A; Kohane, Isaac S; Kohli, Martin A; Korszun, Ania; Landen, Mikael; Lawson, William B; Lewis, Glyn; Macintyre, Donald; Maier, Wolfgang; Mattheisen, Manuel; McGrath, Patrick J; McIntosh, Andrew; McLean, Alan; Middeldorp, Christel M; Middleton, Lefkos; Montgomery, Grant M; Murphy, Shawn N; Nauck, Matthias; Nolen, Willem A; Nyholt, Dale R; O'Donovan, Michael; Oskarsson, Högni; Pedersen, Nancy; Scheftner, William A; Schulz, Andrea; Schulze, Thomas G; Shyn, Stanley I; Sigurdsson, Engilbert; Slager, Susan L; Smit, Johannes H; Stefansson, Hreinn; Steffens, Michael; Thorgeirsson, Thorgeir; Tozzi, Federica; Treutlein, Jens; Uhr, Manfred; van den Oord, Edwin J C G; Van Grootheest, Gerard; Völzke, Henry; Weilburg, Jeffrey B; Willemsen, Gonneke; Zitman, Frans G; Neale, Benjamin; Daly, Mark; Levinson, Douglas F; Sullivan, Patrick F

    2013-04-01

    Prior genome-wide association studies (GWAS) of major depressive disorder (MDD) have met with limited success. We sought to increase statistical power to detect disease loci by conducting a GWAS mega-analysis for MDD. In the MDD discovery phase, we analyzed more than 1.2 million autosomal and X chromosome single-nucleotide polymorphisms (SNPs) in 18 759 independent and unrelated subjects of recent European ancestry (9240 MDD cases and 9519 controls). In the MDD replication phase, we evaluated 554 SNPs in independent samples (6783 MDD cases and 50 695 controls). We also conducted a cross-disorder meta-analysis using 819 autosomal SNPs with P<0.0001 for either MDD or the Psychiatric GWAS Consortium bipolar disorder (BIP) mega-analysis (9238 MDD cases/8039 controls and 6998 BIP cases/7775 controls). No SNPs achieved genome-wide significance in the MDD discovery phase, the MDD replication phase or in pre-planned secondary analyses (by sex, recurrent MDD, recurrent early-onset MDD, age of onset, pre-pubertal onset MDD or typical-like MDD from a latent class analyses of the MDD criteria). In the MDD-bipolar cross-disorder analysis, 15 SNPs exceeded genome-wide significance (P<5 × 10(-8)), and all were in a 248 kb interval of high LD on 3p21.1 (chr3:52 425 083-53 822 102, minimum P=5.9 × 10(-9) at rs2535629). Although this is the largest genome-wide analysis of MDD yet conducted, its high prevalence means that the sample is still underpowered to detect genetic effects typical for complex traits. Therefore, we were unable to identify robust and replicable findings. We discuss what this means for genetic research for MDD. The 3p21.1 MDD-BIP finding should be interpreted with caution as the most significant SNP did not replicate in MDD samples, and genotyping in independent samples will be needed to resolve its status. PMID:22472876

  8. Genome-wide mapping of in vivo targets of the Drosophila transcription factor Kruppel.

    PubMed

    Matyash, Alexey; Chung, Ho-Ryun; Jäckle, Herbert

    2004-07-16

    Krüppel (Kr), a member of the gap class of Drosophila segmentation genes, encodes a DNA binding zinc finger-type transcription factor. In addition to its segmentation function at the blastoderm stage, Krüppel also plays a critical role in organ formation during later stages of embryogenesis. To systematically identify in vivo target genes of Krüppel, we isolated DNA fragments from the Krüppel-associated portion of chromatin and used them to find and map Krüppel-dependent cis-acting regulatory sites in the Drosophila genome. We show that Krüppel binding sites are not enriched in Krüppel-associated chromatin and that the clustering of Krüppel binding sites, as found in the cis-acting elements of Krüppel-dependent segmentation genes used for in silico searches of Krüppel target genes, is not a prerequisite for the in vivo binding of Krüppel to its regulatory elements. Results obtained with the newly identified target gene ken and barbie (ken) indicate that Krüppel represses transcription and thereby restricts the spatial expression pattern of ken during blastoderm and gastrulation. PMID:15131112

  9. Genome-Wide Transcriptional Analysis Reveals the Protection against Hypoxia-Induced Oxidative Injury in the Intestine of Tibetans via the Inhibition of GRB2/EGFR/PTPN11 Pathways

    PubMed Central

    Gesang, Luobu; Dan, Zeng; Gusang, Lamu

    2016-01-01

    The molecular mechanisms for hypoxic environment causing the injury of intestinal mucosal barrier (IMB) are widely unknown. To address the issue, Han Chinese from 100 m altitude and Tibetans from high altitude (more than 3650 m) were recruited. Histological and transcriptome analyses were performed. The results showed intestinal villi were reduced and appeared irregular, and glandular epithelium was destroyed in the IMB of Tibetans when compared with Han Chinese. Transcriptome analysis revealed 2573 genes with altered expression. The levels of 1137 genes increased and 1436 genes decreased in Tibetans when compared with Han Chinese. Gene ontology (GO) analysis indicated most immunological responses were reduced in the IMB of Tibetans when compared with Han Chinese. Gene microarray showed that there were 25-, 22-, and 18-fold downregulation for growth factor receptor-bound protein 2 (GRB2), epidermal growth factor receptor (EGFR), and tyrosine-protein phosphatase nonreceptor type 11 (PTPN11) in the IMB of Tibetans when compared with Han Chinese. The downregulation of EGFR, GRB2, and PTPN11 will reduce the production of reactive oxygen species and protect against oxidative stress-induced injury for intestine. Thus, the transcriptome analysis showed the protecting functions of IMB patients against hypoxia-induced oxidative injury in the intestine of Tibetans via affecting GRB2/EGFR/PTPN11 pathways. PMID:27594973

  10. Genome-Wide Transcriptional Analysis Reveals the Protection against Hypoxia-Induced Oxidative Injury in the Intestine of Tibetans via the Inhibition of GRB2/EGFR/PTPN11 Pathways.

    PubMed

    Li, Kang; Gesang, Luobu; Dan, Zeng; Gusang, Lamu

    2016-01-01

    The molecular mechanisms for hypoxic environment causing the injury of intestinal mucosal barrier (IMB) are widely unknown. To address the issue, Han Chinese from 100 m altitude and Tibetans from high altitude (more than 3650 m) were recruited. Histological and transcriptome analyses were performed. The results showed intestinal villi were reduced and appeared irregular, and glandular epithelium was destroyed in the IMB of Tibetans when compared with Han Chinese. Transcriptome analysis revealed 2573 genes with altered expression. The levels of 1137 genes increased and 1436 genes decreased in Tibetans when compared with Han Chinese. Gene ontology (GO) analysis indicated most immunological responses were reduced in the IMB of Tibetans when compared with Han Chinese. Gene microarray showed that there were 25-, 22-, and 18-fold downregulation for growth factor receptor-bound protein 2 (GRB2), epidermal growth factor receptor (EGFR), and tyrosine-protein phosphatase nonreceptor type 11 (PTPN11) in the IMB of Tibetans when compared with Han Chinese. The downregulation of EGFR, GRB2, and PTPN11 will reduce the production of reactive oxygen species and protect against oxidative stress-induced injury for intestine. Thus, the transcriptome analysis showed the protecting functions of IMB patients against hypoxia-induced oxidative injury in the intestine of Tibetans via affecting GRB2/EGFR/PTPN11 pathways. PMID:27594973