Science.gov

Sample records for genomic island specific

  1. GIPSy: Genomic island prediction software.

    PubMed

    Soares, Siomar C; Geyik, Hakan; Ramos, Rommel T J; de Sá, Pablo H C G; Barbosa, Eudes G V; Baumbach, Jan; Figueiredo, Henrique C P; Miyoshi, Anderson; Tauch, Andreas; Silva, Artur; Azevedo, Vasco

    2016-08-20

    Bacteria are highly diverse organisms that are able to adapt to a broad range of environments and hosts due to their high genomic plasticity. Horizontal gene transfer plays a pivotal role in this genome plasticity and in evolution by leaps through the incorporation of large blocks of genome sequences, ordinarily known as genomic islands (GEIs). GEIs may harbor genes encoding virulence, metabolism, antibiotic resistance and symbiosis-related functions, namely pathogenicity islands (PAIs), metabolic islands (MIs), resistance islands (RIs) and symbiotic islands (SIs). Although many software for the prediction of GEIs exist, they only focus on PAI prediction and present other limitations, such as complicated installation and inconvenient user interfaces. Here, we present GIPSy, the genomic island prediction software, a standalone and user-friendly software for the prediction of GEIs, built on our previously developed pathogenicity island prediction software (PIPS). We also present four application cases in which we crosslink data from literature to PAIs, MIs, RIs and SIs predicted by GIPSy. Briefly, GIPSy correctly predicted the following previously described GEIs: 13 PAIs larger than 30kb in Escherichia coli CFT073; 1 MI for Burkholderia pseudomallei K96243, which seems to be a miscellaneous island; 1 RI of Acinetobacter baumannii AYE, named AbaR1; and, 1 SI of Mesorhizobium loti MAFF303099 presenting a mosaic structure. GIPSy is the first life-style-specific genomic island prediction software to perform analyses of PAIs, MIs, RIs and SIs, opening a door for a better understanding of bacterial genome plasticity and the adaptation to new traits. PMID:26376473

  2. A Genomic Island Defines Subspecies-Specific Virulence Features of the Host-Adapted Pathogen Campylobacter fetus subsp. venerealis▿ †

    PubMed Central

    Gorkiewicz, Gregor; Kienesberger, Sabine; Schober, Caroline; Scheicher, Sylvia R.; Gülly, Christian; Zechner, Rudolf; Zechner, Ellen L.

    2010-01-01

    The pathogen Campylobacter fetus comprises two subspecies, C. fetus subsp. fetus and C. fetus subsp. venerealis. Although these taxa are highly related on the genome level, they are adapted to distinct hosts and tissues. C. fetus subsp. fetus infects a diversity of hosts, including humans, and colonizes the gastrointestinal tract. In contrast, C. fetus subsp. venerealis is largely restricted to the bovine genital tract, causing epidemic abortion in these animals. In light of their close genetic relatedness, the specific niche preferences make the C. fetus subspecies an ideal model system to investigate the molecular basis of host adaptation. In this study, a subtractive-hybridization approach was applied to the genomes of the subspecies to identify different genes potentially underlying this specificity. The comparison revealed a genomic island uniquely present in C. fetus subsp. venerealis that harbors several genes indicative of horizontal transfer and that encodes the core components necessary for bacterial type IV secretion. Macromolecular transporters of this type deliver effector molecules to host cells, thereby contributing to virulence in various pathogens. Mutational inactivation of the putative secretion system confirmed its involvement in the pathogenicity of C. fetus subsp. venerealis. PMID:19897645

  3. Why Close a Bacterial Genome? The Plasmid of Alteromonas Macleodii HOT1A3 is a Vector for Inter-Specific Transfer of a Flexible Genomic Island

    PubMed Central

    Fadeev, Eduard; De Pascale, Fabio; Vezzi, Alessandro; Hübner, Sariel; Aharonovich, Dikla; Sher, Daniel

    2016-01-01

    Genome sequencing is rapidly becoming a staple technique in environmental and clinical microbiology, yet computational challenges still remain, leading to many draft genomes which are typically fragmented into many contigs. We sequenced and completely assembled the genome of a marine heterotrophic bacterium, Alteromonas macleodii HOT1A3, and compared its full genome to several draft genomes obtained using different reference-based and de novo methods. In general, the de novo assemblies clearly outperformed the reference-based or hybrid ones, covering >99% of the genes and representing essentially all of the gene functions. However, only the fully closed genome (∼4.5 Mbp) allowed us to identify the presence of a large, 148 kbp plasmid, pAM1A3. While HOT1A3 belongs to A. macleodii, typically found in surface waters (“surface ecotype”), this plasmid consists of an almost complete flexible genomic island (fGI), containing many genes involved in metal resistance previously identified in the genomes of Alteromonas mediterranea (“deep ecotype”). Indeed, similar to A. mediterranea, A. macleodii HOT1A3 grows at concentrations of zinc, mercury, and copper that are inhibitory for other A. macleodii strains. The presence of a plasmid encoding almost an entire fGI suggests that wholesale genomic exchange between heterotrophic marine bacteria belonging to related but ecologically different populations is not uncommon. PMID:27014193

  4. Whole-genome bisulfite sequencing maps from multiple human tissues reveal novel CpG islands associated with tissue-specific regulation

    PubMed Central

    Mendizabal, Isabel; Yi, Soojin V.

    2016-01-01

    CpG islands (CGIs) are one of the most widely studied regulatory features of the human genome, with critical roles in development and disease. Despite such significance and the original epigenetic definition, currently used CGI sets are typically predicted from DNA sequence characteristics. Although CGIs are deeply implicated in practical analyses of DNA methylation, recent studies have shown that such computational annotations suffer from inaccuracies. Here we used whole-genome bisulfite sequencing from 10 diverse human tissues to identify a comprehensive, experimentally obtained, single-base resolution CGI catalog. In addition to the unparalleled annotation precision, our method is free from potential bias due to arbitrary sequence features or probe affinity differences. In addition to clarifying substantial false positives in the widely used University of California Santa Cruz (UCSC) annotations, our study identifies numerous novel epigenetic loci. In particular, we reveal significant impact of transposable elements on the epigenetic regulatory landscape of the human genome and demonstrate ubiquitous presence of transcription initiation at CGIs, including alternative promoters in gene bodies and non-coding RNAs in intergenic regions. Moreover, coordinated DNA methylation and chromatin modifications mark tissue-specific enhancers at novel CGIs. Enrichment of specific transcription factor binding from ChIP-seq supports mechanistic roles of CGIs on the regulation of tissue-specific transcription. The new CGI catalog provides a comprehensive and integrated list of genomic hotspots of epigenetic regulation. PMID:26512062

  5. Whole-genome bisulfite sequencing maps from multiple human tissues reveal novel CpG islands associated with tissue-specific regulation.

    PubMed

    Mendizabal, Isabel; Yi, Soojin V

    2016-01-01

    CpG islands (CGIs) are one of the most widely studied regulatory features of the human genome, with critical roles in development and disease. Despite such significance and the original epigenetic definition, currently used CGI sets are typically predicted from DNA sequence characteristics. Although CGIs are deeply implicated in practical analyses of DNA methylation, recent studies have shown that such computational annotations suffer from inaccuracies. Here we used whole-genome bisulfite sequencing from 10 diverse human tissues to identify a comprehensive, experimentally obtained, single-base resolution CGI catalog. In addition to the unparalleled annotation precision, our method is free from potential bias due to arbitrary sequence features or probe affinity differences. In addition to clarifying substantial false positives in the widely used University of California Santa Cruz (UCSC) annotations, our study identifies numerous novel epigenetic loci. In particular, we reveal significant impact of transposable elements on the epigenetic regulatory landscape of the human genome and demonstrate ubiquitous presence of transcription initiation at CGIs, including alternative promoters in gene bodies and non-coding RNAs in intergenic regions. Moreover, coordinated DNA methylation and chromatin modifications mark tissue-specific enhancers at novel CGIs. Enrichment of specific transcription factor binding from ChIP-seq supports mechanistic roles of CGIs on the regulation of tissue-specific transcription. The new CGI catalog provides a comprehensive and integrated list of genomic hotspots of epigenetic regulation. PMID:26512062

  6. The Floating (Pathogenicity) Island: A Genomic Dessert.

    PubMed

    Novick, Richard P; Ram, Geeta

    2016-02-01

    Among the prokaryotic genomic islands (GIs) involved in horizontal gene transfer (HGT) are the classical pathogenicity islands, including the integrative and conjugative elements (ICEs), the gene-transfer agents (GTAs), and the staphylococcal pathogenicity islands (SaPIs), the primary focus of this review. While the ICEs and GTAs mediate HGT autonomously, the SaPIs are dependent on specific phages. The ICEs transfer primarily their own DNA, the GTAs exclusively transfer unlinked host DNA, and the SaPIs combine the capabilities of both. Thus the SaPIs derive their importance from the genes they carry (their genetic cargo) and the genes they move. They act not only as versatile high-frequency mobilizers but also as mediators of phage interference and consequently are major benefactors of their host bacteria. PMID:26744223

  7. IslandViewer update: Improved genomic island discovery and visualization.

    PubMed

    Dhillon, Bhavjinder K; Chiu, Terry A; Laird, Matthew R; Langille, Morgan G I; Brinkman, Fiona S L

    2013-07-01

    IslandViewer (http://pathogenomics.sfu.ca/islandviewer) is a web-accessible application for the computational prediction and analysis of genomic islands (GIs) in bacterial and archaeal genomes. GIs are clusters of genes of probable horizontal origin and are of high interest because they disproportionately encode virulence factors and other adaptations of medical, environmental and industrial interest. Many computational tools exist for the prediction of GIs, but three of the most accurate methods are available in integrated form via IslandViewer: IslandPath-DIMOB, SIGI-HMM and IslandPick. IslandViewer GI predictions are precomputed for all complete microbial genomes from National Center for Biotechnology Information, with an option to upload other genomes and/or perform customized analyses using different settings. Here, we report recent changes to the IslandViewer framework that have vastly improved its efficiency in handling an increasing number of users, plus better facilitate custom genome analyses. Users may also now overlay additional annotations such as virulence factors, antibiotic resistance genes and pathogen-associated genes on top of current GI predictions. Comparisons of GIs between user-selected genomes are now facilitated through a highly requested side-by-side viewer. IslandViewer improvements aim to provide a more flexible interface, coupled with additional highly relevant annotation information, to aid analysis of GIs in diverse microbial species. PMID:23677610

  8. A spontaneous genomic deletion in Listeria ivanovii identifies LIPI-2, a species-specific pathogenicity island encoding sphingomyelinase and numerous internalins.

    PubMed

    Domínguez-Bernal, Gustavo; Müller-Altrock, Stefanie; González-Zorn, Bruno; Scortti, Mariela; Herrmann, Petra; Monzó, Héctor J; Lacharme, Lizeth; Kreft, Jürgen; Vázquez-Boland, José A

    2006-01-01

    Listeria ivanovii differs from the human pathogen Listeria monocytogenes in that it specifically affects ruminants, causing septicaemia and abortion but not meningo-encephalitis. The genetic characterization of spontaneous L. ivanovii mutants lacking the virulence factor SmcL (sphingomyelinase) led us to identify LIPI-2, the first species-specific pathogenicity island from Listeria. Besides SmcL, this 22 kb chromosomal locus encodes 10 internalin (Inl) proteins: i-InlB1 and -B2 are large/surface-associated Inls similar to L. monocytogenes InlB; i-InlE to -L are small/excreted (SE)-Inls, i-InlG being a tandem fusion of two SE-Inls. Except i-inlB1, all LIPI-2 inl genes are controlled by the virulence regulator, PrfA. LIPI-2 is inserted into a tRNA locus and is unstable - half of it deleting at approximately 10(-4) frequency with a portion of contiguous DNA. The spontaneous mutants were attenuated in vivo in mice and lambs and showed impaired intracellular growth and apoptosis induction in bovine MDBK cells. Targeted knock-out mutations associated the virulence defect with LIPI-2 genes. The region between the core genome loci ysnB-tRNA(arg) and ydeI flanking LIPI-2 contained different gene complements in the different Listeria spp. and even serovars of L. monocytogenes, including remnants of the PSA bacteriophage int gene in serovar 4b, indicating it is a hot spot for horizontal genome diversification. LIPI-2 is conserved in L. ivanovii ssp. ivanovii and londoniensis, suggesting an early acquisition during the species' evolution. LIPI-2 is likely to play an important role in the pathogenic and host tropism of L. ivanovii. PMID:16390439

  9. Genomic islands of uropathogenic Escherichia coli contribute to virulence.

    PubMed

    Lloyd, Amanda L; Henderson, Tiffany A; Vigil, Patrick D; Mobley, Harry L T

    2009-06-01

    Uropathogenic Escherichia coli (UPEC) strain CFT073 contains 13 large genomic islands ranging in size from 32 kb to 123 kb. Eleven of these genomic islands were individually deleted from the genome, and nine isogenic mutants were tested for their ability to colonize the CBA/J mouse model of ascending urinary tract infection. Three genomic island mutants (Delta PAI-aspV, Delta PAI-metV, and Delta PAI-asnT) were significantly outcompeted by wild-type CFT073 in the bladders and/or kidneys following transurethral cochallenge (P Specific genes within these islands contributed to the observed phenotype, including a previously uncharacterized iron acquisition cluster, fbpABCD (c0294 to c0297 [c0294-97]), autotransporter, picU (c0350), and RTX family exoprotein, tosA (c0363) in the PAI-aspV island. The double deletion mutant with deletions in both copies of the fbp iron acquisition operon (Deltac0294-97 Delta c2518-15) was significantly outcompeted by wild-type CFT073 in cochallenge. Strains with mutations in a type VI secretion system within the PAI-metV island did not show attenuation. The attenuation of the PAI-metV island was localized to genes c3405-10, encoding a putative phosphotransferase transport system, which is common to UPEC and avian pathogenic E. coli strains but absent from E. coli K-12. We have shown that, in addition to encoding virulence genes, genomic islands contribute to the overall fitness of UPEC strain CFT073 in vivo. PMID:19329634

  10. Genomic Flatlining in the Endangered Island Fox.

    PubMed

    Robinson, Jacqueline A; Ortega-Del Vecchyo, Diego; Fan, Zhenxin; Kim, Bernard Y; vonHoldt, Bridgett M; Marsden, Clare D; Lohmueller, Kirk E; Wayne, Robert K

    2016-05-01

    Genetic studies of rare and endangered species often focus on defining and preserving genetically distinct populations, especially those having unique adaptations [1, 2]. Much less attention is directed at understanding the landscape of deleterious variation, an insidious consequence of geographic isolation and the inefficiency of natural selection to eliminate harmful variants in small populations [3-5]. With population sizes of many vertebrates decreasing and isolation increasing through habitat fragmentation and loss, understanding the extent and nature of deleterious variation in small populations is essential for predicting and enhancing population persistence. The Channel Island fox (Urocyon littoralis) is a dwarfed species that inhabits six of California's Channel Islands and is derived from the mainland gray fox (U. cinereoargenteus). These isolated island populations have persisted for thousands of years at extremely small population sizes [6, 7] and, consequently, are a model for testing ideas about the accumulation of deleterious variation in small populations under natural conditions. Analysis of complete genome sequence data from island foxes shows a dramatic decrease in genome-wide variation and a sharp increase in the homozygosity of deleterious variants. The San Nicolas Island population has a near absence of variation, demonstrating a unique genetic flatlining that is punctuated by heterozygosity hotspots, enriched for olfactory receptor genes and other genes with high levels of ancestral variation. These findings question the generality of the small-population paradigm that maintains substantial genetic variation is necessary for short- and long-term persistence. PMID:27112291

  11. Islander: A database of precisely mapped genomic islands in tRNA and tmRNA genes

    SciTech Connect

    Hudson, Corey M.; Lau, Britney Y.; Williams, Kelly P.

    2014-11-05

    Genomic islands are mobile DNAs that are major agents of bacterial and archaeal evolution. Integration into prokaryotic chromosomes usually occurs site-specifically at tRNA or tmRNA gene (together, tDNA) targets, catalyzed by tyrosine integrases. This splits the target gene, yet sequences within the island restore the disrupted gene; the regenerated target and its displaced fragment precisely mark the endpoints of the island. We applied this principle to search for islands in genomic DNA sequences. Our algorithm identifies tDNAs, finds fragments of those tDNAs in the same replicon and removes unlikely candidate islands through a series of filters. A search for islands in 2168 whole prokaryotic genomes produced 3919 candidates. The website Islander (recently moved to http://bioinformatics.sandia.gov/islander/) presents these precisely mapped candidate islands, the gene content and the island sequence. The algorithm further insists that each island encode an integrase, and attachment site sequence identity is carefully noted; therefore, the database also serves in the study of integrase site-specificity and its evolution.

  12. Islander: A database of precisely mapped genomic islands in tRNA and tmRNA genes

    DOE PAGESBeta

    Hudson, Corey M.; Lau, Britney Y.; Williams, Kelly P.

    2014-11-05

    Genomic islands are mobile DNAs that are major agents of bacterial and archaeal evolution. Integration into prokaryotic chromosomes usually occurs site-specifically at tRNA or tmRNA gene (together, tDNA) targets, catalyzed by tyrosine integrases. This splits the target gene, yet sequences within the island restore the disrupted gene; the regenerated target and its displaced fragment precisely mark the endpoints of the island. We applied this principle to search for islands in genomic DNA sequences. Our algorithm identifies tDNAs, finds fragments of those tDNAs in the same replicon and removes unlikely candidate islands through a series of filters. A search for islandsmore » in 2168 whole prokaryotic genomes produced 3919 candidates. The website Islander (recently moved to http://bioinformatics.sandia.gov/islander/) presents these precisely mapped candidate islands, the gene content and the island sequence. The algorithm further insists that each island encode an integrase, and attachment site sequence identity is carefully noted; therefore, the database also serves in the study of integrase site-specificity and its evolution.« less

  13. Mobilization of Genomic Islands of Staphylococcus aureus by Temperate Bacteriophage

    PubMed Central

    Moon, Bo Youn; Park, Joo Youn; Robinson, D. Ashley; Thomas, Jonathan C.; Park, Yong Ho; Thornton, Justin A.; Seo, Keun Seok

    2016-01-01

    The virulence of Staphylococcus aureus, in both human and animal hosts, is largely influenced by the acquisition of mobile genetic elements (MGEs). Most S. aureus strains carry a variety of MGEs, including three genomic islands (νSaα, νSaβ, νSaγ) that are diverse in virulence gene content but conserved within strain lineages. Although the mobilization of pathogenicity islands, phages and plasmids has been well studied, the mobilization of genomic islands is poorly understood. We previously demonstrated the mobilization of νSaβ by the adjacent temperate bacteriophage ϕSaBov from strain RF122. In this study, we demonstrate that ϕSaBov mediates the mobilization of νSaα and νSaγ, which are located remotely from ϕSaBov, mostly to recipient strains belonging to ST151. Phage DNA sequence analysis revealed that chromosomal DNA excision events from RF122 were highly specific to MGEs, suggesting sequence-specific DNA excision and packaging events rather than generalized transduction by a temperate phage. Disruption of the int gene in ϕSaBov did not affect phage DNA excision, packaging, and integration events. However, disruption of the terL gene completely abolished phage DNA packing events, suggesting that the primary function of temperate phage in the transfer of genomic islands is to allow for phage DNA packaging by TerL and that transducing phage particles are the actual vehicle for transfer. These results extend our understanding of the important role of bacteriophage in the horizontal transfer and evolution of genomic islands in S. aureus. PMID:26953931

  14. Genomic Island Identification Software v 1.0

    Energy Science and Technology Software Center (ESTSC)

    2014-08-25

    Genomic islands are key mobile DNA elements in bacterial evolution, that can distinguish pathogenic strains from each other, or distinguish pathogenic strains from non-pathogenic strains. Their detection in genomes is a challenging problem. We present 3 main software components that attack the island detection problem on two different bases: 1) the preference of islands to insert in chromosomal tRNA or tmRNA genes (islander.pl), and 2) islands’ sporadic occurrence among closely related strains. The latter principlemore » is employed in both an algorithm (learnedPhyloblocks.pl) and a visualization method (panGenome.pl). Component islander.pl finds islands based on their preference for a particular target gene type. We annotate each tRNA and tmRNA gene, find fragments of each such gene as candidates for the distal ends of islands, and filter candidates to remove false positives. Component learnedPhyloblocks.pl uses islands found by islander.pl and other methods as a training set to find new islands. Reference genomes are aligned using mugsy, then the “phylotypes” or patterns of occurrence in the reference set are determined for each position in the target genome, and those phylotypes most enriched in the training set of islands are followed to detect yet more islands. Component panGenome.pl produces a big-data visualization of the chromosomally-ordered “pan-genome”, that includes every gene of every reference genome (x-axis, pan-genome order; y-axis, reference genomes; color-coding, gene presence/absence etc.), islands appearing as dark patches.« less

  15. Genomic Island Identification Software v 1.0

    SciTech Connect

    None, None

    2014-08-25

    Genomic islands are key mobile DNA elements in bacterial evolution, that can distinguish pathogenic strains from each other, or distinguish pathogenic strains from non-pathogenic strains. Their detection in genomes is a challenging problem. We present 3 main software components that attack the island detection problem on two different bases: 1) the preference of islands to insert in chromosomal tRNA or tmRNA genes (islander.pl), and 2) islands’ sporadic occurrence among closely related strains. The latter principle is employed in both an algorithm (learnedPhyloblocks.pl) and a visualization method (panGenome.pl). Component islander.pl finds islands based on their preference for a particular target gene type. We annotate each tRNA and tmRNA gene, find fragments of each such gene as candidates for the distal ends of islands, and filter candidates to remove false positives. Component learnedPhyloblocks.pl uses islands found by islander.pl and other methods as a training set to find new islands. Reference genomes are aligned using mugsy, then the “phylotypes” or patterns of occurrence in the reference set are determined for each position in the target genome, and those phylotypes most enriched in the training set of islands are followed to detect yet more islands. Component panGenome.pl produces a big-data visualization of the chromosomally-ordered “pan-genome”, that includes every gene of every reference genome (x-axis, pan-genome order; y-axis, reference genomes; color-coding, gene presence/absence etc.), islands appearing as dark patches.

  16. Genomic islands predict functional adaptation in marine actinobacteria

    SciTech Connect

    Penn, Kevin; Jenkins, Caroline; Nett, Markus; Udwary, Daniel; Gontang, Erin; McGlinchey, Ryan; Foster, Brian; Lapidus, Alla; Podell, Sheila; Allen, Eric; Moore, Bradley; Jensen, Paul

    2009-04-01

    Linking functional traits to bacterial phylogeny remains a fundamental but elusive goal of microbial ecology 1. Without this information, it becomes impossible to resolve meaningful units of diversity and the mechanisms by which bacteria interact with each other and adapt to environmental change. Ecological adaptations among bacterial populations have been linked to genomic islands, strain-specific regions of DNA that house functionally adaptive traits 2. In the case of environmental bacteria, these traits are largely inferred from bioinformatic or gene expression analyses 2, thus leaving few examples in which the functions of island genes have been experimentally characterized. Here we report the complete genome sequences of Salinispora tropica and S. arenicola, the first cultured, obligate marine Actinobacteria 3. These two species inhabit benthic marine environments and dedicate 8-10percent of their genomes to the biosynthesis of secondary metabolites. Despite a close phylogenetic relationship, 25 of 37 secondary metabolic pathways are species-specific and located within 21 genomic islands, thus providing new evidence linking secondary metabolism to ecological adaptation. Species-specific differences are also observed in CRISPR sequences, suggesting that variations in phage immunity provide fitness advantages that contribute to the cosmopolitan distribution of S. arenicola 4. The two Salinispora genomes have evolved by complex processes that include the duplication and acquisition of secondary metabolite genes, the products of which provide immediate opportunities for molecular diversification and ecological adaptation. Evidence that secondary metabolic pathways are exchanged by Horizontal Gene Transfer (HGT) yet are fixed among globally distributed populations 5 supports a functional role for their products and suggests that pathway acquisition represents a previously unrecognized force driving bacterial diversification

  17. Site-Specific Mobilization of Vinyl Chloride Respiration Islands by a Mechanism Common in Dehalococcoides

    PubMed Central

    2011-01-01

    Background Vinyl chloride is a widespread groundwater pollutant and Group 1 carcinogen. A previous comparative genomic analysis revealed that the vinyl chloride reductase operon, vcrABC, of Dehalococcoides sp. strain VS is embedded in a horizontally-acquired genomic island that integrated at the single-copy tmRNA gene, ssrA. Results We targeted conserved positions in available genomic islands to amplify and sequence four additional vcrABC -containing genomic islands from previously-unsequenced vinyl chloride respiring Dehalococcoides enrichments. We identified a total of 31 ssrA-specific genomic islands from Dehalococcoides genomic data, accounting for 47 reductive dehalogenase homologous genes and many other non-core genes. Sixteen of these genomic islands contain a syntenic module of integration-associated genes located adjacent to the predicted site of integration, and among these islands, eight contain vcrABC as genetic 'cargo'. These eight vcrABC -containing genomic islands are syntenic across their ~12 kbp length, but have two phylogenetically discordant segments that unambiguously differentiate the integration module from the vcrABC cargo. Using available Dehalococcoides phylogenomic data we estimate that these ssrA-specific genomic islands are at least as old as the Dehalococcoides group itself, which in turn is much older than human civilization. Conclusions The vcrABC -containing genomic islands are a recently-acquired subset of a diverse collection of ssrA-specific mobile elements that are a major contributor to strain-level diversity in Dehalococcoides, and may have been throughout its evolution. The high similarity between vcrABC sequences is quantitatively consistent with recent horizontal acquisition driven by ~100 years of industrial pollution with chlorinated ethenes. PMID:21635780

  18. Genome Island: A Virtual Science Environment in Second Life

    ERIC Educational Resources Information Center

    Clark, Mary Anne

    2009-01-01

    Mary Anne CLark describes the organization and uses of Genome Island, a virtual laboratory complex constructed in Second Life. Genome Island was created for teaching genetics to university undergraduates but also provides a public space where anyone interested in genetics can spend a few minutes, or a few hours, interacting with genetic…

  19. Genome position specific priors for genomic prediction

    PubMed Central

    2012-01-01

    Background The accuracy of genomic prediction is highly dependent on the size of the reference population. For small populations, including information from other populations could improve this accuracy. The usual strategy is to pool data from different populations; however, this has not proven as successful as hoped for with distantly related breeds. BayesRS is a novel approach to share information across populations for genomic predictions. The approach allows information to be captured even where the phase of SNP alleles and casuative mutation alleles are reversed across populations, or the actual casuative mutation is different between the populations but affects the same gene. Proportions of a four-distribution mixture for SNP effects in segments of fixed size along the genome are derived from one population and set as location specific prior proportions of distributions of SNP effects for the target population. The model was tested using dairy cattle populations of different breeds: 540 Australian Jersey bulls, 2297 Australian Holstein bulls and 5214 Nordic Holstein bulls. The traits studied were protein-, fat- and milk yield. Genotypic data was Illumina 777K SNPs, real or imputed. Results Results showed an increase in accuracy of up to 3.5% for the Jersey population when using BayesRS with a prior derived from Australian Holstein compared to a model without location specific priors. The increase in accuracy was however lower than was achieved when reference populations were combined to estimate SNP effects, except in the case of fat yield. The small size of the Jersey validation set meant that these improvements in accuracy were not significant using a Hotelling-Williams t-test at the 5% level. An increase in accuracy of 1-2% for all traits was observed in the Australian Holstein population when using a prior derived from the Nordic Holstein population compared to using no prior information. These improvements were significant (P<0.05) using the Hotelling

  20. IslandViewer 3: more flexible, interactive genomic island discovery, visualization and analysis.

    PubMed

    Dhillon, Bhavjinder K; Laird, Matthew R; Shay, Julie A; Winsor, Geoffrey L; Lo, Raymond; Nizam, Fazmin; Pereira, Sheldon K; Waglechner, Nicholas; McArthur, Andrew G; Langille, Morgan G I; Brinkman, Fiona S L

    2015-07-01

    IslandViewer (http://pathogenomics.sfu.ca/islandviewer) is a widely used web-based resource for the prediction and analysis of genomic islands (GIs) in bacterial and archaeal genomes. GIs are clusters of genes of probable horizontal origin, and are of high interest since they disproportionately encode genes involved in medically and environmentally important adaptations, including antimicrobial resistance and virulence. We now report a major new release of IslandViewer, since the last release in 2013. IslandViewer 3 incorporates a completely new genome visualization tool, IslandPlot, enabling for the first time interactive genome analysis and gene search capabilities using synchronized circular, horizontal and vertical genome views. In addition, more curated virulence factors and antimicrobial resistance genes have been incorporated, and homologs of these genes identified in closely related genomes using strict filters. Pathogen-associated genes have been re-calculated for all pre-computed complete genomes. For user-uploaded genomes to be analysed, IslandViewer 3 can also now handle incomplete genomes, with an improved queuing system on compute nodes to handle user demand. Overall, IslandViewer 3 represents a significant new version of this GI analysis software, with features that may make it more broadly useful for general microbial genome analysis and visualization. PMID:25916842

  1. Genomic Islands in the Pathogenic Filamentous Fungus Aspergillus fumigatus

    PubMed Central

    Fedorova, Natalie D.; Khaldi, Nora; Joardar, Vinita S.; Maiti, Rama; Amedeo, Paolo; Anderson, Michael J.; Crabtree, Jonathan; Silva, Joana C.; Badger, Jonathan H.; Albarraq, Ahmed; Angiuoli, Sam; Bussey, Howard; Bowyer, Paul; Cotty, Peter J.; Dyer, Paul S.; Egan, Amy; Galens, Kevin; Fraser-Liggett, Claire M.; Haas, Brian J.; Inman, Jason M.; Kent, Richard; Lemieux, Sebastien; Malavazi, Iran; Orvis, Joshua; Roemer, Terry; Ronning, Catherine M.; Sundaram, Jaideep P.; Sutton, Granger; Turner, Geoff; Venter, J. Craig; White, Owen R.; Whitty, Brett R.; Youngman, Phil; Wolfe, Kenneth H.; Goldman, Gustavo H.; Wortman, Jennifer R.; Jiang, Bo; Denning, David W.; Nierman, William C.

    2008-01-01

    We present the genome sequences of a new clinical isolate of the important human pathogen, Aspergillus fumigatus, A1163, and two closely related but rarely pathogenic species, Neosartorya fischeri NRRL181 and Aspergillus clavatus NRRL1. Comparative genomic analysis of A1163 with the recently sequenced A. fumigatus isolate Af293 has identified core, variable and up to 2% unique genes in each genome. While the core genes are 99.8% identical at the nucleotide level, identity for variable genes can be as low 40%. The most divergent loci appear to contain heterokaryon incompatibility (het) genes associated with fungal programmed cell death such as developmental regulator rosA. Cross-species comparison has revealed that 8.5%, 13.5% and 12.6%, respectively, of A. fumigatus, N. fischeri and A. clavatus genes are species-specific. These genes are significantly smaller in size than core genes, contain fewer exons and exhibit a subtelomeric bias. Most of them cluster together in 13 chromosomal islands, which are enriched for pseudogenes, transposons and other repetitive elements. At least 20% of A. fumigatus-specific genes appear to be functional and involved in carbohydrate and chitin catabolism, transport, detoxification, secondary metabolism and other functions that may facilitate the adaptation to heterogeneous environments such as soil or a mammalian host. Contrary to what was suggested previously, their origin cannot be attributed to horizontal gene transfer (HGT), but instead is likely to involve duplication, diversification and differential gene loss (DDL). The role of duplication in the origin of lineage-specific genes is further underlined by the discovery of genomic islands that seem to function as designated “gene dumps” and, perhaps, simultaneously, as “gene factories”. PMID:18404212

  2. The phn Island: A New Genomic Island Encoding Catabolism of Polynuclear Aromatic Hydrocarbons

    PubMed Central

    Hickey, William J.; Chen, Shicheng; Zhao, Jiangchao

    2012-01-01

    Bacteria are key in the biodegradation of polycyclic aromatic hydrocarbons (PAH), which are widespread environmental pollutants. At least six genotypes of PAH degraders are distinguishable via phylogenies of the ring-hydroxylating dioxygenase (RHD) that initiates bacterial PAH metabolism. A given RHD genotype can be possessed by a variety of bacterial genera, suggesting horizontal gene transfer (HGT) is an important process for dissemination of PAH-degrading genes. But, mechanisms of HGT for most RHD genotypes are unknown. Here, we report in silico and functional analyses of the phenanthrene-degrading bacterium Delftia sp. Cs1-4, a representative of the phnAFK2 RHD group. The phnAFK2 genotype predominates PAH degrader communities in some soils and sediments, but, until now, their genomic biology has not been explored. In the present study, genes for the entire phenanthrene catabolic pathway were discovered on a novel ca. 232 kb genomic island (GEI), now termed the phn island. This GEI had characteristics of an integrative and conjugative element with a mobilization/stabilization system similar to that of SXT/R391-type GEI. But, it could not be grouped with any known GEI, and was the first member of a new GEI class. The island also carried genes predicted to encode: synthesis of quorum sensing signal molecules, fatty acid/polyhydroxyalkanoate biosynthesis, a type IV secretory system, a PRTRC system, DNA mobilization functions and >50 hypothetical proteins. The 50% G + C content of the phn gene cluster differed significantly from the 66.7% G + C level of the island as a whole and the strain Cs1-4 chromosome, indicating a divergent phylogenetic origin for the phn genes. Collectively, these studies added new insights into the genetic elements affecting the PAH biodegradation capacity of microbial communities specifically, and the potential vehicles of HGT in general. PMID:22493593

  3. Genome-scale computational analysis of DNA curvature and repeats in Arabidopsis and rice uncovers plant-specific genomic properties

    PubMed Central

    2011-01-01

    Background Due to its overarching role in genome function, sequence-dependent DNA curvature continues to attract great attention. The DNA double helix is not a rigid cylinder, but presents both curvature and flexibility in different regions, depending on the sequence. More in depth knowledge of the various orders of complexity of genomic DNA structure has allowed the design of sophisticated bioinformatics tools for its analysis and manipulation, which, in turn, have yielded a better understanding of the genome itself. Curved DNA is involved in many biologically important processes, such as transcription initiation and termination, recombination, DNA replication, and nucleosome positioning. CpG islands and tandem repeats also play significant roles in the dynamics and evolution of genomes. Results In this study, we analyzed the relationship between these three structural features within rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana) genomes. A genome-scale prediction of curvature distribution in rice and Arabidopsis indicated that most of the chromosomes of both genomes have maximal chromosomal DNA curvature adjacent to the centromeric region. By analyzing tandem repeats across the genome, we found that frequencies of repeats are higher in regions adjacent to those with high curvature value. Further analysis of CpG islands shows a clear interdependence between curvature value, repeat frequencies and CpG islands. Each CpG island appears in a local minimal curvature region, and CpG islands usually do not appear in the centromere or regions with high repeat frequency. A statistical evaluation demonstrates the significance and non-randomness of these features. Conclusions This study represents the first systematic genome-scale analysis of DNA curvature, CpG islands and tandem repeats at the DNA sequence level in plant genomes, and finds that not all of the chromosomes in plants follow the same rules common to other eukaryote organisms, suggesting that some

  4. Flexible genomic islands as drivers of genome evolution.

    PubMed

    Rodriguez-Valera, Francisco; Martin-Cuadrado, Ana-Belen; López-Pérez, Mario

    2016-06-01

    Natural prokaryotic populations are composed of multiple clonal lineages that are different in their core genomes in a range that varies typically between 95 and 100% nucleotide identity. Each clonal lineage also carries a complement of not shared flexible genes that can be very large. The compounded flexible genome provides polyclonal populations with enormous gene diversity that can be used to efficiently exploit resources. This has fundamental repercussions for interpreting individual bacterial genomes. They are better understood as parts rather than the whole. Multiple genomes are required to understand how the population interacts with its biotic and abiotic environment. PMID:27085300

  5. Genetic and Phenotypic Characterization of a Pseudomonas aeruginosa Population with High Frequency of Genomic Islands

    PubMed Central

    Morales-Espinosa, Rosario; Soberón-Chávez, Gloria; Delgado-Sapién, Gabriela; Sandner-Miranda, Luisa; Méndez, José L.; González-Valencia, Gerardo; Cravioto, Alejandro

    2012-01-01

    Various genomic islands, PAPI-1, PAPI-2, PAGI-1, PAGI-2, PAGI-3, and PAGI-4, and the element pKLC102 have been characterized in different P. aeruginosa strains from diverse habitats and geographical locations. Chromosomal DNA macroarray of 100 P. aeruginosa strains isolated from 85 unrelated patients hospitalized in an intensive care unit was created to assess the occurrence of these genomic islands (GEIs). The macroarray was then hybridized with labeled probes derived from each genomic island. In addition, PFGE patterns with SpeI, frequency of virulence genes, and antimicrobial resistance patterns of the strains were studied. Our results showed that almost all P. aeruginosa strains presented up to eight virulence genes. By SpeI macrorestriction fragment analysis we were able to identify 49 restriction patterns; 35 patterns correspond to single strains and the remaining 14 to strains subgroup (a–n). Most of the strains showed variation in number or composition of GEIs and a specific antimicrobial pattern indicating that each strain was an unrelated isolate. In terms of the number of genomic islands per strain, 7 GEIs were found in 34% of the strains, 6 in 18%, 5 in 12%, 4 in 14%, 3 in 10%, 2 in 7%, and 1 in 4%; only one isolate did not present any GEI. The genomic islands PAPI-1 and PAPI-2 and the element pKLC102 were the most frequently detected. The analysis of the location of each GEI in the chromosome of two strains show that the islands PAGI-3, PAPI-1, PAPI-2 and pKLC102 are present in the insertion site previously reported, but that PAGI-2 and PAGI-4 are inserted in another chromosome place in a site not characterized yet. In conclusion our data show that P. aeruginosa strains exhibited an epidemic population structure with horizontal transfer of DNA resulting in a high frequency of GEIs. PMID:22662157

  6. Genetic and phenotypic characterization of a Pseudomonas aeruginosa population with high frequency of genomic islands.

    PubMed

    Morales-Espinosa, Rosario; Soberón-Chávez, Gloria; Delgado-Sapién, Gabriela; Sandner-Miranda, Luisa; Méndez, José L; González-Valencia, Gerardo; Cravioto, Alejandro

    2012-01-01

    Various genomic islands, PAPI-1, PAPI-2, PAGI-1, PAGI-2, PAGI-3, and PAGI-4, and the element pKLC102 have been characterized in different P. aeruginosa strains from diverse habitats and geographical locations. Chromosomal DNA macroarray of 100 P. aeruginosa strains isolated from 85 unrelated patients hospitalized in an intensive care unit was created to assess the occurrence of these genomic islands (GEIs). The macroarray was then hybridized with labeled probes derived from each genomic island. In addition, PFGE patterns with SpeI, frequency of virulence genes, and antimicrobial resistance patterns of the strains were studied. Our results showed that almost all P. aeruginosa strains presented up to eight virulence genes. By SpeI macrorestriction fragment analysis we were able to identify 49 restriction patterns; 35 patterns correspond to single strains and the remaining 14 to strains subgroup (a-n). Most of the strains showed variation in number or composition of GEIs and a specific antimicrobial pattern indicating that each strain was an unrelated isolate. In terms of the number of genomic islands per strain, 7 GEIs were found in 34% of the strains, 6 in 18%, 5 in 12%, 4 in 14%, 3 in 10%, 2 in 7%, and 1 in 4%; only one isolate did not present any GEI. The genomic islands PAPI-1 and PAPI-2 and the element pKLC102 were the most frequently detected. The analysis of the location of each GEI in the chromosome of two strains show that the islands PAGI-3, PAPI-1, PAPI-2 and pKLC102 are present in the insertion site previously reported, but that PAGI-2 and PAGI-4 are inserted in another chromosome place in a site not characterized yet. In conclusion our data show that P. aeruginosa strains exhibited an epidemic population structure with horizontal transfer of DNA resulting in a high frequency of GEIs. PMID:22662157

  7. Imaging Specific Genomic DNA in Living Cells.

    PubMed

    Chen, Baohui; Guan, Juan; Huang, Bo

    2016-07-01

    The three-dimensional organization of the genome plays important roles in regulating the functional output of the genome and even in the maintenance of epigenetic inheritance and genome stability. Here, we review and compare a number of newly developed methods-especially those that utilize the CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR-associated protein 9) system-that enable the direct visualization of specific, endogenous DNA sequences in living cells. We also discuss the practical considerations in implementing the CRISPR imaging technique to achieve sufficient signal-to-background levels, high specificity, and high labeling efficiency. These DNA labeling methods enable tracking of the copy number, localization, and movement of genomic elements, and we discuss the potential applications of these methods in understanding the searching and targeting mechanism of the Cas9-sgRNA complex, investigating chromosome organization, and visualizing genome instability and rearrangement. PMID:27145877

  8. Comparative Whole-Genome Hybridization Reveals Genomic Islands in Brucella Species†

    PubMed Central

    Rajashekara, Gireesh; Glasner, Jeremy D.; Glover, David A.; Splitter, Gary A.

    2004-01-01

    Brucella species are responsible for brucellosis, a worldwide zoonotic disease causing abortion in domestic animals and Malta fever in humans. Based on host preference, the genus is divided into six species. Brucella abortus, B. melitensis, and B. suis are pathogenic to humans, whereas B. ovis and B. neotomae are nonpathogenic to humans and B. canis human infections are rare. Limited genome diversity exists among Brucella species. Comparison of Brucella species whole genomes is, therefore, likely to identify factors responsible for differences in host preference and virulence restriction. To facilitate such studies, we used the complete genome sequence of B. melitensis 16M, the species highly pathogenic to humans, to construct a genomic microarray. Hybridization of labeled genomic DNA from Brucella species to this microarray revealed a total of 217 open reading frames (ORFs) altered in five Brucella species analyzed. These ORFs are often found in clusters (islands) in the 16M genome. Examination of the genomic context of these islands suggests that many are horizontally acquired. Deletions of genetic content identified in Brucella species are conserved in multiple strains of the same species, and genomic islands missing in a given species are often restricted to that particular species. These findings suggest that, whereas the loss or gain of genetic material may be related to the host range and virulence restriction of certain Brucella species for humans, independent mechanisms involving gene inactivation or altered expression of virulence determinants may also contribute to these differences. PMID:15262941

  9. Genomic tests of the species-pump hypothesis: Recent island connectivity cycles drive population divergence but not speciation in Caribbean crickets across the Virgin Islands.

    PubMed

    Papadopoulou, Anna; Knowles, L Lacey

    2015-06-01

    Harnessing the power of genomic scans, we test the debated "species pump" hypothesis that implicates repeated cycles of island connectivity and isolation as drivers of divergence. This question has gone understudied given the limited resolution of past molecular markers for studying such dynamic phenomena. With an average of 32,000 SNPs from the genome of 136 individuals from 10 populations of a Caribbean flightless ground cricket species (Amphiacusta sanctaecrucis) and a complementary set of statistical approaches, we infer a stepping-stone colonization model and high levels of genetic differentiation across the Virgin Islands, which have been periodically interconnected until 8 ka. Estimates of divergence times from models based on the site frequency spectrum coincide with a period of repeated connection and fragmentation of the islands at 75-130 ka. These results are consistent with a role of island connectivity cycles in promoting genomic divergence and indicate that the genetic distinctiveness of island populations has persisted despite subsequent and extended interisland connections identified from bathymetric data. We discuss these findings in the broader context of Caribbean biogeography, and more specifically why high levels of genomic divergence across the Virgin Islands associated with repeated connectivity cycles do not actually translate into species diversification. PMID:25903255

  10. Comparative analysis of essential genes in prokaryotic genomic islands

    PubMed Central

    Zhang, Xi; Peng, Chong; Zhang, Ge; Gao, Feng

    2015-01-01

    Essential genes are thought to encode proteins that carry out the basic functions to sustain a cellular life, and genomic islands (GIs) usually contain clusters of horizontally transferred genes. It has been assumed that essential genes are not likely to be located in GIs, but systematical analysis of essential genes in GIs has not been explored before. Here, we have analyzed the essential genes in 28 prokaryotes by statistical method and reached a conclusion that essential genes in GIs are significantly fewer than those outside GIs. The function of 362 essential genes found in GIs has been explored further by BLAST against the Virulence Factor Database (VFDB) and the phage/prophage sequence database of PHAge Search Tool (PHAST). Consequently, 64 and 60 eligible essential genes are found to share the sequence similarity with the virulence factors and phage/prophages-related genes, respectively. Meanwhile, we find several toxin-related proteins and repressors encoded by these essential genes in GIs. The comparative analysis of essential genes in genomic islands will not only shed new light on the development of the prediction algorithm of essential genes, but also give a clue to detect the functionality of essential genes in genomic islands. PMID:26223387

  11. Comparative genome sequencing identifies a prophage-associated genomic island linked to host adaptation of Lawsonia intracellularis infections.

    PubMed

    Vannucci, Fabio A; Kelley, Molly R; Gebhart, Connie J

    2013-01-01

    Lawsonia intracellularis is an obligate intracellular bacterium and the causative agent of proliferative enteropathy (PE). The disease is endemic in pigs, emerging in horses and has also been reported in a variety of other animal species, including nonhuman primates. Comparing the whole genome sequences of a homologous porcine L. intracellularis isolate cultivated for 10 and 60 passages in vitro, we identified a 18-kb prophage-associated genomic island in the passage 10 (pathogenic variant) that was lost in the passage 60 (non-pathogenic variant). This chromosomal island comprises 15 genes downstream from the prophage DLP12 integrase gene. The prevalence of this genetic element was evaluated in 12 other L. intracellularis isolates and in 53 infected animals and was found to be conserved in all porcine isolates cultivated for up to 20 passages and was lost in isolates cultivated for more than 40 passages. Furthermore, the prophage region was also present in 26 fecal samples derived from pigs clinically affected with both acute and chronic forms of the disease. Nevertheless, equine L. intracellularis isolates evaluated did not harbor this genomic island regardless of the passage in vitro. Additionally, fecal samples from 21 clinically affected horses and four wild rabbits trapped in horse farms experiencing PE outbreaks did not show this prophage-associated island. Although the presence of this prophage-associated island was not essential for a virulent L. intracellularis phenotype, this genetic element was porcine isolate-specific and potentially contributed to the ecological specialization of this organism for the swine host. PMID:23826661

  12. Comparative genome sequencing identifies a prophage-associated genomic island linked to host adaptation of Lawsonia intracellularis infections

    PubMed Central

    2013-01-01

    Lawsonia intracellularis is an obligate intracellular bacterium and the causative agent of proliferative enteropathy (PE). The disease is endemic in pigs, emerging in horses and has also been reported in a variety of other animal species, including nonhuman primates. Comparing the whole genome sequences of a homologous porcine L. intracellularis isolate cultivated for 10 and 60 passages in vitro, we identified a 18-kb prophage-associated genomic island in the passage 10 (pathogenic variant) that was lost in the passage 60 (non-pathogenic variant). This chromosomal island comprises 15 genes downstream from the prophage DLP12 integrase gene. The prevalence of this genetic element was evaluated in 12 other L. intracellularis isolates and in 53 infected animals and was found to be conserved in all porcine isolates cultivated for up to 20 passages and was lost in isolates cultivated for more than 40 passages. Furthermore, the prophage region was also present in 26 fecal samples derived from pigs clinically affected with both acute and chronic forms of the disease. Nevertheless, equine L. intracellularis isolates evaluated did not harbor this genomic island regardless of the passage in vitro. Additionally, fecal samples from 21 clinically affected horses and four wild rabbits trapped in horse farms experiencing PE outbreaks did not show this prophage-associated island. Although the presence of this prophage-associated island was not essential for a virulent L. intracellularis phenotype, this genetic element was porcine isolate-specific and potentially contributed to the ecological specialization of this organism for the swine host. PMID:23826661

  13. Methyl-CpG island-associated genome signature tags

    DOEpatents

    Dunn, John J

    2014-05-20

    Disclosed is a method for analyzing the organismic complexity of a sample through analysis of the nucleic acid in the sample. In the disclosed method, through a series of steps, including digestion with a type II restriction enzyme, ligation of capture adapters and linkers and digestion with a type IIS restriction enzyme, genome signature tags are produced. The sequences of a statistically significant number of the signature tags are determined and the sequences are used to identify and quantify the organisms in the sample. Various embodiments of the invention described herein include methods for using single point genome signature tags to analyze the related families present in a sample, methods for analyzing sequences associated with hyper- and hypo-methylated CpG islands, methods for visualizing organismic complexity change in a sampling location over time and methods for generating the genome signature tag profile of a sample of fragmented DNA.

  14. A Novel Approach to Helicobacter pylori Pan-Genome Analysis for Identification of Genomic Islands.

    PubMed

    Uchiyama, Ikuo; Albritton, Jacob; Fukuyo, Masaki; Kojima, Kenji K; Yahara, Koji; Kobayashi, Ichizo

    2016-01-01

    Genomes of a given bacterial species can show great variation in gene content and thus systematic analysis of the entire gene repertoire, termed the pan-genome, is important for understanding bacterial intra-species diversity, population genetics, and evolution. Here, we analyzed the pan-genome from 30 completely sequenced strains of the human gastric pathogen Helicobacter pylori belonging to various phylogeographic groups, focusing on 991 accessory (not fully conserved) orthologous groups (OGs). We developed a method to evaluate the mobility of genes within a genome, using the gene order in the syntenically conserved regions as a reference, and classified the 991 accessory OGs into five classes: Core, Stable, Intermediate, Mobile, and Unique. Phylogenetic networks based on the gene content of Core and Stable classes are highly congruent with that created from the concatenated alignment of fully conserved core genes, in contrast to those of Intermediate and Mobile classes, which show quite different topologies. By clustering the accessory OGs on the basis of phylogenetic pattern similarity and chromosomal proximity, we identified 60 co-occurring gene clusters (CGCs). In addition to known genomic islands, including cag pathogenicity island, bacteriophages, and integrating conjugative elements, we identified some novel ones. One island encodes TerY-phosphorylation triad, which includes the eukaryote-type protein kinase/phosphatase gene pair, and components of type VII secretion system. Another one contains a reverse-transcriptase homolog, which may be involved in the defense against phage infection through altruistic suicide. Many of the CGCs contained restriction-modification (RM) genes. Different RM systems sometimes occupied the same (orthologous) locus in the strains. We anticipate that our method will facilitate pan-genome studies in general and help identify novel genomic islands in various bacterial species. PMID:27504980

  15. A Novel Approach to Helicobacter pylori Pan-Genome Analysis for Identification of Genomic Islands

    PubMed Central

    Uchiyama, Ikuo; Albritton, Jacob; Fukuyo, Masaki; Kojima, Kenji K.; Yahara, Koji; Kobayashi, Ichizo

    2016-01-01

    Genomes of a given bacterial species can show great variation in gene content and thus systematic analysis of the entire gene repertoire, termed the pan-genome, is important for understanding bacterial intra-species diversity, population genetics, and evolution. Here, we analyzed the pan-genome from 30 completely sequenced strains of the human gastric pathogen Helicobacter pylori belonging to various phylogeographic groups, focusing on 991 accessory (not fully conserved) orthologous groups (OGs). We developed a method to evaluate the mobility of genes within a genome, using the gene order in the syntenically conserved regions as a reference, and classified the 991 accessory OGs into five classes: Core, Stable, Intermediate, Mobile, and Unique. Phylogenetic networks based on the gene content of Core and Stable classes are highly congruent with that created from the concatenated alignment of fully conserved core genes, in contrast to those of Intermediate and Mobile classes, which show quite different topologies. By clustering the accessory OGs on the basis of phylogenetic pattern similarity and chromosomal proximity, we identified 60 co-occurring gene clusters (CGCs). In addition to known genomic islands, including cag pathogenicity island, bacteriophages, and integrating conjugative elements, we identified some novel ones. One island encodes TerY-phosphorylation triad, which includes the eukaryote-type protein kinase/phosphatase gene pair, and components of type VII secretion system. Another one contains a reverse-transcriptase homolog, which may be involved in the defense against phage infection through altruistic suicide. Many of the CGCs contained restriction-modification (RM) genes. Different RM systems sometimes occupied the same (orthologous) locus in the strains. We anticipate that our method will facilitate pan-genome studies in general and help identify novel genomic islands in various bacterial species. PMID:27504980

  16. Variation in genomic islands contribute to genome plasticity in cupriavidus metallidurans

    PubMed Central

    2012-01-01

    Background Different Cupriavidus metallidurans strains isolated from metal-contaminated and other anthropogenic environments were genotypically and phenotypically compared with C. metallidurans type strain CH34. The latter is well-studied for its resistance to a wide range of metals, which is carried for a substantial part by its two megaplasmids pMOL28 and pMOL30. Results Comparative genomic hybridization (CGH) indicated that the extensive arsenal of determinants involved in metal resistance was well conserved among the different C. metallidurans strains. Contrary, the mobile genetic elements identified in type strain CH34 were not present in all strains but clearly showed a pattern, although, not directly related to a particular biotope nor location (geographical). One group of strains carried almost all mobile genetic elements, while these were much less abundant in the second group. This occurrence was also reflected in their ability to degrade toluene and grow autotrophically on hydrogen gas and carbon dioxide, which are two traits linked to separate genomic islands of the Tn4371-family. In addition, the clear pattern of genomic islands distribution allowed to identify new putative genomic islands on chromosome 1 and 2 of C. metallidurans CH34. Conclusions Metal resistance determinants are shared by all C. metallidurans strains and their occurrence is apparently irrespective of the strain's isolation type and place. Cupriavidus metallidurans strains do display substantial differences in the diversity and size of their mobile gene pool, which may be extensive in some (including the type strain) while marginal in others. PMID:22443515

  17. Nanoparticles for Site Specific Genome Editing

    NASA Astrophysics Data System (ADS)

    McNeer, Nicole Ali

    Triplex-forming peptide nucleic acids (PNAs) can be used to coordinate the recombination of short 50-60 by "donor DNA" fragments into genomic DNA, resulting in site-specific correction of genetic mutations or the introduction of advantageous genetic modifications. Site-specific gene editing in hematopoietic stem and progenitor cells (HSPCs) could result in treatment or cure of inherited disorders of the blood such as beta-thalassemia. Gene editing in HSPCs and differentiated T cells could help combat HIV/AIDs by modifying receptors, such as CCR5, necessary for R5-tropic HIV entry. However, translation of genome modification technologies to clinical practice is limited by challenges in intracellular delivery, especially in difficult-to-transfect hematolymphoid cells. In vivo gene editing could also provide novel treatment for systemic monogenic disorders such as cystic fibrosis, an autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane receptor. Here, we have engineered biodegradable nanoparticles to deliver oligonucleotides for site-specific genome editing of disease-relevant genes in human cells, with high efficiency, low toxicity, and editing of clinically relevant cell types. We designed nanoparticles to edit the human beta-globin and CCR5 genes in hematopoietic cells. We show that poly(lactic-co-glycolic acid) (PLGA) nanoparticles can delivery PNA and donor DNA for site-specific gene modification in human hematopoietic cells in vitro and in vivo in NOD-scid IL2rgammanull mice. Nanoparticles delivered by tail vein localized to hematopoietic compartments in the spleen and bone marrow of humanized mice, resulting in modification of the beta-globin and CCR5 genes. Modification frequencies ranged from 0.005 to 20% of cells depending on the organ and cell type, without detectable toxicity. This project developed highly versatile methods for delivery of therapeutics to hematolymphoid cells and hematopoietic stem cells, and will help to

  18. Variants of a genomic island in Aeromonas salmonicida subsp. salmonicida link isolates with their geographical origins.

    PubMed

    Emond-Rheault, Jean-Guillaume; Vincent, Antony T; Trudel, Mélanie V; Brochu, Francis; Boyle, Brian; Tanaka, Katherine H; Attéré, Sabrina A; Jubinville, Éric; Loch, Thomas P; Winters, Andrew D; Faisal, Mohamed; Frenette, Michel; Derome, Nicolas; Charette, Steve J

    2015-01-30

    Aeromonas salmonicida subsp. salmonicida is a fish pathogen. Analysis of its genomic characteristics is required to determine the worldwide distribution of the various populations of this bacterium. Genomic alignments between the 01-B526 pathogenic strain and the A449 reference strain have revealed a 51-kb chromosomal insertion in 01-B526. This insertion (AsaGEI1a) has been identified as a new genomic island (GEI) bearing prophage genes. PCR assays were used to detect this GEI in a collection of 139 A. salmonicida subsp. salmonicida isolates. Three forms of this GEI (AsaGEI1a, AsaGEI1b, AsaGEI2a) are now known based on this analysis and the sequencing of the genomes of seven additional isolates. A new prophage (prophage 3) associated with AsaGEI2a was also discovered. Each GEI appeared to be strongly associated with a specific geographic region. AsaGEI1a and AsaGEI2a were exclusively found in North American isolates, except for one European isolate bearing AsaGEI2a. The majority of the isolates bearing AsaGEI1b or no GEI were from Europe. Prophage 3 has also a particular geographic distribution and was found only in North American isolates. We demonstrated that A. salmonicida subsp. salmonicida possesses unsuspected elements of genomic heterogeneity that could be used as indicators to determine the geographic origins of isolates of this bacterium. PMID:25480167

  19. Draft Genome of the Scarab Beetle Oryctes borbonicus on La Réunion Island

    PubMed Central

    Meyer, Jan M.; Markov, Gabriel V.; Baskaran, Praveen; Herrmann, Matthias; Sommer, Ralf J.; Rödelsperger, Christian

    2016-01-01

    Beetles represent the largest insect order and they display extreme morphological, ecological and behavioral diversity, which makes them ideal models for evolutionary studies. Here, we present the draft genome of the scarab beetle Oryctes borbonicus, which has a more basal phylogenetic position than the two previously sequenced pest species Tribolium castaneum and Dendroctonus ponderosae providing the potential for sequence polarization. Oryctes borbonicus is endemic to La Réunion, an island located in the Indian Ocean, and is the host of the nematode Pristionchus pacificus, a well-established model organism for integrative evolutionary biology. At 518 Mb, the O. borbonicus genome is substantially larger and encodes more genes than T. castaneum and D. ponderosae. We found that only 25% of the predicted genes of O. borbonicus are conserved as single copy genes across the nine investigated insect genomes, suggesting substantial gene turnover within insects. Even within beetles, up to 21% of genes are restricted to only one species, whereas most other genes have undergone lineage-specific duplications and losses. We illustrate lineage-specific duplications using detailed phylogenetic analysis of two gene families. This study serves as a reference point for insect/coleopteran genomics, although its original motivation was to find evidence for potential horizontal gene transfer (HGT) between O. borbonicus and P. pacificus. The latter was previously shown to be the recipient of multiple horizontally transferred genes including some genes from insect donors. However, our study failed to provide any clear evidence for additional HGTs between the two species. PMID:27289092

  20. Draft Genome of the Scarab Beetle Oryctes borbonicus on La Réunion Island.

    PubMed

    Meyer, Jan M; Markov, Gabriel V; Baskaran, Praveen; Herrmann, Matthias; Sommer, Ralf J; Rödelsperger, Christian

    2016-01-01

    Beetles represent the largest insect order and they display extreme morphological, ecological and behavioral diversity, which makes them ideal models for evolutionary studies. Here, we present the draft genome of the scarab beetle Oryctes borbonicus, which has a more basal phylogenetic position than the two previously sequenced pest species Tribolium castaneum and Dendroctonus ponderosae providing the potential for sequence polarization. Oryctes borbonicus is endemic to La Réunion, an island located in the Indian Ocean, and is the host of the nematode Pristionchus pacificus, a well-established model organism for integrative evolutionary biology. At 518 Mb, the O. borbonicus genome is substantially larger and encodes more genes than T. castaneum and D. ponderosae We found that only 25% of the predicted genes of O. borbonicus are conserved as single copy genes across the nine investigated insect genomes, suggesting substantial gene turnover within insects. Even within beetles, up to 21% of genes are restricted to only one species, whereas most other genes have undergone lineage-specific duplications and losses. We illustrate lineage-specific duplications using detailed phylogenetic analysis of two gene families. This study serves as a reference point for insect/coleopteran genomics, although its original motivation was to find evidence for potential horizontal gene transfer (HGT) between O. borbonicus and P. pacificus The latter was previously shown to be the recipient of multiple horizontally transferred genes including some genes from insect donors. However, our study failed to provide any clear evidence for additional HGTs between the two species. PMID:27289092

  1. Adaptive introgression between Anopheles sibling species eliminates a major genomic island but not reproductive isolation.

    PubMed

    Clarkson, Chris S; Weetman, David; Essandoh, John; Yawson, Alexander E; Maslen, Gareth; Manske, Magnus; Field, Stuart G; Webster, Mark; Antão, Tiago; MacInnis, Bronwyn; Kwiatkowski, Dominic; Donnelly, Martin J

    2014-01-01

    Adaptive introgression can provide novel genetic variation to fuel rapid evolutionary responses, though it may be counterbalanced by potential for detrimental disruption of the recipient genomic background. We examine the extent and impact of recent introgression of a strongly selected insecticide-resistance mutation (Vgsc-1014F) located within one of two exceptionally large genomic islands of divergence separating the Anopheles gambiae species pair. Here we show that transfer of the Vgsc mutation results in homogenization of the entire genomic island region (~1.5% of the genome) between species. Despite this massive disruption, introgression is clearly adaptive with a dramatic rise in frequency of Vgsc-1014F and no discernable impact on subsequent reproductive isolation between species. Our results show (1) how resilience of genomes to massive introgression can permit rapid adaptive response to anthropogenic selection and (2) that even extreme prominence of genomic islands of divergence can be an unreliable indicator of importance in speciation. PMID:24963649

  2. Identification of Horizontally-transferred Genomic Islands and Genome Segmentation Points by Using the GC Profile Method

    PubMed Central

    Zhang, Ren; Ou, Hong-Yu; Gao, Feng; Luo, Hao

    2014-01-01

    The nucleotide composition of genomes undergoes dramatic variations among all three kingdoms of life. GC content, an important characteristic for a genome, is related to many important functions, and therefore GC content and its distribution are routinely reported for sequenced genomes. Traditionally, GC content distribution is assessed by computing GC contents in windows that slide along the genome. Disadvantages of this routinely used window-based method include low resolution and low sensitivity. Additionally, different window sizes result in different GC content distribution patterns within the same genome. We proposed a windowless method, the GC profile, for displaying GC content variations across the genome. Compared to the window-based method, the GC profile has the following advantages: 1) higher sensitivity, because of variation-amplifying procedures; 2) higher resolution, because boundaries between domains can be determined at one single base pair; 3) uniqueness, because the GC profile is unique for a given genome and 4) the capacity to show both global and regional GC content distributions. These characteristics are useful in identifying horizontally-transferred genomic islands and homogenous GC-content domains. Here, we review the applications of the GC profile in identifying genomic islands and genome segmentation points, and in serving as a platform to integrate with other algorithms for genome analysis. A web server generating GC profiles and implementing relevant genome segmentation algorithms is available at: www.zcurve.net. PMID:24822029

  3. Transfer of the methicillin resistance genomic island among staphylococci by conjugation.

    PubMed

    Ray, M D; Boundy, S; Archer, G L

    2016-05-01

    Methicillin resistance creates a major obstacle for treatment of Staphylococcus aureus infections. The resistance gene, mecA, is carried on a large (20 kb to > 60 kb) genomic island, staphylococcal cassette chromosome mec (SCCmec), that excises from and inserts site-specifically into the staphylococcal chromosome. However, although SCCmec has been designated a mobile genetic element, a mechanism for its transfer has not been defined. Here we demonstrate the capture and conjugative transfer of excised SCCmec. SCCmec was captured on pGO400, a mupirocin-resistant derivative of the pGO1/pSK41 staphylococcal conjugative plasmid lineage, and pGO400::SCCmec (pRM27) was transferred by filter-mating into both homologous and heterologous S. aureus recipients representing a range of clonal complexes as well as S. epidermidis. The DNA sequence of pRM27 showed that SCCmec had been transferred in its entirety and that its capture had occurred by recombination between IS257/431 elements present on all SCCmec types and pGO1/pSK41 conjugative plasmids. The captured SCCmec excised from the plasmid and inserted site-specifically into the chromosomal att site of both an isogenic S. aureus and a S. epidermidis recipient. These studies describe a means by which methicillin resistance can be environmentally disseminated and a novel mechanism, IS-mediated recombination, for the capture and conjugative transfer of genomic islands. PMID:26822382

  4. The Genome Sequence of Streptomyces lividans 66 Reveals a Novel tRNA-Dependent Peptide Biosynthetic System within a Metal-Related Genomic Island

    PubMed Central

    Cruz-Morales, Pablo; Vijgenboom, Erik; Iruegas-Bocardo, Fernanda; Girard, Geneviève; Yáñez-Guerra, Luis Alfonso; Ramos-Aboites, Hilda E.; Pernodet, Jean-Luc; Anné, Jozef; van Wezel, Gilles P.; Barona-Gómez, Francisco

    2013-01-01

    The complete genome sequence of the original isolate of the model actinomycete Streptomyces lividans 66, also referred to as 1326, was deciphered after a combination of next-generation sequencing platforms and a hybrid assembly pipeline. Comparative analysis of the genomes of S. lividans 66 and closely related strains, including S. coelicolor M145 and S. lividans TK24, was used to identify strain-specific genes. The genetic diversity identified included a large genomic island with a mosaic structure, present in S. lividans 66 but not in the strain TK24. Sequence analyses showed that this genomic island has an anomalous (G + C) content, suggesting recent acquisition and that it is rich in metal-related genes. Sequences previously linked to a mobile conjugative element, termed plasmid SLP3 and defined here as a 94 kb region, could also be identified within this locus. Transcriptional analysis of the response of S. lividans 66 to copper was used to corroborate a role of this large genomic island, including two SLP3-borne “cryptic” peptide biosynthetic gene clusters, in metal homeostasis. Notably, one of these predicted biosynthetic systems includes an unprecedented nonribosomal peptide synthetase—tRNA-dependent transferase biosynthetic hybrid organization. This observation implies the recruitment of members of the leucyl/phenylalanyl-tRNA-protein transferase family to catalyze peptide bond formation within the biosynthesis of natural products. Thus, the genome sequence of S. lividans 66 not only explains long-standing genetic and phenotypic differences but also opens the door for further in-depth comparative genomic analyses of model Streptomyces strains, as well as for the discovery of novel natural products following genome-mining approaches. PMID:23709624

  5. Draft Genome of Rhodococcus rhodochrous TRN7, Isolated from the Coast of Trindade Island, Brazil

    PubMed Central

    Rodrigues, Edmo M.; Pylro, Victor S.; Dobbler, Priscila T.; Victoria, Filipe

    2016-01-01

    Here, we present a draft genome and annotation of Rhodococcus rhodochrous TRN7, isolated from Trindade Island, Brazil, which will provide genetic data to benefit the understanding of its metabolism. PMID:26941155

  6. Draft Genome of Rhodococcus rhodochrous TRN7, Isolated from the Coast of Trindade Island, Brazil.

    PubMed

    Rodrigues, Edmo M; Pylro, Victor S; Dobbler, Priscila T; Victoria, Filipe; Roesch, Luiz F W; Tótola, Marcos R

    2016-01-01

    Here, we present a draft genome and annotation of Rhodococcus rhodochrous TRN7, isolated from Trindade Island, Brazil, which will provide genetic data to benefit the understanding of its metabolism. PMID:26941155

  7. Novel genomic island modifies DNA with 7-deazaguanine derivatives.

    PubMed

    Thiaville, Jennifer J; Kellner, Stefanie M; Yuan, Yifeng; Hutinet, Geoffrey; Thiaville, Patrick C; Jumpathong, Watthanachai; Mohapatra, Susovan; Brochier-Armanet, Celine; Letarov, Andrey V; Hillebrand, Roman; Malik, Chanchal K; Rizzo, Carmelo J; Dedon, Peter C; de Crécy-Lagard, Valérie

    2016-03-15

    The discovery of ∼20-kb gene clusters containing a family of paralogs of tRNA guanosine transglycosylase genes, called tgtA5, alongside 7-cyano-7-deazaguanine (preQ0) synthesis and DNA metabolism genes, led to the hypothesis that 7-deazaguanine derivatives are inserted in DNA. This was established by detecting 2'-deoxy-preQ0 and 2'-deoxy-7-amido-7-deazaguanosine in enzymatic hydrolysates of DNA extracted from the pathogenic, Gram-negative bacteria Salmonella enterica serovar Montevideo. These modifications were absent in the closely related S. enterica serovar Typhimurium LT2 and from a mutant of S Montevideo, each lacking the gene cluster. This led us to rename the genes of the S. Montevideo cluster as dpdA-K for 7-deazapurine in DNA. Similar gene clusters were analyzed in ∼150 phylogenetically diverse bacteria, and the modifications were detected in DNA from other organisms containing these clusters, including Kineococcus radiotolerans, Comamonas testosteroni, and Sphingopyxis alaskensis Comparative genomic analysis shows that, in Enterobacteriaceae, the cluster is a genomic island integrated at the leuX locus, and the phylogenetic analysis of the TgtA5 family is consistent with widespread horizontal gene transfer. Comparison of transformation efficiencies of modified or unmodified plasmids into isogenic S. Montevideo strains containing or lacking the cluster strongly suggests a restriction-modification role for the cluster in Enterobacteriaceae. Another preQ0 derivative, 2'-deoxy-7-formamidino-7-deazaguanosine, was found in the Escherichia coli bacteriophage 9 g, as predicted from the presence of homologs of genes involved in the synthesis of the archaeosine tRNA modification. These results illustrate a deep and unexpected evolutionary connection between DNA and tRNA metabolism. PMID:26929322

  8. A putative genomic island, PGI-1, in Ralstonia solanacearum biovar 2 revealed by subtractive hybridization.

    PubMed

    Stevens, Patricia; van Elsas, Jan Dirk

    2010-10-01

    Ralstonia solanacearum biovar 2, a key bacterial pathogen of potato, has recently established in temperate climate waters. On the basis of isolates obtained from diseased (potato) plants, its genome has been assumed to be virtually clonal, but information on environmental isolates has been lacking. Based on differences in pulsed-field gel electrophoresis patterns, we compared the genomes of two biovar 2 strains with different life histories. Thus, genomic DNA of the novel environmental strain KZR-5 (The Netherlands) was compared to that of reference potato strain 715 (Bangladesh) by suppressive subtractive hybridization. Various strain-specific sequences were found, all being homologous to those found in the genome of reference potato strain 1609. Approximately 20% of these were related to genes involved in recombinational processes. We found a deletion of a 17.6-Kb region, denoted as a putative genomic island PGI-1, in environmental strain KZR-5. The deleted region was, at both extremes, flanked by a composite of two insertion sequence (IS) elements, identified as ISRso2 and ISRso3. The PGI-1 region contained open reading frames that putatively encoded a (p)ppGpp synthetase, a transporter protein, a transcriptional regulator, a cellobiohydrolase, a site-specific integrase/recombinase, a phage-related protein and seven hypothetical proteins. As yet, no phenotype could be assigned to the loss of PGI-1. The ecological behavior of strain KZR-5 was compared to that of reference strain 715. Strain KZR-5 showed enhanced tolerance to 4°C as compared to the reference strain, but was not affected in its virulence on tomato. PMID:20467813

  9. Mitochondrial genomes suggest rapid evolution of dwarf California Channel Islands foxes (Urocyon littoralis).

    PubMed

    Hofman, Courtney A; Rick, Torben C; Hawkins, Melissa T R; Funk, W Chris; Ralls, Katherine; Boser, Christina L; Collins, Paul W; Coonan, Tim; King, Julie L; Morrison, Scott A; Newsome, Seth D; Sillett, T Scott; Fleischer, Robert C; Maldonado, Jesus E

    2015-01-01

    Island endemics are typically differentiated from their mainland progenitors in behavior, morphology, and genetics, often resulting from long-term evolutionary change. To examine mechanisms for the origins of island endemism, we present a phylogeographic analysis of whole mitochondrial genomes from the endangered island fox (Urocyon littoralis), endemic to California's Channel Islands, and mainland gray foxes (U. cinereoargenteus). Previous genetic studies suggested that foxes first appeared on the islands >16,000 years ago, before human arrival (~13,000 cal BP), while archaeological and paleontological data supported a colonization >7000 cal BP. Our results are consistent with initial fox colonization of the northern islands probably by rafting or human introduction ~9200-7100 years ago, followed quickly by human translocation of foxes from the northern to southern Channel Islands. Mitogenomes indicate that island foxes are monophyletic and most closely related to gray foxes from northern California that likely experienced a Holocene climate-induced range shift. Our data document rapid morphological evolution of island foxes (in ~2000 years or less). Despite evidence for bottlenecks, island foxes have generated and maintained multiple mitochondrial haplotypes. This study highlights the intertwined evolutionary history of island foxes and humans, and illustrates a new approach for investigating the evolutionary histories of other island endemics. PMID:25714775

  10. Mitochondrial Genomes Suggest Rapid Evolution of Dwarf California Channel Islands Foxes (Urocyon littoralis)

    PubMed Central

    Hofman, Courtney A.; Rick, Torben C.; Hawkins, Melissa T. R.; Funk, W. Chris; Ralls, Katherine; Boser, Christina L.; Collins, Paul W.; Coonan, Tim; King, Julie L.; Morrison, Scott A.; Newsome, Seth D.; Sillett, T. Scott; Fleischer, Robert C.; Maldonado, Jesus E.

    2015-01-01

    Island endemics are typically differentiated from their mainland progenitors in behavior, morphology, and genetics, often resulting from long-term evolutionary change. To examine mechanisms for the origins of island endemism, we present a phylogeographic analysis of whole mitochondrial genomes from the endangered island fox (Urocyon littoralis), endemic to California’s Channel Islands, and mainland gray foxes (U. cinereoargenteus). Previous genetic studies suggested that foxes first appeared on the islands >16,000 years ago, before human arrival (~13,000 cal BP), while archaeological and paleontological data supported a colonization >7000 cal BP. Our results are consistent with initial fox colonization of the northern islands probably by rafting or human introduction ~9200–7100 years ago, followed quickly by human translocation of foxes from the northern to southern Channel Islands. Mitogenomes indicate that island foxes are monophyletic and most closely related to gray foxes from northern California that likely experienced a Holocene climate-induced range shift. Our data document rapid morphological evolution of island foxes (in ~2000 years or less). Despite evidence for bottlenecks, island foxes have generated and maintained multiple mitochondrial haplotypes. This study highlights the intertwined evolutionary history of island foxes and humans, and illustrates a new approach for investigating the evolutionary histories of other island endemics. PMID:25714775

  11. Campylobacter fetus subspecies contain conserved type IV secretion systems on multiple genomic islands and plasmids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The features contributing to the differences in pathogenicity of the C. fetus subspecies are unknown. Putative factors involved in pathogenesis are located in genomic islands that encode type IV secretion system (T4SS) and fic-domain (filamentation induced by cyclic AMP) proteins. In the genomes of ...

  12. Genomic islands of speciation separate cichlid ecomorphs in an East African crater lake.

    PubMed

    Malinsky, Milan; Challis, Richard J; Tyers, Alexandra M; Schiffels, Stephan; Terai, Yohey; Ngatunga, Benjamin P; Miska, Eric A; Durbin, Richard; Genner, Martin J; Turner, George F

    2015-12-18

    The genomic causes and effects of divergent ecological selection during speciation are still poorly understood. Here we report the discovery and detailed characterization of early-stage adaptive divergence of two cichlid fish ecomorphs in a small (700 meters in diameter) isolated crater lake in Tanzania. The ecomorphs differ in depth preference, male breeding color, body shape, diet, and trophic morphology. With whole-genome sequences of 146 fish, we identified 98 clearly demarcated genomic "islands" of high differentiation and demonstrated the association of genotypes across these islands with divergent mate preferences. The islands contain candidate adaptive genes enriched for functions in sensory perception (including rhodopsin and other twilight-vision-associated genes), hormone signaling, and morphogenesis. Our study suggests mechanisms and genomic regions that may play a role in the closely related mega-radiation of Lake Malawi. PMID:26680190

  13. A Novel Method to Predict Genomic Islands Based on Mean Shift Clustering Algorithm.

    PubMed

    de Brito, Daniel M; Maracaja-Coutinho, Vinicius; de Farias, Savio T; Batista, Leonardo V; do Rêgo, Thaís G

    2016-01-01

    Genomic Islands (GIs) are regions of bacterial genomes that are acquired from other organisms by the phenomenon of horizontal transfer. These regions are often responsible for many important acquired adaptations of the bacteria, with great impact on their evolution and behavior. Nevertheless, these adaptations are usually associated with pathogenicity, antibiotic resistance, degradation and metabolism. Identification of such regions is of medical and industrial interest. For this reason, different approaches for genomic islands prediction have been proposed. However, none of them are capable of predicting precisely the complete repertory of GIs in a genome. The difficulties arise due to the changes in performance of different algorithms in the face of the variety of nucleotide distribution in different species. In this paper, we present a novel method to predict GIs that is built upon mean shift clustering algorithm. It does not require any information regarding the number of clusters, and the bandwidth parameter is automatically calculated based on a heuristic approach. The method was implemented in a new user-friendly tool named MSGIP--Mean Shift Genomic Island Predictor. Genomes of bacteria with GIs discussed in other papers were used to evaluate the proposed method. The application of this tool revealed the same GIs predicted by other methods and also different novel unpredicted islands. A detailed investigation of the different features related to typical GI elements inserted in these new regions confirmed its effectiveness. Stand-alone and user-friendly versions for this new methodology are available at http://msgip.integrativebioinformatics.me. PMID:26731657

  14. A Novel Method to Predict Genomic Islands Based on Mean Shift Clustering Algorithm

    PubMed Central

    de Brito, Daniel M.; Maracaja-Coutinho, Vinicius; de Farias, Savio T.; Batista, Leonardo V.; do Rêgo, Thaís G.

    2016-01-01

    Genomic Islands (GIs) are regions of bacterial genomes that are acquired from other organisms by the phenomenon of horizontal transfer. These regions are often responsible for many important acquired adaptations of the bacteria, with great impact on their evolution and behavior. Nevertheless, these adaptations are usually associated with pathogenicity, antibiotic resistance, degradation and metabolism. Identification of such regions is of medical and industrial interest. For this reason, different approaches for genomic islands prediction have been proposed. However, none of them are capable of predicting precisely the complete repertory of GIs in a genome. The difficulties arise due to the changes in performance of different algorithms in the face of the variety of nucleotide distribution in different species. In this paper, we present a novel method to predict GIs that is built upon mean shift clustering algorithm. It does not require any information regarding the number of clusters, and the bandwidth parameter is automatically calculated based on a heuristic approach. The method was implemented in a new user-friendly tool named MSGIP—Mean Shift Genomic Island Predictor. Genomes of bacteria with GIs discussed in other papers were used to evaluate the proposed method. The application of this tool revealed the same GIs predicted by other methods and also different novel unpredicted islands. A detailed investigation of the different features related to typical GI elements inserted in these new regions confirmed its effectiveness. Stand-alone and user-friendly versions for this new methodology are available at http://msgip.integrativebioinformatics.me. PMID:26731657

  15. A role for migration-linked genes and genomic islands in divergence of a songbird.

    PubMed

    Ruegg, Kristen; Anderson, Eric C; Boone, Jason; Pouls, Jazz; Smith, Thomas B

    2014-10-01

    Next-generation sequencing has made it possible to begin asking questions about the process of divergence at the level of the genome. For example, recently, there has been a debate around the role of 'genomic islands of divergence' (i.e. blocks of outlier loci) in facilitating the process of speciation-with-gene-flow. The Swainson's thrush, Catharus ustulatus, is a migratory songbird with two genetically distinct subspecies that differ in a number of traits known to be involved in reproductive isolation in birds (plumage coloration, song and migratory behaviour), despite contemporary gene flow along a secondary contact zone. Here, we use RAD-PE sequencing to test emerging hypotheses about the process of divergence at the level of the genome and identify genes and gene regions involved in differentiation in this migratory songbird. Our analyses revealed distinct genomic islands on 15 of the 23 chromosomes and an accelerated rate of divergence on the Z chromosome, one of the avian sex chromosomes. Further, an analysis of loci linked to traits known to be involved in reproductive isolation in songbirds showed that genes linked to migration are significantly more differentiated than expected by chance, but that these genes lie primarily outside the genomic islands. Overall, our analysis supports the idea that genes linked to migration play an important role in divergence in migratory songbirds, but we find no compelling evidence that the observed genomic islands are facilitating adaptive divergence in migratory behaviour. PMID:24954641

  16. CRISPR-based screening of genomic island excision events in bacteria

    PubMed Central

    Selle, Kurt; Klaenhammer, Todd R.; Barrangou, Rodolphe

    2015-01-01

    Genomic analysis of Streptococcus thermophilus revealed that mobile genetic elements (MGEs) likely contributed to gene acquisition and loss during evolutionary adaptation to milk. Clustered regularly interspaced short palindromic repeats–CRISPR-associated genes (CRISPR-Cas), the adaptive immune system in bacteria, limits genetic diversity by targeting MGEs including bacteriophages, transposons, and plasmids. CRISPR-Cas systems are widespread in streptococci, suggesting that the interplay between CRISPR-Cas systems and MGEs is one of the driving forces governing genome homeostasis in this genus. To investigate the genetic outcomes resulting from CRISPR-Cas targeting of integrated MGEs, in silico prediction revealed four genomic islands without essential genes in lengths from 8 to 102 kbp, totaling 7% of the genome. In this study, the endogenous CRISPR3 type II system was programmed to target the four islands independently through plasmid-based expression of engineered CRISPR arrays. Targeting lacZ within the largest 102-kbp genomic island was lethal to wild-type cells and resulted in a reduction of up to 2.5-log in the surviving population. Genotyping of Lac− survivors revealed variable deletion events between the flanking insertion-sequence elements, all resulting in elimination of the Lac-encoding island. Chimeric insertion sequence footprints were observed at the deletion junctions after targeting all of the four genomic islands, suggesting a common mechanism of deletion via recombination between flanking insertion sequences. These results established that self-targeting CRISPR-Cas systems may direct significant evolution of bacterial genomes on a population level, influencing genome homeostasis and remodeling. PMID:26080436

  17. Contribution of the thermotolerance genomic island to increased thermal tolerance in Cronobacter strains.

    PubMed

    Orieskova, Maria; Kajsik, Michal; Szemes, Tomas; Holy, Ondrej; Forsythe, Stephen; Turna, Jan; Drahovska, Hana

    2016-03-01

    Cronobacter spp. are opportunistic pathogens associated with serious infections in neonates. Increased stress tolerance, including the thermotolerance of some Cronobacter strains, can promote their survival in production facilities and thus raise the possibility of contamination of dried infant formula which has been identified as a potential source of infection. Some Cronobacter strains contain a genomic island, which might be responsible for increased thermotolerance. By analysis of Cronobacter sequenced genomes this determinant was found to be present in only 49/73 Cronobacter sakazakii strains and in 9/14 Cronobacter malonaticus strains. The island was also found in 16/17 clinical isolates originating from two hospitals. Two configurations of the locus were detected; the first one with the size of 18 kbp containing the thrB-Q genes and a shorter version (6 kbp) harbouring only the thrBCD and thrOP genes. Strains containing the thermotolerance island survived significantly better at 58 °C comparing to a C. sakazakii isogenic mutant lacking the island and strains with the longer version of the island were 2-10 times more tolerant than those with the shortened sequence. The function of the genomic island was further confirmed by its cloning into a low-copy vector and transforming it into the isogenic mutant. Different levels of rpoS, encoding for stress-response sigma factor, expression were also associated with variability in strain thermotolerance. PMID:26748923

  18. Genomic islands of speciation separate cichlid ecomorphs in an East African crater lake*

    PubMed Central

    Tyers, Alexandra M.; Schiffels, Stephan; Terai, Yohey; Ngatunga, Benjamin P.; Miska, Eric A.; Durbin, Richard; Genner, Martin J.; Turner, George F.

    2015-01-01

    The genomic causes and effects of divergent ecological selection during speciation are still poorly understood. Here, we report the discovery and detailed characterization of early-stage adaptive divergence of two cichlid fish ecomorphs in a small (700m diameter) isolated crater lake in Tanzania. The ecomorphs differ in depth preference, male breeding color, body shape, diet and trophic morphology. With whole genome sequences of 146 fish, we identify 98 clearly demarcated genomic ‘islands’ of high differentiation and demonstrate association of genotypes across these islands to divergent mate preferences. The islands contain candidate adaptive genes enriched for functions in sensory perception (including rhodopsin and other twilight vision associated genes), hormone signaling and morphogenesis. Our study suggests mechanisms and genomic regions that may play a role in the closely related mega-radiation of Lake Malawi. PMID:26680190

  19. Genomic Islands in Pathogenic Filamentous Fungus Aspergillus fumigatus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We present the genome sequences of a new clinical isolate, CEA10, of an important human pathogen, Aspergillus fumigatus, and two closely related, but rarely pathogenic species, Neosartorya fischeri NRRL181 and Aspergillus clavatus NRRL1. Comparative genomic analysis of CEA10 with the recently sequen...

  20. Predicting tissue-specific enhancers in the human genome

    PubMed Central

    Pennacchio, Len A.; Loots, Gabriela G.; Nobrega, Marcelo A.; Ovcharenko, Ivan

    2007-01-01

    Determining how transcriptional regulatory signals are encoded in vertebrate genomes is essential for understanding the origins of multicellular complexity; yet the genetic code of vertebrate gene regulation remains poorly understood. In an attempt to elucidate this code, we synergistically combined genome-wide gene-expression profiling, vertebrate genome comparisons, and transcription factor binding-site analysis to define sequence signatures characteristic of candidate tissue-specific enhancers in the human genome. We applied this strategy to microarray-based gene expression profiles from 79 human tissues and identified 7187 candidate enhancers that defined their flanking gene expression, the majority of which were located outside of known promoters. We cross-validated this method for its ability to de novo predict tissue-specific gene expression and confirmed its reliability in 57 of the 79 available human tissues, with an average precision in enhancer recognition ranging from 32% to 63% and a sensitivity of 47%. We used the sequence signatures identified by this approach to successfully assign tissue-specific predictions to ∼328,000 human–mouse conserved noncoding elements in the human genome. By overlapping these genome-wide predictions with a data set of enhancers validated in vivo, in transgenic mice, we were able to confirm our results with a 28% sensitivity and 50% precision. These results indicate the power of combining complementary genomic data sets as an initial computational foray into a global view of tissue-specific gene regulation in vertebrates. PMID:17210927

  1. Predicting Tissue-Specific Enhancers in the Human Genome

    SciTech Connect

    Pennacchio, Len A.; Loots, Gabriela G.; Nobrega, Marcelo A.; Ovcharenko, Ivan

    2006-07-01

    Determining how transcriptional regulatory signals areencoded in vertebrate genomes is essential for understanding the originsof multi-cellular complexity; yet the genetic code of vertebrate generegulation remains poorly understood. In an attempt to elucidate thiscode, we synergistically combined genome-wide gene expression profiling,vertebrate genome comparisons, and transcription factor binding siteanalysis to define sequence signatures characteristic of candidatetissue-specific enhancers in the human genome. We applied this strategyto microarray-based gene expression profiles from 79 human tissues andidentified 7,187 candidate enhancers that defined their flanking geneexpression, the majority of which were located outside of knownpromoters. We cross-validated this method for its ability to de novopredict tissue-specific gene expression and confirmed its reliability in57 of the 79 available human tissues, with an average precision inenhancer recognition ranging from 32 percent to 63 percent, and asensitivity of 47 percent. We used the sequence signatures identified bythis approach to assign tissue-specific predictions to ~;328,000human-mouse conserved noncoding elements in the human genome. Byoverlapping these genome-wide predictions with a large in vivo dataset ofenhancers validated in transgenic mice, we confirmed our results with a28 percent sensitivity and 50 percent precision. These results indicatethe power of combining complementary genomic datasets as an initialcomputational foray into the global view of tissue-specific generegulation in vertebrates.

  2. Identification of Novel Genomic Islands in Liverpool Epidemic Strain of Pseudomonas aeruginosa Using Segmentation and Clustering.

    PubMed

    Jani, Mehul; Mathee, Kalai; Azad, Rajeev K

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen implicated in a myriad of infections and a leading pathogen responsible for mortality in patients with cystic fibrosis (CF). Horizontal transfers of genes among the microorganisms living within CF patients have led to highly virulent and multi-drug resistant strains such as the Liverpool epidemic strain of P. aeruginosa, namely the LESB58 strain that has the propensity to acquire virulence and antibiotic resistance genes. Often these genes are acquired in large clusters, referred to as "genomic islands (GIs)." To decipher GIs and understand their contributions to the evolution of virulence and antibiotic resistance in P. aeruginosa LESB58, we utilized a recursive segmentation and clustering procedure, presented here as a genome-mining tool, "GEMINI." GEMINI was validated on experimentally verified islands in the LESB58 strain before examining its potential to decipher novel islands. Of the 6062 genes in P. aeruginosa LESB58, 596 genes were identified to be resident on 20 GIs of which 12 have not been previously reported. Comparative genomics provided evidence in support of our novel predictions. Furthermore, GEMINI unraveled the mosaic structure of islands that are composed of segments of likely different evolutionary origins, and demonstrated its ability to identify potential strain biomarkers. These newly found islands likely have contributed to the hyper-virulence and multidrug resistance of the Liverpool epidemic strain of P. aeruginosa. PMID:27536294

  3. Identification of Novel Genomic Islands in Liverpool Epidemic Strain of Pseudomonas aeruginosa Using Segmentation and Clustering

    PubMed Central

    Jani, Mehul; Mathee, Kalai; Azad, Rajeev K.

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen implicated in a myriad of infections and a leading pathogen responsible for mortality in patients with cystic fibrosis (CF). Horizontal transfers of genes among the microorganisms living within CF patients have led to highly virulent and multi-drug resistant strains such as the Liverpool epidemic strain of P. aeruginosa, namely the LESB58 strain that has the propensity to acquire virulence and antibiotic resistance genes. Often these genes are acquired in large clusters, referred to as “genomic islands (GIs).” To decipher GIs and understand their contributions to the evolution of virulence and antibiotic resistance in P. aeruginosa LESB58, we utilized a recursive segmentation and clustering procedure, presented here as a genome-mining tool, “GEMINI.” GEMINI was validated on experimentally verified islands in the LESB58 strain before examining its potential to decipher novel islands. Of the 6062 genes in P. aeruginosa LESB58, 596 genes were identified to be resident on 20 GIs of which 12 have not been previously reported. Comparative genomics provided evidence in support of our novel predictions. Furthermore, GEMINI unraveled the mosaic structure of islands that are composed of segments of likely different evolutionary origins, and demonstrated its ability to identify potential strain biomarkers. These newly found islands likely have contributed to the hyper-virulence and multidrug resistance of the Liverpool epidemic strain of P. aeruginosa. PMID:27536294

  4. Complete Genome Sequence of Papaya Ringspot Virus Isolated from Genetically Modified Papaya in Hainan Island, China.

    PubMed

    Zhao, Guangyuan; Yan, Pu; Shen, Wentao; Tuo, Decai; Li, Xiaoying; Zhou, Peng

    2015-01-01

    The complete genome sequence (10,326 nucleotides) of a papaya ringspot virus isolate infecting genetically modified papaya in Hainan Island of China was determined through reverse transcription (RT)-PCR. The virus shares 92% nucleotide sequence identity with the isolate that is unable to infect PRSV-resistant transgenic papaya. PMID:26358610

  5. Genomic evaluation, breed identification, and population structure of North American, English and Island Guernsey dairy cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic evaluations of dairy cattle in the United States have been available for Brown Swiss, Holsteins, and Jerseys since 2009 and for Ayrshires since 2013. As of February 2015, 2,281 Guernsey bulls and cows had genotypes from collaboration between the United States, Canada, England, and the island...

  6. Phage-mediated horizontal transfer of a Staphylococcus aureus virulence-associated genomic island.

    PubMed

    Moon, Bo Youn; Park, Joo Youn; Hwang, Sun Yung; Robinson, D Ashley; Thomas, Jonathan C; Fitzgerald, J Ross; Park, Yong Ho; Seo, Keun Seok

    2015-01-01

    Staphylococcus aureus is a major pathogen of humans and animals. The capacity of S. aureus to adapt to different host species and tissue types is strongly influenced by the acquisition of mobile genetic elements encoding determinants involved in niche adaptation. The genomic islands νSaα and νSaβ are found in almost all S. aureus strains and are characterized by extensive variation in virulence gene content. However the basis for the diversity and the mechanism underlying mobilization of the genomic islands between strains are unexplained. Here, we demonstrated that the genomic island, νSaβ, encoding an array of virulence factors including staphylococcal superantigens, proteases, and leukotoxins, in addition to bacteriocins, was transferrable in vitro to human and animal strains of multiple S. aureus clones via a resident prophage. The transfer of the νSaβ appears to have been accomplished by multiple conversions of transducing phage particles carrying overlapping segments of the νSaβ. Our findings solve a long-standing mystery regarding the diversification and spread of the genomic island νSaβ, highlighting the central role of bacteriophages in the pathogenic evolution of S. aureus. PMID:25891795

  7. Phage-mediated horizontal transfer of a Staphylococcus aureus virulence-associated genomic island

    PubMed Central

    Moon, Bo Youn; Park, Joo Youn; Hwang, Sun Yung; Robinson, D. Ashley; Thomas, Jonathan C.; Fitzgerald, J. Ross; Park, Yong Ho; Seo, Keun Seok

    2015-01-01

    Staphylococcus aureus is a major pathogen of humans and animals. The capacity of S. aureus to adapt to different host species and tissue types is strongly influenced by the acquisition of mobile genetic elements encoding determinants involved in niche adaptation. The genomic islands νSaα and νSaβ are found in almost all S. aureus strains and are characterized by extensive variation in virulence gene content. However the basis for the diversity and the mechanism underlying mobilization of the genomic islands between strains are unexplained. Here, we demonstrated that the genomic island, νSaβ, encoding an array of virulence factors including staphylococcal superantigens, proteases, and leukotoxins, in addition to bacteriocins, was transferrable in vitro to human and animal strains of multiple S. aureus clones via a resident prophage. The transfer of the νSaβ appears to have been accomplished by multiple conversions of transducing phage particles carrying overlapping segments of the νSaβ. Our findings solve a long-standing mystery regarding the diversification and spread of the genomic island νSaβ, highlighting the central role of bacteriophages in the pathogenic evolution of S. aureus. PMID:25891795

  8. Whole-Genome Sequencing Detection of Ongoing Listeria Contamination at a Restaurant, Rhode Island, USA, 2014

    PubMed Central

    Gosciminski, Michael; Miller, Adam

    2016-01-01

    In November 2014, the Rhode Island Department of Health investigated a cluster of 3 listeriosis cases. Using whole-genome sequencing to support epidemiologic, laboratory, and environmental investigations, the department identified 1 restaurant as the likely source of the outbreak and also linked the establishment to a listeriosis case that occurred in 2013. PMID:27434089

  9. Whole-Genome Sequencing Detection of Ongoing Listeria Contamination at a Restaurant, Rhode Island, USA, 2014.

    PubMed

    Barkley, Jonathan S; Gosciminski, Michael; Miller, Adam

    2016-08-01

    In November 2014, the Rhode Island Department of Health investigated a cluster of 3 listeriosis cases. Using whole-genome sequencing to support epidemiologic, laboratory, and environmental investigations, the department identified 1 restaurant as the likely source of the outbreak and also linked the establishment to a listeriosis case that occurred in 2013. PMID:27434089

  10. Genomic Evidence for Island Population Conversion Resolves Conflicting Theories of Polar Bear Evolution

    PubMed Central

    Cahill, James A.; Green, Richard E.; Fulton, Tara L.; Stiller, Mathias; Jay, Flora; Ovsyanikov, Nikita; Salamzade, Rauf; St. John, John; Stirling, Ian; Slatkin, Montgomery; Shapiro, Beth

    2013-01-01

    Despite extensive genetic analysis, the evolutionary relationship between polar bears (Ursus maritimus) and brown bears (U. arctos) remains unclear. The two most recent comprehensive reports indicate a recent divergence with little subsequent admixture or a much more ancient divergence followed by extensive admixture. At the center of this controversy are the Alaskan ABC Islands brown bears that show evidence of shared ancestry with polar bears. We present an analysis of genome-wide sequence data for seven polar bears, one ABC Islands brown bear, one mainland Alaskan brown bear, and a black bear (U. americanus), plus recently published datasets from other bears. Surprisingly, we find clear evidence for gene flow from polar bears into ABC Islands brown bears but no evidence of gene flow from brown bears into polar bears. Importantly, while polar bears contributed <1% of the autosomal genome of the ABC Islands brown bear, they contributed 6.5% of the X chromosome. The magnitude of sex-biased polar bear ancestry and the clear direction of gene flow suggest a model wherein the enigmatic ABC Island brown bears are the descendants of a polar bear population that was gradually converted into brown bears via male-dominated brown bear admixture. We present a model that reconciles heretofore conflicting genetic observations. We posit that the enigmatic ABC Islands brown bears derive from a population of polar bears likely stranded by the receding ice at the end of the last glacial period. Since then, male brown bear migration onto the island has gradually converted these bears into an admixed population whose phenotype and genotype are principally brown bear, except at mtDNA and X-linked loci. This process of genome erosion and conversion may be a common outcome when climate change or other forces cause a population to become isolated and then overrun by species with which it can hybridize. PMID:23516372

  11. Genomic evidence for island population conversion resolves conflicting theories of polar bear evolution.

    PubMed

    Cahill, James A; Green, Richard E; Fulton, Tara L; Stiller, Mathias; Jay, Flora; Ovsyanikov, Nikita; Salamzade, Rauf; St John, John; Stirling, Ian; Slatkin, Montgomery; Shapiro, Beth

    2013-01-01

    Despite extensive genetic analysis, the evolutionary relationship between polar bears (Ursus maritimus) and brown bears (U. arctos) remains unclear. The two most recent comprehensive reports indicate a recent divergence with little subsequent admixture or a much more ancient divergence followed by extensive admixture. At the center of this controversy are the Alaskan ABC Islands brown bears that show evidence of shared ancestry with polar bears. We present an analysis of genome-wide sequence data for seven polar bears, one ABC Islands brown bear, one mainland Alaskan brown bear, and a black bear (U. americanus), plus recently published datasets from other bears. Surprisingly, we find clear evidence for gene flow from polar bears into ABC Islands brown bears but no evidence of gene flow from brown bears into polar bears. Importantly, while polar bears contributed <1% of the autosomal genome of the ABC Islands brown bear, they contributed 6.5% of the X chromosome. The magnitude of sex-biased polar bear ancestry and the clear direction of gene flow suggest a model wherein the enigmatic ABC Island brown bears are the descendants of a polar bear population that was gradually converted into brown bears via male-dominated brown bear admixture. We present a model that reconciles heretofore conflicting genetic observations. We posit that the enigmatic ABC Islands brown bears derive from a population of polar bears likely stranded by the receding ice at the end of the last glacial period. Since then, male brown bear migration onto the island has gradually converted these bears into an admixed population whose phenotype and genotype are principally brown bear, except at mtDNA and X-linked loci. This process of genome erosion and conversion may be a common outcome when climate change or other forces cause a population to become isolated and then overrun by species with which it can hybridize. PMID:23516372

  12. "Islands of Divergence" in the Atlantic Cod Genome Represent Polymorphic Chromosomal Rearrangements.

    PubMed

    Sodeland, Marte; Jorde, Per Erik; Lien, Sigbjørn; Jentoft, Sissel; Berg, Paul R; Grove, Harald; Kent, Matthew P; Arnyasi, Mariann; Olsen, Esben Moland; Knutsen, Halvor

    2016-01-01

    In several species genetic differentiation across environmental gradients or between geographically separate populations has been reported to center at "genomic islands of divergence," resulting in heterogeneous differentiation patterns across genomes. Here, genomic regions of elevated divergence were observed on three chromosomes of the highly mobile fish Atlantic cod (Gadus morhua) within geographically fine-scaled coastal areas. The "genomic islands" extended at least 5, 9.5, and 13 megabases on linkage groups 2, 7, and 12, respectively, and coincided with large blocks of linkage disequilibrium. For each of these three chromosomes, pairs of segregating, highly divergent alleles were identified, with little or no gene exchange between them. These patterns of recombination and divergence mirror genomic signatures previously described for large polymorphic inversions, which have been shown to repress recombination across extensive chromosomal segments. The lack of genetic exchange permits divergence between noninverted and inverted chromosomes in spite of gene flow. For the rearrangements on linkage groups 2 and 12, allelic frequency shifts between coastal and oceanic environments suggest a role in ecological adaptation, in agreement with recently reported associations between molecular variation within these genomic regions and temperature, oxygen, and salinity levels. Elevated genetic differentiation in these genomic regions has previously been described on both sides of the Atlantic Ocean, and we therefore suggest that these polymorphisms are involved in adaptive divergence across the species distributional range. PMID:26983822

  13. Adaptation in Toxic Environments: Arsenic Genomic Islands in the Bacterial Genus Thiomonas

    PubMed Central

    Freel, Kelle C.; Krueger, Martin C.; Farasin, Julien; Brochier-Armanet, Céline; Barbe, Valérie; Andrès, Jeremy; Cholley, Pierre-Etienne; Dillies, Marie-Agnès; Jagla, Bernd; Koechler, Sandrine; Leva, Yann; Magdelenat, Ghislaine; Plewniak, Frédéric; Proux, Caroline; Coppée, Jean-Yves; Bertin, Philippe N.; Heipieper, Hermann J.; Arsène-Ploetze, Florence

    2015-01-01

    Acid mine drainage (AMD) is a highly toxic environment for most living organisms due to the presence of many lethal elements including arsenic (As). Thiomonas (Tm.) bacteria are found ubiquitously in AMD and can withstand these extreme conditions, in part because they are able to oxidize arsenite. In order to further improve our knowledge concerning the adaptive capacities of these bacteria, we sequenced and assembled the genome of six isolates derived from the Carnoulès AMD, and compared them to the genomes of Tm. arsenitoxydans 3As (isolated from the same site) and Tm. intermedia K12 (isolated from a sewage pipe). A detailed analysis of the Tm. sp. CB2 genome revealed various rearrangements had occurred in comparison to what was observed in 3As and K12 and over 20 genomic islands (GEIs) were found in each of these three genomes. We performed a detailed comparison of the two arsenic-related islands found in CB2, carrying the genes required for arsenite oxidation and As resistance, with those found in K12, 3As, and five other Thiomonas strains also isolated from Carnoulès (CB1, CB3, CB6, ACO3 and ACO7). Our results suggest that these arsenic-related islands have evolved differentially in these closely related Thiomonas strains, leading to divergent capacities to survive in As rich environments. PMID:26422469

  14. Determinants of specific food consumption in the Canary Islands (Spain).

    PubMed

    Núñez-González, Eduardo; Serra-Majem, Lluis; Fika-Hernándo, Mariluz; Fernández-Vallhonrat, Blanca; Bravo-Martínez, José; Martín-Ferrer, Juan M; Chas-Barbeito, Cristina; Bautista-Castaño, Inmmaculada

    2011-10-01

    The consumption of specific functional foods (FF) and some determinants of FF item selection were assessed using a questionnaire administered to 1112 individuals in the Canary Islands (Spain). Food items considered were Milk products: easily digestible milk (or milk low in lactose), milk enriched with vitamins and/or minerals, skimmed milk with soluble fiber, milk with royal jelly, milk with modified fatty acids (omega 3), milk products low in fat, pro-biotic foods (yoghurt and fermented milk) and yoghurt with phytosterols; Cereals: fortified breakfast cereals, wholemeal cereals and energy bars; Drinks: juices and enriched drinks, stimulating drinks and isotonic drinks; DHA-enriched, low cholesterol eggs; Meat products: low salt sausages and cooked low fat ham; Fats: enriched margarine, margarine rich in phytosterols and sunflower oil rich in oleic acid; Condiments: iodated salt. These food items were organized into 7 FF groups (milk products, cereals, fortified drinks, DHA eggs, meat product, fats, condiments). The results indicated that the highest prevalence was fortified drinks (63.6%; 95% CI: 60.7-66.5). Overall FF consumption prevalence was 80.1% (95% CI: 77-83): single FF item consumption being rare. There were significant inter-group relationships, and some group intakes (milk products, cereals and drinks) were related to age but with no overall relationship between consumption and age. The education level was significantly related to the consumption of cereals, drinks, meat products and condiments (χ2 test p = 0.04). Some specific FF item consumption segregated with environment (rural or urban) but with no overall significant relationship between the FF group and environment or gender. PMID:21959777

  15. Genomic approaches to studying human-specific developmental traits.

    PubMed

    Franchini, Lucía F; Pollard, Katherine S

    2015-09-15

    Changes in developmental regulatory programs drive both disease and phenotypic differences among species. Linking human-specific traits to alterations in development is challenging, because we have lacked the tools to assay and manipulate regulatory networks in human and primate embryonic cells. This field was transformed by the sequencing of hundreds of genomes--human and non-human--that can be compared to discover the regulatory machinery of genes involved in human development. This approach has identified thousands of human-specific genome alterations in developmental genes and their regulatory regions. With recent advances in stem cell techniques, genome engineering, and genomics, we can now test these sequences for effects on developmental gene regulation and downstream phenotypes in human cells and tissues. PMID:26395139

  16. Draft Genome Sequence of Halostagnicola sp. A56, an Extremely Halophilic Archaeon Isolated from the Andaman Islands

    PubMed Central

    Kanekar, Sagar P.; Saxena, Neha; Pore, Soham D.; Arora, Preeti; Kanekar, P. P.

    2015-01-01

    The first draft genome of Halostagnicola sp. A56, isolated from the Andaman Islands is reported here. The A56 genome comprises 3,178,490 bp in 26 contigs with a G+C content of 60.8%. The genome annotation revealed that A56 could have potential applications for the production of polyhydroxyalkanoate or bioplastics. PMID:26564049

  17. Methods for Optimizing CRISPR-Cas9 Genome Editing Specificity.

    PubMed

    Tycko, Josh; Myer, Vic E; Hsu, Patrick D

    2016-08-01

    Advances in the development of delivery, repair, and specificity strategies for the CRISPR-Cas9 genome engineering toolbox are helping researchers understand gene function with unprecedented precision and sensitivity. CRISPR-Cas9 also holds enormous therapeutic potential for the treatment of genetic disorders by directly correcting disease-causing mutations. Although the Cas9 protein has been shown to bind and cleave DNA at off-target sites, the field of Cas9 specificity is rapidly progressing, with marked improvements in guide RNA selection, protein and guide engineering, novel enzymes, and off-target detection methods. We review important challenges and breakthroughs in the field as a comprehensive practical guide to interested users of genome editing technologies, highlighting key tools and strategies for optimizing specificity. The genome editing community should now strive to standardize such methods for measuring and reporting off-target activity, while keeping in mind that the goal for specificity should be continued improvement and vigilance. PMID:27494557

  18. Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida

    SciTech Connect

    Wu X.; van der Lelie D.; Monchy, S.; Taghavi, S.; Zhu, W.; Ramos, J.

    2011-03-01

    Pseudomonas putida is a gram-negative rod-shaped gammaproteobacterium that is found throughout various environments. Members of the species P. putida show a diverse spectrum of metabolic activities, which is indicative of their adaptation to various niches, which includes the ability to live in soils and sediments contaminated with high concentrations of heavy metals and organic contaminants. Pseudomonas putida strains are also found as plant growth-promoting rhizospheric and endophytic bacteria. The genome sequences of several P. putida species have become available and provide a unique tool to study the specific niche adaptation of the various P. putida strains. In this review, we compare the genomes of four P. putida strains: the rhizospheric strain KT2440, the endophytic strain W619, the aromatic hydrocarbon-degrading strain F1 and the manganese-oxidizing strain GB-1. Comparative genomics provided a powerful tool to gain new insights into the adaptation of P. putida to specific lifestyles and environmental niches, and clearly demonstrated that horizontal gene transfer played a key role in this adaptation process, as many of the niche-specific functions were found to be encoded on clearly defined genomic islands.

  19. Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida

    PubMed Central

    Wu, Xiao; Monchy, Sébastien; Taghavi, Safiyh; Zhu, Wei; Ramos, Juan; van der Lelie, Daniel

    2011-01-01

    Pseudomonas putida is a gram-negative rod-shaped gammaproteobacterium that is found throughout various environments. Members of the species P. putida show a diverse spectrum of metabolic activities, which is indicative of their adaptation to various niches, which includes the ability to live in soils and sediments contaminated with high concentrations of heavy metals and organic contaminants. Pseudomonas putida strains are also found as plant growth-promoting rhizospheric and endophytic bacteria. The genome sequences of several P. putida species have become available and provide a unique tool to study the specific niche adaptation of the various P. putida strains. In this review, we compare the genomes of four P. putida strains: the rhizospheric strain KT2440, the endophytic strain W619, the aromatic hydrocarbon-degrading strain F1 and the manganese-oxidizing strain GB-1. Comparative genomics provided a powerful tool to gain new insights into the adaptation of P. putida to specific lifestyles and environmental niches, and clearly demonstrated that horizontal gene transfer played a key role in this adaptation process, as many of the niche-specific functions were found to be encoded on clearly defined genomic islands. PMID:20796030

  20. A Computational Framework for Tracing the Origins of Genomic Islands in Prokaryotes

    PubMed Central

    Wan, Peng; Che, Dongsheng

    2014-01-01

    Genomic islands (GIs) are chunks of genomic fragments that are acquired from nongenealogical organisms through horizontal gene transfer (HGT). Current researches on studying donor-recipient relationships for HGT are limited at a gene level. As more GIs have been identified and verified, the way of studying donor-recipient relationships can be better modeled by using GIs rather than individual genes. In this paper, we report the development of a computational framework for detecting origins of GIs. The main idea of our computational framework is to identify GIs in a query genome, search candidate genomes that contain genomic regions similar to those GIs in the query genome by BLAST search, and then filter out some candidate genomes if those similar genomic regions are also alien (detected by GI detection tools). We have applied our framework in finding the GI origins for Mycobacterium tuberculosis H37Rv, Herminiimonas arsenicoxydans, and three Thermoanaerobacter species. The predicted results were used to establish the donor-recipient network relationships and visualized by Gephi. Our studies have shown that donor genomes detected by our computational approach were mainly consistent with previous studies. Our framework was implemented with Perl and executed on Windows operating system. PMID:27433520

  1. A genome-wide map of aberrantly expressed chromosomal islands in colorectal cancer

    PubMed Central

    Staub, Eike; Gröne, Jörn; Mennerich, Detlev; Röpcke, Stefan; Klamann, Irina; Hinzmann, Bernd; Castanos-Velez, Esmeralda; Mann, Benno; Pilarsky, Christian; Brümmendorf, Thomas; Weber, Birgit; Buhr, Heinz-Johannes; Rosenthal, André

    2006-01-01

    Background Cancer development is accompanied by genetic phenomena like deletion and amplification of chromosome parts or alterations of chromatin structure. It is expected that these mechanisms have a strong effect on regional gene expression. Results We investigated genome-wide gene expression in colorectal carcinoma (CRC) and normal epithelial tissues from 25 patients using oligonucleotide arrays. This allowed us to identify 81 distinct chromosomal islands with aberrant gene expression. Of these, 38 islands show a gain in expression and 43 a loss of expression. In total, 7.892 genes (25.3% of all human genes) are located in aberrantly expressed islands. Many chromosomal regions that are linked to hereditary colorectal cancer show deregulated expression. Also, many known tumor genes localize to chromosomal islands of misregulated expression in CRC. Conclusion An extensive comparison with published CGH data suggests that chromosomal regions known for frequent deletions in colon cancer tend to show reduced expression. In contrast, regions that are often amplified in colorectal tumors exhibit heterogeneous expression patterns: even show a decrease of mRNA expression. Because for several islands of deregulated expression chromosomal aberrations have never been observed, we speculate that additional mechanisms (like abnormal states of regional chromatin) also have a substantial impact on the formation of co-expression islands in colorectal carcinoma. PMID:16982006

  2. Long-Range Autocorrelations of CpG Islands in the Human Genome

    PubMed Central

    Koester, Benjamin; Rea, Thomas J.; Templeton, Alan R.; Szalay, Alexander S.; Sing, Charles F.

    2012-01-01

    In this paper, we use a statistical estimator developed in astrophysics to study the distribution and organization of features of the human genome. Using the human reference sequence we quantify the global distribution of CpG islands (CGI) in each chromosome and demonstrate that the organization of the CGI across a chromosome is non-random, exhibits surprisingly long range correlations (10 Mb) and varies significantly among chromosomes. These correlations of CGI summarize functional properties of the genome that are not captured when considering variation in any particular separate (and local) feature. The demonstration of the proposed methods to quantify the organization of CGI in the human genome forms the basis of future studies. The most illuminating of these will assess the potential impact on phenotypic variation of inter-individual variation in the organization of the functional features of the genome within and among chromosomes, and among individuals for particular chromosomes. PMID:22253817

  3. Integrative analysis of transcriptome and genome indicates two potential genomic islands are associated with pathogenesis of Mycobacterium tuberculosis.

    PubMed

    Yu, Guohua; Fu, Xuping; Jin, Ke; Zhang, Lu; Wu, Wei; Cui, Zhenling; Hu, Zhongyi; Li, Yao

    2011-12-01

    Mycobacterium tuberculosis (M.tb) is a successful human pathogen and widely prevalent throughout the world. Genomic islands (GIs) are thought to be related to pathogenicity. In this study, we predicted two potential genomic islands in M.tb genome, respectively named as GI-1 and GI-2. It is indicated that the genes belong to PE_PGRS family in GI-1 and genes involved in sulfolipid-1 (SL-1) synthesis in GI-2 are strongly associated with M.tb pathogenesis. Sequence analysis revealed that the five PGRS genes are more polymorphic than other PGRS members in full virulence M.tb complex strains at significance level 0.01 but not in attenuated strains. Expression analysis of microarrays collected from literatures displayed that GI-1 genes, especially Rv3508 might be correlated with the response to the inhibition of aerobic respiration. Microarray analysis also showed that SL-1 cluster genes are drastically down-expressed in attenuated strains relative to full virulence strains. We speculated that the effect of SL-1 on M.tb pathogenicity could be associated with long-term survival and persistence establishment during infection. Additionally, the gene Rv3508 in GI-1 was under positive selection. Rv3508 may involve the response of M.tb to the inhibition of aerobic respiration by low oxygen or drug PA-824, and it may be a common feature of genes in GI-1. These findings may provide some novel insights into M.tb physiology and pathogenesis. PMID:21924330

  4. Cultural Specific Training in Corruption Reporting for Pacific Island Journalists.

    ERIC Educational Resources Information Center

    Tanner, Stephen; McCarthy, Nigel

    2001-01-01

    Notes that very few journalists have formal training in corruption reporting. Discusses workshops held in 2000 and 2001 on the subject of corruption reporting for Pacific Island journalists. Explains the role of the media as an anti-corruption mechanism and the difficulty journalists face in identifying and sometimes stamping out corruption. Looks…

  5. Islands of Divergence” in the Atlantic Cod Genome Represent Polymorphic Chromosomal Rearrangements

    PubMed Central

    Sodeland, Marte; Jorde, Per Erik; Lien, Sigbjørn; Jentoft, Sissel; Berg, Paul R.; Grove, Harald; Kent, Matthew P.; Arnyasi, Mariann; Olsen, Esben Moland; Knutsen, Halvor

    2016-01-01

    In several species genetic differentiation across environmental gradients or between geographically separate populations has been reported to center at “genomic islands of divergence,” resulting in heterogeneous differentiation patterns across genomes. Here, genomic regions of elevated divergence were observed on three chromosomes of the highly mobile fish Atlantic cod (Gadus morhua) within geographically fine-scaled coastal areas. The “genomic islands” extended at least 5, 9.5, and 13 megabases on linkage groups 2, 7, and 12, respectively, and coincided with large blocks of linkage disequilibrium. For each of these three chromosomes, pairs of segregating, highly divergent alleles were identified, with little or no gene exchange between them. These patterns of recombination and divergence mirror genomic signatures previously described for large polymorphic inversions, which have been shown to repress recombination across extensive chromosomal segments. The lack of genetic exchange permits divergence between noninverted and inverted chromosomes in spite of gene flow. For the rearrangements on linkage groups 2 and 12, allelic frequency shifts between coastal and oceanic environments suggest a role in ecological adaptation, in agreement with recently reported associations between molecular variation within these genomic regions and temperature, oxygen, and salinity levels. Elevated genetic differentiation in these genomic regions has previously been described on both sides of the Atlantic Ocean, and we therefore suggest that these polymorphisms are involved in adaptive divergence across the species distributional range. PMID:26983822

  6. Complete Genome Sequence of Salmonella enterica Serovar Typhimurium Strain YU15 (Sequence Type 19) Harboring the Salmonella Genomic Island 1 and Virulence Plasmid pSTV

    PubMed Central

    Calva, Edmundo; Puente, José L.; Zaidi, Mussaret B.

    2016-01-01

    The complete genome of Salmonella enterica subsp. enterica serovar Typhimurium sequence type 19 (ST19) strain YU15, isolated in Yucatán, Mexico, from a human baby stool culture, was determined using PacBio technology. The chromosome contains five intact prophages and the Salmonella genomic island 1 (SGI1). This strain carries the Salmonella virulence plasmid pSTV. PMID:27081132

  7. Mitochondrial genomes and divergence times of crocodile newts: inter-islands distribution of Echinotriton andersoni and the origin of a unique repetitive sequence found in Tylototriton mt genomes.

    PubMed

    Kurabayashi, Atsushi; Nishitani, Takuma; Katsuren, Seiki; Oumi, Shohei; Sumida, Masayuki

    2012-01-01

    Crocodile newts, which constitute the genera Echinotriton and Tylototriton, are known as living fossils, and these genera comprise many endangered species. To identify mitochondrial (mt) genes suitable for future population genetic analyses for endangered taxa, we determined the complete nucleotide sequences of the mt genomes of the Japanese crocodile newt Echinotriton andersoni and Himalayan crocodile newt Tylototriton verrucosus. Although the control region (CR) is known as the most variable mtDNA region in many animal taxa, the CRs of crocodile newts are highly conservative. Rather, the genes of NADH dehydrogenase subunits and ATPase subunit 6 were found to have high sequence divergences and to be usable for population genetics studies. To estimate the inter-population divergence ages of E. andersoni endemic to the Ryukyu Islands, we performed molecular dating analysis using whole and partial mt genomic data. The estimated divergence ages of the inter-island individuals are older than the paleogeographic segmentation ages of the islands, suggesting that the lineage splits of E. andersoni populations were not caused by vicariant events. Our phylogenetic analysis with partial mt sequence data also suggests the existence of at least two more undescribed species in the genus Tylototriton. We also found unusual repeat sequences containing the 3' region of cytochrome apoenzyme b gene, whole tRNA-Thr gene, and a noncoding region (the T-P noncoding region characteristic in caudate mtDNAs) from T. verrucosus mtDNA. Similar repeat sequences were found in two other Tylototriton species. The Tylototriton taxa with the repeats become a monophyletic group, indicating a single origin of the repeat sequences. The intra-and inter-specific comparisons of the repeat sequences suggest the occurrences of homologous recombination-based concerted evolution among the repeat sequences. PMID:22531793

  8. Stability of a Pseudomonas putida KT2440 bacteriophage-carried genomic island and its impact on rhizosphere fitness.

    PubMed

    Quesada, Jose M; Soriano, María Isabel; Espinosa-Urgel, Manuel

    2012-10-01

    The stability of seven genomic islands of Pseudomonas putida KT2440 with predicted potential for mobilization was studied in bacterial populations associated with the rhizosphere of corn plants by multiplex PCR. DNA rearrangements were detected for only one of them (GI28), which was lost at high frequency. This genomic island of 39.4 kb, with 53 open reading frames, shows the characteristic organization of genes belonging to tailed phages. We present evidence indicating that it corresponds to the lysogenic state of a functional bacteriophage that we have designated Pspu28. Integrated and rarely excised forms of Pspu28 coexist in KT2440 populations. Pspu28 is self-transmissible, and an excisionase is essential for its removal from the bacterial chromosome. The excised Pspu28 forms a circular element that can integrate into the chromosome at a specific location, att sites containing a 17-bp direct repeat sequence. Excision/insertion of Pspu28 alters the promoter sequence and changes the expression level of PP_1531, which encodes a predicted arsenate reductase. Finally, we show that the presence of Pspu28 in the lysogenic state has a negative effect on bacterial fitness in the rhizosphere under conditions of intraspecific competition, thus explaining why clones having lost this mobile element are recovered from that environment. PMID:22843519

  9. Particle Swarm Optimization with Reinforcement Learning for the Prediction of CpG Islands in the Human Genome

    PubMed Central

    Chuang, Li-Yeh; Huang, Hsiu-Chen; Lin, Ming-Cheng; Yang, Cheng-Hong

    2011-01-01

    Background Regions with abundant GC nucleotides, a high CpG number, and a length greater than 200 bp in a genome are often referred to as CpG islands. These islands are usually located in the 5′ end of genes. Recently, several algorithms for the prediction of CpG islands have been proposed. Methodology/Principal Findings We propose here a new method called CPSORL to predict CpG islands, which consists of a complement particle swarm optimization algorithm combined with reinforcement learning to predict CpG islands more reliably. Several CpG island prediction tools equipped with the sliding window technique have been developed previously. However, the quality of the results seems to rely too much on the choices that are made for the window sizes, and thus these methods leave room for improvement. Conclusions/Significance Experimental results indicate that CPSORL provides results of a higher sensitivity and a higher correlation coefficient in all selected experimental contigs than the other methods it was compared to (CpGIS, CpGcluster, CpGProd and CpGPlot). A higher number of CpG islands were identified in chromosomes 21 and 22 of the human genome than with the other methods from the literature. CPSORL also achieved the highest coverage rate (3.4%). CPSORL is an application for identifying promoter and TSS regions associated with CpG islands in entire human genomic. When compared to CpGcluster, the islands predicted by CPSORL covered a larger region in the TSS (12.2%) and promoter (26.1%) region. If Alu sequences are considered, the islands predicted by CPSORL (Alu) covered a larger TSS (40.5%) and promoter (67.8%) region than CpGIS. Furthermore, CPSORL was used to verify that the average methylation density was 5.33% for CpG islands in the entire human genome. PMID:21738602

  10. Self-regulating genomic island encoding tandem regulators confers chromatic acclimation to marine Synechococcus.

    PubMed

    Sanfilippo, Joseph E; Nguyen, Adam A; Karty, Jonathan A; Shukla, Animesh; Schluchter, Wendy M; Garczarek, Laurence; Partensky, Frédéric; Kehoe, David M

    2016-05-24

    The evolutionary success of marine Synechococcus, the second-most abundant phototrophic group in the marine environment, is partly attributable to this group's ability to use the entire visible spectrum of light for photosynthesis. This group possesses a remarkable diversity of light-harvesting pigments, and most of the group's members are orange and pink because of their use of phycourobilin and phycoerythrobilin chromophores, which are attached to antennae proteins called phycoerythrins. Many strains can alter phycoerythrin chromophore ratios to optimize photon capture in changing blue-green environments using type IV chromatic acclimation (CA4). Although CA4 is common in most marine Synechococcus lineages, the regulation of this process remains unexplored. Here, we show that a widely distributed genomic island encoding tandem master regulators named FciA (for type four chromatic acclimation island) and FciB plays a central role in controlling CA4. FciA and FciB have diametric effects on CA4. Interruption of fciA causes a constitutive green light phenotype, and interruption of fciB causes a constitutive blue light phenotype. These proteins regulate all of the molecular responses occurring during CA4, and the proteins' activity is apparently regulated posttranscriptionally, although their cellular ratio appears to be critical for establishing the set point for the blue-green switch in ecologically relevant light environments. Surprisingly, FciA and FciB coregulate only three genes within the Synechococcus genome, all located within the same genomic island as fciA and fciB These findings, along with the widespread distribution of strains possessing this island, suggest that horizontal transfer of a small, self-regulating DNA region has conferred CA4 capability to marine Synechococcus throughout many oceanic areas. PMID:27152022

  11. Heritability and genome-wide linkage analysis of migraine in the genetic isolate of Norfolk Island.

    PubMed

    Cox, Hannah C; Lea, Rod A; Bellis, Claire; Nyholt, Dale R; Dyer, Thomas D; Haupt, Larisa M; Charlesworth, Jac; Matovinovic, Elizabeth; Blangero, John; Griffiths, Lyn R

    2012-02-15

    Migraine is a common neurovascular disorder with a complex envirogenomic aetiology. In an effort to identify migraine susceptibility genes, we conducted a study of the isolated population of Norfolk Island, Australia. A large portion of the permanent inhabitants of Norfolk Island are descended from 18th Century English sailors involved in the infamous mutiny on the Bounty and their Polynesian consorts. In total, 600 subjects were recruited including a large pedigree of 377 individuals with lineage to the founders. All individuals were phenotyped for migraine using International Classification of Headache Disorders-II criterion. All subjects were genotyped for a genome-wide panel of microsatellite markers. Genotype and phenotype data for the pedigree were analysed using heritability and linkage methods implemented in the programme SOLAR. Follow-up association analysis was performed using the CLUMP programme. A total of 154 migraine cases (25%) were identified indicating the Norfolk Island population is high-risk for migraine. Heritability estimation of the 377-member pedigree indicated a significant genetic component for migraine (h(2)=0.53, P=0.016). Linkage analysis showed peaks on chromosome 13q33.1 (P=0.003) and chromosome 9q22.32 (P=0.008). Association analysis of the key microsatellites in the remaining 223 unrelated Norfolk Island individuals showed evidence of association, which strengthen support for the linkage findings (P≤0.05). In conclusion, a genome-wide linkage analysis and follow-up association analysis of migraine in the genetic isolate of Norfolk Island provided evidence for migraine susceptibility loci on chromosomes 9q22.22 and 13q33.1. PMID:22197687

  12. Island-Model Genomic Selection for Long-Term Genetic Improvement of Autogamous Crops

    PubMed Central

    Yabe, Shiori; Yamasaki, Masanori; Ebana, Kaworu; Hayashi, Takeshi; Iwata, Hiroyoshi

    2016-01-01

    Acceleration of genetic improvement of autogamous crops such as wheat and rice is necessary to increase cereal production in response to the global food crisis. Population and pedigree methods of breeding, which are based on inbred line selection, are used commonly in the genetic improvement of autogamous crops. These methods, however, produce a few novel combinations of genes in a breeding population. Recurrent selection promotes recombination among genes and produces novel combinations of genes in a breeding population, but it requires inaccurate single-plant evaluation for selection. Genomic selection (GS), which can predict genetic potential of individuals based on their marker genotype, might have high reliability of single-plant evaluation and might be effective in recurrent selection. To evaluate the efficiency of recurrent selection with GS, we conducted simulations using real marker genotype data of rice cultivars. Additionally, we introduced the concept of an “island model” inspired by evolutionary algorithms that might be useful to maintain genetic variation through the breeding process. We conducted GS simulations using real marker genotype data of rice cultivars to evaluate the efficiency of recurrent selection and the island model in an autogamous species. Results demonstrated the importance of producing novel combinations of genes through recurrent selection. An initial population derived from admixture of multiple bi-parental crosses showed larger genetic gains than a population derived from a single bi-parental cross in whole cycles, suggesting the importance of genetic variation in an initial population. The island-model GS better maintained genetic improvement in later generations than the other GS methods, suggesting that the island-model GS can utilize genetic variation in breeding and can retain alleles with small effects in the breeding population. The island-model GS will become a new breeding method that enhances the potential of

  13. High-Density Transcriptional Initiation Signals Underline Genomic Islands in Bacteria

    PubMed Central

    Huang, Qianli; Cheng, Xuanjin; Cheung, Man Kit; Kiselev, Sergey S.; Ozoline, Olga N.; Kwan, Hoi Shan

    2012-01-01

    Genomic islands (GIs), frequently associated with the pathogenicity of bacteria and having a substantial influence on bacterial evolution, are groups of “alien” elements which probably undergo special temporal–spatial regulation in the host genome. Are there particular hallmark transcriptional signals for these “exotic” regions? We here explore the potential transcriptional signals that underline the GIs beyond the conventional views on basic sequence composition, such as codon usage and GC property bias. It showed that there is a significant enrichment of the transcription start positions (TSPs) in the GI regions compared to the whole genome of Salmonella enterica and Escherichia coli. There was up to a four-fold increase for the 70% GIs, implying high-density TSPs profile can potentially differentiate the GI regions. Based on this feature, we developed a new sliding window method GIST, Genomic-island Identification by Signals of Transcription, to identify these regions. Subsequently, we compared the known GI-associated features of the GIs detected by GIST and by the existing method Islandviewer to those of the whole genome. Our method demonstrates high sensitivity in detecting GIs harboring genes with biased GI-like function, preferred subcellular localization, skewed GC property, shorter gene length and biased “non-optimal” codon usage. The special transcriptional signals discovered here may contribute to the coordinate expression regulation of foreign genes. Finally, by using GIST, we detected many interesting GIs in the 2011 German E. coli O104:H4 outbreak strain TY-2482, including the microcin H47 system and gene cluster ycgXEFZ-ymgABC that activates the production of biofilm matrix. The aforesaid findings highlight the power of GIST to predict GIs with distinct intrinsic features to the genome. The heterogeneity of cumulative TSPs profiles may not only be a better identity for “alien” regions, but also provide hints to the special

  14. A novel strategy for the identification of genomic islands by comparative analysis of the contents and contexts of tRNA sites in closely related bacteria.

    PubMed

    Ou, Hong-Yu; Chen, Ling-Ling; Lonnen, James; Chaudhuri, Roy R; Thani, Ali Bin; Smith, Rebecca; Garton, Natalie J; Hinton, Jay; Pallen, Mark; Barer, Michael R; Rajakumar, Kumar

    2006-01-01

    We devised software tools to systematically investigate the contents and contexts of bacterial tRNA and tmRNA genes, which are known insertion hotspots for genomic islands (GIs). The strategy, based on MAUVE-facilitated multigenome comparisons, was used to examine 87 Escherichia coli MG1655 tRNA and tmRNA genes and their orthologues in E.coli EDL933, E.coli CFT073 and Shigella flexneri Sf301. Our approach identified 49 GIs occupying approximately 1.7 Mb that mapped to 18 tRNA genes, missing 2 but identifying a further 30 GIs as compared with Islander [Y. Mantri and K. P. Williams (2004), Nucleic Acids Res., 32, D55-D58]. All these GIs had many strain-specific CDS, anomalous GC contents and/or significant dinucleotide biases, consistent with foreign origins. Our analysis demonstrated marked conservation of sequences flanking both empty tRNA sites and tRNA-associated GIs across all four genomes. Remarkably, there were only 2 upstream and 5 downstream deletions adjacent to the 328 loci investigated. In silico PCR analysis based on conserved flanking regions was also used to interrogate hotspots in another eight completely or partially sequenced E.coli and Shigella genomes. The tools developed are ideal for the analysis of other bacterial species and will lead to in silico and experimental discovery of new genomic islands. PMID:16414954

  15. CpGIMethPred: computational model for predicting methylation status of CpG islands in human genome

    PubMed Central

    2013-01-01

    DNA methylation is an inheritable chemical modification of cytosine, and represents one of the most important epigenetic events. Computational prediction of the DNA methylation status can be employed to speed up the genome-wide methylation profiling, and to identify the key features that are correlated with various methylation patterns. Here, we develop CpGIMethPred, the support vector machine-based models to predict the methylation status of the CpG islands in the human genome under normal conditions. The features for prediction include those that have been previously demonstrated effective (CpG island specific attributes, DNA sequence composition patterns, DNA structure patterns, distribution patterns of conserved transcription factor binding sites and conserved elements, and histone methylation status) as well as those that have not been extensively explored but are likely to contribute additional information from a biological point of view (nucleosome positioning propensities, gene functions, and histone acetylation status). Statistical tests are performed to identify the features that are significantly correlated with the methylation status of the CpG islands, and principal component analysis is then performed to decorrelate the selected features. Data from the Human Epigenome Project (HEP) are used to train, validate and test the predictive models. Specifically, the models are trained and validated by using the DNA methylation data obtained in the CD4 lymphocytes, and are then tested for generalizability using the DNA methylation data obtained in the other 11 normal tissues and cell types. Our experiments have shown that (1) an eight-dimensional feature space that is selected via the principal component analysis and that combines all categories of information is effective for predicting the CpG island methylation status, (2) by incorporating the information regarding the nucleosome positioning, gene functions, and histone acetylation, the models can achieve

  16. Genome wide analysis of acute myeloid leukemia reveal leukemia specific methylome and subtype specific hypomethylation of repeats.

    PubMed

    Saied, Marwa H; Marzec, Jacek; Khalid, Sabah; Smith, Paul; Down, Thomas A; Rakyan, Vardhman K; Molloy, Gael; Raghavan, Manoj; Debernardi, Silvana; Young, Bryan D

    2012-01-01

    Methylated DNA immunoprecipitation followed by high-throughput sequencing (MeDIP-seq) has the potential to identify changes in DNA methylation important in cancer development. In order to understand the role of epigenetic modulation in the development of acute myeloid leukemia (AML) we have applied MeDIP-seq to the DNA of 12 AML patients and 4 normal bone marrows. This analysis revealed leukemia-associated differentially methylated regions that included gene promoters, gene bodies, CpG islands and CpG island shores. Two genes (SPHKAP and DPP6) with significantly methylated promoters were of interest and further analysis of their expression showed them to be repressed in AML. We also demonstrated considerable cytogenetic subtype specificity in the methylomes affecting different genomic features. Significantly distinct patterns of hypomethylation of certain interspersed repeat elements were associated with cytogenetic subtypes. The methylation patterns of members of the SINE family tightly clustered all leukemic patients with an enrichment of Alu repeats with a high CpG density (P<0.0001). We were able to demonstrate significant inverse correlation between intragenic interspersed repeat sequence methylation and gene expression with SINEs showing the strongest inverse correlation (R(2) = 0.7). We conclude that the alterations in DNA methylation that accompany the development of AML affect not only the promoters, but also the non-promoter genomic features, with significant demethylation of certain interspersed repeat DNA elements being associated with AML cytogenetic subtypes. MeDIP-seq data were validated using bisulfite pyrosequencing and the Infinium array. PMID:22479372

  17. Sequence-specific Triple Helix Formation with Genomic DNA†

    PubMed Central

    Ye, Zhaoyang; Guntaka, Ramareddy V.; Mahato, Ram I.

    2008-01-01

    We have previously demonstrated site-specific delivery of antiparallel phosphorothioate triplex forming oligonucleotide (TFO) specific to −165 to −141 promoter region of α1(I) collagen (abbreviated as APS165) to hepatic stellate cells (HSCs) of fibrotic rats after conjugation with mannose 6-phosphate-bovine serum albumin. However, we still need to determine whether there is correlation between transcription inhibition and triplex formation with genomic DNA. In this study, APS165 was modified with psoralen and the extent of triplex formation with α1(I) collagen DNA was determined in naked genomic DNA, isolated nuclei of HSC-T6 cells and whole cells by using a simple real-time PCR based method. In this method, a purification step was added to remove unbound APS165, which eliminated the possible artifacts during real-time PCR. Psoralen photoadduct formation was shown to be essential to retain triplex structure under denaturing conditions. On naked genomic DNA, 82.2% of DNA formed triplex and 36.7% of genomic DNA in isolated nuclei at 90 min contained triplex structure. As quantified by real-time PCR, 50% of genomic DNA in living cells at 12 h post incubation contained triplex structures. Furthermore, the triplex formation was dose-dependent with 26.5% and 50% of DNA having triplex structure at concentrations of 1 μM and 5 μM, respectively. Moreover, on a plasmid pCol-CAT220 containing rat α1(I) gene promoter (−225 to +113), 75.3% of triplex formation was observed, which was correlated with a 73.6% of transcription inhibition. These findings will further strengthen the therapeutic applications of APS165. PMID:17845009

  18. POLYMER DELIVERY SYSTEMS FOR SITE-SPECIFIC GENOME EDITING

    PubMed Central

    McNeer, Nicole Ali; Schleifman, Erica B.; Glazer, Peter M.; Saltzman, W. Mark

    2011-01-01

    Triplex-forming peptide nucleic acids (PNAs) can be used to coordinate the recombination of short 50–60 bp “donor DNA” fragments into genomic DNA, resulting in site-specific correction of genetic mutations or the introduction of advantageous genetic modifications. Site-specific gene editing in hematopoietic stem and progenitor cells (HSPCs) could result in the treatment or cure of inherited disorders of the blood such as β-thalassemia or sickle cell anemia. Gene editing in HSPCs and differentiated T cells could also help combat HIV infection by modifying the HIV co-receptor CCR5, which is necessary for R5-tropic HIV entry. However, translation of genome modification technologies to clinical practice is limited by challenges in intracellular delivery, especially in difficult-to-transfect hematolymphoid cells. Here, we review the use of engineered biodegradable polymer nanoparticles for site-specific genome editing in human hematopoietic cells, which represent a promising approach for ex vivo and in vivo gene therapy. PMID:21620910

  19. The Master Activator of IncA/C Conjugative Plasmids Stimulates Genomic Islands and Multidrug Resistance Dissemination

    PubMed Central

    Luo, Peng; Rodrigue, Sébastien; Burrus, Vincent

    2014-01-01

    Dissemination of antibiotic resistance genes occurs mostly by conjugation, which mediates DNA transfer between cells in direct contact. Conjugative plasmids of the IncA/C incompatibility group have become a substantial threat due to their broad host-range, the extended spectrum of antimicrobial resistance they confer, their prevalence in enteric bacteria and their very efficient spread by conjugation. However, their biology remains largely unexplored. Using the IncA/C conjugative plasmid pVCR94ΔX as a prototype, we have investigated the regulatory circuitry that governs IncA/C plasmids dissemination and found that the transcriptional activator complex AcaCD is essential for the expression of plasmid transfer genes. Using chromatin immunoprecipitation coupled with exonuclease digestion (ChIP-exo) and RNA sequencing (RNA-seq) approaches, we have identified the sequences recognized by AcaCD and characterized the AcaCD regulon. Data mining using the DNA motif recognized by AcaCD revealed potential AcaCD-binding sites upstream of genes involved in the intracellular mobility functions (recombination directionality factor and mobilization genes) in two widespread classes of genomic islands (GIs) phylogenetically unrelated to IncA/C plasmids. The first class, SGI1, confers and propagates multidrug resistance in Salmonella enterica and Proteus mirabilis, whereas MGIVmi1 in Vibrio mimicus belongs to a previously uncharacterized class of GIs. We have demonstrated that through expression of AcaCD, IncA/C plasmids specifically trigger the excision and mobilization of the GIs at high frequencies. This study provides new evidence of the considerable impact of IncA/C plasmids on bacterial genome plasticity through their own mobility and the mobilization of genomic islands. PMID:25340549

  20. Profile analysis and prediction of tissue-specific CpG island methylation classes

    PubMed Central

    2009-01-01

    Background The computational prediction of DNA methylation has become an important topic in the recent years due to its role in the epigenetic control of normal and cancer-related processes. While previous prediction approaches focused merely on differences between methylated and unmethylated DNA sequences, recent experimental results have shown the presence of much more complex patterns of methylation across tissues and time in the human genome. These patterns are only partially described by a binary model of DNA methylation. In this work we propose a novel approach, based on profile analysis of tissue-specific methylation that uncovers significant differences in the sequences of CpG islands (CGIs) that predispose them to a tissue- specific methylation pattern. Results We defined CGI methylation profiles that separate not only between constitutively methylated and unmethylated CGIs, but also identify CGIs showing a differential degree of methylation across tissues and cell-types or a lack of methylation exclusively in sperm. These profiles are clearly distinguished by a number of CGI attributes including their evolutionary conservation, their significance, as well as the evolutionary evidence of prior methylation. Additionally, we assess profile functionality with respect to the different compartments of protein coding genes and their possible use in the prediction of DNA methylation. Conclusion Our approach provides new insights into the biological features that determine if a CGI has a functional role in the epigenetic control of gene expression and the features associated with CGI methylation susceptibility. Moreover, we show that the ability to predict CGI methylation is based primarily on the quality of the biological information used and the relationships uncovered between different sources of knowledge. The strategy presented here is able to predict, besides the constitutively methylated and unmethylated classes, two more tissue specific methylation classes

  1. Genomics in research and health care with Aboriginal and Torres Strait Islander peoples.

    PubMed

    McWhirter, Rebekah; Nicol, Dianne; Savulescu, Julian

    2015-01-01

    Genomics is increasingly becoming an integral component of health research and clinical care. The perceived difficulties associated with genetic research involving Aboriginal and Torres Strait Islander people mean that they have largely been excluded as research participants. This limits the applicability of research findings for Aboriginal and Torres Strait Islander patients. Emergent use of genomic technologies and personalised medicine therefore risk contributing to an increase in existing health disparities unless urgent action is taken. To allow the potential benefits of genomics to be more equitably distributed, and minimise potential harms, we recommend five actions: (1) ensure diversity of participants by implementing appropriate protocols at the study design stage; (2) target diseases that disproportionately affect disadvantaged groups; (3) prioritise capacity building to promote Indigenous leadership across research professions; (4) develop resources for consenting patients or participants from different cultural and linguistic backgrounds; and (5) integrate awareness of issues relating to Indigenous people into the governance structures, formal reviews, data collection protocols and analytical pipelines of health services and research projects. PMID:26507135

  2. Two novel Salmonella genomic island 1 variants in Proteus mirabilis isolates from swine farms in China.

    PubMed

    Lei, Chang-Wei; Zhang, An-Yun; Liu, Bi-Hui; Wang, Hong-Ning; Yang, Li-Qin; Guan, Zhong-Bin; Xu, Chang-Wen; Zhang, Dong-Dong; Yang, Yong-Qiang

    2015-07-01

    Four different Salmonella genomic island 1 (SGI1) variants, including two novel variants, were characterized in one Salmonella enterica serovar Rissen sequence type ST1917 isolate and three Proteus mirabilis isolates from swine farms in China. One novel variant was derived from SGI1-B with the backbone gene S021 disrupted by a 12.72-kb IS26 composite transposon containing the dfrA17-aadA5 cassettes and macrolide inactivation gene cluster mphA-mrx-mphR. The other one was an integron-free SGI1 and contained a 183-bp truncated S025 next to IS6100 and S044. PMID:25918148

  3. Molecular Characteristics of Salmonella Genomic Island 1 in Proteus mirabilis Isolates from Poultry Farms in China

    PubMed Central

    Lei, Chang-Wei; Zhang, An-Yun; Liu, Bi-Hui; Guan, Zhong-Bin; Xu, Chang-Wen; Xia, Qing-Qing; Cheng, Han; Zhang, Dong-Dong

    2014-01-01

    Six out of the 64 studied Proteus mirabilis isolates from 11 poultry farms in China contained Salmonella genomic island 1 (SGI1). PCR mapping showed that the complete nucleotide sequences of SGI1s ranged from 33.2 to 42.5 kb. Three novel variants, SGI1-W, SGI1-X, and SGI1-Y, have been characterized. Resistance genes lnuF, dfrA25, and qnrB2 were identified in SGI1 for the first time. PMID:25267683

  4. Two Novel Salmonella Genomic Island 1 Variants in Proteus mirabilis Isolates from Swine Farms in China

    PubMed Central

    Lei, Chang-Wei; Zhang, An-Yun; Liu, Bi-Hui; Yang, Li-Qin; Guan, Zhong-Bin; Xu, Chang-Wen; Zhang, Dong-Dong; Yang, Yong-Qiang

    2015-01-01

    Four different Salmonella genomic island 1 (SGI1) variants, including two novel variants, were characterized in one Salmonella enterica serovar Rissen sequence type ST1917 isolate and three Proteus mirabilis isolates from swine farms in China. One novel variant was derived from SGI1-B with the backbone gene S021 disrupted by a 12.72-kb IS26 composite transposon containing the dfrA17-aadA5 cassettes and macrolide inactivation gene cluster mphA-mrx-mphR. The other one was an integron-free SGI1 and contained a 183-bp truncated S025 next to IS6100 and S044. PMID:25918148

  5. Lineage‐specific genomics: Frequent birth and death in the human genome

    PubMed Central

    2016-01-01

    Frequent evolutionary birth and death events have created a large quantity of biologically important, lineage‐specific DNA within mammalian genomes. The birth and death of DNA sequences is so frequent that the total number of these insertions and deletions in the human population remains unknown, although there are differences between these groups, e.g. transposable elements contribute predominantly to sequence insertion. Functional turnover – where the activity of a locus is specific to one lineage, but the underlying DNA remains conserved – can also drive birth and death. However, this does not appear to be a major driver of divergent transcriptional regulation. Both sequence and functional turnover have contributed to the birth and death of thousands of functional promoters in the human and mouse genomes. These findings reveal the pervasive nature of evolutionary birth and death and suggest that lineage‐specific regions may play an important but previously underappreciated role in human biology and disease. PMID:27231054

  6. 5-Formylcytosine Could Be a Semipermanent Base in Specific Genome Sites.

    PubMed

    Su, Meng; Kirchner, Angie; Stazzoni, Samuele; Müller, Markus; Wagner, Mirko; Schröder, Arne; Carell, Thomas

    2016-09-19

    5-Formyl-2'-deoxycytosine (fdC) is a recently discovered epigenetic base in the genome of stem cells, with yet unknown functions. Sequencing data show that the base is enriched in CpG islands of promoters and hence likely involved in the regulation of transcription during cellular differentiation. fdC is known to be recognized and excised by the enzyme thymine-DNA-glycosylase (Tdg). As such, fdC is believed to function as an intermediate during active demethylation. In order to understand the function of the new epigenetic base fdC, it is important to analyze its formation and removal at defined genomic sites. Here, we report a new method that combines sequence-specific chemical derivatization of fdC with droplet digital PCR that enables such analysis. We show initial data, indicating that the repair protein Tdg removes only 50 % of the fdCs at a given genomic site, arguing that fdC is a semipermanent base. PMID:27561097

  7. Gender-specific medicine in the genomic era.

    PubMed

    Legato, Marianne J

    2016-01-01

    This article is intended to illuminate several important changes in our concept of gender-specific medicine in the genomic era. It reviews the history of gender-specific medicine, pointing out the changes in our perception of the nature of biological sex and our expanding knowledge of how it affects the phenotype. The old debate about 'nature versus nurture' is now largely resolved; the two are inextricably intertwined as a result of epigenomic regulation of gene expression; many of the resulting phenotypic changes are inherited and affect future generations. More accurate, rapid and cheaper methods of editing genomic composition are implementing a more sophisticated understanding of how genes function and how individual components of the genome might be added or eliminated to maintain health and prevent disease. As Venter predicted, the new discipline of synthetic biology, based on the creation and use of novel 'designer' chromosomes is an inevitable expansion of our ability to decipher the naturally occurring genome and the factors that control its expression. As we move with unexpected and stunning rapidity into our exploration and manipulation of the genetic code, our investigations must acknowledge the solidly established fact that biological sex will have a profound impact on the interventions we have made and will make in the future. Unfortunately, in spite of the recent urging of the National Institutes of Health (NIH) that sex be included as an essential variable in all levels of scientific investigation, genuine issues remain to be resolved before all scientists accept not only the importance of doing this, but also how to implement it. PMID:26586840

  8. Campylobacter fetus Subspecies Contain Conserved Type IV Secretion Systems on Multiple Genomic Islands and Plasmids

    PubMed Central

    van der Graaf–van Bloois, Linda; Miller, William G.; Yee, Emma; Gorkiewicz, Gregor; Forbes, Ken J.; Zomer, Aldert L.; Wagenaar, Jaap A.; Duim, Birgitta

    2016-01-01

    The features contributing to differences in pathogenicity of the Campylobacter fetus subspecies are unknown. Putative factors involved in pathogenesis are located in genomic islands that encode a type IV secretion system (T4SS) and fic domain (filamentation induced by cyclic AMP) proteins, which may disrupt host cell processes. In the genomes of 27 C. fetus strains, three phylogenetically-different T4SS-encoding regions (T4SSs) were identified: one was located in both the chromosome and in extra-chromosomal plasmids; one was located exclusively in the chromosome; and one exclusively in extra-chromosomal plasmids. We observed that C. fetus strains can contain multiple T4SSs and that homologous T4SSs can be present both in chromosomal genomic islands (GI) and on plasmids in the C. fetus strains. The GIs of the chromosomally located T4SS differed mainly by the presence of fic genes, insertion sequence elements and phage-related or hypothetical proteins. Comparative analysis showed that T4SS sequences, inserted in the same locations, were conserved in the studied C. fetus genomes. Using phylogenetic analysis of the T4SSs, it was shown that C. fetus may have acquired the T4SS regions from other Campylobacter species by horizontal gene transfer. The identified T4SSs and fic genes were found in Cff and Cfv strains, although the presence of T4SSs and fic genes were significantly associated with Cfv strains. The T4SSs and fic genes could not be associated with S-layer serotypes or geographical origin of the strains. PMID:27049518

  9. Description of genomic islands associated to the multidrug-resistant Pseudomonas aeruginosa clone ST277.

    PubMed

    Silveira, Melise Chaves; Albano, Rodolpho Mattos; Asensi, Marise Dutra; Carvalho-Assef, Ana Paula D'Alincourt

    2016-08-01

    Multidrug-resistant Pseudomonas aeruginosa clone ST277 is disseminated in Brazil where it is mainly associated with the presence of metallo-β-lactamase SPM-1. Furthermore, it carries the class I integron In163 and a 16S rRNA methylase rmtD that confers aminoglycoside resistance. To analyze the genetic characteristics that might be responsible for the success of this endemic clone, genomes of four P. aeruginosa strains that were isolated in distinct years and in different Brazilian states were sequenced. The strains differed regarding the presence of the genes blaSPM-1 and rmtD. Genomic comparisons that included genomes of other clones that have spread worldwide from this species were also performed. These analyses revealed a 763,863bp region in the P. aeruginosa chromosome that concentrates acquired genetic structures comprising two new genomic islands (PAGI-13 and PAGI-14), a mobile element that could be used for ST277 fingerprinting and a recently reported Integrative and Conjugative Element (ICE) associated to blaSPM-1. The genetic elements rmtD and In163 are inserted in PAGI-13 while PAGI-14 has genes encoding proteins related to type III restriction system and phages. The data reported in this study provide a basis for a clearer understanding of the genetic content of clone ST277 and illustrate the mechanisms that are responsible for the success of these endemic clones. PMID:27108807

  10. Monomeric site-specific nucleases for genome editing

    PubMed Central

    Kleinstiver, Benjamin P.; Wolfs, Jason M.; Kolaczyk, Tomasz; Roberts, Alanna K.; Hu, Sherry X.; Edgell, David R.

    2012-01-01

    Targeted manipulation of complex genomes often requires the introduction of a double-strand break at defined locations by site-specific DNA endonucleases. Here, we describe a monomeric nuclease domain derived from GIY-YIG homing endonucleases for genome-editing applications. Fusion of the GIY-YIG nuclease domain to three-member zinc-finger DNA binding domains generated chimeric GIY-zinc finger endonucleases (GIY-ZFEs). Significantly, the I-TevI-derived fusions (Tev-ZFEs) function in vitro as monomers to introduce a double-strand break, and discriminate in vitro and in bacterial and yeast assays against substrates lacking a preferred 5′-CNNNG-3′ cleavage motif. The Tev-ZFEs function to induce recombination in a yeast-based assay with activity on par with a homodimeric Zif268 zinc-finger nuclease. We also fused the I-TevI nuclease domain to a catalytically inactive LADGLIDADG homing endonuclease (LHE) scaffold. The monomeric Tev-LHEs are active in vivo and similarly discriminate against substrates lacking the 5′-CNNNG-3′ motif. The monomeric Tev-ZFEs and Tev-LHEs are distinct from the FokI-derived zinc-finger nuclease and TAL effector nuclease platforms as the GIY-YIG domain alleviates the requirement to design two nuclease fusions to target a given sequence, highlighting the diversity of nuclease domains with distinctive biochemical properties suitable for genome-editing applications. PMID:22566637

  11. Chromosome region-specific libraries for human genome analysis

    SciTech Connect

    Kao, Fa-Ten.

    1991-01-01

    We have made important progress since the beginning of the current grant year. We have further developed the microdissection and PCR- assisted microcloning techniques using the linker-adaptor method. We have critically evaluated the microdissection libraries constructed by this microtechnology and proved that they are of high quality. We further demonstrated that these microdissection clones are useful in identifying corresponding YAC clones for a thousand-fold expansion of the genomic coverage and for contig construction. We are also improving the technique of cloning the dissected fragments in test tube by the TDT method. We are applying both of these PCR cloning technique to human chromosomes 2 and 5 to construct region-specific libraries for physical mapping purposes of LLNL and LANL. Finally, we are exploring efficient procedures to use unique sequence microclones to isolate cDNA clones from defined chromosomal regions as valuable resources for identifying expressed gene sequences in the human genome. We believe that we are making important progress under the auspices of this DOE human genome program grant and we will continue to make significant contributions in the coming year. 4 refs., 4 figs.

  12. Transferable Antibiotic Resistance Elements in Haemophilus influenzae Share a Common Evolutionary Origin with a Diverse Family of Syntenic Genomic Islands

    PubMed Central

    Mohd-Zain, Zaini; Turner, Sarah L.; Cerdeño-Tárraga, Ana M.; Lilley, Andrew K.; Inzana, Thomas J.; Duncan, A. Jane; Harding, Rosalind M.; Hood, Derek W.; Peto, Timothy E.; Crook, Derrick W.

    2004-01-01

    Transferable antibiotic resistance in Haemophilus influenzae was first detected in the early 1970s. After this, resistance spread rapidly worldwide and was shown to be transferred by a large 40- to 60-kb conjugative element. Bioinformatics analysis of the complete sequence of a typical H. influenzae conjugative resistance element, ICEHin1056, revealed the shared evolutionary origin of this element. ICEHin1056 has homology to 20 contiguous sequences in the National Center for Biotechnology Information database. Systematic comparison of these homologous sequences resulted in identification of a conserved syntenic genomic island consisting of up to 33 core genes in 16 β- and γ-Proteobacteria. These diverse genomic islands shared a common evolutionary origin, insert into tRNA genes, and have diverged widely, with G+C contents ranging from 40 to 70% and amino acid homologies as low as 20 to 25% for shared core genes. These core genes are likely to account for the conjugative transfer of the genomic islands and may even encode autonomous replication. Accessory gene clusters were nestled among the core genes and encode the following diverse major attributes: antibiotic, metal, and antiseptic resistance; degradation of chemicals; type IV secretion systems; two-component signaling systems; Vi antigen capsule synthesis; toxin production; and a wide range of metabolic functions. These related genomic islands include the following well-characterized structures: SPI-7, found in Salmonella enterica serovar Typhi; PAP1 or pKLC102, found in Pseudomonas aeruginosa; and the clc element, found in Pseudomonas sp. strain B13. This is the first report of a diverse family of related syntenic genomic islands with a deep evolutionary origin, and our findings challenge the view that genomic islands consist only of independently evolving modules. PMID:15547285

  13. Homologues of insecticidal toxin complex genes within a genomic island in the marine bacterium Vibrio parahaemolyticus.

    PubMed

    Tang, Kathy F J; Lightner, Donald V

    2014-10-01

    Three insecticidal toxin complex (tc)-like genes were identified in Vibrio parahaemolyticus 13-028/A3, which can cause acute hepatopancreatic necrosis disease in penaeid shrimp. The three genes are a tcdA-like gene (7710 bp), predicted to code for a 284-kDa protein; a tcdB-like gene (4272 bp), predicted to code for a 158-kDa protein; and a tccC3-like gene (2916 bp), predicted to encode a 107-kDa protein. All three predicted proteins contain conserved domains that are characteristic of their respective Tc proteins. By RT-PCR, all three tc-like genes were found to be expressed in this bacterium. Through genome walking and the use of PCR to join contigs surrounding these three genes, a genomic island (87 712 bp, named tc-GIvp) was found on chromosome II localized next to the tRNA Gly. The GC content of this island, which is not found in other Vibrio species, is 40%. The tc-GIvp is characterized to have 60 ORFs encoding regulatory or virulence factors. These include a type 6 secretion protein VgrG, EAL domain-containing proteins, fimbriae subunits and assembly proteins, invasin-like proteins, peptidoglycan-binding proteins, and Tc proteins. The tc-GIvp also contains 21 transposase genes, suggesting that it was acquired through horizontal transfer from other organisms. PMID:25272969

  14. Modules, Theories, or Islands of Expertise? Domain Specificity in Socialization

    ERIC Educational Resources Information Center

    Gelman, Susan A.

    2010-01-01

    The domain-specific approach to socialization processes presented by J. E. Grusec and M. Davidov (this issue) provides a compelling framework for integrating and interpreting a large and disparate body of research findings, and it generates a wealth of testable new hypotheses. At the same time, it introduces core theoretical questions regarding…

  15. Spreading of AbaR-type genomic islands in multidrug resistance Acinetobacter baumannii strains belonging to different clonal complexes.

    PubMed

    Ramírez, María Soledad; Vilacoba, Elisabet; Stietz, María Silvina; Merkier, Andrea Karina; Jeric, Paola; Limansky, Adriana S; Márquez, Carolina; Bello, Helia; Catalano, Mariana; Centrón, Daniela

    2013-07-01

    In order to determine the occurrence of AbaR-type genomic island in multidrug resistant Acinetobacter baumannii (MDRAb) strains circulating in Argentina, Uruguay, and Chile, we studied 51 MDRAb isolates recovered from several hospitals over 30 years. AbaR-type genomic resistance islands were found in 36 MDRAb isolates since 1986 till now. MLST technique allowed us to identify the presence of four different Clonal Complexes (109, 104, 119, 113) among the positive AbaR-type island positive strains. This is the first description of AbaR-type islands in the CC104 and CC113 that are the most widespread Clonal Complexes in Argentina. In addition, PCR mapping exposed different arrays to those previously described, evidencing the plasticity of this island. Our results evidence a widespread distribution of the AbaR-type genomic islands along the time in the MDRAb population, including the epidemic global clone 1 (GC1) as well as different clonal complexes to those already described in the literature. PMID:23397241

  16. The New Macrolide-Lincosamide-Streptogramin B Resistance Gene erm(45) Is Located within a Genomic Island in Staphylococcus fleurettii

    PubMed Central

    Wipf, Juliette R. K.; Schwendener, Sybille; Nielsen, Jesper Boye; Westh, Henrik

    2015-01-01

    Genome alignment of a macrolide, lincosamide, and streptogramin B (MLSB)-resistant Staphylococcus fleurettii strain with an MLSB-susceptible S. fleurettii strain revealed a novel 11,513-bp genomic island carrying the new erythromycin resistance methylase gene erm(45). This gene was shown to confer inducible MLSB resistance when cloned into Staphylococcus aureus. The erm(45)-containing island was integrated into the housekeeping gene guaA in S. fleurettii and was able to form a circular intermediate but was not transmissible to S. aureus. PMID:25779586

  17. Contrasting chromatin organization of CpG islands and exons in the human genome

    PubMed Central

    2010-01-01

    Background CpG islands and nucleosome-free regions are both found in promoters. However, their association has never been studied. On the other hand, DNA methylation is absent in promoters but is enriched in gene bodies. Intragenic nucleosomes and their modifications have been recently associated with RNA splicing. Because the function of intragenic DNA methylation remains unclear, I explored the possibility of its involvement in splicing regulation. Results Here I show that CpG islands were associated not only with methylation-free promoters but also with nucleosome-free promoters. Nucleosome-free regions were observed only in promoters containing a CpG island. However, the DNA sequences of CpG islands predicted the opposite pattern, implying a limitation of sequence programs for the determination of nucleosome occupancy. In contrast to the methylation-and nucleosome-free states of CpG-island promoters, exons were densely methylated at CpGs and packaged into nucleosomes. Exon-enrichment of DNA methylation was specifically found in spliced exons and in exons with weak splice sites. The enrichment patterns were less pronounced in initial exons and in non-coding exons, potentially reflecting a lower need for their splicing. I also found that nucleosomes, DNA methylation, and H3K36me3 marked the exons of transcripts with low, medium, and high gene expression levels, respectively. Conclusions Human promoters containing a CpG island tend to remain nucleosome-free as well as methylation-free. In contrast, exons demonstrate a high degree of methylation and nucleosome occupancy. Exonic DNA methylation seems to function together with exonic nucleosomes and H3K36me3 for the proper splicing of transcripts with different expression levels. PMID:20602769

  18. Genome-scale detection of hypermethylated CpG islands in circulating cell-free DNA of hepatocellular carcinoma patients

    PubMed Central

    Wen, Lu; Li, Jingyi; Guo, Huahu; Liu, Xiaomeng; Zheng, Shengmin; Zhang, Dafang; Zhu, Weihua; Qu, Jianhui; Guo, Limin; Du, Dexiao; Jin, Xiao; Zhang, Yuhao; Gao, Yun; Shen, Jie; Ge, Hao; Tang, Fuchou; Huang, Yanyi; Peng, Jirun

    2015-01-01

    Despite advances in DNA methylome analyses of cells and tissues, current techniques for genome-scale profiling of DNA methylation in circulating cell-free DNA (ccfDNA) remain limited. Here we describe a methylated CpG tandems amplification and sequencing (MCTA-Seq) method that can detect thousands of hypermethylated CpG islands simultaneously in ccfDNA. This highly sensitive technique can work with genomic DNA as little as 7.5 pg, which is equivalent to 2.5 copies of the haploid genome. We have analyzed a cohort of tissue and plasma samples (n = 151) of hepatocellular carcinoma (HCC) patients and control subjects, identifying dozens of high-performance markers in blood for detecting small HCC (≤ 3 cm). Among these markers, 4 (RGS10, ST8SIA6, RUNX2 and VIM) are mostly specific for cancer detection, while the other 15, classified as a novel set, are already hypermethylated in the normal liver tissues. Two corresponding classifiers have been established, combination of which achieves a sensitivity of 94% with a specificity of 89% for the plasma samples from HCC patients (n = 36) and control subjects including cirrhosis patients (n = 17) and normal individuals (n = 38). Notably, all 15 alpha-fetoprotein-negative HCC patients were successfully identified. Comparison between matched plasma and tissue samples indicates that both the cancer and noncancerous tissues contribute to elevation of the methylation markers in plasma. MCTA-Seq will facilitate the development of ccfDNA methylation biomarkers and contribute to the improvement of cancer detection in a clinical setting. PMID:26516143

  19. Genome-scale detection of hypermethylated CpG islands in circulating cell-free DNA of hepatocellular carcinoma patients.

    PubMed

    Wen, Lu; Li, Jingyi; Guo, Huahu; Liu, Xiaomeng; Zheng, Shengmin; Zhang, Dafang; Zhu, Weihua; Qu, Jianhui; Guo, Limin; Du, Dexiao; Jin, Xiao; Zhang, Yuhao; Gao, Yun; Shen, Jie; Ge, Hao; Tang, Fuchou; Huang, Yanyi; Peng, Jirun

    2015-11-01

    Despite advances in DNA methylome analyses of cells and tissues, current techniques for genome-scale profiling of DNA methylation in circulating cell-free DNA (ccfDNA) remain limited. Here we describe a methylated CpG tandems amplification and sequencing (MCTA-Seq) method that can detect thousands of hypermethylated CpG islands simultaneously in ccfDNA. This highly sensitive technique can work with genomic DNA as little as 7.5 pg, which is equivalent to 2.5 copies of the haploid genome. We have analyzed a cohort of tissue and plasma samples (n = 151) of hepatocellular carcinoma (HCC) patients and control subjects, identifying dozens of high-performance markers in blood for detecting small HCC (≤ 3 cm). Among these markers, 4 (RGS10, ST8SIA6, RUNX2 and VIM) are mostly specific for cancer detection, while the other 15, classified as a novel set, are already hypermethylated in the normal liver tissues. Two corresponding classifiers have been established, combination of which achieves a sensitivity of 94% with a specificity of 89% for the plasma samples from HCC patients (n = 36) and control subjects including cirrhosis patients (n = 17) and normal individuals (n = 38). Notably, all 15 alpha-fetoprotein-negative HCC patients were successfully identified. Comparison between matched plasma and tissue samples indicates that both the cancer and noncancerous tissues contribute to elevation of the methylation markers in plasma. MCTA-Seq will facilitate the development of ccfDNA methylation biomarkers and contribute to the improvement of cancer detection in a clinical setting. PMID:26516143

  20. Site-Specific Genome Engineering in Human Pluripotent Stem Cells.

    PubMed

    Merkert, Sylvia; Martin, Ulrich

    2016-01-01

    The possibility to generate patient-specific induced pluripotent stem cells (iPSCs) offers an unprecedented potential of applications in clinical therapy and medical research. Human iPSCs and their differentiated derivatives are tools for diseases modelling, drug discovery, safety pharmacology, and toxicology. Moreover, they allow for the engineering of bioartificial tissue and are promising candidates for cellular therapies. For many of these applications, the ability to genetically modify pluripotent stem cells (PSCs) is indispensable, but efficient site-specific and safe technologies for genetic engineering of PSCs were developed only recently. By now, customized engineered nucleases provide excellent tools for targeted genome editing, opening new perspectives for biomedical research and cellular therapies. PMID:27347935

  1. Site-Specific Genome Engineering in Human Pluripotent Stem Cells

    PubMed Central

    Merkert, Sylvia; Martin, Ulrich

    2016-01-01

    The possibility to generate patient-specific induced pluripotent stem cells (iPSCs) offers an unprecedented potential of applications in clinical therapy and medical research. Human iPSCs and their differentiated derivatives are tools for diseases modelling, drug discovery, safety pharmacology, and toxicology. Moreover, they allow for the engineering of bioartificial tissue and are promising candidates for cellular therapies. For many of these applications, the ability to genetically modify pluripotent stem cells (PSCs) is indispensable, but efficient site-specific and safe technologies for genetic engineering of PSCs were developed only recently. By now, customized engineered nucleases provide excellent tools for targeted genome editing, opening new perspectives for biomedical research and cellular therapies. PMID:27347935

  2. Genetic Structure and Distribution of the Colibactin Genomic Island among Members of the Family Enterobacteriaceae▿ †

    PubMed Central

    Putze, Johannes; Hennequin, Claire; Nougayrède, Jean-Philippe; Zhang, Wenlan; Homburg, Stefan; Karch, Helge; Bringer, Marie-Agnés; Fayolle, Corinne; Carniel, Elisabeth; Rabsch, Wolfgang; Oelschlaeger, Tobias A.; Oswald, Eric; Forestier, Christiane; Hacker, Jörg; Dobrindt, Ulrich

    2009-01-01

    A genomic island encoding the biosynthesis and secretion pathway of putative hybrid nonribosomal peptide-polyketide colibactin has been recently described in Escherichia coli. Colibactin acts as a cyclomodulin and blocks the eukaryotic cell cycle. The origin and prevalence of the colibactin island among enterobacteria are unknown. We therefore screened 1,565 isolates of different genera and species related to the Enterobacteriaceae by PCR for the presence of this DNA element. The island was detected not only in E. coli but also in Klebsiella pneumoniae, Enterobacter aerogenes, and Citrobacter koseri isolates. It was highly conserved among these species and was always associated with the yersiniabactin determinant. Structural variations between individual strains were only observed in an intergenic region containing variable numbers of tandem repeats. In E. coli, the colibactin island was usually restricted to isolates of phylogenetic group B2 and inserted at the asnW tRNA locus. Interestingly, in K. pneumoniae, E. aerogenes, C. koseri, and three E. coli strains of phylogenetic group B1, the functional colibactin determinant was associated with a genetic element similar to the integrative and conjugative elements ICEEc1 and ICEKp1 and to several enterobacterial plasmids. Different asn tRNA genes served as chromosomal insertion sites of the ICE-associated colibactin determinant: asnU in the three E. coli strains of ECOR group B1, and different asn tRNA loci in K. pneumoniae. The detection of the colibactin genes associated with an ICE-like element in several enterobacteria provides new insights into the spread of this gene cluster and its putative mode of transfer. Our results shed light on the mechanisms of genetic exchange between members of the family Enterobacteriaceae. PMID:19720753

  3. Characterization of Genomic Island 3 and Genetic Variability of Chilean Field Strains of Brucella abortus▿

    PubMed Central

    Céspedes, Sandra; Salgado, Paulina; Valenzuela, Patricio; Vidal, Roberto; Oñate, Angel A.

    2011-01-01

    One of the capabilities developed by bacteria is the ability to gain large fragments of DNA from other bacteria or to lose portions of their own genomes. Among these exchangeable fragments are the genomic islands (GIs). Nine GIs have been identified in Brucella, and genomic island 3 (GI-3) is shared by two pathogenic species, B. melitensis and B. abortus. GI-3 encodes mostly unknown proteins. One of the aims of this study was to perform pulsed-field gel electrophoresis (PFGE) on field isolates of B. abortus from Chile to determine whether these isolates are clonally related. Furthermore, we focused on the characterization of GI-3, studying its organization and the genetic conservation of the GI-3 sequence using techniques such as tiling-path PCR (TP-PCR) and restriction fragment length polymorphism-PCR (RFLP-PCR). Our results, after PFGE was performed on 69 field isolates of B. abortus from Chile, showed that the strains were genetically homogeneous. To increase the power of genetic discrimination among these strains, we used multiple locus variable-number tandem-repeat (VNTR) analysis with 16 loci (MLVA-16). The results obtained by MLVA-16 showed that the strains of B. abortus were genetically heterogeneous and that most of them clustered according to their geographic origin. Of the genetic loci studied, panel 2B was the one describing the highest diversity in the analysis, as well as locus Bruce19 in panel 2A. In relation to the study of GI-3, our experimental analysis by TP-PCR identified and confirmed that GI-3 is present in all wild strains of B. abortus, demonstrating the high stability of gene cluster GI-3 in Chilean field strains. PMID:21543580

  4. Lineage-specific genomics: Frequent birth and death in the human genome: The human genome contains many lineage-specific elements created by both sequence and functional turnover.

    PubMed

    Young, Robert S

    2016-07-01

    Frequent evolutionary birth and death events have created a large quantity of biologically important, lineage-specific DNA within mammalian genomes. The birth and death of DNA sequences is so frequent that the total number of these insertions and deletions in the human population remains unknown, although there are differences between these groups, e.g. transposable elements contribute predominantly to sequence insertion. Functional turnover - where the activity of a locus is specific to one lineage, but the underlying DNA remains conserved - can also drive birth and death. However, this does not appear to be a major driver of divergent transcriptional regulation. Both sequence and functional turnover have contributed to the birth and death of thousands of functional promoters in the human and mouse genomes. These findings reveal the pervasive nature of evolutionary birth and death and suggest that lineage-specific regions may play an important but previously underappreciated role in human biology and disease. PMID:27231054

  5. Whole-genome sequence of Sunxiuqinia dokdonensis DH1(T), isolated from deep sub-seafloor sediment in Dokdo Island.

    PubMed

    Lim, Sooyeon; Chang, Dong-Ho; Kim, Byoung-Chan

    2016-09-01

    Sunxiuqinia dokdonensis DH1(T) was isolated from deep sub-seafloor sediment at a depth of 900 m below the seafloor off Seo-do (the west part of Dokdo Island) in the East Sea of the Republic of Korea and subjected to whole genome sequencing on HiSeq platform and annotated on RAST. The nucleotide sequence of this genome was deposited into DDBJ/EMBL/GenBank under the accession LGIA00000000. PMID:27437183

  6. Genome sequencing of Metrosideros polymorpha (Myrtaceae), a dominant species in various habitats in the Hawaiian Islands with remarkable phenotypic variations.

    PubMed

    Izuno, Ayako; Hatakeyama, Masaomi; Nishiyama, Tomoaki; Tamaki, Ichiro; Shimizu-Inatsugi, Rie; Sasaki, Ryuta; Shimizu, Kentaro K; Isagi, Yuji

    2016-07-01

    Whole genome sequences, which can be provided even for non-model organisms owing to high-throughput sequencers, are valuable in enhancing the understanding of adaptive evolution. Metrosideros polymorpha, a tree species endemic to the Hawaiian Islands, occupies a wide range of ecological habitats and shows remarkable polymorphism in phenotypes among/within populations. The biological functions of genetic variations observed within this species could provide significant insights into the adaptive radiation found in a single species. Here de novo assembled genome sequences of M. polymorpha are presented to reveal basic genomic parameters about this species and to develop our knowledge of ecological divergences. The assembly yielded 304-Mbp genome sequences, half of which were covered by 19 scaffolds with >5 Mbp, and contained 30 K protein-coding genes. Demographic history inferred from the genome-wide heterozygosity indicated that this species experienced a dramatic rise and fall in the effective population size, possibly owing to past geographic or climatic changes in the Hawaiian Islands. This M. polymorpha genome assembly represents a high-quality genome resource useful for future functional analyses of both intra- and interspecies genetic variations or comparative genomics. PMID:27052216

  7. GSP: A web-based platform for designing genome-specific primers in polyploids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sequences among subgenomes in a polyploid species have high similarity. This makes difficult to design genome-specific primers for sequence analysis. We present a web-based platform named GSP for designing genome-specific primers to distinguish subgenome sequences in the polyploid genome backgr...

  8. Draft Genome of Shewanella frigidimarina Ag06-30, a Marine Bacterium Isolated from Potter Peninsula, King George Island, Antarctica

    PubMed Central

    Parmeciano Di Noto, Gisela; Vázquez, Susana C.; MacCormack, Walter P.; Iriarte, Andrés

    2016-01-01

    We present the draft genome of Shewanella frigidimarina Ag06-30, a marine bacterium from King George Island, Antarctica, which encodes the carbapenemase SFP-1. The assembly contains 4,799,218 bp (G+C content 41.24%). This strain harbors several mobile genetic elements that provide insight into lateral gene transfer and bacterial plasticity and evolution. PMID:27151790

  9. Draft Genome of Shewanella frigidimarina Ag06-30, a Marine Bacterium Isolated from Potter Peninsula, King George Island, Antarctica.

    PubMed

    Parmeciano Di Noto, Gisela; Vázquez, Susana C; MacCormack, Walter P; Iriarte, Andrés; Quiroga, Cecilia

    2016-01-01

    We present the draft genome of Shewanella frigidimarina Ag06-30, a marine bacterium from King George Island, Antarctica, which encodes the carbapenemase SFP-1. The assembly contains 4,799,218 bp (G+C content 41.24%). This strain harbors several mobile genetic elements that provide insight into lateral gene transfer and bacterial plasticity and evolution. PMID:27151790

  10. A genomic island provides Acidithiobacillus ferrooxidans ATCC 53993 additional copper resistance: a possible competitive advantage.

    PubMed

    Orellana, Luis H; Jerez, Carlos A

    2011-11-01

    There is great interest in understanding how extremophilic biomining bacteria adapt to exceptionally high copper concentrations in their environment. Acidithiobacillus ferrooxidans ATCC 53993 genome possesses the same copper resistance determinants as strain ATCC 23270. However, the former strain contains in its genome a 160-kb genomic island (GI), which is absent in ATCC 23270. This GI contains, amongst other genes, several genes coding for an additional putative copper ATPase and a Cus system. A. ferrooxidans ATCC 53993 showed a much higher resistance to CuSO(4) (>100 mM) than that of strain ATCC 23270 (<25 mM). When a similar number of bacteria from each strain were mixed and allowed to grow in the absence of copper, their respective final numbers remained approximately equal. However, in the presence of copper, there was a clear overgrowth of strain ATCC 53993 compared to ATCC 23270. This behavior is most likely explained by the presence of the additional copper-resistance genes in the GI of strain ATCC 53993. As determined by qRT-PCR, it was demonstrated that these genes are upregulated when A. ferrooxidans ATCC 53993 is grown in the presence of copper and were shown to be functional when expressed in copper-sensitive Escherichia coli mutants. Thus, the reason for resistance to copper of two strains of the same acidophilic microorganism could be determined by slight differences in their genomes, which may not only lead to changes in their capacities to adapt to their environment, but may also help to select the more fit microorganisms for industrial biomining operations. PMID:21789491

  11. Genome-Wide Specific Selection in Three Domestic Sheep Breeds

    PubMed Central

    Cao, Jiaxve; Wu, Mingming; Ma, Xiaomeng; Liu, Zhen; Liu, Ruizao; Zhao, Fuping; Wei, Caihong; Du, Lixin

    2015-01-01

    Background Commercial sheep raised for mutton grow faster than traditional Chinese sheep breeds. Here, we aimed to evaluate genetic selection among three different types of sheep breed: two well-known commercial mutton breeds and one indigenous Chinese breed. Results We first combined locus-specific branch lengths and di statistical methods to detect candidate regions targeted by selection in the three different populations. The results showed that the genetic distances reached at least medium divergence for each pairwise combination. We found these two methods were highly correlated, and identified many growth-related candidate genes undergoing artificial selection. For production traits, APOBR and FTO are associated with body mass index. For meat traits, ALDOA, STK32B and FAM190A are related to marbling. For reproduction traits, CCNB2 and SLC8A3 affect oocyte development. We also found two well-known genes, GHR (which affects meat production and quality) and EDAR (associated with hair thickness) were associated with German mutton merino sheep. Furthermore, four genes (POL, RPL7, MSL1 and SHISA9) were associated with pre-weaning gain in our previous genome-wide association study. Conclusions Our results indicated that combine locus-specific branch lengths and di statistical approaches can reduce the searching ranges for specific selection. And we got many credible candidate genes which not only confirm the results of previous reports, but also provide a suite of novel candidate genes in defined breeds to guide hybridization breeding. PMID:26083354

  12. Genomic diversity and differentiation of a managed island wild boar population.

    PubMed

    Iacolina, L; Scandura, M; Goedbloed, D J; Alexandri, P; Crooijmans, R P M A; Larson, G; Archibald, A; Apollonio, M; Schook, L B; Groenen, M A M; Megens, H-J

    2016-01-01

    The evolution of island populations in natural systems is driven by local adaptation and genetic drift. However, evolutionary pathways may be altered by humans in several ways. The wild boar (WB) (Sus scrofa) is an iconic game species occurring in several islands, where it has been strongly managed since prehistoric times. We examined genomic diversity at 49 803 single-nucleotide polymorphisms in 99 Sardinian WBs and compared them with 196 wild specimens from mainland Europe and 105 domestic pigs (DP; 11 breeds). High levels of genetic variation were observed in Sardinia (80.9% of the total number of polymorphisms), which can be only in part associated to recent genetic introgression. Both Principal Component Analysis and Bayesian clustering approach revealed that the Sardinian WB population is highly differentiated from the other European populations (FST=0.126-0.138), and from DP (FST=0.169). Such evidences were mostly unaffected by an uneven sample size, although clustering results in reference populations changed when the number of individuals was standardized. Runs of homozygosity (ROHs) pattern and distribution in Sardinian WB are consistent with a past expansion following a bottleneck (small ROHs) and recent population substructuring (highly homozygous individuals). The observed effect of a non-random selection of Sardinian individuals on diversity, FST and ROH estimates, stressed the importance of sampling design in the study of structured or introgressed populations. Our results support the heterogeneity and distinctiveness of the Sardinian population and prompt further investigations on its origins and conservation status. PMID:26243137

  13. Genome sequence of Bradyrhizobium sp. WSM1253; a microsymbiont of Ornithopus compressus from the Greek Island of Sifnos

    SciTech Connect

    Tiwari, Ravi; Howieson, John; Yates, Ron; Tian, Rui; Held, Britanny; Tapia, Roxanne; Han, Cliff; Seshadri, Rekha; Reddy, T. B. K.; Huntemann, Marcel; Pati, Amrita; Woyke, Tanja; Markowitz, Victor; Ivanova, Natalia; Kyrpides, Nikos; Reeve, Wayne

    2015-11-30

    Bradyrhizobium sp. WSM1253 is a novel N2-fixing bacterium isolated from a root nodule of the herbaceous annual legume Ornithopus compressus that was growing on the Greek Island of Sifnos. WSM1253 emerged as a strain of interest in an Australian program that was selecting inoculant quality bradyrhizobial strains for inoculation of Mediterranean species of lupins ( Lupinus angustifolius, L. princei, L. atlanticus, L. pilosus ). In this report we describe, for the first time, the genome sequence information and annotation of this legume microsymbiont. The 8,719,808 bp genome has a G + C content of 63.09 % with 71 contigs arranged into two scaffolds. The assembled genome contains 8,432 protein-coding genes, 66 RNA genes and a single rRNA operon. In conclusion, this improved-high-quality draft rhizobial genome is one of 20 sequenced through a DOE Joint Genome Institute 2010 Community Sequencing Project.

  14. Genome sequence of Bradyrhizobium sp. WSM1253; a microsymbiont of Ornithopus compressus from the Greek Island of Sifnos

    DOE PAGESBeta

    Tiwari, Ravi; Howieson, John; Yates, Ron; Tian, Rui; Held, Britanny; Tapia, Roxanne; Han, Cliff; Seshadri, Rekha; Reddy, T. B. K.; Huntemann, Marcel; et al

    2015-11-30

    Bradyrhizobium sp. WSM1253 is a novel N2-fixing bacterium isolated from a root nodule of the herbaceous annual legume Ornithopus compressus that was growing on the Greek Island of Sifnos. WSM1253 emerged as a strain of interest in an Australian program that was selecting inoculant quality bradyrhizobial strains for inoculation of Mediterranean species of lupins ( Lupinus angustifolius, L. princei, L. atlanticus, L. pilosus ). In this report we describe, for the first time, the genome sequence information and annotation of this legume microsymbiont. The 8,719,808 bp genome has a G + C content of 63.09 % with 71 contigs arrangedmore » into two scaffolds. The assembled genome contains 8,432 protein-coding genes, 66 RNA genes and a single rRNA operon. In conclusion, this improved-high-quality draft rhizobial genome is one of 20 sequenced through a DOE Joint Genome Institute 2010 Community Sequencing Project.« less

  15. Complete chloroplast genome of Prunus yedoensis Matsum.(Rosaceae), wild and endemic flowering cherry on Jeju Island, Korea.

    PubMed

    Cho, Myong-Suk; Hyun Cho, Chung; Yeon Kim, Su; Su Yoon, Hwan; Kim, Seung-Chul

    2016-09-01

    The complete chloroplast genome sequences of the wild flowering cherry, Prunus yedoensis Matsum., which is native and endemic to Jeju Island, Korea, is reported in this study. The genome size is 157 786 bp in length with 36.7% GC content, which is composed of LSC region of 85 908 bp, SSC region of 19 120 bp and two IR copies of 26 379 bp each. The cp genome contains 131 genes, including 86 coding genes, 8 rRNA genes and 37 tRNA genes. The maximum likelihood analysis was conducted to verify a phylogenetic position of the newly sequenced cp genome of P. yedoensis using 11 representatives of complete cp genome sequences within the family Rosaceae. The genus Prunus exhibited monophyly and the result of the phylogenetic relationship agreed with the previous phylogenetic analyses within Rosaceae. PMID:26329800

  16. Genomic islands 1 and 2 play key roles in the evolution of extensively drug-resistant ST235 isolates of Pseudomonas aeruginosa

    PubMed Central

    Scott, Martin; Worden, Paul; Huntington, Peter; Hudson, Bernard; Karagiannis, Thomas; Charles, Ian G.; Djordjevic, Steven P.

    2016-01-01

    Pseudomonas aeruginosa are noscomially acquired, opportunistic pathogens that pose a major threat to the health of burns patients and the immunocompromised. We sequenced the genomes of P. aeruginosa isolates RNS_PA1, RNS_PA46 and RNS_PAE05, which displayed resistance to almost all frontline antibiotics, including gentamicin, piperacillin, timentin, meropenem, ceftazidime and colistin. We provide evidence that the isolates are representatives of P. aeruginosa sequence type (ST) 235 and carry Tn6162 and Tn6163 in genomic islands 1 (GI1) and 2 (GI2), respectively. GI1 disrupts the endA gene at precisely the same chromosomal location as in P. aeruginosa strain VR-143/97, of unknown ST, creating an identical CA direct repeat. The class 1 integron associated with Tn6163 in GI2 carries a blaGES-5–aacA4–gcuE15–aphA15 cassette array conferring resistance to carbapenems and aminoglycosides. GI2 is flanked by a 12 nt direct repeat motif, abuts a tRNA-gly gene, and encodes proteins with putative roles in integration, conjugative transfer as well as integrative conjugative element-specific proteins. This suggests that GI2 may have evolved from a novel integrative conjugative element. Our data provide further support to the hypothesis that genomic islands play an important role in de novo evolution of multiple antibiotic resistance phenotypes in P. aeruginosa. PMID:26962050

  17. Genomic islands 1 and 2 play key roles in the evolution of extensively drug-resistant ST235 isolates of Pseudomonas aeruginosa.

    PubMed

    Roy Chowdhury, Piklu; Scott, Martin; Worden, Paul; Huntington, Peter; Hudson, Bernard; Karagiannis, Thomas; Charles, Ian G; Djordjevic, Steven P

    2016-03-01

    Pseudomonas aeruginosa are noscomially acquired, opportunistic pathogens that pose a major threat to the health of burns patients and the immunocompromised. We sequenced the genomes of P. aeruginosa isolates RNS_PA1, RNS_PA46 and RNS_PAE05, which displayed resistance to almost all frontline antibiotics, including gentamicin, piperacillin, timentin, meropenem, ceftazidime and colistin. We provide evidence that the isolates are representatives of P. aeruginosa sequence type (ST) 235 and carry Tn6162 and Tn6163 in genomic islands 1 (GI1) and 2 (GI2), respectively. GI1 disrupts the endA gene at precisely the same chromosomal location as in P. aeruginosa strain VR-143/97, of unknown ST, creating an identical CA direct repeat. The class 1 integron associated with Tn6163 in GI2 carries a blaGES-5-aacA4-gcuE15-aphA15 cassette array conferring resistance to carbapenems and aminoglycosides. GI2 is flanked by a 12 nt direct repeat motif, abuts a tRNA-gly gene, and encodes proteins with putative roles in integration, conjugative transfer as well as integrative conjugative element-specific proteins. This suggests that GI2 may have evolved from a novel integrative conjugative element. Our data provide further support to the hypothesis that genomic islands play an important role in de novo evolution of multiple antibiotic resistance phenotypes in P. aeruginosa. PMID:26962050

  18. Orphan CpG islands identify numerous conserved promoters in the mammalian genome.

    PubMed

    Illingworth, Robert S; Gruenewald-Schneider, Ulrike; Webb, Shaun; Kerr, Alastair R W; James, Keith D; Turner, Daniel J; Smith, Colin; Harrison, David J; Andrews, Robert; Bird, Adrian P

    2010-09-01

    CpG islands (CGIs) are vertebrate genomic landmarks that encompass the promoters of most genes and often lack DNA methylation. Querying their apparent importance, the number of CGIs is reported to vary widely in different species and many do not co-localise with annotated promoters. We set out to quantify the number of CGIs in mouse and human genomes using CXXC Affinity Purification plus deep sequencing (CAP-seq). We also asked whether CGIs not associated with annotated transcripts share properties with those at known promoters. We found that, contrary to previous estimates, CGI abundance in humans and mice is very similar and many are at conserved locations relative to genes. In each species CpG density correlates positively with the degree of H3K4 trimethylation, supporting the hypothesis that these two properties are mechanistically interdependent. Approximately half of mammalian CGIs (>10,000) are "orphans" that are not associated with annotated promoters. Many orphan CGIs show evidence of transcriptional initiation and dynamic expression during development. Unlike CGIs at known promoters, orphan CGIs are frequently subject to DNA methylation during development, and this is accompanied by loss of their active promoter features. In colorectal tumors, however, orphan CGIs are not preferentially methylated, suggesting that cancer does not recapitulate a developmental program. Human and mouse genomes have similar numbers of CGIs, over half of which are remote from known promoters. Orphan CGIs nevertheless have the characteristics of functional promoters, though they are much more likely than promoter CGIs to become methylated during development and hence lose these properties. The data indicate that orphan CGIs correspond to previously undetected promoters whose transcriptional activity may play a functional role during development. PMID:20885785

  19. A 38-kilobase pathogenicity island specific for Mycobacterium avium subsp. paratuberculosis encodes cell surface proteins expressed in the host.

    PubMed

    Stratmann, Janin; Strommenger, Birgit; Goethe, Ralph; Dohmann, Karen; Gerlach, Gerald-F; Stevenson, Karen; Li, Ling-Ling; Zhang, Qing; Kapur, Vivek; Bull, Tim J

    2004-03-01

    We have used representational difference analysis to identify a novel Mycobacterium avium subsp. paratuberculosis-specific ABC transporter operon (mpt), which comprises six open reading frames designated mptA to -F and is immediately preceded by two putative Fur boxes. Functional genomics revealed that the mpt operon is flanked on one end by a fep cluster encoding proteins involved in the uptake of Fe(3+) and on the other end by a sid cluster encoding non-ribosome-dependent heterocyclic siderophore synthases. Together these genes form a 38-kb M. avium subsp. paratuberculosis-specific locus flanked by an insertion sequence similar to IS1110. Expression studies using Western blot analyses showed that MptC is present in the envelope fraction of M. avium subsp. paratuberculosis. The MptD protein was shown to be surface exposed, using a specific phage (fMptD) isolated from a phage-peptide library, by differential screening of Mycobacterium smegmatis transformants. The phage fMptD-derived peptide could be used in a peptide-mediated capture PCR with milk from infected dairy herds, thereby showing surface-exposed expression of the MptD protein in the host. Together, these data suggest that the 38-kb locus constitutes an M. avium subsp. paratuberculosis pathogenicity island. PMID:14977927

  20. Developmentally programmed 3' CpG island methylation confers tissue- and cell-type-specific transcriptional activation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During development, a small but significant number of CpG islands (CGIs) becomes methylated. The timing of developmentally programmed CGI methylation and associated mechanisms of transcriptional regulation during cellular differentiation, however, remain poorly characterized. Here we used genome-wid...

  1. Mammalian-specific genomic functions: Newly acquired traits generated by genomic imprinting and LTR retrotransposon-derived genes in mammals

    PubMed Central

    KANEKO-ISHINO, Tomoko; ISHINO, Fumitoshi

    2015-01-01

    Mammals, including human beings, have evolved a unique viviparous reproductive system and a highly developed central nervous system. How did these unique characteristics emerge in mammalian evolution, and what kinds of changes did occur in the mammalian genomes as evolution proceeded? A key conceptual term in approaching these issues is “mammalian-specific genomic functions”, a concept covering both mammalian-specific epigenetics and genetics. Genomic imprinting and LTR retrotransposon-derived genes are reviewed as the representative, mammalian-specific genomic functions that are essential not only for the current mammalian developmental system, but also mammalian evolution itself. First, the essential roles of genomic imprinting in mammalian development, especially related to viviparous reproduction via placental function, as well as the emergence of genomic imprinting in mammalian evolution, are discussed. Second, we introduce the novel concept of “mammalian-specific traits generated by mammalian-specific genes from LTR retrotransposons”, based on the finding that LTR retrotransposons served as a critical driving force in the mammalian evolution via generating mammalian-specific genes. PMID:26666304

  2. Race to the Top. Rhode Island Report. Year 2: School Year 2011-2012. [State-Specific Summary Report

    ERIC Educational Resources Information Center

    US Department of Education, 2013

    2013-01-01

    This State-specific summary report serves as an assessment of Rhode Island's Year 2 Race to the Top implementation, highlighting successes and accomplishments, identifying challenges, and providing lessons learned from implementation from approximately September 2011 through September 2012. In Year 2, Rhode Island Department of Education (RIDE)…

  3. Race to the Top. Rhode Island Report. Year 1: School Year 2010-2011. [State-Specific Summary Report

    ERIC Educational Resources Information Center

    US Department of Education, 2012

    2012-01-01

    This State-specific summary report serves as an assessment of Rhode Island's Year 1 Race to the Top implementation, highlighting successes and accomplishments, identifying challenges, and providing lessons learned from implementation to date. According to the State, in Year 1, Rhode Island greatly increased statewide capacity to begin…

  4. Genomic islands of divergence and their consequences for the resolution of spatial structure in an exploited marine fish

    PubMed Central

    Bradbury, Ian R; Hubert, Sophie; Higgins, Brent; Bowman, Sharen; Borza, Tudor; Paterson, Ian G; Snelgrove, Paul V R; Morris, Corey J; Gregory, Robert S; Hardie, David; Hutchings, Jeffrey A; Ruzzante, Daniel E; Taggart, Christopher T; Bentzen, Paul

    2013-01-01

    As populations diverge, genomic regions associated with adaptation display elevated differentiation. These genomic islands of adaptive divergence can inform conservation efforts in exploited species, by refining the delineation of management units, and providing genomic tools for more precise and effective population monitoring and the successful assignment of individuals and products. We explored heterogeneity in genomic divergence and its impact on the resolution of spatial population structure in exploited populations of Atlantic cod, Gadus morhua, using genome wide expressed sequence derived single nucleotide polymorphisms in 466 individuals sampled across the range. Outlier tests identified elevated divergence at 5.2% of SNPs, consistent with directional selection in one-third of linkage groups. Genomic regions of elevated divergence ranged in size from a single position to several cM. Structuring at neutral loci was associated with geographic features, whereas outlier SNPs revealed genetic discontinuities in both the eastern and western Atlantic. This fine-scale geographic differentiation enhanced assignment to region of origin, and through the identification of adaptive diversity, fundamentally changes how these populations should be conserved. This work demonstrates the utility of genome scans for adaptive divergence in the delineation of stock structure, the traceability of individuals and products, and ultimately a role for population genomics in fisheries conservation. PMID:23745137

  5. Genomic islands of divergence and their consequences for the resolution of spatial structure in an exploited marine fish.

    PubMed

    Bradbury, Ian R; Hubert, Sophie; Higgins, Brent; Bowman, Sharen; Borza, Tudor; Paterson, Ian G; Snelgrove, Paul V R; Morris, Corey J; Gregory, Robert S; Hardie, David; Hutchings, Jeffrey A; Ruzzante, Daniel E; Taggart, Christopher T; Bentzen, Paul

    2013-04-01

    As populations diverge, genomic regions associated with adaptation display elevated differentiation. These genomic islands of adaptive divergence can inform conservation efforts in exploited species, by refining the delineation of management units, and providing genomic tools for more precise and effective population monitoring and the successful assignment of individuals and products. We explored heterogeneity in genomic divergence and its impact on the resolution of spatial population structure in exploited populations of Atlantic cod, Gadus morhua, using genome wide expressed sequence derived single nucleotide polymorphisms in 466 individuals sampled across the range. Outlier tests identified elevated divergence at 5.2% of SNPs, consistent with directional selection in one-third of linkage groups. Genomic regions of elevated divergence ranged in size from a single position to several cM. Structuring at neutral loci was associated with geographic features, whereas outlier SNPs revealed genetic discontinuities in both the eastern and western Atlantic. This fine-scale geographic differentiation enhanced assignment to region of origin, and through the identification of adaptive diversity, fundamentally changes how these populations should be conserved. This work demonstrates the utility of genome scans for adaptive divergence in the delineation of stock structure, the traceability of individuals and products, and ultimately a role for population genomics in fisheries conservation. PMID:23745137

  6. Genomic diversity and differentiation of a managed island wild boar population

    PubMed Central

    Iacolina, L; Scandura, M; Goedbloed, D J; Alexandri, P; Crooijmans, R P M A; Larson, G; Archibald, A; Apollonio, M; Schook, L B; Groenen, M A M; Megens, H-J

    2016-01-01

    The evolution of island populations in natural systems is driven by local adaptation and genetic drift. However, evolutionary pathways may be altered by humans in several ways. The wild boar (WB) (Sus scrofa) is an iconic game species occurring in several islands, where it has been strongly managed since prehistoric times. We examined genomic diversity at 49 803 single-nucleotide polymorphisms in 99 Sardinian WBs and compared them with 196 wild specimens from mainland Europe and 105 domestic pigs (DP; 11 breeds). High levels of genetic variation were observed in Sardinia (80.9% of the total number of polymorphisms), which can be only in part associated to recent genetic introgression. Both Principal Component Analysis and Bayesian clustering approach revealed that the Sardinian WB population is highly differentiated from the other European populations (FST=0.126–0.138), and from DP (FST=0.169). Such evidences were mostly unaffected by an uneven sample size, although clustering results in reference populations changed when the number of individuals was standardized. Runs of homozygosity (ROHs) pattern and distribution in Sardinian WB are consistent with a past expansion following a bottleneck (small ROHs) and recent population substructuring (highly homozygous individuals). The observed effect of a non-random selection of Sardinian individuals on diversity, FST and ROH estimates, stressed the importance of sampling design in the study of structured or introgressed populations. Our results support the heterogeneity and distinctiveness of the Sardinian population and prompt further investigations on its origins and conservation status. PMID:26243137

  7. Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501

    PubMed Central

    Yan, Yongliang; Yang, Jian; Dou, Yuetan; Chen, Ming; Ping, Shuzhen; Peng, Junping; Lu, Wei; Zhang, Wei; Yao, Ziying; Li, Hongquan; Liu, Wei; He, Sheng; Geng, Lizhao; Zhang, Xiaobing; Yang, Fan; Yu, Haiying; Zhan, Yuhua; Li, Danhua; Lin, Zhanglin; Wang, Yiping; Elmerich, Claudine; Lin, Min; Jin, Qi

    2008-01-01

    The capacity to fix nitrogen is widely distributed in phyla of Bacteria and Archaea but has long been considered to be absent from the Pseudomonas genus. We report here the complete genome sequencing of nitrogen-fixing root-associated Pseudomonas stutzeri A1501. The genome consists of a single circular chromosome with 4,567,418 bp. Comparative genomics revealed that, among 4,146 protein-encoding genes, 1,977 have orthologs in each of the five other Pseudomonas representative species sequenced to date. The genome contains genes involved in broad utilization of carbon sources, nitrogen fixation, denitrification, degradation of aromatic compounds, biosynthesis of polyhydroxybutyrate, multiple pathways of protection against environmental stress, and other functions that presumably give A1501 an advantage in root colonization. Genetic information on synthesis, maturation, and functioning of nitrogenase is clustered in a 49-kb island, suggesting that this property was acquired by lateral gene transfer. New genes required for the nitrogen fixation process have been identified within the nif island. The genome sequence offers the genetic basis for further study of the evolution of the nitrogen fixation property and identification of rhizosphere competence traits required in the interaction with host plants; moreover, it opens up new perspectives for wider application of root-associated diazotrophs in sustainable agriculture. PMID:18495935

  8. The distribution of intra-genomically variable dinoflagellate symbionts at Lord Howe Island, Australia

    NASA Astrophysics Data System (ADS)

    Wilkinson, Shaun P.; Pontasch, Stefanie; Fisher, Paul L.; Davy, Simon K.

    2016-06-01

    The symbiotic dinoflagellates of corals and other marine invertebrates ( Symbiodinium) are essential to the development of shallow-water coral reefs. This genus contains considerable genetic diversity and a corresponding range of physiological and ecological traits. Most genetic variation arises through the accumulation of somatic mutations that arise during asexual reproduction. Yet growing evidence suggests that occasional sexual reproductive events also occur within, and perhaps between, Symbiodinium lineages, further contributing to the pool of genetic variation available for evolutionary adaptation. Intra-genomic variation can therefore arise from both sexual and asexual reproductive processes, making it difficult to discern its underlying causes and consequences. We used quantitative PCR targeting the ITS2 locus to estimate proportions of genetically homogeneous symbionts and intra-genomically variable Symbiodinium (IGV Symbiodinium) in the reef-building coral Pocillopora damicornis at Lord Howe Island, Australia. We then sampled colonies through time and at a variety of spatial scales to find out whether the distribution of these symbionts followed patterns consistent with niche partitioning. Estimated ratios of homogeneous to IGV Symbiodinium varied between colonies within sites (metres to tens of metres) and between sites separated by hundreds to thousands of metres, but remained stable within colonies through time. Symbiont ratios followed a temperature gradient, with the local thermal maximum emerging as a negative predictor for the estimated proportional abundance of IGV Symbiodinium. While this pattern may result from fine-scale spatial population structure, it is consistent with an increased susceptibility to thermal stress, suggesting that the evolutionary processes that generate IGV (such as inter-lineage recombination and the accumulation of somatic mutations at the ITS2 locus) may have important implications for the fitness of the symbiont and

  9. Consequences of Normalizing Transcriptomic and Genomic Libraries of Plant Genomes Using a Duplex-Specific Nuclease and Tetramethylammonium Chloride

    PubMed Central

    Froenicke, Lutz; Lavelle, Dean; Martineau, Belinda; Perroud, Bertrand; Michelmore, Richard

    2013-01-01

    Several applications of high throughput genome and transcriptome sequencing would benefit from a reduction of the high-copy-number sequences in the libraries being sequenced and analyzed, particularly when applied to species with large genomes. We adapted and analyzed the consequences of a method that utilizes a thermostable duplex-specific nuclease for reducing the high-copy components in transcriptomic and genomic libraries prior to sequencing. This reduces the time, cost, and computational effort of obtaining informative transcriptomic and genomic sequence data for both fully sequenced and non-sequenced genomes. It also reduces contamination from organellar DNA in preparations of nuclear DNA. Hybridization in the presence of 3 M tetramethylammonium chloride (TMAC), which equalizes the rates of hybridization of GC and AT nucleotide pairs, reduced the bias against sequences with high GC content. Consequences of this method on the reduction of high-copy and enrichment of low-copy sequences are reported for Arabidopsis and lettuce. PMID:23409088

  10. Genome-wide SNP analysis reveals population structure and demographic history of the ryukyu islanders in the southern part of the Japanese archipelago.

    PubMed

    Sato, Takehiro; Nakagome, Shigeki; Watanabe, Chiaki; Yamaguchi, Kyoko; Kawaguchi, Akira; Koganebuchi, Kae; Haneji, Kuniaki; Yamaguchi, Tetsutaro; Hanihara, Tsunehiko; Yamamoto, Ken; Ishida, Hajime; Mano, Shuhei; Kimura, Ryosuke; Oota, Hiroki

    2014-11-01

    The Ryukyu Islands are located to the southwest of the Japanese archipelago. Archaeological evidence has revealed the existence of prehistoric cultural differentiation between the northern Ryukyu islands of Amami and Okinawa, and the southern Ryukyu islands of Miyako and Yaeyama. To examine a genetic subdivision in the Ryukyu Islands, we conducted genome-wide single nucleotide polymorphism typing of inhabitants from the Okinawa Islands, the Miyako Islands, and the Yaeyama Islands. Principal component and cluster analyses revealed genetic differentiation among the island groups, especially between Okinawa and Miyako. No genetic affinity was observed between aboriginal Taiwanese and any of the Ryukyu populations. The genetic differentiation observed between the inhabitants of the Okinawa Islands and the Miyako Islands is likely to have arisen due to genetic drift rather than admixture with people from neighboring regions. Based on the observed genetic differences, the divergence time between the inhabitants of Okinawa and Miyako islands was dated to the Holocene. These findings suggest that the Pleistocene inhabitants, whose bones have been found on the southern Ryukyu Islands, did not make a major genetic contribution, if any, to the present-day inhabitants of the southern Ryukyu Islands. PMID:25086001

  11. A novel family of integrases associated with prophages and genomic islands integrated within the tRNA-dihydrouridine synthase A (dusA) gene.

    PubMed

    Farrugia, Daniel N; Elbourne, Liam D H; Mabbutt, Bridget C; Paulsen, Ian T

    2015-05-19

    Genomic islands play a key role in prokaryotic genome plasticity. Genomic islands integrate into chromosomal loci such as transfer RNA genes and protein coding genes, whilst retaining various cargo genes that potentially bestow novel functions on the host organism. A gene encoding a putative integrase was identified at a single site within the 5' end of the dusA gene in the genomes of over 200 bacteria. This integrase was discovered to be a component of numerous genomic islands, which appear to share a target site within the dusA gene. dusA encodes the tRNA-dihydrouridine synthase A enzyme, which catalyses the post-transcriptional reduction of uridine to dihydrouridine in tRNA. Genomic islands encoding homologous dusA-associated integrases were found at a much lower frequency within the related dusB and dusC genes, and non-dus genes. Excision of these dusA-associated islands from the chromosome as circularized intermediates was confirmed by polymerase chain reaction. Analysis of the dusA-associated islands indicated that they were highly diverse, with the integrase gene representing the only universal common feature. PMID:25883135

  12. Genome-wide Association Study of Biochemical Traits in Korčula Island, Croatia

    PubMed Central

    Zemunik, Tatijana; Boban, Mladen; Lauc, Gordan; Janković, Stipan; Rotim, Krešimir; Vatavuk, Zoran; Benčić, Goran; Đogaš, Zoran; Boraska, Vesna; Torlak, Vesela; Sušac, Jelena; Zobić, Ivana; Rudan, Diana; Pulanić, Dražen; Modun, Darko; Mudnić, Ivana; Gunjača, Grgo; Budimir, Danijela; Hayward, Caroline; Vitart, Veronique; Wright, Alan F.; Campbell, Harry; Rudan, Igor

    2009-01-01

    Aim To identify genetic variants underlying biochemical traits – total cholesterol, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides, uric acid, albumin, and fibrinogen, in a genome-wide association study in an isolated population where rare variants of larger effect may be more easily identified. Methods The study included 944 adult inhabitants of the island of Korčula, as a part of a larger DNA-based genetic epidemiological study in 2007. Biochemical measurements were performed in a single laboratory with stringent internal and external quality control procedures. Examinees were genotyped using Human Hap370CNV chip by Illumina, with a genome-wide scan containing 346 027 single nucleotide polymorphisms (SNP). Results A total of 31 SNPs were associated with 7 investigated traits at the level of P < 1.00 × 10−5. Nine of SNPs implicated the role of SLC2A9 in uric acid regulation (P = 4.10 × 10−6-2.58 × 10−12), as previously found in other populations. All 22 remaining associations fell into the P = 1.00 × 10−5-1.00 × 10−6 significance range. One of them replicated the association between cholesteryl ester transfer protein (CETP) and HDL, and 7 associations were more than 100 kilobases away from the closest known gene. Nearby SNPs, rs4767631 and rs10444502, in gene kinase suppressor of ras 2 (KSR2) on chromosome 12 were associated with LDL cholesterol levels, and rs10444502 in the same gene with total cholesterol levels. Similarly, rs2839619 in gene PBX/knotted 1 homeobox 1 (PKNOX1) on chromosome 21 was associated with total and LDL cholesterol levels. The remaining 9 findings implied possible associations between phosphatidylethanolamine N-methyltransferase (PEMT) gene and total cholesterol; USP46, RAP1GDS1, and ZCCHC16 genes and triglycerides; BCAT1 and SLC14A2 genes and albumin; and NR3C2, GRIK2, and PCSK2 genes and fibrinogen. Conclusion Although this study was

  13. Inter- and intra-specific pan-genomes of Borrelia burgdorferi sensu lato: genome stability and adaptive radiation

    PubMed Central

    2013-01-01

    Background Lyme disease is caused by spirochete bacteria from the Borrelia burgdorferi sensu lato (B. burgdorferi s.l.) species complex. To reconstruct the evolution of B. burgdorferi s.l. and identify the genomic basis of its human virulence, we compared the genomes of 23 B. burgdorferi s.l. isolates from Europe and the United States, including B. burgdorferi sensu stricto (B. burgdorferi s.s., 14 isolates), B. afzelii (2), B. garinii (2), B. “bavariensis” (1), B. spielmanii (1), B. valaisiana (1), B. bissettii (1), and B. “finlandensis” (1). Results Robust B. burgdorferi s.s. and B. burgdorferi s.l. phylogenies were obtained using genome-wide single-nucleotide polymorphisms, despite recombination. Phylogeny-based pan-genome analysis showed that the rate of gene acquisition was higher between species than within species, suggesting adaptive speciation. Strong positive natural selection drives the sequence evolution of lipoproteins, including chromosomally-encoded genes 0102 and 0404, cp26-encoded ospC and b08, and lp54-encoded dbpA, a07, a22, a33, a53, a65. Computer simulations predicted rapid adaptive radiation of genomic groups as population size increases. Conclusions Intra- and inter-specific pan-genome sizes of B. burgdorferi s.l. expand linearly with phylogenetic diversity. Yet gene-acquisition rates in B. burgdorferi s.l. are among the lowest in bacterial pathogens, resulting in high genome stability and few lineage-specific genes. Genome adaptation of B. burgdorferi s.l. is driven predominantly by copy-number and sequence variations of lipoprotein genes. New genomic groups are likely to emerge if the current trend of B. burgdorferi s.l. population expansion continues. PMID:24112474

  14. Genome Destabilizing Mutator Alleles Drive Specific Mutational Trajectories in Saccharomyces cerevisiae

    PubMed Central

    Stirling, Peter C.; Shen, Yaoqing; Corbett, Richard; Jones, Steven J. M.; Hieter, Philip

    2014-01-01

    In addition to environmental factors and intrinsic variations in base substitution rates, specific genome-destabilizing mutations can shape the mutational trajectory of genomes. How specific alleles influence the nature and position of accumulated mutations in a genomic context is largely unknown. Understanding the impact of genome-destabilizing alleles is particularly relevant to cancer genomes where biased mutational signatures are identifiable. We first created a more complete picture of cellular pathways that impact mutation rate using a primary screen to identify essential Saccharomyces cerevisiae gene mutations that cause mutator phenotypes. Drawing primarily on new alleles identified in this resource, we measure the impact of diverse mutator alleles on mutation patterns directly by whole-genome sequencing of 68 mutation-accumulation strains derived from wild-type and 11 parental mutator genotypes. The accumulated mutations differ across mutator strains, displaying base-substitution biases, allele-specific mutation hotspots, and break-associated mutation clustering. For example, in mutants of POLα and the Cdc13–Stn1–Ten1 complex, we find a distinct subtelomeric bias for mutations that we show is independent of the target sequence. Together our data suggest that specific genome-instability mutations are sufficient to drive discrete mutational signatures, some of which share properties with mutation patterns seen in tumors. Thus, in a population of cells, genome-instability mutations could influence clonal evolution by establishing discrete mutational trajectories for genomes. PMID:24336748

  15. The Genomic Scrapheap Challenge; Extracting Relevant Data from Unmapped Whole Genome Sequencing Reads, Including Strain Specific Genomic Segments, in Rats

    PubMed Central

    van der Weide, Robin H.; Simonis, Marieke; Hermsen, Roel; Toonen, Pim; Cuppen, Edwin; de Ligt, Joep

    2016-01-01

    Unmapped next-generation sequencing reads are typically ignored while they contain biologically relevant information. We systematically analyzed unmapped reads from whole genome sequencing of 33 inbred rat strains. High quality reads were selected and enriched for biologically relevant sequences; similarity-based analysis revealed clustering similar to previously reported phylogenetic trees. Our results demonstrate that on average 20% of all unmapped reads harbor sequences that can be used to improve reference genomes and generate hypotheses on potential genotype-phenotype relationships. Analysis pipelines would benefit from incorporating the described methods and reference genomes would benefit from inclusion of the genomic segments obtained through these efforts. PMID:27501045

  16. Insight into the specific virulence related genes and toxin-antitoxin virulent pathogenicity islands in swine streptococcosis pathogen Streptococcus equi ssp. zooepidemicus strain ATCC35246

    PubMed Central

    2013-01-01

    Background Streptococcus equi ssp. zooepidemicus (S. zooepidemicus) is an important pathogen causing swine streptococcosis in China. Pathogenicity islands (PAIs) of S. zooepidemicus have been transferred among bacteria through horizontal gene transfer (HGT) and play important roles in the adaptation and increased virulence of S. zooepidemicus. The present study used comparative genomics to examine the different pathogenicities of S. zooepidemicus. Results Genome of S. zooepidemicus ATCC35246 (Sz35246) comprises 2,167,264-bp of a single circular chromosome, with a GC content of 41.65%. Comparative genome analysis of Sz35246, S. zooepidemicus MGCS10565 (Sz10565), Streptococcus equi. ssp. equi. 4047 (Se4047) and S. zooepidemicus H70 (Sz70) identified 320 Sz35246-specific genes, clustered into three toxin-antitoxin (TA) systems PAIs and one restriction modification system (RM system) PAI. These four acquired PAIs encode proteins that may contribute to the overall pathogenic capacity and fitness of this bacterium to adapt to different hosts. Analysis of the in vivo and in vitro transcriptomes of this bacterium revealed differentially expressed PAI genes and non-PAI genes, suggesting that Sz35246 possess mechanisms for infecting animals and adapting to a wide range of host environments. Analysis of the genome identified potential Sz35246 virulence genes. Genes of the Fim III operon were presumed to be involved in breaking the host-restriction of Sz35246. Conclusion Genome wide comparisons of Sz35246 with three other strains and transcriptome analysis revealed novel genes related to bacterial virulence and breaking the host-restriction. Four specific PAIs, which were judged to have been transferred into Sz35246 genome through HGT, were identified for the first time. Further analysis of the TA and RM systems in the PAIs will improve our understanding of the pathogenicity of this bacterium and could lead to the development of diagnostics and vaccines. PMID:23742619

  17. The evolution of lineage-specific clusters of single nucleotide substitutions in the human genome.

    PubMed

    Xu, Ke; Wang, Jianrong; Elango, Navin; Yi, Soojin V

    2013-10-01

    Genomic regions harboring large numbers of human-specific single nucleotide substitutions are of significant interest since they are potential genomic foci underlying the evolution of human-specific traits as well as human adaptive evolution. Previous studies aimed to identify such regions either used pre-defined genomic locations such as coding sequences and conserved genomic elements or employed sliding window methods. Such approaches may miss clusters of substitutions occurring in regions other than those pre-defined locations, or not be able to distinguish human-specific clusters of substitutions from regions of generally high substitution rates. Here, we conduct a 'maximal segment' analysis to scan the whole human genome to identify clusters of human-specific substitutions that occurred since the divergence of the human and the chimpanzee genomes. This method can identify species-specific clusters of substitutions while not relying on pre-defined regions. We thus identify thousands of clusters of human-specific single nucleotide substitutions. The evolution of such clusters is driven by a combination of several different evolutionary processes including increased regional mutation rate, recombination-associated processes, and positive selection. These newly identified regions of human-specific substitution clusters include large numbers of previously identified human accelerated regions, and exhibit significant enrichments of genes involved in several developmental processes. Our study provides a useful tool to study the evolution of the human genome. PMID:23770436

  18. Species-specific responses to island connectivity cycles: refined models for testing phylogeographic concordance across a Mediterranean Pleistocene Aggregate Island Complex.

    PubMed

    Papadopoulou, Anna; Knowles, L Lacey

    2015-08-01

    The contribution of Pleistocene sea level changes to diversification patterns in archipelagos around the world, and specifically whether the repeated cycles of island connectivity and isolation acted as a 'species pump' is debated. The debate has been perpetuated in part because of the type of evidence used to evaluate the species-pump hypothesis. Specifically, existing tests of the 'Pleistocene Aggregate Island Complex' (PAIC) model of diversification interpret the lack of concordant divergence times among multiple codistributed taxa as a rejection of the PAIC model. However, the null expectation of concordance disregards taxon-specific ecological traits and geographic characteristics that may affect population persistence and gene flow among islands. Here, we study the factors affecting population divergence in thirteen flightless darkling beetle species (Coleoptera: Tenebrionidae) across the PAIC system of the Cycladic plateau in the Aegean archipelago. Based on isolation-by-resistance analyses, hierarchical amova and the degree of genealogical sorting on individual islands, we identify a major effect of bathymetry and habitat stability on the levels of genetic divergence across the PAIC, with island size and body size playing a secondary role as well. We subsequently use bathymetric maps and habitat association to generate predictions about the set of islands and group of taxa expected to show phylogeographic concordance. We test these predictions using hierarchical approximate Bayesian computation and show how our interpretations regarding the role of PAICs as drivers of divergence change when relying on a null expectation of concordance compared to a refined model that takes geography and ecological traits into account. PMID:26154606

  19. Symbiosis Island Shuffling with Abundant Insertion Sequences in the Genomes of Extra-Slow-Growing Strains of Soybean Bradyrhizobia

    PubMed Central

    Iida, Takayuki; Itakura, Manabu; Anda, Mizue; Sugawara, Masayuki; Isawa, Tsuyoshi; Okubo, Takashi; Sato, Shusei; Chiba-Kakizaki, Kaori

    2015-01-01

    Extra-slow-growing bradyrhizobia from root nodules of field-grown soybeans harbor abundant insertion sequences (ISs) and are termed highly reiterated sequence-possessing (HRS) strains. We analyzed the genome organization of HRS strains with the focus on IS distribution and symbiosis island structure. Using pulsed-field gel electrophoresis, we consistently detected several plasmids (0.07 to 0.4 Mb) in the HRS strains (NK5, NK6, USDA135, 2281, USDA123, and T2), whereas no plasmids were detected in the non-HRS strain USDA110. The chromosomes of the six HRS strains (9.7 to 10.7 Mb) were larger than that of USDA110 (9.1 Mb). Using MiSeq sequences of 6 HRS and 17 non-HRS strains mapped to the USDA110 genome, we found that the copy numbers of ISRj1, ISRj2, ISFK1, IS1632, ISB27, ISBj8, and IS1631 were markedly higher in HRS strains. Whole-genome sequencing showed that the HRS strain NK6 had four small plasmids (136 to 212 kb) and a large chromosome (9,780 kb). Strong colinearity was found between 7.4-Mb core regions of the NK6 and USDA110 chromosomes. USDA110 symbiosis islands corresponded mainly to five small regions (S1 to S5) within two variable regions, V1 (0.8 Mb) and V2 (1.6 Mb), of the NK6 chromosome. The USDA110 nif gene cluster (nifDKENXSBZHQW-fixBCX) was split into two regions, S2 and S3, where ISRj1-mediated rearrangement occurred between nifS and nifB. ISs were also scattered in NK6 core regions, and ISRj1 insertion often disrupted some genes important for survival and environmental responses. These results suggest that HRS strains of soybean bradyrhizobia were subjected to IS-mediated symbiosis island shuffling and core genome degradation. PMID:25862225

  20. SGI2, a Relative of Salmonella Genomic Island SGI1 with an Independent Origin▿

    PubMed Central

    Levings, Renee S.; Djordjevic, Steven P.; Hall, Ruth M.

    2008-01-01

    Multiply antibiotic-resistant Salmonella enterica serovar Emek strains isolated in Australia and the United Kingdom had similar features, suggesting that they all belong to a single clone. These strains all contain SGI2 (formerly SGI1-J), an independently formed relative of Salmonella genomic island SGI1. In SGI2, the complex class 1 integron which includes all of the resistance genes is not located between tnpR (S027) and S044 as in SGI1 and SGI1 variants. Instead, tnpR was found to be adjacent to S044, and the integron is located 6.9 kb away, within S023. In both SGI1 and SGI2, the 25-bp inverted repeats that mark the outer ends of class 1 integrons are flanked by a 5-bp duplication of the target, indicating that incorporation of the integron was by transposition. A small number of differences between the sequences of the backbones of SGI1 and SGI2 were also found. Hence, a class 1 integron has entered two different variants of the SGI backbone to generate two distinct lineages. Despite this, the integron in SGI2 has a complex structure that is very similar to that of In104 in SGI1. Differences are in the cassette arrays and in the gene which encodes the chloramphenicol and florfenicol efflux protein. The CmlA9 protein, encoded by InEmek, is only 92.8% identical to FloRc (also a CmlA family protein) from SGI1. A variant form of SGI2, SGI2-A, which has lost the tet(G) and cmlA9 resistance determinants, was found in one strain. PMID:18443113

  1. A toxin antitoxin system promotes the maintenance of the IncA/C-mobilizable Salmonella Genomic Island 1

    PubMed Central

    Huguet, Kevin T.; Gonnet, Mathieu; Doublet, Benoît; Cloeckaert, Axel

    2016-01-01

    The multidrug resistance Salmonella Genomic Island 1 (SGI1) is an integrative mobilizable element identified in several enterobacterial pathogens. This chromosomal island requires a conjugative IncA/C plasmid to be excised as a circular extrachromosomal form and conjugally mobilized in trans. Preliminary observations suggest stable maintenance of SGI1 in the host chromosome but paradoxically also incompatibility between SGI1 and IncA/C plasmids. Here, using a Salmonella enterica serovar Agona clonal bacterial population as model, we demonstrate that a Toxin-Antitoxin (TA) system encoded by SGI1 plays a critical role in its stable host maintenance when an IncA/C plasmid is concomitantly present. This system, designated sgiAT for Salmonella genomic island 1 Antitoxin and Toxin respectively, thus seems to play a stabilizing role in a situation where SGI1 is susceptible to be lost through plasmid IncA/C-mediated excision. Moreover and for the first time, the incompatibility between SGI1 and IncA/C plasmids was experimentally confirmed. PMID:27576575

  2. A toxin antitoxin system promotes the maintenance of the IncA/C-mobilizable Salmonella Genomic Island 1.

    PubMed

    Huguet, Kevin T; Gonnet, Mathieu; Doublet, Benoît; Cloeckaert, Axel

    2016-01-01

    The multidrug resistance Salmonella Genomic Island 1 (SGI1) is an integrative mobilizable element identified in several enterobacterial pathogens. This chromosomal island requires a conjugative IncA/C plasmid to be excised as a circular extrachromosomal form and conjugally mobilized in trans. Preliminary observations suggest stable maintenance of SGI1 in the host chromosome but paradoxically also incompatibility between SGI1 and IncA/C plasmids. Here, using a Salmonella enterica serovar Agona clonal bacterial population as model, we demonstrate that a Toxin-Antitoxin (TA) system encoded by SGI1 plays a critical role in its stable host maintenance when an IncA/C plasmid is concomitantly present. This system, designated sgiAT for Salmonella genomic island 1 Antitoxin and Toxin respectively, thus seems to play a stabilizing role in a situation where SGI1 is susceptible to be lost through plasmid IncA/C-mediated excision. Moreover and for the first time, the incompatibility between SGI1 and IncA/C plasmids was experimentally confirmed. PMID:27576575

  3. GSP: a web-based platform for designing genome-specific primers in polyploids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The primary goal of this research was to develop a web-based platform named GSP for designing genome-specific primers to distinguish subgenome sequences in the polyploid genome background. GSP uses BLAST to extract homeologous sequences of the subgenomes in the existing databases, performed a multip...

  4. Sequence Determinants for DNA Packaging Specificity in the S. aureus Pathogenicity Island SaPI1

    PubMed Central

    Bento, Joana C; Lane, Kristin D; Read, Erik K; Cerca, Nuno; Christie, Gail E

    2014-01-01

    The SaPIs and their relatives are a family of genomic islands that exploit helper phages for high frequency horizontal transfer. One of the mechanisms used by SaPIs to accomplish this molecular piracy is the redirection of the helper phage DNA packaging machinery. SaPIs encode a small terminase subunit that can be substituted for that of the phage. In this study we have determined the initial packaging cleavage sites for helper phage 80α which uses the phage-encoded small terminase subunit, and for SaPI1, which uses the SaPI-encoded small terminase subunit. We have identified a 19 nt SaPI1 sequence that is necessary and sufficient to allow high frequency 80α transduction of a plasmid by a terminase carrying the SaPI1-encoded small subunit. We also show that the hybrid enzyme with the SaPI1 small terminase subunit is capable of generalized transduction. PMID:24365721

  5. Sequence determinants for DNA packaging specificity in the S. aureus pathogenicity island SaPI1.

    PubMed

    Bento, Joana C; Lane, Kristin D; Read, Erik K; Cerca, Nuno; Christie, Gail E

    2014-01-01

    The SaPIs and their relatives are a family of genomic islands that exploit helper phages for high frequency horizontal transfer. One of the mechanisms used by SaPIs to accomplish this molecular piracy is the redirection of the helper phage DNA packaging machinery. SaPIs encode a small terminase subunit that can be substituted for that of the phage. In this study we have determined the initial packaging cleavage sites for helper phage 80α, which uses the phage-encoded small terminase subunit, and for SaPI1, which uses the SaPI-encoded small terminase subunit. We have identified a 19nt SaPI1 sequence that is necessary and sufficient to allow high frequency 80α transduction of a plasmid by a terminase carrying the SaPI1-encoded small subunit. We also show that the hybrid enzyme with the SaPI1 small terminase subunit is capable of generalized transduction. PMID:24365721

  6. USE OF COMPETITIVE GENOMIC HYBRIDIZATION TO ENRICH FOR GENOME-SPECIFIC DIFFERENCES BETWEEN TWO CLOSELY RELATED HUMAN FECAL INDICATOR BACTERIA

    EPA Science Inventory

    Enterococci are frequently used as indicators of fecal pollution in surface waters. To accelerate the identification of Enterococcus faecalis-specific DNA sequences, we employed a comparative genomic strategy utilizing a positive selection process to compare E. faec...

  7. Genome-wide de Novo Prediction of Proximal and Distal Tissue-Specific Enhancers

    SciTech Connect

    Loots, G G; Ovcharenko, I V

    2005-11-03

    Determining how transcriptional regulatory networks are encoded in the human genome is essential for understanding how cellular processes are directed. Here, we present a novel approach for systematically predicting tissue specific regulatory elements (REs) that blends genome-wide expression profiling, vertebrate genome comparisons, and pattern analysis of transcription factor binding sites. This analysis yields 4,670 candidate REs in the human genome with distinct tissue specificities, the majority of which reside far away from transcription start sites. We identify key transcription factors (TFs) for 34 distinct tissues and demonstrate that tissue-specific gene expression relies on multiple regulatory pathways employing similar, but different cohorts of interacting TFs. The methods and results we describe provide a global view of tissue specific gene regulation in humans, and propose a strategy for deciphering the transcriptional regulatory code in eukaryotes.

  8. Microsatellite Interruptions Stabilize Primate Genomes and Exist as Population-Specific Single Nucleotide Polymorphisms within Individual Human Genomes

    PubMed Central

    Ananda, Guruprasad; Hile, Suzanne E.; Breski, Amanda; Wang, Yanli; Kelkar, Yogeshwar; Makova, Kateryna D.; Eckert, Kristin A.

    2014-01-01

    Interruptions of microsatellite sequences impact genome evolution and can alter disease manifestation. However, human polymorphism levels at interrupted microsatellites (iMSs) are not known at a genome-wide scale, and the pathways for gaining interruptions are poorly understood. Using the 1000 Genomes Phase-1 variant call set, we interrogated mono-, di-, tri-, and tetranucleotide repeats up to 10 units in length. We detected ∼26,000–40,000 iMSs within each of four human population groups (African, European, East Asian, and American). We identified population-specific iMSs within exonic regions, and discovered that known disease-associated iMSs contain alleles present at differing frequencies among the populations. By analyzing longer microsatellites in primate genomes, we demonstrate that single interruptions result in a genome-wide average two- to six-fold reduction in microsatellite mutability, as compared with perfect microsatellites. Centrally located interruptions lowered mutability dramatically, by two to three orders of magnitude. Using a biochemical approach, we tested directly whether the mutability of a specific iMS is lower because of decreased DNA polymerase strand slippage errors. Modeling the adenomatous polyposis coli tumor suppressor gene sequence, we observed that a single base substitution interruption reduced strand slippage error rates five- to 50-fold, relative to a perfect repeat, during synthesis by DNA polymerases α, β, or η. Computationally, we demonstrate that iMSs arise primarily by base substitution mutations within individual human genomes. Our biochemical survey of human DNA polymerase α, β, δ, κ, and η error rates within certain microsatellites suggests that interruptions are created most frequently by low fidelity polymerases. Our combined computational and biochemical results demonstrate that iMSs are abundant in human genomes and are sources of population-specific genetic variation that may affect genome stability. The

  9. Genome-wide CpG island methylation and intergenic demethylation propensities vary among different tumor sites.

    PubMed

    Lee, Seung-Tae; Wiemels, Joseph L

    2016-02-18

    The epigenetic landscape of cancer includes both focal hypermethylation and broader hypomethylation in a genome-wide manner. By means of a comprehensive genomic analysis on 6637 tissues of 21 tumor types, we here show that the degrees of overall methylation in CpG island (CGI) and demethylation in intergenic regions, defined as 'backbone', largely vary among different tumors. Depending on tumor type, both CGI methylation and backbone demethylation are often associated with clinical, epidemiological and biological features such as age, sex, smoking history, anatomic location, histological type and grade, stage, molecular subtype and biological pathways. We found connections between CGI methylation and hypermutability, microsatellite instability, IDH1 mutation, 19p gain and polycomb features, and backbone demethylation with chromosomal instability, NSD1 and TP53 mutations, 5q and 19p loss and long repressive domains. These broad epigenetic patterns add a new dimension to our understanding of tumor biology and its clinical implications. PMID:26464434

  10. Genome-wide CpG island methylation and intergenic demethylation propensities vary among different tumor sites

    PubMed Central

    Lee, Seung-Tae; Wiemels, Joseph L.

    2016-01-01

    The epigenetic landscape of cancer includes both focal hypermethylation and broader hypomethylation in a genome-wide manner. By means of a comprehensive genomic analysis on 6637 tissues of 21 tumor types, we here show that the degrees of overall methylation in CpG island (CGI) and demethylation in intergenic regions, defined as ‘backbone’, largely vary among different tumors. Depending on tumor type, both CGI methylation and backbone demethylation are often associated with clinical, epidemiological and biological features such as age, sex, smoking history, anatomic location, histological type and grade, stage, molecular subtype and biological pathways. We found connections between CGI methylation and hypermutability, microsatellite instability, IDH1 mutation, 19p gain and polycomb features, and backbone demethylation with chromosomal instability, NSD1 and TP53 mutations, 5q and 19p loss and long repressive domains. These broad epigenetic patterns add a new dimension to our understanding of tumor biology and its clinical implications. PMID:26464434

  11. Origins of cattle on Chirikof Island, Alaska, elucidated from genome-wide SNP genotypes.

    PubMed

    Decker, J E; Taylor, J F; Kantanen, J; Millbrooke, A; Schnabel, R D; Alexander, L J; MacNeil, M D

    2016-06-01

    Feral livestock may harbor genetic variation of commercial, scientific, historical or esthetic value. The origins and uniqueness of feral cattle on Chirikof Island, Alaska, are uncertain. The island is now part of the Alaska Maritime Wildlife Refuge and Federal wildlife managers want grazing to cease, presumably leading to demise of the cattle. Here we characterize the cattle of Chirikof Island relative to extant breeds and discern their origins. Our analyses support the inference that Yakut cattle from Russia arrived first on Chirikof Island, then ~120 years ago the first European taurine cattle were introduced to the island, and finally a large wave of Hereford cattle were introduced on average 40 years ago. In addition, this mixture of European and East-Asian cattle is unique compared with other North American breeds and we find evidence that natural selection in the relatively harsh environment of Chirikof Island has further impacted their genetic architecture. These results provide an objective basis for decisions regarding conservation of the Chirikof Island cattle. PMID:26860198

  12. Origins of cattle on Chirikof Island, Alaska, elucidated from genome-wide SNP genotypes

    PubMed Central

    Decker, J E; Taylor, J F; Kantanen, J; Millbrooke, A; Schnabel, R D; Alexander, L J; MacNeil, M D

    2016-01-01

    Feral livestock may harbor genetic variation of commercial, scientific, historical or esthetic value. The origins and uniqueness of feral cattle on Chirikof Island, Alaska, are uncertain. The island is now part of the Alaska Maritime Wildlife Refuge and Federal wildlife managers want grazing to cease, presumably leading to demise of the cattle. Here we characterize the cattle of Chirikof Island relative to extant breeds and discern their origins. Our analyses support the inference that Yakut cattle from Russia arrived first on Chirikof Island, then ~120 years ago the first European taurine cattle were introduced to the island, and finally a large wave of Hereford cattle were introduced on average 40 years ago. In addition, this mixture of European and East-Asian cattle is unique compared with other North American breeds and we find evidence that natural selection in the relatively harsh environment of Chirikof Island has further impacted their genetic architecture. These results provide an objective basis for decisions regarding conservation of the Chirikof Island cattle. PMID:26860198

  13. Whole genome sequence analysis of unidentified genetically modified papaya for development of a specific detection method.

    PubMed

    Nakamura, Kosuke; Kondo, Kazunari; Akiyama, Hiroshi; Ishigaki, Takumi; Noguchi, Akio; Katsumata, Hiroshi; Takasaki, Kazuto; Futo, Satoshi; Sakata, Kozue; Fukuda, Nozomi; Mano, Junichi; Kitta, Kazumi; Tanaka, Hidenori; Akashi, Ryo; Nishimaki-Mogami, Tomoko

    2016-08-15

    Identification of transgenic sequences in an unknown genetically modified (GM) papaya (Carica papaya L.) by whole genome sequence analysis was demonstrated. Whole genome sequence data were generated for a GM-positive fresh papaya fruit commodity detected in monitoring using real-time polymerase chain reaction (PCR). The sequences obtained were mapped against an open database for papaya genome sequence. Transgenic construct- and event-specific sequences were identified as a GM papaya developed to resist infection from a Papaya ringspot virus. Based on the transgenic sequences, a specific real-time PCR detection method for GM papaya applicable to various food commodities was developed. Whole genome sequence analysis enabled identifying unknown transgenic construct- and event-specific sequences in GM papaya and development of a reliable method for detecting them in papaya food commodities. PMID:27006240

  14. Complete Genome Sequence and Comparative Genomic Analysis of Mycobacterium massiliense JCM 15300 in the Mycobacterium abscessus Group Reveal a Conserved Genomic Island MmGI-1 Related to Putative Lipid Metabolism

    PubMed Central

    Nakanaga, Kazue; Nakata, Noboru; Kazumi, Yuko; Maeda, Shinji; Makino, Masahiko; Hoshino, Yoshihiko; Kuroda, Makoto

    2014-01-01

    Mycobacterium abscessus group subsp., such as M. massiliense, M. abscessus sensu stricto and M. bolletii, are an environmental organism found in soil, water and other ecological niches, and have been isolated from respiratory tract infection, skin and soft tissue infection, postoperative infection of cosmetic surgery. To determine the unique genetic feature of M. massiliense, we sequenced the complete genome of M. massiliense type strain JCM 15300 (corresponding to CCUG 48898). Comparative genomic analysis was performed among Mycobacterium spp. and among M. abscessus group subspp., showing that additional ß-oxidation-related genes and, notably, the mammalian cell entry (mce) operon were located on a genomic island, M. massiliense Genomic Island 1 (MmGI-1), in M. massiliense. In addition, putative anaerobic respiration system-related genes and additional mycolic acid cyclopropane synthetase-related genes were found uniquely in M. massiliense. Japanese isolates of M. massiliense also frequently possess the MmGI-1 (14/44, approximately 32%) and three unique conserved regions (26/44; approximately 60%, 34/44; approximately 77% and 40/44; approximately 91%), as well as isolates of other countries (Malaysia, France, United Kingdom and United States). The well-conserved genomic island MmGI-1 may play an important role in high growth potential with additional lipid metabolism, extra factors for survival in the environment or synthesis of complex membrane-associated lipids. ORFs on MmGI-1 showed similarities to ORFs of phylogenetically distant M. avium complex (MAC), suggesting that horizontal gene transfer or genetic recombination events might have occurred within MmGI-1 among M. massiliense and MAC. PMID:25503461

  15. Biochemical Analysis of Genome Functions Using Locus-Specific Chromatin Immunoprecipitation Technologies

    PubMed Central

    Fujita, Toshitsugu; Fujii, Hodaka

    2016-01-01

    To isolate specific genomic regions that retain their molecular interactions, allowing direct identification of chromatin-bound molecules, we developed two locus-specific chromatin immunoprecipitation (locus-specific ChIP) technologies, insertional ChIP (iChIP) and engineered DNA-binding molecule-mediated ChIP (enChIP) using the clustered regularly interspaced short palindromic repeats (CRISPR) system or transcription activator-like (TAL) proteins. Essentially, a locus-specific ChIP consists of locus-tagging and affinity purification and can be combined with downstream analyses to identify molecules associated with the target genomic regions. In this review, we discuss the applications of locus-specific ChIP to analyze the genome functions, including transcription and epigenetic regulation. PMID:26819551

  16. Whole genome sequencing of a banana wild relative Musa itinerans provides insights into lineage-specific diversification of the Musa genus

    PubMed Central

    Wu, Wei; Yang, Yu-Lan; He, Wei-Ming; Rouard, Mathieu; Li, Wei-Ming; Xu, Meng; Roux, Nicolas; Ge, Xue-Jun

    2016-01-01

    Crop wild relatives are valuable resources for future genetic improvement. Here, we report the de novo genome assembly of Musa itinerans, a disease-resistant wild banana relative in subtropical China. The assembled genome size was 462.1 Mb, covering 75.2% of the genome (615.2Mb) and containing 32, 456 predicted protein-coding genes. Since the approximate divergence around 5.8 million years ago, the genomes of Musa itinerans and Musa acuminata have shown conserved collinearity. Gene family expansions and contractions enrichment analysis revealed that some pathways were associated with phenotypic or physiological innovations. These include a transition from wood to herbaceous in the ancestral Musaceae, intensification of cold and drought tolerances, and reduced diseases resistance genes for subtropical marginally distributed Musa species. Prevalent purifying selection and transposed duplications were found to facilitate the diversification of NBS-encoding gene families for two Musa species. The population genome history analysis of M. itinerans revealed that the fluctuated population sizes were caused by the Pleistocene climate oscillations, and that the formation of Qiongzhou Strait might facilitate the population downsizing on the isolated Hainan Island about 10.3 Kya. The qualified assembly of the M. itinerans genome provides deep insights into the lineage-specific diversification and also valuable resources for future banana breeding. PMID:27531320

  17. Whole genome sequencing of a banana wild relative Musa itinerans provides insights into lineage-specific diversification of the Musa genus.

    PubMed

    Wu, Wei; Yang, Yu-Lan; He, Wei-Ming; Rouard, Mathieu; Li, Wei-Ming; Xu, Meng; Roux, Nicolas; Ge, Xue-Jun

    2016-01-01

    Crop wild relatives are valuable resources for future genetic improvement. Here, we report the de novo genome assembly of Musa itinerans, a disease-resistant wild banana relative in subtropical China. The assembled genome size was 462.1 Mb, covering 75.2% of the genome (615.2Mb) and containing 32, 456 predicted protein-coding genes. Since the approximate divergence around 5.8 million years ago, the genomes of Musa itinerans and Musa acuminata have shown conserved collinearity. Gene family expansions and contractions enrichment analysis revealed that some pathways were associated with phenotypic or physiological innovations. These include a transition from wood to herbaceous in the ancestral Musaceae, intensification of cold and drought tolerances, and reduced diseases resistance genes for subtropical marginally distributed Musa species. Prevalent purifying selection and transposed duplications were found to facilitate the diversification of NBS-encoding gene families for two Musa species. The population genome history analysis of M. itinerans revealed that the fluctuated population sizes were caused by the Pleistocene climate oscillations, and that the formation of Qiongzhou Strait might facilitate the population downsizing on the isolated Hainan Island about 10.3 Kya. The qualified assembly of the M. itinerans genome provides deep insights into the lineage-specific diversification and also valuable resources for future banana breeding. PMID:27531320

  18. Adaptation of the targeted capture Methyl-Seq platform for the mouse genome identifies novel tissue-specific DNA methylation patterns of genes involved in neurodevelopment

    PubMed Central

    Hing, Benjamin; Ramos, Enrique; Braun, Patricia; McKane, Melissa; Jancic, Dubravka; Tamashiro, Kellie L K; Lee, Richard S; Michaelson, Jacob J; Druley, Todd E; Potash, James B

    2015-01-01

    Methyl-Seq was recently developed as a targeted approach to assess DNA methylation (DNAm) at a genome-wide level in human. We adapted it for mouse and sought to examine DNAm differences across liver and 2 brain regions: cortex and hippocampus. A custom hybridization array was designed to isolate 99 Mb of CpG islands, shores, shelves, and regulatory elements in the mouse genome. This was followed by bisulfite conversion and sequencing on the Illumina HiSeq2000. The majority of differentially methylated cytosines (DMCs) were present at greater than expected frequency in introns, intergenic regions, near CpG islands, and transcriptional enhancers. Liver-specific enhancers were observed to be methylated in cortex, while cortex specific enhancers were methylated in the liver. Interestingly, commonly shared enhancers were differentially methylated between the liver and cortex. Gene ontology and pathway analysis showed that genes that were hypomethylated in the cortex and hippocampus were enriched for neuronal components and neuronal function. In contrast, genes that were hypomethylated in the liver were enriched for cellular components important for liver function. Bisulfite-pyrosequencing validation of 75 DMCs from 19 different loci showed a correlation of r = 0.87 with Methyl-Seq data. We also identified genes involved in neurodevelopment that were not previously reported to be differentially methylated across brain regions. This platform constitutes a valuable tool for future genome-wide studies involving mouse models of disease. PMID:25985232

  19. Cell-of-Origin-Specific 3D Genome Structure Acquired during Somatic Cell Reprogramming

    PubMed Central

    Krijger, Peter Hugo Lodewijk; Di Stefano, Bruno; de Wit, Elzo; Limone, Francesco; van Oevelen, Chris; de Laat, Wouter; Graf, Thomas

    2016-01-01

    Summary Forced expression of reprogramming factors can convert somatic cells into induced pluripotent stem cells (iPSCs). Here we studied genome topology dynamics during reprogramming of different somatic cell types with highly distinct genome conformations. We find large-scale topologically associated domain (TAD) repositioning and alterations of tissue-restricted genomic neighborhoods and chromatin loops, effectively erasing the somatic-cell-specific genome structures while establishing an embryonic stem-cell-like 3D genome. Yet, early passage iPSCs carry topological hallmarks that enable recognition of their cell of origin. These hallmarks are not remnants of somatic chromosome topologies. Instead, the distinguishing topological features are acquired during reprogramming, as we also find for cell-of-origin-dependent gene expression patterns. PMID:26971819

  20. A large genomic island allows Neisseria meningitidis to utilize propionic acid, with implications for colonization of the human nasopharynx

    PubMed Central

    Catenazzi, Maria Chiara E; Jones, Helen; Wallace, Iain; Clifton, Jacqueline; Chong, James P J; Jackson, Matthew A; Macdonald, Sandy; Edwards, James; Moir, James W B

    2014-01-01

    Neisseria meningitidis is an important human pathogen that is capable of killing within hours of infection. Its normal habitat is the nasopharynx of adult humans. Here we identify a genomic island (the prp gene cluster) in N. meningitidis that enables this species to utilize propionic acid as a supplementary carbon source during growth, particularly under nutrient poor growth conditions. The prp gene cluster encodes enzymes for a methylcitrate cycle. Novel aspects of the methylcitrate cycle in N. meningitidis include a propionate kinase which was purified and characterized, and a putative propionate transporter. This genomic island is absent from the close relative of N. meningitidis, the commensal Neisseria lactamica, which chiefly colonizes infants not adults. We reason that the possession of the prp genes provides a metabolic advantage to N. meningitidis in the adult oral cavity, which is rich in propionic acid-generating bacteria. Data from classical microbiological and sequence-based microbiome studies provide several lines of supporting evidence that N. meningitidis colonization is correlated with propionic acid generating bacteria, with a strong correlation between prp-containing Neisseria and propionic acid generating bacteria from the genus Porphyromonas, and that this may explain adolescent/adult colonization by N. meningitidis. PMID:24910087

  1. The master regulator of IncA/C plasmids is recognized by the Salmonella Genomic island SGI1 as a signal for excision and conjugal transfer.

    PubMed

    Kiss, János; Papp, Péter Pál; Szabó, Mónika; Farkas, Tibor; Murányi, Gábor; Szakállas, Erik; Olasz, Ferenc

    2015-10-15

    The genomic island SGI1 and its variants, the important vehicles of multi-resistance in Salmonella strains, are integrative elements mobilized exclusively by the conjugative IncA/C plasmids. Integration and excision of the island are carried out by the SGI1-encoded site-specific recombinase Int and the recombination directionality factor Xis. Chromosomal integration ensures the stable maintenance and vertical transmission of SGI1, while excision is the initial step of horizontal transfer, followed by conjugation and integration into the recipient. We report here that SGI1 not only exploits the conjugal apparatus of the IncA/C plasmids but also utilizes the regulatory mechanisms of the conjugation system for the exact timing and activation of excision to ensure efficient horizontal transfer. This study demonstrates that the FlhDC-family activator AcaCD, which regulates the conjugation machinery of the IncA/C plasmids, serves as a signal of helper entry through binding to SGI1 xis promoter and activating SGI1 excision. Promoters of int and xis genes have been identified and the binding site of the activator has been located by footprinting and deletion analyses. We prove that expression of xis is activator-dependent while int is constitutively expressed, and this regulatory mechanism is presumably responsible for the efficient transfer and stable maintenance of SGI1. PMID:26209134

  2. The master regulator of IncA/C plasmids is recognized by the Salmonella Genomic island SGI1 as a signal for excision and conjugal transfer

    PubMed Central

    Kiss, János; Papp, Péter Pál; Szabó, Mónika; Farkas, Tibor; Murányi, Gábor; Szakállas, Erik; Olasz, Ferenc

    2015-01-01

    The genomic island SGI1 and its variants, the important vehicles of multi-resistance in Salmonella strains, are integrative elements mobilized exclusively by the conjugative IncA/C plasmids. Integration and excision of the island are carried out by the SGI1-encoded site-specific recombinase Int and the recombination directionality factor Xis. Chromosomal integration ensures the stable maintenance and vertical transmission of SGI1, while excision is the initial step of horizontal transfer, followed by conjugation and integration into the recipient. We report here that SGI1 not only exploits the conjugal apparatus of the IncA/C plasmids but also utilizes the regulatory mechanisms of the conjugation system for the exact timing and activation of excision to ensure efficient horizontal transfer. This study demonstrates that the FlhDC-family activator AcaCD, which regulates the conjugation machinery of the IncA/C plasmids, serves as a signal of helper entry through binding to SGI1 xis promoter and activating SGI1 excision. Promoters of int and xis genes have been identified and the binding site of the activator has been located by footprinting and deletion analyses. We prove that expression of xis is activator-dependent while int is constitutively expressed, and this regulatory mechanism is presumably responsible for the efficient transfer and stable maintenance of SGI1. PMID:26209134

  3. A genomic island integrated into recA of Vibrio cholerae contains a divergent recA and provides multi-pathway protection from DNA damage.

    PubMed

    Rapa, Rita A; Islam, Atiqul; Monahan, Leigh G; Mutreja, Ankur; Thomson, Nicholas; Charles, Ian G; Stokes, Harold W; Labbate, Maurizio

    2015-04-01

    Lateral gene transfer (LGT) has been crucial in the evolution of the cholera pathogen, Vibrio cholerae. The two major virulence factors are present on two different mobile genetic elements, a bacteriophage containing the cholera toxin genes and a genomic island (GI) containing the intestinal adhesin genes. Non-toxigenic V. cholerae in the aquatic environment are a major source of novel DNA that allows the pathogen to morph via LGT. In this study, we report a novel GI from a non-toxigenic V. cholerae strain containing multiple genes involved in DNA repair including the recombination repair gene recA that is 23% divergent from the indigenous recA and genes involved in the translesion synthesis pathway. This is the first report of a GI containing the critical gene recA and the first report of a GI that targets insertion into a specific site within recA. We show that possession of the island in Escherichia coli is protective against DNA damage induced by UV-irradiation and DNA targeting antibiotics. This study highlights the importance of genetic elements such as GIs in the evolution of V. cholerae and emphasizes the importance of environmental strains as a source of novel DNA that can influence the pathogenicity of toxigenic strains. PMID:24889424

  4. Genome-scale analysis of metazoan replication origins reveals their organization in specific but flexible sites defined by conserved features

    PubMed Central

    Cayrou, Christelle; Coulombe, Philippe; Vigneron, Alice; Stanojcic, Slavica; Ganier, Olivier; Peiffer, Isabelle; Rivals, Eric; Puy, Aurore; Laurent-Chabalier, Sabine; Desprat, Romain; Méchali, Marcel

    2011-01-01

    In metazoans, thousands of DNA replication origins (Oris) are activated at each cell cycle. Their genomic organization and their genetic nature remain elusive. Here, we characterized Oris by nascent strand (NS) purification and a genome-wide analysis in Drosophila and mouse cells. We show that in both species most CpG islands (CGI) contain Oris, although methylation is nearly absent in Drosophila, indicating that this epigenetic mark is not crucial for defining the activated origin. Initiation of DNA synthesis starts at the borders of CGI, resulting in a striking bimodal distribution of NS, suggestive of a dual initiation event. Oris contain a unique nucleotide skew around NS peaks, characterized by G/T and C/A overrepresentation at the 5′ and 3′ of Ori sites, respectively. Repeated GC-rich elements were detected, which are good predictors of Oris, suggesting that common sequence features are part of metazoan Oris. In the heterochromatic chromosome 4 of Drosophila, Oris correlated with HP1 binding sites. At the chromosome level, regions rich in Oris are early replicating, whereas Ori-poor regions are late replicating. The genome-wide analysis was coupled with a DNA combing analysis to unravel the organization of Oris. The results indicate that Oris are in a large excess, but their activation does not occur at random. They are organized in groups of site-specific but flexible origins that define replicons, where a single origin is activated in each replicon. This organization provides both site specificity and Ori firing flexibility in each replicon, allowing possible adaptation to environmental cues and cell fates. PMID:21750104

  5. PrimerSNP: a web tool for whole-genome selection of allele-specific and common primers of phylogenetically-related bacterial genomic sequences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The increasing number of genomic sequences of bacteria makes it possible to select unique SNPs of a particular strain/species at the whole genome level and thus design specific primers based on the SNPs. The high similarity of genomic sequences among phylogenetically-related bacteria requires the id...

  6. A New Comparative-Genomics Approach for Defining Phenotype-Specific Indicators Reveals Specific Genetic Markers in Predatory Bacteria

    PubMed Central

    Pasternak, Zohar; Ben Sasson, Tom; Cohen, Yossi; Segev, Elad; Jurkevitch, Edouard

    2015-01-01

    Predatory bacteria seek and consume other live bacteria. Although belonging to taxonomically diverse groups, relatively few bacterial predator species are known. Consequently, it is difficult to assess the impact of predation within the bacterial realm. As no genetic signatures distinguishing them from non-predatory bacteria are known, genomic resources cannot be exploited to uncover novel predators. In order to identify genes specific to predatory bacteria, we developed a bioinformatic tool called DiffGene. This tool automatically identifies marker genes that are specific to phenotypic or taxonomic groups, by mapping the complete gene content of all available fully-sequenced genomes for the presence/absence of each gene in each genome. A putative ‘predator region’ of ~60 amino acids in the tryptophan 2,3-dioxygenase (TDO) protein was found to probably be a predator-specific marker. This region is found in all known obligate predator and a few facultative predator genomes, and is absent from most facultative predators and all non-predatory bacteria. We designed PCR primers that uniquely amplify a ~180bp-long sequence within the predators’ TDO gene, and validated them in monocultures as well as in metagenetic analysis of environmental wastewater samples. This marker, in addition to its usage in predator identification and phylogenetics, may finally permit reliable enumeration and cataloguing of predatory bacteria from environmental samples, as well as uncovering novel predators. PMID:26569499

  7. Different genome-specific chromosome stabilities in synthetic Brassica allohexaploids revealed by wide crosses with Orychophragmus

    PubMed Central

    Ge, Xian-Hong; Wang, Jing; Li, Zai-Yun

    2009-01-01

    Background and Aims In sexual hybrids between cultivated Brassica species and another crucifer, Orychophragmus violaceus (2n = 24), parental genome separation during mitosis and meiosis is under genetic control but this phenomenon varies depending upon the Brassica species. To further investigate the mechanisms involved in parental genome separation, complex hybrids between synthetic Brassica allohexaploids (2n = 54, AABBCC) from three sources and O. violaceus were obtained and characterized. Methods Genomic in situ hybridization, amplified fragment length polymorphism (AFLP) and single-strand conformation polymorphism (SSCP) were used to explore chromosomal/genomic components and rRNA gene expression of the complex hybrids and their progenies. Key Results Complex hybrids with variable fertility exhibited phenotypes that were different from the female allohexaploids and expressed some traits from O. violaceus. These hybrids were mixoploids (2n = 34–46) and retained partial complements of allohexaploids, including whole chromosomes of the A and B genomes and some of the C genome but no intact O. violaceus chromosomes; AFLP bands specific for O. violaceus, novel for two parents and absent in hexaploids were detected. The complex hybrids produced progenies with chromosomes/genomic complements biased to B. juncea (2n = 36, AABB) and novel B. juncea lines with two genomes of different origins. The expression of rRNA genes from B. nigra was revealed in all allohexaploids and complex hybrids, showing that the hierarchy of nucleolar dominance (B. nigra, BB > B. rapa, AA > B. oleracea, CC) in Brassica allotetraploids was still valid in these plants. Conclusions The chromosomes of three genomes in these synthetic Brassica allohexaploids showed different genome-specific stabilities (B > A > C) under induction of alien chromosome elimination in crosses with O. violaceus, which was possibly affected by nucleolar dominance. PMID:19403626

  8. Chromosome region-specific libraries for human genome analysis

    SciTech Connect

    Kao, Fa-Ten.

    1992-08-01

    During the grant period progress has been made in the successful demonstration of regional mapping of microclones derived from microdissection libraries; successful demonstration of the feasibility of converting microclones with short inserts into yeast artificial chromosome clones with very large inserts for high resolution physical mapping of the dissected region; Successful demonstration of the usefulness of region-specific microclones to isolate region-specific cDNA clones as candidate genes to facilitate search for the crucial genes underlying genetic diseases assigned to the dissected region; and the successful construction of four region-specific microdissection libraries for human chromosome 2, including 2q35-q37, 2q33-q35, 2p23-p25 and 2p2l-p23. The 2q35-q37 library has been characterized in detail. The characterization of the other three libraries is in progress. These region-specific microdissection libraries and the unique sequence microclones derived from the libraries will be valuable resources for investigators engaged in high resolution physical mapping and isolation of disease-related genes residing in these chromosomal regions.

  9. Site-Specific Integration of Exogenous Genes Using Genome Editing Technologies in Zebrafish.

    PubMed

    Kawahara, Atsuo; Hisano, Yu; Ota, Satoshi; Taimatsu, Kiyohito

    2016-01-01

    The zebrafish (Danio rerio) is an ideal vertebrate model to investigate the developmental molecular mechanism of organogenesis and regeneration. Recent innovation in genome editing technologies, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) system, have allowed researchers to generate diverse genomic modifications in whole animals and in cultured cells. The CRISPR/Cas9 and TALEN techniques frequently induce DNA double-strand breaks (DSBs) at the targeted gene, resulting in frameshift-mediated gene disruption. As a useful application of genome editing technology, several groups have recently reported efficient site-specific integration of exogenous genes into targeted genomic loci. In this review, we provide an overview of TALEN- and CRISPR/Cas9-mediated site-specific integration of exogenous genes in zebrafish. PMID:27187373

  10. Site-Specific Integration of Exogenous Genes Using Genome Editing Technologies in Zebrafish

    PubMed Central

    Kawahara, Atsuo; Hisano, Yu; Ota, Satoshi; Taimatsu, Kiyohito

    2016-01-01

    The zebrafish (Danio rerio) is an ideal vertebrate model to investigate the developmental molecular mechanism of organogenesis and regeneration. Recent innovation in genome editing technologies, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) system, have allowed researchers to generate diverse genomic modifications in whole animals and in cultured cells. The CRISPR/Cas9 and TALEN techniques frequently induce DNA double-strand breaks (DSBs) at the targeted gene, resulting in frameshift-mediated gene disruption. As a useful application of genome editing technology, several groups have recently reported efficient site-specific integration of exogenous genes into targeted genomic loci. In this review, we provide an overview of TALEN- and CRISPR/Cas9-mediated site-specific integration of exogenous genes in zebrafish. PMID:27187373

  11. Identification of genome-specific transcripts in wheat–rye translocation lines

    PubMed Central

    Lee, Tong Geon; Seo, Yong Weon

    2015-01-01

    Studying gene expression in wheat–rye translocation lines is complicated due to the presence of homeologs in hexaploid wheat and high levels of synteny between wheat and rye genomes (Naranjo and Fernandez-Rueda, 1991 [1]; Devos et al., 1995 [2]; Lee et al., 2010 [3]; Lee et al., 2013 [4]). To overcome limitations of current gene expression studies on wheat–rye translocation lines and identify genome-specific transcripts, we developed a custom Roche NimbleGen Gene Expression microarray that contains probes derived from the sequence of hexaploid wheat, diploid rye and diploid progenitors of hexaploid wheat genome (Lee et al., 2014). Using the array developed, we identified genome-specific transcripts in a wheat–rye translocation line (Lee et al., 2014). Expression data are deposited in the NCBI Gene Expression Omnibus (GEO) under accession number GSE58678. Here we report the details of the methods used in the array workflow and data analysis. PMID:26484243

  12. Determining the specificities of TALENs, Cas9, and other genome-editing enzymes.

    PubMed

    Pattanayak, Vikram; Guilinger, John P; Liu, David R

    2014-01-01

    The rapid development of programmable site-specific endonucleases has led to a dramatic increase in genome engineering activities for research and therapeutic purposes. Specific loci of interest in the genomes of a wide range of organisms including mammals can now be modified using zinc-finger nucleases, transcription activator-like effectornucleases, and CRISPR-associated Cas9 endonucleases in a site-specific manner, in some cases requiring relatively modest effort for endonuclease design, construction, and application. While these technologies have made genome engineering widely accessible, the ability of programmable nucleases to cleave off-target sequences can limit their applicability and raise concerns about therapeutic safety. In this chapter, we review methods to evaluate and improve the DNA cleavage activity of programmable site-specific endonucleases and describe a procedure for a comprehensive off-target profiling method based on the in vitro selection of very large (~10(12)-membered) libraries of potential nuclease substrates. PMID:25398335

  13. Differentially Evolved Genes of Salmonella Pathogenicity Islands: Insights into the Mechanism of Host Specificity in Salmonella

    PubMed Central

    Eswarappa, Sandeepa M.; Janice, Jessin; Nagarajan, Arvindhan G.; Balasundaram, Sudhagar V.; Karnam, Guruswamy; Dixit, Narendra M.; Chakravortty, Dipshikha

    2008-01-01

    Background The species Salmonella enterica (S. enterica) includes many serovars that cause disease in avian and mammalian hosts. These serovars differ greatly in their host range and their degree of host adaptation. The host specificity of S. enterica serovars appears to be a complex phenomenon governed by multiple factors acting at different stages of the infection process, which makes identification of the cause/s of host specificity solely by experimental methods difficult. Methodology/Principal Findings In this study, we have employed a molecular evolution and phylogenetics based approach to identify genes that might play important roles in conferring host specificity to different serovars of S. enterica. These genes are ‘differentially evolved’ in different S. enterica serovars. This list of ‘differentially evolved’ genes includes genes that encode translocon proteins (SipD, SseC and SseD) of both Salmonella pathogenicity islands 1 and 2 encoded type three secretion systems, sptP, which encodes an effector protein that inhibits the mitogen-activated protein kinase pathway of the host cell, and genes which encode effector proteins (SseF and SifA) that are important in placing the Salmonella-containing vacuole in a juxtanuclear position. Conclusions/Significance Analysis of known functions of these ‘differentially evolved genes’ indicates that the products of these genes directly interact with the host cell and manipulate its functions and thereby confer host specificity, at least in part, to different serovars of S. enterica that are considered in this study. PMID:19050757

  14. Comparative genomics of rhizobia nodulating soybean suggests extensive recruitment of lineage-specific genes in adaptations

    PubMed Central

    Tian, Chang Fu; Zhou, Yuan Jie; Zhang, Yan Ming; Li, Qin Qin; Zhang, Yun Zeng; Li, Dong Fang; Wang, Shuang; Wang, Jun; Gilbert, Luz B.; Li, Ying Rui; Chen, Wen Xin

    2012-01-01

    The rhizobium–legume symbiosis has been widely studied as the model of mutualistic evolution and the essential component of sustainable agriculture. Extensive genetic and recent genomic studies have led to the hypothesis that many distinct strategies, regardless of rhizobial phylogeny, contributed to the varied rhizobium–legume symbiosis. We sequenced 26 genomes of Sinorhizobium and Bradyrhizobium nodulating soybean to test this hypothesis. The Bradyrhizobium core genome is disproportionally enriched in lipid and secondary metabolism, whereas several gene clusters known to be involved in osmoprotection and adaptation to alkaline pH are specific to the Sinorhizobium core genome. These features are consistent with biogeographic patterns of these bacteria. Surprisingly, no genes are specifically shared by these soybean microsymbionts compared with other legume microsymbionts. On the other hand, phyletic patterns of 561 known symbiosis genes of rhizobia reflected the species phylogeny of these soybean microsymbionts and other rhizobia. Similar analyses with 887 known functional genes or the whole pan genome of rhizobia revealed that only the phyletic distribution of functional genes was consistent with the species tree of rhizobia. Further evolutionary genetics revealed that recombination dominated the evolution of core genome. Taken together, our results suggested that faithfully vertical genes were rare compared with those with history of recombination including lateral gene transfer, although rhizobial adaptations to symbiotic interactions and other environmental conditions extensively recruited lineage-specific shell genes under direct or indirect control through the speciation process. PMID:22586130

  15. Draft Genome Sequences of Sarcina ventriculi Strains Isolated from Wild Japanese Macaques in Yakushima Island.

    PubMed

    Ushida, Kazunari; Tsuchida, Sayaka; Ogura, Yoshitoshi; Hayashi, Tetsuya; Sawada, Akiko; Hanya, Goro

    2016-01-01

    We report the draft genome sequences of Sarcina ventriculi strains 14 and 17, both isolated from feces of wild Yakushima macaques (Macaca fuscata yakui). These genomic sequences will be helpful for the phylogenetic consideration of the family Clostridiaceae and understanding of the contribution of intestinal microbiota to the survival of Yakushima macaques. PMID:26847899

  16. Draft Genome Sequences of Sarcina ventriculi Strains Isolated from Wild Japanese Macaques in Yakushima Island

    PubMed Central

    Tsuchida, Sayaka; Ogura, Yoshitoshi; Hayashi, Tetsuya; Sawada, Akiko; Hanya, Goro

    2016-01-01

    We report the draft genome sequences of Sarcina ventriculi strains 14 and 17, both isolated from feces of wild Yakushima macaques (Macaca fuscata yakui). These genomic sequences will be helpful for the phylogenetic consideration of the family Clostridiaceae and understanding of the contribution of intestinal microbiota to the survival of Yakushima macaques. PMID:26847899

  17. Identification of human-specific AluS elements through comparative genomics.

    PubMed

    Lee, Jae; Kim, Yun-Ji; Mun, Seyoung; Kim, Heui-Soo; Han, Kyudong

    2015-01-25

    Mobile elements are responsible for ~45% of the human genome. Among them is the Alu element, accounting for 10% of the human genome (>1.1million copies). Several studies of Alu elements have reported that they are frequently involved in human genetic diseases and genomic rearrangements. In this study, we investigated the AluS subfamily, which is a relatively old Alu subfamily and has the highest copy number in primate genomes. Previously, a set of 263 human-specific AluS insertions was identified in the human genome. To validate these, we compared each of the human-specific AluS loci with its pre-insertion site in other primate genomes, including chimpanzee, gorilla, and orangutan. We obtained 24 putative human-specific AluS candidates via the in silico analysis and manual inspection, and then tried to verify them using PCR amplification and DNA sequencing. Through the PCR product sequencing, we were able to detect two instances of near-parallel Alu insertions in nearby sites that led to computational false negatives. Finally, we computationally and experimentally verified 23 human-specific AluS elements. We reported three alternative Alu insertion events, which are accompanied by filler DNA and/or Alu retrotransposition mediated-deletion. Bisulfite sequencing was carried out to examine DNA methylation levels of human-specific AluS elements. The results showed that fixed AluS elements are hypermethylated compared with polymorphic elements, indicating a possible relation between DNA methylation and Alu fixation in the human genome. PMID:25447892

  18. DEVELOPMENT OF A LONG ISLAND SOUND-SPECIFIC WATER QUALITY INDEX USING CLUSTER ANALYSIS AND DISCRIMINANT ANALYSIS

    EPA Science Inventory

    The objective of this project is to develop a Long Island Sound-specific water quality index. The water quality index will be computed using multivariate cluster analysis and discriminant analysis of a set of individual water quality indicators. A numerical water quality index (a...

  19. Filia is an ESC-specific regulator of DNA damage response and safeguards genomic stability

    PubMed Central

    Zhao, Bo; Zhang, Wei-dao; Duan, Ying-liang; Lu, Yong-qing; Cun, Yi-xian; Li, Chao-hui; Guo, Kun; Nie, Wen-hui; Li, Lei; Zhang, Rugang; Zheng, Ping

    2015-01-01

    Summary Pluripotent stem cells (PSCs) hold great promise in cell-based therapy, but the genomic instability seen in culture hampers full application. Greater understanding of the factors that regulate genomic stability in PSCs could help address this issue. Here we describe the identification of Filia as a specific regulator of genomic stability in mouse embryonic stem cells (ESCs). Filia expression is induced by genotoxic stress. Filia promotes centrosome integrity and regulates DNA damage response (DDR) through multiple pathways, including DDR signaling, cell cycle checkpoints and damage repair, ESC differentiation and apoptosis. Filia depletion causes ESC genomic instability, induces resistance to apoptosis and promotes malignant transformation. As part of its role in the DDR, Filia interacts with PARP1 and stimulates its enzymatic activity. Filia also constitutively resides on centrosomes and translocates to DNA damage sites and mitochondria, consistent with its multifaceted roles in regulating centrosome integrity, damage repair and apoptosis. PMID:25936915

  20. Specific Genomic Fingerprints of Phosphate Solubilizing Pseudomonas Strains Generated by Box Elements

    PubMed Central

    Javadi Nobandegani, Mohammad Bagher; Saud, Halimi Mohd; Yun, Wong Mui

    2014-01-01

    Primers corresponding to conserved bacterial repetitive of BOX elements were used to show that BOX-DNA sequences are widely distributed in phosphate solubilizing Pseudomonas strains. Phosphate solubilizing Pseudomonas was isolated from oil palm fields (tropical soil) in Malaysia. BOX elements were used to generate genomic fingerprints of a variety of Pseudomonas isolates to identify strains that were not distinguishable by other classification methods. BOX-PCR, that derived genomic fingerprints, was generated from whole purified genomic DNA by liquid culture of phosphate solubilizing Pseudomonas. BOX-PCR generated the phosphate solubilizing Pseudomonas specific fingerprints to identify the relationship between these strains. This suggests that distribution of BOX elements' sequences in phosphate solubilizing Pseudomonas strains is the mirror image of their genomic structure. Therefore, this method appears to be a rapid, simple, and reproducible method to identify and classify phosphate solubilizing Pseudomonas strains and it may be useful tool for fast identification of potential biofertilizer strains. PMID:25580434

  1. LINE-1 distribution in six rodent genomes follow a species-specific pattern.

    PubMed

    Vieira-da-Silva, A; Adega, F; Guedes-Pinto, H; Chaves, R

    2016-03-01

    L1 distribution in mammal's genomes is yet a huge riddle. However, these repetitive sequences were already found in all chromosomic regions, and in general, they seem to be nonrandomly distributed in the genome. It also seems that after insertion and when they are not deleterious, they are always involved in dynamic processes occurring on that particular chromosomic region. Furthermore, it seems that large-scale genome rearrangements and L1 activity and accumulation are somehow interconnected. In the present study, we analysed L1 genomic distribution in Tatera gambiana (Muridae, Gerbillinae), Acomys sp. (Muridae, Deomyinae), Cricetomys sp. (Nesomyidae, Cricetomyinae), Microtus arvalis (Cricetidae, Arvicolinae), Phodopus roborovskii and P. sungorus (Cricetidae, Cricetinae). All the species studied here seems to exhibit a species-specific pattern.Possible mechanisms, and processes involved in L1 distribution and preferential accumulation in certain regions are di scussed. PMID:27019429

  2. Draft Genome Sequence of the Filamentous Cyanobacterium Leptolyngbya sp. Strain Heron Island J, Exhibiting Chromatic Acclimation

    PubMed Central

    Paul, Robin; Jinkerson, Robert E.; Buss, Kristina; Steel, Jason; Mohr, Remus; Hess, Wolfgang R.; Chen, Min

    2014-01-01

    Leptolyngbya sp. strain Heron Island is a cyanobacterium exhibiting chromatic acclimation. However, this strain has strong interactions with other bacteria, making it impossible to obtain axenic cultures for sequencing. A protocol involving an analysis of tetranucleotide frequencies, G+C content, and BLAST searches has been described for separating the cyanobacterial scaffolds from those of its cooccurring bacteria. PMID:24503993

  3. Interactions of Neuropathogenic Escherichia coli K1 (RS218) and Its Derivatives Lacking Genomic Islands with Phagocytic Acanthamoeba castellanii and Nonphagocytic Brain Endothelial Cells

    PubMed Central

    Yousuf, Farzana Abubakar; Yousuf, Zuhair; Iqbal, Junaid; Siddiqui, Ruqaiyyah; Khan, Hafsa; Khan, Naveed Ahmed

    2014-01-01

    Here we determined the role of various genomic islands in E. coli K1 interactions with phagocytic A. castellanii and nonphagocytic brain microvascular endothelial cells. The findings revealed that the genomic islands deletion mutants of RS218 related to toxins (peptide toxin, α-hemolysin), adhesins (P fimbriae, F17-like fimbriae, nonfimbrial adhesins, Hek, and hemagglutinin), protein secretion system (T1SS for hemolysin), invasins (IbeA, CNF1), metabolism (D-serine catabolism, dihydroxyacetone, glycerol, and glyoxylate metabolism) showed reduced interactions with both A. castellanii and brain microvascular endothelial cells. Interestingly, the deletion of RS218-derived genomic island 21 containing adhesins (P fimbriae, F17-like fimbriae, nonfimbrial adhesins, Hek, and hemagglutinin), protein secretion system (T1SS for hemolysin), invasins (CNF1), metabolism (D-serine catabolism) abolished E. coli K1-mediated HBMEC cytotoxicity in a CNF1-independent manner. Therefore, the characterization of these genomic islands should reveal mechanisms of evolutionary gain for E. coli K1 pathogenicity. PMID:24818136

  4. Comparative genomic analysis of eight Leptospira strains from Japan and the Philippines revealing the existence of four putative novel genomic islands/islets in L. interrogans serovar Lai strain 56601.

    PubMed

    Youn, Jung-Ho; Hayashida, Kyoko; Koizumi, Nobuo; Ohnishi, Makoto; Sugimoto, Chihiro

    2014-12-01

    Leptospirosis is one of the most widespread zoonotic diseases worldwide and can be considered an emerging health problem to both human and animal. Despite the importance of the disease, complete genome sequences are currently available for only three Leptospira interrogans strains: 56601, Fiocruz L1-130, and IPAV. Therefore, intra- and inter-species comparative genomic analyses of Leptospira are limited. Here, to advance current knowledge of the genomic differences within Leptospira species, next-generation sequencing technology was used to examine the genomes of eight L. interrogans strains belonging to six different serogroups isolated from humans and dogs in Japan and the Philippines. The genomic sequences were mapped to that of the reference strain, L. interrogans serovar Lai strain 56601. The results revealed the presence of four novel genomic islands/islets (GIs) in strain 56601. This study provides a deeper insight into the molecular basis and evolutionary perspective of the virulence of leptospires. PMID:25449997

  5. Site-specific recombination in the chicken genome using Flipase recombinase-mediated cassette exchange.

    PubMed

    Lee, Hong Jo; Lee, Hyung Chul; Kim, Young Min; Hwang, Young Sun; Park, Young Hyun; Park, Tae Sub; Han, Jae Yong

    2016-02-01

    Targeted genome recombination has been applied in diverse research fields and has a wide range of possible applications. In particular, the discovery of specific loci in the genome that support robust and ubiquitous expression of integrated genes and the development of genome-editing technology have facilitated rapid advances in various scientific areas. In this study, we produced transgenic (TG) chickens that can induce recombinase-mediated gene cassette exchange (RMCE), one of the site-specific recombination technologies, and confirmed RMCE in TG chicken-derived cells. As a result, we established TG chicken lines that have, Flipase (Flp) recognition target (FRT) pairs in the chicken genome, mediated by piggyBac transposition. The transgene integration patterns were diverse in each TG chicken line, and the integration diversity resulted in diverse levels of expression of exogenous genes in each tissue of the TG chickens. In addition, the replaced gene cassette was expressed successfully and maintained by RMCE in the FRT predominant loci of TG chicken-derived cells. These results indicate that targeted genome recombination technology with RMCE could be adaptable to TG chicken models and that the technology would be applicable to specific gene regulation by cis-element insertion and customized expression of functional proteins at predicted levels without epigenetic influence. PMID:26443821

  6. Isolation of Specific Genomic Regions and Identification of Associated Molecules by enChIP

    PubMed Central

    Fujita, Toshitsugu; Fujii, Hodaka

    2016-01-01

    The identification of molecules associated with specific genomic regions of interest is required to understand the mechanisms of regulation of the functions of these regions. To enable the non-biased identification of molecules interacting with a specific genomic region of interest, we recently developed the engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) technique. Here, we describe how to use enChIP to isolate specific genomic regions and identify the associated proteins and RNAs. First, a genomic region of interest is tagged with a transcription activator-like (TAL) protein or a clustered regularly interspaced short palindromic repeats (CRISPR) complex consisting of a catalytically inactive form of Cas9 and a guide RNA. Subsequently, the chromatin is crosslinked and fragmented by sonication. The tagged locus is then immunoprecipitated and the crosslinking is reversed. Finally, the proteins or RNAs that are associated with the isolated chromatin are subjected to mass spectrometric or RNA sequencing analyses, respectively. This approach allows the successful identification of proteins and RNAs associated with a genomic region of interest. PMID:26862718

  7. Extensive amplification of GI-VII-6, a multidrug resistance genomic island of Salmonella enterica serovar Typhimurium, increases resistance to extended-spectrum cephalosporins.

    PubMed

    Lee, Ken-Ichi; Kusumoto, Masahiro; Sekizuka, Tsuyoshi; Kuroda, Makoto; Uchida, Ikuo; Iwata, Taketoshi; Okamoto, Susumu; Yabe, Kimiko; Inaoka, Takashi; Akiba, Masato

    2015-01-01

    GI-VII-6 is a chromosomally integrated multidrug resistance genomic island harbored by a specific clone of Salmonella enterica serovar Typhimurium (S.Typhimurium). It contains a gene encoding CMY-2 β-lactamase (bla CMY-2), and therefore contributes to extended-spectrum cephalosporin resistance. To elucidate the significance of GI-VII-6 on adaptive evolution, spontaneous mutants of S. Typhimurium strain L-3553 were selected on plates containing cefotaxime (CTX). The concentrations of CTX were higher than its minimum inhibition concentration to the parent strain. The mutants appeared on the plates containing 12.5 and 25 mg/L CTX at a frequency of 10(-6) and 10(-8), respectively. No colonies were observed at higher CTX concentrations. The copy number of bla CMY-2 increased up to 85 per genome in the mutants, while the parent strain contains one copy of that in the chromosome. This elevation was accompanied by increased amount of transcription. The bla CMY-2 copy number in the mutants drastically decreased in the absence of antimicrobial selection pressure. Southern hybridization analysis and short-read mapping indicated that the entire 125 kb GI-VII-6 or parts of it were tandemly amplified. GI-VII-6 amplification occurred at its original position, although it also transposed to other locations in the genome in some mutants, including an endogenous plasmid in some of the mutants, leading to the amplification of GI-VII-6 at different loci. Insertion sequences were observed at the junction of the amplified regions in the mutants, suggesting their significant roles in the transposition and amplification. Plasmid copy number in the selected mutants was 1.4 to 4.4 times higher than that of the parent strain. These data suggest that transposition and amplification of the bla CMY-2-containing region, along with the copy number variation of the plasmid, contributed to the extensive amplification of bla CMY-2 and increased resistance to CTX. PMID:25713569

  8. Programmable Site-Specific Nucleases for Targeted Genome Engineering in Higher Eukaryotes.

    PubMed

    Govindan, Ganesan; Ramalingam, Sivaprakash

    2016-11-01

    Recent advances in the targeted genome engineering enable molecular biologists to generate sequence specific modifications with greater efficiency and higher specificity in complex eukaryotic genomes. Programmable site-specific DNA cleavage reagents and cellular DNA repair mechanisms have made this possible. These reagents have become powerful tools for delivering a site-specific genomic double-strand break (DSB) at the desired chromosomal locus, which produces sequence alterations through error-prone non-homologous end joining (NHEJ) resulting in gene inactivations/knockouts. Alternatively, the DSB can be repaired through homology-directed repair (HDR) using a donor DNA template, which leads to the introduction of desired sequence modifications at the predetermined site. Here, we summarize the role of three classes of nucleases; zinc finger nucleases (ZFNs), transcription activator like effector nucleases (TALENs), and clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) system in achieving targeted genome modifications. Further, we discuss the progress towards the applications of programmable site-specific nucleases (SSNs) in treating human diseases and other biological applications in economically important higher eukaryotic organisms such as plants and livestock. J. Cell. Physiol. 231: 2380-2392, 2016. © 2016 Wiley Periodicals, Inc. PMID:26945523

  9. Klebsiella pneumoniae Asparagine tDNAs Are Integration Hotspots for Different Genomic Islands Encoding Microcin E492 Production Determinants and Other Putative Virulence Factors Present in Hypervirulent Strains

    PubMed Central

    Marcoleta, Andrés E.; Berríos-Pastén, Camilo; Nuñez, Gonzalo; Monasterio, Octavio; Lagos, Rosalba

    2016-01-01

    Due to the developing of multi-resistant and invasive hypervirulent strains, Klebsiella pneumoniae has become one of the most urgent bacterial pathogen threats in the last years. Genomic comparison of a growing number of sequenced isolates has allowed the identification of putative virulence factors, proposed to be acquirable mainly through horizontal gene transfer. In particular, those related with synthesizing the antibacterial peptide microcin E492 (MccE492) and salmochelin siderophores were found to be highly prevalent among hypervirulent strains. The determinants for the production of both molecules were first reported as part of a 13-kbp segment of K. pneumoniae RYC492 chromosome, and were cloned and characterized in E. coli. However, the genomic context of this segment in K. pneumoniae remained uncharacterized. In this work, we provided experimental and bioinformatics evidence indicating that the MccE492 cluster is part of a highly conserved 23-kbp genomic island (GI) named GIE492, that was integrated in a specific asparagine-tRNA gene (asn-tDNA) and was found in a high proportion of isolates from liver abscesses sampled around the world. This element resulted to be unstable and its excision frequency increased after treating bacteria with mitomycin C and upon the overexpression of the island-encoded integrase. Besides the MccE492 genetic cluster, it invariably included an integrase-coding gene, at least seven protein-coding genes of unknown function, and a putative transfer origin that possibly allows this GI to be mobilized through conjugation. In addition, we analyzed the asn-tDNA loci of all the available K. pneumoniae assembled chromosomes to evaluate them as GI-integration sites. Remarkably, 73% of the strains harbored at least one GI integrated in one of the four asn-tDNA present in this species, confirming them as integration hotspots. Each of these tDNAs was occupied with different frequencies, although they were 100% identical. Also, we identified

  10. Transferability, amplification quality, and genome specificity of microsatellites in Brassica carinata and related species.

    PubMed

    Marquez-Lema, A; Velasco, L; Perez-Vich, B

    2010-01-01

    No information is available on the transferability and amplification quality of microsatellite (SSR) markers of the public domain in Brassica carinata A. Braun. The objective of the presented research was to study the amplification of a set of 73 SSRs from B. nigra (L.) Koch and B. napus L. in B. carinata, and to compare the results with those obtained in the amplification of the same markers in other Brassica species of the U triangle. This set of SSRs from B. nigra (B genome) and B. napus (AC genome) allows the identification of the 3 basic genomes of the Brassica species tested. 94.3% of the SSR markers from B. nigra and 97.4% of those from B. napus amplified SSR-specific products in B. carinata. Very high-quality amplification with a strong signal and easy scoring in B. carinata was recorded for 52.8% of the specific loci from B. nigra SSRs and 59.3% of the specific loci from B. napus SSRs, compared to 66.7% in B. nigra and 62.8% in B. napus. Genome specificity and amplification quality of B. nigra and B. napus SSR markers in the 6 species under study is reported. High-quality transferable SSR markers provide an efficient and cost-effective platform to advance in molecular research in B. carinata. PMID:20453299

  11. Germinal transmission of site-specific excised genomic DNA by the bacterial ParA resolvase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome engineering is an essential tool in research and product development. Behind some of the recent advances in plant gene transfer is the development of site-specific recombination systems that enable the precise manipulation of DNA, e.g. the deletion, integration or translocation of DNA. DNA ...

  12. Adaptive divergence despite strong genetic drift: genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyon littoralis).

    PubMed

    Funk, W Chris; Lovich, Robert E; Hohenlohe, Paul A; Hofman, Courtney A; Morrison, Scott A; Sillett, T Scott; Ghalambor, Cameron K; Maldonado, Jesus E; Rick, Torben C; Day, Mitch D; Polato, Nicholas R; Fitzpatrick, Sarah W; Coonan, Timothy J; Crooks, Kevin R; Dillon, Adam; Garcelon, David K; King, Julie L; Boser, Christina L; Gould, Nicholas; Andelt, William F

    2016-05-01

    The evolutionary mechanisms generating the tremendous biodiversity of islands have long fascinated evolutionary biologists. Genetic drift and divergent selection are predicted to be strong on islands and both could drive population divergence and speciation. Alternatively, strong genetic drift may preclude adaptation. We conducted a genomic analysis to test the roles of genetic drift and divergent selection in causing genetic differentiation among populations of the island fox (Urocyon littoralis). This species consists of six subspecies, each of which occupies a different California Channel Island. Analysis of 5293 SNP loci generated using Restriction-site Associated DNA (RAD) sequencing found support for genetic drift as the dominant evolutionary mechanism driving population divergence among island fox populations. In particular, populations had exceptionally low genetic variation, small Ne (range = 2.1-89.7; median = 19.4), and significant genetic signatures of bottlenecks. Moreover, islands with the lowest genetic variation (and, by inference, the strongest historical genetic drift) were most genetically differentiated from mainland grey foxes, and vice versa, indicating genetic drift drives genome-wide divergence. Nonetheless, outlier tests identified 3.6-6.6% of loci as high FST outliers, suggesting that despite strong genetic drift, divergent selection contributes to population divergence. Patterns of similarity among populations based on high FST outliers mirrored patterns based on morphology, providing additional evidence that outliers reflect adaptive divergence. Extremely low genetic variation and small Ne in some island fox populations, particularly on San Nicolas Island, suggest that they may be vulnerable to fixation of deleterious alleles, decreased fitness and reduced adaptive potential. PMID:26992010

  13. Lineage-Specific Patterns of Genome Deterioration in Obligate Symbionts of Sharpshooter Leafhoppers

    PubMed Central

    Bennett, Gordon M.; McCutcheon, John P.; McDonald, Bradon R.; Moran, Nancy A.

    2016-01-01

    Plant sap-feeding insects (Hemiptera) rely on obligate bacterial symbionts that provision nutrients. Some of these symbionts are ancient and have evolved tiny genomes, whereas others are younger and retain larger, dynamic genomes. Baumannia cicadellinicola, an obligate symbiont of sharpshooter leafhoppers, is derived from a relatively recent symbiont replacement. To better understand evolutionary decay of genomes, we compared Baumannia from three host species. A newly sequenced genome for Baumannia from the green sharpshooter (B-GSS) was compared with genomes of Baumannia from the blue-green sharpshooter (B-BGSS, 759 kilobases [kb]) and from the glassy-winged sharpshooter (B-GWSS, 680 kb). B-GSS has the smallest Baumannia genome sequenced to date (633 kb), with only three unique genes, all involved in membrane function. It has lost nearly all pathways involved in vitamin and cofactor synthesis, as well as amino acid biosynthetic pathways that are redundant with pathways of the host or the symbiotic partner, Sulcia muelleri. The entire biosynthetic pathway for methionine is eliminated, suggesting that methionine has become a dietary requirement for hosts. B-GSS and B-BGSS share 33 genes involved in bacterial functions (e.g., cell division, membrane synthesis, metabolite transport, etc.) that are lost from the more distantly related B-GWSS and most other tiny genome symbionts. Finally, pairwise divergence estimates indicate that B-GSS has experienced a lineage-specific increase in substitution rates. This increase correlates with accelerated protein-level changes and widespread gene loss. Thus, the mode and tempo of genome reduction vary widely among symbiont lineages and result in wide variation in metabolic capabilities across hosts. PMID:26260652

  14. Lineage-Specific Patterns of Genome Deterioration in Obligate Symbionts of Sharpshooter Leafhoppers.

    PubMed

    Bennett, Gordon M; McCutcheon, John P; McDonald, Bradon R; Moran, Nancy A

    2016-01-01

    Plant sap-feeding insects (Hemiptera) rely on obligate bacterial symbionts that provision nutrients. Some of these symbionts are ancient and have evolved tiny genomes, whereas others are younger and retain larger, dynamic genomes. Baumannia cicadellinicola, an obligate symbiont of sharpshooter leafhoppers, is derived from a relatively recent symbiont replacement. To better understand evolutionary decay of genomes, we compared Baumannia from three host species. A newly sequenced genome for Baumannia from the green sharpshooter (B-GSS) was compared with genomes of Baumannia from the blue-green sharpshooter (B-BGSS, 759 kilobases [kb]) and from the glassy-winged sharpshooter (B-GWSS, 680 kb). B-GSS has the smallest Baumannia genome sequenced to date (633 kb), with only three unique genes, all involved in membrane function. It has lost nearly all pathways involved in vitamin and cofactor synthesis, as well as amino acid biosynthetic pathways that are redundant with pathways of the host or the symbiotic partner, Sulcia muelleri. The entire biosynthetic pathway for methionine is eliminated, suggesting that methionine has become a dietary requirement for hosts. B-GSS and B-BGSS share 33 genes involved in bacterial functions (e.g., cell division, membrane synthesis, metabolite transport, etc.) that are lost from the more distantly related B-GWSS and most other tiny genome symbionts. Finally, pairwise divergence estimates indicate that B-GSS has experienced a lineage-specific increase in substitution rates. This increase correlates with accelerated protein-level changes and widespread gene loss. Thus, the mode and tempo of genome reduction vary widely among symbiont lineages and result in wide variation in metabolic capabilities across hosts. PMID:26260652

  15. Selection of chromosome 22-specific clones from human genomic BAC library using a chromosome-specific cosmid library pool

    SciTech Connect

    Kim, U.J.; Shizuya, H.; Birren, B.

    1994-07-15

    A new approach to rapidly identify chromosome-specific subsets of clones from a total human genomic library is described. The authors report here the results of screening a human bacterial artificial chromosome (BAC) library using the total pool of clones from a chromosome 22-specific cosmid library as a composite probe. The human BAC library was gridded on filters at high density and hybridized with DNA from the pooled chromosome 22-specific Lawrist library under suppressive conditions. In a single hybridization, they picked 280 candidates from the BAC library representing over 30,000 clones (or 1.2 x coverage of human genome). This subset contained more than 60% of the chromosome 22-specific BAC clones that were previously found to be present in the original BAC library. In principle, this approach can be applied to select a subset of clones from other global libraries with relatively large inserts using a pool from a regional library as a composite probe. It is important to note that the target and probe libraries must be based on vectors that share no homology with each other. 8 refs., 2 figs., 2 tabs.

  16. High-quality permanent draft genome sequence of Bradyrhizobium sp. Tv2a.2, a microsymbiont of Tachigali versicolor discovered in Barro Colorado Island of Panama

    DOE PAGESBeta

    Tian, Rui; Parker, Matthew; Seshadri, Rekha; Reddy, TBK; Markowitz, Victor; Ivanova, Natalia; Pati, Amrita; Woyke, Tanja; Baeshen, Mohammed N.; Baeshen, Nabih A.; et al

    2015-05-17

    Bradyrhizobiumsp. Tv2a.2 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen-fixing root nodule of Tachigali versicolor collected in Barro Colorado Island of Panama. Here we describe the features of Bradyrhizobiumsp. Tv2a.2, together with high-quality permanent draft genome sequence information and annotation. The 8,496,279 bp high-quality draft genome is arranged in 87 scaffolds of 87 contigs, contains 8,109 protein-coding genes and 72 RNA-only encoding genes. In conclusion, this rhizobial genome was sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.

  17. Genomic Profiles of Diversification and Genotype-Phenotype Association in Island Nematode Lineages.

    PubMed

    McGaughran, Angela; Rödelsperger, Christian; Grimm, Dominik G; Meyer, Jan M; Moreno, Eduardo; Morgan, Katy; Leaver, Mark; Serobyan, Vahan; Rakitsch, Barbara; Borgwardt, Karsten M; Sommer, Ralf J

    2016-09-01

    Understanding how new species form requires investigation of evolutionary forces that cause phenotypic and genotypic changes among populations. However, the mechanisms underlying speciation vary and little is known about whether genomes diversify in the same ways in parallel at the incipient scale. We address this using the nematode, Pristionchus pacificus, which resides at an interesting point on the speciation continuum (distinct evolutionary lineages without reproductive isolation), and inhabits heterogeneous environments subject to divergent environmental pressures. Using whole genome re-sequencing of 264 strains, we estimate FST to identify outlier regions of extraordinary differentiation (∼1.725 Mb of the 172.5 Mb genome). We find evidence for shared divergent genomic regions occurring at a higher frequency than expected by chance among populations of the same evolutionary lineage. We use allele frequency spectra to find that, among lineages, 53% of divergent regions are consistent with adaptive selection, whereas 24% and 23% of such regions suggest background selection and restricted gene flow, respectively. In contrast, among populations from the same lineage, similar proportions (34-48%) of divergent regions correspond to adaptive selection and restricted gene flow, whereas 13-22% suggest background selection. Because speciation often involves phenotypic and genomic divergence, we also evaluate phenotypic variation, focusing on pH tolerance, which we find is diverging in a manner corresponding to environmental differences among populations. Taking a genome-wide association approach, we functionally validate a significant genotype-phenotype association for this trait. Our results are consistent with P. pacificus undergoing heterogeneous genotypic and phenotypic diversification related to both evolutionary and environmental processes. PMID:27189551

  18. Complete genome sequence of Xishuangbanna flavivirus, a novel mosquito-specific flavivirus from China.

    PubMed

    Fan, Hang; Zhao, Qiumin; Guo, Xiaofang; Sun, Qiang; Zuo, Shuqing; Wu, Chao; Zhou, Hongning; An, Xiaoping; Pei, Guangqian; Tong, Yigang; Zhang, Jiusong; Shi, Taoxing

    2016-06-01

    A new flavivirus, Xishuangbanna flavivirus (XFV), infecting Aedes albopictus mosquitoes in Yunnan Province, China, was isolated and sequenced. The single-stranded RNA genome of 10,884 nt contained two open reading frames (ORFs) encoding the polyprotein and FIFO. The genome had a maximum nucleotide sequence identity of 65 % to Parramatta River virus with coverage of only 27 %. Phylogenetic analysis suggested that this virus is most closely related to recognized classical insect-specific flaviviruses (cISF) and most likely has a similar host range. Sequence comparisons and phylogenetic analysis demonstrated that XFV is a new member of the genus Flavivirus. PMID:27001304

  19. Gene-rich islands for fiber development in the cotton genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fiber is an economically important seed trichome and the world's leading natural fiber used in the manufacture of textiles. As a step towards elucidating the genomic organization and distribution of gene networks responsible for cotton fiber development, we investigated the distribution of f...

  20. Emergence and Evolution of Hominidae-Specific Coding and Noncoding Genomic Sequences

    PubMed Central

    Saber, Morteza Mahmoudi; Adeyemi Babarinde, Isaac; Hettiarachchi, Nilmini; Saitou, Naruya

    2016-01-01

    Family Hominidae, which includes humans and great apes, is recognized for unique complex social behavior and intellectual abilities. Despite the increasing genome data, however, the genomic origin of its phenotypic uniqueness has remained elusive. Clade-specific genes and highly conserved noncoding sequences (HCNSs) are among the high-potential evolutionary candidates involved in driving clade-specific characters and phenotypes. On this premise, we analyzed whole genome sequences along with gene orthology data retrieved from major DNA databases to find Hominidae-specific (HS) genes and HCNSs. We discovered that Down syndrome critical region 4 (DSCR4) is the only experimentally verified gene uniquely present in Hominidae. DSCR4 has no structural homology to any known protein and was inferred to have emerged in several steps through LTR/ERV1, LTR/ERVL retrotransposition, and transversion. Using the genomic distance as neutral evolution threshold, we identified 1,658 HS HCNSs. Polymorphism coverage and derived allele frequency analysis of HS HCNSs showed that these HCNSs are under purifying selection, indicating that they may harbor important functions. They are overrepresented in promoters/untranslated regions, in close proximity of genes involved in sensory perception of sound and developmental process, and also showed a significantly lower nucleosome occupancy probability. Interestingly, many ancestral sequences of the HS HCNSs showed very high evolutionary rates. This suggests that new functions emerged through some kind of positive selection, and then purifying selection started to operate to keep these functions. PMID:27289096

  1. SNPsplit: Allele-specific splitting of alignments between genomes with known SNP genotypes

    PubMed Central

    Krueger, Felix; Andrews, Simon R.

    2016-01-01

    Sequencing reads overlapping polymorphic sites in diploid mammalian genomes may be assigned to one allele or the other. This holds the potential to detect gene expression, chromatin modifications, DNA methylation or nuclear interactions in an allele-specific fashion. SNPsplit is an allele-specific alignment sorter designed to read files in SAM/BAM format and determine the allelic origin of reads or read-pairs that cover known single nucleotide polymorphic (SNP) positions. For this to work libraries must have been aligned to a genome in which all known SNP positions were masked with the ambiguity base 'N' and aligned using a suitable mapping program such as Bowtie2, TopHat, STAR, HISAT2, HiCUP or Bismark. SNPsplit also provides an automated solution to generate N-masked reference genomes for hybrid mouse strains based on the variant call information provided by the Mouse Genomes Project. The unique ability of SNPsplit to work with various different kinds of sequencing data including RNA-Seq, ChIP-Seq, Bisulfite-Seq or Hi-C opens new avenues for the integrative exploration of allele-specific data. PMID:27429743

  2. A uniform survey of allele-specific binding and expression over 1000-Genomes-Project individuals.

    PubMed

    Chen, Jieming; Rozowsky, Joel; Galeev, Timur R; Harmanci, Arif; Kitchen, Robert; Bedford, Jason; Abyzov, Alexej; Kong, Yong; Regan, Lynne; Gerstein, Mark

    2016-01-01

    Large-scale sequencing in the 1000 Genomes Project has revealed multitudes of single nucleotide variants (SNVs). Here, we provide insights into the functional effect of these variants using allele-specific behaviour. This can be assessed for an individual by mapping ChIP-seq and RNA-seq reads to a personal genome, and then measuring 'allelic imbalances' between the numbers of reads mapped to the paternal and maternal chromosomes. We annotate variants associated with allele-specific binding and expression in 382 individuals by uniformly processing 1,263 functional genomics data sets, developing approaches to reduce the heterogeneity between data sets due to overdispersion and mapping bias. Since many allelic variants are rare, aggregation across multiple individuals is necessary to identify broadly applicable 'allelic elements'. We also found SNVs for which we can anticipate allelic imbalance from the disruption of a binding motif. Our results serve as an allele-specific annotation for the 1000 Genomes variant catalogue and are distributed as an online resource (alleledb.gersteinlab.org). PMID:27089393

  3. Emergence and Evolution of Hominidae-Specific Coding and Noncoding Genomic Sequences.

    PubMed

    Saber, Morteza Mahmoudi; Adeyemi Babarinde, Isaac; Hettiarachchi, Nilmini; Saitou, Naruya

    2016-01-01

    Family Hominidae, which includes humans and great apes, is recognized for unique complex social behavior and intellectual abilities. Despite the increasing genome data, however, the genomic origin of its phenotypic uniqueness has remained elusive. Clade-specific genes and highly conserved noncoding sequences (HCNSs) are among the high-potential evolutionary candidates involved in driving clade-specific characters and phenotypes. On this premise, we analyzed whole genome sequences along with gene orthology data retrieved from major DNA databases to find Hominidae-specific (HS) genes and HCNSs. We discovered that Down syndrome critical region 4 (DSCR4) is the only experimentally verified gene uniquely present in Hominidae. DSCR4 has no structural homology to any known protein and was inferred to have emerged in several steps through LTR/ERV1, LTR/ERVL retrotransposition, and transversion. Using the genomic distance as neutral evolution threshold, we identified 1,658 HS HCNSs. Polymorphism coverage and derived allele frequency analysis of HS HCNSs showed that these HCNSs are under purifying selection, indicating that they may harbor important functions. They are overrepresented in promoters/untranslated regions, in close proximity of genes involved in sensory perception of sound and developmental process, and also showed a significantly lower nucleosome occupancy probability. Interestingly, many ancestral sequences of the HS HCNSs showed very high evolutionary rates. This suggests that new functions emerged through some kind of positive selection, and then purifying selection started to operate to keep these functions. PMID:27289096

  4. Studies on genome relationship and species-specific PCR marker for Dasypyrum breviaristatum in Triticeae.

    PubMed

    Yang, Zu-Jun; Liu, Cheng; Feng, Juan; Li, Guang-Rong; Zhou, Jian-Ping; Deng, Ke-Jun; Ren, Zheng-Long

    2006-12-01

    Dasypyrum breviaristatum and nine related species in Triticeae were analyzed using the random amplified polymorphic DNA (RAPD) technique, in order to understand the genetic relationship and to develop species specific markers. The genome relationship dendrogram shows that D. breviaristatum and D. villosum could not be grouped together, indicating that D. breviaristatum was unlikely to be directly derived from D. villosum, while D. breviaristatum was closest to Thinopyrum intermedium, which implied that they might have similar breeding behaviors when introducing their chromatins into wheat. A D. breviaristatum genome specific RAPD product of 1182bp, was cloned and designated as pDb12H. Sequence analysis revealed that pDb12H was strongly homologuos to a long terminal repeat (LTR) Sabrina retrotransposon newly reported in Hordeum. The pDb12H was converted into a PCR based marker, which allows effectively monitoring the D. breviaristatum chromatin introgression into wheat. Fluorescence in situ hybridization (FISH) suggested that pDb12H was specifically hybridized throughout all D. breviaristatum chromosomes arms except for the terminal and centromeric regions, which can be used to characterize wheat -D. breviaristatum chromosome translocation. The genomes repetitive element will also be useful to study gene interactions between the wheat and alien genomes after the polyploidization. PMID:17362333

  5. A uniform survey of allele-specific binding and expression over 1000-Genomes-Project individuals

    PubMed Central

    Chen, Jieming; Rozowsky, Joel; Galeev, Timur R.; Harmanci, Arif; Kitchen, Robert; Bedford, Jason; Abyzov, Alexej; Kong, Yong; Regan, Lynne; Gerstein, Mark

    2016-01-01

    Large-scale sequencing in the 1000 Genomes Project has revealed multitudes of single nucleotide variants (SNVs). Here, we provide insights into the functional effect of these variants using allele-specific behaviour. This can be assessed for an individual by mapping ChIP-seq and RNA-seq reads to a personal genome, and then measuring ‘allelic imbalances' between the numbers of reads mapped to the paternal and maternal chromosomes. We annotate variants associated with allele-specific binding and expression in 382 individuals by uniformly processing 1,263 functional genomics data sets, developing approaches to reduce the heterogeneity between data sets due to overdispersion and mapping bias. Since many allelic variants are rare, aggregation across multiple individuals is necessary to identify broadly applicable ‘allelic elements'. We also found SNVs for which we can anticipate allelic imbalance from the disruption of a binding motif. Our results serve as an allele-specific annotation for the 1000 Genomes variant catalogue and are distributed as an online resource (alleledb.gersteinlab.org). PMID:27089393

  6. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity

    PubMed Central

    Ran, F. Ann; Hsu, Patrick D.; Lin, Chie-Yu; Gootenberg, Jonathan S.; Konermann, Silvana; Trevino, Alexandro; Scott, David A.; Inoue, Azusa; Matoba, Shogo; Zhang, Yi; Zhang, Feng

    2013-01-01

    Targeted genome editing technologies have enabled a broad range of research and medical applications. The Cas9 nuclease from the microbial CRISPR-Cas system is targeted to specific genomic loci by a 20-nt guide sequence, which can tolerate certain mismatches to the DNA target and thereby promote undesired off-target mutagenesis. Here, we describe an approach that combines a Cas9 nickase mutant with pairs of guide RNAs to introduce targeted double-strand breaks. Given that individual nicks in the genome are repaired with high fidelity, simultaneous nicking via appropriately offset guide RNAs effectively extends the number of specifically recognized bases in the target site. We demonstrate that paired nicking can be used to reduce off-target activity by 50–1,000 fold in cell lines and facilitate gene knockout in mouse zygotes without sacrificing on-target cleavage efficiency. This versatile strategy thus enables a wide variety of genome editing applications with higher levels of specificity. PMID:23992846

  7. SNPsplit: Allele-specific splitting of alignments between genomes with known SNP genotypes.

    PubMed

    Krueger, Felix; Andrews, Simon R

    2016-01-01

    Sequencing reads overlapping polymorphic sites in diploid mammalian genomes may be assigned to one allele or the other. This holds the potential to detect gene expression, chromatin modifications, DNA methylation or nuclear interactions in an allele-specific fashion. SNPsplit is an allele-specific alignment sorter designed to read files in SAM/BAM format and determine the allelic origin of reads or read-pairs that cover known single nucleotide polymorphic (SNP) positions. For this to work libraries must have been aligned to a genome in which all known SNP positions were masked with the ambiguity base 'N' and aligned using a suitable mapping program such as Bowtie2, TopHat, STAR, HISAT2, HiCUP or Bismark. SNPsplit also provides an automated solution to generate N-masked reference genomes for hybrid mouse strains based on the variant call information provided by the Mouse Genomes Project. The unique ability of SNPsplit to work with various different kinds of sequencing data including RNA-Seq, ChIP-Seq, Bisulfite-Seq or Hi-C opens new avenues for the integrative exploration of allele-specific data. PMID:27429743

  8. Geographic structure and host specificity shape the community composition of symbiotic dinoflagellates in corals from the Northwestern Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    Stat, Michael; Yost, Denise M.; Gates, Ruth D.

    2015-12-01

    How host-symbiont assemblages vary over space and time is fundamental to understanding the evolution and persistence of mutualistic symbioses. In this study, the diversity and geographic structure of coral-algal partnerships across the remote Northwestern Hawaiian Islands archipelago was investigated. The diversity of symbionts in the dinoflagellate genus Symbiodinium was characterised using the ribosomal internal transcribed spacer 2 (ITS2) gene in corals sampled at ten reef locations across the Northwestern Hawaiian Islands. Symbiodinium diversity was reported using operational taxonomic units and the distribution of Symbiodinium across the island archipelago investigated for evidence of geographic structure using permutational MANOVA. A 97 % sequence similarity of the ITS2 gene for characterising Symbiodinium diversity was supported by phylogenetic and ecological data. Four of the nine Symbiodinium evolutionary lineages (clades A, C, D, and G) were identified from 16 coral species at French Frigate Shoals, and host specificity was a dominant feature in the symbiotic assemblages at this location. Significant structure in the diversity of Symbiodinium was also found across the archipelago in the three coral species investigated. The latitudinal gradient and subsequent variation in abiotic conditions (particularly sea surface temperature dynamics) across the Northwestern Hawaiian Islands encompasses an environmental range that decouples the stability of host-symbiont assemblages across the archipelago. This suggests that local adaptation to prevailing environmental conditions by at least one partner in coral-algal mutualism occurs prior to the selection pressures associated with the maintenance of a symbiotic state.

  9. Population genomic analysis uncovers African and European admixture in Drosophila melanogaster populations from the south-eastern United States and Caribbean Islands.

    PubMed

    Kao, Joyce Y; Zubair, Asif; Salomon, Matthew P; Nuzhdin, Sergey V; Campo, Daniel

    2015-04-01

    Drosophila melanogaster is postulated to have colonized North America in the past several 100 years in two waves. Flies from Europe colonized the east coast United States while flies from Africa inhabited the Caribbean, which if true, make the south-east US and Caribbean Islands a secondary contact zone for African and European D. melanogaster. This scenario has been proposed based on phenotypes and limited genetic data. In our study, we have sequenced individual whole genomes of flies from populations in the south-east US and Caribbean Islands and examined these populations in conjunction with population sequences from the west coast US, Africa, and Europe. We find that west coast US populations are closely related to the European population, likely reflecting a rapid westward expansion upon first settlements into North America. We also find genomic evidence of African and European admixture in south-east US and Caribbean populations, with a clinal pattern of decreasing proportions of African ancestry with higher latitude. Our genomic analysis of D. melanogaster populations from the south-east US and Caribbean Islands provides more evidence for the Caribbean Islands as the source of previously reported novel African alleles found in other east coast US populations. We also find the border between the south-east US and the Caribbean island to be the admixture hot zone where distinctly African-like Caribbean flies become genomically more similar to European-like south-east US flies. Our findings have important implications for previous studies examining the generation of east coast US clines via selection. PMID:25735402

  10. Inheritance of Race-Specific Resistance to Xanthomonas campestris pv. campestris in Brassica Genomes.

    PubMed

    Vicente, J G; Taylor, J D; Sharpe, A G; Parkin, I A P; Lydiate, D J; King, G J

    2002-10-01

    ABSTRACT The inheritance of resistance to three Xanthomonas campestris pv. campestris races was studied in crosses between resistant and susceptible lines of Brassica oleracea (C genome), B. carinata (BC genome), and B. napus (AC genome). Resistance to race 3 in the B. oleracea doubled haploid line BOH 85c and in PI 436606 was controlled by a single dominant locus (Xca3). Resistance to races 1 and 3 in the B. oleracea line Badger Inbred-16 was quantitative and recessive. Strong resistance to races 1 and 4 was controlled by a single dominant locus (Xca1) in the B. carinata line PI 199947. This resistance probably originates from the B genome. Resistance to race 4 in three B. napus lines, cv. Cobra, the rapid cycling line CrGC5, and the doubled haploid line N-o-1, was controlled by a single dominant locus (Xca4). A set of doubled haploid lines, selected from a population used previously to develop a restriction fragment length polymorphism map, was used to map this locus. Xca4 was positioned on linkage group N5 of the B. napus A genome, indicating that this resistance originated from B. rapa. Xca4 is the first major locus to be mapped that controls race-specific resistance to X. campestris pv. campestris in Brassica spp. PMID:18944224

  11. Towards a more accurate annotation of tyrosine-based site-specific recombinases in bacterial genomes

    PubMed Central

    2012-01-01

    Background Tyrosine-based site-specific recombinases (TBSSRs) are DNA breaking-rejoining enzymes. In bacterial genomes, they play a major role in the comings and goings of mobile genetic elements (MGEs), such as temperate phage genomes, integrated conjugative elements (ICEs) or integron cassettes. TBSSRs are also involved in the segregation of plasmids and chromosomes, the resolution of plasmid dimers and of co-integrates resulting from the replicative transposition of transposons. With the aim of improving the annotation of TBSSR genes in genomic sequences and databases, which so far is far from robust, we built a set of over 1,300 TBSSR protein sequences tagged with their genome of origin. We organized them in families to investigate: i) whether TBSSRs tend to be more conserved within than between classes of MGE types and ii) whether the (sub)families may help in understanding more about the function of TBSSRs associated in tandem or trios on plasmids and chromosomes. Results A total of 67% of the TBSSRs in our set are MGE type specific. We define a new class of actinobacterial transposons, related to Tn554, containing one abnormally long TBSSR and one of typical size, and we further characterize numerous TBSSRs trios present in plasmids and chromosomes of α- and β-proteobacteria. Conclusions The simple in silico procedure described here, which uses a set of reference TBSSRs from defined MGE types, could contribute to greatly improve the annotation of tyrosine-based site-specific recombinases in plasmid, (pro)phage and other integrated MGE genomes. It also reveals TBSSRs families whose distribution among bacterial taxa suggests they mediate lateral gene transfer. PMID:22502997

  12. Genome wide evolutionary analyses reveal serotype specific patterns of positive selection in selected Salmonella serotypes

    PubMed Central

    2009-01-01

    Background The bacterium Salmonella enterica includes a diversity of serotypes that cause disease in humans and different animal species. Some Salmonella serotypes show a broad host range, some are host restricted and exclusively associated with one particular host, and some are associated with one particular host species, but able to cause disease in other host species and are thus considered "host adapted". Five Salmonella genome sequences, representing a broad host range serotype (Typhimurium), two host restricted serotypes (Typhi [two genomes] and Paratyphi) and one host adapted serotype (Choleraesuis) were used to identify core genome genes that show evidence for recombination and positive selection. Results Overall, 3323 orthologous genes were identified in all 5 Salmonella genomes analyzed. Use of four different methods to assess homologous recombination identified 270 genes that showed evidence for recombination with at least one of these methods (false discovery rate [FDR] <10%). After exclusion of genes with evidence for recombination, site and branch specific models identified 41 genes as showing evidence for positive selection (FDR <20%), including a number of genes with confirmed or likely roles in virulence and ompC, a gene encoding an outer membrane protein, which has also been found to be under positive selection in other bacteria. A total of 8, 16, 7, and 5 genes showed evidence for positive selection in Choleraesuis, Typhi, Typhimurium, and Paratyphi branch analyses, respectively. Sequencing and evolutionary analyses of four genes in an additional 42 isolates representing 23 serotypes confirmed branch specific positive selection and recombination patterns. Conclusion Our data show that, among the four serotypes analyzed, (i) less than 10% of Salmonella genes in the core genome show evidence for homologous recombination, (ii) a number of Salmonella genes are under positive selection, including genes that appear to contribute to virulence, and (iii

  13. Three subclasses of a Drosophila insulator show distinct and cell type-specific genomic distributions

    PubMed Central

    Bushey, Ashley M.; Ramos, Edward; Corces, Victor G.

    2009-01-01

    Insulators are protein-bound DNA elements that are thought to play a role in chromatin organization and the regulation of gene expression by mediating intra- and interchromosomal interactions. Suppressor of Hair-wing [Su(Hw)] and Drosophila CTCF (dCTCF) insulators are found at distinct loci throughout the Drosophila melanogaster genome and function by recruiting an additional protein, Centrosomal Protein 190 (CP190). We performed chromatin immunoprecipitation (ChIP) and microarray analysis (ChIP–chip) experiments with whole-genome tiling arrays to compare Su(Hw), dCTCF, boundary element-associated factor (BEAF), and CP190 localization on DNA in two different cell lines and found evidence that BEAF is a third subclass of CP190-containing insulators. The DNA-binding proteins Su(Hw), dCTCF, and BEAF show unique distribution patterns with respect to the location and expression level of genes, suggesting diverse roles for these three subclasses of insulators in genome organization. Notably, cell line-specific localization sites for all three DNA-binding proteins as well as CP190 indicate multiple levels at which insulators can be regulated to affect gene expression. These findings suggest a model in which insulator subclasses may have distinct functions that together organize the genome in a cell type-specific manner, resulting in differential regulation of gene expression. PMID:19443682

  14. Comparative genomics of Fructobacillus spp. and Leuconostoc spp. reveals niche-specific evolution of Fructobacillus spp.

    DOE PAGESBeta

    Endo, Akihito; Tanizawa, Yasuhiro; Tanaka, Naoto; Maeno, Shintaro; Kumar, Himanshu; Shiwa, Yuh; Okada, Sanae; Yoshikawa, Hirofumi; Dicks, Leon; Nakagawa, Junichi; et al

    2015-12-29

    In this study, Fructobacillus spp. in fructose-rich niches belong to the family Leuconostocaceae. They were originally classified as Leuconostoc spp., but were later grouped into a novel genus, Fructobacillus , based on their phylogenetic position, morphology and specific biochemical characteristics. The unique characters, so called fructophilic characteristics, had not been reported in the group of lactic acid bacteria, suggesting unique evolution at the genome level. Here we studied four draft genome sequences of Fructobacillus spp. and compared their metabolic properties against those of Leuconostoc spp. As a result, Fructobacillus species possess significantly less protein coding sequences in their small genomes.more » The number of genes was significantly smaller in carbohydrate transport and metabolism. Several other metabolic pathways, including TCA cycle, ubiquinone and other terpenoid-quinone biosynthesis and phosphotransferase systems, were characterized as discriminative pathways between the two genera. The adhE gene for bifunctional acetaldehyde/alcohol dehydrogenase, and genes for subunits of the pyruvate dehydrogenase complex were absent in Fructobacillus spp. The two genera also show different levels of GC contents, which are mainly due to the different GC contents at the third codon position. In conclusion, the present genome characteristics in Fructobacillus spp. suggest reductive evolution that took place to adapt to specific niches.« less

  15. Specific Linguistic Profiles in a Creole-Speaking Area: Children's Speech on Reunion Island

    ERIC Educational Resources Information Center

    Lebon-Eyquem, Mylène

    2015-01-01

    Linguists use the concept of "diglossia" to describe any sociolinguistic situation where a low-prestige dialect coexists with a high-prestige one and these dialects are used in different social spheres. Recent observations on Reunion Island have challenged this view because people mix French and Creole extensively in the same utterance…

  16. Genome-wide identification of lineage-specific genes in Arabidopsis, Oryza and Populus

    SciTech Connect

    Yang, Xiaohan; Jawdy, Sara; Tschaplinski, Timothy J; Tuskan, Gerald A

    2009-01-01

    Protein sequences were compared among Arabidopsis, Oryza and Populus to identify differential gene (DG) sets that are in one but not the other two genomes. The DG sets were screened against a plant transcript database, the NR protein database and six newly-sequenced genomes (Carica, Glycine, Medicago, Sorghum, Vitis and Zea) to identify a set of species-specific genes (SS). Gene expression, protein motif and intron number were examined. 192, 641 and 109 SS genes were identified in Arabidopsis, Oryza and Populus, respectively. Some SS genes were preferentially expressed in flowers, roots, xylem and cambium or up-regulated by stress. Six conserved motifs in Arabidopsis and Oryza SS proteins were found in other distant lineages. The SS gene sets were enriched with intronless genes. The results reflect functional and/or anatomical differences between monocots and eudicots or between herbaceous and woody plants. The Populus-specific genes are candidates for carbon sequestration and biofuel research.

  17. Annotation of loci from genome-wide association studies using tissue-specific quantitative interaction proteomics.

    PubMed

    Lundby, Alicia; Rossin, Elizabeth J; Steffensen, Annette B; Acha, Moshe Rav; Newton-Cheh, Christopher; Pfeufer, Arne; Lynch, Stacey N; Olesen, Søren-Peter; Brunak, Søren; Ellinor, Patrick T; Jukema, J Wouter; Trompet, Stella; Ford, Ian; Macfarlane, Peter W; Krijthe, Bouwe P; Hofman, Albert; Uitterlinden, André G; Stricker, Bruno H; Nathoe, Hendrik M; Spiering, Wilko; Daly, Mark J; Asselbergs, Folkert W; van der Harst, Pim; Milan, David J; de Bakker, Paul I W; Lage, Kasper; Olsen, Jesper V

    2014-08-01

    Genome-wide association studies (GWAS) have identified thousands of loci associated with complex traits, but it is challenging to pinpoint causal genes in these loci and to exploit subtle association signals. We used tissue-specific quantitative interaction proteomics to map a network of five genes involved in the Mendelian disorder long QT syndrome (LQTS). We integrated the LQTS network with GWAS loci from the corresponding common complex trait, QT-interval variation, to identify candidate genes that were subsequently confirmed in Xenopus laevis oocytes and zebrafish. We used the LQTS protein network to filter weak GWAS signals by identifying single-nucleotide polymorphisms (SNPs) in proximity to genes in the network supported by strong proteomic evidence. Three SNPs passing this filter reached genome-wide significance after replication genotyping. Overall, we present a general strategy to propose candidates in GWAS loci for functional studies and to systematically filter subtle association signals using tissue-specific quantitative interaction proteomics. PMID:24952909

  18. Annotation of loci from genome-wide association studies using tissue-specific quantitative interaction proteomics

    PubMed Central

    Lundby, Alicia; Rossin, Elizabeth J.; Steffensen, Annette B.; Rav Acha, Moshe; Newton-Cheh, Christopher; Pfeufer, Arne; Lynch, Stacey N.; Olesen, Søren-Peter; Brunak, Søren; Ellinor, Patrick T.; Jukema, J.Wouter; Trompet, Stella; Ford, Ian; Macfarlane, Peter W.; Krijthe, Bouwe P.; Hofman, Albert; Uitterlinden, Andre G.; Stricker, Bruno H.; Nathoe, Hendrik M.; Spiering, Wilko; Daly, Mark J.; Asselbergs, Folkert W.; van der Harst, Pim; Milan, David J.; de Bakker, Paul I.W.; Lage, Kasper; Olsen, Jesper V.

    2014-01-01

    Genome-wide association studies (GWAS) have identified thousands of loci associated wtih complex traits, but it is challenging to pinpoint causal genes in these loci and to exploit subtle association signals. We used tissue-specific quantitative interaction proteomics to map a network of five genes involved in the Mendelian disorder long QT syndrome (LQTS). We integrated the LQTS network with GWAS loci from the corresponding common complex trait, QT interval variation, to identify candidate genes that were subsequently confirmed in Xenopus laevis oocytes and zebrafish. We used the LQTS protein network to filter weak GWAS signals by identifying single nucleotide polymorphisms (SNPs) in proximity to genes in the network supported by strong proteomic evidence. Three SNPs passing this filter reached genome-wide significance after replication genotyping. Overall, we present a general strategy to propose candidates in GWAS loci for functional studies and to systematically filter subtle association signals using tissue-specific quantitative interaction proteomics. PMID:24952909

  19. Generation of an Oocyte-Specific Cas9 Transgenic Mouse for Genome Editing

    PubMed Central

    Zhang, Linlin; Zhou, Jiankui; Han, Jinxiong; Hu, Bian; Hou, Ningning; Shi, Yun; Huang, Xingxu

    2016-01-01

    The CRISPR/Cas9 system has been developed as an easy-handle and multiplexable approach for engineering eukaryotic genomes by zygote microinjection of Cas9 and sgRNA, while preparing Cas9 for microinjection is laborious and introducing inconsistency into the experiment. Here, we describe a modified strategy for gene targeting through using oocyte-specific Cas9 transgenic mouse. With this mouse line, we successfully achieve precise gene targeting by injection of sgRNAs only into one-cell-stage embryos. Through comprehensive analysis, we also show allele complexity and off-target mutagenesis induced by this strategy is obviously lower than Cas9 mRNA/sgRNA injection. Thus, injection of sgRNAs into oocyte-specific Cas9 transgenic mouse embryo provides a convenient, efficient and reliable approach for mouse genome editing. PMID:27119535

  20. Computer models of bacterial cells: from generalized coarsegrained to genome-specific modular models

    NASA Astrophysics Data System (ADS)

    Nikolaev, Evgeni V.; Atlas, Jordan C.; Shuler, Michael L.

    2006-09-01

    We discuss a modular modelling framework to rapidly develop mathematical models of bacterial cells that would explicitly link genomic details to cell physiology and population response. An initial step in this approach is the development of a coarse-grained model, describing pseudo-chemical interactions between lumped species. A hybrid model of interest can then be constructed by embedding genome-specific detail for a particular cellular subsystem (e.g. central metabolism), called here a module, into the coarse-grained model. Specifically, a new strategy for sensitivity analysis of the cell division limit cycle is introduced to identify which pseudo-molecular processes should be delumped to implement a particular biological function in a growing cell (e.g. ethanol overproduction or pathogen viability). To illustrate the modeling principles and highlight computational challenges, the Cornell coarsegrained model of Escherichia coli B/r-A is used to benchmark the proposed framework.

  1. Intra-specific variation in genome size in maize: cytological and phenotypic correlates.

    PubMed

    Realini, María Florencia; Poggio, Lidia; Cámara-Hernández, Julián; González, Graciela Esther

    2015-01-01

    Genome size variation accompanies the diversification and evolution of many plant species. Relationships between DNA amount and phenotypic and cytological characteristics form the basis of most hypotheses that ascribe a biological role to genome size. The goal of the present research was to investigate the intra-specific variation in the DNA content in maize populations from Northeastern Argentina and further explore the relationship between genome size and the phenotypic traits seed weight and length of the vegetative cycle. Moreover, cytological parameters such as the percentage of heterochromatin as well as the number, position and sequence composition of knobs were analysed and their relationships with 2C DNA values were explored. The populations analysed presented significant differences in 2C DNA amount, from 4.62 to 6.29 pg, representing 36.15 % of the inter-populational variation. Moreover, intra-populational genome size variation was found, varying from 1.08 to 1.63-fold. The variation in the percentage of knob heterochromatin as well as in the number, chromosome position and sequence composition of the knobs was detected among and within the populations. Although a positive relationship between genome size and the percentage of heterochromatin was observed, a significant correlation was not found. This confirms that other non-coding repetitive DNA sequences are contributing to the genome size variation. A positive relationship between DNA amount and the seed weight has been reported in a large number of species, this relationship was not found in the populations studied here. The length of the vegetative cycle showed a positive correlation with the percentage of heterochromatin. This result allowed attributing an adaptive effect to heterochromatin since the length of this cycle would be optimized via selection for an appropriate percentage of heterochromatin. PMID:26644343

  2. Intra-specific variation in genome size in maize: cytological and phenotypic correlates

    PubMed Central

    Realini, María Florencia; Poggio, Lidia; Cámara-Hernández, Julián; González, Graciela Esther

    2016-01-01

    Genome size variation accompanies the diversification and evolution of many plant species. Relationships between DNA amount and phenotypic and cytological characteristics form the basis of most hypotheses that ascribe a biological role to genome size. The goal of the present research was to investigate the intra-specific variation in the DNA content in maize populations from Northeastern Argentina and further explore the relationship between genome size and the phenotypic traits seed weight and length of the vegetative cycle. Moreover, cytological parameters such as the percentage of heterochromatin as well as the number, position and sequence composition of knobs were analysed and their relationships with 2C DNA values were explored. The populations analysed presented significant differences in 2C DNA amount, from 4.62 to 6.29 pg, representing 36.15 % of the inter-populational variation. Moreover, intra-populational genome size variation was found, varying from 1.08 to 1.63-fold. The variation in the percentage of knob heterochromatin as well as in the number, chromosome position and sequence composition of the knobs was detected among and within the populations. Although a positive relationship between genome size and the percentage of heterochromatin was observed, a significant correlation was not found. This confirms that other non-coding repetitive DNA sequences are contributing to the genome size variation. A positive relationship between DNA amount and the seed weight has been reported in a large number of species, this relationship was not found in the populations studied here. The length of the vegetative cycle showed a positive correlation with the percentage of heterochromatin. This result allowed attributing an adaptive effect to heterochromatin since the length of this cycle would be optimized via selection for an appropriate percentage of heterochromatin. PMID:26644343

  3. Complete Genome Sequence of Streptomyces parvulus 2297, Integrating Site-Specifically with Actinophage R4

    PubMed Central

    Miura, Takamasa; Harada, Chizuko; Guo, Yong; Narisawa, Kazuhiko; Ohta, Hiroyuki; Takahashi, Hideo; Shirai, Makoto

    2016-01-01

    Streptomyces parvulus 2297, which is a host for site-specific recombination according to actinophage R4, is derived from the type strain ATCC 12434. Species of S. parvulus are known as producers of polypeptide antibiotic actinomycins and have been considered for industrial applications. We herein report for the first time the complete genome sequence of S. parvulus 2297. PMID:27563047

  4. Complete Genome Sequence of Streptomyces parvulus 2297, Integrating Site-Specifically with Actinophage R4.

    PubMed

    Nishizawa, Tomoyasu; Miura, Takamasa; Harada, Chizuko; Guo, Yong; Narisawa, Kazuhiko; Ohta, Hiroyuki; Takahashi, Hideo; Shirai, Makoto

    2016-01-01

    Streptomyces parvulus 2297, which is a host for site-specific recombination according to actinophage R4, is derived from the type strain ATCC 12434. Species of S. parvulus are known as producers of polypeptide antibiotic actinomycins and have been considered for industrial applications. We herein report for the first time the complete genome sequence of S. parvulus 2297. PMID:27563047

  5. Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations

    PubMed Central

    Bendall, Matthew L; Stevens, Sarah LR; Chan, Leong-Keat; Malfatti, Stephanie; Schwientek, Patrick; Tremblay, Julien; Schackwitz, Wendy; Martin, Joel; Pati, Amrita; Bushnell, Brian; Froula, Jeff; Kang, Dongwan; Tringe, Susannah G; Bertilsson, Stefan; Moran, Mary A; Shade, Ashley; Newton, Ryan J; McMahon, Katherine D; Malmstrom, Rex R

    2016-01-01

    Multiple models describe the formation and evolution of distinct microbial phylogenetic groups. These evolutionary models make different predictions regarding how adaptive alleles spread through populations and how genetic diversity is maintained. Processes predicted by competing evolutionary models, for example, genome-wide selective sweeps vs gene-specific sweeps, could be captured in natural populations using time-series metagenomics if the approach were applied over a sufficiently long time frame. Direct observations of either process would help resolve how distinct microbial groups evolve. Here, from a 9-year metagenomic study of a freshwater lake (2005–2013), we explore changes in single-nucleotide polymorphism (SNP) frequencies and patterns of gene gain and loss in 30 bacterial populations. SNP analyses revealed substantial genetic heterogeneity within these populations, although the degree of heterogeneity varied by >1000-fold among populations. SNP allele frequencies also changed dramatically over time within some populations. Interestingly, nearly all SNP variants were slowly purged over several years from one population of green sulfur bacteria, while at the same time multiple genes either swept through or were lost from this population. These patterns were consistent with a genome-wide selective sweep in progress, a process predicted by the ‘ecotype model' of speciation but not previously observed in nature. In contrast, other populations contained large, SNP-free genomic regions that appear to have swept independently through the populations prior to the study without purging diversity elsewhere in the genome. Evidence for both genome-wide and gene-specific sweeps suggests that different models of bacterial speciation may apply to different populations coexisting in the same environment. PMID:26744812

  6. Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations.

    PubMed

    Bendall, Matthew L; Stevens, Sarah Lr; Chan, Leong-Keat; Malfatti, Stephanie; Schwientek, Patrick; Tremblay, Julien; Schackwitz, Wendy; Martin, Joel; Pati, Amrita; Bushnell, Brian; Froula, Jeff; Kang, Dongwan; Tringe, Susannah G; Bertilsson, Stefan; Moran, Mary A; Shade, Ashley; Newton, Ryan J; McMahon, Katherine D; Malmstrom, Rex R

    2016-07-01

    Multiple models describe the formation and evolution of distinct microbial phylogenetic groups. These evolutionary models make different predictions regarding how adaptive alleles spread through populations and how genetic diversity is maintained. Processes predicted by competing evolutionary models, for example, genome-wide selective sweeps vs gene-specific sweeps, could be captured in natural populations using time-series metagenomics if the approach were applied over a sufficiently long time frame. Direct observations of either process would help resolve how distinct microbial groups evolve. Here, from a 9-year metagenomic study of a freshwater lake (2005-2013), we explore changes in single-nucleotide polymorphism (SNP) frequencies and patterns of gene gain and loss in 30 bacterial populations. SNP analyses revealed substantial genetic heterogeneity within these populations, although the degree of heterogeneity varied by >1000-fold among populations. SNP allele frequencies also changed dramatically over time within some populations. Interestingly, nearly all SNP variants were slowly purged over several years from one population of green sulfur bacteria, while at the same time multiple genes either swept through or were lost from this population. These patterns were consistent with a genome-wide selective sweep in progress, a process predicted by the 'ecotype model' of speciation but not previously observed in nature. In contrast, other populations contained large, SNP-free genomic regions that appear to have swept independently through the populations prior to the study without purging diversity elsewhere in the genome. Evidence for both genome-wide and gene-specific sweeps suggests that different models of bacterial speciation may apply to different populations coexisting in the same environment. PMID:26744812

  7. The composition of the global and feature specific cyanobacterial core-genomes

    PubMed Central

    Simm, Stefan; Keller, Mario; Selymesi, Mario; Schleiff, Enrico

    2015-01-01

    Cyanobacteria are photosynthetic prokaryotes important for many ecosystems with a high potential for biotechnological usage e.g., in the production of bioactive molecules. Either asks for a deep understanding of the functionality of cyanobacteria and their interaction with the environment. This in part can be inferred from the analysis of their genomes or proteomes. Today, many cyanobacterial genomes have been sequenced and annotated. This information can be used to identify biological pathways present in all cyanobacteria as proteins involved in such processes are encoded by a so called core-genome. However, beside identification of fundamental processes, genes specific for certain cyanobacterial features can be identified by a holistic genome analysis as well. We identified 559 genes that define the core-genome of 58 analyzed cyanobacteria, as well as three genes likely to be signature genes for thermophilic and 57 genes likely to be signature genes for heterocyst-forming cyanobacteria. To get insights into cyanobacterial systems for the interaction with the environment we also inspected the diversity of the outer membrane proteome with focus on β-barrel proteins. We observed that most of the transporting outer membrane β-barrel proteins are not globally conserved in the cyanobacterial phylum. In turn, the occurrence of β-barrel proteins shows high strain specificity. The core set of outer membrane proteins globally conserved in cyanobacteria comprises three proteins only, namely the outer membrane β-barrel assembly protein Omp85, the lipid A transfer protein LptD, and an OprB-type porin. Thus, we conclude that cyanobacteria have developed individual strategies for the interaction with the environment, while other intracellular processes like the regulation of the protein homeostasis are globally conserved. PMID:25852675

  8. Comparative analysis of two phenotypically-similar but genomically-distinct Burkholderia cenocepacia-specific bacteriophages

    PubMed Central

    2012-01-01

    Background Genomic analysis of bacteriophages infecting the Burkholderia cepacia complex (BCC) is an important preliminary step in the development of a phage therapy protocol for these opportunistic pathogens. The objective of this study was to characterize KL1 (vB_BceS_KL1) and AH2 (vB_BceS_AH2), two novel Burkholderia cenocepacia-specific siphoviruses isolated from environmental samples. Results KL1 and AH2 exhibit several unique phenotypic similarities: they infect the same B. cenocepacia strains, they require prolonged incubation at 30°C for the formation of plaques at low titres, and they do not form plaques at similar titres following incubation at 37°C. However, despite these similarities, we have determined using whole-genome pyrosequencing that these phages show minimal relatedness to one another. The KL1 genome is 42,832 base pairs (bp) in length and is most closely related to Pseudomonas phage 73 (PA73). In contrast, the AH2 genome is 58,065 bp in length and is most closely related to Burkholderia phage BcepNazgul. Using both BLASTP and HHpred analysis, we have identified and analyzed the putative virion morphogenesis, lysis, DNA binding, and MazG proteins of these two phages. Notably, MazG homologs identified in cyanophages have been predicted to facilitate infection of stationary phase cells and may contribute to the unique plaque phenotype of KL1 and AH2. Conclusions The nearly indistinguishable phenotypes but distinct genomes of KL1 and AH2 provide further evidence of both vast diversity and convergent evolution in the BCC-specific phage population. PMID:22676492

  9. Y-chromosome STR loci in Sardinia and continental Italy reveal islander-specific haplotypes.

    PubMed

    Caglià, A; Novelletto, A; Dobosz, M; Malaspina, P; Ciminelli, B M; Pascali, V L

    1997-01-01

    Six Y-linked tetranucleotide microsatellites were typed in a sample of continental Italians and Sardinians. Significant differences in allele distributions were found between peninsular Italy and the island. Patterns of distinct allelic associations were evident in Sardinia and in the mainland. STR haplotypes in a subset of Sardinian chromosomes were monophyletically related and indicated that additions/deletions of a single tetranucleotide unit had to sequentially occur within a historical time-scale (about 9,000 years). Assumptions on both the time elapsed since the peopling of the island and the number of mutational events led us to estimate (by three different methods) a rate of 2.7-11 x 10(-4) mutations per generation per locus--at the upper end of the range of values reported in the literature. PMID:9412785

  10. Hierarchical distance-sampling models to estimate population size and habitat-specific abundance of an island endemic

    USGS Publications Warehouse

    Sillett, Scott T.; Chandler, Richard B.; Royle, J. Andrew; Kéry, Marc; Morrison, Scott A.

    2012-01-01

    Population size and habitat-specific abundance estimates are essential for conservation management. A major impediment to obtaining such estimates is that few statistical models are able to simultaneously account for both spatial variation in abundance and heterogeneity in detection probability, and still be amenable to large-scale applications. The hierarchical distance-sampling model of J. A. Royle, D. K. Dawson, and S. Bates provides a practical solution. Here, we extend this model to estimate habitat-specific abundance and rangewide population size of a bird species of management concern, the Island Scrub-Jay (Aphelocoma insularis), which occurs solely on Santa Cruz Island, California, USA. We surveyed 307 randomly selected, 300 m diameter, point locations throughout the 250-km2 island during October 2008 and April 2009. Population size was estimated to be 2267 (95% CI 1613-3007) and 1705 (1212-2369) during the fall and spring respectively, considerably lower than a previously published but statistically problematic estimate of 12 500. This large discrepancy emphasizes the importance of proper survey design and analysis for obtaining reliable information for management decisions. Jays were most abundant in low-elevation chaparral habitat; the detection function depended primarily on the percent cover of chaparral and forest within count circles. Vegetation change on the island has been dramatic in recent decades, due to release from herbivory following the eradication of feral sheep (Ovis aries) from the majority of the island in the mid-1980s. We applied best-fit fall and spring models of habitat-specific jay abundance to a vegetation map from 1985, and estimated the population size of A. insularis was 1400-1500 at that time. The 20-30% increase in the jay population suggests that the species has benefited from the recovery of native vegetation since sheep removal. Nevertheless, this jay's tiny range and small population size make it vulnerable to natural

  11. Hierarchical distance-sampling models to estimate population size and habitat-specific abundance of an island endemic.

    PubMed

    Sillett, T Scott; Chandler, Richard B; Royle, J Andrew; Kery, Marc; Morrison, Scott A

    2012-10-01

    Population size and habitat-specific abundance estimates are essential for conservation management. A major impediment to obtaining such estimates is that few statistical models are able to simultaneously account for both spatial variation in abundance and heterogeneity in detection probability, and still be amenable to large-scale applications. The hierarchical distance-sampling model of J. A. Royle, D. K. Dawson, and S. Bates provides a practical solution. Here, we extend this model to estimate habitat-specific abundance and rangewide population size of a bird species of management concern, the Island Scrub-Jay (Aphelocoma insularis), which occurs solely on Santa Cruz Island, California, USA. We surveyed 307 randomly selected, 300 m diameter, point locations throughout the 250-km2 island during October 2008 and April 2009. Population size was estimated to be 2267 (95% CI 1613-3007) and 1705 (1212-2369) during the fall and spring respectively, considerably lower than a previously published but statistically problematic estimate of 12 500. This large discrepancy emphasizes the importance of proper survey design and analysis for obtaining reliable information for management decisions. Jays were most abundant in low-elevation chaparral habitat; the detection function depended primarily on the percent cover of chaparral and forest within count circles. Vegetation change on the island has been dramatic in recent decades, due to release from herbivory following the eradication of feral sheep (Ovis aries) from the majority of the island in the mid-1980s. We applied best-fit fall and spring models of habitat-specific jay abundance to a vegetation map from 1985, and estimated the population size of A. insularis was 1400-1500 at that time. The 20-30% increase in the jay population suggests that the species has benefited from the recovery of native vegetation since sheep removal. Nevertheless, this jay's tiny range and small population size make it vulnerable to natural

  12. Clade- and species-specific features of genome evolution in the Saccharomycetaceae

    PubMed Central

    Wolfe, Kenneth H.; Armisén, David; Proux-Wera, Estelle; ÓhÉigeartaigh, Seán S.; Azam, Haleema; Gordon, Jonathan L.; Byrne, Kevin P.

    2015-01-01

    Many aspects of the genomes of yeast species in the family Saccharomycetaceae have been well conserved during evolution. They have similar genome sizes, genome contents, and extensive collinearity of gene order along chromosomes. Gene functions can often be inferred reliably by using information from Saccharomyces cerevisiae. Beyond this conservative picture however, there are many instances where a species or a clade diverges substantially from the S. cerevisiae paradigm—for example, by the amplification of a gene family, or by the absence of a biochemical pathway or a protein complex. Here, we review clade-specific features, focusing on genomes sequenced in our laboratory from the post-WGD genera Naumovozyma, Kazachstania and Tetrapisispora, and from the non-WGD species Torulaspora delbrueckii. Examples include the loss of the pathway for histidine synthesis in the cockroach-associated species Tetrapisispora blattae; the presence of a large telomeric GAL gene cluster in To. delbrueckii; losses of the dynein and dynactin complexes in several independent yeast lineages; fragmentation of the MAT locus and loss of the HO gene in Kazachstania africana; and the patchy phylogenetic distribution of RNAi pathway components. PMID:26066552

  13. The Qatar genome: a population-specific tool for precision medicine in the Middle East

    PubMed Central

    Fakhro, Khalid A; Staudt, Michelle R; Ramstetter, Monica Denise; Robay, Amal; Malek, Joel A; Badii, Ramin; Al-Marri, Ajayeb Al-Nabet; Khalil, Charbel Abi; Al-Shakaki, Alya; Chidiac, Omar; Stadler, Dora; Zirie, Mahmoud; Jayyousi, Amin; Salit, Jacqueline; Mezey, Jason G; Crystal, Ronald G; Rodriguez-Flores, Juan L

    2016-01-01

    Reaching the full potential of precision medicine depends on the quality of personalized genome interpretation. In order to facilitate precision medicine in regions of the Middle East and North Africa (MENA), a population-specific genome for the indigenous Arab population of Qatar (QTRG) was constructed by incorporating allele frequency data from sequencing of 1,161 Qataris, representing 0.4% of the population. A total of 20.9 million single nucleotide polymorphisms (SNPs) and 3.1 million indels were observed in Qatar, including an average of 1.79% novel variants per individual genome. Replacement of the GRCh37 standard reference with QTRG in a best practices genome analysis workflow resulted in an average of 7* deeper coverage depth (an improvement of 23%) and 756,671 fewer variants on average, a reduction of 16% that is attributed to common Qatari alleles being present in QTRG. The benefit for using QTRG varies across ancestries, a factor that should be taken into consideration when selecting an appropriate reference for analysis. PMID:27408750

  14. Distinct factors control histone variant H3.3 localization at specific genomic regions

    PubMed Central

    Goldberg, Aaron D.; Banaszynski, Laura A.; Noh, Kyung-Min; Lewis, Peter W.; Elsaesser, Simon J.; Stadler, Sonja; Dewell, Scott; Law, Martin; Guo, Xingyi; Li, Xuan; Wen, Duancheng; Chapgier, Ariane; DeKelver, Russell C.; Miller, Jeffrey C.; Lee, Ya-Li; Boydston, Elizabeth A.; Holmes, Michael C.; Gregory, Philip D.; Greally, John M.; Rafii, Shahin; Yang, Chingwen; Scambler, Peter J.; Garrick, David; Gibbons, Richard J.; Higgs, Douglas R.; Cristea, Ileana M.; Urnov, Fyodor D.; Zheng, Deyou; Allis, C. David

    2010-01-01

    Summary The incorporation of histone H3 variants has been implicated in the epigenetic memory of cellular state. Using genome editing with zinc finger nucleases to tag endogenous H3.3, we report genome-wide profiles of H3 variants in mammalian embryonic stem (ES) cells and neuronal precursor cells. Genome-wide patterns of H3.3 are dependent on amino acid sequence, and change with cellular differentiation at developmentally regulated loci. The H3.3 chaperone Hira is required for H3.3 enrichment at active and repressed genes. Strikingly, Hira is not essential for localization of H3.3 at telomeres and many transcription factor binding sites. Immunoaffinity purification and mass spectrometry reveal that the proteins Atrx and Daxx associate with H3.3 in a Hira-independent manner. Atrx is required for Hira-independent localization of H3.3 at telomeres, and for the repression of telomeric RNA. Our data demonstrate that multiple and distinct factors are responsible for H3.3 localization at specific genomic locations in mammalian cells. PMID:20211137

  15. The Neisseria meningitidis CRISPR-Cas9 System Enables Specific Genome Editing in Mammalian Cells.

    PubMed

    Lee, Ciaran M; Cradick, Thomas J; Bao, Gang

    2016-03-01

    The clustered regularly-interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) system from Streptococcus pyogenes (Spy) has been successfully adapted for RNA-guided genome editing in a wide range of organisms. However, numerous reports have indicated that Spy CRISPR-Cas9 systems may have significant off-target cleavage of genomic DNA sequences differing from the intended on-target site. Here, we report the performance of the Neisseria meningitidis (Nme) CRISPR-Cas9 system that requires a longer protospacer-adjacent motif for site-specific cleavage, and present a comparison between the Spy and Nme CRISPR-Cas9 systems targeting the same protospacer sequence. The results with the native crRNA and tracrRNA as well as a chimeric single guide RNA for the Nme CRISPR-Cas9 system were also compared. Our results suggest that, compared with the Spy system, the Nme CRISPR-Cas9 system has similar or lower on-target cleavage activity but a reduced overall off-target effect on a genomic level when sites containing three or fewer mismatches are considered. Thus, the Nme CRISPR-Cas9 system may represent a safer alternative for precision genome engineering applications. PMID:26782639

  16. The Neisseria meningitidis CRISPR-Cas9 System Enables Specific Genome Editing in Mammalian Cells

    PubMed Central

    Lee, Ciaran M; Cradick, Thomas J; Bao, Gang

    2016-01-01

    The clustered regularly-interspaced short palindromic repeats (CRISPR)—CRISPR-associated (Cas) system from Streptococcus pyogenes (Spy) has been successfully adapted for RNA-guided genome editing in a wide range of organisms. However, numerous reports have indicated that Spy CRISPR-Cas9 systems may have significant off-target cleavage of genomic DNA sequences differing from the intended on-target site. Here, we report the performance of the Neisseria meningitidis (Nme) CRISPR-Cas9 system that requires a longer protospacer-adjacent motif for site-specific cleavage, and present a comparison between the Spy and Nme CRISPR-Cas9 systems targeting the same protospacer sequence. The results with the native crRNA and tracrRNA as well as a chimeric single guide RNA for the Nme CRISPR-Cas9 system were also compared. Our results suggest that, compared with the Spy system, the Nme CRISPR-Cas9 system has similar or lower on-target cleavage activity but a reduced overall off-target effect on a genomic level when sites containing three or fewer mismatches are considered. Thus, the Nme CRISPR-Cas9 system may represent a safer alternative for precision genome engineering applications. PMID:26782639

  17. HANDS: a tool for genome-wide discovery of subgenome-specific base-identity in polyploids

    PubMed Central

    2013-01-01

    Background The analysis of polyploid genomes is problematic because homeologous subgenome sequences are closely related. This relatedness makes it difficult to assign individual sequences to the specific subgenome from which they are derived, and hinders the development of polyploid whole genome assemblies. Results We here present a next-generation sequencing (NGS)-based approach for assignment of subgenome-specific base-identity at sites containing homeolog-specific polymorphisms (HSPs): ‘HSP base Assignment using NGS data through Diploid Similarity’ (HANDS). We show that HANDS correctly predicts subgenome-specific base-identity at >90% of assayed HSPs in the hexaploid bread wheat (Triticum aestivum) transcriptome, thus providing a substantial increase in accuracy versus previous methods for homeolog-specific base assignment. Conclusion We conclude that HANDS enables rapid and accurate genome-wide discovery of homeolog-specific base-identity, a capability having multiple applications in polyploid genomics. PMID:24063258

  18. Genomic islands of divergence in hybridizing Heliconius butterflies identified by large-scale targeted sequencing

    PubMed Central

    Nadeau, Nicola J.; Whibley, Annabel; Jones, Robert T.; Davey, John W.; Dasmahapatra, Kanchon K.; Baxter, Simon W.; Quail, Michael A.; Joron, Mathieu; ffrench-Constant, Richard H.; Blaxter, Mark L.; Mallet, James; Jiggins, Chris D.

    2012-01-01

    Heliconius butterflies represent a recent radiation of species, in which wing pattern divergence has been implicated in speciation. Several loci that control wing pattern phenotypes have been mapped and two were identified through sequencing. These same gene regions play a role in adaptation across the whole Heliconius radiation. Previous studies of population genetic patterns at these regions have sequenced small amplicons. Here, we use targeted next-generation sequence capture to survey patterns of divergence across these entire regions in divergent geographical races and species of Heliconius. This technique was successful both within and between species for obtaining high coverage of almost all coding regions and sufficient coverage of non-coding regions to perform population genetic analyses. We find major peaks of elevated population differentiation between races across hybrid zones, which indicate regions under strong divergent selection. These ‘islands’ of divergence appear to be more extensive between closely related species, but there is less clear evidence for such islands between more distantly related species at two further points along the ‘speciation continuum’. We also sequence fosmid clones across these regions in different Heliconius melpomene races. We find no major structural rearrangements but many relatively large (greater than 1 kb) insertion/deletion events (including gain/loss of transposable elements) that are variable between races. PMID:22201164

  19. Metapopulation dominance and genomic-island acquisition of Bradyrhizobium with superior catabolic capabilities.

    PubMed

    Hollowell, Amanda C; Regus, John U; Turissini, David; Gano-Cohen, Kelsey A; Bantay, Roxanne; Bernardo, Andrew; Moore, Devora; Pham, Jonathan; Sachs, Joel L

    2016-04-27

    Root nodule-forming rhizobia exhibit a bipartite lifestyle, replicating in soil and also within plant cells where they fix nitrogen for legume hosts. Host control models posit that legume hosts act as a predominant selective force on rhizobia, but few studies have examined rhizobial fitness in natural populations. Here, we genotyped and phenotyped Bradyrhizobium isolates across more than 800 km of the native Acmispon strigosus host range. We sequenced chromosomal genes expressed under free-living conditions and accessory symbiosis loci expressed in planta and encoded on an integrated 'symbiosis island' (SI). We uncovered a massive clonal expansion restricted to the Bradyrhizobium chromosome, with a single chromosomal haplotype dominating populations, ranging more than 700 km, and acquiring 42 divergent SI haplotypes, none of which were spatially widespread. For focal genotypes, we quantified utilization of 190 sole-carbon sources relevant to soil fitness. Chromosomal haplotypes that were both widespread and dominant exhibited superior growth on diverse carbon sources, whereas these patterns were not mirrored among SI haplotypes. Abundance, spatial range and catabolic superiority of chromosomal, but not symbiosis genotypes suggests that fitness in the soil environment, rather than symbiosis with hosts, might be the key driver of Bradyrhizobium dominance. PMID:27122562

  20. Structure of a short-chain dehydrogenase/reductase (SDR) within a genomic island from a clinical strain of Acinetobacter baumannii

    SciTech Connect

    Shah, Bhumika S. Tetu, Sasha G.; Harrop, Stephen J.; Paulsen, Ian T.; Mabbutt, Bridget C.

    2014-09-25

    The structure of a short-chain dehydrogenase encoded within genomic islands of A. baumannii strains has been solved to 2.4 Å resolution. This classical SDR incorporates a flexible helical subdomain. The NADP-binding site and catalytic side chains are identified. Over 15% of the genome of an Australian clinical isolate of Acinetobacter baumannii occurs within genomic islands. An uncharacterized protein encoded within one island feature common to this and other International Clone II strains has been studied by X-ray crystallography. The 2.4 Å resolution structure of SDR-WM99c reveals it to be a new member of the classical short-chain dehydrogenase/reductase (SDR) superfamily. The enzyme contains a nucleotide-binding domain and, like many other SDRs, is tetrameric in form. The active site contains a catalytic tetrad (Asn117, Ser146, Tyr159 and Lys163) and water molecules occupying the presumed NADP cofactor-binding pocket. An adjacent cleft is capped by a relatively mobile helical subdomain, which is well positioned to control substrate access.

  1. Evaluation of mtp40 genomic fragment amplification for specific detection of Mycobacterium tuberculosis in clinical specimens.

    PubMed Central

    Herrera, E A; Segovia, M

    1996-01-01

    A PCR assay based on the species-specific mtp40 genomic fragment was developed for the specific detection and identification of Mycobacterium tuberculosis in different uncultured clinical specimens. The aim of the study was to evaluate the clinical applicability of this target DNA in comparison with those of conventional microbiological methods and to compare the results obtained with those obtained after amplification with the IS6110 repetitive element. Discrepant results were interpreted in conjunction with the patients' clinical data, medical histories, and response to therapy. A total of 172 specimens from 162 patients with respiratory symptoms were tested, 101 specimens were obtained from 92 patients clinically suspected of having tuberculosis, and 71 specimens were obtained from 70 patients without known mycobacterial infection. The results of our study suggest that PCR amplification with the mtp40 genomic fragment provides a highly sensitive and specific technique for the detection of M. tuberculosis strains in clinical samples. It allows for the differentiation between M. tuberculosis and other related mycobacteria, including M. bovis, and is more specific than the IS6110 target. For these and other reasons, we propose that the mtp40 assay is a possible alternative for the specific direct detection of M. tuberculosis in clinical laboratories. PMID:8727885

  2. Allele-specific enzymatic amplification of. beta. -globin genomic DNA for diagnosis of sickle cell anemia

    SciTech Connect

    Wu, D.Y.; Ugozzoli, L.; Pal, B.K.; Wallace, B. )

    1989-04-01

    A rapid nonradioactive approach to the diagnosis of sickle cell anemia is described based on an allele-specific polymerase chain reaction (ASPCR). This method allows direct detection of the normal or the sickle cell {beta}-globin allele in genomic DNA without additional steps of probe hybridization, ligation, or restriction enzyme cleavage. Two allele-specific oligonucleotide primers, one specific for the sickle cell allele and one specific for the normal allele, together with another primer complementary to both alleles were used in the polymerase chain reaction with genomic DNA templates. The allele-specific primers differed from each other in their terminal 3{prime} nucleotide. Under the proper annealing temperature and polymerase chain reaction conditions, these primers only directed amplification on their complementary allele. In a single blind study of DNA samples from 12 individuals, this method correctly and unambiguously allowed for the determination of the genotypes with no false negatives or positives. If ASPCR is able to discriminate all allelic variation (both transition and transversion mutations), this method has the potential to be a powerful approach for genetic disease diagnosis, carrier screening, HLA typing, human gene mapping, forensics, and paternity testing.

  3. Diversity and Evolution of AbaR Genomic Resistance Islands in Acinetobacter baumannii Strains of European Clone I▿†

    PubMed Central

    Krizova, Lenka; Dijkshoorn, Lenie; Nemec, Alexandr

    2011-01-01

    To assess the diversity of AbaR genomic resistance islands in Acinetobacter baumannii European clone I (MLST clonal complex 1), we investigated 26 multidrug-resistant strains of this major clone isolated from hospitals in 21 cities of 10 European countries between 1984 and 2005. Each strain harbored an AbaR structure integrated at the same position in the chromosomal ATPase gene. AbaR3, including four subtypes based on variations in class 1 integron cassettes, and AbaR10 were found in 15 and 2 strains, respectively, whereas a new, unique AbaR variant was discovered in each of the other 9 strains. These new variants, designated AbaR11 to AbaR19 (19.8 kb to 57.5 kb), seem to be truncated derivatives of AbaR3, likely resulting from the deletions of its internal parts mediated by either IS26 elements (AbaR12 to AbaR19) or homologous recombination (AbaR11). AbaR3 was detected in all 10 strains isolated in 1984 to 1991, while AbaR11 to AbaR19 were carried only by strains isolated since 1997. Our results and those from previous publications suggest that AbaR3 is the original form of AbaR in European clone I, which may have provided strains of the lineage with a selective advantage facilitating their spread in European hospitals in the 1980s or before. PMID:21537009

  4. Identification and characterization of insect-specific proteins by genome data analysis

    PubMed Central

    Zhang, Guojie; Wang, Hongsheng; Shi, Junjie; Wang, Xiaoling; Zheng, Hongkun; Wong, Gane Ka-Shu; Clark, Terry; Wang, Wen; Wang, Jun; Kang, Le

    2007-01-01

    Background Insects constitute the vast majority of known species with their importance including biodiversity, agricultural, and human health concerns. It is likely that the successful adaptation of the Insecta clade depends on specific components in its proteome that give rise to specialized features. However, proteome determination is an intensive undertaking. Here we present results from a computational method that uses genome analysis to characterize insect and eukaryote proteomes as an approximation complementary to experimental approaches. Results Homologs in common to Drosophila melanogaster, Anopheles gambiae, Bombyx mori, Tribolium castaneum, and Apis mellifera were compared to the complete genomes of three non-insect eukaryotes (opisthokonts) Homo sapiens, Caenorhabditis elegans and Saccharomyces cerevisiae. This operation yielded 154 groups of orthologous proteins in Drosophila to be insect-specific homologs; 466 groups were determined to be common to eukaryotes (represented by three opisthokonts). ESTs from the hemimetabolous insect Locust migratoria were also considered in order to approximate their corresponding genes in the insect-specific homologs. Stress and stimulus response proteins were found to constitute a higher fraction in the insect-specific homologs than in the homologs common to eukaryotes. Conclusion The significant representation of stress response and stimulus response proteins in proteins determined to be insect-specific, along with specific cuticle and pheromone/odorant binding proteins, suggest that communication and adaptation to environments may distinguish insect evolution relative to other eukaryotes. The tendency for low Ka/Ks ratios in the insect-specific protein set suggests purifying selection pressure. The generally larger number of paralogs in the insect-specific proteins may indicate adaptation to environment changes. Instances in our insect-specific protein set have been arrived at through experiments reported in the

  5. Allele-specific locus binding and genome editing by CRISPR at the p16INK4a locus

    PubMed Central

    Fujita, Toshitsugu; Yuno, Miyuki; Fujii, Hodaka

    2016-01-01

    The clustered regularly interspaced short palindromic repeats (CRISPR) system has been adopted for a wide range of biological applications including genome editing. In some cases, dissection of genome functions requires allele-specific genome editing, but the use of CRISPR for this purpose has not been studied in detail. In this study, using the p16INK4a gene in HCT116 as a model locus, we investigated whether chromatin states, such as CpG methylation, or a single-nucleotide gap form in a target site can be exploited for allele-specific locus binding and genome editing by CRISPR in vivo. First, we showed that allele-specific locus binding and genome editing could be achieved by targeting allele-specific CpG-methylated regions, which was successful for one, but not all guide RNAs. In this regard, molecular basis underlying the success remains elusive at this stage. Next, we demonstrated that an allele-specific single-nucleotide gap form could be employed for allele-specific locus binding and genome editing by CRISPR, although it was important to avoid CRISPR tolerance of a single nucleotide mismatch brought about by mismatched base skipping. Our results provide information that might be useful for applications of CRISPR in studies of allele-specific functions in the genomes. PMID:27465215

  6. Genome-Wide Tissue-Specific Farnesoid X Receptor Binding in Mouse Liver and Intestine

    PubMed Central

    Thomas, Ann M.; Hart, Steven N.; Kong, Bo; Fang, Jianwen; Zhong, Xiao-bo; Guo, Grace L.

    2016-01-01

    Farnesoid X receptor (FXR) is a bile acid-activated transcription factor belonging to the nuclear receptor superfamily. FXR is highly expressed in liver and intestine and crosstalk mediated by FXR in these two organs is critical in maintaining bile acid homeostasis. FXR deficiency has been implicated in many liver and intestine diseases. However, regulation of transcription by FXR at the genomic level is not known. This study analyzed genome-wide FXR binding in liver and intestine of mice treated with a synthetic FXR ligand (GW4064) by chromatin immunoprecipitation coupled to massively parallel sequencing (ChIP-seq). The results showed a large degree of tissue-specific FXR binding, with only 11% of total sites shared between liver and intestine. The sites were widely distributed between intergenic, upstream, intragenic, and downstream of genes, with novel sites identified within even known FXR target genes. Motif analysis revealed a half nuclear receptor binding site, normally bound by a few orphan nuclear receptors, adjacent to the FXR response elements, indicating possible involvement of some orphan nuclear receptors in modulating FXR function. Furthermore, pathway analysis indicated that FXR may be extensively involved in multiple cellular metabolic pathways. Conclusion This study reports genome-wide FXR binding in vivo and the results clearly demonstrate tissue-specific FXR/gene interaction. In addition, FXR may be involved in regulating broader biological pathways in maintaining hepatic and intestinal homeostasis. PMID:20091679

  7. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing.

    PubMed

    Tsai, Shengdar Q; Wyvekens, Nicolas; Khayter, Cyd; Foden, Jennifer A; Thapar, Vishal; Reyon, Deepak; Goodwin, Mathew J; Aryee, Martin J; Joung, J Keith

    2014-06-01

    Monomeric CRISPR-Cas9 nucleases are widely used for targeted genome editing but can induce unwanted off-target mutations with high frequencies. Here we describe dimeric RNA-guided FokI nucleases (RFNs) that can recognize extended sequences and edit endogenous genes with high efficiencies in human cells. RFN cleavage activity depends strictly on the binding of two guide RNAs (gRNAs) to DNA with a defined spacing and orientation substantially reducing the likelihood that a suitable target site will occur more than once in the genome and therefore improving specificities relative to wild-type Cas9 monomers. RFNs guided by a single gRNA generally induce lower levels of unwanted mutations than matched monomeric Cas9 nickases. In addition, we describe a simple method for expressing multiple gRNAs bearing any 5' end nucleotide, which gives dimeric RFNs a broad targeting range. RFNs combine the ease of RNA-based targeting with the specificity enhancement inherent to dimerization and are likely to be useful in applications that require highly precise genome editing. PMID:24770325

  8. Analysis of gene-specific and genome-wide sperm DNA methylation.

    PubMed

    Hammoud, Saher Sue; Cairns, Bradley R; Carrell, Douglas T

    2013-01-01

    Epigenetic modifications on the DNA sequence (DNA methylation) or on chromatin-associated proteins (i.e., histones) comprise the "cellular epigenome"; together these modifications play an important role in the regulation of gene expression. Unlike the genome, the epigenome is highly variable between cells and is dynamic and plastic in response to cellular stress and environmental cues. The role of the epigenome, specifically, the methylome has been increasingly highlighted and has been implicated in many cellular and developmental processes such as embryonic reprogramming, cellular differentiation, imprinting, X chromosome inactivation, genomic stability, and complex diseases such as cancer. Over the past decade several methods have been developed and applied to characterize DNA methylation at gene-specific loci (using either traditional bisulfite sequencing or pyrosequencing) or its genome-wide distribution (microarray analysis following methylated DNA immunoprecipitation (MeDIP-chip), analysis by sequencing (MeDIP-seq), reduced representation bisulfite sequencing (RRBS), or shotgun bisulfite sequencing). This chapter reviews traditional bisulfite sequencing and shotgun bisulfite sequencing approaches, with a greater emphasis on shotgun bisulfite sequencing methods and data analysis. PMID:22992936

  9. Comparative in-silico genome analysis of Leishmania (Leishmania) donovani: A step towards its species specificity

    PubMed Central

    S., Satheesh Kumar; R.K., Gokulasuriyan; Ghosh, Monidipa

    2014-01-01

    Comparative genome analysis of recently sequenced Leishmania (L.) donovani was unexplored so far. The present study deals with the complete scanning of L. (L.) donovani genome revealing its interspecies variations. 60 distinctly present genes in L. (L.) donovani were identified when the whole genome was compared with Leishmania (L.) infantum. Similarly 72, 159, and 265 species specific genes were identified in L. (L.) donovani when compared to Leishmania (L.) major, Leishmania (L.) mexicana and Leishmania (Viannia) braziliensis respectively. The cross comparison of L. (L.) donovani in parallel with the other sequenced species of leishmanial led to the identification of 55 genes which are highly specific and expressed exclusively in L. (L.) donovani. We found mainly the discrepancies of surface proteins such as amastins, proteases, and peptidases. Also 415 repeat containing proteins in L. (L.) donovani and their differential distribution in other leishmanial species were identified which might have a potential role during pathogenesis. The genes identified can be evaluated as drug targets for anti-leishmanial treatment, exploring the scope for extensive future investigations. PMID:25606461

  10. A Systems Approach to Predict Oncometabolites via Context-Specific Genome-Scale Metabolic Networks

    PubMed Central

    Nam, Hojung; Campodonico, Miguel; Bordbar, Aarash; Hyduke, Daniel R.; Kim, Sangwoo; Zielinski, Daniel C.; Palsson, Bernhard O.

    2014-01-01

    Altered metabolism in cancer cells has been viewed as a passive response required for a malignant transformation. However, this view has changed through the recently described metabolic oncogenic factors: mutated isocitrate dehydrogenases (IDH), succinate dehydrogenase (SDH), and fumarate hydratase (FH) that produce oncometabolites that competitively inhibit epigenetic regulation. In this study, we demonstrate in silico predictions of oncometabolites that have the potential to dysregulate epigenetic controls in nine types of cancer by incorporating massive scale genetic mutation information (collected from more than 1,700 cancer genomes), expression profiling data, and deploying Recon 2 to reconstruct context-specific genome-scale metabolic models. Our analysis predicted 15 compounds and 24 substructures of potential oncometabolites that could result from the loss-of-function and gain-of-function mutations of metabolic enzymes, respectively. These results suggest a substantial potential for discovering unidentified oncometabolites in various forms of cancers. PMID:25232952

  11. Single-Base Pair Genome Editing in Human Cells by Using Site-Specific Endonucleases

    PubMed Central

    Ochiai, Hiroshi

    2015-01-01

    Genome-wide association studies have identified numerous single-nucleotide polymorphisms (SNPs) associated with human diseases or phenotypes. However, causal relationships between most SNPs and the associated disease have not been established, owing to technical challenges such as unavailability of suitable cell lines. Recently, efficient editing of a single base pair in the genome was achieved using programmable site-specific nucleases. This technique enables experimental confirmation of the causality between SNPs and disease, and is potentially valuable in clinical applications. In this review, I introduce the molecular basis and describe examples of single-base pair editing in human cells. I also discuss the challenges associated with the technique, as well as possible solutions. PMID:26404258

  12. A kingdom-specific protein domain HMM library for improved annotation of fungal genomes

    PubMed Central

    Alam, Intikhab; Hubbard, Simon J; Oliver, Stephen G; Rattray, Magnus

    2007-01-01

    Background Pfam is a general-purpose database of protein domain alignments and profile Hidden Markov Models (HMMs), which is very popular for the annotation of sequence data produced by genome sequencing projects. Pfam provides models that are often very general in terms of the taxa that they cover and it has previously been suggested that such general models may lack some of the specificity or selectivity that would be provided by kingdom-specific models. Results Here we present a general approach to create domain libraries of HMMs for sub-taxa of a kingdom. Taking fungal species as an example, we construct a domain library of HMMs (called Fungal Pfam or FPfam) using sequences from 30 genomes, consisting of 24 species from the ascomycetes group and two basidiomycetes, Ustilago maydis, a fungal pathogen of maize, and the white rot fungus Phanerochaete chrysosporium. In addition, we include the Microsporidion Encephalitozoon cuniculi, an obligate intracellular parasite, and two non-fungal species, the oomycetes Phytophthora sojae and Phytophthora ramorum, both plant pathogens. We evaluate the performance in terms of coverage against the original 30 genomes used in training FPfam and against five more recently sequenced fungal genomes that can be considered as an independent test set. We show that kingdom-specific models such as FPfam can find instances of both novel and well characterized domains, increases overall coverage and detects more domains per sequence with typically higher bitscores than Pfam for the same domain families. An evaluation of the effect of changing E-values on the coverage shows that the performance of FPfam is consistent over the range of E-values applied. Conclusion Kingdom-specific models are shown to provide improved coverage. However, as the models become more specific, some sequences found by Pfam may be missed by the models in FPfam and some of the families represented in the test set are not present in FPfam. Therefore, we recommend

  13. Cooperative and specific binding of Vif to the 5' region of HIV-1 genomic RNA.

    PubMed

    Henriet, Simon; Richer, Delphine; Bernacchi, Serena; Decroly, Etienne; Vigne, Robert; Ehresmann, Bernard; Ehresmann, Chantal; Paillart, Jean-Christophe; Marquet, Roland

    2005-11-18

    The viral infectivity factor (Vif) protein of human immunodeficiency virus type 1 (HIV-1) is essential for viral replication in vivo. Packaging of Vif into viral particles is mediated by an interaction with viral genomic RNA and association with viral nucleoprotein complexes. Despite recent findings on the RNA-binding properties of Vif suggesting that Vif could be involved in retroviral assembly, no RNA sequence or structure specificity has been determined so far. To gain further insight into the mechanisms by which Vif might regulate viral replication, we studied the interactions of Vif with HIV-1 genomic RNA in vitro. Using extensive biochemical analysis, we have measured the affinity of recombinant Vif proteins for synthetic RNAs corresponding to various regions of the HIV-1 genome. We found that recombinant Vif proteins bind specifically to HIV-1 viral RNA fragments corresponding to the 5'-untranslated region (5'-UTR), gag and the 5' part of pol (K(d) between 45 nM and 65 nM). RNA encompassing nucleotides 1-497 or 499-996 of the HIV-1 genomic RNA bind 9+/-2 and 21+/-3 Vif molecules, respectively, and at least some of these proteins bind in a cooperative manner (Hill constant alpha(H) = 2.3). In contrast, RNAs corresponding to other parts of the HIV-1 genome or heterologous RNAs showed poor binding capacity and weak cooperativity (K(d) > 200 nM). Moreover, RNase T1 footprinting revealed a hierarchical binding of Vif, pointing to TAR and the poly(A) stem-loop structures as primary strong affinity targets, and downstream structures as secondary sites with moderate affinity. Taken together, our findings suggest that Vif may assist other proteins to maintain a correct folding of the genomic RNA in order to facilitate its packaging and further steps such as reverse transcription. Interestingly, our results suggest also that Vif could bind the viral RNA in order to protect it from the action of the antiviral factor APOBEC-3G/3F. PMID:16236319

  14. H genome specific repetitive sequence, pEt2, of Elymus trachycaulus in part of Afa family of Triticeae.

    PubMed

    Nagaki, K; Tsujimoto, H; Sasakuma, T

    1998-02-01

    The H genome specific repetitive sequence of Elymus trachycaulus, pEt2, consists of three units of a 337-339 bp repeat aligned in tandem. The sequence is homologous to Afa-family sequences that are widely distributed in the genomes of Triticeae (Gramineae) species. PMID:9549067

  15. Downstream Antisense Transcription Predicts Genomic Features That Define the Specific Chromatin Environment at Mammalian Promoters

    PubMed Central

    Lavender, Christopher A.; Hoffman, Jackson A.; Trotter, Kevin W.; Gilchrist, Daniel A.; Bennett, Brian D.; Burkholder, Adam B.; Fargo, David C.; Archer, Trevor K.

    2016-01-01

    Antisense transcription is a prevalent feature at mammalian promoters. Previous studies have primarily focused on antisense transcription initiating upstream of genes. Here, we characterize promoter-proximal antisense transcription downstream of gene transcription starts sites in human breast cancer cells, investigating the genomic context of downstream antisense transcription. We find extensive correlations between antisense transcription and features associated with the chromatin environment at gene promoters. Antisense transcription downstream of promoters is widespread, with antisense transcription initiation observed within 2 kb of 28% of gene transcription start sites. Antisense transcription initiates between nucleosomes regularly positioned downstream of these promoters. The nucleosomes between gene and downstream antisense transcription start sites carry histone modifications associated with active promoters, such as H3K4me3 and H3K27ac. This region is bound by chromatin remodeling and histone modifying complexes including SWI/SNF subunits and HDACs, suggesting that antisense transcription or resulting RNA transcripts contribute to the creation and maintenance of a promoter-associated chromatin environment. Downstream antisense transcription overlays additional regulatory features, such as transcription factor binding, DNA accessibility, and the downstream edge of promoter-associated CpG islands. These features suggest an important role for antisense transcription in the regulation of gene expression and the maintenance of a promoter-associated chromatin environment. PMID:27487356

  16. Downstream Antisense Transcription Predicts Genomic Features That Define the Specific Chromatin Environment at Mammalian Promoters.

    PubMed

    Lavender, Christopher A; Cannady, Kimberly R; Hoffman, Jackson A; Trotter, Kevin W; Gilchrist, Daniel A; Bennett, Brian D; Burkholder, Adam B; Burd, Craig J; Fargo, David C; Archer, Trevor K

    2016-08-01

    Antisense transcription is a prevalent feature at mammalian promoters. Previous studies have primarily focused on antisense transcription initiating upstream of genes. Here, we characterize promoter-proximal antisense transcription downstream of gene transcription starts sites in human breast cancer cells, investigating the genomic context of downstream antisense transcription. We find extensive correlations between antisense transcription and features associated with the chromatin environment at gene promoters. Antisense transcription downstream of promoters is widespread, with antisense transcription initiation observed within 2 kb of 28% of gene transcription start sites. Antisense transcription initiates between nucleosomes regularly positioned downstream of these promoters. The nucleosomes between gene and downstream antisense transcription start sites carry histone modifications associated with active promoters, such as H3K4me3 and H3K27ac. This region is bound by chromatin remodeling and histone modifying complexes including SWI/SNF subunits and HDACs, suggesting that antisense transcription or resulting RNA transcripts contribute to the creation and maintenance of a promoter-associated chromatin environment. Downstream antisense transcription overlays additional regulatory features, such as transcription factor binding, DNA accessibility, and the downstream edge of promoter-associated CpG islands. These features suggest an important role for antisense transcription in the regulation of gene expression and the maintenance of a promoter-associated chromatin environment. PMID:27487356

  17. Pan-genome analyses identify lineage- and niche-specific markers of evolution and adaptation in Epsilonproteobacteria

    PubMed Central

    Zhang, Ying; Sievert, Stefan M.

    2014-01-01

    The rapidly increasing availability of complete bacterial genomes has created new opportunities for reconstructing bacterial evolution, but it has also highlighted the difficulty to fully understand the genomic and functional variations occurring among different lineages. Using the class Epsilonproteobacteria as a case study, we investigated the composition, flexibility, and function of its pan-genomes. Models were constructed to extrapolate the expansion of pan-genomes at three different taxonomic levels. The results show that, for Epsilonproteobacteria the seemingly large genome variations among strains of the same species are less noticeable when compared with groups at higher taxonomic ranks, indicating that genome stability is imposed by the potential existence of taxonomic boundaries. The analyses of pan-genomes has also defined a set of universally conserved core genes, based on which a phylogenetic tree was constructed to confirm that thermophilic species from deep-sea hydrothermal vents represent the most ancient lineages of Epsilonproteobacteria. Moreover, by comparing the flexible genome of a chemoautotrophic deep-sea vent species to (1) genomes of species belonging to the same genus, but inhabiting different environments, and (2) genomes of other vent species, but belonging to different genera, we were able to delineate the relative importance of lineage-specific versus niche-specific genes. This result not only emphasizes the overall importance of phylogenetic proximity in shaping the variable part of the genome, but also highlights the adaptive functions of niche-specific genes. Overall, by modeling the expansion of pan-genomes and analyzing core and flexible genes, this study provides snapshots on how the complex processes of gene acquisition, conservation, and removal affect the evolution of different species, and contribute to the metabolic diversity and versatility of Epsilonproteobacteria. PMID:24678308

  18. Comparative genomics of lactic acid bacteria reveals a niche-specific gene set

    PubMed Central

    2009-01-01

    Background The recently sequenced genome of Lactobacillus helveticus DPC4571 [1] revealed a dairy organism with significant homology (75% of genes are homologous) to a probiotic bacteria Lb. acidophilus NCFM [2]. This led us to hypothesise that a group of genes could be determined which could define an organism's niche. Results Taking 11 fully sequenced lactic acid bacteria (LAB) as our target, (3 dairy LAB, 5 gut LAB and 3 multi-niche LAB), we demonstrated that the presence or absence of certain genes involved in sugar metabolism, the proteolytic system, and restriction modification enzymes were pivotal in suggesting the niche of a strain. We identified 9 niche specific genes, of which 6 are dairy specific and 3 are gut specific. The dairy specific genes identified in Lactobacillus helveticus DPC4571 were lhv_1161 and lhv_1171, encoding components of the proteolytic system, lhv_1031 lhv_1152, lhv_1978 and lhv_0028 encoding restriction endonuclease genes, while bile salt hydrolase genes lba_0892 and lba_1078, and the sugar metabolism gene lba_1689 from Lb. acidophilus NCFM were identified as gut specific genes. Conclusion Comparative analysis revealed that if an organism had homologs to the dairy specific geneset, it probably came from a dairy environment, whilst if it had homologs to gut specific genes, it was highly likely to be of intestinal origin. We propose that this "barcode" of 9 genes will be a useful initial guide to researchers in the LAB field to indicate an organism's ability to occupy a specific niche. PMID:19265535

  19. [Comparison of specific genomic DNA fragment between Microtus fortis calamorum and Microtus fortis fortis].

    PubMed

    Xu, Bing; Hu, Wei-Xin; Yang, Rong; Yu, Yuan-Jing; Wang, Yong; Liu, Xin-Fa; Peng, Xing-Hua

    2003-06-01

    Microtus fortis(Taxonomy ID: 100897), also named as reed vole, is classified as Microtus, Micotinae, Cricetidae, Rodentia, Mammalia on taxonomy. Microtus fortis mainly distributes in China. Some areas of Russia, North Korea and Mongolia close to Northeast borderland of China also have a small number of Microtus fortis in distribution. Microtus fortis in China has principally 4 subspecies, and most of them live is the drainage area of Yangtse River. Schistosoma japonicum (one of commonly parasites in China) can infect about 40 kinds of mammalian animals, including the human being, but could not infect Microtus foris. It is known as the only animal in Dongting Lake region of China which has the ability of natural resistance to Schistosoma japonicum. The Microtus fortis domesticated in laboratory has the same biological characteristics as the wild one and these characteristics could be inherited to its progeny steadily. We got a specific DNA fragment from genomic library of Microtus fortis. This DNA fragment in genomic DNA of human beings, Kunming mice, Balb/c mice and C57BL/6J mice could not be detected by dot blot hybridization and PCR, apart from genomic DNA of Microtus fortis. In this report, the differences of genomic DNA in 34 Microtus fortis were compared between Microtus fortis calamorum(Dongting Lake region of southern China) and Microtus fortis fortis (Ningxia province of northern China). The residing localion of these two subspecies is far away about 1,200 kilometers from each other. The genomic DNA of Microtus fortis calamorum and Microtus fortis fortis were extracted and amplified by PCR according to the specific genomic DNAs sequence of Microtus fortis reported previously (Accession number in GenBank: AF277394). The amplified DNA fragments were inserted into pGEM-T easy vector and sequenced. The DNA fragment sequencing results from the two subspecies were compared to detect whether there was any difference. 19 alleles were found from Microtus fortis (20

  20. Sex-Specific Genomic Biomarkers for Individualized Treatment of Life-Threatening Diseases

    PubMed Central

    Moon, Hojin; Lopez, Karen L.; Lin, Grace I.; Chen, James J.

    2013-01-01

    Numerous studies have demonstrated sex differences in drug reactions to the same drug treatment, steering away from the traditional view of one-size-fits-all medicine. A premise of this study is that the sex of a patient influences difference in disease characteristics and risk factors. In this study, we intend to exploit and to obtain better sex-specific biomarkers from gene-expression data. We propose a procedure to isolate a set of important genes as sex-specific genomic biomarkers, which may enable more effective patient treatment. A set of sex-specific genes is obtained by a variable importance ranking using a combination of cross-validation methods. The proposed procedure is applied to three gene-expression datasets. PMID:24302811

  1. Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases.

    PubMed

    Tsai, Shengdar Q; Joung, J Keith

    2016-04-18

    CRISPR-Cas9 RNA-guided nucleases are a transformative technology for biology, genetics and medicine owing to the simplicity with which they can be programmed to cleave specific DNA target sites in living cells and organisms. However, to translate these powerful molecular tools into safe, effective clinical applications, it is of crucial importance to carefully define and improve their genome-wide specificities. Here, we outline our state-of-the-art understanding of target DNA recognition and cleavage by CRISPR-Cas9 nucleases, methods to determine and improve their specificities, and key considerations for how to evaluate and reduce off-target effects for research and therapeutic applications. PMID:27087594

  2. Tissue-specific genome editing in Ciona embryos by CRISPR/Cas9.

    PubMed

    Stolfi, Alberto; Gandhi, Shashank; Salek, Farhana; Christiaen, Lionel

    2014-11-01

    The CRISPR/Cas9 system has ushered in a new era of targeted genetic manipulations. Here, we report the use of CRISPR/Cas9 to induce double-stranded breaks in the genome of the sea squirt Ciona intestinalis. We use electroporation to deliver CRISPR/Cas9 components for tissue-specific disruption of the Ebf (Collier/Olf/EBF) gene in hundreds of synchronized Ciona embryos. Phenotyping of transfected embryos in the 'F0' generation revealed that endogenous Ebf function is required for specification of Islet-expressing motor ganglion neurons and atrial siphon muscles. We demonstrate that CRISPR/Cas9 is sufficiently effective and specific to generate large numbers of embryos carrying mutations in a targeted gene of interest, which should allow for rapid screening of gene function in Ciona. PMID:25336740

  3. Metagenomic islands of hyperhalophiles: the case of Salinibacter ruber

    PubMed Central

    2009-01-01

    Background Saturated brines are extreme environments of low diversity. Salinibacter ruber is the only bacterium that inhabits this environment in significant numbers. In order to establish the extent of genetic diversity in natural populations of this microbe, the genomic sequence of reference strain DSM 13855 was compared to metagenomic fragments recovered from climax saltern crystallizers and obtained with 454 sequencing technology. This kind of analysis reveals the presence of metagenomic islands, i.e. highly variable regions among the different lineages in the population. Results Three regions of the sequenced isolate were scarcely represented in the metagenome thus appearing to vary among co-occurring S. ruber cells. These metagenomic islands showed evidence of extensive genomic corruption with atypically low GC content, low coding density, high numbers of pseudogenes and short hypothetical proteins. A detailed analysis of island gene content showed that the genes in metagenomic island 1 code for cell surface polysaccharides. The strain-specific genes of metagenomic island 2 were found to be involved in biosynthesis of cell wall polysaccharide components. Finally, metagenomic island 3 was rich in DNA related enzymes. Conclusion The genomic organisation of S. ruber variable genomic regions showed a number of convergences with genomic islands of marine microbes studied, being largely involved in variable cell surface traits. This variation at the level of cell envelopes in an environment devoid of grazing pressure probably reflects a global strategy of bacteria to escape phage predation. PMID:19951421

  4. Cell-Type-Specific Genome-wide Expression Profiling after Laser Capture Microdissection of Living Tissue

    SciTech Connect

    Marchetti, F; Manohar, C F

    2005-02-09

    The purpose of this technical feasibility study was to develop and evaluate robust microgenomic tools for investigations of genome-wide expression of very small numbers of cells isolated from whole tissue sections. Tissues contain large numbers of cell-types that play varied roles in organ function and responses to endogenous and exogenous toxicants whether bacterial, viral, chemical or radiation. Expression studies of whole tissue biopsy are severely limited because heterogeneous cell-types result in an averaging of molecular signals masking subtle but important changes in gene expression in any one cell type(s) or group of cells. Accurate gene expression analysis requires the study of specific cell types in their tissue environment but without contamination from surrounding cells. Laser capture microdissection (LCM) is a new technology to isolate morphologically distinct cells from tissue sections. Alternative methods are available for isolating single cells but not yet for their reliable genome-wide expression analyses. The tasks of this feasibility project were to: (1) Develop efficient protocols for laser capture microdissection of cells from tissues identified by antibody label, or morphological stain. (2) Develop reproducible gene-transcript analyses techniques for single cell-types and determine the numbers of cells needed for reliable genome-wide analyses. (3) Validate the technology for epithelial and endothelial cells isolated from the gastrointestinal tract of mice.

  5. Biochemical construction and selection of hybrid plasmids containing specific segments of the Escherichia coli genome.

    PubMed Central

    Clarke, L; Carbon, J

    1975-01-01

    Using a poly(dA-dT) "connector" method, a population of annealed hybrid circular DNAs was constructed in vitro; each hybrid DNA circle containing one full-length molecule of poly(dT)-tailed DNA from E1 colicinogenic factor (Col E1) fragmented by EcoRI endonuclease annealed to any one of a collection of poly(dA)-tailed linear DNA fragments of the entire E. coli genome. This annealed, but unligated, hybrid DNA was used to transform several different auxotrophic mutants of E. coli, and by direct selection, bacterial clones were isolated which contained specific hybrid plasmids. In this manner, bacterial strains containing Col E1 hybrid plasmids carrying the entire tryptophan operon or the arabinsoe and leucine operons were isolated. The methods described should allow the molecular cloning of any portion of the E. coli genome by selection from a pool of DNA molecules containing at least several hundred different hybrids representing the entire bacterial genome. Images PMID:1105581

  6. Genome and Transcriptome Sequences Reveal the Specific Parasitism of the Nematophagous Purpureocillium lilacinum 36-1

    PubMed Central

    Xie, Jialian; Li, Shaojun; Mo, Chenmi; Xiao, Xueqiong; Peng, Deliang; Wang, Gaofeng; Xiao, Yannong

    2016-01-01

    Purpureocillium lilacinum is a promising nematophagous ascomycete able to adapt diverse environments and it is also an opportunistic fungus that infects humans. A microbial inoculant of P. lilacinum has been registered to control plant parasitic nematodes. However, the molecular mechanism of the toxicological processes is still unclear because of the relatively few reports on the subject. In this study, using Illumina paired-end sequencing, the draft genome sequence and the transcriptome of P. lilacinum strain 36-1 infecting nematode-eggs were determined. Whole genome alignment indicated that P. lilacinum 36-1 possessed a more dynamic genome in comparison with P. lilacinum India strain. Moreover, a phylogenetic analysis showed that the P. lilacinum 36-1 had a closer relation to entomophagous fungi. The protein-coding genes in P. lilacinum 36-1 occurred much more frequently than they did in other fungi, which was a result of the depletion of repeat-induced point mutations (RIP). Comparative genome and transcriptome analyses revealed the genes that were involved in pathogenicity, particularly in the recognition, adhesion of nematode-eggs, downstream signal transduction pathways and hydrolase genes. By contrast, certain numbers of cellulose and xylan degradation genes and a lack of polysaccharide lyase genes showed the potential of P. lilacinum 36-1 as an endophyte. Notably, the expression of appressorium-formation and antioxidants-related genes exhibited similar infection patterns in P. lilacinum strain 36-1 to those of the model entomophagous fungi Metarhizium spp. These results uncovered the specific parasitism of P. lilacinum and presented the genes responsible for the infection of nematode-eggs. PMID:27486440

  7. Genome and Transcriptome Sequences Reveal the Specific Parasitism of the Nematophagous Purpureocillium lilacinum 36-1.

    PubMed

    Xie, Jialian; Li, Shaojun; Mo, Chenmi; Xiao, Xueqiong; Peng, Deliang; Wang, Gaofeng; Xiao, Yannong

    2016-01-01

    Purpureocillium lilacinum is a promising nematophagous ascomycete able to adapt diverse environments and it is also an opportunistic fungus that infects humans. A microbial inoculant of P. lilacinum has been registered to control plant parasitic nematodes. However, the molecular mechanism of the toxicological processes is still unclear because of the relatively few reports on the subject. In this study, using Illumina paired-end sequencing, the draft genome sequence and the transcriptome of P. lilacinum strain 36-1 infecting nematode-eggs were determined. Whole genome alignment indicated that P. lilacinum 36-1 possessed a more dynamic genome in comparison with P. lilacinum India strain. Moreover, a phylogenetic analysis showed that the P. lilacinum 36-1 had a closer relation to entomophagous fungi. The protein-coding genes in P. lilacinum 36-1 occurred much more frequently than they did in other fungi, which was a result of the depletion of repeat-induced point mutations (RIP). Comparative genome and transcriptome analyses revealed the genes that were involved in pathogenicity, particularly in the recognition, adhesion of nematode-eggs, downstream signal transduction pathways and hydrolase genes. By contrast, certain numbers of cellulose and xylan degradation genes and a lack of polysaccharide lyase genes showed the potential of P. lilacinum 36-1 as an endophyte. Notably, the expression of appressorium-formation and antioxidants-related genes exhibited similar infection patterns in P. lilacinum strain 36-1 to those of the model entomophagous fungi Metarhizium spp. These results uncovered the specific parasitism of P. lilacinum and presented the genes responsible for the infection of nematode-eggs. PMID:27486440

  8. Genome-Based Selection and Characterization of Fusarium circinatum-Specific Sequences

    PubMed Central

    Maphosa, Mkhululi N.; Steenkamp, Emma T.; Wingfield, Brenda D.

    2016-01-01

    Fusarium circinatum is an important pathogen of pine trees and its management in the commercial forestry environment relies largely on early detection, particularly in seedling nurseries. The fact that the entire genome of this pathogen is available opens new avenues for the development of diagnostic tools for this fungus. In this study we identified open reading frames (ORFs) unique to F. circinatum and determined that they were specific to the pathogen. The ORF identification process involved bioinformatics-based screening of all the putative F. circinatum ORFs against public databases. This was followed by functional characterization of ORFs found to be unique to F. circinatum. We used PCR- and hybridization-based approaches to confirm the presence of selected unique genes in different strains of F. circinatum and their absence from other Fusarium species for which genome sequence data are not yet available. These included species that are closely related to F. circinatum as well as those that are commonly encountered in the forestry environment. Thirty-six ORFs were identified as potentially unique to F. circinatum. Nineteen of these encode proteins with known domains while the other 17 encode proteins of unknown function. The results of our PCR analyses and hybridization assays showed that three of the selected genes were present in all of the strains of F. circinatum tested and absent from the other Fusarium species screened. These data thus indicate that the selected genes are common and unique to F. circinatum. These genes thus could be good candidates for use in rapid, in-the-field diagnostic assays specific to F. circinatum. Our study further demonstrates how genome sequence information can be mined for the identification of new diagnostic markers for the detection of plant pathogens. PMID:26888868

  9. Genome-Based Selection and Characterization of Fusarium circinatum-Specific Sequences.

    PubMed

    Maphosa, Mkhululi N; Steenkamp, Emma T; Wingfield, Brenda D

    2016-03-01

    Fusarium circinatum is an important pathogen of pine trees and its management in the commercial forestry environment relies largely on early detection, particularly in seedling nurseries. The fact that the entire genome of this pathogen is available opens new avenues for the development of diagnostic tools for this fungus. In this study we identified open reading frames (ORFs) unique to F. circinatum and determined that they were specific to the pathogen. The ORF identification process involved bioinformatics-based screening of all the putative F. circinatum ORFs against public databases. This was followed by functional characterization of ORFs found to be unique to F. circinatum. We used PCR- and hybridization-based approaches to confirm the presence of selected unique genes in different strains of F. circinatum and their absence from other Fusarium species for which genome sequence data are not yet available. These included species that are closely related to F. circinatum as well as those that are commonly encountered in the forestry environment. Thirty-six ORFs were identified as potentially unique to F. circinatum. Nineteen of these encode proteins with known domains while the other 17 encode proteins of unknown function. The results of our PCR analyses and hybridization assays showed that three of the selected genes were present in all of the strains of F. circinatum tested and absent from the other Fusarium species screened. These data thus indicate that the selected genes are common and unique to F. circinatum. These genes thus could be good candidates for use in rapid, in-the-field diagnostic assays specific to F. circinatum. Our study further demonstrates how genome sequence information can be mined for the identification of new diagnostic markers for the detection of plant pathogens. PMID:26888868

  10. CpG island mapping by epigenome prediction.

    PubMed

    Bock, Christoph; Walter, Jörn; Paulsen, Martina; Lengauer, Thomas

    2007-06-01

    CpG islands were originally identified by epigenetic and functional properties, namely, absence of DNA methylation and frequent promoter association. However, this concept was quickly replaced by simple DNA sequence criteria, which allowed for genome-wide annotation of CpG islands in the absence of large-scale epigenetic datasets. Although widely used, the current CpG island criteria incur significant disadvantages: (1) reliance on arbitrary threshold parameters that bear little biological justification, (2) failure to account for widespread heterogeneity among CpG islands, and (3) apparent lack of specificity when applied to the human genome. This study is driven by the idea that a quantitative score of "CpG island strength" that incorporates epigenetic and functional aspects can help resolve these issues. We construct an epigenome prediction pipeline that links the DNA sequence of CpG islands to their epigenetic states, including DNA methylation, histone modifications, and chromatin accessibility. By training support vector machines on epigenetic data for CpG islands on human Chromosomes 21 and 22, we identify informative DNA attributes that correlate with open versus compact chromatin structures. These DNA attributes are used to predict the epigenetic states of all CpG islands genome-wide. Combining predictions for multiple epigenetic features, we estimate the inherent CpG island strength for each CpG island in the human genome, i.e., its inherent tendency to exhibit an open and transcriptionally competent chromatin structure. We extensively validate our results on independent datasets, showing that the CpG island strength predictions are applicable and informative across different tissues and cell types, and we derive improved maps of predicted "bona fide" CpG islands. The mapping of CpG islands by epigenome prediction is conceptually superior to identifying CpG islands by widely used sequence criteria since it links CpG island detection to their characteristic

  11. Tissue-Specific Transcriptomic Profiling of Sorghum propinquum using a Rice Genome Array

    PubMed Central

    Zhang, Ting; Zhao, Xiuqin; Huang, Liyu; Liu, Xiaoyue; Zong, Ying; Zhu, Linghua; Yang, Daichang; Fu, Binying

    2013-01-01

    Sorghum (Sorghum bicolor) is one of the world's most important cereal crops. S. propinquum is a perennial wild relative of S. bicolor with well-developed rhizomes. Functional genomics analysis of S. propinquum, especially with respect to molecular mechanisms related to rhizome growth and development, can contribute to the development of more sustainable grain, forage, and bioenergy cropping systems. In this study, we used a whole rice genome oligonucleotide microarray to obtain tissue-specific gene expression profiles of S. propinquum with special emphasis on rhizome development. A total of 548 tissue-enriched genes were detected, including 31 and 114 unique genes that were expressed predominantly in the rhizome tips (RT) and internodes (RI), respectively. Further GO analysis indicated that the functions of these tissue-enriched genes corresponded to their characteristic biological processes. A few distinct cis-elements, including ABA-responsive RY repeat CATGCA, sugar-repressive TTATCC, and GA-responsive TAACAA, were found to be prevalent in RT-enriched genes, implying an important role in rhizome growth and development. Comprehensive comparative analysis of these rhizome-enriched genes and rhizome-specific genes previously identified in Oryza longistaminata and S. propinquum indicated that phytohormones, including ABA, GA, and SA, are key regulators of gene expression during rhizome development. Co-localization of rhizome-enriched genes with rhizome-related QTLs in rice and sorghum generated functional candidates for future cloning of genes associated with rhizome growth and development. PMID:23536906

  12. Genetic analysis of environmental strains of the plant pathogen Phytophthora capsici reveals heterogeneous repertoire of effectors and possible effector evolution via genomic island.

    PubMed

    Iribarren, María Josefina; Pascuan, Cecilia; Soto, Gabriela; Ayub, Nicolás Daniel

    2015-11-01

    Phytophthora capsici is a virulent oomycete pathogen of many vegetable crops. Recently, it has been demonstrated that the recognition of the RXLR effector AVR3a1 of P. capsici (PcAVR3a1) triggers a hypersensitive response and plays a critical role in mediating non-host resistance. Here, we analyzed the occurrence of PcAVR3a1 in 57 isolates of P. capsici derived from globe squash, eggplant, tomato and bell pepper cocultivated in a small geographical area. The occurrence of PcAVR3a1 in environmental strains of P. capsici was confirmed by PCR in only 21 of these pathogen isolates. To understand the presence-absence pattern of PcAVR3a1 in environmental strains, the flanking region of this gene was sequenced. PcAVR3a1 was found within a genetic element that we named PcAVR3a1-GI (PcAVR3a1 genomic island). PcAVR3a1-GI was flanked by a 22-bp direct repeat, which is related to its site-specific recombination site. In addition to the PcAVR3a1 gene, PcAVR3a1-GI also encoded a phage integrase probably associated with the excision and integration of this mobile element. Exposure to plant induced the presence of an episomal circular intermediate of PcAVR3a1-GI, indicating that this mobile element is functional. Collectively, these findings provide evidence of PcAVR3a1 evolution via mobile elements in environmental strains of Phytophthora. PMID:26443834

  13. Delivery and Specificity of CRISPR-Cas9 Genome Editing Technologies for Human Gene Therapy.

    PubMed

    Gori, Jennifer L; Hsu, Patrick D; Maeder, Morgan L; Shen, Shen; Welstead, G Grant; Bumcrot, David

    2015-07-01

    Genome editing using the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated 9 (Cas9) technology is revolutionizing the study of gene function and likely will give rise to an entire new class of therapeutics for a wide range of diseases. Achieving this goal requires not only characterization of the technology for efficacy and specificity but also optimization of its delivery to the target cells for each disease indication. In this review we survey the various methods by which the CRISPR-Cas9 components have been delivered to cells and highlight some of the more clinically relevant approaches. Additionally, we discuss the methods available for assessing the specificity of Cas9 editing; an important safety consideration for development of the technology. PMID:26068008

  14. High efficiency site-specific genetic engineering of the mosquito genome

    PubMed Central

    Nimmo, D. D.; Alphey, L.; Meredith, J. M.; Eggleston, P.

    2006-01-01

    Current techniques for the genetic engineering of insect genomes utilize transposable genetic elements, which are inefficient, have limited carrying capacity and give rise to position effects and insertional mutagenesis. As an alternative, we investigated two site-specific integration mechanisms in the yellow fever mosquito, Aedes aegypti. One was a modified CRE/lox system from phage P1 and the other a viral integrase system from Streptomyces phage phi C31. The modified CRE/lox system consistently failed to produce stable germ-line transformants but the phi C31 system was highly successful, increasing integration efficiency by up to 7.9-fold. The ability to efficiently target transgenes to specific chromosomal locations and the potential to integrate very large transgenes has broad applicability to research on many medically and economically important species. PMID:16640723

  15. Methods to Identify Chromatin-Bound Protein Complexes: From Genome-Wide to Locus-Specific Approaches.

    PubMed

    Massie, Charles E

    2016-01-01

    High-throughput sequencing approaches coupled with functional genomics experiments have facilitated a rapid growth in our understanding of chromatin biology, from genome-wide maps of transcription factor binding and histone modifications to insights into higher order chromatin organization under specific cellular conditions. However in most cases these methods require a prior knowledge of the system of interest (e.g., targets for immunoprecipitation or modulation) and therefore are limited in their utility to identify novel components of pathways or for the study of uncharacterized pathways. Several orthologous proteomics approaches have been developed recently that bridge this gap, allowing the identification of protein complexes globally or at specific genomic loci. In this chapter the relative advantages of each approach will be explored and a detailed protocol given for DNA pull-down of a specific androgen receptor (AR) genomic target. PMID:27246338

  16. Variability among the Most Rapidly Evolving Plastid Genomic Regions is Lineage-Specific: Implications of Pairwise Genome Comparisons in Pyrus (Rosaceae) and Other Angiosperms for Marker Choice

    PubMed Central

    Ter-Voskanyan, Hasmik; Allgaier, Martin; Borsch, Thomas

    2014-01-01

    Plastid genomes exhibit different levels of variability in their sequences, depending on the respective kinds of genomic regions. Genes are usually more conserved while noncoding introns and spacers evolve at a faster pace. While a set of about thirty maximum variable noncoding genomic regions has been suggested to provide universally promising phylogenetic markers throughout angiosperms, applications often require several regions to be sequenced for many individuals. Our project aims to illuminate evolutionary relationships and species-limits in the genus Pyrus (Rosaceae)—a typical case with very low genetic distances between taxa. In this study, we have sequenced the plastid genome of Pyrus spinosa and aligned it to the already available P. pyrifolia sequence. The overall p-distance of the two Pyrus genomes was 0.00145. The intergenic spacers between ndhC–trnV, trnR–atpA, ndhF–rpl32, psbM–trnD, and trnQ–rps16 were the most variable regions, also comprising the highest total numbers of substitutions, indels and inversions (potentially informative characters). Our comparative analysis of further plastid genome pairs with similar low p-distances from Oenothera (representing another rosid), Olea (asterids) and Cymbidium (monocots) showed in each case a different ranking of genomic regions in terms of variability and potentially informative characters. Only two intergenic spacers (ndhF–rpl32 and trnK–rps16) were consistently found among the 30 top-ranked regions. We have mapped the occurrence of substitutions and microstructural mutations in the four genome pairs. High AT content in specific sequence elements seems to foster frequent mutations. We conclude that the variability among the fastest evolving plastid genomic regions is lineage-specific and thus cannot be precisely predicted across angiosperms. The often lineage-specific occurrence of stem-loop elements in the sequences of introns and spacers also governs lineage-specific mutations

  17. Testing models of speciation from genome sequences: divergence and asymmetric admixture in Island South-East Asian Sus species during the Plio-Pleistocene climatic fluctuations.

    PubMed

    Frantz, Laurent A F; Madsen, Ole; Megens, Hendrik-Jan; Groenen, Martien A M; Lohse, Konrad

    2014-11-01

    In many temperate regions, ice ages promoted range contractions into refugia resulting in divergence (and potentially speciation), while warmer periods led to range expansions and hybridization. However, the impact these climatic oscillations had in many parts of the tropics remains elusive. Here, we investigate this issue using genome sequences of three pig (Sus) species, two of which are found on islands of the Sunda-shelf shallow seas in Island South-East Asia (ISEA). A previous study revealed signatures of interspecific admixture between these Sus species (Genome biology, 14, 2013, R107). However, the timing, directionality and extent of this admixture remain unknown. Here, we use a likelihood-based model comparison to more finely resolve this admixture history and test whether it was mediated by humans or occurred naturally. Our analyses suggest that interspecific admixture between Sunda-shelf species was most likely asymmetric and occurred long before the arrival of humans in the region. More precisely, we show that these species diverged during the late Pliocene but around 23% of their genomes have been affected by admixture during the later Pleistocene climatic transition. In addition, we show that our method provides a significant improvement over D-statistics which are uninformative about the direction of admixture. PMID:25294645

  18. Testing models of speciation from genome sequences: divergence and asymmetric admixture in Island South-East Asian Sus species during the Plio-Pleistocene climatic fluctuations

    PubMed Central

    Frantz, Laurent A F; Madsen, Ole; Megens, Hendrik-Jan; Groenen, Martien A M; Lohse, Konrad

    2014-01-01

    In many temperate regions, ice ages promoted range contractions into refugia resulting in divergence (and potentially speciation), while warmer periods led to range expansions and hybridization. However, the impact these climatic oscillations had in many parts of the tropics remains elusive. Here, we investigate this issue using genome sequences of three pig (Sus) species, two of which are found on islands of the Sunda-shelf shallow seas in Island South-East Asia (ISEA). A previous study revealed signatures of interspecific admixture between these Sus species (Genome biology,14, 2013, R107). However, the timing, directionality and extent of this admixture remain unknown. Here, we use a likelihood-based model comparison to more finely resolve this admixture history and test whether it was mediated by humans or occurred naturally. Our analyses suggest that interspecific admixture between Sunda-shelf species was most likely asymmetric and occurred long before the arrival of humans in the region. More precisely, we show that these species diverged during the late Pliocene but around 23% of their genomes have been affected by admixture during the later Pleistocene climatic transition. In addition, we show that our method provides a significant improvement over D-statistics which are uninformative about the direction of admixture. PMID:25294645

  19. Sequence-Based Characterization of Tn5801-Like Genomic Islands in Tetracycline-Resistant Staphylococcus pseudintermedius and Other Gram-positive Bacteria from Humans and Animals

    PubMed Central

    de Vries, Lisbeth E.; Hasman, Henrik; Jurado Rabadán, Sonia; Agersø, Yvonne

    2016-01-01

    Antibiotic resistance in pathogens is often associated with mobile genetic elements, such as genomic islands (GI) including integrative and conjugative elements (ICEs). These can transfer resistance genes within and between bacteria from humans and/or animals. The aim of this study was to investigate whether Tn5801-like GIs carrying the tetracycline resistance gene, tet(M), are common in Staphylococcus pseudintermedius from pets, and to do an overall sequences-based characterization of Tn5801-like GIs detected in Gram-positive bacteria from humans and animals. A total of 27 tetracycline-resistant S. pseudintermedius isolates from Danish pets (1998–2005) were screened for tet(M) by PCR. Selected isolates (13) were screened for GI- or ICE-specific genes (intTn5801 or xisTn916) and their tet(M) gene was sequenced (Sanger-method). Long-range PCR mappings and whole-genome-sequencing (Illumina) were performed for selected S. pseudintermedius-isolates (seven and three isolates, respectively) as well as for human S. aureus isolates (seven and one isolates, respectively) and one porcine Enterococcus faecium isolate known to carry Tn5801-like GIs. All 27 S. pseudintermedius were positive for tet(M). Out of 13 selected isolates, seven contained Tn5801-like GIs and six contained Tn916-like ICEs. Two different Tn5801-like GI types were detected among S. pseudintermedius (Tn5801 and GI6287) - both showed high similarity compared to GenBank sequences from human pathogens. Two distinct Tn5801-like GI types were detected among the porcine E. faecium and human S. aureus isolates (Tn6014 and GI6288). Tn5801-like GIs were detected in GenBank-sequences from Gram-positive bacteria of human, animal or food origin worldwide. Known Tn5801-like GIs were divided into seven types. The results showed that Tn5801-like GIs appear to be relatively common in tetracycline-resistant S. pseudintermedius in Denmark. Almost identical Tn5801-like GIs were identified in different Gram-positive species

  20. Allele-specific copy-number discovery from whole-genome and whole-exome sequencing

    PubMed Central

    Wang, WeiBo; Wang, Wei; Sun, Wei; Crowley, James J.; Szatkiewicz, Jin P.

    2015-01-01

    Copy-number variants (CNVs) are a major form of genetic variation and a risk factor for various human diseases, so it is crucial to accurately detect and characterize them. It is conceivable that allele-specific reads from high-throughput sequencing data could be leveraged to both enhance CNV detection and produce allele-specific copy number (ASCN) calls. Although statistical methods have been developed to detect CNVs using whole-genome sequence (WGS) and/or whole-exome sequence (WES) data, information from allele-specific read counts has not yet been adequately exploited. In this paper, we develop an integrated method, called AS-GENSENG, which incorporates allele-specific read counts in CNV detection and estimates ASCN using either WGS or WES data. To evaluate the performance of AS-GENSENG, we conducted extensive simulations, generated empirical data using existing WGS and WES data sets and validated predicted CNVs using an independent methodology. We conclude that AS-GENSENG not only predicts accurate ASCN calls but also improves the accuracy of total copy number calls, owing to its unique ability to exploit information from both total and allele-specific read counts while accounting for various experimental biases in sequence data. Our novel, user-friendly and computationally efficient method and a complete analytic protocol is freely available at https://sourceforge.net/projects/asgenseng/. PMID:25883151

  1. Lineage-Specific Conserved Noncoding Sequences of Plant Genomes: Their Possible Role in Nucleosome Positioning

    PubMed Central

    Hettiarachchi, Nilmini; Kryukov, Kirill; Sumiyama, Kenta; Saitou, Naruya

    2014-01-01

    Many studies on conserved noncoding sequences (CNSs) have found that CNSs are enriched significantly in regulatory sequence elements. We conducted whole-genome analysis on plant CNSs to identify lineage-specific CNSs in eudicots, monocots, angiosperms, and vascular plants based on the premise that lineage-specific CNSs define lineage-specific characters and functions in groups of organisms. We identified 27 eudicot, 204 monocot, 6,536 grass, 19 angiosperm, and 2 vascular plant lineage-specific CNSs (lengths range from 16 to 1,517 bp) that presumably originated in their respective common ancestors. A stronger constraint on the CNSs located in the untranslated regions was observed. The CNSs were often flanked by genes involved in transcription regulation. A drop of A+T content near the border of CNSs was observed and CNS regions showed a higher nucleosome occupancy probability. These CNSs are candidate regulatory elements, which are expected to define lineage-specific features of various plant groups. PMID:25364802

  2. Redesigning Recombinase Specificity for Safe Harbor Sites in the Human Genome

    PubMed Central

    Wallen, Mark C.; Gaj, Thomas

    2015-01-01

    Site-specific recombinases (SSRs) are valuable tools for genetic engineering due to their ability to manipulate DNA in a highly specific manner. Engineered zinc-finger and TAL effector recombinases, in particular, are two classes of SSRs composed of custom-designed DNA-binding domains fused to a catalytic domain derived from the resolvase/invertase family of serine recombinases. While TAL effector and zinc-finger proteins can be assembled to recognize a wide range of possible DNA sequences, recombinase catalytic specificity has been constrained by inherent base requirements present within each enzyme. In order to further expand the targeted recombinase repertoire, we used a genetic screen to isolate enhanced mutants of the Bin and Tn21 recombinases that recognize target sites outside the scope of other engineered recombinases. We determined the specific base requirements for recombination by these enzymes and demonstrate their potential for genome engineering by selecting for variants capable of specifically recombining target sites present in the human CCR5 gene and the AAVS1 safe harbor locus. Taken together, these findings demonstrate that complementing functional characterization with protein engineering is a potentially powerful approach for generating recombinases with expanded targeting capabilities. PMID:26414179

  3. Genome-wide identification of human- and primate-specific core promoter short tandem repeats.

    PubMed

    Bushehri, A; Barez, M R Mashhoudi; Mansouri, S K; Biglarian, A; Ohadi, M

    2016-08-01

    Recent reports of a link between human- and primate-specific genetic factors and human/primate-specific characteristics and diseases necessitate genome-wide identification of those factors. We have previously reported core promoter short tandem repeats (STRs) of extreme length (≥6-repeats) that have expanded exceptionally in primates vs. non-primates, and may have a function in adaptive evolution. In the study reported here, we extended our study to the human STRs of ≥3-repeats in the category of penta and hexaucleotide STRs, across the entire human protein coding gene core promoters, and analyzed their status in several superorders and orders of vertebrates, using the Ensembl database. The ConSite software was used to identify the transcription factor (TF) sets binding to those STRs. STR specificity was observed at different levels of human and non-human primate (NHP) evolution. 73% of the pentanucleotide STRs and 68% of the hexanucleotide STRs were found to be specific to human and NHPs. AP-2alpha, Sp1, and MZF were the predominantly selected TFs (90%) binding to the human-specific STRs. Furthermore, the number of TF sets binding to a given STR was found to be a selection factor for that STR. Our findings indicate that selected STRs, the cognate binding TFs, and the number of TF set binding to those STRs function as switch codes at different levels of human and NHP evolution and speciation. PMID:27108803

  4. Allele-specific copy-number discovery from whole-genome and whole-exome sequencing.

    PubMed

    Wang, WeiBo; Wang, Wei; Sun, Wei; Crowley, James J; Szatkiewicz, Jin P

    2015-08-18

    Copy-number variants (CNVs) are a major form of genetic variation and a risk factor for various human diseases, so it is crucial to accurately detect and characterize them. It is conceivable that allele-specific reads from high-throughput sequencing data could be leveraged to both enhance CNV detection and produce allele-specific copy number (ASCN) calls. Although statistical methods have been developed to detect CNVs using whole-genome sequence (WGS) and/or whole-exome sequence (WES) data, information from allele-specific read counts has not yet been adequately exploited. In this paper, we develop an integrated method, called AS-GENSENG, which incorporates allele-specific read counts in CNV detection and estimates ASCN using either WGS or WES data. To evaluate the performance of AS-GENSENG, we conducted extensive simulations, generated empirical data using existing WGS and WES data sets and validated predicted CNVs using an independent methodology. We conclude that AS-GENSENG not only predicts accurate ASCN calls but also improves the accuracy of total copy number calls, owing to its unique ability to exploit information from both total and allele-specific read counts while accounting for various experimental biases in sequence data. Our novel, user-friendly and computationally efficient method and a complete analytic protocol is freely available at https://sourceforge.net/projects/asgenseng/. PMID:25883151

  5. Identification and Validation of Specific Markers of Bacillus anthracis Spores by Proteomics and Genomics Approaches*

    PubMed Central

    Chenau, Jérôme; Fenaille, François; Caro, Valérie; Haustant, Michel; Diancourt, Laure; Klee, Silke R.; Junot, Christophe; Ezan, Eric; Goossens, Pierre L.; Becher, François

    2014-01-01

    Bacillus anthracis is the causative bacteria of anthrax, an acute and often fatal disease in humans. The infectious agent, the spore, represents a real bioterrorism threat and its specific identification is crucial. However, because of the high genomic relatedness within the Bacillus cereus group, it is still a real challenge to identify B. anthracis spores confidently. Mass spectrometry-based tools represent a powerful approach to the efficient discovery and identification of such protein markers. Here we undertook comparative proteomics analyses of Bacillus anthracis, cereus and thuringiensis spores to identify proteoforms unique to B. anthracis. The marker discovery pipeline developed combined peptide- and protein-centric approaches using liquid chromatography coupled to tandem mass spectrometry experiments using a high resolution/high mass accuracy LTQ-Orbitrap instrument. By combining these data with those from complementary bioinformatics approaches, we were able to highlight a dozen novel proteins consistently observed across all the investigated B. anthracis spores while being absent in B. cereus/thuringiensis spores. To further demonstrate the relevance of these markers and their strict specificity to B. anthracis, the number of strains studied was extended to 55, by including closely related strains such as B. thuringiensis 9727, and above all the B. cereus biovar anthracis CI, CA strains that possess pXO1- and pXO2-like plasmids. Under these conditions, the combination of proteomics and genomics approaches confirms the pertinence of 11 markers. Genes encoding these 11 markers are located on the chromosome, which provides additional targets complementary to the commonly used plasmid-encoded markers. Last but not least, we also report the development of a targeted liquid chromatography coupled to tandem mass spectrometry method involving the selection reaction monitoring mode for the monitoring of the 4 most suitable protein markers. Within a proof

  6. Population Genomics Analysis of Legume Host Preference for Specific Rhizobial Genotypes in the Rhizobium leguminosarum bv. viciae Symbioses.

    PubMed

    Jorrin, Beatriz; Imperial, Juan

    2015-03-01

    Rhizobium leguminosarum bv. viciae establishes root nodule symbioses with several legume genera. Although most isolates are equally effective in establishing symbioses with all host genera, previous evidence suggests that hosts select specific rhizobial genotypes among those present in the soil. We have used population genomics to further investigate this observation. Pisum sativum, Lens culinaris, Vicia sativa, and V. faba plants were used to trap rhizobia from a well-characterized soil, and pooled genomic DNA from 100 isolates from each plant were sequenced. Sequence reads were aligned to the R. leguminosarum bv. viciae 3841 reference genome. High overall conservation of sequences was observed in all subpopulations, although several multigenic regions were absent from the soil population. A large fraction (16 to 22%) of sequence reads could not be recruited to the reference genome, suggesting that they represent sequences specific to that particular soil population. Although highly conserved, the 16S to 23S ribosomal RNA gene region presented single nucleotide polymorphisms (SNP) regarding the reference genome, but no striking differences could be found among plant-selected subpopulations. Plant-specific SNP patterns were, however, clearly observed within the nod gene cluster, supporting the existence of a plant preference for specific rhizobial genotypes. This was also shown after genome-wide analysis of SNP patterns. PMID:25514682

  7. Lineage-specific evolution of the vertebrate Otopetrin gene family revealed by comparative genomic analyses

    PubMed Central

    2011-01-01

    Background Mutations in the Otopetrin 1 gene (Otop1) in mice and fish produce an unusual bilateral vestibular pathology that involves the absence of otoconia without hearing impairment. The encoded protein, Otop1, is the only functionally characterized member of the Otopetrin Domain Protein (ODP) family; the extended sequence and structural preservation of ODP proteins in metazoans suggest a conserved functional role. Here, we use the tools of sequence- and cytogenetic-based comparative genomics to study the Otop1 and the Otop2-Otop3 genes and to establish their genomic context in 25 vertebrates. We extend our evolutionary study to include the gene mutated in Usher syndrome (USH) subtype 1G (Ush1g), both because of the head-to-tail clustering of Ush1g with Otop2 and because Otop1 and Ush1g mutations result in inner ear phenotypes. Results We established that OTOP1 is the boundary gene of an inversion polymorphism on human chromosome 4p16 that originated in the common human-chimpanzee lineage more than 6 million years ago. Other lineage-specific evolutionary events included a three-fold expansion of the Otop genes in Xenopus tropicalis and of Ush1g in teleostei fish. The tight physical linkage between Otop2 and Ush1g is conserved in all vertebrates. To further understand the functional organization of the Ushg1-Otop2 locus, we deduced a putative map of binding sites for CCCTC-binding factor (CTCF), a mammalian insulator transcription factor, from genome-wide chromatin immunoprecipitation-sequencing (ChIP-seq) data in mouse and human embryonic stem (ES) cells combined with detection of CTCF-binding motifs. Conclusions The results presented here clarify the evolutionary history of the vertebrate Otop and Ush1g families, and establish a framework for studying the possible interaction(s) of Ush1g and Otop in developmental pathways. PMID:21261979

  8. Genome-wide site-specific differential methylation in the blood of individuals with Klinefelter Syndrome

    PubMed Central

    Wan, Emily S.; Qiu, Weiliang; Morrow, Jarrett; Beaty, Terri H.; Hetmanski, Jacqueline; Make, Barry J.; Lomas, David A.; Silverman, Edwin K.; DeMeo, Dawn L.

    2015-01-01

    Klinefelter syndrome (KS) (47 XXY) is a common sex-chromosome aneuploidy with an estimated prevalence of 1 in every 660 male births. Investigations into the associations between DNA methylation and the highly variable clinical manifestations of KS have largely focused on the supernumerary X chromosome; systematic investigations of the epigenome have been limited. We obtained genome-wide DNA methylation data from peripheral blood using the Illumina HumanMethylation450K platform in 5 KS (47 XXY), 102 male (46 XY), and 113 female (46 XX) control subjects participating in the chronic obstructive pulmonary disease (COPD) Gene Study. Empirical Bayes-mediated models were used to test for differential methylation by KS status. CpG sites with a false-discovery rate <0.05 from the first-generation HumanMethylation27K platform were further examined in an independent replication cohort of 2 KS subjects, 590 male, and 495 female controls drawn from the International COPD Genetics Network (ICGN). Differential methylation at sites throughout the genome were identified, including 86 CpG sites that were differentially methylated in KS subjects relative to both male and female controls. CpG sites annotated to the HEN1 methyltransferase homolog 1 (HENMT1), calcyclin-binding protein (CACYBP), and GTPase-activating protein (SH3 domain)-binding protein 1 (G3BP1) genes were among the “KS-specific” loci that were replicated in ICGN. We therefore conclude that site-specific differential methylation exists throughout the genome in KS. The functional impact and clinical relevance of these differentially methylated loci should be explored in future studies. PMID:25988574

  9. Genome-scale reconstruction of Salinispora tropica CNB-440 metabolism to study strain-specific adaptation.

    PubMed

    Contador, C A; Rodríguez, V; Andrews, B A; Asenjo, J A

    2015-11-01

    The first manually curated genome-scale metabolic model for Salinispora tropica strain CNB-440 was constructed. The reconstruction enables characterization of the metabolic capabilities for understanding and modeling the cellular physiology of this actinobacterium. The iCC908 model was based on physiological and biochemical information of primary and specialised metabolism pathways. The reconstructed stoichiometric matrix consists of 1169 biochemical conversions, 204 transport reactions and 1317 metabolites. A total of 908 structural open reading frames (ORFs) were included in the reconstructed network. The number of gene functions included in the reconstructed network corresponds to 20% of all characterized ORFs in the S. tropica genome. The genome-scale metabolic model was used to study strain-specific capabilities in defined minimal media. iCC908 was used to analyze growth capabilities in 41 different minimal growth-supporting environments. These nutrient sources were evaluated experimentally to assess the accuracy of in silico growth simulations. The model predicted no auxotrophies for essential amino acids, which was corroborated experimentally. The strain is able to use 21 different carbon sources, 8 nitrogen sources and 4 sulfur sources from the nutrient sources tested. Experimental observation suggests that the cells may be able to store sulfur. False predictions provided opportunities to gain new insights into the physiology of this species, and to gap fill the missing knowledge. The incorporation of modifications led to increased accuracy in predicting the outcome of growth/no growth experiments from 76 to 93%. iCC908 can thus be used to define the metabolic capabilities of S. tropica and guide and enhance the production of specialised metabolites. PMID:26459337

  10. Genome-Wide Scan for Adaptive Divergence and Association with Population-Specific Covariates.

    PubMed

    Gautier, Mathieu

    2015-12-01

    In population genomics studies, accounting for the neutral covariance structure across population allele frequencies is critical to improve the robustness of genome-wide scan approaches. Elaborating on the BayEnv model, this study investigates several modeling extensions (i) to improve the estimation accuracy of the population covariance matrix and all the related measures, (ii) to identify significantly overly differentiated SNPs based on a calibration procedure of the XtX statistics, and (iii) to consider alternative covariate models for analyses of association with population-specific covariables. In particular, the auxiliary variable model allows one to deal with multiple testing issues and, providing the relative marker positions are available, to capture some linkage disequilibrium information. A comprehensive simulation study was carried out to evaluate the performances of these different models. Also, when compared in terms of power, robustness, and computational efficiency to five other state-of-the-art genome-scan methods (BayEnv2, BayScEnv, BayScan, flk, and lfmm), the proposed approaches proved highly effective. For illustration purposes, genotyping data on 18 French cattle breeds were analyzed, leading to the identification of 13 strong signatures of selection. Among these, four (surrounding the KITLG, KIT, EDN3, and ALB genes) contained SNPs strongly associated with the piebald coloration pattern while a fifth (surrounding PLAG1) could be associated to morphological differences across the populations. Finally, analysis of Pool-Seq data from 12 populations of Littorina saxatilis living in two different ecotypes illustrates how the proposed framework might help in addressing relevant ecological issues in nonmodel species. Overall, the proposed methods define a robust Bayesian framework to characterize adaptive genetic differentiation across populations. The BayPass program implementing the different models is available at http://www1.montpellier

  11. Antigenic stimulation specifically reactivates the replication of archived simian immunodeficiency virus genomes in chronically infected macaques.

    PubMed

    Renoux, Céline; Wain-Hobson, Simon; Hurtrel, Bruno; Cheynier, Rémi

    2005-09-01

    Human immunodeficiency virus/simian immunodeficiency virus (SIV) diversification is a direct consequence of viral replication and occurs principally in secondary lymphoid organs where CD4(+) T cells are activated and proliferate. However, the evolution of viral quasispecies may also be driven by various nonexclusive mechanisms, including adaptation to specific immune responses and modification of viral fitness. Analysis of viral quasispecies in SIV-infected macaques subjected to repeated antigenic stimulations allowed us to demonstrate transient expansions of SIV populations that were highly dependent upon activation of antigen-specific T cells. T-cell clones expanded in response to a particular antigen were infected by a specific viral population and persisted for prolonged periods. Upon a second stimulation by encounter with the same antigen, these specific genomes were at the origin of a new burst of replication, leading to rapid but transient replacement of the viral quasispecies in blood. Finally, longitudinal analysis of SIV sequence variation during and between antigenic stimulations revealed that viral evolution is mostly constrained to periods of strong immunological activity. PMID:16103175

  12. Geminivirus-Mediated Genome Editing in Potato (Solanum tuberosum L.) Using Sequence-Specific Nucleases.

    PubMed

    Butler, Nathaniel M; Baltes, Nicholas J; Voytas, Daniel F; Douches, David S

    2016-01-01

    Genome editing using sequence-specific nucleases (SSNs) is rapidly being developed for genetic engineering in crop species. The utilization of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated systems (CRISPR/Cas) for inducing double-strand breaks facilitates targeting of virtually any sequence for modification. Targeted mutagenesis via non-homologous end-joining (NHEJ) has been demonstrated extensively as being the preferred DNA repair pathway in plants. However, gene targeting via homologous recombination (HR) remains more elusive but could be a powerful tool for directed DNA repair. To overcome barriers associated with gene targeting, a geminivirus replicon (GVR) was used to deliver SSNs targeting the potato ACETOLACTATE SYNTHASE1 (ALS1) gene and repair templates designed to incorporate herbicide-inhibiting point mutations within the ALS1 locus. Transformed events modified with GVRs held point mutations that were capable of supporting a reduced herbicide susceptibility phenotype, while events transformed with conventional T-DNAs held no detectable mutations and were similar to wild-type. Regeneration of transformed events improved detection of point mutations that supported a stronger reduced herbicide susceptibility phenotype. These results demonstrate the use of geminiviruses for delivering genome editing reagents in plant species, and a novel approach to gene targeting in a vegetatively propagated species. PMID:27493650

  13. Allele-Specific Gene Expression Is Widespread Across the Genome and Biological Processes

    PubMed Central

    Goñi, Joaquín; Piedrafita, Gabriel; Fernando, Olga; Navarro, Arcadi; Villoslada, Pablo

    2009-01-01

    Allelic specific gene expression (ASGE) appears to be an important factor in human phenotypic variability and as a consequence, for the development of complex traits and diseases. In order to study ASGE across the human genome, we have performed a study in which genotyping was coupled with an analysis of ASGE by screening 11,500 SNPs using the Mapping 10 K Array to identify differential allelic expression. We found that from the 5,133 SNPs that were suitable for analysis (heterozygous in our sample and expressed in peripheral blood mononuclear cells), 2,934 (57%) SNPs had differential allelic expression. Such SNPs were equally distributed along human chromosomes and biological processes. We validated the presence or absence of ASGE in 18 out 20 SNPs (90%) randomly selected by real time PCR in 48 human subjects. In addition, we observed that SNPs close to -but not included in- segmental duplications had increased levels of ASGE. Finally, we found that transcripts of unknown function or non-coding RNAs, also display ASGE: from a total of 2,308 intronic SNPs, 1510 (65%) SNPs underwent differential allelic expression. In summary, ASGE is a widespread mechanism in the human genome whose regulation seems to be far more complex than expected. PMID:19127300

  14. Parent-of-origin specific allelic associations among 106 genomic loci for age at menarche

    PubMed Central

    Thompson, Deborah J; Ferreira, Teresa; He, Chunyan; Chasman, Daniel I; Esko, Tõnu; Thorleifsson, Gudmar; Albrecht, Eva; Ang, Wei Q; Corre, Tanguy; Cousminer, Diana L; Feenstra, Bjarke; Franceschini, Nora; Ganna, Andrea; Johnson, Andrew D; Kjellqvist, Sanela; Lunetta, Kathryn L; McMahon, George; Nolte, Ilja M; Paternoster, Lavinia; Porcu, Eleonora; Smith, Albert V; Stolk, Lisette; Teumer, Alexander; Tšernikova, Natalia; Tikkanen, Emmi; Ulivi, Sheila; Wagner, Erin K; Amin, Najaf; Bierut, Laura J; Byrne, Enda M; Hottenga, Jouke-Jan; Koller, Daniel L; Mangino, Massimo; Pers, Tune H; Yerges-Armstrong, Laura M; Zhao, Jing Hua; Andrulis, Irene L; Anton-Culver, Hoda; Atsma, Femke; Bandinelli, Stefania; Beckmann, Matthias W; Benitez, Javier; Blomqvist, Carl; Bojesen, Stig E; Bolla, Manjeet K; Bonanni, Bernardo; Brauch, Hiltrud; Brenner, Hermann; Buring, Julie E; Chang-Claude, Jenny; Chanock, Stephen; Chen, Jinhui; Chenevix-Trench, Georgia; Collée, J. Margriet; Couch, Fergus J; Couper, David; Coveillo, Andrea D; Cox, Angela; Czene, Kamila; D’adamo, Adamo Pio; Smith, George Davey; De Vivo, Immaculata; Demerath, Ellen W; Dennis, Joe; Devilee, Peter; Dieffenbach, Aida K; Dunning, Alison M; Eiriksdottir, Gudny; Eriksson, Johan G; Fasching, Peter A; Ferrucci, Luigi; Flesch-Janys, Dieter; Flyger, Henrik; Foroud, Tatiana; Franke, Lude; Garcia, Melissa E; García-Closas, Montserrat; Geller, Frank; de Geus, Eco EJ; Giles, Graham G; Gudbjartsson, Daniel F; Gudnason, Vilmundur; Guénel, Pascal; Guo, Suiqun; Hall, Per; Hamann, Ute; Haring, Robin; Hartman, Catharina A; Heath, Andrew C; Hofman, Albert; Hooning, Maartje J; Hopper, John L; Hu, Frank B; Hunter, David J; Karasik, David; Kiel, Douglas P; Knight, Julia A; Kosma, Veli-Matti; Kutalik, Zoltan; Lai, Sandra; Lambrechts, Diether; Lindblom, Annika; Mägi, Reedik; Magnusson, Patrik K; Mannermaa, Arto; Martin, Nicholas G; Masson, Gisli; McArdle, Patrick F; McArdle, Wendy L; Melbye, Mads; Michailidou, Kyriaki; Mihailov, Evelin; Milani, Lili; Milne, Roger L; Nevanlinna, Heli; Neven, Patrick; Nohr, Ellen A; Oldehinkel, Albertine J; Oostra, Ben A; Palotie, Aarno; Peacock, Munro; Pedersen, Nancy L; Peterlongo, Paolo; Peto, Julian; Pharoah, Paul DP; Postma, Dirkje S; Pouta, Anneli; Pylkäs, Katri; Radice, Paolo; Ring, Susan; Rivadeneira, Fernando; Robino, Antonietta; Rose, Lynda M; Rudolph, Anja; Salomaa, Veikko; Sanna, Serena; Schlessinger, David; Schmidt, Marjanka K; Southey, Mellissa C; Sovio, Ulla; Stampfer, Meir J; Stöckl, Doris; Storniolo, Anna M; Timpson, Nicholas J; Tyrer, Jonathan; Visser, Jenny A; Vollenweider, Peter; Völzke, Henry; Waeber, Gerard; Waldenberger, Melanie; Wallaschofski, Henri; Wang, Qin; Willemsen, Gonneke; Winqvist, Robert; Wolffenbuttel, Bruce HR; Wright, Margaret J; Boomsma, Dorret I; Econs, Michael J; Khaw, Kay-Tee; Loos, Ruth JF; McCarthy, Mark I; Montgomery, Grant W; Rice, John P; Streeten, Elizabeth A; Thorsteinsdottir, Unnur; van Duijn, Cornelia M; Alizadeh, Behrooz Z; Bergmann, Sven; Boerwinkle, Eric; Boyd, Heather A; Crisponi, Laura; Gasparini, Paolo; Gieger, Christian; Harris, Tamara B; Ingelsson, Erik; Järvelin, Marjo-Riitta; Kraft, Peter; Lawlor, Debbie; Metspalu, Andres; Pennell, Craig E; Ridker, Paul M; Snieder, Harold; Sørensen, Thorkild IA; Spector, Tim D; Strachan, David P; Uitterlinden, André G; Wareham, Nicholas J; Widen, Elisabeth; Zygmunt, Marek; Murray, Anna; Easton, Douglas F

    2014-01-01

    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality1. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation2,3, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P<5×10−8) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1/WDR25, MKRN3/MAGEL2 and KCNK9) demonstrating parent-of-origin specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and gamma-aminobutyric acid-B2 receptor signaling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition. PMID:25231870

  15. Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.

    PubMed

    Perry, John R B; Day, Felix; Elks, Cathy E; Sulem, Patrick; Thompson, Deborah J; Ferreira, Teresa; He, Chunyan; Chasman, Daniel I; Esko, Tõnu; Thorleifsson, Gudmar; Albrecht, Eva; Ang, Wei Q; Corre, Tanguy; Cousminer, Diana L; Feenstra, Bjarke; Franceschini, Nora; Ganna, Andrea; Johnson, Andrew D; Kjellqvist, Sanela; Lunetta, Kathryn L; McMahon, George; Nolte, Ilja M; Paternoster, Lavinia; Porcu, Eleonora; Smith, Albert V; Stolk, Lisette; Teumer, Alexander; Tšernikova, Natalia; Tikkanen, Emmi; Ulivi, Sheila; Wagner, Erin K; Amin, Najaf; Bierut, Laura J; Byrne, Enda M; Hottenga, Jouke-Jan; Koller, Daniel L; Mangino, Massimo; Pers, Tune H; Yerges-Armstrong, Laura M; Hua Zhao, Jing; Andrulis, Irene L; Anton-Culver, Hoda; Atsma, Femke; Bandinelli, Stefania; Beckmann, Matthias W; Benitez, Javier; Blomqvist, Carl; Bojesen, Stig E; Bolla, Manjeet K; Bonanni, Bernardo; Brauch, Hiltrud; Brenner, Hermann; Buring, Julie E; Chang-Claude, Jenny; Chanock, Stephen; Chen, Jinhui; Chenevix-Trench, Georgia; Collée, J Margriet; Couch, Fergus J; Couper, David; Coviello, Andrea D; Cox, Angela; Czene, Kamila; D'adamo, Adamo Pio; Davey Smith, George; De Vivo, Immaculata; Demerath, Ellen W; Dennis, Joe; Devilee, Peter; Dieffenbach, Aida K; Dunning, Alison M; Eiriksdottir, Gudny; Eriksson, Johan G; Fasching, Peter A; Ferrucci, Luigi; Flesch-Janys, Dieter; Flyger, Henrik; Foroud, Tatiana; Franke, Lude; Garcia, Melissa E; García-Closas, Montserrat; Geller, Frank; de Geus, Eco E J; Giles, Graham G; Gudbjartsson, Daniel F; Gudnason, Vilmundur; Guénel, Pascal; Guo, Suiqun; Hall, Per; Hamann, Ute; Haring, Robin; Hartman, Catharina A; Heath, Andrew C; Hofman, Albert; Hooning, Maartje J; Hopper, John L; Hu, Frank B; Hunter, David J; Karasik, David; Kiel, Douglas P; Knight, Julia A; Kosma, Veli-Matti; Kutalik, Zoltan; Lai, Sandra; Lambrechts, Diether; Lindblom, Annika; Mägi, Reedik; Magnusson, Patrik K; Mannermaa, Arto; Martin, Nicholas G; Masson, Gisli; McArdle, Patrick F; McArdle, Wendy L; Melbye, Mads; Michailidou, Kyriaki; Mihailov, Evelin; Milani, Lili; Milne, Roger L; Nevanlinna, Heli; Neven, Patrick; Nohr, Ellen A; Oldehinkel, Albertine J; Oostra, Ben A; Palotie, Aarno; Peacock, Munro; Pedersen, Nancy L; Peterlongo, Paolo; Peto, Julian; Pharoah, Paul D P; Postma, Dirkje S; Pouta, Anneli; Pylkäs, Katri; Radice, Paolo; Ring, Susan; Rivadeneira, Fernando; Robino, Antonietta; Rose, Lynda M; Rudolph, Anja; Salomaa, Veikko; Sanna, Serena; Schlessinger, David; Schmidt, Marjanka K; Southey, Mellissa C; Sovio, Ulla; Stampfer, Meir J; Stöckl, Doris; Storniolo, Anna M; Timpson, Nicholas J; Tyrer, Jonathan; Visser, Jenny A; Vollenweider, Peter; Völzke, Henry; Waeber, Gerard; Waldenberger, Melanie; Wallaschofski, Henri; Wang, Qin; Willemsen, Gonneke; Winqvist, Robert; Wolffenbuttel, Bruce H R; Wright, Margaret J; Boomsma, Dorret I; Econs, Michael J; Khaw, Kay-Tee; Loos, Ruth J F; McCarthy, Mark I; Montgomery, Grant W; Rice, John P; Streeten, Elizabeth A; Thorsteinsdottir, Unnur; van Duijn, Cornelia M; Alizadeh, Behrooz Z; Bergmann, Sven; Boerwinkle, Eric; Boyd, Heather A; Crisponi, Laura; Gasparini, Paolo; Gieger, Christian; Harris, Tamara B; Ingelsson, Erik; Järvelin, Marjo-Riitta; Kraft, Peter; Lawlor, Debbie; Metspalu, Andres; Pennell, Craig E; Ridker, Paul M; Snieder, Harold; Sørensen, Thorkild I A; Spector, Tim D; Strachan, David P; Uitterlinden, André G; Wareham, Nicholas J; Widen, Elisabeth; Zygmunt, Marek; Murray, Anna; Easton, Douglas F; Stefansson, Kari; Murabito, Joanne M; Ong, Ken K

    2014-10-01

    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition. PMID:25231870

  16. Genome-wide mutational spectra analysis reveals significant cancer-specific heterogeneity

    PubMed Central

    Tan, Hua; Bao, Jiguang; Zhou, Xiaobo

    2015-01-01

    Cancer is widely recognized as a genetic disease in which somatic mutations are sequentially accumulated to drive tumor progression. Although genomic landscape studies are informative for individual cancer types, a comprehensive comparative study of tumorigenic mutations across cancer types based on integrative data sources is still a pressing need. We systematically analyzed ~106 non-synonymous mutations extracted from COSMIC, involving ~8000 genome-wide screened samples across 23 major human cancers at both the amino acid and gene levels. Our analysis identified cancer-specific heterogeneity that traditional nucleotide variation analysis alone usually overlooked. Particularly, the amino acid arginine (R) turns out to be the most favorable target of amino acid alteration in most cancer types studied (P < 10−9, binomial test), reflecting its important role in cellular physiology. The tumor suppressor gene TP53 is mutated exclusively with the HYDIN, KRAS, and PTEN genes in large intestine, lung, and endometrial cancers respectively, indicating that TP53 takes part in different signaling pathways in different cancers. While some of our analyses corroborated previous observations, others indicated relevant candidates with high priority for further experimental validation. Our findings have many ramifications in understanding the etiology of cancer and the underlying molecular mechanisms in particular cancers. PMID:26212640

  17. Depletion of CG-Specific Methylation in Mycoplasma hyorhinis Genomic DNA after Host Cell Invasion

    PubMed Central

    Chernov, Andrei V.; Reyes, Leticia; Peterson, Scott; Strongin, Alex Y.

    2015-01-01

    Adaptation to the environment requires pathogenic bacteria to alter their gene expression in order to increase long-term survival in the host. Here, we present the first experimental evidence that bacterial DNA methylation affects the intracellular survival of pathogenic Mycoplasma hyorhinis. Using bisulfite sequencing, we identified that the M. hyorhinis DNA methylation landscape was distinct in free-living M. hyorhinis relative to the internalized bacteria surviving in the infected human cells. We determined that genomic GATC sites were consistently highly methylated in the bacterial chromosome suggesting that the bacterial GATC-specific 5-methylcytosine DNA methyltransferase was fully functional both pre- and post-infection. In contrast, only the low CG methylation pattern was observed in the mycoplasma genome in the infective bacteria that invaded and then survived in the host cells. In turn, two distinct populations, with either high or low CG methylation, were detected in the M. hyorhinis cultures continually grown in the rich medium independently of host cells. We also identified that M. hyorhinis efficiently evaded endosomal degradation and uses exocytosis to exit infected human cells enabling re-infection of additional cells. The well-orchestrated changes in the chromosome methylation landscape play a major regulatory role in the mycoplasma life cycle. PMID:26544880

  18. OperomeDB: A Database of Condition-Specific Transcription Units in Prokaryotic Genomes

    PubMed Central

    Chetal, Kashish; Janga, Sarath Chandra

    2015-01-01

    Background. In prokaryotic organisms, a substantial fraction of adjacent genes are organized into operons—codirectionally organized genes in prokaryotic genomes with the presence of a common promoter and terminator. Although several available operon databases provide information with varying levels of reliability, very few resources provide experimentally supported results. Therefore, we believe that the biological community could benefit from having a new operon prediction database with operons predicted using next-generation RNA-seq datasets. Description. We present operomeDB, a database which provides an ensemble of all the predicted operons for bacterial genomes using available RNA-sequencing datasets across a wide range of experimental conditions. Although several studies have recently confirmed that prokaryotic operon structure is dynamic with significant alterations across environmental and experimental conditions, there are no comprehensive databases for studying such variations across prokaryotic transcriptomes. Currently our database contains nine bacterial organisms and 168 transcriptomes for which we predicted operons. User interface is simple and easy to use, in terms of visualization, downloading, and querying of data. In addition, because of its ability to load custom datasets, users can also compare their datasets with publicly available transcriptomic data of an organism. Conclusion. OperomeDB as a database should not only aid experimental groups working on transcriptome analysis of specific organisms but also enable studies related to computational and comparative operomics. PMID:26543854

  19. Geminivirus-Mediated Genome Editing in Potato (Solanum tuberosum L.) Using Sequence-Specific Nucleases

    PubMed Central

    Butler, Nathaniel M.; Baltes, Nicholas J.; Voytas, Daniel F.; Douches, David S.

    2016-01-01

    Genome editing using sequence-specific nucleases (SSNs) is rapidly being developed for genetic engineering in crop species. The utilization of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated systems (CRISPR/Cas) for inducing double-strand breaks facilitates targeting of virtually any sequence for modification. Targeted mutagenesis via non-homologous end-joining (NHEJ) has been demonstrated extensively as being the preferred DNA repair pathway in plants. However, gene targeting via homologous recombination (HR) remains more elusive but could be a powerful tool for directed DNA repair. To overcome barriers associated with gene targeting, a geminivirus replicon (GVR) was used to deliver SSNs targeting the potato ACETOLACTATE SYNTHASE1 (ALS1) gene and repair templates designed to incorporate herbicide-inhibiting point mutations within the ALS1 locus. Transformed events modified with GVRs held point mutations that were capable of supporting a reduced herbicide susceptibility phenotype, while events transformed with conventional T-DNAs held no detectable mutations and were similar to wild-type. Regeneration of transformed events improved detection of point mutations that supported a stronger reduced herbicide susceptibility phenotype. These results demonstrate the use of geminiviruses for delivering genome editing reagents in plant species, and a novel approach to gene targeting in a vegetatively propagated species. PMID:27493650

  20. Comparative genomic analysis of mitochondrial protein-coding genes in Veneroida clams: Analysis of superfamily-specific genomic and evolutionary features.

    PubMed

    Hwang, Jae Yeon; Lee, Chang-Kyu; Kim, Heebal; Nam, Bo-Hye; An, Cheul Min; Park, Jung Youn; Park, Kyu-Hyun; Huh, Chul-Sung; Kim, Eun Bae

    2015-12-01

    Veneroida is the largest order of bivalves, and these clams are commercially important in Asian countries. Although numerous studies have focused on the genomic characters of individual species or genera in Veneroida, superfamily-specific genomic characters have not been determined. In this study, we performed a comparative genomic analysis of 12 mitochondrial protein coding genes (PCGs) from 25 clams in six Veneroida superfamilies to determine genomic and evolutionary features of each superfamily. Length and distribution of nucleotides encoding the PCGs were too variable to define superfamily-specific genomic characters. Phylogenetic analysis revealed that PCGs are suitable for classification of species in three superfamilies: Cardioidea, Mactroidea, and Veneroidea. However, one species classified in Tellinoidea, Sinonovacula constricta, was evolutionarily closer to Solenoidea clams than Tellinoidea clams. dN/dS analysis showed that positively selected sites in NADH dehydrogenase subunit, nd4 and subunit of ATP synthase, atp6 were present in Mactroidea. Differences in selected sites in the nd4 and atp6 could be caused by superfamily-level differences in sodium transport or ATP synthesis functions, respectively. These differences in selected sites in NADH may have conferred these animals, which have low motility and do not generally move, with increased flexibility to maintain homeostasis in the face of osmotic pressure. Our study provides insight into evolutionary traits as well as facilitates identification of veneroids. PMID:26343338

  1. Informed consent in direct-to-consumer personal genome testing: the outline of a model between specific and generic consent.

    PubMed

    Bunnik, Eline M; Janssens, A Cecile J W; Schermer, Maartje H N

    2014-09-01

    Broad genome-wide testing is increasingly finding its way to the public through the online direct-to-consumer marketing of so-called personal genome tests. Personal genome tests estimate genetic susceptibilities to multiple diseases and other phenotypic traits simultaneously. Providers commonly make use of Terms of Service agreements rather than informed consent procedures. However, to protect consumers from the potential physical, psychological and social harms associated with personal genome testing and to promote autonomous decision-making with regard to the testing offer, we argue that current practices of information provision are insufficient and that there is a place--and a need--for informed consent in personal genome testing, also when it is offered commercially. The increasing quantity, complexity and diversity of most testing offers, however, pose challenges for information provision and informed consent. Both specific and generic models for informed consent fail to meet its moral aims when applied to personal genome testing. Consumers should be enabled to know the limitations, risks and implications of personal genome testing and should be given control over the genetic information they do or do not wish to obtain. We present the outline of a new model for informed consent which can meet both the norm of providing sufficient information and the norm of providing understandable information. The model can be used for personal genome testing, but will also be applicable to other, future forms of broad genetic testing or screening in commercial and clinical settings. PMID:23137034

  2. Identification and Characterization of a Novel Genomic Island Integrated at selC in Locus of Enterocyte Effacement-Negative, Shiga Toxin-Producing Escherichia coli

    PubMed Central

    Schmidt, H.; Zhang, W.-L.; Hemmrich, U.; Jelacic, S.; Brunder, W.; Tarr, P. I.; Dobrindt, U.; Hacker, J.; Karch, H.

    2001-01-01

    The selC tRNA gene is a common site for the insertion of pathogenicity islands in a variety of bacterial enteric pathogens. We demonstrate here that Escherichia coli that produces Shiga toxin 2d and does not harbor the locus of enterocyte effacement (LEE) contains, instead, a novel genomic island. In one representative strain (E. coli O91:H− strain 4797/97), this island is 33,014 bp long and, like LEE in E. coli O157:H7, is integrated 15 bp downstream of selC. This E. coli O91:H− island contains genes encoding a novel serine protease, termed EspI; an adherence-associated locus, similar to iha of E. coli O157:H7; an E. coli vitamin B12 receptor (BtuB); an AraC-type regulatory module; and four homologues of E. coli phosphotransferase proteins. The remaining sequence consists largely of complete and incomplete insertion sequences, prophage sequences, and an intact phage integrase gene that is located directly downstream of the chromosomal selC. Recombinant EspI demonstrates serine protease activity using pepsin A and human apolipoprotein A-I as substrates. We also detected Iha-reactive protein in outer membranes of a recombinant clone and 10 LEE-negative, Shiga toxin-producing E. coli (STEC) strains by immunoblot analysis. Using PCR analysis of various STEC, enteropathogenic E. coli, enterotoxigenic E. coli, enteroaggregative E. coli, uropathogenic E. coli, and enteroinvasive E. coli strains, we detected the iha homologue in 59 (62%) of 95 strains tested. In contrast, espI and btuB were present in only two (2%) and none of these strains, respectively. We conclude that the newly described island occurs exclusively in a subgroup of STEC strains that are eae negative and contain the variant stx2d gene. PMID:11598060

  3. Genomes Behave as Social Entities: Alien Chromatin Minorities Evolve Through Specificities Reduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hybridization and chromosome doubling entailed by allopolyploidization requires genetic and epigenetic modifications, resulting in the adjustment of different genomes to the same nuclear environment. Recently, the main role of retrotransposon/microsatellite-rich regions of the genome in DNA sequenc...

  4. Engineering transcription factors with novel DNA-binding specificity using comparative genomics

    PubMed Central

    Desai, Tasha A.; Rodionov, Dmitry A.; Gelfand, Mikhail S.; Alm, Eric J.; Rao, Christopher V.

    2009-01-01

    The transcriptional program for a gene consists of the promoter necessary for recruiting RNA polymerase along with neighboring operator sites that bind different activators and repressors. From a synthetic biology perspective, if the DNA-binding specificity of these proteins can be changed, then they can be used to reprogram gene expression in cells. While many experimental methods exist for generating such specificity-altering mutations, few computational approaches are available, particularly in the case of bacterial transcription factors. In a previously published computational study of nitrogen oxide metabolism in bacteria, a small number of amino-acid residues were found to determine the specificity within the CRP (cAMP receptor protein)/FNR (fumarate and nitrate reductase regulatory protein) family of transcription factors. By analyzing how these amino acids vary in different regulators, a simple relationship between the identity of these residues and their target DNA-binding sequence was constructed. In this article, we experimentally tested whether this relationship could be used to engineer novel DNA–protein interactions. Using Escherichia coli CRP as a template, we tested eight designs based on this relationship and found that four worked as predicted. Collectively, these results in this work demonstrate that comparative genomics can inform the design of bacterial transcription factors. PMID:19264798

  5. Comparison of genomic predictions using genomic relationship matrices built with different weighting factors to account for locus-specific variances.

    PubMed

    Su, G; Christensen, O F; Janss, L; Lund, M S

    2014-10-01

    Various models have been used for genomic prediction. Bayesian variable selection models often predict more accurate genomic breeding values than genomic BLUP (GBLUP), but GBLUP is generally preferred for routine genomic evaluations because of low computational demand. The objective of this study was to achieve the benefits of both models using results from Bayesian models and genome-wide association studies as weights on single nucleotide polymorphism (SNP) markers when constructing the genomic matrix (G-matrix) for genomic prediction. The data comprised 5,221 progeny-tested bulls from the Nordic Holstein population. The animals were genotyped using the Illumina Bovine SNP50 BeadChip (Illumina Inc., San Diego, CA). Weighting factors in this investigation were the posterior SNP variance, the square of the posterior SNP effect, and the corresponding minus base-10 logarithm of the marker association P-value [-log10(P)] of a t-test obtained from the analysis using a Bayesian mixture model with 4 normal distributions, the square of the estimated SNP effect, and the corresponding -log10(P) of a t-test obtained from the analysis using a classical genome-wide association study model (linear regression model). The weights were derived from the analysis based on data sets that were 0, 1, 3, or 5 yr before performing genomic prediction. In building a G-matrix, the weights were assigned either to each marker (single-marker weighting) or to each group of approximately 5 to 150 markers (group-marker weighting). The analysis was carried out for milk yield, fat yield, protein yield, fertility, and mastitis. Deregressed proofs (DRP) were used as response variables to predict genomic estimated breeding values (GEBV). Averaging over the 5 traits, the Bayesian model led to 2.0% higher reliability of GEBV than the GBLUP model with an original unweighted G-matrix. The superiority of using a GBLUP with weighted G-matrix over GBLUP with an original unweighted G-matrix was the largest

  6. Site-specific in situ amplification of the integrated polyomavirus genome: a case for a context-specific over-replication model of gene amplification.

    PubMed

    Syu, L J; Fluck, M M

    1997-08-01

    The fate of the genome of the polyoma (Py) tumor virus following integration in the chromosomes of transformed rat FR3T3 cells was re-examined. The viral sequences were integrated at a single transformant-specific chromosomal site in each of 22 transformants tested. In situ amplification of the viral sequences was observed in 24 of 34 transformants analyzed. Large T antigen, the unique viral function involved in initiating DNA replication from the viral origin, was essential for the amplification process. There was an absolute requirement for a reiteration of viral sequences and the extent of the reiteration affected the degree of amplification. The reiteration may be important for homologous recombination-mediated resolution of in situ amplified sequences. Among 11 transformants harboring a 1 to 2 kb repeat, the degree of amplification was transformant-specific and varied over a wide range. At the high end of the spectrum, the genome copy number increased 1300-fold at steady state, while at the low end, amplification was below twofold. Some aspect of the host chromatin at the site integration that affected viral gene expression, also directly or indirectly modulated the amplification. Use of high-resolution electrophoresis for the analysis of the integrated amplified sequences revealed a recurring novel pattern, consisting of a ladder with numerous bands separated by a constant distance approximately the size of the Py genome. We suggest that this pattern was generated by conversion of the amplified viral genomes to head to tail linear arrays with cell to cell variations in the number of genome repeats at single, transformant-specific, chromosomal sites. In light of the known "out of schedule" firing of the Py origin, we propose an "onion skin" structure intermediate and present a homologous recombination model for the conversion from onion skins to linear arrays. The relevance of the in situ amplification of the Py genome to cellular gene amplification is

  7. Genome-wide histone state profiling of fibroblasts from the opossum, Monodelphis domestica, identifies the first marsupial-specific imprinted gene

    PubMed Central

    2014-01-01

    Background Imprinted genes have been extensively documented in eutherian mammals and found to exhibit significant interspecific variation in the suites of genes that are imprinted and in their regulation between tissues and developmental stages. Much less is known about imprinted loci in metatherian (marsupial) mammals, wherein studies have been limited to a small number of genes previously known to be imprinted in eutherians. We describe the first ab initio search for imprinted marsupial genes, in fibroblasts from the opossum, Monodelphis domestica, based on a genome-wide ChIP-seq strategy to identify promoters that are simultaneously marked by mutually exclusive, transcriptionally opposing histone modifications. Results We identified a novel imprinted gene (Meis1) and two additional monoallelically expressed genes, one of which (Cstb) showed allele-specific, but non-imprinted expression. Imprinted vs. allele-specific expression could not be resolved for the third monoallelically expressed gene (Rpl17). Transcriptionally opposing histone modifications H3K4me3, H3K9Ac, and H3K9me3 were found at the promoters of all three genes, but differential DNA methylation was not detected at CpG islands at any of these promoters. Conclusions In generating the first genome-wide histone modification profiles for a marsupial, we identified the first gene that is imprinted in a marsupial but not in eutherian mammals. This outcome demonstrates the practicality of an ab initio discovery strategy and implicates histone modification, but not differential DNA methylation, as a conserved mechanism for marking imprinted genes in all therian mammals. Our findings suggest that marsupials use multiple epigenetic mechanisms for imprinting and support the concept that lineage-specific selective forces can produce sets of imprinted genes that differ between metatherian and eutherian lines. PMID:24484454

  8. Comparative Mitogenomics of Leeches (Annelida: Clitellata): Genome Conservation and Placobdella-Specific trnD Gene Duplication

    PubMed Central

    Moya, Andrés; Siddall, Mark E.; Latorre, Amparo

    2016-01-01

    Mitochondrial DNA sequences, often in combination with nuclear markers and morphological data, are frequently used to unravel the phylogenetic relationships, population dynamics and biogeographic histories of a plethora of organisms. The information provided by examining complete mitochondrial genomes also enables investigation of other evolutionary events such as gene rearrangements, gene duplication and gene loss. Despite efforts to generate information to represent most of the currently recognized groups, some taxa are underrepresented in mitochondrial genomic databases. One such group is leeches (Annelida: Hirudinea: Clitellata). Herein, we expand our knowledge concerning leech mitochondrial makeup including gene arrangement, gene duplication and the evolution of mitochondrial genomes by adding newly sequenced mitochondrial genomes for three bloodfeeding species: Haementeria officinalis, Placobdella lamothei and Placobdella parasitica. With the inclusion of three new mitochondrial genomes of leeches, a better understanding of evolution for this organelle within the group is emerging. We found that gene order and genomic arrangement in the three new mitochondrial genomes is identical to previously sequenced members of Clitellata. Interestingly, within Placobdella, we recovered a genus-specific duplication of the trnD gene located between cox2 and atp8. We performed phylogenetic analyses using 12 protein-coding genes and expanded our taxon sampling by including GenBank sequences for 39 taxa; the analyses confirm the monophyletic status of Clitellata, yet disagree in several respects with other phylogenetic hypotheses based on morphology and analyses of non-mitochondrial data. PMID:27176910

  9. Comparative Mitogenomics of Leeches (Annelida: Clitellata): Genome Conservation and Placobdella-Specific trnD Gene Duplication.

    PubMed

    Oceguera-Figueroa, Alejandro; Manzano-Marín, Alejandro; Kvist, Sebastian; Moya, Andrés; Siddall, Mark E; Latorre, Amparo

    2016-01-01

    Mitochondrial DNA sequences, often in combination with nuclear markers and morphological data, are frequently used to unravel the phylogenetic relationships, population dynamics and biogeographic histories of a plethora of organisms. The information provided by examining complete mitochondrial genomes also enables investigation of other evolutionary events such as gene rearrangements, gene duplication and gene loss. Despite efforts to generate information to represent most of the currently recognized groups, some taxa are underrepresented in mitochondrial genomic databases. One such group is leeches (Annelida: Hirudinea: Clitellata). Herein, we expand our knowledge concerning leech mitochondrial makeup including gene arrangement, gene duplication and the evolution of mitochondrial genomes by adding newly sequenced mitochondrial genomes for three bloodfeeding species: Haementeria officinalis, Placobdella lamothei and Placobdella parasitica. With the inclusion of three new mitochondrial genomes of leeches, a better understanding of evolution for this organelle within the group is emerging. We found that gene order and genomic arrangement in the three new mitochondrial genomes is identical to previously sequenced members of Clitellata. Interestingly, within Placobdella, we recovered a genus-specific duplication of the trnD gene located between cox2 and atp8. We performed phylogenetic analyses using 12 protein-coding genes and expanded our taxon sampling by including GenBank sequences for 39 taxa; the analyses confirm the monophyletic status of Clitellata, yet disagree in several respects with other phylogenetic hypotheses based on morphology and analyses of non-mitochondrial data. PMID:27176910

  10. Site specific endonucleases for human genome mapping. Final report, April 1, 1992--March 31, 1994

    SciTech Connect

    Knoche, K.; Selman, S.; Hung, L.

    1994-06-01

    Current large scale genome mapping methodology suffers from a lack of tools for generating specific DNA fragments in the megabase size range. While technology such as pulsed field gel electrophoresis can resolve DNA fragments greater than 10 megabases in size, current methods for cleaving mammalian DNA using bacterial restriction enzymes are incapable of producing such fragments. Though several multidimensional approaches are underway to overcome this limitation, there currently is no single step procedure to generate specific DNA fragments in the 2-100 megabase size range. In order to overcome these limitations, we proposed to develop a family of site-specific endonucleases capable of generating DNA fragments in the 2-100 megabase size range in a single step. Additionally, we proposed to accomplish this by relaxing the specificity of a very-rare cutting intron-encoded endonucleases, I-Ppo I, and potentially using the process as a model for development of other enzymes. Our research has uncovered a great deal of information about intron-encoded endonucleases. We have found that I-Ppo I has a remarkable ability to tolerate degeneracy within its recognition sequence, and we have shown that the recognition sequence is larger than 15 base pairs. These findings suggest that a detailed study of the mechanism by which intron-encoded endonucleases recognize their target sequences should provide new sights into DNA-protein interactions; this had led to a continuation of the study of I-Ppo I in Dr. Raines` laboratory and we expect a more detailed understanding of the mechanism of I-Ppo I action to result.

  11. LABMAN and LINKMAN: a data management system specifically designed for genome searches of complex diseases.

    PubMed

    Adams, P

    1994-01-01

    Two programs have been developed to manage linkage analysis data. The first program, LABMAN, is a comprehensive laboratory data management system organizing pedigrees, blood DNA samples, DNA markers, Southern blot or polyacrylamide gels, autoradiographs, and marker-allele typings generated from these samples. Output includes mendelization checks for genetic incompatibilities in typings and formatted files ready for linkage analysis. LABMAN can also compress highly polymorphic allele systems into smaller allele systems facilitating analysis of large systems. The second program, LINKMAN, provides data management for lod score output from linkage analyses. It reads linkage analysis output files, calculates lod scores by family, associates lod scores with specific marker and family identifiers, and stores these data in a database where they can be combined with lod scores from previous analyses. LINKMAN easily incorporates any of a wide variety of genetic models. It produces formatted output of lod scores by user-specified criteria for reports or as ASCII files for input to other programs. If desired, tests of homogeneity of linkage across families can be run via the HOMOG program [Ott, 1991] and their output included in reports. The programs include features critical for conducting genome searches of complex diseases: They are easy-to-use, well-tested, and reliable. Data from multicenter investigations can be easily combined for analysis. Moreover, they include extensive error-checking capabilities, and they are specifically set up to protect blindness between laboratory workers and data analysts. LABMAN and LINKMAN are currently available free of charge under DOS. PMID:8013891

  12. Streptococcus thermophilus CRISPR-Cas9 Systems Enable Specific Editing of the Human Genome.

    PubMed

    Müller, Maximilian; Lee, Ciaran M; Gasiunas, Giedrius; Davis, Timothy H; Cradick, Thomas J; Siksnys, Virginijus; Bao, Gang; Cathomen, Toni; Mussolino, Claudio

    2016-03-01

    RNA-guided nucleases (RGNs) based on the type II CRISPR-Cas9 system of Streptococcus pyogenes (Sp) have been widely used for genome editing in experimental models. However, the nontrivial level of off-target activity reported in several human cells may hamper clinical translation. RGN specificity depends on both the guide RNA (gRNA) and the protospacer adjacent motif (PAM) recognized by the Cas9 protein. We hypothesized that more stringent PAM requirements reduce the occurrence of off-target mutagenesis. To test this postulation, we generated RGNs based on two Streptococcus thermophilus (St) Cas9 proteins, which recognize longer PAMs, and performed a side-by-side comparison of the three RGN systems targeted to matching sites in two endogenous human loci, PRKDC and CARD11. Our results demonstrate that in samples with comparable on-target cleavage activities, significantly lower off-target mutagenesis was detected using St-based RGNs as compared to the standard Sp-RGNs. Moreover, similarly to SpCas9, the StCas9 proteins accepted truncated gRNAs, suggesting that the specificities of St-based RGNs can be further improved. In conclusion, our results show that Cas9 proteins with longer or more restrictive PAM requirements provide a safe alternative to SpCas9-based RGNs and hence a valuable option for future human gene therapy applications. PMID:26658966

  13. Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells

    PubMed Central

    de Dieuleveult, Maud; Yen, Kuangyu; Hmitou, Isabelle; Depaux, Arnaud; Boussouar, Fayçal; Dargham, Daria Bou; Jounier, Sylvie; Humbertclaude, Hélène; Ribierre, Florence; Baulard, Céline; Farrell, Nina P.; Park, Bongsoo; Keime, Céline; Carrière, Lucie; Berlivet, Soizick; Gut, Marta; Gut, Ivo; Werner, Michel; Deleuze, Jean-François; Olaso, Robert; Aude, Jean-Christophe; Chantalat, Sophie; Pugh, B. Franklin; Gérard, Matthieu

    2015-01-01

    Summary ATP-dependent chromatin remodellers allow access to DNA for transcription factors and the general transcription machinery, but whether mammalian chromatin remodellers1–3 target specific nucleosomes to regulate transcription is unclear. Here, we present genome-wide remodeller-nucleosome interaction profiles for Chd1, Chd2, Chd4, Chd6, Chd8, Chd9, Brg1 and Ep400 in mouse embryonic stem (ES) cells. These remodellers bind one or both full nucleosomes that flank MNase-defined nucleosome-free promoter regions (NFRs), where they separate divergent transcription. Surprisingly, large CpG-rich NFRs that extend downstream of annotated transcriptional start sites (TSSs) are nevertheless chromatinized with non-nucleosomal or subnucleosomal histone variants (H3.3 and H2A.Z) and modifications (H3K4me3 and H3K27ac). RNA polymerase (pol) II therefore navigates hundreds of bp of altered chromatin in the sense direction before encountering an MNase-resistant nucleosome at the 3′ end of the NFR. Transcriptome analysis upon remodeller depletion reveals reciprocal mechanisms of transcriptional regulation by remodellers. Whereas at active genes individual remodellers play either positive or negative roles via altering nucleosome stability, at polycomb-enriched bivalent genes the same remodellers act in an opposite manner. These findings indicate that remodellers target specific nucleosomes at the edge of NFRs, where they regulate ES cell transcriptional programs. PMID:26814966

  14. Genome-Wide Analysis Indicates Lineage-Specific Gene Loss during Papilionoideae Evolution

    PubMed Central

    Gu, Yongzhe; Xing, Shilai; He, Chaoying

    2016-01-01

    Gene loss is the driving force for changes in genome and morphology; however, this particular evolutionary event has been poorly investigated in leguminous plants. Legumes (Fabaceae) have some lineage-specific and diagnostic characteristics that are distinct from other angiosperms. To understand the potential role of gene loss in the evolution of legumes, we compared six genome-sequenced legume species of Papilionoideae, the largest representative clade of Fabaceae, such as Glycine max, with 34 nonlegume plant species, such as Arabidopsis thaliana. The results showed that the putative orthologs of the 34 Arabidopsis genes belonging to 29 gene families were absent in these legume species but these were conserved in the sequenced nonlegume angiosperm lineages. Further evolutionary analyses indicated that the orthologs of these genes were almost completely lost in the Papillionoideae ancestors, thus designated as the legume lost genes (LLGs), and these underwent purifying selection in nonlegume plants. Most LLGs were functionally unknown. In Arabidopsis, two LLGs were well-known genes that played a role in plant immunity such as HARMLESS TO OZONE LAYER 1 and HOPZ-ACTIVATED RESISTANCE 1, and 16 additional LLGs were predicted to participate in plant–pathogen interactions in in silico expression and protein–protein interaction network analyses. Most of these LLGs’ orthologs in various plants were also found to be associated with biotic stress response, indicating the conserved role of these genes in plant defense. The evolutionary implication of LLGs during the development of the ability of symbiotic nitrogen fixation involving plant and bacterial interactions, which is a well-known characteristic of most legumes, is also discussed. Our work sheds light on the evolutionary implication of gene loss events in Papilionoideae evolution, as well as provides new insights into crop design to improve nitrogen fixation capacity. PMID:26868598

  15. Genome-Wide Analysis Indicates Lineage-Specific Gene Loss during Papilionoideae Evolution.

    PubMed

    Gu, Yongzhe; Xing, Shilai; He, Chaoying

    2016-03-01

    Gene loss is the driving force for changes in genome and morphology; however, this particular evolutionary event has been poorly investigated in leguminous plants. Legumes (Fabaceae) have some lineage-specific and diagnostic characteristics that are distinct from other angiosperms. To understand the potential role of gene loss in the evolution of legumes, we compared six genome-sequenced legume species of Papilionoideae, the largest representative clade of Fabaceae, such as Glycine max, with 34 nonlegume plant species, such as Arabidopsis thaliana. The results showed that the putative orthologs of the 34 Arabidopsis genes belonging to 29 gene families were absent in these legume species but these were conserved in the sequenced nonlegume angiosperm lineages. Further evolutionary analyses indicated that the orthologs of these genes were almost completely lost in the Papillionoideae ancestors, thus designated as the legume lost genes (LLGs), and these underwent purifying selection in nonlegume plants. Most LLGs were functionally unknown. In Arabidopsis, two LLGs were well-known genes that played a role in plant immunity such as HARMLESS TO OZONE LAYER 1 and HOPZ-ACTIVATED RESISTANCE 1, and 16 additional LLGs were predicted to participate in plant-pathogen interactions in in silico expression and protein-protein interaction network analyses. Most of these LLGs' orthologs in various plants were also found to be associated with biotic stress response, indicating the conserved role of these genes in plant defense. The evolutionary implication of LLGs during the development of the ability of symbiotic nitrogen fixation involving plant and bacterial interactions, which is a well-known characteristic of most legumes, is also discussed. Our work sheds light on the evolutionary implication of gene loss events in Papilionoideae evolution, as well as provides new insights into crop design to improve nitrogen fixation capacity. PMID:26868598

  16. Discovery of Nigri/nox and Panto/pox site-specific recombinase systems facilitates advanced genome engineering.

    PubMed

    Karimova, Madina; Splith, Victoria; Karpinski, Janet; Pisabarro, M Teresa; Buchholz, Frank

    2016-01-01

    Precise genome engineering is instrumental for biomedical research and holds great promise for future therapeutic applications. Site-specific recombinases (SSRs) are valuable tools for genome engineering due to their exceptional ability to mediate precise excision, integration and inversion of genomic DNA in living systems. The ever-increasing complexity of genome manipulations and the desire to understand the DNA-binding specificity of these enzymes are driving efforts to identify novel SSR systems with unique properties. Here, we describe two novel tyrosine site-specific recombination systems designated Nigri/nox and Panto/pox. Nigri originates from Vibrio nigripulchritudo (plasmid VIBNI_pA) and recombines its target site nox with high efficiency and high target-site selectivity, without recombining target sites of the well established SSRs Cre, Dre, Vika and VCre. Panto, derived from Pantoea sp. aB, is less specific and in addition to its native target site, pox also recombines the target site for Dre recombinase, called rox. This relaxed specificity allowed the identification of residues that are involved in target site selectivity, thereby advancing our understanding of how SSRs recognize their respective DNA targets. PMID:27444945

  17. Discovery of Nigri/nox and Panto/pox site-specific recombinase systems facilitates advanced genome engineering

    PubMed Central

    Karimova, Madina; Splith, Victoria; Karpinski, Janet; Pisabarro, M. Teresa; Buchholz, Frank

    2016-01-01

    Precise genome engineering is instrumental for biomedical research and holds great promise for future therapeutic applications. Site-specific recombinases (SSRs) are valuable tools for genome engineering due to their exceptional ability to mediate precise excision, integration and inversion of genomic DNA in living systems. The ever-increasing complexity of genome manipulations and the desire to understand the DNA-binding specificity of these enzymes are driving efforts to identify novel SSR systems with unique properties. Here, we describe two novel tyrosine site-specific recombination systems designated Nigri/nox and Panto/pox. Nigri originates from Vibrio nigripulchritudo (plasmid VIBNI_pA) and recombines its target site nox with high efficiency and high target-site selectivity, without recombining target sites of the well established SSRs Cre, Dre, Vika and VCre. Panto, derived from Pantoea sp. aB, is less specific and in addition to its native target site, pox also recombines the target site for Dre recombinase, called rox. This relaxed specificity allowed the identification of residues that are involved in target site selectivity, thereby advancing our understanding of how SSRs recognize their respective DNA targets. PMID:27444945

  18. Is delayed genomic instability specifically induced by high-LET particles?

    NASA Astrophysics Data System (ADS)

    Testard, Isabelle; Sabatier, Laure

    1998-12-01

    Ionizing radiation can induce a large variety of damages in the DNA. The processing or repair of this damage occurs in the first minutes up to several hours after irradiation. Afterwhile the remaining lesions are fixed in an irreparable state. However, in recent years, data have accumulated to suggest that genomic instability can manifest in the progeny of irradiated cells leading to accumulation of damage through cell generations. Different biological endpoints were described: delayed cell death, delayed mutations, de novo chromosomal instability. The question regarding the ability of sparsely ionizing X-or γ-rays to induce such phenomenon is still unclear for normal cells. In most of the reports, high linear energy transfer (LET) particles are able to induce genomic instability but not low-LET particles. The mechanisms underlying this phenomenon are still unknown. In human fibroblasts irradiated by heavy ions in a large range of LETs, we showed that the chromosomal instability is characterized by telomeric associations (TAS) involving specific chromosomes. The same instability is observed during the senescence process and during the first passages after viral transfection. The specific chromosomal instability that we observed after irradiation would not be a direct consequence of irradiation but would be a natural phenomenon occurring after many cell divisions. The effect of the irradiation would lie on the bypass of the senescence process that would permit cells with end to end fusions to survive and be transmitted through cell generations, accumulating chromosome rearrangements and chromosome imbalances. Research on molecular mechanisms of chromosomal instability is focused on the role of telomeres in end to end fusions. Such observations could contribute to understand why chromosomal instability is not a dose dependant phenomenon. Why high-LET particles would be so potent in inducing delayed instability? The answer might lie in the study of primary effects of

  19. Genome-wide association studies suggest sex-specific loci associated with abdominal and visceral fat

    PubMed Central

    Sung, Yun Ju; Pérusse, Louis; Sarzynski, Mark A.; Fornage, Myriam; Sidney, Steve; Sternfeld, Barbara; Rice, Treva; Terry, Gregg; Jacobs, David R.; Katzmarzyk, Peter; Curran, Joanne E; Carr, John Jeffrey; Blangero, John; Ghosh, Sujoy; Després, Jean-Pierre; Rankinen, Tuomo; Rao, D.C.; Bouchard, Claude

    2015-01-01

    Background To identify loci associated with abdominal fat and replicate prior findings, we performed genome-wide association (GWA) studies of abdominal fat traits: subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), total adipose tissue (TAT) and visceral to subcutaneous adipose tissue ratio (VSR). Subjects and Methods Sex-combined and sex-stratified analyses were performed on each trait with (TRAIT-BMI) or without (TRAIT) adjustment for BMI, and cohort-specific results were combined via a fixed effects meta-analysis. A total of 2,513 subjects of European descent were available for the discovery phase. For replication, 2,171 European Americans and 772 African Americans were available. Results A total of 52 SNPs encompassing 7 loci showed suggestive evidence of association (p < 1.0 × 10−6) with abdominal fat in the sex-combined analyses. The strongest evidence was found on chromosome 7p14.3 between a SNP near BBS9 gene and VAT (rs12374818; p= 1.10 × 10−7), an association that was replicated (p = 0.02). For the BMI-adjusted trait, the strongest evidence of association was found between a SNP near CYCSP30 and VAT-BMI (rs10506943; p= 2.42 × 10−7). Our sex-specific analyses identified one genome-wide significant (p < 5.0 × 10−8) locus for SAT in women with 11 SNPs encompassing the MLLT10, DNAJC1 and EBLN1 genes on chromosome 10p12.31 (p = 3.97 × 10−8 to 1.13 × 10−8). The THNSL2 gene previously associated with VAT in women was also replicated (p= 0.006). The six gene/loci showing the strongest evidence of association with VAT or VAT-BMI were interrogated for their functional links with obesity and inflammation using the Biograph knowledge-mining software. Genes showing the closest functional links with obesity and inflammation were ADCY8 and KCNK9, respectively. Conclusions Our results provide evidence for new loci influencing abdominal visceral (BBS9, ADCY8, KCNK9) and subcutaneous (MLLT10/DNAJC1/EBLN1) fat, and confirmed a locus (THNSL2

  20. Sequencing of a QTL-rich region of the Theobroma cacao genome using pooled BACs and the identification of trait specific candidate genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: BAC-based physical maps provide for sequencing across an entire genome or selected sub-genome regions of biological interest. Using the minimum tiling path as a guide, it is possible to select specific BAC clones from prioritized genome sections such as a genetically defined QTL interv...

  1. AsaGEI2b: a new variant of a genomic island identified in the Aeromonas salmonicida subsp. salmonicida JF3224 strain isolated from a wild fish in Switzerland.

    PubMed

    Emond-Rheault, Jean-Guillaume; Vincent, Antony T; Trudel, Mélanie V; Frey, Joachim; Frenette, Michel; Charette, Steve J

    2015-07-01

    Aeromonas salmonicida subsp. salmonicida is the causal agent of furunculosis in salmonids. We recently identified a group of genomic islands (AsaGEI) in this bacterium. AsaGEI2a, one of these genomic islands, has almost exclusively been identified in isolates from North America. To date, Aeromonas salmonicida subsp. salmonicida JF3224, a strain isolated from a wild brown trout (Salmo trutta) caught in Switzerland, was the only European isolate that appeared to bear AsaGEI2a. We analyzed the genome of JF3224 and showed that the genomic island in JF3224 is a new variant of AsaGEI, which we have called AsaGEI2b. While AsaGEI2b shares the same integrase gene and insertion site as AsaGEI2a, it is very different in terms of many other features. Additional genomic investigations combined with PCR genotyping revealed that JF3224 is sensitive to growth at 25°C, leading to insertion sequence-dependent rearrangement of the locus on the pAsa5 plasmid that encodes a type three secretion system, which is essential for the virulence of the bacterium. The analysis of the JF3224 genome confirmed that AsaGEIs are accurate indicators of the geographic origins of A. salmonicida subsp. salmonicida isolates and is another example of the susceptibility of the pAsa5 plasmid to DNA rearrangements. PMID:26048417

  2. Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq

    PubMed Central

    Kim, Daesik; Kim, Sojung; Kim, Sunghyun; Park, Jeongbin; Kim, Jin-Soo

    2016-01-01

    We present multiplex Digenome-seq to profile genome-wide specificities of up to 11 CRISPR-Cas9 nucleases simultaneously, saving time and reducing cost. Cell-free human genomic DNA was digested using multiple sgRNAs combined with the Cas9 protein and then subjected to whole-genome sequencing. In vitro cleavage patterns, characteristic of on- and off-target sites, were computationally identified across the genome using a new DNA cleavage scoring system. We found that many false-positive, bulge-type off-target sites were cleaved by sgRNAs transcribed from an oligonucleotide duplex but not by those transcribed from a plasmid template. Multiplex Digenome-seq captured many bona fide off-target sites, missed by other genome-wide methods, at which indels were induced at frequencies <0.1%. After analyzing 964 sites cleaved in vitro by these sgRNAs and measuring indel frequencies at hundreds of off-target sites in cells, we propose a guideline for the choice of target sites for minimizing CRISPR-Cas9 off-target effects in the human genome. PMID:26786045

  3. Depth-specific groundwater age determination on the island of Langeoog reveals climate archive and spatially variable recharge

    NASA Astrophysics Data System (ADS)

    Houben, Georg; Koeniger, Paul; Sültenfuß, Jürgen

    2015-04-01

    Depth-specific sampling of groundwater, followed by geochemical and stable isotope analysis, as well as groundwater age determination using the tritium-helium method, was performed on the freshwater lens of the island of Langeoog, Germany. The obtained age stratification shows marked spatial differences in recharge rates, which can be related to the type of land use. Recharge at the dune tops is significantly lower than in the dune valleys, due to the high water repellency of the dry sand. Dune valleys can contribute up to four times more recharge per unit of area than other areas. The development of housing in such areas can thus significantly decrease the recharge of fresh groundwater. The fresh groundwater samples show markedly heavier stable water isotope values with decreasing depths. This is obviously a refelection of a change of the climatic conditions during the time of recharge. The freshwater column thus preserves a climate archive. Using age data obtained from tritium-helium dating, this pattern was successfully matched to actually measured climate records for the last century which indicate an increase of the temperature during the last 100 and especíally the last 30 years.

  4. Genome-Wide Assessment of Efficiency and Specificity in CRISPR/Cas9 Mediated Multiple Site Targeting in Arabidopsis.

    PubMed

    Peterson, Brenda A; Haak, David C; Nishimura, Marc T; Teixeira, Paulo J P L; James, Sean R; Dangl, Jeffery L; Nimchuk, Zachary L

    2016-01-01

    Simultaneous multiplex mutation of large gene families using Cas9 has the potential to revolutionize agriculture and plant sciences. The targeting of multiple genomic sites at once raises concerns about the efficiency and specificity in targeting. The model Arabidopsis thaliana is widely used in basic plant research. Previous work has suggested that the Cas9 off-target rate in Arabidopsis is undetectable. Here we use deep sequencing on pooled plants simultaneously targeting 14 distinct genomic loci to demonstrate that multiplex targeting in Arabidopsis is highly specific to on-target sites with no detectable off-target events. In addition, chromosomal translocations are extremely rare. The high specificity of Cas9 in Arabidopsis makes this a reliable method for clean mutant generation with no need to enhance specificity or adopt alternate Cas9 variants. PMID:27622539

  5. Genome-wide association studies identify four ER negative-specific breast cancer risk loci.

    PubMed

    Garcia-Closas, Montserrat; Couch, Fergus J; Lindstrom, Sara; Michailidou, Kyriaki; Schmidt, Marjanka K; Brook, Mark N; Orr, Nick; Rhie, Suhn Kyong; Riboli, Elio; Feigelson, Heather S; Le Marchand, Loic; Buring, Julie E; Eccles, Diana; Miron, Penelope; Fasching, Peter A; Brauch, Hiltrud; Chang-Claude, Jenny; Carpenter, Jane; Godwin, Andrew K; Nevanlinna, Heli; Giles, Graham G; Cox, Angela; Hopper, John L; Bolla, Manjeet K; Wang, Qin; Dennis, Joe; Dicks, Ed; Howat, Will J; Schoof, Nils; Bojesen, Stig E; Lambrechts, Diether; Broeks, Annegien; Andrulis, Irene L; Guénel, Pascal; Burwinkel, Barbara; Sawyer, Elinor J; Hollestelle, Antoinette; Fletcher, Olivia; Winqvist, Robert; Brenner, Hermann; Mannermaa, Arto; Hamann, Ute; Meindl, Alfons; Lindblom, Annika; Zheng, Wei; Devillee, Peter; Goldberg, Mark S; Lubinski, Jan; Kristensen, Vessela; Swerdlow, Anthony; Anton-Culver, Hoda; Dörk, Thilo; Muir, Kenneth; Matsuo, Keitaro; Wu, Anna H; Radice, Paolo; Teo, Soo Hwang; Shu, Xiao-Ou; Blot, William; Kang, Daehee; Hartman, Mikael; Sangrajrang, Suleeporn; Shen, Chen-Yang; Southey, Melissa C; Park, Daniel J; Hammet, Fleur; Stone, Jennifer; Veer, Laura J Van't; Rutgers, Emiel J; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Peto, Julian; Schrauder, Michael G; Ekici, Arif B; Beckmann, Matthias W; Dos Santos Silva, Isabel; Johnson, Nichola; Warren, Helen; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Marme, Federick; Schneeweiss, Andreas; Sohn, Christof; Truong, Therese; Laurent-Puig, Pierre; Kerbrat, Pierre; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Milne, Roger L; Perez, Jose Ignacio Arias; Menéndez, Primitiva; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Lichtner, Peter; Lochmann, Magdalena; Justenhoven, Christina; Ko, Yon-Dschun; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Greco, Dario; Heikkinen, Tuomas; Ito, Hidemi; Iwata, Hiroji; Yatabe, Yasushi; Antonenkova, Natalia N; Margolin, Sara; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Balleine, Rosemary; Tseng, Chiu-Chen; Berg, David Van Den; Stram, Daniel O; Neven, Patrick; Dieudonné, Anne-Sophie; Leunen, Karin; Rudolph, Anja; Nickels, Stefan; Flesch-Janys, Dieter; Peterlongo, Paolo; Peissel, Bernard; Bernard, Loris; Olson, Janet E; Wang, Xianshu; Stevens, Kristen; Severi, Gianluca; Baglietto, Laura; McLean, Catriona; Coetzee, Gerhard A; Feng, Ye; Henderson, Brian E; Schumacher, Fredrick; Bogdanova, Natalia V; Labrèche, France; Dumont, Martine; Yip, Cheng Har; Taib, Nur Aishah Mohd; Cheng, Ching-Yu; Shrubsole, Martha; Long, Jirong; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Kauppila, Saila; Knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Tollenaar, Robertus A E M; Seynaeve, Caroline M; Kriege, Mieke; Hooning, Maartje J; van den Ouweland, Ans M W; van Deurzen, Carolien H M; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Balasubramanian, Sabapathy P; Cross, Simon S; Reed, Malcolm W R; Signorello, Lisa; Cai, Qiuyin; Shah, Mitul; Miao, Hui; Chan, Ching Wan; Chia, Kee Seng; Jakubowska, Anna; Jaworska, Katarzyna; Durda, Katarzyna; Hsiung, Chia-Ni; Wu, Pei-Ei; Yu, Jyh-Cherng; Ashworth, Alan; Jones, Michael; Tessier, Daniel C; González-Neira, Anna; Pita, Guillermo; Alonso, M Rosario; Vincent, Daniel; Bacot, Francois; Ambrosone, Christine B; Bandera, Elisa V; John, Esther M; Chen, Gary K; Hu, Jennifer J; Rodriguez-Gil, Jorge L; Bernstein, Leslie; Press, Michael F; Ziegler, Regina G; Millikan, Robert M; Deming-Halverson, Sandra L; Nyante, Sarah; Ingles, Sue A; Waisfisz, Quinten; Tsimiklis, Helen; Makalic, Enes; Schmidt, Daniel; Bui, Minh; Gibson, Lorna; Müller-Myhsok, Bertram; Schmutzler, Rita K; Hein, Rebecca; Dahmen, Norbert; Beckmann, Lars; Aaltonen, Kirsimari; Czene, Kamila; Irwanto, Astrid; Liu, Jianjun; Turnbull, Clare; Rahman, Nazneen; Meijers-Heijboer, Hanne; Uitterlinden, Andre G; Rivadeneira, Fernando; Olswold, Curtis; Slager, Susan; Pilarski, Robert; Ademuyiwa, Foluso; Konstantopoulou, Irene; Martin, Nicholas G; Montgomery, Grant W; Slamon, Dennis J; Rauh, Claudia; Lux, Michael P; Jud, Sebastian M; Bruning, Thomas; Weaver, Joellen; Sharma, Priyanka; Pathak, Harsh; Tapper, Will; Gerty, Sue; Durcan, Lorraine; Trichopoulos, Dimitrios; Tumino, Rosario; Peeters, Petra H; Kaaks, Rudolf; Campa, Daniele; Canzian, Federico; Weiderpass, Elisabete; Johansson, Mattias; Khaw, Kay-Tee; Travis, Ruth; Clavel-Chapelon, Françoise; Kolonel, Laurence N; Chen, Constance; Beck, Andy; Hankinson, Susan E; Berg, Christine D; Hoover, Robert N; Lissowska, Jolanta; Figueroa, Jonine D; Chasman, Daniel I; Gaudet, Mia M; Diver, W Ryan; Willett, Walter C; Hunter, David J; Simard, Jacques; Benitez, Javier; Dunning, Alison M; Sherman, Mark E; Chenevix-Trench, Georgia; Chanock, Stephen J; Hall, Per; Pharoah, Paul D P; Vachon, Celine; Easton, Douglas F; Haiman, Christopher A; Kraft, Peter

    2013-04-01

    Estrogen receptor (ER)-negative tumors represent 20-30% of all breast cancers, with a higher proportion occurring in younger women and women of African ancestry. The etiology and clinical behavior of ER-negative tumors are different from those of tumors expressing ER (ER positive), including differences in genetic predisposition. To identify susceptibility loci specific to ER-negative disease, we combined in a meta-analysis 3 genome-wide association studies of 4,193 ER-negative breast cancer cases and 35,194 controls with a series of 40 follow-up studies (6,514 cases and 41,455 controls), genotyped using a custom Illumina array, iCOGS, developed by the Collaborative Oncological Gene-environment Study (COGS). SNPs at four loci, 1q32.1 (MDM4, P = 2.1 × 10(-12) and LGR6, P = 1.4 × 10(-8)), 2p24.1 (P = 4.6 × 10(-8)) and 16q12.2 (FTO, P = 4.0 × 10(-8)), were associated with ER-negative but not ER-positive breast cancer (P > 0.05). These findings provide further evidence for distinct etiological pathways associated with invasive ER-positive and ER-negative breast cancers. PMID:23535733

  6. Genome-wide association studies identify four ER negative–specific breast cancer risk loci

    PubMed Central

    Garcia-Closas, Montserrat; Couch, Fergus J; Lindstrom, Sara; Michailidou, Kyriaki; Schmidt, Marjanka K; Brook, Mark N; orr, Nick; Rhie, Suhn Kyong; Riboli, Elio; Feigelson, Heather s; Le Marchand, Loic; Buring, Julie E; Eccles, Diana; Miron, Penelope; Fasching, Peter A; Brauch, Hiltrud; Chang-Claude, Jenny; Carpenter, Jane; Godwin, Andrew K; Nevanlinna, Heli; Giles, Graham G; Cox, Angela; Hopper, John L; Bolla, Manjeet K; Wang, Qin; Dennis, Joe; Dicks, Ed; Howat, Will J; Schoof, Nils; Bojesen, Stig E; Lambrechts, Diether; Broeks, Annegien; Andrulis, Irene L; Guénel, Pascal; Burwinkel, Barbara; Sawyer, Elinor J; Hollestelle, Antoinette; Fletcher, Olivia; Winqvist, Robert; Brenner, Hermann; Mannermaa, Arto; Hamann, Ute; Meindl, Alfons; Lindblom, Annika; Zheng, Wei; Devillee, Peter; Goldberg, Mark S; Lubinski, Jan; Kristensen, Vessela; Swerdlow, Anthony; Anton-Culver, Hoda; Dörk, Thilo; Muir, Kenneth; Matsuo, Keitaro; Wu, Anna H; Radice, Paolo; Teo, Soo Hwang; Shu, Xiao-Ou; Blot, William; Kang, Daehee; Hartman, Mikael; Sangrajrang, Suleeporn; Shen, Chen-Yang; Southey, Melissa C; Park, Daniel J; Hammet, Fleur; Stone, Jennifer; Veer, Laura J Van’t; Rutgers, Emiel J; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Peto, Julian; Schrauder, Michael G; Ekici, Arif B; Beckmann, Matthias W; Silva, Isabel dos Santos; Johnson, Nichola; Warren, Helen; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Marme, Federick; Schneeweiss, Andreas; Sohn, Christof; Truong, Therese; Laurent-Puig, Pierre; Kerbrat, Pierre; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Milne, Roger L; Perez, Jose Ignacio Arias; Menéndez, Primitiva; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Lichtner, Peter; Lochmann, Magdalena; Justenhoven, Christina; Ko, Yon-Dschun; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Greco, Dario; Heikkinen, Tuomas; Ito, Hidemi; Iwata, Hiroji; Yatabe, Yasushi; Antonenkova, Natalia N; Margolin, Sara; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Balleine, Rosemary; Tseng, Chiu-Chen; Van Den Berg, David; Stram, Daniel O; Neven, Patrick; Dieudonné, Anne-Sophie; Leunen, Karin; Rudolph, Anja; Nickels, Stefan; Flesch-Janys, Dieter; Peterlongo, Paolo; Peissel, Bernard; Bernard, Loris; Olson, Janet E; Wang, Xianshu; Stevens, Kristen; Severi, Gianluca; Baglietto, Laura; Mclean, Catriona; Coetzee, Gerhard A; Feng, Ye; Henderson, Brian E; Schumacher, Fredrick; Bogdanova, Natalia V; Labrèche, France; Dumont, Martine; Yip, Cheng Har; Taib, Nur Aishah Mohd; Cheng, Ching-Yu; Shrubsole, Martha; Long, Jirong; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Kauppila, Saila; knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Tollenaar, Robertus A E M; Seynaeve, Caroline M; Kriege, Mieke; Hooning, Maartje J; Van den Ouweland, Ans M W; Van Deurzen, Carolien H M; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Balasubramanian, Sabapathy P; Cross, Simon S; Reed, Malcolm W R; Signorello, Lisa; Cai, Qiuyin; Shah, Mitul; Miao, Hui; Chan, Ching Wan; Chia, Kee Seng; Jakubowska, Anna; Jaworska, Katarzyna; Durda, Katarzyna; Hsiung, Chia-Ni; Wu, Pei-Ei; Yu, Jyh-Cherng; Ashworth, Alan; Jones, Michael; Tessier, Daniel C; González-Neira, Anna; Pita, Guillermo; Alonso, M Rosario; Vincent, Daniel; Bacot, Francois; Ambrosone, Christine B; Bandera, Elisa V; John, Esther M; Chen, Gary K; Hu, Jennifer J; Rodriguez-gil, Jorge L; Bernstein, Leslie; Press, Michael F; Ziegler, Regina G; Millikan, Robert M; Deming-Halverson, Sandra L; Nyante, Sarah; Ingles, Sue A; Waisfisz, Quinten; Tsimiklis, Helen; Makalic, Enes; Schmidt, Daniel; Bui, Minh; Gibson, Lorna; Müller-Myhsok, Bertram; Schmutzler, Rita K; Hein, Rebecca; Dahmen, Norbert; Beckmann, Lars; Aaltonen, Kirsimari; Czene, Kamila; Irwanto, Astrid; Liu, Jianjun; Turnbull, Clare; Rahman, Nazneen; Meijers-Heijboer, Hanne; Uitterlinden, Andre G; Rivadeneira, Fernando; Olswold, Curtis; Slager, Susan; Pilarski, Robert; Ademuyiwa, Foluso; Konstantopoulou, Irene; Martin, Nicholas G; Montgomery, Grant W; Slamon, Dennis J; Rauh, Claudia; Lux, Michael P; Jud, Sebastian M; Bruning, Thomas; Weaver, Joellen; Sharma, Priyanka; Pathak, Harsh; Tapper, Will; Gerty, Sue; Durcan, Lorraine; Trichopoulos, Dimitrios; Tumino, Rosario; Peeters, Petra H; Kaaks, Rudolf; Campa, Daniele; Canzian, Federico; Weiderpass, Elisabete; Johansson, Mattias; Khaw, Kay-Tee; Travis, Ruth; Clavel-Chapelon, Françoise; Kolonel, Laurence N; Chen, Constance; Beck, Andy; Hankinson, Susan E; Berg, Christine D; Hoover, Robert N; Lissowska, Jolanta; Figueroa, Jonine D

    2013-01-01

    Estrogen receptor (ER)-negative tumors represent 20–30% of all breast cancers, with a higher proportion occurring in younger women and women of African ancestry1. The etiology2 and clinical behavior3 of ER-negative tumors are different from those of tumors expressing ER (ER positive), including differences in genetic predisposition4. To identify susceptibility loci specific to ER-negative disease, we combined in a meta-analysis 3 genome-wide association studies of 4,193 ER-negative breast cancer cases and 35,194 controls with a series of 40 follow-up studies (6,514 cases and 41,455 controls), genotyped using a custom Illumina array, iCOGS, developed by the Collaborative Oncological Gene-environment Study (COGS). SNPs at four loci, 1q32.1 (MDM4, P = 2.1 × 10−12 and LGR6, P = 1.4 × 10−8), 2p24.1 (P = 4.6 × 10−8) and 16q12.2 (FTO, P = 4.0 × 10−8), were associated with ER-negative but not ER-positive breast cancer (P > 0.05). These findings provide further evidence for distinct etiological pathways associated with invasive ER-positive and ER-negative breast cancers. PMID:23535733

  7. Analysis of herpesvirus host specificity determinants using herpesvirus genomes as bacterial artificial chromosomes.

    PubMed

    Arii, Jun; Kato, Kentaro; Kawaguchi, Yasushi; Tohya, Yukinobu; Akashi, Hiroomi

    2009-08-01

    Almost all mammalian alphaherpesviruses can grow in cells derived from several types of animals in vitro. However, FHV-1 can only infect feline cell lines. For this reason, FHV-1 should be a good model to investigate species barriers to herpesviruses in vivo. To apply bacterial mutagenesis of FHV-1, we cloned the FHV-1 genome as a BAC. Using lambda and flp recombinations, we introduced a monomeric red fluorescence protein into the C-terminus of glycoprotein D. Although GFP in the constructed recombinant FHV-1, a transfectant of the bacmid of FHV-1 that possessed the GFP, acted in non-feline cell lines, the virus could not enter non-feline cell lines, demonstrating that the host specificity of FHV-1 was restricted in an early step of infection. The host range of canine herpesvirus is limited to dogs in vitro and in vivo; it cannot enter non-canine cell lines as a result of infection but the GFP is active by transfection, revealing the same result that the restriction step is at an early stage of infection. These results suggest the possibility of breaking species barriers of FHV-1 and CHV by modifying the gene(s) that act at the early stage of infection. PMID:19659927

  8. Specific recognition of the HIV-1 genomic RNA by the Gag precursor.

    PubMed

    Abd El-Wahab, Ekram W; Smyth, Redmond P; Mailler, Elodie; Bernacchi, Serena; Vivet-Boudou, Valérie; Hijnen, Marcel; Jossinet, Fabrice; Mak, Johnson; Paillart, Jean-Christophe; Marquet, Roland

    2014-01-01

    During assembly of HIV-1 particles in infected cells, the viral Pr55(Gag) protein (or Gag precursor) must select the viral genomic RNA (gRNA) from a variety of cellular and viral spliced RNAs. However, there is no consensus on how Pr55(Gag) achieves this selection. Here, by using RNA binding and footprinting assays, we demonstrate that the primary Pr55(Gag) binding site on the gRNA consists of the internal loop and the lower part of stem-loop 1 (SL1), the upper part of which initiates gRNA dimerization. A double regulation ensures specific binding of Pr55(Gag) to the gRNA despite the fact that SL1 is also present in spliced viral RNAs. The region upstream of SL1, which is present in all HIV-1 RNAs, prevents binding to SL1, but this negative effect is counteracted by sequences downstream of SL4, which are unique to the gRNA. PMID:24986025

  9. Whole genome sequencing and comparative genomic analyses of two Vibrio cholerae O139 Bengal-specific Podoviruses to other N4-like phages reveal extensive genetic diversity

    PubMed Central

    2013-01-01

    Background Vibrio cholerae O139 Bengal is the only serogroup other than O1 implicated in cholera epidemics. We describe the isolation and characterization of an O139 serogroup-specific phage, vB_VchP_VchO139-I (ϕVchO139-I) that has similar host range and virion morphology as phage vB_VchP_JA1 (ϕJA1) described previously. We aimed at a complete molecular characterization of both phages and elucidation of their genetic and structural differences and assessment of their genetic relatedness to the N4-like phage group. Methods Host-range analysis and plaque morphology screening were done for both ϕJA1 and ϕVchO139-I. Both phage genomes were sequenced by a 454 and Sanger hybrid approach. Genomes were annotated and protein homologies were determined by Blast and HHPred. Restriction profiles, PFGE patterns and data on the physical genome structure were acquired and phylogenetic analyses were performed. Results The host specificity of ϕJA1 has been attributed to the unique capsular O-antigen produced by O139 strains. Plaque morphologies of the two phages were different; ϕVchO139-I produced a larger halo around the plaques than ϕJA1. Restriction profiles of ϕJA1 and ϕVchO139-I genomes were also different. The genomes of ϕJA1 and ϕVchO139-I consisted of linear double-stranded DNA of 71,252 and 70,938 base pairs. The presence of direct terminal repeats of around 1974 base pairs was demonstrated. Whole genome comparison revealed single nucleotide polymorphisms, small insertions/deletions and differences in gene content. Both genomes had 79 predicted protein encoding sequences, of which only 59 were identical between the two closely related phages. They also encoded one tRNA-Arg gene, an intein within the large terminase gene, and four homing endonuclease genes. Whole genome phylogenetic analyses of ϕJA1 and ϕVchO139-I against other sequenced N4-like phages delineate three novel subgroups or clades within this phage family. Conclusions The closely related phages

  10. EPIGENETIC REGULATION OF GENOMES: NUTRIENT-SPECIFIC MODULATION OF GENETIC NETWORKS IN BOVINE CELLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The modern version of epigenetics includes the molecular mechanisms that influence the phenotypic outcome of a gene or genome, in absence of changes to the underlying DNA sequence. A host of genomic interrelationships with the diet evidently exist. The broad topic of nutrigenomics as defined with re...

  11. Rapid development of PCR-based genome-specific repetitive DNA junction markers in wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In hexaploid wheat (Triticum aestivum L.) (AABBDD, C=17,000Mb), repeat DNA accounts for ~ 90% of the genome of which transposable elements (TEs) constitute 60-80 %. Despite the dynamic evolution of TEs, our previous study indicated that the majority of TEs between the homologous wheat genomes are co...

  12. Epigenetic regulation of genomes: Nutrient-specific modulation of genetic networks in bovine cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The modern version of epigenetics includes the molecular mechanisms that influence the phenotypic outcome of a gene or genome, in absence of changes to the underlying DNA sequence. A host of genomic interrelationships with the diet evidently exist. The broad topic of nutrigenomics as defined with re...

  13. Integrative Tissue-Specific Functional Annotations in the Human Genome Provide Novel Insights on Many Complex Traits and Improve Signal Prioritization in Genome Wide Association Studies

    PubMed Central

    Wang, Qian; He, Beixin Julie; Zhao, Hongyu

    2016-01-01

    Extensive efforts have been made to understand genomic function through both experimental and computational approaches, yet proper annotation still remains challenging, especially in non-coding regions. In this manuscript, we introduce GenoSkyline, an unsupervised learning framework to predict tissue-specific functional regions through integrating high-throughput epigenetic annotations. GenoSkyline successfully identified a variety of non-coding regulatory machinery including enhancers, regulatory miRNA, and hypomethylated transposable elements in extensive case studies. Integrative analysis of GenoSkyline annotations and results from genome-wide association studies (GWAS) led to novel biological insights on the etiologies of a number of human complex traits. We also explored using tissue-specific functional annotations to prioritize GWAS signals and predict relevant tissue types for each risk locus. Brain and blood-specific annotations led to better prioritization performance for schizophrenia than standard GWAS p-values and non-tissue-specific annotations. As for coronary artery disease, heart-specific functional regions was highly enriched of GWAS signals, but previously identified risk loci were found to be most functional in other tissues, suggesting a substantial proportion of still undetected heart-related loci. In summary, GenoSkyline annotations can guide genetic studies at multiple resolutions and provide valuable insights in understanding complex diseases. GenoSkyline is available at http://genocanyon.med.yale.edu/GenoSkyline. PMID:27058395

  14. Genomic selection needs to be carefully assessed to meet specific requirements in livestock breeding programs

    PubMed Central

    Jonas, Elisabeth; de Koning, Dirk-Jan

    2015-01-01

    Genomic selection is a promising development in agriculture, aiming improved production by exploiting molecular genetic markers to design novel breeding programs and to develop new markers-based models for genetic evaluation. It opens opportunities for research, as novel algorithms and lab methodologies are developed. Genomic selection can be applied in many breeds and species. Further research on the implementation of genomic selection (GS) in breeding programs is highly desirable not only for the common good, but also the private sector (breeding companies). It has been projected that this approach will improve selection routines, especially in species with long reproduction cycles, late or sex-limited or expensive trait recording and for complex traits. The task of integrating GS into existing breeding programs is, however, not straightforward. Despite successful integration into breeding programs for dairy cattle, it has yet to be shown how much emphasis can be given to the genomic information and how much additional phenotypic information is needed from new selection candidates. Genomic selection is already part of future planning in many breeding companies of pigs and beef cattle among others, but further research is needed to fully estimate how effective the use of genomic information will be for the prediction of the performance of future breeding stock. Genomic prediction of production in crossbreeding and across-breed schemes, costs and choice of individuals for genotyping are reasons for a reluctance to fully rely on genomic information for selection decisions. Breeding objectives are highly dependent on the industry and the additional gain when using genomic information has to be considered carefully. This review synthesizes some of the suggested approaches in selected livestock species including cattle, pig, chicken, and fish. It outlines tasks to help understanding possible consequences when applying genomic information in breeding scenarios. PMID

  15. Genomic selection needs to be carefully assessed to meet specific requirements in livestock breeding programs.

    PubMed

    Jonas, Elisabeth; de Koning, Dirk-Jan

    2015-01-01

    Genomic selection is a promising development in agriculture, aiming improved production by exploiting molecular genetic markers to design novel breeding programs and to develop new markers-based models for genetic evaluation. It opens opportunities for research, as novel algorithms and lab methodologies are developed. Genomic selection can be applied in many breeds and species. Further research on the implementation of genomic selection (GS) in breeding programs is highly desirable not only for the common good, but also the private sector (breeding companies). It has been projected that this approach will improve selection routines, especially in species with long reproduction cycles, late or sex-limited or expensive trait recording and for complex traits. The task of integrating GS into existing breeding programs is, however, not straightforward. Despite successful integration into breeding programs for dairy cattle, it has yet to be shown how much emphasis can be given to the genomic information and how much additional phenotypic information is needed from new selection candidates. Genomic selection is already part of future planning in many breeding companies of pigs and beef cattle among others, but further research is needed to fully estimate how effective the use of genomic information will be for the prediction of the performance of future breeding stock. Genomic prediction of production in crossbreeding and across-breed schemes, costs and choice of individuals for genotyping are reasons for a reluctance to fully rely on genomic information for selection decisions. Breeding objectives are highly dependent on the industry and the additional gain when using genomic information has to be considered carefully. This review synthesizes some of the suggested approaches in selected livestock species including cattle, pig, chicken, and fish. It outlines tasks to help understanding possible consequences when applying genomic information in breeding scenarios. PMID

  16. Sequence Analysis of Staphylococcus hyicus ATCC 11249T, an Etiological Agent of Exudative Epidermitis in Swine, Reveals a Type VII Secretion System Locus and a Novel 116-Kilobase Genomic Island Harboring Toxin-Encoding Genes

    PubMed Central

    Foecking, Mark F.; Hsieh, Hsin-Yeh; Adkins, Pamela R. F.; Stewart, George C.; Middleton, John R.

    2015-01-01

    Staphylococcus hyicus is the primary etiological agent of exudative epidermitis in swine. Analysis of the complete genome sequence of the type strain revealed a locus encoding a type VII secretion system and a large chromosomal island harboring the genes encoding exfoliative toxin ExhA and an EDIN toxin homolog. PMID:25700402

  17. The genome sequence of Sea-Island cotton (Gossypium barbadense) provides insights into the allopolyploidization and development of superior spinnable fibres

    PubMed Central

    Yuan, Daojun; Tang, Zhonghui; Wang, Maojun; Gao, Wenhui; Tu, Lili; Jin, Xin; Chen, Lingling; He, Yonghui; Zhang, Lin; Zhu, Longfu; Li, Yang; Liang, Qiqi; Lin, Zhongxu; Yang, Xiyan; Liu, Nian; Jin, Shuangxia; Lei, Yang; Ding, Yuanhao; Li, Guoliang; Ruan, Xiaoan; Ruan, Yijun; Zhang, Xianlong

    2015-01-01

    Gossypium hirsutum contributes the most production of cotton fibre, but G. barbadense is valued for its better comprehensive resistance and superior fibre properties. However, the allotetraploid genome of G. barbadense has not been comprehensively analysed. Here we present a high-quality assembly of the 2.57 gigabase genome of G. barbadense, including 80,876 protein-coding genes. The double-sized genome of the A (or At) (1.50 Gb) against D (or Dt) (853 Mb) primarily resulted from the expansion of Gypsy elements, including Peabody and Retrosat2 subclades in the Del clade, and the Athila subclade in the Athila/Tat clade. Substantial gene expansion and contraction were observed and rich homoeologous gene pairs with biased expression patterns were identified, suggesting abundant gene sub-functionalization occurred by allopolyploidization. More specifically, the CesA gene family has adapted differentially temporal expression patterns, suggesting an integrated regulatory mechanism of CesA genes from At and Dt subgenomes for the primary and secondary cellulose biosynthesis of cotton fibre in a “relay race”-like fashion. We anticipate that the G. barbadense genome sequence will advance our understanding the mechanism of genome polyploidization and underpin genome-wide comparison research in this genus. PMID:26634818

  18. DNA-binding protein prediction using plant specific support vector machines: validation and application of a new genome annotation tool

    PubMed Central

    Motion, Graham B.; Howden, Andrew J. M.; Huitema, Edgar; Jones, Susan

    2015-01-01

    There are currently 151 plants with draft genomes available but levels of functional annotation for putative protein products are low. Therefore, accurate computational predictions are essential to annotate genomes in the first instance, and to provide focus for the more costly and time consuming functional assays that follow. DNA-binding proteins are an important class of proteins that require annotation, but current computational methods are not applicable for genome wide predictions in plant species. Here, we explore the use of species and lineage specific models for the prediction of DNA-binding proteins in plants. We show that a species specific support vector machine model based on Arabidopsis sequence data is more accurate (accuracy 81%) than a generic model (74%), and based on this we develop a plant specific model for predicting DNA-binding proteins. We apply this model to the tomato proteome and demonstrate its ability to perform accurate high-throughput prediction of DNA-binding proteins. In doing so, we have annotated 36 currently uncharacterised proteins by assigning a putative DNA-binding function. Our model is publically available and we propose it be used in combination with existing tools to help increase annotation levels of DNA-binding proteins encoded in plant genomes. PMID:26304539

  19. Evidence for metaviromic islands in marine phages

    PubMed Central

    Mizuno, Carolina Megumi; Ghai, Rohit; Rodriguez-Valera, Francisco

    2014-01-01

    Metagenomic islands (MGIs) have been defined as genomic regions in prokaryotic genomes that under-recruit from metagenomes where most of the same genome recruits at close to 100% identity over most of its length. The presence of MGIs in prokaryotes has been associated to the diversity of concurrent lineages that vary at this level to disperse the predatory pressure of phages that, reciprocally, maintain high clonal diversity in the population and improve ecosystem performance. This was proposed as a Constant-Diversity (C-D) model. Here we have investigated the regions of phage genomes under-recruiting in a metavirome constructed with a sample from the same habitat where they were retrieved. Some of the genes found to under-recruit are involved in host recognition as would be expected from the C-D model. Furthermore, the recruitment of intragenic regions known to be involved in molecular recognition also had a significant under-recruitment compared to the rest of the gene. However, other genes apparently disconnected from the recognition process under-recruited often, specifically the terminases involved in packaging of the phage genome in the capsid and a few others. In addition, some highly related phage genomes (at nucleotide sequence level) had no metaviromic islands (MVIs). We speculate that the latter might be generalist phages with broad infection range that do not require clone specific lineages. PMID:24550898

  20. Genome-wide analysis identifies a role for common copy number variants in specific language impairment.

    PubMed

    Simpson, Nuala H; Ceroni, Fabiola; Reader, Rose H; Covill, Laura E; Knight, Julian C; Hennessy, Elizabeth R; Bolton, Patrick F; Conti-Ramsden, Gina; O'Hare, Anne; Baird, Gillian; Fisher, Simon E; Newbury, Dianne F

    2015-10-01

    An exploratory genome-wide copy number variant (CNV) study was performed in 127 independent cases with specific language impairment (SLI), their first-degree relatives (385 individuals) and 269 population controls. Language-impaired cases showed an increased CNV burden in terms of the average number of events (11.28 vs 10.01, empirical P=0.003), the total length of CNVs (717 vs 513 Kb, empirical P=0.0001), the average CNV size (63.75 vs 51.6 Kb, empirical P=0.0005) and the number of genes spanned (14.29 vs 10.34, empirical P=0.0007) when compared with population controls, suggesting that CNVs may contribute to SLI risk. A similar trend was observed in first-degree relatives regardless of affection status. The increased burden found in our study was not driven by large or de novo events, which have been described as causative in other neurodevelopmental disorders. Nevertheless, de novo CNVs might be important on a case-by-case basis, as indicated by identification of events affecting relevant genes, such as ACTR2 and CSNK1A1, and small events within known micro-deletion/-duplication syndrome regions, such as chr8p23.1. Pathway analysis of the genes present within the CNVs of the independent cases identified significant overrepresentation of acetylcholine binding, cyclic-nucleotide phosphodiesterase activity and MHC proteins as compared with controls. Taken together, our data suggest that the majority of the risk conferred by CNVs in SLI is via common, inherited events within a 'common disorder-common variant' model. Therefore the risk conferred by CNVs will depend upon the combination of events inherited (both CNVs and SNPs), the genetic background of the individual and the environmental factors. PMID:25585696

  1. IDENTIFICATION OF AVIAN-SPECIFIC FECAL METAGENOMIC SEQUENCES USING GENOME FRAGMENT ENRICHMENTS

    EPA Science Inventory

    Sequence analysis of microbial genomes has provided biologists the opportunity to compare genetic differences between closely related microorganisms. While random sequencing has also been used to study natural microbial communities, metagenomic comparisons via sequencing analysis...

  2. A 26-base-pair repetitive sequence specific for Neisseria gonorrhoeae and Neisseria meningitidis genomic DNA.

    PubMed Central

    Correia, F F; Inouye, S; Inouye, M

    1986-01-01

    Two-dimensional heteroduplex mapping of Neisseria gonorrhoeae genomic DNA revealed a number of spots, indicating the existence of repetitive sequences. When one of the spots was extracted and used as a probe for Southern blot analysis, two HindIII bands (11.0 and 3.6 kilobases [kb]) of the genomic digest hybridized with approximately equal intensity. The 3.6-kb fragment was cloned and found to contain two different types of repeated sequence. One type was approximately 1.1 kb in length and was found at least twice in the entire genome. The other consisted of a 26-base-pair family GT(C/A)C(Py)G(Pu)TTTTTGTTAAT(Py)C(Pu)CTATA (Py, pyrimidine; Pu, purine) that was repeated at least 20 times in the entire genome. This repetitive sequence was found also in Neisseria meningitidis but not in various other gram-negative bacteria. Images PMID:3091577

  3. Innovative Graphite Oxide-Cellulose Based Material Specific for Genomic DNA Extraction

    NASA Astrophysics Data System (ADS)

    Akceoglu, Garbis Atam; Li, Oi Lun; Saito, Nagahiro

    2015-11-01

    Extraction of genomic DNA from various types of samples is often challenging for commercial silica spin column. In this study, we proposed graphite oxide (GO)/cellulose composite as an alternative material for genomic DNA extraction. The purity of DNA and extraction efficiency were compared to that of commercial silica product. In this study, the total weight % of GO was fixed at 4.15% in GO/Cellulose composite. Chewed gum, nail clip, cigarette bud paper, animal tissue and hair sample were used as various genomic DNA sources for extraction experiments. Among all types of samples, the extraction efficiencies were 4 to 12 times higher than that of commercial silica spin column. The absorbance ratio of 260 nm to 280 nm (A260/A280) of all samples ranged between 1.6 and 2.0. The results demonstrated that GO/Cellulose composites might serve as an innovative solid support material for genomic DNA extraction.

  4. Sex-Specific Habitat Utilization and Differential Breeding Investments in Christmas Island Frigatebirds throughout the Breeding Cycle

    PubMed Central

    Hennicke, Janos C.; James, David J.; Weimerskirch, Henri

    2015-01-01

    In seabirds, equal bi-parental care is the rule, as it is considered crucial for raising chicks successfully because seabirds forage in an environment with unpredictable and highly variable food supply. Frigatebirds forage in poor tropical waters, yet males reduce and even stop parental care soon after chick brooding, leaving the female to provision the chick alone for an extended fledging period. Using bird-borne tracking devices, male and female Christmas Island Frigatebirds (Fregata andrewsi) were investigated during the brooding, late chick rearing and post-fledging period to examine whether sexes exhibit foraging strategies that may be linked to differential breeding investments. During brooding, males and females showed similar foraging behaviour under average marine productivity of oceanic waters close to the colony, but males shifted to more distant and more productive habitats when conditions deteriorated to continue with reduced chick provisioning. During the late chick rearing period, females progressively increased their foraging range to the more distant but productive marine areas that only males had visited during brooding. Birds spent the non-breeding period roosting in highly productive waters of the Sunda Shelf. The sex-specific utilisation of three different foraging habitats with different primary productivity (oceanic, coastal, and shelf areas) allowed for temporal and spatial segregation in the exploitation of favourable habitats which seems to enable each sex to optimise its foraging profitability. In addition, post-fledging foraging movements of females suggest a biennial breeding cycle, while limited information on males suggests the possibility of an annual breeding cycle. PMID:26098941

  5. Novel genomic tools for specific and real-time detection of biothreat and frequently encountered foodborne pathogens.

    PubMed

    Woubit, Abdela; Yehualaeshet, Teshome; Habtemariam, Tsegaye; Samuel, Temesgen

    2012-04-01

    The bacterial genera Escherichia, Salmonella, Shigella, Vibrio, Yersinia, and Francisella include important food safety and biothreat agents. By extensive mining of the whole genome and protein databases of diverse, closely and distantly related bacterial species and strains, we have identified novel genome regions, which we utilized to develop a rapid detection platform for these pathogens. The specific genomic targets we have identified to design the primers in Francisella tularensis subsp. tularensis, F. tularensis subsp. novicida, Shigella dysenteriae, Salmonella enterica serovar Typhimurium, Vibrio cholerae, Yersinia pestis, and Yersinia pseudotuberculosis contained either known genes or putative proteins. Primer sets were designed from the target regions for use in real-time PCR assays to detect specific biothreat pathogens at species or strain levels. The primer sets were first tested by in silico PCR against whole-genome sequences of different species, subspecies, or strains and then by in vitro PCR against genomic DNA preparations from 23 strains representing six biothreat agents (Escherichia coli O157:H7 strain EDL 933, Shigella dysenteriae, S. enterica serovar Typhi, F. tularensis subsp. tularensis, V. cholerae, and Y. pestis) and six foodborne pathogens (Salmonella Typhimurium, Salmonella Saintpaul, Shigella sonnei, F. tularensis subsp. novicida, Vibrio parahaemolyticus, and Y. pseudotuberculosis). Each pathogen was specifically identifiable at the genus and species levels. Sensitivity assays performed with purified DNA showed the lowest detection limit of 128 fg of DNA/μl for F. tularensis subsp. tularensis. A preliminary test to detect Shigella organisms in a milk matrix also enabled the detection of 6 to 60 CFU/ml. These new tools could ultimately be used to develop platforms to simultaneously detect these pathogens. PMID:22488053

  6. Cloning-free genome engineering in Sinorhizobium meliloti advances applications of Cre/loxP site-specific recombination.

    PubMed

    Döhlemann, Johannes; Brennecke, Meike; Becker, Anke

    2016-09-10

    The soil-dwelling α-proteobacterium Sinorhizobium meliloti serves as model for studies of symbiotic nitrogen fixation, a highly important process in sustainable agriculture. Here, we report advancements of the genetic toolbox accelerating genome editing in S. meliloti. The hsdMSR operon encodes a type-I restriction-modification (R-M) system. Transformation of S. meliloti is counteracted by the restriction endonuclease HsdR degrading DNA which lacks the appropriate methylation pattern. We provide a stable S. meliloti hsdR deletion mutant showing enhanced transformation with Escherichia coli-derived plasmid DNA and demonstrate that using an E. coli plasmid donor, expressing S. meliloti methyl transferase genes, is an alternative strategy of increasing the transformation efficiency of S. meliloti. Furthermore, we devise a novel cloning-free genome editing (CFGE) method for S. meliloti, Agrobacterium tumefaciens and Xanthomonas campestris, and demonstrate the applicability of this method for intricate applications of the Cre/lox recombination system in S. meliloti. An enhanced Cre/lox system, allowing for serial deletions of large genomic regions, was established. An assay of lox spacer mutants identified a set of lox sites mediating specific recombination. The availability of several non-promiscuous Cre recognition sites enables simultaneous specific Cre/lox recombination events. CFGE combined with Cre/lox recombination is put forward as powerful approach for targeted genome editing, involving serial steps of manipulation to expedite the genetic accessibility of S. meliloti as chassis. PMID:27393468

  7. Large, Male Germ Cell-Specific Hypomethylated DNA Domains With Unique Genomic and Epigenomic Features on the Mouse X Chromosome

    PubMed Central

    Ikeda, Rieko; Shiura, Hirosuke; Numata, Koji; Sugimoto, Michihiko; Kondo, Masayo; Mise, Nathan; Suzuki, Masako; Greally, John M.; Abe, Kuniya

    2013-01-01

    To understand the epigenetic regulation required for germ cell-specific gene expression in the mouse, we analysed DNA methylation profiles of developing germ cells using a microarray-based assay adapted for a small number of cells. The analysis revealed differentially methylated sites between cell types tested. Here, we focused on a group of genomic sequences hypomethylated specifically in germline cells as candidate regions involved in the epigenetic regulation of germline gene expression. These hypomethylated sequences tend to be clustered, forming large (10 kb to ∼9 Mb) genomic domains, particularly on the X chromosome of male germ cells. Most of these regions, designated here as large hypomethylated domains (LoDs), correspond to segmentally duplicated regions that contain gene families showing germ cell- or testis-specific expression, including cancer testis antigen genes. We found an inverse correlation between DNA methylation level and expression of genes in these domains. Most LoDs appear to be enriched with H3 lysine 9 dimethylation, usually regarded as a repressive histone modification, although some LoD genes can be expressed in male germ cells. It thus appears that such a unique epigenomic state associated with the LoDs may constitute a basis for the specific expression of genes contained in these genomic domains. PMID:23861320

  8. New Insights into the Classification and Integration Specificity of Streptococcus Integrative Conjugative Elements through Extensive Genome Exploration

    PubMed Central

    Ambroset, Chloé; Coluzzi, Charles; Guédon, Gérard; Devignes, Marie-Dominique; Loux, Valentin; Lacroix, Thomas; Payot, Sophie; Leblond-Bourget, Nathalie

    2016-01-01

    Recent genome analyses suggest that integrative and conjugative elements (ICEs) are widespread in bacterial genomes and therefore play an essential role in horizontal transfer. However, only a few of these elements are precisely characterized and correctly delineated within sequenced bacterial genomes. Even though previous analysis showed the presence of ICEs in some species of Streptococci, the global prevalence and diversity of ICEs was not analyzed in this genus. In this study, we searched for ICEs in the completely sequenced genomes of 124 strains belonging to 27 streptococcal species. These exhaustive analyses revealed 105 putative ICEs and 26 slightly decayed elements whose limits were assessed and whose insertion site was identified. These ICEs were grouped in seven distinct unrelated or distantly related families, according to their conjugation modules. Integration of these streptococcal ICEs is catalyzed either by a site-specific tyrosine integrase, a low-specificity tyrosine integrase, a site-specific single serine integrase, a triplet of site-specific serine integrases or a DDE transposase. Analysis of their integration site led to the detection of 18 target-genes for streptococcal ICE insertion including eight that had not been identified previously (ftsK, guaA, lysS, mutT, rpmG, rpsI, traG, and ebfC). It also suggests that all specificities have evolved to minimize the impact of the insertion on the host. This overall analysis of streptococcal ICEs emphasizes their prevalence and diversity and demonstrates that exchanges or acquisitions of conjugation and recombination modules are frequent. PMID:26779141

  9. Biallelic Mutations of Methionyl-tRNA Synthetase Cause a Specific Type of Pulmonary Alveolar Proteinosis Prevalent on Réunion Island.

    PubMed

    Hadchouel, Alice; Wieland, Thomas; Griese, Matthias; Baruffini, Enrico; Lorenz-Depiereux, Bettina; Enaud, Laurent; Graf, Elisabeth; Dubus, Jean Christophe; Halioui-Louhaichi, Sonia; Coulomb, Aurore; Delacourt, Christophe; Eckstein, Gertrud; Zarbock, Ralf; Schwarzmayr, Thomas; Cartault, François; Meitinger, Thomas; Lodi, Tiziana; de Blic, Jacques; Strom, Tim M

    2015-05-01

    Methionyl-tRNA synthetase (MARS) catalyzes the ligation of methionine to tRNA and is critical for protein biosynthesis. We identified biallelic missense mutations in MARS in a specific form of pediatric pulmonary alveolar proteinosis (PAP), a severe lung disorder that is prevalent on the island of Réunion and the molecular basis of which is unresolved. Mutations were found in 26 individuals from Réunion and nearby islands and in two families from other countries. Functional consequences of the mutated alleles were assessed by growth of wild-type and mutant strains and methionine-incorporation assays in yeast. Enzyme activity was attenuated in a liquid medium without methionine but could be restored by methionine supplementation. In summary, identification of a founder mutation in MARS led to the molecular definition of a specific type of PAP and will enable carrier screening in the affected community and possibly open new treatment opportunities. PMID:25913036

  10. Evolutionary Genomics Reveals Lineage-Specific Gene Loss and Rapid Evolution of a Sperm-Specific Ion Channel Complex: CatSpers and CatSperβ

    PubMed Central

    Cai, Xinjiang; Clapham, David E.

    2008-01-01

    The mammalian CatSper ion channel family consists of four sperm-specific voltage-gated Ca2+ channels that are crucial for sperm hyperactivation and male fertility. All four CatSper subunits are believed to assemble into a heteromultimeric channel complex, together with an auxiliary subunit, CatSperβ. Here, we report a comprehensive comparative genomics study and evolutionary analysis of CatSpers and CatSperβ, with important correlation to physiological significance of molecular evolution of the CatSper channel complex. The development of the CatSper channel complex with four CatSpers and CatSperβ originated as early as primitive metazoans such as the Cnidarian Nematostella vectensis. Comparative genomics revealed extensive lineage-specific gene loss of all four CatSpers and CatSperβ through metazoan evolution, especially in vertebrates. The CatSper channel complex underwent rapid evolution and functional divergence, while distinct evolutionary constraints appear to have acted on different domains and specific sites of the four CatSper genes. These results reveal unique evolutionary characteristics of sperm-specific Ca2+ channels and their adaptation to sperm biology through metazoan evolution. PMID:18974790

  11. Comparative (Meta)genomic Analysis and Ecological Profiling of Human Gut-Specific Bacteriophage φB124-14

    PubMed Central

    Ogilvie, Lesley A.; Caplin, Jonathan; Dedi, Cinzia; Diston, David; Cheek, Elizabeth; Bowler, Lucas; Taylor, Huw; Ebdon, James; Jones, Brian V.

    2012-01-01

    Bacteriophage associated with the human gut microbiome are likely to have an important impact on community structure and function, and provide a wealth of biotechnological opportunities. Despite this, knowledge of the ecology and composition of bacteriophage in the gut bacterial community remains poor, with few well characterized gut-associated phage genomes currently available. Here we describe the identification and in-depth (meta)genomic, proteomic, and ecological analysis of a human gut-specific bacteriophage (designated φB124-14). In doing so we illuminate a fraction of the biological dark matter extant in this ecosystem and its surrounding eco-genomic landscape, identifying a novel and uncharted bacteriophage gene-space in this community. φB124-14 infects only a subset of closely related gut-associated Bacteroides fragilis strains, and the circular genome encodes functions previously found to be rare in viral genomes and human gut viral metagenome sequences, including those which potentially confer advantages upon phage and/or host bacteria. Comparative genomic analyses revealed φB124-14 is most closely related to φB40-8, the only other publically available Bacteroides sp. phage genome, whilst comparative metagenomic analysis of both phage failed to identify any homologous sequences in 136 non-human gut metagenomic datasets searched, supporting the human gut-specific nature of this phage. Moreover, a potential geographic variation in the carriage of these and related phage was revealed by analysis of their distribution and prevalence within 151 human gut microbiomes and viromes from Europe, America and Japan. Finally, ecological profiling of φB124-14 and φB40-8, using both gene-centric alignment-driven phylogenetic analyses, as well as alignment-free gene-independent approaches was undertaken. This not only verified the human gut-specific nature of both phage, but also indicated that these phage populate a distinct and unexplored ecological landscape

  12. Efficient fdCas9 Synthetic Endonuclease with Improved Specificity for Precise Genome Engineering

    PubMed Central

    Aouida, Mustapha; Eid, Ayman; Ali, Zahir; Cradick, Thomas; Lee, Ciaran; Deshmukh, Harshavardhan; Atef, Ahmed; AbuSamra, Dina; Gadhoum, Samah Zeineb; Merzaban, Jasmeen; Bao, Gang; Mahfouz, Magdy

    2015-01-01

    The Cas9 endonuclease is used for genome editing applications in diverse eukaryotic species. A high frequency of off-target activity has been reported in many cell types, limiting its applications to genome engineering, especially in genomic medicine. Here, we generated a synthetic chimeric protein between the catalytic domain of the FokI endonuclease and the catalytically inactive Cas9 protein (fdCas9). A pair of guide RNAs (gRNAs) that bind to sense and antisense strands with a defined spacer sequence range can be used to form a catalytically active dimeric fdCas9 protein and generate double-strand breaks (DSBs) within the spacer sequence. Our data demonstrate an improved catalytic activity of the fdCas9 endonuclease, with a spacer range of 15–39 nucleotides, on surrogate reporters and genomic targets. Furthermore, we observed no detectable fdCas9 activity at known Cas9 off-target sites. Taken together, our data suggest that the fdCas9 endonuclease variant is a superior platform for genome editing applications in eukaryotic systems including mammalian cells. PMID:26225561

  13. Extensively Drug-Resistant Pseudomonas aeruginosa Isolates Containing blaVIM-2 and Elements of Salmonella Genomic Island 2: a New Genetic Resistance Determinant in Northeast Ohio

    PubMed Central

    Perez, Federico; Hujer, Andrea M.; Marshall, Steven H.; Ray, Amy J.; Rather, Philip N.; Suwantarat, Nuntra; Dumford, Donald; O'Shea, Patrick; Domitrovic, T. Nicholas J.; Salata, Robert A.; Chavda, Kalyan D.; Chen, Liang; Kreiswirth, Barry N.; Vila, Alejandro J.; Haussler, Susanne; Jacobs, Michael R.

    2014-01-01

    Carbapenems are a mainstay of treatment for infections caused by Pseudomonas aeruginosa. Carbapenem resistance mediated by metallo-β-lactamases (MBLs) remains uncommon in the United States, despite the worldwide emergence of this group of enzymes. Between March 2012 and May 2013, we detected MBL-producing P. aeruginosa in a university-affiliated health care system in northeast Ohio. We examined the clinical characteristics and outcomes of patients, defined the resistance determinants and structure of the genetic element harboring the blaMBL gene through genome sequencing, and typed MBL-producing P. aeruginosa isolates using pulsed-field gel electrophoresis (PFGE), repetitive sequence-based PCR (rep-PCR), and multilocus sequence typing (MLST). Seven patients were affected that were hospitalized at three community hospitals, a long-term-care facility, and a tertiary care center; one of the patients died as a result of infection. Isolates belonged to sequence type 233 (ST233) and were extensively drug resistant (XDR), including resistance to all fluoroquinolones, aminoglycosides, and β-lactams; two isolates were nonsusceptible to colistin. The blaMBL gene was identified as blaVIM-2 contained within a class 1 integron (In559), similar to the cassette array previously detected in isolates from Norway, Russia, Taiwan, and Chicago, IL. Genomic sequencing and assembly revealed that In559 was part of a novel 35-kb region that also included a Tn501-like transposon and Salmonella genomic island 2 (SGI2)-homologous sequences. This analysis of XDR strains producing VIM-2 from northeast Ohio revealed a novel recombination event between Salmonella and P. aeruginosa, heralding a new antibiotic resistance threat in this region's health care system. PMID:25070102

  14. The genome-wide DNA sequence specificity of the anti-tumour drug bleomycin in human cells.

    PubMed

    Murray, Vincent; Chen, Jon K; Tanaka, Mark M

    2016-07-01

    The cancer chemotherapeutic agent, bleomycin, cleaves DNA at specific sites. For the first time, the genome-wide DNA sequence specificity of bleomycin breakage was determined in human cells. Utilising Illumina next-generation DNA sequencing techniques, over 200 million bleomycin cleavage sites were examined to elucidate the bleomycin genome-wide DNA selectivity. The genome-wide bleomycin cleavage data were analysed by four different methods to determine the cellular DNA sequence specificity of bleomycin strand breakage. For the most highly cleaved DNA sequences, the preferred site of bleomycin breakage was at 5'-GT* dinucleotide sequences (where the asterisk indicates the bleomycin cleavage site), with lesser cleavage at 5'-GC* dinucleotides. This investigation also determined longer bleomycin cleavage sequences, with preferred cleavage at 5'-GT*A and 5'- TGT* trinucleotide sequences, and 5'-TGT*A tetranucleotides. For cellular DNA, the hexanucleotide DNA sequence 5'-RTGT*AY (where R is a purine and Y is a pyrimidine) was the most highly cleaved DNA sequence. It was striking that alternating purine-pyrimidine sequences were highly cleaved by bleomycin. The highest intensity cleavage sites in cellular and purified DNA were very similar although there were some minor differences. Statistical nucleotide frequency analysis indicated a G nucleotide was present at the -3 position (relative to the cleavage site) in cellular DNA but was absent in purified DNA. PMID:27188426

  15. Development of genome-specific primers for homoeologous genes in allopolyploid species: the waxy and starch synthase II genes in allohexaploid wheat (Triticum aestivum L.) as examples

    PubMed Central

    2010-01-01

    Background In allopolypoid crops, homoeologous genes in different genomes exhibit a very high sequence similarity, especially in the coding regions of genes. This makes it difficult to design genome-specific primers to amplify individual genes from different genomes. Development of genome-specific primers for agronomically important genes in allopolypoid crops is very important and useful not only for the study of sequence diversity and association mapping of genes in natural populations, but also for the development of gene-based functional markers for marker-assisted breeding. Here we report on a useful approach for the development of genome-specific primers in allohexaploid wheat. Findings In the present study, three genome-specific primer sets for the waxy (Wx) genes and four genome-specific primer sets for the starch synthase II (SSII) genes were developed mainly from single nucleotide polymorphisms (SNPs) and/or insertions or deletions (Indels) in introns and intron-exon junctions. The size of a single PCR product ranged from 750 bp to 1657 bp. The total length of amplified PCR products by these genome-specific primer sets accounted for 72.6%-87.0% of the Wx genes and 59.5%-61.6% of the SSII genes. Five genome-specific primer sets for the Wx genes (one for Wx-7A, three for Wx-4A and one for Wx-7D) could distinguish the wild type wheat and partial waxy wheat lines. These genome-specific primer sets for the Wx and SSII genes produced amplifications in hexaploid wheat, cultivated durum wheat, and Aegilops tauschii accessions, but failed to generate amplification in the majority of wild diploid and tetraploid accessions. Conclusions For the first time, we report on the development of genome-specific primers from three homoeologous Wx and SSII genes covering the majority of the genes in allohexaploid wheat. These genome-specific primers are being used for the study of sequence diversity and association mapping of the three homoeologous Wx and SSII genes in natural

  16. Genus-Wide Comparative Genome Analyses of Colletotrichum Species Reveal Specific Gene Family Losses and Gains during Adaptation to Specific Infection Lifestyles

    PubMed Central

    Gan, Pamela; Narusaka, Mari; Kumakura, Naoyoshi; Tsushima, Ayako; Takano, Yoshitaka; Narusaka, Yoshihiro; Shirasu, Ken

    2016-01-01

    Members from Colletotrichum genus adopt a diverse range of lifestyles during infection of plants and represent a group of agriculturally devastating pathogens. In this study, we present the draft genome of Colletotrichum incanum from the spaethianum clade of Colletotrichum and the comparative analyses with five other Colletotrichum species from distinct lineages. We show that the C. incanum strain, originally isolated from Japanese daikon radish, is able to infect both eudicot plants, such as certain ecotypes of the eudicot Arabidopsis, and monocot plants, such as lily. Being closely related to Colletotrichum species both in the graminicola clade, whose members are restricted strictly to monocot hosts, and to the destructivum clade, whose members are mostly associated with dicot infections, C. incanum provides an interesting model system for comparative genomics to study how fungal pathogens adapt to monocot and dicot hosts. Genus-wide comparative genome analyses reveal that Colletotrichum species have tailored profiles of their carbohydrate-degrading enzymes according to their infection lifestyles. In addition, we show evidence that positive selection acting on secreted and nuclear localized proteins that are highly conserved may be important in adaptation to specific hosts or ecological niches. PMID:27189990

  17. Genus-Wide Comparative Genome Analyses of Colletotrichum Species Reveal Specific Gene Family Losses and Gains during Adaptation to Specific Infection Lifestyles.

    PubMed

    Gan, Pamela; Narusaka, Mari; Kumakura, Naoyoshi; Tsushima, Ayako; Takano, Yoshitaka; Narusaka, Yoshihiro; Shirasu, Ken

    2016-01-01

    Members from Colletotrichum genus adopt a diverse range of lifestyles during infection of plants and represent a group of agriculturally devastating pathogens. In this study, we present the draft genome of Colletotrichum incanum from the spaethianum clade of Colletotrichum and the comparative analyses with five other Colletotrichum species from distinct lineages. We show that the C. incanum strain, originally isolated from Japanese daikon radish, is able to infect both eudicot plants, such as certain ecotypes of the eudicot Arabidopsis, and monocot plants, such as lily. Being closely related to Colletotrichum species both in the graminicola clade, whose members are restricted strictly to monocot hosts, and to the destructivum clade, whose members are mostly associated with dicot infections, C. incanum provides an interesting model system for comparative genomics to study how fungal pathogens adapt to monocot and dicot hosts. Genus-wide comparative genome analyses reveal that Colletotrichum species have tailored profiles of their carbohydrate-degrading enzymes according to their infection lifestyles. In addition, we show evidence that positive selection acting on secreted and nuclear localized proteins that are highly conserved may be important in adaptation to specific hosts or ecological niches. PMID:27189990

  18. The p16-specific reactivation and inhibition of cell migration through demethylation of CpG islands by engineered transcription factors.

    PubMed

    Zhang, Baozhen; Xiang, Shengyan; Zhong, Qiming; Yin, Yanru; Gu, Liankun; Deng, Dajun

    2012-10-01

    Methylation of CpG islands inactivates transcription of tumor suppressor genes including p16 (CDKN2A). Inhibitors of DNA methylation and histone deacylation are recognized as useful cancer therapeutic chemicals through reactivation of the expression of methylated genes. However, these inhibitors are not target gene-specific, so that they lead to serious side effects as regular cytotoxic chemotherapy agents. To explore the feasibility of methylated gene-specific reactivation by artificial transcription factors, we engineered a set of Sp1-like seven-finger zinc-finger proteins (7ZFPs) targeted to a 21-bp sequence of the p16 promoter and found that these 7ZFPs could bind specifically to the target p16 promoter probe. Then the p16-specific artificial transcription factors (p16ATFs) were made from these 7ZFPs and the transcription activator VP64. Results showed that transient transfection of some p16ATFs selectively up-regulated the endogenous p16 expression in the p16-active 293T cells. Moreover, the transient transfection of the representative p16ATF-6I specifically reactivated p16 expression in the p16-methylated H1299 and AGS cells pretreated with a nontoxic amount of 5'-aza-deoxycytidine (20 and 80 nM, respectively). In addition, stable transfection of the p16ATF induced demethylation of p16 CpG island and trimethylation of histone H3K4, and inhibited recruitment of DNA methyltransferase 1 and trimethylation of H3K9 and H3K27 in the p16 promoter in H1299 cells without 5'-aza-deoxycytidine pretreatment. Notably, inhibition of cell migration and invasion was observed in these p16-reactivated cells induced by transient and stable p16ATF transfection. These results demonstrate that p16ATF not only specifically reactivates p16 expression through demethylation of CpG islands, but also restores methylated p16 function. PMID:22738793

  19. Genome characterization of a novel vibriophage VpKK5 (Siphoviridae) specific to fish pathogenic strain of Vibrio parahaemolyticus.

    PubMed

    Lal, Tamrin M; Sano, Motohiko; Ransangan, Julian

    2016-08-01

    Vibrio parahaemolyticus has long been known pathogenic to shrimp but only recently it is also reported pathogenic to tropical cultured marine finfish. Traditionally, bacterial diseases in aquaculture are often treated using synthetic antibiotics but concern due to side effects of these chemicals is elevating hence, new control strategies which are both environmental and consumer friendly, are urgently needed. One promising control strategy is the bacteriophage therapy. In this study, we report the isolation and characterization of a novel vibriophage (VpKK5), belonging to the family Siphoviridae that was specific and capable of complete lysing the fish pathogenic strain of V. parahaemolyticus. The VpKK5 exhibited short eclipse and latent periods of 24 and 36 min, respectively, but with a large burst size of 180 pfu/cell. The genome analysis revealed that the VpKK5 is a novel bacteriophage with the estimated genome size of 56,637 bp and has 53.1% G + C content. The vibriophage has about 80 predicted open reading frames consisted of 37 complete coding sequences which did not match to any protein databases. The analysis also found no lysogeny and virulence genes in the genome of VpKK5. With such genome features, we suspected the vibriophage is novel and could be explored for phage therapy against fish pathogenic strains of V. parahaemolyticus in the near future. PMID:26960780

  20. Comparative Genome Analysis of Campylobacter fetus Subspecies Revealed Horizontally Acquired Genetic Elements Important for Virulence and Niche Specificity

    PubMed Central

    Kienesberger, Sabine; Sprenger, Hanna; Wolfgruber, Stella; Halwachs, Bettina; Thallinger, Gerhard G.; Perez-Perez, Guillermo I.; Blaser, Martin J.; Zechner, Ellen L.; Gorkiewicz, Gregor

    2014-01-01

    Campylobacter fetus are important animal and human pathogens and the two major subspecies differ strikingly in pathogenicity. C. fetus subsp. venerealis is highly niche-adapted, mainly infecting the genital tract of cattle. C. fetus subsp. fetus has a wider host-range, colonizing the genital- and intestinal-tract of animals and humans. We report the complete genomic sequence of C. fetus subsp. venerealis 84-112 and comparisons to the genome of C. fetus subsp. fetus 82-40. Functional analysis of genes predicted to be involved in C. fetus virulence was performed. The two subspecies are highly syntenic with 92% sequence identity but C. fetus subsp. venerealis has a larger genome and an extra-chromosomal element. Aside from apparent gene transfer agents and hypothetical proteins, the unique genes in both subspecies comprise two known functional groups: lipopolysaccharide production, and type IV secretion machineries. Analyses of lipopolysaccharide-biosynthesis genes in C. fetus isolates showed linkage to particular pathotypes, and mutational inactivation demonstrated their roles in regulating virulence and host range. The comparative analysis presented here broadens knowledge of the genomic basis of C. fetus pathogenesis and host specificity. It further highlights the importance of surface-exposed structures to C. fetus pathogenicity and demonstrates how evolutionary forces optimize the fitness and host-adaptation of these pathogens. PMID:24416416

  1. Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR.

    PubMed Central

    Louws, F J; Fulbright, D W; Stephens, C T; de Bruijn, F J

    1994-01-01

    DNA primers corresponding to conserved motifs in bacterial repetitive (REP, ERIC, and BOX) elements and PCR were used to show that REP-, ERIC-, and BOX-like DNA sequences are widely distributed in phytopathogenic Xanthomonas and Pseudomonas strains. REP-, ERIC, and BOX-PCR (collectively known as rep-PCR) were used to generate genomic fingerprints of a variety of Xanthomonas and Pseudomonas isolates and to identify pathovars and strains that were previously not distinguishable by other classification methods. Analogous rep-PCR-derived genomic fingerprints were generated from purified genomic DNA, colonies on agar plates, liquid cultures, and directly from lesions on infected plants. REP, ERIC, and BOX-PCR-generated fingerprints of specific Xanthomonas and Pseudomonas strains were found to yield similar conclusions wtih regard to the identity of and relationship between these strains. This suggests that the distribution of REP-, ERIC, and BOX-like sequences in these strains is a reflection of their genomic structure. Thus, the rep-PCR technique appears to be a rapid, simple, and reproducible method to identify and classify Xanthomonas and Pseudomonas strains, and it may be a useful diagnostic tool for these important plant pathogens. Images PMID:8074510

  2. Identification of a 5S rDNA spacer type specific Triticum urartu and wheats containing the T. urartu genome.

    PubMed

    Allaby, R G; Brown, T A

    2000-04-01

    A PCR system was designed to amplify 5S spacer rDNA specifically from homeologous chromosome 1 in a variety of species representative of the Aegilops and Triticum genera. Two polymerase chain reaction (PCR) primer combinations were used, one of which appears to be apomorphic in nature and specific to chromosome 1A in Triticum urartu and tetraploid and hexaploid wheats containing the AA genome donated by T. urartu. The value of studying single repeat types to investigate the molecular evolution of 5S-rDNA arrays is considered. PMID:10791812

  3. Conjugation-specific small RNAs in Tetrahymena have predicted properties of scan (scn) RNAs involved in genome rearrangement

    PubMed Central

    Mochizuki, Kazufumi; Gorovsky, Martin A.

    2004-01-01

    We proposed a scan-RNA model for genome rearrangement based on finding small RNAs that hybridized preferentially to micronuclear-specific sequences and on the properties of Twi1p, a PPD protein required for both sequence elimination and small RNA accumulation in Tetrahymena. Here we show that Twi1p interacts with the small RNAs in both the old and the developing macronucleus, and is required for their stability. We show that the specificity of the small RNAs for micronuclear-limited sequences increases during conjugation. These results indicate that the small RNAs observed in conjugating cells have the properties predicted for scan RNAs. PMID:15314029

  4. Recent artificial selection in U.S. Jersey cattle impacts autozygosity levels of specific genomic regions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome signatures of artificial selection in U.S. Jersey cattle were identified by examining changes in haplotype homozygosity for a resource population of animals born between 1962 and 2005. Genetic merit of this population changed dramatically during this period for a number of traits, especially ...

  5. Development of a D genome specific marker resource for diploid and hexaploid wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mapping and map-based cloning of genes that control agriculturally and economically important traits remain great challenges for plants with complex highly repetitive genomes such as those of the grass tribe, Triticeae. Mapping limitations in the Triticeae are primarily due to low frequencies of po...

  6. Secretory Breast Carcinoma: A Histopathologic and Genomic Spectrum Characterized by a Joint Specific ETV6-NTRK3 Gene Fusion.

    PubMed

    Del Castillo, Marie; Chibon, Frédéric; Arnould, Laurent; Croce, Sabrina; Ribeiro, Agnès; Perot, Gaëlle; Hostein, Isabelle; Geha, Sameh; Bozon, Catherine; Garnier, Agnès; Lae, Marick; Vincent-Salomon, Anne; MacGrogan, Gaëtan

    2015-11-01

    Secretory breast carcinoma (SBC) is a rare breast carcinoma with distinctive morphologic features and a recurrent specific chromosomal translocation t(12;15)(p13;q25), usually of low histologic grade and favorable prognosis. We describe the morphologic and genetic characteristics of 11 cases of SBC from 10 patients. Histologic and immunohistochemical analyses, fluorescence in situ hybridization using break-apart probes specific to ETV6 on 12p13, reverse transcription polymerase chain reaction with in-house probes specific to the ETV6-NTRK3 gene fusion, and DNA copy number variation by array comparative genomic hybridization analyses were performed on all cases. Seven cases were of low histologic grade, 3 were intermediate, and 1 had high-grade nuclear atypia, necrosis, and numerous mitoses. This patient had a fatal outcome. Five cases displayed low hormonal receptor expression, whereas the rest had basal-type immunoprofiles. All interpretable cases harbored an ETV6-NTRK3 gene fusion by reverse transcription polymerase chain reaction and/or an ETV6 rearrangement by fluorescence in situ hybridization, with duplication of the oncogenic derivative in 2 cases. Array comparative genomic hybridization analysis showed simplex genomic profiles. The 2 cases with ETV6-NTRK3 duplication included a gain of 12p starting from the ETV6 locus to the telomere, associated with a gain of the 15q from the centromere to NTRK3 in 1 case, and in the other a normal profile up to NTRK3 on 15q, and then a loss up to the telomere, suggesting loss of corresponding normal chromosome 15. These findings provide a novel insight into the morphologic and genetic spectrum of SBC, ranging from low-grade to high-grade histology, with occasional low hormonal receptor expression, simplex genomic profiles, and possible unfavorable course. PMID:26291510

  7. Estimating Gene Expression and Codon-Specific Translational Efficiencies, Mutation Biases, and Selection Coefficients from Genomic Data Alone‡

    PubMed Central

    Gilchrist, Michael A.; Chen, Wei-Chen; Shah, Premal; Landerer, Cedric L.; Zaretzki, Russell

    2015-01-01

    Extracting biologically meaningful information from the continuing flood of genomic data is a major challenge in the life sciences. Codon usage bias (CUB) is a general feature of most genomes and is thought to reflect the effects of both natural selection for efficient translation and mutation bias. Here we present a mechanistically interpretable, Bayesian model (ribosome overhead costs Stochastic Evolutionary Model of Protein Production Rate [ROC SEMPPR]) to extract meaningful information from patterns of CUB within a genome. ROC SEMPPR is grounded in population genetics and allows us to separate the contributions of mutational biases and natural selection against translational inefficiency on a gene-by-gene and codon-by-codon basis. Until now, the primary disadvantage of similar approaches was the need for genome scale measurements of gene expression. Here, we demonstrate that it is possible to both extract accurate estimates of codon-specific mutation biases and translational efficiencies while simultaneously generating accurate estimates of gene expression, rather than requiring such information. We demonstrate the utility of ROC SEMPPR using the Saccharomyces cerevisiae S288c genome. When we compare our model fits with previous approaches we observe an exceptionally high agreement between estimates of both codon-specific parameters and gene expression levels (ρ>0.99 in all cases). We also observe strong agreement between our parameter estimates and those derived from alternative data sets. For example, our estimates of mutation bias and those from mutational accumulation experiments are highly correlated (ρ=0.95). Our estimates of codon-specific translational inefficiencies and tRNA copy number-based estimates of ribosome pausing time (ρ=0.64), and mRNA and ribosome profiling footprint-based estimates of gene expression (ρ=0.53−0.74) are also highly correlated, thus supporting the hypothesis that selection against translational inefficiency is an

  8. Chromosome region-specific libraries for human genome analysis. Final progress report, 1 March 1991--28 February 1994

    SciTech Connect

    Kao, F.T.

    1994-04-01

    The objectives of this grant proposal include (1) development of a chromosome microdissection and PCR-mediated microcloning technology, (2) application of this microtechnology to the construction of region-specific libraries for human genome analysis. During this grant period, the authors have successfully developed this microtechnology and have applied it to the construction of microdissection libraries for the following chromosome regions: a whole chromosome 21 (21E), 2 region-specific libraries for the long arm of chromosome 2, 2q35-q37 (2Q1) and 2q33-q35 (2Q2), and 4 region-specific libraries for the entire short arm of chromosome 2, 2p23-p25 (2P1), 2p21-p23 (2P2), 2p14-p16 (wP3) and 2p11-p13 (2P4). In addition, 20--40 unique sequence microclones have been isolated and characterized for genomic studies. These region-specific libraries and the single-copy microclones from the library have been used as valuable resources for (1) isolating microsatellite probes in linkage analysis to further refine the disease locus; (2) isolating corresponding clones with large inserts, e.g. YAC, BAC, P1, cosmid and phage, to facilitate construction of contigs for high resolution physical mapping; and (3) isolating region-specific cDNA clones for use as candidate genes. These libraries are being deposited in the American Type Culture Collection (ATCC) for general distribution.

  9. Specification of Tectonic Tsunami Sources Along the Eastern Aleutian Island Arc and Alaska Peninsula for Inundation Mapping and Hazard Assessment

    NASA Astrophysics Data System (ADS)

    Suleimani, E.; Nicolsky, D.; Freymueller, J. T.; Koehler, R.

    2013-12-01

    The Alaska Earthquake Information Center conducts tsunami inundation mapping for coastal communities in Alaska along several segments of the Aleutian Megathrust, each having a unique seismic history and tsunami generation potential. Accurate identification and characterization of potential tsunami sources is a critical component of our project. As demonstrated by the 2011 Tohoku-oki tsunami, correct estimation of the maximum size event for a given segment of the subduction zone is particularly important. In that event, unexpectedly large slip occurred approximately updip of the epicenter of the main shock, based on seafloor GPS and seafloor pressure gage observations, generating a much larger tsunami than anticipated. This emphasizes the importance of the detailed knowledge of the region-specific subduction processes, and using the most up-to-date geophysical data and research models that define the magnitude range of possible future tsunami events. Our study area extends from the eastern half of the 1957 rupture zone to Kodiak Island, covering the 1946 and 1938 rupture areas, the Shumagin gap, and the western part of the 1964 rupture area. We propose a strategy for generating worst-case credible tsunami scenarios for locations that have a short or nonexistent paleoseismic/paleotsunami record, and in some cases lack modern seismic and GPS data. The potential tsunami scenarios are built based on a discretized plate interface model fit to the Slab 1.0 model geometry. We employ estimates of slip deficit along the Aleutian Megathrust from GPS campaign surveys, the Slab 1.0 interface surface, empirical magnitude-slip relationships, and a numerical code that distributes slip among the subfault elements, calculates coseismic deformations and solves the shallow water equations of tsunami propagation and runup. We define hypothetical asperities along the megathrust and in down-dip direction, and perform a set of sensitivity model runs to identify coseismic deformation

  10. Comparative genomic and functional analyses: unearthing the diversity and specificity of nematicidal factors in Pseudomonas putida strain 1A00316

    PubMed Central

    Guo, Jing; Jing, Xueping; Peng, Wen-Lei; Nie, Qiyu; Zhai, Yile; Shao, Zongze; Zheng, Longyu; Cai, Minmin; Li, Guangyu; Zuo, Huaiyu; Zhang, Zhitao; Wang, Rui-Ru; Huang, Dian; Cheng, Wanli; Yu, Ziniu; Chen, Ling-Ling; Zhang, Jibin

    2016-01-01

    We isolated Pseudomonas putida (P. putida) strain 1A00316 from Antarctica. This bacterium has a high efficiency against Meloidogyne incognita (M. incognita) in vitro and under greenhouse conditions. The complete genome of P. putida 1A00316 was sequenced using PacBio single molecule real-time (SMRT) technology. A comparative genomic analysis of 16 Pseudomonas strains revealed that although P. putida 1A00316 belonged to P. putida, it was phenotypically more similar to nematicidal Pseudomonas fluorescens (P. fluorescens) strains. We characterized the diversity and specificity of nematicidal factors in P. putida 1A00316 with comparative genomics and functional analysis, and found that P. putida 1A00316 has diverse nematicidal factors including protein alkaline metalloproteinase AprA and two secondary metabolites, hydrogen cyanide and cyclo-(l-isoleucyl-l-proline). We show for the first time that cyclo-(l-isoleucyl-l-proline) exhibit nematicidal activity in P. putida. Interestingly, our study had not detected common nematicidal factors such as 2,4-diacetylphloroglucinol (2,4-DAPG) and pyrrolnitrin in P. putida 1A00316. The results of the present study reveal the diversity and specificity of nematicidal factors in P. putida strain 1A00316. PMID:27384076

  11. Site-specific genome editing for correction of induced pluripotent stem cells derived from dominant dystrophic epidermolysis bullosa.

    PubMed

    Shinkuma, Satoru; Guo, Zongyou; Christiano, Angela M

    2016-05-17

    Genome editing with engineered site-specific endonucleases involves nonhomologous end-joining, leading to reading frame disruption. The approach is applicable to dominant negative disorders, which can be treated simply by knocking out the mutant allele, while leaving the normal allele intact. We applied this strategy to dominant dystrophic epidermolysis bullosa (DDEB), which is caused by a dominant negative mutation in the COL7A1 gene encoding type VII collagen (COL7). We performed genome editing with TALENs and CRISPR/Cas9 targeting the mutation, c.8068_8084delinsGA. We then cotransfected Cas9 and guide RNA expression vectors expressed with GFP and DsRed, respectively, into induced pluripotent stem cells (iPSCs) generated from DDEB fibroblasts. After sorting, 90% of the iPSCs were edited, and we selected four gene-edited iPSC lines for further study. These iPSCs were differentiated into keratinocytes and fibroblasts secreting COL7. RT-PCR and Western blot analyses revealed gene-edited COL7 with frameshift mutations degraded at the protein level. In addition, we confirmed that the gene-edited truncated COL7 could neither associate with normal COL7 nor undergo triple helix formation. Our data establish the feasibility of mutation site-specific genome editing in dominant negative disorders. PMID:27143720

  12. Comparative genomic and functional analyses: unearthing the diversity and specificity of nematicidal factors in Pseudomonas putida strain 1A00316.

    PubMed

    Guo, Jing; Jing, Xueping; Peng, Wen-Lei; Nie, Qiyu; Zhai, Yile; Shao, Zongze; Zheng, Longyu; Cai, Minmin; Li, Guangyu; Zuo, Huaiyu; Zhang, Zhitao; Wang, Rui-Ru; Huang, Dian; Cheng, Wanli; Yu, Ziniu; Chen, Ling-Ling; Zhang, Jibin

    2016-01-01

    We isolated Pseudomonas putida (P. putida) strain 1A00316 from Antarctica. This bacterium has a high efficiency against Meloidogyne incognita (M. incognita) in vitro and under greenhouse conditions. The complete genome of P. putida 1A00316 was sequenced using PacBio single molecule real-time (SMRT) technology. A comparative genomic analysis of 16 Pseudomonas strains revealed that although P. putida 1A00316 belonged to P. putida, it was phenotypically more similar to nematicidal Pseudomonas fluorescens (P. fluorescens) strains. We characterized the diversity and specificity of nematicidal factors in P. putida 1A00316 with comparative genomics and functional analysis, and found that P. putida 1A00316 has diverse nematicidal factors including protein alkaline metalloproteinase AprA and two secondary metabolites, hydrogen cyanide and cyclo-(l-isoleucyl-l-proline). We show for the first time that cyclo-(l-isoleucyl-l-proline) exhibit nematicidal activity in P. putida. Interestingly, our study had not detected common nematicidal factors such as 2,4-diacetylphloroglucinol (2,4-DAPG) and pyrrolnitrin in P. putida 1A00316. The results of the present study reveal the diversity and specificity of nematicidal factors in P. putida strain 1A00316. PMID:27384076

  13. Comparative genome-scale modelling of Staphylococcus aureus strains identifies strain-specific metabolic capabilities linked to pathogenicity

    PubMed Central

    Bosi, Emanuele; Monk, Jonathan M.; Aziz, Ramy K.; Fondi, Marco; Nizet, Victor; Palsson, Bernhard Ø.

    2016-01-01

    Staphylococcus aureus is a preeminent bacterial pathogen capable of colonizing diverse ecological niches within its human host. We describe here the pangenome of S. aureus based on analysis of genome sequences from 64 strains of S. aureus spanning a range of ecological niches, host types, and antibiotic resistance profiles. Based on this set, S. aureus is expected to have an open pangenome composed of 7,411 genes and a core genome composed of 1,441 genes. Metabolism was highly conserved in this core genome; however, differences were identified in amino acid and nucleotide biosynthesis pathways between the strains. Genome-scale models (GEMs) of metabolism were constructed for the 64 strains of S. aureus. These GEMs enabled a systems approach to characterizing the core metabolic and panmetabolic capabilities of the S. aureus species. All models were predicted to be auxotrophic for the vitamins niacin (vitamin B3) and thiamin (vitamin B1), whereas strain-specific auxotrophies were predicted for riboflavin (vitamin B2), guanosine, leucine, methionine, and cysteine, among others. GEMs were used to systematically analyze growth capabilities in more than 300 different growth-supporting environments. The results identified metabolic capabilities linked to pathogenic traits and virulence acquisitions. Such traits can be used to differentiate strains responsible for mild vs. severe infections and preference for hosts (e.g., animals vs. humans). Genome-scale analysis of multiple strains of a species can thus be used to identify metabolic determinants of virulence and increase our understanding of why certain strains of this deadly pathogen have spread rapidly throughout the world. PMID:27286824

  14. Comparative genome-scale modelling of Staphylococcus aureus strains identifies strain-specific metabolic capabilities linked to pathogenicity.

    PubMed

    Bosi, Emanuele; Monk, Jonathan M; Aziz, Ramy K; Fondi, Marco; Nizet, Victor; Palsson, Bernhard Ø

    2016-06-28

    Staphylococcus aureus is a preeminent bacterial pathogen capable of colonizing diverse ecological niches within its human host. We describe here the pangenome of S. aureus based on analysis of genome sequences from 64 strains of S. aureus spanning a range of ecological niches, host types, and antibiotic resistance profiles. Based on this set, S. aureus is expected to have an open pangenome composed of 7,411 genes and a core genome composed of 1,441 genes. Metabolism was highly conserved in this core genome; however, differences were identified in amino acid and nucleotide biosynthesis pathways between the strains. Genome-scale models (GEMs) of metabolism were constructed for the 64 strains of S. aureus These GEMs enabled a systems approach to characterizing the core metabolic and panmetabolic capabilities of the S. aureus species. All models were predicted to be auxotrophic for the vitamins niacin (vitamin B3) and thiamin (vitamin B1), whereas strain-specific auxotrophies were predicted for riboflavin (vitamin B2), guanosine, leucine, methionine, and cysteine, among others. GEMs were used to systematically analyze growth capabilities in more than 300 different growth-supporting environments. The results identified metabolic capabilities linked to pathogenic traits and virulence acquisitions. Such traits can be used to differentiate strains responsible for mild vs. severe infections and preference for hosts (e.g., animals vs. humans). Genome-scale analysis of multiple strains of a species can thus be used to identify metabolic determinants of virulence and increase our understanding of why certain strains of this deadly pathogen have spread rapidly throughout the world. PMID:27286824

  15. Screening of Tissue-Specific Genes and Promoters in Tomato by Comparing Genome Wide Expression Profiles of Arabidopsis Orthologues

    PubMed Central

    Lim, Chan Ju; Lee, Ha Yeon; Kim, Woong Bom; Lee, Bok-Sim; Kim, Jungeun; Ahmad, Raza; Kim, Hyun A; Yi, So Young; Hur, Cheol-Goo; Kwon, Suk-Yoon

    2012-01-01

    Constitutive overexpression of transgenes occasionally interferes with normal growth and developmental processes in plants. Thus, the development of tissue-specific promoters that drive transgene expression has become agriculturally important. To identify tomato tissue-specific promoters, tissue-specific genes were screened using a series of in silico-based and experimental procedures, including genome-wide orthologue searches of tomato and Arabidopsis databases, isolation of tissue-specific candidates using an Arabidopsis microarray database, and validation of tissue specificity by reverse transcription-polymerase chain reaction (RT-PCR) analysis and promoter assay. Using these procedures, we found 311 tissue-specific candidate genes and validated 10 tissue-specific genes by RT-PCR. Among these identified genes, histochemical analysis of five isolated promoter::GUS transgenic tomato and Arabidopsis plants revealed that their promoters have different but distinct tissue-specific activities in anther, fruit, and root, respectively. Therefore, it appears these in silico-based screening approaches in addition to the identification of new tissue-specific genes and promoters will be helpful for the further development of tailored crop development. PMID:22699756

  16. Sequence-specific interaction between HIV-1 matrix protein and viral genomic RNA revealed by in vitro genetic selection.

    PubMed Central

    Purohit, P; Dupont, S; Stevenson, M; Green, M R

    2001-01-01

    The human immunodeficiency virus type-1 matrix protein (HIV-1 MA) is a multifunctional structural protein synthesized as part of the Pr55 gag polyprotein. We have used in vitro genetic selection to identify an RNA consensus sequence that specifically interacts with MA (Kd = 5 x 10(-7) M). This 13-nt MA binding consensus sequence bears a high degree of homology (77%) to a region (nt 1433-1446) within the POL open reading frame of the HIV-1 genome (consensus sequence from 38 HIV-1 strains). Chemical interference experiments identified the nucleotides within the MA binding consensus sequence involved in direct contact with MA. We further demonstrate that this RNA-protein interaction is mediated through a stretch of basic amino acids within MA. Mutations that disrupt the interaction between MA and its RNA binding site within the HIV-1 genome resulted in a measurable decrease in viral replication. PMID:11345436

  17. Measuring specific receptor binding of a PET radioligand in human brain without pharmacological blockade: The genomic plot

    PubMed Central

    Veronese, Mattia; Zanotti-Fregonara, Paolo; Rizzo, Gaia; Bertoldo, Alessandra; Innis, Robert B.; Turkheimer, Federico E.

    2016-01-01

    PET studies allow in vivo imaging of the density of brain receptor species. The PET signal, however, is the sum of the fraction of radioligand that is specifically bound to the target receptor and the non-displaceable fraction (i.e. the non-specifically bound radioligand plus the free ligand in tissue). Therefore, measuring the non-displaceable fraction, which is generally assumed to be constant across the brain, is a necessary step to obtain regional estimates of the specific fractions. The nondisplaceable binding can be directly measured if a reference region, i.e. a region devoid of any specific binding, is available. Many receptors are however widely expressed across the brain, and a true reference region is rarely available. In these cases, the nonspecific binding can be obtained after competitive pharmacological blockade, which is often contraindicated in humans. In this work we introduce the genomic plot for estimating the nondisplaceable fraction using baseline scans only. The genomic plot is a transformation of the Lassen graphical method in which the brain maps of mRNA transcripts of the target receptor obtained from the Allen brain atlas are used as a surrogate measure of the specific binding. Thus, the genomic plot allows the calculation of the specific and nondisplaceable components of radioligand uptake without the need of pharmacological blockade. We first assessed the statistical properties of the method with computer simulations. Then we sought ground-truth validation using human PET datasets of seven different neuroreceptor radioligands, where nonspecific fractions were either obtained separately using drug displacement or available from a true reference region. The population nondisplaceable fractions estimated by the genomic plot were very close to those measured by actual human blocking studies (mean relative difference between 2% and 7%). However, these estimates were valid only when mRNA expressions were predictive of protein levels (i

  18. Measuring specific receptor binding of a PET radioligand in human brain without pharmacological blockade: The genomic plot.

    PubMed

    Veronese, Mattia; Zanotti-Fregonara, Paolo; Rizzo, Gaia; Bertoldo, Alessandra; Innis, Robert B; Turkheimer, Federico E

    2016-04-15

    PET studies allow in vivo imaging of the density of brain receptor species. The PET signal, however, is the sum of the fraction of radioligand that is specifically bound to the target receptor and the non-displaceable fraction (i.e. the non-specifically bound radioligand plus the free ligand in tissue). Therefore, measuring the non-displaceable fraction, which is generally assumed to be constant across the brain, is a necessary step to obtain regional estimates of the specific fractions. The nondisplaceable binding can be directly measured if a reference region, i.e. a region devoid of any specific binding, is available. Many receptors are however widely expressed across the brain, and a true reference region is rarely available. In these cases, the nonspecific binding can be obtained after competitive pharmacological blockade, which is often contraindicated in humans. In this work we introduce the genomic plot for estimating the nondisplaceable fraction using baseline scans only. The genomic plot is a transformation of the Lassen graphical method in which the brain maps of mRNA transcripts of the target receptor obtained from the Allen brain atlas are used as a surrogate measure of the specific binding. Thus, the genomic plot allows the calculation of the specific and nondisplaceable components of radioligand uptake without the need of pharmacological blockade. We first assessed the statistical properties of the method with computer simulations. Then we sought ground-truth validation using human PET datasets of seven different neuroreceptor radioligands, where nonspecific fractions were either obtained separately using drug displacement or available from a true reference region. The population nondisplaceable fractions estimated by the genomic plot were very close to those measured by actual human blocking studies (mean relative difference between 2% and 7%). However, these estimates were valid only when mRNA expressions were predictive of protein levels (i

  19. A novel PCR technique using Alu-specific primers to identify unknown flanking sequences from the human genome

    SciTech Connect

    Minami, M.; Poussin, K.; Brechot, C.; Paterlini, P.

    1995-09-20

    The rapid and reproducible identification of new cellular DNA sequences is difficult to achieve with the currently available procedures. Here we describe a novel approach based on the polymerase chain reaction (PCR) using a primer specific to the known sequence and another directed to a human Alu repeat. To avoid undesirable amplifications between Alu sequences, primers are constructed with dUTPs and destroyed by uracil DNA glycosylase treatment after 10 initial cycles of amplification. Only desirable fragments are then further amplified with specific primers to the known region and to a tag sequence introduced in the Alu-specific primer. Using this protocol, we have successfully indentified cellular sequences flanking integrated hepatitis B virus DNA from the human genome of three hepatoma tissues. The method enables a direct specific amplification without any ligation or nonspecific annealing steps as required by previous PCR-based protocols. This rapid and straightforward approach will be a powerful tool for the study of viral integration sites, but is also widely applicable to other studies of the human genome. 39 refs., 4 figs.

  20. Tissue-specific Distribution and Dynamic Changes of 5-Hydroxymethylcytosine in Mammalian Genomes*

    PubMed Central

    Kinney, Shannon Morey; Chin, Hang Gyeong; Vaisvila, Romualdas; Bitinaite, Jurate; Zheng, Yu; Estève, Pierre-Olivier; Feng, Suhua; Stroud, Hume; Jacobsen, Steven E.; Pradhan, Sriharsa

    2011-01-01

    Cytosine residues in the vertebrate genome are enzymatically modified to 5-methylcytosine, which participates in transcriptional repression of genes during development and disease progression. 5-Methylcytosine can be further enzymatically modified to 5-hydroxymethylcytosine by the TET family of methylcytosine dioxygenases. Analysis of 5-methylcytosine and 5-hydroxymethylcytosine is confounded, as these modifications are indistinguishable by traditional sequencing methods even when supplemented by bisulfite conversion. Here we demonstrate a simple enzymatic approach that involves cloning, identification, and quantification of 5-hydroxymethylcytosine in various CCGG loci within murine and human genomes. 5-Hydroxymethylcytosine was prevalent in human and murine brain and heart genomic DNAs at several regions. The cultured cell lines NIH3T3 and HeLa both displayed very low or undetectable amounts of 5-hydroxymethylcytosine at the examined loci. Interestingly, 5-hydroxymethylcytosine levels in mouse embryonic stem cell DNA first increased then slowly decreased upon differentiation to embryoid bodies, whereas 5-methylcytosine levels increased gradually over time. Finally, using a quantitative PCR approach, we established that a portion of VANGL1 and EGFR gene body methylation in human tissue DNA samples is indeed hydroxymethylation. PMID:21610077

  1. Identifying Specific Genes Controlling Complex Traits Through A Genome-Wide Screen For cis-Acting Regulatory Elements - An Example Using Marek's Disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The identification of specific genes underlying phenotypic variation of complex traits remains one of the greatest challenges in biology despite having genome sequences and more powerful tools. Most genome-wide screens lack sufficient resolving power as they typically depend on linkage. One altern...

  2. Complete Genome Sequence of vB_EcoM_112, a T-Even-Type Bacteriophage Specific for Escherichia coli O157:H7

    PubMed Central

    Coffey, Brid; Ross, R. Paul; O’Flynn, Gary; O’Sullivan, Orla; Casey, Aidan; Callanan, Michael; Coffey, Aidan

    2014-01-01

    Bacteriophage vB_EcoM_112 (formerly e11/2) is an Escherichia coli phage with specificity for the O157:H7 serotype. The vB_EcoM_112 genome sequence shares high degrees of similarity with the phage T4 genome sequence. PMID:25395625

  3. A versatile Multisite Gateway-compatible promoter and transgenic line collection for cell type-specific functional genomics in Arabidopsis.

    PubMed

    Marquès-Bueno, Maria Mar; Morao, Ana K; Cayrel, Anne; Platre, Matthieu P; Barberon, Marie; Caillieux, Erwann; Colot, Vincent; Jaillais, Yvon; Roudier, François; Vert, Grégory

    2016-01-01

    Multicellular organisms are composed of many cell types that acquire their specific fate through a precisely controlled pattern of gene expression in time and space dictated in part by cell type-specific promoter activity. Understanding the contribution of highly specialized cell types in the development of a whole organism requires the ability to isolate or analyze different cell types separately. We have characterized and validated a large collection of root cell type-specific promoters and have generated cell type-specific marker lines. These benchmarked promoters can be readily used to evaluate cell type-specific complementation of mutant phenotypes, or to knockdown gene expression using targeted expression of artificial miRNA. We also generated vectors and characterized transgenic lines for cell type-specific induction of gene expression and cell type-specific isolation of nuclei for RNA and chromatin profiling. Vectors and seeds from transgenic Arabidopsis plants will be freely available, and will promote rapid progress in cell type-specific functional genomics. We demonstrate the power of this promoter set for analysis of complex biological processes by investigating the contribution of root cell types in the IRT1-dependent root iron uptake. Our findings revealed the complex spatial expression pattern of IRT1 in both root epidermis and phloem companion cells and the requirement for IRT1 to be expressed in both cell types for proper iron homeostasis. PMID:26662936

  4. Genome of The Netherlands population-specific imputations identify an ABCA6 variant associated with cholesterol levels.

    PubMed

    van Leeuwen, Elisabeth M; Karssen, Lennart C; Deelen, Joris; Isaacs, Aaron; Medina-Gomez, Carolina; Mbarek, Hamdi; Kanterakis, Alexandros; Trompet, Stella; Postmus, Iris; Verweij, Niek; van Enckevort, David J; Huffman, Jennifer E; White, Charles C; Feitosa, Mary F; Bartz, Traci M; Manichaikul, Ani; Joshi, Peter K; Peloso, Gina M; Deelen, Patrick; van Dijk, Freerk; Willemsen, Gonneke; de Geus, Eco J; Milaneschi, Yuri; Penninx, Brenda W J H; Francioli, Laurent C; Menelaou, Androniki; Pulit, Sara L; Rivadeneira, Fernando; Hofman, Albert; Oostra, Ben A; Franco, Oscar H; Mateo Leach, Irene; Beekman, Marian; de Craen, Anton J M; Uh, Hae-Won; Trochet, Holly; Hocking, Lynne J; Porteous, David J; Sattar, Naveed; Packard, Chris J; Buckley, Brendan M; Brody, Jennifer A; Bis, Joshua C; Rotter, Jerome I; Mychaleckyj, Josyf C; Campbell, Harry; Duan, Qing; Lange, Leslie A; Wilson, James F; Hayward, Caroline; Polasek, Ozren; Vitart, Veronique; Rudan, Igor; Wright, Alan F; Rich, Stephen S; Psaty, Bruce M; Borecki, Ingrid B; Kearney, Patricia M; Stott, David J; Adrienne Cupples, L; Jukema, J Wouter; van der Harst, Pim; Sijbrands, Eric J; Hottenga, Jouke-Jan; Uitterlinden, Andre G; Swertz, Morris A; van Ommen, Gert-Jan B; de Bakker, Paul I W; Eline Slagboom, P; Boomsma, Dorret I; Wijmenga, Cisca; van Duijn, Cornelia M

    2015-01-01

    Variants associated with blood lipid levels may be population-specific. To identify low-frequency variants associated with this phenotype, population-specific reference panels may be used. Here we impute nine large Dutch biobanks (~35,000 samples) with the population-specific reference panel created by the Genome of The Netherlands Project and perform association testing with blood lipid levels. We report the discovery of five novel associations at four loci (P value <6.61 × 10(-4)), including a rare missense variant in ABCA6 (rs77542162, p.Cys1359Arg, frequency 0.034), which is predicted to be deleterious. The frequency of this ABCA6 variant is 3.65-fold increased in the Dutch and its effect (βLDL-C=0.135, βTC=0.140) is estimated to be very similar to those observed for single variants in well-known lipid genes, such as LDLR. PMID:25751400

  5. Genome of the Netherlands population-specific imputations identify an ABCA6 variant associated with cholesterol levels

    PubMed Central

    van Leeuwen, Elisabeth M.; Karssen, Lennart C.; Deelen, Joris; Isaacs, Aaron; Medina-Gomez, Carolina; Mbarek, Hamdi; Kanterakis, Alexandros; Trompet, Stella; Postmus, Iris; Verweij, Niek; van Enckevort, David J.; Huffman, Jennifer E.; White, Charles C.; Feitosa, Mary F.; Bartz, Traci M.; Manichaikul, Ani; Joshi, Peter K.; Peloso, Gina M.; Deelen, Patrick; van Dijk, Freerk; Willemsen, Gonneke; de Geus, Eco J.; Milaneschi, Yuri; Penninx, Brenda W.J.H.; Francioli, Laurent C.; Menelaou, Androniki; Pulit, Sara L.; Rivadeneira, Fernando; Hofman, Albert; Oostra, Ben A.; Franco, Oscar H.; Leach, Irene Mateo; Beekman, Marian; de Craen, Anton J.M.; Uh, Hae-Won; Trochet, Holly; Hocking, Lynne J.; Porteous, David J.; Sattar, Naveed; Packard, Chris J.; Buckley, Brendan M.; Brody, Jennifer A.; Bis, Joshua C.; Rotter, Jerome I.; Mychaleckyj, Josyf C.; Campbell, Harry; Duan, Qing; Lange, Leslie A.; Wilson, James F.; Hayward, Caroline; Polasek, Ozren; Vitart, Veronique; Rudan, Igor; Wright, Alan F.; Rich, Stephen S.; Psaty, Bruce M.; Borecki, Ingrid B.; Kearney, Patricia M.; Stott, David J.; Adrienne Cupples, L.; Neerincx, Pieter B.T.; Elbers, Clara C.; Francesco Palamara, Pier; Pe'er, Itsik; Abdellaoui, Abdel; Kloosterman, Wigard P.; van Oven, Mannis; Vermaat, Martijn; Li, Mingkun; Laros, Jeroen F.J.; Stoneking, Mark; de Knijff, Peter; Kayser, Manfred; Veldink, Jan H.; van den Berg, Leonard H.; Byelas, Heorhiy; den Dunnen, Johan T.; Dijkstra, Martijn; Amin, Najaf; Joeri van der Velde, K.; van Setten, Jessica; Kattenberg, Mathijs; van Schaik, Barbera D.C.; Bot, Jan; Nijman, Isaäc J.; Mei, Hailiang; Koval, Vyacheslav; Ye, Kai; Lameijer, Eric-Wubbo; Moed, Matthijs H.; Hehir-Kwa, Jayne Y.; Handsaker, Robert E.; Sunyaev, Shamil R.; Sohail, Mashaal; Hormozdiari, Fereydoun; Marschall, Tobias; Schönhuth, Alexander; Guryev, Victor; Suchiman, H. Eka D.; Wolffenbuttel, Bruce H.; Platteel, Mathieu; Pitts, Steven J.; Potluri, Shobha; Cox, David R.; Li, Qibin; Li, Yingrui; Du, Yuanping; Chen, Ruoyan; Cao, Hongzhi; Li, Ning; Cao, Sujie; Wang, Jun; Bovenberg, Jasper A.; Jukema, J. Wouter; van der Harst, Pim; Sijbrands, Eric J.; Hottenga, Jouke-Jan; Uitterlinden, Andre G.; Swertz, Morris A.; van Ommen, Gert-Jan B.; de Bakker, Paul I.W.; Eline Slagboom, P.; Boomsma, Dorret I.; Wijmenga, Cisca; van Duijn, Cornelia M.

    2015-01-01

    Variants associated with blood lipid levels may be population-specific. To identify low-frequency variants associated with this phenotype, population-specific reference panels may be used. Here we impute nine large Dutch biobanks (~35,000 samples) with the population-specific reference panel created by the Genome of the Netherlands Project and perform association testing with blood lipid levels. We report the discovery of five novel associations at four loci (P value <6.61 × 10−4), including a rare missense variant in ABCA6 (rs77542162, p.Cys1359Arg, frequency 0.034), which is predicted to be deleterious. The frequency of this ABCA6 variant is 3.65-fold increased in the Dutch and its effect (βLDL-C=0.135, βTC=0.140) is estimated to be very similar to those observed for single variants in well-known lipid genes, such as LDLR. PMID:25751400

  6. Genomic analysis of Ascochyta rabiei identifies dynamic genome environments of solanapyrone biosynthesis gene cluster and a novel type of pathway-specific regulator

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Secondary metabolite genes are often clustered together and situated in particular genomic regions such as the subtelomere, which can facilitate niche adaptation in fungi. Solanapyrones are toxic secondary metabolites produced by fungi occupying different ecological niches. Full genome sequencing of...

  7. Involvement of a Salmonella Genomic Island 1 Gene in the Rumen Protozoan-Mediated Enhancement of Invasion for Multiple-Antibiotic-Resistant Salmonella enterica Serovar Typhimurium▿

    PubMed Central

    Carlson, Steve A.; Sharma, Vijay K.; McCuddin, Zoe P.; Rasmussen, Mark A.; Franklin, Sharon K.

    2007-01-01

    Multiple-antibiotic-resistant Salmonella enterica serotype Typhimurium is a food-borne pathogen that may be more virulent than related strains lacking the multiresistance phenotype. Salmonella enterica serotype Typhimurium phage type DT104 is the most prevalent of these multiresistant/hypervirulent strains. Multiresistance in DT104 is conferred by an integron structure, designated Salmonella genomic island 1 (SGI1), while we recently demonstrated DT104 hyperinvasion mediated by rumen protozoa (RPz) that are normal flora of cattle. Hyperinvasion was also observed in other Salmonella strains, i.e., other S. enterica serovar Typhimurium phage types and other S. enterica serovars, like S. enterica serovar Infantis, possessing SGI1, while DT104 strains lacking SGI1 were not hyperinvasive. Herein we attempted to identify SGI1 genes involved in the RPz-mediated hyperinvasion of Salmonella strains bearing SGI1. Transposon mutagenesis, coupled with a novel reporter system, revealed the involvement of an SGI1 gene previously designated SO13. Disruption of SO13 expression led to an abrogation of hyperinvasion as assessed by tissue culture invasion assays and by bovine challenge experiments. However, hyperinvasion was not observed in non-SGI1-bearing strains of Salmonella engineered to express SO13. That is, SO13 and another SGI1 gene(s) may coordinately upregulate invasion in DT104 exposed to RPz. PMID:17145942

  8. Genomics-Based Exploration of Virulence Determinants and Host-Specific Adaptations of Pseudomonas syringae Strains Isolated from Grasses

    PubMed Central

    Dudnik, Alexey; Dudler, Robert

    2014-01-01

    The Pseudomonas syringae species complex has recently been named the number one plant pathogen, due to its economic and environmental impacts, as well as for its role in scientific research. The bacterium has been repeatedly reported to cause outbreaks on bean, cucumber, stone fruit, kiwi and olive tree, as well as on other crop and non-crop plants. It also serves as a model organism for research on the Type III secretion system (T3SS) and plant-pathogen interactions. While most of the current work on this pathogen is either carried out on one of three model strains found on dicot plants with completely sequenced genomes or on isolates obtained from recent outbreaks, not much is known about strains isolated from grasses (Poaceae). Here, we use comparative genomics in order to identify putative virulence-associated genes and other Poaceae-specific adaptations in several newly available genome sequences of strains isolated from grass species. All strains possess only a small number of known Type III effectors, therefore pointing to the importance of non-Type III secreted virulence factors. The implications of this finding are discussed. PMID:25437611

  9. Multi-reporter selection for the design of active and more specific zinc-finger nucleases for genome editing.

    PubMed

    Oakes, Benjamin L; Xia, Danny F; Rowland, Elizabeth F; Xu, Denise J; Ankoudinova, Irina; Borchardt, Jennifer S; Zhang, Lei; Li, Patrick; Miller, Jeffrey C; Rebar, Edward J; Noyes, Marcus B

    2016-01-01

    Engineered nucleases have transformed biological research and offer great therapeutic potential by enabling the straightforward modification of desired genomic sequences. While many nuclease platforms have proven functional, all can produce unanticipated off-target lesions and have difficulty discriminating between homologous sequences, limiting their therapeutic application. Here we describe a multi-reporter selection system that allows the screening of large protein libraries to uncover variants able to discriminate between sequences with substantial homology. We have used this system to identify zinc-finger nucleases that exhibit high cleavage activity (up to 60% indels) at their targets within the CCR5 and HBB genes and strong discrimination against homologous sequences within CCR2 and HBD. An unbiased screen for off-target lesions using a novel set of CCR5-targeting nucleases confirms negligible CCR2 activity and demonstrates minimal off-target activity genome wide. This system offers a straightforward approach to generate nucleases that discriminate between similar targets and provide exceptional genome-wide specificity. PMID:26738816

  10. Lineage-Specific Reductions of Plastid Genomes in an Orchid Tribe with Partially and Fully Mycoheterotrophic Species.

    PubMed

    Feng, Yan-Lei; Wicke, Susann; Li, Jian-Wu; Han, Yu; Lin, Choun-Sea; Li, De-Zhu; Zhou, Ting-Ting; Huang, Wei-Chang; Huang, Lu-Qi; Jin, Xiao-Hua

    2016-01-01

    The plastid genome (plastome) of heterotrophic plants like mycoheterotrophs and parasites shows massive gene losses in consequence to the relaxation of functional constraints on photosynthesis. To understand the patterns of this convergent plastome reduction syndrome in heterotrophic plants, we studied 12 closely related orchids of three different lifeforms from the tribe Neottieae (Orchidaceae). We employ a comparative genomics approach to examine structural and selectional changes in plastomes within Neottieae. Both leafy and leafless heterotrophic species have functionally reduced plastid genome. Our analyses show that genes for the NAD(P)H dehydrogenase complex, the photosystems, and the RNA polymerase have been lost functionally multiple times independently. The physical reduction proceeds in a highly lineage-specific manner, accompanied by structural reconfigurations such as inversions or modifications of the large inverted repeats. Despite significant but minor selectional changes, all retained genes continue to evolve under purifying selection. All leafless Neottia species, including both visibly green and nongreen members, are fully mycoheterotrophic, likely evolved from leafy and partially mycoheterotrophic species. The plastomes of Neottieae span many stages of plastome degradation, including the longest plastome of a mycoheterotroph, providing invaluable insights into the mechanisms of plastome evolution along the transition from autotrophy to full mycoheterotrophy. PMID:27412609

  11. Identification of Sinorhizobium (Ensifer) medicae based on a specific genomic sequence unveiled by M13-PCR fingerprinting.

    PubMed

    Dourado, Ana Catarina; Alves, Paula I L; Tenreiro, Tania; Ferreira, Eugénio M; Tenreiro, Rogério; Fareleira, Paula; Crespo, M Teresa Barreto

    2009-12-01

    A collection of nodule isolates from Medicago polymorpha obtained from southern and central Portugal was evaluated by M13-PCR fingerprinting and hierarchical cluster analysis. Several genomic clusters were obtained which, by 16S rRNA gene sequencing of selected representatives, were shown to be associated with particular taxonomic groups of rhizobia and other soil bacteria. The method provided a clear separation between rhizobia and co-isolated non-symbiotic soil contaminants. Ten M13-PCR groups were assigned to Sinorhizobium (Ensifer) medicae and included all isolates responsible for the formation of nitrogen-fixing nodules upon re-inoculation of M. polymorpha test-plants. In addition, enterobacterial repetitive intergenic consensus (ERIC)-PCR fingerprinting indicated a high genomic heterogeneity within the major M13- PCR clusters of S. medicae isolates. Based on nucleotide sequence data of an M13-PCR amplicon of ca. 1500 bp, observed only in S. medicae isolates and spanning locus Smed_3707 to Smed_3709 from the pSMED01 plasmid sequence of S. medicae WSM419 genome's sequence, a pair of PCR primers was designed and used for direct PCR amplification of a 1399-bp sequence within this fragment. Additional in silico and in vitro experiments, as well as phylogenetic analysis, confirmed the specificity of this primer combination and therefore the reliability of this approach in the prompt identification of S. medicae isolates and their distinction from other soil bacteria. PMID:20112226

  12. Strand-Specific Quantitative Reverse Transcription-Polymerase Chain Reaction Assay for Measurement of Arenavirus Genomic and Antigenomic RNAs.

    PubMed

    Haist, Kelsey; Ziegler, Christopher; Botten, Jason

    2015-01-01

    Arenaviruses are bi-segmented, single-stranded RNA viruses that cause significant human disease. The manner in which they regulate the replication of their genome is not well-understood. This is partly due to the absence of a highly sensitive assay to measure individual species of arenavirus replicative RNAs. To overcome this obstacle, we designed a quantitative reverse transcription (RT)-PCR assay for selective quantitation of each of the lymphocytic choriomeningitis virus (LCMV) genomic or antigenomic RNAs. During the course of assay design, we identified a nonspecific priming phenomenon whereby, in the absence of an RT primer, cDNAs complementary to each of the LCMV replicative RNA species are generated during RT. We successfully circumvented this nonspecific priming event through the use of biotinylated primers in the RT reaction, which permitted affinity purification of primer-specific cDNAs using streptavidin-coated magnetic beads. As proof of principle, we used the assay to map the dynamics of LCMV replication at acute and persistent time points and to determine the quantities of genomic and antigenomic RNAs that are incorporated into LCMV particles. This assay can be adapted to measure total S or L segment-derived viral RNAs and therefore represents a highly sensitive diagnostic platform to screen for LCMV infection in rodent and human tissue samples and can also be used to quantify virus-cell attachment. PMID:25978311

  13. Genomic Analysis of the Chicken Infectious Anemia Virus in a Specific Pathogen-Free Chicken Population in China

    PubMed Central

    Li, Yang; Wang, Yixin; Fang, Lichun; Fu, Jiayuan; Cui, Shuai; Zhao, Yingjie; Cui, Zhizhong; Chang, Shuang; Zhao, Peng

    2016-01-01

    The antibody to chicken infectious anemia virus (CIAV) was positive in a specific pathogen-free (SPF) chicken population by ELISA test in our previous inspection, indicating a possible infection with CIAV. In this study, blood samples collected from the SPF chickens were used to isolate CIAV by inoculating into MSB1 cells and PCR amplification. A CIAV strain (SD1403) was isolated and successfully identified. Three overlapping genomic fragments were obtained by PCR amplification and sequencing. The full genome sequence of the SD1403 strain was obtained by aligning the sequences. The genome of the SD1403 strain was 2293 bp with a nucleotide identity of 94.8% to 98.5% when compared with 30 referred CIAV strains. The viral proteins VP2 and VP3 were highly conserved, but VP1 was not relatively conserved. Both amino acids 139 and 144 of VP1 were glutamine, which was in accord with the low pathogenic characteristics. In this study, we first reported that CIAV exists in Chinese SPF chicken populations and may be an important reason why attenuated vaccine can be contaminated with CIAV. PMID:27298822

  14. Multi-reporter selection for the design of active and more specific zinc-finger nucleases for genome editing

    PubMed Central

    Oakes, Benjamin L.; Xia, Danny F.; Rowland, Elizabeth F.; Xu, Denise J.; Ankoudinova, Irina; Borchardt, Jennifer S.; Zhang, Lei; Li, Patrick; Miller, Jeffrey C.; Rebar, Edward J.; Noyes, Marcus B.

    2016-01-01

    Engineered nucleases have transformed biological research and offer great therapeutic potential by enabling the straightforward modification of desired genomic sequences. While many nuclease platforms have proven functional, all can produce unanticipated off-target lesions and have difficulty discriminating between homologous sequences, limiting their therapeutic application. Here we describe a multi-reporter selection system that allows the screening of large protein libraries to uncover variants able to discriminate between sequences with substantial homology. We have used this system to identify zinc-finger nucleases that exhibit high cleavage activity (up to 60% indels) at their targets within the CCR5 and HBB genes and strong discrimination against homologous sequences within CCR2 and HBD. An unbiased screen for off-target lesions using a novel set of CCR5-targeting nucleases confirms negligible CCR2 activity and demonstrates minimal off-target activity genome wide. This system offers a straightforward approach to generate nucleases that discriminate between similar targets and provide exceptional genome-wide specificity. PMID:26738816

  15. Interaction of Sesbania Mosaic Virus Movement Protein with VPg and P10: Implication to Specificity of Genome Recognition

    PubMed Central

    Roy Chowdhury, Soumya; Savithri, Handanahal S.

    2011-01-01

    Sesbania mosaic virus (SeMV) is a single strand positive-sense RNA plant virus that belongs to the genus Sobemovirus. The mechanism of cell-to-cell movement in sobemoviruses has not been well studied. With a view to identify the viral encoded ancillary proteins of SeMV that may assist in cell-to-cell movement of the virus, all the proteins encoded by SeMV genome were cloned into yeast Matchmaker system 3 and interaction studies were performed. Two proteins namely, viral protein genome linked (VPg) and a 10-kDa protein (P10) c v gft encoded by OFR 2a, were identified as possible interacting partners in addition to the viral coat protein (CP). Further characterization of these interactions revealed that the movement protein (MP) recognizes cognate RNA through interaction with VPg, which is covalently linked to the 5′ end of the RNA. Analysis of the deletion mutants delineated the domains of MP involved in the interaction with VPg and P10. This study implicates for the first time that VPg might play an important role in specific recognition of viral genome by MP in SeMV and shed light on the possible role of P10 in the viral movement. PMID:21246040

  16. Lineage-Specific Reductions of Plastid Genomes in an Orchid Tribe with Partially and Fully Mycoheterotrophic Species

    PubMed Central

    Feng, Yan-Lei; Wicke, Susann; Li, Jian-Wu; Han, Yu; Lin, Choun-Sea; Li, De-Zhu; Zhou, Ting-Ting; Huang, Wei-Chang; Huang, Lu-Qi; Jin, Xiao-Hua

    2016-01-01

    The plastid genome (plastome) of heterotrophic plants like mycoheterotrophs and parasites shows massive gene losses in consequence to the relaxation of functional constraints on photosynthesis. To understand the patterns of this convergent plastome reduction syndrome in heterotrophic plants, we studied 12 closely related orchids of three different lifeforms from the tribe Neottieae (Orchidaceae). We employ a comparative genomics approach to examine structural and selectional changes in plastomes within Neottieae. Both leafy and leafless heterotrophic species have functionally reduced plastid genome. Our analyses show that genes for the NAD(P)H dehydrogenase complex, the photosystems, and the RNA polymerase have been lost functionally multiple times independently. The physical reduction proceeds in a highly lineage-specific manner, accompanied by structural reconfigurations such as inversions or modifications of the large inverted repeats. Despite significant but minor selectional changes, all retained genes continue to evolve under purifying selection. All leafless Neottia species, including both visibly green and nongreen members, are fully mycoheterotrophic, likely evolved from leafy and partially mycoheterotrophic species. The plastomes of Neottieae span many stages of plastome degradation, including the longest plastome of a mycoheterotroph, providing invaluable insights into the mechanisms of plastome evolution along the transition from autotrophy to full mycoheterotrophy. PMID:27412609

  17. Predicting Essential Metabolic Genome Content of Niche-Specific Enterobacterial Human Pathogens during Simulation of Host Environments

    PubMed Central

    Baumler, David J.

    2016-01-01

    Microorganisms have evolved to occupy certain environmental niches, and the metabolic genes essential for growth in these locations are retained in the genomes. Many microorganisms inhabit niches located in the human body, sometimes causing disease, and may retain genes essential for growth in locations such as the bloodstream and urinary tract, or growth during intracellular invasion of the hosts’ macrophage cells. Strains of Escherichia coli (E. coli) and Salmonella spp. are thought to have evolved over 100 million years from a common ancestor, and now cause disease in specific niches within humans. Here we have used a genome scale metabolic model representing the pangenome of E. coli which contains all metabolic reactions encoded by genes from 16 E. coli genomes, and have simulated environmental conditions found in the human bloodstream, urinary tract, and macrophage to determine essential metabolic genes needed for growth in each location. We compared the predicted essential genes for three E. coli strains and one Salmonella strain that cause disease in each host environment, and determined that essential gene retention could be accurately predicted using this approach. This project demonstrated that simulating human body environments such as the bloodstream can successfully lead to accurate computational predictions of essential/important genes. PMID:26885654

  18. The genome and transcriptome of the zoonotic hookworm Ancylostoma ceylanicum identify infection-specific gene families

    PubMed Central

    Schwarz, Erich M; Hu, Yan; Antoshechkin, Igor; Miller, Melanie M; Sternberg, Paul W; Aroian, Raffi V

    2015-01-01

    Hookworms infect over 400 million people, stunting and impoverishing them1–3. Sequencing hookworm genomes and finding which genes they express during infection should help in devising new drugs or vaccines against hookworms4,5. Unlike other hookworms, Ancylostoma ceylanicum infects both humans and other mammals, providing a laboratory model for hookworm disease6,7. We determined an A. ceylanicum genome sequence of 313 Mb, with transcriptomic data throughout infection showing expression of 30,738 genes. Approximately 900 genes were upregulated during early infection in vivo, including ASPRs, a cryptic subfamily of activation-associated secreted proteins (ASPs)8. Genes downregulated during early infection included ion channels and G protein–coupled receptors; this downregulation was observed in both parasitic and free-living nematodes. Later, at the onset of heavy blood feeding, C-lectin genes were upregulated along with genes for secreted clade V proteins (SCVPs), encoding a previously undescribed protein family. These findings provide new drug and vaccine targets and should help elucidate hookworm pathogenesis. PMID:25730766

  19. The genome and transcriptome of the zoonotic hookworm Ancylostoma ceylanicum identify infection-specific gene families.

    PubMed

    Schwarz, Erich M; Hu, Yan; Antoshechkin, Igor; Miller, Melanie M; Sternberg, Paul W; Aroian, Raffi V

    2015-04-01

    Hookworms infect over 400 million people, stunting and impoverishing them. Sequencing hookworm genomes and finding which genes they express during infection should help in devising new drugs or vaccines against hookworms. Unlike other hookworms, Ancylostoma ceylanicum infects both humans and other mammals, providing a laboratory model for hookworm disease. We determined an A. ceylanicum genome sequence of 313 Mb, with transcriptomic data throughout infection showing expression of 30,738 genes. Approximately 900 genes were upregulated during early infection in vivo, including ASPRs, a cryptic subfamily of activation-associated secreted proteins (ASPs). Genes downregulated during early infection included ion channels and G protein-coupled receptors; this downregulation was observed in both parasitic and free-living nematodes. Later, at the onset of heavy blood feeding, C-lectin genes were upregulated along with genes for secreted clade V proteins (SCVPs), encoding a previously undescribed protein family. These findings provide new drug and vaccine targets and should help elucidate hookworm pathogenesis. PMID:25730766

  20. Genome-Wide Association Study of a Varroa-Specific Defense Behavior in Honeybees (Apis mellifera).

    PubMed

    Spötter, Andreas; Gupta, Pooja; Mayer, Manfred; Reinsch, Norbert; Bienefeld, Kaspar

    2016-05-01

    Honey bees are exposed to many damaging pathogens and parasites. The most devastating is Varroa destructor, which mainly affects the brood. A promising approach for preventing its spread is to breed Varroa-resistant honey bees. One trait that has been shown to provide significant resistance against the Varroa mite is hygienic behavior, which is a behavioral response of honeybee workers to brood diseases in general. Here, we report the use of an Affymetrix 44K SNP array to analyze SNPs associated with detection and uncapping of Varroa-parasitized brood by individual worker bees (Apis mellifera). For this study, 22 000 individually labeled bees were video-monitored and a sample of 122 cases and 122 controls was collected and analyzed to determine the dependence/independence of SNP genotypes from hygienic and nonhygienic behavior on a genome-wide scale. After false-discovery rate correction of the P values, 6 SNP markers had highly significant associations with the trait investigated (α < 0.01). Inspection of the genomic regions around these SNPs led to the discovery of putative candidate genes. PMID:26774061

  1. Genome-Wide Survey and Expression Analysis of the Putative Non-Specific Lipid Transfer Proteins in Brassica rapa L

    PubMed Central

    Li, Jun; Gao, Guizhen; Xu, Kun; Chen, Biyun; Yan, Guixin; Li, Feng; Qiao, Jiangwei; Zhang, Tianyao; Wu, Xiaoming

    2014-01-01

    Background Plant non-specific lipid transfer proteins (nsLtps) are small, basic proteins encoded by multigene families and have reported functions in many physiological processes such as mediating phospholipid transfer, defense reactions against phytopathogens, the adaptation of plants to various environmental conditions, and sexual reproduction. To date, no genome-wide overview of the Brassica rapa nsLtp (BrnsLtp) gene family has been performed. Therefore, as the first step and as a helpful strategy to elucidate the functions of BrnsLtps, a genome-wide study for this gene family is necessary. Methodology/Principal Finding In this study, a total of 63 putative BrnsLtp genes were identified through a comprehensive in silico analysis of the whole genome of B. rapa. Based on the sequence similarities, these BrnsLtps was grouped into nine types (I, II, III, IV, V, VI, VIII, IX, and XI). There is no type VII nsLtps in B. rapa, and a new type, XI nsLtps, was identified in B. rapa. Furthermore, nine type II AtLtps have no homologous genes in B. rapa. Gene duplication analysis demonstrated that the conserved collinear block of each BrnsLtp is highly identical to those in Arabidopsis and that both segmental duplications and tandem duplications seem to play equal roles in the diversification of this gene family. Expression analysis indicated that 29 out of the 63 BrnsLtps showed specific expression patterns. After careful comparison and analysis, we hypothesize that some of the type I BrnsLtps may function like Arabidopsis pathogenesis-related-14 (PR-14) proteins to protect the plant from phytopathogen attack. Eleven BrnsLtps with inflorescence-specific expression may play important roles in sexual reproduction. Additionally, BrnsLtpI.3 may have functions similar to Arabidopsis LTP1. Conclusions/Significance The genome-wide identification, bioinformatic analysis and expression analysis of BrnsLtp genes should facilitate research of this gene family and polyploidy evolution

  2. Evolutionary Genomics Suggests That CheV Is an Additional Adaptor for Accommodating Specific Chemoreceptors within the Chemotaxis Signaling Complex

    PubMed Central

    Ortega, Davi R.; Zhulin, Igor B.

    2016-01-01

    Escherichia coli and Salmonella enterica are models for many experiments in molecular biology including chemotaxis, and most of the results obtained with one organism have been generalized to another. While most components of the chemotaxis pathway are strongly conserved between the two species, Salmonella genomes contain some chemoreceptors and an additional protein, CheV, that are not found in E. coli. The role of CheV was examined in distantly related species Bacillus subtilis and Helicobacter pylori, but its role in bacterial chemotaxis is still not well understood. We tested a hypothesis that in enterobacteria CheV functions as an additional adaptor linking the CheA kinase to certain types of chemoreceptors that cannot be effectively accommodated by the universal adaptor CheW. Phylogenetic profiling, genomic context and comparative protein sequence analyses suggested that CheV interacts with specific domains of CheA and chemoreceptors from an orthologous group exemplified by the Salmonella McpC protein. Structural consideration of the conservation patterns suggests that CheV and CheW share the same binding spot on the chemoreceptor structure, but have some affinity bias towards chemoreceptors from different orthologous groups. Finally, published experimental results and data newly obtained via comparative genomics support the idea that CheV functions as a “phosphate sink” possibly to off-set the over-stimulation of the kinase by certain types of chemoreceptors. Overall, our results strongly suggest that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex. PMID:26844549

  3. Motif composition, conservation and condition-specificity of single and alternative transcription start sites in the Drosophila genome

    PubMed Central

    Rach, Elizabeth A; Yuan, Hsiang-Yu; Majoros, William H; Tomancak, Pavel; Ohler, Uwe

    2009-01-01

    Background Transcription initiation is a key component in the regulation of gene expression. mRNA 5' full-length sequencing techniques have enhanced our understanding of mammalian transcription start sites (TSSs), revealing different initiation patterns on a genomic scale. Results To identify TSSs in Drosophila melanogaster, we applied a hierarchical clustering strategy on available 5' expressed sequence tags (ESTs) and identified a high quality set of 5,665 TSSs for approximately 4,000 genes. We distinguished two initiation patterns: 'peaked' TSSs, and 'broad' TSS cluster groups. Peaked promoters were found to contain location-specific sequence elements; conversely, broad promoters were associated with non-location-specific elements. In alignments across other Drosophila genomes, conservation levels of sequence elements exceeded 90% within the melanogaster subgroup, but dropped considerably for distal species. Elements in broad promoters had lower levels of conservation than those in peaked promoters. When characterizing the distributions of ESTs, 64% of TSSs showed distinct associations to one out of eight different spatiotemporal conditions. Available whole-genome tiling array time series data revealed different temporal patterns of embryonic activity across the majority of genes with distinct alternative promoters. Many genes with maternally inherited transcripts were found to have alternative promoters utilized later in development. Core promoters of maternally inherited transcripts showed differences in motif composition compared to zygotically active promoters. Conclusions Our study provides a comprehensive map of Drosophila TSSs and the conditions under which they are utilized. Distinct differences in motif associations with initiation pattern and spatiotemporal utilization illustrate the complex regulatory code of transcription initiation. PMID:19589141

  4. Disruption of Specific RNA-RNA Interactions in a Double-Stranded RNA Virus Inhibits Genome Packaging and Virus Infectivity.

    PubMed

    Fajardo, Teodoro; Sung, Po-Yu; Roy, Polly

    2015-12-01

    Bluetongue virus (BTV) causes hemorrhagic disease in economically important livestock. The BTV genome is organized into ten discrete double-stranded RNA molecules (S1-S10) which have been suggested to follow a sequential packaging pathway from smallest to largest segment during virus capsid assembly. To substantiate and extend these studies, we have investigated the RNA sorting and packaging mechanisms with a new experimental approach using inhibitory oligonucleotides. Putative packaging signals present in the 3'untranslated regions of BTV segments were targeted by a number of nuclease resistant oligoribonucleotides (ORNs) and their effects on virus replication in cell culture were assessed. ORNs complementary to the 3' UTR of BTV RNAs significantly inhibited virus replication without affecting protein synthesis. Same ORNs were found to inhibit complex formation when added to a novel RNA-RNA interaction assay which measured the formation of supramolecular complexes between and among different RNA segments. ORNs targeting the 3'UTR of BTV segment 10, the smallest RNA segment, were shown to be the most potent and deletions or substitution mutations of the targeted sequences diminished the RNA complexes and abolished the recovery of viable viruses using reverse genetics. Cell-free capsid assembly/RNA packaging assay also confirmed that the inhibitory ORNs could interfere with RNA packaging and further substitution mutations within the putative RNA packaging sequence have identified the recognition sequence concerned. Exchange of 3'UTR between segments have further demonstrated that RNA recognition was segment specific, most likely acting as part of the secondary structure of the entire genomic segment. Our data confirm that genome packaging in this segmented dsRNA virus occurs via the formation of supramolecular complexes formed by the interaction of specific sequences located in the 3' UTRs. Additionally, the inhibition of packaging in-trans with inhibitory ORNs

  5. Evolutionary Genomics Suggests That CheV Is an Additional Adaptor for Accommodating Specific Chemoreceptors within the Chemotaxis Signaling Complex.

    PubMed

    Ortega, Davi R; Zhulin, Igor B

    2016-02-01

    Escherichia coli and Salmonella enterica are models for many experiments in molecular biology including chemotaxis, and most of the results obtained with one organism have been generalized to another. While most components of the chemotaxis pathway are strongly conserved between the two species, Salmonella genomes contain some chemoreceptors and an additional protein, CheV, that are not found in E. coli. The role of CheV was examined in distantly related species Bacillus subtilis and Helicobacter pylori, but its role in bacterial chemotaxis is still not well understood. We tested a hypothesis that in enterobacteria CheV functions as an additional adaptor linking the CheA kinase to certain types of chemoreceptors that cannot be effectively accommodated by the universal adaptor CheW. Phylogenetic profiling, genomic context and comparative protein sequence analyses suggested that CheV interacts with specific domains of CheA and chemoreceptors from an orthologous group exemplified by the Salmonella McpC protein. Structural consideration of the conservation patterns suggests that CheV and CheW share the same binding spot on the chemoreceptor structure, but have some affinity bias towards chemoreceptors from different orthologous groups. Finally, published experimental results and data newly obtained via comparative genomics support the idea that CheV functions as a "phosphate sink" possibly to off-set the over-stimulation of the kinase by certain types of chemoreceptors. Overall, our results strongly suggest that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex. PMID:26844549

  6. Disruption of Specific RNA-RNA Interactions in a Double-Stranded RNA Virus Inhibits Genome Packaging and Virus Infectivity

    PubMed Central

    Fajardo, Teodoro; Sung, Po-Yu; Roy, Polly

    2015-01-01

    Bluetongue virus (BTV) causes hemorrhagic disease in economically important livestock. The BTV genome is organized into ten discrete double-stranded RNA molecules (S1-S10) which have been suggested to follow a sequential packaging pathway from smallest to largest segment during virus capsid assembly. To substantiate and extend these studies, we have investigated the RNA sorting and packaging mechanisms with a new experimental approach using inhibitory oligonucleotides. Putative packaging signals present in the 3’untranslated regions of BTV segments were targeted by a number of nuclease resistant oligoribonucleotides (ORNs) and their effects on virus replication in cell culture were assessed. ORNs complementary to the 3’ UTR of BTV RNAs significantly inhibited virus replication without affecting protein synthesis. Same ORNs were found to inhibit complex formation when added to a novel RNA-RNA interaction assay which measured the formation of supramolecular complexes between and among different RNA segments. ORNs targeting the 3’UTR of BTV segment 10, the smallest RNA segment, were shown to be the most potent and deletions or substitution mutations of the targeted sequences diminished the RNA complexes and abolished the recovery of viable viruses using reverse genetics. Cell-free capsid assembly/RNA packaging assay also confirmed that the inhibitory ORNs could interfere with RNA packaging and further substitution mutations within the putative RNA packaging sequence have identified the recognition sequence concerned. Exchange of 3’UTR between segments have further demonstrated that RNA recognition was segment specific, most likely acting as part of the secondary structure of the entire genomic segment. Our data confirm that genome packaging in this segmented dsRNA virus occurs via the formation of supramolecular complexes formed by the interaction of specific sequences located in the 3’ UTRs. Additionally, the inhibition of packaging in-trans with inhibitory

  7. DNMT1 and AIM1 Imprinting in human placenta revealed through a genome-wide screen for allele-specific DNA methylation

    PubMed Central

    2013-01-01

    Background Genomic imprinting is an epigenetically regulated process wherein genes are expressed in a parent-of-origin specific manner. Many imprinted genes were initially identified in mice; some of these were subsequently shown not to be imprinted in humans. Such discrepancy reflects developmental, morphological and physiological differences between mouse and human tissues. This is particularly relevant for the placenta. Study of genomic imprinting thus needs to be carried out in a species and developmental stage-specific manner. We describe here a new strategy to study allele-specific DNA methylation in the human placenta for the discovery of novel imprinted genes. Results Using this methodology, we confirmed 16 differentially methylated regions (DMRs) associated with known imprinted genes. We chose 28 genomic regions for further testing and identified two imprinted genes (DNMT1 and AIM1). Both genes showed maternal allele-specific methylation and paternal allele-specific transcription. Imprinted expression for AIM1 was conserved in the cynomolgus macaque placenta, but not in other macaque tissues or in the mouse. Conclusions Our study indicates that while there are many genomic regions with allele-specific methylation in tissues like the placenta, only a small sub-set of them are associated with allele-specific transcription, suggesting alternative functions for such genomic regions. Nonetheless, novel tissue-specific imprinted genes remain to be discovered in humans. Their identification may help us better understand embryonic and fetal development. PMID:24094292

  8. Genomics of a Metamorphic Timing QTL: met1 Maps to a Unique Genomic Position and Regulates Morph and Species-Specific Patterns of Brain Transcription

    PubMed Central

    Page, Robert B.; Boley, Meredith A.; Kump, David K.; Voss, Stephen R.

    2013-01-01

    Very little is known about genetic factors that regulate life history transitions during ontogeny. Closely related tiger salamanders (Ambystoma species complex) show extreme variation in metamorphic timing, with some species foregoing metamorphosis altogether, an adaptive trait called paedomorphosis. Previous studies identified a major effect quantitative trait locus (met1) for metamorphic timing and expression of paedomorphosis in hybrid crosses between the biphasic Eastern tiger salamander (Ambystoma tigrinum tigrinum) and the paedomorphic Mexican axolotl (Ambystoma mexicanum). We used existing hybrid mapping panels and a newly created hybrid cross to map the met1 genomic region and determine the effect of met1 on larval growth, metamorphic timing, and gene expression in the brain. We show that met1 maps to the position of a urodele-specific chromosome rearrangement on linkage group 2 that uniquely brought functionally associated genes into linkage. Furthermore, we found that more than 200 genes were differentially expressed during larval development as a function of met1 genotype. This list of differentially expressed genes is enriched for proteins that function in the mitochondria, providing evidence of a link between met1, thyroid hormone signaling, and mitochondrial energetics associated with metamorphosis. Finally, we found that met1 significantly affected metamorphic timing in hybrids, but not early larval growth rate. Collectively, our results show that met1 regulates species and morph-specific patterns of brain transcription and life history variation. PMID:23946331

  9. Holocentromeres in Rhynchospora are associated with genome-wide centromere-specific repeat arrays interspersed among euchromatin

    PubMed Central

    Marques, André; Ribeiro, Tiago; Neumann, Pavel; Macas, Jiří; Novák, Petr; Schubert, Veit; Pellino, Marco; Fuchs, Jörg; Ma, Wei; Kuhlmann, Markus; Brandt, Ronny; Vanzela, André L. L.; Beseda, Tomáš; Šimková, Hana; Pedrosa-Harand, Andrea; Houben, Andreas

    2015-01-01

    Holocentric chromosomes lack a primary constriction, in contrast to monocentrics. They form kinetochores distributed along almost the entire poleward surface of the chromatids, to which spindle fibers attach. No centromere-specific DNA sequence has been found for any holocentric organism studied so far. It was proposed that centromeric repeats, typical for many monocentric species, could not occur in holocentrics, most likely because of differences in the centromere organization. Here we show that the holokinetic centromeres of the Cyperaceae Rhynchospora pubera are highly enriched by a centromeric histone H3 variant-interacting centromere-specific satellite family designated “Tyba” and by centromeric retrotransposons (i.e., CRRh) occurring as genome-wide interspersed arrays. Centromeric arrays vary in length from 3 to 16 kb and are intermingled with gene-coding sequences and transposable elements. We show that holocentromeres of metaphase chromosomes are composed of multiple centromeric units rather than possessing a diffuse organization, thus favoring the polycentric model. A cell-cycle–dependent shuffling of multiple centromeric units results in the formation of functional (poly)centromeres during mitosis. The genome-wide distribution of centromeric repeat arrays interspersing the euchromatin provides a previously unidentified type of centromeric chromatin organization among eukaryotes. Thus, different types of holocentromeres exist in different species, namely with and without centromeric repetitive sequences. PMID:26489653

  10. Holocentromeres in Rhynchospora are associated with genome-wide centromere-specific repeat arrays interspersed among euchromatin.

    PubMed

    Marques, André; Ribeiro, Tiago; Neumann, Pavel; Macas, Jiří; Novák, Petr; Schubert, Veit; Pellino, Marco; Fuchs, Jörg; Ma, Wei; Kuhlmann, Markus; Brandt, Ronny; Vanzela, André L L; Beseda, Tomáš; Šimková, Hana; Pedrosa-Harand, Andrea; Houben, Andreas

    2015-11-01

    Holocentric chromosomes lack a primary constriction, in contrast to monocentrics. They form kinetochores distributed along almost the entire poleward surface of the chromatids, to which spindle fibers attach. No centromere-specific DNA sequence has been found for any holocentric organism studied so far. It was proposed that centromeric repeats, typical for many monocentric species, could not occur in holocentrics, most likely because of differences in the centromere organization. Here we show that the holokinetic centromeres of the Cyperaceae Rhynchospora pubera are highly enriched by a centromeric histone H3 variant-interacting centromere-specific satellite family designated "Tyba" and by centromeric retrotransposons (i.e., CRRh) occurring as genome-wide interspersed arrays. Centromeric arrays vary in length from 3 to 16 kb and are intermingled with gene-coding sequences and transposable elements. We show that holocentromeres of metaphase chromosomes are composed of multiple centromeric units rather than possessing a diffuse organization, thus favoring the polycentric model. A cell-cycle-dependent shuffling of multiple centromeric units results in the formation of functional (poly)centromeres during mitosis. The genome-wide distribution of centromeric repeat arrays interspersing the euchromatin provides a previously unidentified type of centromeric chromatin organization among eukaryotes. Thus, different types of holocentromeres exist in different species, namely with and without centromeric repetitive sequences. PMID:26489653

  11. High-Resolution Whole-Genome Sequencing Reveals That Specific Chromatin Domains from Most Human Chromosomes Associate with Nucleoli

    PubMed Central

    van Koningsbruggen, Silvana; Gierliński, Marek; Schofield, Pietá; Martin, David; Barton, Geoffey J.; Ariyurek, Yavuz; den Dunnen, Johan T.

    2010-01-01

    The nuclear space is mostly occupied by chromosome territories and nuclear bodies. Although this organization of chromosomes affects gene function, relatively little is known about the role of nuclear bodies in the organization of chromosomal regions. The nucleolus is the best-studied subnuclear structure and forms around the rRNA repeat gene clusters on the acrocentric chromosomes. In addition to rDNA, other chromatin sequences also surround the nucleolar surface and may even loop into the nucleolus. These additional nucleolar-associated domains (NADs) have not been well characterized. We present here a whole-genome, high-resolution analysis of chromatin endogenously associated with nucleoli. We have used a combination of three complementary approaches, namely fluorescence comparative genome hybridization, high-throughput deep DNA sequencing and photoactivation combined with time-lapse fluorescence microscopy. The data show that specific sequences from most human chromosomes, in addition to the rDNA repeat units, associate with nucleoli in a reproducible and heritable manner. NADs have in common a high density of AT-rich sequence elements, low gene density and a statistically significant enrichment in transcriptionally repressed genes. Unexpectedly, both the direct DNA sequencing and fluorescence photoactivation data show that certain chromatin loci can specifically associate with either the nucleolus, or the nuclear envelope. PMID:20826608

  12. Specific Destruction of HIV Proviral p17 Gene in T Lymphoid Cells Achieved by the Genome Editing Technology.

    PubMed

    Kishida, Tsunao; Ejima, Akika; Mazda, Osam

    2016-01-01

    Recent development in genome editing technologies has enabled site-directed deprivation of a nucleotide sequence in the chromosome in mammalian cells. Human immunodeficiency (HIV) infection causes integration of proviral DNA into the chromosome, which potentially leads to re-emergence of the virus, but conventional treatment cannot delete the proviral DNA sequence from the cells infected with HIV. In the present study, the transcription activator-like effector nucleases (TALENs) specific for the HIV p17 gene were constructed, and their activities to destroy the target sequence were evaluated. SSA assay showed a high activity of a pair of p17-specific TALENs. A human T lymphoid cell line, Jurkat, was infected with a lentivirus vector followed by transfection with the TALEN-HIV by electroporation. The target sequence was destructed in approximately 10-95% of the p17 polymerase chain reaction clones, and the efficiencies depended on the Jurkat-HIV clones. Because p17 plays essential roles for assembly and budding of HIV, and this gene has relatively low nucleotide sequence diversity, genome editing procedures targeting p17 may provide a therapeutic benefit for HIV infection. PMID:27446041

  13. Specific Destruction of HIV Proviral p17 Gene in T Lymphoid Cells Achieved by the Genome Editing Technology

    PubMed Central

    Kishida, Tsunao; Ejima, Akika; Mazda, Osam

    2016-01-01

    Recent development in genome editing technologies has enabled site-directed deprivation of a nucleotide sequence in the chromosome in mammalian cells. Human immunodeficiency (HIV) infection causes integration of proviral DNA into the chromosome, which potentially leads to re-emergence of the virus, but conventional treatment cannot delete the proviral DNA sequence from the cells infected with HIV. In the present study, the transcription activator-like effector nucleases (TALENs) specific for the HIV p17 gene were constructed, and their activities to destroy the target sequence were evaluated. SSA assay showed a high activity of a pair of p17-specific TALENs. A human T lymphoid cell line, Jurkat, was infected with a lentivirus vector followed by transfection with the TALEN–HIV by electroporation. The target sequence was destructed in approximately 10–95% of the p17 polymerase chain reaction clones, and the efficiencies depended on the Jurkat–HIV clones. Because p17 plays essential roles for assembly and budding of HIV, and this gene has relatively low nucleotide sequence diversity, genome editing procedures targeting p17 may provide a therapeutic benefit for HIV infection. PMID:27446041

  14. Tumor-infiltrating lymphocytes in glioblastoma are associated with specific genomic alterations and related to transcriptional class

    PubMed Central

    Rutledge, W. Caleb; Kong, Jun; Gao, Jingjing; Gutman, David A.; Cooper, Lee A.D.; Appin, Christina; Park, Yuna; Scarpace, Lisa; Mikkelsen, Tom; Cohen, Mark L.; Aldape, Kenneth D.; McLendon, Roger E.; Lehman, Norman L.; Miller, C. Ryan; Schniederjan, Matthew J.; Brennan, Cameron W.; Saltz, Joel H.; Moreno, Carlos S.; Brat, Daniel J.

    2013-01-01

    Purpose Tumor-infiltrating lymphocytes (TILs) have prognostic significance in many cancers, yet their roles in glioblastoma (GBM) have not been fully defined. We hypothesized TILs in GBM are associated with molecular alterations, histologies and survival. Experimental Design We used data from The Cancer Genome Atlas (TCGA) to investigate molecular, histologic and clinical correlates of TILs in GBMs. Lymphocytes were categorized as absent, present or abundant in histopathologic images from 171 TCGA GBMs. Associations were examined between lymphocytes and histologic features, mutations, copy number alterations, CpG island methylator phenotype, transcriptional class and survival. We validated histologic findings using CD3G gene expression. Results We found a positive correlation between TILs and GBMs with gemistocytes, sarcomatous cells, epithelioid cells and giant cells. Lymphocytes were enriched in the mesenchymal transcriptional class and strongly associated with mutations in NF1 and RB1. These mutations are frequent in the mesenchymal class and characteristic of gemistocytic, sarcomatous, epithelioid and giant cell histologies. Conversely, TILs were rare in GBMs with small cells and oligodendroglioma components. Lymphocytes were depleted in the classical transcriptional class and in EGFR-amplified and homozygous PTEN-deleted GBMs. These alterations are characteristic of GBMs with small cells and GBMs of the classical transcriptional class. No association with survival was demonstrated. Conclusions TILs were enriched in GBMs of the mesenchymal class, strongly associated with mutations in NF1 and RB1 and typical of histologies characterized by these mutations. Conversely, TILs were depleted in the classical class, EGFR-amplified and homozygous PTEN-deleted tumors and rare in histologies characterized by these alterations. PMID:23864165

  15. Computational deconvolution of genome wide expression data from Parkinson's and Huntington's disease brain tissues using population-specific expression analysis

    PubMed Central

    Capurro, Alberto; Bodea, Liviu-Gabriel; Schaefer, Patrick; Luthi-Carter, Ruth; Perreau, Victoria M.

    2015-01-01

    The characterization of molecular changes in diseased tissues gives insight into pathophysiological mechanisms and is important for therapeutic development. Genome-wide gene expression analysis has proven valuable for identifying biological processes in neurodegenerative diseases using post mortem human brain tissue and numerous datasets are publically available. However, many studies utilize heterogeneous tissue samples consisting of multiple cell types, all of which contribute to global gene expression values, confounding biological interpretation of the data. In particular, changes in numbers of neuronal and glial cells occurring in neurodegeneration confound transcriptomic analyses, particularly in human brain tissues where sample availability and controls are limited. To identify cell specific gene expression changes in neurodegenerative disease, we have applied our recently published computational deconvolution method, population specific expression analysis (PSEA). PSEA estimates cell-type-specific expression values using reference expression measures, which in the case of brain tissue comprises mRNAs with cell-type-specific expression in neurons, astrocytes, oligodendrocytes and microglia. As an exercise in PSEA implementation and hypothesis development regarding neurodegenerative diseases, we applied PSEA to Parkinson's and Huntington's disease (PD, HD) datasets. Genes identified as differentially expressed in substantia nigra pars compacta neurons by PSEA were validated using external laser capture microdissection data. Network analysis and Annotation Clustering (DAVID) identified molecular processes implicated by differential gene expression in specific cell types. The results of these analyses provided new insights into the implementation of PSEA in brain tissues and additional refinement of molecular signatures in human HD and PD. PMID:25620908

  16. Vast potential for using the piggyBac transposon to engineer transgenic plants at specific genomic locations.

    PubMed

    Johnson, Eric T; Owens, Jesse B; Moisyadi, Stefan

    2016-01-01

    The acceptance of bioengineered plants by some nations is hampered by a number of factors, including the random insertion of a transgene into the host genome. Emerging technologies, such as site-specific nucleases, are enabling plant scientists to promote recombination or mutations at specific plant loci. Off target activity of these nucleases may limit widespread use. Insertion of transgenes by transposases engineered with a specific DNA binding domain has been accomplished in a number of organisms, but not in plants. The piggyBac transposon system, originally isolated from an insect, has been utilized to transform a variety of organisms. The piggyBac transposase is amendable to structural modifications, and was able to insert a transgene at a specific human locus through fusion of a DNA binding domain to its N-terminus. Recent developments demonstrating the activity of piggyBac transposase in plants is an important first step toward the potential use of engineered versions of piggyBac transposase for site-specific transgene insertion in plants. PMID:26930269

  17. Using Ecology, Physiology, and Genomics to Understand Host Specificity in Xanthomonas.

    PubMed

    Jacques, Marie-Agnès; Arlat, Matthieu; Boulanger, Alice; Boureau, Tristan; Carrère, Sébastien; Cesbron, Sophie; Chen, Nicolas W G; Cociancich, Stéphane; Darrasse, Armelle; Denancé, Nicolas; Fischer-Le Saux, Marion; Gagnevin, Lionel; Koebnik, Ralf; Lauber, Emmanuelle; Noël, Laurent D; Pieretti, Isabelle; Portier, Perrine; Pruvost, Olivier; Rieux, Adrien; Robène, Isabelle; Royer, Monique; Szurek, Boris; Verdier, Valérie; Vernière, Christian

    2016-08-01

    How pathogens coevolve with and adapt to their hosts are critical to understanding how host jumps and/or acquisition of novel traits can lead to new disease emergences. The Xanthomonas genus includes Gram-negative plant-pathogenic bacteria that collectively infect a broad range of crops and wild plant species. However, individual Xanthomonas strains usually cause disease on only a few plant species and are highly adapted to their hosts, making them pertinent models to study host specificity. This review summarizes our current understanding of the molecular basis of host specificity in the Xanthomonas genus, with a particular focus on the ecology, physiology, and pathogenicity of the bacterium. Despite our limited understanding of the basis of host specificity, type III effectors, microbe-associated molecular patterns, lipopolysaccharides, transcriptional regulators, and chemotactic sensors emerge as key determinants for shaping host specificity. PMID:27296145

  18. Known unknowns for allele-specific expression and genomic imprinting effects

    PubMed Central

    2014-01-01

    Recent studies have provided evidence for non-canonical imprinting effects that are associated with allele-specific expression biases at the tissue level in mice. These imprinting effects have features that are distinct from canonical imprinting effects that involve allele silencing. Here, I discuss some of the evidence for non-canonical imprinting effects in the context of random X-inactivation and epigenetic allele-specific expression effects on the autosomes. I propose several mechanisms that may underlie non-canonical imprinting effects and outline future directions and approaches to study these effects at the cellular level in vivo. The growing evidence for complex allele-specific expression effects that are cell- and developmental stage-specific has opened a new frontier for study. Currently, the function of these effects and the underlying regulatory mechanisms are largely unknown. PMID:25343032

  19. Whole genome co-expression analysis of soybean cytochrome P450 genes identifies nodulation-specific P450 monooxygenases

    PubMed Central

    2010-01-01

    Background Cytochrome P450 monooxygenases (P450s) catalyze oxidation of various substrates using oxygen and NAD(P)H. Plant P450s are involved in the biosynthesis of primary and secondary metabolites performing diverse biological functions. The recent availability of the soybean genome sequence allows us to identify and analyze soybean putative P450s at a genome scale. Co-expression analysis using an available soybean microarray and Illumina sequencing data provides clues for functional annotation of these enzymes. This approach is based on the assumption that genes that have similar expression patterns across a set of conditions may have a functional relationship. Results We have identified a total number of 332 full-length P450 genes and 378 pseudogenes from the soybean genome. From the full-length sequences, 195 genes belong to A-type, which could be further divided into 20 families. The remaining 137 genes belong to non-A type P450s and are classified into 28 families. A total of 178 probe sets were found to correspond to P450 genes on the Affymetrix soybean array. Out of these probe sets, 108 represented single genes. Using the 28 publicly available microarray libraries that contain organ-specific information, some tissue-specific P450s were identified. Similarly, stress responsive soybean P450s were retrieved from 99 microarray soybean libraries. We also utilized Illumina transcriptome sequencing technology to analyze the expressions of all 332 soybean P450 genes. This dataset contains total RNAs isolated from nodules, roots, root tips, leaves, flowers, green pods, apical meristem, mock-inoculated and Bradyrhizobium japonicum-infected root hair cells. The tissue-specific expression patterns of these P450 genes were analyzed and the expression of a representative set of genes were confirmed by qRT-PCR. We performed the co-expression analysis on many of the 108 P450 genes on the Affymetrix arrays. First we confirmed that CYP93C5 (an isoflavone synthase gene) is

  20. Asian-specific mitochondrial genome polymorphism (9-bp deletion) in Hungarian patients with mitochondrial disease.

    PubMed

    Pentelenyi, Klara; Remenyi, Viktoria; Gal, Aniko; Milley, Gyorgy Mate; Csosz, Aranka; Mende, Balazs Gusztav; Molnar, Maria Judit

    2016-05-01

    A 9-bp deletion of the mtDNA is known as an anthropological marker of people with East-Asian origin. This 9-bp mtDNA deletion was analyzed in 1073 Hungarians with suspected mitochondrial disease and in 468 healthy control individuals. Fourteen cases with the 9-bp deletion were found in the cohort of mitochondrial patients, and one individual from 468 controls. In six cases the 9-bp deletion was present together with pathogenic major deletions in the mitochondrial genome. In one patient we found a frame shift mutation in the D-loop region, and in another family a pathogenic m.8322 A > G mutation in the tRNA(Lys) gene. Although the 9-bp deletion is common in the populations of the Pacific region and Asia, it is present in the Hungarian population as well. This 9-bp deletion may induce instability of the mtDNA and may provoke the introduction of other pathogenic mutations. PMID:25242187

  1. Genome-Wide Transcriptome Profiling of Region-Specific Vulnerability to Oxidative Stress in the Hippocampus

    PubMed Central

    Wang, Xinkun; Pal, Ranu; Chen, Xue-wen; Kumar, Keshava N.; Kim, Ok-Jin; Michaelis, Elias K.

    2007-01-01

    Neurons in the hippocampal CA1 region are particularly sensitive to oxidative stress (OS), whereas those in CA3 are resistant. To uncover mechanisms for selective CA1 vulnerability to OS, we treated organotypic hippocampal slices with duroquinone and compared transcriptional profiles of CA1 vs. CA3 cells at various intervals. Gene Ontology and biological pathway analyses of differentially expressed genes showed that at all time points, CA1 had higher transcriptional activity of stress/inflammatory response, transition metal transport, ferroxidase, and pre-synaptic signaling activity, while CA3 had higher GABA-signaling, postsynaptic, and calcium and potassium channel activity. Real-time PCR and immunoblots confirmed the transcriptome data and the induction of OS by duroquinone in both hippocampal regions. Our functional genomics approach has identified in CA1 cells molecular pathways as well as unique genes, such as, guanosine deaminase, lipocalin2, synaptotagmin 4, and latrophilin 2, whose time-dependent induction following the initiation of OS may represent attempts at neurite outgrowth, synaptic recovery, and resistance against OS. PMID:17553663

  2. Genomic determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific genes

    PubMed Central

    Galperin, Michael Y; Mekhedov, Sergei L; Puigbo, Pere; Smirnov, Sergey; Wolf, Yuri I; Rigden, Daniel J

    2012-01-01

    Three classes of low-G+C Gram-positive bacteria (Firmicutes), Bacilli, Clostridia and Negativicutes, include numerous members that are capable of producing heat-resistant endospores. Spore-forming firmicutes include many environmentally important organisms, such as insect pathogens and cellulose-degrading industrial strains, as well as human pathogens responsible for such diseases as anthrax, botulism, gas gangrene and tetanus. In the best-studied model organism Bacillus subtilis, sporulation involves over 500 genes, many of which are conserved among other bacilli and clostridia. This work aimed to define the genomic requirements for sporulation through an analysis of the presence of sporulation genes in various firmicutes, including those with smaller genomes than B. subtilis. Cultivable spore-formers were found to have genomes larger than 2300 kb and encompass over 2150 protein-coding genes of which 60 are orthologues of genes that are apparently essential for sporulation in B. subtilis. Clostridial spore-formers lack, among others, spoIIB, sda, spoVID and safA genes and have non-orthologous displacements of spoIIQ and spoIVFA, suggesting substantial differences between bacilli and clostridia in the engulfment and spore coat formation steps. Many B. subtilis sporulation genes, particularly those encoding small acid-soluble spore proteins and spore coat proteins, were found only in the family Bacillaceae, or even in a subset of Bacillus spp. Phylogenetic profiles of sporulation genes, compiled in this work, confirm the presence of a common sporulation gene core, but also illuminate the diversity of the sporulation processes within various lineages. These profiles should help further experimental studies of uncharacterized widespread sporulation genes, which would ultimately allow delineation of the minimal set(s) of sporulation-specific genes in Bacilli and Clostridia. PMID:22882546

  3. Synthesis of nickel-iron hydrogenase in Cupriavidus metallidurans is controlled by metal-dependent silencing and un-silencing of genomic islands.

    PubMed

    Herzberg, Martin; Schüttau, Marcel; Reimers, Matthias; Große, Cornelia; Hans-Günther-Schlegel; Nies, Dietrich H

    2015-04-01

    Cupriavidus metallidurans CH34 is able to grow autotrophically as a hydrogen-oxidizing bacterium and produces nickel-dependent hydrogenases, even under heterotrophic conditions. Loss of its two native plasmids resulted in inability of the resulting strain AE104 to synthesize the hydrogenases and to grow autotrophically in phosphate-poor, Tris-buffered mineral salts medium (TMM). Three of eleven previously identified catabolic genomic islands (CMGIs; Van Houdt et al., 2009), two of which harbor the genes for the membrane-bound (CMGI-2) and the soluble hydrogenase (CMGI-3), were silenced in strain AE104 when cultivated in phosphate-poor TMM, explaining its inability to produce hydrogenases. Production of the soluble hydrogenase from the aut region 1 of CMGI-3, and concomitant autotrophic growth, was recovered when the gene for the zinc importer ZupT was deleted in strain AE104. The transcriptome of the ΔzupT mutant exhibited two up-regulated gene regions compared to its parent strain AE104. Expression of the genes in the aut region 1 increased independently of the presence of added zinc. A second gene region was expressed only under metal starvation conditions. This region encoded a TonB-dependent outer membrane protein, a putative metal chaperone plus paralogs of essential zinc-dependent proteins, indicating the presence of a zinc allocation pathway in C. metallidurans. Thus, expression of the genes for the soluble hydrogenase and the Calvin cycle enzymes on aut region 1 of CMGI-3 of C. metallidurans is under global control and needs efficient ZupT-dependent zinc allocation for a regulatory role, which might be discrimination of nickel. PMID:25720835

  4. DLGP: A database for lineage-conserved and lineage-specific gene pairs in animal and plant genomes.

    PubMed

    Wang, Dapeng

    2016-01-15

    The conservation of gene organization in the genome with lineage-specificity is an invaluable resource to decipher their potential functionality with diverse selective constraints, especially in higher animals and plants. Gene pairs appear to be the minimal structure for such kind of gene clusters that tend to reside in their preferred locations, representing the distinctive genomic characteristics in single species or a given lineage. Despite gene families having been investigated in a widespread manner, the definition of gene pair families in various taxa still lacks adequate attention. To address this issue, we report DLGP (http://lcgbase.big.ac.cn/DLGP/) that stores the pre-calculated lineage-based gene pairs in currently available 134 animal and plant genomes and inspect them under the same analytical framework, bringing out a set of innovational features. First, the taxonomy or lineage has been classified into four levels such as Kingdom, Phylum, Class and Order. It adopts all-to-all comparison strategy to identify the possible conserved gene pairs in all species for each gene pair in certain species and reckon those that are conserved in over a significant proportion of species in a given lineage (e.g. Primates, Diptera or Poales) as the lineage-conserved gene pairs. Furthermore, it predicts the lineage-specific gene pairs by retaining the above-mentioned lineage-conserved gene pairs that are not conserved in any other lineages. Second, it carries out pairwise comparison for the gene pairs between two compared species and creates the table including all the conserved gene pairs and the image elucidating the conservation degree of gene pairs in chromosomal level. Third, it supplies gene order browser to extend gene pairs to gene clusters, allowing users to view the evolution dynamics in the gene context in an intuitive manner. This database will be able to facilitate the particular comparison between animals and plants, between vertebrates and arthropods, and

  5. The parA resolvase performs site-specific genomic excision in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have designed a site-specific excision detection system in Arabidopsis to study the in planta activity of the small serine recombinase ParA. Using a transient expression assay as well as stable transgenic plant lines, we show that the ParA recombinase is catalytically active and capable of perfo...

  6. Site-Specific Recombination Systems for the Genetic Manipulation of Eukaryotic Genomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Site-specific recombination systems, such as the bacteriophage Cre-lox and yeast FLP-FRT systems, have become valuable tools for the rearrangement of DNA in higher eukaryotes. As a first step to expanding the repertoire of recombination tools, we screened recombination systems derived from the reso...

  7. Single-Stranded γPNAs for In Vivo Site-Specific Genome Editing via Watson-Crick Recognition

    PubMed Central

    Bahal, Raman; Quijano, Elias; McNeer, Nicole Ali; Liu, Yanfeng; Bhunia, Dinesh C.; López-Giráldez, Francesco; Fields, Rachel J.; Saltzman, W. Mark; Ly, Danith H.; Glazer, Peter M.

    2014-01-01

    Triplex-forming peptide nucleic acids (PNAs) facilitate gene editing by stimulating recombination of donor DNAs within genomic DNA via site-specific formation of altered helical structures that further stimulate DNA repair. However, PNAs designed for triplex formation are sequence restricted to homopurine sites. Herein we describe a novel strategy where next generation single-stranded gamma PNAs (γPNAs) containing miniPEG substitutions at the gamma position can target genomic DNA in mouse bone marrow at mixed-sequence sites to induce targeted gene editing. In addition to enhanced binding, γPNAs confer increased solubility and improved formulation into poly(lactic-co-glycolic acid) (PLGA) nanoparticles for efficient intracellular delivery. Single-stranded γPNAs induce targeted gene editing at frequencies of 0.8% in mouse bone marrow cells treated ex vivo and 0.1% in vivo via IV injection, without detectable toxicity. These results suggest that γPNAs may provide a new tool for induced gene editing based on Watson-Crick recognition without sequence restriction. PMID:25174576

  8. Integrated whole-genome screening for Pseudomonas aeruginosa virulence genes using multiple disease models reveals that pathogenicity is host specific.

    PubMed

    Dubern, Jean-Frédéric; Cigana, Cristina; De Simone, Maura; Lazenby, James; Juhas, Mario; Schwager, Stephan; Bianconi, Irene; Döring, Gerd; Eberl, Leo; Williams, Paul; Bragonzi, Alessandra; Cámara, Miguel

    2015-11-01

    Pseudomonas aeruginosa is a multi-host opportunistic pathogen causing a wide range of diseases because of the armoury of virulence factors it produces, and it is difficult to eradicate because of its intrinsic resistance to antibiotics. Using an integrated whole-genome approach, we searched for P. aeruginosa virulence genes with multi-host relevance. We constructed a random library of 57 360 Tn5 mutants in P. aeruginosa PAO1-L and screened it in vitro for those showing pleiotropic effects in virulence phenotypes (reduced swarming, exo-protease and pyocyanin production). A set of these pleiotropic mutants were assayed for reduced toxicity in Drosophila melanogaster, Caenorhabditis elegans, human cell lines and mice. Surprisingly, the screening revealed that the virulence of the majority of P. aeruginosa mutants varied between disease models, suggesting that virulence is dependent on the disease model used and hence the host environment. Genomic analysis revealed that these virulence-related genes encoded proteins from almost all functional classes, which were conserved among P. aeruginosa strains. Thus, we provide strong evidence that although P. aeruginosa is capable of infecting a wide range of hosts, many of its virulence determinants are host specific. These findings have important implication when searching for novel anti-virulence targets to develop new treatments against P. aeruginosa. PMID:25845292

  9. Genome-Wide Analysis of Group A Streptococci Reveals a Mutation That Modulates Global Phenotype and Disease Specificity

    PubMed Central

    2006-01-01

    Many human pathogens produce phenotypic variants as a means to circumvent the host immune system and enhance survival and, as a potential consequence, exhibit increased virulence. For example, it has been known for almost 90 y that clinical isolates of the human bacterial pathogen group A streptococci (GAS) have extensive phenotypic heterogeneity linked to variation in virulence. However, the complete underlying molecular mechanism(s) have not been defined. Expression microarray analysis of nine clinical isolates identified two fundamentally different transcriptomes, designated pharyngeal transcriptome profile (PTP) and invasive transcriptome profile (ITP). PTP and ITP GAS differed in approximately 10% of the transcriptome, including at least 23 proven or putative virulence factor genes. ITP organisms were recovered from skin lesions of mice infected subcutaneously with PTP GAS and were significantly more able to survive phagocytosis and killing by human polymorphonuclear leukocytes. Complete genome resequencing of a mouse-derived ITP GAS revealed that the organism differed from its precursor by only a 7-bp frameshift mutation in the gene (covS) encoding the sensor kinase component of a two-component signal transduction system implicated in virulence. Genetic complementation, and sequence analysis of covR/S in 42 GAS isolates confirmed the central role of covR/S in transcriptome, exoproteome, and virulence modulation. Genome-wide analysis provides a heretofore unattained understanding of phenotypic variation and disease specificity in microbial pathogens, resulting in new avenues for vaccine and therapeutics research. PMID:16446783

  10. Comparative Genomics Analysis of Streptococcus tigurinus Strains Identifies Genetic Elements Specifically and Uniquely Present in Highly Virulent Strains

    PubMed Central

    Diene, Seydina M.; François, Patrice; Zbinden, Andrea; Entenza, José Manuel

    2016-01-01

    Streptococcus tigurinus is responsible for severe invasive infections such as infective endocarditis, spondylodiscitis and meningitis. As described, S. tigurinus isolates AZ_3aT and AZ_14 were highly virulent (HV phenotype) in an experimental model of infective endocarditis and showed enhanced adherence and invasion of human endothelial cells when compared to low virulent S. tigurinus isolate AZ_8 (LV phenotype). Here, we sought whether genetic determinants could explain the higher virulence of AZ_3aT and AZ_14 isolates. Several genetic determinants specific to the HV strains were identified through extensive comparative genomics amongst which some were thought to be highly relevant for the observed HV phenotype. These included i) an iron uptake and metabolism operon, ii) an ascorbate assimilation operon, iii) a newly acquired PI-2-like pilus islets described for the first time in S. tigurinus, iv) a hyaluronate metabolism operon, v) an Entner-Doudoroff pathway of carbohydrates metabolis